WorldWideScience

Sample records for range extended vehicles

  1. Range-extending Zinc-air battery for electric vehicle

    Directory of Open Access Journals (Sweden)

    Steven B. Sherman

    2018-01-01

    Full Text Available A vehicle model is used to evaluate a novel powertrain that is comprised of a dual energy storage system (Dual ESS. The system includes two battery packs with different chemistries and the necessary electronic controls to facilitate their coordination and optimization. Here, a lithium-ion battery pack is used as the primary pack and a Zinc-air battery as the secondary or range-extending pack. Zinc-air batteries are usually considered unsuitable for use in vehicles due to their poor cycle life, but the model demonstrates the feasibility of this technology with an appropriate control strategy, with limited cycling of the range extender pack. The battery pack sizes and the battery control strategy are configured to optimize range, cost and longevity. In simulation the vehicle performance compares favourably to a similar vehicle with a single energy storage system (Single ESS powertrain, travelling up to 75 km further under test conditions. The simulation demonstrates that the Zinc-air battery pack need only cycle 100 times to enjoy a ten-year lifespan. The Zinc-air battery model is based on leading Zinc-air battery research from literature, with some assumptions regarding achievable improvements. Having such a model clarifies the performance requirements of Zinc-air cells and improves the research community's ability to set performance targets for Zinc-air cells.

  2. A Novel Range-Extended Strategy for Fuel Cell/Battery Electric Vehicles.

    Science.gov (United States)

    Hwang, Jenn-Jiang; Hu, Jia-Sheng; Lin, Chih-Hong

    2015-01-01

    The range-extended electric vehicle is proposed to improve the range anxiety drivers have of electric vehicles. Conventionally, a gasoline/diesel generator increases the range of an electric vehicle. Due to the zero-CO2 emission stipulations, utilizing fuel cells as generators raises concerns in society. This paper presents a novel charging strategy for fuel cell/battery electric vehicles. In comparison to the conventional switch control, a fuzzy control approach is employed to enhance the battery's state of charge (SOC). This approach improves the quick loss problem of the system's SOC and thus can achieve an extended driving range. Smooth steering experience and range extension are the main indexes for development of fuzzy rules, which are mainly based on the energy management in the urban driving model. Evaluation of the entire control system is performed by simulation, which demonstrates its effectiveness and feasibility.

  3. A Novel Range-Extended Strategy for Fuel Cell/Battery Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Jenn-Jiang Hwang

    2015-01-01

    Full Text Available The range-extended electric vehicle is proposed to improve the range anxiety drivers have of electric vehicles. Conventionally, a gasoline/diesel generator increases the range of an electric vehicle. Due to the zero-CO2 emission stipulations, utilizing fuel cells as generators raises concerns in society. This paper presents a novel charging strategy for fuel cell/battery electric vehicles. In comparison to the conventional switch control, a fuzzy control approach is employed to enhance the battery’s state of charge (SOC. This approach improves the quick loss problem of the system’s SOC and thus can achieve an extended driving range. Smooth steering experience and range extension are the main indexes for development of fuzzy rules, which are mainly based on the energy management in the urban driving model. Evaluation of the entire control system is performed by simulation, which demonstrates its effectiveness and feasibility.

  4. NREL/Industry Range-Extended Electric Vehicle for Package Delivery

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, John T [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kelly, Kenneth J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Duran, Adam W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lammert, Michael P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Miller, Eric S [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-01-15

    Range-extended electric vehicle (EV) technology can be a viable option for reducing fuel consumption from medium-duty (MD) and heavy-duty (HD) engines by approximately 50 percent or more. Such engines have wide variations in use and duty cycles, however, and identifying the vocations/duty cycles most suitable for range-extended applications is vital for maximizing the potential benefits. This presentation provides information about NREL's research on range-extended EV technologies, with a focus on NREL's real-world data collection and analysis approach to identifying the vocations/duty cycles best suited for range-extender applications and to help guide related powertrain optimization and design requirements. The presentation also details NREL's drive cycle development process as it pertains to package delivery applications.

  5. Development of an extended-range electric vehicle : a systems engineering approach

    NARCIS (Netherlands)

    Voorderhake, S.F.

    2013-01-01

    This report presents the complete design (i.e., from product level to implementation level) of a sportive hatchback extended-range electric vehicle, including the design rationales and product creation process used. The project had two main goals: First, the development of a modular extended-range

  6. Performance and driveline analyses of engine capacity in range extender engine hybrid vehicle

    Science.gov (United States)

    Praptijanto, Achmad; Santoso, Widodo Budi; Nur, Arifin; Wahono, Bambang; Putrasari, Yanuandri

    2017-01-01

    In this study, range extender engine designed should be able to meet the power needs of a power generator of hybrid electrical vehicle that has a minimum of 18 kW. Using this baseline model, the following range extenders will be compared between conventional SI piston engine (Baseline, BsL), engine capacity 1998 cm3, and efficiency-oriented SI piston with engine capacity 999 cm3 and 499 cm3 with 86 mm bore and stroke square gasoline engine in the performance, emission prediction of range extender engine, standard of charge by using engine and vehicle simulation software tools. In AVL Boost simulation software, range extender engine simulated from 1000 to 6000 rpm engine loads. The highest peak engine power brake reached up to 38 kW at 4500 rpm. On the other hand the highest torque achieved in 100 Nm at 3500 rpm. After that using AVL cruise simulation software, the model of range extended electric vehicle in series configuration with main components such as internal combustion engine, generator, electric motor, battery and the arthemis model rural road cycle was used to simulate the vehicle model. The simulation results show that engine with engine capacity 999 cm3 reported the economical performances of the engine and the emission and the control of engine cycle parameters.

  7. Electric refuse collection vehicle with a range extender; Elektrisches Abfallsammelfahrzeug mit Range Extender

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, Andreas

    2012-10-15

    At the Frankfurt Motor Show IAA 2012, MAN will be presenting the Metropolis, a heavy-duty truck for use in urban areas that produces no emissions and is ultra-quiet. Using mains electricity generated from renewable sources, it can operate without producing any CO{sub 2}. The truck's modular lithium-ion battery is located under the ab. A quiet and efficient diesel engine from the Volkswagen Group generates power as needed and functions as a range extender for the truck. At the end of 2012, the MAN Metropolis will start a two-year field test as a refuse collection vehicle. (orig.)

  8. Exergy analysis of thermal management system for range-extended electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Hamut, H. S.; Dincer, I.; Naterer, G. F. [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology (Canada)], email: Ibrahim.Dincer@uoit.ca

    2011-07-01

    In the last few decades, the energy crisis, increasing gas prices and concerns over environmental pollution have encouraged the development of electric vehicle (EV) and hybrid electric vehicle (HEV) technologies. In this paper, a thermal management system (TMS) installed in a range-extended electric vehicle is examined and is found to have a substantial impact on battery efficiency and vehicle performance. An exergy analysis was conducted on the refrigeration and coolant circuits and the Coefficient of Performance (COP) of the baseline system was determined to be 2.0 with a range of 1.8 to 2.4. The overall exergy was found to be 32% with a range of 26% to 39%. Ambient temperature had the largest impact on overall exergy efficiency but there is a need to further investigate temperature effects on battery efficiency, since the battery's performance has such a high impact on vehicle performance overall.

  9. Summary Report on the SAE 2016 Range Extenders for Electric Vehicles Symposium

    Energy Technology Data Exchange (ETDEWEB)

    Curran, Scott [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wagner, Robert M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Campbell, Russ [SRA International, Inc., Arlington, VA (United States)

    2017-03-01

    The SAE 2016 Range Extenders for Electric Vehicles Symposium was a 2-day technical meeting focused on the role of advanced internal combustion engines (ICEs) and other novel energy converter technologies for extending the range of electric vehicles (EVs). The first-of-its-kind symposium was notable for focusing solely on the range extender (REx) technologies and not the EVs. The technical program featured presentations from international leaders from industry, government, national laboratories, and academia. The opening keynote presentations covered a broad range of topics including consumer behavior, policy implications, regulatory considerations, and REx architectures as enablers for advanced technologies. The technical sessions focused on an array of REx technologies including conventional ICEs, as well as less conventional or emerging technologies such as microturbines, fuel cells, low-temperature combustion engines, and aluminum-air batteries. The symposium included two panel sessions. The trend toward increasing vehicle electrification and the changing role of ICEs and other auxiliary power unit technologies for use as REx’s is leading to new research and design development needs. The symposium captured the interest of the industry and research communities in exploring the opportunities and challenges associated with REx’s for EVs. This report includes key takeaways, summarized below, and draft notes for each presentation and panel discussion.

  10. A numerical investigation on the efficiency of range extending systems using Advanced Vehicle Simulator

    Science.gov (United States)

    Varnhagen, Scott; Same, Adam; Remillard, Jesse; Park, Jae Wan

    2011-03-01

    Series plug-in hybrid electric vehicles of varying engine configuration and battery capacity are modeled using Advanced Vehicle Simulator (ADVISOR). The performance of these vehicles is analyzed on the bases of energy consumption and greenhouse gas emissions on the tank-to-wheel and well-to-wheel paths. Both city and highway driving conditions are considered during the simulation. When simulated on the well-to-wheel path, it is shown that the range extender with a Wankel rotary engine consumes less energy and emits fewer greenhouse gases compared to the other systems with reciprocating engines during many driving cycles. The rotary engine has a higher power-to-weight ratio and lower noise, vibration and harshness compared to conventional reciprocating engines, although performs less efficiently. The benefits of a Wankel engine make it an attractive option for use as a range extender in a plug-in hybrid electric vehicle.

  11. Spatial filtering velocimeter for vehicle navigation with extended measurement range

    Science.gov (United States)

    He, Xin; Zhou, Jian; Nie, Xiaoming; Long, Xingwu

    2015-05-01

    The idea of using spatial filtering velocimeter is proposed to provide accurate velocity information for vehicle autonomous navigation system. The presented spatial filtering velocimeter is based on a CMOS linear image sensor. The limited frame rate restricts high speed measurement of the vehicle. To extend measurement range of the velocimeter, a method of frequency shifting is put forward. Theoretical analysis shows that the frequency of output signal can be reduced and the measurement range can be doubled by this method when the shifting direction is set the same with that of image velocity. The approach of fast Fourier transform (FFT) is employed to obtain the power spectra of the spatially filtered signals. Because of limited frequency resolution of FFT, a frequency spectrum correction algorithm, called energy centrobaric correction, is used to improve the frequency resolution. The correction accuracy energy centrobaric correction is analyzed. Experiments are carried out to measure the moving surface of a conveyor belt. The experimental results show that the maximum measurable velocity is about 800deg/s without frequency shifting, 1600deg/s with frequency shifting, when the frame rate of the image is about 8117 Hz. Therefore, the measurement range is doubled by the method of frequency shifting. Furthermore, experiments were carried out to measure the vehicle velocity simultaneously using both the designed SFV and a laser Doppler velocimeter (LDV). The measurement results of the presented SFV are coincident with that of the LDV, but with bigger fluctuation. Therefore, it has the potential of application to vehicular autonomous navigation.

  12. Range extender module. Enabler for electric mobility; Range-Extender-Modul. Wegbereiter fuer elektrische Mobilitaet

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Robert; Fraidl, Guenter Karl; Hubmann, Christian; Kapus, Paul Ernst; Kunzemann, Ralf; Sifferlinger, Bernhard; Beste, Frank [AVL List GmbH, Graz (Austria)

    2009-10-15

    The Range Extender as an auxiliary power supply for extended driving ranges is of significant importance in achieving a high level of customer acceptance for electric vehicles. The AVL concept is optimized for electric power generation in single-point operation and allows a compactly integrated, cost-efficient and weight-efficient module design. The internal combustion engine requirements of the Pure Range Extender from AVL permit not only the use of simplified four-stroke concepts but also the application of emission-optimized and fuel consumption-optimized two-stroke and rotary piston engines. (orig.)

  13. A Proportional Resonant Control Strategy for Efficiency Improvement in Extended Range Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Xiaoyuan Wang

    2017-02-01

    Full Text Available The key to control the range extender generation system is to improve the efficiency and reduce the emissions of the electric vehicle (EV. In this paper, based on the purpose of efficiency optimization, both engine and generator are matched to get a public high efficiency region, and a partial power following control strategy was presented. The engine speed is constant in the defined power range, so the output power regulation of the range extender is only realized by the adjustment of the torque of the generator. Engine speed and generator torque were decoupled. An improved proportional resonant (PR controller is adopted to achieve fast output power regulation. In order to ensure the response characteristics of the control system and to improve the robustness, the impacts on system’s characteristics and stability caused by PR controller and parameters in the inner-current loop were analyzed via frequency response characteristics. A pre-Tustin with deviation compensation is proposed for PR controller’s discretization. A stable and robust power following control method is obtained for the range extender control system. Finally, simulation and experiment of the proposed control strategy illustrated its feasibility and correctness.

  14. Development of an efficient and compact range extender engine; Entwicklung eines effizienten und kompakten Range-Extender-Motors

    Energy Technology Data Exchange (ETDEWEB)

    Mahr, Bernd; Bassett, Mike; Hall, Jonathan; Warth, Marco [Mahle Powertrain Ltd., Northampton (United Kingdom)

    2011-10-15

    Mahle Powertrain has developed a compact, two-cylinder, spark-ignition engine that is specifically designed to be used as a range extender. Drive-cycle simulations and engine tests indicate that a range-extended vehicle using this engine would achieve a significant reduction in fuel consumption and tail-pipe CO{sub 2} levels. (orig.)

  15. Analysis of four-stroke, Wankel, and microturbine based range extenders for electric vehicles

    International Nuclear Information System (INIS)

    Ribau, João; Silva, Carla; Brito, Francisco P.; Martins, Jorge

    2012-01-01

    Highlights: ► VSP correlates well with the engine use, regenerative braking and boost setting. ► Wankel engine vehicle is the most efficient in urban driving. ► Over-expanded engine vehicle is the most efficient in annual combined use. ► The higher the annual urban commuting driving the lower is energy consumption. ► Over-expanded solution has 5.7% WTW less energy usage and 8.8% less CO 2 emissions. - Abstract: This paper aims to compare the energy efficiency and CO 2 emissions of four different range extender engine solutions deployed in the same baseline series hybrid vehicle, under a combination of driving scenarios aiming to be representative of typical driving instead of standard cycles. Baseline vehicle is roughly based on Chevy VOLT/Opel Ampera. The baseline internal combustion engine is replaced by an over-expanded cycle engine, Wankel engine and microturbine, with respective generator and exhaust after treatment. Weight savings are compensated by introducing additional battery modules, maintaining the original baseline vehicle curb weight. Vehicle Specific Power (VSP) is used for driving cycle analysis and as explanatory variable for energy consumption and CO 2 emissions variations. Upstream fuel energy and CO 2 emissions of gasoline/diesel and electricity are regarded. Average VSP correlates with variation of the percentage of engine off, potential regenerative braking energy and eco/boost operation. Positive wheel energy correlates with energy consumption and electric autonomy adequately. The vehicle with the lightest engine (Wankel) and largest battery shows to be the most efficient in urban driving (when the engine does not have to work), while the vehicle with the highest efficient engine (over-expanded) and with dual eco/boost setting is the most efficient during the charge sustaining operation and in annual combined use.

  16. Extending the Range of a BEV - Early Progress

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, John; Agathocleous, Nicos; Kang, SH; Vespa, Tony

    2015-09-30

    The 2015 BEV Kia Soul is available with either a Positive Temperature Coefficient (PTC) heater only or an air-source R134a heat pump with PTC heater combination. Hanon, HATCI, and NREL are jointly, with financial support from the DoE, working towards extending the driving range of the heat pump vehicle. This presentation will focus on the early findings of the project, including test data of the baseline vehicle, early data from a modified vehicle, and range extension goals of the project.

  17. Does Driving Range of Electric Vehicles Influence Electric Vehicle Adoption?

    Directory of Open Access Journals (Sweden)

    Seiho Kim

    2017-10-01

    Full Text Available This study aims to determine the influential factors on the market share of electric vehicles through panel data analysis based on time series data from 2011 to 2015 in 31 countries. We selected five significant independent variables that are expected to affect electric vehicle adoption based on literature review. The econometric model in this study suggests that the relative price of electric vehicle compared to internal combustion engine vehicle, driving range, and number of models available in markets are correlated to the market share of electric vehicles. On the other hand, relationship between recharging infrastructure—an important factor for electric vehicle adoption in many studies—and market share of electric vehicles turned out to be insignificant in this study. From a political point of view, we argue that policy makers need to allocate more resources to research and development in order to extend driving range at the early stage of electric vehicle deployment in the markets.

  18. Modelling of thermoelectric generator with heat pipe assist for range extender application

    OpenAIRE

    Brito, F. P.; Martins, Jorge; Gonçalves, L. M.; Sousa, R.

    2011-01-01

    Recent trends towards electrification of vehicles favour the adoption of waste energy recovery into electricity. Battery-only Electric Vehicles (BEV) need a very large energy storage system so the use of a Range Extender (RE) may allow a significant downsizing of these bulky components. The Internal Combustion Engines (ICE) have two major discarded energy fluxes, engine cooling and exhaust gas. In Extended Range Electric Vehicles (EREV) and hybrids the potential for heat conversion into elect...

  19. Advanced Range Safety System for High Energy Vehicles

    Science.gov (United States)

    Claxton, Jeffrey S.; Linton, Donald F.

    2002-01-01

    The advanced range safety system project is a collaboration between the National Aeronautics and Space Administration and the United States Air Force to develop systems that would reduce costs and schedule for safety approval for new classes of unmanned high-energy vehicles. The mission-planning feature for this system would yield flight profiles that satisfy the mission requirements for the user while providing an increased quality of risk assessment, enhancing public safety. By improving the speed and accuracy of predicting risks to the public, mission planners would be able to expand flight envelopes significantly. Once in place, this system is expected to offer the flexibility of handling real-time risk management for the high-energy capabilities of hypersonic vehicles including autonomous return-from-orbit vehicles and extended flight profiles over land. Users of this system would include mission planners of Space Launch Initiative vehicles, space planes, and other high-energy vehicles. The real-time features of the system could make extended flight of a malfunctioning vehicle possible, in lieu of an immediate terminate decision. With this improved capability, the user would have more time for anomaly resolution and potential recovery of a malfunctioning vehicle.

  20. Design considerations of a linear generator for a range extender application

    Directory of Open Access Journals (Sweden)

    Seo Un-Jae

    2015-12-01

    Full Text Available The free piston linear generator is a new range extender concept for the application in a full electric vehicle. The free piston engine driven linear generators can achieve high efficiency at part and full load which is suitable for the range extender application. This paper presents requirements for designing a linear generator deduced from a basic analysis of a free piston linear generator.

  1. Evaluation of Fuel-Cell Range Extender Impact on Hybrid Electrical Vehicle Performance

    DEFF Research Database (Denmark)

    Jensen, Hans-Christian Becker; Schaltz, Erik; Koustrup, Per Sune

    2013-01-01

    The use of electric vehicles (EVs) is advantageous because of zero emission, but their market penetration is limited by one disadvantage, i.e., energy storage. Battery EVs (BEVs) have a limited range, and their batteries take a long time to charge, compared with the time it takes to refuel the tank...... of a vehicle with an internal combustion engine (ICE). Fuel cells (FCs) can be added to an EV as an additional energy source. These are faster to refill and will therefore facilitate the transition from vehicles running on fossil fuel to electricity. Different EV setups with FC strategies are presented...... in start/stop city cycles. Simulations with the New European Driving Cycle (NEDC) showed that efficiency fell by at least 15% for the FC hybrid EV (FCHEV) when compared with BEVs....

  2. Optimizing battery sizes of plug-in hybrid and extended range electric vehicles for different user types

    International Nuclear Information System (INIS)

    Redelbach, Martin; Özdemir, Enver Doruk; Friedrich, Horst E.

    2014-01-01

    There are ambitious greenhouse gas emission (GHG) targets for the manufacturers of light duty vehicles. To reduce the GHG emissions, plug-in hybrid electric vehicle (PHEV) and extended range electric vehicle (EREV) are promising powertrain technologies. However, the battery is still a very critical component due to the high production cost and heavy weight. This paper introduces a holistic approach for the optimization of the battery size of PHEVs and EREVs under German market conditions. The assessment focuses on the heterogeneity across drivers, by analyzing the impact of different driving profiles on the optimal battery setup from total cost of ownership (TCO) perspective. The results show that the battery size has a significant effect on the TCO. For an average German driver (15,000 km/a), battery capacities of 4 kWh (PHEV) and 6 kWh (EREV) would be cost optimal by 2020. However, these values vary strongly with the driving profile of the user. Moreover, the optimal battery size is also affected by external factors, e.g. electricity and fuel prices or battery production cost. Therefore, car manufacturers should develop a modular design for their batteries, which allows adapting the storage capacity to meet the individual customer requirements instead of “one size fits all”. - Highlights: • Optimization of the battery size of PHEVs and EREVs under German market conditions. • Focus on heterogeneity across drivers (e.g. mileage, trip distribution, speed). • Optimal battery size strongly depends on the driving profile and energy prices. • OEMs require a modular design for their batteries to meet individual requirements

  3. An extended set-value observer for position estimation using single range measurements

    DEFF Research Database (Denmark)

    Marcal, Jose; Jouffroy, Jerome; Fossen, Thor I.

    the observability of the system is briefly discussed and an extended set-valued observer is presented, with some discussion about the effect of the measurements noise on the final solution. This observer estimates bounds in the errors assuming that the exogenous signals are bounded, providing a safe region......The ability of estimating the position of an underwater vehicle from single range measurements is important in applications where one transducer marks an important geographical point, when there is a limitation in the size or cost of the vehicle, or when there is a failure in a system...... of transponders. The knowledge of the bearing of the vehicle and the range measurements from a single location can provide a solution which is sensitive to the trajectory that the vehicle is following, since there is no complete constraint on the position estimate with a single beacon. In this paper...

  4. Range Extension Opportunities While Heating a Battery Electric Vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Lustbader, Jason A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rugh, John P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Titov, Eugene V [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Meyer, John [Hanon Systems; Agathocleous, Nicos [Hanon Systems; Vespa, Antonio [Hyundai-Kia America Technical Center Inc.

    2018-04-03

    The Kia Soul battery electric vehicle (BEV) is available with either a positive temperature coefficient (PTC) heater or an R134a heat pump (HP) with PTC heater combination (1). The HP uses both ambient air and waste heat from the motor, inverter, and on-board-charger (OBC) for its heat source. Hanon Systems, Hyundai America Technical Center, Inc. (HATCI) and the National Renewable Energy Laboratory jointly, with financial support from the U.S. Department of Energy, developed and proved-out technologies that extend the driving range of a Kia Soul BEV while maintaining thermal comfort in cold climates. Improved system configuration concepts that use thermal storage and waste heat more effectively were developed and evaluated. Range extensions of 5%-22% at ambient temperatures ranging from 5 degrees C to -18 degrees C were demonstrated. This paper reviews the three-year effort, including test data of the baseline and modified vehicles, resulting range extension, and recommendations for future actions.

  5. Overcoming the Range Limitation of Medium-Duty Battery Electric Vehicles through the use of Hydrogen Fuel-Cells

    Energy Technology Data Exchange (ETDEWEB)

    Wood, E.; Wang, L.; Gonder, J.; Ulsh, M.

    2013-10-01

    Battery electric vehicles possess great potential for decreasing lifecycle costs in medium-duty applications, a market segment currently dominated by internal combustion technology. Characterized by frequent repetition of similar routes and daily return to a central depot, medium-duty vocations are well positioned to leverage the low operating costs of battery electric vehicles. Unfortunately, the range limitation of commercially available battery electric vehicles acts as a barrier to widespread adoption. This paper describes the National Renewable Energy Laboratory's collaboration with the U.S. Department of Energy and industry partners to analyze the use of small hydrogen fuel-cell stacks to extend the range of battery electric vehicles as a means of improving utility, and presumably, increasing market adoption. This analysis employs real-world vocational data and near-term economic assumptions to (1) identify optimal component configurations for minimizing lifecycle costs, (2) benchmark economic performance relative to both battery electric and conventional powertrains, and (3) understand how the optimal design and its competitiveness change with respect to duty cycle and economic climate. It is found that small fuel-cell power units provide extended range at significantly lower capital and lifecycle costs than additional battery capacity alone. And while fuel-cell range-extended vehicles are not deemed economically competitive with conventional vehicles given present-day economic conditions, this paper identifies potential future scenarios where cost equivalency is achieved.

  6. An Observability Metric for Underwater Vehicle Localization Using Range Measurements

    Directory of Open Access Journals (Sweden)

    Filippo Arrichiello

    2013-11-01

    Full Text Available The paper addresses observability issues related to the general problem of single and multiple Autonomous Underwater Vehicle (AUV localization using only range measurements. While an AUV is submerged, localization devices, such as Global Navigation Satellite Systems, are ineffective, due to the attenuation of electromagnetic waves. AUV localization based on dead reckoning techniques and the use of affordable motion sensor units is also not practical, due to divergence caused by sensor bias and drift. For these reasons, localization systems often build on trilateration algorithms that rely on the measurements of the ranges between an AUV and a set of fixed transponders using acoustic devices. Still, such solutions are often expensive, require cumbersome calibration procedures and only allow for AUV localization in an area that is defined by the geometrical arrangement of the transponders. A viable alternative for AUV localization that has recently come to the fore exploits the use of complementary information on the distance from the AUV to a single transponder, together with information provided by on-board resident motion sensors, such as, for example, depth, velocity and acceleration measurements. This concept can be extended to address the problem of relative localization between two AUVs equipped with acoustic sensors for inter-vehicle range measurements. Motivated by these developments, in this paper, we show that both the problems of absolute localization of a single vehicle and the relative localization of multiple vehicles can be treated using the same mathematical framework, and tailoring concepts of observability derived for nonlinear systems, we analyze how the performance in localization depends on the types of motion imparted to the AUVs. For this effect, we propose a well-defined observability metric and validate its usefulness, both in simulation and by carrying out experimental tests with a real marine vehicle during which the

  7. Intelligent Energy Management Control for Extended Range Electric Vehicles Based on Dynamic Programming and Neural Network

    Directory of Open Access Journals (Sweden)

    Lihe Xi

    2017-11-01

    Full Text Available The extended range electric vehicle (EREV can store much clean energy from the electric grid when it arrives at the charging station with lower battery energy. Consuming minimum gasoline during the trip is a common goal for most energy management controllers. To achieve these objectives, an intelligent energy management controller for EREV based on dynamic programming and neural networks (IEMC_NN is proposed. The power demand split ratio between the extender and battery are optimized by DP, and the control objectives are presented as a cost function. The online controller is trained by neural networks. Three trained controllers, constructing the controller library in IEMC_NN, are obtained from training three typical lengths of the driving cycle. To determine an appropriate NN controller for different driving distance purposes, the selection module in IEMC_NN is developed based on the remaining battery energy and the driving distance to the charging station. Three simulation conditions are adopted to validate the performance of IEMC_NN. They are target driving distance information, known and unknown, changing the destination during the trip. Simulation results using these simulation conditions show that the IEMC_NN had better fuel economy than the charging deplete/charging sustain (CD/CS algorithm. More significantly, with known driving distance information, the battery SOC controlled by IEMC_NN can just reach the lower bound as the EREV arrives at the charging station, which was also feasible when the driver changed the destination during the trip.

  8. Electric vehicle with or without range extender. Who is the driver - technology, customer or legislation?; Elektrofahrzeuge mit oder ohne Range Extender. Wer bestimmt den Weg - die Technik, der Kunde oder die Gesetzgebung?

    Energy Technology Data Exchange (ETDEWEB)

    Beidl, Christian; Kluin, Matthias [Technische Univ. Darmstadt (Germany); Hohenberg, Guenter; Bacher, Christian [IVD Prof. Hohenberg GmbH, Graz (Austria)

    2011-07-01

    Let us begin with an analysis of the technical context of E-mobility. The starting point of any such investigation is the restricted range of this technology. Greater car sizes bring ever-greater problems, especially in terms of the growing influence of driving speed and surrounding conditions. The combination of an E-motor and combustion engine thus represents an expedient ''enabler'' of E-mobility. This combination enables a drive system solution which overcomes the restrictions of a purely electric vehicle in terms of flexibility of use and availability of mobility. This paper discusses the difference between parallel and serial drives using already realized concepts. It also seeks to present a new concept for a compact, cost-efficient solution (ICE Assist). The second section will compare the current legal framework, customer expectations and technical solutions. Of critical importance is the concept for which the government will opt and the ''incentives'' which it sets to achieve this end. OEMs are currently beset by a significant level of insecurity regarding the concept with the best future and as a result, those involved are currently seeking solutions which cover all possible variants. This invariably results in compromises, which further add to the time and effort involved and increases costs. Customers generally have a positive attitude towards electric driving, but at the same time, their expectations follow their prior experience. Range extender / plug-in / ICE-assist solutions thus have the potential to bring a significant increase in the amount of electric driving / the number of kilometers driven by electrical means. To achieve a breakthrough in E-mobility, it is first necessary to establish a clear definition of an ''electric vehicle''. This requires a clear response from the government. 32. Internationales (orig.)

  9. Autonomous system for launch vehicle range safety

    Science.gov (United States)

    Ferrell, Bob; Haley, Sam

    2001-02-01

    The Autonomous Flight Safety System (AFSS) is a launch vehicle subsystem whose ultimate goal is an autonomous capability to assure range safety (people and valuable resources), flight personnel safety, flight assets safety (recovery of valuable vehicles and cargo), and global coverage with a dramatic simplification of range infrastructure. The AFSS is capable of determining current vehicle position and predicting the impact point with respect to flight restriction zones. Additionally, it is able to discern whether or not the launch vehicle is an immediate threat to public safety, and initiate the appropriate range safety response. These features provide for a dramatic cost reduction in range operations and improved reliability of mission success. .

  10. Extending EV Range with Direct Methanol Fuel Cells

    OpenAIRE

    Steckmann, Kai

    2009-01-01

    Electric cars are the vehicles of the future, and there is a proven hybrid system for extending their mileage. Direct methanol fuel cells (DMFCs) provide safe, lightweight, onboard battery charging that can free car owners from worry about running out of power. The hybrid system includes a DMFC fuel cell, fuel cell cartridge and electric vehicle batteries. The fuel cell operates almost silently with virtually no exhaust, it is immune to extreme weather and the convenient fuel cartridges featu...

  11. Broadband vehicle-to-vehicle communication using an extended autonomous cruise control sensor

    Science.gov (United States)

    Heddebaut, M.; Rioult, J.; Ghys, J. P.; Gransart, Ch; Ambellouis, S.

    2005-06-01

    For several years road vehicle autonomous cruise control (ACC) systems as well as anti-collision radar have been developed. Several manufacturers currently sell this equipment. The current generation of ACC sensors only track the first preceding vehicle to deduce its speed and position. These data are then used to compute, manage and optimize a safety distance between vehicles, thus providing some assistance to car drivers. However, in real conditions, to elaborate and update a real time driving solution, car drivers use information about speed and position of preceding and following vehicles. This information is essentially perceived using the driver's eyes, binocular stereoscopic vision performed through the windscreens and rear-view mirrors. Furthermore, within a line of vehicles, the frontal road perception of the first vehicle is very particular and highly significant. Currently, all these available data remain strictly on-board the vehicle that has captured the perception information and performed these measurements. To get the maximum effectiveness of all these approaches, we propose that this information be shared in real time with the following vehicles, within the convoy. On the basis of these considerations, this paper technically explores a cost-effective solution to extend the basic ACC sensor function in order to simultaneously provide a vehicle-to-vehicle radio link. This millimetre wave radio link transmits relevant broadband perception data (video, localization...) to following vehicles, along the line of vehicles. The propagation path between the vehicles uses essentially grazing angles of incidence of signals over the road surface including millimetre wave paths beneath the cars.

  12. Vehicle State Estimator based regenerative braking implementation on an electric vehicle to improve lateral vehicle stability

    NARCIS (Netherlands)

    Jansen, S.T.H.; van Boekel, J.J.P.; Iersel, van S.S.; Besselink, I.J.M.; Nijmeijer, H.

    2013-01-01

    The driving range of electric vehicles can be extended using regenerative braking. Regenerative braking uses the electric drive system, and therefore only the driven wheels, for decelerating the vehicle. Braking on one axle affects the stability of the vehicle, especially for road conditions with

  13. Vehicle state estimator based regenerative braking implementation on an electric vehicle to improve lateral vehicle stability

    NARCIS (Netherlands)

    Jansen, S.T.H.; Boekel, J.J.P. van; Iersel, S.S. van; Besselink, I.J.M.; Nijmeijer, H.

    2013-01-01

    The driving range of electric vehicles can be extended using regenerative braking. Regenerative braking uses the elctric drive system, and therefore only the driven wheels, for decelerating the vehicle. Braking on one axle affects the stability of the vehicle, especially for road conditions with

  14. Battery electric vehicle energy consumption modelling for range estimation

    NARCIS (Netherlands)

    Wang, J.; Besselink, I.J.M.; Nijmeijer, H.

    2017-01-01

    Range anxiety is considered as one of the major barriers to the mass adoption of battery electric vehicles (BEVs). One method to solve this problem is to provide accurate range estimation to the driver. This paper describes a vehicle energy consumption model considering the influence of weather

  15. Charging up for the future of plug-in hybrids and range extenders. An exploration of options for increased battery utilisation; Opladen voor de toekomst van plug-in hybrides en range extenders. Een verkenning naar mogelijkheden voor vergroten van het elektrische gebruik

    Energy Technology Data Exchange (ETDEWEB)

    Van Essen, H.; Schroten, A.; Aarnink, S.

    2013-05-15

    If the full potential of plug-in hybrids and electric cars with a range extender is to be usefully exploited, it is important that these vehicles be used in battery mode as much as possible. This means that users' charging and driving behaviour needs to be positively influenced. This can be achieved through suitably designed financial incentives on the part of employers and government, further expansion of battery-charging infrastructure, and transferring knowledge on driving style. Improved driving and charging behaviour will lead to lower effective fuel consumption, reduced CO2 emissions and improved air quality. These are some of the results of this study in which it is examined how the performance of plug-in hybrids and cars with a range extender can be improved. It is the first study to look into the factors governing practical usage of such vehicles and the options available to the various parties to improve that usage. To this end a literature study was carried out and interviews were held with employers, leasing companies, trade associations, government agencies and other parties [Dutch] Om het potentieel van plug-in hybrides en elektrische auto's met een range extender te benutten is het van belang dat deze auto's zoveel mogelijk elektrisch worden gereden. Hiervoor is het nodig om het oplaad- en rijgedrag van de gebruikers positief te beïnvloeden. Dit kan door het geven van slimme financiële prikkels door werkgevers en overheid, het verder uitbreiden van de laadinfrastructuur en kennisoverdracht over rijgedrag. Een verbeterd rij- en laadgedrag zorgt voor een lager brandstofpraktijkverbruik, minder CO2-uitstoot en een betere luchtkwaliteit. Dit staat onder meer in de studie 'Opladen voor de toekomst van plug-in hybrides en range extenders' van CE Delft, waarin op verzoek van de Nederlandse importeurs van Toyota en Opel is onderzocht hoe het elektrisch gebruik kan worden verbeterd. Hierin is voor het eerst gekeken naar de factoren

  16. Impact of Solar Control PVB Glass on Vehicle Interior Temperatures, Air-Conditioning Capacity, Fuel Consumption, and Vehicle Range

    Energy Technology Data Exchange (ETDEWEB)

    Rugh, J.; Chaney, L.; Venson, T.; Ramroth, L.; Rose, M.

    2013-04-01

    The objective of the study was to assess the impact of Saflex1 S-series Solar Control PVB (polyvinyl butyral) configurations on conventional vehicle fuel economy and electric vehicle (EV) range. The approach included outdoor vehicle thermal soak testing, RadTherm cool-down analysis, and vehicle simulations. Thermal soak tests were conducted at the National Renewable Energy Laboratory's Vehicle Testing and Integration Facility in Golden, Colorado. The test results quantified interior temperature reductions and were used to generate initial conditions for the RadTherm cool-down analysis. The RadTherm model determined the potential reduction in air-conditioning (A/C) capacity, which was used to calculate the A/C load for the vehicle simulations. The vehicle simulation tool identified the potential reduction in fuel consumption or improvement in EV range between a baseline and modified configurations for the city and highway drive cycles. The thermal analysis determined a potential 4.0% reduction in A/C power for the Saflex Solar PVB solar control configuration. The reduction in A/C power improved the vehicle range of EVs and fuel economy of conventional vehicles and plug-in hybrid electric vehicles.

  17. Dual extended Kalman filter for combined estimation of vehicle state and road friction

    Science.gov (United States)

    Zong, Changfu; Hu, Dan; Zheng, Hongyu

    2013-03-01

    Vehicle state and tire-road adhesion are of great use and importance to vehicle active safety control systems. However, it is always not easy to obtain the information with high accuracy and low expense. Recently, many estimation methods have been put forward to solve such problems, in which Kalman filter becomes one of the most popular techniques. Nevertheless, the use of complicated model always leads to poor real-time estimation while the role of road friction coefficient is often ignored. For the purpose of enhancing the real time performance of the algorithm and pursuing precise estimation of vehicle states, a model-based estimator is proposed to conduct combined estimation of vehicle states and road friction coefficients. The estimator is designed based on a three-DOF vehicle model coupled with the Highway Safety Research Institute(HSRI) tire model; the dual extended Kalman filter (DEKF) technique is employed, which can be regarded as two extended Kalman filters operating and communicating simultaneously. Effectiveness of the estimation is firstly examined by comparing the outputs of the estimator with the responses of the vehicle model in CarSim under three typical road adhesion conditions(high-friction, low-friction, and joint-friction). On this basis, driving simulator experiments are carried out to further investigate the practical application of the estimator. Numerical results from CarSim and driving simulator both demonstrate that the estimator designed is capable of estimating the vehicle states and road friction coefficient with reasonable accuracy. The DEKF-based estimator proposed provides the essential information for the vehicle active control system with low expense and decent precision, and offers the possibility of real car application in future.

  18. Ares-I-X Vehicle Preliminary Range Safety Malfunction Turn Analysis

    Science.gov (United States)

    Beaty, James R.; Starr, Brett R.; Gowan, John W., Jr.

    2008-01-01

    Ares-I-X is the designation given to the flight test version of the Ares-I rocket (also known as the Crew Launch Vehicle - CLV) being developed by NASA. As part of the preliminary flight plan approval process for the test vehicle, a range safety malfunction turn analysis was performed to support the launch area risk assessment and vehicle destruct criteria development processes. Several vehicle failure scenarios were identified which could cause the vehicle trajectory to deviate from its normal flight path, and the effects of these failures were evaluated with an Ares-I-X 6 degrees-of-freedom (6-DOF) digital simulation, using the Program to Optimize Simulated Trajectories Version 2 (POST2) simulation framework. The Ares-I-X simulation analysis provides output files containing vehicle state information, which are used by other risk assessment and vehicle debris trajectory simulation tools to determine the risk to personnel and facilities in the vicinity of the launch area at Kennedy Space Center (KSC), and to develop the vehicle destruct criteria used by the flight test range safety officer. The simulation analysis approach used for this study is described, including descriptions of the failure modes which were considered and the underlying assumptions and ground rules of the study, and preliminary results are presented, determined by analysis of the trajectory deviation of the failure cases, compared with the expected vehicle trajectory.

  19. Optimal control strategy design for extending all-electric driving capability of plug-in hybrid electric vehicles (PHEVs)

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, S.S [Concordia Univ., Montreal, PQ (Canada). Dept. of Electrical and Computer Engineering, P.D Ziogas Power Electronics Laboratory

    2007-07-01

    The high voltage energy storage system in plug-in hybrid electric vehicles (PHEVs) is usually a rechargeable type that service a dual purpose, notably to supplement the power delivered by the internal combustion engine, and to provide partial propulsion energy from an off-board source of electricity. The energy storage devices in electric vehicles typically improve vehicle efficiency through engine downsizing and by recapturing braking energy. However, since PHEVs have the ability to recharge their energy storage systems directly from the power grid, the periods of all-electric operation can be extended, thereby reducing the dependence on the internal combustion engine. This is particularly useful in city driving conditions. Developers of PHEV technology are faced with the challenge of choosing the appropriate energy storage battery in order to improve the all-electric drive range. In this study, control strategies were modeled for specific driving load conditions using the Advanced Vehicle Simulator (ADVISOR) software. This paper presented specific control algorithms for PHEV operation for various city driving loads. The optimal design strategy considered the improvement of critical energy storage parameters, overall drive train efficiency, and vehicle performance characteristics. Future trends in the design and development of PHEV drive trains were also presented. 13 figs.

  20. Electric Vehicle Battery Challenge

    Science.gov (United States)

    Roman, Harry T.

    2014-01-01

    A serious drawback to electric vehicles [batteries only] is the idle time needed to recharge their batteries. In this challenge, students can develop ideas and concepts for battery change-out at automotive service stations. Such a capability would extend the range of electric vehicles.

  1. An extended range neutron rem counter

    International Nuclear Information System (INIS)

    Birattari, C.; Nuccetelli, C.; Pelliccioni, M.; Silari, M.

    1990-01-01

    Extensive Monte Carlo calculations have been carried out to assess the possibility of extending the sensitivity of a neutron rem counter of the Andersson-Braun type up to several hundred MeV. The validity of the model adopted has first been checked by comparing with experimental data the calculated response curve and the angular dependence of the sensitivity for a well known commercial rem counter. Next, a number of modifications to the configuration of the moderator-attenuator have been investigated. The response functions and angular distributions produced by two simple solutions yielding an instrument with a sensitivity extended up to 400 MeV are presented. The response of the original rem counter and of its two modified versions to nine test spectra has also been calculated. The resulting instrument is transportable rather than portable, but the availability of an extended range neutron survey meter would be of great advantage at medium and high energy particle accelerator facilities. (orig.)

  2. Consumer Views: Fuel Economy, Plug-in Electric Vehicle Battery Range, and Willingness to Pay for Vehicle Technology

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-05-11

    This presentation includes data captured by the National Renewable Energy Laboratory (NREL) to support the U.S. Department of Energy's Vehicle Technologies Office (VTO) research efforts. The data capture consumer views on fuel economy, plug-in electric vehicle battery range, and willingness to pay for advanced vehicle technologies.

  3. Survey on Ranging Sensors and Cooperative Techniques for Relative Positioning of Vehicles

    Directory of Open Access Journals (Sweden)

    Fabian de Ponte Müller

    2017-01-01

    Full Text Available Future driver assistance systems will rely on accurate, reliable and continuous knowledge on the position of other road participants, including pedestrians, bicycles and other vehicles. The usual approach to tackle this requirement is to use on-board ranging sensors inside the vehicle. Radar, laser scanners or vision-based systems are able to detect objects in their line-of-sight. In contrast to these non-cooperative ranging sensors, cooperative approaches follow a strategy in which other road participants actively support the estimation of the relative position. The limitations of on-board ranging sensors regarding their detection range and angle of view and the facility of blockage can be approached by using a cooperative approach based on vehicle-to-vehicle communication. The fusion of both, cooperative and non-cooperative strategies, seems to offer the largest benefits regarding accuracy, availability and robustness. This survey offers the reader a comprehensive review on different techniques for vehicle relative positioning. The reader will learn the important performance indicators when it comes to relative positioning of vehicles, the different technologies that are both commercially available and currently under research, their expected performance and their intrinsic limitations. Moreover, the latest research in the area of vision-based systems for vehicle detection, as well as the latest work on GNSS-based vehicle localization and vehicular communication for relative positioning of vehicles, are reviewed. The survey also includes the research work on the fusion of cooperative and non-cooperative approaches to increase the reliability and the availability.

  4. Free piston linear generator in comparison to other range-extender technologies

    OpenAIRE

    Virsik, Roman; Heron, Alex

    2013-01-01

    The free piston linear generator is a new range-extender technology. It converts chemical energy into electrical energy by means of a combustion process and linear generator. Thereby the technology aims to have better properties than other range extenders. Therefore this publication deals with the explanation of the concept and the characteristics of a free piston linear generator and a comparison to other technologies. In order to compare the range extender systems, fuel cells, micro gas tur...

  5. Range prediction for electric vehicles; Reichweitenprognose fuer Elektromobile

    Energy Technology Data Exchange (ETDEWEB)

    Conradi, Peter [All4IP Technologies GmbH and Co.KG, Darmstadt (Germany)

    2012-06-15

    The range of electric vehicles varies strongly in dependency of a number of external factors. To be able to make an exact dynamic prediction of the remaining range during the journey, All4IP Technologies developed a special software that can access the CAN bus. The App, programmed for iOS and Android operating systems considers even the topology of the area. (orig.)

  6. Vehicle electrification. Quo vadis?

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, N. [GM Global Research and Development, Warren, MI (United States); Eberle, U.; Formanski, V.; Grebe, U.D.; Matthe, R. [General Motors Europe, Ruesselsheim (Germany)

    2012-11-01

    This publication describes the development of electrified propulsion systems from the invention of the automobile to the present and then provides an outlook on expected technology progress. Vehicle application areas for the various systems are identified based on a range of energy supply chains and the technological limits of electric powertrain components. GM anticipates that vehicle electrification will increase in the future. Battery-electric vehicles will become competitive for some applications, especially intra-urban, short-distance driving. Range-extended electric vehicles provide longer driving range and offer full capability; with this technology, electric vehicles can serve as the prime vehicle for many customers. Hydrogen-powered fuel cell-electric powertrains have potential for application across most of the vehicle segments. They produce zero emissions during all phases of operation, offer short refueling times, but have powertrain cooling and hydrogen storage packaging constraints. While the market share of electrified vehicles is expected to increase significantly, GM expects conventional powertrains with internal combustion engines to also have a long future - however, a lot of them will be supported by various levels of electrification. (orig.)

  7. Does this range suit me? Range satisfaction of battery electric vehicle users.

    Science.gov (United States)

    Franke, Thomas; Günther, Madlen; Trantow, Maria; Krems, Josef F

    2017-11-01

    User satisfaction is a vital design criterion for sustainable systems. The present research aimed to understand factors relating to individually perceived range satisfaction of battery electric vehicle (BEV) users. Data from a large-scale BEV field trial (N = 72) were analyzed. Apart from an initial drop in range satisfaction, increasing practical experience was related to increased range satisfaction. Classical indicators of users' mobility profiles (daily travel distances) were only weakly related to lower range satisfaction (not significant), after controlling for practical experience and preferred coverage of mobility needs. The regularity/predictability of users' mobility patterns, the percentage of journeys not coverable because of range issues, and users' individual comfortable range accounted for variance in range satisfaction. Finally, range satisfaction was related to key indicators of general BEV acceptance (e.g., purchase intentions). These results underline the complex dynamics involved in individual range satisfaction, as well as its central role for BEV acceptance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Towards extended safety in connected vehicles

    NARCIS (Netherlands)

    Ben Othmane, L.; Al-Fuqaha, A.; Ben Hamida, E.; Brand, van den M.G.J.

    2013-01-01

    Current standards for vehicle safety consider only accidental failures; they do not consider failures caused by malicious attackers. The standards implicitly assume that the sensors and Electronic Control Units (ECUs) of each vehicle compose a secure in-vehicle network because no external entity

  9. Extended Range of a Gun Launched Smart Projectile Using Controllable Canards

    OpenAIRE

    Mark Costello

    2001-01-01

    This effort investigates the extent to which moveable canards can extend the range of indirect fire munitions using both projectile body and canard lift. Implications on terminal velocity and time of flight using this mechanism to extend range are examined for various canard configurations. Performance predictions are conducted using a six-degree-of-freedom simulation model that has previously been validated against range data. The projectile dynamic equations are formed in the body frame and...

  10. Feasibility of an Extended-Duration Aerial Platform Using Autonomous Multi-Rotor Vehicle Swapping and Battery Management

    Science.gov (United States)

    2017-12-01

    AN EXTENDED-DURATION AERIAL PLATFORM USING AUTONOMOUS MULTI-ROTOR VEHICLE SWAPPING AND BATTERY MANAGEMENT by Alexander G. Williams December...Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503. 1. AGENCY USE ONLY...DURATION AERIAL PLATFORM USING AUTONOMOUS MULTI-ROTOR VEHICLE SWAPPING AND BATTERY MANAGEMENT 5. FUNDING NUMBERS 6. AUTHOR(S) Alexander G

  11. Comparison performance of split plug-in hybrid electric vehicle and hybrid electric vehicle using ADVISOR

    Directory of Open Access Journals (Sweden)

    Mohd Rashid Muhammad Ikram

    2017-01-01

    Full Text Available Electric vehicle suffers from relatively short range and long charging times and consequently has not become an acceptable solution to the automotive consumer. The addition of an internal combustion engine to extend the range of the electric vehicle is one method of exploiting the high efficiency and lack of emissions of the electric vehicle while retaining the range and convenient refuelling times of a conventional gasoline powered vehicle. The term that describes this type of vehicle is a hybrid electric vehicle. Many configurations of hybrid electric vehicles have been designed and implemented, namely the series, parallel and power-split configurations. This paper discusses the comparison between Split Plug-in Hybrid Electric Vehicle(SPHEV and Hybrid Electric Vehicle(HEV. Modelling methods such as physics-based Resistive Companion Form technique and Bond Graph method are presented with powertrain component and system modelling examples. The modelling and simulation capability of existing tools such as ADvanced VehIcle SimulatOR (ADVISOR is demonstrated through application examples. Since power electronics is indispensable in hybrid vehicles, the issue of numerical oscillations in dynamic simulations involving power electronics is briefly addressed.

  12. Extended Range of a Gun Launched Smart Projectile Using Controllable Canards

    Directory of Open Access Journals (Sweden)

    Mark Costello

    2001-01-01

    Full Text Available This effort investigates the extent to which moveable canards can extend the range of indirect fire munitions using both projectile body and canard lift. Implications on terminal velocity and time of flight using this mechanism to extend range are examined for various canard configurations. Performance predictions are conducted using a six-degree-of-freedom simulation model that has previously been validated against range data. The projectile dynamic equations are formed in the body frame and aerodynamic loads from the body and canards are Mach number and angle of attack dependent. The projectile body aerodynamic moments include unsteady aerodynamic damping. The focus of the study is directed toward low cost competent munitions that extend range and as such a simple flight control system is considered which utilizes only timer, roll rate, and roll attitude inputs.

  13. A Range-Based Vehicle Life Cycle Assessment Incorporating Variability in the Environmental Assessment of Different Vehicle Technologies and Fuels

    Directory of Open Access Journals (Sweden)

    Maarten Messagie

    2014-03-01

    Full Text Available How to compare the environmental performance of different vehicle technologies? Vehicles with lower tailpipe emissions are perceived as cleaner. However, does it make sense to look only to tailpipe emissions? Limiting the comparison only to these emissions denies the fact that there are emissions involved during the production of a fuel and this approach gives too much advantage to zero-tailpipe vehicles like battery electric vehicles (BEV and fuel cell electric vehicle (FCEV. Would it be enough to combine fuel production and tailpipe emissions? Especially when comparing the environmental performance of alternative vehicle technologies, the emissions during production of the specific components and their appropriate end-of-life treatment processes should also be taken into account. Therefore, the complete life cycle of the vehicle should be included in order to avoid problem shifting from one life stage to another. In this article, a full life cycle assessment (LCA of petrol, diesel, fuel cell electric (FCEV, compressed natural gas (CNG, liquefied petroleum gas (LPG, hybrid electric, battery electric (BEV, bio-diesel and bio-ethanol vehicles has been performed. The aim of the manuscript is to investigate the impact of the different vehicle technologies on the environment and to develop a range-based modeling system that enables a more robust interpretation of the LCA results for a group of vehicles. Results are shown for climate change, respiratory effects, acidification and mineral extraction damage of the different vehicle technologies. A broad range of results is obtained due to the variability within the car market. It is concluded that it is essential to take into account the influence of all the vehicle parameters on the LCA results.

  14. Flow Range of Centrifugal Compressor Being Extended

    Science.gov (United States)

    Skoch, Gary J.

    2001-01-01

    General Aviation will benefit from turbine engines that are both fuel-efficient and reliable. Current engines fall short of their potential to achieve these attributes. The reason is compressor surge, which is a flow stability problem that develops when the compressor is subjected to conditions that are outside of its operating range. Compressor surge can occur when fuel flow to the engine is increased, temporarily back pressuring the compressor and pushing it past its stability limit, or when the compressor is subjected to inlet flow-field distortions that may occur during takeoff and landing. Compressor surge can result in the loss of an aircraft. As a result, engine designers include a margin of safety between the operating line of the engine and the stability limit line of the compressor. Unfortunately, the most efficient operating line for the compressor is usually closer to its stability limit line than it is to the line that provides an adequate margin of safety. A wider stable flow range will permit operation along the most efficient operating line of the compressor, improving the specific fuel consumption of the engine and reducing emissions. The NASA Glenn Research Center is working to extend the stable flow range of the compressor. Significant extension has been achieved in axial compressors by injecting air upstream of the compressor blade rows. Recently, the technique was successfully applied to a 4:1 pressure ratio centrifugal compressor by injecting streams of air into the diffuser. Both steady and controlled unsteady injection were used to inject air through the diffuser shroud surface and extend the range. Future work will evaluate the effect of air injection through the diffuser hub surface and diffuser vanes with the goal of maximizing the range extension while minimizing the amount of injected air that is required.

  15. Extending the Dynamic Range of a Time Projection Chamber

    Science.gov (United States)

    Estee, Justin; S πRIT Collaboration

    2017-09-01

    The use of Time Projection Chambers (TPCs) in intermediate heavy ion reactions faces some challenges in addressing the energy losses that range from the small energy loss of relativistic pions to the large energy loss of slow moving heavy ions. A typical trade-off can be to set the smallest desired signals to be well within the lower limits of the dynamic range of the electronics while allowing for some larger signals to saturate the electronics. With wire plane anodes, signals from readout pads further away from the track remain unsaturated and allow signals from tracks with saturated pads to be accurately recovered. We illustrate this technique using data from the SAMURAI Pion-Reconstruction and Ion-Tracker (S πRIT) TPC , which recently measured pions and light charged particles in collisions of Sn+Sn isotopes. Our method exploits knowledge of how the induced charge distribution depends on the distance from the track to smoothly extend dynamic range even when some of the pads in the track are saturated. To accommodate the analysis of slow moving heavy ions, we have extended the Bichsel energy loss distributions to handle slower moving ions as well. In this talk, I will discuss a combined approach which successfully extends the dynamic range of the TPC electronics. This work is supported by the U.S. DOE under Grant Nos. DE-SC0014530, DE-NA0002923, US NSF Grant No. PHY-1565546 and the Japan MEXT KAKENHI Grant No. 24105004.

  16. In-Situ Extended Lateral Range Surface Metrology, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop an extended lateral range capability for a dynamic optical profiling system to enable non-contact, surface roughness measurement of large and...

  17. Enhancement of the range of electric-powered vehicles by means of an optimized thermal management; Steigerung der Reichweite von Elektrofahrzeugen durch optimiertes Thermomanagement

    Energy Technology Data Exchange (ETDEWEB)

    Aurich, Joerg; Baumgart, Rico; Unwerth, Thomas von [TU Chemnitz (Germany). Professur Alternative Fahrzeugantriebe

    2012-07-01

    Currently, the development of energy efficient air conditioning systems for electric-powered vehicles is one of the most difficult challenges because the reach of these vehicles significantly is influenced by the air-conditioning systems in part. For this reason, computational models have been developed at the Technical University of Chemnitz (Federal Republic of Germany) in order to simulate and optimize the processes in car air conditioning and passenger cabin. The passenger cabin model has now been extended by a simplified model of comfort which will be presented in more detail in the contribution under consideration. Under consideration of the occupants comfort, these models help to investigate the impact of the various optimization measures on the necessary amount of cooling capacity and the range of the vehicle. The calculations were made both for summerly and for winterly environmental conditions. As shown in detail, the required cooling capacity can be reduced by reducing the degree of transmittance of the windows for example in the summer. However, in contrast the heating power increases in the winter due to the lower solar heat input which in turn reduces the achievable range of electric-powered vehicles.

  18. Simultaneous Localization and Mapping with Iterative Sparse Extended Information Filter for Autonomous Vehicles

    Directory of Open Access Journals (Sweden)

    Bo He

    2015-08-01

    Full Text Available In this paper, a novel iterative sparse extended information filter (ISEIF was proposed to solve the simultaneous localization and mapping problem (SLAM, which is very crucial for autonomous vehicles. The proposed algorithm solves the measurement update equations with iterative methods adaptively to reduce linearization errors. With the scalability advantage being kept, the consistency and accuracy of SEIF is improved. Simulations and practical experiments were carried out with both a land car benchmark and an autonomous underwater vehicle. Comparisons between iterative SEIF (ISEIF, standard EKF and SEIF are presented. All of the results convincingly show that ISEIF yields more consistent and accurate estimates compared to SEIF and preserves the scalability advantage over EKF, as well.

  19. Simultaneous Localization and Mapping with Iterative Sparse Extended Information Filter for Autonomous Vehicles.

    Science.gov (United States)

    He, Bo; Liu, Yang; Dong, Diya; Shen, Yue; Yan, Tianhong; Nian, Rui

    2015-08-13

    In this paper, a novel iterative sparse extended information filter (ISEIF) was proposed to solve the simultaneous localization and mapping problem (SLAM), which is very crucial for autonomous vehicles. The proposed algorithm solves the measurement update equations with iterative methods adaptively to reduce linearization errors. With the scalability advantage being kept, the consistency and accuracy of SEIF is improved. Simulations and practical experiments were carried out with both a land car benchmark and an autonomous underwater vehicle. Comparisons between iterative SEIF (ISEIF), standard EKF and SEIF are presented. All of the results convincingly show that ISEIF yields more consistent and accurate estimates compared to SEIF and preserves the scalability advantage over EKF, as well.

  20. Driving range estimation for electric vehicles based on driving condition identification and forecast

    Science.gov (United States)

    Pan, Chaofeng; Dai, Wei; Chen, Liao; Chen, Long; Wang, Limei

    2017-10-01

    With the impact of serious environmental pollution in our cities combined with the ongoing depletion of oil resources, electric vehicles are becoming highly favored as means of transport. Not only for the advantage of low noise, but for their high energy efficiency and zero pollution. The Power battery is used as the energy source of electric vehicles. However, it does currently still have a few shortcomings, noticeably the low energy density, with high costs and short cycle life results in limited mileage compared with conventional passenger vehicles. There is great difference in vehicle energy consumption rate under different environment and driving conditions. Estimation error of current driving range is relatively large due to without considering the effects of environmental temperature and driving conditions. The development of a driving range estimation method will have a great impact on the electric vehicles. A new driving range estimation model based on the combination of driving cycle identification and prediction is proposed and investigated. This model can effectively eliminate mileage errors and has good convergence with added robustness. Initially the identification of the driving cycle is based on Kernel Principal Component feature parameters and fuzzy C referring to clustering algorithm. Secondly, a fuzzy rule between the characteristic parameters and energy consumption is established under MATLAB/Simulink environment. Furthermore the Markov algorithm and BP(Back Propagation) neural network method is utilized to predict the future driving conditions to improve the accuracy of the remaining range estimation. Finally, driving range estimation method is carried out under the ECE 15 condition by using the rotary drum test bench, and the experimental results are compared with the estimation results. Results now show that the proposed driving range estimation method can not only estimate the remaining mileage, but also eliminate the fluctuation of the

  1. Using Fuel Cells to Increase the Range of Battery Electric Vehicles | News

    Science.gov (United States)

    | NREL Using Fuel Cells to Increase the Range of Battery Electric Vehicles Using Fuel Cells to significantly lower capital and lifecycle costs than additional battery capacity alone. And while fuel-cell -Duty Battery Electric Vehicles through the Use of Hydrogen Fuel Cells"-presented at the Society of

  2. Autonomous Vehicles Have a Wide Range of Possible Energy Impacts (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Brown, A.; Repac, B.; Gonder, J.

    2013-07-01

    This poster presents initial estimates of the net energy impacts of automated vehicles (AVs). Automated vehicle technologies are increasingly recognized as having potential to decrease carbon dioxide emissions and petroleum consumption through mechanisms such as improved efficiency, better routing, lower traffic congestion, and by enabling advanced technologies. However, some effects of AVs could conceivably increase fuel consumption through possible effects such as longer distances traveled, increased use of transportation by underserved groups, and increased travel speeds. The net effect on petroleum use and climate change is still uncertain. To make an aggregate system estimate, we first collect best estimates for the energy impacts of approximately ten effects of AVs. We then use a modified Kaya Identity approach to estimate the range of aggregate effects and avoid double counting. We find that depending on numerous factors, there is a wide range of potential energy impacts. Adoption of automated personal or shared vehicles can lead to significant fuel savings but has potential for backfire.

  3. Investigation of Tractor Base Bleeding for Heavy Vehicle Aerodynamic Drag Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, J; Salari, K; Storms, B

    2007-10-25

    One of the main contributors to the aerodynamic drag of a heavy vehicle is tractor-trailer gap drag, which arises when the vehicle operates within a crosswind. Under this operating condition, freestream flow is entrained into the tractor-trailer gap, imparting a momentum exchange to the vehicle and subsequently increasing the aerodynamic drag. While a number of add-on devices, including side extenders, splitter plates, vortex stabilizers, and gap sealers, have been previously tested to alleviate this source of drag, side extenders remain the primary add-on device of choice for reducing tractor-trailer gap drag. However, side extenders are not without maintenance and operational issues. When a heavy vehicle pivots sharply with respect to the trailer, as can occur during loading or unloading operations, the side extenders can become crushed against the trailer. Consequently, fleet operators are forced to incur additional costs to cover the repair or replacement of the damaged side extenders. This issue can be overcome by either shortening the side extenders or by devising an alternative drag reduction concept that can perform just as effectively as side extenders. To explore such a concept, we investigate tractor base bleeding as a means of reducing gap drag. Wind tunnel measurements are made on a 1:20 scale heavy vehicle model at a vehicle width-based Reynolds number of 420,000. The tractor bleeding flow, which is delivered through a porous material embedded within the tractor base, is introduced into the tractor-trailer gap at bleeding coefficients ranging from 0.0-0.018. To determine the performance of tractor base bleeding under more realistic operating conditions, computational fluid dynamics simulations are performed on a full-scale heavy vehicle within a crosswind for bleeding coefficients ranging from 0.0-0.13.

  4. Experimental verification of a thermal equivalent circuit dynamic model on an extended range electric vehicle battery pack

    Science.gov (United States)

    Ramotar, Lokendra; Rohrauer, Greg L.; Filion, Ryan; MacDonald, Kathryn

    2017-03-01

    The development of a dynamic thermal battery model for hybrid and electric vehicles is realized. A thermal equivalent circuit model is created which aims to capture and understand the heat propagation from the cells through the entire pack and to the environment using a production vehicle battery pack for model validation. The inclusion of production hardware and the liquid battery thermal management system components into the model considers physical and geometric properties to calculate thermal resistances of components (conduction, convection and radiation) along with their associated heat capacity. Various heat sources/sinks comprise the remaining model elements. Analog equivalent circuit simulations using PSpice are compared to experimental results to validate internal temperature nodes and heat rates measured through various elements, which are then employed to refine the model further. Agreement with experimental results indicates the proposed method allows for a comprehensive real-time battery pack analysis at little computational expense when compared to other types of computer based simulations. Elevated road and ambient conditions in Mesa, Arizona are simulated on a parked vehicle with varying quiescent cooling rates to examine the effect on the diurnal battery temperature for longer term static exposure. A typical daily driving schedule is also simulated and examined.

  5. High Voltage Gain Dual Active Bridge Converter with an Extended Operation Range for Renewable Energy Systems

    DEFF Research Database (Denmark)

    Zhang, Zhe; Tomas Manez, Kevin; Yudi, Xiao

    2018-01-01

    Bridge (P2DAB) converter, i.e. low-voltage (LV) side parallel and high-voltage (HV) side series, is proposed to achieve high voltage gain and low current stress over switching devices and transformer windings. Given the unmodified P2DAB power stage, by regulating the phase-shift angle between......Developing bidirectional dc-dc converters has become a critical research topic and gains more and more attention in recent years due to the extensive applications of smart grids with energy storages, hybrid and electrical vehicles and dc microgrids. In this paper, a Partial Parallel Dual Active...... the paralleled active bridges, the power equations and voltage gain are then modified, and therefore the operation range can be extended effectively. The operating principles of the proposed converter and its power characteristics under various operation modes are studied, and the design constraints...

  6. Dual voltage source inverter topology extending machine operating range

    NARCIS (Netherlands)

    Gerrits, T.; Wijnands, C.G.E.; Paulides, J.J.H.; Duarte, J.L.

    2012-01-01

    Field weakening operation of an electrical machine is a conventional method to extend the angular velocity range of a system above the peak output voltage of the inverter. A downside, however, is that an increased reactive current is required that creates losses but no output torque. A dual voltage

  7. Optimizing and Diversifying the Electric Range of Plug-in Hybrid Electric Vehicles for U.S. Drivers

    International Nuclear Information System (INIS)

    Lin, Zhenhong

    2012-01-01

    To provide useful information for automakers to design successful plug-in hybrid electric vehicle (PHEV) products and for energy and environmental analysts to understand the social impact of PHEVs, this paper addresses the question of how many of the U.S. consumers, if buying a PHEV, would prefer what electric ranges. The Market-oriented Optimal Range for PHEV (MOR-PHEV) model is developed to optimize the PHEV electric range for each of 36,664 sampled individuals representing U.S. new vehicle drivers. The optimization objective is the minimization of the sum of costs on battery, gasoline, electricity and refueling hassle. Assuming no battery subsidy, the empirical results suggest that: 1) the optimal PHEV electric range approximates two thirds of one s typical daily driving distance in the near term, defined as $450/kWh battery delivered price and $4/gallon gasoline price. 2) PHEVs are not ready to directly compete with HEVs at today s situation, defined by the $600/kWh battery delivered price and the $3-$4/gallon gasoline price, but can do so in the near term. 3) PHEV10s will be favored by the market over longer-range PHEVs in the near term, but longer-range PHEVs can dominate the PHEV market if gasoline prices reach as high as $5-$6 per gallon and/or battery delivered prices reach as low as $150-$300/kWh. 4) PHEVs can become much more attractive against HEVs in the near term if the electric range can be extended by only 10% with multiple charges per day, possible with improved charging infrastructure or adapted charging behavior. 5) the impact of a $100/kWh decrease in battery delivered prices on the competiveness of PHEVs against HEVs can be offset by about $1.25/gallon decrease in gasoline prices, or about 7/kWh increase in electricity prices. This also means that the impact of a $1/gallon decrease in gasoline prices can be offset by about 5/kWh decrease in electricity prices.

