WorldWideScience

Sample records for range dielectric spectroscopy

  1. Dielectric spectroscopy in aqueous solutions of paracetamol over the frequency range of 20 Hz to 2 MHz at 293.15 K temperature

    Science.gov (United States)

    Pandit, T. R.; Rana, V. A.

    2018-05-01

    Frequency domain dielectric relaxation spectroscopy plays an important role in the study of pharmaceutical drug molecules. The complex relative dielectric permittivity ɛ*(ω) = ɛ' - j ɛ" of aqueous solutions of paracetamol in the frequency range of 20 Hz to 2 MHz at a temperature range of 293.15 K are measured with the help of Agilent precision LCR meter E4980A along with four terminal liquid test fixture Agilent 16452A. Data of complex relative permittivity are used to calculate loss tangent for all concentrations of paracetamol in distilled water. Electrode polarization relaxation time has been calculated for all solutions. Effect of variation of concentrations of paracetamol in distilled water on these dielectric parameters is discussed.

  2. Microscopic resolution broadband dielectric spectroscopy

    International Nuclear Information System (INIS)

    Mukherjee, S; Watson, P; Prance, R J

    2011-01-01

    Results are presented for a non-contact measurement system capable of micron level spatial resolution. It utilises the novel electric potential sensor (EPS) technology, invented at Sussex, to image the electric field above a simple composite dielectric material. EP sensors may be regarded as analogous to a magnetometer and require no adjustments or offsets during either setup or use. The sample consists of a standard glass/epoxy FR4 circuit board, with linear defects machined into the surface by a PCB milling machine. The sample is excited with an a.c. signal over a range of frequencies from 10 kHz to 10 MHz, from the reverse side, by placing it on a conducting sheet connected to the source. The single sensor is raster scanned over the surface at a constant working distance, consistent with the spatial resolution, in order to build up an image of the electric field, with respect to the reference potential. The results demonstrate that both the surface defects and the internal dielectric variations within the composite may be imaged in this way, with good contrast being observed between the glass mat and the epoxy resin.

  3. Microscopic resolution broadband dielectric spectroscopy

    Science.gov (United States)

    Mukherjee, S.; Watson, P.; Prance, R. J.

    2011-08-01

    Results are presented for a non-contact measurement system capable of micron level spatial resolution. It utilises the novel electric potential sensor (EPS) technology, invented at Sussex, to image the electric field above a simple composite dielectric material. EP sensors may be regarded as analogous to a magnetometer and require no adjustments or offsets during either setup or use. The sample consists of a standard glass/epoxy FR4 circuit board, with linear defects machined into the surface by a PCB milling machine. The sample is excited with an a.c. signal over a range of frequencies from 10 kHz to 10 MHz, from the reverse side, by placing it on a conducting sheet connected to the source. The single sensor is raster scanned over the surface at a constant working distance, consistent with the spatial resolution, in order to build up an image of the electric field, with respect to the reference potential. The results demonstrate that both the surface defects and the internal dielectric variations within the composite may be imaged in this way, with good contrast being observed between the glass mat and the epoxy resin.

  4. Infrared and THz spectroscopy of nanostructured dielectrics

    Directory of Open Access Journals (Sweden)

    Jan Petzelt

    2009-09-01

    Full Text Available Results achieved using the infrared/THz spectroscopy of various inhomogeneous dielectrics in the Department of Dielectrics, Institute of Physics, Prague, during the last decade are briefly reviewed. The discussion concerns high-permittivity ceramics with inevitable low-permittivity dead layers along the grain boundaries, relaxor ferroelectrics with highly anisotropic polar nano-regions, classical matrix-type composites, core-shell composites, filled nanoporous glasses, polycrystalline and epitaxial thin films, heterostructures and superlattices on dielectric substrates. The analysis using models based on the effective medium approach is discussed. The importance of depolarizing field and of the percolation of components on the effective ac dielectric response and the excitations contributing to it are emphasized.

  5. Dielectric spectroscopy of watermelons for quality sensing

    Science.gov (United States)

    Nelson, Stuart O.; Guo, Wen-chuan; Trabelsi, Samir; Kays, Stanley J.

    2007-07-01

    Dielectric properties of four small-sized watermelon cultivars, grown and harvested to provide a range of maturities, were measured with an open-ended coaxial-line probe and an impedance analyser over the frequency range from 10 MHz to 1.8 GHz. Probe measurements were made on the external surface of the melons and also on tissue samples from the edible internal tissue. Moisture content and soluble solids content (SSC) were measured for internal tissue samples, and SSC (sweetness) was used as the quality factor for correlation with the dielectric properties. Individual dielectric constant and loss factor correlations with SSC were low, but a high correlation was obtained between the SSC and permittivity from a complex-plane plot of dielectric constant and loss factor, each divided by SSC. However, SSC prediction from the dielectric properties by this relationship was not as high as expected (coefficient of determination about 0.4). Permittivity data (dielectric constant and loss factor) for the melons are presented graphically to show their relationships with frequency for the four melon cultivars and for external surface and internal tissue measurements. A dielectric relaxation for the external surface measurements, which may be attributable to a combination of bound water, Maxwell-Wagner, molecular cluster or ion-related effects, is also illustrated. Coefficients of determination for complex-plane plots, moisture content and SSC relationship, and penetration depth are also shown graphically. Further studies are needed for determining the practicality of sensing melon quality from their dielectric properties.

  6. Impedance Spectroscopy of Dielectrics and Electronic Conductors

    DEFF Research Database (Denmark)

    Bonanos, Nikolaos; Pissis, Polycarpos; Macdonald, J. Ross

    2013-01-01

    Impedance spectroscopy is used for the characterization of materials, such as electroceramics, solid and liquid electrochemical cells, dielectrics and also fully integrated devices, such as fuel cells. It consists of measuring the electrical impedance - or a closely related property, such as admi......Impedance spectroscopy is used for the characterization of materials, such as electroceramics, solid and liquid electrochemical cells, dielectrics and also fully integrated devices, such as fuel cells. It consists of measuring the electrical impedance - or a closely related property......, such as admittance or dielectric constant - as a function of frequency and comparing the results with expectations based on physical, chemical, and microstructural models. This article reviews the principles and practical aspects of the technique, the representations of the results, the analysis of data......, and procedures for the correction of measurement errors. The applications of impedance spectroscopy are illustrated with examples from electroceramics and polymer-based dielectric systems. The way in which the technique is applied to the two classes of materials is compared with reference to the different models...

  7. Broadband dielectric spectroscopy of oxidized porous silicon

    International Nuclear Information System (INIS)

    Axelrod, Ekaterina; Urbach, Benayahu; Sa'ar, Amir; Feldman, Yuri

    2006-01-01

    Dielectric measurements accompanied by infrared absorption and photoluminescence (PL) spectroscopy were used to investigate the electrical and optical properties of oxidized porous silicon (PS). As opposed to non-oxidized PS, only high temperature relaxation processes could be resolved for oxidized PS. Two relaxation processes have been observed. The first process is related to dc-conductivity that dominates at high temperatures and low frequencies. After subtraction of dc-conductivity we could analyse a second high-temperature relaxation process that is related to interface polarization induced by charge carriers trapped at the host matrix-pore interfaces. We found that, while the main effect of the oxidation on the PL appears to be a size reduction in the silicon nanocrystals that gives rise to a blue shift of the PL spectrum, its main contribution to the dielectric properties turns out to be blocking of transport channels in the host tissue and activation of hopping conductivity between silicon nanocrystals

  8. Broadband dielectric spectroscopy of oxidized porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Axelrod, Ekaterina [Department of Applied Physics, Hebrew University of Jerusalem, Jerusalem, 91904 (Israel); Urbach, Benayahu [Racah Institute of Physics and the Center for Nanoscience and Nanotechnology, Hebrew University of Jerusalem, Jerusalem, 91904 (Israel); Sa' ar, Amir [Racah Institute of Physics and the Center for Nanoscience and Nanotechnology, Hebrew University of Jerusalem, Jerusalem, 91904 (Israel); Feldman, Yuri [Department of Applied Physics, Hebrew University of Jerusalem, Jerusalem, 91904 (Israel)

    2006-04-07

    Dielectric measurements accompanied by infrared absorption and photoluminescence (PL) spectroscopy were used to investigate the electrical and optical properties of oxidized porous silicon (PS). As opposed to non-oxidized PS, only high temperature relaxation processes could be resolved for oxidized PS. Two relaxation processes have been observed. The first process is related to dc-conductivity that dominates at high temperatures and low frequencies. After subtraction of dc-conductivity we could analyse a second high-temperature relaxation process that is related to interface polarization induced by charge carriers trapped at the host matrix-pore interfaces. We found that, while the main effect of the oxidation on the PL appears to be a size reduction in the silicon nanocrystals that gives rise to a blue shift of the PL spectrum, its main contribution to the dielectric properties turns out to be blocking of transport channels in the host tissue and activation of hopping conductivity between silicon nanocrystals.

  9. Broadband dielectric spectroscopy and calorimetric investigations of D-lyxose.

    Science.gov (United States)

    Singh, Lokendra P; Alegría, A; Colmenero, J

    2011-10-18

    Using broadband dielectric spectroscopy, we have studied different types of relaxation processes, namely, primary (α), secondary (β), and another sub-T(g) process called γ-process, in the supercooled state of D-lyxose, over a wide frequency (10(-2)-10(9) Hz) and temperature range (120-340 K). In addition, the same sample was analyzed by differential scanning calorimeter. The temperature dependence of the relaxation times as well as the dielectric strength of different processes has been critically examined. It has been observed that the slower secondary relaxation (designated as β-) process shifts to lower frequencies with increasing applied pressure, but not the faster one. This pressure dependence indicates that the observed slower secondary relaxation (β-) is Johari-Goldstein relaxation process and faster one (γ-process) is probably the rotation of hydroxymethyl (-CH(2)OH) side group attached to the sugar ring, that is, of intramolecular origin. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Nonlinear dielectric spectroscopy of propylene carbonate derivatives

    Science.gov (United States)

    Casalini, R.; Roland, C. M.

    2018-04-01

    Nonlinear dielectric measurements were carried out on two strongly polar liquids, 4-vinyl-1,3-dioxolan-2-one (VPC) and 4-ethyl-1,3-dioxolan-2-one (EPC), having chemical structures differing from propylene carbonate (PC) only by the presence of a pendant group. Despite their polarity, the compounds are all non-associated, "simple" liquids. From the linear component of the dielectric response, the α relaxation peak breadth was found to be invariant at a fixed value of the relaxation time, τα. From spectra from the nonlinear component, the number of dynamically correlated molecules was determined; it was also constant at fixed τα. Thus, two manifestations of dynamic heterogeneity depend only on the time constant for structural reorientation. More broadly, the cooperativity of molecular motions for non-associated glass-forming materials is connected to (i.e., reciprocally governs) the time scale. The equation of state for the two liquids was also obtained from density measurements made over a broad range of pressures and temperatures. Using these data, it was determined that the relaxation times of both liquids conform to density scaling. The effect of density, relative to thermal effects, on the α relaxation increases going from PC < VPC < EPC.

  11. Ionomer Dynamics: Insights from Broadband Dielectric Spectroscopy

    Science.gov (United States)

    Runt, James

    2015-03-01

    Ionomers (polymers containing ionic functionality) have been traditionally used as packaging materials and in molding applications, and are now of increasing interest as candidate single ion conductors for energy storage devices, in energy conversion, and for other electroactive materials applications. The focus of this presentation is on the insight that broadband dielectric (impedance) spectroscopy brings to our understanding of ion and polymer dynamics of this family of materials. As an example of our recent work on relatively conductive ionomers, the first portion of the presentation will focus on anion conducting polyphosphazene ionomers, in which polymer bound cations are quaternized with either short alkyl or short ether oxygen chains. The low Tg, amorphous nature, and cation-solvating backbone distinguish polyphosphazenes as promising materials for ion conduction, the iodide variants being of particular interest in solar cells. In the second part of this overview, the first findings on the molecular dynamics of linear precise polyethylene-based ionomers containing 1-methylimidazolium bromide pendants on exactly every 9th, 15th, or 21st carbon atom will be summarized. In order to develop a robust interpretation of the dynamics of these materials, it is imperative to develop a thorough understanding of microphase separation (e.g. ion aggregation), and each of the above studies is complimented by multiangle X-ray scattering experiments. Supported by the NSF Polymers Program and DOE Basic Energy Sciences.

  12. High-pressure cell for simultaneous dielectric and neutron spectroscopy

    Science.gov (United States)

    Sanz, Alejandro; Hansen, Henriette Wase; Jakobsen, Bo; Pedersen, Ib H.; Capaccioli, Simone; Adrjanowicz, Karolina; Paluch, Marian; Gonthier, Julien; Frick, Bernhard; Lelièvre-Berna, Eddy; Peters, Judith; Niss, Kristine

    2018-02-01

    In this article, we report on the design, manufacture, and testing of a high-pressure cell for simultaneous dielectric and neutron spectroscopy. This cell is a unique tool for studying dynamics on different time scales, from kilo- to picoseconds, covering universal features such as the α relaxation and fast vibrations at the same time. The cell, constructed in cylindrical geometry, is made of a high-strength aluminum alloy and operates up to 500 MPa in a temperature range between roughly 2 and 320 K. In order to measure the scattered neutron intensity and the sample capacitance simultaneously, a cylindrical capacitor is positioned within the bore of the high-pressure container. The capacitor consists of two concentric electrodes separated by insulating spacers. The performance of this setup has been successfully verified by collecting simultaneous dielectric and neutron spectroscopy data on dipropylene glycol, using both backscattering and time-of-flight instruments. We have carried out the experiments at different combinations of temperature and pressure in both the supercooled liquid and glassy state.

  13. Epoxy matrix with triaromatic mesogenic unit in dielectric spectroscopy observation

    Science.gov (United States)

    Włodarska, Magdalena; Mossety-Leszczak, Beata; Bąk, Grzegorz W.; Kisiel, Maciej; Dłużniewski, Maciej; Okrasa, Lidia

    2018-04-01

    This paper describes the dielectric response of a selected liquid crystal epoxy monomer (plain and in curing systems) in a wide range of frequency and temperature. The dielectric spectroscopy, thanks to its sensitivity, is a very good tool for studying phase transitions, reaction progress, or material properties. This sensitivity is important in the case of liquid crystal epoxy resins, where properties of the final network depend on the choice of monomers, curing agents, curing conditions and post-curing treatment, or applying an external electric or magnetic field during the reaction. In most of the obtained cured products, the collected dielectric data show two relaxation processes. The α-process is related to a structural reorientation; it can usually be linked with the glass transition and the mechanical properties of the material. The β-process can be identified as a molecular motion process, probably associated with the carboxyl groups in the mesogen. A transient Maxwell-Wagner relaxation observed in one of the compositions after the initial curing is removed by post-curing treatment at elevated temperatures. Post-curing is therefore necessary for obtaining uniformly cured products in those cases. In the investigated systems, the choice of a curing agent can change the glass transition temperature by at least 70 °C. The obtained results are in a good agreement with an earlier study employing other techniques. Finally, we assess the influence of the direction of mesogen alignment on the dielectric properties of one selected system, where a global order was induced by applying an external magnetic field in the course of curing.

  14. Dielectric spectroscopy studies of low-disorder and low-dimensional materials

    OpenAIRE

    Tripathi, Pragya

    2016-01-01

    In this thesis we employ dielectric spectroscopy (in different implementations) to study the dielectric properties of different materials ranging from completely disordered supercooled liquids to low-disorder solids with only ratcheting reorientational motions, to low-dimensional systems such as thin films or needle-like crystals. The probed material properties include the electrical conductivity, the space-charge processes due to sample heterogeneities, molecular dynamics, hydrogen-bond dyna...

  15. Combination of laser correlation and dielectric spectroscopy in albumin investigations

    International Nuclear Information System (INIS)

    Nepomnyashchaya, E; Cheremiskina, A; Velichko, E; Aksenov, E; Bogomaz, T

    2015-01-01

    Joint use of laser correlation and dielectric spectroscopies for studies of biomolecular properties of albumin in water solution is considered. The conditions and parameters of the experiments are discussed. Similar behaviours of albumin molecular sizes and maximum frequency of peak of dielectric dissipation factor with increasing acidity were revealed. Using the suggested approach, biomolecular aggregation dynamics and changes in electrophysical properties on transition from one molecular structure to another may be investigated. (paper)

  16. Peltier Effect Based Temperature Controlled System for Dielectric Spectroscopy

    Science.gov (United States)

    Mukda, T.; Jantaratana, P.

    2017-09-01

    The temperature control system was designed and built for application in dielectric spectroscopy. It is based on the dual-stage Peltier element that decreases electrical power and no cryogenic fluids are required. A proportional integral derivative controller was used to keep the temperature stability of the system. A Pt100 temperature sensor was used to measure temperature of the sample mounting stage. Effect of vacuum isolation and water-cooling on accuracy and stability of the system were also studied. With the incorporation of vacuum isolation and water-cooling at 18 °C, the temperature of the sample under test can be controlled in the range of -40 °C to 150 °C with temperature stability ± 0.025 °C.

  17. Orientational and structural properties of ferroelectric liquid crystal with broad temperature range of the SmC* phase by .sup.13./sup.C NMR, x-ray scattering and dielectric spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Bubnov, Alexej M.; Domenici, V.; Hamplová, Věra; Kašpar, Miroslav; Veracini, C.A.; Glogarová, Milada

    2009-01-01

    Roč. 21, č. 3 (2009), 035102/1-035102/8 ISSN 0953-8984 R&D Projects: GA AV ČR(CZ) GA202/09/0047; GA ČR GA202/05/0431; GA MŠk OC 175; GA AV ČR IAA100100710 Institutional research plan: CEZ:AV0Z10100520 Keywords : ferroelectric liquid crystal * high spontaneous polarization * 13 C nuclear magnetic resonance * x-ray scattering * dielectric spectroscopy * viscosity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.964, year: 2009

  18. Dielectric spectroscopy of Ag-starch nanocomposite films

    Science.gov (United States)

    Meena; Sharma, Annu

    2018-04-01

    In the present work Ag-starch nanocomposite films were fabricated via chemical reduction route. The formation of Ag nanoparticles was confirmed using transmission electron microscopy (TEM). Further the effect of varying concentration of Ag nanoparticles on the dielectric properties of starch has been studied. The frequency response of dielectric constant (ε‧), dielectric loss (ε″) and dissipation factor tan(δ) has been studied in the frequency range of 100 Hz to 1 MHz. Dielectric data was further analysed using Cole-Cole plots. The dielectric constant of starch was found to be 4.4 which decreased to 2.35 in Ag-starch nanocomposite film containing 0.50 wt% of Ag nanoparticles. Such nanocomposites with low dielectric constant have potential applications in microelectronic technologies.

  19. High-pressure cell for simultaneous dielectric and neutron spectroscopy

    DEFF Research Database (Denmark)

    Sanz, Alejandro; Hansen, Henriette Wase; Jakobsen, Bo

    2018-01-01

    In this article, we report on the design, manufacture, and testing of a high-pressure cell for simultaneous dielectric and neutron spectroscopy. This cell is a unique tool for studying dynamics on different time scales, from kilo- to picoseconds, covering universal features such as the α relaxation......, a cylindrical capacitor is positioned within the bore of the high-pressure container. The capacitor consists of two concentric electrodes separated by insulating spacers. The performance of this setup has been successfully verified by collecting simultaneous dielectric and neutron spectroscopy data...

  20. Positron annihilation response and broadband dielectric spectroscopy: salol.

    Science.gov (United States)

    Bartoš, J; Iskrová, M; Köhler, M; Wehn, R; Sauša, O; Lunkenheimer, P; Krištiak, J; Loidl, A

    2011-09-01

    A phenomenological analysis of the ortho-positronium (o-Ps) annihilation from positron annihilation lifetime spectroscopy (PALS) and the dynamics from broadband dielectric spectroscopy (BDS) are reported on a small molecular glass former of intermediate H-bonding and fragility: salol. The dielectric spectra extend over a very broad frequency range of about 2 × 10(-2)-3.5 × 10(11) Hz, providing information on the α-relaxation, the secondary relaxation giving rise to the excess wing, and the shallow high-frequency minimum in the micro- to milli-meter wave range. A number of empirical correlations between the o-Ps lifetime, τ(3)(T), and the various spectral and relaxation features have been observed. Thus, the phenomenological evaluation of the τ(3)(T) dependence of the PALS response of the amorphous sample reveals three characteristic PALS temperatures: T(g)(PALS), T(b1)(L) = 1.15T(g)(PALS) and T(b2)(L) = 1.25T(g)(PALS), which are discussed in relation to similar findings for some typical small molecular vdW- and H-bonded glass formers. A slighter change of the slope at T(b1)(L) appears to be related to the transition from excess wing to the primary α-process-dominated behavior, with the secondary process dominating in the deeply supercooled liquid state below T(b1)(L). The high-temperature plateau effect in the τ (3)(T) plot occurs at T(b2)(L) and agrees with the characteristic Stickel temperature, T(B)(ST), marking a qualitative change of the primary α process, but it does not follow the relation T(b2)(L) application of the two-order parameter (TOP) model to the structural relaxation as represented by the primary α relaxation times from BDS leads to the characteristic TOP temperature, T(m)(c), close to T(b1) from PALS. Within this model the phenomenological interpretation is offered based on changes in the probability of occurrence of solid-like and liquid-like domains to explain the dynamic as well as PALS responses. In summary, all the empirical

  1. Dielectric characterization of materials at microwave frequency range

    Directory of Open Access Journals (Sweden)

    J. de los Santos

    2003-01-01

    Full Text Available In this study a coaxial line was used to connect a microwave-frequency Network Analyzer and a base moving sample holder for dielectric characterization of ferroelectric materials in the microwave range. The main innovation of the technique is the introduction of a special sample holder that eliminates the air gap effect by pressing sample using a fine pressure system control. The device was preliminary tested with alumina (Al2O3 ceramics and validated up to 2 GHz. Dielectric measurements of lanthanum and manganese modified lead titanate (PLTM ceramics were carried out in order to evaluate the technique for a high permittivity material in the microwave range. Results showed that such method is very useful for materials with high dielectric permittivities, which is generally a limiting factor of other techniques in the frequency range from 50 MHz to 2 GHz.

  2. Dielectric spectroscopy of polymer nanocomposites based on tetrazol and KNO3

    International Nuclear Information System (INIS)

    Castro, R A; Lushin, E N

    2014-01-01

    For tetrazole polymers by dielectric spectroscopy the existence of three relaxation processes in the temperature range T=273-423 K is revealed, the values of relaxation and structural parameters are determined: activation energy E A and glass transition temperature T g

  3. Time domain PD-detection vs. dielectric spectroscopy

    DEFF Research Database (Denmark)

    Holbøll, Joachim T.; Edin, Hans; Gäfvert, Uno

    1997-01-01

    A theoretically developed relationship between partial discharges and the response from a system for dielectric spectroscopy was experimentally confirmed. The losses caused by the discharges were highest at test voltages with low frequencies. At 0.1 Hz, tanδ tip-up at discharge inception was very...

  4. Broadband dielectric spectroscopy of inhomogeneous and composite weak conductors

    Czech Academy of Sciences Publication Activity Database

    Petzelt, Jan; Nuzhnyy, Dmitry

    2016-01-01

    Roč. 89, 7-8 (2016), 651-666 ISSN 0141-1594 R&D Projects: GA ČR GA15-08389S Institutional support: RVO:68378271 Keywords : dielectric spectroscopy * effective medium approximation * coreshell composite * giant permittivity effects * negative permittivity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.060, year: 2016

  5. Dielectric spectroscopy as a sensor of membrane headgroup mobility and hydration

    DEFF Research Database (Denmark)

    Klösgen, B; Reichle, C; Kohlsmann, S

    1996-01-01

    Dielectric spectroscopy is based on the response of the permanent dipoles to a driving electric field. The phospholipid membrane systems of dimyristoylphosphatidylcholine and dioleoylphosphatidylcholine can be prepared as samples of multilamellar liposomes with a well known amount of interlamellar...... water. For optimal resolution in dielectric spectroscopy one has to design the experimental set-up so that the direction of the permanent headgroup dipole moment is mostly parallel to the field vector of the external radio frequency (rf) electric field in this layered system. A newly developed coaxial...... probe technique makes it possible to sweep the measuring frequency between 1 and 1000 MHz in the temperature range 286-323 K. The response yields both the dispersion (epsilon') and the absorption part (epsilon") of the complex dielectric permittivity, which are attributed to the rotational diffusions...

  6. Dielectric Spectroscopy of Biomolecules up to 110 GHz

    Science.gov (United States)

    Laux, Eva-Maria; Ermilova, Elena; Pannwitz, Daniel; Gibbons, Jessica; Hölzel, Ralph; Bier, Frank F.

    2018-03-01

    Radio-frequency fields in the GHz range are increasingly applied in biotechnology and medicine. In order to fully exploit both their potential and their risks detailed information about the dielectric properties of biological material is needed. For this purpose a measuring system is presented that allows the acquisition of complex dielectric spectra over 4 frequency decade up to 110 GHz. Routines for calibration and for data evaluation according to physicochemical interaction models have been developed. The frequency dependent permittivity and dielectric loss of some proteins and nucleic acids, the main classes of biomolecules, and of their sub-units have been determined. Dielectric spectra are presented for the amino acid alanine, the proteins lysozyme and haemoglobin, the nucleotides AMP and ATP, and for the plasmid pET-21, which has been produced by bacterial culture. Characterisation of a variety of biomolecules is envisaged, as is the application to studies on protein structure and function.

  7. Dielectric platforms for surface-enhanced spectroscopies (Conference Presentation)

    Science.gov (United States)

    Maier, Stefan A.

    2016-03-01

    Plasmonic nanostructures serve as the main backbone of surface enhanced sensing methodologies, yet the associated optical losses lead to localized heating as well as quenching of molecules, complicating their use for enhancement of fluorescent emission. Additionally, conventional plasmonic materials are limited to operation in the visible part of the spectrum. We will elucidate how nanostructures consisting of conventional and polar dielectrics can be employed as a highly promising alternative platform. Dielectric nanostructures can sustain scattering resonances due to both electric and magnetic Mie modes. We have recently predicted high enhanced local electromagnetic field hot spots in dielectric nanoantenna dimers, with the hallmark of spot sizes comparable to those achievable with plasmonic antennas, but with lower optical losses. Here, we will present first experimental evidence for both fluorescence and Raman enhancement in dielectric nanoantennas, including a direct determination of localized heating, and compare to conventional Au dimer antennas. The second part of the talk will focus on the mid-infrared regime of the electromagnetic spectrum, outlining possibilities for surface enhanced infrared absorption spectroscopy based on polar and hyperbolic dielectrics.

  8. Dielectric relaxation in solid collagen over a wide temperature range

    International Nuclear Information System (INIS)

    Khan, Muhammad Abdullah; Rizvi, Tasneem Zahra; Janjua, Khalid Mehmood; Zaheer, Muhammad Yar

    2001-07-01

    Dielectric constant ε' and loss factor ε'' have been measured in bovine tendon collagen in the frequency range 30 Hz - 3 MHz and temperature range 30 deg. C to 200 deg. C. Frequency dependence curve of ε'' shows a low frequency strong α-dispersion attributed to phonon assisted proton hopping between localized sites and a weak high frequency. α 2 - dispersion attributed to reorientation of polar components of collagen molecules. Temperature dependence of the dielectric data show release of bound moisture as a three step process with discrete peaks at 50 deg. C, 90 deg. C and 125 deg. C. These peaks have been attributed to release of adsorbed surface water, water bound to exposed polar sites and strongly bound internal moisture respectively. A peak observed at 160 deg. C has been attributed to thermally induced helix-coil transition of collagen molecules. (author)

  9. Design and Development of Embedded Based System for the Measurement of Dielectric Constant Spectroscopy for Liquids

    Directory of Open Access Journals (Sweden)

    V. V. Ramana C. H.

    2010-09-01

    Full Text Available An embedded based system for the measurement of dielectric constant spectroscopy (for frequencies 1 kHz, 10 kHz, 100 kHz, 1 MHz and 10 MHz for liquids has been designed and developed. It is based on the principle that the change in frequency of an MAX 038 function generator, when the liquid forms the dielectric medium of the dielectric cell, is measured with a microcontroller. Atmel’s AT89LP6440 microcontroller is used in the present study. Further, an LCD module is interfaced with the microcontroller in 4-bit mode, which reduces the hardware complexity. Software is developed in C using Keil’s C-cross compiler. The instrument system covers a wide range of dielectric constants for various liquids at various frequencies and at different temperatures. The system is quite successful in the measurement of dielectric constant in liquids with an accuracy of ± 0.01 %. The dielectric constant is very dependent on the frequency of their measurement. No one-measurement technique is available, however, that will give the frequency range needed to characterize the liquid sample. The paper deals with the hardware and software details.

  10. Non-linear dielectric spectroscopy of microbiological suspensions

    Science.gov (United States)

    Treo, Ernesto F; Felice, Carmelo J

    2009-01-01

    Background Non-linear dielectric spectroscopy (NLDS) of microorganism was characterized by the generation of harmonics in the polarization current when a microorganism suspension was exposed to a sinusoidal electric field. The biological nonlinear response initially described was not well verified by other authors and the results were susceptible to ambiguous interpretation. In this paper NLDS was performed to yeast suspension in tripolar and tetrapolar configuration with a recently developed analyzer. Methods Tripolar analysis was carried out by applying sinusoidal voltages up to 1 V at the electrode interface. Tetrapolar analysis was carried on with sinusoidal field strengths from 0.1 V cm-1 to 70 V cm-1. Both analyses were performed within a frequency range from 1 Hz through 100 Hz. The harmonic amplitudes were Fourier-analyzed and expressed in dB. The third harmonic, as reported previously, was investigated. Statistical analysis (ANOVA) was used to test the effect of inhibitor an activator of the plasma membrane enzyme in the measured response. Results No significant non-linearities were observed in tetrapolar analysis, and no observable changes occurred when inhibitor and activator were added to the suspension. Statistical analysis confirmed these results. When a pure sinus voltage was applied to an electrode-yeast suspension interface, variations higher than 25 dB for the 3rd harmonic were observed. Variation higher than 20 dB in the 3rd harmonics has also been found when adding an inhibitor or activator of the membrane-bounded enzymes. These variations did not occur when the suspension was boiled. Discussion The lack of result in tetrapolar cells suggest that there is no, if any, harmonic generation in microbiological bulk suspension. The non-linear response observed was originated in the electrode-electrolyte interface. The frequency and voltage windows observed in previous tetrapolar analysis were repeated in the tripolar measurements, but maximum were not

  11. Non-linear dielectric spectroscopy of microbiological suspensions

    Directory of Open Access Journals (Sweden)

    Felice Carmelo J

    2009-09-01

    Full Text Available Abstract Background Non-linear dielectric spectroscopy (NLDS of microorganism was characterized by the generation of harmonics in the polarization current when a microorganism suspension was exposed to a sinusoidal electric field. The biological nonlinear response initially described was not well verified by other authors and the results were susceptible to ambiguous interpretation. In this paper NLDS was performed to yeast suspension in tripolar and tetrapolar configuration with a recently developed analyzer. Methods Tripolar analysis was carried out by applying sinusoidal voltages up to 1 V at the electrode interface. Tetrapolar analysis was carried on with sinusoidal field strengths from 0.1 V cm-1 to 70 V cm-1. Both analyses were performed within a frequency range from 1 Hz through 100 Hz. The harmonic amplitudes were Fourier-analyzed and expressed in dB. The third harmonic, as reported previously, was investigated. Statistical analysis (ANOVA was used to test the effect of inhibitor an activator of the plasma membrane enzyme in the measured response. Results No significant non-linearities were observed in tetrapolar analysis, and no observable changes occurred when inhibitor and activator were added to the suspension. Statistical analysis confirmed these results. When a pure sinus voltage was applied to an electrode-yeast suspension interface, variations higher than 25 dB for the 3rd harmonic were observed. Variation higher than 20 dB in the 3rd harmonics has also been found when adding an inhibitor or activator of the membrane-bounded enzymes. These variations did not occur when the suspension was boiled. Discussion The lack of result in tetrapolar cells suggest that there is no, if any, harmonic generation in microbiological bulk suspension. The non-linear response observed was originated in the electrode-electrolyte interface. The frequency and voltage windows observed in previous tetrapolar analysis were repeated in the tripolar

  12. Medium-range dielectric order in systems with collectivized electrons

    International Nuclear Information System (INIS)

    Ismagilov, A.M.; Kopaev, Yu.V.