  8. Project Milestone. Analysis of Range Extension Techniques for Battery Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Neubauer, Jeremy [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wood, Eric [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Pesaran, Ahmad [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2013-07-01

    This report documents completion of the July 2013 milestone as part of NREL’s Vehicle Technologies Annual Operating Plan with the U.S. Department of Energy. The objective was to perform analysis on range extension techniques for battery electric vehicles (BEVs). This work represents a significant advancement over previous thru-life BEV analyses using NREL’s Battery Ownership Model, FastSim,* and DRIVE.* Herein, the ability of different charging infrastructure to increase achievable travel of BEVs in response to real-world, year-long travel histories is assessed. Effects of battery and cabin thermal response to local climate, battery degradation, and vehicle auxiliary loads are captured. The results reveal the conditions under which different public infrastructure options are most effective, and encourage continued study of fast charging and electric roadway scenarios.

  9. Primary Paralleled Isolated Boost Converter with Extended Operating Voltage Range

    DEFF Research Database (Denmark)

    Hernandez Botella, Juan Carlos; Sen, Gökhan; Mira Albert, Maria del Carmen

    2012-01-01

    Applications requiring wide input and output voltage range cannot often be satisfied by using buck or boost derived topologies. Primary paralleled isolated boost converter (PPIBC) [1]-[2] is a high efficiency boost derived topology. This paper proposes a new operation mode for extending the input...

  10. Attenuation and immunogenicity of host-range extended modified vaccinia virus Ankara recombinants.

    Science.gov (United States)

    Melamed, Sharon; Wyatt, Linda S; Kastenmayer, Robin J; Moss, Bernard

    2013-09-23

    Modified vaccinia virus Ankara (MVA) is being widely investigated as a safe smallpox vaccine and as an expression vector to produce vaccines against other infectious diseases and cancer. MVA was isolated following more than 500 passages in chick embryo fibroblasts and suffered several major deletions and numerous small mutations resulting in replication defects in human and most other mammalian cells as well as severe attenuation of pathogenicity. Due to the host range restriction, primary chick embryo fibroblasts are routinely used for production of MVA-based vaccines. While a replication defect undoubtedly contributes to safety of MVA, it is worth considering whether host range and attenuation are partially separable properties. Marker rescue transfection experiments resulted in the creation of recombinant MVAs with extended mammalian cell host range. Here, we characterize two host-range extended rMVAs and show that they (i) have acquired the ability to stably replicate in Vero cells, which are frequently used as a cell substrate for vaccine manufacture, (ii) are severely attenuated in immunocompetent and immunodeficient mouse strains following intranasal infection, (iii) are more pathogenic than MVA but less pathogenic than the ACAM2000 vaccine strain at high intracranial doses, (iv) do not form lesions upon tail scratch in mice in contrast to ACAM2000 and (v) induce protective humoral and cell-mediated immune responses similar to MVA. The extended host range of rMVAs may be useful for vaccine production. Published by Elsevier Ltd.

  11. Long-range analysis of density fitting in extended systems

    Science.gov (United States)

    Varga, Scarontefan

    Density fitting scheme is analyzed for the Coulomb problem in extended systems from the correctness of long-range behavior point of view. We show that for the correct cancellation of divergent long-range Coulomb terms it is crucial for the density fitting scheme to reproduce the overlap matrix exactly. It is demonstrated that from all possible fitting metric choices the Coulomb metric is the only one which inherently preserves the overlap matrix for infinite systems with translational periodicity. Moreover, we show that by a small additional effort any non-Coulomb metric fit can be made overlap-preserving as well. The problem is analyzed for both ordinary and Poisson basis set choices.

  12. Effect Of Platooning on Fuel Consumption of Class 8 Vehicles Over a Range of Speeds, Following Distances, and Mass

    Energy Technology Data Exchange (ETDEWEB)

    Lammert, M. P.; Duran, A.; Diez, J.; Burton, K.; Nicholson, A.

    2014-10-01

    This research project evaluates fuel consumption results of two Class 8 tractor-trailer combinations platooned together compared to their standalone fuel consumption. A series of ten modified SAE Type II J1321 fuel consumption track tests were performed to document fuel consumption of two platooned vehicles and a control vehicle at varying steady-state speeds, following distances, and gross vehicle weights (GVWs). The steady-state speeds ranged from 55 mph to 70 mph, the following distances ranged from a 20-ft following distance to a 75-ft following distance, and the GVWs were 65K lbs and 80K lbs. All tractors involved had U.S. Environmental Protection Agency (EPA) SmartWay-compliant aerodynamics packages installed, and the trailers were equipped with side skirts. Effects of vehicle speed, following distance, and GVW on fuel consumption were observed and analyzed. The platooning demonstration system used in this study consisted of radar systems, Dedicated Short-Range Communication (DSRC) vehicle-to-vehicle (V2V) communications, vehicle braking and torque control interface, cameras and driver displays. The lead tractor consistently demonstrated an improvement in average fuel consumption reduction as following distance decreased, with results showing 2.7% to 5.3% fuel savings at a GVW of 65k. The trailing vehicle achieved fuel consumption savings ranging from 2.8% to 9.7%; tests during which the engine cooling fan did not operate achieved savings of 8.4% to 9.7%. 'Team' fuel savings, considering the platooned vehicles as one, ranged from 3.7% to 6.4%, with the best combined result being for 55 mph, 30-ft following distance, and 65k GVW.

  13. Vehicle underbody fairing

    Science.gov (United States)

    Ortega, Jason M.; Salari, Kambiz; McCallen, Rose

    2010-11-09

    A vehicle underbody fairing apparatus for reducing aerodynamic drag caused by a vehicle wheel assembly, by reducing the size of a recirculation zone formed under the vehicle body immediately downstream of the vehicle wheel assembly. The fairing body has a tapered aerodynamic surface that extends from a front end to a rear end of the fairing body with a substantially U-shaped cross-section that tapers in both height and width. Fasteners or other mounting devices secure the fairing body to an underside surface of the vehicle body, so that the front end is immediately downstream of the vehicle wheel assembly and a bottom section of the tapered aerodynamic surface rises towards the underside surface as it extends in a downstream direction.

  14. Climate control loads prediction of electric vehicles

    International Nuclear Information System (INIS)

    Zhang, Ziqi; Li, Wanyong; Zhang, Chengquan; Chen, Jiangping

    2017-01-01

    Highlights: • A model of vehicle climate control loads is proposed based on experiments. • Main climate control loads of the modeled vehicle are quantitatively analyzed. • Range reductions of the modeled vehicle under different conditions are simulated. - Abstract: A new model of electric vehicle climate control loads is provided in this paper. The mathematical formulations of the major climate control loads are developed, and the coefficients of the formulations are experimentally determined. Then, the detailed climate control loads are analyzed, and the New European Driving Cycle (NEDC) range reductions due to these loads are calculated under different conditions. It is found that in an electric vehicle, the total climate control loads vary with the vehicle speed, HVAC mode and blower level. The ventilation load is the largest climate control load, followed by the solar radiation load. These two add up to more than 80% of total climate control load in summer. The ventilation load accounts for 70.7–83.9% of total heating load under the winter condition. The climate control loads will cause a 17.2–37.1% reduction of NEDC range in summer, and a 17.1–54.1% reduction in winter, compared to the AC off condition. The heat pump system has an advantage in range extension. A heat pump system with an average heating COP of 1.7 will extend the range by 7.6–21.1% based on the simulation conditions.

  15. Energy savings and increased electric vehicle range through improved battery thermal management

    International Nuclear Information System (INIS)

    Smith, Joshua; Hinterberger, Michael; Schneider, Christoph; Koehler, Juergen

    2016-01-01

    Lithium-ion cells are temperature sensitive: operation outside the optimal operating range causes premature aging and correspondingly reduces vehicle range and battery system lifetime. In order to meet consumer demands for electric and hybrid-electric vehicle performance, especially in adverse climates, a battery thermal management system (BTMS) is often required. This work presents a novel experimental method for analyzing BTMS using three sample cooling plate concepts. For each concept, the input parameters (ambient temperature, coolant temperature and coolant flow rate) are varied and the resulting effect on the average temperature and temperature distribution across and between cells is compared. Additionally, the pressure loss along the coolant path is utilized as an indicator of energy efficiency. Using the presented methodology, various cooling plate layouts optimized for production alternative techniques are compared to the state of the art. It is shown that these production-optimized cooling plates provide sufficient thermal performance with the additional benefit of mechanical integration within the battery and/or vehicle system. It is also shown that the coolant flow influences battery cell thermal behavior more than the solid material and that pressure drop is more sensitive to geometrical changes in the cooling plate than temperature changes at the module.

  16. Climate Control Load Reduction Strategies for Electric Drive Vehicles in Warm Weather

    Energy Technology Data Exchange (ETDEWEB)

    Jeffers, M. A.; Chaney, L.; Rugh, J. P.

    2015-04-30

    Passenger compartment climate control is one of the largest auxiliary loads on a vehicle. Like conventional vehicles, electric vehicles (EVs) require climate control to maintain occupant comfort and safety, but cabin heating and air conditioning have a negative impact on driving range for all electric vehicles. Range reduction caused by climate control and other factors is a barrier to widespread adoption of EVs. Reducing the thermal loads on the climate control system will extend driving range, thereby reducing consumer range anxiety and increasing the market penetration of EVs. Researchers at the National Renewable Energy Laboratory have investigated strategies for vehicle climate control load reduction, with special attention toward EVs. Outdoor vehicle thermal testing was conducted on two 2012 Ford Focus Electric vehicles to evaluate thermal management strategies for warm weather, including solar load reduction and cabin pre-ventilation. An advanced thermal test manikin was used to assess a zonal approach to climate control. In addition, vehicle thermal analysis was used to support testing by exploring thermal load reduction strategies, evaluating occupant thermal comfort, and calculating EV range impacts. Through stationary cooling tests and vehicle simulations, a zonal cooling configuration demonstrated range improvement of 6%-15%, depending on the drive cycle. A combined cooling configuration that incorporated thermal load reduction and zonal cooling strategies showed up to 33% improvement in EV range.

  17. Vehicle-network defensive aids suite

    Science.gov (United States)

    Rapanotti, John

    2005-05-01

    Defensive Aids Suites (DAS) developed for vehicles can be extended to the vehicle network level. The vehicle network, typically comprising four platoon vehicles, will benefit from improved communications and automation based on low latency response to threats from a flexible, dynamic, self-healing network environment. Improved DAS performance and reliability relies on four complementary sensor technologies including: acoustics, visible and infrared optics, laser detection and radar. Long-range passive threat detection and avoidance is based on dual-purpose optics, primarily designed for manoeuvring, targeting and surveillance, combined with dazzling, obscuration and countermanoeuvres. Short-range active armour is based on search and track radar and intercepting grenades to defeat the threat. Acoustic threat detection increases the overall robustness of the DAS and extends the detection range to include small calibers. Finally, detection of active targeting systems is carried out with laser and radar warning receivers. Synthetic scene generation will provide the integrated environment needed to investigate, develop and validate these new capabilities. Computer generated imagery, based on validated models and an acceptable set of benchmark vignettes, can be used to investigate and develop fieldable sensors driven by real-time algorithms and countermeasure strategies. The synthetic scene environment will be suitable for sensor and countermeasure development in hardware-in-the-loop simulation. The research effort focuses on two key technical areas: a) computing aspects of the synthetic scene generation and b) and development of adapted models and databases. OneSAF is being developed for research and development, in addition to the original requirement of Simulation and Modelling for Acquisition, Rehearsal, Requirements and Training (SMARRT), and is becoming useful as a means for transferring technology to other users, researchers and contractors. This procedure

  18. High-resolution surface analysis for extended-range downscaling with limited-area atmospheric models

    Science.gov (United States)

    Separovic, Leo; Husain, Syed Zahid; Yu, Wei; Fernig, David

    2014-12-01

    High-resolution limited-area model (LAM) simulations are frequently employed to downscale coarse-resolution objective analyses over a specified area of the globe using high-resolution computational grids. When LAMs are integrated over extended time frames, from months to years, they are prone to deviations in land surface variables that can be harmful to the quality of the simulated near-surface fields. Nudging of the prognostic surface fields toward a reference-gridded data set is therefore devised in order to prevent the atmospheric model from diverging from the expected values. This paper presents a method to generate high-resolution analyses of land-surface variables, such as surface canopy temperature, soil moisture, and snow conditions, to be used for the relaxation of lower boundary conditions in extended-range LAM simulations. The proposed method is based on performing offline simulations with an external surface model, forced with the near-surface meteorological fields derived from short-range forecast, operational analyses, and observed temperatures and humidity. Results show that the outputs of the surface model obtained in the present study have potential to improve the near-surface atmospheric fields in extended-range LAM integrations.

  19. Project Freebird: An orbital transfer vehicle

    Science.gov (United States)

    Aneses, Carlos A.; Blanchette, Ryan L.; Brann, David M.; Campos, Mario J.; Cohen, Lisa E.; Corcoran, Daniel J., III; Cox, James F.; Curtis, Trevor J.; Douglass, Deborah A.; Downard, Catherine L.

    1994-08-01

    Freebird is a space-based orbital transfer vehicle designed to repair and deorbit orbital assets. Freebird is based at International Space Station Alpha (ISSA) at an inclination of 51.6 deg and is capable of three types of missions: crewed and teleoperated LEO missions, and extended robotic missions. In a crewed local configuration, the vehicle can visit inclinations between 30.8 deg and 72.4 deg at altitudes close to 390 km. Adding extra fuel tanks extends this range of inclination up to 84.9 deg and down to 18.3 deg. Furthermore, removing the crew module, using the vehicle in a teleoperated manner, and operating with extra fuel tanks allows missions to polar and geosynchronous orbits. To allow for mission flexibility, the vehicle was designed in a semimodular configuration. The major system components include a crew module, a 'smart box' (which contains command, communications, guidance, and navigation equipment), a propulsion pack, extra fuel tanks, and a vehicle storage facility (VSF) for storage purposes. To minimize risk as well as development time and cost, the vehicle was designed using only proven technology or technology which is expected to be flight-qualified in time for the intended launch date of 2002. And, because Freebird carries crew and operates near the space station, it must meet or exceed the NASA reliability standard of 0.994, as well as other standard requirements for such vehicles. The Freebird program was conceived and designed as a way to provide important and currently unavailable satellite repair and replacement services of a value equal to or exceeding operational costs.

  20. Vehicle to Electric Vehicle Supply Equipment Smart Grid Communications Interface Research and Testing Report

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Morrow; Dimitri Hochard; Jeff Wishart

    2011-09-01

    Plug-in electric vehicles (PEVs), including battery electric, plug-in hybrid electric, and extended range electric vehicles, are under evaluation by the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) and other various stakeholders to better understand their capability and potential petroleum reduction benefits. PEVs could allow users to significantly improve fuel economy over a standard hybrid electric vehicles, and in some cases, depending on daily driving requirements and vehicle design, PEVs may have the ability to eliminate petroleum consumption entirely for daily vehicle trips. The AVTA is working jointly with the Society of Automotive Engineers (SAE) to assist in the further development of standards necessary for the advancement of PEVs. This report analyzes different methods and available hardware for advanced communications between the electric vehicle supply equipment (EVSE) and the PEV; particularly Power Line Devices and their physical layer. Results of this study are not conclusive, but add to the collective knowledge base in this area to help define further testing that will be necessary for the development of the final recommended SAE communications standard. The Idaho National Laboratory and the Electric Transportation Applications conduct the AVTA for the United States Department of Energy's Vehicle Technologies Program.

  1. Range and Endurance Tradeoffs on Personal Rotorcraft Design

    Science.gov (United States)

    Snyder, Christopher A.

    2016-01-01

    Rotorcraft design has always been a challenging tradeoff among overall size, capabilities, complexity, and other factors based on available technology and customer requirements. Advancements in propulsion, energy systems and other technologies have enabled new vehicles and missions; complementary advances in analysis methods and tools enable exploration of these enhanced vehicles and the evolving mission design space. A system study was performed to better understand the interdependency between vehicle design and propulsion system capabilities versus hover / loiter requirements and range capability. Three representative vertical lift vehicles were developed to explore the tradeoff in capability between hover efficiency versus range and endurance capability. The vehicles were a single-main rotor helicopter, a tilt rotor, and a vertical take-off and landing (VTOL) aircraft. Vehicle capability was limited to two or three people (including pilot or crew) and maximum range within one hour of flight (100-200 miles, depending on vehicle). Two types of propulsion and energy storage systems were used in this study. First was traditional hydrocarbon-fueled cycles (such as Otto, diesel or gas turbine cycles). Second was an all-electric system using electric motors, power management and distribution, assuming batteries for energy storage, with the possibility of hydrocarbon-fueled range extenders. The high power requirements for hover significantly reduced mission radius capability. Loiter was less power intensive, resulting in about 1/2 the equivalent mission radius penalty. With so many design variables, the VTOL aircraft has the potential to perform well for a variety of missions. This vehicle is a good candidate for additional study; component model development is also required to adequately assess performance over the design space of interest.

  2. Modeling Control Strategies and Range Impacts for Electric Vehicle Integrated Thermal Management Systems with MATLAB/Simulink

    Energy Technology Data Exchange (ETDEWEB)

    Titov, Gene; Lustbader, Jason Aaron

    2017-03-28

    The National Renewable Energy Laboratory's (NREL's) CoolSim MATLAB/Simulink modeling framework was used to explore control strategies for an electric vehicle combined loop system. Three system variants of increased complexity and efficiency were explored: a glycol-based positive temperature coefficient heater (PTC), PTC with power electronics and electric motor (PEEM) waste heat recovery, and PTC with PEEM waste heat recovery plus heat pump versions. Additionally, the benefit of electric motor preheating was considered. A two-level control strategy was developed where the mode selection and component control were treated separately. Only the parameters typically available by vehicle sensors were used to control the system. The control approach included a mode selection algorithm and controllers for the compressor speed, cabin blower flow rate, coolant flow rate, and the front-end heat exchanger coolant bypass rate. The electric motor was bypassed by the cooling circuit until its temperature exceeded the coolant inlet temperature. The impact of these thermal systems on electric vehicle range during warmup was simulated for the Urban Dynamometer Driving Schedule (UDDS) and Highway Fuel Economy Test (HWFET2X) drive cycles weighted 45%/55% respectively. A range of ambient temperatures from -20 degrees C to +20 degrees C was considered. NREL's Future Automotive Systems Technology Simulator (FASTSim) vehicle modeling tool showed up to a 10.9% improvement in range for the full system over the baseline during warmup from cold soak. The full system with preheat showed up to 17% improvement in range.

  3. Sorting method to extend the dynamic range of the Shack-Hartmann wave-front sensor

    International Nuclear Information System (INIS)

    Lee, Junwon; Shack, Roland V.; Descour, Michael R.

    2005-01-01

    We propose a simple and powerful algorithm to extend the dynamic range of a Shack-Hartmann wave-front sensor. In a conventional Shack-Hartmann wave-front sensor the dynamic range is limited by the f-number of a lenslet, because the focal spot is required to remain in the area confined by the single lenslet. The sorting method proposed here eliminates such a limitation and extends the dynamic range by tagging each spot in a special sequence. Since the sorting method is a simple algorithm that does not change the measurement configuration, there is no requirement for extra hardware, multiple measurements, or complicated algorithms. We not only present the theory and a calculation example of the sorting method but also actually implement measurement of a highly aberrated wave front from nonrotational symmetric optics

  4. Harnessing Big-Data for Estimating the Energy Consumption and Driving Range of Electric Vehicles

    DEFF Research Database (Denmark)

    Fetene, Gebeyehu Manie; Prato, Carlo Giacomo; Kaplan, Sigal

    -effects econometrics model used in this paper predicts that the energy saving speed of driving is between 45 and 56 km/h. In addition to the contribution to the literature about energy efficiency of electric vehicles, the findings from this study enlightens consumers to choose appropriate cars that suit their travel......This study analyses the driving range and investigates the factors affecting the energy consumption rate of fully-battery electric vehicles under real-world driving patterns accounting for weather condition, drivers’ characteristics, and road characteristics. Four data sources are used: (i) up...

  5. Climate Control Load Reduction Strategies for Electric Drive Vehicles in Cold Weather: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Jeffers, Matthew; Chaney, Lawrence; Rugh, John

    2016-03-31

    When operated, the climate control system is the largest auxiliary load on a vehicle. This load has significant impact on fuel economy for conventional and hybrid vehicles, and it drastically reduces the driving range of all electric vehicles (EVs). Heating is even more detrimental to EV range than cooling because no engine waste heat is available. Reducing the thermal loads on the heating, ventilating, and air conditioning system will extend driving range and increase the market penetration of EVs. Researchers at the National Renewable Energy Laboratory have evaluated strategies for vehicle climate control load reduction with special attention toward grid connected electric vehicles. Outdoor vehicle thermal testing and computational modeling were used to assess potential strategies for improved thermal management and to evaluate the effectiveness of thermal load reduction technologies. A human physiology model was also used to evaluate the impact on occupant thermal comfort. Experimental evaluations of zonal heating strategies demonstrated a 5.5% to 28.5% reduction in cabin heating energy over a 20-minute warm-up. Vehicle simulations over various drive cycles show a 6.9% to 18.7% improvement in EV range over baseline heating using the most promising zonal heating strategy investigated. A national-level analysis was conducted to determine the overall national impact. If all vehicles used the best zonal strategy, the range would be improved by 7.1% over the baseline heating range. This is a 33% reduction in the range penalty for heating.

  6. Test of hybrid power system for electrical vehicles using a lithium-ion battery pack and a reformed methanol fuel cell range extender

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Ashworth, Leanne; Sahlin, Simon Lennart

    2014-01-01

    is delivered by a lithium ion battery pack. In order to increase the run time of the application connected to this battery pack, a high temperature PEM (HTPEM) fuel cell stack acts as an on-board charger able to charge a vehicle during operation as a series hybrid. Because of the high tolerance to carbon...... a down-sized version of the battery pack used in the Mitsubishi iMiEV, which is subjected to power cycles derived from simulations of the vehicle undergoing multiple New European Drive Cycles (NEDC)....

  7. Advancing electric-vehicle development with pure-lead-tin battery technology

    Science.gov (United States)

    O'Brien, W. A.; Stickel, R. B.; May, G. J.

    Electric-vehicle (EV) development continues to make solid progress towards extending vehicle range, reliability and ease of use, aided significantly by technological advances in vehicle systems. There is, however, a widespread misconception that current battery technologies are not capable of meeting even the minimum user requirements that would launch EVs into daily use. Existing pure-lead-tin technology is moving EVs out of research laboratories and onto the streets, in daily side-by-side operation with vehicles powered by conventional gasoline and alternative fuels. This commercially available battery technology can provide traffic-compatible performance in a reliable and affordable manner, and can be used for either pure EVs or hybrid electric vehicles (HEVs). Independent results obtained when applying lead-tin batteries in highly abusive conditions, both electrically and environmentally, are presented. The test fleet of EVs is owned and operated by Arizona Public Service (APS), an electric utility in Phoenix, AZ, USA. System, charger and battery development will be described. This gives a single charge range of up to 184 km at a constant speed of 72 km h -1, and with suitable opportunity charging, a 320 km range in a normal 8 h working day.

  8. Impact of electric range and fossil fuel price level on the economics of plug-in hybrid vehicles and greenhouse gas abatement costs

    International Nuclear Information System (INIS)

    Özdemir, Enver Doruk; Hartmann, Niklas

    2012-01-01

    In this paper, the energy consumption shares of plug-in hybrid vehicles (PHEVs) for electricity from the grid and conventional fuel depending on electric driving range are estimated. The resulting mobility costs and greenhouse gas (GHG) abatement costs per vehicle kilometer for the year 2030 are calculated and optimal electric driving range (which indicates the size of the battery) is found for different oil price levels with the help of a MATLAB based model for a typical compact passenger car (e.g. VW Golf). The results show that the optimum electric driving range for minimum mobility costs of a PHEV is between 12 and 32 km. Furthermore, optimum GHG abatement costs are achieved with an electric driving range between 16 and 23 km. These results are considerable lower than most market ready PHEVs (electric driving range of 50 to 100 km), which shows that the automobile industry should concentrate on shorter electric driving range for PHEVs in the near future to offer cost optimum mobility and low GHG abatement costs. However, the oil price level and the consumer driving habits impact heavily on the cost performance as well as the optimum electric driving range of plug-in hybrid vehicles. - Highlights: ► We analyze the energy consumption (and share of grid electricity) of plug-in hybrid vehicles. ► We analyzed the mobility costs and GHG abatement costs depending on electric driving range. ► Mobility costs of plug-in hybrid vehicles can be lower than those of conventional diesel vehicles in 2030. ► The optimum mobility costs are achieved with the electric driving range between 12 and 32 km. ► The optimum GHG abatement costs are achieved with the electric driving range between 16 and 23 km.

  9. A highly sensitive RF-to-DC power converter with an extended dynamic range

    KAUST Repository

    Almansouri, Abdullah Saud Mohammed; Ouda, Mahmoud H.; Salama, Khaled N.

    2017-01-01

    This paper proposes a highly sensitive RF-to-DC power converter with an extended dynamic range that is designed to operate at the medical band 433 MHz and simulated using 0.18 μm CMOS technology. Compared to the conventional fully cross

  10. Spacecraft Trajectory Estimation Using a Sampled-Data Extended Kalman Filter with Range-Only Measurements

    National Research Council Canada - National Science Library

    Erwin, R. S; Bernstein, Dennis S

    2005-01-01

    .... In this paper we use a sampled-data extended Kalman Filter to estimate the trajectory or a target satellite when only range measurements are available from a constellation or orbiting spacecraft...

  11. Study on The Extended Range Weather Forecast of Low Frequency Signal Based on Period Analysis Method

    Science.gov (United States)

    Li, X.

    2016-12-01

    Although many studies have explored the MJO and its application for weather forecasting, low-frequency oscillation has been insufficiently studied for the extend range weather forecasting over middle and high latitudes. In China, low-frequency synoptic map is a useful tool for meteorological operation department to forecast extend range weather. It is therefore necessary to develop objective methods to serve the need for finding low-frequency signal, interpretation and application of this signal in the extend range weather forecasting. In this paper, method of Butterworth band pass filter was applied to get low-frequency height field at 500hPa from 1980 to 2014 by using NCEP/NCAR daily grid data. Then period analysis and optimal subset regression methods were used to process the low frequency data of 150 days before the first forecast day and extend the low frequency signal of 500hPa low-frequency high field to future 30 days in the global from June to August during 2011-2014. Finally, the results were test. The main results are as follows: (1) In general, the fitting effect of low frequency signals of 500hPa low-frequency height field by period analysis in the northern hemisphere was better than that in the southern hemisphere, and was better in the low latitudes than that in the high latitudes. The fitting accuracy gradually reduced with the increase of forecast time length, which tended to be stable during the late forecasting period. (2) The fitting effects over the 6 key regions in China showed that except filtering result over Xinjiang area in the first 10 days and 30 days, filtering results over the other 5 key regions throughout the whole period have passed reliability test with level more than 95%. (3) The center and scope of low and high low frequency systems can be fitted well by using the methods mentioned above, which is consist with the corresponding use of the low-frequency synoptic map for the prediction of the extended period. Application of the

  12. Development and Demonstration of a Magnesium-Intensive Vehicle Front-End Substructure

    Energy Technology Data Exchange (ETDEWEB)

    Logan, Stephen D. [United States Automotive Materials Partnership LLC, Southfield, MI (United States); Forsmark, Joy H. [United States Automotive Materials Partnership LLC, Southfield, MI (United States); Osborne, Richard [United States Automotive Materials Partnership LLC, Southfield, MI (United States)

    2016-07-01

    This project is the final phase (designated Phase III) of an extensive, nine-year effort with the objectives of developing a knowledge base and enabling technologies for the design, fabrication and performance evaluation of magnesium-intensive automotive front-end substructures intended to partially or completely replace all-steel comparators, providing a weight savings approaching 50% of the baseline. Benefits of extensive vehicle weight reduction in terms of fuel economy increase, extended vehicle range, vehicle performance and commensurate reductions in greenhouse gas emissions are well known. An exemplary vehicle substructure considered by the project is illustrated in Figure 1, along with the exterior vehicle appearance. This unibody front-end “substructure” is one physical objective of the ultimate design and engineering aspects established at the outset of the larger collective effort.

  13. Deeply trapped electrons in imaging plates and their utilization for extending the dynamic range

    International Nuclear Information System (INIS)

    Ohuchi, Hiroko; Kondo, Yasuhiro

    2010-01-01

    The absorption spectra of deep centers in an imaging plate (IP) made of BaFBr 0:85 I 0:15 :Eu 2+ have been studied in the ultraviolet region. Electrons trapped in deep centers are considered to be the cause of unerasable and reappearing latent images in IPs over-irradiated with X-rays. Deep centers showed a dominant peak at around 320 nm, followed by two small peaks at around 345 and 380 nm. By utilizing deeply trapped electrons, we have attempted to extend the dynamic range of an IP. The IP was irradiated by 150-kV X-rays with doses from 8.07 mGy to 80.7 Gy. Reading out the latent image by the stimulation of Eu 2+ luminescence with a 633-nm He-Ne laser light from a conventional Fuji reader showed a linear relationship with irradiated dose up to 0.8 Gy, but then becoming non-linear. After fully erasing with visible light, unerasable latent images were read out using 635-nm semi-conductor laser light combined with a photon-counting detection system. The dose-response curve so obtained gave a further two orders of magnitude extending the dynamic range up to 80.7 Gy. Comprehensive results indicate that electrons supplied from deep centers to the F centers provided the extended dynamic range after the F centers became saturated. Based on these facts, a model of the excitation of deeply trapped electrons and PSL processes is proposed.

  14. Techno–economic design of hybrid electric vehicles and possibilities of the multi-objective optimization structure

    International Nuclear Information System (INIS)

    Dimitrova, Zlatina; Maréchal, François

    2016-01-01

    Highlights: • The full hybrid electric vehicle suits for sustainable urban mobility and customer investment. • The full hybrid electric urban vehicle is efficient, with consumption less than 2 L/100 km. • The range extender vehicle is a technology for low CO_2 emissions – less than 20 g/km CO_2_. • The total CO_2 emissions for range extender and plug-in vehicles are sensitive to the use place. - Abstract: The design criteria for modern sustainable development of vehicle powertrain are the high energy efficiency of the conversion system, the competitive cost and the lowest possible environmental impacts. In this article a multi-objective optimization methodology is applied on hybrid electric vehicles study in order to define the optimal powertrain configurations of the vehicle, estimate the cost of the powertrain equipment and show the environmental impact of the technical choices on the lifecycle perspective of the vehicle. The study illustrates optimal design solutions for low fuel consumption vehicles – between 2 L/100 km and 3 L/100 km. For that a simulation model of a hybrid electric vehicle is made. This model is coupled with a cost model for the vehicle. The techno–economic optimizations are performed for two case studies, illustrating the possibilities of the optimization superstructure. Firstly the life cycle inventory is written as a function of the parameters of the techno–economic model. In this way, the obtained environmental indicators from the life cycle assessment are calculated as a function of the decision variables for the vehicle design. In the second example the parameters of the energy distribution function are included as decision variables in the techno–economic optimization and are simultaneously optimized.

  15. The extended range neutron rem counter LINUS: overview and latest developments

    International Nuclear Information System (INIS)

    Birattari, C.; Rancati, T.; Esposito, A.; Pelliccioni, M.; Ferrari, A.; Silari, M.

    1997-01-01

    The 'history' of the extended range neutron rem counter LINUS, since its first conception in 1990 is reviewed, along with the latest developments. These include the calibration of the initially cylindrical version with nearly monoenergetic neutrons in the energy range 34-66 MeV, a detailed evaluation of the anisotropy of its response function, the construction and calibration of an improved spherical version, and recent measurements in reference high energy stray radiation fields. The instrument can now be considered as being fully characterized. Similar monitors built by other laboratories following the present design have confirmed its performances. The instrument is now in semi-routine use at a number of particle accelerator facilities and is one of several devices used on-board of aircrafts for assessing the exposure to cosmic rays at commercial flight altitudes. (author)

  16. Extended-Range High-Resolution Dynamical Downscaling over a Continental-Scale Domain

    Science.gov (United States)

    Husain, S. Z.; Separovic, L.; Yu, W.; Fernig, D.

    2014-12-01

    High-resolution mesoscale simulations, when applied for downscaling meteorological fields over large spatial domains and for extended time periods, can provide valuable information for many practical application scenarios including the weather-dependent renewable energy industry. In the present study, a strategy has been proposed to dynamically downscale coarse-resolution meteorological fields from Environment Canada's regional analyses for a period of multiple years over the entire Canadian territory. The study demonstrates that a continuous mesoscale simulation over the entire domain is the most suitable approach in this regard. Large-scale deviations in the different meteorological fields pose the biggest challenge for extended-range simulations over continental scale domains, and the enforcement of the lateral boundary conditions is not sufficient to restrict such deviations. A scheme has therefore been developed to spectrally nudge the simulated high-resolution meteorological fields at the different model vertical levels towards those embedded in the coarse-resolution driving fields derived from the regional analyses. A series of experiments were carried out to determine the optimal nudging strategy including the appropriate nudging length scales, nudging vertical profile and temporal relaxation. A forcing strategy based on grid nudging of the different surface fields, including surface temperature, soil-moisture, and snow conditions, towards their expected values obtained from a high-resolution offline surface scheme was also devised to limit any considerable deviation in the evolving surface fields due to extended-range temporal integrations. The study shows that ensuring large-scale atmospheric similarities helps to deliver near-surface statistical scores for temperature, dew point temperature and horizontal wind speed that are better or comparable to the operational regional forecasts issued by Environment Canada. Furthermore, the meteorological fields

  17. Using subseasonal-to-seasonal (S2S) extreme rainfall forecasts for extended-range flood prediction in Australia

    Science.gov (United States)

    White, C. J.; Franks, S. W.; McEvoy, D.

    2015-06-01

    Meteorological and hydrological centres around the world are looking at ways to improve their capacity to be able to produce and deliver skilful and reliable forecasts of high-impact extreme rainfall and flooding events on a range of prediction timescales (e.g. sub-daily, daily, multi-week, seasonal). Making improvements to extended-range rainfall and flood forecast models, assessing forecast skill and uncertainty, and exploring how to apply flood forecasts and communicate their benefits to decision-makers are significant challenges facing the forecasting and water resources management communities. This paper presents some of the latest science and initiatives from Australia on the development, application and communication of extreme rainfall and flood forecasts on the extended-range "subseasonal-to-seasonal" (S2S) forecasting timescale, with a focus on risk-based decision-making, increasing flood risk awareness and preparedness, capturing uncertainty, understanding human responses to flood forecasts and warnings, and the growing adoption of "climate services". The paper also demonstrates how forecasts of flood events across a range of prediction timescales could be beneficial to a range of sectors and society, most notably for disaster risk reduction (DRR) activities, emergency management and response, and strengthening community resilience. Extended-range S2S extreme flood forecasts, if presented as easily accessible, timely and relevant information are a valuable resource to help society better prepare for, and subsequently cope with, extreme flood events.

  18. A Voltage Doubler Circuit to Extend the Soft-switching Range of Dual Active Bridge Converters

    DEFF Research Database (Denmark)

    Qin, Zian; Shen, Yanfeng; Wang, Huai

    2017-01-01

    A voltage doubler circuit is realized to extend the soft-switching range of Dual Active Bridge (DAB) converters. No extra hardware is added to the DAB to form this circuit, since it is composed of the dc blocking capacitor and the low side full bridge converter, which already exist in DAB....... With the voltage doubler, the DAB converter can achieve soft switching and high efficiency when the low side dc voltage is close to 2 pu (1 pu is the high side dc voltage divided by the transformer turn ratio), which can be realized only when the low side dc voltage is close to 1 pu by using the conventional phase...... shift modulation in DAB. Thus the soft switching range is extended. The soft switching boundary conditions are derived. A map to show the soft switching or hard switching in the full load and voltage range is obtained. The feasibility and effectiveness of the proposed method is finally verified...

  19. Estimation of Sideslip Angle Based on Extended Kalman Filter

    Directory of Open Access Journals (Sweden)

    Yupeng Huang

    2017-01-01

    Full Text Available The sideslip angle plays an extremely important role in vehicle stability control, but the sideslip angle in production car cannot be obtained from sensor directly in consideration of the cost of the sensor; it is essential to estimate the sideslip angle indirectly by means of other vehicle motion parameters; therefore, an estimation algorithm with real-time performance and accuracy is critical. Traditional estimation method based on Kalman filter algorithm is correct in vehicle linear control area; however, on low adhesion road, vehicles have obvious nonlinear characteristics. In this paper, extended Kalman filtering algorithm had been put forward in consideration of the nonlinear characteristic of the tire and was verified by the Carsim and Simulink joint simulation, such as the simulation on the wet cement road and the ice and snow road with double lane change. To test and verify the effect of extended Kalman filtering estimation algorithm, the real vehicle test was carried out on the limit test field. The experimental results show that the accuracy of vehicle sideslip angle acquired by extended Kalman filtering algorithm is obviously higher than that acquired by Kalman filtering in the area of the nonlinearity.

  20. Data and material of the Safe-Range-Inventory: An assistance tool helping to improve the charging infrastructure for electric vehicles.

    Science.gov (United States)

    Carbon, Claus-Christian; Gebauer, Fabian

    2017-10-01

    The Safe-Range-Inventory (SRI) was constructed in order to help public authorities to improve the charging infrastructures for electric vehicles [1; 10.1016/j.trf.2017.04.011]. Specifically, the impact of fast (vs slow) charging stations on people's range anxiety was examined. Ninety-seven electric vehicle users from Germany (81 male; M age =46.3 years, SD =12.1) were recruited to participate in the experimental design. Statistical analyses were conducted using ANOVA for repeated measures to test for interaction effects of available charging stations and remaining range with the dependent variable range anxiety . The full data set is publicly available via https://osf.io/bveyw/ (Carbon and Gebauer, 2017) [2].

  1. Why Did Better Place Fail?: Range anxiety, interpretive flexibility, and electric vehicle promotion in Denmark and Israel

    International Nuclear Information System (INIS)

    Noel, Lance; Sovacool, Benjamin K.

    2016-01-01

    With almost $1 billion in funding, Better Place was poised to become one of the most innovative companies in the electric mobility market. The system Better Place proposed had two novel prongs; first, to reduce the cost of batteries, and second, to reduce range anxiety, public infrastructure concerns, and long charging times. Yet, despite this seemingly strong combination, Better Place failed to make any progress in Denmark and Israel, the first two markets it operated in, and subsequently declared bankruptcy, selling off its collective assets for less than $500,000. Drawing from science and technology studies and the notion of “interpretive flexibility,” this paper posits several reasons to explain the failure of Better Place, including that Denmark is not as “green” as it seems nor is the Israeli market as attractive as believed, and that Better Place's solution to charging time and range anxiety resolved a psychological, not a functional, barrier of the general public to adopt electric vehicles. Before investigating these two reasons, the paper presents a short history of Better Place and explores the contours of its operations in Denmark and Israel. It then discusses why Better Place “failed” across both countries before concluding with implications for energy planning, policy, and analysis. - Highlights: •Better Place was a well-conceived business model to encourage electric vehicles. •Despite substantial funds, Better Place declared bankruptcy, selling 1300 cars. •We identify several reasons Better Place failed in Denmark, Israel, and in general. •We postulate that range anxiety is not a functional barrier to electric vehicles. •Electric vehicles will require consumers changing and sustained government support.

  2. Using subseasonal-to-seasonal (S2S extreme rainfall forecasts for extended-range flood prediction in Australia

    Directory of Open Access Journals (Sweden)

    C. J. White

    2015-06-01

    Full Text Available Meteorological and hydrological centres around the world are looking at ways to improve their capacity to be able to produce and deliver skilful and reliable forecasts of high-impact extreme rainfall and flooding events on a range of prediction timescales (e.g. sub-daily, daily, multi-week, seasonal. Making improvements to extended-range rainfall and flood forecast models, assessing forecast skill and uncertainty, and exploring how to apply flood forecasts and communicate their benefits to decision-makers are significant challenges facing the forecasting and water resources management communities. This paper presents some of the latest science and initiatives from Australia on the development, application and communication of extreme rainfall and flood forecasts on the extended-range "subseasonal-to-seasonal" (S2S forecasting timescale, with a focus on risk-based decision-making, increasing flood risk awareness and preparedness, capturing uncertainty, understanding human responses to flood forecasts and warnings, and the growing adoption of "climate services". The paper also demonstrates how forecasts of flood events across a range of prediction timescales could be beneficial to a range of sectors and society, most notably for disaster risk reduction (DRR activities, emergency management and response, and strengthening community resilience. Extended-range S2S extreme flood forecasts, if presented as easily accessible, timely and relevant information are a valuable resource to help society better prepare for, and subsequently cope with, extreme flood events.

  3. Anomalous X-ray scattering studies of short-, intermediate- and extended-range order in glasses

    International Nuclear Information System (INIS)

    Price, D.L.; Saboungi, M.L.; Armand, P.; Cox, D.E.

    1998-01-01

    The authors present the formalism of anomalous x-ray scattering as applied to partial structure analysis of disordered materials, and give an example of how the technique has been applied, together with that of neutron diffraction, to investigate short-, intermediate- and extended-range order in vitreous germania and rubidium germanate

  4. A highly sensitive RF-to-DC power converter with an extended dynamic range

    KAUST Repository

    Almansouri, Abdullah Saud Mohammed

    2017-10-24

    This paper proposes a highly sensitive RF-to-DC power converter with an extended dynamic range that is designed to operate at the medical band 433 MHz and simulated using 0.18 μm CMOS technology. Compared to the conventional fully cross-coupled rectifier, the proposed design offers 3.2× the dynamic range. It is also highly sensitive and requires −18 dBm of input power to produce a 1 V-output voltage when operating with a 100 kΩ load. Furthermore, the proposed design offers an open circuit sensitivity of −23.4 dBm and a peak power conversion efficiency of 67%.

  5. An Intelligent Regenerative Braking Strategy for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Zhibin Song

    2011-09-01

    Full Text Available Regenerative braking is an effective approach for electric vehicles (EVs to extend their driving range. A fuzzy-logic-based regenerative braking strategy (RBS integrated with series regenerative braking is developed in this paper to advance the level of energy-savings. From the viewpoint of securing car stability in braking operations, the braking force distribution between the front and rear wheels so as to accord with the ideal distribution curve are considered to prevent vehicles from experiencing wheel lock and slip phenomena during braking. Then, a fuzzy RBS using the driver’s braking force command, vehicle speed, battery SOC, battery temperature are designed to determine the distribution between friction braking force and regenerative braking force to improve the energy recuperation efficiency. The experimental results on an “LF620” prototype EV validated the feasibility and effectiveness of regenerative braking and showed that the proposed fuzzy RBS was endowed with good control performance. The maximum driving range of LF620 EV was improved by 25.7% compared with non-RBS conditions.

  6. Method for extending the unrestricted operating range of condensing steam turbines

    International Nuclear Information System (INIS)

    Csaba, G.; Bannerth, Cs.

    2009-01-01

    The allowed condenser temperature of the condensing steam turbines is determined by the design parameters of the steam turbine (casing geometry, exhaust area, blade length, blade angle, blade profile etc.). The fluctuations of condenser temperature may lead to reduced power output of the condensing steam turbine. Solutions where the low pressure turbine casings have the same exhaust area can be kept in operation at narrow condenser temperature range without restrictions. Exceeding the mentioned temperature range the exhaust hood temperature restriction, undergoing the temperature range choking point restriction appears causing increased operation cost. The aim of the paper is to present a condensing steam turbine - direct-contact condenser system that can extend the unrestricted operating range. The examined system consists of more parallelly connected low pressure turbine casings so-called diabolo that having at least two exhausts separated at the steam side. The exhausts, utilizing varying input-temperature coolant, are connected to the condensers that are separated at the steam side and serially connected at the coolant side. The casings have the same inlet areas while the exhausts have different areas resulting different volume flows and temperature operating range. The economic advantage of this solution approaches the savings between the serially connected direct-contact condensers and condensers in parallel of a dry cooling system. It can be proven by a simple calculation using the ambient air temperature duration diagram that is presented in the paper. (author)

  7. Design, calibration and tests of an extended-range Bonner sphere spectrometer

    CERN Document Server

    Mitaroff, Angela; Silari, Marco

    2001-01-01

    Stray radiation fields outside the shielding of hadron accelerators are of complex nature. They consist of a multiplicity of radiation components (neutrons, photons, electrons, pions, muons, ...) which extend over a wide range of energies. Since the dose equivalent in these mixed fields is mainly due to neutrons, neutron dosimetry is a particularly important task. The neutron energy in these fields ranges from thermal up to several hundreds of MeV, thus making dosimetry difficult. A well known instrument for measuring neutron energy distributions from thermal energies up to about E=10 MeV is the Bonner sphere spectrometer (BSS). It consists of a set of moderating spheres of different radii made of polyethylene, with a thermal neutron counter in the centre. Each detector (sphere plus counter) has a maximum response at a certain energy value depending on its size, but the overall response of the conventional BSS drops sharply between E=10-20 MeV. This thesis focuses on the development, the calibration and tests...

  8. Causes for torque degradation during deceleration and the effect on the driving range of battery electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Lieb, Johannes [BMW PEUGEOT CITROEN ELECTRIFICATION, Muenchen (Germany); Wilde, Andreas [BMW Group, Muenchen (Germany); Baeker, Bernard [Dresden Univ. of Technology (Germany). Dept. of Vehicle Mechatronics

    2012-11-01

    The ability to regain considerable amounts of the kinetic energy during deceleration phases is a key aspect to increase the efficiency of battery electric vehicles (BEV). Especially in urban and highly congested areas brake energy recovery (BER) can drastically improve the vehicle's driving range. However, due to the high power peaks that go along even with moderate braking maneuvers, severe requirements are being put on the electric drivetrain. Any limitation of power in one of the components of the powertrain inevitably leads to degradation of the regenerative brake torque, thus limiting the car's energy regeneration capability. Without an integrated brake system that can compensate the torque variations during deceleration, BER may need to be decreased even further to prevent a loss of driving comfort due to dynamic changes in the vehicle's behavior. This paper deals with the causes of these torque restraints within the electric drivetrain and how they affect the energy consumption and therefore the electric driving range. A simulation environment was set up and verified based on an existing BEV to conduct parameter studies and depict the sensitivities towards environmental influences. The calculated efficiencies are based on standard drive cycles and incorporate continuous fading between regenerative braking and the use of friction brakes. Special attention was laid on the battery system since energy storage still poses a particular challenge in the development of electric vehicles. Also through the high mutual dependence of the various parameters of the battery enviromental influences become most evident. (orig.)

  9. Calibration and experiment of an extended range Bonner sphere spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Mitaroff, A.; Mayer, S. [CERN, Geneva (Switzerland)]|[Atominstitut der TU-Wien, Vienna (Austria); Dimovasili, E.; Silari, M. [CERN, Geneva (Switzerland); Birattari, C. [Univ. of Milan, LASA, Segrate (Italy); Wiegel, B. [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany); Aiginger, H. [Atominstitut der TU-Wien, Vienna (Austria)

    2001-07-01

    High-energy neutrons dominate the dose equivalent outside the shielding of hadron accelerators (protons, heavy ions). Nowadays these accelerators are not only used or foreseen in high- and intermediate energy physics but in other fields like medicine or waste transmutation, too. In addition it was shown that at commercial flight altitudes a large fraction of the exposure of aircraft personnel is due to neutrons with a comparable energy spectrum to that along hadron accelerators. For this reason in radiation protection the exact knowledge of the neutron spectrum and the relevant dose quantities is very important. The neutrons of these radiation fields extend over more than 14 orders of magnitude up to 1 GeV, thus making the measurement of the spectrum difficult. A newly developed Bonner sphere spectrometer with extended range shall evaluate spectra with a high-energy neutron component. This contribution shows the FLUKA simulated response functions of the two new spheres - Stanlio and Ollio - dedicated for high energies. These simulations should be verified by calibration with quasi monoenergetic neutrons. These took place at PTB with neutron beams of 144 keV, 1.2 MeV, 5 MeV and 14.8 MeV. Additionally experiments at the CERF (CERN-EU Reference Field) facility, which provides a broad neutron spectrum with two pronounced maxima at around 1 MeV and 70 MeV, are shown and compared to the Monte Carlo simulations. (orig.)

  10. Calibration and experiment of an extended range Bonner sphere spectrometer

    International Nuclear Information System (INIS)

    Mitaroff, A.; Mayer, S.; Dimovasili, E.; Silari, M.; Birattari, C.; Wiegel, B.; Aiginger, H.

    2001-01-01

    High-energy neutrons dominate the dose equivalent outside the shielding of hadron accelerators (protons, heavy ions). Nowadays these accelerators are not only used or foreseen in high- and intermediate energy physics but in other fields like medicine or waste transmutation, too. In addition it was shown that at commercial flight altitudes a large fraction of the exposure of aircraft personnel is due to neutrons with a comparable energy spectrum to that along hadron accelerators. For this reason in radiation protection the exact knowledge of the neutron spectrum and the relevant dose quantities is very important. The neutrons of these radiation fields extend over more than 14 orders of magnitude up to 1 GeV, thus making the measurement of the spectrum difficult. A newly developed Bonner sphere spectrometer with extended range shall evaluate spectra with a high-energy neutron component. This contribution shows the FLUKA simulated response functions of the two new spheres - Stanlio and Ollio - dedicated for high energies. These simulations should be verified by calibration with quasi monoenergetic neutrons. These took place at PTB with neutron beams of 144 keV, 1.2 MeV, 5 MeV and 14.8 MeV. Additionally experiments at the CERF (CERN-EU Reference Field) facility, which provides a broad neutron spectrum with two pronounced maxima at around 1 MeV and 70 MeV, are shown and compared to the Monte Carlo simulations. (orig.)

  11. LysM domains mediate lipochitin-oligosaccharide recognition and Nfr genes extend the symbiotic host range

    DEFF Research Database (Denmark)

    Radutoiu, Simona; Madsen, Lene H; Madsen, Esben B

    2007-01-01

    and Nfr5 Nod-factor receptor genes in Medicago truncatula and L. filicaulis, extends their host range to include bacterial strains, Mesorhizobium loti or DZL, normally infecting L. japonicus. As a result, the symbiotic program is induced, nodules develop and infection threads are formed. Using L...

  12. True coincidence summing corrections for an extended energy range HPGe detector

    Energy Technology Data Exchange (ETDEWEB)

    Venegas-Argumedo, Y. [Centro de Investigación en Materiales Avanzados (CIMAV), Miguel de Cervantes 120, Chihuahua, Chih 31109 (Mexico); M.S. Student at CIMAV (Mexico); Montero-Cabrera, M. E., E-mail: elena.montero@cimav.edu.mx [Centro de Investigación en Materiales Avanzados (CIMAV), Miguel de Cervantes 120, Chihuahua, Chih 31109 (Mexico)

    2015-07-23

    True coincidence summing (TCS) effect for natural radioactive families of U-238 and Th-232 represents a problem when an environmental sample with a close source-detector geometry measurement is performed. By using a certified multi-nuclide standard source to calibrate an energy extended range (XtRa) HPGe detector, it is possible to obtain an intensity spectrum slightly affected by the TCS effect with energies from 46 to 1836 keV. In this work, the equations and some other considerations required to calculate the TCS correction factor for isotopes of natural radioactive chains are described. It is projected a validation of the calibration, performed with the IAEA-CU-2006-03 samples (soil and water)

  13. Extended Life Coolant Testing

    Science.gov (United States)

    2016-06-06

    number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 06-06-2016 2. REPORT TYPE Interim Report 3. DATES COVERED ... Corrosion Testing of Traditional and Extended Life Coolants 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Hansen, Gregory A. T...providing vehicle specific coolants. Several laboratory corrosion tests were performed according to ASTM D1384 and D2570, but with a 2.5x extended time

  14. Estimation method of state-of-charge for lithium-ion battery used in hybrid electric vehicles based on variable structure extended kalman filter

    Science.gov (United States)

    Sun, Yong; Ma, Zilin; Tang, Gongyou; Chen, Zheng; Zhang, Nong

    2016-07-01

    Since the main power source of hybrid electric vehicle(HEV) is supplied by the power battery, the predicted performance of power battery, especially the state-of-charge(SOC) estimation has attracted great attention in the area of HEV. However, the value of SOC estimation could not be greatly precise so that the running performance of HEV is greatly affected. A variable structure extended kalman filter(VSEKF)-based estimation method, which could be used to analyze the SOC of lithium-ion battery in the fixed driving condition, is presented. First, the general lower-order battery equivalent circuit model(GLM), which includes column accumulation model, open circuit voltage model and the SOC output model, is established, and the off-line and online model parameters are calculated with hybrid pulse power characteristics(HPPC) test data. Next, a VSEKF estimation method of SOC, which integrates the ampere-hour(Ah) integration method and the extended Kalman filter(EKF) method, is executed with different adaptive weighting coefficients, which are determined according to the different values of open-circuit voltage obtained in the corresponding charging or discharging processes. According to the experimental analysis, the faster convergence speed and more accurate simulating results could be obtained using the VSEKF method in the running performance of HEV. The error rate of SOC estimation with the VSEKF method is focused in the range of 5% to 10% comparing with the range of 20% to 30% using the EKF method and the Ah integration method. In Summary, the accuracy of the SOC estimation in the lithium-ion battery cell and the pack of lithium-ion battery system, which is obtained utilizing the VSEKF method has been significantly improved comparing with the Ah integration method and the EKF method. The VSEKF method utilizing in the SOC estimation in the lithium-ion pack of HEV can be widely used in practical driving conditions.

  15. New opportunity for hydrogen fuelled vehicles

    International Nuclear Information System (INIS)

    Krepec, T.; Hong, H.

    1998-01-01

    The present case study is showing that with recent developments in automotive technology, the concept of a hydrogen hybrid electric vehicle with a range of 300 km is feasible. To extend this range, more progress must be made in the batteries and in the gas tanks, as well as in automobile materials and structure to lower the weight of the vehicle. Regarding a possible commercialization of HHEV, the greatest obstacles are: the cost of the fuel, the refueling infrastructure and the public acceptance of hydrogens as the fuel for cars, taking into account some negative perception related to the past history of accidents with hydrogen. Still, the deciding factor in the acceptance of HHEV's might be the society's desire for zero emission vehicles supported by subsidies towards ZEV's from higher taxation of gasoline. One more aspect of hydrogen car should be discussed here. It is the recently, by Chrysler unveiled, new fuel cell car supplied with gasoline which is scheduled for production in 2005. While it is a step in the right direction, several doubts remain: (1) it will be an LEV not a ZEV, (2) it will produce CO 2 , contributing to greenhouse effect, (3) it will use a not renewable energy source, and as such it can be considered only as a mid-solution to the environmental and energy crisis. 3 refs

  16. An extended two-lane car-following model accounting for inter-vehicle communication

    Science.gov (United States)

    Ou, Hui; Tang, Tie-Qiao

    2018-04-01

    In this paper, we develop a novel car-following model with inter-vehicle communication to explore each vehicle's movement in a two-lane traffic system when an incident occurs on a lane. The numerical results show that the proposed model can perfectly describe each vehicle's motion when an incident occurs, i.e., no collision occurs while the classical full velocity difference (FVD) model produces collision on each lane, which shows the proposed model is more reasonable. The above results can help drivers to reasonably adjust their driving behaviors when an incident occurs in a two-lane traffic system.

  17. Extended Range Intercept Technology

    Science.gov (United States)

    1991-09-01

    1988). Desert bighorn ewes with lambs show a stronger response than do groups of only rams, only ewes, or mixed groups of adults (Miller and Smith...1985). While all startle events may affect desert bighorns, those occurring during the lambing period (February-April) would represent the highest...35807 U.S. Army Pueblo Depot Activity SDSTE-PU-EE Pueblo, CO 81001-5000 U.S. Army White Sands Missile Range STEWS -EL-N White Sands, NM 88002-5076

  18. Autonomous Vehicles Have a Wide Range of Possible Energy Impacts

    Energy Technology Data Exchange (ETDEWEB)

    Austin Brown, Brittany Repac, Jeff Gonder

    2013-07-15

    Self-driving or “autonomous” vehicles (AVs) have leapt from science fiction into the forefront of transportation technology news. The technology is likely still years away from widespread commercial adoption, but the recent progress makes it worth considering the potential national impacts of widespread implementation. This poster makes an initial assessment of the energy impacts of AV adoptionon a per-vehicle basis and on total personal vehicle fuel use. While AVs offer numerous potential advantages in energy use, there are significant factors that could decrease or even eliminate the energy benefits under some circumstances. This analysis attempts to describe, quantify, and combine many of the possible effects. The nature and magnitude of these effects remain highly uncertain. This set of effects is very unlikely to be exhaustive, but this analysis approach can serve as a base for future estimates.

  19. A hybrid positioning strategy for vehicles in a tunnel based on RFID and in-vehicle sensors.

    Science.gov (United States)

    Song, Xiang; Li, Xu; Tang, Wencheng; Zhang, Weigong; Li, Bin

    2014-12-05

    Many intelligent transportation system applications require accurate, reliable, and continuous vehicle positioning. How to achieve such positioning performance in extended GPS-denied environments such as tunnels is the main challenge for land vehicles. This paper proposes a hybrid multi-sensor fusion strategy for vehicle positioning in tunnels. First, the preliminary positioning algorithm is developed. The Radio Frequency Identification (RFID) technology is introduced to achieve preliminary positioning in the tunnel. The received signal strength (RSS) is used as an indicator to calculate the distances between the RFID tags and reader, and then a Least Mean Square (LMS) federated filter is designed to provide the preliminary position information for subsequent global fusion. Further, to improve the positioning performance in the tunnel, an interactive multiple model (IMM)-based global fusion algorithm is developed to fuse the data from preliminary positioning results and low-cost in-vehicle sensors, such as electronic compasses and wheel speed sensors. In the actual implementation of IMM, the strong tracking extended Kalman filter (STEKF) algorithm is designed to replace the conventional extended Kalman filter (EKF) to achieve model individual filtering. Finally, the proposed strategy is evaluated through experiments. The results validate the feasibility and effectiveness of the proposed strategy.

  20. A Hybrid Positioning Strategy for Vehicles in a Tunnel Based on RFID and In-Vehicle Sensors

    Directory of Open Access Journals (Sweden)

    Xiang Song

    2014-12-01

    Full Text Available Many intelligent transportation system applications require accurate, reliable, and continuous vehicle positioning. How to achieve such positioning performance in extended GPS-denied environments such as tunnels is the main challenge for land vehicles. This paper proposes a hybrid multi-sensor fusion strategy for vehicle positioning in tunnels. First, the preliminary positioning algorithm is developed. The Radio Frequency Identification (RFID technology is introduced to achieve preliminary positioning in the tunnel. The received signal strength (RSS is used as an indicator to calculate the distances between the RFID tags and reader, and then a Least Mean Square (LMS federated filter is designed to provide the preliminary position information for subsequent global fusion. Further, to improve the positioning performance in the tunnel, an interactive multiple model (IMM-based global fusion algorithm is developed to fuse the data from preliminary positioning results and low-cost in-vehicle sensors, such as electronic compasses and wheel speed sensors. In the actual implementation of IMM, the strong tracking extended Kalman filter (STEKF algorithm is designed to replace the conventional extended Kalman filter (EKF to achieve model individual filtering. Finally, the proposed strategy is evaluated through experiments. The results validate the feasibility and effectiveness of the proposed strategy.

  1. Histogram Matching Extends Acceptable Signal Strength Range on Optical Coherence Tomography Images

    Science.gov (United States)

    Chen, Chieh-Li; Ishikawa, Hiroshi; Wollstein, Gadi; Bilonick, Richard A.; Sigal, Ian A.; Kagemann, Larry; Schuman, Joel S.

    2015-01-01

    Purpose. We minimized the influence of image quality variability, as measured by signal strength (SS), on optical coherence tomography (OCT) thickness measurements using the histogram matching (HM) method. Methods. We scanned 12 eyes from 12 healthy subjects with the Cirrus HD-OCT device to obtain a series of OCT images with a wide range of SS (maximal range, 1–10) at the same visit. For each eye, the histogram of an image with the highest SS (best image quality) was set as the reference. We applied HM to the images with lower SS by shaping the input histogram into the reference histogram. Retinal nerve fiber layer (RNFL) thickness was automatically measured before and after HM processing (defined as original and HM measurements), and compared to the device output (device measurements). Nonlinear mixed effects models were used to analyze the relationship between RNFL thickness and SS. In addition, the lowest tolerable SSs, which gave the RNFL thickness within the variability margin of manufacturer recommended SS range (6–10), were determined for device, original, and HM measurements. Results. The HM measurements showed less variability across a wide range of image quality than the original and device measurements (slope = 1.17 vs. 4.89 and 1.72 μm/SS, respectively). The lowest tolerable SS was successfully reduced to 4.5 after HM processing. Conclusions. The HM method successfully extended the acceptable SS range on OCT images. This would qualify more OCT images with low SS for clinical assessment, broadening the OCT application to a wider range of subjects. PMID:26066749

  2. Extended-Range Ultrarefractive 1D Photonic Crystal Prisms

    Science.gov (United States)

    Ting, David Z.

    2007-01-01

    A proposal has been made to exploit the special wavelength-dispersive characteristics of devices of the type described in One-Dimensional Photonic Crystal Superprisms (NPO-30232) NASA Tech Briefs, Vol. 29, No. 4 (April 2005), page 10a. A photonic crystal is an optical component that has a periodic structure comprising two dielectric materials with high dielectric contrast (e.g., a semiconductor and air), with geometrical feature sizes comparable to or smaller than light wavelengths of interest. Experimental superprisms have been realized as photonic crystals having three-dimensional (3D) structures comprising regions of amorphous Si alternating with regions of SiO2, fabricated in a complex process that included sputtering. A photonic crystal of the type to be exploited according to the present proposal is said to be one-dimensional (1D) because its contrasting dielectric materials would be stacked in parallel planar layers; in other words, there would be spatial periodicity in one dimension only. The processes of designing and fabricating 1D photonic crystal superprisms would be simpler and, hence, would cost less than do those for 3D photonic crystal superprisms. As in 3D structures, 1D photonic crystals may be used in applications such as wavelength-division multiplexing. In the extended-range configuration, it is also suitable for spectrometry applications. As an engineered structure or artificially engineered material, a photonic crystal can exhibit optical properties not commonly found in natural substances. Prior research had revealed several classes of photonic crystal structures for which the propagation of electromagnetic radiation is forbidden in certain frequency ranges, denoted photonic bandgaps. It had also been found that in narrow frequency bands just outside the photonic bandgaps, the angular wavelength dispersion of electromagnetic waves propagating in photonic crystal superprisms is much stronger than is the angular wavelength dispersion obtained

  3. Vehicle positioning based on UWB technology

    Science.gov (United States)

    Hu, Siquan; Kang, Min; She, Chundong

    2017-08-01

    In recent years, with the rapid increase of the number of urban cars, the vehicle internet is becoming a trend of smart transportion. In such vehicle network, accurate location is very crucial in many new applications such as autopilot, semi-autopilot and Car-to-x communications. UWB technology has been used for indoor closed range positioning and ranging widely, while UWB outdoor positioning and ranging research is relatively less. This paper proposed UWB as the vehicle positioning technology and developed a method based on two-way-ranging (TWR) to solve the ranging problem between vehicles. At the same time, the improved TOA method was used to locate vehicles, which has higher precision compared with traditional GPS or LBS. A hardware module is introduced and the simulation results show that the modules are capable of precise positioning for vehicles in vehicle network.

  4. Disentangling neighbors and extended range density oscillations in monatomic amorphous semiconductors.

    Science.gov (United States)

    Roorda, S; Martin, C; Droui, M; Chicoine, M; Kazimirov, A; Kycia, S

    2012-06-22

    High energy x-ray diffraction measurements of pure amorphous Ge were made and its radial distribution function (RDF) was determined at high resolution, revealing new information on the atomic structure of amorphous semiconductors. Fine structure in the second peak in the RDF provides evidence that a fraction of third neighbors are closer than some second neighbors; taking this into account leads to a narrow distribution of tetrahedral bond angles, (8.5 ± 0.1)°. A small peak which appears near 5 Å upon thermal annealing shows that some ordering in the dihedral bond-angle distribution takes place during structural relaxation. Extended range order is detected (in both a-Ge and a-Si) which persists to beyond 20 Å, and both the periodicity and its decay length increase upon thermal annealing. Previously, the effect of structural relaxation was only detected at intermediate range, involving reduced tetrahedral bond-angle distortions. These results enhance our understanding of the atomic order in continuous random networks and place significantly more stringent requirements on computer models intending to describe these networks, or their alternatives which attempt to describe the structure in terms of an arrangement of paracrystals.

  5. Extended-Kalman-filter-based regenerative and friction blended braking control for electric vehicle equipped with axle motor considering damping and elastic properties of electric powertrain

    Science.gov (United States)

    Lv, Chen; Zhang, Junzhi; Li, Yutong

    2014-11-01

    Because of the damping and elastic properties of an electrified powertrain, the regenerative brake of an electric vehicle (EV) is very different from a conventional friction brake with respect to the system dynamics. The flexibility of an electric drivetrain would have a negative effect on the blended brake control performance. In this study, models of the powertrain system of an electric car equipped with an axle motor are developed. Based on these models, the transfer characteristics of the motor torque in the driveline and its effect on blended braking control performance are analysed. To further enhance a vehicle's brake performance and energy efficiency, blended braking control algorithms with compensation for the powertrain flexibility are proposed using an extended Kalman filter. These algorithms are simulated under normal deceleration braking. The results show that the brake performance and blended braking control accuracy of the vehicle are significantly enhanced by the newly proposed algorithms.

  6. Vehicle test report: Electric Vehicle Associates electric conversion of an AMC Pacer

    Science.gov (United States)

    Price, T. W.; Wirth, V. A., Jr.; Pompa, M. F.

    1981-01-01

    Tests were performed to characterize certain parameters of the EVA Pacer and to provide baseline data that can be used for the comparison of improved batteries that may be incorporated into the vehicle at a later time. The vehicle tests were concentrated on the electrical drive subsystem; i.e., the batteries, controller and motor. The tests included coastdowns to characterize the road load, and range evaluations for both cyclic and constant speed conditions. A qualitative evaluation of the vehicle's performance was made by comparing its constant speed range performance with other electric and hybrid vehicles. The Pacer performance was approximately equal to the majority of those vehicles assessed in 1977.