    1993-01-01

    The problem of formation of a medium-range dielectric order (on a scale much larger than the interatomic one) due to electron-electron correlations and to scattering by an impurity in a system near a phase transition into a long-range order state is solved by a microscopic approach. It is shown that for a weak impurity potential the effect of medium-range order formation is stronger than the effect of long-range order suppression related to scattering by an impurity. The influence of medium-range order on the one-particle excitation spectrum and on the density of states is considered. It is found that since the medium-range order in a system is due to correlations of electron and hole states open-quotes coupledclose quotes by a continuous set of inhomogeneity vectors (in contrast to the long-range order formed on a discrete set of such vectors), the density of states varies on an energy scale determined by the mean absolute value of these vectors. Therefore in a system undergoing phase transition into an inhomogeneous state with the modulus q 0 of inhomogeneity vectors the medium-range order forms in the density of states a pseudogap of scale length v F q 0 (v F is the Fermi velocity). This distinguishes such a system substantially from one, which tends to a phase transition into a homogeneous state (q 0 ≡0), where the medium-range order forms a pseudogap of scale length v F /ξ much-lt v F q 0 (ξ is the correlation length). The possible role of medium dielectric order effects in high-T c superconductors is discussed. 30 refs., 6 figs

  13. Electrical properties and dielectric spectroscopy of Ar{sup +} implanted polycarbonate

    Energy Technology Data Exchange (ETDEWEB)

    Chawla, Mahak, E-mail: mahak.chawla@gmail.com; Shekhawat, Nidhi; Aggarwal, Sanjeev; Sharma, Annu [Department of Physics, Kurukshetra University, Kurukshetra - 136119 (India); Nair, K. G. M. [Consultant, UGC-DAE Consortium for Scientific Research, Kalpakkam Node, Kokilamedu-603104, Tamilnadu (India)

    2015-05-15

    The aim of the present paper is to study the effect of argon ion implantation on electrical and dielectric properties of polycarbonate. Specimens were implanted with 130 keV Ar{sup +} ions in the fluence ranging from 1×10{sup 14} to 1×10{sup 16} ions cm{sup −2}. The beam current used was ∼0.40 µA cm{sup −2}. The electrical conduction behaviour of virgin and Ar{sup +} implanted polycarbonate specimens have been studied through current-voltage (I-V characteristic) measurements. It has been observed that after implantation conductivity increases with increasing ion fluence. The dielectric spectroscopy of these specimens has been done in the frequency range of 100 kHz-100 MHz. Relaxation processes were studied by Cole-Cole plot of complex permittivity (real part of complex permittivity, ε′ vs. imaginary part of complex permittivity, ε″). The Cole-Cole plots have also been used to determine static dielectric constant (ε{sub s}), optical dielectric constant (ε{sub ∞}), spreading factor (α), average relaxation time (τ{sub 0}) and molecular relaxation time (τ). The dielectric behaviour has been found to be significantly affected due to Ar{sup +} implantation. The possible correlation between this behaviour and the changes induced by the implantation has been discussed.

  14. Dielectric spectroscopy of the SmQ* phase

    Science.gov (United States)

    Perkowski, P.; Bubnov, A.; Piecek, W.; Ogrodnik, K.; Hamplová, V.; Kašpar, M.

    2011-11-01

    Liquid crystal possessing two biphenyl moieties in the molecular core and lateral chlorine substitution far from the chiral chain has been studied by dielectric spectroscopy. On cooling from the isotropic phase, the material possesses the frustrated smectic Q* (SmQ*) and SmCA* phases. It has been confirmed by dielectric spectroscopy that the SmQ* phase can be related to the SmCA* anti-ferroelectric phase. However, only one relaxation process has been observed in the SmQ* phase, while in the SmCA*, two relaxations are clearly detectable. It seems that the mode found in the SmQ* can be connected with high-frequency anti-phase mode observed in the SmCA* phase. Its relaxation frequency is similar to PH relaxation frequency, but is weaker. The same relaxation has been observed even a few degrees above the SmQ*-Iso phase transition. Another explanation for the mode detected in SmQ* and isotropic phases can be molecular motions around short molecular axis.

  15. Dielectric spectroscopy for evaluating dry matter content of potato tubers

    DEFF Research Database (Denmark)

    Nielsen, Glenn G. B.; Kjaer, Anders; Klösgen, Beate

    2016-01-01

    The present study investigated the application of dielectric spectroscopy as a method for evaluating the dry matter content of potato tubers. Sample specific factors determining the precision of this application were investigated by studying the prediction of the dry material content in agar gel...... of the predicted dry matter content was observed in chemically and spatially uniform systems, with a root mean square error (RMSE) of the predicted dry-matter content of 0.64 percentage points observed in agar gels containing refined potato starch. A marked decrease in precision is observed in model systems which...... include chemical variations between potato tuber samples. The added dry material content was predicted with a RMSE of 0.94 percentage points in agar gels with added dried material extracted from separate potato tubers. The local dry matter content from a region within 2 cm of the center location...

  16. Nondestructive millimeter wave imaging and spectroscopy using dielectric focusing probes

    International Nuclear Information System (INIS)

    Hejase, Jose A.; Shane, Steven S.; Park, Kyoung Y.; Chahal, Premjeet

    2014-01-01

    A tool for interrogating objects over a wide band of frequencies with subwavelength resolution at small standoff distances (near field region) in the transmission mode using a single source and detector measurement setup in the millimeter wave band is presented. The design utilizes optics like principles for guiding electromagnetic millimeter waves from large cross-sectional areas to considerably smaller sub-wavelength areas. While plano-convex lenses can be used to focus waves to a fine resolution, they usually require a large stand-off distance thus resulting in alignment and spacing issues. The design procedure and simulation analysis of the focusing probes are presented in this study along with experimental verification of performance and imaging and spectroscopy examples. Nondestructive evaluation will find benefit from such an apparatus including biological tissue imaging, electronic package integrity testing, composite dielectric structure evaluation for defects and microfluidic sensing

  17. Nondestructive millimeter wave imaging and spectroscopy using dielectric focusing probes

    Energy Technology Data Exchange (ETDEWEB)

    Hejase, Jose A.; Shane, Steven S.; Park, Kyoung Y.; Chahal, Premjeet [Terahertz Systems Laboratory (TeSLa) - Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48823 (United States)

    2014-02-18

    A tool for interrogating objects over a wide band of frequencies with subwavelength resolution at small standoff distances (near field region) in the transmission mode using a single source and detector measurement setup in the millimeter wave band is presented. The design utilizes optics like principles for guiding electromagnetic millimeter waves from large cross-sectional areas to considerably smaller sub-wavelength areas. While plano-convex lenses can be used to focus waves to a fine resolution, they usually require a large stand-off distance thus resulting in alignment and spacing issues. The design procedure and simulation analysis of the focusing probes are presented in this study along with experimental verification of performance and imaging and spectroscopy examples. Nondestructive evaluation will find benefit from such an apparatus including biological tissue imaging, electronic package integrity testing, composite dielectric structure evaluation for defects and microfluidic sensing.

  18. Evaluation of DNA damage using microwave dielectric absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hirayama, Makoto; Matuo, Youichrou; Izumi, Yoshinobu [Research Institute of Nuclear Engineering, University of Fukui, Fukui (Japan); Sunagawa, Takeyoshi [Fukui University of Technology, Fukui (Japan)

    2016-12-15

    Evaluation of deoxyribonucleic acid (DNA)-strand break is important to elucidate the biological effect of ionizing radiations. The conventional methods for DNA-strand break evaluation have been achieved by Agarose gel electrophoresis and others using an electrical property of DNAs. Such kinds of DNA-strand break evaluation systems can estimate DNA-strand break, according to a molecular weight of DNAs. However, the conventional method needs pre-treatment of the sample and a relatively long period for analysis. They do not have enough sensitivity to detect the strand break products in the low-dose region. The sample is water, methanol and plasmid DNA solution. The plasmid DNA pUC118 was multiplied by using Escherichia coli JM109 competent cells. The resonance frequency and Q-value were measured by means of microwave dielectric absorption spectroscopy. When a sample is located at a center of the electric field, resonance curve of the frequency that existed as a standing wave is disturbed. As a result, the perturbation effect to perform a resonance with different frequency is adopted. The resonance frequency shifted to higher frequency with an increase in a concentration of methanol as the model of the biological material, and the Q-value decreased. The absorption peak in microwave power spectrum of the double-strand break plasmid DNA shifted from the non-damaged plasmid DNA. Moreover, the sharpness of absorption peak changed resulting in change in Q-value. We confirmed that a resonance frequency shifted to higher frequency with an increase in concentration of the plasmid DNA. We developed a new technique for an evaluation of DNA damage. In this paper, we report the evaluation method of DNA damage using microwave dielectric absorption spectroscopy.

  19. Evaluation of DNA damage using microwave dielectric absorption spectroscopy

    International Nuclear Information System (INIS)

    Hirayama, Makoto; Matuo, Youichrou; Izumi, Yoshinobu; Sunagawa, Takeyoshi

    2016-01-01

    Evaluation of deoxyribonucleic acid (DNA)-strand break is important to elucidate the biological effect of ionizing radiations. The conventional methods for DNA-strand break evaluation have been achieved by Agarose gel electrophoresis and others using an electrical property of DNAs. Such kinds of DNA-strand break evaluation systems can estimate DNA-strand break, according to a molecular weight of DNAs. However, the conventional method needs pre-treatment of the sample and a relatively long period for analysis. They do not have enough sensitivity to detect the strand break products in the low-dose region. The sample is water, methanol and plasmid DNA solution. The plasmid DNA pUC118 was multiplied by using Escherichia coli JM109 competent cells. The resonance frequency and Q-value were measured by means of microwave dielectric absorption spectroscopy. When a sample is located at a center of the electric field, resonance curve of the frequency that existed as a standing wave is disturbed. As a result, the perturbation effect to perform a resonance with different frequency is adopted. The resonance frequency shifted to higher frequency with an increase in a concentration of methanol as the model of the biological material, and the Q-value decreased. The absorption peak in microwave power spectrum of the double-strand break plasmid DNA shifted from the non-damaged plasmid DNA. Moreover, the sharpness of absorption peak changed resulting in change in Q-value. We confirmed that a resonance frequency shifted to higher frequency with an increase in concentration of the plasmid DNA. We developed a new technique for an evaluation of DNA damage. In this paper, we report the evaluation method of DNA damage using microwave dielectric absorption spectroscopy

  20. Broad-band dielectric spectroscopy of tetragonal PLZT x/40/60

    Czech Academy of Sciences Publication Activity Database

    Buixaderas, Elena; Noujni, Dmitri; Veljko, Sergiy; Savinov, Maxim; Vaněk, Přemysl; Kamba, Stanislav; Petzelt, Jan; Kosec, M.

    2006-01-01

    Roč. 79, 6-7 (2006), s. 415-426 ISSN 0141-1594 R&D Projects: GA ČR(CZ) GA202/06/0403; GA ČR GA202/04/0993 Institutional research plan: CEZ:AV0Z10100520 Keywords : ferroelectrics * relaxors * dielectric behaviour * lattice dynamics dielectric spectroscopy * IR spectroscopy * THz spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.830, year: 2006

  1. Dielectric spectroscopy technique applied to study the behaviour of irradiated polymer

    International Nuclear Information System (INIS)

    Saoud, R.; Soualmia, A.; Guerbi, C.A.; Benrekaa, N.

    2006-01-01

    Relaxation spectroscopy provides an excellent method for the study of motional processes in materials and has been widely applied to macromolecules and polymers. The technique is potentially of most interest when applied to irradiated systems. Application to the study of the structure beam-irradiated Teflon is thus an outstanding opportunity for the dielectric relaxation technique, particularly as this material exhibits clamping problems when subjected to dynamic mechanical relaxation studies. A very wide frequency range is necessary to resolve dipolar effects. In this paper, we discuss some significant results about the behavior and the modification of the structure of Teflon submitted to weak energy radiations

  2. Relaxations and fast dynamics of the plastic crystal cyclo-octanol investigated by broadband dielectric spectroscopy

    OpenAIRE

    Lunkenheimer, Peter

    1997-01-01

    Relaxations and fast dynamics of the plastic crystal cyclo-octanol investigated by broadband dielectric spectroscopy / R. Brand, P. Lunkenheimer, A. Loidl. - In: Physical review. B. 56. 1997. S. R5713-R5716

  3. Numerical differentiation methods for the logarithmic derivative technique used in dielectric spectroscopy

    Directory of Open Access Journals (Sweden)

    Henrik Haspel

    2010-06-01

    Full Text Available In dielectric relaxation spectroscopy the conduction contribution often hampers the evaluation of dielectric spectra, especially in the low-frequency regime. In order to overcome this the logarithmic derivative technique could be used, where the calculation of the logarithmic derivative of the real part of the complex permittivity function is needed. Since broadband dielectric measurement provides discrete permittivity function, numerical differentiation has to be used. Applicability of the Savitzky-Golay convolution method in the derivative analysis is examined, and a detailed investigation of the influential parameters (frequency, spectrum resolution, peak shape is presented on synthetic dielectric data.

  4. Spectroscopy and Biosensing with Optically Resonant Dielectric Nanostructures

    OpenAIRE

    Krasnok, Alex; Caldarola, Martin; Bonod, Nicolas; Alú, Andrea

    2017-01-01

    Resonant dielectric nanoparticles (RDNs) made of materials with large positive dielectric permittivity, such as Si, GaP, GaAs, have become a powerful platform for modern light science, enabling various fascinating applications in nanophotonics and quantum optics. In addition to light localization at the nanoscale, dielectric nanostructures provide electric and magnetic resonant responses throughout the visible and infrared spectrum, low dissipative losses and optical heating, low doping effec...

  5. Leakage radiation spectroscopy of organic/dielectric/metal systems

    DEFF Research Database (Denmark)

    Fiutowski, Jacek; Kawalec, Tomasz; Kostiučenko, Oksana

    2014-01-01

    side of a hemisphere fused silica prism with an index matching liquid was illuminated under normal incidence by a He-Cd 325 nm laser. Two orthogonal linear polarizations were used both parallel and perpendicular to the detection plane. Spectrally resolved leakage radiation was observed on the opposite......Leakage radiation spectroscopy of organic para-Hexaphenylene (p-6P) molecules has been performed in the spectral range 420-675 nm which overlaps with the p-6P photoluminescence band. The p-6P was deposited on 40 nm silver (Ag) films on BK7 glass, covered with SiO2 layers. The SiO2 layer thickness...

  6. Actuated polymer based dielectric mirror for visual spectral range applications

    Science.gov (United States)

    Vergara, Pedro P.; Lunardi, Leda

    2017-08-01

    Miniature dielectric mirrors are useful components for lasers, thin film beam splitters and high quality mirrors in optics. These mirrors usually made from rigid inorganic materials can achieve a reflectance of almost one hundred percent. Being structural components, as soon as fabricated their reflectance and/or bandwidth remains constant. Here it is presented a novel fabrication process of a dielectric mirror based on free standing polymer layers. By applying an electrostatic force between the top and the bottom layers the reflectance can be changed. The large difference between the polymers refractive index and the air allows to achieve a reflectance of more than 85% using only six pairs of nanolayers. Preliminary simulations indicate an actuation speed of less than 1ms. Experimental optical characterization of fabricated structures agrees well with simulation results. Furthermore, structures can be designed to reflect a particular set of colors and/or isolated by using color filters, so a color pixel is fabricated, where the reflectance for each isolated color can be voltage controlled. Potential applications include an active component in a reflective screen display.

  7. Anisotropic dielectric response of lead zirconate crystals in the terahertz and infrared range at low temperature

    Czech Academy of Sciences Publication Activity Database

    Ostapchuk, Tetyana; Kadlec, Christelle; Kužel, Petr; Kroupa, Jan; Železný, Vladimír; Hlinka, Jiří; Petzelt, Jan; Dec, J.

    2014-01-01

    Roč. 87, 10-11 (2014), s. 1129-1137 ISSN 0141-1594 R&D Projects: GA ČR GA13-15110S Institutional support: RVO:68378271 Keywords : antiferroelectrics * infrared and terahertz spectroscopy * lead zirconate * phonons * complex dielectric permittivity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.954, year: 2014

  8. Semiconductor-to-metallic flipping in a ZnFe2O4–graphene based smart nano-system: Temperature/microwave magneto-dielectric spectroscopy

    International Nuclear Information System (INIS)

    Ameer, Shahid; Gul, Iftikhar Hussain; Mahmood, Nasir; Mujahid, Muhammad

    2015-01-01

    Zn-(FeO 2 ) 2 –graphene smart nano-composites were synthesized using a novel modified solvothermal synthesis with different percentages of graphene. The structure of the nanocomposite was confirmed through X-ray diffraction, micro-Raman scattering spectroscopy, Ultraviolet–Visible spectroscopy, and Fourier transform infrared spectroscopy. The structural growth and morphological aspects were analyzed using scanning/transmission electron microscopy, revealing marvelous micro-structural features of the assembled nano-system resembling a maple leaf. To determine the composition, energy dispersive spectroscopy and X-ray photoelectron spectroscopy were used. Microwave magneto-dielectric spectroscopy revealed the improved dielectric properties of the nano-composite compared to those of the parent functional nanocrystals. Temperature gradient dielectric spectroscopy was used over the spectral range from 100 Hz to 5 MHz to reveal the phenomenological effect that the nanosystem flips from its usual semiconductor nature to a metallic nature with sensing temperature. Electrical conductivity and dielectric analysis indicated that the dielectric loss and the dielectric permittivity increased at room temperature. This extraordinary switching capability of the functionalized graphene nanosystem opens up a new dimension for engineering advanced and efficient smart composite materials. - Graphical abstract: Display Omitted - Highlights: • Zn-(FeO 2 ) 2 –graphene smart nano-composites were synthesized using a novel modified solvothermal synthesis. • The synthesized nano-system exhibits marvelous leaf like microstructure. • These nano-composites show improved magneto dielectric response. • This engineered smart nano-system shows phenomenological flipping from semiconductor like nature to metallic behavior

  9. Probing the dielectric response of the interfacial buffer layer in epitaxial graphene via optical spectroscopy

    Science.gov (United States)

    Hill, Heather M.; Rigosi, Albert F.; Chowdhury, Sugata; Yang, Yanfei; Nguyen, Nhan V.; Tavazza, Francesca; Elmquist, Randolph E.; Newell, David B.; Hight Walker, Angela R.

    2017-11-01

    Monolayer epitaxial graphene (EG) is a suitable candidate for a variety of electronic applications. One advantage of EG growth on the Si face of SiC is that it develops as a single crystal, as does the layer below, referred to as the interfacial buffer layer (IBL), whose properties include an electronic band gap. Although much research has been conducted to learn about the electrical properties of the IBL, not nearly as much work has been reported on the optical properties of the IBL. In this work, we combine measurements from Mueller matrix ellipsometry, differential reflectance contrast, atomic force microscopy, and Raman spectroscopy, as well as calculations from Kramers-Kronig analyses and density-functional theory, to determine the dielectric function of the IBL within the energy range of 1 eV to 8.5 eV.

  10. Molecular dynamics of amorphous pharmaceutical fenofibrate studied by broadband dielectric spectroscopy

    Directory of Open Access Journals (Sweden)

    U. Sailaja

    2016-06-01

    Full Text Available Fenofibrate is mainly used to reduce cholesterol level in patients at risk of cardiovascular disease. Thermal transition study with the help of differential scanning calorimetry (DSC shows that the aforesaid active pharmaceutical ingredient (API is a good glass former. Based on our DSC study, the molecular dynamics of this API has been carried out by broadband dielectric spectroscopy (BDS covering wide temperature and frequency ranges. Dielectric measurements of amorphous fenofibrate were performed after its vitrification by fast cooling from a few degrees above the melting point (Tm=354.11 K to deep glassy state. The sample does not show any crystallization tendency during cooling and reaches the glassy state. The temperature dependence of the structural relaxation has been fitted by single Vogel–Fulcher–Tamman (VFT equation. From VFT fit, glass transition temperature (Tg was estimated as 250.56 K and fragility (m was determined as 94.02. This drug is classified as a fragile glass former. Deviations of experimental data from Kohlrausch–Williams–Watts (KWW fits on high-frequency flank of α-peak indicate the presence of an excess wing in fenofibrate. Based on Ngai׳s coupling model, we identified the excess wing as true Johari–Goldstein (JG process. Below the glass transition temperature one can clearly see a secondary relaxation (γ with an activation energy of 32.67 kJ/mol.

  11. Dielectric spectroscopy for non-invasive monitoring of epithelial cell differentiation within three-dimensional scaffolds

    International Nuclear Information System (INIS)

    Daoud, Jamal; Tabrizian, Maryam; Asami, Koji; Rosenberg, Lawrence

    2012-01-01

    In this study, we introduce a cellular differentiation cellular model based on dielectric spectroscopy that characterizes epithelial differentiation processes. Non-invasive cellular monitoring was achieved within a three-dimensional microenvironment consisting of a cell-containing collagen I gel seeded onto microfabricated scaffolds. In this proof-of-concept investigation, Madin–Darby canine kidney cells were cultured within microfabricated, geometrically controlled scaffolds and allowed us to differentiate to hollow cyst-like structures. This transformation within the three-dimensional environment is monitored and characterized through dielectric spectroscopy while maintaining cell culture in vitro. (paper)

  12. Studies of the thermal properties of horn keratin by dielectric spectroscopy, thermogravimetric analysis and differential thermal analysis

    International Nuclear Information System (INIS)

    Marzec, E.; Piskunowicz, P.; Jaroszyk, F.

    2002-01-01

    The dielectric and thermal properties of horn keratin have been studied bu dielectric spectroscopy in the frequency range 10 1 -10 5 Hz, thermogravimetric analysis (TG) and different thermal analysis (DTA). Measurement of non-irradiated and g amma - irradiated keratin with doses 5, 50 kGy were performed at temperature from 22 to 260 o C. The results revealed the occurrence of phase transitions related to release of loosely bound water and bound water up to 200 o Cand the denaturation of the crystalline structure above this temperature. The influence of γ-irradiation on the thermal behaviour of keratin is significant only in the temperature range of denaturation. The decrease in the temperature of denaturation would suggest that γ-irradiation initiates main-chain degradation. (authors)

  13. Electric and dielectric behavior of copper-chromium layered double hydroxide intercalated with dodecyl sulfate anions using impedance spectroscopy

    Science.gov (United States)

    Elhatimi, Wafaa; Bouragba, Fatima Zahra; Lahkale, Redouane; Sadik, Rachid; Lebbar, Nacira; Siniti, Mostapha; Sabbar, Elmouloudi

    2018-05-01

    The Cu2Cr-DS-LDH hybrid was successfully prepared by the anion exchange method at room temperature. The structure, the chemical composition and the physico-chemical properties of the sample were determined using powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA) and inductively coupled plasma (ICP). In this work, the electrical and dielectric properties investigated are determined using impedance spectroscopy (IS) in a frequency range of 1 Hz to 1 MHz. Indeed, the Nyquist diagram modelized by an electrical equivalent circuit showed three contributions attributed respectively to the polarization of grains, grains boundaries and interface electrode-sample. This modelization allowed us to determine the intrinsic electrical parameters of the hybrid (resistance, pseudo-capacitance and relaxation time). The presence of the non-Debye relaxation phenomena was confirmed by the frequency analysis of impedance. Moreover, the evolution of the alternating current conductivity (σac) studied obeys the double power law of Jonscher. The ionic conduction of this material was generated through a jump movement by translation of the charge carriers. As for the dielectric behavior of the material, the evolution of dielectric constant as a function of frequency shows relatively high values in a frequency range between 10 Hz and 1 KHz. The low values of the loss tangent obtained in this frequency zone can valorize this LDH hybrid.

  14. The use of dielectric spectroscopy for the characterization of polymer-induced flocculation of polystyrene particles

    DEFF Research Database (Denmark)

    Christensen, Peter Vittrup; Keiding, Kristian

    2008-01-01

    in dilute suspensions. Thus, techniques usable for flocculation characterization in high-solids suspensions are desirable. This study investigates the use of dielectric spectroscopy to monitor the flocculation of polystyrene particles with a cationic polymer. The frequency-dependent permittivity is modeled......The flocculation of colloidal suspensions is an important unit operation in many industries, as it greatly improves the performance of solid separation processes. The number of available techniques for evaluating flocculation processes on line is limited, and most of these are only functional...... as a decrease in the magnitude of the dielectric dispersion. The use of dielectric spectroscopy is found to be valuable for assessing flocculation processes in high-solids suspensions, as changes in parameters Such as floc size and charge can be detected....

  15. Broadband dielectric and conductivity spectroscopy of inhomogeneous and composite conductors

    Czech Academy of Sciences Publication Activity Database

    Petzelt, Jan; Nuzhnyy, Dmitry; Bovtun, Viktor; Savinov, Maxim; Kempa, Martin; Rychetský, Ivan

    2013-01-01

    Roč. 210, č. 11 (2013), s. 2259-2271 ISSN 1862-6300 R&D Projects: GA ČR GAP204/12/0232; GA MŠk LD12025 Institutional support: RVO:68378271 Keywords : effective medium approximation * infrared spectroscopy * THz spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.525, year: 2013

  16. Structure and dynamics of hyaluronic acid semidilute solutions: a dielectric spectroscopy study.

    Science.gov (United States)

    Vuletić, T; Dolanski Babić, S; Ivek, T; Grgicin, D; Tomić, S; Podgornik, R

    2010-07-01

    Dielectric spectroscopy is used to investigate fundamental length scales describing the structure of hyaluronic acid sodium salt (Na-HA) semidilute aqueous solutions. In salt-free regime, the length scale of the relaxation mode detected in MHz range scales with HA concentration as c(HA)(-0.5) and corresponds to the de Gennes-Pfeuty-Dobrynin correlation length of polyelectrolytes in semidilute solution. The same scaling was observed for the case of long, genomic DNA. Conversely, the length scale of the mode detected in kilohertz range also varies with HA concentration as c(HA)(-0.5) which differs from the case of DNA (c(DNA)(-0.25)). The observed behavior suggests that the relaxation in the kilohertz range reveals the de Gennes-Dobrynin renormalized Debye screening length, and not the average size of the chain, as the pertinent length scale. Similarly, with increasing added salt the electrostatic contribution to the HA persistence length is observed to scale as the Debye length, contrary to scaling pertinent to the Odijk-Skolnick-Fixman electrostatic persistence length observed in the case of DNA. We argue that the observed features of the kilohertz range relaxation are due to much weaker electrostatic interactions that lead to the absence of Manning condensation as well as a rather high flexibility of HA as compared to DNA.

  17. Dielectric spectroscopy of PMMA-LiClO4 based polymer electrolyte plasticized with ethylene carbonate EC

    Science.gov (United States)

    Pal, P.; Ghosh, A.

    2018-04-01

    Dielectric spectroscopy covering the frequency range 0.01 Hz - 2 MHz for PMMA-LiClO4 based polymer electrolyte embedded with different concentration of ethylene carbonate (x = 0, 20 and 40 wt%) has been analyzed using Havrilliak-Negami formalism. The reciprocal temperature dependence of inverse relaxation time obtained from the analysis of dielectric spectra follows Vogel-Tammann-Fulcher behaviour. The shape parameters obtained from this analysis change with ethylene carbonate concentrations. From the fits of the experimental result using Kohlrausch-Williams-Watts function. We have obtained stretched exponent β which indicates that the relaxation is highly non-exponential. The decay function obtained from electric modulus data is highly asymmetric.

  18. Study of water mass transfer dynamics in frescoes by dielectric spectroscopy

    International Nuclear Information System (INIS)

    Olmi, R.; Riminesi, C.

    2008-01-01

    The knowledge of moisture content (M C) is essential for determining the state of preservation of various types of hand-work: from building materials such as bricks and concrete, to objects of artistic value, in particular frescoes and mural paintings. In all above, moisture is the primary source of damages, as it affects the durability of porous materials. Dielectric properties of porous materials are strongly affected by the presence of water, suggesting dielectric spectroscopy as a suitable non-invasive diagnostic technique. The development of a quantitative relationship between M C and permittivity requires to investigate the dynamics of water mass transfer in porous media, and to determine its effect on the dielectric properties. In this paper a coupled mass transfer/dielectric problem is introduced and solved numerically, based on a finite element model. Results are compared to experimental dielectric measurements performed on plaster samples by the open coaxial method. The application of the dielectric technique to frescoes monitoring is proposed, showing the results obtained is an on-site study.

  19. Dielectric relaxation and ac conduction in γ-irradiated UHMWPE/MWCNTs nano composites: Impedance spectroscopy analysis

    International Nuclear Information System (INIS)

    Maqbool, Syed Asad; Mehmood, Malik Sajjad; Mukhtar, Saqlain Saqib; Baluch, Mansoor A.; Khan, Shamim; Yasin, Tariq; Khan, Yaqoob

    2017-01-01

    The dielectric behavior of γ-irradiated ultra-high molecular weight polyethylene (UHMWPE) and its nano composites (NCs) with γ-ray modified multi wall carbon nano tubes (γ-MWCNTs) and MWCNTs had been studied using impedance spectroscopy. The study had been carried out in the frequency range of 20–2 MHz at room temperature. All samples (pure and NCs) were prepared in the form of sheets and irradiated with γ-dose of 50 kGy and 100 kGy, respectively. The comprehensive analysis of results revealed that resistivity of UHMWPE for conduction decreased on irradiation and incorporation of MWCNTs (whether γ ray modified or un-modified) due to the radiation induced damage and conductive networks induced by MWCNTs. At low frequency range a significant increase in the dielectric constant had been observed because of irradiation and addition of MWNCTs. The trend of loss tangent and ac conductivity for each investigated sample depended on resistivity offered and had a decreasing trend as a function of frequency. Moreover, dissipation factor increased with the incorporation of MWNCTs and irradiation from 0.12 to 0.22. In addition to this, non-frequency dependent static dielectric constant was also found to increase with irradiation and incorporation of MWCNTs. The relaxation time was found to increase from 1.2 to 4.3 ms due to hindrance offered by radiation induced mutual cross linking of PE chains and polymer-MWNCTs bindings. - Highlights: • The resistivity for conduction in pristine UHMWPE is decreased with γ-irradiation. • Conduction in PE/MWCNTs nanocomposites increased due to MWCNTs addition. • Static dielectric constant of UHMWPE increased with γ-irradiation. • Static dielectric constant of UHMWPE increased due to MWCNTs incorporation.