  7. Extending Wireless Rechargeable Sensor Network Life without Full Knowledge.

    Science.gov (United States)

    Najeeb, Najeeb W; Detweiler, Carrick

    2017-07-17

    When extending the life of Wireless Rechargeable Sensor Networks (WRSN), one challenge is charging networks as they grow larger. Overcoming this limitation will render a WRSN more practical and highly adaptable to growth in the real world. Most charging algorithms require a priori full knowledge of sensor nodes' power levels in order to determine the nodes that require charging. In this work, we present a probabilistic algorithm that extends the life of scalable WRSN without a priori power knowledge and without full network exploration. We develop a probability bound on the power level of the sensor nodes and utilize this bound to make decisions while exploring a WRSN. We verify the algorithm by simulating a wireless power transfer unmanned aerial vehicle, and charging a WRSN to extend its life. Our results show that, without knowledge, our proposed algorithm extends the life of a WRSN on average 90% of what an optimal full knowledge algorithm can achieve. This means that the charging robot does not need to explore the whole network, which enables the scaling of WRSN. We analyze the impact of network parameters on our algorithm and show that it is insensitive to a large range of parameter values.

  8. A three-step vehicle detection framework for range estimation using a single camera

    CSIR Research Space (South Africa)

    Kanjee, R

    2015-12-01

    Full Text Available This paper proposes and validates a real-time onroad vehicle detection system, which uses a single camera for the purpose of intelligent driver assistance. A three-step vehicle detection framework is presented to detect and track the target vehicle...

  9. Extended-range forecasting of Chinese summer surface air temperature and heat waves

    Science.gov (United States)

    Zhu, Zhiwei; Li, Tim

    2018-03-01

    Because of growing demand from agricultural planning, power management and activity scheduling, extended-range (5-30-day lead) forecasting of summer surface air temperature (SAT) and heat waves over China is carried out in the present study via spatial-temporal projection models (STPMs). Based on the training data during 1960-1999, the predictability sources are found to propagate from Europe, Northeast Asia, and the tropical Pacific, to influence the intraseasonal 10-80 day SAT over China. STPMs are therefore constructed using the projection domains, which are determined by these previous predictability sources. For the independent forecast period (2000-2013), the STPMs can reproduce EOF-filtered 30-80 day SAT at all lead times of 5-30 days over most part of China, and observed 30-80 and 10-80 day SAT at 25-30 days over eastern China. Significant pattern correlation coefficients account for more than 50% of total forecasts at all 5-30-day lead times against EOF-filtered and observed 30-80 day SAT, and at a 20-day lead time against observed 10-80 day SAT. The STPMs perform poorly in reproducing 10-30 day SAT. Forecasting for the first two modes of 10-30 day SAT only shows useful skill within a 15-day lead time. Forecasting for the third mode of 10-30 day SAT is useless after a 10-day lead time. The forecasted heat waves over China are determined by the reconstructed SAT which is the summation of the forecasted 10-80 day SAT and the lower frequency (longer than 80-day) climatological SAT. Over a large part of China, the STPMs can forecast more than 30% of heat waves within a 15-day lead time. In general, the STPMs demonstrate the promising skill for extended-range forecasting of Chinese summer SAT and heat waves.

  10. Disorder structure of free-flow and global jams in the extended BML model

    International Nuclear Information System (INIS)

    Zhao Xiaomei; Xie Dongfan; Jia Bin; Jiang Rui; Gao Ziyou

    2011-01-01

    The original BML model is extended by introducing extended sites, which can hold several vehicles at each time-step. Unexpectedly, the flow in the extended model sharply transits from free-flow to global jams, but the transition is not one-order in original BML model. And congestion in the extended model appears more easily. This can ascribe to the mixture of vehicles from different directions in one site, leading to the drop-off of the capacity of the site. Furthermore, the typical configuration of free flowing and global jams in the extended models is disorder, different from the regular structure in the original model.

  11. Extending the Effective Ranging Depth of Spectral Domain Optical Coherence Tomography by Spatial Frequency Domain Multiplexing

    Directory of Open Access Journals (Sweden)

    Tong Wu

    2016-11-01

    Full Text Available We present a spatial frequency domain multiplexing method for extending the imaging depth range of a spectral domain optical coherence tomography (SDOCT system without any expensive device. This method uses two galvo scanners with different pivot-offset distances in two independent reference arms for spatial frequency modulation and multiplexing. The spatial frequency contents corresponding to different depth regions of the sample can be shifted to different frequency bands. The spatial frequency domain multiplexing SDOCT system provides an approximately 1.9-fold increase in the effective ranging depth compared with that of a conventional full-range SDOCT system. The reconstructed images of phantom and biological tissue demonstrate the expected increase in ranging depth. The parameters choice criterion for this method is discussed.

  12. Scattering from extended targets in range-dependent fluctuating ocean-waveguides with clutter from theory and experiments.

    Science.gov (United States)

    Jagannathan, Srinivasan; Küsel, Elizabeth T; Ratilal, Purnima; Makris, Nicholas C

    2012-08-01

    Bistatic, long-range measurements of acoustic scattered returns from vertically extended, air-filled tubular targets were made during three distinct field experiments in fluctuating continental shelf waveguides. It is shown that Sonar Equation estimates of mean target-scattered intensity lead to large errors, differing by an order of magnitude from both the measurements and waveguide scattering theory. The use of the Ingenito scattering model is also shown to lead to significant errors in estimating mean target-scattered intensity in the field experiments because they were conducted in range-dependent ocean environments with large variations in sound speed structure over the depth of the targets, scenarios that violate basic assumptions of the Ingenito model. Green's theorem based full-field modeling that describes scattering from vertically extended tubular targets in range-dependent ocean waveguides by taking into account nonuniform sound speed structure over the target's depth extent is shown to accurately describe the statistics of the targets' scattered field in all three field experiments. Returns from the man-made targets are also shown to have a very different spectral dependence from the natural target-like clutter of the dominant fish schools observed, suggesting that judicious multi-frequency sensing may often provide a useful means of distinguishing fish from man-made targets.

  13. Design of an extended range long counter using super Monte Carlo simulation

    International Nuclear Information System (INIS)

    Mazunga, Mohamed; Li, Taosheng; Li, Yanan; Hong, Bing; Wang, Yongfeng; Ji, Xiang

    2017-01-01

    We have designed an extended range neutron long counter on the basis of work optimized using SuperMC code. The problem of the existing traditional long counters is that their response function falls rapidly above 5 MeV. We proposed a new designed by adding two layers of converter material inside the polyethylene moderator. The relatively low density chromium and high density lead metals convert high energy neutron by (n, xn) spallation reaction. This produces more neutrons of lower energies, which have higher probability of being detected by thermal 3 He-counter. The response function at lower neutron energies was improved by inserting small polyethylene cylinder in front of 3 He counter. In this design we achieved to extent the flat response function of the long counter from few keV up to 150 MeV. The total fluctuation of response curve is less than ±9% over the entire energy range. The designed long counter is suitable to be used as neutron monitor for monitoring neutron fluence at high-energy neutron source. (authors)

  14. Multi-Mission Earth Vehicle Subsonic Dynamic Stability Testing and Analyses

    Science.gov (United States)

    Glaab, Louis J.; Fremaux, C. Michael

    2013-01-01

    Multi-Mission Earth Entry Vehicles (MMEEVs) are blunt-body vehicles designed with the purpose of transporting payloads from outer space to the surface of the Earth. To achieve high-reliability and minimum weight, MMEEVs avoid use of limited-reliability systems, such as parachutes, retro-rockets, and reaction control systems and rely on the natural aerodynamic stability of the vehicle throughout the Entry, Descent, and Landing (EDL) phase of flight. The Multi-Mission Systems Analysis for Planetary Entry (M-SAPE) parametric design tool is used to facilitate the design of MMEEVs for an array of missions and develop and visualize the trade space. Testing in NASA Langley?s Vertical Spin Tunnel (VST) was conducted to significantly improve M-SAPE?s subsonic aerodynamic models. Vehicle size and shape can be driven by entry flight path angle and speed, thermal protection system performance, terminal velocity limitations, payload mass and density, among other design parameters. The objectives of the VST testing were to define usable subsonic center of gravity limits, and aerodynamic parameters for 6-degree-of-freedom (6-DOF) simulations, for a range of MMEEV designs. The range of MMEEVs tested was from 1.8m down to 1.2m diameter. A backshell extender provided the ability to test a design with a much larger payload for the 1.2m MMEEV.

  15. Improving the Energy Management of a Solar Electric Vehicle

    Directory of Open Access Journals (Sweden)

    GUNESER, M. T.

    2015-11-01

    Full Text Available A solar electric vehicle (SEV is an electric vehicle (EV with onboard photovoltaic cells charging a set of batteries for extended driving range. This study aimed to improve the energy management system of a SEV, called YILDIZ, using a fuzzy logic control system (FLC. A MATLAB based simulation model of three basic components of a solar car: solar cell modules, batteries and motor drive system was performed. An original FLC was developed. For proving its applicability, the performances of the SEV were tested by simulation, in accordance with the standard test drive cycle ECE-15. The characteristics obtained with the original Proportional Integral Fuzzy Logic Control (PI-FLC were compared with those obtained with a classical Proportional Integral (PI controller. Using the designed model, we calculated the range of YILDIZ with and without PV feeding which gave us an opportunity to study and compare both SEV and EV models on real race-track situation. Then the optimum speed, at any time, which enabled the vehicle to reach a chosen destination as quickly as possible, while fully using the available energy, was calculated. Proposed solutions tested on YILDIZ. Results of simulations were compared with YILDIZ run on the Formula-G race track in Izmit, Turkey.

  16. Tyre-road grip coefficient assessment - Part II: online estimation using instrumented vehicle, extended Kalman filter, and neural network

    Science.gov (United States)

    Luque, Pablo; Mántaras, Daniel A.; Fidalgo, Eloy; Álvarez, Javier; Riva, Paolo; Girón, Pablo; Compadre, Diego; Ferran, Jordi

    2013-12-01

    The main objective of this work is to determine the limit of safe driving conditions by identifying the maximal friction coefficient in a real vehicle. The study will focus on finding a method to determine this limit before reaching the skid, which is valuable information in the context of traffic safety. Since it is not possible to measure the friction coefficient directly, it will be estimated using the appropriate tools in order to get the most accurate information. A real vehicle is instrumented to collect information of general kinematics and steering tie-rod forces. A real-time algorithm is developed to estimate forces and aligning torque in the tyres using an extended Kalman filter and neural networks techniques. The methodology is based on determining the aligning torque; this variable allows evaluation of the behaviour of the tyre. It transmits interesting information from the tyre-road contact and can be used to predict the maximal tyre grip and safety margin. The maximal grip coefficient is estimated according to a knowledge base, extracted from computer simulation of a high detailed three-dimensional model, using Adams® software. The proposed methodology is validated and applied to real driving conditions, in which maximal grip and safety margin are properly estimated.

  17. Extended-range forecast for the temporal distribution of clustering tropical cyclogenesis over the western North Pacific

    Science.gov (United States)

    Zhu, Zhiwei; Li, Tim; Bai, Long; Gao, Jianyun

    2017-11-01

    Based on outgoing longwave radiation (OLR), an index for clustering tropical cyclogenesis (CTC) over the western North Pacific (WNP) was defined. Around 76 % of total CTC events were generated during the active phase of the CTC index, and 38 % of the total active phase was concurrent with CTC events. For its continuous property, the CTC index was used as the representative predictand for extended-range forecasting the temporal distribution of CTC events. The predictability sources for CTC events were detected via correlation analyses of the previous 35-5-day lead atmospheric fields against the CTC index. The results showed that the geopotential height at different levels and the 200 hPa zonal wind over the global tropics possessed large predictability sources, whereas the predictability sources of other variables, e.g., OLR, zonal wind, and relatively vorticity at 850 hPa and relatively humility at 700 hPa, were mainly confined to the tropical Indian Ocean and western Pacific Ocean. Several spatial-temporal projection model (STPM) sets were constructed to carry out the extended-range forecast for the CTC index. By combining the output of STPMs separately conducted for the two dominant modes of intraseasonal variability, e.g., the 10-30 and the 30-80 day mode, useful forecast skill could be achieved for a 30-day lead time. The combined output successfully captured both the 10-30 and 30-80 day mode at least 10 days in advance. With a relatively low rate of false alarm, the STPM achieved hits for 80 % (69 %) of 54 CTC events during 2003-2014 at the 10-day (20-day) lead time, suggesting a practical value of the STPM for real-time forecasting WNP CTC events at an extended range.

  18. An extended car-following model at un-signalized intersections under V2V communication environment

    Science.gov (United States)

    Wang, Tao; Li, Peng

    2018-01-01

    An extended car-following model is proposed in this paper to analyze the impacts of V2V (vehicle to vehicle) communication on the micro driving behavior at the un-signalized intersection. A four-leg un-signalized intersection with twelve streams (left-turn, through movement, and right turn from each leg) is used. The effect of the guidance strategy on the reduction of the rate of stops and total delay is explored by comparing the proposed model and the traditional FVD car-following model. The numerical results illustrate that potential conflicts between vehicles can be predicted and some stops can be avoided by decelerating in advance. The driving comfort and traffic efficiency can be improved accordingly. More benefits could be obtained under the long communication range, low to medium traffic density, and simple traffic pattern conditions. PMID:29425243

  19. EV range sensitivity analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ostafew, C. [Azure Dynamics Corp., Toronto, ON (Canada)

    2010-07-01

    This presentation included a sensitivity analysis of electric vehicle components on overall efficiency. The presentation provided an overview of drive cycles and discussed the major contributors to range in terms of rolling resistance; aerodynamic drag; motor efficiency; and vehicle mass. Drive cycles that were presented included: New York City Cycle (NYCC); urban dynamometer drive cycle; and US06. A summary of the findings were presented for each of the major contributors. Rolling resistance was found to have a balanced effect on each drive cycle and proportional to range. In terms of aerodynamic drive, there was a large effect on US06 range. A large effect was also found on NYCC range in terms of motor efficiency and vehicle mass. figs.

  20. Numerical simulation of base flow of a long range flight vehicle

    Science.gov (United States)

    Saha, S.; Rathod, S.; Chandra Murty, M. S. R.; Sinha, P. K.; Chakraborty, Debasis

    2012-05-01

    Numerical exploration of base flow of a long range flight vehicle is presented for different flight conditions. Three dimensional Navier-Stokes equations are solved along with k-ɛ turbulence model using commercial CFD software. Simulation captured all essential flow features including flow separation at base shoulder, shear layer formation at the jet boundary, recirculation at the base region etc. With the increase in altitude, the plume of the rocket exhaust is seen to bulge more and more and caused more intense free stream and rocket plume interaction leading to higher gas temperature in the base cavity. The flow field in the base cavity is investigated in more detail, which is found to be fairly uniform at different instant of time. Presence of the heat shield is seen to reduce the hot gas entry to the cavity region due to different recirculation pattern in the base region. Computed temperature history obtained from conjugate heat transfer analysis is found to compare very well with flight measured data.

  1. Sliding mode based trajectory linearization control for hypersonic reentry vehicle via extended disturbance observer.

    Science.gov (United States)

    Xingling, Shao; Honglun, Wang

    2014-11-01

    This paper proposes a novel hybrid control framework by combing observer-based sliding mode control (SMC) with trajectory linearization control (TLC) for hypersonic reentry vehicle (HRV) attitude tracking problem. First, fewer control consumption is achieved using nonlinear tracking differentiator (TD) in the attitude loop. Second, a novel SMC that employs extended disturbance observer (EDO) to counteract the effect of uncertainties using a new sliding surface which includes the estimation error is integrated to address the tracking error stabilization issues in the attitude and angular rate loop, respectively. In addition, new results associated with EDO are examined in terms of dynamic response and noise-tolerant performance, as well as estimation accuracy. The key feature of the proposed compound control approach is that chattering free tracking performance with high accuracy can be ensured for HRV in the presence of multiple uncertainties under control constraints. Based on finite time convergence stability theory, the stability of the resulting closed-loop system is well established. Also, comparisons and extensive simulation results are presented to demonstrate the effectiveness of the control strategy. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Which Factors Can Protect Against Range Stress in Everyday Usage of Battery Electric Vehicles? Toward Enhancing Sustainability of Electric Mobility Systems.

    Science.gov (United States)

    Franke, Thomas; Rauh, Nadine; Günther, Madlen; Trantow, Maria; Krems, Josef F

    2016-02-01

    The objective of the present research was to advance understanding of factors that can protect against range anxiety, specifically range stress in everyday usage of battery electric vehicles (BEVs). Range anxiety is a major barrier to the broad adoption of sustainable electric mobility systems. To develop strategies aimed at overcoming range anxiety, a clear understanding of this phenomenon and influencing factors is needed. We examined range anxiety in the form of everyday range stress (ERS) in a field study setting. Seventy-two customers leased a BEV for 3 months. The field study was specifically designed to enable examination of factors that can contribute to lower ERS. In particular, study design and sample recruitment were targeted at generating vehicle usage profiles that would lead to relatively frequent experience of situations requiring active management of range resources and thereby potentially leading to experienced range stress. Less frequent encounter with critical range situations, higher practical experience, subjective range competence, tolerance of low range, and experienced trustworthiness of the range estimation system were related to lower ERS. Moreover, range stress was found to be related to range satisfaction and BEV acceptance. The results underline the importance of the human factors perspective to overcome range anxiety and enhance sustainability of electric mobility systems. Trustworthiness should be employed as a key benchmark variable in the design of range estimation systems, and assistance systems should target increasing drivers' adaptive capacity (i.e., resilience) to cope with critical range situations. © 2015, Human Factors and Ergonomics Society.

  3. Integrated Vehicle Thermal Management - Combining Fluid Loops in Electric Drive Vehicles (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Rugh, J. P.

    2013-07-01

    Plug-in hybrid electric vehicles and electric vehicles have increased vehicle thermal management complexity, using separate coolant loop for advanced power electronics and electric motors. Additional thermal components result in higher costs. Multiple cooling loops lead to reduced range due to increased weight. Energy is required to meet thermal requirements. This presentation for the 2013 Annual Merit Review discusses integrated vehicle thermal management by combining fluid loops in electric drive vehicles.

  4. Extending the range and performance of non-line-of-sight ultraviolet communication links

    Science.gov (United States)

    Shaw, Gary A.; Siegel, Andrew M.; Model, Joshua

    2006-05-01

    This paper describes recent advances in the technology for, and implementation of, short-range non-line-of-sight (NLOS) optical communication links. The approach relies on molecular scattering of ultraviolet wavelengths by the atmosphere to achieve NLOS, omni-directional communication Links. The implementation employs commercially produced semiconductor sources emitting in the solar-blind region of the UV spectrum, around 275nm. This paper extends previously reported field measurements to longer ranges (100+m) and to a wider variety of application scenarios, including an outdoor demonstration of real-time speech at 2.4kbps in full sunlight. The paper also addresses the design trades associated with replacing photomultiplier detectors with semiconductor detectors for reasons of cost and ruggedness. Even with improvements in semiconductor materials and commensurate reduction in dark currents, the use of semiconductor detectors will require the introduction of imaging arrays. Incorporation of imaging arrays opens the possibility of adaptive links in which bandwidth and transmit power are adapted to best exploit the channel constraints.

  5. Socially Extended Cognition and Shared Intentionality

    Directory of Open Access Journals (Sweden)

    Holger Lyre

    2018-05-01

    Full Text Available The paper looks at the intersection of extended cognition and social cognition. The central claim is that the mechanisms of shared intentionality can equally be considered as coupling mechanisms of cognitive extension into the social domain. This claim will be demonstrated by investigating a detailed example of cooperative action, and it will be argued that such cases imply that socially extended cognition is not only about cognitive vehicles, but that content must additionally be taken into account. It is finally outlined how social content externalism can in principle be grounded in socially extended cognition.

  6. HEPS4Power - Extended-range Hydrometeorological Ensemble Predictions for Improved Hydropower Operations and Revenues

    Science.gov (United States)

    Bogner, Konrad; Monhart, Samuel; Liniger, Mark; Spririg, Christoph; Jordan, Fred; Zappa, Massimiliano

    2015-04-01

    In recent years large progresses have been achieved in the operational prediction of floods and hydrological drought with up to ten days lead time. Both the public and the private sectors are currently using probabilistic runoff forecast in order to monitoring water resources and take actions when critical conditions are to be expected. The use of extended-range predictions with lead times exceeding 10 days is not yet established. The hydropower sector in particular might have large benefits from using hydro meteorological forecasts for the next 15 to 60 days in order to optimize the operations and the revenues from their watersheds, dams, captions, turbines and pumps. The new Swiss Competence Centers in Energy Research (SCCER) targets at boosting research related to energy issues in Switzerland. The objective of HEPS4POWER is to demonstrate that operational extended-range hydro meteorological forecasts have the potential to become very valuable tools for fine tuning the production of energy from hydropower systems. The project team covers a specific system-oriented value chain starting from the collection and forecast of meteorological data (MeteoSwiss), leading to the operational application of state-of-the-art hydrological models (WSL) and terminating with the experience in data presentation and power production forecasts for end-users (e-dric.ch). The first task of the HEPS4POWER will be the downscaling and post-processing of ensemble extended-range meteorological forecasts (EPS). The goal is to provide well-tailored forecasts of probabilistic nature that should be reliable in statistical and localized at catchment or even station level. The hydrology related task will consist in feeding the post-processed meteorological forecasts into a HEPS using a multi-model approach by implementing models with different complexity. Also in the case of the hydrological ensemble predictions, post-processing techniques need to be tested in order to improve the quality of the

  7. Electric Vehicles at Kennedy Space Center

    Science.gov (United States)

    Chesson, Bruce E.

    2007-01-01

    The story of how the transportation office began by introducing low speed electric cars (LSEV) to the fleet managers and employees. This sparked and interest in purchasing some of these LSEV and the usage on KSC. Transportation was approached by a vender of High Speed Electric Vehicle (HSEV) we decided to test the HSEV to see if they would meet our fleet vehicle needs. Transportation wrote a Space Act Agreement (SAA) for the loan of three Lithium Powered Electric vehicles for a one year test. The vehicles have worked very well and we have extended the test for another year. The use of HSEV has pushed for an independent Electric Vehicle Study to be performed to consider ways to effectively optimize the use of electric vehicles in replacement of gasoline vehicles in the KSC vehicle fleet. This will help the center to move closer to meeting the Executive Order 13423.

  8. First operation of an extended range grasshopper monochromator on the Aladdin storage ring

    International Nuclear Information System (INIS)

    Brown, F.C.

    1986-01-01

    First operation of a new extended range monochromator on the 1 GeV storage ring Aladdin is described. Curves are given of output flux as a function of photon energy for the 2 m and for the 5 m gratings as measured with an NBS diode. Relatively low background and flux up to 1500 eV is obtained using a 1200 line/mm 5 m holographic grating. Highly reproducible scans were obtained of the transmission of thin films including the carbon K and titanium L edges. This reproducibility and high throughput is in large part due to the small beam size and excellent stability of Aladdin. (orig.)

  9. Sensor Fault Diagnosis Observer for an Electric Vehicle Modeled as a Takagi-Sugeno System

    Directory of Open Access Journals (Sweden)

    S. Gómez-Peñate

    2018-01-01

    Full Text Available A sensor fault diagnosis of an electric vehicle (EV modeled as a Takagi-Sugeno (TS system is proposed. The proposed TS model considers the nonlinearity of the longitudinal velocity of the vehicle and parametric variation induced by the slope of the road; these considerations allow to obtain a mathematical model that represents the vehicle for a wide range of speeds and different terrain conditions. First, a virtual sensor represented by a TS state observer is developed. Sufficient conditions are given by a set of linear matrix inequalities (LMIs that guarantee asymptotic convergence of the TS observer. Second, the work is extended to perform fault detection and isolation based on a generalized observer scheme (GOS. Numerical simulations are presented to show the performance and applicability of the proposed method.

  10. Reliable communication stack for flexible probe vehicle data collection in vehicular ad hoc networks

    DEFF Research Database (Denmark)

    Paulin, Thomas

    Traffic congestions caused by high vehicular densities are an ever increasing problem for both personal and professional transportation, resulting in significant losses each year. While expanding the road infrastructure often offers a short term solution, more intelligent approaches are necessary...... the communication resource a single access point can provide for delay tolerant applications. 2) We improve the information exchange between road-side units and vehicles by identifying communication characteristics of the road-side unit and use them to determine the optimal location at which the information...... exchange should occur. 3) We extend the coverage range of the road-side units through vehicle to vehicle communication by modifying an existing routing algorithm, improving both delivery rate and communication overhead. Applying the proposed methodologies on the collection of probe data provides...

  11. Reliable Multicast MAC Protocol for IEEE 802.11 Wireless LANs with Extended Service Range

    Science.gov (United States)

    Choi, Woo-Yong

    2011-11-01

    In this paper, we propose the efficient reliable multicast MAC protocol by which the AP (Access Point) can transmit reliably its multicast data frames to the recipients in the AP's one-hop or two-hop transmission range. The AP uses the STAs (Stations) that are directly associated with itself as the relays for the data delivery to the remote recipients that cannot be reached directly from itself. Based on the connectivity information among the recipients, the reliable multicast MAC protocol optimizes the number of the RAK (Request for ACK) frame transmissions in a reasonable computational time. Numerical examples show that our proposed MAC protocol significantly enhances the MAC performance compared with the BMMM (Batch Mode Multicast MAC) protocol that is extended to support the recipients that are in the AP's one-hop or two-hop transmission range in IEEE 802.11 wireless LANs.

  12. Fuel consumption of business passenger cars and plug-in vehicles; Praktijkverbruik van zakelijke personenauto's en plug-in voertuigen

    Energy Technology Data Exchange (ETDEWEB)

    Ligterink, N.E.; Smokers, R.T.M.

    2013-05-15

    TNO investigates the use and fuel consumption of private cars since 2008. In this report the results for 2012 are presented. In part 1 the most recent results of statistical analyses of fuel card data, which are used by business-type drivers of passenger cars, are presented. The second part contains the results of an analysis of available fuel consumption data of so-called plug-in hybrid electric vehicles and range-extender electric vehicles that have entered the market in 2012 [Dutch] TNO doet al sinds 2008 onderzoek naar het praktijkverbruik van personenauto's. In dit rapport worden de resultaten over 2012 weergegeven. Het eerste deel presenteert de meest recente resultaten van statistische analyses van tankpasdata van door zakelijke rijders gebruikte personenvoertuigen. Het tweede deel bevat de resultaten van een analyse van beschikbare verbruiksgegevens van zogenoemde 'plug-in hybrides' en 'range-extender' elektrische voertuigen die in 2012 op de markt zijn gekomen.

  13. Error sensitivity analysis in 10-30-day extended range forecasting by using a nonlinear cross-prediction error model

    Science.gov (United States)

    Xia, Zhiye; Xu, Lisheng; Chen, Hongbin; Wang, Yongqian; Liu, Jinbao; Feng, Wenlan

    2017-06-01

    Extended range forecasting of 10-30 days, which lies between medium-term and climate prediction in terms of timescale, plays a significant role in decision-making processes for the prevention and mitigation of disastrous meteorological events. The sensitivity of initial error, model parameter error, and random error in a nonlinear crossprediction error (NCPE) model, and their stability in the prediction validity period in 10-30-day extended range forecasting, are analyzed quantitatively. The associated sensitivity of precipitable water, temperature, and geopotential height during cases of heavy rain and hurricane is also discussed. The results are summarized as follows. First, the initial error and random error interact. When the ratio of random error to initial error is small (10-6-10-2), minor variation in random error cannot significantly change the dynamic features of a chaotic system, and therefore random error has minimal effect on the prediction. When the ratio is in the range of 10-1-2 (i.e., random error dominates), attention should be paid to the random error instead of only the initial error. When the ratio is around 10-2-10-1, both influences must be considered. Their mutual effects may bring considerable uncertainty to extended range forecasting, and de-noising is therefore necessary. Second, in terms of model parameter error, the embedding dimension m should be determined by the factual nonlinear time series. The dynamic features of a chaotic system cannot be depicted because of the incomplete structure of the attractor when m is small. When m is large, prediction indicators can vanish because of the scarcity of phase points in phase space. A method for overcoming the cut-off effect ( m > 4) is proposed. Third, for heavy rains, precipitable water is more sensitive to the prediction validity period than temperature or geopotential height; however, for hurricanes, geopotential height is most sensitive, followed by precipitable water.

  14. Improving the aluminum-air battery system for use in electrical vehicles

    Science.gov (United States)

    Yang, Shaohua

    The objectives of this study include improvement of the efficiency of the aluminum/air battery system and demonstration of its ability for vehicle applications. The aluminum/air battery system can generate enough energy and power for driving ranges and acceleration similar to that of gasoline powered cars. Therefore has the potential to be a power source for electrical vehicles. Aluminum/air battery vehicle life cycle analysis was conducted and compared to that of lead/acid and nickel-metal hydride vehicles. Only the aluminum/air vehicles can be projected to have a travel range comparable to that of internal combustion engine vehicles (ICE). From this analysis, an aluminum/air vehicle is a promising candidate compared to ICE vehicles in terms of travel range, purchase price, fuel cost, and life cycle cost. We have chosen two grades of Al alloys (Al alloy 1350, 99.5% and Al alloy 1199, 99.99%) in our study. Only Al 1199 was studied extensively using Na 2SnO3 as an electrolyte additive. We then varied concentration and temperature, and determined the effects on the parasitic (corrosion) current density and open circuit potential. We also determined cell performance and selectivity curves. To optimize the performance of the cell based on our experiments, the recommended operating conditions are: 3--4 N NaOH, about 55°C, and a current density of 150--300 mA/cm2. We have modeled the cell performance using the equations we developed. The model prediction of cell performance shows good agreement with experimental data. For better cell performance, our model studies suggest use of higher electrolyte flow rate, smaller cell gap, higher conductivity and lower parasitic current density. We have analyzed the secondary current density distributions in a two plane, parallel Al/air cell and a wedge-type Al/air cell. The activity of the cathode has a large effect on the local current density. With increases in the cell gap, the local current density increases, but the increase is

  15. Experimental Autonomous Vehicle Systems

    DEFF Research Database (Denmark)

    Ravn, Ole; Andersen, Nils Axel

    1998-01-01

    The paper describes the requirements for and a prototype configuration of a software architecture for control of an experimental autonomous vehicle. The test bed nature of the system is emphasised in the choice of architecture making re-configurability, data logging and extendability simple...

  16. Prospects for Chinese electric vehicle technologies in 2016–2020: Ambition and rationality

    International Nuclear Information System (INIS)

    Du, Jiuyu; Ouyang, Minggao; Chen, Jingfu

    2017-01-01

    Safety technologies of high energy density traction battery are the most important. • Range extended type plug-in hybrid electric cars are optimal for China. • Dedicated chassis, lightweight and intelligence are essential for battery electric vehicles.

  17. Design method of a power management strategy for variable battery capacities range-extended electric vehicles to improve energy efficiency and cost-effectiveness

    International Nuclear Information System (INIS)

    Du, Jiuyu; Chen, Jingfu; Song, Ziyou; Gao, Mingming; Ouyang, Minggao

    2017-01-01

    Energy management strategy and battery capacity are the primary factors for the energy efficiency of range-extended electric buses (REEBs). To improve the energy efficiency of REEBs developed by Tsinghua University, an optimal design method of global optimization-based strategy is investigated. It is real-time and adaptive to variable traction battery capacities of series REEBs. For simulation, the physical model of REEB and key components are established. The optimal strategy is first extracted by the power split ratio (PSR) from REEB simulation result with dynamic program (DP) algorithm. The power distribution map is obtained by series simulations for variable battery capacity options. The control law for developing optimal strategy are achieved by cluster regression for power distribution data. To verify the effect of the proposed energy management strategy, characteristics of powertrain, energy efficiency, operating cost, and computing time are ultimately analyzed. Simulation results show that the energy efficiency of the global optimization-based strategy presented in this paper is similar to that of the DP strategy. Therefore, the overall energy efficiency can be significantly improved compared with that of the CDCS strategy, and operating costs can be substantially reduced. The feasibility of candidate control strategies is thereby assessed via the employment of variable parameters. - Highlights: • Analysis method of powertrain energy efficiency and power distribution is proposed. • The power distribution rules of strategy with variable battery capacities are achieved. • The parametric method of proposed PSR-RB strategy is presented. • The energy efficiency of powertrain is analysis by flow analysis method. • The energy management strategy is global optimization-based and real-time.

  18. Extended-Search, Bézier Curve-Based Lane Detection and Reconstruction System for an Intelligent Vehicle

    Directory of Open Access Journals (Sweden)

    Xiaoyun Huang

    2015-09-01

    Full Text Available To improve the real-time performance and detection rate of a Lane Detection and Reconstruction (LDR system, an extended-search-based lane detection method and a Bézier curve-based lane reconstruction algorithm are proposed in this paper. The extended-search-based lane detection method is designed to search boundary blocks from the initial position, in an upwards direction and along the lane, with small search areas including continuous search, discontinuous search and bending search in order to detect different lane boundaries. The Bézier curve-based lane reconstruction algorithm is employed to describe a wide range of lane boundary forms with comparatively simple expressions. In addition, two Bézier curves are adopted to reconstruct the lanes' outer boundaries with large curvature variation. The lane detection and reconstruction algorithm — including initial-blocks' determining, extended search, binarization processing and lane boundaries' fitting in different scenarios — is verified in road tests. The results show that this algorithm is robust against different shadows and illumination variations; the average processing time per frame is 13 ms. Significantly, it presents an 88.6% high-detection rate on curved lanes with large or variable curvatures, where the accident rate is higher than that of straight lanes.

  19. Effects of air-sea interaction on extended-range prediction of geopotential height at 500 hPa over the northern extratropical region

    Science.gov (United States)

    Wang, Xujia; Zheng, Zhihai; Feng, Guolin

    2018-04-01

    The contribution of air-sea interaction on the extended-range prediction of geopotential height at 500 hPa in the northern extratropical region has been analyzed with a coupled model form Beijing Climate Center and its atmospheric components. Under the assumption of the perfect model, the extended-range prediction skill was evaluated by anomaly correlation coefficient (ACC), root mean square error (RMSE), and signal-to-noise ratio (SNR). The coupled model has a better prediction skill than its atmospheric model, especially, the air-sea interaction in July made a greater contribution for the improvement of prediction skill than other months. The prediction skill of the extratropical region in the coupled model reaches 16-18 days in all months, while the atmospheric model reaches 10-11 days in January, April, and July and only 7-8 days in October, indicating that the air-sea interaction can extend the prediction skill of the atmospheric model by about 1 week. The errors of both the coupled model and the atmospheric model reach saturation in about 20 days, suggesting that the predictable range is less than 3 weeks.

  20. Responses of conventional and extended-range neutron detectors in mixed radiation fields around a 150-MeV electron LINAC

    International Nuclear Information System (INIS)

    Lin, Yu-Chi; Sheu, Rong-Jiun; Chen, Ang-Yu

    2015-01-01

    This study analyzed the responses of two types of neutron detector in mixed gamma-ray and neutron radiation fields around a 150-MeV electron linear accelerator (LINAC). The detectors were self-assembled, high efficiency, and designed in two configurations: (1) a conventional moderated-type neutron detector based on a large cylindrical He-3 proportional counter; and (2) an extended-range version with an embedded layer of lead in the moderator to increase the detector’s sensitivity to high-energy neutrons. Two sets of the detectors were used to measure neutrons at the downstream and lateral locations simultaneously, where the radiation fields differed considerably in intensities and spectra of gamma rays and neutrons. Analyzing the detector responses through a comparison between calculations and measurements indicated that not only neutrons but also high-energy gamma rays (>5 MeV) triggered the detectors because of photoneutrons produced in the detector materials. In the lateral direction, the contribution of photoneutrons to both detectors was negligible. Downstream of the LINAC, where high-energy photons were abundant, photoneutrons contributed approximately 6% of the response of the conventional neutron detector; however, almost 50% of the registered counts of the extended-range neutron detector were from photoneutrons because of the presence of the detector rather than the effect of the neutron field. Dose readings delivered by extended-range neutron detectors should be interpreted cautiously when used in radiation fields containing a mixture of neutrons and high-energy gamma rays

  1. Influence of driving patterns on life cycle cost and emissions of hybrid and plug-in electric vehicle powertrains

    International Nuclear Information System (INIS)

    Karabasoglu, Orkun; Michalek, Jeremy

    2013-01-01

    We compare the potential of hybrid, extended-range plug-in hybrid, and battery electric vehicles to reduce lifetime cost and life cycle greenhouse gas emissions under various scenarios and simulated driving conditions. We find that driving conditions affect economic and environmental benefits of electrified vehicles substantially: Under the urban NYC driving cycle, hybrid and plug-in vehicles can cut life cycle emissions by 60% and reduce costs up to 20% relative to conventional vehicles (CVs). In contrast, under highway test conditions (HWFET) electrified vehicles offer marginal emissions reductions at higher costs. NYC conditions with frequent stops triple life cycle emissions and increase costs of conventional vehicles by 30%, while aggressive driving (US06) reduces the all-electric range of plug-in vehicles by up to 45% compared to milder test cycles (like HWFET). Vehicle window stickers, fuel economy standards, and life cycle studies using average lab-test vehicle efficiency estimates are therefore incomplete: (1) driver heterogeneity matters, and efforts to encourage adoption of hybrid and plug-in vehicles will have greater impact if targeted to urban drivers vs. highway drivers; and (2) electrified vehicles perform better on some drive cycles than others, so non-representative tests can bias consumer perception and regulation of alternative technologies. We discuss policy implications. - Highlights: • Electrified vehicle life cycle emissions and cost depend on driving conditions. • GHGs can triple in NYC conditions vs. highway (HWFET), cost +30%. • Under NYC conditions hybrid and plug-in vehicles cut GHGs up to 60%, cost 20%. • Under HWFET conditions they offer few GHG reductions at higher costs. • Federal tests for window labels and CAFE standards favor some technologies over others

  2. Stochastic reduced-order model for an automotive vehicle in presence of numerous local elastic modes in the low-frequency range

    OpenAIRE

    Arnoux , A.; Batou , Anas; Soize , Christian; Gagliardini , L.

    2012-01-01

    International audience; This paper is devoted to the construction of a stochastic reduced-order model for dynamical structures having a high modal density in the low-frequency range, such as an automotive vehicle. This type of structure is characterized by the fact that it exhibits, in the low-frequency range, not only the classical global elastic modes but also numerous local elastic modes which cannot easily be separated from the global elastic modes. An approach has recently been proposed ...

  3. Comparison of electric drives for road vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Bader, C; Stephan, W [Deutsche Automobilgesellschaft m.b.H., Esslingen (Germany, F.R.)

    1977-01-01

    The low energy-storage capacity of the electrolytic energy-storage apparatus available at the moment limits the practical use of electric vehicles to meeting the requirements for restricted areas. But in this field of application, conversion from drive with internal combustion engine to electric drive can be considered only if a reduction of costs is achieved with electric drive. From the wide range of possible drive units the most suitable is found to be the dc squirrelcage motor the speed of which is controlled by field weakening. In the case of a motor with conventional design, the controllable drive range is limited to about 1 : 3, so that generally additional measures are required for extending the drive range. But if the motor is fitted with a compensation winding, field weakening to give a controlled speed range of 1 : 8 can be obtained. To evaluate the different drive units under consideration use is made of the acceleration when, according to the drive system, advantages are obtained from the point of view of energy consumption with disadvantages in acceleration time, and vice versa. By using vehicles proven in practice with different drive systems, either with hydrodynamic transducer and battery switchover, or else with changeover gear and mechanical clutch, the overall construction of the different control and protective arrangements are demonstrated. It is then found that the extra cost of regulation in the case of automatic drive operation is partly compensated by the additional protective devices which are required to limit the effects of any incorrect operations with a manually-operated drive.

  4. Cooperative Control of Distributed Autonomous Vehicles in Adversarial Environments

    Science.gov (United States)

    2006-08-14

    COOPERATIVE CONTROL OF DISTRIBUTED AUTONOMOUS VEHICLES IN ADVERSARIAL ENVIRONMENTS Grant #F49620–01–1–0361 Final Report Jeff Shamma Department of...CONTRACT NUMBER F49620-01-1-0361 5b. GRANT NUMBER 4. TITLE AND SUBTITLE COOPERATIVE CONTROL OF DISTRIBUTED AUTONOMOUS VEHICLES IN...single dominant language or a distribution of languages. A relation to multivehicle systems is understanding how highly autonomous vehicles on extended

  5. Extended Range Prediction of Indian Summer Monsoon: Current status

    Science.gov (United States)

    Sahai, A. K.; Abhilash, S.; Borah, N.; Joseph, S.; Chattopadhyay, R.; S, S.; Rajeevan, M.; Mandal, R.; Dey, A.

    2014-12-01

    The main focus of this study is to develop forecast consensus in the extended range prediction (ERP) of monsoon Intraseasonal oscillations using a suit of different variants of Climate Forecast system (CFS) model. In this CFS based Grand MME prediction system (CGMME), the ensemble members are generated by perturbing the initial condition and using different configurations of CFSv2. This is to address the role of different physical mechanisms known to have control on the error growth in the ERP in the 15-20 day time scale. The final formulation of CGMME is based on 21 ensembles of the standalone Global Forecast System (GFS) forced with bias corrected forecasted SST from CFS, 11 low resolution CFST126 and 11 high resolution CFST382. Thus, we develop the multi-model consensus forecast for the ERP of Indian summer monsoon (ISM) using a suite of different variants of CFS model. This coordinated international effort lead towards the development of specific tailor made regional forecast products over Indian region. Skill of deterministic and probabilistic categorical rainfall forecast as well the verification of large-scale low frequency monsoon intraseasonal oscillations has been carried out using hindcast from 2001-2012 during the monsoon season in which all models are initialized at every five days starting from 16May to 28 September. The skill of deterministic forecast from CGMME is better than the best participating single model ensemble configuration (SME). The CGMME approach is believed to quantify the uncertainty in both initial conditions and model formulation. Main improvement is attained in probabilistic forecast which is because of an increase in the ensemble spread, thereby reducing the error due to over-confident ensembles in a single model configuration. For probabilistic forecast, three tercile ranges are determined by ranking method based on the percentage of ensemble members from all the participating models falls in those three categories. CGMME further

  6. Application of an engineering inviscid-boundary layer method to slender three-dimensional vehicle forebodies

    Science.gov (United States)

    Riley, Christopher J.

    1993-01-01

    An engineering inviscid-boundary layer method has been modified for application to slender three-dimensional (3-D) forebodies which are characteristic of transatmospheric vehicles. An improved shock description in the nose region has been added to the inviscid technique which allows the calculation of a wider range of body geometries. The modified engineering method is applied to the perfect gas solution over a slender 3-D configuration at angle of attack. The method predicts surface pressures and laminar heating rates on the windward side of the vehicle that compare favorably with numerical solutions of the thin-layer Navier-Stokes equations. These improvements extend the 3-D capabilities of the engineering method and significantly increase its design applications.

  7. Extended capture range for focus-diverse phase retrieval in segmented aperture systems using geometrical optics.

    Science.gov (United States)

    Jurling, Alden S; Fienup, James R

    2014-03-01

    Extending previous work by Thurman on wavefront sensing for segmented-aperture systems, we developed an algorithm for estimating segment tips and tilts from multiple point spread functions in different defocused planes. We also developed methods for overcoming two common modes for stagnation in nonlinear optimization-based phase retrieval algorithms for segmented systems. We showed that when used together, these methods largely solve the capture range problem in focus-diverse phase retrieval for segmented systems with large tips and tilts. Monte Carlo simulations produced a rate of success better than 98% for the combined approach.

  8. Robust adaptive control for Unmanned Aerial Vehicles

    Science.gov (United States)

    Kahveci, Nazli E.

    The objective of meeting higher endurance requirements remains a challenging task for any type and size of Unmanned Aerial Vehicles (UAVs). According to recent research studies significant energy savings can be realized through utilization of thermal currents. The navigation strategies followed across thermal regions, however, are based on rather intuitive assessments of remote pilots and lack any systematic path planning approaches. Various methods to enhance the autonomy of UAVs in soaring applications are investigated while seeking guarantees for flight performance improvements. The dynamics of the aircraft, small UAVs in particular, are affected by the environmental conditions, whereas unmodeled dynamics possibly become significant during aggressive flight maneuvers. Besides, the demanded control inputs might have a magnitude range beyond the limits dictated by the control surface actuators. The consequences of ignoring these issues can be catastrophic. Supporting this claim NASA Dryden Flight Research Center reports considerable performance degradation and even loss of stability in autonomous soaring flight tests with the subsequent risk of an aircraft crash. The existing control schemes are concluded to suffer from limited performance. Considering the aircraft dynamics and the thermal characteristics we define a vehicle-specific trajectory optimization problem to achieve increased cross-country speed and extended range of flight. In an environment with geographically dispersed set of thermals of possibly limited lifespan, we identify the similarities to the Vehicle Routing Problem (VRP) and provide both exact and approximate guidance algorithms for the navigation of automated UAVs. An additional stochastic approach is used to quantify the performance losses due to incorrect thermal data while dealing with random gust disturbances and onboard sensor measurement inaccuracies. One of the main contributions of this research is a novel adaptive control design with

  9. At A Glance: Electric-Drive Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    2016-07-01

    Electric-drive vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. With the range of styles and options available, there is likely one to meet your needs. The vehicles can be divided into three categories: 1) Hybrid electric vehicles (HEVs), 2) Plug-in hybrid electric vehicles (PHEVs), and 3) All-electric vehicles (EVs).

  10. At A Glance: Electric-Drive Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-07-13

    Electric-drive vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. With the range of styles and options available, there is likely one to meet your needs. The vehicles can be divided into three categories: 1) Hybrid electric vehicles (HEVs), 2) Plug-in hybrid electric vehicles (PHEVs), and 3) All-electric vehicles (EVs).

  11. Development and validation of a 5 stroke engine for range extenders application

    International Nuclear Information System (INIS)

    Kéromnès, A.; Delaporte, B.; Schmitz, G.; Le Moyne, L.

    2014-01-01

    Highlights: • We have designed and built an innovative five stroke internal combustion engine. • The design includes an innovative exhaust gas management system, the smart waste gate. • The turbocharged port-injection spark ignition engine has a fuel conversion efficiency of 36%. - Abstract: A 5-stroke turbo-charged port-injection spark-ignition engine has been developed in the present study for use as a range extender or series-hybrid main power source. The development and the design of the engine are based on 0D/1D model and experimental results have been compared with the engine model. The 5-stroke engine is a three-cylinder in which two cylinders perform a four-stroke cycle and alternatively a second expansion of the burnt gases is performed in the third cylinder. The boost pressure delivered by the turbocharger is controlled by a particular innovative system called “smart wastegate”, different from a conventional wastegate, consisting in a variable valve timing of the two exhaust valves of the low pressure cylinder. The engine develops up to 40 kW for a speed range of 3500–4500 rpm. BSFC is 226 g/kW.h which corresponds to a fuel conversion efficiency of 36.1%. This efficiency can be achieved for an engine speed of 4000 rpm and a brake power of 32.5 kW, which are notable scores for an MPI two-valve per cylinder engine. Expected optimum should be below 217 g/kW.h BSFC and over 90 N.m torque. The engine has been tested over a wide range of conditions; model predictions and experimental results are compared and combustion efficiency increase discussed

  12. Design and Testing of a Thermal Storage System for Electric Vehicle Cabin Heating

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Mingyu [MAHLE Behr Troy Inc.; WolfeIV, Edward [MAHLE Behr Troy Inc.; Craig, Timothy [MAHLE Behr Troy Inc.; LaClair, Tim J [ORNL; Gao, Zhiming [ORNL; Abdelaziz, Omar [ORNL

    2016-01-01

    Without the waste heat available from the engine of a conventional automobile, electric vehicles (EVs) must provide heat to the cabin for climate control using energy stored in the vehicle. In current EV designs, this energy is typically provided by the traction battery. In very cold climatic conditions, the power required to heat the EV cabin can be of a similar magnitude to that required for propulsion of the vehicle. As a result, the driving range of an EV can be reduced very significantly during winter months, which limits consumer acceptance of EVs and results in increased battery costs to achieve a minimum range while ensuring comfort to the EV driver. To minimize the range penalty associated with EV cabin heating, a novel climate control system that includes thermal energy storage has been designed for use in EVs and plug-in hybrid electric vehicles (PHEVs). The system uses the stored latent heat of an advanced phase change material (PCM) to provide cabin heating. The PCM is melted while the EV is connected to the electric grid for charging of the electric battery, and the stored energy is subsequently transferred to the cabin during driving. To minimize thermal losses when the EV is parked for extended periods, the PCM is encased in a high performance insulation system. The electrical PCM-Assisted Thermal Heating System (ePATHS) was designed to provide enough thermal energy to heat the EV s cabin for approximately 46 minutes, covering the entire daily commute of a typical driver in the U.S.

  13. Visual performance after bilateral implantation of 2 new presbyopia-correcting intraocular lenses: Trifocal versus extended range of vision.

    Science.gov (United States)

    Monaco, Gaspare; Gari, Mariangela; Di Censo, Fabio; Poscia, Andrea; Ruggi, Giada; Scialdone, Antonio

    2017-06-01

    To compare the visual outcomes and quality of vision of 2 new diffractive multifocal intraocular lenses (IOLs) with those of a monofocal IOL. Fatebenefratelli e Oftalmico Hospital, Milan, Italy. Prospective case series. Patients had bilateral cataract surgery with implantation of a trifocal IOL (Panoptix), an extended-range-of-vision IOL (Symfony), or a monofocal IOL (SN60WF). Postoperative examinations included assessing distance, intermediate, and near visual acuity; binocular defocus; intraocular and total aberrations; point-spread function (PSF); modulation transfer function (MTF); retinal straylight; and quality-of-vision (QoV) and spectacle-dependence questionnaires. Seventy-six patients (152 eyes) were assessed for study eligibility. Twenty patients (40 eyes) in each arm of the study (60 patients, 120 eyes) completed the outcome assessment. At the 4-month follow-up, the trifocal group had significantly better near visual acuity than the extended-range-of-vision group (P = .005). The defocus curve showed the trifocal IOL had better intermediate/near performance than the extended-range-of-vision IOL and both multifocal IOLs performed better than the monofocal IOL. Intragroup comparison of the total higher-order aberrations, PSF, MTF, and retinal straylight were not statistically different. The QoV questionnaire results showed no differences in dysphotopsia between the multifocal IOL groups; however, the results were significantly higher than in the monofocal IOL group. Both multifocal IOLs seemed to be good options for patients with intermediate-vision requirements, whereas the trifocal IOL might be better for patients with near-vision requirements. The significant perception of visual side effects indicates that patients still must be counseled about these effects before a multifocal IOL is implanted. Copyright © 2017 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  14. Standardization of radiation protection measurements in mixed fields of an extended energy range

    International Nuclear Information System (INIS)

    Hoefert, M.; Stevenson, G.R.

    1977-01-01

    The improved ICRU concept of dose equivalent index aims at standardizing both area and personnel dose measurements so that the results on the dosimetry of external irradiations in radiation protection become compatible. It seems that for photon and neutron energies up to 3 and 20 MeV respectively the realization of dose-equivalent index is straightforward, but the inclusion of higher energies and/or other types of radiation will lead both to conceptual and practical difficulties. It will be shown that practical measurements in mixed radiation fields of an extended energy range for protection purposes will overestimate the standardized quantity. While area measurements can be performed to represent a good approximation, greater uncertainties have to be accepted in personnel dosimetry for stray radiation fields around GeV proton accelerators

  15. Vehicle test report: Battronic pickup truck

    Science.gov (United States)

    Price, T. W.; Shain, T. W.; Freeman, R. J.; Pompa, M. F.

    1982-01-01

    An electric pickup truck was tested to characterize certain parameters and to provide baseline data that can be used for the comparison of improved batteries that may be incorporated into the vehicle at a later time. The vehicle tests were concentrated on the electrical drive subsystem; i.e., the batteries, controller, and motor. The tests included coastdowns to characterize the road load and range evaluations for both cyclic and constant speed conditions. A qualitative evaluation of the vehicle's performance was made by comparing its constant speed range performance with other vehicles.

  16. Developing traction control strategy for a plug-in hybrid electric vehicle using innovative optimization based approaches

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, L.; Gu, J.; Dong, Z. [Victoria Univ., BC (Canada). Dept. of Mechanical Engineering

    2010-07-01

    This paper described a traction control system designed for hybrid vehicles with multiple power plants and drive axles. Model-based design tools were used to develop the traction control system and plug-in hybrid vehicle models. Optimization studies were conducted in a finite number of operating states in order to maximize the electrical and mechanical energy conversion efficiency of an extended range electric vehicle. Four global optimization algorithms were then evaluated in relation to their CPU times. The studied algorithms included a genetic algorithm (GA), a particle swarm optimization (PSO) algorithm, a hybrid adaptive metamodel optimization (HAM) and space elimination and unimodal region reduction (SEUMRE) algorithm. A comparative evaluation of the algorithms demonstrated that the PSO algorithm obtained optimal results, while the HAM algorithm used significantly less computational time. Results of the optimization studies were then implemented in a controller model. Results of the study showed that the energy efficiency of the vehicle improved using the developed controller model. 4 refs., 2 tabs., 8 figs.

  17. TLD personnel monitoring dose estimation- extending the upper limit of the dose range

    International Nuclear Information System (INIS)

    Popli, K.L.; Sathian, Deepa; Divakaran, T.; Massand, O.P.

    2001-01-01

    TLD personnel monitoring was introduced in the year 1975 in India and at present nearly 41,000 radiation workers are being monitored by 13 monitoring laboratories all over India. The BARC- TLD being used for personnel monitoring is based on CaSO 4 :Dy embedded in PTFE and semi-automatic TL reader using hot N 2 Gas for heating the dosimeters. This reader has the range to measure γ dose from ten μSv to 3 μSv and x-ray dose form 1 μ Sv to 0.3 Sv due to the higher sensitivity of CaSO 4 : Dy to lower energy photons (20keV-50 keV) generated by diagnostic x-ray units. The x-ray radiation workers are at present nearly 35% of the total radiation workers monitored and this number is expected to grow as more and more number of x-ray workers are covered under this service. The upper limit of the x-ray dose range of the instrument is 0.3 Sv, whereas in the past one year it has been observed that at least 25% of the total overexposures reported in case of x-ray workers have recorded the dose more than 0.3 Sv. This paper presents the technique developed to extend the upper limit of the range from 0.3 Sv to 1 Sv for x-rays and 10 Sv for γ rays

  18. Quasi steady-state aerodynamic model development for race vehicle simulations

    Science.gov (United States)

    Mohrfeld-Halterman, J. A.; Uddin, M.

    2016-01-01

    Presented in this paper is a procedure to develop a high fidelity quasi steady-state aerodynamic model for use in race car vehicle dynamic simulations. Developed to fit quasi steady-state wind tunnel data, the aerodynamic model is regressed against three independent variables: front ground clearance, rear ride height, and yaw angle. An initial dual range model is presented and then further refined to reduce the model complexity while maintaining a high level of predictive accuracy. The model complexity reduction decreases the required amount of wind tunnel data thereby reducing wind tunnel testing time and cost. The quasi steady-state aerodynamic model for the pitch moment degree of freedom is systematically developed in this paper. This same procedure can be extended to the other five aerodynamic degrees of freedom to develop a complete six degree of freedom quasi steady-state aerodynamic model for any vehicle.

  19. An extended range soft X-ray beam line for the 1 GeV storage ring Aladdin

    International Nuclear Information System (INIS)

    Hulbert, S.L.; Stott, J.P.; Brown, F.C.

    1983-01-01

    The design and implementation of a soft X-ray beam line on the new 1 GeV storage ring Aladdin in Stoughton, Wisconsin is discussed. The beam line consists of a long horizontally focussing collection mirror, an extended range (50-1500 eV) grasshopper monochromator, an ellipsoidal refocussing mirror, and a photoemission chamber. Also discussed are the factors considered in matching the monochromator to the storage ring, flux and performance expectations, and the results of a ray tracing analysis. (orig.)

  20. Enabling fast charging - Vehicle considerations

    Science.gov (United States)

    Meintz, Andrew; Zhang, Jiucai; Vijayagopal, Ram; Kreutzer, Cory; Ahmed, Shabbir; Bloom, Ira; Burnham, Andrew; Carlson, Richard B.; Dias, Fernando; Dufek, Eric J.; Francfort, James; Hardy, Keith; Jansen, Andrew N.; Keyser, Matthew; Markel, Anthony; Michelbacher, Christopher; Mohanpurkar, Manish; Pesaran, Ahmad; Scoffield, Don; Shirk, Matthew; Stephens, Thomas; Tanim, Tanvir

    2017-11-01

    To achieve a successful increase in the plug-in battery electric vehicle (BEV) market, it is anticipated that a significant improvement in battery performance is required to increase the range that BEVs can travel and the rate at which they can be recharged. While the range that BEVs can travel on a single recharge is improving, the recharge rate is still much slower than the refueling rate of conventional internal combustion engine vehicles. To achieve comparable recharge times, we explore the vehicle considerations of charge rates of at least 400 kW. Faster recharge is expected to significantly mitigate the perceived deficiencies for long-distance transportation, to provide alternative charging in densely populated areas where overnight charging at home may not be possible, and to reduce range anxiety for travel within a city when unplanned charging may be required. This substantial increase in charging rate is expected to create technical issues in the design of the battery system and the vehicle's electrical architecture that must be resolved. This work focuses on vehicle system design and total recharge time to meet the goals of implementing improved charge rates and the impacts of these expected increases on system voltage and vehicle components.

  1. Investigations on the minimization of climatic impacts on the range of electric-powered vehicles; Untersuchungen zur Minimierung der Klimaeinfluesse auf die Reichweite von Elektrofahrzeugen

    Energy Technology Data Exchange (ETDEWEB)

    Rauh, Hubert; Hofmann, Maximilian; Maerz, Martin [Fraunhofer Institut fuer Integrierte Systeme und Bauelementetechnologie, Erlangen (Germany)

    2012-11-01

    Efficient drives and power electronics are key components for the realisation of drive trains in electric vehicles. A low energy density of the battery and little thermal loss in the electric drive train - in comparison with a combustion engine - requires efforts to acclimatise the vehicle in a way which minimises its impact on the vehicle's cruising range. Using equivalent thermal networks, Fraunhofer IISB thus develops simulation tools of passenger compartment, components of the acclimatisation system and the electric drive train. With these tools the heat flow in the passenger compartment as well as in the components of the electric drive train can be calculated. Furthermore, it is possible to compare different acclimatisation strategies as well as different topologies of the acclimatisation system. To minimize the electrical energy consumption of acclimatisation, the thermal energy needed in this process is provided by a heat pump. By preconditioning cabin, cooling circuit and drive train components while charging the battery, the energy consumption at the beginning of a drive can be further reduced, whereby the maximal cruising range at different ambient temperatures increases. (orig.)

  2. Kalman and particle filtering methods for full vehicle and tyre identification

    Science.gov (United States)

    Bogdanski, Karol; Best, Matthew C.

    2018-05-01

    This paper considers identification of all significant vehicle handling dynamics of a test vehicle, including identification of a combined-slip tyre model, using only those sensors currently available on most vehicle controller area network buses. Using an appropriately simple but efficient model structure, all of the independent parameters are found from test vehicle data, with the resulting model accuracy demonstrated on independent validation data. The paper extends previous work on augmented Kalman Filter state estimators to concentrate wholly on parameter identification. It also serves as a review of three alternative filtering methods; identifying forms of the unscented Kalman filter, extended Kalman filter and particle filter are proposed and compared for effectiveness, complexity and computational efficiency. All three filters are suited to applications of system identification and the Kalman Filters can also operate in real-time in on-line model predictive controllers or estimators.

  3. Evaluation of high temperature structural adhesives for extended service

    Science.gov (United States)

    Hendricks, C. L.; Hill, S. G.

    1984-01-01

    High temperature stable adhesive systems were evaluated for potential Supersonic Cruise Research (SCR) vehicle applications. The program was divided into two major phases: Phase I 'Adhesive Screening' evaluated eleven selected polyimide (PI) and polyphenylquinoxaline (PPQ) adhesive resins using eight different titanium (6Al-4V) adherend surface preparations; Phase II 'Adhesive Optimization and Characterization' extensively evaluated two adhesive systems, selected from Phase I studies, for chemical characterization and environmental durability. The adhesive systems which exhibited superior thermal and environmental bond properties were LARC-TPI polyimide and polyphenylquinoxaline both developed at NASA Langley. The latter adhesive system did develop bond failures at extended thermal aging due primarily to incompatibility between the surface preparation and the polymer. However, this study did demonstrate that suitable adhesive systems are available for extended supersonic cruise vehicle design applications.

  4. New Electro-Thermal Battery Pack Model of an Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Muhammed Alhanouti

    2016-07-01

    Full Text Available Since the evolution of the electric and hybrid vehicle, the analysis of batteries’ characteristics and influence on driving range has become essential. This fact advocates the necessity of accurate simulation modeling for batteries. Different models for the Li-ion battery cell are reviewed in this paper and a group of the highly dynamic models is selected for comparison. A new open circuit voltage (OCV model is proposed. The new model can simulate the OCV curves of lithium iron magnesium phosphate (LiFeMgPO4 battery type at different temperatures. It also considers both charging and discharging cases. The most remarkable features from different models, in addition to the proposed OCV model, are integrated in a single hybrid electrical model. A lumped thermal model is implemented to simulate the temperature development in the battery cell. The synthesized electro-thermal battery cell model is extended to model a battery pack of an actual electric vehicle. Experimental tests on the battery, as well as drive tests on the vehicle are performed. The proposed model demonstrates a higher modeling accuracy, for the battery pack voltage, than the constituent models under extreme maneuver drive tests.

  5. Plug-In Hybrid Electric Vehicle Basics | NREL

    Science.gov (United States)

    Plug-In Hybrid Electric Vehicle Basics Plug-In Hybrid Electric Vehicle Basics Imagine being able to one that's in a standard hybrid electric vehicle. The larger battery pack allows plug-in hybrids to between fill-ups) that's very similar to the range of a conventional vehicle. A plug-in hybrid vehicle's

  6. Test and evaluation of Chrysler T115 electric vehicle

    Energy Technology Data Exchange (ETDEWEB)

    1987-03-01

    Three Chrysler T115 mini vans were converted to electric drive in the spring of 1984 and tested in test track, chassis dynamometer, and urban road settings. Vehicle dc energy consumption and driving range were measured on the Society of Automotive Engineers J227a C schedule driving cycle, and at constant speed at the Blainville, Quebec test track. Other tests measured top speed, maximum acceleration, hill climbing, and braking performance of the vehicle. The vehicle's performance achieved the expected results. Net energy consumption, when compared to gasoline powered vehicles, was very favourable. The test program showed that the vehicle electrics and drive system are reliable. However, the acceleration and maximum speed were limited by the voltage output of the lead acid battery. The performance of the vehicle was not adversely affected by wide range as in ambient temperature, due to the thermal management battery system in the vehicle. The range of the vehicle was limited to 80 km due to the power output of the lead acid battery. When tested with the prototype sodium sulphur battery the range exceeded 200 km. With this range, market acceptance of this vehicle will be significantly enhanced. The overall vehicle efficiency of the T115 electric van was calculated to be 58%. This compared very favourably to the gasoline-powered vehicle which has an efficiency of approximately 17%. Results of this program confirmed the fact that until suitable advanced batteries are available, commercial applications of electric vehicles will be limited. 8 refs., 18 figs., 20 tabs.

  7. Vehicle brake testing system

    Science.gov (United States)

    Stevens, Samuel S [Harriman, TN; Hodgson, Jeffrey W [Lenoir City, TN

    2002-11-19

    This invention relates to a force measuring system capable of measuring forces associated with vehicle braking and of evaluating braking performance. The disclosure concerns an invention which comprises a first row of linearly aligned plates, a force bearing surface extending beneath and beside the plates, vertically oriented links and horizontally oriented links connecting each plate to a force bearing surface, a force measuring device in each link, a transducer coupled to each force measuring device, and a computing device coupled to receive an output signal from the transducer indicative of measured force in each force measuring device. The present invention may be used for testing vehicle brake systems.

  8. Extending the accredited low flow liquid calibration range

    NARCIS (Netherlands)

    Platenkamp, Tom; Lötters, Joost Conrad

    2017-01-01

    There is an increasing demand for ISO/IEC 17025:2005 accredited liquid flow calibrations in the range of 1 g/h to 30 kg/h. The accredited Low Flow liquid Calibration Setup [1] (LFCS) at Bronkhorst® covers a flow range of 1 to 200 g/h, leaving a traceability gap in the flow range of 0.2 to 30 kg/h.

  9. Optimal design of a vehicle magnetorheological damper considering the damping force and dynamic range

    International Nuclear Information System (INIS)

    Nguyen, Quoc-Hung; Choi, Seung-Bok

    2009-01-01

    This paper presents an optimal design of a passenger vehicle magnetorheological (MR) damper based on finite element analysis. The MR damper is constrained in a specific volume and the optimization problem identifies the geometric dimensions of the damper that minimize an objective function. The objective function consists of the damping force, the dynamic range, and the inductive time constant of the damper. After describing the configuration of the MR damper, the damping force and dynamic range are obtained on the basis of the Bingham model of an MR fluid. Then, the control energy (power consumption of the damper coil) and the inductive time constant are derived. The objective function for the optimization problem is determined based on the solution of the magnetic circuit of the initial damper. Subsequently, the optimization procedure, using a golden-section algorithm and a local quadratic fitting technique, is constructed via commercial finite element method parametric design language. Using the developed optimization tool, optimal solutions of the MR damper, which are constrained in a specific cylindrical volume defined by its radius and height, are determined and a comparative work on damping force and inductive time constant between the initial and optimal design is undertaken

  10. Temporal Variability of Upper-level Winds at the Eastern Range, Western Range and Wallops Flight Facility

    Science.gov (United States)

    Decker, Ryan; Barbre, Robert E.

    2014-01-01

    Space launch vehicles incorporate upper-level wind profiles to determine wind effects on the vehicle and for a commit to launch decision. These assessments incorporate wind profiles measured hours prior to launch and may not represent the actual wind the vehicle will fly through. Uncertainty in the upper-level winds over the time period between the assessment and launch can be mitigated by a statistical analysis of wind change over time periods of interest using historical data from the launch range. Five sets of temporal wind pairs at various times (.75, 1.5, 2, 3 and 4-hrs) at the Eastern Range, Western Range and Wallops Flight Facility were developed for use in upper-level wind assessments. Database development procedures as well as statistical analysis of temporal wind variability at each launch range will be presented.

  11. Customer loads of two-wheeled vehicles

    Science.gov (United States)

    Gorges, C.; Öztürk, K.; Liebich, R.

    2017-12-01

    Customer usage profiles are the most unknown influences in vehicle design targets and they play an important role in durability analysis. This publication presents a customer load acquisition system for two-wheeled vehicles that utilises the vehicle's onboard signals. A road slope estimator was developed to reveal the unknown slope resistance force with the help of a linear Kalman filter. Furthermore, an automated mass estimator was developed to consider the correct vehicle loading. The mass estimation is performed by an extended Kalman filter. Finally, a model-based wheel force calculation was derived, which is based on the superposition of forces calculated from measured onboard signals. The calculated wheel forces were validated by measurements with wheel-load transducers through the comparison of rainflow matrices. The calculated wheel forces correspond with the measured wheel forces in terms of both quality and quantity. The proposed methods can be used to gather field data for improved vehicle design loads.