  20. Microwave dielectric absorption spectroscopy aiming at novel dosimetry using DNAs

    Energy Technology Data Exchange (ETDEWEB)

    Izumi, Yoshinobu; Hirayama, Makoto; Matuo, Youichirou [Research Institute of Nuclear Engineering, University of Fukui, Fukui (Japan); Sunagawa, Takeyoshi [Fukui University of Technology, Fukui (Japan)

    2017-03-15

    We are developing L-band and S-band microwave dielectric absorption systems aiming novel dosimetry using DNAs, such as plasmid DNA and genomic DNA, and microwave technology. Each system is composed of a cavity resonator, analog signal generator, circulator, power meter, and oscilloscope. Since the cavity resonator is sensitive to temperature change, we have made great efforts to prevent the fluctuation of temperature. We have developed software for controlling and measurement. By using this system, we can measure the resonance frequency, f, and ΔQ (Q is a dimensionless parameter that describes how under-damped an oscillator or resonator is, and characterizes a resonator’s bandwidth relative to its center frequency) within about 3 minutes with high accuracy. This system will be expected to be applicable to DNAs evaluations and to novel dosimetric system.

  1. Data transmission in long-range dielectric-loaded surface plasmon polariton waveguides

    DEFF Research Database (Denmark)

    Kharitonov, S.; Kiselev, R.; Kumar, Ashwani

    2014-01-01

    We demonstrate the data transmission of 10 Gbit/s on-off keying modulated 1550 nm signal through a long-range dielectric-loaded surface plasmon polariton waveguide structure with negligible signal degradation. In the experiment the bit error rate penalties do not exceed 0.6 dB over the 15 nm...

  2. The dielectric constant and its role in the long range coherence in biological systems

    International Nuclear Information System (INIS)

    Paul, R.; Chatterjee, R.

    1984-01-01

    An expression for the dielectric constant has been derived, for the Froehlich model of long-range coherence in biological cells. These theoretical expressions are employed to interpret the observed rouleaux formation of red blood cells (erythrocytes). It is concluded that this unusual behaviour of the erythrocytes can be interpreted satisfactorilly by the extended Froehlich model developed by us. (Author) [pt

  3. Confinement effects on strongly polar alkylcyanobiphenyl liquid crystals probed by dielectric spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Leys, Jan; Glorieux, Christ; Thoen, Jan [Laboratorium voor Akoestiek en Thermische Fysica, Departement Natuurkunde en Sterrenkunde, Katholieke Universiteit Leuven, Celestijnenlaan 200D-bus 2416, B-3001 Leuven (Belgium)], E-mail: jan.leys@fys.kuleuven.be, E-mail: jan.thoen@fys.kuleuven.be

    2008-06-18

    Dielectric spectroscopy has often been used to study confinement effects in alkylcyanobiphenyl liquid crystals. In this paper, we highlight some of the effects that have been discovered previously and add new data and interpretation. Aerosil nanoparticles form a hydrogen bonded random porous network. In dispersions of alkylcyanobiphenyls with aerosils, an additional slow process arises, that we ascribe to the relaxation of liquid crystal molecules in close interaction with these nanoparticles. Their relaxation is retarded by a hydrogen bond interaction between the cyano group of the liquid crystals and an aerosil surface hydroxyl group. A similar surface process is also observed in Vycor porous glass, a random rigid structure with small pores. A comparison of the temperature dependence of the relaxation times of the surface processes in decylcyanobiphenyl and isopentylcyanobiphenyl is made, both for Vycor and aerosil confinement. In decylcyanobiphenyl, the temperature dependence for the bulk and surface processes is Arrhenius (in a limited temperature range above the melting point), except in Vycor, where it is a Vogel-Fulcher-Tamman dependence (over a much broader temperature range). In bulk and confined isopentylcyanobiphenyl, the molecular processes have a Vogel-Fulcher-Tamman dependence, whereas the surface processes have an Arrhenius one. Another effect is the acceleration of the rotation around the short molecular axis in confinement, and particularly in aerosil dispersions. This is a consequence of the disorder introduced in the liquid crystalline phase. The disorder drives the relaxation time towards a more isotropic value, resulting in an acceleration for the short axis rotation.

  4. Electrical and Dielectric Properties of Polyaniline and Polyaniline/Montmorillonite Nanocomposite Prepared by Solid Reaction Using Spectroscopy Impedance

    Directory of Open Access Journals (Sweden)

    Imene Bekri-Abbes

    2015-01-01

    Full Text Available The combination of two components with uniform distribution in nanoscale is expected to facilitate wider applications of the material. In this study, polyaniline (PAn and polyaniline/montmorillonite (Mt nanocomposite were prepared by solid reaction using persulfate of ammonium as oxidant. The phase composition and morphology of the nanocomposite were characterized by FTIR, UV-visible spectroscopy, X-ray diffractometer, thermal gravimetric analysis, and scanning electron microscopy. The electrical and dielectric properties were determined using spectroscopy impedance. The analysis of UV-visible and FTIR spectroscopy demonstrated that aniline chloride has been polymerized into PAn in its conducting emeraldine form. Thermogravimetric analysis suggested that PAn chains intercalated in the clay host are more thermally stable than those of free PAn prepared by solid-solid reaction. Electrical measurements were carried out using the complex impedance technique in the frequency range of 10−2 to 104 Hz at different temperatures. The ac conductivity data of different nanocomposites were analyzed as a function of frequency and temperature. It has been found that the incorporation of inorganic clay phase into polyaniline matrix has an effect on the electrical and dielectric properties of the nanomaterial.

  5. Electrochemical impedance spectroscopy for quantitative interface state characterization of planar and nanostructured semiconductor-dielectric interfaces

    Science.gov (United States)

    Meng, Andrew C.; Tang, Kechao; Braun, Michael R.; Zhang, Liangliang; McIntyre, Paul C.

    2017-10-01

    The performance of nanostructured semiconductors is frequently limited by interface defects that trap electronic carriers. In particular, high aspect ratio geometries dramatically increase the difficulty of using typical solid-state electrical measurements (multifrequency capacitance- and conductance-voltage testing) to quantify interface trap densities (D it). We report on electrochemical impedance spectroscopy (EIS) to characterize the energy distribution of interface traps at metal oxide/semiconductor interfaces. This method takes advantage of liquid electrolytes, which provide conformal electrical contacts. Planar Al2O3/p-Si and Al2O3/p-Si0.55Ge0.45 interfaces are used to benchmark the EIS data against results obtained from standard electrical testing methods. We find that the solid state and EIS data agree very well, leading to the extraction of consistent D it energy distributions. Measurements carried out on pyramid-nanostructured p-Si obtained by KOH etching followed by deposition of a 10 nm ALD-Al2O3 demonstrate the application of EIS to trap characterization of a nanostructured dielectric/semiconductor interface. These results show the promise of this methodology to measure interface state densities for a broad range of semiconductor nanostructures such as nanowires, nanofins, and porous structures.

  6. Hybrid dielectric waveguide spectroscopy of individual plasmonic nanoparticles

    Directory of Open Access Journals (Sweden)

    J. Cuadra

    2017-07-01

    Full Text Available Plasmonics is a mature scientific discipline which is now entering the realm of practical applications. Recently, significant attention has been devoted to on-chip hybrid devices where plasmonic nanoantennas are integrated in standard Si3N4 photonic waveguides. Light in these systems is usually coupled at the waveguide apexes by using multiple objectives and/or tapered optical fibers, rendering the analysis of spectroscopic signals a complicated task. Here, we show how by using a grating coupler and a low NA objective, quantitative spectroscopic information similar to standard dark-field spectroscopy can be obtained at the single-nanoparticle level. This technology may be useful for enabling single-nanoparticle studies in non-linear excitation regimes and/or in complex experimental environments, thus enriching the toolbox of nanophotonic methods.

  7. Conductivity relaxation and charge transport of trihexyl tetradecyl phosphonium dicyanamide ionic liquid by broadband dielectric spectroscopy

    Science.gov (United States)

    Thasneema K., K.; Thayyil, M. Shahin; Krishna Kumar N., S.; Govindaraj, G.; Saheer, V. C.

    2018-04-01

    Usually ionic liquids consists of a large organic cation with low symmetry such as imidazolium, pyridinium, quaternary ammonium or phosponium etc combined with enormously wide range of inorganic or organic symmetric anion with melting point below 100. Ionic liquids existing in an extremely large number of possible ion pair combinations. It offers a very wide range of thermo physical properties led to the concept of designer solvents for specific applications. Due to the features of high chemical and thermal stability, low vapor pressure non flammability high ionic conductivity, and they show a good solvent ability towards a great variety of organic or inorganic compounds, ionic liquids have a widespread use in many areas such as batteries, fuel cell, solar cells, super capacitors etc. The main focus of this work is the study of molecular dynamics and conductivity relaxation of amorphous Trihexyl tetradecyl phosphonium dicyanamide ([P14,6,6,6][N(CN)2]) ionic liquid which is proved as a better electrolyte in super capacitors, over a wide frequency 10-2 Hz to 107 Hz and the temperature range between 123k and 265 k by means of Broadband Dielectric Spectroscopy. We observe alpha conductivity relaxation and secondary relaxation above and below Glass Transition Temperature. The experimental results were analyzed using electric modulus representation. The analysis emphasis the inter molecular interaction and the nature of glass forming system, whether it is fragile or strong system. The ionic liquid shows a fragile behavior and the fragility index m=123.59. TGA result of the sample exhibit a good resistance to thermal decomposition, up to 300°C.

  8. Sedimentation in Particulate Aqueous Suspensions as studied by means of Dielectric Time Domain Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pettersen, Bjoernar Hauknes

    1997-12-31

    Many problems in offshore oil production and multiphase transport are related to surface and colloid chemistry. This thesis applies dielectric spectroscopy as an experimental technique to study the behaviour of particle suspensions in polar media. The thesis opens with an introduction to suspensions and time domain dielectric spectroscopy. It then investigates the dielectric properties of silica and alumina dispersed in polar solvents. It is found that theoretical models can be used to calculate the volume fraction disperse phase in the suspension and that the particle sedimentation depends on the wetting of the particles, charge on the particle surface and viscosity of the solvent, and that this dependency can be measured by time domain dielectric spectroscopy. When the surface properties of silica and alumina particles were modified by coating them with a non-ionic polymer and a non-ionic surfactant, then different degrees of packing in the sedimented phase at the bottom of the sedimentation vessel occurred. Chemometrical methods on the synthesis of monodisperse silica particles were used to investigate what factors influence the particle size. It turned out that it is insufficient to consider only main variables when discussing the results of the synthesis. By introducing interaction terms, the author could explain the variation in the size of particles synthesized. The difference in the sedimentation rate of monodisperse silica particles upon variation of volume fraction particles, pH, salinity, amount of silanol groups at the particle surface and temperature was studied. The cross interactions play an important role and a model explaining the variation in sedimentation is introduced. Finally, magnetic particles dispersed in water and in an external magnetic field were used to study the impact on the sedimentation due to the induced flocculation. 209 refs., 90 figs., 9 tabs.

  9. Temperature-dependent dielectric function of germanium in the UV–vis spectral range: A first-principles study

    International Nuclear Information System (INIS)

    Yang, J.Y.; Liu, L.H.; Tan, J.Y.

    2014-01-01

    The study of temperature dependence of thermophysical parameter dielectric function is key to understanding thermal radiative transfer in high-temperature environments. Limited by self-radiation and thermal oxidation, however, it is difficult to directly measure the high-temperature dielectric function of solids with present experimental technologies. In this work, we implement two first-principles methods, the ab initio molecular dynamics (AIMD) and density functional perturbation theory (DFPT), to study the temperature dependence of dielectric function of germanium (Ge) in the UV–vis spectral range in order to provide data of high-temperature dielectric function for radiative transfer study in high-temperature environments. Both the two methods successfully predict the temperature dependence of dielectric function of Ge. Moreover, the good agreement between the calculated results of the AIMD approach and experimental data at 825 K enables us to predict the high-temperature dielectric function of Ge with the AIMD method in the UV–vis spectral range. - Highlights: • The temperature dependence of dielectric function of germanium (Ge) is investigated with two first-principles methods. • The temperature effect on dielectric function of Ge is discussed. • The high-temperature dielectric function of Ge is predicted

  10. Determination of the concentration of alum additive in deep-fried dough sticks using dielectric spectroscopy

    Directory of Open Access Journals (Sweden)

    Wenyu Kang

    2015-09-01

    Full Text Available The concentration of alum additive in deep-fried dough sticks (DFDSs was investigated using a coaxial probe method based on dielectric properties in the 0.3–10-GHz frequency range. The dielectric spectra of aqueous solutions with different concentrations of alum, sodium bicarbonate, and mixtures thereof were used. The correspondence between dielectric loss and alum concentration was thereby revealed. A steady, uniform correspondence was successfully established by introducing ω·ε″(ω, the sum of dielectric loss and conductor loss (i.e., total loss, according to the electrical conductivity of the alum-containing aqueous solutions. Specific, resonant-type dielectric dispersion arising from alum due to atomic polarization was identified around 1 GHz. This was used to discriminate the alum additive in the DFDS from other ingredients. A quantitative relationship between alum and sodium bicarbonate concentrations in the aqueous solutions and the differential dielectric loss Δε″(ω at 0.425 GHz was also established with a regression coefficient over 0.99. With the intention of eliminating the effects of the chemical reactions with sodium bicarbonate and the physical processes involved in leavening and frying during preparation, the developed technique was successfully applied to detect the alum dosage in a commercial DFDS (0.9942 g/L. The detected value agreed well with that determined using graphite furnace atomic absorption spectrometry (0.9722 g/L. The relative error was 2.2%. The results show that the proposed dielectric differential dispersion and loss technique is a suitable and effective method for determining the alum content in DFDSs.

  11. Interest in broadband dielectric spectroscopy to study the electronic transport in materials for lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Badot, Jean-Claude, E-mail: jc.badot@chimie-paristech.fr [Institut de Recherche de Chimie Paris, UMR CNRS 8247, Réseau sur le Stockage Electrochimique de l' Energie (RS2E), Chimie Paris Tech, PSL*, 11 rue P. et M. Curie, 75231 Cedex 05 Paris (France); Lestriez, Bernard [Institut des Matériaux Jean Rouxel, UMR CNRS 6502, Université de Nantes, 2 rue de la Houssinière, BP32229, 44322 Nantes (France); Dubrunfaut, Olivier [GeePs | Group of electrical engineering – Paris, UMR CNRS 8507, CentraleSupélec, Univ. Paris-Sud, Université Paris-Saclay, Sorbonne Universités, UPMC Univ Paris 06, 3 & 11 rue Joliot-Curie, Plateau de Moulon, 91192 Gif-sur-Yvette CEDEX, Paris (France)

    2016-11-15

    Highlights: • Broadband dielectric spectroscopy measures the multiscale electronic conductivity from macroscopic to interatomic sizes. • There is an influence of the surface states on the electronic transfer of powdered materials (e.g. thin insulating layer of Li{sub 2}CO{sub 3} on LiNiO{sub 2} and carbon coating on LiFePO{sub 4}). • Electrical relaxations resulting from the interfacial polarizations at the different scales of the carbon black network are evidenced. - Abstract: Broadband dielectric spectroscopy (BDS) is used to measure complex permittivity and conductivity of conducting materials for lithium batteries at frequencies from a few Hz to several GHz with network and impedance analysers. Under the influence of an electric field, there will be charge density fluctuations in the conductor mainly due to electronic transfer. These fluctuations result in dielectric relaxations for frequencies below 100 GHz. The materials are compacted powders in which each element (particles, agglomerates of particles) can have different sizes and morphologies. In the present review, studies are reported on the influence of surface states in LiNiO{sub 2} (ageing and degradation in air) and LiFePO{sub 4} (carbon coating thin layer), and on a composite electrode based on the lithium trivanadate (Li{sub 1.1}V{sub 3}O{sub 8}) active material. The results have shown that the BDS technique is very sensitive to the different scales of materials architectures involved in electronic transport, from interatomic distances to macroscopic sizes.

  12. Interest in broadband dielectric spectroscopy to study the electronic transport in materials for lithium batteries

    International Nuclear Information System (INIS)

    Badot, Jean-Claude; Lestriez, Bernard; Dubrunfaut, Olivier

    2016-01-01

    Highlights: • Broadband dielectric spectroscopy measures the multiscale electronic conductivity from macroscopic to interatomic sizes. • There is an influence of the surface states on the electronic transfer of powdered materials (e.g. thin insulating layer of Li_2CO_3 on LiNiO_2 and carbon coating on LiFePO_4). • Electrical relaxations resulting from the interfacial polarizations at the different scales of the carbon black network are evidenced. - Abstract: Broadband dielectric spectroscopy (BDS) is used to measure complex permittivity and conductivity of conducting materials for lithium batteries at frequencies from a few Hz to several GHz with network and impedance analysers. Under the influence of an electric field, there will be charge density fluctuations in the conductor mainly due to electronic transfer. These fluctuations result in dielectric relaxations for frequencies below 100 GHz. The materials are compacted powders in which each element (particles, agglomerates of particles) can have different sizes and morphologies. In the present review, studies are reported on the influence of surface states in LiNiO_2 (ageing and degradation in air) and LiFePO_4 (carbon coating thin layer), and on a composite electrode based on the lithium trivanadate (Li_1_._1V_3O_8) active material. The results have shown that the BDS technique is very sensitive to the different scales of materials architectures involved in electronic transport, from interatomic distances to macroscopic sizes.

  13. Structure and dielectric properties in the radio frequency range of polymer composites based on vanadium dioxide

    Directory of Open Access Journals (Sweden)

    Kolbunov V.R.

    2015-06-01

    Full Text Available Polymer composites with active fillers are recently considered to be promising materials for the design of new functional devices with controllable properties and are intensively investigated. Dielectric studies are one of the most effective methods for studying structural features and mechanisms of conductivity formation for this type of two-component systems. The paper presents research results of the dielectric characteristics in the range of radio frequency of 50 kHz — 10 MHz and temperature range of 30—60°C of polyethylene composites of vanadium dioxide with different volume fractions of filler. Two dispersion areas were found: a high-frequency area caused by the Maxwell charge separation on the boundaries of the polyethylene matrix — conductive filler of VI2 crystallites, and a low frequency area associated with the presence of the transition layer at this boundary. The relative permittivity of the composite has a tendency to a decrease in absolute value with increasing temperature. The analysis of the low-frequency dependence of the dielectric constant of the value of the filler’s volume fraction revealed that the investigated composite belongs to two-component statistical mixtures with a transition layer between the components.

  14. Investigation of optical pump on dielectric tunability in PZT/PT thin film by THz spectroscopy.

    Science.gov (United States)

    Ji, Jie; Luo, Chunya; Rao, Yunkun; Ling, Furi; Yao, Jianquan

    2016-07-11

    The dielectric spectra of single-layer PbTiO3 (PT), single-layer PbZrxTi1-xO3 (PZT) and multilayer PZT/PT thin films under an external optical field were investigated at room temperature by time-domain terahertz (THz) spectroscopy. Results showed that the real part of permittivity increased upon application of an external optical field, which could be interpreted as hardening of the soft mode and increasing of the damping coefficient and oscillator strength. Furthermore, the central mode was observed in the three films. Among the dielectric property of the three thin films studied, the tunability of the PZT/PT superlattice was the largest.

  15. Structure refinement, far infrared spectroscopy, and dielectric characterization of (1-x)La(Mg1/2Ti1/2)O3-xLa2/3TiO3 solid solutions

    Science.gov (United States)

    Salak, Andrei N.; Khalyavin, Dmitry D.; Ferreira, Victor M.; Ribeiro, José L.; Vieira, Luís G.

    2006-05-01

    Dielectric properties of (1-x)La(Mg1/2Ti1/2)O3-xLa2/3TiO3 [(1-x)LMT-xLT] ceramics (0infrared (FIR) frequency ranges. The crystal structure sequence in (1-x)LMT-xLT reported by different authors has been analyzed and revised. FIR spectroscopy was used to characterize the lattice contribution to the dielectric response at microwave frequencies. The complex dielectric function was evaluated from the reflectivity data and extrapolated down to a gigahertz range. Compositional variations of the fundamental microwave dielectric parameters estimated by different methods are compared and discussed. The dependence of the quality factor on the composition in LMT-LT is interpreted in terms of the reduction of spatial phonon correlations originated from the increasing amount of La vacancies. This approach could account for the compositional behavior of the dielectric loss commonly observed in a number of microwave mixed systems.

  16. Conductivity percolation in loosely compacted microcrystalline cellulose: An in situ study by dielectric spectroscopy during densification.

    Science.gov (United States)

    Nilsson, Martin; Frenning, Göran; Gråsjö, Johan; Alderborn, Göran; Strømme, Maria

    2006-10-19

    The present study aims at contributing to a complete understanding of the water-induced ionic charge transport in cellulose. The behavior of this transport in loosely compacted microcrystalline cellulose (MCC) powder was investigated as a function of density utilizing a new type of measurement setup, allowing for dielectric spectroscopy measurement in situ during compaction. The ionic conductivity in MCC was found to increase with increasing density until a leveling-out was observed for densities above approximately 0.7 g/cm3. Further, it was shown that the ionic conductivity vs density followed a percolation type behavior signifying the percolation of conductive paths in a 3D conducting network. The density percolation threshold was found to be between approximately 0.2 and 0.4 g/cm3, depending strongly on the cellulose moisture content. The observed percolation behavior was attributed to the forming of interparticulate bonds in the MCC and the percolation threshold dependence on moisture was linked to the moisture dependence of particle rearrangement and plastic deformation in MCC during compaction. The obtained results add to the understanding of the density-dependent water-induced ionic transport in cellulose showing that, at given moisture content, the two major parameters determining the magnitude of the conductivity are the connectedness of the interparticluate bonds and the connectedness of pores with a diameter in the 5-20 nm size range. At densities between approximately 0.7 and 1.2 g/cm3 both the bond and the pore networks have percolated, facilitating charge transport through the MCC compact.

  17. INVESTIGATION OF THE FREQUENCY-TEMPERATURE RELATIONSHIP OF THE DIELECTRIC PERMITTIVITY OF THE PZT PIEZOCERAMICS IN THE LOW FREQUENCY RANGE

    Directory of Open Access Journals (Sweden)

    A. I. ZOLOTAREVSKIY

    2018-05-01

    Full Text Available Purpose. To investigate the frequency-temperature relationship of the dielectric permittivity of PZT piezoceramics in the low frequency range. Methodology. To obtain the frequency-temperature relationship of the dielectric permittivity of the PZT piezoceramics, a technique was used to determine the capacitance of the capacitor, between which plates the sample was placed. The value of the dielectric permittivity of the sample was calculated from the capacitor capacitance obtained. Findings. The frequency-temperature relationship of the dielectric permittivity of the PZT piezoceramics in the low frequency range has been obtained by the authors. The dielectric permittivity is not practically related to the frequency of the alternating voltage at a low temperature, with increasing in temperature its value increases and frequency relationship is observed. The temperature relationship of the dielectric permittivity of the PZT piezoceramics is satisfactorily described by the exponential functional dependence in the low-temperature range. The activation energy of the PZT piezoceramics polarization is determined from the graph of the dependence of the logarithm of the dielectric permittivity upon the inverse temperature. Different values of the activation energy for the two temperature regions prove on the existence of different mechanisms of the PZT piezoceramics polarization in the temperature range being investigated. Originality. The authors investigated the frequency-temperature relationship of the dielectric permittivity of the PZT piezoceramics in the low-frequency range. It is established that the temperature relationship of the dielectric permittivity of the PZT piezoceramics is satisfactorily described by an exponential functional relationship in the lowtemperature range. The activation energy of polarization is determined for two temperature sections. Practical value. The research results can be used to study the mechanism of polarization of

  18. Secondary relaxation in two engineering thermoplastics by neutron scattering and dielectric spectroscopy

    CERN Document Server

    Arrese, S; Alegria, A; Colmenero, J; Frick, B

    2002-01-01

    We present a preliminary investigation of the dynamics of glassy polycarbonate (PC) and polysulfone (PSF) by means of quasielastic neutron scattering and dielectric spectroscopy. Whereas the consideration of pure phenylene ring pi-flips is enough to explain the momentum-transfer (Q) dependence of the inelastic intensity measured for PSF, in the case of PC the Q dependence of both the coherent and the incoherent scattering functions reveal the existence in this polymer of some more complex motion of the phenylene ring. On the other hand, the similarity of the energy landscapes deduced from the different techniques points to a closely related molecular origin for all the relaxation/motions observed. (orig.)

  19. Secondary relaxation in two engineering thermoplastics by neutron scattering and dielectric spectroscopy

    International Nuclear Information System (INIS)

    Arrese-Igor, S.; Arbe, A.; Alegria, A.; Colmenero, J.; Frick, B.

    2002-01-01

    We present a preliminary investigation of the dynamics of glassy polycarbonate (PC) and polysulfone (PSF) by means of quasielastic neutron scattering and dielectric spectroscopy. Whereas the consideration of pure phenylene ring π-flips is enough to explain the momentum-transfer (Q) dependence of the inelastic intensity measured for PSF, in the case of PC the Q dependence of both the coherent and the incoherent scattering functions reveal the existence in this polymer of some more complex motion of the phenylene ring. On the other hand, the similarity of the energy landscapes deduced from the different techniques points to a closely related molecular origin for all the relaxation/motions observed. (orig.)

  20. Low Temperature Broad Band Dielectric Spectroscopy of Multiferroic Bi6Fe2Ti3O18 Ceramics

    Directory of Open Access Journals (Sweden)

    Lisińska-Czekaj A.

    2016-09-01

    Full Text Available In the present research the tool of broadband dielectric spectroscopy was utilized to characterize dielectric behavior of Bi6Fe2Ti3O18 (BFTO Aurivillius-type multiferroic ceramics. Dielectric response of BFTO ceramics was studied in the frequency domain (Δν=0.1Hz – 10MHz within the temperature range ΔT=-100°C – 200°C. The Kramers-Kronig data validation test was employed to validate the impedance data measurements and it was found that the measured impedance data exhibited good quality justifying further analysis. The residuals were found to be less than 1%, whereas the “chi-square” parameter was within the range χ2~10−7−10−5. Experimental data were analyzed using the circle fit of simple impedance arc plotted in the complex Z”-Z’ plane (Nyquist plot. The total ac conductivity of the grain boundaries was thus revealed and the activation energy of ac conductivity for the grain boundaries was calculated. It was found that activation energy of ac conductivity of grain boundaries changes from EA=0.20eV to EA=0.55eV while temperature rises from T=-100°C up to T=200°C. On the base of maxima of the impedance semicircles (ωmτm=1 the relaxation phenomena were characterized in terms of the temperature dependence of relaxation times and relevant activation energy was calculated (EA=0.55eV.

  1. Range measurements and track kinetics in Dielectric Nuclear Track Detectors (DNTDs)

    Energy Technology Data Exchange (ETDEWEB)

    Aframian, A

    1981-01-01

    Observations of nuclear track development profiles and the kinetics of etched tracks in sensitive dielectric nuclear track detectors indicate three separate phases: the inception phase or the cone phase, the transition phase and the sphere phase. Continued etching of the sphere phase to through-tracks yields accurate range data for particles of different masses and energies and minimum critical angles of registration for each particle. The present results show an energy resolution of 40 keV (fwhm) for 5.48 MeV alpha-particles emitted from Am-241.

  2. Enhanced optoelastic interaction range in liquid crystals with negative dielectric anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Simoni, F.; Lalli, S.; Lucchetti, L. [Dipartimento di Scienze e Ingegneria della Materia, dell' Ambiente ed Urbanistica and CNISM, Università Politecnica delle Marche, Ancona (Italy); Criante, L. [Center for Nano Science and Technology-PoliMi, Istituto Italiano di Tecnologia, Via Giovanni Pascoli, 70/3, 20133 Milano (Italy); Brasselet, E. [Univ. Bordeaux and CNRS, Laboratoire Ondes et Matière d' Aquitaine, UMR 5798, F-33400 Talence (France)

    2014-01-06

    We demonstrate that the long-range interaction between surface-functionalized microparticles immersed a nematic liquid crystal—a “nematic colloid”—and a laser-induced “ghost colloid” can be enhanced by a low-voltage quasistatic electric field when the nematic mesophase has a negative dielectric anisotropy. The optoelastic trapping distance is shown to be enhanced by a factor up to 2.5 in presence of an electric field. Experimental data are quantitatively described with a theoretical model accounting for the spatial overlap between the orientational distortions around the microparticle and those induced by the trapping light beam itself.

  3. Insight into the effect mechanism of urea-induced protein denaturation by dielectric spectroscopy.

    Science.gov (United States)

    Zhang, Cancan; Yang, Man; Zhao, Kongshuang

    2017-12-06

    Dielectric relaxation spectroscopy was applied to study how urea affects the phase transition of a thermosensitive polymer, poly(N-isopropylacrylamide) (PNIPAM), which has been widely used as a protein model. It was found that there is a pronounced relaxation near 10 GHz for the ternary system of PNIPAM in urea aqueous solution. The temperature dependence of dielectric parameters indicates that urea can reduce the lower critical solution temperature (LCST) of PNIPAM, i.e., stabilize the globule state of PNIPAM and collapse the PNIPAM chains. Based on our results, the interaction mechanism of urea on the conformational transition of PNIPAM was presented: urea replaces water molecules directly bonding with PNIPAM and acts as the bridging agent for the adjacent side chains of PNIPAM. Accordingly, the mechanism with which urea denatures protein was deduced. In addition, it is worth mentioning that, from the temperature dependence of the dielectric parameters obtained in the presence of urea, an interesting phenomenon was found in which the effect of urea on PNIPAM seems to take 2 M as a unit. This result may be the reason why urea and TMAO exit marine fishes at a specific ratio of 2 : 1.

  4. Linear and Nonlinear Rheology Combined with Dielectric Spectroscopy of Hybrid Polymer Nanocomposites for Semiconductive Applications

    Science.gov (United States)

    Kádár, Roland; Abbasi, Mahdi; Figuli, Roxana; Rigdahl, Mikael; Wilhelm, Manfred

    2017-01-01

    The linear and nonlinear oscillatory shear, extensional and combined rheology-dielectric spectroscopy of hybrid polymer nanocomposites for semiconductive applications were investigated in this study. The main focus was the influence of processing conditions on percolated poly(ethylene-butyl acrylate) (EBA) nanocomposite hybrids containing graphite nanoplatelets (GnP) and carbon black (CB). The rheological response of the samples was interpreted in terms of dispersion properties, filler distortion from processing, filler percolation, as well as the filler orientation and distribution dynamics inside the matrix. Evidence of the influence of dispersion properties was found in linear viscoelastic dynamic frequency sweeps, while the percolation of the nanocomposites was detected in nonlinearities developed in dynamic strain sweeps. Using extensional rheology, hybrid samples with better dispersion properties lead to a more pronounced strain hardening behavior, while samples with a higher volume percentage of fillers caused a drastic reduction in strain hardening. The rheo-dielectric time-dependent response showed that in the case of nanocomposites containing only GnP, the orientation dynamics leads to non-conductive samples. However, in the case of hybrids, the orientation of the GnP could be offset by the dispersing of the CB to bridge the nanoplatelets. The results were interpreted in the framework of a dual PE-BA model, where the fillers would be concentrated mainly in the BA regions. Furthermore, better dispersed hybrids obtained using mixing screws at the expense of filler distortion via extrusion processing history were emphasized through the rheo-dielectric tests. PMID:28336857

  5. Future directions of positron annihilation spectroscopy in low-k dielectric films

    International Nuclear Information System (INIS)

    Gidley, D.W.; Vallery, R.S.; Liu, M.; Peng, H.G.