  12. Automobile development in the tension of the polarised range of products encompassing the small car and luxury vehicles; Automobilentwicklung im Spannungsfeld zwischen Klein- und Luxusfahrzeugen

    Energy Technology Data Exchange (ETDEWEB)

    Kruschwitz, R. [Volkswagen AG, Wolfsburg (Germany)

    2000-07-01

    Changes in society and the customer's wish for exclusiveness has resulted in a fragmentation of the market into more and more segments. In order to be able to fulfil each customer's individual product requirements, and thus strengthen brand loyalty and customer ties, car makers are becoming full-range suppliers. For this reason, VOLKSWAGEN has developed the multi-brand strategy and upwardly extended its product portfolio. This strategy is implemented on the basis of a worldwide module strategy with its roots in the platform strategy. This strategy allows for the exploitation of considerable economies of sale and synergies in the product development process. This strategy and the considerable range of products - from the smallest of cars to luxury vehicles - has generated tension which must be taken account of in the product development process. (orig.) [German] Durch den gesellschaftlichen Wandel und den individuellen Kundenwunsch sich vom Umfeld abzuheben, fragmentiert sich der Markt in immer mehr Segmente. Um jedem Kunden sein individuellen Produktwunsch zu erfuellen und damit die Markenloyalitaet und Kundenbindung zu verstaerken, entwickeln sich die Fahrzeughersteller zum Full-Range-Anbieter. VOLKSWAGEN hat deshalb die Mehrmarkenstrategie entwickelt und sein Produktportfolio nach oben erweitert. Umgesetzt wird diese Strategie auf Basis einer weltweit eingefuehrten Modulstrategie, die mit der Plattformstrategie ihren Anfang nahm. Mit dieser Strategie koennen ganz erhebliche Scale- und Synergie-Effekte im Produktentstehungsprozess erreicht werden. Diese Strategie und die erhebliche Produktspreizung vom Kleinst- bis zum Luxuswagen laesst ein Spannungsfeld im Produktentstehungsprozess entstehen, dem Rechnung getragen werden muss. (orig.)

  13. Vehicle health management for guidance, navigation and control systems

    Science.gov (United States)

    Radke, Kathleen; Frazzini, Ron; Bursch, Paul; Wald, Jerry; Brown, Don

    1993-01-01

    The objective of the program was to architect a vehicle health management (VHM) system for space systems avionics that assures system readiness for launch vehicles and for space-based dormant vehicles. The platforms which were studied and considered for application of VHM for guidance, navigation and control (GN&C) included the Advanced Manned Launch System (AMLS), the Horizontal Landing-20/Personnel Launch System (HL-20/PLS), the Assured Crew Return Vehicle (ACRV) and the Extended Duration Orbiter (EDO). This set was selected because dormancy and/or availability requirements are driving the designs of these future systems.

  14. Updraft Model for Development of Autonomous Soaring Uninhabited Air Vehicles

    Science.gov (United States)

    Allen, Michael J.

    2006-01-01

    Large birds and glider pilots commonly use updrafts caused by convection in the lower atmosphere to extend flight duration, increase cross-country speed, improve range, or simply to conserve energy. Uninhabited air vehicles may also have the ability to exploit updrafts to improve performance. An updraft model was developed at NASA Dryden Flight Research Center (Edwards, California) to investigate the use of convective lift for uninhabited air vehicles in desert regions. Balloon and surface measurements obtained at the National Oceanic and Atmospheric Administration Surface Radiation station (Desert Rock, Nevada) enabled the model development. The data were used to create a statistical representation of the convective velocity scale, w*, and the convective mixing-layer thickness, zi. These parameters were then used to determine updraft size, vertical velocity profile, spacing, and maximum height. This paper gives a complete description of the updraft model and its derivation. Computer code for running the model is also given in conjunction with a check case for model verification.

  15. The importance of grid integration for achievable greenhouse gas emissions reductions from alternative vehicle technologies

    International Nuclear Information System (INIS)

    Tarroja, Brian; Shaffer, Brendan; Samuelsen, Scott

    2015-01-01

    Alternative vehicles must appropriately interface with the electric grid and renewable generation to contribute to decarbonization. This study investigates the impact of infrastructure configurations and management strategies on the vehicle–grid interface and vehicle greenhouse gas reduction potential with regard to California's Executive Order S-21-09 goal. Considered are battery electric vehicles, gasoline-fueled plug-in hybrid electric vehicles, hydrogen-fueled fuel cell vehicles, and plug-in hybrid fuel cell vehicles. Temporally resolved models of the electric grid, electric vehicle charging, hydrogen infrastructure, and vehicle powertrain simulations are integrated. For plug-in vehicles, consumer travel patterns can limit the greenhouse gas reductions without smart charging or energy storage. For fuel cell vehicles, the fuel production mix must be optimized for minimal greenhouse gas emissions. The plug-in hybrid fuel cell vehicle has the largest potential for emissions reduction due to smaller battery and fuel cells keeping efficiencies higher and meeting 86% of miles on electric travel keeping the hydrogen demand low. Energy storage is required to meet Executive Order S-21-09 goals in all cases. Meeting the goal requires renewable capacities of 205 GW for plug-in hybrid fuel cell vehicles and battery electric vehicle 100s, 255 GW for battery electric vehicle 200s, and 325 GW for fuel cell vehicles. - Highlights: • Consumer travel patterns limit greenhouse gas reductions with immediate charging. • Smart charging or energy storage are required for large greenhouse gas reductions. • Fuel cells as a plug-in vehicle range extender provided the most greenhouse gas reductions. • Energy storage is required to meet greenhouse gas goals regardless of vehicle type. • Smart charging reduces the required energy storage size for a given greenhouse gas goal

  16. Vehicle to Grid regulation services of electric delivery trucks: Economic and environmental benefit analysis

    International Nuclear Information System (INIS)

    Zhao, Yang; Noori, Mehdi; Tatari, Omer

    2016-01-01

    Highlights: • Potential net present revenues of electric truck based V2G regulation services are investigated. • GHG emission mitigation of V2G regulation services provided by electric trucks are quantified. • The total cost of ownership and the life-cycle GHG emissions of electric trucks are also analyzed. • V2G regulation services for electric trucks could yield considerable revenues and GHG emission savings. - Abstract: Concerns regarding the fuel costs and climate change impacts associated with petroleum combustion are among the main driving factors for the adoption of electric vehicles. Future commercial delivery truck fleets may include Battery Electric Vehicles (BEVs) and Extended Range Electric Vehicles (EREVs); in addition to savings on fuel and maintenance costs, the introduction of these grid accessible electric vehicles will also provide fleet owners with possible Vehicle to Grid (V2G) opportunities. This study investigates the potential net present revenues and greenhouse gas (GHG) emission mitigation of V2G regulation services provided by electric trucks in a typical fleet. The total cost of ownership and the life-cycle GHG emissions of electric trucks are also analyzed and compared to those of traditional diesel trucks. To account for uncertainties, possible ranges for key parameters are considered instead of only considering fixed single data values for each parameter. The results of this research indicate that providing V2G regulation services for electric trucks could yield considerable additional revenues ($20,000–50,000) and significant GHG emission savings (approximately 300 ton CO_2) compared to conventional diesel trucks.

  17. Structural partitioning of complex structures in the medium-frequency range. An application to an automotive vehicle

    Science.gov (United States)

    Kassem, M.; Soize, C.; Gagliardini, L.

    2011-02-01

    In a recent work [ Journal of Sound and Vibration 323 (2009) 849-863] the authors presented an energy-density field approach for the vibroacoustic analysis of complex structures in the low and medium frequency ranges. In this approach, a local vibroacoustic energy model as well as a simplification of this model were constructed. In this paper, firstly an extension of the previous theory is performed in order to include the case of general input forces and secondly, a structural partitioning methodology is presented along with a set of tools used for the construction of a partitioning. Finally, an application is presented for an automotive vehicle.

  18. Dem Generation from Close-Range Photogrammetry Using Extended Python Photogrammetry Toolbox

    Science.gov (United States)

    Belmonte, A. A.; Biong, M. M. P.; Macatulad, E. G.

    2017-10-01

    Digital elevation models (DEMs) are widely used raster data for different applications concerning terrain, such as for flood modelling, viewshed analysis, mining, land development, engineering design projects, to name a few. DEMs can be obtained through various methods, including topographic survey, LiDAR or photogrammetry, and internet sources. Terrestrial close-range photogrammetry is one of the alternative methods to produce DEMs through the processing of images using photogrammetry software. There are already powerful photogrammetry software that are commercially-available and can produce high-accuracy DEMs. However, this entails corresponding cost. Although, some of these software have free or demo trials, these trials have limits in their usable features and usage time. One alternative is the use of free and open-source software (FOSS), such as the Python Photogrammetry Toolbox (PPT), which provides an interface for performing photogrammetric processes implemented through python script. For relatively small areas such as in mining or construction excavation, a relatively inexpensive, fast and accurate method would be advantageous. In this study, PPT was used to generate 3D point cloud data from images of an open pit excavation. The PPT was extended to add an algorithm converting the generated point cloud data into a usable DEM.

  19. Short-Range Prediction of the Zone of Moving Vehicles in Arterial Networks

    Directory of Open Access Journals (Sweden)

    Rouzbeh Forouzandeh Jonaghani

    2018-01-01

    Full Text Available In many moving object databases, future locations of vehicles in arterial networks are predicted. While most of studies apply the frequent behavior of historical trajectories or vehicles’ recent kinematics as the basis of predictions, consideration of the dynamics of the intersections is mostly neglected. Signalized intersections make vehicles experience different delays, which vary from zero to some minutes based on the traffic state at intersections. In the absence of traffic signal information (red and green times of traffic signal phases, the queue lengths, approaching traffic volume, turning volumes to each intersection leg, etc., the experienced delays in traffic signals are random variables. In this paper, we model the probability distribution function (PDF and cumulative distribution function (CDF of the delay for any point in the arterial networks based on a spatiotemporal model of the queue at the intersection. The probability of the presence of a vehicle in a zone is determined based on the modeled probability function of the delay. A comparison between the results of the proposed method and a well-known kinematic-based method indicates a significant improvement in the precisions of the predictions.

  20. Usability Analysis of Collision Avoidance System in Vehicle-to-Vehicle Communication Environment

    Directory of Open Access Journals (Sweden)

    Hong Cho

    2014-01-01

    Full Text Available Conventional intelligent vehicles have performance limitations owing to the short road and obstacle detection range of the installed sensors. In this study, to overcome this limitation, we tested the usability of a new conceptual autonomous emergency braking (AEB system that employs vehicle-to-vehicle (V2V communication technology in the existing AEB system. To this end, a radar sensor and a driving and communication environment constituting the AEB system were simulated; the simulation was then linked by applying vehicle dynamics and control logic. The simulation results show that the collision avoidance relaxation rate of V2V communication-based AEB system was reduced compared with that of existing vehicle-mounted-sensor-based system. Thus, a method that can lower the collision risk of the existing AEB system, which uses only a sensor cluster installed on the vehicle, is realized.

  1. A hybrid life cycle assessment of the vehicle-to-grid application in light duty commercial fleet

    International Nuclear Information System (INIS)

    Zhao, Yang; Tatari, Omer

    2015-01-01

    The vehicle-to-grid system is an approach utilizing the idle battery capacity of electric vehicles while they are parked to provide supplementary energy to the power grid. As electrification continues in light duty vehicle fleets, the application of vehicle-to-grid systems for commercial delivery truck fleets can provide extra revenue for fleet owners, and also has significant potential for reducing greenhouse gas emissions from the electricity generation sector. In this study, an economic input–output based hybrid life cycle assessment is conducted to analyze the potential greenhouse gas emissions emission savings from the use of the vehicle-to-grid system, as well as the possible emission impacts caused by battery degradation. A Monte Carlo simulation was performed to address the uncertainties that lie in the electricity exchange amount of the vehicle-to-grid service as well as the battery life of the electric vehicles. The results of this study showed that extended range electric vehicles and battery electric vehicles are both viable regulation service providers for saving greenhouse gas emissions from electricity generation if the battery wear-out from regulation services is assumed to be minimal, but the vehicle-to-grid system becomes less attractive at higher battery degradation levels. - Highlights: • The commercial delivery trucks are studied as vehicle-to-grid service providers. • Hybrid life cycle assessment is conducted to evaluate emission mitigation. • Battery degradation level and corresponding emissions and cost are evaluated. • Vehicle-to-grid service is shown to have significant emission saving effect.

  2. Cooperative sentry vehicles and differential GPS leapfrog

    Energy Technology Data Exchange (ETDEWEB)

    FEDDEMA,JOHN T.; LEWIS,CHRISTOPHER L.; LAFARGE,ROBERT A.

    2000-06-07

    As part of a project for the Defense Advanced Research Projects Agency, Sandia National Laboratories Intelligent Systems and Robotics Center is developing and testing the feasibility of using a cooperative team of robotic sentry vehicles to guard a perimeter, perform a surround task, and travel extended distances. This paper describes the authors most recent activities. In particular, this paper highlights the development of a Differential Global Positioning System (DGPS) leapfrog capability that allows two or more vehicles to alternate sending DGPS corrections. Using this leapfrog technique, this paper shows that a group of autonomous vehicles can travel 22.68 kilometers with a root mean square positioning error of only 5 meters.

  3. Extending the molecular application range of gas chromatography

    NARCIS (Netherlands)

    Kaal, E.; Janssen, H.-G.

    2008-01-01

    Gas chromatography is an important analytical technique for qualitative and quantitative analysis in a wide range of application areas. It is fast, provides a high peak capacity, is sensitive and allows combination with a wide range of selective detection methods including mass spectrometry.

  4. Electric and Conventional Vehicle Driving Patterns

    DEFF Research Database (Denmark)

    Krogh, Benjamin Bjerre; Andersen, Ove; Torp, Kristian

    2014-01-01

    The electric vehicle (EV) is an interesting vehicle type that can reduce the dependence on fossil fuels, e.g., by using electricity from wind turbines. A significant disadvantage of EVs is a very limited range, typically less than 200 km. This paper compares EVs to conventional vehicles (CVs...

  5. Power-based electric vehicle energy consumption model: Model development and validation

    International Nuclear Information System (INIS)

    Fiori, Chiara; Ahn, Kyoungho; Rakha, Hesham A.

    2016-01-01

    Highlights: • The study developed an instantaneous energy consumption model (VT-CPEM) for EVs. • The model captures instantaneous braking energy regeneration. • The model can be used for transportation modeling and vehicle applications (e.g. eco-routing). • The proposed model can be easily calibrated using publically available EV data. • Usages of air conditioning and heating systems reduce EV energy consumption by up to 10% and 24%, respectively. - Abstract: The limited drive range (The maximum distance that an EV can travel.) of Electric Vehicles (EVs) is one of the major challenges that EV manufacturers are attempting to overcome. To this end, a simple, accurate, and efficient energy consumption model is needed to develop real-time eco-driving and eco-routing systems that can enhance the energy efficiency of EVs and thus extend their travel range. Although numerous publications have focused on the modeling of EV energy consumption levels, these studies are limited to measuring energy consumption of an EV’s control algorithm, macro-project evaluations, or simplified well-to-wheels analyses. Consequently, this paper addresses this need by developing a simple EV energy model that computes an EV’s instantaneous energy consumption using second-by-second vehicle speed, acceleration and roadway grade data as input variables. In doing so, the model estimates the instantaneous braking energy regeneration. The proposed model can be easily implemented in the following applications: in-vehicle, Smartphone eco-driving, eco-routing and transportation simulation software to quantify the network-wide energy consumption levels for a fleet of EVs. One of the main advantages of EVs is their ability to recover energy while braking using a regenerative braking system. State-of-the-art vehicle energy consumption models consider an average constant regenerative braking energy efficiency or regenerative braking factors that are mainly dependent on the vehicle’s average

  6. Control of Multiple Robotic Sentry Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Feddema, J.; Klarer, P.; Lewis, C.

    1999-04-01

    As part of a project for the Defense Advanced Research Projects Agency, Sandia National Laboratories is developing and testing the feasibility of using of a cooperative team of robotic sentry vehicles to guard a perimeter and to perform surround and diversion tasks. This paper describes on-going activities in the development of these robotic sentry vehicles. To date, we have developed a robotic perimeter detection system which consists of eight ''Roving All Terrain Lunar Explorer Rover'' (RATLER{trademark}) vehicles, a laptop-based base-station, and several Miniature Intrusion Detection Sensors (MIDS). A radio frequency receiver on each of the RATLER vehicles alerts the sentry vehicles of alarms from the hidden MIDS. When an alarm is received, each vehicle decides whether it should investigate the alarm based on the proximity of itself and the other vehicles to the alarm. As one vehicle attends an alarm, the other vehicles adjust their position around the perimeter to better prepare for another alarm. We have also demonstrated the ability to drive multiple vehicles in formation via tele-operation or by waypoint GPS navigation. This is currently being extended to include mission planning capabilities. At the base-station, the operator can draw on an aerial map the goal regions to be surrounded and the repulsive regions to be avoided. A potential field path planner automatically generates a path from the vehicles' current position to the goal regions while avoiding the repulsive regions and the other vehicles. This path is previewed to the operator before the regions are downloaded to the vehicles. The same potential field path planner resides on the vehicle, except additional repulsive forces from on-board proximity sensors guide the vehicle away from unplanned obstacles.

  7. Effects of vehicle type and fuel quality on real world toxic emissions from diesel vehicles

    Science.gov (United States)

    Nelson, Peter F.; Tibbett, Anne R.; Day, Stuart J.

    Diesel vehicles are an important source of emissions of air pollutants, particularly oxides of nitrogen (NO x), particulate matter (PM), and toxic compounds with potential health impacts including volatile organic compounds (VOCs) such as benzene and aldehydes, and polycyclic aromatic hydrocarbons (PAHs). Current developments in engine design and fuel quality are expected to reduce these emissions in the future, but many vehicles exceed 10 years of age and may make a major contribution to urban pollutant concentrations and related health impacts for many years. In this study, emissions of a range of toxic compounds are reported using in-service vehicles which were tested using urban driving cycles developed for Australian conditions. Twelve vehicles were chosen from six vehicle weight classes and, in addition, two of these vehicles were driven through the urban drive cycle using a range of diesel fuel formulations. The fuels ranged in sulphur content from 24 to 1700 ppm, and in total aromatics from 7.7 to 33 mass%. Effects of vehicle type and fuel composition on emissions are reported. The results show that emissions of these toxic species were broadly comparable to those observed in previous dynamometer and tunnel studies. Emissions of VOCs and smaller PAHs such as naphthalene, which are derived largely from the combustion process, appear to be related, and show relatively little variability when compared with the variability in emissions of aldehydes and larger PAHs. In particular, aldehyde emissions are highly variable and may be related to engine operating conditions. Fuels of lower sulphur and aromatic content did not have a significant influence on emissions of VOCs and aldehydes, but tended to result in lower emissions of PAHs. The toxicity of vehicle exhaust, as determined by inhalation risk and toxic equivalency factor (TEF)-weighted PAH emissions, was reduced with fuels of lower aromatic content.

  8. Role of motor vehicle lifetime extension in climate change policy.

    Science.gov (United States)

    Kagawa, Shigemi; Nansai, Keisuke; Kondo, Yasushi; Hubacek, Klaus; Suh, Sangwon; Minx, Jan; Kudoh, Yuki; Tasaki, Tomohiro; Nakamura, Shinichiro

    2011-02-15

    Vehicle replacement schemes such as the "cash for clunkers" program in the U.S. and the "scrappage scheme" in the UK have featured prominently in the economic stimulation packages initiated by many governments to cope with the global economic crisis. While these schemes were designed as economic instruments to support the vehicle production industry, governments have also claimed that these programs have environmental benefits such as reducing CO2 emissions by bringing more fuel-efficient vehicles onto the roads. However, little evidence is available to support this claim as current energy and environmental accounting models are inadequate for comprehensively capturing the economic and environmental trade-offs associated with changes in product life and product use. We therefore developed a new dynamic model to quantify the carbon emissions due to changes in product life and consumer behavior related to product use. Based on a case study of Japanese vehicle use during the 1990-2000 period, we found that extending, not shortening, the lifetime of a vehicle helps to reduce life-cycle CO2 emissions throughout the supply chain. Empirical results also revealed that even if the fuel economy of less fuel-efficient ordinary passenger vehicles were improved to levels comparable with those of the best available technology, i.e. hybrid passenger cars currently being produced in Japan, total CO2 emissions would decrease by only 0.2%. On the other hand, we also find that extending the lifetime of a vehicle contributed to a moderate increase in emissions of health-relevant air pollutants (NOx, HC, and CO) during the use phase. From the results, this study concludes that the effects of global warming and air pollution can be somewhat moderated and that these problems can be addressed through specific policy instruments directed at increasing the market for hybrid cars as well as extending lifetime of automobiles, which is contrary to the current wisdom.

  9. ELECTRIC AND MAGNETIC FIELDS ELECTRIC AND GASOLINE-POWERED VEHICLES.

    Science.gov (United States)

    Tell, Richard A; Kavet, Robert

    2016-12-01

    Measurements were conducted to investigate electric and magnetic fields (EMFs) from 120 Hz to 10 kHz and 1.2 to 100 kHz in 9 electric or hybrid vehicles and 4 gasoline vehicles, all while being driven. The range of fields in the electric vehicles enclosed the range observed in the gasoline vehicles. Mean magnetic fields ranged from nominally 0.6 to 3.5 µT for electric/hybrids depending on the measurement band compared with nominally 0.4 to 0.6 µT for gasoline vehicles. Mean values of electric fields ranged from nominally 2 to 3 V m -1 for electric/hybrid vehicles depending on the band, compared with 0.9 to 3 V m -1 for gasoline vehicles. In all cases, the fields were well within published exposure limits for the general population. The measurements were performed with Narda model EHP-50C/EHP-50D EMF analysers that revealed the presence of spurious signals in the EHP-50C unit, which were resolved with the EHP-50D model. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Well-to-wheel greenhouse gas emissions and energy use analysis of hypothetical fleet of electrified vehicles in Canada and the U.S

    Science.gov (United States)

    Maduro, Miguelangel

    The shift to strong hybrid and electrified vehicle architectures engenders controversy and brings about many unanswered questions. It is unclear whether developed markets will have the infrastructure in place to support and successfully implement them. To date, limited effort has been made to comprehend if the energy and transportation solutions that work well for one city or geographic region may extend broadly. A region's capacity to supply a fleet of EVs, or plug-in hybrid vehicles with the required charging infrastructure, does not necessarily make such vehicle architectures an optimal solution. In this study, a mix of technologies ranging from HEV to PHEV and EREV through to Battery Electric Vehicles were analyzed and set in three Canadian Provinces and 3 U.S. Regions for the year 2020. Government agency developed environmental software tools were used to estimate greenhouse gas emissions and energy use. Projected vehicle technology shares were employed to estimate regional environmental implications. Alternative vehicle technologies and fuels are recommended for each region based on local power generation schemes.

  11. Study of hydrogen vehicle storage in enclosed parking facilities

    Energy Technology Data Exchange (ETDEWEB)

    Belzile, M A [Transport Canada, Ottawa, ON (Canada). ecoTECHNOLOGY for Vehicles; Cook, S [Canadian Hydrogen and Fuel Cell Association, Vancouver, BC (Canada)

    2009-07-01

    This paper reported on a coordinated research program between Transport Canada and Hydrogen and Fuel Cells Canada that examines issues of hydrogen vehicle storage. The ecoTECHNOLOGY for Vehicles (eTV) program focuses on the safety issues of operating and storing hydrogen fuelled vehicles in enclosed parking facilities. The aim of the program is to review existing research, current building standards applied in Canada, standards applied to natural gas vehicles, and standards and recommended practices for the design of fuel cell vehicles. Any potential gaps in safety will be considered in the design of CFD modeling scenarios. Considerations that extend beyond previously performed studies include the effect of Canadian climate on vehicle safety and leak detection equipment, fail-safe mechanism performance, as well as analyses of the frequency of hydrogen leak occurrences and the probability of ignition. The results of the study will facilitate policy makers and authorities in making decisions regarding the storage of hydrogen fuelled vehicles as they become more popular.

  12. Vehicle lightweighting vs. electrification: Life cycle energy and GHG emissions results for diverse powertrain vehicles

    International Nuclear Information System (INIS)

    Lewis, Anne Marie; Kelly, Jarod C.; Keoleian, Gregory A.

    2014-01-01

    Highlights: • We modeled life cycle energy and greenhouse gas (GHG) emissions from diverse powertrain vehicles. • Lightweight versions of the vehicle models were compared against baseline models. • Maximum energy and GHG emissions occur with aluminum vs. advanced high strength steel. • Design harmonization method shows 0.2–0.3 kg of support required per 1 kg powertrain mass increase. - Abstract: This work assesses the potential of electrified vehicles and mass reduction to reduce life cycle energy and greenhouse gas (GHG) emissions. Life cycle assessment (LCA) is used to account for processes upstream and downstream of the vehicle operation, thereby incorporating regional variation of energy and GHG emissions due to electricity production and distinct energy and GHG emissions due to conventional and lightweight materials. Design harmonization methods developed in previous work are applied to create baseline and lightweight vehicle models of an internal combustion vehicle (ICV), hybrid electric vehicle (HEV) and plug-in hybrid electric vehicle (PHEV). Thus, each vehicle is designed to be functionally equivalent and incorporate the structural support required for heavier powertrains. Lightweight vehicles are designed using body-in-white (BIW) mass reduction scenarios with aluminum and advanced/high strength steel (A/HSS). For the mass reduction scenarios considered in this work, results indicate that the greatest life cycle energy and GHG emissions reductions occur when steel is replaced by aluminum. However, since A/HSS requires less energy to produce as compared to aluminum, the energy and GHG reductions per unit mass removed is greatest for A/HSS. Results of the design harmonization modeling method show that 0.2–0.3 kg of structural support is required per unit increase in powertrain mass, thus extending previous methods

  13. The Impact of a Vehicle-to-Vehicle Communications Rulemaking on Growth in the DSRC Automotive Aftermarket A Market Adoption Model and Forecast for Dedicated Short Range Communications (DSRC) for Light and Heavy Vehicle Categories

    Science.gov (United States)

    2016-10-15

    The focus of this project was to estimate the potential impact of a new motor vehicle government mandate for vehicle-to-vehicle (V2V) technology on the demand for aftermarket devices, applications, and infrastructure that leverages the same dedicated...

  14. Quantifying the Effect of Fast Charger Deployments on Electric Vehicle Utility and Travel Patterns via Advanced Simulation: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wood, E.; Neubauer, J.; Burton, E.

    2015-02-01

    The disparate characteristics between conventional (CVs) and battery electric vehicles (BEVs) in terms of driving range, refill/recharge time, and availability of refuel/recharge infrastructure inherently limit the relative utility of BEVs when benchmarked against traditional driver travel patterns. However, given a high penetration of high-power public charging combined with driver tolerance for rerouting travel to facilitate charging on long-distance trips, the difference in utility between CVs and BEVs could be marginalized. We quantify the relationships between BEV utility, the deployment of fast chargers, and driver tolerance for rerouting travel and extending travel durations by simulating BEVs operated over real-world travel patterns using the National Renewable Energy Laboratory's Battery Lifetime Analysis and Simulation Tool for Vehicles (BLAST-V). With support from the U.S. Department of Energy's Vehicle Technologies Office, BLAST-V has been developed to include algorithms for estimating the available range of BEVs prior to the start of trips, for rerouting baseline travel to utilize public charging infrastructure when necessary, and for making driver travel decisions for those trips in the presence of available public charging infrastructure, all while conducting advanced vehicle simulations that account for battery electrical, thermal, and degradation response. Results from BLAST-V simulations on vehicle utility, frequency of inserted stops, duration of charging events, and additional time and distance necessary for rerouting travel are presented to illustrate how BEV utility and travel patterns can be affected by various fast charge deployments.

  15. Control Strategy for Power Distribution in Dual Motor Propulsion System for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Pedro Daniel Urbina Coronado

    2015-01-01

    Full Text Available Electric Vehicles with more than one electric motor can offer advantages in saving energy from the batteries. In order to do that, the control strategy plays an important role in distributing the required torque between the electric motors. A dual motor propulsion system with a differential transmission is simulated in this work. A rule based control strategy for this propulsion system is proposed and analyzed. Two parameters related to the output speed of the transmission and the required torque are used to switch the two modes of operation in which the propulsion system can work under acceleration. The effect of these parameters is presented over the driving cycles of NEDC, UDDS, and NYCC, which are followed using a PID controller. The produced energy losses are calculated as well as an indicator of drivability, which is related to the difference between the desired speed and the actual speed obtained. The results show that less energy losses are present when the vehicle is maintained with one electric motor most of the time, switching only when the extended speed granted by the second motor is required. The propulsion system with the proposed control strategy represents a feasible alternative in the spectrum of sustainable transportation architectures with extending range capabilities.

  16. electric vehicle

    Directory of Open Access Journals (Sweden)

    W. R. Lee

    1999-01-01

    Full Text Available A major problem facing battery-powered electric vehicles is in their batteries: weight and charge capacity. Thus, a battery-powered electric vehicle only has a short driving range. To travel for a longer distance, the batteries are required to be recharged frequently. In this paper, we construct a model for a battery-powered electric vehicle, in which driving strategy is to be obtained such that the total travelling time between two locations is minimized. The problem is formulated as an optimization problem with switching times and speed as decision variables. This is an unconventional optimization problem. However, by using the control parametrization enhancing technique (CPET, it is shown that this unconventional optimization is equivalent to a conventional optimal parameter selection problem. Numerical examples are solved using the proposed method.

  17. Providing healthcare services on-the-fly using multi-player cooperation game theory in Internet of Vehicles (IoV environment

    Directory of Open Access Journals (Sweden)

    Neeraj Kumar

    2015-08-01

    Full Text Available Internet of Vehicles (IoV is a leading technology of the present era. It has gained huge attention with respect to its implementation in wide variety of domains ranging from traffic safety to infotainment applications. However, IoV can also be extended to healthcare domain, where the patients can be provided healthcare services on-the-fly. We extend this novel concept in this paper and refer it as “Healthcare services on-the-fly”. The concept of game theory has been used among the vehicles to access the healthcare services while traveling. The vehicles act as players in the game and tend to form and split coalitions to access these services. Learning automata (LA act as the players for interaction with the environment and take appropriate actions based on reward and penalty. Apart from this, Virtual Machine (VM scheduling algorithm for efficient utilization of resources at cloud level has also been formulated. A stochastic reward net (SRN-based model is used to represent the coalition formation and splitting with respect to availability of resources at cloud level. The performance of the proposed scheme is evaluated using various performance evaluation metrics. The results obtained prove the effectiveness of the proposed scheme in comparison to the best, first, and random fit schemes.

  18. Air change rates of motor vehicles and in-vehicle pollutant concentrations from secondhand smoke.

    Science.gov (United States)

    Ott, Wayne; Klepeis, Neil; Switzer, Paul

    2008-05-01

    The air change rates of motor vehicles are relevant to the sheltering effect from air pollutants entering from outside a vehicle and also to the interior concentrations from any sources inside its passenger compartment. We made more than 100 air change rate measurements on four motor vehicles under moving and stationary conditions; we also measured the carbon monoxide (CO) and fine particle (PM(2.5)) decay rates from 14 cigarettes smoked inside the vehicle. With the vehicle stationary and the fan off, the ventilation rate in air changes per hour (ACH) was less than 1 h(-1) with the windows closed and increased to 6.5 h(-1) with one window fully opened. The vehicle speed, window position, ventilation system, and air conditioner setting was found to affect the ACH. For closed windows and passive ventilation (fan off and no recirculation), the ACH was linearly related to the vehicle speed over the range from 15 to 72 mph (25 to 116 km h(-1)). With a vehicle moving, windows closed, and the ventilation system off (or the air conditioner set to AC Max), the ACH was less than 6.6 h(-1) for speeds ranging from 20 to 72 mph (32 to 116 km h(-1)). Opening a single window by 3'' (7.6 cm) increased the ACH by 8-16 times. For the 14 cigarettes smoked in vehicles, the deposition rate k and the air change rate a were correlated, following the equation k=1.3a (R(2)=82%; n=14). With recirculation on (or AC Max) and closed windows, the interior PM(2.5) concentration exceeded 2000 microg m(-3) momentarily for all cigarettes tested, regardless of speed. The concentration time series measured inside the vehicle followed the mathematical solutions of the indoor mass balance model, and the 24-h average personal exposure to PM(2.5) could exceed 35 microg m(-3) for just two cigarettes smoked inside the vehicle.

  19. Autonomous Soaring for Improved Endurance of a Small Uninhabited Air Vehicle

    Science.gov (United States)

    Allen, Michael J.

    2005-01-01

    A relatively unexplored method to improve the endurance of an autonomous aircraft is to use buoyant plumes of air found in the lower atmosphere called thermals or updrafts. Glider pilots and birds commonly use updrafts to improve range, endurance, or cross-country speed. This report presents a quantitative analysis of a small electric-powered uninhabited air vehicle using updrafts to extend its endurance over a target location. A three-degree-of-freedom simulation of the uninhabited air vehicle was used to determine the yearly effect of updrafts on performance. Surface radiation and rawinsonde balloon measurements taken at Desert Rock, Nevada, were used to determine updraft size, strength, spacing, shape, and maximum height for the simulation. A fixed-width spiral path was used to search for updrafts at the same time as maintaining line-of-sight to the surface target position. Power was used only when the aircraft was flying at the lower-altitude limit in search of updrafts. Results show that an uninhabited air vehicle with a nominal endurance of 2 hours can fly a maximum of 14 hours using updrafts during the summer and a maximum of 8 hours during the winter. The performance benefit and the chance of finding updrafts both depend on what time of day the uninhabited air vehicle is launched. Good endurance and probability of finding updrafts during the year was obtained when the uninhabited air vehicle was launched 30 percent into the daylight hours after sunrise each day. Yearly average endurance was found to be 8.6 hours with these launch times.

  20. Vehicle test report: Jet Industries Electra Van 600

    Science.gov (United States)

    Price, T. W.; Wirth, V. A., Jr.

    1982-01-01

    The Electra Van 600, an electric vehicle, was tested. Tests were performed to characterize parameters of the Electra Van 600 and to provide baseline data to be used for comparison of improved batteries and to which will be incorporated into the vehicle. The vehicle tests concentrated on the electrical drive subsystem, the batteries, controller, and motor; coastdowns to characterize the road load and range evaluation for cyclic and constant speed conditions; and qualitative performance was evaluated. It is found that the Electra Van 600 range performance is approximately equal to the majority of the vehicles tested previously.

  1. Predicting state of charge of lead-acid batteries for hybrid electric vehicles by extended Kalman filter

    International Nuclear Information System (INIS)

    Vasebi, A.; Bathaee, S.M.T.; Partovibakhsh, M.

    2008-01-01

    This paper describes and introduces a new nonlinear predictor and a novel battery model for estimating the state of charge (SoC) of lead-acid batteries for hybrid electric vehicles (HEV). Many problems occur for a traditional SoC indicator, such as offset, drift and long term state divergence, therefore this paper proposes a technique based on the extended Kalman filter (EKF) in order to overcome these problems. The underlying dynamic behavior of each cell is modeled using two capacitors (bulk and surface) and three resistors (terminal, surface and end). The SoC is determined from the voltage present on the bulk capacitor. In this new model, the value of the surface capacitor is constant, whereas the value of the bulk capacitor is not. Although the structure of the model, with two constant capacitors, has been previously reported for lithium-ion cells, this model can also be valid and reliable for lead-acid cells when used in conjunction with an EKF to estimate SoC (with a little variation). Measurements using real-time road data are used to compare the performance of conventional internal resistance (R int ) based methods for estimating SoC with those predicted from the proposed state estimation schemes. The results show that the proposed method is superior to the more traditional techniques, with accuracy in estimating the SoC within 3%

  2. Improving the performance of a hybrid electric vehicle by utilization regenerative braking energy of vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Mourad, Mohamed [Automotive and Tractors Department, Faculty of Engineering, Minia University (Egypt)

    2011-07-01

    Environmentally friendly vehicles with range and performance capabilities surpassing those of conventional ones require a careful balance among competing goals for fuel efficiency, performance and emissions. It can be recuperated the energy of deceleration case of the vehicle to reuse it to recharge the storage energy of hybrid electric vehicle and increase the state of charge of batteries under the new conditions of vehicle operating in braking phase. Hybrid electric vehicle has energy storage which allows decreasing required peak value of power from prime mover, which is the internal combustion engine. The paper investigates the relationships between the driving cycle phases and the recuperation energy to the batteries system of hybrid electric vehicle. This work describes also a methodology for integrating this type of hybrid electric vehicle in a simulation program. A design optimization framework is then used to find the best position that we can utilize the recuperation energy to recharge the storage batteries of hybrid electric vehicle.

  3. TOPLAR: Time of Flight with Larmor Precessions - or - How to extend the dynamic range of NSE spectrometers

    International Nuclear Information System (INIS)

    Van Well, A.A.; Bleuel, M.; Pappas, C.

    2011-01-01

    Neutron Spin Echo (NSE) spectrometers typically cover a dynamic range of three orders of magnitude at a given wavelength. At long Fourier times the limits are given by the homogeneity of precession fields. At short Fourier times, the quasi-elastic approximation and the NSE formalism mark a methodological limit. We propose to overcome this limitation and by combining Time Of Flight with Larmor precession to extend the capabilities of Neutron Spin Echo spectrometers towards short Fourier times. TOFLAR should be easily implemented on NSE spectrometers equipped with a chopper system such as IN15 or the planned WASP. (authors)

  4. Battery management systems (BMS) optimization for electric vehicles (EVs) in Malaysia

    Science.gov (United States)

    Salehen, P. M. W.; Su'ait, M. S.; Razali, H.; Sopian, K.

    2017-04-01

    Following the UN Climate Change Conference 2009 in Copenhagen, Denmark, Malaysia seriously committed on "Go Green" campaign with the aim to reduce 40% GHG emission by the year 2020. Therefore, the National Green Technology Policy has been legalised in 2009 with transportation as one of its focused sectors, which include hybrid (HEVs), electric vehicles (EVs) and fuel cell vehicles with the purpose of to keep up with the worst scenario. While the number of registered cars has been increasing by 1 million yearly, the amount has doubled in the last two decades. Consequently, CO2 emission in Malaysia reaches up to 97.1% and will continue to increase mainly due to the activities in the transportation sector. Nevertheless, Malaysia is now moving towards on green car which battery-based EVs. This type of transportation mainly needs power performance optimization, which is controlled by the Batteries Management System (BMS). BMS is an essential module which leads to reliable power management, optimal power performance and safe vehicle that lead back for power optimization in EVs. Thus, this paper proposes power performance optimization for various setups of lithium-ion cathode with graphene anode using MATLAB/SIMULINK software for better management performance and extended EVs driving range.

  5. Motor vehicle evaluative criteria: Using unmet expectations as signals for dissonance

    Directory of Open Access Journals (Sweden)

    Sanjana Brijball Parumasur

    2015-07-01

    Full Text Available This study assesses whether motor vehicle consumers base their purchases on functional or symbolic needs. It also evaluates motor vehicle buyer’s level of importance attached to evaluative criteria and the extent to which they believe the purchased vehicle fulfils the evaluative criteria, in order to assess whether expectations have been met or not and hence, the potential for cognitive dissonance. Biographical correlates (race, marital status, age, education, occupation, income, gender are evaluated and the influence of range of motor vehicle is also analysed. A sample of 200 brand new motor vehicle buyers was drawn using the stratified random sampling technique based on range of motor vehicle purchased, month of purchases, gender and age of the buyer. Only new motor vehicle buyers (within KwaZulu-Natal who concluded their purchases in one major, reputable and leading motor vehicle manufacturing company and who owned the vehicle for a maximum period of seven months were considered, so as to avoid cognitive intrusion. The results indicate that consumer’ expectations were not met in terms of price, economy and performance yet these were buyers’ most highly rated evaluative criteria, thereby reflecting the potential for dissonance. Significant biographical correlates were noted in terms of race, age, occupation, income, gender and motor vehicle evaluative criteria. Whilst bottom and middle of the range motor vehicle consumers favour functional or utilitarian value, top of the range motor vehicle consumers aim to fulfil symbolic needs

  6. Integration and Validation of a Thermal Energy Storage System for Electric Vehicle Cabin Heating

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Mingyu [MAHLE Behr Troy Inc.; Craig, Timothy [MAHLE Behr Troy Inc.; Wolfe, Edward [MAHLE Behr Troy Inc.; LaClair, Tim J. [ORNL; Gao, Zhiming [ORNL; Levin, Michael [Ford Motor Company; Demitroff, Danrich [Ford Motor Company; Shaikh, Furqan [Ford Motor Company

    2017-03-01

    It is widely recognized in the automotive industry that, in very cold climatic conditions, the driving range of an Electric Vehicle (EV) can be reduced by 50% or more. In an effort to minimize the EV range penalty, a novel thermal energy storage system has been designed to provide cabin heating in EVs and Plug-in Hybrid Electric Vehicles (PHEVs) by using an advanced phase change material (PCM). This system is known as the Electrical PCM-based Thermal Heating System (ePATHS) [1, 2]. When the EV is connected to the electric grid to charge its traction battery, the ePATHS system is also “charged” with thermal energy. The stored heat is subsequently deployed for cabin comfort heating during driving, for example during commuting to and from work.The ePATHS system, especially the PCM heat exchanger component, has gone through substantial redesign in order to meet functionality and commercialization requirements. The final system development for EV implementation has occurred on a mid-range EV and has been evaluated for its capability to extend the driving range. Both simulated driving in a climatic tunnel and actual road testing have been carried out. The ePATHS has demonstrated its ability to supply the entire cabin heating needs for a round trip commute totaling 46 minutes, including 8 hours of parking, at an ambient temperature of -10°C.

  7. The potential of electric vehicles

    International Nuclear Information System (INIS)

    2016-04-01

    Electric vehicles can help reduce the dependence of road transport on imported oil, cut the country's energy bill, reduce greenhouse gas emissions, improve air quality in cities through zero exhaust emissions and reduce noise pollution. The economic costs and environmental impacts of electric vehicles are mostly concentrated at the manufacturing stage, whereas the costs and impacts of internal combustion vehicles are predominantly felt during usage. So we cannot simply compare vehicles as objects, we must see how they are used, which means taking a fresh look at the full potential of electric vehicles which must be used intensely to be economically and environmentally viable. The main advantage of internal combustion vehicles is their ability to carry a very large amount of energy giving them a very large range and significant versatility. However, the consequences of the use of fossil fuels on the climate and the environment today require us to look for other solutions for vehicles and mobility systems. Electric vehicles are among these: its lack of versatility, due to its still limited range, is offset by being more adaptable and optimised for the usage sought. Electric vehicles are particularly suitable for new mobility services offerings and allow the transition to new ways of travelling to be speeded up optimising the use of the vehicle and no longer requiring ownership of it. The use of digital, facilitated by the electrical engine, opens up numerous opportunities for innovations and new services (such as the autonomous vehicle for example). In addition, electric vehicles can do more than just transport. Their batteries provide useful energy storage capabilities that can help regulate the power grid and the development of renewable energy. The marketing of electric vehicles may be accompanied by energy services that can be economically viable and used to structure the electro-mobility offer in return. To minimise the impact on the electrical grid, it is

  8. Near-term hybrid vehicle program, phase 1. Appendix D: Sensitivity analysis resport

    Science.gov (United States)

    1979-01-01

    Parametric analyses, using a hybrid vehicle synthesis and economics program (HYVELD) are described investigating the sensitivity of hybrid vehicle cost, fuel usage, utility, and marketability to changes in travel statistics, energy costs, vehicle lifetime and maintenance, owner use patterns, internal combustion engine (ICE) reference vehicle fuel economy, and drive-line component costs and type. The lowest initial cost of the hybrid vehicle would be $1200 to $1500 higher than that of the conventional vehicle. For nominal energy costs ($1.00/gal for gasoline and 4.2 cents/kWh for electricity), the ownership cost of the hybrid vehicle is projected to be 0.5 to 1.0 cents/mi less than the conventional ICE vehicle. To attain this ownership cost differential, the lifetime of the hybrid vehicle must be extended to 12 years and its maintenance cost reduced by 25 percent compared with the conventional vehicle. The ownership cost advantage of the hybrid vehicle increases rapidly as the price of fuel increases from $1 to $2/gal.

  9. Aerodynamic loads on buses due to crosswind gusts: extended analysis

    Science.gov (United States)

    Drugge, Lars; Juhlin, Magnus

    2010-12-01

    The objective of this work is to use inverse simulations on measured vehicle data in order to estimate the aerodynamic loads on a bus when exposed to crosswind situations. Tyre forces, driver input, wind velocity and vehicle response were measured on a typical coach when subjected to natural crosswind gusts. Based on these measurements and a detailed MBS vehicle model, the aerodynamic loads were estimated through inverse simulations. In order to estimate the lift force, roll and pitch moments in addition to the lateral force and yaw moment, the simulation model was extended by also incorporating the estimation of the vertical road disturbances. The proposed method enables the estimation of aerodynamic loads due to crosswind gusts without using a full scale wind tunnel adapted for crosswind excitation.

  10. Infrastructure-friendly vehicles to support Texas economic competitiveness.

    Science.gov (United States)

    2017-03-01

    The researchers reviewed and extended the work done under Project 0-6736, Rider 36 OS/OW Vehicle Fees : Study, and other similar efforts currently underway in Texas and other states and at the federal and international : level to evaluate the effects...

  11. Extended-Range Passive RFID and Sensor Tags

    Science.gov (United States)

    Fink, Patrick W.; Kennedy, Timothy F.; Lin, Gregory Y.; Barton, Richard

    2012-01-01

    Extended-range passive radio-frequency identification (RFID) tags and related sensor tags are undergoing development. A tag of this type incorporates a retroreflective antenna array, so that it reflects significantly more signal power back toward an interrogating radio transceiver than does a comparable passive RFID tag of prior design, which does not incorporate a retroreflective antenna array. Therefore, for a given amount of power radiated by the transmitter in the interrogating transceiver, a tag of this type can be interrogated at a distance greater than that of the comparable passive RFID or sensor tag of prior design. The retroreflective antenna array is, more specifically, a Van Atta array, named after its inventor and first published in a patent issued in 1959. In its simplest form, a Van Atta array comprises two antenna elements connected by a transmission line so that the signal received by each antenna element is reradiated by the other antenna element (see Figure 1). The phase relationships among the received and reradiated signals are such as to produce constructive interference of the reradiated signals; that is, to concentrate the reradiated signal power in a direction back toward the source. Hence, an RFID tag equipped with a Van Atta antenna array automatically tracks the interrogating transceiver. The effective gain of a Van Atta array is the same as that of a traditional phased antenna array having the same number of antenna elements. Additional pairs of antenna elements connected by equal-length transmission lines can be incorporated into a Van Atta array to increase its directionality. Like some RFID tags here-to-fore commercially available, an RFID or sensor tag of the present developmental type includes one-port surface-acoustic-wave (SAW) devices. In simplified terms, the mode of operation of a basic one-port SAW device as used heretofore in an RFID device is the following: An interrogating radio signal is converted, at an input end, from

  12. Multi-mode energy management strategy for fuel cell electric vehicles based on driving pattern identification using learning vector quantization neural network algorithm

    Science.gov (United States)

    Song, Ke; Li, Feiqiang; Hu, Xiao; He, Lin; Niu, Wenxu; Lu, Sihao; Zhang, Tong

    2018-06-01

    The development of fuel cell electric vehicles can to a certain extent alleviate worldwide energy and environmental issues. While a single energy management strategy cannot meet the complex road conditions of an actual vehicle, this article proposes a multi-mode energy management strategy for electric vehicles with a fuel cell range extender based on driving condition recognition technology, which contains a patterns recognizer and a multi-mode energy management controller. This paper introduces a learning vector quantization (LVQ) neural network to design the driving patterns recognizer according to a vehicle's driving information. This multi-mode strategy can automatically switch to the genetic algorithm optimized thermostat strategy under specific driving conditions in the light of the differences in condition recognition results. Simulation experiments were carried out based on the model's validity verification using a dynamometer test bench. Simulation results show that the proposed strategy can obtain better economic performance than the single-mode thermostat strategy under dynamic driving conditions.

  13. Investigation of Kodak extended dose range (EDR) film for megavoltage photon beam dosimetry

    International Nuclear Information System (INIS)

    Chetty, Indrin J.; Charland, Paule M.

    2002-01-01

    We have investigated the dependence of the measured optical density on the incident beam energy, field size and depth for a new type of film, Kodak extended dose range (Kodak EDR). Film measurements have been conducted over a range of field sizes (3x3 cm 2 to 25x25 cm 2 ) and depths (d max to 15 cm), for 6 MV and 15 MV photons within a solid water phantom, and the variation in sensitometric response (net optical density versus dose) has been reported. Kodak EDR film is found to have a linear response with dose, from 0 to 350 cGy, which is much higher than that typically seen for Kodak XV film (0-50 cGy). The variation in sensitometric response for Kodak EDR film as a function of field size and depth is observed to be similar to that of Kodak XV film; the optical density varied in the order of 2-3% for field sizes of 3x3 cm 2 and 10x10 cm 2 at depths of d max , 5 cm and 15 cm in the phantom. Measurements for a 25x25 cm 2 field size showed consistently higher optical densities at depths of d max , 5 cm and 15 cm, relative to a 10x10 cm 2 field size at 5 cm depth, with 4-5% differences noted at a depth of 15 cm. Fractional depth dose and profiles conducted with Kodak EDR film showed good agreement (2%/2 mm) with ion chamber measurements for all field sizes except for the 25x25 cm 2 at depths greater than 15 cm, where differences in the order of 3-5% were observed. In addition, Kodak EDR film measurements were found to be consistent with those of Kodak XV film for all fractional depth doses and profiles. The results of this study indicate that Kodak EDR film may be a useful tool for relative dosimetry at higher dose ranges. (author)

  14. Investigation of Kodak extended dose range (EDR) film for megavoltage photon beam dosimetry.

    Science.gov (United States)

    Chetty, Indrin J; Charland, Paule M

    2002-10-21

    We have investigated the dependence of the measured optical density on the incident beam energy, field size and depth for a new type of film, Kodak extended dose range (Kodak EDR). Film measurements have been conducted over a range of field sizes (3 x 3 cm2 to 25 x 25 cm2) and depths (d(max) to 15 cm), for 6 MV and 15 MV photons within a solid water phantom, and the variation in sensitometric response (net optical density versus dose) has been reported. Kodak EDR film is found to have a linear response with dose, from 0 to 350 cGy, which is much higher than that typically seen for Kodak XV film (0-50 cGy). The variation in sensitometric response for Kodak EDR film as a function of field size and depth is observed to be similar to that of Kodak XV film; the optical density varied in the order of 2-3% for field sizes of 3 x 3 cm2 and 10 x 10 cm2 at depths of d(max), 5 cm and 15 cm in the phantom. Measurements for a 25 x 25 cm2 field size showed consistently higher optical densities at depths of d(max), 5 cm and 15 cm, relative to a 10 x 10 cm2 field size at 5 cm depth, with 4-5% differences noted at a depth of 15 cm. Fractional depth dose and profiles conducted with Kodak EDR film showed good agreement (2%/2 mm) with ion chamber measurements for all field sizes except for the 25 x 25 cm2 at depths greater than 15 cm, where differences in the order of 3-5% were observed. In addition, Kodak EDR film measurements were found to be consistent with those of Kodak XV film for all fractional depth doses and profiles. The results of this study indicate that Kodak EDR film may be a useful tool for relative dosimetry at higher dose ranges.

  15. Mobile robot vehicles for physical security

    International Nuclear Information System (INIS)

    McGovern, D.E.

    1987-07-01

    A fleet of vehicles is being developed and maintained by Sandia National Labs for studies in remote control and autonomous operation. These vehicles range from modified commercial vehicles to specially constructed mobile platforms and are utilized as test beds for developing concepts in the application of robotics to interior and exterior physical security. Actuators control the vehicle speed, brakes, and steering through manual input from a remote driving station or through some level of digital computer control. On-board processing may include simple vehicle control functions or may allow for unmanned, autonomous operation. communication links are provided for digital communication between control computers, television transmission for vehicle vision, and voice for local control. With these vehicles, SNL can develop, test, and evaluate sensors, processing requirements, various methods of actuator implementation, operator controlled feedback requirements, and vehicle operations. A description of the major features and uses for each of the vehicles in the fleet is provided

  16. Mobile robot vehicles for physical security

    International Nuclear Information System (INIS)

    Mc Govern, D.E.

    1987-01-01

    A fleet of vehicles is being developed and maintained by Sandia National Labs for studies in remote control and autonomous operation. These vehicles range from modified commercial vehicles to specially constructed mobile platforms and are utilized as test beds for developing concepts in the application of robotics to interior and exterior physical security. Actuators control the vehicle speed, brakes, and steering through manual input from a remote driving station or through some level of digital computer control. On-board processing may include simple vehicle control functions or may allow for unmanned, autonomous operation. Communication links are provided for digital communication between control computers, television transmission for vehicle vision, and voice for local control. With these vehicles, SNL can develop, test, and evaluate sensors, processing requirements, various methods of actuator implementation, operator controlled feedback requirements, and vehicle operations. A description of the major features and uses for each of the vehicles in the fleet is provided

  17. Mobile robot vehicles for physical security

    International Nuclear Information System (INIS)

    McGovern, D.E.

    1987-06-01

    A fleet of vehicles is being developed and maintained by Sandia National Labs for studies in remote control and autonomous operation. These vehicles range from modified commercial vehicles to specially constructed mobile platforms and are utilized as test beds for developing concepts in the application of robotics to interior and exterior physical security. Actuators control the vehicle speed, brakes, and steering through manual input from a remote driving station or through some level of digital computer control. On-board processing may include simple vehicle control functions or may allow for unmanned, autonomous operation. Communication links are provided for digital communication between control computers, television transmission for vehicle vision, and voice for local control. With these vehicles, SNL can develop, test, and evaluate sensors, processing requirements, various methods of actuator implementation, operator controlled feedback requirements, and vehicle operations. A description of the major features and uses for each of the vehicles in the fleet is provided. 4 refs., 1 fig., 1 tab

  18. The sighting of Howarth’s Hairstreak (Lepidoptera: Lycaenidae: Theclinae: Chrysozephyrus disparatus interpositus Howarth, 1957 from Tenga Valley, Arunachal Pradesh, India, extending its known range

    Directory of Open Access Journals (Sweden)

    Rachit Pratap Singh

    2016-12-01

    Full Text Available The butterfly subspecies, Chrysozephyrus disparatus interpositus is sighted at Tenga Valley, Western Arunachal Pradesh, 58 years after its original description, extending its known range eastwards by 350 km. 

  19. Public Health, Ethics, and Autonomous Vehicles.

    Science.gov (United States)

    Fleetwood, Janet

    2017-04-01

    With the potential to save nearly 30 000 lives per year in the United States, autonomous vehicles portend the most significant advance in auto safety history by shifting the focus from minimization of postcrash injury to collision prevention. I have delineated the important public health implications of autonomous vehicles and provided a brief analysis of a critically important ethical issue inherent in autonomous vehicle design. The broad expertise, ethical principles, and values of public health should be brought to bear on a wide range of issues pertaining to autonomous vehicles.

  20. Advanced technology mobile robotics vehicle fleet

    International Nuclear Information System (INIS)

    McGovern, D.E.

    1987-03-01

    A fleet of vehicles is being developed and maintained by Sandia National Laboratories for studies in remote control and autonomous operation. The vehicles range from modified commercial vehicles to specially constructed mobile platforms and are utilized as testbeds for developing concepts in the areas of remote control (teleoperation) and computer control (autonomy). Actuators control the vehicle speed, brakes, and steering via manual input from a remote driving station or through some level of digital computer control. On-board processing may include simple vehicle control functions or may allow for unmanned, autonomous operation. Communication links are provided for digital communication between control computers, television transmission for vehicle vision, and voice for local control. SNL can develop, test, and evaluate sensors, processing requirements, various methods of actuator implementation, operator controlled feedback requirements, and vehicle operations. A description of the major features and uses for each of the vehicles in the fleet is provided

  1. Extended-range high-resolution dynamical downscaling over a continental-scale spatial domain with atmospheric and surface nudging

    Science.gov (United States)

    Husain, S. Z.; Separovic, L.; Yu, W.; Fernig, D.

    2014-12-01

    Extended-range high-resolution mesoscale simulations with limited-area atmospheric models when applied to downscale regional analysis fields over large spatial domains can provide valuable information for many applications including the weather-dependent renewable energy industry. Long-term simulations over a continental-scale spatial domain, however, require mechanisms to control the large-scale deviations in the high-resolution simulated fields from the coarse-resolution driving fields. As enforcement of the lateral boundary conditions is insufficient to restrict such deviations, large scales in the simulated high-resolution meteorological fields are therefore spectrally nudged toward the driving fields. Different spectral nudging approaches, including the appropriate nudging length scales as well as the vertical profiles and temporal relaxations for nudging, have been investigated to propose an optimal nudging strategy. Impacts of time-varying nudging and generation of hourly analysis estimates are explored to circumvent problems arising from the coarse temporal resolution of the regional analysis fields. Although controlling the evolution of the atmospheric large scales generally improves the outputs of high-resolution mesoscale simulations within the surface layer, the prognostically evolving surface fields can nevertheless deviate from their expected values leading to significant inaccuracies in the predicted surface layer meteorology. A forcing strategy based on grid nudging of the different surface fields, including surface temperature, soil moisture, and snow conditions, toward their expected values obtained from a high-resolution offline surface scheme is therefore proposed to limit any considerable deviation. Finally, wind speed and temperature at wind turbine hub height predicted by different spectrally nudged extended-range simulations are compared against observations to demonstrate possible improvements achievable using higher spatiotemporal

  2. Vehicle systems design optimization study

    Science.gov (United States)

    Gilmour, J. L.

    1980-01-01

    The optimum vehicle configuration and component locations are determined for an electric drive vehicle based on using the basic structure of a current production subcompact vehicle. The optimization of an electric vehicle layout requires a weight distribution in the range of 53/47 to 62/38 in order to assure dynamic handling characteristics comparable to current internal combustion engine vehicles. Necessary modification of the base vehicle can be accomplished without major modification of the structure or running gear. As long as batteries are as heavy and require as much space as they currently do, they must be divided into two packages, one at front under the hood and a second at the rear under the cargo area, in order to achieve the desired weight distribution. The weight distribution criteria requires the placement of batteries at the front of the vehicle even when the central tunnel is used for the location of some batteries. The optimum layout has a front motor and front wheel drive. This configuration provides the optimum vehicle dynamic handling characteristics and the maximum passenger and cargo space for a given size vehicle.

  3. Scheduling and location issues in transforming service fleet vehicles to electric vehicles

    DEFF Research Database (Denmark)

    Mirchandani, Pitu; Madsen, Oli B.G.; Adler, Jonathan

    There is much reason to believe that fleets of service vehicles of many organizations will transform their vehicles that utilize alternative fuels which are more sustainable. The electric vehicle is a good candidate for this transformation, especially which “refuels” by exchanging its spent...... batteries with charged ones. This paper discusses the issues that must be addressed if a transit service were to use electric vehicles, principally the issues related to the limited driving range of each electric vehicle’s set of charged batteries and the possible detouring for battery exchanges....... In particular, the paper addresses the optimization and analysis of infrastructure design alternatives dealing with (1) the number of battery-exchange stations, (2) their locations, (3) the recharging capacity and inventory management of batteries at each facility, and (4) routing and scheduling of the fleet...

  4. Experimental and Numerical Analysis of Bridge Response due to Modular Combination Vehicle Systems

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Bang, R.

    2004-01-01

    Articulated vehicles composed of a tractor and a semi-trailer are dominant in international traffic within the EU. Also road trains can be obtained as an extended articulated vehicle by adding a trailer. A dolly carrying a semi-trailer may replace a road train in the same situation. The present...

  5. Evaluations of Extended-Range tropical Cyclone Forecasts in the Western North Pacific by using the Ensemble Reforecasts: Preliminary Results

    Science.gov (United States)

    Tsai, Hsiao-Chung; Chen, Pang-Cheng; Elsberry, Russell L.

    2017-04-01

    The objective of this study is to evaluate the predictability of the extended-range forecasts of tropical cyclone (TC) in the western North Pacific using reforecasts from National Centers for Environmental Prediction (NCEP) Global Ensemble Forecast System (GEFS) during 1996-2015, and from the Climate Forecast System (CFS) during 1999-2010. Tsai and Elsberry have demonstrated that an opportunity exists to support hydrological operations by using the extended-range TC formation and track forecasts in the western North Pacific from the ECMWF 32-day ensemble. To demonstrate this potential for the decision-making processes regarding water resource management and hydrological operation in Taiwan reservoir watershed areas, special attention is given to the skill of the NCEP GEFS and CFS models in predicting the TCs affecting the Taiwan area. The first objective of this study is to analyze the skill of NCEP GEFS and CFS TC forecasts and quantify the forecast uncertainties via verifications of categorical binary forecasts and probabilistic forecasts. The second objective is to investigate the relationships among the large-scale environmental factors [e.g., El Niño Southern Oscillation (ENSO), Madden-Julian Oscillation (MJO), etc.] and the model forecast errors by using the reforecasts. Preliminary results are indicating that the skill of the TC activity forecasts based on the raw forecasts can be further improved if the model biases are minimized by utilizing these reforecasts.

  6. Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles

    Science.gov (United States)

    . Fueling and Driving Options Plug-in hybrid electric vehicle batteries can be charged by an outside sized hybrid electric vehicle. If the vehicle is driven a shorter distance than its all-electric range drives the wheels almost all of the time, but the vehicle can switch to work like a parallel hybrid at

  7. A Saturation Balancing Control Method for Enhancing Dynamic Vehicle Stability (PREPRINT)

    Science.gov (United States)

    2011-03-01

    braking torques (with regenerative braking ) at the individual wheels or axles of the vehicle with independent drive or torque-biasing systems ...VSC (also referred to as vehicle dynamics control (VDC)) systems available on the market today are brake -based systems which extend the functionality...of mature hardware technology available for anti-lock braking (ABS) and traction control systems . These systems Report Documentation Page Form

  8. Modular Energy Storage System for Alternative Energy Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Janice [Magna Electronics Inc., Auburn Hills, MI (United States); Ervin, Frank [Magna Electronics Inc., Auburn Hills, MI (United States)

    2012-05-15

    An electrical vehicle environment was established to promote research and technology development in the area of high power energy management. The project incorporates a topology that permits parallel development of an alternative energy delivery system and an energy storage system. The objective of the project is to develop technologies, specifically power electronics, energy storage electronics and controls that provide efficient and effective energy management between electrically powered devices in alternative energy vehicles plugin electric vehicles, hybrid vehicles, range extended vehicles, and hydrogen-based fuel cell vehicles. In order to meet the project objectives, the Vehicle Energy Management System (VEMS) was defined and subsystem requirements were obtained. Afterwards, power electronics, energy storage electronics and controls were designed. Finally, these subsystems were built, tested individually, and integrated into an electric vehicle system to evaluate and optimize the subsystems performance. Phase 1 of the program established the fundamental test bed to support development of an electrical environment ideal for fuel cell application and the mitigation of many shortcomings of current fuel cell technology. Phase 2, continued development from Phase 1, focusing on implementing subsystem requirements, design and construction of the energy management subsystem, and the integration of this subsystem into the surrogate electric vehicle. Phase 2 also required the development of an Alternative Energy System (AES) capable of emulating electrical characteristics of fuel cells, battery, gen set, etc. Under the scope of the project, a boost converter that couples the alternate energy delivery system to the energy storage system was developed, constructed and tested. Modeling tools were utilized during the design process to optimize both component and system design. This model driven design process enabled an iterative process to track and evaluate the impact

  9. 78 FR 55137 - Federal Motor Vehicle Safety Standards; Ejection Mitigation

    Science.gov (United States)

    2013-09-09

    ... in the fourth year; 75 percent in the fifth year; all vehicles (without use of credits) manufactured... restraint countermeasure would have to extend from the roof to the beltline (a vertical dimension of...

  10. Underwater Multi-Vehicle Trajectory Alignment and Mapping Using Acoustic and Optical Constraints

    Directory of Open Access Journals (Sweden)

    Ricard Campos

    2016-03-01

    Full Text Available Multi-robot formations are an important advance in recent robotic developments, as they allow a group of robots to merge their capacities and perform surveys in a more convenient way. With the aim of keeping the costs and acoustic communications to a minimum, cooperative navigation of multiple underwater vehicles is usually performed at the control level. In order to maintain the desired formation, individual robots just react to simple control directives extracted from range measurements or ultra-short baseline (USBL systems. Thus, the robots are unaware of their global positioning, which presents a problem for the further processing of the collected data. The aim of this paper is two-fold. First, we present a global alignment method to correct the dead reckoning trajectories of multiple vehicles to resemble the paths followed during the mission using the acoustic messages passed between vehicles. Second, we focus on the optical mapping application of these types of formations and extend the optimization framework to allow for multi-vehicle geo-referenced optical 3D mapping using monocular cameras. The inclusion of optical constraints is not performed using the common bundle adjustment techniques, but in a form improving the computational efficiency of the resulting optimization problem and presenting a generic process to fuse optical reconstructions with navigation data. We show the performance of the proposed method on real datasets collected within the Morph EU-FP7 project.

  11. Simulation methods supporting homologation of Electronic Stability Control in vehicle variants

    Science.gov (United States)

    Lutz, Albert; Schick, Bernhard; Holzmann, Henning; Kochem, Michael; Meyer-Tuve, Harald; Lange, Olav; Mao, Yiqin; Tosolin, Guido

    2017-10-01

    Vehicle simulation has a long tradition in the automotive industry as a powerful supplement to physical vehicle testing. In the field of Electronic Stability Control (ESC) system, the simulation process has been well established to support the ESC development and application by suppliers and Original Equipment Manufacturers (OEMs). The latest regulation of the United Nations Economic Commission for Europe UN/ECE-R 13 allows also for simulation-based homologation. This extends the usage of simulation from ESC development to homologation. This paper gives an overview of simulation methods, as well as processes and tools used for the homologation of ESC in vehicle variants. The paper first describes the generic homologation process according to the European Regulation (UN/ECE-R 13H, UN/ECE-R 13/11) and U.S. Federal Motor Vehicle Safety Standard (FMVSS 126). Subsequently the ESC system is explained as well as the generic application and release process at the supplier and OEM side. Coming up with the simulation methods, the ESC development and application process needs to be adapted for the virtual vehicles. The simulation environment, consisting of vehicle model, ESC model and simulation platform, is explained in detail with some exemplary use-cases. In the final section, examples of simulation-based ESC homologation in vehicle variants are shown for passenger cars, light trucks, heavy trucks and trailers. This paper is targeted to give a state-of-the-art account of the simulation methods supporting the homologation of ESC systems in vehicle variants. However, the described approach and the lessons learned can be used as reference in future for an extended usage of simulation-supported releases of the ESC system up to the development and release of driver assistance systems.