    2007-01-01

    Positronium Annihilation Lifetime Spectroscopy (PALS) has become recognized in the microelectronics industry as one of only several methods capable of quantitatively characterizing engineered nanopores in next-generation (k < 2.2) interlayer dielectric (ILD) thin films. Successes and shortcomings of PALS to date will be assessed and compared with other methods of porosimetry such as ellipsometric and X-ray porosimetries (EP and XRP). A major theme in future low-k research focuses on the ability to integrate porous ILD's into chip fabrication; the vulnerability of porous dielectrics to etching, ashing, and chemical-mechanical polishing in process integration is delaying the introduction of ultra-low-k films. As device size approaches 45 nm the need to probe very small (sub-nanometer), semi-isolated pores beneath thin diffusion barriers is even more challenging. Depth-profiled PALS with its ability to determine a quantitative pore interconnection length and easily resolve 0.3 nm pores beneath diffusion barriers or in trench-patterned dielectrics should have a bright future in porous ILD research. The ability of PALS (and PAS in general) to deduce evolution and growth of pores with porosity should find broad applicability in the emerging field of high performance materials with strategically engineered nanopores. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Semiconductor-to-metallic flipping in a ZnFe{sub 2}O{sub 4}–graphene based smart nano-system: Temperature/microwave magneto-dielectric spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ameer, Shahid, E-mail: shahidameer@scme.nust.edu.pk [School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), H-12, Islamabad (Pakistan); Gul, Iftikhar Hussain [School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), H-12, Islamabad (Pakistan); Mahmood, Nasir [Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871 (China); Mujahid, Muhammad [School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), H-12, Islamabad (Pakistan)

    2015-01-15

    Zn-(FeO{sub 2}){sub 2}–graphene smart nano-composites were synthesized using a novel modified solvothermal synthesis with different percentages of graphene. The structure of the nanocomposite was confirmed through X-ray diffraction, micro-Raman scattering spectroscopy, Ultraviolet–Visible spectroscopy, and Fourier transform infrared spectroscopy. The structural growth and morphological aspects were analyzed using scanning/transmission electron microscopy, revealing marvelous micro-structural features of the assembled nano-system resembling a maple leaf. To determine the composition, energy dispersive spectroscopy and X-ray photoelectron spectroscopy were used. Microwave magneto-dielectric spectroscopy revealed the improved dielectric properties of the nano-composite compared to those of the parent functional nanocrystals. Temperature gradient dielectric spectroscopy was used over the spectral range from 100 Hz to 5 MHz to reveal the phenomenological effect that the nanosystem flips from its usual semiconductor nature to a metallic nature with sensing temperature. Electrical conductivity and dielectric analysis indicated that the dielectric loss and the dielectric permittivity increased at room temperature. This extraordinary switching capability of the functionalized graphene nanosystem opens up a new dimension for engineering advanced and efficient smart composite materials. - Graphical abstract: Display Omitted - Highlights: • Zn-(FeO{sub 2}){sub 2}–graphene smart nano-composites were synthesized using a novel modified solvothermal synthesis. • The synthesized nano-system exhibits marvelous leaf like microstructure. • These nano-composites show improved magneto dielectric response. • This engineered smart nano-system shows phenomenological flipping from semiconductor like nature to metallic behavior.

  7. Dielectric spectroscopy platform to measure MCF10A epithelial cell aggregation as a model for spheroidal cell cluster analysis.

    Science.gov (United States)

    Heileman, K L; Tabrizian, M

    2017-05-02

    3-Dimensional cell cultures are more representative of the native environment than traditional cell cultures on flat substrates. As a result, 3-dimensional cell cultures have emerged as a very valuable model environment to study tumorigenesis, organogenesis and tissue regeneration. Many of these models encompass the formation of cell aggregates, which mimic the architecture of tumor and organ tissue. Dielectric impedance spectroscopy is a non-invasive, label free and real time technique, overcoming the drawbacks of established techniques to monitor cell aggregates. Here we introduce a platform to monitor cell aggregation in a 3-dimensional extracellular matrix using dielectric spectroscopy. The MCF10A breast epithelial cell line serves as a model for cell aggregation. The platform maintains sterile conditions during the multi-day assay while allowing continuous dielectric spectroscopy measurements. The platform geometry optimizes dielectric measurements by concentrating cells within the electrode sensing region. The cells show a characteristic dielectric response to aggregation which corroborates with finite element analysis computer simulations. By fitting the experimental dielectric spectra to the Cole-Cole equation, we demonstrated that the dispersion intensity Δε and the characteristic frequency f c are related to cell aggregate growth. In addition, microscopy can be performed directly on the platform providing information about cell position, density and morphology. This platform could yield many applications for studying the electrophysiological activity of cell aggregates.

  8. A differential dielectric spectroscopy setup to measure the electric dipole moment and net charge of colloidal quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Kortschot, R. J.; Bakelaar, I. A.; Erné, B. H.; Kuipers, B. W. M., E-mail: B.W.M.Kuipers@uu.nl [Van ' t Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, Padualaan 8, 3584 CH Utrecht (Netherlands)

    2014-03-15

    A sensitive dielectric spectroscopy setup is built to measure the response of nanoparticles dispersed in a liquid to an alternating electric field over a frequency range from 10{sup −2} to 10{sup 7} Hz. The measured complex permittivity spectrum records both the rotational dynamics due to a permanent electric dipole moment and the translational dynamics due to net charges. The setup consists of a half-transparent capacitor connected in a bridge circuit, which is balanced on pure solvent only, using a software-controlled compensating voltage. In this way, the measured signal is dominated by the contributions of the nanoparticles rather than by the solvent. We demonstrate the performance of the setup with measurements on a dispersion of colloidal CdSe quantum dots in the apolar liquid decalin.

  9. A differential dielectric spectroscopy setup to measure the electric dipole moment and net charge of colloidal quantum dots.

    Science.gov (United States)

    Kortschot, R J; Bakelaar, I A; Erné, B H; Kuipers, B W M

    2014-03-01

    A sensitive dielectric spectroscopy setup is built to measure the response of nanoparticles dispersed in a liquid to an alternating electric field over a frequency range from 10(-2) to 10(7) Hz. The measured complex permittivity spectrum records both the rotational dynamics due to a permanent electric dipole moment and the translational dynamics due to net charges. The setup consists of a half-transparent capacitor connected in a bridge circuit, which is balanced on pure solvent only, using a software-controlled compensating voltage. In this way, the measured signal is dominated by the contributions of the nanoparticles rather than by the solvent. We demonstrate the performance of the setup with measurements on a dispersion of colloidal CdSe quantum dots in the apolar liquid decalin.

  10. New transport phenomena probed by dielectric spectroscopy of oxidized and non-oxidized porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Urbach, B.; Axelrod, E.; Sa' ar, A. [Racah Institute of Physics and the Center for Nanoscience and Nanotechnology, the Hebrew University of Jerusalem, Jerusalem 91904 (Israel)

    2007-05-15

    Dielectric spectroscopy accompanied by infrared (IR) and photoluminescence (PL) spectroscopy have been utilized to reveal the correlation between transport, optical and structural properties of oxidized porous silicon (PS). Three relaxation processes at low-, mid- and high-temperatures were observed, including dc-conductivity at high-temperatures. Both the low-T relaxation and the dc conductivity were found to be thermally activated processes that involve tunneling and hopping in between the nanocrystals in oxidized PS. We have found that the dc-conductivity is limited by geometrical constrictions along the transport channels, which are not effected by the oxidation process and are characterized by activation energies of about {proportional_to}0.85 eV. The low-T relaxation process involves thermal activation followed by tunneling in between neighbor nanocrystals, with somewhat lower activation energies. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Kinetically controlled glass transition measurement of organic aerosol thin films using broadband dielectric spectroscopy

    Directory of Open Access Journals (Sweden)

    Y. Zhang

    2018-06-01

    Full Text Available Glass transitions from liquid to semi-solid and solid phase states have important implications for reactivity, growth, and cloud-forming (cloud condensation nuclei and ice nucleation capabilities of secondary organic aerosols (SOAs. The small size and relatively low mass concentration of SOAs in the atmosphere make it difficult to measure atmospheric SOA glass transitions using conventional methods. To circumvent these difficulties, we have adapted a new technique for measuring glass-forming properties of atmospherically relevant organic aerosols. Aerosol particles to be studied are deposited in the form of a thin film onto an interdigitated electrode (IDE using electrostatic precipitation. Dielectric spectroscopy provides dipole relaxation rates for organic aerosols as a function of temperature (373 to 233 K that are used to calculate the glass transition temperatures for several cooling or heating rates. IDE-enabled broadband dielectric spectroscopy (BDS was successfully used to measure the kinetically controlled glass transition temperatures of aerosols consisting of glycerol and four other compounds with selected cooling and heating rates. The glass transition results agree well with available literature data for these five compounds. The results indicate that the IDE-BDS method can provide accurate glass transition data for organic aerosols under atmospheric conditions. The BDS data obtained with the IDE-BDS technique can be used to characterize glass transitions for both simulated and ambient organic aerosols and to model their climate effects.

  12. Dielectric-spectroscopy approach to ferrofluid nanoparticle clustering induced by an external electric field.

    Science.gov (United States)

    Rajnak, Michal; Kurimsky, Juraj; Dolnik, Bystrik; Kopcansky, Peter; Tomasovicova, Natalia; Taculescu-Moaca, Elena Alina; Timko, Milan

    2014-09-01

    An experimental study of magnetic colloidal particles cluster formation induced by an external electric field in a ferrofluid based on transformer oil is presented. Using frequency domain isothermal dielectric spectroscopy, we study the influence of a test cell electrode separation distance on a low-frequency relaxation process. We consider the relaxation process to be associated with an electric double layer polarization taking place on the particle surface. It has been found that the relaxation maximum considerably shifts towards lower frequencies when conducting the measurements in the test cells with greater electrode separation distances. As the electric field intensity was always kept at a constant value, we propose that the particle cluster formation induced by the external ac electric field accounts for that phenomenon. The increase in the relaxation time is in accordance with the Schwarz theory of electric double layer polarization. In addition, we analyze the influence of a static electric field generated by dc bias voltage on a similar shift in the relaxation maximum position. The variation of the dc electric field for the hysteresis measurements purpose provides understanding of the development of the particle clusters and their decay. Following our results, we emphasize the utility of dielectric spectroscopy as a simple, complementary method for detection and study of clusters of colloidal particles induced by external electric field.

  13. Dielectric and thermophysical properties of different beef meat blends over a temperature range of -18 to +10°C.

    Science.gov (United States)

    Farag, K W; Lyng, J G; Morgan, D J; Cronin, D A

    2008-08-01

    Dielectric and thermophysical properties of three different beef meat blends (lean, fat and 50:50 mixture) were evaluated over a range of temperatures from -18 to +10°C. In the region of thawing (-3 to -1°C), dielectric constant (ε') and dielectric loss factor (ε') values for radio frequency (RF) and microwave (MW) were significantly higher (Pproperties of the beef meat blends, with a general tendency towards higher values at the RF frequency. Finally, composition significantly influenced (Pthermophysical properties at all temperatures used. These data are of potential value to food technologists in the context of rapid defrosting of meat products.

  14. Multi-wavelength metal-dielectric nonpolarizing beam splitters in the near-infrared range

    Science.gov (United States)

    Hui Shi, Jin; Ping Wang, Zheng; Ying Guan, Chun; Yang, Jun; Shu Fu, Tian

    2011-04-01

    A 21-layer multi-wavelength metal-dielectric nonpolarizing cube beam splitter was designed by use of an optimization method and theoretically investigated in the near-infrared range. The angular dependence of the reflectance and differential phases induced by reflection and transmission were presented. The simulation results revealed that the non-polarizing effect could be achieved for both the amplitude and phase characteristics at 1310 and 1550 nm. The differences between the simulated and the target reflectance of 50% are less than 2% and differential phases are less than 5°in the range 1300-1320 nm and 1540-1550 nm for both p- and s-components.

  15. Phase sensitive molecular dynamics of self-assembly glycolipid thin films: A dielectric spectroscopy investigation

    Science.gov (United States)

    Velayutham, T. S.; Ng, B. K.; Gan, W. C.; Majid, W. H. Abd.; Hashim, R.; Zahid, N. I.; Chaiprapa, Jitrin

    2014-08-01

    Glycolipid, found commonly in membranes, is also a liquid crystal material which can self-assemble without the presence of a solvent. Here, the dielectric and conductivity properties of three synthetic glycolipid thin films in different thermotropic liquid crystal phases were investigated over a frequency and temperature range of (10-2-106 Hz) and (303-463 K), respectively. The observed relaxation processes distinguish between the different phases (smectic A, columnar/hexagonal, and bicontinuous cubic Q) and the glycolipid molecular structures. Large dielectric responses were observed in the columnar and bicontinuous cubic phases of the longer branched alkyl chain glycolipids. Glycolipids with the shortest branched alkyl chain experience the most restricted self-assembly dynamic process over the broad temperature range studied compared to the longer ones. A high frequency dielectric absorption (Process I) was observed in all samples. This is related to the dynamics of the hydrogen bond network from the sugar group. An additional low-frequency mechanism (Process II) with a large dielectric strength was observed due to the internal dynamics of the self-assembly organization. Phase sensitive domain heterogeneity in the bicontinuous cubic phase was related to the diffusion of charge carriers. The microscopic features of charge hopping were modelled using the random walk scheme, and two charge carrier hopping lengths were estimated for two glycolipid systems. For Process I, the hopping length is comparable to the hydrogen bond and is related to the dynamics of the hydrogen bond network. Additionally, that for Process II is comparable to the bilayer spacing, hence confirming that this low-frequency mechanism is associated with the internal dynamics within the phase.

  16. Influence of size-corrected bound-electron contribution on nanometric silver dielectric function. Sizing through optical extinction spectroscopy

    International Nuclear Information System (INIS)

    Santillán, J M J; Videla, F A; Scaffardi, L B; Schinca, D C; Fernández van Raap, M B; Muraca, D

    2013-01-01

    The study of metal nanoparticles (NPs) is of great interest due to their ability to enhance optical fields on the nanometric scale, which makes them interesting for various applications in several fields of science and technology. In particular, their optical properties depend on the dielectric function of the metal, its size, shape and surrounding environment. This work analyses the contributions of free and bound electrons to the complex dielectric function of spherical silver NPs and their influence on the optical extinction spectra. The contribution of free electrons is usually corrected for particle size under 10 nm, introducing a modification of the damping constant to account for the extra collisions with the particle's boundary. For the contribution of bound electrons, we considered the interband transitions from the d-band to the conduction band including the size dependence of the electronic density states for radii below 2 nm. Bearing in mind these specific modifications, it was possible to determine optical and band energy parameters by fitting the bulk complex dielectric function. The results obtained from the optimum fit are: K bulk = 2 × 10 24 (coefficient for bound-electron contribution), E g = 1.91 eV (gap energy), E F = 4.12 eV (Fermi energy), and γ b = 1.5 × 10 14 Hz (damping constant for bound electrons). Based on this size-dependent dielectric function, extinction spectra of silver particles in the nanometric–subnanometric radius range can be calculated using Mie's theory, and its size behaviour analysed. These studies are applied to fit experimental extinction spectrum of very small spherical particles fabricated by fs laser ablation of a solid target in water. From the fitting, the structure and size distribution of core radius and shell thickness of the colloidal suspension could be determined. The spectroscopic results suggest that the colloidal suspension is composed by two types of structures: bare core and core–shell. The former

  17. Linear and Nonlinear Rheology Combined with Dielectric Spectroscopy of Hybrid Polymer Nanocomposites for Semiconductive Applications

    Directory of Open Access Journals (Sweden)

    Roland Kádár

    2017-01-01

    Full Text Available The linear and nonlinear oscillatory shear, extensional and combined rheology-dielectric spectroscopy of hybrid polymer nanocomposites for semiconductive applications were investigated in this study. The main focus was the influence of processing conditions on percolated poly(ethylene-butyl acrylate (EBA nanocomposite hybrids containing graphite nanoplatelets (GnP and carbon black (CB. The rheological response of the samples was interpreted in terms of dispersion properties, filler distortion from processing, filler percolation, as well as the filler orientation and distribution dynamics inside the matrix. Evidence of the influence of dispersion properties was found in linear viscoelastic dynamic frequency sweeps, while the percolation of the nanocomposites was detected in nonlinearities developed in dynamic strain sweeps. Using extensional rheology, hybrid samples with better dispersion properties lead to a more pronounced strain hardening behavior, while samples with a higher volume percentage of fillers caused a drastic reduction in strain hardening. The rheo-dielectric time-dependent response showed that in the case of nanocomposites containing only GnP, the orientation dynamics leads to non-conductive samples. However, in the case of hybrids, the orientation of the GnP could be offset by the dispersing of the CB to bridge the nanoplatelets. The results were interpreted in the framework of a dual PE-BA model, where the fillers would be concentrated mainly in the BA regions. Furthermore, better dispersed hybrids obtained using mixing screws at the expense of filler distortion via extrusion processing history were emphasized through the rheo-dielectric tests.

  18. Trapping-charging ability and electrical properties study of amorphous insulator by dielectric spectroscopy

    International Nuclear Information System (INIS)

    Mekni, Omar; Arifa, Hakim; Askri, Besma; Yangui, Béchir; Raouadi, Khaled; Damamme, Gilles

    2014-01-01

    Usually, the trapping phenomenon in insulating materials is studied by injecting charges using a Scanning Electron Microscope. In this work, we use the dielectric spectroscopy technique for showing a correlation between the dielectric properties and the trapping-charging ability of insulating materials. The evolution of the complex permittivity (real and imaginary parts) as a function of frequency and temperature reveals different types of relaxation according to the trapping ability of the material. We found that the space charge relaxation at low frequencies affects the real part of the complex permittivity ε ′ and the dissipation factor Tan(δ). We prove that the evolution of the imaginary part of the complex permittivity against temperature ε ″ =f(T) reflects the phenomenon of charge trapping and detrapping as well as trapped charge evolution Q p (T). We also use the electric modulus formalism to better identify the space charge relaxation. The investigation of trapping or conductive nature of insulating materials was mainly made by studying the activation energy and conductivity. The conduction and trapping parameters are determined using the Correlated Barrier Hopping (CBH) model in order to confirm the relation between electrical properties and charge trapping ability.

  19. Insight into the electrical properties and chain conformation of spherical polyelectrolyte brushes by dielectric spectroscopy

    Science.gov (United States)

    Guo, Xiaoxia; Zhao, Kongshuang

    2017-02-01

    We report here a dielectric study on three kinds of anionic spherical polyelectrolyte brush (SPBs, consisting of a polystyrene (PS) core and three different poly (acrylic acid) chains grafted onto the core) suspensions over a frequency ranging from 40 Hz to 110 MHz. The relaxation behavior of the SPB suspensions shows significant changes in the brush-layer properties when the mass fraction of SPBs and the pH of the suspensions change. Two definite relaxations related to the interfacial polarization are observed around 100 kHz and 10 MHz. A single-layer spherical-shell model is applied to describe the SPB suspensions wherein the suspended SPB is modeled as a spherical-shell composite particle in which an insulated PS sphere is surrounded by a conducting ion-permeable shell (the polyelectrolyte chain layer). We developed the curve-fitting procedure to analyze the dielectric spectrum in order to obtain the dielectric properties of the components of the SPBs, especially the properties of the polyelectrolyte brush. Based on this method and model, the permittivity and conductivity of the brush layer, ζ potential, etc are calculated. The ordered orientation of the water molecules in the layer leads to an additional electrical dipole moment; increasing pH causes the brush layer to swell. In addition, the repulsive force between the SPB particles are evaluated using the brush-layer thickness, which is obtained by fitting dielectric spectra, combined with relative theoretical formulas. Increasing PH values or SPB concentration would improve the stability of the SPBs dispersion.

  20. Electrode effects in dielectric spectroscopy measurements on (Nb+In) co-doped TiO.sub.2./sub.

    Czech Academy of Sciences Publication Activity Database

    Crandles, D.A.; Yee, S.M.M.; Savinov, Maxim; Nuzhnyy, Dmitry; Petzelt, Jan; Kamba, Stanislav; Prokeš, J.

    2016-01-01

    Roč. 119, č. 15 (2016), 1-8, č. článku 154105. ISSN 0021-8979 R&D Projects: GA ČR GA15-08389S Institutional support: RVO:68378271 Keywords : dielectric spectroscopy * giant permittivity * Maxwell-Wagner relaxation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.068, year: 2016

  1. Lattice dynamics and dielectric spectroscopy of BZT and NBT lead-free perovskite relaxors - comparison with lead-based relaxors

    Czech Academy of Sciences Publication Activity Database

    Petzelt, Jan; Nuzhnyy, Dmitry; Bovtun, Viktor; Kempa, Martin; Savinov, Maxim; Kamba, Stanislav; Hlinka, Jiří

    2015-01-01

    Roč. 88, č. 3 (2015), 320-332 ISSN 0141-1594 R&D Projects: GA ČR GA13-15110S Institutional support: RVO:68378271 Keywords : relaxor ferroelectrics * polar phonons * polar nanoregions * dielectric spectroscopy * off-centred ions Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.858, year: 2015

  2. Relaxation and Conductivity in P3HT/PC71BM Blends As Revealed by Dielectric Spectroscopy

    DEFF Research Database (Denmark)

    Cui, Jing; Martinez-Tong, Daniel E.; Sanz, Alejandro

    2016-01-01

    The conduction mechanism and the molecular dynamics on the paradigmatic bulk heterojunction formed by poly(3-hexylthiophene) (P3HT) and phenyl-C-71-butyric acid methyl ester (PC71BM) blends have been characterized by dielectric spectroscopy. The results show that hexyl lateral chains of the polym...

  3. DETERMINING PARAMETERS OF THE DIELECTRIC FUNCTION OF A SUBSTANCE IN AQUEOUS SOLUTION BY SELF-REFERENCED REFLECTION THZ SPECTROSCOPY

    DEFF Research Database (Denmark)

    2008-01-01

    Method and apparatus for determining dielectric function of liquid solutions and thereby concentrations of substances in aqueous solution or the volatile/non-volatile nature of the liquid by self-referenced reflection THz spectroscopy. Having the aqueous solution in any container with a window al....... The invention is particularly useful for determining alcohol (ethanol) content in aqueous solution containing other substances and particles....

  4. Component dynamics in polymer blends a combined QENS and dielectric spectroscopy investigation

    CERN Document Server

    Hofmann, S; Arbe, A; Colmenero, J; Faragó, B

    2002-01-01

    The individual dynamics of the two constituents of a binary polymer blend was studied by means of quasielastic neutron scattering and dielectric spectroscopy (DS). The combination of neutron spin-echo and backscattering techniques allowed us to cover the complete crossover from entropy-driven chain dynamics on mesoscopic scales to the alpha relaxation on local length scales. The observed blending effects on the respective relaxation times suggest a purely dynamic origin of the dynamic heterogeneity in polymer blends at temperatures well above the glass-transition temperature without the need to assume local phase separation. In contrast, the results from DS experiments towards much lower temperatures indicate systematic deviations of the segmental dynamics in the blend from its mean-field-like behavior at high temperatures. This additionally increases the dynamic heterogeneity in the segmental dynamics of the two components in the mixture. In the case of the chain dynamics, no similar effect could be observed...

  5. Broadband Dielectric Spectroscopy and Quasi-Elastic Neutron Scattering on Single-Ion Polymer Conductors

    Science.gov (United States)

    Soles, Christopher; Peng, Hua-Gen; Page, Kirt; Snyder, Chad; Pandy, Ashoutosh; Jeong, Youmi; Runt, James; NIST Collaboration; Pennsylvania Collaboration

    2011-03-01

    The application of solid polymer electrolytes in rechargeable batteries has not been fully realized after decades of research due to its low conductivity. Dramatic increases of the ion conductivity are needed and this progress requires the understanding of conduction mechanism. We address this topic in two fronts, namely, the effect of plasticizer additives and geometric confinement on the charge transfer mechanism. To this end, we combine broadband dielectric spectroscopy (BDS) to characterize the ion mobility and quasi-elastic neutron scattering (QENS) to quantify segmental motion on a single-ion model polymer electrolyte. Deuterated small molecules were used as plasticizers so that the segmental motion of the polymer electrolyte could be monitored by QENS to understand the mechanism behind the increased conductivity. Anodic aluminum oxide (AAO) membranes with well defined channel sizes are used as the matrix to study the transport of ions solvated in a 1D polymer electrolyte.

  6. Nonlinear Dielectric Spectroscopy as an Indirect Probe of Metabolic Activity in Thylakoid Membrane

    Directory of Open Access Journals (Sweden)

    John H. Miller

    2011-01-01

    Full Text Available Nonlinear dielectric spectroscopy (NDS is a non-invasive probe of cellular metabolic activity with potential application in the development of whole-cell biosensors. However, the mechanism of NDS interaction with metabolic membrane proteins is poorly understood, partly due to the inherent complexity of single cell organisms. Here we use the light-activated electron transport chain of spinach thylakoid membrane as a model system to study how NDS interacts with metabolic activity. We find protein modification, as opposed to membrane pump activity, to be the dominant source of NDS signal change in this system. Potential mechanisms for such protein modifications include reactive oxygen species generation and light-activated phosphorylation.

  7. Supercooled interfacial water in fine-grained soils probed by dielectric spectroscopy

    Directory of Open Access Journals (Sweden)

    A. Lorek

    2013-12-01

    Full Text Available Water substantially affects nearly all physical, chemical and biological processes on the Earth. Recent Mars observations as well as laboratory investigations suggest that water is a key factor of current physical and chemical processes on the Martian surface, e.g. rheological phenomena. Therefore it is of particular interest to get information about the liquid-like state of water on Martian analogue soils for temperatures below 0 °C. To this end, a parallel plate capacitor has been developed to obtain isothermal dielectric spectra of fine-grained soils in the frequency range from 10 Hz to 1.1 MHz at Martian-like temperatures down to −70 °C. Two Martian analogue soils have been investigated: a Ca-bentonite (specific surface of 237 m2 g−1, up to 9.4% w / w gravimetric water content and JSC Mars 1, a volcanic ash (specific surface of 146 m2 g−1, up to 7.4% w / w. Three soil-specific relaxation processes are observed in the investigated frequency–temperature range: two weak high-frequency processes (bound or hydrated water as well as ice and a strong low-frequency process due to counter-ion relaxation and the Maxwell–Wagner effect. To characterize the dielectric relaxation behaviour, a generalized fractional dielectric relaxation model was applied assuming three active relaxation processes with relaxation time of the ith process modelled with an Eyring equation. The real part of effective complex soil permittivity at 350 kHz was used to determine ice and liquid-like water content by means of the Birchak or CRIM equation. There are evidence that bentonite down to −70 °C has a liquid-like water content of 1.17 monolayers and JSC Mars 1 a liquid-like water content of 1.96 monolayers.

  8. A systematic study of the isothermal crystallization of the mono-alcohol n-butanol monitored by dielectric spectroscopy

    DEFF Research Database (Denmark)

    Jensen, Mikkel Hartmann; Hecksher, Tina; Niss, Kristine

    2015-01-01

    Isothermal crystallization of the mono-hydroxyl alcohol n-butanol was studied with dielectric spectroscopy in real time. The crystallization was carried out using two different sample cells at 15 temperatures between 120 K and 134 K. Crystallization is characterized by a decrease of the dielectric...... intensity. In addition, a shift in relaxation times to shorter times was observed during the crystallization process for all studied temperatures. The two different sample environments induced quite different crystallization behaviors, consistent and reproducible over all studied temperatures...... that a microscopic interpretation of crystallization measurements requires multiple probes, sample cells, and protocols....

  9. Temperature dependent dielectric relaxation and ac-conductivity of alkali niobate ceramics studied by impedance spectroscopy

    Science.gov (United States)

    Yadav, Abhinav; Mantry, Snigdha Paramita; Fahad, Mohd.; Sarun, P. M.

    2018-05-01

    Sodium niobate (NaNbO3) ceramics is prepared by conventional solid state reaction method at sintering temperature 1150 °C for 4 h. The structural information of the material has been investigated by X-ray diffraction (XRD) and Field emission scanning electron microscopy (FE-SEM). The XRD analysis of NaNbO3 ceramics shows an orthorhombic structure. The FE-SEM micrograph of NaNbO3 ceramics exhibit grains with grain sizes ranging between 1 μm to 5 μm. The surface coverage and average grain size of NaNbO3 ceramics are found to be 97.6 % and 2.5 μm, respectively. Frequency dependent electrical properties of NaNbO3 is investigated from room temperature to 500 °C in wide frequency range (100 Hz-5 MHz). Dielectric constant, ac-conductivity, impedance, modulus and Nyquist analysis are performed. The observed dielectric constant (1 kHz) at transition temperature (400 °C) are 975. From conductivity analysis, the estimated activation energy of NaNbO3 ceramics is 0.58 eV at 10 kHz. The result of Nyquist plot shows that the electrical behavior of NaNbO3 ceramics is contributed by grain and grain boundary responses. The impedance and modulus spectrum asserts that the negative temperature coefficient of resistance (NTCR) behavior and non-Debye type relaxation in NaNbO3.

  10. Dielectric spectroscopy investigation of proton transfer processes in carboxymethyl alpha-cyclodextrin polymer cross-linked by epichlorohydrin

    Science.gov (United States)

    Papaioannou, Panagoula K.; Karagianni, Chaido S.; Kakali, Glykeria; Charalampopoulos, Vasileios G.

    2018-03-01

    The carboxymethyl-α-cyclodextrin polymer (cross-linked by epichlorohydrin) is investigated by dielectric spectroscopy over a frequency range of 0.1-100 kHz and the temperature ranges of 137.2-297.6 K (cooling) and 137.2-472 K (heating). Upon cooling to 288.1 K, the ac-conductivity invariance is attributed to slight changes in the topology of the H-bonded chains. From 288.1 to 244.0 K, the ac-conductivity decreases abruptly (following the Arrhenius law with Eα = 0.40 eV), whereas below 244.0 K it presents no important variations. During heating from 137.2 to 302.6 K, no thermal hysteresis is observed. From 302.6 to 364.9 K, the ac-conductivity increases (Eα = 0.71 eV), whereas above 383 K it decreases up to 436.7 K since the dehydration process has been completed and the H-bonded chains can no longer be retained. From 436.7 to 472 K, the ac-conductivity increases again (Eα = 0.76 eV) indicating the formation of "new" H-bonded chains. Curve fitting of various relaxation processes is done by Havriliak-Negami equation at selective temperatures.

  11. Experimental demonstration of CMOS-compatible long-range dielectric-loaded surface plasmon-polariton waveguides (LR-DLSPPWs)

    DEFF Research Database (Denmark)

    Zektzer, Roy; Desiatov, Boris; Mazurski, Noa

    2015-01-01

    We demonstrate the design, fabrication and experimental characterization of long-range dielectric-loaded surface plasmon-polariton waveguides (LR-DLSPPWs) that are compatible with complementary metal-oxide semiconductor (CMOS) technology. The demonstrated waveguides feature good mode confinement...

  12. Subwavelength dielectric nanorod chains for energy transfer in the visible range.

    Science.gov (United States)

    Li, Dongdong; Zhang, Jingjing; Yan, Changchun; Xu, Zhengji; Zhang, Dao Hua

    2017-10-15

    We report a new type of energy transfer device, formed by a dielectric nanorod array embedded in a silver slab. Such dielectric chain structures allow surface plasmon wave guiding with large propagation length and highly suppressed crosstalk between adjacent transmission channels. The simulation results show that our proposed design can be used to enhance the energy transfer along the waveguide-like dielectric nanorod chains via coupled plasmons, where the energy spreading is effectively suppressed, and superior imaging properties in terms of resolution and energy transfer distance can be achieved.

  13. Investigation of the chemistry of the dielectric/FeCoTb interface by x-ray photoelectron spectroscopy and Auger electron spectroscopy

    International Nuclear Information System (INIS)

    Stickle, W.F.; Coulman, D.

    1987-01-01

    The interfacial chemistry of magneto-optic structures of sputter deposited SiO, SiO 2 , Si 3 N 4 /FeCoTb/SiO, SiO 2 , and Si 3 N 4 was studied in detail by x-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). XPS and AES depth profiles have revealed a substantial amount of redox chemistry at the dielectric/rare-earth transition metal interfaces. The chemical reactions occur preferentially with the terbium as revealed in the XPS portion of the study by the formation of terbium oxide and terbium silicide. In the case of Si 3 N 4 evidence of TbN/sub x/ has also been observed. ''As deposited'' and annealed samples of the magneto-optic structures are compared and contrasted. It is concluded that Si 3 N 4 is a superior dielectric for magneto-optic media

  14. Photoconductive, dielectric and percolation properties of anodic TiO.sub.2./sub. nanotubes studied by terahertz spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Kuchařík, Jiří; Sopha, H.; Krbal, M.; Rychetský, Ivan; Kužel, Petr; Macák, J. M.; Němec, Hynek

    2018-01-01

    Roč. 51, č. 1 (2018), s. 1-9, č. článku 014004. ISSN 0022-3727 R&D Projects: GA ČR GA17-03662S Institutional support: RVO:68378271 Keywords : anodic TiO 2 nanotubes * terahertz spectroscopy * charge transport * dielectric properties Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics , supercond.) Impact factor: 2.588, year: 2016

  15. Using Dielectric Relaxation Spectroscopy to Characterize the Glass Transition Time of Polydextrose.

    Science.gov (United States)

    Buehler, Martin G; Kindle, Michael L; Carter, Brady P

    2015-06-01

    Dielectric relaxation spectroscopy was used to characterize the glass transition time, tg , of polydextrose, where the glass transition temperature, Tg , and water activity, aw (relative humidity), were held constant during polydextrose relaxation. The tg was determined from a shift in the peak frequency of the imaginary capacitance spectrum with time. It was found that when the peak frequency reaches 30 mHz, polydextrose undergoes glass transition. Glass transition time, tg , is the time for polydextrose to undergo glass transition at a specific Tg and aw . Results lead to a modified state diagram, where Tg is depressed with increasing aw . This curve forms a boundary: (a) below the boundary, polydextrose does not undergo glass transition and (b) above the boundary, polydextrose rapidly undergoes glass transition. As the boundary curve is specified by a tg value, it can assist in the selection of storage conditions. An important point on the boundary curve is at aw = 0, where Tg0 = 115 °C. The methodology can also be used to calculate the stress-relaxation viscosity of polydextrose as a function of Tg and aw , which is important when characterizing the flow properties of polydextrose initially in powder form. © 2015 Institute of Food Technologists®

  16. High titer oncolytic measles virus production process by integration of dielectric spectroscopy as online monitoring system.

    Science.gov (United States)

    Grein, Tanja A; Loewe, Daniel; Dieken, Hauke; Salzig, Denise; Weidner, Tobias; Czermak, Peter

    2018-05-01

    Oncolytic viruses offer new hope to millions of patients with incurable cancer. One promising class of oncolytic viruses is Measles virus, but its broad administration to cancer patients is currently hampered by the inability to produce the large amounts of virus needed for treatment (10 10 -10 12 virus particles per dose). Measles virus is unstable, leading to very low virus titers during production. The time of infection and time of harvest are therefore critical parameters in a Measles virus production process, and their optimization requires an accurate online monitoring system. We integrated a probe based on dielectric spectroscopy (DS) into a stirred tank reactor to characterize the Measles virus production process in adherent growing Vero cells. We found that DS could be used to monitor cell adhesion on the microcarrier and that the optimal virus harvest time correlated with the global maximum permittivity signal. In 16 independent bioreactor runs, the maximum Measles virus titer was achieved approximately 40 hr after the permittivity maximum. Compared to an uncontrolled Measles virus production process, the integration of DS increased the maximum virus concentration by more than three orders of magnitude. This was sufficient to achieve an active Measles virus concentration of > 10 10 TCID 50 ml -1 . © 2017 Wiley Periodicals, Inc.

  17. Fed-Batch Production of Bacterial Ghosts Using Dielectric Spectroscopy for Dynamic Process Control

    Directory of Open Access Journals (Sweden)

    Andrea Meitz

    2016-03-01

    Full Text Available The Bacterial Ghost (BG platform technology evolved from a microbiological expression system incorporating the ϕX174 lysis gene E. E-lysis generates empty but structurally intact cell envelopes (BGs from Gram-negative bacteria which have been suggested as candidate vaccines, immunotherapeutic agents or drug delivery vehicles. E-lysis is a highly dynamic and complex biological process that puts exceptional demands towards process understanding and control. The development of a both economic and robust fed-batch production process for BGs required a toolset capable of dealing with rapidly changing concentrations of viable biomass during the E-lysis phase. This challenge was addressed using a transfer function combining dielectric spectroscopy and soft-sensor based biomass estimation for monitoring the rapid decline of viable biomass during the E-lysis phase. The transfer function was implemented to a feed-controller, which followed the permittivity signal closely and was capable of maintaining a constant specific substrate uptake rate during lysis phase. With the described toolset, we were able to increase the yield of BG production processes by a factor of 8–10 when compared to currently used batch procedures reaching lysis efficiencies >98%. This provides elevated potentials for commercial application of the Bacterial Ghost platform technology.

  18. Polymer chain dynamics in epoxy based composites as investigated by broadband dielectric spectroscopy

    Directory of Open Access Journals (Sweden)

    Mohammad K. Hassan

    2016-03-01

    Full Text Available Epoxy networks of the diglycidyl ether of bisphenol A (DGEBA were prepared using 3,3′- and 4,4′-diaminodiphenyl sulfone isomer crosslinkers. Secondary relaxations and the glass transitions of resultant networks were probed using broadband dielectric spectroscopy (BDS. A sub-Tg γ relaxation peak for both networks shifts to higher frequencies (f with increasing temperature in Arrhenius fashion, both processes having the same activation energy and being assigned to phenyl ring flipping in DGEBA chains. A β relaxation is assigned to local motions of dipoles that were created during crosslinking reactions. 4,4′-based networks exhibited higher Tg relative to 3,3′-based networks as per dynamic mechanical as well as BDS analyses. The Vogel–Fulcher–Tammann–Hesse equation fitted well to relaxation time vs. temperature data and comparison of Vogel temperatures suggests lower free volume per mass for the 3,3′-based network. The Kramers–Krönig transformation was used to directly calculate dc-free ɛ″ vs. f data from experimental ɛ′ vs. f data. Distribution of relaxation times (DRT curves are bi-modal for the 3,3′-crosslinked resin suggesting large-scale microstructural heterogeneity as opposed to homogeneity for the 4,4′-based network whose DRT consists of a single peak.

  19. Optical spectroscopy, optical conductivity, dielectric properties and new methods for determining the gap states of CuSe thin films

    International Nuclear Information System (INIS)

    Sakr, G.B.; Yahia, I.S.; Fadel, M.; Fouad, S.S.; Romcevic, N.

    2010-01-01

    Research highlights: → The structural, optical dispersion parameters and the Raman spectroscopy have been studied for CuSe thin films. → X-ray diffraction results indicate the amorphous nature of the thermally evaporated CuSe thin films. → The refractive index shows an anomalous dispersion at the lower wavelength (absorption region) and a normal dispersion at the higher wavelengths (transparent region). → The refractive index dispersion obeys the single oscillator model proposed by Wemple and DiDomenico WDD model and the single oscillator parameters were determined. → The band gap of CuSe thin films was determined by three novel methods i.e. (relaxation time, real and imaginary dielectric constant and real and imaginary optical conductivity) which in a good agreement with the Tauc band gap value. - Abstract: The paper describes the structural and optical properties of CuSe thin films. X-ray diffraction pattern indicates that CuSe thin film has an amorphous structure. Transmittance T(λ) and reflectance R(λ) measurements in the wavelength range (300-1700 nm) were used to calculate the refractive index n(λ), the absorption index and the optical dispersion parameters according to Wemple and Didomenico WDD model. The dispersion curve of the refractive index shows an anomalous dispersion in the absorption region and a normal dispersion in the transparent region. The optical bandgap has been estimated and confirmed by four different methods. The value for the direct bandgap for the as-deposited CuSe thin film approximately equals 2.7 eV. The Raman spectroscopy was used to identify and quantify the individual phases presented in the CuSe films.

  20. Dielectric properties of vertically aligned multi-walled carbon nanotubes in the terahertz and mid-infrared range

    Science.gov (United States)

    Thomson, Mark D.; Zouaghi, Wissem; Meng, Fanqi; Wiecha, Matthias M.; Rabia, Kaneez; Heinlein, Thorsten; Hussein, Laith; Babu, Deepu; Yadav, Sandeep; Engstler, Jörg; Schneider, Jörg J.; Nicoloso, Norbert; Rychetský, Ivan; Kužel, Petr; Roskos, Hartmut G.

    2018-01-01

    We investigate the broadband dielectric properties of vertically aligned, multi-wall carbon nanotubes (VACNT), over both the terahertz (THz) and mid-infrared spectral ranges. The nominally undoped, metallic VACNT samples are probed at normal incidence, i.e. the response is predominantly due to polarisation perpendicular to the CNT axis. A detailed comparison of various conductivity models and previously reported results is presented for the non-Drude behaviour we observe in the conventional THz range (up to 2.5 THz). Extension to the mid-infrared range reveals an absorption peak at \

  1. Process optimization of large-scale production of recombinant adeno-associated vectors using dielectric spectroscopy.

    Science.gov (United States)

    Negrete, Alejandro; Esteban, Geoffrey; Kotin, Robert M

    2007-09-01

    A well-characterized manufacturing process for the large-scale production of recombinant adeno-associated vectors (rAAV) for gene therapy applications is required to meet current and future demands for pre-clinical and clinical studies and potential commercialization. Economic considerations argue in favor of suspension culture-based production. Currently, the only feasible method for large-scale rAAV production utilizes baculovirus expression vectors and insect cells in suspension cultures. To maximize yields and achieve reproducibility between batches, online monitoring of various metabolic and physical parameters is useful for characterizing early stages of baculovirus-infected insect cells. In this study, rAAVs were produced at 40-l scale yielding ~1 x 10(15) particles. During the process, dielectric spectroscopy was performed by real time scanning in radio frequencies between 300 kHz and 10 MHz. The corresponding permittivity values were correlated with the rAAV production. Both infected and uninfected reached a maximum value; however, only infected cell cultures permittivity profile reached a second maximum value. This effect was correlated with the optimal harvest time for rAAV production. Analysis of rAAV indicated the harvesting time around 48 h post-infection (hpi), and 72 hpi produced similar quantities of biologically active rAAV. Thus, if operated continuously, the 24-h reduction in the production process of rAAV gives sufficient time for additional 18 runs a year corresponding to an extra production of ~2 x 10(16) particles. As part of large-scale optimization studies, this new finding will facilitate the bioprocessing scale-up of rAAV and other bioproducts.

  2. Preparation, crystal structure, and dielectric characterization of Li2W2O7 ceramic at RF and microwave frequency range

    Directory of Open Access Journals (Sweden)

    Jinwu Chen

    2017-02-01

    Full Text Available Single phase Li2W2O7 with anorthic structure was prepared by the conventional solid-state reaction method at 550∘C and the anorthic structure was stable up to 660∘C. The dielectric properties at radio frequency (RF and microwave frequency range were characterized. The sample sintered at 640∘C exhibited the optimum microwave dielectric properties with a relative permittivity of 12.2, a quality factor value of 17,700GHz (at 9.8GHz, and a temperature coefficient of the resonant frequency of −232ppm/∘C as well as a high relative density ∼94.1%. Chemical compatibility measurement indicated Li2W2O7 did not react with aluminum electrodes when sintered at 640∘C for 4h.

  3. Dielectric inspection of erythrocyte morphology

    International Nuclear Information System (INIS)

    Hayashi, Yoshihito; Oshige, Ikuya; Katsumoto, Yoichi; Omori, Shinji; Yasuda, Akio; Asami, Koji

    2008-01-01

    We performed a systematic study of the sensitivity of dielectric spectroscopy to erythrocyte morphology. Namely, rabbit erythrocytes of four different shapes were prepared by precisely controlling the pH of the suspending medium, and their complex permittivities over the frequency range from 0.1 to 110 MHz were measured and analyzed. Their quantitative analysis shows that the characteristic frequency and the broadening parameter of the dielectric relaxation of interfacial polarization are highly specific to the erythrocyte shape, while they are insensitive to the cell volume fraction. Therefore, these two dielectric parameters can be used to differentiate erythrocytes of different shapes, if dielectric spectroscopy is applied to flow-cytometric inspection of single blood cells. In addition, we revealed the applicability and limitations of the analytical theory of interfacial polarization to explain the experimental permittivities of non-spherical erythrocytes

  4. Dielectric inspection of erythrocyte morphology

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Yoshihito; Oshige, Ikuya; Katsumoto, Yoichi; Omori, Shinji; Yasuda, Akio [Life Science Laboratory, Materials Laboratories, Sony Corporation, Sony Bioinformatics Center, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510 (Japan); Asami, Koji [Laboratory of Molecular Aggregation Analysis, Division of Multidisciplinary Chemistry, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 (Japan)], E-mail: Yoshihito.Hayashi@jp.sony.com

    2008-05-21

    We performed a systematic study of the sensitivity of dielectric spectroscopy to erythrocyte morphology. Namely, rabbit erythrocytes of four different shapes were prepared by precisely controlling the pH of the suspending medium, and their complex permittivities over the frequency range from 0.1 to 110 MHz were measured and analyzed. Their quantitative analysis shows that the characteristic frequency and the broadening parameter of the dielectric relaxation of interfacial polarization are highly specific to the erythrocyte shape, while they are insensitive to the cell volume fraction. Therefore, these two dielectric parameters can be used to differentiate erythrocytes of different shapes, if dielectric spectroscopy is applied to flow-cytometric inspection of single blood cells. In addition, we revealed the applicability and limitations of the analytical theory of interfacial polarization to explain the experimental permittivities of non-spherical erythrocytes.

  5. Dielectric tensor of monoclinic Ga2O3 single crystals in the spectral range 0.5–8.5 eV

    Directory of Open Access Journals (Sweden)

    C. Sturm

    2015-10-01

    Full Text Available The dielectric tensor of Ga2O3 in the monoclinic (β phase was determined by generalized spectroscopic ellipsometry in a wide spectral range from 0.5 eV to 8.5 eV as well as by density functional theory calculations combined with many-body perturbation theory including quasiparticle and excitonic effects. The dielectric tensors obtained by both methods are in excellent agreement with each other and the observed transitions in the dielectric function are assigned to the corresponding valence bands. It is shown that the off-diagonal element of the dielectric tensor reaches values up to |εxz| ≈ 0.30 and cannot be neglected. Even in the transparent spectral range where it is quite small (|εxz| < 0.02 it causes a rotation of the dielectric axes around the symmetry axis of up to 20°.

  6. Process analytical technology (PAT) in insect and mammalian cell culture processes: dielectric spectroscopy and focused beam reflectance measurement (FBRM).

    Science.gov (United States)

    Druzinec, Damir; Weiss, Katja; Elseberg, Christiane; Salzig, Denise; Kraume, Matthias; Pörtner, Ralf; Czermak, Peter

    2014-01-01

    Modern bioprocesses demand for a careful definition of the critical process parameters (CPPs) already during the early stages of process development in order to ensure high-quality products and satisfactory yields. In this context, online monitoring tools can be applied to recognize unfavorable changes of CPPs during the production processes and to allow for early interventions in order to prevent losses of production batches due to quality issues. Process analytical technologies such as the dielectric spectroscopy or focused beam reflectance measurement (FBRM) are possible online monitoring tools, which can be applied to monitor cell growth as well as morphological changes. Since the dielectric spectroscopy only captures cells with intact cell membranes, even information about dead cells with ruptured or leaking cell membranes can be derived. The following chapter describes the application of dielectric spectroscopy on various virus-infected and non-infected cell lines with respect to adherent as well as suspension cultures in common stirred tank reactors. The adherent mammalian cell lines Vero (African green monkey kidney cells) and hMSC-TERT (telomerase-immortalized human mesenchymal stem cells) are thereby cultured on microcarrier, which provide the required growth surface and allow the cultivation of these cells even in dynamic culture systems. In turn, the insect-derived cell lines S2 and Sf21 are used as examples for cells typically cultured in suspension. Moreover, the FBRM technology as a further monitoring tool for cell culture applications has been included in this chapter using the example of Drosophila S2 insect cells.

  7. Dynamics of the slow mode in the family of six-carbon monosaccharides monitored by dielectric spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kaminski, K; Kaminska, E; Wlodarczyk, P; Adrjanowicz, K; Wojnarowska, Z; Grzybowska, K; Paluch, M [Institute of Physics, Silesian University, ulica Uniwersytecka 4, 40-007 Katowice (Poland)

    2010-09-15

    Broadband dielectric measurements performed on D-glucose, L-sorbose, D-fructose and D-galactose revealed that, except for the structural relaxation process, one can detect in the liquid phase of these carbohydrates a much slower relaxation mode. Recently we have demonstrated that in D-glucose this relaxation mode might be related to the long range correlation of density fluctuations (LRCDF), also called Fischer clusters (FC). Based on the dielectric data obtained for the four monosaccharides we were able to make a more general conclusion about the characteristic dielectric features of the slow mode in the whole family of carbohydrates. We found out that the timescale separation between structural and considered relaxation reaches up to six decades at the glass transition temperature and the dielectric strength decreases significantly with lowering temperature. Another very interesting feature of the slow process is that it can be described by an almost exponential response function. We have found out that the fragility of the slow process lies within the range m = 44-50. Finally, we have also shown that there is a close link between structural and slow relaxation.

  8. Toward the Physical Basis of Complex Systems: Dielectric Analysis of Porous Silicon Nanochannels in the Electrical Double Layer Length Range

    Directory of Open Access Journals (Sweden)

    Radu Mircea Ciuceanu

    2011-01-01

    Full Text Available Dielectric analysis (DEA shows changes in the properties of
    a materials as a response to the application on it of a time dependent electric field. Dielectric measurements are extremely sensitive to small changes in materials properties, that molecular relaxation, dipole changes, local motions that involve the reorientation of dipoles, and so can be observed by DEA. Electrical double layer (EDL, consists in a shielding layer that is naturally created within the liquid near a charged surface. The thickness of the EDL is given by the characteristic Debye length what grows less with the ionic strength defined by half summ products of concentration with square of charge for all solvent
    ions (co-ions, counterions, charged molecules. The typical length scale for the Debye length is on the order of 1 nm, depending on the ionic contents in the solvent; thus, the EDL becomes significant for nano-capillaries that nanochannels. The electrokinetic e®ects in the nanochannels depend essentialy on the distribution of charged species in EDL, described by the Poisson-Boltzmann equation those solutions require the solvent dielectric permittivity. In this work we propose a model for solvent low-frequency permittivity and a DEA profile taking into account both the porous silicon electrode and aqueous solvent properties in the Debye length range.

  9. The use of dielectric spectroscopy for the characterisation of the precipitation of hydrophobically modified poly(acrylic-acid) with divalent barium ions

    DEFF Research Database (Denmark)

    Christensen, Peter Vittrup; Keiding, Kristian

    2009-01-01

    The use of dielectric spectroscopy as a monitor for coagulation processes was investigated. Hydrophobically modified poly(acrylic-acid) polymers were used as model macromolecules and coagulated with barium ions. The coagulation process was quantified using a photometric dispersion analyser, thereby...... serving as a point of reference for the dielectric spectroscopy. It was found that the hydrophobic modification increased the dosage of barium needed to obtain complete coagulation, whereas the dosage required to initiate coagulation was lowered. The coagulation of the polymer samples caused...... the relaxation time of the measured dielectric dispersion to increase, and this parameter was found to be a good indicator of the formation of polymer aggregates. The magnitude of the dielectric dispersion decreased as a function of barium dosage, but when coagulation was initiated an increase was observed...

  10. Development of a microwave dielectric spectroscopy system for materials characterization using the open-ended coaxial probe technique

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Ruiz, I.; Aviles-Castro, D. [Centro Nacional de Metrologia, Queretaro (Mexico); Jardon-Aguilar, H. [Instituto Politecnico Nacional, Mexico, D. F. (Mexico)

    2001-02-01

    Dielectric spectroscopy is a measurement technique to characterize the interaction between electromagnetic energy and macroscopic samples as a function of frequency. It is based on the measurement of complex permittivity plus conductivity and it has shown to be very useful to provide information about internal structure of matter. It has some advantages over others like optical or chemical analysis: it is very fast, easy to implement, requires little or no preparation of the sample, it can be non-destructive and/or minimally intrusive. In this paper the development of a dielectric spectroscopy system for the microwave frequency range (50 MHz-20 GHz), using an open-ended coaxial probe as sensor, is described. The complete system includes a vector network analyzer, a microwave coaxial cable, the probe, a sample holder and a computer to automate measurements and further data processing. This system has been used to measure some liquid and solid materials such as alcohol, water and Teflon. The real and imaginary parts of permittivity as function of frequency, for several sugarcane alcohol and deionised water mixtures, tequilas and Teflon samples are given. Measurement repeatability and accuracy considerations were taken and it was identified that uncertainty of reference standards and system repeatability are the most important error sources. Also, it was found that open-ended coaxial probe technique is appropriate for measuring not only liquids but also solid materials. Some of the obtained results were compared to those reported in literature and good convergence was observed. [Spanish] La espectroscopia dielectrica es una tecnica moderna de medicion para caracterizar la interaccion entre la energia electromagnetica y muestras macroscopicas como funcion de la frecuencia. Esta tecnica se basa en la medicion de la permitividad compleja y conductividad de los materiales y ha mostrado ser muy util para proporcionar informacion sobre la estructura interna de estos. Tiene

  11. In vivo spectroscopy of healthy skin and pathology in terahertz frequency range

    International Nuclear Information System (INIS)

    Zaytsev, Kirill I; Gavdush, Arseniy A; Chernomyrdin, Nikita V; Karasik, Valeriy E; Yurchenko, Stanislav O; Kudrin, Konstantin G; Reshetov, Igor V

    2015-01-01

    Biomedical applications of terahertz (THz) technology and, in particular, THz pulsed spectroscopy have attracted considerable interest in the scientific community. A lot of papers have been dedicated to studying the ability for human disease diagnosis, including the diagnosis of human skin cancers. In this paper we have studied the THz material parameters and THz dielectric properties of human skin and pathology in vivo, and THz pulsed spectroscopy has been utilized for this purpose. We have found a contrast between material parameters of basal cell carcinoma and healthy skin, and we have also compared the THz material parameters of dysplastic and non-dysplastic pigmentary nevi in order to study the ability for early melanoma diagnosis. Significant differences between the THz material parameters of healthy skin and pathology have been detected, thus, THz pulsed spectroscopy promises to be become an effective tool for non-invasive diagnosis of skin neoplasms

  12. Free water content and monitoring of healing processes of skin burns studied by microwave dielectric spectroscopy in vivo

    International Nuclear Information System (INIS)

    Hayashi, Yoshihito; Miura, Nobuhiro; Shinyashiki, Naoki; Yagihara, Shin

    2005-01-01

    We have investigated the dielectric properties of human skin in vivo at frequencies up to 10 GHz using a time-domain reflectometry method with open-ended coaxial probes. Since γ-dispersion results from the reorientation of free water molecules, the free water content of skin is quantitatively determined by dielectric measurements. The free water content of finger skin increased by about 10% after soaking in 37 0 C water for 30 min, and it systematically decreased again through the drying process, as expected. Thus this analytical method has been applied to the study of skin burns. The free water content of burned human cheek skin due to hydrofluoric acid was significantly lower than that of normal skin, and the burned skin recovered through the healing process. In the case of a human hand skin burn due to heat, although the free water content was almost the same as that of normal skin at the beginning, it decreased during the healing process for the first 10 days, then began to increase. Although the number of test subjects was one for each experiment, it was shown that free water content is a good indicator for evaluating skin health and can be well monitored by dielectric spectroscopy

  13. Measurements of water molecule density by tunable diode laser absorption spectroscopy in dielectric barrier discharges with gas-water interface

    Science.gov (United States)

    Tachibana, Kunihide; Nakamura, Toshihiro; Kawasaki, Mitsuo; Morita, Tatsuo; Umekawa, Toyofumi; Kawasaki, Masahiro

    2018-01-01

    We measured water molecule (H2O) density by tunable diode-laser absorption spectroscopy (TDLAS) for applications in dielectric barrier discharges (DBDs) with a gas-water interface. First, the effects of water temperature and presence of gas flow were tested using a Petri dish filled with water and a gas injection nozzle. Second, the TDLAS system was applied to the measurements of H2O density in two types of DBDs; one was a normal (non-inverted) type with a dielectric-covered electrode above a water-filled counter electrode and the other was an inverted type with a water-suspending mesh electrode above a dielectric-covered counter electrode. The H2O density in the normal DBD was close to the density estimated from the saturated vapor pressure, whereas the density in the inverted DBD was about half of that in the former type. The difference is attributed to the upward gas flow in the latter type, that pushes the water molecules up towards the gas-water interface.

  14. Dielectric Properties of Marsh Vegetation in a Frequency Range of 0.1-18 GHz Under Variation of Temperature and Moisture

    Science.gov (United States)

    Romanov, A. N.; Kochetkova, T. D.; Suslyaev, V. I.; Shcheglova, A. S.

    2017-09-01

    Dielectric characteristics of some species of marsh vegetation: lichen Cladonia stellaris (Opiz) Pouzar, moss Sphagnum, and a representative of Bryidae mosses - Dicranum polysetum are studied in the frequency range from 100 MHz to 18 GHz. At a frequency of 1.41 GHz, the influence of temperature in the range from -12 to +20°C on the behavior of dielectric characteristics of mosses, lichens, and peat is studied. The dependences of the dielectric characteristics of vegetation on the volumetric wetness are established.

  15. Measuring changes of radio-frequency dielectric properties of chicken meat during storage

    Science.gov (United States)

    Changes in dielectric properties of stored chicken meat were tracked by using a radio-frequency dielectric spectroscopy method. For this purpose, the dielectric properties were measured with an open-ended coaxial-line probe and vector network analyzer over a broad frequency range from 200 MHz to 20...

  16. Measurement of sugar content of watermelon using near-infrared reflectance spectroscopy in comparison with dielectric property

    Science.gov (United States)

    Tao, Xuemei; Bao, Yidan

    2006-09-01

    The sugar content of watermelon is important to its taste thus influences the market. It's difficult to know whether the melon is sweet or not for consumers. We tried to develop a convenient meter to determine the sugar of watermelon. The first objective of this paper was to demonstrate the feasibility of using a near-infrared reflectance spectrometer (NIRS) to investigate the relationship between sugar content of watermelon and absorption spectra. The NIRS reflectance of nondestructive watermelon was measured with a Visible/NIR spectrophotometer in 325-1075nm range. The sugar content of watermelon was obtained with a handhold sugar content meter. The second objective was to measure the watermelon's dielectric property, such as dielectric resistance, capacitance, quality factor and dielectric loss. A digital electric bridge instrument was used to get the dielectric property. The experimental results show that they were related to watermelon's sugar content. A comparison between the two methods was made in the paper. The model derived from NIRS reflection is useful for class identification of Zaochun Hongyu watermelon though it's not quite accurate in sweetness prediction (the max. deviation is 0.7). Electric property bears little relation to sugar content of watermelon at this experiment and it couldn't be used as non-destructive inspection method.

  17. Ion transport study in polymer-nanocomposite films by dielectric spectroscopy and conductivity scaling

    Science.gov (United States)

    Tripathi, Namrata; Thakur, Awalendra K.; Shukla, Archana; Marx, David T.

    2015-07-01

    The dielectric and conductivity response of polymer nanocomposite electrolytes (films of PMMA4LiClO4 dispersed with nano-CeO2 powder) have been investigated. The dielectric behavior was analyzed via the dielectric permittivity (ε‧) and dissipation factor (tan δ) of the samples. The analysis has shown the presence of space charge polarization at lower frequencies. The real part of ac conductivity spectra of materials obeys the Jonscher power law. Parameters such as dc conductivity, hopping rate, activation energies and the concentration of charge carriers were determined from conductivity data using the Almond West formalism. It is observed that the higher ionic conductivity at higher temperature is due to increased thermally-activated hopping rates accompanied by a significant increase in carrier concentration. The contribution of carrier concentration to the total conductivity is also confirmed from activation energy of migration conduction and from Summerfield scaling. The ac conductivity results are also well correlated with TEM results.

  18. Analysis of mobile ionic impurities in polyvinylalcohol thin films by thermal discharge current and dielectric impedance spectroscopy

    Directory of Open Access Journals (Sweden)

    M. Egginger

    2012-12-01

    Full Text Available Polyvinylalcohol (PVA is a water soluble polymer frequently applied in the field of organic electronics for insulating thin film layers. By-products of PVA synthesis are sodium acetate ions which contaminate the polymer material and can impinge on the electronic performance when applied as interlayer dielectrics in thin film transistors. Uncontrollable voltage instabilities and unwanted hysteresis effects are regularly reported with PVA devices. An understanding of these effects require knowledge about the electronic dynamics of the ionic impurities and their influence on the dielectric properties of PVA. Respective data, which are largely unknown, are being presented in this work. Experimental investigations were performed from room temperature to 125°C on drop-cast PVA films of three different quality grades. Data from thermal discharge current (TDC measurements, polarization experiments, and dielectric impedance spectroscopy concurrently show evidence of mobile ionic carriers. Results from TDC measurements indicate the existence of an intrinsic, build-in electric field of pristine PVA films. The field is caused by asymmetric ionic double layer formation at the two different film-interfaces (substrate/PVA and PVA/air. The mobile ions cause strong electrode polarization effects which dominate dielectric impedance spectra. From a quantitative electrode polarization analysis of isothermal impedance spectra temperature dependent values for the concentration, the mobility and conductivity together with characteristic relaxation times of the mobile carriers are given. Also shown are temperature dependent results for the dc-permittivity and the electronic resistivity. The obtained results demonstrate the feasibility to partly remove contaminants from a PVA solution by dialysis cleaning. Such a cleaning procedure reduces the values of ion concentration, conductivity and relaxation frequency.

  19. Excitations and relaxation dynamics in multiferroic GeV4S8 studied by terahertz and dielectric spectroscopy

    Science.gov (United States)

    Reschke, S.; Wang, Zhe; Mayr, F.; Ruff, E.; Lunkenheimer, P.; Tsurkan, V.; Loidl, A.

    2017-10-01

    We report on THz time-domain spectroscopy on multiferroic GeV4S8 , which undergoes orbital ordering at a Jahn-Teller transition at 30.5 K and exhibits antiferromagnetic order below 14.6 K. The THz experiments are complemented by dielectric experiments at audio and radio frequencies. We identify a low-lying excitation close to 0.5 THz, which is only weakly temperature dependent and probably corresponds to a molecular excitation within the electronic level scheme of the V4 clusters. In addition, we detect complex temperature-dependent behavior of a low-lying phononic excitation, closely linked to the onset of orbitally driven ferroelectricity. In the high-temperature cubic phase, which is paramagnetic and orbitally disordered, this excitation is of relaxational character becomes an overdamped Lorentzian mode in the orbitally ordered phase below the Jahn-Teller transition, and finally appears as well-defined phonon excitation in the antiferromagnetic state. Abrupt changes in the real and imaginary parts of the complex dielectric permittivity show that orbital ordering appears via a structural phase transition with strong first-order character and that the onset of antiferromagnetic order is accompanied by significant structural changes, which are of first-order character, too. Dielectric spectroscopy documents that at low frequencies, significant dipolar relaxations are present in the orbitally ordered, paramagnetic phase only. In contrast to the closely related GaV4S8 , this relaxation dynamics that most likely mirrors coupled orbital and polar fluctuations does not seem to be related to the dynamic processes detected in the THz regime.