  12. Reactive Planning of Autonomous Vehicles for Traffic Scenarios

    Directory of Open Access Journals (Sweden)

    Rahul Kala

    2015-10-01

    Full Text Available Autonomous vehicles operate in real time traffic scenarios and aim to reach their destination from their source in the most efficient manner possible. Research in mobile robotics provides a variety of sophisticated means with which to plan the path of these vehicles. Conversely professional human drivers usually drive using instinctive means, which enables them to reach their goal almost optimally whilst still obeying all traffic laws. In this paper we propose the use of fuzzy logic for novel motion planning. The planner is generated using an evolutionary algorithm which resembles the learning stage of professional drivers. Whether to overtake or not, is a decision which affects one’s driving and the decision is made using some deliberation. We further extend the approach to perform decision making regarding overtaking for all vehicles. Further we coordinate the motion of the vehicles at a traffic crossing to avoid any potential jam or collision. Experimental results prove that by using this approach we have been able to make the vehicles move in an optimal manner in a variety of scenarios.

  13. Connected vehicle impacts on transportation planning technical memorandum #2 : connected vehicle planning processes and products and stakeholder roles and responsibilities.

    Science.gov (United States)

    2015-01-01

    The objective of this project, Connected Vehicle Impacts on Transportation Planning, is to comprehensively assess how connected vehicles should : be considered across the range of transportation planning processes and products developed by Stat...

  14. Near-term electric test vehicle ETV-2. Phase II. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1981-04-01

    A unique battery-powered passenger vehicle has been developed that provides a significant improvement over conventional electric vehicle performance, particularly during stop-and-go driving. The vehicle is unique in two major respects: (1) the power system incorporates a flywheel that stores energy during regenerative braking and makes possible the acceleration capability needed to keep up with traffic without reducing range to unacceptable values; and (2) lightweight plastic materials are used for the vehicle unibody to minimize weight and increase range. These features were analyzed and demonstrated in an electric test vehicle, ETV-2. Characteristics of this vehicle are summarized. Information is presented on: vehicle design, fabrication, safety testing, and performance testing; power system design and operation; flywheel; battery pack performance; and controls and electronic equipment. (LCL)

  15. Enabling fast charging – Vehicle considerations

    Energy Technology Data Exchange (ETDEWEB)

    Meintz, Andrew; Zhang, Jiucai; Vijayagopal, Ram; Kreutzer, Cory; Ahmed, Shabbir; Bloom, Ira; Burnham, Andrew; Carlson, Richard B.; Dias, Fernando; Dufek, Eric J.; Francfort, James; Hardy, Keith; Jansen, Andrew N.; Keyser, Matthew; Markel, Anthony; Michelbacher, Christopher; Mohanpurkar, Manish; Pesaran, Ahmad; Scoffield, Don; Shirk, Matthew; Stephens, Thomas; Tanim, Tanvir

    2017-11-01

    To achieve a successful increase in the plug-in battery electric vehicle (BEV) market, it is anticipated that a significant improvement in battery performance is required to improve the range that BEVs can travel and the rate at which they can be recharged. While the range that BEVs can travel on a single recharge is improving, the recharging rate is still much slower than the refueling rate of conventional internal combustion engine vehicles. To achieve comparable recharge times, we explore the vehicle considerations of charge rates of at least 400 kW. Faster recharge is expected to significantly mitigate the perceived deficiencies for long-distance transportation, to provide alternative charging in densely populated areas where overnight charging at home may not be possible, and to reduce range anxiety for travel within a city when unplanned charging may be required. This substantial increase in charging rate is expected to create technical issues in the design of the battery system and vehicle’s electrical architecture that must be resolved. This work focuses on battery system thermal design and total recharge time to meet the goals of implementing higher charge rates and the impacts of the expected increase in system voltage on the components of the vehicle.

  16. Development of parallel-plate-based MEMS tunable capacitors with linearized capacitance–voltage response and extended tuning range

    International Nuclear Information System (INIS)

    Shavezipur, M; Nieva, P; Khajepour, A; Hashemi, S M

    2010-01-01

    This paper presents a design technique that can be used to linearize the capacitance–voltage (C–V) response and extend the tuning range of parallel-plate-based MEMS tunable capacitors beyond that of conventional designs. The proposed technique exploits the curvature of the capacitor's moving electrode which could be induced by either manipulating the stress gradients in the plate's material or using bi-layer structures. The change in curvature generates a nonlinear structural stiffness as the moving electrode undergoes out-of-plane deformation due to the actuation voltage. If the moving plate curvature is tailored such that the capacitance increment is proportional to the voltage increment, then a linear C–V response is obtained. The larger structural resistive force at higher bias voltage also delays the pull-in and increases the maximum tunability of the capacitor. Moreover, for capacitors containing an insulation layer between the two electrodes, the proposed technique completely eliminates the pull-in effect. The experimental data obtained from different capacitors fabricated using PolyMUMPs demonstrate the advantages of this design approach where highly linear C–V responses and tunabilities as high as 1050% were recorded. The design methodology introduced in this paper could be easily extended to for example, capacitive pressure and temperature sensors or infrared detectors to enhance their response characteristics.

  17. Scale-invariant extended inflation

    International Nuclear Information System (INIS)

    Holman, R.; Kolb, E.W.; Vadas, S.L.; Wang, Y.

    1991-01-01

    We propose a model of extended inflation which makes use of the nonlinear realization of scale invariance involving the dilaton coupled to an inflaton field whose potential admits a metastable ground state. The resulting theory resembles the Jordan-Brans-Dicke version of extended inflation. However, quantum effects, in the form of the conformal anomaly, generate a mass for the dilaton, thus allowing our model to evade the problems of the original version of extended inflation. We show that extended inflation can occur for a wide range of inflaton potentials with no fine-tuning of dimensionless parameters required. Furthermore, we also find that it is quite natural for the extended-inflation period to be followed by an epoch of slow-rollover inflation as the dilaton settles down to the minimum of its induced potential

  18. Determination of vehicle density from traffic images at day and nighttime

    Science.gov (United States)

    Mehrübeoğlu, Mehrübe; McLauchlan, Lifford

    2007-02-01

    In this paper we extend our previous work to address vehicle differentiation in traffic density computations1. The main goal of this work is to create vehicle density history for given roads under different weather or light conditions and at different times of the day. Vehicle differentiation is important to account for connected or otherwise long vehicles, such as trucks or tankers, which lead to over-counting with the original algorithm. Average vehicle size in pixels, given the magnification within the field of view for a particular camera, is used to separate regular cars and long vehicles. A separate algorithm and procedure have been developed to determine traffic density after dark when the vehicle headlights are turned on. Nighttime vehicle recognition utilizes blob analysis based on head/taillight images. The high intensity of vehicle lights are identified in binary images for nighttime vehicle detection. The stationary traffic image frames are downloaded from the internet as they are updated. The procedures are implemented in MATLAB. The results of both nighttime traffic density and daytime long vehicle identification algorithms are described in this paper. The determination of nighttime traffic density, and identification of long vehicles at daytime are improvements over the original work1.

  19. Environmental impacts of future urban deployment of electric vehicles: Assessment framework and case study of Copenhagen for 2016-2030

    DEFF Research Database (Denmark)

    Bohnes, Florence Alexia; Gregg, Jay Sterling; Laurent, Alexis

    2017-01-01

    To move towards environmentally-sustainable transport systems, electric vehicles (EVs) are increasingly seen as viable alternatives to internal combustion vehicles (ICVs). To ensure effectiveness of such deployment, holistic assessments of environmental impacts can help decision-makers determine...... a fleet-based, foresight perspective. The analysis of the passenger car fleet development in the city of Copenhagen for the years 2016-2030 is used as a proof-of-concept. We modelled and compared five powertrain technologies, and we assessed four fleet-based scenarios for the entire city. Our results...... showed relative environmental benefits from range-extended and fuel-cell EVs over ICVs and standard EVs. These results were found to be sensitive to local settings, like electricity grid mix, which could alter the relative environmental performances across EV technologies. The comprehensive framework...

  20. Experimental Verification of a Vehicle Localization based on Moving Horizon Estimation Integrating LRS and Odometry

    International Nuclear Information System (INIS)

    Sakaeta, Kuniyuki; Nonaka, Kenichiro; Sekiguchi, Kazuma

    2016-01-01

    Localization is an important function for the robots to complete various tasks. For localization, both internal and external sensors are used generally. The odometry is widely used as the method based on the internal sensors, but it suffers from cumulative errors. In the method using the laser range sensor (LRS) which is a kind of external sensor, the estimation accuracy is affected by the number of available measurement data. In our previous study, we applied moving horizon estimation (MHE) to the vehicle localization for integrating the LRS measurement data and the odometry information where the weightings of them are balanced relatively adapting to the number of the available LRS measurement data. In this paper, the effectiveness of the proposed localization method is verified through both numerical simulations and experiments using a 1/10 scale vehicle. The verification is conducted in the situations where the vehicle position cannot be localized uniquely on a certain direction using the LRS measurement data only. We achieve accurate localization even in such a situation by integrating the odometry and LRS based on MHE. We also show the superiority of the method through comparisons with a method using extended Kalman filter (EKF). (paper)

  1. Simulated annealing (SA to vehicle routing problems with soft time windows

    Directory of Open Access Journals (Sweden)

    Suphan Sodsoon

    2014-12-01

    Full Text Available The researcher has applied and develops the meta-heuristics method to solve Vehicle Routing Problems with Soft Time Windows (VRPSTW. For this case there was only one depot, multi customers which each generally sparse either or demand was different though perceived number of demand and specific period of time to receive them. The Operation Research was representative combinatorial optimization problems and is known to be NP-hard. In this research algorithm, use Simulated Annealing (SA to determine the optimum solutions which rapidly time solving. After developed the algorithms, apply them to examine the factors and the optimum extended time windows and test these factors with vehicle problem routing under specific time windows by Solomon in OR-Library in case of maximum 25 customers. Meanwhile, 6 problems are including of C101, C102, R101, R102, RC101 and RC102 respectively. The result shows the optimum extended time windows at level of 50%. At last, after comparison these answers with the case of vehicle problem routing under specific time windows and flexible time windows, found that percentage errors on number of vehicles approximately by -28.57% and percentage errors on distances approximately by -28.57% which this algorithm spent average processing time on 45.5 sec/problems.

  2. Measurements on the extended range of the wake

    International Nuclear Information System (INIS)

    Kumbartzki, G.J.; Kroesing, G; Neuburger, H.

    1981-01-01

    The Coulomb explosion of H 2 + -ions at 28 MeV is used to probe the wake over a range of about 400 A in Al. Preliminary results give food agreement with the wavelength prediction of the simple plasma oscillation wake model. (author)

  3. Baseline test data for the EVA electric vehicle. [low energy consumption automobiles

    Science.gov (United States)

    Harhay, W. C.; Bozek, J.

    1976-01-01

    Two electric vehicles from Electric Vehicle Associates were evaluated for ERDA at the Transportation Research Center of Ohio. The vehicles, loaded to a gross vehicle weight of 3750 pounds, had a range of 56.3 miles at a steady speed of 25 mph and a 27.4 miles range during acceleration-deceleration tests to a top speed of 30 mph. Energy consumption varied from 0.48 kw-hr/mi. to 0.59 kw-hr/mi.

  4. Vertical Takeoff and Landing Vehicle with Increased Cruise Efficiency

    Science.gov (United States)

    Fredericks, William J. (Inventor); Moore, Mark D. (Inventor); Busan, Ronald C. (Inventor); Rothhaar, Paul M. (Inventor); North, David D. (Inventor); Langford, William M. (Inventor); Laws, Christopher T. (Inventor); Hodges, William T. (Inventor); Johns, Zachary R. (Inventor); Webb, Sandy R. (Inventor)

    2018-01-01

    Systems, methods, and devices are provided that combine an advance vehicle configuration, such as an advanced aircraft configuration, with the infusion of electric propulsion, thereby enabling a four times increase in range and endurance while maintaining a full vertical takeoff and landing ("VTOL") and hover capability for the vehicle. Embodiments may provide vehicles with both VTOL and cruise efficient capabilities without the use of ground infrastructure. An embodiment vehicle may comprise a wing configured to tilt through a range of motion, a first series of electric motors coupled to the wing and each configured to drive an associated wing propeller, a tail configured to tilt through the range of motion, a second series of electric motors coupled to the tail and each configured to drive an associated tail propeller, and an electric propulsion system connected to the first series of electric motors and the second series of electric motors.

  5. Vehicle systems design optimization study

    Energy Technology Data Exchange (ETDEWEB)

    Gilmour, J. L.

    1980-04-01

    The optimization of an electric vehicle layout requires a weight distribution in the range of 53/47 to 62/38 in order to assure dynamic handling characteristics comparable to current production internal combustion engine vehicles. It is possible to achieve this goal and also provide passenger and cargo space comparable to a selected current production sub-compact car either in a unique new design or by utilizing the production vehicle as a base. Necessary modification of the base vehicle can be accomplished without major modification of the structure or running gear. As long as batteries are as heavy and require as much space as they currently do, they must be divided into two packages - one at front under the hood and a second at the rear under the cargo area - in order to achieve the desired weight distribution. The weight distribution criteria requires the placement of batteries at the front of the vehicle even when the central tunnel is used for the location of some batteries. The optimum layout has a front motor and front wheel drive. This configuration provides the optimum vehicle dynamic handling characteristics and the maximum passsenger and cargo space for a given size vehicle.

  6. Calibration and assessment of channel-specific biases in microarray data with extended dynamical range.

    Science.gov (United States)

    Bengtsson, Henrik; Jönsson, Göran; Vallon-Christersson, Johan

    2004-11-12

    Non-linearities in observed log-ratios of gene expressions, also known as intensity dependent log-ratios, can often be accounted for by global biases in the two channels being compared. Any step in a microarray process may introduce such offsets and in this article we study the biases introduced by the microarray scanner and the image analysis software. By scanning the same spotted oligonucleotide microarray at different photomultiplier tube (PMT) gains, we have identified a channel-specific bias present in two-channel microarray data. For the scanners analyzed it was in the range of 15-25 (out of 65,535). The observed bias was very stable between subsequent scans of the same array although the PMT gain was greatly adjusted. This indicates that the bias does not originate from a step preceding the scanner detector parts. The bias varies slightly between arrays. When comparing estimates based on data from the same array, but from different scanners, we have found that different scanners introduce different amounts of bias. So do various image analysis methods. We propose a scanning protocol and a constrained affine model that allows us to identify and estimate the bias in each channel. Backward transformation removes the bias and brings the channels to the same scale. The result is that systematic effects such as intensity dependent log-ratios are removed, but also that signal densities become much more similar. The average scan, which has a larger dynamical range and greater signal-to-noise ratio than individual scans, can then be obtained. The study shows that microarray scanners may introduce a significant bias in each channel. Such biases have to be calibrated for, otherwise systematic effects such as intensity dependent log-ratios will be observed. The proposed scanning protocol and calibration method is simple to use and is useful for evaluating scanner biases or for obtaining calibrated measurements with extended dynamical range and better precision. The

  7. Emissions from US waste collection vehicles

    International Nuclear Information System (INIS)

    Maimoun, Mousa A.; Reinhart, Debra R.; Gammoh, Fatina T.; McCauley Bush, Pamela

    2013-01-01

    Highlights: ► Life-cycle emissions for alternative fuel technologies. ► Fuel consumption of alternative fuels for waste collection vehicles. ► Actual driving cycle of waste collection vehicles. ► Diesel-fueled waste collection vehicle emissions. - Abstract: This research is an in-depth environmental analysis of potential alternative fuel technologies for waste collection vehicles. Life-cycle emissions, cost, fuel and energy consumption were evaluated for a wide range of fossil and bio-fuel technologies. Emission factors were calculated for a typical waste collection driving cycle as well as constant speed. In brief, natural gas waste collection vehicles (compressed and liquid) fueled with North-American natural gas had 6–10% higher well-to-wheel (WTW) greenhouse gas (GHG) emissions relative to diesel-fueled vehicles; however the pump-to-wheel (PTW) GHG emissions of natural gas waste collection vehicles averaged 6% less than diesel-fueled vehicles. Landfill gas had about 80% lower WTW GHG emissions relative to diesel. Biodiesel waste collection vehicles had between 12% and 75% lower WTW GHG emissions relative to diesel depending on the fuel source and the blend. In 2011, natural gas waste collection vehicles had the lowest fuel cost per collection vehicle kilometer travel. Finally, the actual driving cycle of waste collection vehicles consists of repetitive stops and starts during waste collection; this generates more emissions than constant speed driving

  8. Light duty vehicle transportation and global climate policy: The importance of electric drive vehicles

    International Nuclear Information System (INIS)

    Bosetti, Valentina; Longden, Thomas

    2013-01-01

    With a focus on the interaction between long-term climate targets and personal transport we review the electrification of light duty vehicles (LDVs) within a model that utilizes a learning-by-researching structure. By modeling the demand of vehicles, the use of fuels and emissions implied, the model solves for the optimum RD and D investments that decrease the cost of hybrid, plug-in hybrid and electric vehicles. A range of technology and climate policy scenarios provide long term projections of vehicle use that highlight the potential synergies between innovation in the transportation sector and the energy sector. We find that even when the capital cost of electric drive vehicles (EDVs) remains higher than that of traditional combustion engine alternatives, EDVs are likely to play a key role in the decarbonisation implied by stringent climate policy. Limited innovation in batteries results in notable increases in policy costs consistent with a two degree climate policy target. - Highlights: • Significant increase in vehicles across regions in the medium to long term future. • Climate policy costs are sensitive to a lack of electric drive vehicles (EDVs). • Achieving 450ppm with no change in battery costs has a policy cost that is 2.86 percentage points higher than the base 450ppm scenario. • Climate policy hastens the introduction of electrified vehicles, however EDVs do not become the dominant vehicle of choice before the middle of the century

  9. Response matrix of an extended range Bonner sphere spectrometer for the characterization of collimated neutron beams

    International Nuclear Information System (INIS)

    Bedogni, R.; Esposito, A.; Gomez-Ros, J.M.

    2010-01-01

    Accelerator-based neutron beams are becoming popular tools for material testing, radiation hardness and soft errors studies. The characterization of these beams in terms of dosimetric and spectrometric quantities is a challenging task, mainly due to their wide energy interval (from thermal up to hundreds MeV) and, in certain facilities like VESUVIO - ISIS (RAL, UK), to their small dimension (few cm in radius). Extended Range Bonner Sphere Spectrometers (ERBSS) would be a valuable tool, due to their wide energy range, good photon discrimination and possibility to choose among different central detectors according to the intensity, photon component and time structure of the field. Nevertheless, the non-uniform irradiation of the spheres could lead to important systematic errors. With the aim of bringing the advantages of ERBSS into the characterization of collimated beams, a dedicated study was performed using the VESUVIO spallation-based collimated beam at ISIS (Rutherford Appleton Laboratory, Oxford). Here a 3.21 cm radius collimated beam was characterized using a Dysprosium activation foil-based ERBSS whose response matrix was recalculated for this specific beam diameter. Besides the results of the experimental campaign, this paper presents the calculation of the response matrix and its dependence on the beam dimension.

  10. Predicting the market potential of plug-in electric vehicles using multiday GPS data

    International Nuclear Information System (INIS)

    Khan, Mobashwir; Kockelman, Kara M.

    2012-01-01

    GPS data for a year's worth of travel by 255 Seattle households illuminate how plug-in electric vehicles can match household needs. The results suggest that a battery-electric vehicle (BEV) with 100 mi of range should meet the needs of 50% of one-vehicle households and 80% of multiple-vehicle households, when charging once a day and relying on another vehicle or mode just 4 days a year. Moreover, the average one-vehicle Seattle household uses each vehicle 23 mi per day and should be able to electrify close to 80% of its miles, while meeting all its travel needs, using a plug-in hybrid electric vehicle (PHEV) with 40-mile all-electric range. Households owning two or more vehicles can electrify 50 to 70% of their total household miles using a PHEV40, depending on how they assign the vehicle across drivers each day. Cost comparisons between the average single-vehicle household owning a Chevrolet Cruze versus a Volt PHEV suggest that, when gas prices are $3.50 per gallon and electricity rates are at 11.2 ct/kWh, the Volt will save the household $535 per year in operating costs. Similarly, the Toyota Prius PHEV will provide an annual savings of $538 per year over the Corolla. - Highlights: ► Daily travel distances over a year were obtained for 255 Seattle households. ► 100-mi-range BEVs can meet 99% of daily needs for 50% of one-vehicle households. ► 100-mi-range BEVs can meet 99% of needs for 80% of multi-vehicle households. ► One-vehicle households will electrify close to 80% of their miles using a PHEV40 while meeting all trip-distance needs. ► Two-vehicle households can electrify 50 to 70% of household miles using a PHEV40 while meeting all trip-distance needs.

  11. A Comprehensive Prediction Model of Hydraulic Extended-Reach Limit Considering the Allowable Range of Drilling Fluid Flow Rate in Horizontal Drilling.

    Science.gov (United States)

    Li, Xin; Gao, Deli; Chen, Xuyue

    2017-06-08

    Hydraulic extended-reach limit (HERL) model of horizontal extended-reach well (ERW) can predict the maximum measured depth (MMD) of the horizontal ERW. The HERL refers to the well's MMD when drilling fluid cannot be normally circulated by drilling pump. Previous model analyzed the following two constraint conditions, drilling pump rated pressure and rated power. However, effects of the allowable range of drilling fluid flow rate (Q min  ≤ Q ≤ Q max ) were not considered. In this study, three cases of HERL model are proposed according to the relationship between allowable range of drilling fluid flow rate and rated flow rate of drilling pump (Q r ). A horizontal ERW is analyzed to predict its HERL, especially its horizontal-section limit (L h ). Results show that when Q min  ≤ Q r  ≤ Q max (Case I), L h depends both on horizontal-section limit based on rated pump pressure (L h1 ) and horizontal-section limit based on rated pump power (L h2 ); when Q min  drilling fluid flow rate, while L h2 keeps decreasing as the drilling fluid flow rate increases. The comprehensive model provides a more accurate prediction on HERL.

  12. Spatiotemporal Local-Remote Senor Fusion (ST-LRSF) for Cooperative Vehicle Positioning.

    Science.gov (United States)

    Jeong, Han-You; Nguyen, Hoa-Hung; Bhawiyuga, Adhitya

    2018-04-04

    Vehicle positioning plays an important role in the design of protocols, algorithms, and applications in the intelligent transport systems. In this paper, we present a new framework of spatiotemporal local-remote sensor fusion (ST-LRSF) that cooperatively improves the accuracy of absolute vehicle positioning based on two state estimates of a vehicle in the vicinity: a local sensing estimate, measured by the on-board exteroceptive sensors, and a remote sensing estimate, received from neighbor vehicles via vehicle-to-everything communications. Given both estimates of vehicle state, the ST-LRSF scheme identifies the set of vehicles in the vicinity, determines the reference vehicle state, proposes a spatiotemporal dissimilarity metric between two reference vehicle states, and presents a greedy algorithm to compute a minimal weighted matching (MWM) between them. Given the outcome of MWM, the theoretical position uncertainty of the proposed refinement algorithm is proven to be inversely proportional to the square root of matching size. To further reduce the positioning uncertainty, we also develop an extended Kalman filter model with the refined position of ST-LRSF as one of the measurement inputs. The numerical results demonstrate that the proposed ST-LRSF framework can achieve high positioning accuracy for many different scenarios of cooperative vehicle positioning.

  13. Extending Database Integration Technology

    National Research Council Canada - National Science Library

    Buneman, Peter

    1999-01-01

    Formal approaches to the semantics of databases and database languages can have immediate and practical consequences in extending database integration technologies to include a vastly greater range...

  14. Effect of Using Different Vehicle Weight Groups on the Estimated Relationship Between Mass Reduction and U.S. Societal Fatality Risk per Vehicle Miles of Travel

    Energy Technology Data Exchange (ETDEWEB)

    Wenzel, Tom P. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Technologies Area. Building Technology and Urban Systems Division

    2016-08-22

    This report recalculates the estimated relationship between vehicle mass and societal fatality risk, using alternative groupings by vehicle weight, to test whether the trend of decreasing fatality risk from mass reduction as case vehicle mass increases, holds over smaller increments of the range in case vehicle masses. The NHTSA baseline regression model estimates the relationship using for two weight groups for cars and light trucks; we re-estimated the mass reduction coefficients using four, six, and eight bins of vehicle mass. The estimated effect of mass reduction on societal fatality risk was not consistent over the range in vehicle masses in these weight bins. These results suggest that the relationship indicated by the NHTSA baseline model is a result of other, unmeasured attributes of the mix of vehicles in the lighter vs. heavier weight bins, and not necessarily the result of a correlation between mass reduction and societal fatality risk. An analysis of the average vehicle, driver, and crash characteristics across the various weight groupings did not reveal any strong trends that might explain the lack of a consistent trend of decreasing fatality risk from mass reduction in heavier vehicles.

  15. Path Planning Algorithms for Autonomous Border Patrol Vehicles

    Science.gov (United States)

    Lau, George Tin Lam

    This thesis presents an online path planning algorithm developed for unmanned vehicles in charge of autonomous border patrol. In this Pursuit-Evasion game, the unmanned vehicle is required to capture multiple trespassers on its own before any of them reach a target safe house where they are safe from capture. The problem formulation is based on Isaacs' Target Guarding problem, but extended to the case of multiple evaders. The proposed path planning method is based on Rapidly-exploring random trees (RRT) and is capable of producing trajectories within several seconds to capture 2 or 3 evaders. Simulations are carried out to demonstrate that the resulting trajectories approach the optimal solution produced by a nonlinear programming-based numerical optimal control solver. Experiments are also conducted on unmanned ground vehicles to show the feasibility of implementing the proposed online path planning algorithm on physical applications.

  16. Improving the Lane Reference Detection for Autonomous Road Vehicle Control

    Directory of Open Access Journals (Sweden)

    Felipe Jiménez

    2016-01-01

    Full Text Available Autonomous road vehicles are increasingly becoming more important and there are several techniques and sensors that are being applied for vehicle control. This paper presents an alternative system for maintaining the position of autonomous vehicles without adding additional elements to the standard sensor architecture, by using a 3D laser scanner for continuously detecting a reference element in situations in which the GNSS receiver fails or provides accuracy below the required level. Considering that the guidance variables are more accurately estimated when dealing with reference points in front of and behind the vehicle, an algorithm based on vehicle dynamics mathematical model is proposed to extend the detected points in cases where the sensor is placed at the front of the vehicle. The algorithm has been tested when driving along a lane delimited by New Jersey barriers at both sides and the results show a correct behaviour. The system is capable of estimating the reference element behind the vehicle with sufficient accuracy when the laser scanner is placed at the front of it, so the robustness of the control input variables (lateral and angular errors estimation is improved making it unnecessary to place the sensor on the vehicle roof or to introduce additional sensors.

  17. Intelligent behaviors through vehicle-to-vehicle and vehicle-to-infrastructure communication

    Science.gov (United States)

    Garcia, Richard D.; Sturgeon, Purser; Brown, Mike

    2012-06-01

    The last decade has seen a significant increase in intelligent safety devices on private automobiles. These devices have both increased and augmented the situational awareness of the driver and in some cases provided automated vehicle responses. To date almost all intelligent safety devices have relied on data directly perceived by the vehicle. This constraint has a direct impact on the types of solutions available to the vehicle. In an effort to improve the safety options available to a vehicle, numerous research laboratories and government agencies are investing time and resources into connecting vehicles to each other and to infrastructure-based devices. This work details several efforts in both the commercial vehicle and the private auto industries to increase vehicle safety and driver situational awareness through vehicle-to-vehicle and vehicle-to-infrastructure communication. It will specifically discuss intelligent behaviors being designed to automatically disable non-compliant vehicles, warn tractor trailer vehicles of unsafe lane maneuvers such as lane changes, passing, and merging, and alert drivers to non-line-of-sight emergencies.

  18. An extended car-following model considering random safety distance with different probabilities

    Science.gov (United States)

    Wang, Jufeng; Sun, Fengxin; Cheng, Rongjun; Ge, Hongxia; Wei, Qi

    2018-02-01

    Because of the difference in vehicle type or driving skill, the driving strategy is not exactly the same. The driving speeds of the different vehicles may be different for the same headway. Since the optimal velocity function is just determined by the safety distance besides the maximum velocity and headway, an extended car-following model accounting for random safety distance with different probabilities is proposed in this paper. The linear stable condition for this extended traffic model is obtained by using linear stability theory. Numerical simulations are carried out to explore the complex phenomenon resulting from multiple safety distance in the optimal velocity function. The cases of multiple types of safety distances selected with different probabilities are presented. Numerical results show that the traffic flow with multiple safety distances with different probabilities will be more unstable than that with single type of safety distance, and will result in more stop-and-go phenomena.

  19. Prevalence, attitudes, and knowledge of in-vehicle technologies and vehicle adaptations among older drivers.

    Science.gov (United States)

    Eby, David W; Molnar, Lisa J; Zakrajsek, Jennifer S; Ryan, Lindsay H; Zanier, Nicole; Louis, Renée M St; Stanciu, Sergiu C; LeBlanc, David; Kostyniuk, Lidia P; Smith, Jacqui; Yung, Raymond; Nyquist, Linda; DiGuiseppi, Carolyn; Li, Guohua; Mielenz, Thelma J; Strogatz, David

    2018-04-01

    The purpose of the present study was to gain a better understanding of the types of in-vehicle technologies being used by older drivers as well as older drivers' use, learning, and perceptions of safety related to these technologies among a large cohort of older drivers at multiple sites in the United States. A secondary purpose was to explore the prevalence of aftermarket vehicle adaptations and how older adults go about making adaptations and how they learn to use them. The study utilized baseline questionnaire data from 2990 participants from the Longitudinal Research on Aging Drivers (LongROAD) study. Fifteen in-vehicle technologies and 12 aftermarket vehicle adaptations were investigated. Overall, 57.2% of participants had at least one advanced technology in their primary vehicle. The number of technologies in a vehicle was significantly related to being male, having a higher income, and having a higher education level. The majority of respondents learned to use these technologies on their own, with "figured-it-out-myself" being reported by 25%-75% of respondents across the technologies. Overall, technologies were always used about 43% of the time, with wide variability among the technologies. Across all technologies, nearly 70% of respondents who had these technologies believed that they made them a safer driver. With regard to vehicle adaptations, less than 9% of respondents had at least one vehicle adaptation present, with the number of adaptations per vehicle ranging from 0 to 4. A large majority did not work with a professional to make or learn about the aftermarket vehicle adaptation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Tasking and control of a squad of robotic vehicles

    Science.gov (United States)

    Lewis, Christopher L.; Feddema, John T.; Klarer, Paul

    2001-09-01

    Sandia National Laboratories have developed a squad of robotic vehicles as a test-bed for investigating cooperative control strategies. The squad consists of eight RATLER vehicles and a command station. The RATLERs are medium-sized all-electric vehicles containing a PC104 stack for computation, control, and sensing. Three separate RF channels are used for communications; one for video, one for command and control, and one for differential GPS corrections. Using DGPS and IR proximity sensors, the vehicles are capable of autonomously traversing fairly rough terrain. The control station is a PC running Windows NT. A GUI has been developed that allows a single operator to task and monitor all eight vehicles. To date, the following mission capabilities have been demonstrated: 1. Way-Point Navigation, 2. Formation Following, 3. Perimeter Surveillance, 4. Surround and Diversion, and 5. DGPS Leap Frog. This paper describes the system and briefly outlines each mission capability. The DGPS Leap Frog capability is discussed in more detail. This capability is unique in that it demonstrates how cooperation allows the vehicles to accurately navigate beyond the RF communication range. One vehicle stops and uses its corrected GPS position to re-initialize its receiver to become the DGPS correction station for the other vehicles. Error in position accumulates each time a new vehicle takes over the DGPS duties. The accumulation in error is accurately modeled as a random walk phenomenon. This paper demonstrates how useful accuracy can be maintained beyond the vehicle's range.

  1. Effect of Vehicle Characteristics on Unpaved Road Dust Emissions

    National Research Council Canada - National Science Library

    Gillies, J. A; Etyemezian, V; Kuhns, H; Nikolic, D; Gillette, D. A

    2005-01-01

    This paper presents PM10 fugitive dust emission factors for a range of vehicles types and examines the influence of vehicle and wake characteristics on the strength of emissions from an unpaved road...

  2. Energy-Regenerative Braking Control of Electric Vehicles Using Three-Phase Brushless Direct-Current Motors

    Directory of Open Access Journals (Sweden)

    Bo Long

    2013-12-01

    Full Text Available Regenerative braking provides an effective way of extending the driving range of battery powered electric vehicles (EVs. This paper analyzes the equivalent power circuit and operation principles of an EV using regenerative braking control technology. During the braking period, the switching sequence of the power converter is controlled to inverse the output torque of the three-phase brushless direct-current (DC motor, so that the braking energy can be returned to the battery. Compared with the presented methods, this technology can achieve several goals: energy recovery, electric braking, ultra-quiet braking and extending the driving range. Merits and drawbacks of different braking control strategy are further elaborated. State-space model of the EVs under energy-regenerative braking operation is established, considering that parameter variations are unavoidable due to temperature change, measured error, un-modeled dynamics, external disturbance and time-varying system parameters, a sliding mode robust controller (SMRC is designed and implemented. Phase current and DC-link voltage are selected as the state variables, respectively. The corresponding control law is also provided. The proposed control scheme is compared with a conventional proportional-integral (PI controller. A laboratory EV for experiment is setup to verify the proposed scheme. Experimental results show that the drive range of EVs can be improved about 17% using the proposed controller with energy-regeneration control.

  3. Comparative costs and benefits of hydrogen vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Berry, G.D. [Lawrence Livermore National Lab., CA (United States)

    1996-10-01

    The costs and benefits of hydrogen as a vehicle fuel are compared to gasoline, natural gas, and battery-powered vehicles. Costs, energy, efficiency, and tail-pipe and full fuel cycle emissions of air pollutants and greenhouse gases were estimated for hydrogen from a broad range of delivery pathways and scales: from individual vehicle refueling systems to large stations refueling 300 cars/day. Hydrogen production from natural gas, methanol, and ammonia, as well as water electrolysis based on alkaline or polymer electrolytes and steam electrolysis using solid oxide electrolytes are considered. These estimates were compared to estimates for competing fuels and vehicles, and used to construct oil use, air pollutant, and greenhouse gas emission scenarios for the U.S. passenger car fleet from 2005-2050. Fuel costs need not be an overriding concern in evaluating the suitability of hydrogen as a fuel for passenger vehicles. The combined emissions and oil import reduction benefits of hydrogen cars are estimated to be significant, valued at up to {approximately}$400/yr for each hydrogen car when primarily clean energy sources are used for hydrogen production. These benefits alone, however, become tenuous as the basis supporting a compelling rationale for hydrogen fueled vehicles, if efficient, advanced fossil-fuel hybrid electric vehicles (HEV`s) can achieve actual on-road emissions at or below ULEV standards in the 2005-2015 timeframe. It appears a robust rationale for hydrogen fuel and vehicles will need to also consider unique, strategic, and long-range benefits of hydrogen vehicles which can be achieved through the use of production, storage, delivery, and utilization methods for hydrogen which are unique among fuels: efficient use of intermittent renewable energy sources, (e,g, wind, solar), small-scale feasibility, fuel production at or near the point of use, electrolytic production, diverse storage technologies, and electrochemical conversion to electricity.

  4. Extending the Constant Power Speed Range of the Brushless DC Motor through Dual Mode Inverter Control -- Part I: Theory and Simulation

    International Nuclear Information System (INIS)

    Lawler, J.S.

    2001-01-01

    An inverter topology and control scheme has been developed that can drive low-inductance, surface-mounted permanent magnet motors over the wide constant power speed range required in electric vehicle applications. This new controller is called the dual-mode inverter control (DMIC)[1]. The DMIC can drive either the Permanent Magnet Synchronous Machine (PMSM) with sinusoidal back emf, or the brushless dc machine (BDCM) with trapezoidal emf in the motoring and regenerative braking modes. In this paper we concentrate on the BDCM under high-speed motoring conditions. Simulation results show that if all motor and inverter loss mechanisms are neglected, the constant power speed range of the DMIC is infinite. The simulation results are supported by closed form expressions for peak and rms motor current and average power derived from analytical solution to the differential equations governing the DMIC/BDCM drive for the lossless case. The analytical solution shows that the range of motor inductance that can be accommodated by the DMIC is more than an order of magnitude such that the DMIC is compatible with both low- and high-inductance BDCMs. Finally, method is given for integrating the classical hysteresis band current control, used for motor control below base speed, with the phase advance of DMIC that is applied above base speed. The power versus speed performance of the DMIC is then simulated across the entire speed range

  5. A comparison of electric vehicle integration projects

    DEFF Research Database (Denmark)

    Andersen, Peter Bach; Garcia-Valle, Rodrigo; Kempton, Willett

    2012-01-01

    .g. utilization of electric vehicles for ancillary services. To arrive at standardized solutions, it is helpful to analyze the market integration and utilization concepts, architectures and technologies used in a set of state-of-the art electric vehicle demonstration projects. The goal of this paper......It is widely agreed that an intelligent integration of electric vehicles can yield benefits for electric vehicle owner, power grid, and the society as a whole. Numerous electric vehicle utilization concepts have been investigated ranging from the simple e.g. delayed charging to the more advanced e...... is to highlight different approaches to electric vehicle integration in three such projects and describe the underlying technical components which should be harmonized to support interoperability and a broad set of utilization concepts. The projects investigated are the American University of Delaware's V2G...

  6. Black carbon concentrations in California vehicles and estimation of in-vehicle diesel exhaust particulate matter exposures

    Science.gov (United States)

    Fruin, Scott A.; Winer, Arthur M.; Rodes, Charles E.

    This research assessed in-vehicle exposures to black carbon (BC) as an indicator of diesel particulate matter (DPM) exposures. Approximately 50 h of real-time Aethalometer BC measurements were made inside vehicles driven on freeway and arterial loops in Los Angeles and Sacramento. Video tapes of the driver's view were transcribed to record the traffic conditions, vehicles followed, and vehicle occupant observations, and these results were tested for their associations with BC concentration. In-vehicle BC concentrations were highest when directly following diesel-powered vehicles, particularly those with low exhaust pipe locations. The lowest BC concentrations were observed while following gasoline-powered passenger cars, on average no different than not following any vehicle. Because diesel vehicles were over-sampled in the field study, results were not representative of real-world driving. To calculate representative exposures, in-vehicle BC concentrations were grouped by the type of vehicle followed, for each road type and congestion level. These groupings were then re-sampled stochastically, in proportion to the fraction of statewide vehicle miles traveled (VMT) under each of those conditions. The approximately 6% of time spent following diesel vehicles led to 23% of the in-vehicle BC exposure, while the remaining exposure was due to elevated roadway BC concentrations. In-vehicle BC exposures averaged 6 μg m -3 in Los Angeles and the Bay Area, the regions with the highest congestion and the majority of the state's VMT. The statewide average in-vehicle BC exposure was 4 μg m -3, corresponding to DPM concentrations of 7-23 μg m -3, depending on the Aethalometer response to elemental carbon (EC) and the EC fraction of the DPM. In-vehicle contributions to overall DPM exposures ranged from approximately 30% to 55% of total DPM exposure on a statewide population basis. Thus, although time spent in vehicles was only 1.5 h day -1 on average, vehicles may be the most

  7. Validation of Measured Damping Trends for Flight-Like Vehicle Panel/Equipment including a Range of Cable Harness Assemblies

    Science.gov (United States)

    Smith, Andrew M.; Davis, R. Benjamin; LaVerde, Bruce T.; Fulcher, Clay W.; Jones, Douglas C.; Waldon, James M.; Craigmyle, Benjamin B.

    2012-01-01

    This validation study examines the effect on vibroacoustic response resulting from the installation of cable bundles on a curved orthogrid panel. Of interest is the level of damping provided by the installation of the cable bundles and whether this damping could be potentially leveraged in launch vehicle design. The results of this test are compared with baseline acoustic response tests without cables. Damping estimates from the measured response data are made using a new software tool that leverages a finite element model of the panel in conjunction with advanced optimization techniques. While the full test series is not yet complete, the first configuration of cable bundles that was assessed effectively increased the viscous critical damping fraction of the system by as much as 0.02 in certain frequency ranges.

  8. Recovery - Strategy to Accelerate U.S. Transition to Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Leach, Richard; LoGrasso, Joseph; Monterosso, Sandra

    2014-04-30

    The objective of this project was to develop Extended Range Electric Vehicle (EREV) advanced propulsion technology and demonstrate a fleet of 146 Volt EREVs to gather data on vehicle performance and infrastructure to understand the impacts on commercialization while also creating or retaining a significant number of jobs in the United States. This objective was achieved by developing and demonstrating EREVs in real world conditions with customers in several diverse locations across the United States and installing, demonstration and testing charging infrastructure while also continuing development on second generation EREV technology. The project completed the development of the Chevrolet Volt and placed the vehicle in the hands of consumers in diverse locations across the United States. This demonstration leveraged the unique telematics platform of OnStar, standard on all Chevrolet Volts, to capture the operating experience that lead to better understanding of customer usage. The project team included utility partners that installed, demonstrated and tested charging infrastructure located in home, workplace and public locations to understand installation issues, customer usage and interaction with the electric grid. Development and demonstration of advanced technologies such as smart charging, fast charging and battery to grid interface were completed. The recipient collected, analyzed and reported the data generated by the demonstration. The recipient also continued to advance the technology of the Chevrolet Volt technology by developing energy storage system enhancements for the next-generation vehicle. Information gathered from the first generation vehicle will be utilized to refine the technology to reduce cost and mass while also increasing energy storage capacity to enhance adoption of the second generation technology into the marketplace. The launch of the first generation Chevrolet Volt will provide additional opportunities to further enhance the RESS

  9. Extending the Linear Modulation Range to the Full Base Speed Using a Single DC-Link Multilevel Inverter With Capacitor-Fed H-Bridges for IM Drives

    DEFF Research Database (Denmark)

    Rahul, Arun; Pramanick, Sumit; Kaarthik, R. Sudharshan

    2017-01-01

    In this paper, a new space vector pulse width modulation method to extend the linear modulation range of a cascaded five level inverter topology with a single dc supply is presented. Using this method, the inverter can be controlled linearly and the peak phase fundamental output voltage of the in......In this paper, a new space vector pulse width modulation method to extend the linear modulation range of a cascaded five level inverter topology with a single dc supply is presented. Using this method, the inverter can be controlled linearly and the peak phase fundamental output voltage...... of the inverter can be increased from 0.577 to 0.637Vdc without increasing the dc bus voltage and without exceeding the induction motor voltage rating. This new technique makes use of cascaded inverter pole voltage redundancy and property of the space vector structure for its operation. Using this, the induction...

  10. Vertical Take-Off and Landing Vehicle with Increased Cruise Efficiency

    Science.gov (United States)

    Fredericks, William J. (Inventor); Moore, Mark D. (Inventor); Busan, Ronald C. (Inventor); Rothhaar, Paul M. (Inventor); North, David D. (Inventor); Langford, William M. (Inventor); Laws, Christopher T. (Inventor); Hodges, William T. (Inventor); Johns, Zachary R. (Inventor); Webb, Sandy R. (Inventor)

    2016-01-01

    Systems, methods, and devices are provided that combine an advance vehicle configuration, such as an advanced aircraft configuration, with the infusion of electric propulsion, thereby enabling a four times increase in range and endurance while maintaining a full vertical takeoff and landing ("VTOL") and hover capability for the vehicle. Embodiments may provide vehicles with both VTOL and cruise efficient capabilities without the use of ground infrastructure. An embodiment vehicle may comprise a wing configured to tilt through a range of motion, a first series of electric motors coupled to the wing and each configured to drive an associated wing propeller, a tail configured to tilt through the range of motion, a second series of electric motors coupled to the tail and each configured to drive an associated tail propeller, and an electric propulsion system connected to the first series of electric motors and the second series of electric motors.

  11. Fast reconstruction of an unmanned engineering vehicle and its application to carrying rocket

    Directory of Open Access Journals (Sweden)

    Jun Qian

    2014-04-01

    Full Text Available Engineering vehicle is widely used as a huge moving platform for transporting heavy goods. However, traditional human operations have a great influence on the steady movement of the vehicle. In this Letter, a fast reconstruction process of an unmanned engineering vehicle is carried out. By adding a higher-level controller and two two-dimensional laser scanners on the moving platform, the vehicle could perceive the surrounding environment and locate its pose according to extended Kalman filter. Then, a closed-loop control system is formed by communicating with the on-board lower-level controller. To verify the performance of automatic control system, the unmanned vehicle is automatically navigated when carrying a rocket towards a launcher in a launch site. The experimental results show that the vehicle could align with the launcher smoothly and safely within a small lateral deviation of 1 cm. This fast reconstruction presents an efficient way of rebuilding low-cost unmanned special vehicles and other automatic moving platforms.

  12. Occupant-vehicle dynamics and the role of the internal model

    Science.gov (United States)

    Cole, David J.

    2018-05-01

    With the increasing need to reduce time and cost of vehicle development there is increasing advantage in simulating mathematically the dynamic interaction of a vehicle and its occupant. The larger design space arising from the introduction of automated vehicles further increases the potential advantage. The aim of the paper is to outline the role of the internal model hypothesis in understanding and modelling occupant-vehicle dynamics, specifically the dynamics associated with direction and speed control of the vehicle. The internal model is the driver's or passenger's understanding of the vehicle dynamics and is thought to be employed in the perception, cognition and action processes of the brain. The internal model aids the estimation of the states of the vehicle from noisy sensory measurements. It can also be used to optimise cognitive control action by predicting the consequence of the action; thus model predictive control (MPC) theory provides a foundation for modelling the cognition process. The stretch reflex of the neuromuscular system also makes use of the prediction of the internal model. Extensions to the MPC approach are described which account for: interaction with an automated vehicle; robust control; intermittent control; and cognitive workload. Further work to extend understanding of occupant-vehicle dynamic interaction is outlined. This paper is based on a keynote presentation given by the author to the 13th International Symposium on Advanced Vehicle Control (AVEC) conference held in Munich, September 2016.

  13. Supersonic cruise vehicle research/business jet

    Science.gov (United States)

    Kelly, R. J.

    1980-01-01

    A comparison study of a GE-21 variable propulsion system with a Multimode Integrated Propulsion System (MMIPS) was conducted while installed in small M = 2.7 supersonic cruise vehicles with military and business jet possibilities. The 1984 state of the art vehicles were sized to the same transatlantic range, takeoff distance, and sideline noise. The results indicate the MMIPS would result in a heavier vehicle with better subsonic cruise performance. The MMIPS arrangement with one fan engine and two satellite turbojet engines would not be appropriate for a small supersonic business jet because of design integration penalties and lack of redundancy.

  14. PASSIVE DETECTION OF VEHICLE LOADING

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, A.

    2012-01-03

    The Digital Imaging and Remote Sensing Laboratory (DIRS) at the Rochester Institute of Technology, along with the Savannah River National Laboratory is investigating passive methods to quantify vehicle loading. The research described in this paper investigates multiple vehicle indicators including brake temperature, tire temperature, engine temperature, acceleration and deceleration rates, engine acoustics, suspension response, tire deformation and vibrational response. Our investigation into these variables includes building and implementing a sensing system for data collection as well as multiple full-scale vehicle tests. The sensing system includes; infrared video cameras, triaxial accelerometers, microphones, video cameras and thermocouples. The full scale testing includes both a medium size dump truck and a tractor-trailer truck on closed courses with loads spanning the full range of the vehicle's capacity. Statistical analysis of the collected data is used to determine the effectiveness of each of the indicators for characterizing the weight of a vehicle. The final sensing system will monitor multiple load indicators and combine the results to achieve a more accurate measurement than any of the indicators could provide alone.

  15. Passive detection of vehicle loading

    Science.gov (United States)

    McKay, Troy R.; Salvaggio, Carl; Faulring, Jason W.; Salvaggio, Philip S.; McKeown, Donald M.; Garrett, Alfred J.; Coleman, David H.; Koffman, Larry D.

    2012-01-01

    The Digital Imaging and Remote Sensing Laboratory (DIRS) at the Rochester Institute of Technology, along with the Savannah River National Laboratory is investigating passive methods to quantify vehicle loading. The research described in this paper investigates multiple vehicle indicators including brake temperature, tire temperature, engine temperature, acceleration and deceleration rates, engine acoustics, suspension response, tire deformation and vibrational response. Our investigation into these variables includes building and implementing a sensing system for data collection as well as multiple full-scale vehicle tests. The sensing system includes; infrared video cameras, triaxial accelerometers, microphones, video cameras and thermocouples. The full scale testing includes both a medium size dump truck and a tractor-trailer truck on closed courses with loads spanning the full range of the vehicle's capacity. Statistical analysis of the collected data is used to determine the effectiveness of each of the indicators for characterizing the weight of a vehicle. The final sensing system will monitor multiple load indicators and combine the results to achieve a more accurate measurement than any of the indicators could provide alone.

  16. Online Energy Management of Plug-In Hybrid Electric Vehicles for Prolongation of All-Electric Range Based on Dynamic Programming

    Directory of Open Access Journals (Sweden)

    Zeyu Chen

    2015-01-01

    Full Text Available The employed energy management strategy plays an important role in energy saving performance and exhausted emission reduction of plug-in hybrid electric vehicles (HEVs. An application of dynamic programming for optimization of power allocation is implemented in this paper with certain driving cycle and a limited driving range. Considering the DP algorithm can barely be used in real-time control because of its huge computational task and the dependence on a priori driving cycle, several online useful control rules are established based on the offline optimization results of DP. With the above efforts, an online energy management strategy is proposed finally. The presented energy management strategy concerns the prolongation of all-electric driving range as well as the energy saving performance. A simulation study is deployed to evaluate the control performance of the proposed energy management approach. All-electric range of the plug-in HEV can be prolonged by up to 2.86% for a certain driving condition. The energy saving performance is relative to the driving distance. The presented energy management strategy brings a little higher energy cost when driving distance is short, but for a long driving distance, it can reduce the energy consumption by up to 5.77% compared to the traditional CD-CS strategy.

  17. Extending the fungal host range of a partitivirus and a mycoreovirus from Rosellinia necatrix by inoculation of protoplasts with virus particles.

    Science.gov (United States)

    Kanematsu, Satoko; Sasaki, Atsuko; Onoue, Mari; Oikawa, Yuri; Ito, Tsutae

    2010-09-01

    The potential host range of mycoviruses is poorly understood because of the lack of suitable inoculation methods. Recently, successful transfection has been reported for somatically incompatible fungal isolates with purified virus particles of two mycoviruses, the partitivirus RnPV1-W8 (RnPV1) and the mycoreovirus RnMyRV3/W370 (MyRV3), from the white root rot fungus Rosellinia necatrix (class Sordariomycetes, subclass Xylariomycetidae). These studies examined and revealed the effect of the mycoviruses on growth and pathogenicity of R. necatrix. Here, we extended the experimental host range of these two mycoviruses using a transfection approach. Protoplasts of other phytopathogenic Sordariomycetous fungi-Diaporthe sp., Cryphonectria parasitica, Valsa ceratosperma (Sordariomycetidae), and Glomerella cingulata (Hypocreomycetidae)-were inoculated with RnPV1 and MyRV3 viral particles. The presence of double-stranded RNA viral genomes in regenerated mycelia of Diaporthe sp., C. parasitica, and V. ceratosperma confirmed both types of viral infections in these three novel host species. An established RnPV1 infection was confirmed in G. cingulata but MyRV3 did not infect this host. Horizontal transmission of both viruses from newly infected strains to virus-free, wild-type strains through hyphal anastomosis was readily achieved by dual culture; however, vertical transmission through conidia was rarely observed. The virulence of Diaporthe sp., C. parasitica, and V. ceratosperma strains harboring MyRV3 was reduced compared with their virus-free counterpart. In summary, our protoplast inoculation method extended the experimental host range of RnPV1-W8 and MyRV3 within the class Sordariomycetes and revealed that MyRV3 confers hypovirulence to the new hosts, as it does to R. necatrix.

  18. Extending the range of compounds amenable for gas chromatography-mass spectrometric analysis.

    Science.gov (United States)

    Fialkov, Alexander B; Gordin, Alexander; Amirav, Aviv

    2003-04-04

    Gas chromatography-mass spectrometry (GC-MS) suffers from a major limitation in that an expanding number of thermally labile or low volatility compounds of interest are not amenable for analysis. We found that the elution temperatures of compounds from GC can be significantly lowered by reducing the column length, increasing the carrier gas flow rate, reducing the capillary column film thickness and lowering the temperature programming rate. Pyrene is eluted at 287 degrees C in standard GC-MS with a 30 m x 0.25 mm I.D. column with 1-microm DB5ms film and 1-ml/min He column flow rate. In contrast, pyrene is eluted at 79 degrees C in our "Supersonic GC-MS" system using a 1 m x 0.25 mm I.D. column with 0.1-microm DB5ms film and 100-ml/min He column flow rate. A simple model has been invoked to explain the significantly (up to 208 degrees C) lower elution temperatures observed. According to this model, every halving of the temperature programming rate, or number of separation plates (either through increased flow rate or due to reduced column length), results in approximately 20 degrees C lower elution temperature. These considerably lower elution temperatures enable the analysis of an extended range of thermally labile and low volatility compounds, that otherwise could not be analyzed by standard GC-MS. We demonstrate the analysis of large polycyclic aromatic hydrocarbons (PAHs) such as decacyclene with ten fused rings, well above the current GC limit of PAHs with six rings. Even a metalloporphirin such as magnesiumoctaethylporphin was easily analyzed with elution temperatures below 300 degrees C. Furthermore, a range of thermally labile compounds were analyzed including carbamates such as methomyl, aldicarb, aldicarbsulfone and oxamyl, explosives such as pentaerythritol tetranitrate, Tetryl and HMX, and drugs such as reserpine (608 a.m.u.). Supersonic GC-MS was used, based on the coupling of a supersonic molecular beam (SMB) inlet and ion sources with a bench

  19. The impact of electric vehicles on CO2 emissions

    International Nuclear Information System (INIS)

    Bentley, J.M.; Teagan, P.; Walls, D.; Balles, E.; Parish, T.

    1992-05-01

    A number of recent studies have examined the greenhouse gas emissions of various light duty vehicle alternatives in some detail. These studies have highlighted the extreme range of predicted net greenhouse gas emissions depending on scenarios for fuel types, vehicle and power generation efficiencies, the relative greenhouse contributions of emitted gases and a number of uncertainties in fuel chain efficiencies. Despite the potential range of results, most studies have confirmed that electric vehicles generally have significant potential for reducing greenhouse gas emissions relative to gasoline and most alternative fuels under consideration. This report summarizes the results of a study which builds on previous efforts with a particular emphasis on: (1) A detailed analysis of ICEV, FCV, and EV vehicle technology and electric power generation technology. Most previous transportation greenhouse studies have focused on characterization of fuel chains that have relatively high efficiency (65--85%) when compared with power generation (30--40%) and vehicle driveline (13--16%) efficiencies. (2) A direct comparison of EVs, FCVs with gasoline and dedicated alternative fuel, ICEVs using equivalent vehicle technology assumptions with careful attention to likely technology improvements in both types of vehicles. (3) Consideration of fuel cell vehicles and associated hydrogen infrastructure. (4) Extension of analyses for several decades to assess the prospects for EVs with a longer term prospective

  20. The importance of vehicle costs, fuel prices, and fuel efficiency to HEV market success.

    Energy Technology Data Exchange (ETDEWEB)

    Santini, D. J.; Patterson, P. D.; Vyas, A. D.

    1999-12-08

    Toyota's introduction of a hybrid electric vehicle (HEV) named ''Prius'' in Japan and Honda's proposed introduction of an HEV in the United States have generated considerable interest in the long-term viability of such fuel-efficient vehicles. A performance and cost projection model developed entirely at Argonne National Laboratory (ANL) is used here to estimate costs. ANL staff developed fuel economy estimates by extending conventional vehicle (CV) modeling done primarily under the National Cooperative Highway Research Program. Together, these estimates are employed to analyze dollar costs vs. benefits of two of many possible HEV technologies. We project incremental costs and fuel savings for a Prius-type low-performance hybrid (14.3 seconds zero to 60 mph acceleration, 260 time) and a higher-performance ''mild'' hybrid vehicle, or MHV (11 seconds 260 time). Each HEV is compared to a U.S. Toyota Corolla with automatic transmission (11 seconds 260 time). The base incremental retail price range, projected a decade hence, is $3,200-$3,750, before considering battery replacement cost. Historical data are analyzed to evaluate the effect of fuel price on consumer preferences for vehicle fuel economy, performance, and size. The relationship between fuel price, the level of change in fuel price, and consumer attitude toward higher fuel efficiency is also evaluated. A recent survey on the value of higher fuel efficiency is presented and U.S. commercial viability of the hybrids is evaluated using discount rates of 2090 and 870. Our analysis, with our current HEV cost estimates and current fuel savings estimates, implies that the U.S. market for such HEVS would be quite limited.

  1. Simulating demand for electric vehicles using revealed preference data

    International Nuclear Information System (INIS)

    Driscoll, Áine; Lyons, Seán; Mariuzzo, Franco; Tol, Richard S.J.

    2013-01-01

    We have modelled the market for new cars in Ireland with the aim of quantifying the values placed on a range of observable car characteristics. Mid-sized petrol cars with a manual transmission sell best. Price and perhaps fuel cost are negatively associated with sales, and acceleration and perhaps range are positively associated. Hybrid cars are popular. The values of car characteristics are then used to simulate the likely market shares of three new electric vehicles. Electric vehicles tend to be more expensive even after tax breaks and subsidies are applied, but we assume their market shares would benefit from an “environmental” premium similar to those of hybrid cars. The “environmental” premium and the level of subsidies would need to be raised to incredible levels to reach the government target of 10% market penetration of all-electric vehicles. -- Highlights: •Market values placed on a range of observable car characteristics are quantified. •We simulate market shares of electrical vehicles from values of car characteristics. •We assume electric vehicles will benefit from an “environmental” premium. •Large premium not enough to reach government targets for market penetration. •Very high subsidies required to reach government targets for market penetration

  2. ADOPT: A Historically Validated Light Duty Vehicle Consumer Choice Model

    Energy Technology Data Exchange (ETDEWEB)

    Brooker, A.; Gonder, J.; Lopp, S.; Ward, J.

    2015-05-04

    The Automotive Deployment Option Projection Tool (ADOPT) is a light-duty vehicle consumer choice and stock model supported by the U.S. Department of Energy’s Vehicle Technologies Office. It estimates technology improvement impacts on U.S. light-duty vehicles sales, petroleum use, and greenhouse gas emissions. ADOPT uses techniques from the multinomial logit method and the mixed logit method estimate sales. Specifically, it estimates sales based on the weighted value of key attributes including vehicle price, fuel cost, acceleration, range and usable volume. The average importance of several attributes changes nonlinearly across its range and changes with income. For several attributes, a distribution of importance around the average value is used to represent consumer heterogeneity. The majority of existing vehicle makes, models, and trims are included to fully represent the market. The Corporate Average Fuel Economy regulations are enforced. The sales feed into the ADOPT stock model. It captures key aspects for summing petroleum use and greenhouse gas emissions This includes capturing the change in vehicle miles traveled by vehicle age, the creation of new model options based on the success of existing vehicles, new vehicle option introduction rate limits, and survival rates by vehicle age. ADOPT has been extensively validated with historical sales data. It matches in key dimensions including sales by fuel economy, acceleration, price, vehicle size class, and powertrain across multiple years. A graphical user interface provides easy and efficient use. It manages the inputs, simulation, and results.

  3. Sky-Hook Control and Kalman Filtering in Nonlinear Model of Tracked Vehicle Suspension System

    Directory of Open Access Journals (Sweden)

    Jurkiewicz Andrzej

    2017-09-01

    Full Text Available The essence of the undertaken topic is application of the continuous sky-hook control strategy and the Extended Kalman Filter as the state observer in the 2S1 tracked vehicle suspension system. The half-car model of this suspension system consists of seven logarithmic spiral springs and two magnetorheological dampers which has been described by the Bingham model. The applied continuous sky-hook control strategy considers nonlinear stiffness characteristic of the logarithmic spiral springs. The control is determined on estimates generated by the Extended Kalman Filter. Improve of ride comfort is verified by comparing simulation results, under the same driving conditions, of controlled and passive vehicle suspension systems.

  4. REAL-TIME MONITORING SYSTEM USING UNMANNED AERIAL VEHICLE INTEGRATED WITH SENSOR OBSERVATION SERVICE

    Directory of Open Access Journals (Sweden)

    A. Witayangkurn

    2012-09-01

    Full Text Available The Unmanned Aerial Vehicle (UAV is an emerging technology being adapted for a wide range of applications. Real-time monitoring is essential to enhance the effectiveness of UAV applications. Sensor networks are networks constructed from various sensor nodes. International standard such as OGC's SOS (Sensor Observation Service makes it possible to share sensor data with other systems as well as to provide accessibility to globally distributed users. In this paper, we propose a system combining UAV technology and sensor network technology to use an UAV as a mobile node of sensor network so that the sensor data from UAV is published and shared real-time. A UAV can extend the observation range of a sensor network to remote areas where it is usually difficult to access such as disaster area. We constructed a UAV system using remote-controlled helicopter and various sensors such as GPS, gyrocompass, laser range finder, Digital camera and Thermometer. Furthermore, we extended the Sensor Observation Service (SOS and Sensor Service Grid (SSG to support mobile sensor nodes. Then, we conducted experiments of flying the helicopter over an area of the interest. During the flight, the system measured environmental data using its sensors and captured images of the ground. The data was sent to a SOS node as the ground station via Wi-Fi which was published using SSG to give real- time access to globally distributed users.

  5. Monocular Vision SLAM for Indoor Aerial Vehicles

    Directory of Open Access Journals (Sweden)

    Koray Çelik

    2013-01-01

    Full Text Available This paper presents a novel indoor navigation and ranging strategy via monocular camera. By exploiting the architectural orthogonality of the indoor environments, we introduce a new method to estimate range and vehicle states from a monocular camera for vision-based SLAM. The navigation strategy assumes an indoor or indoor-like manmade environment whose layout is previously unknown, GPS-denied, representable via energy based feature points, and straight architectural lines. We experimentally validate the proposed algorithms on a fully self-contained microaerial vehicle (MAV with sophisticated on-board image processing and SLAM capabilities. Building and enabling such a small aerial vehicle to fly in tight corridors is a significant technological challenge, especially in the absence of GPS signals and with limited sensing options. Experimental results show that the system is only limited by the capabilities of the camera and environmental entropy.

  6. Impact of driving cycle and climate on electrical consumption and range of a fully electric passenger vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, N; Belzile, M [Transport Canada, Ottawa, ON (Canada); Christenson, M; Edgar, J [Environment Canada, Gatineau, PQ (Canada)

    2010-07-01

    Transport Canada's ecotechnology for vehicles (eTV) program is a $15 million program, operated over 4 years (2007-2011) that strives to encourage the introduction of advanced clean vehicle technologies in Canada. The objectives of eTV's are to reduce barriers to the introduction of clean technologies into light-duty vehicles sold in Canada. The presentation discussed the mandate of the emissions research and measurement section of Environment Canada. The dynamometer test facility, a state-of-the-art emissions testing laboratory capable of conducting comprehensive emissions measurements from a variety of sources was also discussed. Several electric mobility projects were presented. The testing rationale and testing outline were explained. It was concluded that the repeatability of cold tests appeared to be similar to the repeatability of ambient tests. tabs., figs.

  7. Impact of driving cycle and climate on electrical consumption and range of a fully electric passenger vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, N.; Belzile, M. [Transport Canada, Ottawa, ON (Canada); Christenson, M.; Edgar, J. [Environment Canada, Gatineau, PQ (Canada)

    2010-07-01

    Transport Canada's ecotechnology for vehicles (eTV) program is a $15 million program, operated over 4 years (2007-2011) that strives to encourage the introduction of advanced clean vehicle technologies in Canada. The objectives of eTV's are to reduce barriers to the introduction of clean technologies into light-duty vehicles sold in Canada. The presentation discussed the mandate of the emissions research and measurement section of Environment Canada. The dynamometer test facility, a state-of-the-art emissions testing laboratory capable of conducting comprehensive emissions measurements from a variety of sources was also discussed. Several electric mobility projects were presented. The testing rationale and testing outline were explained. It was concluded that the repeatability of cold tests appeared to be similar to the repeatability of ambient tests. tabs., figs.

  8. Converted vehicle for battery electric drive. Aspects on the design of the software-driven vehicle control unit

    Energy Technology Data Exchange (ETDEWEB)

    Giessler, Martin; Paul, Jens; Gauterin, Frank [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Inst. fuer Fahrzeugsystemtechnik (FAST); Fritz, Alexander; Sander, Oliver; Mueller-Glaser, Klaus D. [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Inst. fuer Technik der Informationsverarbeitung (ITIV)

    2012-11-01

    At the Karlsruher Institute of Technology (KIT) a vehicle was converted for full battery electric drive within a cooperation of several faculties under the direction of the chair of vehicle technology. Within this paper the developed software to control the main functions of the vehicle will be presented and potentials to increase the energy efficiency will be discussed. The software based vehicle control unit is the central control unit to realize drivers command with respect to the system parameters, which are important for safety, dynamics, range and comfort of the vehicle. The structure of the software architecture, the interaction with the main electric vehicle specific control units and components and the main implemented functions will be described within this paper. The converted vehicle consists mainly of one electric motor with water cooled power electronics that drives the front axle, 21 battery modules controlled and managed by the battery management system, one on board charging device and an universal control unit. Not only strategies for power recovery while braking, but also strategies for driving and operation can help increase the energy efficiency. Select measures to recover and safe energy are also shown. (orig.)

  9. Flywheel-battery hydrid: a new concept for vehicle propulsion

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    A new concept was examined for powering the automobile: a flywheel-battery hybrid that can be developed for near-term use from currently available lead-acid batteries and state-of-the-art flywheel designs. To illustrate the concept, a calculation is given of the range and performance of the hybrid power system in a typical commute vehicle, and the results are compared to the measured range and performance of an all-battery vehicle. This comparison shows improved performance and a twofold urban-range increase for the hybrid over the all-battery power system

  10. Fuel cell usage in motor vehicles

    International Nuclear Information System (INIS)

    Vellone, R.