  20. A dynamic range upgrade for neutron backscattering spectroscopy

    International Nuclear Information System (INIS)

    Cook, J.C.; Petry, W.; Heidemann, A.; Barthelemy, J.F.

    1992-01-01

    We report on an instrumental development of the cold neutron backscattering spectrometer IN10 at the Institut Laue-Langevin which has led to a significant increase in its dynamic range. Thermal expansion of a variety of neutron monochromator crystals is used instead of a mechanical oscillation of the monochromator, yielding an increase in the energy transfer range by nearly two orders of magnitude in an elastic wave vector transfer range of 0.07≤Q (A -1 )≤2.0. Using this new configuration, first inelastic measurements have been performed using the (200) reflections from KCl and NaCl monochromators with crystal temperatures between 80 K and 700 K. The thermal expansion of these crystals in this temperature range gives rise to energy transfer ranges (neutron energy gain) of -16<ℎω(μeV)<+83 for KCl and -530<ℎω(μeV)<-420 for NaCl with energy resolution (FWHM) of around 0.6 and 1.4 μeV for KCl and NaCl respectively. These figures represent the highest energy resolution currently available at these energy and wave vector transfers. (orig.)

  1. Dynamics of asymmetric non-polymeric binary glass formers—A nuclear magnetic resonance and dielectric spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Pötzschner, B.; Mohamed, F.; Lichtinger, A.; Bock, D.; Rössler, E. A., E-mail: ernst.roessler@uni-bayreuth.de [Experimentalphysik II, Universität Bayreuth, 95440 Bayreuth (Germany)

    2015-10-21

    We study a dynamically asymmetric binary glass former with the low-T{sub g} component m-tri-cresyl phosphate (m-TCP: T{sub g} = 206 K) and a spirobichroman derivative as a non-polymeric high-T{sub g} component (T{sub g} = 382 K) by means of {sup 1}H nuclear magnetic resonance (NMR), {sup 31}P NMR, and dielectric spectroscopy which allow component-selectively probing the dynamics. The entire concentration range is covered, and two main relaxation processes with two T{sub g} are identified, T{sub g1} and T{sub g2}. The slower one is attributed to the high-T{sub g} component (α{sub 1}-process), and the faster one is related to the m-TCP molecules (α{sub 2}-process). Yet, there are indications that a small fraction of m-TCP is associated also with the α{sub 1}-process. While the α{sub 1}-relaxation only weakly broadens upon adding m-TCP, the α{sub 2}-relaxation becomes extremely stretched leading to quasi-logarithmic correlation functions at low m-TCP concentrations—as probed by {sup 31}P NMR stimulated echo experiments. Frequency-temperature superposition does not apply for the α{sub 2}-process and it reflects an isotropic, liquid-like motion which is observed even below T{sub g1}, i.e., in the matrix of the arrested high-T{sub g} molecules. As proven by 2D {sup 31}P NMR, the corresponding dynamic heterogeneities are of transient nature, i.e., exchange occurs within the distribution G(lnτ{sub α2}). At T{sub g1} a crossover is found for the temperature dependence of (mean) τ{sub α2}(T) from non-Arrhenius above to Arrhenius below T{sub g1} which is attributed to intrinsic confinement effects. This “fragile-to-strong” transition also leads to a re-decrease of T{sub g2}(c{sub m−TCP}) at low concentration c{sub m−TCP}, i.e., a maximum is observed in T{sub g2}(c{sub m−TCP}) while T{sub g1}(c{sub m−TCP}) displays the well-known plasticizer effect. Although only non-polymeric components are involved, we re-discover essentially all features previously

  2. Raman spectroscopy and dielectric Studies of multiple phase transitions in ZnO:Ni

    Science.gov (United States)

    Yadav, Harish Kumar; Sreenivas, K.; Gupta, Vinay; Scott, J. F.; Katiyar, R. S.

    2008-03-01

    We present Raman and dielectric data on Ni-doped ZnO (Zn1-xNixO) ceramics as a function of Ni concentration (x =0.03, 0.06, and 0.10) and temperature. A mode (around 130cm-1) is identified as TA(M) [J. M. Calleja and M. Cardona, Phys. Rev. B 16, 3753 (1977)] and appears due to an antiferromagnetic phase transition at low temperatures (100K) via the spin-orbit mechanism [P. Moch and C. Dugautier, Phys. Lett. A 43, 169 (1973)]. A strong dielectric anomaly occurs at around 430-460K, depending on Ni concentration, and is due to extrinsic electret effects (Ni ionic conduction) and not to a ferroelectric phase transition.

  3. Ion transport study in polymer-nanocomposite films by dielectric spectroscopy and conductivity scaling

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, Namrata, E-mail: ntripat@ilstu.edu [Department of Physics, Illinois State University, Normal, IL 61790 (United States); Thakur, Awalendra K. [Department of Physics, Indian Institute of Technology Patna, Bihar 800013 (India); Shukla, Archana [Department of Metallurgical Engineering & Materials Science, Indian Institute of Technology, Bombay 721302 (India); Marx, David T. [Department of Physics, Illinois State University, Normal, IL 61790 (United States)

    2015-07-15

    The dielectric and conductivity response of polymer nanocomposite electrolytes (films of PMMA{sub 4}LiClO{sub 4} dispersed with nano-CeO{sub 2} powder) have been investigated. The dielectric behavior was analyzed via the dielectric permittivity (ε′) and dissipation factor (tan δ) of the samples. The analysis has shown the presence of space charge polarization at lower frequencies. The real part of ac conductivity spectra of materials obeys the Jonscher power law. Parameters such as dc conductivity, hopping rate, activation energies and the concentration of charge carriers were determined from conductivity data using the Almond West formalism. It is observed that the higher ionic conductivity at higher temperature is due to increased thermally-activated hopping rates accompanied by a significant increase in carrier concentration. The contribution of carrier concentration to the total conductivity is also confirmed from activation energy of migration conduction and from Summerfield scaling. The ac conductivity results are also well correlated with TEM results.

  4. Tuning of dielectric properties of SrTiO.sub.3./sub. in the terahertz range

    Czech Academy of Sciences Publication Activity Database

    Skoromets, Volodymyr; Kadlec, Filip; Kadlec, Christelle; Němec, Hynek; Rychetský, Ivan; Panaitov, G.; Müller, V.; Fattakhova-Rohlfing, D.; Moch, P.; Kužel, Petr

    2011-01-01

    Roč. 84, č. 17 (2011), "174121-1"-"174121-10" ISSN 1098-0121 R&D Projects: GA ČR GD202/09/H041; GA AV ČR(CZ) IAA100100907; GA ČR GA202/09/0430 Institutional research plan: CEZ:AV0Z10100520 Keywords : strontium titanate * terahertz spectroscopy * anharmonic coefficient Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.691, year: 2011 http://link.aps.org/doi/10.1103/PhysRevB.84.174121

  5. Dynamic Behaviors of Solvent Molecules Restricted in Poly (Acryl Amide Gels Analyzed by Dielectric and Diffusion NMR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Hironobu Saito

    2018-06-01

    Full Text Available Dynamics of solvent molecules restricted in poly (acryl amide gels immersed in solvent mixtures of acetone–, 1,4-dioxane–, and dimethyl sulfoxide–water were analyzed by the time domain reflectometry method of dielectric spectroscopy and the pulse field gradient method of nuclear magnetic resonance. Restrictions of dynamic behaviors of solvent molecules were evaluated from relaxation parameters such as the relaxation time, its distribution parameter, and the relaxation strength obtained by dielectric measurements, and similar behaviors with polymer concentration dependences for the solutions were obtained except for the high polymer concentration in collapsed gels. Scaling analyses for the relaxation time and diffusion coefficient respectively normalized by those for bulk solvent suggested that the scaling exponent determined from the scaling variable defined as a ratio of the size of solvent molecule to mesh size of polymer networks were three and unity, respectively, except for collapsed gels. The difference in these components reflects characteristic molecular interactions in the rotational and translational diffusions, and offered a physical picture of the restriction of solvent dynamics. A universal treatment of slow dynamics due to the restriction from polymer chains suggests a new methodology of characterization of water structures.

  6. Application of Atomic Dielectric Resonance Spectroscopy for the screening of blood samples from patients with clinical variant and sporadic CJD

    Directory of Open Access Journals (Sweden)

    Ironside James W

    2007-08-01

    Full Text Available Abstract Background Sub-clinical variant Creutzfeldt-Jakob disease (vCJD infection and reports of vCJD transmission through blood transfusion emphasise the need for blood screening assays to ensure the safety of blood and transplanted tissues. Most assays aim to detect abnormal prion protein (PrPSc, although achieving required sensitivity is a challenge. Methods We have used innovative Atomic Dielectric Resonance Spectroscopy (ADRS, which determines dielectric properties of materials which are established by reflectivity and penetration of radio/micro waves, to analyse blood samples from patients and controls to identify characteristic ADR signatures unique to blood from vCJD and to sCJD patients. Initial sets of blood samples from vCJD, sCJD, non-CJD neurological diseases and normal healthy adults (blood donors were screened as training samples to determine group-specific ADR characteristics, and provided a basis for classification of blinded sets of samples. Results Blood sample groups from vCJD, sCJD, non-CJD neurological diseases and normal healthy adults (blood donors screened by ADRS were classified with 100% specificity and sensitivity, discriminating these by a co-variance expert analysis system. Conclusion ADRS appears capable of recognising and discriminating serum samples from vCJD, sCJD, non-CJD neurological diseases, and normal healthy adults, and might be developed to provide a system for primary screening or confirmatory assay complementary to other screening systems.

  7. Application of Atomic Dielectric Resonance Spectroscopy for the screening of blood samples from patients with clinical variant and sporadic CJD

    Science.gov (United States)

    Fagge, Timothy J; Barclay, G Robin; Stove, G Colin; Stove, Gordon; Robinson, Michael J; Head, Mark W; Ironside, James W; Turner, Marc L

    2007-01-01

    Background Sub-clinical variant Creutzfeldt-Jakob disease (vCJD) infection and reports of vCJD transmission through blood transfusion emphasise the need for blood screening assays to ensure the safety of blood and transplanted tissues. Most assays aim to detect abnormal prion protein (PrPSc), although achieving required sensitivity is a challenge. Methods We have used innovative Atomic Dielectric Resonance Spectroscopy (ADRS), which determines dielectric properties of materials which are established by reflectivity and penetration of radio/micro waves, to analyse blood samples from patients and controls to identify characteristic ADR signatures unique to blood from vCJD and to sCJD patients. Initial sets of blood samples from vCJD, sCJD, non-CJD neurological diseases and normal healthy adults (blood donors) were screened as training samples to determine group-specific ADR characteristics, and provided a basis for classification of blinded sets of samples. Results Blood sample groups from vCJD, sCJD, non-CJD neurological diseases and normal healthy adults (blood donors) screened by ADRS were classified with 100% specificity and sensitivity, discriminating these by a co-variance expert analysis system. Conclusion ADRS appears capable of recognising and discriminating serum samples from vCJD, sCJD, non-CJD neurological diseases, and normal healthy adults, and might be developed to provide a system for primary screening or confirmatory assay complementary to other screening systems. PMID:17760958

  8. Structural, optical and dielectric properties of graphene oxide

    Science.gov (United States)

    Bhargava, Richa; Khan, Shakeel

    2018-05-01

    The Modified Hummers method has been used to synthesize Graphene oxide nanoparticles. Microstructural analyses were carried out by X-ray diffraction and Fourier transform infrared spectroscopy. Optical properties were studied by UV-visible spectroscopy in the range of 200-700 nm. The energy band gap was calculated with the help of Tauc relation. The frequency dependence of dielectric constant and dielectric loss were studied over a range of the frequency 75Hz to 5MHz at room temperature. The dispersion in dielectric constant can be explained with the help of Maxwell-Wagner model in studied nanoparticles.

  9. Integrated arrays of air-dielectric graphene transistors as transparent active-matrix pressure sensors for wide pressure ranges.

    Science.gov (United States)

    Shin, Sung-Ho; Ji, Sangyoon; Choi, Seiho; Pyo, Kyoung-Hee; Wan An, Byeong; Park, Jihun; Kim, Joohee; Kim, Ju-Young; Lee, Ki-Suk; Kwon, Soon-Yong; Heo, Jaeyeong; Park, Byong-Guk; Park, Jang-Ung

    2017-03-31

    Integrated electronic circuitries with pressure sensors have been extensively researched as a key component for emerging electronics applications such as electronic skins and health-monitoring devices. Although existing pressure sensors display high sensitivities, they can only be used for specific purposes due to the narrow range of detectable pressure (under tens of kPa) and the difficulty of forming highly integrated arrays. However, it is essential to develop tactile pressure sensors with a wide pressure range in order to use them for diverse application areas including medical diagnosis, robotics or automotive electronics. Here we report an unconventional approach for fabricating fully integrated active-matrix arrays of pressure-sensitive graphene transistors with air-dielectric layers simply formed by folding two opposing panels. Furthermore, this realizes a wide tactile pressure sensing range from 250 Pa to ∼3 MPa. Additionally, fabrication of pressure sensor arrays and transparent pressure sensors are demonstrated, suggesting their substantial promise as next-generation electronics.

  10. NATO Advanced Research Workshop on Broadband Dielectric Spectroscopy and its Advanced Technological Applications

    CERN Document Server

    Recent Advances in Broadband Dielectric Spectroscopy

    2013-01-01

    This volume considers experimental and theoretical dielectric studies of the structure and dynamics of complex systems.  Complex systems constitute an almost universal class of materials including associated liquids, polymers, biomolecules, colloids, porous materials, doped ferroelectric crystals, nanomaterials, etc. These systems are characterized by a new "mesoscopic" length scale, intermediate between molecular and macroscopic. The mesoscopic structures of complex systems typically arise from fluctuations or competing interactions and exhibit a rich variety of static and dynamic behaviour. This growing field is interdisciplinary; it complements solid state and statistical physics, and overlaps considerably with chemistry, chemical engineering, materials science, and biology. A common theme in complex systems is that while such materials are disordered on the molecular scale and homogeneous on the macroscopic scale, they usually possess a certain degree of order on an intermediate, or mesoscopic, scale due...

  11. Metal-dielectric-CNT nanowires for surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Bond, Tiziana C.; Altun, Ali; Park, Hyung Gyu

    2017-10-03

    A sensor with a substrate includes nanowires extending vertically from the substrate, a hafnia coating on the nanowires that provides hafnia coated nanowires, and a noble metal coating on the hafnia coated nanowires. The top of the hafnia and noble metal coated nanowires bent onto one another to create a canopy forest structure. There are numerous randomly arranged holes that let through scattered light. The many points of contact, hot spots, amplify signals. The methods include the steps of providing a Raman spectroscopy substrate, introducing nano crystals to the Raman spectroscopy substrate, growing a forest of nanowires from the nano crystals on the Raman spectroscopy substrate, coating the nanowires with hafnia providing hafnia coated nanowires, and coating the hafnia coated nanowires with a noble metal or other metal.

  12. Focus Article: Oscillatory and long-range monotonic exponential decays of electrostatic interactions in ionic liquids and other electrolytes: The significance of dielectric permittivity and renormalized charges

    Science.gov (United States)

    Kjellander, Roland

    2018-05-01

    A unified treatment of oscillatory and monotonic exponential decays of interactions in electrolytes is displayed, which highlights the role of dielectric response of the fluid in terms of renormalized (effective) dielectric permittivity and charges. An exact, but physically transparent statistical mechanical formalism is thereby used, which is presented in a systematic, pedagogical manner. Both the oscillatory and monotonic behaviors are given by an equation for the decay length of screened electrostatic interactions that is very similar to the classical expression for the Debye length. The renormalized dielectric permittivities, which have similar roles for electrolytes as the dielectric constant has for pure polar fluids, consist in general of several entities with different physical meanings. They are connected to dielectric response of the fluid on the same length scale as the decay length of the screened interactions. Only in cases where the decay length is very long, these permittivities correspond approximately to a dielectric response in the long-wavelength limit, like the dielectric constant for polar fluids. Experimentally observed long-range exponentially decaying surface forces are analyzed as well as the oscillatory forces observed for short to intermediate surface separations. Both occur in some ionic liquids and in concentrated as well as very dilute electrolyte solutions. The coexisting modes of decay are in general determined by the bulk properties of the fluid and not by the solvation of the surfaces; in the present cases, they are given by the behavior of the screened Coulomb interaction of the bulk fluid. The surface-fluid interactions influence the amplitudes and signs or phases of the different modes of the decay, but not their decay lengths and wavelengths. The similarities between some ionic liquids and very dilute electrolyte solutions as regards both the long-range monotonic and the oscillatory decays are analyzed.

  13. Structural characterization, vibrational spectroscopy accomplished with DFT calculation, thermal and dielectric behaviors in a new organic-inorganic tertrapropylammonium aquapentachlorostannate dihydrate compound

    Energy Technology Data Exchange (ETDEWEB)

    Hajlaoui, Sondes, E-mail: hajlaouisondes@yahoo.fr [Unité de recherche de la matière condensée, Faculté des Sciences de Sfax, Université de Sfax, BP 1171, 3000, Sfax (Tunisia); Chaabane, Iskandar [Unité de recherche de la matière condensée, Faculté des Sciences de Sfax, Université de Sfax, BP 1171, 3000, Sfax (Tunisia); Lhoste, Jérôme; Bulou, Alain [LUNAM Université, Université du Maine, CNRS UMR 6283, Institut des Molécules et Matériaux du Mans (IMMM), Avenue Olivier Messiaen, 72085, Le Mans, Cedex 9 (France); Guidara, Kamel [Unité de recherche de la matière condensée, Faculté des Sciences de Sfax, Université de Sfax, BP 1171, 3000, Sfax (Tunisia)

    2016-09-15

    In this work a novel compound tertrapropylammonium aquapentachlorostannate dihydrate was synthesized and characterized by; single crystal X-ray diffraction, vibrational spectroscopy, differential scanning calorimetric and dielectric measurement. The crystal structure refinement at room temperature reveled that this later belongs to the monoclinic compound with P121/c1 space group with the following unit cell parameters a = 8.2699(3) Å, b = 12.4665(4) Å, c = 22.3341(7) Å and β = 92.94(0)°. The crystal arrangement can be described by stacked organic-inorganic layers in the c direction with two independent water molecules placed between each two layers. The detailed interpretations of the vibrational properties of the studied compound were performed using density functional theory (DFT) with the B3LYP/LanL2DZ basis set, and has enabled us to make the detailed assignments by comparative study of the experimental and calculated Raman and IR spectra. The differential scanning calorimetry (DSC) measurement disclosed two anomalies in the temperature range 356–376 (T{sub 1}) K and at 393 K (T{sub 2}) characterized by the dehydration of the sample and probably a reconstruction of a new structure after T{sub 2} transition. The temperature dependences of dielectric permittivity show a relaxation process around T{sub 2} anomaly indicating the occurrence of the disorder at high temperature. The dependence of the exponent m(T) on temperature, extracted from the straight lines of log(ε″) with log (ω), suggests that the correlated barrier hopping is the appropriate model for the conduction mechanism. - Highlights: • The single-crystal X-ray diffraction has been performed. • The assignments of the vibration modes based on DFT were reported and discussed. • Differential scanning calorimetric reveals the presence of two endothermic peaks. • The electric permittivity was studied using the impedance measurements. • The CBH is the appropriate model for the conduction

  14. Broad-band conductivity and dielectric spectroscopy of composites of multiwalled carbon nanotubes and poly(ethylene terephthalate) around their low percolation threshold

    Science.gov (United States)

    Nuzhnyy, D.; Savinov, M.; Bovtun, V.; Kempa, M.; Petzelt, J.; Mayoral, B.; McNally, T.

    2013-02-01

    Composites of multiwalled carbon nanotubes with poly(ethylene terephthalate) (PET-MWCNT) with up to 3 vol% MWCNTs were prepared and characterized by broad-band AC conductivity and dielectric spectroscopy up to the infrared range using several techniques. A very low electrical percolation threshold of 0.07 vol% MWCNTs was revealed from the low-frequency conductivity plateau as well as from DC conductivity, whose values show the same critical power dependence on MWCNT concentration with the exponent t = 4.3. Above the plateau, the AC conductivity increases with frequency up to the THz range, where it becomes overlapped with the absorption of vibrational modes. The temperature dependence down to ˜5 K has shown semiconductor behaviour with a concentration-independent but weakly temperature-dependent small activation energy of ˜3 meV. The behaviour is compatible with the previously suggested fluctuation-induced tunnelling conductivity model through a thin (˜1 nm) polymer contact layer among the adjacent MWCNTs within percolated clusters. At higher frequencies, deviations from the simple universal conductivity behaviour are observed, indicating some distribution of energy barriers for an electron hopping mechanism.

  15. Filament-induced remote surface ablation for long range laser-induced breakdown spectroscopy operation

    International Nuclear Information System (INIS)

    Rohwetter, Ph.; Stelmaszczyk, K.; Woeste, L.; Ackermann, R.; Mejean, G.; Salmon, E.; Kasparian, J.; Yu, J.; Wolf, J.-P.

    2005-01-01

    We demonstrate laser induced ablation and plasma line emission from a metallic target at distances up to 180 m from the laser, using filaments (self-guided propagation structures ∼ 100 μm in diameter and ∼ 5 x 10 13 W/cm 2 in intensity) appearing as femtosecond and terawatt laser pulses propagating in air. The remarkable property of filaments to propagate over a long distance independently of the diffraction limit opens the frontier to long range operation of the laser-induced breakdown spectroscopy technique. We call this special configuration of remote laser-induced breakdown spectroscopy 'remote filament-induced breakdown spectroscopy'. Our results show main features of filament-induced ablation on the surface of a metallic sample and associated plasma emission. Our experimental data allow us to estimate requirements for the detection system needed for kilometer-range remote filament-induced breakdown spectroscopy experiment

  16. Dielectric Properties of Water in Butter and Water-AOT-Heptane Systems Measured using Terahertz Time-Domain Spectroscopy

    DEFF Research Database (Denmark)

    Møller, Uffe; Folkenberg, Jacob Riis; Jepsen, Peter Uhd

    2010-01-01

    We investigate the dielectric properties of water confined in nanometer-sized inverse micelles in mixtures of water, AOT, and heptane. We show that the dielectric properties of the confined water are dependent on the water pool size and different from those of bulk water. We also discuss...... the dielectric properties of different vegetable oils, lard, and butter, and use these properties to deduce the dielectric properties of water in butter, which are shown to deviate significantly from the dielectric properties of bulk water....

  17. Water-induced charge transport in tablets of microcrystalline cellulose of varying density: dielectric spectroscopy and transient current measurements

    International Nuclear Information System (INIS)

    Nilsson, Martin; Alderborn, Goeran; Stroemme, Maria

    2003-01-01

    Room temperature dielectric frequency response data taken over 13 decades in frequency on microcrystalline cellulose (MCC) tablets of varying density are presented. The frequency response shows on three different processes: the first one is a high-frequency relaxation process whose magnitude increases and reaches a plateau as the tablet density increases. This process is associated with orientational motions of local chain segments via glycosidic bonds. The second relaxation process, related to the presence of water in the MCC matrix, is insensitive to changes in tablet density. At lower frequencies, dc-like imperfect charge transport dominates the dielectric spectrum. The dc conductivity was found to decrease with increasing tablet density and increase exponentially with increasing humidity. Transient current measurements indicated that two different ionic species, protons and OH - ions, lied behind the observed conductivity. At ambient humidity of 22%, only one in a billion of the water molecules present in the tablet matrix participated in long range dc conduction. The diffusion coefficient of the protons and OH - ions were found to be of the order of 10 -9 cm 2 /s, which is the same as for small salt building ions in MCC. This shows that ionic drugs leaving a tablet matrix may diffuse in the same manner as the constituent ions of water and, thus, elucidates the necessity to understand the water transport properties of excipient materials to be able to tailor the drug release process from pharmaceutical tablets

  18. Aging phenomena of chitosan and chitosan-diclofenac sodium system detected by low-frequency dielectric spectroscopy.

    Science.gov (United States)

    Bodek, K H; Bak, G W

    1999-09-01

    The use of natural polymers for design of dosage form has received considerable attention recently, especially from the safety point of view. Among these polymers, chitosan shows very interesting biological, chemical and physical properties which makes it possible to use chitosan for various pharmaceutical applications. Microcrystalline chitosan (MCCh) is a special multifunctional polymeric material existing in the form of either of gelatinous water dispersion or a powder. Thermal aging of chitosan and chitosan-diclofenac sodium mixture have been studied using low-frequency dielectric measurements. The aging was carried out by annealing in ambient atmosphere in the temperature range between 25 degrees C and 100 degrees C. The dielectric losses in the aged samples proved to decrease by about one order of magnitude. The additional measurements of molecular weight distribution and infrared absorption were also carried out for better understanding of nature of the ageing phenomena. Partial evacuation of water, cross-linking and improvement of structural order may be suggested to be a result of thermal aging of the investigated materials.

  19. Raman spectroscopy and effective dielectric function in PLZT x/40/60

    Czech Academy of Sciences Publication Activity Database

    Buixaderas, Elena; Gregora, Ivan; Kamba, Stanislav; Petzelt, Jan; Kosec, M.

    2008-01-01

    Roč. 20, č. 34 (2008), 345229/1-345229/10 ISSN 0953-8984 R&D Projects: GA AV ČR IAA100100701; GA AV ČR KAN301370701; GA ČR(CZ) GA202/06/0403 Institutional research plan: CEZ:AV0Z10100520 Keywords : PLZT * Raman and Infrared spectroscopies * phonons * effective medium approximation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.900, year: 2008

  20. Dielectric constant extraction of graphene nanostructured on SiC substrates from spectroscopy ellipsometry measurement using Gauss–Newton inversion method

    Energy Technology Data Exchange (ETDEWEB)

    Maulina, Hervin; Santoso, Iman, E-mail: iman.santoso@ugm.ac.id; Subama, Emmistasega; Nurwantoro, Pekik; Abraha, Kamsul [DepartmenFisika, Universitas Gadjah Mada, Sekip Utara BLS 21 Yogyakarta (Indonesia); Rusydi, Andrivo [Physics Department, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore)

    2016-04-19

    The extraction of the dielectric constant of nanostructured graphene on SiC substrates from spectroscopy ellipsometry measurement using the Gauss-Newton inversion (GNI) method has been done. This study aims to calculate the dielectric constant and refractive index of graphene by extracting the value of ψ and Δ from the spectroscopy ellipsometry measurement using GNI method and comparing them with previous result which was extracted using Drude-Lorentz (DL) model. The results show that GNI method can be used to calculate the dielectric constant and refractive index of nanostructured graphene on SiC substratesmore faster as compared to DL model. Moreover, the imaginary part of the dielectric constant values and coefficient of extinction drastically increases at 4.5 eV similar to that of extracted using known DL fitting. The increase is known due to the process of interband transition and the interaction between the electrons and electron-hole at M-points in the Brillouin zone of graphene.

  1. Study of electrical properties of Sc doped BaFe12O19 ceramic using dielectric, impedance, modulus spectroscopy and AC conductivity

    Science.gov (United States)

    Gupta, Surbhi; Deshpande, S. K.; Sathe, V. G.; Siruguri, V.

    2018-04-01

    We present dielectric, complex impedance, modulus spectroscopy and AC conductivity studies of the compound BaFe10Sc2O19 as a function of temperature and frequency to understand the conduction mechanism. The variation in complex dielectric constant with frequency and temperature were analyzed on the basis of Maxwell-Wagner-Koop's theory and charge hopping between ferrous and ferric ions. The complex impedance spectroscopy study shows only grain contribution whereas complex modulus plot shows two semicircular arcs which indicate both grain and grain boundary contributions in conduction mechanism. AC conductivity has also been evaluated which follows the Jonscher's law. The activation energy calculated from temperature dependence of DC conductivity comes out to be Ea˜ 0.31eV.

  2. Ac conductivity and dielectric spectroscopy studies on tin oxide thin films formed by spray deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Barış, Behzad, E-mail: behzadbaris@gmail.com

    2014-04-01

    Au/tin oxide/n-Si (1 0 0) structure has been created by forming a tin oxide (SnO{sub 2}) on n-type Si by using the spray deposition technique. The ac electrical conductivity (σ{sub ac}) and dielectric properties of the structure have been investigated between 30 kHz and 1 MHz at room temperature. The values of ε', ε″, tanδ, σ{sub ac}, M' and M″ were determined as 1.404, 0.357, 0.253, 1.99×10{sup −7} S/cm, 0.665 and 0.168 for 1 MHz and 6.377, 6.411, 1.005, 1.07×10{sup −7} S/cm, 0.077 and 0.078 for 30 kHz at zero bias, respectively. These changes were attributed to variation of the charge carriers from the interface traps located between semiconductor and metal in the band gap. It is concluded that the values of the ε', ε″ and tanδ increase with decreasing frequency while a decrease is seen in σ{sub ac} and the real (M') and imaginary (M″) components of the electrical modulus. The M″ parameter of the structure has a relaxation peak as a function of frequency for each examined voltage. The relaxation time of M″(τ{sub M″}) varies from 0.053 ns to 0.018 ns with increasing voltage. The variation of Cole–Cole plots of the sample shows that there is one relaxation.

  3. Broad-band conductivity and dielectric spectroscopy of composites of multiwalled carbon nanotubes and poly(ethylene terephthalate) around their low percolation threshold

    Czech Academy of Sciences Publication Activity Database

    Nuzhnyy, Dmitry; Savinov, Maxim; Bovtun, Viktor; Kempa, Martin; Petzelt, Jan; Mayoral, B.; McNally, T.