    1998-01-01

    Much interest has been aroused by fuel cell usage in motor vehicles, since this technology seems to overcome the conventional limits by other kinds of drive, i.e. the high environmental impact of internal-combustion engines and the drawbacks of electric battery vehicles in terms of maximum operating range and battery recharge time. After 2010 its costs are expected to fall in competitive levels with internal-combustion engines [it

  11. Adaptable imaging package for remote vehicles

    Directory of Open Access Journals (Sweden)

    Jean-Luc Liardon

    2017-10-01

    Full Text Available An easy-to-customize, low-cost solution for remote imagery is described. The system, denoted ImPROV (Imaging Package for Remote Vehicles, supports multiple cameras, live streaming, long-range encrypted communication using mobile networks, positioning and time-stamped imagery, etc. The adaptability of the system is demonstrated by its deployment on different remotely operated or autonomous vehicles, which include model aircraft, drones, balloon, kite and a submarine.

  12. 40 CFR 80.595 - How does a small or GPA refiner apply for a motor vehicle diesel fuel volume baseline for the...

    Science.gov (United States)

    2010-07-01

    ... for a motor vehicle diesel fuel volume baseline for the purpose of extending their gasoline sulfur... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive... a small or GPA refiner apply for a motor vehicle diesel fuel volume baseline for the purpose of...

  13. Hybrid extended particle filter (HEPF) for integrated inertial navigation and global positioning systems

    International Nuclear Information System (INIS)

    Aggarwal, Priyanka; Syed, Zainab; El-Sheimy, Naser

    2009-01-01

    Navigation includes the integration of methodologies and systems for estimating time-varying position, velocity and attitude of moving objects. Navigation incorporating the integrated inertial navigation system (INS) and global positioning system (GPS) generally requires extensive evaluations of nonlinear equations involving double integration. Currently, integrated navigation systems are commonly implemented using the extended Kalman filter (EKF). The EKF assumes a linearized process, measurement models and Gaussian noise distributions. These assumptions are unrealistic for highly nonlinear systems like land vehicle navigation and may cause filter divergence. A particle filter (PF) is developed to enhance integrated INS/GPS system performance as it can easily deal with nonlinearity and non-Gaussian noises. In this paper, a hybrid extended particle filter (HEPF) is developed as an alternative to the well-known EKF to achieve better navigation data accuracy for low-cost microelectromechanical system sensors. The results show that the HEPF performs better than the EKF during GPS outages, especially when simulated outages are located in periods with high vehicle dynamics

  14. Electric and Hybrid Vehicle System Research and Development Project: Hybrid Vehicle Potential Assessment. Volume VI. Cost analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, K.S.

    1979-09-30

    The purpose of the cost analysis is to determine the economic feasibility of a variety of hybrid vehicles with respect to conventional vehicles specifically designed for the same duty cycle defined by the mission analysis. Several different hybrid configurations including parallel, parallel-flywheel, and series vehicles were evaluated. The ramifications of incorporating examples of advanced batteries, these being the advanced lead-acid, nickel-zinc, and sodium sulfur were also investigated. Vehicles were specifically designed with these batteries and for the driving cycles specified by the mission. Simulated operation on the missions yielded the energy consumption (petroleum and/or electricity) over the driving cycles. It was concluded that: in the event that gasoline prices reach $2.50 to $3.00/gal, hybrid vehicles in many applications will become economically competitive with conventional vehicles without subsidization; in some commercial applications hybrid vehicles could be economically competitive, when the gasoline price ranges from $1.20 to $1.50/gal. The cost per kWh per cycle of the advanced batteries is much more important economically than the specific energy; the series hybrid vehicles were found to be more expensive in comparison to the parallel or parallel-flywheel hybrids when designed as passenger vehicles; and hybrid vehicles designed for private use could become economically competitive and displace up to 50% of the fuel normally used on that mission if subsidies of $500 to $2000 were supplied to the owner/operator. (LCL)

  15. A Leader-path-following formation system for AGVs with multi-sensor data fusion based vehicle tracking

    Science.gov (United States)

    Yao, Wen; Zhao, Xijun; Yu, Yufeng; Fang, Yongkun; Wang, Chao; Yang, Tianfu

    2017-09-01

    Caravans composed of vehicles with different functionality or trafficability raise the demand that formation system structure shall allow vehicles to deviate from the path to be followed when necessary. In this paper, a formation system is developed for autonomous ground vehicles (AGVs) who follow the path of a leader vehicle while retaining the ability of deviation from the reference path. In addition, it improves robustness of preceding vehicle localization by fusing Lidar tracking, camera tracking results with predecessor’s global position within an extended Kalman filter (EKF) in case that one or more sources of preceding vehicle localization is not reliable. The system is applied on real AGV platforms and won the 3rd place in an AGV competition in China.

  16. Self regulation initiative to address the heavy vehicle overloading problem in South Africa

    CSIR Research Space (South Africa)

    Nordengen, Paul A

    2004-07-01

    Full Text Available vehicles; • Improve road safety; • Increase the productivity of the transport industry through adoption of good management practices; In reviewing the Australian scheme, which extends beyond vehicle mass/overload control to the crucial safety issues... number of aspects have been addressed, all of which have involved consultation with representatives of the timber industry and other role players: • Underlying principles and business rules • Rules of compliance for accreditation • Proposed...

  17. Privacy and Security in Connected Vehicles Ecosystems

    Directory of Open Access Journals (Sweden)

    Marius POPA

    2017-01-01

    Full Text Available Modern vehicles could not be figured out without Internet connections in order to provide customers a wide range of services in the vehicle: infotainment platforms, third-party support, on-board and online monitor and maintenance, business analytics for car fleets. Exposure of the vehicles to the Internet turns them into targets for viruses, worms, Trojans, DoS and lot of other threats for connected vehicle security. Beside the classic threats of the Internet exposure, other new threats are introduced by the Internet of Things (IoT new technologies that are poor regulated or undefined yet from the security point of view. Also, the large variety of the IoT technologies not being standardized yet contribute to security issues in this area of the automotive industry. This paper provides an overview of the connected vehicle environment, considering the main components of such kind of system and the main security challenges to be considered for building reliable secure online systems for connected vehicles.

  18. Measuring concentrations of selected air pollutants inside California vehicles. Final report

    International Nuclear Information System (INIS)

    Rodes, C.; Sheldon, L.; Whitaker, D.; Clayton, A.; Fitzgerald, K.

    1999-01-01

    This project measured 2-hour integrated concentrations of PM10, PM2.5, metals and a number of organic chemicals including benzene and MTBE inside vehicles on California roadways. Using continuous samplers, particle counts, black carbon, and CO were also measured. In addition to measuring in-vehicle levels, the investigators measured pollutant levels just outside the vehicle, at roadside stations, and ambient air monitoring stations. Different driving scenarios were designed to assess the effects of a number of factors on in-vehicle pollutant levels. These factors included roadway type, carpool lanes, traffic conditions, geographical locations, vehicle type, and vehicle ventilation conditions. The statewide average in-vehicle concentrations of benzene, MTBE, and formaldehyde ranged from 3--22 microg/m 3 , 3--90 microg/m 3 , and 0---22 microg/m 3 , respectively. The ranges of mean PM10 and PM2.5 in-vehicle levels in Sacramento were 20--40 microg/m 3 and 6--22 microg/m 3 , respectively. In general, pollutant levels inside or just outside the vehicles were higher than those measured at the roadside stations or the ambient air stations. In-vehicle pollutant levels were consistently higher in Los Angeles than Sacramento. Pollutant levels measured inside vehicles traveling in a carpool lane were much lower than those in the right-hand, slower lanes. Under the study conditions, factors such as vehicle type and ventilation and little effect on in-vehicle pollutant levels. Other factors, such as roadway type, freeway congestion level, and time-of-day had some influence on in-vehicle pollution levels

  19. Electric and Hybrid Vehicle Technology: TOPTEC

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance of today's electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between refueling'' stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.

  20. Electric and Hybrid Vehicle Technology: TOPTEC

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance of today`s electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between ``refueling`` stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of ``Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.

  1. Electric and hybrid vehicle technology: TOPTEC

    Science.gov (United States)

    Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance of today's electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between 'refueling' stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of 'Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.

  2. Impacts of Vehicle (In)Security

    Energy Technology Data Exchange (ETDEWEB)

    Chugg, J.; Rohde, K.

    2015-05-01

    Nuclear and radioactive material is routinely transported worldwide every day. Since 2010, the complexity of the transport vehicle to support such activities has grown exponentially. Many core functions of a vehicle are now handled by small embedded computer modules with more being added each year to enhance the owner’s experience and convenience. With a system as complex as today’s automobile, the potential for cyber security issues is certain. Hackers have begun exploring this new domain with public information increasingly disseminated. Because vehicles are allowed into and around secure nuclear facilities, the potential for using a vehicle as a new cyber entry point or vector into the facility is now plausible and must be mitigated. In addition, compromising such a vehicle could aide in illicit removal of nuclear material, putting sensitive cargo at risk. Because cyber attacks can now be introduced using vehicles, cyber security, needs to be integrated into an organization’s design basis threat document. Essentially, a vehicle now extends the perimeter for which security professionals are responsible.Electronic Control Units (ECU) responsible for handling all core and ancillary vehicle functions are interconnected using the controller area network (CAN) bus. A typical CAN network in a modern automobile contains 50 or more ECUs. The CAN protocol now supports a wide variety of areas, including automotive, road transportation, rail transportation, industrial automation, power generation, maritime, military vehicles, aviation, and medical devices. In many ways, the nuclear industry is employing the CAN bus protocol or other similar broadcast serial networks. This paper will provide an overview of the current state of automobile and CAN Bus security, as well as an overview of what has been publicly disclosed by many research organizations. It will then present several hypotheses of how vehicle security issues may impact nuclear activities. An initial

  3. Observer-based attitude controller for lifting re-entry vehicle with non-minimum phase property

    Directory of Open Access Journals (Sweden)

    Wenming Nie

    2017-05-01

    Full Text Available This article concentrates on the attitude control problem for the lifting re-entry vehicle with non-minimum phase property. A novel attitude control method is proposed for this kind of lifting re-entry vehicle without assuming the internal dynamics to be measurable. First, an internal dynamics extended state observer is developed to deal with the unmeasurable problem of the internal dynamics. And then, the control scheme which adopts output feedback method is proposed by modifying the traditional output redefinition technique with internal dynamics extended state observer. This control scheme only requires the system output to be measurable, and it can still stabilize the unstable internal dynamics and track attitude commands. Besides, because of the inherent property of extended state observer in rejecting uncertainties and disturbances, the control precision of the proposed controller is higher than the controller designed with traditional output redefinition technique. Finally, the effectiveness and robustness of the proposed attitude controller are demonstrated by the simulation results.

  4. Vehicle test report: South Coast technology electric conversion of a Volkswagen Rabbit

    Science.gov (United States)

    Price, T. W.; Shain, T. W.; Bryant, J. A.

    1981-01-01

    The South Coast Technology Volkswagen Rabbit, was tested at the Jet Propulsion Laboratory's (JPL) dynamometer facility and at JPL's Edwards Test Station (ETS). The tests were performed to characterize certain parameters of the South Coast Rabbit and to provide baseline data that will be used for the comparison of near term batteries that are to be incorporated into the vehicle. The vehicle tests were concentrated on the electrical drive system; i.e., the batteries, controller, and motor. The tests included coastdowns to characterize the road load, maximum effort acceleration, and range evaluation for both cyclic and constant speed conditions. A qualitative evaluation of the vehicle was made by comparing its constant speed range performance with those vehicles described in the document 'state of the Art assessment of Electric and Hybrid Vehicles'. The Rabbit performance was near to the best of the 1977 vehicles.

  5. ELECTROMAGNETIC BIOSPHERE POLLUTION BY MOTOR TRANSPORT (VEHICLES, ELECTRIC VEHICLES, HYBRID VEHICLES

    Directory of Open Access Journals (Sweden)

    S. Selivanov

    2009-01-01

    Full Text Available The physics of the electromagnetic field is considered. The analysis of electromagnetic radiation on the human-being, the origin of which is the vehicle the electric vehicle, the hybrid vehicle is being considered. The monitoring of electromagnetic radiation of vehicles is carried out.

  6. Optimal Siting of Charging Stations for Electric Vehicles Based on Fuzzy Delphi and Hybrid Multi-Criteria Decision Making Approaches from an Extended Sustainability Perspective

    Directory of Open Access Journals (Sweden)

    Huiru Zhao

    2016-04-01

    Full Text Available Optimal siting of electric vehicle charging stations (EVCSs is crucial to the sustainable development of electric vehicle systems. Considering the defects of previous heuristic optimization models in tackling subjective factors, this paper employs a multi-criteria decision-making (MCDM framework to address the issue of EVCS siting. The initial criteria for optimal EVCS siting are selected from extended sustainability theory, and the vital sub-criteria are further determined by using a fuzzy Delphi method (FDM, which consists of four pillars: economy, society, environment and technology perspectives. To tolerate vagueness and ambiguity of subjective factors and human judgment, a fuzzy Grey relation analysis (GRA-VIKOR method is employed to determine the optimal EVCS site, which also improves the conventional aggregating function of fuzzy Vlsekriterijumska Optimizacijia I Kompromisno Resenje (VIKOR. Moreover, to integrate the subjective opinions as well as objective information, experts’ ratings and Shannon entropy method are employed to determine combination weights. Then, the applicability of proposed framework is demonstrated by an empirical study of five EVCS site alternatives in Tianjin. The results show that A3 is selected as the optimal site for EVCS, and sub-criteria affiliated with environment obtain much more attentions than that of other sub-criteria. Moreover, sensitivity analysis indicates the selection results remains stable no matter how sub-criteria weights are changed, which verifies the robustness and effectiveness of proposed model and evaluation results. This study provides a comprehensive and effective method for optimal siting of EVCS and also innovates the weights determination and distance calculation for conventional fuzzy VIKOR.

  7. Vehicle Detection for RCTA/ANS (Autonomous Navigation System)

    Science.gov (United States)

    Brennan, Shane; Bajracharya, Max; Matthies, Larry H.; Howard, Andrew B.

    2012-01-01

    Using a stereo camera pair, imagery is acquired and processed through the JPLV stereo processing pipeline. From this stereo data, large 3D blobs are found. These blobs are then described and classified by their shape to determine which are vehicles and which are not. Prior vehicle detection algorithms are either targeted to specific domains, such as following lead cars, or are intensity- based methods that involve learning typical vehicle appearances from a large corpus of training data. In order to detect vehicles, the JPL Vehicle Detection (JVD) algorithm goes through the following steps: 1. Take as input a left disparity image and left rectified image from JPLV stereo. 2. Project the disparity data onto a two-dimensional Cartesian map. 3. Perform some post-processing of the map built in the previous step in order to clean it up. 4. Take the processed map and find peaks. For each peak, grow it out into a map blob. These map blobs represent large, roughly vehicle-sized objects in the scene. 5. Take these map blobs and reject those that do not meet certain criteria. Build descriptors for the ones that remain. Pass these descriptors onto a classifier, which determines if the blob is a vehicle or not. The probability of detection is the probability that if a vehicle is present in the image, is visible, and un-occluded, then it will be detected by the JVD algorithm. In order to estimate this probability, eight sequences were ground-truthed from the RCTA (Robotics Collaborative Technology Alliances) program, totaling over 4,000 frames with 15 unique vehicles. Since these vehicles were observed at varying ranges, one is able to find the probability of detection as a function of range. At the time of this reporting, the JVD algorithm was tuned to perform best at cars seen from the front, rear, or either side, and perform poorly on vehicles seen from oblique angles.

  8. Potential for widespread electrification of personal vehicle travel in the United States

    Science.gov (United States)

    Needell, Zachary A.; McNerney, James; Chang, Michael T.; Trancik, Jessika E.

    2016-09-01

    Electric vehicles can contribute to climate change mitigation if coupled with decarbonized electricity, but only if vehicle range matches travellers’ needs. Evaluating electric vehicle range against a population’s needs is challenging because detailed driving behaviour must be taken into account. Here we develop a model to combine information from coarse-grained but expansive travel surveys with high-resolution GPS data to estimate the energy requirements of personal vehicle trips across the US. We find that the energy requirements of 87% of vehicle-days could be met by an existing, affordable electric vehicle. This percentage is markedly similar across diverse cities, even when per capita gasoline consumption differs significantly. We also find that for the highest-energy days, other vehicle technologies are likely to be needed even as batteries improve and charging infrastructure expands. Car sharing or other means to serve this small number of high-energy days could play an important role in the electrification and decarbonization of transportation.

  9. DC Algorithm for Extended Robust Support Vector Machine.

    Science.gov (United States)

    Fujiwara, Shuhei; Takeda, Akiko; Kanamori, Takafumi

    2017-05-01

    Nonconvex variants of support vector machines (SVMs) have been developed for various purposes. For example, robust SVMs attain robustness to outliers by using a nonconvex loss function, while extended [Formula: see text]-SVM (E[Formula: see text]-SVM) extends the range of the hyperparameter by introducing a nonconvex constraint. Here, we consider an extended robust support vector machine (ER-SVM), a robust variant of E[Formula: see text]-SVM. ER-SVM combines two types of nonconvexity from robust SVMs and E[Formula: see text]-SVM. Because of the two nonconvexities, the existing algorithm we proposed needs to be divided into two parts depending on whether the hyperparameter value is in the extended range or not. The algorithm also heuristically solves the nonconvex problem in the extended range. In this letter, we propose a new, efficient algorithm for ER-SVM. The algorithm deals with two types of nonconvexity while never entailing more computations than either E[Formula: see text]-SVM or robust SVM, and it finds a critical point of ER-SVM. Furthermore, we show that ER-SVM includes the existing robust SVMs as special cases. Numerical experiments confirm the effectiveness of integrating the two nonconvexities.

  10. Electric vehicle test report Cutler-Hammer Corvette

    Science.gov (United States)

    1981-01-01

    Vehicles were characterized for the state of the art assessment of electric vehicles. The vehicle evaluated was a Chevrolet Corvette converted to electric operation. The original internal combustion engine was replaced by an electric traction motor. Eighteen batteries supplied the electrical energy. A controller, an onboard battery charger, and several dashboard instruments completed the conversion. The emphasis was on the electrical portion of the drive train, although some analysis and discussion of the mechanical elements are included. Tests were conducted both on the road (actually a mile long runway) and in a chassis dynamometer equipped laboratory. The majority of the tests performed were according to SAE Procedure J227a and included maximum effort accelerations, constant speed range, and cyclic range. Some tests that are not a part of the SAE Procedure J227a are described and the analysis of the data from all tests is discussed.

  11. X-ray extended-range technique for precision measurement of the x-ray mass attenuation coefficient and IM(F) for copper using synchrotron radiation

    International Nuclear Information System (INIS)

    Tran, C.Q.; Paterson, D.; Barnea, Z.; Cookson, D.J.; Chantler, C.T.

    2000-01-01

    Full text: Complex X-ray form factors are used in crystallography, material science, medical diagnosis refractive index studies and XAFS. We introduce the X-ray Extended-Range Technique for measurements of the imaginary component of the atomic form factor. We achieve accuracies of 0.27%-0.5% for copper from 8.84 keV to 20 keV. Discrepancies between measurements using earlier experimental techniques are 10%. We achieve reproducibility of 0.02%. New methods of computation are required to approach the accuracy of our data. Results probe the transform of atomic orbital wavefunctions and long-range order. Discrepancies of order 10% between current theory and experiments can be addressed

  12. Stability Simulation of a Vehicle with Wheel Active Steering

    Directory of Open Access Journals (Sweden)

    Brabec Pavel

    2016-01-01

    Full Text Available This paper deals with the possibility of increasing the vehicle driving stability at a higher speed. One of the ways how to achieve higher stability is using the 4WS system. Mathematical description of vehicle general movement is a very complex task. For simulation, models which are aptly simplified are used. For the first approach, so-called single-truck vehicle model (often linear is usually used. For the simulation, we have chosen to extend the model into a two-truck one, which includes the possibility to input more vehicle parameters. Considering the 4WS system, it is possible to use a number of potential regulations. In our simulation model, the regulation system with compound coupling was used. This type of regulation turns the rear wheels depending on the input parameters of the system (steering angle of the front wheels and depending on the output moving quantities of the vehicle, most frequently the yaw rate. Criterion for compensation of lateral deflection centre of gravity angle is its zero value, or more precisely the zero value of its first-order derivative. Parameters and set-up of the simulation model were done in conjunction with the dSAPACE software. Reference performances of the vehicle simulation model were made through the defined manoeuvres. But the simulation results indicate that the rear-wheels steering can have a positive effect on the vehicle movement stability, especially when changing the driving direction at high speed.

  13. An Accelerated Testing Approach for Automated Vehicles with Background Traffic Described by Joint Distributions

    OpenAIRE

    Huang, Zhiyuan; Lam, Henry; Zhao, Ding

    2017-01-01

    This paper proposes a new framework based on joint statistical models for evaluating risks of automated vehicles in a naturalistic driving environment. The previous studies on the Accelerated Evaluation for automated vehicles are extended from multi-independent-variate models to joint statistics. The proposed toolkit includes exploration of the rare event (e.g. crash) sets and construction of accelerated distributions for Gaussian Mixture models using Importance Sampling techniques. Furthermo...

  14. An Efficiency-Optimized Isolated Bidirectional DC-DC Converter with Extended Power Range for Energy Storage Systems in Microgrids

    Directory of Open Access Journals (Sweden)

    Xiaolong Shi

    2012-12-01

    Full Text Available This paper proposes a novel extended-single-phase shift (ESPS control strategy of isolated bidirectional full-bridge DC-DC converters (IBDCs which are a promising alternative as a power electronic interface in microgrids with an additional function of galvanic isolation. Based on the mathematical models of ESPS control under steady-state conditions, detailed theoretical and experimental analyses of IBDC under ESPS control are presented. Compared with conventional single-phase-shift (CSPS control, ESPS control can greatly improve the efficiency of IBDCs in microgrids through decreasing current stress and backflow power considerably over a wide input and output voltage range under light and medium loads. In addition, ESPS control only needs to adjust one single phase-shift angel to control transmission power, thus it retains implementation simplicity in comparison with dual-phase-shift (DPS control for microgrid applications. Furthermore, an efficiency-optimized modulation scheme based on ESPS and CSPS control is developed in the whole power range of IBDC for power distribution in microgrids. A 10 kW IBDC prototype is constructed and the experimental results validate the effectiveness of the proposed control strategy, showing that the proposed strategy can enhance the overall efficiency up to 30%.

  15. DESIGN OF A REAL TIME REMOTE VEHICLE LOCATION SYSTEM

    Directory of Open Access Journals (Sweden)

    Ahmet Emir DİRİK

    2004-02-01

    Full Text Available In this study, a low-cost, real-time vehicle location system is developed. The vehicle location system includes three main modules, i.e. positioning, wireless communication and digital map modules. The positioning module used in location systems computes position of the mobile vehicle. These vehicle location data are transmitted through a wireless communication system to host. The host has a capability to monitor a fleet of vehicles by analyzing data collected from wireless communication system. In this project, mobile vehicle location positions can be computed in a range of 10m position error and by using these position data, its possible to monitor the fleet of mobile vehicles on a digital map in the observation and control center. In this study, vehicle analog mobile radios are used to establish wireless communication system. Thus, there is no need to use satellite or GSM systems for communication and a low-cost and high-performance vehicle location system is realized.

  16. Storage evaporator for vehicles with start-stop technology; Speicherverdampfer fuer Fahrzeuge mit Start-Stopp-Funktion

    Energy Technology Data Exchange (ETDEWEB)

    Wawzyniak, Markus; Link, Joachim [Behr GmbH und Co. KG, Stuttgart (Germany)

    2013-04-15

    Today, the use of engine start-stop technology - a system designed to cut fuel consumption when the vehicle stops or, in future applications, when vehicles are in coasting or ''sailing'' mode - is gaining ground in more and more vehicle classes. Shutting off the internal combustion engine, though, detrimentally affects cabin air conditioning because the belt-driven A/C compressor is likewise deactivated, thus bringing the vapor compression process to a standstill. As a result, during extended stop periods and in warm weather vent temperatures and air humidity rapidly increase.

  17. The electric vehicle

    International Nuclear Information System (INIS)

    Sanchez duran, R.

    2010-01-01

    The decarbonization of transport is a key element in both energy and environmental European policies as well as one of the levers that will help us achieve the goals of improving energy efficiency, reducing CO 2 emissions and energy dependence. The use of electricity compared to other low-carbon fuels such as bio fuels and hydrogen has the advantage of its existing infrastructure (power generation plants, transmission and distribution networks), being only necessary to developed recharging infrastructures. We emphasize the role of electricity networks and their evolution, which will enable to manage demand and maximise the potential of renewable energies. The idea of an electric vehicle is not a recent one but dates back to the beginning of the last century, when first units appeared. Unfortunately, technological barriers were too high at the time to let them succeed. Namely those barriers limited the range of the electric vehicle due to problems with battery recharges. Nowadays, those difficulties have almost been solved and we can state that institutional support and coordination among all actors involved have made the electric vehicle a plausible reality. While the technological improvements needed for the electric vehicle to become cost competitive are carried out, the plug-in hybrid vehicle represents the intermediate step to reach a total decarbonization of transport. Endesa is committed to this revolution in transport mobility and believes that now is the right time to focus our efforts on it. Our goal is to contribute to a more balanced and sustainable world in the near future. (Author)

  18. Investigation of Secondary Neutron Production in Large Space Vehicles for Deep Space

    Science.gov (United States)

    Rojdev, Kristina; Koontz, Steve; Reddell, Brandon; Atwell, William; Boeder, Paul

    2016-01-01

    Future NASA missions will focus on deep space and Mars surface operations with large structures necessary for transportation of crew and cargo. In addition to the challenges of manufacturing these large structures, there are added challenges from the space radiation environment and its impacts on the crew, electronics, and vehicle materials. Primary radiation from the sun (solar particle events) and from outside the solar system (galactic cosmic rays) interact with materials of the vehicle and the elements inside the vehicle. These interactions lead to the primary radiation being absorbed or producing secondary radiation (primarily neutrons). With all vehicles, the high-energy primary radiation is of most concern. However, with larger vehicles, there is more opportunity for secondary radiation production, which can be significant enough to cause concern. In a previous paper, we embarked upon our first steps toward studying neutron production from large vehicles by validating our radiation transport codes for neutron environments against flight data. The following paper will extend the previous work to focus on the deep space environment and the resulting neutron flux from large vehicles in this deep space environment.

  19. E-mobility. How does the future sound?; E-Mobilitaet. Wie klingt die Zukunft?

    Energy Technology Data Exchange (ETDEWEB)

    Pischinger, Stefan; Wolff, Klaus; Eisele, Georg; Genender, Peter [FEV Motorentechnik GmbH, Aachen (Germany); Schuermann, Gregor [RWTH Aachen Univ. (Germany). VKA Lehrstuhl fuer Verbrennungskraftmaschinen

    2011-07-01

    The interior noise of electric vehicles is analyzed by the example of FEV's Liiondrive and compared to the corresponding series vehicle Fiat 500. Beside objective analysis audio lab panel tests including virtual sound modifications were performed for subjective evaluation. Due to the missing combustion engine noise the Liiondrive is up to 12 dB(A) quieter than the ICE-vehicle. The pleasantness impression can be further improved by reducing the high frequency noise shares from gear toothing and electromagnetic orders. The low load dependency leads to a rather undynamic impression, which can be improved by a load dependent admix of low frequency E-motor orders. Due to the negative side effect on pleasantness this fits for electric vehicles in the sporty market segment. The limited driving range of an electric vehicle can be overcome by the installation of a range extender (RE), a combination of ICE-engine and generator. The noise contribution of this module should be kept below the vehicle speed dependent original interior noise of the electric vehicle by selection of a low noise engine concept, like e.g. Wankel engine, combined with a suitable mounting system and engine encapsulation. The operating strategy of the range extender module provides an additional degree of freedom for optimizing NVH. A noticeable range extender operation below 30 km/h should be avoided and a vehicle speed dependent range extender speed above 30 km/h makes optimal use of masking effects from road and wind noise and contributes to a good dynamic impression. (orig.)

  20. Conventional, Hybrid, or Electric Vehicles: Which Technology for an Urban Distribution Centre?

    Directory of Open Access Journals (Sweden)

    Philippe Lebeau

    2015-01-01

    Full Text Available Freight transport has an important impact on urban welfare. It is estimated to be responsible for 25% of CO2 emissions and up to 50% of particles matters generated by the transport sector in cities. Facing that problem, the European Commission set the objective of reaching free CO2 city logistics by 2030 in major urban areas. In order to achieve this goal, electric vehicles could be an important part of the solution. However, this technology still faces a number of barriers, in particular high purchase costs and limited driving range. This paper explores the possible integration of electric vehicles in urban logistics operations. In order to answer this research question, the authors have developed a fleet size and mix vehicle routing problem with time windows for electric vehicles. In particular, an energy consumption model is integrated in order to consider variable range of electric vehicles. Based on generated instances, the authors analyse different sets of vehicles in terms of vehicle class (quadricycles, small vans, large vans, and trucks and vehicle technology (petrol, hybrid, diesel, and electric vehicles. Results show that a fleet with different technologies has the opportunity of reducing costs of the last mile.

  1. Conventional, Hybrid, or Electric Vehicles: Which Technology for an Urban Distribution Centre?

    Science.gov (United States)

    Lebeau, Philippe; De Cauwer, Cedric; Van Mierlo, Joeri; Macharis, Cathy; Verbeke, Wouter; Coosemans, Thierry

    2015-01-01

    Freight transport has an important impact on urban welfare. It is estimated to be responsible for 25% of CO2 emissions and up to 50% of particles matters generated by the transport sector in cities. Facing that problem, the European Commission set the objective of reaching free CO2 city logistics by 2030 in major urban areas. In order to achieve this goal, electric vehicles could be an important part of the solution. However, this technology still faces a number of barriers, in particular high purchase costs and limited driving range. This paper explores the possible integration of electric vehicles in urban logistics operations. In order to answer this research question, the authors have developed a fleet size and mix vehicle routing problem with time windows for electric vehicles. In particular, an energy consumption model is integrated in order to consider variable range of electric vehicles. Based on generated instances, the authors analyse different sets of vehicles in terms of vehicle class (quadricycles, small vans, large vans, and trucks) and vehicle technology (petrol, hybrid, diesel, and electric vehicles). Results show that a fleet with different technologies has the opportunity of reducing costs of the last mile.

  2. Conventional, Hybrid, or Electric Vehicles: Which Technology for an Urban Distribution Centre?

    Science.gov (United States)

    Lebeau, Philippe; De Cauwer, Cedric; Macharis, Cathy; Verbeke, Wouter; Coosemans, Thierry

    2015-01-01

    Freight transport has an important impact on urban welfare. It is estimated to be responsible for 25% of CO2 emissions and up to 50% of particles matters generated by the transport sector in cities. Facing that problem, the European Commission set the objective of reaching free CO2 city logistics by 2030 in major urban areas. In order to achieve this goal, electric vehicles could be an important part of the solution. However, this technology still faces a number of barriers, in particular high purchase costs and limited driving range. This paper explores the possible integration of electric vehicles in urban logistics operations. In order to answer this research question, the authors have developed a fleet size and mix vehicle routing problem with time windows for electric vehicles. In particular, an energy consumption model is integrated in order to consider variable range of electric vehicles. Based on generated instances, the authors analyse different sets of vehicles in terms of vehicle class (quadricycles, small vans, large vans, and trucks) and vehicle technology (petrol, hybrid, diesel, and electric vehicles). Results show that a fleet with different technologies has the opportunity of reducing costs of the last mile. PMID:26236769

  3. CORRELATION ANALYSIS OF DRIVING CONDITIONS AND ON-ROAD EMISSIONS TRENDS FOR VEHICLES

    Directory of Open Access Journals (Sweden)

    Jawad H. Al-rifai

    2017-01-01

    Full Text Available This paper presents the impact of road grade, vehicle speed, nu mber of vehicles and vehicle type on vehicle emissions. ANOVA analyses were conducte d among different driving conditions and vehicle emissions to discover the signif icant effects of driving conditions on measured emission rates. This study is intended t o improve the understanding of vehicle emission levels in Jordan. Gas emissio ns in real-world driving conditions were measured by a por table emissions measurement un it over six sections of an urban road. The road grade, speed, type and number of veh icles were found to have a significant influence on the rate of gas emissions. Road grade and diesel-fueled vehicles were positively correlate d with average emission rates . The average emission rates were higher at speeds ranging between 60–69 km/h than at three other speed ranges. The results of ANOVA showed a strong and consistent reg ression between rates of emissions measured and grade, speed and diesel vehicle parameters. The grade parameter contributed the most to the rate of emissions compare d to other parameters. Gasoline vehicles contributed the least.

  4. Development of a Long-Range Gliding Underwater Vehicle Utilizing Java Sun SPOT Technology

    Science.gov (United States)

    2008-09-01

    flexible copper tubing and fittings to eliminate any possible malfunction due to increased pressure collapsing the transfer lines. E. SUMMARY This...these hoses need to be replaced by copper tubing or steel jacketed hoses. Figure 20. Expansion bladder for main ballast and associated tubing...personal flotation device in the body of the vehicle. When the processor experiences any number of emergency conditions, or a lack of sufficient power

  5. In-vehicle nitrogen dioxide concentrations in road tunnels

    Science.gov (United States)

    Martin, Ashley N.; Boulter, Paul G.; Roddis, Damon; McDonough, Liza; Patterson, Michael; Rodriguez del Barco, Marina; Mattes, Andrew; Knibbs, Luke D.

    2016-11-01

    There is a lack of knowledge regarding in-vehicle concentrations of nitrogen dioxide (NO2) during transit through road tunnels in urban environments. Furthermore, previous studies have tended to involve a single vehicle and the range of in-vehicle NO2 concentrations that vehicle occupants may be exposed to is not well defined. This study describes simultaneous measurements of in-vehicle and outside-vehicle NO2 concentrations on a route through Sydney, Australia that included several major tunnels, minor tunnels and busy surface roads. Tests were conducted on nine passenger vehicles to assess how vehicle characteristics and ventilation settings affected in-vehicle NO2 concentrations and the in-vehicle-to-outside vehicle (I/O) concentration ratio. NO2 was measured directly using a cavity attenuated phase shift (CAPS) technique that gave a high temporal and spatial resolution. In the major tunnels, transit-average in-vehicle NO2 concentrations were lower than outside-vehicle concentrations for all vehicles with cabin air recirculation either on or off. However, markedly lower I/O ratios were obtained with recirculation on (0.08-0.36), suggesting that vehicle occupants can significantly lower their exposure to NO2 in tunnels by switching recirculation on. The highest mean I/O ratios for NO2 were measured in older vehicles (0.35-0.36), which is attributed to older vehicles having higher air exchange rates. The results from this study can be used to inform the design and operation of future road tunnels and modelling of personal exposure to NO2.

  6. Ceramic Matrix Composite (CMC) Thermal Protection Systems (TPS) and Hot Structures for Hypersonic Vehicles

    Science.gov (United States)

    Glass, David E.

    2008-01-01

    Thermal protection systems (TPS) and hot structures are required for a range of hypersonic vehicles ranging from ballistic reentry to hypersonic cruise vehicles, both within Earth's atmosphere and non-Earth atmospheres. The focus of this paper is on air breathing hypersonic vehicles in the Earth's atmosphere. This includes single-stage to orbit (SSTO), two-stage to orbit (TSTO) accelerators, access to space vehicles, and hypersonic cruise vehicles. This paper will start out with a brief discussion of aerodynamic heating and thermal management techniques to address the high heating, followed by an overview of TPS for rocket-launched and air-breathing vehicles. The argument is presented that as we move from rocket-based vehicles to air-breathing vehicles, we need to move away from the insulated airplane approach used on the Space Shuttle Orbiter to a wide range of TPS and hot structure approaches. The primary portion of the paper will discuss issues and design options for CMC TPS and hot structure components, including leading edges, acreage TPS, and control surfaces. The current state-of-the-art will be briefly discussed for some of the components. The two primary technical challenges impacting the use of CMC TPS and hot structures for hypersonic vehicles are environmental durability and fabrication, and will be discussed briefly.

  7. End-of-Life vehicle recovery in china: Consideration and innovation following the EU ELV directive

    Science.gov (United States)

    Chen, Ming; Zhang, Fan

    2009-03-01

    Implementation of the EU’s end-of-life vehicle (ELV) directive eight years ago had a profound influence on China’s automotive industry, leading to the consideration of concepts such as extended producer responsibility. It also provided some impetus for ELV recycling industry developments within China. This article provides insight into current thinking within China about ELV recycling as well as vehicle recovery activities.

  8. Tailpipe, resuspended road dust, and brake-wear emission factors from on-road vehicles

    Science.gov (United States)

    Abu-Allaban, Mahmoud; Gillies, John A.; Gertler, Alan W.; Clayton, Russ; Proffitt, David

    Intensive mass and chemical measurements were performed at roadside locations in Reno, Nevada, and Durham/Research Triangle Park), North Carolina to derive tailpipe, resuspended road dust, and brake-wear emission factors from in-use vehicles. Continuous particulate matter (PM) data were utilized to derive total emission factors while integrated PM data were used to attribute the calculated emission factors to different mechanisms using chemical mass balance receptor modeling and scanning electron microscopy techniques. Resuspended road dust and tailpipe emissions were found to be the dominant mechanisms that contribute significantly to the total PM 10 and PM 2.5 emission factors, respectively. Small contributions from brake-wear were observed at locations where strong braking occurs, but no tire-wear was seen at any sampling location. PM 10 emission rates from light-duty spark ignition (LDSI) vehicles ranged from 40 to 780 mg/km, 10 to 70 mg/km, and 0 to 80 mg/km per vehicle for road dust, tailpipe, and brake-wear, respectively. PM 10 emission rates from heavy-duty vehicles ranged from 230 to 7800 mg/km, 60 to 570 mg/km, and 0 to 610 mg/km per vehicle for road dust, tailpipe, and brake-wear, respectively. PM 2.5 emission rates from LDSI vehicles ranged from 2 to 25 mg/km, 10 to 50 mg/km, and 0 to 5 mg/km per vehicle for road dust, tailpipe, and brake-wear, respectively. PM 2.5 emission rates from heavy-duty vehicles ranged from 15 to 300 mg/km, 60 to 480 mg/km, and 0 to 15 mg/km per vehicle for road dust, tailpipe, and brake-wear, respectively.

  9. Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles

    International Nuclear Information System (INIS)

    Sun, Fengchun; Hu, Xiaosong; Zou, Yuan; Li, Siguang

    2011-01-01

    An accurate battery State of Charge estimation is of great significance for battery electric vehicles and hybrid electric vehicles. This paper presents an adaptive unscented Kalman filtering method to estimate State of Charge of a lithium-ion battery for battery electric vehicles. The adaptive adjustment of the noise covariances in the State of Charge estimation process is implemented by an idea of covariance matching in the unscented Kalman filter context. Experimental results indicate that the adaptive unscented Kalman filter-based algorithm has a good performance in estimating the battery State of Charge. A comparison with the adaptive extended Kalman filter, extended Kalman filter, and unscented Kalman filter-based algorithms shows that the proposed State of Charge estimation method has a better accuracy. -- Highlights: → Adaptive unscented Kalman filtering is proposed to estimate State of Charge of a lithium-ion battery for electric vehicles. → The proposed method has a good performance in estimating the battery State of Charge. → A comparison with three other Kalman filtering algorithms shows that the proposed method has a better accuracy.

  10. Experimental research into motor vehicle oscillations in the case of changeable deceleration

    Directory of Open Access Journals (Sweden)

    R. Pečeliūnas,

    2005-10-01

    Full Text Available In this paper processes of oscillation of flexible mounted and inflexible mounted masses are analysed. The tangential effect of the wheel contact with bearing surface is given, thus enabling more precise calculus of vehicle braking parameters. The methodology of research includes the development of mathematical algorithms and theoretical calculus of the analysed processes as well as the presentation of the influence of various factors on vehicle oscillations during braking. Analytical methods and those in figures have been applied for the research. Experimental investigations were carried out applying the electronic device VZM-100 measuring the acceleration of deceleration adapted for synchronous operation together with vibration processing system VAS-21. The expert opportunities for modelling of vehicle movement are extended with the help of the created mathematical models used for the examination of road accidents related to vehicle braking.

  11. Reconfigurable Resonant Regulating Rectifier With Primary Equalization for Extended Coupling- and Loading-Range in Bio-Implant Wireless Power Transfer.

    Science.gov (United States)

    Li, Xing; Meng, Xiaodong; Tsui, Chi-Ying; Ki, Wing-Hung

    2015-12-01

    Wireless power transfer using reconfigurable resonant regulating (R(3)) rectification suffers from limited range in accommodating varying coupling and loading conditions. A primary-assisted regulation principle is proposed to mitigate these limitations, of which the amplitude of the rectifier input voltage on the secondary side is regulated by accordingly adjusting the voltage amplitude Veq on the primary side. A novel current-sensing method and calibration scheme track Veq on the primary side. A ramp generator simultaneously provides three clock signals for different modules. Both the primary equalizer and the R(3) rectifier are implemented as custom integrated circuits fabricated in a 0.35 μm CMOS process, with the global control implemented in FPGA. Measurements show that with the primary equalizer, the workable coupling and loading ranges are extended by 250% at 120 mW load and 300% at 1.2 cm coil distance compared to the same system without the primary equalizer. A maximum rectifier efficiency of 92.5% and a total system efficiency of 62.4% are demonstrated.

  12. Impact of non-petroleum vehicle fuel economy on GHG mitigation potential

    International Nuclear Information System (INIS)

    Luk, Jason M; Saville, Bradley A; MacLean, Heather L

    2016-01-01

    The fuel economy of gasoline vehicles will increase to meet 2025 corporate average fuel economy standards (CAFE). However, dedicated compressed natural gas (CNG) and battery electric vehicles (BEV) already exceed future CAFE fuel economy targets because only 15% of non-petroleum energy use is accounted for when determining compliance. This study aims to inform stakeholders about the potential impact of CAFE on life cycle greenhouse gas (GHG) emissions, should non-petroleum fuel vehicles displace increasingly fuel efficient petroleum vehicles. The well-to-wheel GHG emissions of a set of hypothetical model year 2025 light-duty vehicles are estimated. A reference gasoline vehicle is designed to meet the 2025 fuel economy target within CAFE, and is compared to a set of dedicated CNG vehicles and BEVs with different fuel economy ratings, but all vehicles meet or exceed the fuel economy target due to the policy’s dedicated non-petroleum fuel vehicle incentives. Ownership costs and BEV driving ranges are estimated to provide context, as these can influence automaker and consumer decisions. The results show that CNG vehicles that have lower ownership costs than gasoline vehicles and BEVs with long distance driving ranges can exceed the 2025 CAFE fuel economy target. However, this could lead to lower efficiency CNG vehicles and heavier BEVs that have higher well-to-wheel GHG emissions than gasoline vehicles on a per km basis, even if the non-petroleum energy source is less carbon intensive on an energy equivalent basis. These changes could influence the effectiveness of low carbon fuel standards and are not precluded by the light-duty vehicle GHG emissions standards, which regulate tailpipe but not fuel production emissions. (letter)

  13. Development of wall ranging radiation inspection robot

    International Nuclear Information System (INIS)

    Lee, B. J.; Yoon, J. S.; Park, Y. S.; Hong, D. H.; Oh, S. C.; Jung, J. H.; Chae, K. S.

    1999-03-01

    With the aging of nation's nuclear facilities, the target of this project is to develop an under water wall ranging robotic vehicle which inspects the contamination level of the research reactor (TRIGA MARK III) as a preliminary process to dismantling. The developed vehicle is driven by five thrusters and consists of small sized control boards, and absolute position detector, and a radiation detector. Also, the algorithm for autonomous navigation is developed and its performance is tested through under water experiments. Also, the test result at the research reactor shows that the vehicle firmly attached the wall while measuring the contamination level of the wall

  14. Development of wall ranging radiation inspection robot

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B. J.; Yoon, J. S.; Park, Y. S.; Hong, D. H.; Oh, S. C.; Jung, J. H.; Chae, K. S

    1999-03-01

    With the aging of nation's nuclear facilities, the target of this project is to develop an under water wall ranging robotic vehicle which inspects the contamination level of the research reactor (TRIGA MARK III) as a preliminary process to dismantling. The developed vehicle is driven by five thrusters and consists of small sized control boards, and absolute position detector, and a radiation detector. Also, the algorithm for autonomous navigation is developed and its performance is tested through under water experiments. Also, the test result at the research reactor shows that the vehicle firmly attached the wall while measuring the contamination level of the wall.

  15. Impacts of Electric Vehicle Loads on Power Distribution Systems

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Bak-Jensen, Birgitte

    2010-01-01

    operation. This paper investigates the effects on the key power distribution system parameters like voltages, line drops, system losses etc. by integrating electric vehicles in the range of 0-50% of the cars with different charging capacities. The dump as well as smart charging modes of electric vehicles......Electric vehicles (EVs) are the most promising alternative to replace a significant amount of gasoline vehicles to provide cleaner, CO2 free and climate friendly transportation. On integrating more electric vehicles, the electric utilities must analyse the related impacts on the electricity system...... is applied in this analysis. A typical Danish primary power distribution system is used as a test case for the studies. From the simulation results, not more than 10% of electric vehicles could be integrated in the test system for the dump charging mode. About 40% of electric vehicle loads could...

  16. 40 CFR 86.1770-99 - All-Electric Range Test requirements.

    Science.gov (United States)

    2010-07-01

    ... All-Electric Range Test. (4) Regenerative braking. Regenerative braking systems may be utilized during...) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Provisions for the Voluntary National Low Emission Vehicle Program for Light-Duty...

  17. Weights assessment for orbit-on-demand vehicles

    Science.gov (United States)

    Macconochie, I. O.; Martin, J. A.; Breiner, C. A.; Cerro, J. A.

    1985-01-01

    Future manned, reusable earth-to-orbit vehicles may be required to reach orbit within hours or even minutes of a mission decision. A study has been conducted to consider vehicles with such a capability. In the initial phase of the study, 11 vehicles were sized for deployment of 5000 lbs to a polar orbit. From this matrix, two of the most promising concepts were resized for a modified mission and payload. A key feature of the study was the use of consistent mass estimating techniques for a broad range of concepts, allowing direct comparisons of sizes and weights.

  18. Advanced propulsion system concept for hybrid vehicles

    Science.gov (United States)

    Bhate, S.; Chen, H.; Dochat, G.

    1980-01-01

    A series hybrid system, utilizing a free piston Stirling engine with a linear alternator, and a parallel hybrid system, incorporating a kinematic Stirling engine, are analyzed for various specified reference missions/vehicles ranging from a small two passenger commuter vehicle to a van. Parametric studies for each configuration, detail tradeoff studies to determine engine, battery and system definition, short term energy storage evaluation, and detail life cycle cost studies were performed. Results indicate that the selection of a parallel Stirling engine/electric, hybrid propulsion system can significantly reduce petroleum consumption by 70 percent over present conventional vehicles.

  19. Low-cost teleoperator-controlled vehicle for damage assessment and radiation dose measurement

    International Nuclear Information System (INIS)

    Tyree, W.H.

    1991-01-01

    A low-cost, disposable, radio-controlled, remote-reading, ionizing radiation and surveillance teleoperator re-entry vehicle has been built. The vehicle carries equipment, measures radiation levels, and evaluates building conditions. The basic vehicle, radio control with amplifiers, telemetry, elevator, and video camera with monitor cost less than $2500. Velcro-mounted alpha, beta-gamma, and neutron sensing equipment is used in the present system. Many types of health physics radiation measuring equipment may be substituted on the vehicle. The system includes a black-and-white video camera to observe the environment surrounding the vehicle. The camera is mounted on a vertical elevator extendible to 11 feet above the floor. The present vehicle uses a video camera with an umbilical cord between the vehicle and the operators. Preferred operation would eliminate the umbilical. Video monitoring equipment is part of the operator control system. Power for the vehicle equipment is carried on board and supplied by sealed lead-acid batteries. Radios are powered by 9-V alkaline batteries. The radio control receiver, servo drivers, high-power amplifier and 49-MHz FM transceivers were irradiated at moderate rates with neutron and gamma doses to 3000 Rem and 300 Rem, respectively, to ensure system operation

  20. High Voltage Gain Dual Active Bridge Converter with an Extended Operation Range for Renewable Energy Systems

    DEFF Research Database (Denmark)

    Zhang, Zhe; Tomas Manez, Kevin; Yudi, Xiao

    2018-01-01

    Developing bidirectional dc-dc converters has become a critical research topic and gains more and more attention in recent years due to the extensive applications of smart grids with energy storages, hybrid and electrical vehicles and dc microgrids. In this paper, a Partial Parallel Dual Active...

  1. The eco-driving effect of electric vehicles compared to conventional gasoline vehicles

    Directory of Open Access Journals (Sweden)

    Hideki Kato

    2016-10-01

    Full Text Available Eco-driving is attractive to the public, not only users of internal-combustion-engine vehicles (ICEVs including hybrid electric vehicles (HEVs but also users of electric vehicles (EVs have interest in eco-driving. In this context, a quantitative evaluation of eco-driving effect of EVs was conducted using a chassis dynamometer (C/D with an “eco-driving test mode.” This mode comprised four speed patterns selected from fifty-two real-world driving datasets collected during an eco-driving test-ride event. The four patterns had the same travel distance (5.2 km, but showed varying eco-driving achievement levels. Three ICEVs, one HEV and two EVs were tested using a C/D. Good linear relationships were found between the eco-driving achievement level and electric or fuel consumption rate of all vehicles. The reduction of CO2 emissions was also estimated. The CO2-reduction rates of the four conventional (including hybrid vehicles were 10.9%–12.6%, while those of two types of EVs were 11.7%–18.4%. These results indicate that the eco-driving tips for conventional vehicles are effective to not only ICEVs and HEVs but also EVs. Furthermore, EVs have a higher potential of eco-driving effect than ICEVs and HEVs if EVs could maintain high energy conversion efficiency at low load range. This study is intended to support the importance of the dissemination of tools like the intelligent speed adaptation (ISA to obey the regulation speed in real time. In the future, also in the development and dissemination of automated driving systems, the viewpoint of achieving the traveling purpose with less kinetic energy would be important.

  2. Fiber optic gyroscopes for vehicle navigation systems

    Science.gov (United States)

    Kumagai, Tatsuya; Soekawa, Hirokazu; Yuhara, Toshiya; Kajioka, Hiroshi; Oho, Shigeru; Sonobe, Hisao

    1994-03-01

    Fiber optic gyroscopes (FOGs) have been developed for vehicle navigation systems and are used in Toyota Motor Corporation models Mark II, Chaser and Cresta in Japan. Use of FOGs in these systems requires high reliability under a wide range of conditions, especially in a temperature range between -40 and 85 degree(s)C. In addition, a high cost-performance ratio is needed. We have developed optical and electrical systems that are inexpensive and can perform well. They are ready to be mass-produced. FOGs have already been installed in luxury automobiles, and will soon be included in more basic vehicles. We have developed more inexpensive FOGs for this purpose.

  3. Intelligent launch and range operations virtual testbed (ILRO-VTB)

    Science.gov (United States)

    Bardina, Jorge; Rajkumar, Thirumalainambi

    2003-09-01

    Intelligent Launch and Range Operations Virtual Test Bed (ILRO-VTB) is a real-time web-based command and control, communication, and intelligent simulation environment of ground-vehicle, launch and range operation activities. ILRO-VTB consists of a variety of simulation models combined with commercial and indigenous software developments (NASA Ames). It creates a hybrid software/hardware environment suitable for testing various integrated control system components of launch and range. The dynamic interactions of the integrated simulated control systems are not well understood. Insight into such systems can only be achieved through simulation/emulation. For that reason, NASA has established a VTB where we can learn the actual control and dynamics of designs for future space programs, including testing and performance evaluation. The current implementation of the VTB simulates the operations of a sub-orbital vehicle of mission, control, ground-vehicle engineering, launch and range operations. The present development of the test bed simulates the operations of Space Shuttle Vehicle (SSV) at NASA Kennedy Space Center. The test bed supports a wide variety of shuttle missions with ancillary modeling capabilities like weather forecasting, lightning tracker, toxic gas dispersion model, debris dispersion model, telemetry, trajectory modeling, ground operations, payload models and etc. To achieve the simulations, all models are linked using Common Object Request Broker Architecture (CORBA). The test bed provides opportunities for government, universities, researchers and industries to do a real time of shuttle launch in cyber space.

  4. Control strategy of hydraulic/electric synergy system in heavy hybrid vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Sun Hui; Yang Lifu; Junqing Jing; Yanling Luo [Jiangsu Xuzhou Construction Machinery Research Institute, Jiangsu (China)

    2011-01-15

    Energy consumption and exhaust emissions of hybrid vehicles strongly depend on the energy storage source and the applied control strategy. Heavy vehicles have the characteristics of frequent starts/stops and significant amounts of braking energy, which needs to find a more efficient way to store and use the high power flow. A novel parallel hybrid vehicles configuration consisting of hydraulic/electric synergy system is proposed to overcome the existing drawbacks of single energy storage source in heavy hybrid vehicles. A control strategy combining a logic threshold approach and key parameters optimization algorithm is developed to achieve acceptable vehicle performance while simultaneously maximizing engine fuel economy and maintaining the battery state of charge in its rational operation range at all times. The experimental and simulation results illustrate the potential of the proposed control strategy in terms of fuel economy and in keeping the deviations of SOC at high efficiency range. (author)

  5. Control strategy of hydraulic/electric synergy system in heavy hybrid vehicles

    International Nuclear Information System (INIS)

    Sun Hui; Yang Lifu; Jing Junqing; Luo Yanling

    2011-01-01

    Energy consumption and exhaust emissions of hybrid vehicles strongly depend on the energy storage source and the applied control strategy. Heavy vehicles have the characteristics of frequent starts/stops and significant amounts of braking energy, which needs to find a more efficient way to store and use the high power flow. A novel parallel hybrid vehicles configuration consisting of hydraulic/electric synergy system is proposed to overcome the existing drawbacks of single energy storage source in heavy hybrid vehicles. A control strategy combining a logic threshold approach and key parameters optimization algorithm is developed to achieve acceptable vehicle performance while simultaneously maximizing engine fuel economy and maintaining the battery state of charge in its rational operation range at all times. The experimental and simulation results illustrate the potential of the proposed control strategy in terms of fuel economy and in keeping the deviations of SOC at high efficiency range.

  6. Aerodynamic drag reduction tests on a box-shaped vehicle

    Science.gov (United States)

    Peterson, R. L.; Sandlin, D. R.

    1981-01-01

    The intent of the present experiment is to define a near optimum value of drag coefficient for a high volume type of vehicle through the use of a boattail, on a vehicle already having rounded front corners and an underbody seal, or fairing. The results of these tests will constitute a baseline for later follow-on studies to evaluate candidate methods of obtaining afterbody drag coefficients approaching the boattail values, but without resorting to such impractical afterbody extensions. The current modifications to the box-shaped vehicle consisted of a full and truncated boattail in conjunction with the faired and sealed underbody. Drag results from these configurations are compared with corresponding wind tunnel results of a 1/10 scale model. Test velocities ranged up to 96.6 km/h (60 mph) and the corresponding Reynolds numbers ranged up to 1.3 x 10 to the 7th power based on the vehicles length which includes the boattail. A simple coast-down technique was used to define drag.

  7. Definition by modelling, optimization and characterization of a neutron spectrometry system based on Bonner spheres extended to the high-energy range

    International Nuclear Information System (INIS)

    Serre, S.

    2010-01-01

    This research thesis first describes the problematic of the effects of natural radiation on micro- and nano-electronic components, and the atmospheric-radiative stress of atmospheric neutrons from cosmic origin: issue of 'Single event upsets', present knowledge of the atmospheric radiative environment induced by cosmic rays. The author then presents the neutron-based detection and spectrometry by using the Bonner sphere technique: principle of moderating spheres, definition and mathematical formulation of neutron spectrometry using Bonner spheres, active sensors of thermal neutrons, response of a system to conventional Bonner spheres, extension to the range of high energies. Then, he reports the development of a Bonner sphere system extended to the high-energy range for the spectrometry of atmospheric neutrons: definition of a conventional system, Monte Carlo calculation of response functions, development of the response matrix, representation and semi-empirical verification of fluence response, uncertainty analysis, extension to high energies, and measurement tests of the spectrometer. He reports the use of a Monte Carlo simulation to characterize the spectrometer response in the high-energy range

  8. USING OF NON-CONVENTIONAL FUELS IN HYBRID VEHICLE DRIVES

    Directory of Open Access Journals (Sweden)

    Dalibor Barta

    2016-12-01

    Full Text Available Electric or hybrid vehicles are becoming increasingly common on roads. While electric vehicles are still more or less intended for city traffic, hybrid vehicles allow normal use due to wider driving range. The use of internal combustion engines in hybrid drives is still an inspiration to find the way to reduce the produc-tion of emissions. Numbers of alternative energy resources were studied as a substitution of conventional fuels for hybrid vehicles drives worldwide. The paper deals with the possibility of using alternative fuels as CNG, LPG and LNG in combination with hybrid drive of a midibus with the capacity of 20 passengers. Various aspects and techniques of hybrid vehicles from energy management system, propulsion system and using of various alternative fuels are explored in this paper. Other related fields of hybrid vehicles such as changes of vehicle weight or influence of electric energy sources on the total vehicle emission production are also included.

  9. Accelerated Lane-Changing Trajectory Planning of Automated Vehicles with Vehicle-to-Vehicle Collaboration

    Directory of Open Access Journals (Sweden)

    Haijian Bai

    2017-01-01

    Full Text Available Considering the complexity of lane changing using automated vehicles and the frequency of turning lanes in city settings, this paper aims to generate an accelerated lane-changing trajectory using vehicle-to-vehicle collaboration (V2VC. Based on the characteristics of accelerated lane changing, we used a polynomial method and cooperative strategies for trajectory planning to establish a lane-changing model under different degrees of collaboration with the following vehicle in the target lane by considering vehicle kinematics and comfort requirements. Furthermore, considering the shortcomings of the traditional elliptical vehicle and round vehicle models, we established a rectangular vehicle model with collision boundary conditions by analysing the relationships between the possible collision points and the outline of the vehicle. Then, we established a simulation model for the accelerated lane-changing process in different environments under different degrees of collaboration. The results show that, by using V2VC, we can achieve safe accelerated lane-changing trajectories and simultaneously satisfy the requirements of vehicle kinematics and comfort control.

  10. Extending the temperature range of the HTR

    International Nuclear Information System (INIS)

    Balcomb, J.D.; Wagner, P.

    1975-01-01

    The operating temperature of the high temperature helium-cooled reactor can be increased in a number of ways in order to provide higher temperature nuclear heat for various industrial processes. Modifications are of two types: 1) decrease in the temperature difference between the maximum coated particle fuel temperature and the mean exit gas temperature, and 2) increased maximum coated particle temperature. Gains in the latter category are limited by fission product diffusion into the gas steam and increases greater than 100 0 K are not forseen. Increases in the former category, however, are readily made and a variety of modifications are proposed as follows: incorporation of coated particles in the fuel matrix; use of a more finely-divided fuel coolant hole geometry to increase heat transfer coefficients and reduce conduction temperature differences; large increases in the fuel matrix graphite thermal conductivity (to about 50 W/m 0 K) to reduce conduction temperature differences; and modifications to the core distribution, both radially and axially. By such means the exit gas temperature can be increased to the range of 1200 0 K to 1600 0 K. (author)

  11. Panorama 2017 - Development of electric vehicle: where are we now?

    International Nuclear Information System (INIS)

    Ternel, Cyprien

    2016-09-01

    Electric vehicles - a term which refers to battery electric vehicles (BEV) and plug-in hybrid vehicles (PHEV) - are regarded as one way to lower energy costs and reduce the environmental impact of transport. While mild or full hybrid vehicles are gradually becoming more widespread, the market for electric vehicles is still developing. While the symbolic threshold of one million electric vehicles in circulation worldwide was surpassed in 2015 and sales are increasing from year to year, certain limitations could nevertheless hinder this growth. High purchase prices, the need to establish incentive-based public policies to significantly increase sales, and vehicle range are challenges to overcome before electric vehicles become a sustainable part of the world's automobile fleet. This memorandum takes stock of this specific market and highlights the reasons to believe in its continued progress. It mainly discusses private vehicles (including micro-cars) and utility vehicles, but a specific section is dedicated to mopeds and motorbikes

  12. Connected vehicle impacts on transportation planning : technical memorandum #5 : case studies.

    Science.gov (United States)

    2015-12-01

    The principal objective of this project, Connected Vehicle Impacts on Transportation Planning, is to comprehensively assess how connected vehicles should be considered across the range of transportation planning processes and products developed...

  13. A Fuzzy Rule-based Controller For Automotive Vehicle Guidance

    OpenAIRE

    Hessburg, Thomas; Tomizuka, Masayoshi

    1991-01-01

    A fuzzy rule-based controller is applied to lateral guidance of a vehicle for an automated highway system. The fuzzy rules, based on human drivers' experiences, are developed to track the center of a lane in the presence of external disturbances and over a range of vehicle operating conditions.

  14. Electric Vehicles in Colorado: Anticipating Consumer Demand for Direct Current Fast Charging

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Eric W. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rames, Clement L. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-07-01

    To support the State of Colorado in planning for growth in direct current fast charging (DCFC) for electric vehicles, the National Renewable Energy Laboratory (NREL) has partnered with the Regional Air Quality Council (RAQC) and the Colorado Department of Transportation (CDOT) to analyze a number of DCFC investment scenarios. NREL analyzed existing electric vehicle registration data from IHS Markit (IHS) to highlight early trends in the electric vehicle market, which were compared with sales forecasts predicting large growth in the Colorado electric vehicle market. Electric vehicle forecasts were then used to develop future DCFC scenarios to be evaluated in a simulation environment to estimate consumer benefits of the hypothetical DCFC networks in terms of increased driving range and electric vehicle miles traveled (eVMT). Simulated utilization of the hypothetical DCFC networks was analyzed for geographic trends, particularly for correlations with vehicle electric range. Finally, a subset of simulations is presented for consumers with potentially inconsistent access to charging at their home location and presumably greater reliance on public DCFC infrastructure.

  15. Measurements and Monte Carlo calculations with the extended-range Bonner sphere spectrometer at high-energy mixed fields

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00406842; Bay, Aurelio; Silari, Marco; Aroua, Abbas

    The use of spectrometry to provide information for neutron radiation protection has become an increasingly important activity over recent years. The need for spectral data arises because neither area survey instruments nor personal dosimeters give the correct dose equivalent results at all neutron energies. It is important therefore to know the spectra of the fields in which these devices are used. One of the systems most commonly employed in neutron spectrometry and dosimetry is the Bonner Sphere Spectrometers (BSS). The extended- range BSS that was used for this work, consists of 7 spheres with an overall response to neutrons up to 2 GeV. A 3He detector is used as a thermal counter in the centre of each sphere. In the context of this thesis the BSS was calibrated in monoenergetic neutron fields at low and intermediate energies. It was also used for measurements in several high energy mixed fields. These measurements have led to the calculation of neutron yields and spectral fluences from unshielded targets....

  16. Cradle-to-Gate Emissions from a Commercial Electric Vehicle Li-Ion Battery: A Comparative Analysis.

    Science.gov (United States)

    Kim, Hyung Chul; Wallington, Timothy J; Arsenault, Renata; Bae, Chulheung; Ahn, Suckwon; Lee, Jaeran

    2016-07-19

    We report the first cradle-to-gate emissions assessment for a mass-produced battery in a commercial battery electric vehicle (BEV); the lithium-ion battery pack used in the Ford Focus BEV. The assessment was based on the bill of materials and primary data from the battery industry, that is, energy and materials input data from the battery cell and pack supplier. Cradle-to-gate greenhouse gas (GHG) emissions for the 24 kWh Ford Focus lithium-ion battery are 3.4 metric tonnes of CO2-eq (140 kg CO2-eq per kWh or 11 kg CO2-eq per kg of battery). Cell manufacturing is the key contributor accounting for 45% of the GHG emissions. We review published studies of GHG emissions associated with battery production to compare and contrast with our results. Extending the system boundary to include the entire vehicle we estimate a 39% increase in the cradle-to-gate GHG emissions of the Focus BEV compared to the Focus internal combustion engine vehicle (ICEV), which falls within the range of literature estimates of 27-63% increases for hypothetical nonproduction BEVs. Our results reduce the uncertainties associated with assessment of BEV battery production, serve to identify opportunities to reduce emissions, and confirm previous assessments that BEVs have great potential to reduce GHG emissions over the full life cycle and provide local emission free mobility.

  17. Developing Policy for Urban Autonomous Vehicles: Impact on Congestion

    Directory of Open Access Journals (Sweden)

    David Metz

    2018-04-01

    Full Text Available An important problem for surface transport is road traffic congestion, which is ubiquitous and difficult to mitigate. Accordingly, a question for policymakers is the possible impact on congestion of autonomous vehicles. It seems likely that the main impact of vehicle automation will not be seen until driverless vehicles are sufficiently safe for use amid general traffic on urban streets. Shared use driverless vehicles could reduce the cost of taxis and a wider range of public transport vehicles could be economic. Individually owned autonomous vehicles would have the ability to travel unoccupied and may need to be regulated where this might add to congestion. It is possible that autonomous vehicles could provide mobility services at lower cost and wider scope, such that private car use in urban areas could decline and congestion reduce. City authorities should be alert to these possibilities in developing transport policy.

  18. DTIC Review: Intelligent Autonomous Vehicles. Volume 9, Number 2 (CD-ROM)

    National Research Council Canada - National Science Library

    2008-01-01

    ...: Intelligent autonomous vehicles are an increasingly important tool in the military arsenal. Autonomous systems act without human guidance and can operate in a far greater range of environments and conditions than manned vehicles...

  19. New Concepts and Perspectives on Micro-Rotorcraft and Small Autonomous Rotary-Wing Vehicles

    Science.gov (United States)

    Young, Larry A.; Aiken, E. W.; Johnson, J. L.; Demblewski, R.; Andrews, J.; Aiken, Irwin W. (Technical Monitor)

    2001-01-01

    A key part of the strategic vision for rotorcraft research as identified by senior technologists within the Army/NASA Rotorcraft Division at NASA Ames Research Center is the development and use of small autonomous rotorcraft. Small autonomous rotorcraft are defined for the purposes of this paper to be a class of vehicles that range in size from rotary-wing micro air vehicles (MAVs) to larger, more conventionally sized, rotorcraft uninhabited aerial vehicles (UAVs) - i.e. vehicle gross weights ranging from hundreds of grams to thousands of kilograms. The development of small autonomous rotorcraft represents both a technology challenge and a potential new vehicle class that will have substantial societal impact for: national security, personal transport, planetary science, and public service.