    2013-01-01

    Roč. 24, č. 5 (2013), "055707-1"-"055707-9" ISSN 0957-4484 R&D Projects: GA ČR GAP204/12/0232; GA MŠk LD12025 Institutional support: RVO:68378271 Keywords : THz and dielectric spectroscopy * multiwalled carbon nanotubes * electrical percolation threshold * fluctuation-induced tunneling conductivity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.672, year: 2013 http://iopscience.iop.org/0957-4484/24/5/055707/

  4. Identification of nanostructural development in epoxy polymer layered silicate nanocomposites from the interpretation of differential scanning calorimetry and dielectric spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Roman, Frida, E-mail: roman@mmt.upc.edu [Laboratori de Termodinamica, Departament de Maquines i Motors Termics, ETSEIAT, Universitat Politecnica de Catalunya, Carrer Colom 11, 08222 Terrassa (Spain); Calventus, Yolanda, E-mail: calventus@mmt.upc.edu [Laboratori de Termodinamica, Departament de Maquines i Motors Termics, ETSEIAT, Universitat Politecnica de Catalunya, Carrer Colom 11, 08222 Terrassa (Spain); Colomer, Pere, E-mail: colomer@mmt.upc.edu [Laboratori de Termodinamica, Departament de Maquines i Motors Termics, ETSEIAT, Universitat Politecnica de Catalunya, Carrer Colom 11, 08222 Terrassa (Spain); Hutchinson, John M., E-mail: hutchinson@mmt.upc.edu [Laboratori de Termodinamica, Departament de Maquines i Motors Termics, ETSEIAT, Universitat Politecnica de Catalunya, Carrer Colom 11, 08222 Terrassa (Spain)

    2012-08-10

    Highlights: Black-Right-Pointing-Pointer Comparison of DSC and DRS in the cure of epoxy nanocomposites. Black-Right-Pointing-Pointer Dependence of exfoliation of nanocomposite on clay content. Black-Right-Pointing-Pointer Anionically initiated homopolymerisation in PLS nanocomposites. - Abstract: The effect of nanoclay on the non-isothermal cure kinetics of polymer layered silicate nanocomposites based upon epoxy resin is studied by calorimetric techniques (DSC and TGA) and by dielectric relaxation spectroscopy (DRS) in non-isothermal cure at constant heating rate. The cure process takes place by homopolymerisation, initiated anionically using 3 wt% dimethylaminopyridine (DMAP), and the influence of the nanoclay content has been analysed. Interesting differences are observed between the nanocomposites with 2 wt% and 5 wt% clay content. At low heating rates, these samples vitrify and then devitrify during the cure. For the sample with 2 wt% clay, the devitrification is accompanied by a thermally initiated homopolymerisation, which can be identified by DRS but not by DSC. The effect of this is to improve the exfoliation of the nanocomposite with 2 wt% clay, as verified by transmission electron microscopy, with a corresponding increase in the glass transition temperature. These observations are interpreted in respect of the nanocomposite preparation method and the cure kinetics.

  5. W/O Emulsions in High Electric Fields as Studied by Means of Time Domain Dielectric Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Foerdedal, Harald

    1995-11-01

    Since oil and brine coexist in the oil reservoirs, the crude oil produced contains free and emulsified water. The type of emulsion formed, water-in-oil or vice versa, generally depends on the amounts of water and oil before mixing. However, the presence of stabilisers, which occur naturally in crude oil, is also of major importance. It is found that dielectric spectroscopy is an appropriate experimental technique for investigating water-in-oil emulsion. When the instrumentation is equipped with an external power supply, information about the coalescence process can be obtained when the critical electric field is approached. Two distinctly different behaviours are observed. In model emulsions stabilised by commercial liquid surfactants a decrease in the static permittivity is observed as the electric field is applied. On the other hand, model emulsions stabilised by indigenous surfactants extracted from crude oils show an increase in the static permittivity as they are exposed to the external electric field. A quantitative parameter is derived for the emulsion stability. The value of the critical electric field is found to be sensitive to changes in the interfacial conditions, and multivariate analysis proves to be suitable for obtaining information about the general trends of variables on the emulsion stability. The stability of emulsions depends on several parameters, such as the amount and properties of the phases, the properties of the stabiliser, etc. Multivariate analysis reveals what variables are most important in characterising the stability/instability of emulsions.

  6. Identification of nanostructural development in epoxy polymer layered silicate nanocomposites from the interpretation of differential scanning calorimetry and dielectric spectroscopy

    International Nuclear Information System (INIS)

    Román, Frida; Calventus, Yolanda; Colomer, Pere; Hutchinson, John M.

    2012-01-01

    Highlights: ► Comparison of DSC and DRS in the cure of epoxy nanocomposites. ► Dependence of exfoliation of nanocomposite on clay content. ► Anionically initiated homopolymerisation in PLS nanocomposites. - Abstract: The effect of nanoclay on the non-isothermal cure kinetics of polymer layered silicate nanocomposites based upon epoxy resin is studied by calorimetric techniques (DSC and TGA) and by dielectric relaxation spectroscopy (DRS) in non-isothermal cure at constant heating rate. The cure process takes place by homopolymerisation, initiated anionically using 3 wt% dimethylaminopyridine (DMAP), and the influence of the nanoclay content has been analysed. Interesting differences are observed between the nanocomposites with 2 wt% and 5 wt% clay content. At low heating rates, these samples vitrify and then devitrify during the cure. For the sample with 2 wt% clay, the devitrification is accompanied by a thermally initiated homopolymerisation, which can be identified by DRS but not by DSC. The effect of this is to improve the exfoliation of the nanocomposite with 2 wt% clay, as verified by transmission electron microscopy, with a corresponding increase in the glass transition temperature. These observations are interpreted in respect of the nanocomposite preparation method and the cure kinetics.

  7. Quantitative evaluation of spatial scale of carrier trapping at grain boundary by GHz-microwave dielectric loss spectroscopy

    Science.gov (United States)

    Choi, W.; Tsutsui, Y.; Miyakai, T.; Sakurai, T.; Seki, S.

    2017-11-01

    Charge carrier mobility is an important primary parameter for the electronic conductive materials, and the intrinsic limit of the mobility has been hardly access by conventional direct-current evaluation methods. In the present study, intra-grain hole mobility of pentacene thin films was estimated quantitatively using microwave-based dielectric loss spectroscopy (time-resolved microwave conductivity measurement) in alternating current mode of charge carrier local motion. Metal-insulator-semiconductor devices were prepared with different insulating polymers or substrate temperature upon vacuum deposition of the pentacene layer, which afforded totally four different grain-size conditions of pentacene layers. Under the condition where the local motion was determined by interfacial traps at the pentacene grain boundaries (grain-grain interfaces), the observed hole mobilities were plotted against the grain sizes, giving an excellent correlation fit successfully by a parabolic function representative of the boarder length. Consequently, the intra-grain mobility and trap-release time of holes were estimated as 15 cm2 V-1 s-1 and 9.4 ps.

  8. Temperature dependence of the dielectric tensor of monoclinic Ga2O3 single crystals in the spectral range 1.0-8.5 eV

    Science.gov (United States)

    Sturm, C.; Schmidt-Grund, R.; Zviagin, V.; Grundmann, M.

    2017-08-01

    The full dielectric tensor of monoclinic Ga2O3 (β-phase) was determined by generalized spectroscopic ellipsometry in the spectral range from 1.0 eV up to 8.5 eV and temperatures in the range from 10 K up to 300 K. By using the oriented dipole approach, the energies and broadenings of the excitonic transitions are determined as a function of the temperature, and the exciton-phonon coupling properties are deduced.

  9. A Novel Temperature Measurement Approach for a High Pressure Dielectric Barrier Discharge Using Diode Laser Absorption Spectroscopy (Preprint)

    National Research Council Canada - National Science Library

    Leiweke, R. J; Ganguly, B. N

    2006-01-01

    A tunable diode laser absorption spectroscopic technique is used to measure both electronically excited state production efficiency and gas temperature rise in a dielectric barrier discharge in argon...

  10. Non-polymeric asymmetric binary glass-formers. II. Secondary relaxation studied by dielectric, 2H NMR, and 31P NMR spectroscopy

    Science.gov (United States)

    Pötzschner, B.; Mohamed, F.; Bächer, C.; Wagner, E.; Lichtinger, A.; Bock, D.; Kreger, K.; Schmidt, H.-W.; Rössler, E. A.

    2017-04-01

    We investigate the secondary (β-) relaxations of an asymmetric binary glass former consisting of a spirobichroman derivative (SBC; Tg = 356 K) as the high-Tg component and the low-Tg component tripropyl phosphate (TPP; Tg = 134 K). The main relaxations are studied in Paper I [B. Pötzschner et al., J. Chem. Phys. 146, 164503 (2017)]. A high Tg contrast of ΔTg = 222 K is put into effect in a non-polymeric system. Component-selective studies are carried out by combining results from dielectric spectroscopy (DS) for mass concentrations cTPP ≥ 60% and those from different methods of 2H and 31P NMR spectroscopy. In the case of NMR, the full concentration range (10% ≤ cTPP ≤ 100%) is covered. The neat components exhibit a β-relaxation (β1 (SBC) and β2 (TPP)). The latter is rediscovered by DS in the mixtures for all concentrations with unchanged time constants. NMR spectroscopy identifies the β-relaxations as being alike to those in neat glasses. A spatially highly restricted motion with angular displacement below ±10° encompassing all molecules is involved. In the low temperature range, where TPP shows the typical 31P NMR echo spectra of the β2-process, very similar spectral features are observed for the (deuterated) SBC component by 2H NMR, in addition to its "own" β1-process observed at high temperatures. Apparently, the small TPP molecules enslave the large SBC molecules to perform a common hindered reorientation. The temperature dependence of the spin-lattice relaxation time of both components is the same and reveals an angular displacement of the SBC molecules somewhat smaller than that of TPP, though the time constants τβ2 are the same. Furthermore, T1(T) of TPP in the temperature region of the β2-process is absolutely the same as in the mixture TPP/polystyrene investigated previously. It appears that the manifestations of the β-process introduced by one component are essentially independent of the second component. Finally, at cTPP ≤ 20% one

  11. Effect of doping on the dielectric properties of cerium oxide in the microwave and far-infrared frequency range

    Czech Academy of Sciences Publication Activity Database

    Santha, N. I.; Sebastian, M. T.; Mohanan, P.; McN.Alford, N.; Sarma, K.; Pullar, R. C.; Kamba, Stanislav; Pashkin, Alexej; Samoukhina, Polina; Petzelt, Jan

    2004-01-01

    Roč. 87, č. 7 (2004), s. 1233-1237 ISSN 0002-7820 R&D Projects: GA ČR GA202/01/0612; GA AV ČR KSK1010104 Institutional research plan: CEZ:AV0Z1010914 Keywords : microwave cearmics * dielectric dispersion Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.710, year: 2004

  12. Magnetic response from a composite of metal-dielectric particles in the visible range: T-matrix simulation

    Directory of Open Access Journals (Sweden)

    O. Zhuromskyy

    2011-09-01

    Full Text Available The optical response of a particle composed of a dielectric core surrounded by a densely packed shell of small metal spheres is simulated with the superposition Tmatrix method for realistic material parameters. In order to compute the electric and magnetic particle polarizabilities a single expansion T-matrix is derived from a particle centered T-matrix. Finally the permeability of a medium comprising such particles is found to deviate considerable from unity resulting in a noticeable optical response.

  13. Time-resolved photoluminescence spectroscopy of semiconductors for optical applications beyond the visible spectral range

    Energy Technology Data Exchange (ETDEWEB)

    Chernikov, Alexey A.

    2011-07-01

    The work discussed in this thesis is focused on the experimental studies regarding these three steps: (1) investigation of the fundamental effects, (2) characterization of new material systems, and (3) optimization of the semiconductor devices. In all three cases, the experimental technique of choice is photoluminescence (PL) spectroscopy. The thesis is organized as follows. Chapter 2 gives a summary of the PL properties of semiconductors relevant for this work. The first section deals with the intrinsic processes in an ideal direct band gap material, starting with a brief summary of the theoretical background followed by the overview of a typical PL scenario. In the second part of the chapter, the role of the lattice-vibrations, the internal electric fields as well as the influence of the band-structure and the dielectric environment are discussed. Finally, extrinsic PL properties are presented in the third section, focusing on defects and disorder in real materials. In chapter 3, the experimental realization of the spectroscopic studies is discussed. The time-resolved photoluminescence (TRPL) setup is presented, focusing on the applied excitation source, non-linear frequency mixing, and the operation of the streak camera used for the detection. In addition, linear spectroscopy setup for continous-wave (CW) PL and absorption measurements is illustrated. Chapter 4 aims at the study of the interactions between electrons and lattice-vibrations in semiconductor crystals relevant for the proper description of carrier dynamics as well as the heat-transfer processes. The presented discussion covers the experimental studies of many-body effects in phonon-assisted emission of semiconductors due to the carriercarrier Coulomb-interaction. The corresponding theoretical background is discussed in detail in chapter 2. The investigations are focused on the two main questions regarding electron-hole plasma contributions to the phonon-assisted light-matter interaction as well as

  14. Raman, dielectric and variable range hopping nature of Gd2O3-doped K0.5N0.5NbO3 piezoelectric ceramics

    Directory of Open Access Journals (Sweden)

    Mahesh Peddigari

    2015-10-01

    Full Text Available (K0.5Na0.5NbO3 (KNN + x wt% Gd2O3 (x = 0 -1.5 ceramics have been prepared by conventional solid state reaction method. The effect of Gd2O3 on the structural, microstructural and dielectric properties of KNN ceramics were studied systematically. The effect of Gd2O3 on phase transformation from orthorhombic to psuedocubic structure is explained interms of changes in the internal vibration modes of NbO6 octahedra. The Raman intensity of the stretching mode v1 enhanced and shifted toward higher wavenumber with Gd2O3 concentration, which is attributed to the increase in polarizability and change in the O-Nb-O bond angles. Microstructural analysis revealed that the grain size of the KNN ceramics decreases from 2.26 ± 1.07 μm to 0.35 ± 0.13 μm and becomes homogenous with an increase in Gd2O3 concentration. The frequency dependent dielectric spectra are analyzed by using Havriliak-Negami function. The fitted symmetry parameter and relaxation time (τ are found to be 0.914 and 8.78 × 10−10 ± 5.5 × 10−11 s, respectively for the sample doped with x = 1.0. The addition of Gd2O3 to the KNN shifted the polymorphic phase transition orthorhombic to tetragonal transition temperature (TO-T from 199oC to 85oC with enhanced dielectric permittivity (ε′ = 1139 at 1 MHz. The sample with x = 1.0, shown a high dielectric permittivity (ε′ = 879 and low dielectric loss (<5% in the broad temperature range (-140oC – 150oC with the Curie temperature 307 oC can have the potential for high temperature piezoelectric and tunable RF circuit applications. The temperature dependent AC-conductivity follows the variable range hopping conduction mechanism by obtaining the slope -0.25 from the ln[ln(ρac] versus ln(T graph in the temperature range of 133 K-308 K. The effect of Gd2O3 on the Mott’s parameters such as density of states (N(EF, hopping length (RH, and hopping energy (WH have been discussed.

  15. Effect of an azo dye (DR1) on the dielectric parameters of a nematic liquid crystal system

    International Nuclear Information System (INIS)

    Ozder, S.; Okutan, M.; Koeysal, O.; Goektas, H.; San, S.E.

    2007-01-01

    The dielectric parameters and relaxation properties of azo dye (DR1) doped E7 and pure E7 liquid crystal (LC) have been investigated in a wide frequency range of 10 k-10 MHz through the dielectric spectroscopy method at room temperature. Dielectric anisotropy (Δε) property of the LC changes from the positive type to negative type and dielectric anisotropy values decrease with doping of DR1. The relaxation frequency f r of E7 and E7/DR1 LC was calculated by means of Cole-Cole plots. Influence of bias voltage on the dielectric parameters has also been investigated

  16. High energy-resolution electron energy-loss spectroscopy study of the dielectric properties of bulk and nanoparticle LaB6 in the near-infrared region

    International Nuclear Information System (INIS)

    Sato, Yohei; Terauchi, Masami; Mukai, Masaki; Kaneyama, Toshikatsu; Adachi, Kenji

    2011-01-01

    The dielectric properties of LaB 6 crystals and the plasmonic behavior of LaB 6 nanoparticles, which have been applied to solar heat-shielding filters, were studied by high energy-resolution electron energy-loss spectroscopy (HR-EELS). An EELS spectrum of a LaB 6 crystal showed a peak at 2.0 eV, which was attributed to volume plasmon excitation of carrier electrons. EELS spectra of single LaB 6 nanoparticles showed peaks at 1.1-1.4 eV depending on the dielectric effect from the substrates. The peaks were assigned to dipole oscillation excitations. These peak energies almost coincided with the peak energy of optical absorption of a heat-shielding filter with LaB 6 nanoparticles. On the other hand, those energies were a smaller than a dipole oscillation energy predicted using the dielectric function of bulk LaB 6 crystal. It is suggested that the lower energy than expected is due to an excitation at 1.2 eV, which was observed for oxidized LaB 6 area. -- Highlights: → The dielectric properties of LaB 6 nanoparticles applied to solar heat-shielding filters were studied by HR-EELS. → Plasmon peak energies of the LaB 6 nanoparticles were almost equal to optical absorption energy of a heat-shielding filter. → From this result, near-infrared optical absorption of the filter is due to the surface dipole mode of the nanoparticles.

  17. Dielectric spectroscopy of [P(NID2OD-T2)]n thin films: Effects of UV radiation on charge transport

    International Nuclear Information System (INIS)

    Sepulveda, Pablo I.; Rosado, Alexander O.; Pinto, Nicholas J.

    2014-01-01

    Poly[N,N′-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide) -2,6-diyll-alt-5,5′-(2,2′-bithiophene)]-[P(ND12OD-T2)] n is a n-doped polymer that is stable in air. Low frequency (40 Hz–30 kHz) dielectric spectroscopy shows that the polymer impedance strength is reduced under ultra-violet (UV) radiation as a result of charge increase in the bulk polymer. Photo-excitation and the creation of electron-hole pairs and subsequent hole recombination with electron trapping species adsorbed by the polymer are suggested as possible doping mechanisms. The relaxation times were also faster in the presence of UV indicating multiple pathways for oscillating dipoles to relax. These results imply increased polymer conductance with corresponding enhancement of charge mobility due to reduced scattering in the presence of UV radiation. A thin film field effect transistor was fabricated using this polymer as the active material and characterized in the presence of UV radiation. As expected, the device exhibited n-type behavior with a charge mobility of 3.0 × 10 −3 cm 2 /V-s. Exposure to UV radiation increased the channel current, shifted the threshold voltage to more negative values and doubled the value of the mobility. These results are consistent with dielectric measurements and suggest an easy method of increasing device currents and charge mobility in this polymer via UV irradiation. - Highlights: • Ultra-violet (UV) radiation dopes the polymer. • The doping is n-type. • UV radiation enhances charge mobility without post polymer processing. • Dielectric spectroscopy and field effect transistor results are self-consistent

  18. Mid IR-fiber spectroscopy in the 2-17μm range

    Science.gov (United States)

    Artyushenko, Viatcheslav G.; Bocharnikov, A.; Colquhoun, Gary; Leach, Clive A.; Lobachov, Vladimir; Pirogova, Lyudmila; Sakharova, Tatjana; Savitskij, Dmitrij; Ezhevskaya, Tatjana; Bublikov, Alexandr

    2007-10-01

    The latest development in IR-fibre optics enables us to expand the spectral range of process spectroscopy from 2μm out to 17μm (5000 to 600cm-1) i.e. into the most informative "finger-print" part of the spectrum. Mid-IR wavelength ranges from 2 to 6-10μm may be covered by Chalcogenide IR-glass CIR-fibres while Polycrystalline PIR-fibres made of Silver Halides solid solutions transmit 4-17 μm wavelength radiation. PIR-fibre immersion ATR probes and Transmission/Reflection probes had been manufactured and successfully tested with different FTIR spectrometers in the field of remote spectroscopy for forensic substances identification, chemical reaction control, and monitoring of exhaust or exhalation gases. Using these techniques no sample preparation is necessary for fibre probes to measure evanescent, reflection and transmission spectra, in situ and in real time. QCL spectrometer may be used as a portable device for multispectral gas analysis at 1ppb level of detectivity for various applications in environmental pollution monitoring.

  19. Age dependence of dielectric properties of bovine brain and ocular tissues in the frequency range of 400 MHz to 18 GHz

    International Nuclear Information System (INIS)

    Schmid, Gernot; Ueberbacher, Richard

    2005-01-01

    In order to identify possible age-dependent dielectric properties of brain and eye tissues in the frequency range of 400 MHz to 18 GHz, measurements on bovine grey and white matter as well as on cornea, lens (cortical) and the vitreous body were performed using a commercially available open-ended coaxial probe and a computer-controlled vector network analyser. Freshly excised tissues of 52 animals of two age groups (42 adult animals, i.e. 16-24 month old and 10 young animals, i.e. 4-6 month old calves) were examined within 8 min (brain tissue) and 15 min (eye tissue), respectively, of the animals' death. Tissue temperatures for the measurements were 32 ± 1 0 C and 25 ± 1 0 C for brain and eye tissues, respectively. Statistical analysis of the measured data revealed significant differences in the dielectric properties of white matter and cortical lens tissue between the adult and the young group. In the case of white matter the mean values of conductivity and permittivity of young tissue were 15%-22% and 12%-15%, respectively, higher compared to the adult tissue in the considered frequency range. Similarly, young cortical lens tissue was 25%-76% higher in conductivity and 27%-39% higher in permittivity than adult cortical lens tissue

  20. Dielectric silicone elastomers with mixed ceramic nanoparticles

    International Nuclear Information System (INIS)

    Stiubianu, George; Bele, Adrian; Cazacu, Maria; Racles, Carmen; Vlad, Stelian; Ignat, Mircea

    2015-01-01

    Highlights: • Composite ceramics nanoparticles (MCN) with zirconium dioxide and lead zirconate. • Dielectric elastomer films wDith PDMS matrix and MCN as dielectric filler. • Hydrophobic character—water resistant and good flexibility specific to siloxanes. • Increased value of dielectric constant with the content of MCN in dielectric films. • Increased energy output from uniaxial deformation of the dielectric elastomer films. - Abstract: A ceramic material consisting in a zirconium dioxide-lead zirconate mixture has been obtained by precipitation method, its composition being proved by wide angle X-ray powder diffraction and energy-dispersive X-ray spectroscopy. The average diameter of the ceramic particles ranged between 50 and 100 nm, as revealed by transmission electron microscopy images. These were surface treated and used as filler for a high molecular mass polydimethylsiloxane-α,ω-diol (Mn = 450,000) prepared in laboratory, the resulted composites being further processed as films and crosslinked. A condensation procedure, unusual for polydimethylsiloxane having such high molecular mass, with a trifunctional silane was approached for the crosslinking. The effect of filler content on electrical and mechanical properties of the resulted materials was studied and it was found that the dielectric permittivity of nanocomposites increased in line with the concentration of ceramic nanoparticles

  1. Dielectric silicone elastomers with mixed ceramic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Stiubianu, George, E-mail: george.stiubianu@icmpp.ro [“Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, Iasi 700487 (Romania); Bele, Adrian; Cazacu, Maria; Racles, Carmen; Vlad, Stelian [“Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, Iasi 700487 (Romania); Ignat, Mircea [National R& D Institute for Electrical Engineering ICPE-CA Bucharest, Splaiul Unirii 313, District 3, Bucharest 030138 (Romania)

    2015-11-15

    Highlights: • Composite ceramics nanoparticles (MCN) with zirconium dioxide and lead zirconate. • Dielectric elastomer films wDith PDMS matrix and MCN as dielectric filler. • Hydrophobic character—water resistant and good flexibility specific to siloxanes. • Increased value of dielectric constant with the content of MCN in dielectric films. • Increased energy output from uniaxial deformation of the dielectric elastomer films. - Abstract: A ceramic material consisting in a zirconium dioxide-lead zirconate mixture has been obtained by precipitation method, its composition being proved by wide angle X-ray powder diffraction and energy-dispersive X-ray spectroscopy. The average diameter of the ceramic particles ranged between 50 and 100 nm, as revealed by transmission electron microscopy images. These were surface treated and used as filler for a high molecular mass polydimethylsiloxane-α,ω-diol (Mn = 450,000) prepared in laboratory, the resulted composites being further processed as films and crosslinked. A condensation procedure, unusual for polydimethylsiloxane having such high molecular mass, with a trifunctional silane was approached for the crosslinking. The effect of filler content on electrical and mechanical properties of the resulted materials was studied and it was found that the dielectric permittivity of nanocomposites increased in line with the concentration of ceramic nanoparticles.

  2. Synchrotron radiation x-ray photoelectron spectroscopy study on the interface chemistry of high-k PrxAl2-xO3 (x=0-2) dielectrics on TiN for dynamic random access memory applications

    Science.gov (United States)

    Schroeder, T.; Lupina, G.; Sohal, R.; Lippert, G.; Wenger, Ch.; Seifarth, O.; Tallarida, M.; Schmeisser, D.

    2007-07-01

    Engineered dielectrics combined with compatible metal electrodes are important materials science approaches to scale three-dimensional trench dynamic random access memory (DRAM) cells. Highly insulating dielectrics with high dielectric constants were engineered in this study on TiN metal electrodes by partly substituting Al in the wide band gap insulator Al2O3 by Pr cations. High quality PrAlO3 metal-insulator-metal capacitors were processed with a dielectric constant of 19, three times higher than in the case of Al2O3 reference cells. As a parasitic low dielectric constant interface layer between PrAlO3 and TiN limits the total performance gain, a systematic nondestructive synchrotron x-ray photoelectron spectroscopy study on the interface chemistry of PrxAl2-xO3 (x =0-2) dielectrics on TiN layers was applied to unveil its chemical origin. The interface layer results from the decreasing chemical reactivity of PrxAl2-xO3 dielectrics with increasing Pr content x to reduce native Ti oxide compounds present on unprotected TiN films. Accordingly, PrAlO3 based DRAM capacitors require strict control of the surface chemistry of the TiN electrode, a parameter furthermore of importance to engineer the band offsets of PrxAl2-xO3/TiN heterojunctions.

  3. Broadband dielectric spectroscopy of Ba(Zr,Ti)O.sub.3./sub.: dynamics of relaxors and diffuse ferroelectrics

    Czech Academy of Sciences Publication Activity Database

    Petzelt, Jan; Nuzhnyy, Dmitry; Savinov, Maxim; Bovtun, Viktor; Kempa, Martin; Ostapchuk, Tetyana; Hlinka, Jiří; Canu, G.; Buscaglia, V.

    2014-01-01

    Roč. 469, č. 1 (2014), s. 14-25 ISSN 0015-0193 R&D Projects: GA ČR GAP204/12/0232; GA ČR GA13-15110S Institutional support: RVO:68378271 Keywords : relaxor * diffuse phase transition * dielectric dispersion * polar phonons * local ion hopping Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.469, year: 2014

  4. Dielectric properties of vertically aligned multi-walled carbon nanotubes in the terahertz and mid-infrared range

    Czech Academy of Sciences Publication Activity Database

    Thomson, M.D.; Zouaghi, W.; Meng, F.; Wiecha, M.M.; Rabia, K.; Heinlein, T.; Hussein, L.; Babu, D.; Yadav, S.; Engstler, J.; Schneider, J.J.; Nicoloso, N.; Rychetský, Ivan; Kužel, Petr; Roskos, H.G.

    2018-01-01

    Roč. 51, č. 3 (2018), s. 1-7, č. článku 034004. ISSN 0022-3727 R&D Projects: GA ČR GA17-03662S Institutional support: RVO:68378271 Keywords : carbon nanotubes * terahertz spectroscopy * effective medium theory Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics , supercond.) Impact factor: 2.588, year: 2016

  5. Molecular dynamics in supercooled liquid and glassy states of antibiotics: azithromycin, clarithromycin and roxithromycin studied by dielectric spectroscopy. Advantages given by the amorphous state.

    Science.gov (United States)

    Adrjanowicz, K; Zakowiecki, D; Kaminski, K; Hawelek, L; Grzybowska, K; Tarnacka, M; Paluch, M; Cal, K

    2012-06-04

    Antibiotics are chemical compounds of extremely important medical role. Their history can be traced back more than one hundred years. Despite the passing time and significant progress made in pharmacy and medicine, treatment of many bacterial infections without antibiotics would be completely impossible. This makes them particularly unique substances and explains the unflagging popularity of antibiotics within the medical community. Herein, using dielectric spectroscopy we have studied the molecular mobility in the supercooled liquid and glassy states of three well-known antibiotic agents: azithromycin, clarithromycin and roxithromycin. Dielectric studies revealed a number of relaxation processes of different molecular origin. Besides the primary α-relaxation, observed above the respective glass transition temperatures of antibiotics, two secondary relaxations in the glassy state were identified. Interestingly, the fragility index as well as activation energies of the secondary processes turned out to be practically the same for all three compounds, indicating probably much the same molecular dynamics. Long-term stability of amorphous antibiotics at room temperature was confirmed by X-ray diffraction technique, and calorimetric studies were performed to evaluate the basic thermodynamic parameters. Finally, we have also checked the experimental solubility advantages given by the amorphous form of the examined antibiotics.

  6. Hierarchical viscosity of aqueous solution of tilapia scale collagen investigated via dielectric spectroscopy between 500 MHz and 2.5 THz

    Science.gov (United States)

    Kawamata, H.; Kuwaki, S.; Mishina, T.; Ikoma, T.; Tanaka, J.; Nozaki, R.

    2017-03-01

    Aqueous solutions of biomolecules such as proteins are very important model systems for understanding the functions of biomolecules in actual life processes because interactions between biomolecules and the surrounding water molecules are considered to be important determinants of biomolecules’ functions. Globule proteins have been extensively studied via dielectric spectroscopy; the results indicate three relaxation processes originating from fluctuations in the protein molecule, the bound water and the bulk water. However, the characteristics of aqueous solutions of collagens have rarely been investigated. In this work, based on broadband dielectric measurements between 500 MHz and 2.5 THz, we demonstrate that the high viscosity of a collagen aqueous solution is due to the network structure being constructed of rod-like collagen molecules surrounding free water molecules and that the water molecules are not responsible for the viscosity. We determine that the macroscopic viscosity is related to the mean lifetime of the collagen-collagen interactions supporting the networks and that the local viscosity of the water surrounded by the networks is governed by the viscosity of free water as in the bulk. This hierarchical structure in the dynamics of the aqueous solution of biomolecules has been revealed for the first time.

  7. UV response on dielectric properties of nano nematic liquid crystal

    Directory of Open Access Journals (Sweden)

    Kamal Kumar Pandey

    2018-03-01

    Full Text Available In this work, we investigate the effect of UV light irradiation on the dielectric parameters of nematic liquid crystal (5CB and ZnO nanoparticles dispersed liquid crystal. With addition of nanoparticles in nematic LC are promising new materials for a variety of application in energy harvesting, displays and photonics including the liquid crystal laser. To realize many applications, however we optimize the properties of liquid crystal and understand how the UV light irradiation interact the nanoparticles and LC molecules in dispersed/doped LC. The dielectric permittivity and loss factor have discussed the pure nematic LC and dispersed/doped system after, during and before UV light exposure. The dielectric relaxation spectroscopy was carried out in the frequency range 100 Hz–10 MHz in the nematic mesophase range. Keywords: Dielectric permittivity, Relaxation frequency, Nematic liquid crystal, UV light irradiation

  8. Defining the temperature range for cooking with extra virgin olive oil using Raman spectroscopy

    Science.gov (United States)

    Ahmad, Naveed; Saleem, M.; Ali, H.; Bilal, M.; Khan, Saranjam; Ullah, Rahat; Ahmed, M.; Mahmood, S.

    2017-09-01

    Using the potential of Raman spectroscopy, new findings regarding the effects of heating on extra virgin olive oil (EVOO) during frying/cooking are presented. A temperature range from 140 to 150 °C has been defined within which EVOO can be used for cooking/frying without much loss of its natural molecular composition. Raman spectra from the EVOO samples were recorded using an excitation laser at 785 nm in the range from 540 to 1800 cm-1. Due to heating, prominent variations in intensity are observed at Raman bands from 540 to 770 cm-1, 790 to 1170 cm-1 and 1267 and 1302 cm-1. The Raman bands at 1267 and 1302 cm-1 represent cis unsaturated fats and their ratio is used to investigate the effects of temperature on the molecular composition of EVOO. In addition, principal component analysis has been applied on all the groups of data to classify the heated EVOO samples at different temperatures and for different times. In addition, it has been found that use of EVOO for frying twice does not have any prominent effect on its molecular composition.

  9. Retrieval interval mapping, a tool to optimize the spectral retrieval range in differential optical absorption spectroscopy

    Science.gov (United States)

    Vogel, L.; Sihler, H.; Lampel, J.; Wagner, T.; Platt, U.