  20. Comparison of Vehicle Choice Models

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Thomas S. [Argonne National Lab. (ANL), Argonne, IL (United States); Levinson, Rebecca S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brooker, Aaron [National Renewable Energy Lab. (NREL), Golden, CO (United States); Liu, Changzheng [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lin, Zhenhong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Birky, Alicia [Energetics Incorporated, Columbia, MD (United States); Kontou, Eleftheria [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-10-31

    Five consumer vehicle choice models that give projections of future sales shares of light-duty vehicles were compared by running each model using the same inputs, where possible, for two scenarios. The five models compared — LVCFlex, MA3T, LAVE-Trans, ParaChoice, and ADOPT — have been used in support of the Energy Efficiency and Renewable Energy (EERE) Vehicle Technologies Office in analyses of future light-duty vehicle markets under different assumptions about future vehicle technologies and market conditions. The models give projections of sales shares by powertrain technology. Projections made using common, but not identical, inputs showed qualitative agreement, with the exception of ADOPT. ADOPT estimated somewhat lower advanced vehicle shares, mostly composed of hybrid electric vehicles. Other models projected large shares of multiple advanced vehicle powertrains. Projections of models differed in significant ways, including how different technologies penetrated cars and light trucks. Since the models are constructed differently and take different inputs, not all inputs were identical, but were the same or very similar where possible. Projections by all models were in close agreement only in the first few years. Although the projections from LVCFlex, MA3T, LAVE-Trans, and ParaChoice were in qualitative agreement, there were significant differences in sales shares given by the different models for individual powertrain types, particularly in later years (2030 and later). For example, projected sales shares of conventional spark-ignition vehicles in 2030 for a given scenario ranged from 35% to 74%. Reasons for such differences are discussed, recognizing that these models were not developed to give quantitatively accurate predictions of future sales shares, but to represent vehicles markets realistically and capture the connections between sales and important influences. Model features were also compared at a high level, and suggestions for further comparison

  1. Soliton microcomb range measurement

    Science.gov (United States)

    Suh, Myoung-Gyun; Vahala, Kerry J.

    2018-02-01

    Laser-based range measurement systems are important in many application areas, including autonomous vehicles, robotics, manufacturing, formation flying of satellites, and basic science. Coherent laser ranging systems using dual-frequency combs provide an unprecedented combination of long range, high precision, and fast update rate. We report dual-comb distance measurement using chip-based soliton microcombs. A single pump laser was used to generate dual-frequency combs within a single microresonator as counterpropagating solitons. We demonstrated time-of-flight measurement with 200-nanometer precision at an averaging time of 500 milliseconds within a range ambiguity of 16 millimeters. Measurements at distances up to 25 meters with much lower precision were also performed. Our chip-based source is an important step toward miniature dual-comb laser ranging systems that are suitable for photonic integration.

  2. Electric and hybrid vehicle environmental control subsystem study

    Science.gov (United States)

    Heitner, K. L.

    1980-01-01

    An environmental control subsystem (ECS) in electric and hybrid vehicles is studied. A combination of a combustion heater and gasoline engine (Otto cycle) driven vapor compression air conditioner is selected. The combustion heater, the small gasoline engine, and the vapor compression air conditioner are commercially available. These technologies have good cost and performance characteristics. The cost for this ECS is relatively close to the cost of current ECS's. Its effect on the vehicle's propulsion battery is minimal and the ECS size and weight do not have significant impact on the vehicle's range.

  3. A new comparison between the life cycle greenhouse gas emissions of battery electric vehicles and internal combustion vehicles

    International Nuclear Information System (INIS)

    Ma Hongrui; Balthasar, Felix; Tait, Nigel; Riera-Palou, Xavier; Harrison, Andrew

    2012-01-01

    Electric vehicles have recently been gaining increasing worldwide interest as a promising potential long-term solution to sustainable personal mobility; in particular, battery electric vehicles (BEVs) offer zero tailpipe emissions. However, their true ability to contribute to greenhouse gas (GHG) emissions reductions can only be properly assessed by comparing a life cycle assessment of their GHG emissions with a similar assessment for conventional internal combustion vehicles (ICVs). This paper presents an analysis for vehicles typically expected to be introduced in 2015 in two example markets (the UK and California), taking into account the impact of three important factors: •Like-for-like vehicle comparison and effect of real-world driving conditions. •Accounting for the GHG emissions associated with meeting the additional electricity demand for charging the batteries. •GHG emissions associated with vehicle manufacture, disposal, etc. This work demonstrates that all of these factors are important and emphasises that it is therefore crucial to clearly define the context when presenting conclusions about the relative GHG performance of BEVs and ICVs – such relative performance depends on a wide range of factors, including the marginal regional grid GHG intensity, vehicle size, driving pattern, loading, etc. - Highlights: ► Develops new insights into the life cycle GHG emissions of electric vehicles. ► Addresses like-for-like vehicle comparison and effect of real-world driving. ► Accounts for marginal GHG intensity of the electricity used to charge EVs. ► Accounts for the GHG emissions associated with vehicle manufacture and disposal.

  4. An Opportunistic Routing for Data Forwarding Based on Vehicle Mobility Association in Vehicular Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Leilei Wang

    2017-11-01

    Full Text Available Vehicular ad hoc networks (VANETs have emerged as a new powerful technology for data transmission between vehicles. Efficient data transmission accompanied with low data delay plays an important role in selecting the ideal data forwarding path in VANETs. This paper proposes a new opportunity routing protocol for data forwarding based on vehicle mobility association (OVMA. With assistance from the vehicle mobility association, data can be forwarded without passing through many extra intermediate nodes. Besides, each vehicle carries the only replica information to record its associated vehicle information, so the routing decision can adapt to the vehicle densities. Simulation results show that the OVMA protocol can extend the network lifetime, improve the performance of data delivery ratio, and reduce the data delay and routing overhead when compared to the other well-known routing protocols.

  5. Environmental performance of advanced hybrid energy storage systems for electric vehicle applications

    International Nuclear Information System (INIS)

    Sanfélix, Javier; Messagie, Maarten; Omar, Noshin; Van Mierlo, Joeri; Hennige, Volker

    2015-01-01

    Highlights: • The environmental impact of advanced energy storage systems is assessed. • The methodology used is Life Cycle Assessment following the ISO 14040 and 14044. • Twelve impact categories are assessed to avoid burden shifting. • Increasing the efficiency and extending the lifetime benefits the environmental performance. • The results show that there are hot spots where to act and reduce the overall impact. - Abstract: In this paper the environmental performance of an advanced hybrid energy storage system, comprising high power and high energy lithium iron phosphate cells, is compared with a stand alone battery concept composed of lithium manganese oxide cells. The methodology used to analyse the environmental impacts is Life Cycle Assessment (LCA). The manufacturing, use phase and end-of-life of the battery packs are assessed for twelve impact categories. The functional unit is 1 km driven under European average conditions. The present study assesses the environmental performance of the two battery packs for two scenarios: scenario 1 with a vehicle total drive range of 150,000 km and scenario 2 with total driving range of the car of 300,000 km. The results of scenario 1 show that the increased efficiency of the hybrid system reduces, in general, the environmental impact during the use stage, although the manufacturing stage has higher impact than the benchmark. Scenario 2 shows how the extended lifetime of the hybrid system benefits the emissions per km driven

  6. Three methods for estimating a range of vehicular interactions

    Science.gov (United States)

    Krbálek, Milan; Apeltauer, Jiří; Apeltauer, Tomáš; Szabová, Zuzana

    2018-02-01

    We present three different approaches how to estimate the number of preceding cars influencing a decision-making procedure of a given driver moving in saturated traffic flows. The first method is based on correlation analysis, the second one evaluates (quantitatively) deviations from the main assumption in the convolution theorem for probability, and the third one operates with advanced instruments of the theory of counting processes (statistical rigidity). We demonstrate that universally-accepted premise on short-ranged traffic interactions may not be correct. All methods introduced have revealed that minimum number of actively-followed vehicles is two. It supports an actual idea that vehicular interactions are, in fact, middle-ranged. Furthermore, consistency between the estimations used is surprisingly credible. In all cases we have found that the interaction range (the number of actively-followed vehicles) drops with traffic density. Whereas drivers moving in congested regimes with lower density (around 30 vehicles per kilometer) react on four or five neighbors, drivers moving in high-density flows respond to two predecessors only.

  7. Affordances and the musically extended mind.

    Science.gov (United States)

    Krueger, Joel

    2014-01-06

    I defend a model of the musically extended mind. I consider how acts of "musicking" grant access to novel emotional experiences otherwise inaccessible. First, I discuss the idea of "musical affordances" and specify both what musical affordances are and how they invite different forms of entrainment. Next, I argue that musical affordances - via soliciting different forms of entrainment - enhance the functionality of various endogenous, emotion-granting regulative processes, drawing novel experiences out of us with an expanded complexity and phenomenal character. I argue that music therefore ought to be thought of as part of the vehicle needed to realize these emotional experiences. I appeal to different sources of empirical work to develop this idea.

  8. Affordances and the musically extended mind

    Directory of Open Access Journals (Sweden)

    Joel eKrueger

    2014-01-01

    Full Text Available I defend a model of the musically extended mind. I consider how acts of musicking grant access to novel emotional experiences otherwise inaccessible. First, I discuss the idea of musical affordances and specify both what musical affordances are and how they invite different forms of entrainment. Next, I argue that musical affordances—via soliciting different forms of entrainment—enhance the functionality of various endogenous, emotion-granting regulative processes, drawing novel experiences out of us with an expanded complexity and phenomenal character. I suggest that music therefore ought to be thought of as part of the vehicle needed to realize these emotional experiences. I appeal to different sources of empirical work to develop this idea.

  9. Effects of vehicle power on passenger vehicle speeds.

    Science.gov (United States)

    McCartt, Anne T; Hu, Wen

    2017-07-04

    During the past 2 decades, there have been large increases in mean horsepower and the mean horsepower-to-vehicle weight ratio for all types of new passenger vehicles in the United States. This study examined the relationship between travel speeds and vehicle power, defined as horsepower per 100 pounds of vehicle weight. Speed cameras measured travel speeds and photographed license plates and drivers of passenger vehicles traveling on roadways in Northern Virginia during daytime off-peak hours in spring 2013. The driver licensing agencies in the District of Columbia, Maryland, and Virginia provided vehicle information numbers (VINs) by matching license plate numbers with vehicle registration records and provided the age, gender, and ZIP code of the registered owner(s). VINs were decoded to obtain the curb weight and horsepower of vehicles. The study focused on 26,659 observed vehicles for which information on horsepower was available and the observed age and gender of drivers matched vehicle registration records. Log-linear regression estimated the effects of vehicle power on mean travel speeds, and logistic regression estimated the effects of vehicle power on the likelihood of a vehicle traveling over the speed limit and more than 10 mph over the limit. After controlling for driver characteristics, speed limit, vehicle type, and traffic volume, a 1-unit increase in vehicle power was associated with a 0.7% increase in mean speed, a 2.7% increase in the likelihood of a vehicle exceeding the speed limit by any amount, and an 11.6% increase in the likelihood of a vehicle exceeding the limit by 10 mph. All of these increases were highly significant. Speeding persists as a major factor in crashes in the United States. There are indications that travel speeds have increased in recent years. The current findings suggest the trend toward substantially more powerful vehicles may be contributing to higher speeds. Given the strong association between travel speed and crash

  10. Towards low energy mobility using light and ultralight electric vehicles

    OpenAIRE

    Van den Bossche, Alex; Sergeant, Peter; Hofman, Isabelle

    2012-01-01

    Electrical vehicles are seriously considered today. However their energy needs depend seriously on the way how they are designed, ranging from electric bicycles to the electrical utility vehicle, it can differ from 1kWh to more than 20kWh/100km. One can look at the problem if it is better to use compressed natural gas in a vehicle directly or is it better to make electricity first and use that electricity in an electric vehicle. A special attention is given to the development of ultra-ligh...

  11. Feature and Pose Constrained Visual Aided Inertial Navigation for Computationally Constrained Aerial Vehicles

    Science.gov (United States)

    Williams, Brian; Hudson, Nicolas; Tweddle, Brent; Brockers, Roland; Matthies, Larry

    2011-01-01

    A Feature and Pose Constrained Extended Kalman Filter (FPC-EKF) is developed for highly dynamic computationally constrained micro aerial vehicles. Vehicle localization is achieved using only a low performance inertial measurement unit and a single camera. The FPC-EKF framework augments the vehicle's state with both previous vehicle poses and critical environmental features, including vertical edges. This filter framework efficiently incorporates measurements from hundreds of opportunistic visual features to constrain the motion estimate, while allowing navigating and sustained tracking with respect to a few persistent features. In addition, vertical features in the environment are opportunistically used to provide global attitude references. Accurate pose estimation is demonstrated on a sequence including fast traversing, where visual features enter and exit the field-of-view quickly, as well as hover and ingress maneuvers where drift free navigation is achieved with respect to the environment.

  12. Dynamic tensegrity based cooperative control of uninhabited vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Lau, Sook Yen; Naeem, Wasif [Queen' s Univ., Belfast (United Kingdom). School of Electronics, Electrical Engineering and Computer Science

    2013-07-01

    A new formation control methodology is presented in this paper. The proposed technique is modelled by using the concept of cross-tensegrity structures. The main task is to regulate the desired formation of a group of vehicles and to perform point-to-point manoeuvring in the plane. The position of the controlled vehicles in the formation changes with respect to the admissible tendon forces by varying the lengths of bars in the dynamic tensegrity structure modelling. This change of bars' dimensions for geometric transformation is not possible in the application of tensegrity concept in the physical structural engineering. It has been demonstrated that this control method allows more flexibility over a wide range of different shape switching tasks using the predictable tendon control forces under the limited communication's range. The proposed approach is also scalable to any number of pairs of autonomous vehicles in the formation.

  13. Optimal sizing of plug-in fuel cell electric vehicles using models of vehicle performance and system cost

    International Nuclear Information System (INIS)

    Xu, Liangfei; Ouyang, Minggao; Li, Jianqiu; Yang, Fuyuan; Lu, Languang; Hua, Jianfeng

    2013-01-01

    Highlights: ► An analytical model for vehicle performance and power-train parameters. ► Quantitative relationships between vehicle performance and power-train parameters. ► Optimal sizing rules that help designing an optimal PEM fuel cell power-train. ► An on-road testing showing the performance of the proposed vehicle. -- Abstract: This paper presents an optimal sizing method for plug-in proton exchange membrane (PEM) fuel cell and lithium-ion battery (LIB) powered city buses. We propose a theoretical model describing the relationship between components’ parameters and vehicle performance. Analysis results show that within the working range of the electric motor, the maximal velocity and driving distance are influenced linearly by the parameters of the components, e.g. fuel cell efficiency, fuel cell output power, stored hydrogen mass, vehicle auxiliary power, battery capacity, and battery average resistance. Moreover, accelerating time is also linearly dependant on the abovementioned parameters, except of those of the battery. Next, we attempt to minimize fixed and operating costs by introducing an optimal sizing problem that uses as constraints the requirements on vehicle performance. By solving this problem, we attain several optimal sizing rules. Finally, we use these rules to design a plug-in PEM fuel cell city bus and present performance results obtained by on-road testing.

  14. An adaptable, low cost test-bed for unmanned vehicle systems research

    Science.gov (United States)

    Goppert, James M.

    2011-12-01

    An unmanned vehicle systems test-bed has been developed. The test-bed has been designed to accommodate hardware changes and various vehicle types and algorithms. The creation of this test-bed allows research teams to focus on algorithm development and employ a common well-tested experimental framework. The ArduPilotOne autopilot was developed to provide the necessary level of abstraction for multiple vehicle types. The autopilot was also designed to be highly integrated with the Mavlink protocol for Micro Air Vehicle (MAV) communication. Mavlink is the native protocol for QGroundControl, a MAV ground control program. Features were added to QGroundControl to accommodate outdoor usage. Next, the Mavsim toolbox was developed for Scicoslab to allow hardware-in-the-loop testing, control design and analysis, and estimation algorithm testing and verification. In order to obtain linear models of aircraft dynamics, the JSBSim flight dynamics engine was extended to use a probabilistic Nelder-Mead simplex method. The JSBSim aircraft dynamics were compared with wind-tunnel data collected. Finally, a structured methodology for successive loop closure control design is proposed. This methodology is demonstrated along with the rest of the test-bed tools on a quadrotor, a fixed wing RC plane, and a ground vehicle. Test results for the ground vehicle are presented.

  15. Performance evaluation and design of flight vehicle control systems

    CERN Document Server

    Falangas, Eric T

    2015-01-01

    This book will help students, control engineers and flight dynamics analysts to model and conduct sophisticated and systemic analyses of early flight vehicle designs controlled with multiple types of effectors and to design and evaluate new vehicle concepts in terms of satisfying mission and performance goals. Performance Evaluation and Design of Flight Vehicle Control Systems begins by creating a dynamic model of a generic flight vehicle that includes a range of elements from airplanes and launch vehicles to re-entry vehicles and spacecraft. The models may include dynamic effects dealing with structural flexibility, as well as dynamic coupling between structures and actuators, propellant sloshing, and aeroelasticity, and they are typically used for control analysis and design. The book shows how to efficiently combine different types of effectors together, such as aero-surfaces, TVC, throttling engines and RCS, to operate as a system by developing a mixing logic atrix. Methods of trimming a vehicle controll...

  16. The potential for extending the spectral range accessible to the european X-ray free electron laser in the direction of longer wavelengths

    CERN Document Server

    Saldin, E L; Yurkov, M V

    2004-01-01

    The baseline specifications of European XFEL give a range of wavelengths between 0.1 nm and 2 nm. This wavelength range at fixed electron beam energy 17.5 GeV can be covered by operating the SASE FEL with three undulators which have different period and tunable gap. A study of the potential for the extending the spectral range accessible to the XFEL in the direction of longer wavelengths is presented. The extension of the wavelength range to 6 nm would be cover the water window in the VUV region, opening the facility to a new class of experiments. There are at least two possible sources of VUV radiation associated with the X-ray FEL; the "low (2.5 GeV) energy electron beam dedicated" and the " 17.5 GeV spent beam parasitic" (or "after-burner") source modes. The second alternative, "after-burner undulator" is the one we regard as most favorable. It is possible to place an undulator as long as 80 meters after 2 nm undulator. Ultimately, VUV undulator would be able to deliver output power approaching 100 GW. A b...

  17. VIRMS: A VEHICLE INFORMATION AND ROAD MONITORING SYSTEM

    Directory of Open Access Journals (Sweden)

    Fabio Arnéz

    2014-01-01

    Full Text Available Intelligent Transport Systems (ITS are emerging technologies for building collaborative vehicular networks to increase road safety and to improve driver’s experience. Unfortunately these technologies require heavy infrastructure to be deployed inside and outside the vehicle that is difficult to extend. In this article we present VIRMS (Vehicle Information and Road Monitoring System, an ITS that is based on low-cost and small footprint client and server infrastructure that was designed to increase vehicular security and reduce accident rates along highways. The VIRMS remote client device is an on board vehicle electronic device that gathers data from sensors and processes the collected data that is sent to the VIRMS server in order to keep drivers informed with precise context information through the detection and identification of events (accidents, traffic jams, bad weather conditions, etc. along the roads. A prototype running tests on Bolivian highways show that VIRMS can give a technological answer to a real problem where road safety is one of the highest issues and cause of mortality.

  18. Electric vehicle equipment for grid-integrated vehicles

    Science.gov (United States)

    Kempton, Willett

    2013-08-13

    Methods, systems, and apparatus for interfacing an electric vehicle with an electric power grid are disclosed. An exemplary apparatus may include a station communication port for interfacing with electric vehicle station equipment (EVSE), a vehicle communication port for interfacing with a vehicle management system (VMS), and a processor coupled to the station communication port and the vehicle communication port to establish communication with the EVSE via the station communication port, receive EVSE attributes from the EVSE, and issue commands to the VMS to manage power flow between the electric vehicle and the EVSE based on the EVSE attributes. An electric vehicle may interface with the grid by establishing communication with the EVSE, receiving the EVSE attributes, and managing power flow between the EVE and the grid based on the EVSE attributes.

  19. Development and validation of a Kalman filter-based model for vehicle slip angle estimation

    Science.gov (United States)

    Gadola, M.; Chindamo, D.; Romano, M.; Padula, F.

    2014-01-01

    It is well known that vehicle slip angle is one of the most difficult parameters to measure on a vehicle during testing or racing activities. Moreover, the appropriate sensor is very expensive and it is often difficult to fit to a car, especially on race cars. We propose here a strategy to eliminate the need for this sensor by using a mathematical tool which gives a good estimation of the vehicle slip angle. A single-track car model, coupled with an extended Kalman filter, was used in order to achieve the result. Moreover, a tuning procedure is proposed that takes into consideration both nonlinear and saturation characteristics typical of vehicle lateral dynamics. The effectiveness of the proposed algorithm has been proven by both simulation results and real-world data.

  20. Real-Time Implementation of an Extended Kalman Filter and a PI Observer for State Estimation of Rechargeable Li-Ion Batteries in Hybrid Electric Vehicle Applications—A Case Study

    Directory of Open Access Journals (Sweden)

    Roxana-Elena Tudoroiu

    2018-04-01

    Full Text Available The Li-Ion battery state-of-charge estimation is an essential task in a continuous dynamic automotive industry for large-scale and successful marketing of hybrid electric vehicles. Also, the state-of-charge of any rechargeable battery, regardless of its chemistry, is an essential condition parameter for battery management systems of hybrid electric vehicles. In this study, we share from our accumulated experience in the control system applications field some preliminary results, especially in modeling, control and state estimation techniques. We investigate the design and effectiveness of two state-of-charge estimators, namely an extended Kalman filter and a proportional integral observer, implemented in a real-time MATLAB environment for a particular Li-Ion battery. Definitely, the aim of this work is to find the most suitable estimator in terms of estimation accuracy and robustness to changes in initial conditions (i.e., the initial guess value of battery state-of-charge and changes in process and measurement noise levels. By a rigorous performance analysis of MATLAB simulation results, the potential estimator choice is revealed. The performance comparison can be done visually on similar graphs if the information gathered provides a good insight, otherwise, it can be done statistically based on the calculus of statistic errors, in terms of root mean square error, mean absolute error and mean square error.

  1. Estimated Bounds and Important Factors for Fuel Use and Consumer Costs of Connected and Automated Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, T. S. [Argonne National Lab. (ANL), Argonne, IL (United States); Gonder, Jeff [National Renewable Energy Lab. (NREL), Golden, CO (United States); Chen, Yuche [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lin, Z. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Liu, C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gohlke, D. [US Dept. of Energy, Washington, DC (United States)

    2016-11-01

    This report details a study of the potential effects of connected and automated vehicle (CAV) technologies on vehicle miles traveled (VMT), vehicle fuel efficiency, and consumer costs. Related analyses focused on a range of light-duty CAV technologies in conventional powertrain vehicles -- from partial automation to full automation, with and without ridesharing -- compared to today's base-case scenario. Analysis results revealed widely disparate upper- and lower-bound estimates for fuel use and VMT, ranging from a tripling of fuel use to decreasing light-duty fuel use to below 40% of today's level. This wide range reflects uncertainties in the ways that CAV technologies can influence vehicle efficiency and use through changes in vehicle designs, driving habits, and travel behavior. The report further identifies the most significant potential impacting factors, the largest areas of uncertainty, and where further research is particularly needed.

  2. Active disturbance rejection attitude control for a hypersonic reentry vehicle with actuator saturation

    Directory of Open Access Journals (Sweden)

    Hongjiu Yang

    2017-05-01

    Full Text Available In this article, nonlinear uncertainty has been investigated for a hypersonic reentry vehicle subject to actuator saturation via active disturbance rejection control technology. A nonlinear extended state observer is designed to estimate “total disturbances,” which is compensated with a linear controller. Both convergence of the nonlinear extended state observer and stabilization of the closed-loop system are studied in this article. Some simulation results are given to illustrate the effectiveness of the proposed method.

  3. Vehicle choices for teenage drivers: A national survey of U.S. parents.

    Science.gov (United States)

    Eichelberger, Angela H; Teoh, Eric R; McCartt, Anne T

    2015-12-01

    Previous research has shown that many newly licensed teenagers in the United States are driving vehicles with inferior crash protection. The objective of this study was to update and extend previous research on U.S. parents' choices of vehicles for their teenagers. Telephone surveys were conducted with parents in May 2014 using a random sample of U.S. households likely to include teenagers. Participation was restricted to parents or guardians of teenagers who lived in the household and held either an intermediate or full driver's license. Parents were interviewed about the vehicle their teenager drives, the reason they chose the vehicle for their teenager, and the cost of purchased vehicles. Teenagers most often were driving 2000-06 model year vehicles (41%), with 30% driving a more recent model year and 19% driving an older model year. Teenagers most often were driving midsize or large cars (27%), followed by SUVs (22%), mini or small cars (20%), and pickups (14%). Far fewer were driving minivans (6%) or sports cars (1%). Forty-three percent of the vehicles driven by teenagers were purchased when the teenager started driving or later. A large majority (83%) were used vehicles. The median cost of the vehicles purchased was $5300, and the mean purchase price was $9751. Although parents report that the majority of teenagers are driving midsize or larger vehicles, many of these vehicles likely do not have key safety features, such as electronic stability control, which would be especially beneficial for teenage drivers. Many teenagers were driving older model year vehicles or vehicle types or sizes that are not ideal for novice drivers. Parents, and their teenage drivers, may benefit from consumer information about optimal vehicle choices for teenagers. Copyright © 2015 Elsevier Ltd and National Safety Council. All rights reserved.

  4. Advances in fuel cell vehicle design

    Science.gov (United States)

    Bauman, Jennifer

    Factors such as global warming, dwindling fossil fuel reserves, and energy security concerns combine to indicate that a replacement for the internal combustion engine (ICE) vehicle is needed. Fuel cell vehicles have the potential to address the problems surrounding the ICE vehicle without imposing any significant restrictions on vehicle performance, driving range, or refuelling time. Though there are currently some obstacles to overcome before attaining the widespread commercialization of fuel cell vehicles, such as improvements in fuel cell and battery durability, development of a hydrogen infrastructure, and reduction of high costs, the fundamental concept of the fuel cell vehicle is strong: it is efficient, emits zero harmful emissions, and the hydrogen fuel can be produced from various renewable sources. Therefore, research on fuel cell vehicle design is imperative in order to improve vehicle performance and durability, increase efficiency, and reduce costs. This thesis makes a number of key contributions to the advancement of fuel cell vehicle design within two main research areas: powertrain design and DC/DC converters. With regards to powertrain design, this research first analyzes various powertrain topologies and energy storage system types. Then, a novel fuel cell-battery-ultracapacitor topology is presented which shows reduced mass and cost, and increased efficiency, over other promising topologies found in the literature. A detailed vehicle simulator is created in MATLAB/Simulink in order to simulate and compare the novel topology with other fuel cell vehicle powertrain options. A parametric study is performed to optimize each powertrain and general conclusions for optimal topologies, as well as component types and sizes, for fuel cell vehicles are presented. Next, an analytical method to optimize the novel battery-ultracapacitor energy storage system based on maximizing efficiency, and minimizing cost and mass, is developed. This method can be applied

  5. Comparing the Mass, Energy, and Cost Effects of Lightweighting in Conventional and Electric Passenger Vehicles

    Directory of Open Access Journals (Sweden)

    Johannes Hofer

    2014-09-01

    Full Text Available In this work the effect of weight reduction using advanced lightweight materials on the mass, energy use, and cost of conventional and battery electric passenger vehicles is compared. Analytic vehicle simulation is coupled with cost assessment to find the optimal degree of weight reduction minimizing manufacturing and total costs. The results show a strong secondary weight and cost saving potential for the battery electric vehicles, but a higher sensitivity of vehicle energy use to mass reduction for the conventional vehicle. Generally, light weighting has the potential to lower vehicle costs, however, the results are very sensitive to parameters affecting lifetime fuel costs for conventional and battery costs for electric vehicles. Based on current technology cost estimates it is shown that the optimal amount of primary mass reduction minimizing total costs is similar for conventional and electric vehicles and ranges from 22% to 39%, depending on vehicle range and overall use patterns. The difference between the optimal solutions minimizing manufacturing versus total costs is higher for conventional than battery electric vehicles.

  6. An Extended Non-Lane-Based Optimal Velocity Model with Dynamic Collaboration

    Directory of Open Access Journals (Sweden)

    Zhipeng Li

    2013-01-01

    Full Text Available Incorporating the effects of the lane width in traffic, in this paper, we propose a dynamical model based on the strategy of three-vehicle cooperation driving. We obtain the smoother acceleration distribution in the new model through considering the dynamic collaboration with the nearest preceding vehicle and the nearest following vehicle. It is proved that the stability of the new model is greatly improved compared to the early non-lane-based car following model by using the linear stability theory. We find that when the parameter of lateral separation distance is identified, the amplitude of traffic congestion decreases with increasing the strength of dynamic collaboration in the simulation experiments. In addition, we apply the new extended model to simulate the motions of cars starting from a traffic signal and the dissipating of the traffic congestion; it is found that our new model can predict realistic delay time and kinematic wave speed and obtained a faster dissipation speed of traffic congestion than the traffic flow model without considering the dynamic collaboration.

  7. New records of Lophoproctuscoecus Pocock, 1894 (Diplopoda, Polyxenida, Lophoproctidae) extend the range of the genus Lophoproctus.

    Science.gov (United States)

    Short, Megan

    2015-01-01

    The geographic distribution of the genus Lophoproctus Pocock, 1894 has greatly expanded with new records of the species Lophoproctuscoecus Pocock, 1894, together with the reassignment of a number of millipedes formerly identified as Lophoproctuslucidus (Chalande, 1888). Lophoproctuscoecus was found to be the sole representative of the family Lophoproctidae in collections examined from Crimea and the Caucasian region. The species was also identified from Iran and Kyrgyzstan. Lophoproctus specimens collected in Italy by Verhoeff were reassigned as Lophoproctuscoecus with the exception of one specimen of Lophoproctusjeanneli (Brölemann, 1910) from Capri. These data were combined with all available information from the literature to look at the pattern of distribution of the four species in the genus. The range of the genus Lophoproctus extends from Portugal to Central Asia. Lophoproctuscoecus is widespread from Italy eastward, while the morphologically very similar species Lophoproctuslucidus is confined to France and northern Africa. The two species have a narrow overlap in the Alpes Maritimes region of France. Lophoproctusjeanneli has a scattered coastal distribution around the Mediterranean Sea. The troglobitic species Lophoproctuspagesi (Condé, 1982) has only been recorded from a cave on Majorca, Spain.

  8. Wide-Range Highly-Efficient Wireless Power Receivers for Implantable Biomedical Sensors

    KAUST Repository

    Ouda, Mahmoud

    2016-11-01

    Wireless power transfer (WPT) is the key enabler for a myriad of applications, from low-power RFIDs, and wireless sensors, to wirelessly charged electric vehicles, and even massive power transmission from space solar cells. One of the major challenges in designing implantable biomedical devices is the size and lifetime of the battery. Thus, replacing the battery with a miniaturized wireless power receiver (WPRx) facilitates designing sustainable biomedical implants in smaller volumes for sentient medical applications. In the first part of this dissertation, we propose a miniaturized, fully integrated, wirelessly powered implantable sensor with on-chip antenna, designed and implemented in a standard 0.18μm CMOS process. As a batteryless device, it can be implanted once inside the body with no need for further invasive surgeries to replace batteries. The proposed single-chip solution is designed for intraocular pressure monitoring (IOPM), and can serve as a sustainable platform for implantable devices or IoT nodes. A custom setup is developed to test the chip in a saline solution with electrical properties similar to those of the aqueous humor of the eye. The proposed chip, in this eye-like setup, is wirelessly charged to 1V from a 5W transmitter 3cm away from the chip. In the second part, we propose a self-biased, differential rectifier with enhanced efficiency over an extended range of input power. A prototype is designed for the medical implant communication service (MICS) band at 433MHz. It demonstrates an efficiency improvement of more than 40% in the rectifier power conversion efficiency (PCE) and a dynamic range extension of more than 50% relative to the conventional cross-coupled rectifier. A sensitivity of -15.2dBm input power for 1V output voltage and a peak PCE of 65% are achieved for a 50k load. In the third part, we propose a wide-range, differential RF-to-DC power converter using an adaptive, self-biasing technique. The proposed architecture doubles

  9. Evaluation of fuel cell hybrid electric light commercial vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, G.M.

    2002-07-01

    This report summarised the results of tests both in the laboratory and in operation on the roads in London carried out to determine the performance of the Zetek Fuel Cell Vehicle operated by Westminster County Council. Details are given of the vehicle's data logging system, and measurement of its acceleration and power, driveability, vehicle range, and the energy efficiency of the fuel cell, and its environmental performance. The frequent shutdowns of the fuel cell system and the problems with the DC/DC converter are discussed.

  10. Fractional Control of An Active Four-wheel-steering Vehicle

    Science.gov (United States)

    Wang, Tianting; Tong, Jun; Chen, Ning; Tian, Jie

    2018-03-01

    A four-wheel-steering (4WS) vehicle model and reference model with a drop filter are constructed. The decoupling of 4WS vehicle model is carried out. And a fractional PIλDμ controller is introduced into the decoupling strategy to reduce the effects of the uncertainty of the vehicle parameters as well as the unmodelled dynamics on the system performance. Based on optimization techniques, the design of fractional controller are obtained to ensure the robustness of 4WS vehicle during the special range of frequencies through proper choice of the constraints. In order to compare with fractional robust controller, an optimal controller for the same vehicle is also designed. The simulations of the two control systems are carried out and it reveals that the decoupling and fractional robust controller is able to make vehicle model trace the reference model very well with better robustness.

  11. Comparative analysis of aluminum-air battery propulsion systems for passenger vehicles

    Science.gov (United States)

    Salisbury, J. D.; Behrin, E.; Kong, M. K.; Whisler, D. J.

    1980-02-01

    Three electric propulsion systems using an aluminum air battery were analyzed and compared to the internal combustion engine (ICE) vehicle. The engine and fuel systems of a representative five passenger highway vehicle were replaced conceptually by each of the three electric propulsion systems. The electrical vehicles were constrained by the computer simulation to be equivalent to the ICE vehicle in range and acceleration performance. The vehicle masses and aluminum consumption rates were then calculated for the electric vehicles and these data were used as figures of merit. The Al-air vehicles analyzed were (1) an Al-air battery only electric vehicle; (2) an Al-air battery combined with a nickel zinc secondary battery for power leveling and regenerative braking; and (3) an Al-air battery combined with a flywheel for power leveling and regenerative braking. All three electric systems compared favorably with the ICE vehicle.

  12. Extended family medicine training

    Science.gov (United States)

    Slade, Steve; Ross, Shelley; Lawrence, Kathrine; Archibald, Douglas; Mackay, Maria Palacios; Oandasan, Ivy F.

    2016-01-01

    Abstract Objective To examine trends in family medicine training at a time when substantial pedagogic change is under way, focusing on factors that relate to extended family medicine training. Design Aggregate-level secondary data analysis based on the Canadian Post-MD Education Registry. Setting Canada. Participants All Canadian citizens and permanent residents who were registered in postgraduate family medicine training programs within Canadian faculties of medicine from 1995 to 2013. Main outcome measures Number and proportion of family medicine residents exiting 2-year and extended (third-year and above) family medicine training programs, as well as the types and numbers of extended training programs offered in 2015. Results The proportion of family medicine trainees pursuing extended training almost doubled during the study period, going from 10.9% in 1995 to 21.1% in 2013. Men and Canadian medical graduates were more likely to take extended family medicine training. Among the 5 most recent family medicine exit cohorts (from 2009 to 2013), 25.9% of men completed extended training programs compared with 18.3% of women, and 23.1% of Canadian medical graduates completed extended training compared with 13.6% of international medical graduates. Family medicine programs vary substantially with respect to the proportion of their trainees who undertake extended training, ranging from a low of 12.3% to a high of 35.1% among trainees exiting from 2011 to 2013. Conclusion New initiatives, such as the Triple C Competency-based Curriculum, CanMEDS–Family Medicine, and Certificates of Added Competence, have emerged as part of family medicine education and credentialing. In acknowledgment of the potential effect of these initiatives, it is important that future research examine how pedagogic change and, in particular, extended training shapes the care family physicians offer their patients. As part of that research it will be important to measure the breadth and uptake of

  13. Advances in Automated Plankton Imaging: Enhanced Throughput, Automated Staining, and Extended Deployment Modes for Imaging FlowCytobot

    Science.gov (United States)

    Sosik, H. M.; Olson, R. J.; Brownlee, E.; Brosnahan, M.; Crockford, E. T.; Peacock, E.; Shalapyonok, A.

    2016-12-01

    Imaging FlowCytobot (IFCB) was developed to fill a need for automated identification and monitoring of nano- and microplankton, especially phytoplankton in the size range 10 200 micrometer, which are important in coastal blooms (including harmful algal blooms). IFCB uses a combination of flow cytometric and video technology to capture high resolution (1 micrometer) images of suspended particles. This proven, now commercially available, submersible instrument technology has been deployed in fixed time series locations for extended periods (months to years) and in shipboard laboratories where underway water is automatically analyzed during surveys. Building from these successes, we have now constructed and evaluated three new prototype IFCB designs that extend measurement and deployment capabilities. To improve cell counting statistics without degrading image quality, a high throughput version (IFCB-HT) incorporates in-flow acoustic focusing to non-disruptively pre-concentrate cells before the measurement area of the flow cell. To extend imaging to all heterotrophic cells (even those that do not exhibit chlorophyll fluorescence), Staining IFCB (IFCB-S) incorporates automated addition of a live-cell fluorescent stain (fluorescein diacetate) to samples before analysis. A horizontally-oriented IFCB-AV design addresses the need for spatial surveying from surface autonomous vehicles, including design features that reliably eliminate air bubbles and mitigate wave motion impacts. Laboratory evaluation and test deployments in waters near Woods Hole show the efficacy of each of these enhanced IFCB designs.

  14. Extending the Constant Power Speed Range of the Brushless DC Motor through Dual Mode Inverter Control - Part II: Laboratory Proof-of-Principle

    International Nuclear Information System (INIS)

    Lawler, J.S.

    2001-01-01

    Previous theoretical work has shown that when all loss mechanisms are neglected the constant power speed range (CPSR) of a brushless dc motor (BDCM) is infinite when the motor is driven by the dual-mode inverter control (DMIC)[1,2]. In a physical drive, losses, particularly speed-sensitive losses, will limit the CPSR to a finite value. In this paper we report the results of laboratory testing of a low-inductance, 7.5-hp BDCM driven by the DMIC. The speed rating of the test motor rotor limited the upper speed of the testing, and the results show that the CPSR of the test machine is greater than 6:1 when driven by the DMIC. Current wave shape, peak, and rms values remained controlled and within rating over the entire speed range. The laboratory measurements allowed the speed-sensitive losses to be quantified and incorporated into computer simulation models, which then accurately reproduce the results of lab testing. The simulator shows that the limiting CPSR of the test motor is 8:1. These results confirm that the DMIC is capable of driving low-inductance BDCMs over the wide CPSR that would be required in electric vehicle applications

  15. Investigations on an energy efficient air conditioning of hybrid vehicles and electric-powered vehicles; Untersuchungen zur energieeffizienten Klimatisierung von Hybrid- und Elektrofahrzeugen

    Energy Technology Data Exchange (ETDEWEB)

    Aurich, Joerg; Baumgart, Rico; Danzer, Christoph; Unwerth, Thomas von [Technische Univ. Chemnitz (Germany). Professur Alternative Fahrzeugantriebe

    2012-11-01

    The energy-efficient air conditioning of passenger cells is an ever-increasing challenge in the development of electric vehicles because the electric heating in particular reduces the cruising range significantly. For this reason, a simulation model has been developed at Chemnitz University of Technology, which simulates the whole air conditioning system including the passenger cell and the complete powertrain in electric cars. Using this model, different optimization approaches have been analyzed and evaluated concerning the cruising range. This paper first illustrates how much the cruising range of an exemplary electric vehicle is reduced by using the electric heating under different wintery weather conditions. Afterwards, the exploitation of the waste heat produced by the powertrain components (electric motor and power electronics) will be explained. Finally, it shall be described to what extent this exploitation increases the cruising range. (orig.)

  16. Batteries for electric road vehicles.

    Science.gov (United States)

    Goodenough, John B; Braga, M Helena

    2018-01-15

    The dependence of modern society on the energy stored in a fossil fuel is not sustainable. An immediate challenge is to eliminate the polluting gases emitted from the roads of the world by replacing road vehicles powered by the internal combustion engine with those powered by rechargeable batteries. These batteries must be safe and competitive in cost, performance, driving range between charges, and convenience. The competitive performance of an electric car has been demonstrated, but the cost of fabrication, management to ensure safety, and a short cycle life have prevented large-scale penetration of the all-electric road vehicle into the market. Low-cost, safe all-solid-state cells from which dendrite-free alkali-metal anodes can be plated are now available; they have an operating temperature range from -20 °C to 80 °C and they permit the design of novel high-capacity, high-voltage cathodes providing fast charge/discharge rates. Scale-up to large multicell batteries is feasible.

  17. Aerodynamic resistance reduction of electric and hybrid vehicles

    Science.gov (United States)

    1979-01-01

    The generation of an EHV aerodynamic data base was initiated by conducting full-scale wind tunnel tests on 16 vehicles. Zero-yaw drag coefficients ranged from a high of 0.58 for a boxey delivery van and an open roadster to a low of about 0.34 for a current 4-passenger prototype automobile which was designed with aerodynamics as an integrated parameter. Characteristic effects of aspect ratio or fineness ratio which might appear if electric vehicle shape proportions were to vary significantly from current automobiles were identified. Some preliminary results indicate a 5 to 10% variation in drag over the range of interest. Effective drag coefficient wind-weighting factors over J227a driving cycles in the presence of annual mean wind fields were identified. Such coefficients, when properly weighted, were found to be from 5 to 65% greater than the zero-yaw drag coefficient in the cases presented. A vehicle aerodynamics bibliography of over 160 entries, in six general categories is included.

  18. Achieve Location Privacy-Preserving Range Query in Vehicular Sensing.

    Science.gov (United States)

    Kong, Qinglei; Lu, Rongxing; Ma, Maode; Bao, Haiyong

    2017-08-08

    Modern vehicles are equipped with a plethora of on-board sensors and large on-board storage, which enables them to gather and store various local-relevant data. However, the wide application of vehicular sensing has its own challenges, among which location-privacy preservation and data query accuracy are two critical problems. In this paper, we propose a novel range query scheme, which helps the data requester to accurately retrieve the sensed data from the distributive on-board storage in vehicular ad hoc networks (VANETs) with location privacy preservation. The proposed scheme exploits structured scalars to denote the locations of data requesters and vehicles, and achieves the privacy-preserving location matching with the homomorphic Paillier cryptosystem technique. Detailed security analysis shows that the proposed range query scheme can successfully preserve the location privacy of the involved data requesters and vehicles, and protect the confidentiality of the sensed data. In addition, performance evaluations are conducted to show the efficiency of the proposed scheme, in terms of computation delay and communication overhead. Specifically, the computation delay and communication overhead are not dependent on the length of the scalar, and they are only proportional to the number of vehicles.

  19. Compressive laser ranging.

    Science.gov (United States)

    Babbitt, Wm Randall; Barber, Zeb W; Renner, Christoffer

    2011-12-15

    Compressive sampling has been previously proposed as a technique for sampling radar returns and determining sparse range profiles with a reduced number of measurements compared to conventional techniques. By employing modulation on both transmission and reception, compressive sensing in ranging is extended to the direct measurement of range profiles without intermediate measurement of the return waveform. This compressive ranging approach enables the use of pseudorandom binary transmit waveforms and return modulation, along with low-bandwidth optical detectors to yield high-resolution ranging information. A proof-of-concept experiment is presented. With currently available compact, off-the-shelf electronics and photonics, such as high data rate binary pattern generators and high-bandwidth digital optical modulators, compressive laser ranging can readily achieve subcentimeter resolution in a compact, lightweight package.

  20. Passive Earth Entry Vehicle Landing Test

    Science.gov (United States)

    Kellas, Sotiris

    2017-01-01

    Two full-scale passive Earth Entry Vehicles (EEV) with realistic structure, surrogate sample container, and surrogate Thermal Protection System (TPS) were built at NASA Langley Research Center (LaRC) and tested at the Utah Test and Training Range (UTTR). The main test objective was to demonstrate structural integrity and investigate possible impact response deviations of the realistic vehicle as compared to rigid penetrometer responses. With the exception of the surrogate TPS and minor structural differences in the back shell construction, the two test vehicles were identical in geometry and both utilized the Integrated Composite Stiffener Structure (ICoSS) structural concept in the forward shell. The ICoSS concept is a lightweight and highly adaptable composite concept developed at NASA LaRC specifically for entry vehicle TPS carrier structures. The instrumented test vehicles were released from a helicopter approximately 400 m above ground. The drop height was selected such that at least 98% of the vehicles terminal velocity would be achieved. While drop tests of spherical penetrometers and a low fidelity aerodynamic EEV model were conducted at UTTR in 1998 and 2000, this was the first time a passive EEV with flight-like structure, surrogate TPS, and sample container was tested at UTTR for the purpose of complete structural system validation. Test results showed that at a landing vertical speed of approximately 30 m/s, the test vehicle maintained structural integrity and enough rigidity to penetrate the sandy clay surface thus attenuating the landing load, as measured at the vehicle CG, to less than 600 g. This measured deceleration was found to be in family with rigid penetrometer test data from the 1998 and 2000 test campaigns. Design implications of vehicle structure/soil interaction with respect to sample container and sample survivability are briefly discussed.

  1. Localization of a Vehicle: A Dynamic Interval Constraint Satisfaction Problem-Based Approach

    Directory of Open Access Journals (Sweden)

    Kangni Kueviakoe

    2018-01-01

    Full Text Available This paper introduces a new interval constraint propagation (ICP approach dealing with the real-time vehicle localization problem. Bayesian methods like extended Kalman filter (EKF are classically used to achieve vehicle localization. ICP is an alternative which provides guaranteed localization results rather than probabilities. Our approach assumes that all models and measurement errors are bounded within known limits without any other hypotheses on the probability distribution. The proposed algorithm uses a low-level consistency algorithm and has been validated with an outdoor vehicle equipped with a GPS receiver, a gyro, and odometers. Results have been compared to EKF and other ICP methods such as hull consistency (HC4 and 3-bound (3B algorithms. Both consistencies of EKF and our algorithm have been experimentally studied.

  2. The design of infrared laser radar for vehicle initiative safety

    Science.gov (United States)

    Gong, Ping; Xu, Xi-ping; Li, Xiao-yu; Li, Tian-zhi; Liu, Yu-long; Wu, Jia-hui

    2013-09-01

    Laser radar for vehicle is mainly used in advanced vehicle on-board active safety systems, such as forward anti-collision systems, active collision warning systems and adaptive cruise control systems, etc. Laser radar for vehicle plays an important role in the improvement of vehicle active safety and the reduction of traffic accidents. The stability of vehicle active anti-collision system in dynamic environment is still one of the most difficult problems to break through nowadays. According to people's driving habit and the existed detecting technique of sensor, combining the infrared laser range and galvanometer scanning technique , design a 3-D infrared laser radar which can be used to assist navigation, obstacle avoidance and the vehicle's speed control for the vehicle initiative safety. The device is fixed to the head of vehicle. Then if an accident happened, the device could give an alarm to remind the driver timely to decelerate or brake down, by which way can people get the purpose of preventing the collision accidents effectively. To accomplish the design, first of all, select the core components. Then apply Zemax to design the transmitting and receiving optical system. Adopt 1550 nm infrared laser transmitter as emission unit in the device, a galvanometer scanning as laser scanning unit and an InGaAs-APD detector as laser echo signal receiving unit. Perform the construction of experimental system using FPGA and ARM as the core controller. The system designed in this paper can not only detect obstacle in front of the vehicle and make the control subsystem to execute command, but also transfer laser data to PC in real time. Lots of experiments using the infrared laser radar prototype are made, and main performance of it is under tested. The results of these experiments show that the imaging speed of the laser radar can reach up to 25 frames per second, the frame resolution of each image can reach 30×30 pixels, the horizontal angle resolution is about 6. 98

  3. Vehicle Theft Identification and Intimation Using GSM & IOT

    Science.gov (United States)

    Eswar Kumar, M.; Thippa Reddy, G.; Sudheer, K.; Reddy, M. Praveen Kumar; Kaluri, Rajesh; Singh Rajput, Dharmendra; Lakshmanna, Kuruva

    2017-11-01

    Internet of Things is the most predominant innovation associates the things through web. IoT is a technology which interfaces things from different places on the planet. Home mechanization is a wide range innovation in IoT technology on the planet. Home automation constitutes in security issues, controlling gadgets and so on. In existing model, the vehicle theft is distinguished and controlled by physically with GSM module. Furthermore, there are a few in controlling the vehicle is major issue for owner from theft. Here in this paper a technique described to overcome issue of existing one. In this the vehicle is identified, controlled and connected updates with Internet in a simple way. By utilization of AT commands of GSM module a message will be send to the owner that the vehicle is recognized. Action can be taken by sending a reply to GSM module to stop motor of vehicle. Arduino uno board is used to interface the GSM and engine of vehicle with appropriate sensors. Visual studio, Arduino uno are the programming software used to outline this application.

  4. Environmental Knowledge, Awareness, and Business School Students’ Intentions to Purchase Green Vehicles in Emerging Countries

    Directory of Open Access Journals (Sweden)

    Muhammad Mohiuddin

    2018-05-01

    Full Text Available Environmental awareness and changing attitudes toward “green consumption” are becoming evident in emerging countries’ markets. Using an extended theory of planned behavior, this paper aims to examine emerging countries’ business students’ intentions to purchase green vehicles. Stratified random sampling was used to select study participants, and data were collected through face-to-face interviews. Results revealed that environmental knowledge and awareness have a significant influence on business students’ favorable attitudes toward green vehicles. Further, a significant association between attitudes toward green vehicles, perceived behavioral controls, and intentions to purchase green vehicles was observed. Findings serve to inform managers and policy makers who are formulating strategies for maximizing value creation in an era of increasingly environmentally aware consumers in emerging markets. Ultimately, this policy will help to promote green technology initiatives, and encourage higher rates of adoption of eco-friendly vehicles in emerging countries.

  5. Vehicle tracking for an evasive manoeuvres assistant using low-cost ultrasonic sensors.

    Science.gov (United States)

    Jiménez, Felipe; Naranjo, José E; Gómez, Oscar; Anaya, José J

    2014-11-28

    Many driver assistance systems require knowledge of the vehicle environment. As these systems are increasing in complexity and performance, this knowledge of the environment needs to be more complete and reliable, so sensor fusion combining long, medium and short range sensors is now being used. This paper analyzes the feasibility of using ultrasonic sensors for low cost vehicle-positioning and tracking in the lane adjacent to the host vehicle in order to identify free areas around the vehicle and provide information to an automatic avoidance collision system that can perform autonomous braking and lane change manoeuvres. A laser scanner is used for the early detection of obstacles in the direction of travel while two ultrasonic sensors monitor the blind spot of the host vehicle. The results of tests on a test track demonstrate the ability of these sensors to accurately determine the kinematic variables of the obstacles encountered, despite a clear limitation in range.

  6. Vehicle Tracking for an Evasive Manoeuvres Assistant Using Low-Cost Ultrasonic Sensors

    Directory of Open Access Journals (Sweden)

    Felipe Jiménez

    2014-11-01

    Full Text Available Many driver assistance systems require knowledge of the vehicle environment. As these systems are increasing in complexity and performance, this knowledge of the environment needs to be more complete and reliable, so sensor fusion combining long, medium and short range sensors is now being used. This paper analyzes the feasibility of using ultrasonic sensors for low cost vehicle-positioning and tracking in the lane adjacent to the host vehicle in order to identify free areas around the vehicle and provide information to an automatic avoidance collision system that can perform autonomous braking and lane change manoeuvres. A laser scanner is used for the early detection of obstacles in the direction of travel while two ultrasonic sensors monitor the blind spot of the host vehicle. The results of tests on a test track demonstrate the ability of these sensors to accurately determine the kinematic variables of the obstacles encountered, despite a clear limitation in range.

  7. Highway vehicle electric drive in the United States : 2009 status and issues.

    Energy Technology Data Exchange (ETDEWEB)

    Santini, D. J.; Energy Systems

    2011-02-16

    The status of electric drive technology in the United States as of early 2010 is documented. Rapidly evolving electric drive technologies discussed include hybrid electric vehicles, multiple types of plug-in hybrid electric vehicles, and battery electric vehicles. Recent trends for hybrids are quantified. Various plug-in vehicles entering the market in the near term are examined. The technical and economic requirements for electric drive to more broadly succeed in a wider range of highway vehicle applications are described, and implications for the most promising new markets are provided. Federal and selected state government policy measures promoting and preparing for electric drive are discussed. Taking these into account, judgment on areas where increased Clean Cities funds might be most productively focused over the next five years are provided. In closing, the request by Clean Cities for opinion on the broad range of research needs providing near-term support to electric drive is fulfilled.

  8. Development & optimization of a rule-based energy management strategy for fuel economy improvement in hybrid electric vehicles

    Science.gov (United States)

    Asfoor, Mostafa

    The gradual decline of oil reserves and the increasing demand for energy over the past decades has resulted in automotive manufacturers seeking alternative solutions to reduce the dependency on fossil-based fuels for transportation. A viable technology that enables significant improvements in the overall energy conversion efficiencies is the hybridization of conventional vehicle drive systems. This dissertation builds on prior hybrid powertrain development at the University of Idaho. Advanced vehicle models of a passenger car with a conventional powertrain and three different hybrid powertrain layouts were created using GT-Suite. These different powertrain models were validated against a variety of standard driving cycles. The overall fuel economy, energy consumption, and losses were monitored, and a comprehensive energy analysis was performed to compare energy sources and sinks. The GT-Suite model was then used to predict the formula hybrid SAE vehicle performance. Inputs to this model were a numerically predicted engine performance map, an electric motor torque curve, vehicle geometry, and road load parameters derived from a roll-down test. In this case study, the vehicle had a supervisory controller that followed a rule-based energy management strategy to insure a proper power split during hybrid mode operation. The supervisory controller parameters were optimized using discrete grid optimization method that minimized the total amount of fuel consumed during a specific urban driving cycle with an average speed of approximately 30 [mph]. More than a 15% increase in fuel economy was achieved by adding supervisory control and managing power split. The vehicle configuration without the supervisory controller displayed a fuel economy of 25 [mpg]. With the supervisory controller this rose to 29 [mpg]. Wider applications of this research include hybrid vehicle controller designs that can extend the range and survivability of military combat platforms. Furthermore, the

  9. Extending Teach and Repeat to Pivoting Wheelchairs

    Directory of Open Access Journals (Sweden)

    Guillermo Del Castillo

    2003-02-01

    Full Text Available The paper extends the teach-and-repeat paradigm that has been successful for the control of holonomic robots to nonholonomic wheelchairs which may undergo pivoting action over the course of their taught movement. Due to the nonholonomic nature of the vehicle kinematics, estimation is required -- in the example given herein, based upon video detection of wall-mounted cues -- both in the teaching and the tracking events. In order to accommodate motion that approaches pivoting action as well as motion that approaches straight-line action, the estimation equations of the Extended Kalman Filter and the control equations are formulated using two different definitions of a nontemporal independent variable. The paper motivates the need for pivoting action in real-life settings by reporting extensively on the abilities and limitations of estimation-based teach-and-repeat action where pivoting and near-pivoting action is disallowed. Following formulation of the equations in the near-pivot mode, the paper reports upon experiments where taught trajectories which entail a seamless mix of near-straight and near-pivot action are tracked.

  10. Exclusion Bounds for Extended Anyons

    Science.gov (United States)

    Larson, Simon; Lundholm, Douglas

    2018-01-01

    We introduce a rigorous approach to the many-body spectral theory of extended anyons, that is quantum particles confined to two dimensions that interact via attached magnetic fluxes of finite extent. Our main results are many-body magnetic Hardy inequalities and local exclusion principles for these particles, leading to estimates for the ground-state energy of the anyon gas over the full range of the parameters. This brings out further non-trivial aspects in the dependence on the anyonic statistics parameter, and also gives improvements in the ideal (non-extended) case.

  11. A pose estimation method for unmanned ground vehicles in GPS denied environments

    Science.gov (United States)

    Tamjidi, Amirhossein; Ye, Cang

    2012-06-01

    This paper presents a pose estimation method based on the 1-Point RANSAC EKF (Extended Kalman Filter) framework. The method fuses the depth data from a LIDAR and the visual data from a monocular camera to estimate the pose of a Unmanned Ground Vehicle (UGV) in a GPS denied environment. Its estimation framework continuy updates the vehicle's 6D pose state and temporary estimates of the extracted visual features' 3D positions. In contrast to the conventional EKF-SLAM (Simultaneous Localization And Mapping) frameworks, the proposed method discards feature estimates from the extended state vector once they are no longer observed for several steps. As a result, the extended state vector always maintains a reasonable size that is suitable for online calculation. The fusion of laser and visual data is performed both in the feature initialization part of the EKF-SLAM process and in the motion prediction stage. A RANSAC pose calculation procedure is devised to produce pose estimate for the motion model. The proposed method has been successfully tested on the Ford campus's LIDAR-Vision dataset. The results are compared with the ground truth data of the dataset and the estimation error is ~1.9% of the path length.

  12. EXPERIMENTAL EVALUATION OF ARTICULATED WHEELED VEHICLES POSITION STABILITY

    Directory of Open Access Journals (Sweden)

    Ye. Dubinin

    2015-07-01

    Full Text Available With introducing a mobile measurement system with linear acceleration sensors there was experimentally determined the parameter of position stability of the articulated wheeled vehicle on the example of HTA-200 «Slobozhanets». It was determined that the position stability was provided within the entire range of operating speeds and accelerations. The obtained results can be used to enhance the traffic safety of articulated vehicles.

  13. Research on Dynamic Optimization for Road-friendly Vehicle Suspension

    Directory of Open Access Journals (Sweden)

    Lu Yongjie

    2014-10-01

    Full Text Available The heavy vehicle brings large dynamic loads to the road surface, which would reduce vehicle ride comfort and shorten road service life. The structure characteristic of heavy vehicle suspension has a significant impact on vehicle performance. Based on the D'Alembert principle, the dynamics models of independent and integral balanced suspension are proposed considering mass and inertia of balancing rod. The sprung mass acceleration and the tire dynamic force for two kinds of balanced suspension and the traditional quarter vehicle model are compared in frequency-domain and time-domain respectively. It is concluded that a quarter vehicle model simplified for balanced suspension could be used to evaluate the ride comfort of vehicle well, but it has some limitations in assessing the vehicle road-friendliness. Then, the sprung mass acceleration and the road damage coefficients are also analyzed under different vehicle design and running parameters at detail. Some conclusions are obtained: low suspension stiffness, high suspension damping and low tire stiffness are all favorable to improve vehicle performance; there is a saturation range of suspension damping enhancing vehicle performance; improving the road surface roughness and avoiding the no-load running are two effective methods to accomplish the better ride comfort and road-friendliness. The suspension stiffness and damping parameters are chosen for optimal parameters matching of road friendliness based on the approximation optimization method.

  14. How Do The EV Project Participants Feel About Charging Their EV Away From Home?

    Energy Technology Data Exchange (ETDEWEB)

    Francfort, James E. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-02-01

    The EV Project is an infrastructure study that enrolled over 8,000 residential participants. These participants purchased or leased a Nissan Leaf battery electric vehicle or Chevrolet Volt extended-range electric vehicle and were among the first to explore this new electric drive technology. Collectively, battery electric vehicles, extended-range electric vehicles, and plug-in hybrid electric vehicles are called PEVs. The EV Project participants were very cooperative and enthusiastic about their participation in the project and very supportive in providing feedback and information. The information and attitudes of these participants concerning their experience with their PEVs were solicited using a survey in June 2013. At that time, some had up to 3 years of experience with their PEVs.

  15. Optimal Electric Vehicle Scheduling: A Co-Optimized System and Customer Perspective

    Science.gov (United States)

    Maigha

    Electric vehicles provide a two pronged solution to the problems faced by the electricity and transportation sectors. They provide a green, highly efficient alternative to the internal combustion engine vehicles, thus reducing our dependence on fossil fuels. Secondly, they bear the potential of supporting the grid as energy storage devices while incentivising the customers through their participation in energy markets. Despite these advantages, widespread adoption of electric vehicles faces socio-technical and economic bottleneck. This dissertation seeks to provide solutions that balance system and customer objectives under present technological capabilities. The research uses electric vehicles as controllable loads and resources. The idea is to provide the customers with required tools to make an informed decision while considering the system conditions. First, a genetic algorithm based optimal charging strategy to reduce the impact of aggregated electric vehicle load has been presented. A Monte Carlo based solution strategy studies change in the solution under different objective functions. This day-ahead scheduling is then extended to real-time coordination using a moving-horizon approach. Further, battery degradation costs have been explored with vehicle-to-grid implementations, thus accounting for customer net-revenue and vehicle utility for grid support. A Pareto front, thus obtained, provides the nexus between customer and system desired operating points. Finally, we propose a transactive business model for a smart airport parking facility. This model identifies various revenue streams and satisfaction indices that benefit the parking lot owner and the customer, thus adding value to the electric vehicle.

  16. Device to position selectively a tool carried by a vehicle moving on the perforated plate of a tube bundle

    International Nuclear Information System (INIS)

    Bernardin, M.

    1985-01-01

    The aim of the invention is an examination device for a tube bundle of an apparatus such as, but not restrictively, a steam generator, situated in a dangerous zone, e.g. radioactive and designed to be introduced into the water box of the said and placed against the perforated plate of the tube bundle by an operator working outside of the said apparatus and able to operate whatever the vertical or horizontal position of the tube plate. The device has a selectively positionable tool - carrying vehicle comprising pistons positioning fingers extendable into the tubes and mounted on extendable supports perpendicular to the pistons and to each other, and an articulated telescopic arm fixed at one end to a rotary mounting on the vehicle and at the other end to an access opening in the vessel containing the tube plate, to hold the vehicle against the plate [fr

  17. An Enhanced Privacy-Preserving Authentication Scheme for Vehicle Sensor Networks.

    Science.gov (United States)

    Zhou, Yousheng; Zhao, Xiaofeng; Jiang, Yi; Shang, Fengjun; Deng, Shaojiang; Wang, Xiaojun

    2017-12-08

    Vehicle sensor networks (VSNs) are ushering in a promising future by enabling more intelligent transportation systems and providing a more efficient driving experience. However, because of their inherent openness, VSNs are subject to a large number of potential security threats. Although various authentication schemes have been proposed for addressing security problems, they are not suitable for VSN applications because of their high computation and communication costs. Chuang and Lee have developed a trust-extended authentication mechanism (TEAM) for vehicle-to-vehicle communication using a transitive trust relationship, which they claim can resist various attacks. However, it fails to counter internal attacks because of the utilization of a shared secret key. In this paper, to eliminate the vulnerability of TEAM, an enhanced privacy-preserving authentication scheme for VSNs is constructed. The security of our proposed scheme is proven under the random oracle model based on the assumption of the computational Diffie-Hellman problem.

  18. An Enhanced Privacy-Preserving Authentication Scheme for Vehicle Sensor Networks

    Science.gov (United States)

    Zhou, Yousheng; Zhao, Xiaofeng; Jiang, Yi; Shang, Fengjun; Deng, Shaojiang; Wang, Xiaojun

    2017-01-01

    Vehicle sensor networks (VSNs) are ushering in a promising future by enabling more intelligent transportation systems and providing a more efficient driving experience. However, because of their inherent openness, VSNs are subject to a large number of potential security threats. Although various authentication schemes have been proposed for addressing security problems, they are not suitable for VSN applications because of their high computation and communication costs. Chuang and Lee have developed a trust-extended authentication mechanism (TEAM) for vehicle-to-vehicle communication using a transitive trust relationship, which they claim can resist various attacks. However, it fails to counter internal attacks because of the utilization of a shared secret key. In this paper, to eliminate the vulnerability of TEAM, an enhanced privacy-preserving authentication scheme for VSNs is constructed. The security of our proposed scheme is proven under the random oracle model based on the assumption of the computational Diffie–Hellman problem. PMID:29292792

  19. An Enhanced Privacy-Preserving Authentication Scheme for Vehicle Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yousheng Zhou

    2017-12-01

    Full Text Available Vehicle sensor networks (VSNs are ushering in a promising future by enabling more intelligent transportation systems and providing a more efficient driving experience. However, because of their inherent openness, VSNs are subject to a large number of potential security threats. Although various authentication schemes have been proposed for addressing security problems, they are not suitable for VSN applications because of their high computation and communication costs. Chuang and Lee have developed a trust-extended authentication mechanism (TEAM for vehicle-to-vehicle communication using a transitive trust relationship, which they claim can resist various attacks. However, it fails to counter internal attacks because of the utilization of a shared secret key. In this paper, to eliminate the vulnerability of TEAM, an enhanced privacy-preserving authentication scheme for VSNs is constructed. The security of our proposed scheme is proven under the random oracle model based on the assumption of the computational Diffie–Hellman problem.

  20. Electric vehicle station equipment for grid-integrated vehicles

    Science.gov (United States)

    Kempton, Willett; Kiamilev, Fouad; McGee, Rodney; Waite, Nick

    2017-09-05

    Methods, systems, and apparatus transferring power between the grid and an electric vehicle are disclosed. The apparatus may include at least one vehicle communication port for interfacing with electric vehicle equipment (EVE) and a processor coupled to the at least one vehicle communication port to establish communication with the EVE, receive EVE attributes from the EVE, and transmit electric vehicle station equipment (EVSE) attributes to the EVE. Power may be transferred between the grid and the electric vehicle by maintaining EVSE attributes, establishing communication with the EVE, and transmitting the EVSE maintained attributes to the EVE.

  1. Electric vehicle energy management system

    Science.gov (United States)

    Alaoui, Chakib

    This thesis investigates and analyzes novel strategies for the optimum energy management of electric vehicles (EVs). These are aimed to maximize the useful life of the EV batteries and make the EV more practical in order to increase its acceptability to market. The first strategy concerns the right choice of the batteries for the EV according to the user's driving habits, which may vary. Tests conducted at the University of Massachusetts Lowell battery lab show that the batteries perform differently from one manufacturer to the other. The second strategy was to investigate the fast chargeability of different batteries, which leads to reduce the time needed to recharge the EV battery pack. Tests were conducted again to prove that only few battery types could be fast charged. Test data were used to design a fast battery charger that could be installed in an EV charging station. The third strategy was the design, fabrication and application of an Electric Vehicle Diagnostic and Rejuvenation System (EVDRS). This system is based on Mosfet Controlled Thyristors (MCTs). It is capable of quickly identifying any failing battery(s) within the EV pack and rejuvenating the whole battery pack without dismantling them and unloading them. A novel algorithm to rejuvenate Electric Vehicle Sealed Lead Acid Batteries is described. This rejuvenation extends the useful life of the batteries and makes the EV more competitive. The fourth strategy was to design a thermal management system for EV, which is crucial to the safe operation, and the achievement of normal/optimal performance of, electric vehicle (EV) batteries. A novel approach for EV thermal management, based on Pettier-Effect heat pumps, was designed, fabricated and tested in EV. It shows the application of this type of technology for thermal management of EVs.

  2. Extended image differencing for change detection in UAV video mosaics

    Science.gov (United States)

    Saur, Günter; Krüger, Wolfgang; Schumann, Arne

    2014-03-01

    Change detection is one of the most important tasks when using unmanned aerial vehicles (UAV) for video reconnaissance and surveillance. We address changes of short time scale, i.e. the observations are taken in time distances from several minutes up to a few hours. Each observation is a short video sequence acquired by the UAV in near-nadir view and the relevant changes are, e.g., recently parked or moved vehicles. In this paper we extend our previous approach of image differencing for single video frames to video mosaics. A precise image-to-image registration combined with a robust matching approach is needed to stitch the video frames to a mosaic. Additionally, this matching algorithm is applied to mosaic pairs in order to align them to a common geometry. The resulting registered video mosaic pairs are the input of the change detection procedure based on extended image differencing. A change mask is generated by an adaptive threshold applied to a linear combination of difference images of intensity and gradient magnitude. The change detection algorithm has to distinguish between relevant and non-relevant changes. Examples for non-relevant changes are stereo disparity at 3D structures of the scene, changed size of shadows, and compression or transmission artifacts. The special effects of video mosaicking such as geometric distortions and artifacts at moving objects have to be considered, too. In our experiments we analyze the influence of these effects on the change detection results by considering several scenes. The results show that for video mosaics this task is more difficult than for single video frames. Therefore, we extended the image registration by estimating an elastic transformation using a thin plate spline approach. The results for mosaics are comparable to that of single video frames and are useful for interactive image exploitation due to a larger scene coverage.

  3. Research procedure for buck-boost converter for small electric vehicles

    Science.gov (United States)

    Vacheva, Gergana; Hinov, Nikolay; Penev, Dimitar

    2017-12-01

    In the current paper is developed a mathematical model realized in Matlab for describing a buck-boost converter for control of small electric vehicle. The model is presented with differential equations which describes the processes in the converter. Through the research of this model it can be accomplished the optimal work mode of a small electric vehicles. The proposed converter can be used in a wide range of applications like small electric vehicles, smart grids and different systems for energy storage.

  4. Energy Efficiency Comparison between Hydraulic Hybrid and Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Jia-Shiun Chen

    2015-05-01

    Full Text Available Conventional vehicles tend to consume considerable amounts of fuel, which generates exhaust gases and environmental pollution during intermittent driving cycles. Therefore, prospective vehicle designs favor improved exhaust emissions and energy consumption without compromising vehicle performance. Although pure electric vehicles feature high performance and low pollution characteristics, their limitations are their short driving range and high battery costs. Hybrid electric vehicles (HEVs are comparatively environmentally friendly and energy efficient, but cost substantially more compared with conventional vehicles. Hydraulic hybrid vehicles (HHVs are mainly operated using engines, or using alternate combinations of engine and hydraulic power sources while vehicles accelerate. When the hydraulic system accumulator is depleted, the conventional engine reengages; concurrently, brake-regenerated power is recycled and reused by employing hydraulic motor–pump modules in circulation patterns to conserve fuel and recycle brake energy. This study adopted MATLAB Simulink to construct complete HHV and HEV models for backward simulations. New European Driving Cycles were used to determine the changes in fuel economy. The output of power components and the state-of-charge of energy could be retrieved. Varying power component models, energy storage component models, and series or parallel configurations were combined into seven different vehicle configurations: the conventional manual transmission vehicle, series hybrid electric vehicle, series hydraulic hybrid vehicle, parallel hybrid electric vehicle, parallel hydraulic hybrid vehicle, purely electric vehicle, and hydraulic-electric hybrid vehicle. The simulation results show that fuel consumption was 21.80% lower in the series hydraulic hybrid vehicle compared to the series hybrid electric vehicle; additionally, fuel consumption was 3.80% lower in the parallel hybrid electric vehicle compared to the

  5. Solar powered vehicles: From dream to reality

    Energy Technology Data Exchange (ETDEWEB)

    1986-09-01

    The initiatives of the 'Schweizer Vereinigung fuer Sonnenenergie' (Swiss Association for Solar Energy) has added new impetus worldwide for the utilisation of solar energy. The Association organised the 'Tour de Sol', a race for vehicles propelled with the aid of solar energy. Solar vehicles with and without supplementary power, both standard production models and prototypes were eligible for the race. Before the start of the race, the solar-powered vehicles were 'filled up' with solar energy at a 'solar filling station'. The winner in the 'standard' section (a 2-seater small car for short distances) weighed in at 240 kg and attained a top speed of 100 km/h and a range of 150 km. The rear-wheel drive of this battery-powered vehicle was provided by 2 permanent magnet motors. A newly-developed nickel-zinc battery from the USA was available to power the twin engines. The energy requirement was the equivalent of less than 1 liter of petrol per 100 km.

  6. Vision-Based SLAM System for Unmanned Aerial Vehicles

    Directory of Open Access Journals (Sweden)

    Rodrigo Munguía

    2016-03-01

    Full Text Available The present paper describes a vision-based simultaneous localization and mapping system to be applied to Unmanned Aerial Vehicles (UAVs. The main contribution of this work is to propose a novel estimator relying on an Extended Kalman Filter. The estimator is designed in order to fuse the measurements obtained from: (i an orientation sensor (AHRS; (ii a position sensor (GPS; and (iii a monocular camera. The estimated state consists of the full state of the vehicle: position and orientation and their first derivatives, as well as the location of the landmarks observed by the camera. The position sensor will be used only during the initialization period in order to recover the metric scale of the world. Afterwards, the estimated map of landmarks will be used to perform a fully vision-based navigation when the position sensor is not available. Experimental results obtained with simulations and real data show the benefits of the inclusion of camera measurements into the system. In this sense the estimation of the trajectory of the vehicle is considerably improved, compared with the estimates obtained using only the measurements from the position sensor, which are commonly low-rated and highly noisy.

  7. Vision-Based SLAM System for Unmanned Aerial Vehicles.

    Science.gov (United States)

    Munguía, Rodrigo; Urzua, Sarquis; Bolea, Yolanda; Grau, Antoni

    2016-03-15

    The present paper describes a vision-based simultaneous localization and mapping system to be applied to Unmanned Aerial Vehicles (UAVs). The main contribution of this work is to propose a novel estimator relying on an Extended Kalman Filter. The estimator is designed in order to fuse the measurements obtained from: (i) an orientation sensor (AHRS); (ii) a position sensor (GPS); and (iii) a monocular camera. The estimated state consists of the full state of the vehicle: position and orientation and their first derivatives, as well as the location of the landmarks observed by the camera. The position sensor will be used only during the initialization period in order to recover the metric scale of the world. Afterwards, the estimated map of landmarks will be used to perform a fully vision-based navigation when the position sensor is not available. Experimental results obtained with simulations and real data show the benefits of the inclusion of camera measurements into the system. In this sense the estimation of the trajectory of the vehicle is considerably improved, compared with the estimates obtained using only the measurements from the position sensor, which are commonly low-rated and highly noisy.

  8. Energy Star Concepts for Highway Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Greene, D.L.

    2003-06-24

    The authors of this report, under the sponsorship of the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Weatherization and Intergovernmental Program, have investigated the possible application of Energy Star ratings to passenger cars and light trucks. This study establishes a framework for formulating and evaluating Energy Star rating methods that is comprised of energy- and environmental-based metrics, potential vehicle classification systems, vehicle technology factors, and vehicle selection criteria. The study tests several concepts and Energy Star rating methods using model-year 2000 vehicle data--a spreadsheet model has been developed to facilitate these analyses. This study tests two primary types of rating systems: (1) an outcome-based system that rates vehicles based on fuel economy, GHG emissions, and oil use and (2) a technology-based system that rates vehicles based on the energy-saving technologies they use. Rating methods were evaluated based on their ability to select vehicles with high fuel economy, low GHG emissions, and low oil use while preserving a full range of service (size and acceleration) and body style choice. This study concludes that an Energy Star rating for passenger cars and light trucks is feasible and that several methods could be used to achieve reasonable tradeoffs between low energy use and emissions and diversity in size, performance, and body type. It also shows that methods that consider only fuel economy, GHG emissions, or oil use will not select a diverse mix of vehicles. Finally, analyses suggest that methods that encourage the use of technology only, may result in increases in acceleration power and weight rather than reductions in oil use and GHG emissions and improvements in fuel economy.

  9. ELF magnetic fields in electric and gasoline-powered vehicles.

    Science.gov (United States)

    Tell, R A; Sias, G; Smith, J; Sahl, J; Kavet, R

    2013-02-01

    We conducted a pilot study to assess magnetic field levels in electric compared to gasoline-powered vehicles, and established a methodology that would provide valid data for further assessments. The sample consisted of 14 vehicles, all manufactured between January 2000 and April 2009; 6 were gasoline-powered vehicles and 8 were electric vehicles of various types. Of the eight models available, three were represented by a gasoline-powered vehicle and at least one electric vehicle, enabling intra-model comparisons. Vehicles were driven over a 16.3 km test route. Each vehicle was equipped with six EMDEX Lite broadband meters with a 40-1,000 Hz bandwidth programmed to sample every 4 s. Standard statistical testing was based on the fact that the autocorrelation statistic damped quickly with time. For seven electric cars, the geometric mean (GM) of all measurements (N = 18,318) was 0.095 µT with a geometric standard deviation (GSD) of 2.66, compared to 0.051 µT (N = 9,301; GSD = 2.11) for four gasoline-powered cars (P electric vehicles covered the same range as personal exposure levels recorded in that study. All fields measured in all vehicles were much less than the exposure limits published by the International Commission on Non-Ionizing Radiation Protection (ICNIRP) and the Institute of Electrical and Electronics Engineers (IEEE). Future studies should include larger sample sizes representative of a greater cross-section of electric-type vehicles. Copyright © 2012 Wiley Periodicals, Inc.

  10. Genetic hitch-hiking extends the range of coast live oak

    Science.gov (United States)

    Richard S. Dodd; Zara Afzal-Rafii; Wasima Mayer

    2006-01-01

    The northernmost range of coast live oak (Quercus agrifolia) is reported from the Ukiah Valley (Mendocino County, California). Here, field observations suggest that hybridization with interior live oak (Q. wislizeni) is important. Elsewhere in northern California, morphology of coast live oak can be highly variable (particularly...

  11. Wave passage effects on the seismic response of a maglev vehicle moving on multi-span guideway

    Directory of Open Access Journals (Sweden)

    J. D. Yau

    Full Text Available As a seismic wave travels along the separate supports of an extended structure, the structure is subjected to multiple-support excitation due to seismic wave propagation. Considering the seismic wave passage effect, this paper describes seismic analysis of a maglev vehicle moving on a multiply supported gudieway. The guideway system is modeled as a series of simple beams and the vehicle as a four degrees-of-freedom (DOFs rigid bar equipped with multiple onboard PI+LQR hybrid controllers. The controller is used to regulate control voltage for tuning both magnetic forces of uplift levitation and lateral guidance in the maglev system. Numerical studies show that as a maglev vehicle is equipped with more supported magnets then they can provide more control gains for tuning the guidance forces of the moving vehicle, and mitigate seismic-induced lateral vibration of a maglev vehicle running a guideway.

  12. Vibration isolation analysis of a stabilized platform mounted on a small off-road vehicle

    CSIR Research Space (South Africa)

    Strydom, Anria

    2014-06-01

    Full Text Available (up to ±15N at velocities below ±0.15m/s), resulting in a very low energy demand (only 5W). As part of future work the joint connecting the stabilised platform to the Baja vehicle will be revised and extended to include the yaw degree of freedom..., p433-453, 2010. 11 Simon, D.E. “An investigation of the effectiveness of skyhook suspensions for controlling roll dynamics of sport utility vehicles using magneto-rheological dampers”, PhD Thesis, Virginia Polytechnic Institute and State...

  13. Acoustic response variability in automotive vehicles

    Science.gov (United States)

    Hills, E.; Mace, B. R.; Ferguson, N. S.

    2009-03-01

    considerable variability in the roller-induced noise, with individual 1/3-octave levels varying by typically 15 dB or so and with the normalised standard deviation being in the range 0.2-0.35 or more. These levels are strongly affected by wheel rim and tyre constructions. For vehicles with nominally identical wheel rims and tyres, the normalised standard deviation for 1/3-octave levels in the frequency range 40-600 Hz is 0.2 or so. The distribution of the linear roller-induced noise level in each 1/3-octave frequency band is well described by a lognormal distribution as is the overall level. As a simple description of the response variability, it is sufficient for this series of measurements to assume that the roller-induced road noise is best described by a lognormal distribution with a normalised standard deviation of 0.2 or so, but that this can be significantly affected by the tyre and rim type, especially at lower frequencies.

  14. Efficiency Improvement Opportunities for Light-Duty Natural-Gas-Fueled Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Staunton, R.H.; Thomas, J.F.

    1998-12-01

    The purpose of this report is to evaluate and make recommendations concerning technologies that promise to improve the efilciency of compressed natural gas (CNG) light-duty vehicles. Technical targets for CNG automotive technology given in the March 1998 OffIce of Advanced Automotive Technologies research and development plan were used as guidance for this effort. The technical target that necessitates this current study is to validate technologies that enable CNG light vehicles to have at least 10% greater - fuel economy (on a miles per gallon equivalent basis) than equivalent gasoline vehicles by 2006. Other tar- gets important to natural gas (NG) automotive technology and this study are to: (1) increase CNG vehicle range to 380 miles, (2) reduce the incremental vehicle cost (CNG vs gasoline) to $1500, and (3) meet the California ultra low-emission vehicle (ULEV) and Federal Tier 2 emission standards expected to be in effect in 2004.

  15. Determining an energy-optimal thermal management strategy for electric driven vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Suchaneck, Andre; Probst, Tobias; Puente Leon, Fernando [Karlsruher Institut fuer Technology (KIT), Karlsruhe (Germany). Inst. of Industrial Information Technology (IIIT)

    2012-11-01

    In electric, hybrid electric and fuel cell vehicles, thermal management may have a significant impact on vehicle range. Therefore, optimal thermal management strategies are required. In this paper a method for determining an energy-optimal control strategy for thermal power generation in electric driven vehicles is presented considering all controlled devices (pumps, valves, fans, and the like) as well as influences like ambient temperature, vehicle speed, motor and battery and cooling cycle temperatures. The method is designed to be generic to increase the thermal management development process speed and to achieve the maximal energy reduction for any electric driven vehicle (e.g., by waste heat utilization). Based on simulations of a prototype electric vehicle with an advanced cooling cycle structure, the potential of the method is shown. (orig.)

  16. Unmanned Aerial Vehicle Based Wireless Sensor Network for Marine-Coastal Environment Monitoring.

    Science.gov (United States)

    Trasviña-Moreno, Carlos A; Blasco, Rubén; Marco, Álvaro; Casas, Roberto; Trasviña-Castro, Armando

    2017-02-24

    Marine environments are delicate ecosystems which directly influence local climates, flora, fauna, and human activities. Their monitorization plays a key role in their preservation, which is most commonly done through the use of environmental sensing buoy networks. These devices transmit data by means of satellite communications or close-range base stations, which present several limitations and elevated infrastructure costs. Unmanned Aerial Vehicles (UAV) are another alternative for remote environmental monitoring which provide new types of data and ease of use. These aircraft are mainly used in video capture related applications, in its various light spectrums, and do not provide the same data as sensing buoys, nor can they be used for such extended periods of time. The aim of this research is to provide a flexible, easy to deploy and cost-effective Wireless Sensor Network (WSN) for monitoring marine environments. This proposal uses a UAV as a mobile data collector, low-power long-range communications and sensing buoys as part of a single WSN. A complete description of the design, development, and implementation of the various parts of this system is presented, as well as its validation in a real-world scenario.

  17. Near-term electric vehicle program: Phase I, final report

    Energy Technology Data Exchange (ETDEWEB)

    Rowlett, B. H.; Murry, R.

    1977-08-01

    A final report is given for an Energy Research and Development Administration effort aimed at a preliminary design of an energy-efficient electric commuter car. An electric-powered passenger vehicle using a regenerative power system was designed to meet the near-term ERDA electric automobile goals. The program objectives were to (1) study the parameters that affect vehicle performance, range, and cost; (2) design an entirely new electric vehicle that meets performance and economic requirements; and (3) define a program to develop this vehicle design for production in the early 1980's. The design and performance features of the preliminary (baseline) electric-powered passenger vehicle design are described, including the baseline power system, system performance, economic analysis, reliability and safety, alternate designs and options, development plan, and conclusions and recommendations. All aspects of the baseline design were defined in sufficient detail to verify performance expectations and system feasibility.

  18. Electric-Drive Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Septon, Kendall K [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-11

    Electric-drive vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: Hybrid electric vehicles (HEVs), Plug-in hybrid electric vehicles (PHEVs), All-electric vehicles (EVs). Together, PHEVs and EVs can also be referred to as plug-in electric vehicles (PEVs).

  19. Electric-Drive Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-09-01

    Electric-drive vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: Hybrid electric vehicles (HEVs), Plug-in hybrid electric vehicles (PHEVs), All-electric vehicles (EVs). Together, PHEVs and EVs can also be referred to as plug-in electric vehicles (PEVs).

  20. Development of Matlab Simulink model for dynamics analysis of passive suspension system for lightweight vehicle

    Science.gov (United States)

    Jamali, M. S.; Ismail, K. A.; Taha, Z.; Aiman, M. F.

    2017-10-01

    In designing suitable isolators to reduce unwanted vibration in vehicles, the response from a mathematical model which characterizes the transmissibility ratio of the input and output of the vehicle is required. In this study, a Matlab Simulink model is developed to study the dynamic behaviour performance of passive suspension system for a lightweight electric vehicle. The Simulink model is based on the two degrees of freedom system quarter car model. The model is compared to the theoretical plots of the transmissibility ratios between the amplitudes of the displacements and accelerations of the sprung and unsprung masses to the amplitudes of the ground, against the frequencies at different damping values. It was found that the frequency responses obtained from the theoretical calculations and from the Simulink simulation is comparable to each other. Hence, the model may be extended to a full vehicle model.

  1. Environmental Evaluation of New Generation Vehicles and Vehicle Components

    Energy Technology Data Exchange (ETDEWEB)

    Schexnayder, S.M.

    2002-02-06

    This report documents assessments that address waste issues and life cycle impacts associated with the vehicle materials and vehicle technologies being developed under the Partnership for a New Generation of Vehicles (PNGV) program. We refer to these vehicles as 3XVs, referring to the PNGV goal that their fuel mileage be three times better than the baseline vehicle. To meet the program's fuel consumption goals, these vehicles substitute lightweight materials for heavier materials such as steel and iron that currently dominate the composition of vehicles, and use engineering and power system changes. Alternative power systems being developed through the PNGV program include batteries for hybrid electric vehicles and fuel cells. With respect to all these developments, it is imperative to learn what effects they will have on the environment before adopting these designs and technologies on a large-scale basis.

  2. National Plug-In Electric Vehicle Infrastructure Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Eric W. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rames, Clement L. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Muratori, Matteo [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Srinivasa Raghavan, Seshadri [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Melaina, Marc W. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-15

    This document describes a study conducted by the National Renewable Energy Laboratory quantifying the charging station infrastructure required to serve the growing U.S. fleet of plug-in electric vehicles (PEVs). PEV sales, which include plug-in hybrid electric vehicles (PHEVs) and battery electric vehicles (BEVs), have surged recently. Most PEV charging occurs at home, but widespread PEV adoption will require the development of a national network of non-residential charging stations. Installation of these stations strategically would maximize the economic viability of early stations while enabling efficient network growth as the PEV market matures. This document describes what effective co-evolution of the PEV fleet and charging infrastructure might look like under a range of scenarios. To develop the roadmap, NREL analyzed PEV charging requirements along interstate corridors and within urban and rural communities. The results suggest that a few hundred corridor fast-charging stations could enable long-distance BEV travel between U.S. cities. Compared to interstate corridors, urban and rural communities are expected to have significantly larger charging infrastructure requirements. About 8,000 fast-charging stations would be required to provide a minimum level of coverage nationwide. In an expanding PEV market, the total number of non-residential charging outlets or 'plugs' required to meet demand ranges from around 100,000 to more than 1.2 million. Understanding what drives this large range in capacity requirements is critical. For example, whether consumers prefer long-range or short-range PEVs has a larger effect on plug requirements than does the total number of PEVs on the road. The relative success of PHEVs versus BEVs also has a major impact, as does the number of PHEVs that charge away from home. This study shows how important it is to understand consumer preferences and driving behaviors when planning charging networks.

  3. National Plug-In Electric Vehicle Infrastructure Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Muratori, Matteo [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rames, Clement L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Srinivasa Raghavan, Sesha [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Melaina, Marc W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wood, Eric W [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-02-07

    This presentation describes a study conducted by the National Renewable Energy Laboratory quantifying the charging station infrastructure required to serve the growing U.S. fleet of plug-in electric vehicles (PEVs). PEV sales, which include plug-in hybrid electric vehicles (PHEVs) and battery electric vehicles (BEVs), have surged recently. Most PEV charging occurs at home, but widespread PEV adoption will require the development of a national network of non-residential charging stations. Installation of these stations strategically would maximize the economic viability of early stations while enabling efficient network growth as the PEV market matures. This document describes what effective co-evolution of the PEV fleet and charging infrastructure might look like under a range of scenarios. To develop the roadmap, NREL analyzed PEV charging requirements along interstate corridors and within urban and rural communities. The results suggest that a few hundred corridor fast-charging stations could enable long-distance BEV travel between U.S. cities. Compared to interstate corridors, urban and rural communities are expected to have significantly larger charging infrastructure requirements. About 8,000 fast-charging stations would be required to provide a minimum level of coverage nationwide. In an expanding PEV market, the total number of non-residential charging outlets or 'plugs' required to meet demand ranges from around 100,000 to more than 1.2 million. Understanding what drives this large range in capacity requirements is critical. For example, whether consumers prefer long-range or short-range PEVs has a larger effect on plug requirements than does the total number of PEVs on the road. The relative success of PHEVs versus BEVs also has a major impact, as does the number of PHEVs that charge away from home. This study shows how important it is to understand consumer preferences and driving behaviors when planning charging networks.

  4. Physiological demands of off-road vehicle riding.

    Science.gov (United States)

    Burr, Jamie F; Jamnik, Veronica K; Shaw, Jim A; Gledhill, Norman

    2010-07-01

    The purpose of this study was to characterize the physiological demands of recreational off-road vehicle riding under typical riding conditions using habitual recreational off-road vehicle riders (n = 128). Comparisons of the physical demands of off-road vehicle riding were made between vehicle types (all-terrain vehicle (ATV) and off-road motorcycle (ORM)) to the demands of common recreational activities. Habitual riders (ATV = 56, ORM = 72) performed strength assessments before and after a representative trail ride (48 +/- 24.2 min), and ambulatory oxygen consumption was measured during one lap (24.2 +/- 11.8 min) of the ride. The mean VO2 requirement (mL x kg(-1) x min(-1)) while riding an off-road vehicle was 12.1 +/- 4.9 for ATV and 21.3 +/- 7.1 for ORM (P = 0.002), which is comparable to the VO2 required of many common recreational activities. Temporal analysis of activity intensity revealed approximately 14% of an ATV ride and 38% of an ORM ride are within the intensity range (940% VO2 reserve) required to achieve changes in aerobic fitness. Riding on a representative course also led to muscular fatigue, particularly in the upper body. On the basis of the measured metabolic demands, evidence of muscular strength requirements, and the associated caloric expenditures with off-road vehicle riding, this alternative form of activity conforms to the recommended physical activity guidelines and can be effective for achieving beneficial changes in health and fitness.

  5. Automated driving and autonomous functions on road vehicles

    Science.gov (United States)

    Gordon, T. J.; Lidberg, M.

    2015-07-01

    In recent years, road vehicle automation has become an important and popular topic for research and development in both academic and industrial spheres. New developments have received extensive coverage in the popular press, and it may be said that the topic has captured the public imagination. Indeed, the topic has generated interest across a wide range of academic, industry and governmental communities, well beyond vehicle engineering; these include computer science, transportation, urban planning, legal, social science and psychology. While this follows a similar surge of interest - and subsequent hiatus - of Automated Highway Systems in the 1990s, the current level of interest is substantially greater, and current expectations are high. It is common to frame the new technologies under the banner of 'self-driving cars' - robotic systems potentially taking over the entire role of the human driver, a capability that does not fully exist at present. However, this single vision leads one to ignore the existing range of automated systems that are both feasible and useful. Recent developments are underpinned by substantial and long-term trends in 'computerisation' of the automobile, with developments in sensors, actuators and control technologies to spur the new developments in both industry and academia. In this paper, we review the evolution of the intelligent vehicle and the supporting technologies with a focus on the progress and key challenges for vehicle system dynamics. A number of relevant themes around driving automation are explored in this article, with special focus on those most relevant to the underlying vehicle system dynamics. One conclusion is that increased precision is needed in sensing and controlling vehicle motions, a trend that can mimic that of the aerospace industry, and similarly benefit from increased use of redundant by-wire actuators.

  6. Making the case for direct hydrogen storage in fuel cell vehicles

    Energy Technology Data Exchange (ETDEWEB)

    James, B.D.; Thomas, C.E.; Baum, G.N.; Lomas, F.D. Jr.; Kuhn, I.F. Jr. [Directed Technologies, Inc., Arlington, VA (United States)

    1997-12-31

    Three obstacles to the introduction of direct hydrogen fuel cell vehicles are often states: (1) inadequate onboard hydrogen storage leading to limited vehicle range; (2) lack of an hydrogen infrastructure, and (3) cost of the entire fuel cell system. This paper will address the first point with analysis of the problem/proposed solutions for the remaining two obstacles addressed in other papers. Results of a recent study conducted by Directed Technologies Inc. will be briefly presented. The study, as part of Ford Motor Company/DOE PEM Fuel Cell Program, examines multiple pure hydrogen onboard storage systems on the basis of weight, volume, cost, and complexity. Compressed gas, liquid, carbon adsorption, and metal hydride storage are all examined with compressed hydrogen storage at 5,000 psia being judged the lowest-risk, highest benefit, near-term option. These results are combined with recent fuel cell vehicle drive cycle simulations to estimate the onboard hydrogen storage requirement for full vehicle range (380 miles on the combined Federal driving schedule). The results indicate that a PNGV-like vehicle using powertrain weights and performance realistically available by the 2004 PNGV target data can achieve approximate fuel economy equivalent to 100 mpg on gasoline (100 mpg{sub eq}) and requires storage of approximately 3.6 kg hydrogen for full vehicle storage quantity allows 5,000 psia onboard storage without altering the vehicle exterior lines or appreciably encroaching on the passenger or trunk compartments.

  7. Mission aware energy saving strategies for Army ground vehicles

    Science.gov (United States)

    Dattathreya, Macam S.

    on, gear is on neutral position, the vehicle is stationary, and the alternator powers the systems. The proposed energy saving strategy for silent surveillance mission minimizes unnecessary battery discharges by controlling the power states of systems according to the mission needs and available battery capacity. Initial experiments show that the proposed approach saves 3% energy when compared with the baseline strategy for one scenario and 1.8% for the second scenario. The proposed energy saving strategy for normal surveillance mission operates the engine at fuel-efficient speeds to meet vehicle demand and to save fuel. The experiment and simulation uses a computerized vehicle model and a test bench to validate the approach. In comparison to vehicles with fixed high-idle engine speed increments, experiments show that the proposed strategy saves fuel energy in the range of 0-4.9% for the tested power demand range of 44-69 kW. It is hoped to implement the proposed strategies on a real Army ground vehicle to start realizing the energy savings.

  8. Trends in Hydrogen Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Hoevenaars, A.J.; Weeda, M. [ECN Hydrogen and Clean Fossil Fuels, Petten (Netherlands)

    2009-09-15

    This report intends to provide an update of the latest developments that have recently occurred within car industry within the field of Hydrogen powered fuel cell vehicles (FCVs) to date, October 2009. In attempts to provide a clear and logical overview, the report starts with an overview of the OEMs (Original Equipment Manufacturers) that are actually active within the Hydrogen vehicle business, and provides an overview of the intensity of FCV activity per OEM. This overview shows that there is a pool of distinctively most active OEMs, and that others have tried to create exposure for themselves, but have not seriously been involved in in-house technology development in support of FCV manufacturing. Furthermore, some manufacturers chose a different path when it comes to using hydrogen for vehicle propulsion and use Hydrogen gas as a fuel for a conventional Internal Combustion Engine (ICE). In the field of FCVs, Most FCV activities are displayed by Honda, Daimler, Opel/GM, Hyundai/Kia, Toyota, Nissan and Ford. Volkswagen has given less priority to FCV development and has not been profiling itself as a very Hydrogen-prone OEM. Mazda and BMW chose to put their efforts in the development of Hydrogen fuelled ICE vehicles. Also Ford has put efforts in Hydrogen fuelled ICE vehicles. After the active OEMs are mapped, an overview is given on how active they have been in terms of cars produced. It appeared difficult to come up with reliable estimations on the basis of numbers available for public. The sum of vehicles produced by all OEMs together was estimated on about 515 vehicles. This estimation however was much lower than the figures published by Fuel Cell Today (FCT). FCT projects accumulated vehicles shipped in 2009 around 1100 units, the double of the numbers found for this study. Communication with FCT learned us that FCT has access to confidential information from the OEMs. Especially the Asian OEMs do not provide transparency when it comes to FCVs shipped, however

  9. Trends in Hydrogen Vehicles

    International Nuclear Information System (INIS)

    Hoevenaars, A.J.; Weeda, M.

    2009-09-01

    This report intends to provide an update of the latest developments that have recently occurred within car industry within the field of Hydrogen powered fuel cell vehicles (FCVs) to date, October 2009. In attempts to provide a clear and logical overview, the report starts with an overview of the OEMs (Original Equipment Manufacturers) that are actually active within the Hydrogen vehicle business, and provides an overview of the intensity of FCV activity per OEM. This overview shows that there is a pool of distinctively most active OEMs, and that others have tried to create exposure for themselves, but have not seriously been involved in in-house technology development in support of FCV manufacturing. Furthermore, some manufacturers chose a different path when it comes to using hydrogen for vehicle propulsion and use Hydrogen gas as a fuel for a conventional Internal Combustion Engine (ICE). In the field of FCVs, Most FCV activities are displayed by Honda, Daimler, Opel/GM, Hyundai/Kia, Toyota, Nissan and Ford. Volkswagen has given less priority to FCV development and has not been profiling itself as a very Hydrogen-prone OEM. Mazda and BMW chose to put their efforts in the development of Hydrogen fuelled ICE vehicles. Also Ford has put efforts in Hydrogen fuelled ICE vehicles. After the active OEMs are mapped, an overview is given on how active they have been in terms of cars produced. It appeared difficult to come up with reliable estimations on the basis of numbers available for public. The sum of vehicles produced by all OEMs together was estimated on about 515 vehicles. This estimation however was much lower than the figures published by Fuel Cell Today (FCT). FCT projects accumulated vehicles shipped in 2009 around 1100 units, the double of the numbers found for this study. Communication with FCT learned us that FCT has access to confidential information from the OEMs. Especially the Asian OEMs do not provide transparency when it comes to FCVs shipped, however

  10. Electrification Beyond Light Duty: Class 2b-3 Commercial Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Birky, Alicia [Energetics Incorporated; Laughlin, Michael [Energetics Incorporated; Tartaglia, Katie [Energetics Incorporated; Price, Rebecca [Energetics Incorporated; Lim, Brandon [Energetics Incorporated; Lin, Zhenhong [ORNL

    2018-01-01

    The class 2b-3 truck market covers a wide range of commercial truck applications across a half-million vehicle sales annually. This report collected public information and stakeholder input to assess the opportunity for electrification in this market. Although class 2b-3 pickup truck and van bodies are very similar to personal light vehicles, their functional requirements are quite different due to the demands of the commercial market. These demands vary by application and often vary from day to day for a single application. Fleet customers purchase these vehicles to perform a particular job for their business and are concerned about the overall cost of doing that job. Therefore, the vehicles must meet the job requirements cost effectively. Customers also are sensitive to initial cost. Electrification offers the potential to reduce vehicle operating costs and possibly improve vehicle functionality. However, the current market for class 2b-3 electrified trucks is very small, and the trucks are costly. Increased production volumes are key to cost reductions and may be assisted by sharing components with larger or smaller truck classes. Expanding demand is also crucial and stakeholders identified several niche markets with duty cycles that are likely well-suited to electrified class 2b-3 trucks. To expand beyond these niches, class 2b-3 electric solutions must be robust, flexible, and adaptable in order to cover a wide range of vocations, applications, and duty cycles.

  11. Usability engineering of "In Vehicle Information Systems" with multi-tasking GOMS

    OpenAIRE

    Urbas, L.; Leuchter, S.

    2008-01-01

    The developments in vehicle electronics and new services are supposed to promise more convenience in driving. The offers and ideas range from vehicle-related installations, such as accident alert, petrol station assistance, dynamic navigation and travel guide, to communication and entertainment services. There is one central design problem that is essential for achieving the main objective "safe motor vehicle driving", i.e. the use of the new service must not unduly distract the driver. In th...

  12. Analysis of Vehicle-Based Security Operations

    Energy Technology Data Exchange (ETDEWEB)

    Carter, Jason M [ORNL; Paul, Nate R [ORNL

    2015-01-01

    Vehicle-to-vehicle (V2V) communications promises to increase roadway safety by providing each vehicle with 360 degree situational awareness of other vehicles in proximity, and by complementing onboard sensors such as radar or camera in detecting imminent crash scenarios. In the United States, approximately three hundred million automobiles could participate in a fully deployed V2V system if Dedicated Short-Range Communication (DSRC) device use becomes mandatory. The system s reliance on continuous communication, however, provides a potential means for unscrupulous persons to transmit false data in an attempt to cause crashes, create traffic congestion, or simply render the system useless. V2V communications must be highly scalable while retaining robust security and privacy preserving features to meet the intra-vehicle and vehicle-to-infrastructure communication requirements for a growing vehicle population. Oakridge National Research Laboratory is investigating a Vehicle-Based Security System (VBSS) to provide security and privacy for a fully deployed V2V and V2I system. In the VBSS an On-board Unit (OBU) generates short-term certificates and signs Basic Safety Messages (BSM) to preserve privacy and enhance security. This work outlines a potential VBSS structure and its operational concepts; it examines how a vehicle-based system might feasibly provide security and privacy, highlights remaining challenges, and explores potential mitigations to address those challenges. Certificate management alternatives that attempt to meet V2V security and privacy requirements have been examined previously by the research community including privacy-preserving group certificates, shared certificates, and functional encryption. Due to real-world operational constraints, adopting one of these approaches for VBSS V2V communication is difficult. Timely misbehavior detection and revocation are still open problems for any V2V system. We explore the alternative approaches that may be

  13. Current and Future United States Light-Duty Vehicle Pathways: Cradle-to-Grave Lifecycle Greenhouse Gas Emissions and Economic Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Elgowainy, Amgad [Argonne National Laboratory, Argonne, Illinois 60439, United States; Han, Jeongwoo [Argonne National Laboratory, Argonne, Illinois 60439, United States; Ward, Jacob [United States Department of Energy, Washington, D.C. 20585, United States; Joseck, Fred [United States Department of Energy, Washington, D.C. 20585, United States; Gohlke, David [Argonne National Laboratory, Argonne, Illinois 60439, United States; Lindauer, Alicia [United States Department of Energy, Washington, D.C. 20585, United States; Ramsden, Todd [National Renewable Energy Laboratory, Golden, Colorado 80401, United States; Biddy, Mary [National Renewable Energy Laboratory, Golden, Colorado 80401, United States; Alexander, Mark [Electric Power Research Institute, Palo; Barnhart, Steven [FCA US LLC, Auburn Hills, Michigan 48326, United States; Sutherland, Ian [General Motors, Pontiac, Michigan 48340, United States; Verduzco, Laura [Chevron Corporation, Richmond, California 94802, United States; Wallington, Timothy J. [Ford Motor Company, Dearborn, Michigan 48121, United States

    2018-01-30

    This article presents a cradle-to-grave (C2G) assessment of greenhouse gas (GHG) emissions and costs for current (2015) and future (2025-2030) light-duty vehicles. The analysis addressed both fuel cycle and vehicle manufacturing cycle for the following vehicle types: gasoline and diesel internal combustion engine vehicles (ICEVs), flex fuel vehicles, compressed natural gas (CNG) vehicles, hybrid electric vehicles (HEVs), hydrogen fuel cell electric vehicles (FCEVs), battery electric vehicles (BEVs), and plug-in hybrid electric vehicles (PHEVs). Gasoline ICEVs using current technology have C2G emissions of ~450 gCO2e/mi (grams of carbon dioxide equivalents per mile), while C2G emissions from HEVs, PHEVs, H2 FCEVs, and BEVs range from 300-350 gCO2e/mi. Future vehicle efficiency gains are expected to reduce emissions to ~350 gCO2/mi for ICEVs and ~250 gCO2e/mi for HEVs, PHEVs, FCEVs, and BEVs. Utilizing low-carbon fuel pathways yields GHG reductions more than double those achieved by vehicle efficiency gains alone. Levelized costs of driving (LCDs) are in the range $0.25-$1.00/mi depending on time frame and vehicle-fuel technology. In all cases, vehicle cost represents the major (60-90%) contribution to LCDs. Currently, HEV and PHEV petroleum-fueled vehicles provide the most attractive cost in terms of avoided carbon emissions, although they offer lower potential GHG reductions. The ranges of LCD and cost of avoided carbon are narrower for the future technology pathways, reflecting the expected economic competitiveness of these alternative vehicles and fuels.

  14. Model-based eco-driving and integrated powertrain control for (hybrid) electric vehicles

    NARCIS (Netherlands)

    Ivens, T.; Spronkmans, S.; Rosca, B.; Wilkins, S.

    2013-01-01

    The Netherlands Organisation for Applied Scientific Research (TNO) is engaged in research, development and testing of a range of technologies relating to hybrid and electric vehicle energy management and performance. The impact of driver behaviour on vehicle energy consumption is a significant

  15. Systemic design of synchronous traction drives for large speed-range electric vehicle; Conception systemique de chaines de traction synchrones pour vehicule electrique a large gamme de vitesse

    Energy Technology Data Exchange (ETDEWEB)

    Randi, S.A.

    2003-04-15

    The presented study deals with a systemic approach based design of permanent magnet brush-less actuators. The considered system is the electric vehicle motorized with this actuator on a large speed range. First, the review of vehicles architectures and general specifications put emphasis on the design problem complexity and the interest of a simultaneous design taking account of the whole traction chain driving cycle. Then the IPM plane and lumped parameter models are used to bring out the variables which characterizes the work beyond the base speed and the ability in flux weakening operation. The properties of machines with two rotor parts in such operation are studied. The new degrees of freedom available with these structures bring new solutions for drives with larger speed range. Then a model taking account each subsystem is presented and implemented in a global SABER simulator, involving sizing models of components. This tool enables to study the work of the traction chain over significant driving cycles and the performances evaluation. A last, this simulator is brought into work so as to perform a simultaneous design of the traction chain components as battery, inverter, machine, gear, thanks to an optimisation procedure based on genetic algorithm able to process continuous sizes variations and structure modifications, considering performance criteria on losses and cost. (author)

  16. H∞ control of a remotely operated underwater vehicle

    International Nuclear Information System (INIS)

    Conte, G.; Serrani, A.

    1994-01-01

    The paper discusses the application of H∞ control techniques to the design of a control system for a remotely operated underwater vehicle. As the main problem in defining a control strategy for such vehicles is the nonlinear and uncertain nature of the modeled dynamics, the robustness properties of H∞ controllers can in principle be used to provide stability and nominal performances for the closed loop system. Therefore, a control strategy based on a scheduling of such controllers has been proposed, and the overall performance of the closed loop system have been evaluated by means of nonlinear simulation in a broad range of working conditions, with particular attention to the effects of the underwater current that acts on the vehicle

  17. Extending the dynamic range of silicon photomultipliers without increasing pixel count

    International Nuclear Information System (INIS)

    Johnson, Kurtis F.

    2010-01-01

    A silicon photomultiplier, sometimes called 'multipixel photon counter', which we here refer to as a 'SiPM', is a photo-sensitive device built from an avalanche photodiode array of pixels on a common silicon substrate, such that it can detect single photon events. The dimensions of a pixel may vary from 20 to 100 μm and their density can be greater than 1000 per square millimeter. Each pixel in a SiPM operates in Geiger mode and is coupled to the output by a quenching resistor. Although each pixel operates in digital mode, the SiPM is an analog device because all the pixels are read in parallel, making it possible to generate signals within a dynamic range from a single photon to a large number of photons, ultimately limited by the number of pixels on the chip. In this note we describe a simple and general method of increasing the dynamic range of a SiPM beyond that one may naively assume from the shape of the cumulative distribution function of the SiPM response to the average number of photons per pixel. We show that by rendering the incoming flux of photons to be non-uniform in a prescribed manner, a significant increase in dynamic range is achievable. Such re-distribution of the incoming flux may be accomplished with simple, non-focusing lenses, prisms, interference films, mirrors or attenuating films. Almost any optically non-inert interceding device can increase the dynamic range of the SiPM.

  18. Description of light-vehicle pre-crash scenarios for safety applications based on vehicle-to-vehicle communications

    Science.gov (United States)

    2013-05-31

    This report describes pre-crash scenarios that might be addressed by vehicle-to-vehicle communications. The focus is on crashes involving at least 1 light vehicle with a gross vehicle weight rating of 10,000 pounds or less. The 2004-2008 General Esti...

  19. The estimated effect of mass or footprint reduction in recent light-duty vehicles on U.S. societal fatality risk per vehicle mile traveled.

    Science.gov (United States)

    Wenzel, Tom

    2013-10-01

    The National Highway Traffic Safety Administration (NHTSA) recently updated its 2003 and 2010 logistic regression analyses of the effect of a reduction in light-duty vehicle mass on US societal fatality risk per vehicle mile traveled (VMT; Kahane, 2012). Societal fatality risk includes the risk to both the occupants of the case vehicle as well as any crash partner or pedestrians. The current analysis is the most thorough investigation of this issue to date. This paper replicates the Kahane analysis and extends it by testing the sensitivity of his results to changes in the definition of risk, and the data and control variables used in the regression models. An assessment by Lawrence Berkeley National Laboratory (LBNL) indicates that the estimated effect of mass reduction on risk is smaller than in Kahane's previous studies, and is statistically non-significant for all but the lightest cars (Wenzel, 2012a). The estimated effects of a reduction in mass or footprint (i.e. wheelbase times track width) are small relative to other vehicle, driver, and crash variables used in the regression models. The recent historical correlation between mass and footprint is not so large to prohibit including both variables in the same regression model; excluding footprint from the model, i.e. allowing footprint to decrease with mass, increases the estimated detrimental effect of mass reduction on risk in cars and crossover utility vehicles (CUVs)/minivans, but has virtually no effect on light trucks. Analysis by footprint deciles indicates that risk does not consistently increase with reduced mass for vehicles of similar footprint. Finally, the estimated effects of mass and footprint reduction are sensitive to the measure of exposure used (fatalities per induced exposure crash, rather than per VMT), as well as other changes in the data or control variables used. It appears that the safety penalty from lower mass can be mitigated with careful vehicle design, and that manufacturers can

  20. Robustness of Supercavitating Vehicles Based on Multistability Analysis

    Directory of Open Access Journals (Sweden)

    Yipin Lv

    2017-01-01

    Full Text Available Supercavity can increase speed of underwater vehicles greatly. However, external interferences always lead to instability of vehicles. This paper focuses on robustness of supercavitating vehicles. Based on a 4-dimensional dynamic model, the existence of multistability is verified in supercavitating system through simulation, and the robustness of vehicles varying with parameters is analyzed by basins of attraction. Results of the research disclose that the supercavitating system has three stable states in some regions of parameters space, namely, stable, periodic, and chaotic states, while in other regions it has various multistability, such as coexistence of two types of stable equilibrium points, coexistence of a limit cycle with a chaotic attractor, and coexistence of 1-periodic cycle with 2-periodic cycle. Provided that cavitation number varies within a small range, with increase of the feedback control gain of fin deflection angle, size of basin of attraction becomes smaller and robustness of the system becomes weaker. In practical application, robustness of supercavitating vehicles can be improved by setting parameters of system or adjusting initial launching conditions.

  1. SAFER vehicle inspection: a multimodal robotic sensing platform

    Science.gov (United States)

    Page, David L.; Fougerolle, Yohan; Koschan, Andreas F.; Gribok, Andrei; Abidi, Mongi A.; Gorsich, David J.; Gerhart, Grant R.

    2004-09-01

    The current threats to U.S. security both military and civilian have led to an increased interest in the development of technologies to safeguard national facilities such as military bases, federal buildings, nuclear power plants, and national laboratories. As a result, the Imaging, Robotics, and Intelligent Systems (IRIS) Laboratory at The University of Tennessee (UT) has established a research consortium, known as SAFER (Security Automation and Future Electromotive Robotics), to develop, test, and deploy sensing and imaging systems for unmanned ground vehicles (UGV). The targeted missions for these UGV systems include -- but are not limited to --under vehicle threat assessment, stand-off check-point inspections, scout surveillance, intruder detection, obstacle-breach situations, and render-safe scenarios. This paper presents a general overview of the SAFER project. Beyond this general overview, we further focus on a specific problem where we collect 3D range scans of under vehicle carriages. These scans require appropriate segmentation and representation algorithms to facilitate the vehicle inspection process. We discuss the theory for these algorithms and present results from applying them to actual vehicle scans.

  2. Electric vehicles

    Science.gov (United States)

    1990-03-01

    Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. These concepts are discussed.

  3. Design and Implementation of a Thermal Load Reduction System for a Hyundai Sonata PHEV for Improved Range

    Energy Technology Data Exchange (ETDEWEB)

    Rugh, John P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kreutzer, Cory J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Scott, Matthew [Hyundai America Technical Center Inc.; Gallagher, James [Gentherm Incoporated

    2018-04-03

    Increased adoption of electric-drive vehicles requires overcoming hurdles including limited vehicle range. Vehicle cabin heating and cooling demand for occupant climate control requires energy from the main battery and has been shown to significantly degrade vehicle range. During peak cooling and heating conditions, climate control can require as much as or more energy than propulsion. As part of an ongoing project, the National Renewable Energy Laboratory and project partners Hyundai America Technical Center, Inc., Gentherm, Pittsburgh Glass Works, PPG Industries, Sekisui, 3 M, and Hanon Systems developed a thermal load reduction system to reduce the range penalty associated with electric vehicle climate control. Solar reflective paint, solar control glass, heated and cooled/ventilated seats, heated surfaces, and a heated windshield with door demisters were integrated into a Hyundai Sonata plug-in hybrid electric vehicle. Cold weather field-testing was conducted in Fairbanks, Alaska, and warm weather testing was conducted in Death Valley, California, to assess the system performance in comparison to the baseline production vehicle. In addition, environmental chamber testing at peak heating and cooling conditions was performed to assess the performance of the system in standardized conditions compared to the baseline. Experimental results are presented in this paper, providing quantitative data to automobile manufacturers on the impact of climate control thermal load reduction technologies to increase the advanced thermal technology adoption and market penetration of electric drive vehicles.

  4. Simulation of a distance estimator for battery electric vehicle

    Directory of Open Access Journals (Sweden)

    Chew Kuew Wai

    2015-09-01

    Full Text Available Battery Electric Vehicle (BEV is a promising candidate in reducing air pollution and fossil fuel dependencies. It is a growing market for the automobile manufacturers. Although there are many advantages of driving a BEV, it is still not widely accepted in the market due to the limited driving range. Other than just improving the technologies that drive the vehicle, an additional range estimation system can calm the ‘range anxiety’ caused by the limited range of BEVs. Merely predicting the range based on the state of charge of the battery, the average driving speed, and the average power consumption is inadequate. This paper proposes a new range estimator, the dynamic range estimator, which also takes into account the driving behavior, in addition to the slopes of the trip for its energy estimation. The driving behavior is obtained based on the response to speed error and the time delay between throttle pedal and brake pedal switching. In this way, the driving behavior is a fixed response for any driving speeds on the same route thus, allowing the energy consumption to be compared for different speeds.

  5. The aluminum-air battery for electric vehicles - An update

    Science.gov (United States)

    1980-11-01

    The development of aluminum-air batteries as mechanically rechargeable power sources to be used in electric vehicles is discussed. The chemistry of the aluminum-air battery, which has a potential for providing the range, acceleration and rapid refueling capability of contemporary automobiles and is based on the reaction of aluminum metal with atmospheric oxygen in the presence of an aqueous sodium hydroxide/sodium aluminate electrolyte, is examined, and it is pointed out that the electric vehicle would be practically emissionless. The battery development program at the Lawrence Livermore National Laboratory, which includes evaluations of electrochemical and chemical phenomena, studies of the economics and energy balance of a transportation system based on aluminum, and power cell design and performance analysis, is presented. It is concluded that although difficult problems must be overcome before the technical and economic feasibility of aluminum-air batteries for electric vehicles can be established, projections indicate that the aluminum-air vehicle is potentially competitive with internal combustion vehicles powered by synthetic liquid fuels.

  6. The future of hybrid vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Vangraefschepe, F.; Menegazzi, P.

    2004-12-15

    This new demand from the U.S. market is being taken very seriously by key players in the field. GM and Daimler Chrysler have announced an alliance for the joint development of a hybrid vehicle scheduled to reach the market by 2007. Development projects of this type will require capital investment of several hundred million dollars over the period. Given that it is now imperative to cut greenhouse gas emissions, the hybrid vehicle offers a credible alternative. It is already on the market, despite the constraints inherent to a configuration combining an electric motor and an internal combustion engine, and despite the added cost. The technical choices are complex and varied, depending on the objectives: potential CO{sub 2} emissions gains range from a few percentage points to over 45%, depending on the engine/motor architecture. The gasoline hybrid vehicle is emerging as an alternative to the diesel engine, especially in Japan and the United States, but its growth will depend on the ability of the motor industry to reduce the added cost.

  7. Inspection vehicle

    International Nuclear Information System (INIS)

    Takahashi, Masaki; Omote, Tatsuyuki; Yoneya, Yutaka; Tanaka, Keiji; Waki, Tetsuro; Yoshida, Tomiji; Kido, Tsuyoshi.

    1993-01-01

    An inspection vehicle comprises a small-sized battery directly connected with a power motor or a direct power source from trolly lines and a switching circuit operated by external signals. The switch judges advance or retreat by two kinds of signals and the inspection vehicle is recovered by self-running. In order to recover the abnormally stopped inspection vehicle to the targeted place, the inspection vehicle is made in a free-running state by using a clutch mechanism and is pushed by an other vehicle. (T.M.)

  8. Plug-in hybrid electric vehicle LiFePO4 battery life implications of thermal management, driving conditions, and regional climate

    Science.gov (United States)

    Yuksel, Tugce; Litster, Shawn; Viswanathan, Venkatasubramanian; Michalek, Jeremy J.

    2017-01-01

    Battery degradation strongly depends on temperature, and many plug-in electric vehicle applications employ thermal management strategies to extend battery life. The effectiveness of thermal management depends on the design of the thermal management system as well as the battery chemistry, cell and pack design, vehicle system characteristics, and operating conditions. We model a plug-in hybrid electric vehicle with an air-cooled battery pack composed of cylindrical LiFePO4/graphite cells and simulate the effect of thermal management, driving conditions, regional climate, and vehicle system design on battery life. We estimate that in the absence of thermal management, aggressive driving can cut battery life by two thirds; a blended gas/electric-operation control strategy can quadruple battery life relative to an all-electric control strategy; larger battery packs can extend life by an order of magnitude relative to small packs used for all-electric operation; and batteries last 73-94% longer in mild-weather San Francisco than in hot Phoenix. Air cooling can increase battery life by a factor of 1.5-6, depending on regional climate and driving patterns. End of life criteria has a substantial effect on battery life estimates.

  9. The demand for clean-fuel vehicles by Dutch local authorities. A stated choice analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, P.

    2012-08-15

    Previous research showed that the era of cheap fossil fuels is over. Also, 23% of the worldwide emission of CO2 is produced by road transport. These problems demand a change in the propulsion of vehicles. Because the diffusion of clean-fuel vehicles is not happening at this moment, something has to change. Rogers' diffusion of innovation theory is used to state that a critical mass of vehicles is needed to stimulate the diffusion of these vehicles. Due to public procurement Dutch local authorities (DLA's) can help stimulating this diffusion. Unfortunately these DLA's are not purchasing clean-fuel vehicles yet. To gain insight in what is hampering the diffusion of these vehicles by DLA's, a discrete choice experiment was created about the preferences by these DLA's. Six vehicle attributes were used to describe each vehicle. The results showed that the initial purchase price and the amount of local emission were experienced as the most important attributes by DLA's, where initial purchase price has a negative influence and local emission a positive influence in the choice for a new vehicle. Next, fuel price, range and availability of the fuel were found evenly important. Fuel price had a negative influence and both range and availability of fuel had a positive influence on the choice for a new vehicle. Finally, time to refuel/recharge was found least important and also negatively influencing the choice.

  10. Traffic Information Unit, Traffic Information System, Vehicle Management System, Vehicle, and Method of Controlling a Vehicle

    NARCIS (Netherlands)

    Papp, Z.; Doodeman, G.J.N.; Nelisse, M.W.; Sijs, J.; Theeuwes, J.A.C.; Driessen, B.J.F.

    2010-01-01

    A traffic information unit (MD1, MD2, MD3) according to the invention comprises a facility (MI) for tracking vehicle state information of individual vehicles present at a traffic infrastructure and a facility (T) for transmitting said vehicle state information to a vehicle (70B, 70E). A traffic

  11. Simulation of an electric vehicle model on the new WLTC test cycle using AVL CRUISE software

    Science.gov (United States)

    Cristian Cioroianu, Constantin; Marinescu, Dănuţ Gabriel; Iorga, Adrian; Răzvan Sibiceanu, Adrian

    2017-10-01

    Nowadays, environmental pollution has become a general issue and the automotive industry is probably the most affected. The principal air-quality pollutant emissions from petrol, diesel and LPG engines are carbon dioxide, oxides of nitrogen, un-burnt hydrocarbons. Modern cars produce only quite small quantities of the air quality pollutants, but the emissions from large numbers of cars add to a significant air quality problem. Electric vehicles are an answer to this problem because they have absolutely no emissions. These vehicles have some major disadvantages regarding cost and range. In this paper, an electric vehicle model will be created in the AVL Cruise software. The constructed model is based on the existing Dacia Sandero. Also unlike the real car, the model presented has different characteristics since it is a full electric vehicle. It has an electric motor instead of the petrol engine and a battery pack placed in the trunk. The model will be simulated in order to obtain data regarding vehicle performance, energy consumption and range on the new WLTC test cycle. The obtained know-how will help on later improvements of the electric model regarding methods to increase the vehicle range on the new WLTC test cycle.

  12. Load calculation and system evaluation for electric vehicle climate control

    International Nuclear Information System (INIS)

    Aceves-Saborio, S.; Comfort, W.J.

    1994-01-01

    Providing air conditioning for electric vehicles (EV's) represents an important challenge, because vapor-compression air conditioners, which are common in gasoline-powered vehicles, may consume a substantial part of the total energy stored in the EV battery. The authors' work has two major parts: a cooling and heating load calculation for EV's, and an evaluation of several systems that can be used to provide the desired cooling and heating in EV's. Four cases are studied: short-range and full-range EV's are each analyzed twice, first with the regular vehicle equipment, and then with a fan and heat-reflecting windows, to reduce hot soak. Results indicate that for the batteries currently available for EV propulsion, an ice storage system has the minimum weight of all the systems considered. Vapor-compression air conditioners have the minimum for battery storage capacities above 270 kJ/kg

  13. Current and Future United States Light-Duty Vehicle Pathways: Cradle-to-Grave Lifecycle Greenhouse Gas Emissions and Economic Assessment.

    Science.gov (United States)

    Elgowainy, Amgad; Han, Jeongwoo; Ward, Jacob; Joseck, Fred; Gohlke, David; Lindauer, Alicia; Ramsden, Todd; Biddy, Mary; Alexander, Mark; Barnhart, Steven; Sutherland, Ian; Verduzco, Laura; Wallington, Timothy J

    2018-02-20

    This article presents a cradle-to-grave (C2G) assessment of greenhouse gas (GHG) emissions and costs for current (2015) and future (2025-2030) light-duty vehicles. The analysis addressed both fuel cycle and vehicle manufacturing cycle for the following vehicle types: gasoline and diesel internal combustion engine vehicles (ICEVs), flex fuel vehicles, compressed natural gas (CNG) vehicles, hybrid electric vehicles (HEVs), hydrogen fuel cell electric vehicles (FCEVs), battery electric vehicles (BEVs), and plug-in hybrid electric vehicles (PHEVs). Gasoline ICEVs using current technology have C2G emissions of ∼450 gCO 2 e/mi (grams of carbon dioxide equivalents per mile), while C2G emissions from HEVs, PHEVs, H 2 FCEVs, and BEVs range from 300-350 gCO 2 e/mi. Future vehicle efficiency gains are expected to reduce emissions to ∼350 gCO 2 /mi for ICEVs and ∼250 gCO 2e /mi for HEVs, PHEVs, FCEVs, and BEVs. Utilizing low-carbon fuel pathways yields GHG reductions more than double those achieved by vehicle efficiency gains alone. Levelized costs of driving (LCDs) are in the range $0.25-$1.00/mi depending on time frame and vehicle-fuel technology. In all cases, vehicle cost represents the major (60-90%) contribution to LCDs. Currently, HEV and PHEV petroleum-fueled vehicles provide the most attractive cost in terms of avoided carbon emissions, although they offer lower potential GHG reductions. The ranges of LCD and cost of avoided carbon are narrower for the future technology pathways, reflecting the expected economic competitiveness of these alternative vehicles and fuels.

  14. Current and Future United States Light-Duty Vehicle Pathways: Cradle-to-Grave Lifecycle Greenhouse Gas Emissions and Economic Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Elgowainy, Amgad [Argonne National Laboratory, Argonne, Illinois 60439, United States; Han, Jeongwoo [Argonne National Laboratory, Argonne, Illinois 60439, United States; Ward, Jacob [United States Department of Energy, Washington, D.C. 20585, United States; Joseck, Fred [United States Department of Energy, Washington, D.C. 20585, United States; Gohlke, David [Argonne National Laboratory, Argonne, Illinois 60439, United States; Lindauer, Alicia [United States Department of Energy, Washington, D.C. 20585, United States; Ramsden, Todd [National Renewable Energy Laboratory, Golden, Colorado 80401, United States; Biddy, Mary [National Renewable Energy Laboratory, Golden, Colorado 80401, United States; Alexander, Mark [Electric Power Research Institute, Palo; Barnhart, Steven [FCA US LLC, Auburn Hills, Michigan 48326, United States; Sutherland, Ian [General Motors, Pontiac, Michigan 48340, United States; Verduzco, Laura [Chevron Corporation, Richmond, California 94802, United States; Wallington, Timothy J. [Ford Motor Company, Dearborn, Michigan 48121, United States

    2018-01-30

    This article presents a cradle-to-grave (C2G) assessment of greenhouse gas (GHG) emissions and costs for current (2015) and future (2025–2030) light-duty vehicles. The analysis addressed both fuel cycle and vehicle manufacturing cycle for the following vehicle types: gasoline and diesel internal combustion engine vehicles (ICEVs), flex fuel vehicles, compressed natural gas (CNG) vehicles, hybrid electric vehicles (HEVs), hydrogen fuel cell electric vehicles (FCEVs), battery electric vehicles (BEVs), and plug-in hybrid electric vehicles (PHEVs). Gasoline ICEVs using current technology have C2G emissions of ~450 gCO2e/mi (grams of carbon dioxide equivalents per mile), while C2G emissions from HEVs, PHEVs, H2 FCEVs, and BEVs range from 300–350 gCO2e/mi. Future vehicle efficiency gains are expected to reduce emissions to ~350 gCO2/mi for ICEVs and ~250 gCO2e/mi for HEVs, PHEVs, FCEVs and BEVs. Utilizing low-carbon fuel pathways yields GHG reductions more than double those achieved by vehicle efficiency gains alone. Levelized costs of driving (LCDs) are in the range $0.25–$1.00/mi depending on timeframe and vehicle-fuel technology. In all cases, vehicle cost represents the major (60–90%) contribution to LCDs. Currently, HEV and PHEV petroleum-fueled vehicles provide the most attractive cost in terms of avoided carbon emissions, although they offer lower potential GHG reductions The ranges of LCD and cost of avoided carbon are narrower for the future technology pathways, reflecting the expected economic competitiveness of these alternative vehicles and fuels.

  15. Variability of Battery Wear in Light Duty Plug-In Electric Vehicles Subject to Ambient Temperature, Battery Size, and Consumer Usage: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wood, E.; Neubauer, J.; Brooker, A. D.; Gonder, J.; Smith, K. A.

    2012-08-01

    Battery wear in plug-in electric vehicles (PEVs) is a complex function of ambient temperature, battery size, and disparate usage. Simulations capturing varying ambient temperature profiles, battery sizes, and driving patterns are of great value to battery and vehicle manufacturers. A predictive battery wear model developed by the National Renewable Energy Laboratory captures the effects of multiple cycling and storage conditions in a representative lithium chemistry. The sensitivity of battery wear rates to ambient conditions, maximum allowable depth-of-discharge, and vehicle miles travelled is explored for two midsize vehicles: a battery electric vehicle (BEV) with a nominal range of 75 mi (121 km) and a plug-in hybrid electric vehicle (PHEV) with a nominal charge-depleting range of 40 mi (64 km). Driving distance distributions represent the variability of vehicle use, both vehicle-to-vehicle and day-to-day. Battery wear over an 8-year period was dominated by ambient conditions for the BEV with capacity fade ranging from 19% to 32% while the PHEV was most sensitive to maximum allowable depth-of-discharge with capacity fade ranging from 16% to 24%. The BEV and PHEV were comparable in terms of petroleum displacement potential after 8 years of service, due to the BEV?s limited utility for accomplishing long trips.

  16. A Feedforward Control Approach to the Local Navigation Problem for Autonomous Vehicles

    Science.gov (United States)

    1994-05-02

    AD-A282 787 " A Feedforward Control Approach to the Local Navigation Problem for Autonomous Vehicles Alonzo Kelly CMU-RI-TR-94-17 The Robotics...follow, or a direction to prefer, it cannot generate its own strategic goals. Therefore, it solves the local planning problem for autonomous vehicles . The... autonomous vehicles . It is intelligent because it uses range images that are generated from either a laser rangefinder or a stereo triangulation

  17. ELVIS: Comparing Electric and Conventional Vehicle Energy Consumption and CO2 Emissions

    DEFF Research Database (Denmark)

    Andersen, Ove; Krogh, Benjamin Bjerre; Torp, Kristian

    2017-01-01

    Making the transition from conventional combustion vehicles (CVs) to electric vehicles (EVs) requires the users to be comfortable with the limited range of EVs. We present a system named ELVIS that enables a direct comparison of energy/fuel consumption, CO2 emissions, and travel-time between CVs...

  18. Vehicle Tracking System, Vehicle Infrastructure Provided with Vehicle Tracking System and Method for Tracking

    NARCIS (Netherlands)

    Papp, Z.; Doodeman, G.J.N.; Nelisse, M.W.; Sijs, J.; Theeuwes, J.A.C.; Driessen, B.J.F.

    2010-01-01

    A vehicle tracking system is described comprising - a plurality of sensor nodes (10) that each provide a message (D) indicative for an occupancy status of a detection area of an vehicle infrastructure monitored by said sensor node, said sensor nodes (10) being arranged in the vehicle infrastructure

  19. Kalman filter-based tracking of moving objects using linear ultrasonic sensor array for road vehicles

    Science.gov (United States)

    Li, Shengbo Eben; Li, Guofa; Yu, Jiaying; Liu, Chang; Cheng, Bo; Wang, Jianqiang; Li, Keqiang

    2018-01-01

    Detection and tracking of objects in the side-near-field has attracted much attention for the development of advanced driver assistance systems. This paper presents a cost-effective approach to track moving objects around vehicles using linearly arrayed ultrasonic sensors. To understand the detection characteristics of a single sensor, an empirical detection model was developed considering the shapes and surface materials of various detected objects. Eight sensors were arrayed linearly to expand the detection range for further application in traffic environment recognition. Two types of tracking algorithms, including an Extended Kalman filter (EKF) and an Unscented Kalman filter (UKF), for the sensor array were designed for dynamic object tracking. The ultrasonic sensor array was designed to have two types of fire sequences: mutual firing or serial firing. The effectiveness of the designed algorithms were verified in two typical driving scenarios: passing intersections with traffic sign poles or street lights, and overtaking another vehicle. Experimental results showed that both EKF and UKF had more precise tracking position and smaller RMSE (root mean square error) than a traditional triangular positioning method. The effectiveness also encourages the application of cost-effective ultrasonic sensors in the near-field environment perception in autonomous driving systems.

  20. The Cost-Optimal Size of Future Reusable Launch Vehicles

    Science.gov (United States)

    Koelle, D. E.

    2000-07-01

    The paper answers the question, what is the optimum vehicle size — in terms of LEO payload capability — for a future reusable launch vehicle ? It is shown that there exists an optimum vehicle size that results in minimum specific transportation cost. The optimum vehicle size depends on the total annual cargo mass (LEO equivalent) enviseaged, which defines at the same time the optimum number of launches per year (LpA). Based on the TRANSCOST-Model algorithms a wide range of vehicle sizes — from 20 to 100 Mg payload in LEO, as well as launch rates — from 2 to 100 per year — have been investigated. It is shown in a design chart how much the vehicle size as well as the launch rate are influencing the specific transportation cost (in MYr/Mg and USS/kg). The comparison with actual ELVs (Expendable Launch Vehicles) and Semi-Reusable Vehicles (a combination of a reusable first stage with an expendable second stage) shows that there exists only one economic solution for an essential reduction of space transportation cost: the Fully Reusable Vehicle Concept, with rocket propulsion and vertical take-off. The Single-stage Configuration (SSTO) has the best economic potential; its feasibility is not only a matter of technology level but also of the vehicle size as such. Increasing the vehicle size (launch mass) reduces the technology requirements because the law of scale provides a better mass fraction and payload fraction — practically at no cost. The optimum vehicle design (after specification of the payload capability) requires a trade-off between lightweight (and more expensive) technology vs. more conventional (and cheaper) technology. It is shown that the the use of more conventional technology and accepting a somewhat larger vehicle is the more cost-effective and less risky approach.