    2012-06-01

    Remote sensing via differential optical absorption spectroscopy (DOAS) has become a standard technique to identify and quantify trace gases in the atmosphere. The technique is applied in a variety of configurations, commonly classified into active and passive instruments using artificial and natural light sources, respectively. Platforms range from ground based to satellite instruments and trace-gases are studied in all kinds of different environments. Due to the wide range of measurement conditions, atmospheric compositions and instruments used, a specific challenge of a DOAS retrieval is to optimize the parameters for each specific case and particular trace gas of interest. This becomes especially important when measuring close to the detection limit. A well chosen evaluation wavelength range is crucial to the DOAS technique. It should encompass strong absorption bands of the trace gas of interest in order to maximize the sensitivity of the retrieval, while at the same time minimizing absorption structures of other trace gases and thus potential interferences. Also, instrumental limitations and wavelength depending sources of errors (e.g. insufficient corrections for the Ring effect and cross correlations between trace gas cross sections) need to be taken into account. Most often, not all of these requirements can be fulfilled simultaneously and a compromise needs to be found depending on the conditions at hand. Although for many trace gases the overall dependence of common DOAS retrieval on the evaluation wavelength interval is known, a systematic approach to find the optimal retrieval wavelength range and qualitative assessment is missing. Here we present a novel tool to determine the optimal evaluation wavelength range. It is based on mapping retrieved values in the retrieval wavelength space and thus visualize the consequence of different choices of retrieval spectral ranges, e.g. caused by slightly erroneous absorption cross sections, cross correlations and

  10. Differentiation of Apple Varieties and Investigation of Organic Status Using Portable Visible Range Reflectance Spectroscopy

    Directory of Open Access Journals (Sweden)

    Jordan Vincent

    2018-05-01

    Full Text Available Food fraud, the sale of goods that have in some way been mislabelled or tampered with, is an increasing concern, with a number of high profile documented incidents in recent years. These recent incidents and their scope show that there are gaps in the food chain where food authentication methods are not applied or otherwise not sufficient and more accessible detection methods would be beneficial. This paper investigates the utility of affordable and portable visible range spectroscopy hardware with partial least squares discriminant analysis (PLS-DA when applied to the differentiation of apple types and organic status. This method has the advantage that it is accessible throughout the supply chain, including at the consumer level. Scans were acquired of 132 apples of three types, half of which are organic and the remaining non-organic. The scans were preprocessed with zero correction, normalisation and smoothing. Two tests were used to determine accuracy, the first using 10-fold cross-validation and the second using a test set collected in different ambient conditions. Overall, the system achieved an accuracy of 94% when predicting the type of apple and 66% when predicting the organic status. Additionally, the resulting models were analysed to find the regions of the spectrum that had the most significance. Then, the accuracy when using three-channel information (RGB is presented and shows the improvement provided by spectroscopic data.

  11. Differentiation of Apple Varieties and Investigation of Organic Status Using Portable Visible Range Reflectance Spectroscopy.

    Science.gov (United States)

    Vincent, Jordan; Wang, Hui; Nibouche, Omar; Maguire, Paul

    2018-05-25

    Food fraud, the sale of goods that have in some way been mislabelled or tampered with, is an increasing concern, with a number of high profile documented incidents in recent years. These recent incidents and their scope show that there are gaps in the food chain where food authentication methods are not applied or otherwise not sufficient and more accessible detection methods would be beneficial. This paper investigates the utility of affordable and portable visible range spectroscopy hardware with partial least squares discriminant analysis (PLS-DA) when applied to the differentiation of apple types and organic status. This method has the advantage that it is accessible throughout the supply chain, including at the consumer level. Scans were acquired of 132 apples of three types, half of which are organic and the remaining non-organic. The scans were preprocessed with zero correction, normalisation and smoothing. Two tests were used to determine accuracy, the first using 10-fold cross-validation and the second using a test set collected in different ambient conditions. Overall, the system achieved an accuracy of 94% when predicting the type of apple and 66% when predicting the organic status. Additionally, the resulting models were analysed to find the regions of the spectrum that had the most significance. Then, the accuracy when using three-channel information (RGB) is presented and shows the improvement provided by spectroscopic data.

  12. Probing odd-triplet contributions to the long-ranged proximity effect by scanning tunneling spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Diesch, Simon; Machon, Peter; Belzig, Wolfgang; Scheer, Elke [Universitaet Konstanz, Konstanz (Germany); Suergers, Christoph; Beckmann, Detlef [Karlsruhe Institute of Technology, Karlsruhe (Germany)

    2015-07-01

    In conventional superconductors, electrons are bound in singlet Cooper pairs, i.e. with opposite spin. More recently, experiments on superconductor-ferromagnet-systems have shown Cooper pairs tunneling through ferromagnetic layers, indicating Cooper pairs of equal spin, thus corresponding to a long-range triplet proximity effect. Most experimental evidence for triplet superconductivity comes from observations of the thickness dependence of the Josephson current through a ferromagnetic barrier, but there is an increasing interest in obtaining direct spectroscopic evidence. This project aims at analyzing the electronic density of states of a thin diffusive normal metal layer (Ag) coupled to a superconductor (Al) across a ferromagnetic insulator (EuS) using a scanning tunneling microscope in spectroscopy mode at 280 mK. For this purpose, we fabricated EuS films of different thicknesses and acquired spectroscopic data at different magnetic fields. We observe significant broadening of the superconductive energy gap and a variety of sub-gap structures including zero-bias conductance peaks induced by the presence of the ferromagnet.

  13. Evidence for the molecular-scale origin of the suppression of physical ageing in confined polymer: fluorescence and dielectric spectroscopy studies of polymer-silica nanocomposites

    International Nuclear Information System (INIS)

    Priestley, Rodney D; Rittigstein, Perla; Broadbelt, Linda J; Fukao, Koji; Torkelson, John M

    2007-01-01

    Fluorescence spectroscopy was used to characterize the rate of physical ageing at room temperature in nanocomposites of silica (10-15 nm diameter) nanoparticles in poly(methyl methacrylate) (PMMA). The physical ageing rate was reduced by more than a factor of 20 in 0.4 vol% silica-PMMA nanocomposites relative to neat PMMA. The molecular-scale origin of this nearly complete arresting of physical ageing was investigated with dielectric spectroscopy. The strength of the β relaxation process was reduced by nearly 50% in the nanocomposite relative to neat PMMA. This reduced strength of the β process results from dipoles (ester groups) having hindered motions or being virtually immobile on the timescale being probed at a frequency of 100 Hz. This hindered mobility results from hydrogen bonding between PMMA ester side groups and hydroxyl units on the surface of the silica nanoparticles. In contrast, no reduction in physical ageing rate was observed upon addition of silica to polystyrene, which cannot form hydrogen bonds with the silica surfaces. Thus, the molecular origin of the suppressed physical ageing in silica-PMMA nanocomposites is the interfacial hydrogen bonding, which leads to a major reduction in the strength of the β process, i.e., the β process is largely responsible for the observed physical ageing

  14. An optical and dielectric spectroscopy study of Er.sup.3+./sup.-doped KTaO.sub.3./sub..

    Czech Academy of Sciences Publication Activity Database

    Trepakov, Vladimír; Skvortsov, A.; Poletaev, N.; Potůček, Zdeněk; Nuzhnyy, Dmitry; Jastrabík, Lubomír; Dejneka, Alexandr

    2011-01-01

    Roč. 248, č. 12 (2011), s. 2908-2915 ISSN 0370-1972 R&D Projects: GA ČR GC202/09/J017; GA AV ČR KAN301370701; GA MŠk(CZ) 1M06002 Institutional research plan: CEZ:AV0Z10100520; CEZ:AV0Z10100522 Keywords : Er 3+ centres * IR spectroscopy * optical absorption photoluminescence * potassium tantalate * THz spectroscopy Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.316, year: 2011

  15. High-frequency dielectric spectroscopy of BaTiO3 core - silica shell nanocomposites: problem of interdiffusion

    Czech Academy of Sciences Publication Activity Database

    Nuzhnyy, Dmitry; Petzelt, Jan; Bovtun, Viktor; Kempa, Martin; Savinov, Maxim; Elissalde, C.; Chung, U.-C.; Michau, D.; Estournes, C.; Maglione, M.

    2011-01-01

    Roč. 1, č. 3 (2011), 309-317 ISSN 2010-135X R&D Projects: GA ČR GA202/09/0430 Institutional research plan: CEZ:AV0Z10100520 Keywords : core-shell nanocomposites * infrared and THz spectroscopy * barium titanate * effective medium approximation Subject RIV: BM - Solid Matter Physics ; Magnetism

  16. PREFACE: Dielectrics 2009: Measurement Analysis and Applications

    Science.gov (United States)

    Vaughan, Alun; Williams, Graham

    2009-07-01

    The conference Dielectrics 2009: Measurements, Analysis and Applications represents a significant milestone in the evolution of dielectrics research in the UK. It is reasonable to state that the academic study of dielectrics has led to many fundamental advances and that dielectric materials underpin the modern world in devices ranging from field effect transistors, which operate at extremely high fields, albeit low voltages, to the high voltage plants that provide the energy that powers our economy. The origins of the Dielectrics Group of the Institute of Physics (IOP), which organized this conference, can be traced directly back to the early 1960s, when Professor Mansel Davies was conducting research into the dielectric relaxation behaviour of polar liquids and solids at The Edward Davies Chemical Laboratories of the University College of Wales, Aberystwyth. He was already well-known internationally for his studies of molecular structure and bonding of small molecules, using infra-red-spectroscopy, and of the physical properties of hydrogen-bonded liquids and solids, using thermodynamic methods. Dielectric spectroscopy was a fairly new area for him and he realized that opportunities for scientists in the UK to gather together and discuss their research in this developing area of physical chemistry/chemical physics were very limited. He conceived the idea of forming a Dielectrics Discussion Group (DDG), which would act as a meeting point and provide a platform for dielectrics research in the UK and beyond and, as a result, a two-day Meeting was convened in the spring of 1968 at Gregynog Hall of the University of Wales, near Newtown, Montgomeryshire. It was organized by Mansel Davies, Alun Price and Graham Williams, all physical chemists from the UCW, Aberystwyth. Fifty scientists attended, being a mix of physical chemists, theoretical chemists, physicists, electrical engineers, polymer and materials scientists, all from the UK, except Dr Brendan Scaife of Trinity

  17. Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hellman, Hal

    1968-01-01

    This booklet discusses spectroscopy, the study of absorption of radiation by matter, including X-ray, gamma-ray, microwave, mass spectroscopy, as well as others. Spectroscopy has produced more fundamental information to the study of the detailed structure of matter than any other tools.

  18. Broad-temperature range spectroscopy of the two-centre modular redox metalloprotein Desulfovibrio desulfuricans desulfoferrodoxin

    DEFF Research Database (Denmark)

    Andersen, Niels Højmark; Harnung, S.E.; Trabjerg, I.

    2003-01-01

    /VIS, MCD, CD, and EPR spectroscopy. The UV/VIS spectra of grey DFx at room temperature is characterised by broad charge transfer (CT) transitions associated with oxidised centre 1 (495 and 368 nm) and II (335 and 635 nm). The transitions are resolved at 78 K, substantiated by VT-MCD and -CD. The data offer...

  19. Dielectric and phonon spectroscopy of Nb-doped Pb(Zr.sub.1-y./sub.Ti.sub.y./sub.)O.sub.3./sub.-CoFe.sub.2./sub.O.sub.4./sub. composites

    Czech Academy of Sciences Publication Activity Database

    Sakanas, A.; Nuzhnyy, Dmitry; Grigalaitis, R.; Banys, J.; Borodavka, Fedir; Kamba, Stanislav; Ciomaga, C.E.; Mitoseriu, L.

    2017-01-01

    Roč. 121, č. 21 (2017), 1-11, č. článku 214101. ISSN 0021-8979 R&D Projects: GA ČR GA15-08389S Institutional support: RVO:68378271 Keywords : composites * dielectric and phonon spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.068, year: 2016

  20. Are aortic endograft prostheses fully hemo-compatible? A dielectric spectroscopy investigation of the electrical alterations induced on erythrocyte cell membranes

    International Nuclear Information System (INIS)

    Basoli, Antonio; Bordi, Federico; Cametti, Cesare; Faraglia, Vittorio; Gili, Tommaso; Rizzo, Luigi; Taurino, Maurizio

    2007-01-01

    In this paper we present a new approach directed to ascertain the full hemo-compatibility of aortic endograft prostheses based on the measurement of the passive electrical parameters of the erythrocyte cell membrane. The red blood cell membrane, from an electric point of view, is characterized by an electrical permittivity, ε s , which takes into account the structural charged organization of the lipid double layer, and by the electrical conductivity, σ s , which accounts for the ionic transport processes across the membrane. These parameters can be easily measured by means of a radiowave dielectric spectroscopy technique, analyzing the dependence of the electrical impedance of an erythrocyte suspension on the frequency of the applied electric field. In this preliminary report, we investigate the alterations induced, at a membrane level, by two different devices commonly employed for endovascular abdominal aortic aneurysm exclusion, i.e., Excluder (registered) and Zenith (registered) devices, implanted in ten patients. We observe, in all the cases investigated, a statistically significant increase of both the permittivity ε s and electrical conductivity σ s of the erythrocyte membrane upon the prosthesis implant, this increase being higher than about 20% of the un-treated values. Moreover, these alterations remain roughly unaffected 30 days after surgery. These findings suggest that a complete hemo-compatibility of these prostheses is lacking, even if the observed alterations may not have a clinical relevance

  1. Are aortic endograft prostheses fully hemo-compatible? A dielectric spectroscopy investigation of the electrical alterations induced on erythrocyte cell membranes

    Energy Technology Data Exchange (ETDEWEB)

    Basoli, Antonio [Clinica Chirurgica II, Universita di Roma ' La Sapienza' , Rome (Italy); Bordi, Federico [Dipartimento di Fisica, Universita di Roma ' La Sapienza' , Rome (Italy); Cametti, Cesare [Dipartimento di Fisica, Universita di Roma ' La Sapienza' , Rome (Italy); Faraglia, Vittorio [Cattedra di Chirurgia Vascolare, Second School of Medicine, Universita di Roma ' La Sapienza' , Rome (Italy); Gili, Tommaso [Dipartimento di Fisica, Universita di Roma ' La Sapienza' , Rome (Italy); Rizzo, Luigi [Cattedra di Chirurgia Vascolare, Second School of Medicine, Universita di Roma ' La Sapienza' , Rome (Italy); Taurino, Maurizio [Cattedra di Chirurgia Vascolare, Second School of Medicine, Universita di Roma ' La Sapienza' , Rome (Italy)

    2007-03-01

    In this paper we present a new approach directed to ascertain the full hemo-compatibility of aortic endograft prostheses based on the measurement of the passive electrical parameters of the erythrocyte cell membrane. The red blood cell membrane, from an electric point of view, is characterized by an electrical permittivity, {epsilon}{sub s}, which takes into account the structural charged organization of the lipid double layer, and by the electrical conductivity, {sigma}{sub s}, which accounts for the ionic transport processes across the membrane. These parameters can be easily measured by means of a radiowave dielectric spectroscopy technique, analyzing the dependence of the electrical impedance of an erythrocyte suspension on the frequency of the applied electric field. In this preliminary report, we investigate the alterations induced, at a membrane level, by two different devices commonly employed for endovascular abdominal aortic aneurysm exclusion, i.e., Excluder (registered) and Zenith (registered) devices, implanted in ten patients. We observe, in all the cases investigated, a statistically significant increase of both the permittivity {epsilon}{sub s} and electrical conductivity {sigma}{sub s} of the erythrocyte membrane upon the prosthesis implant, this increase being higher than about 20% of the un-treated values. Moreover, these alterations remain roughly unaffected 30 days after surgery. These findings suggest that a complete hemo-compatibility of these prostheses is lacking, even if the observed alterations may not have a clinical relevance.

  2. Spectroscopy

    CERN Document Server

    Walker, S

    1976-01-01

    The three volumes of Spectroscopy constitute the one comprehensive text available on the principles, practice and applications of spectroscopy. By giving full accounts of those spectroscopic techniques only recently introduced into student courses - such as Mössbauer spectroscopy and photoelectron spectroscopy - in addition to those techniques long recognised as being essential in chemistry teaching - sucha as e.s.r. and infrared spectroscopy - the book caters for the complete requirements of undergraduate students and at the same time provides a sound introduction to special topics for graduate students.

  3. Polaron-electron assisted giant dielectric dispersion in SrZrO{sub 3} high-k dielectric

    Energy Technology Data Exchange (ETDEWEB)

    Borkar, Hitesh; Barvat, Arun; Pal, Prabir; Kumar, Ashok, E-mail: ashok553@nplindia.org [CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Academy of Scientific and Innovative Research (AcSIR), CSIR-National Physical Laboratory (CSIR-NPL) Campus, Dr. K S Krishnan Marg, New Delhi 110012 (India); Shukla, A. K. [CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Pulikkotil, J. J. [CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Academy of Scientific and Innovative Research (AcSIR), CSIR-National Physical Laboratory (CSIR-NPL) Campus, Dr. K S Krishnan Marg, New Delhi 110012 (India); Computation and Networking Facility, CSIR-National Physical Laboratory, New Delhi 110012 (India)

    2016-06-07

    The SrZrO{sub 3} is a well known high-k dielectric constant (∼22) and high optical bandgap (∼5.8 eV) material and one of the potential candidates for future generation nanoelectronic logic elements (8 nm node technology) beyond silicon. Its dielectric behavior is fairly robust and frequency independent till 470 K; however, it suffers a strong small-polaron based electronic phase transition (T{sub e}) linking 650 to 750 K. The impedance spectroscopy measurements revealed the presence of conducting grains and grain boundaries at elevated temperature which provide energetic mobile charge carriers with activation energy in the range of 0.7 to 1.2 eV supporting the oxygen ions and proton conduction. X-ray photoemission spectroscopy measurements suggest the presence of weak non-stoichiometric O{sup 2−} anions and hydroxyl species bound to different sites at the surface and bulk. These thermally activated charge carriers at elevated temperature significantly contribute to the polaronic based dielectric anomaly and conductivity. Our dielectric anomaly supports pseudo phase transition due to high degree of change in ZrO{sub 6} octahedral angle in the temperature range of 650–750 K, where electron density and phonon vibration affect the dielectric and conductivity properties.

  4. Studies on the structural, optical and dielectric properties of samarium coordinated with salicylic acid single crystal

    Science.gov (United States)

    Singh, Harjinder; Slathia, Goldy; Gupta, Rashmi; Bamzai, K. K.

    2018-04-01

    Samarium coordinated with salicylic acid was successfully grown as a single crystal by low temperature solution technique using mixed solvent of methanol and water in equal ratio. Structural characterization was carried out by single crystal X-ray diffraction analysis and it crystallizes in centrosymmetric space group P121/c1. FTIR and UV-Vis-NIR spectroscopy confirmed the compound formation and help to determine the mode of binding of the ligand to the rare earth-metal ion. Dielectric constant and dielectric loss have been measured over the frequency range 100 Hz - 30MHz. The decrease in dielectric constant with increases in frequency is due to the transition from interfacial polarization to dipolar polarization. The small value of dielectric constant at higher frequency ensures that the crystal is good candidate for NLO devices. Dielectric loss represents the resistive nature of the material.

  5. Dielectric response and ac conductivity analysis of hafnium oxide nanopowder

    International Nuclear Information System (INIS)

    Karahaliou, P K; Xanthopoulos, N; Krontiras, C A; Georga, S N

    2012-01-01

    The dielectric response of hafnium oxide nanopowder was studied in the frequency range of 10 -2 -10 6 MHz and in the temperature range of 20-180 °C. Broadband dielectric spectroscopy was applied and the experimental results were analyzed and discussed using the electric modulus (M*) and alternating current (ac) conductivity formalisms. The analyses of the dc conductivity and electric modulus data revealed the presence of mechanisms which are thermally activated, both with almost the same activation energy of 1.01 eV. A fitting procedure involving the superposition of the thermally activated dc conductivity, the universal dielectric responce and the near constant loss terms has been used to describe the frequency evolution of the real part of the specific electrical conductivity. The conductivity master curve was obtained, suggesting that the time-temperature superposition principle applies for the studied system, thus implying that the conductivity mechanisms are temperature independent.

  6. Extrinsic and intrinsic contributions for dielectric behavior of La{sub 2}NiMnO{sub 6} ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Zhenzhu, E-mail: czz03@163.com [Chemical Engineering College of Inner Mongolia University of Technology, Hohhot 010051 (China); Liu, Xiaoting; He, Weiyan [Chemical Engineering College of Inner Mongolia University of Technology, Hohhot 010051 (China); Ruan, Xuezheng [Key Laboratory of Inorganic Function Material and Device, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Gao, Yanfang; Liu, Jinrong [Chemical Engineering College of Inner Mongolia University of Technology, Hohhot 010051 (China)

    2015-11-15

    The influences of electrode material, DC bias and temperature on the electrical and dielectric properties of LNMO ceramic have been investigated using impedance spectroscopy and dielectric measurements. Evidences from dielectric and impedance analysis showed that the giant dielectric constant and its notable tunability originated from extrinsic contribution from interface polarization. Low temperature and high frequency dielectric characterization revealed the low intrinsic dielectric constant.

  7. Charged-particle spectroscopy in the microsecond range following projectile fragmentation

    CERN Document Server

    Pfützner, M; Grzywacz, R; Janas, Z; Momayezi, M; Bingham, C; Blank, B; Chartier, M; Geissel, H; Giovinazzo, J; Hellström, M; Kurcewicz, J; Lalleman, A S; Mazzocchi, C; Mukha, I; Plettner, C; Roeckl, E; Rykaczewski, K; Schmidt, K; Simon, R S; Stanoiu, M; Thomas, J C

    2002-01-01

    We present a new approach to charged-particle spectroscopy of short-lived nuclei produced by relativistic projectile fragmentation. The system based on digital DGF-4C CAMAC modules and newly developed fast-reset preamplifiers was tested at the Fragment Separator of GSI. We were able to detect low-energy (approx 1 MeV) decay signals occurring a few microseconds after a heavy-ion implantation accompanied by a release of approx 1 GeV energy. Applications for the study of one- and two-proton radioactivity are discussed.

  8. The dielectric properties of human pineal gland tissue and RF absorption due to wireless communication devices in the frequency range 400-1850 MHz

    International Nuclear Information System (INIS)

    Schmid, Gernot; Ueberbacher, Richard; Samaras, Theodoros; Tschabitscher, Manfred; Mazal, Peter R

    2007-01-01

    In order to enable a detailed analysis of radio frequency (RF) absorption in the human pineal gland, the dielectric properties of a sample of 20 freshly removed pineal glands were measured less than 20 h after death. Furthermore, a corresponding high resolution numerical model of the brain region surrounding the pineal gland was developed, based on a real human tissue sample. After inserting this model into a commercially available numerical head model, FDTD-based computations for exposure scenarios with generic models of handheld devices operated close to the head in the frequency range 400-1850 MHz were carried out. For typical output power values of real handheld mobile communication devices, the obtained results showed only very small amounts of absorbed RF power in the pineal gland when compared to SAR limits according to international safety standards. The highest absorption was found for the 400 MHz irradiation. In this case the RF power absorbed inside the pineal gland (organ mass 96 mg) was as low as 11 μW, when considering a device of 500 mW output power operated close to the ear. For typical mobile phone frequencies (900 MHz and 1850 MHz) and output power values (250 mW and 125 mW) the corresponding values of absorbed RF power in the pineal gland were found to be lower by a factor of 4.2 and 36, respectively. These results indicate that temperature-related biologically relevant effects on the pineal gland induced by the RF emissions of typical handheld mobile communication devices are unlikely

  9. Soft mode behavior in cubic and tetragonal BaTiO.sub.3./sub. crystals and ceramics: review on the results of dielectric spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Petzelt, Jan

    2008-01-01

    Roč. 375, č. 1 (2008), s. 156-164 ISSN 0015-0193 Institutional research plan: CEZ:AV0Z10100520 Keywords : barium titanate * dielectric dispersion * soft mode * central mode * dielectric anisotropy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.562, year: 2008

  10. Dielectric properties of lunar surface

    Science.gov (United States)

    Yushkova, O. V.; Kibardina, I. N.

    2017-03-01

    Measurements of the dielectric characteristics of lunar soil samples are analyzed in the context of dielectric theory. It has been shown that the real component of the dielectric permittivity and the loss tangent of rocks greatly depend on the frequency of the interacting electromagnetic field and the soil temperature. It follows from the analysis that one should take into account diurnal variations in the lunar surface temperature when interpreting the radar-sounding results, especially for the gigahertz radio range.

  11. Spectroscopy

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    This introductory booklet covers the basics of molecular spectroscopy, infrared and Raman methods, instrumental considerations, symmetry analysis of molecules, group theory and selection rules, as well as assignments of fundamental vibrational modes in molecules.......This introductory booklet covers the basics of molecular spectroscopy, infrared and Raman methods, instrumental considerations, symmetry analysis of molecules, group theory and selection rules, as well as assignments of fundamental vibrational modes in molecules....

  12. Particle-Induced Gamma-ray Emission Spectroscopy Over a Broad Range of Elements

    Science.gov (United States)

    Olds, Hannah; Wilkinson, John; Tighe, Meghanne; McLallen, Walter; McGuire, Patrick

    2017-09-01

    Ion beam analysis is a common application of nuclear physics that allows elemental and isotopic information about materials to be determined from accelerated light ion beams One of the best know ion beam analysis techniques is Particle-Induced Gamma-ray Emission (PIGE) spectroscopy, which can be used ex vacuo to identify the elements of interest in almost any solid target. The energies of the gamma-rays emitted by excited nuclei will be unique to each element and depend on its nuclear structure. For the most sensitivity, the accelerated ions should exceed the Coulomb barrier of the target, but many isotopes are known to be accessible to PIGE even below the Coulomb barrier. To explore the sensitivity of PIGE across the periodic table, PIGE measurements were made on elements with Z = 5, 9, 11-15, 17, 19-35, 37, 42, 44-48, 53, 56, 60, 62, 73, and 74 using 3.4 MeV protons. These measurements will be compared with literature values and be used as a basis for comparison with higher-energy proton beams available at the University of Notre Dame's St. Andre accelerator when it comes online this Fall. The beam normalization technique of using atmospheric argon and its 1459 keV gamma-ray to better estimate the integrated beam on target will also be discussed. Funded by the NSF REU program and the University of Notre Dame.

  13. Dielectric function in the spectral range (0.5–8.5)eV of an (AlxGa1−x)2O3 thin film with continuous composition spread

    International Nuclear Information System (INIS)

    Schmidt-Grund, R.; Kranert, C.; Wenckstern, H. von; Zviagin, V.; Lorenz, M.; Grundmann, M.

    2015-01-01

    We determined the dielectric function of the alloy system (Al x Ga 1−x ) 2 O 3 by spectroscopic ellipsometry in the wide spectral range from 0.5 eV to 8.5 eV and for Al contents ranging from x = 0.11 to x = 0.55. For the composition range x < 0.4, we observe single phase material in the β-modification and for larger Al content also the occurrence of γ-(Al,Ga) 2 O 3 . We derived spectra of the refractive index and the absorption coefficient as well as energy parameters of electronic band-band transitions by model analysis of the dielectric function. The dependence of the dielectric functions lineshape and the energy parameters on x is highly continuous, reflecting theoretical expectations. The data presented here provide a basis for a deeper understanding of the electronic properties of this material system and may be useful for device engineering

  14. Complex magnetic susceptibility setup for spectroscopy in the extremely low-frequency range

    NARCIS (Netherlands)

    Kuipers, B.W.M.; Bakelaar, I.A.; Klokkenburg, M.; Erne, B.H.

    2008-01-01

    A sensitive balanced differential transformer was built to measure complex initial parallel magnetic susceptibility spectra in the 0.01–1000 Hz range. The alternating magnetic field can be chosen sufficiently weak that the magnetic structure of the samples is only slightly perturbed and the low

  15. Temporal variation of dielectric properties of preserved blood

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Yoshihito [Life Science Laboratory, Materials Laboratories, Sony Corporation, Sony Bioinformatics Center, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510 (Japan); Oshige, Ikuya [Life Science Laboratory, Materials Laboratories, Sony Corporation, Sony Bioinformatics Center, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510 (Japan); Katsumoto, Yoichi [Life Science Laboratory, Materials Laboratories, Sony Corporation, Sony Bioinformatics Center, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510 (Japan); Omori, Shinji [Life Science Laboratory, Materials Laboratories, Sony Corporation, Sony Bioinformatics Center, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510 (Japan); Yasuda, Akio [Life Science Laboratory, Materials Laboratories, Sony Corporation, Sony Bioinformatics Center, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510 (Japan); Asami, Koji [Laboratory of Molecular Aggregation Analysis, Division of Multidisciplinary Chemistry, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 (Japan)

    2008-01-07

    Rabbit blood was preserved at 277 K in Alsever's solution for 37 days, and its dielectric permittivity was monitored in a frequency range from 0.05 to 110 MHz throughout the period. The relaxation time and Cole-Cole parameter of the interfacial polarization process for erythrocytes remained nearly constant during the first 20 days and then started to increase and decrease, respectively. On the other hand, the relaxation strength and the cell volume fraction continued to decrease for 37 days, but the decrease rates of both changed discontinuously on about the 20th day. Microscope observation showed that approximately 90% of the erythrocytes were spinous echinocytes at the beginning of preservation and started to be transformed into microspherocytes around the 20th day. Therefore, dielectric spectroscopy is a sensitive tool to monitor the deterioration of preserved blood accompanied by morphological transition of erythrocytes through the temporal variation of their dielectric properties.

  16. Temporal variation of dielectric properties of preserved blood

    International Nuclear Information System (INIS)

    Hayashi, Yoshihito; Oshige, Ikuya; Katsumoto, Yoichi; Omori, Shinji; Yasuda, Akio; Asami, Koji

    2008-01-01

    Rabbit blood was preserved at 277 K in Alsever's solution for 37 days, and its dielectric permittivity was monitored in a frequency range from 0.05 to 110 MHz throughout the period. The relaxation time and Cole-Cole parameter of the interfacial polarization process for erythrocytes remained nearly constant during the first 20 days and then started to increase and decrease, respectively. On the other hand, the relaxation strength and the cell volume fraction continued to decrease for 37 days, but the decrease rates of both changed discontinuously on about the 20th day. Microscope observation showed that approximately 90% of the erythrocytes were spinous echinocytes at the beginning of preservation and started to be transformed into microspherocytes around the 20th day. Therefore, dielectric spectroscopy is a sensitive tool to monitor the deterioration of preserved blood accompanied by morphological transition of erythrocytes through the temporal variation of their dielectric properties

  17. Metallic and 3D-printed dielectric helical terahertz waveguides.

    Science.gov (United States)

    Vogt, Dominik Walter; Anthony, Jessienta; Leonhardt, Rainer

    2015-12-28

    We investigate guidance of Terahertz (THz) radiation in metallic and 3D-printed dielectric helical waveguides in the frequency range from 0.2 to 1 THz. Our experimental results obtained from THz time-domain spectroscopy (THz-TDS) measurements are in very good agreement with finite-difference time-domain (FDTD) simulations. We observe single-mode, low loss and low dispersive propagation of THz radiation in metallic helical waveguides over a broad bandwidth. The 3D-printed dielectric helical waveguides have substantially extended the bandwidth of a low loss dielectric tube waveguide as observed from the experimental and simulation results. The high flexibility of the helical design allows an easy incorporation into bench top THz devices.

  18. Dielectric and gravimetric studies of water binding to lysozyme

    International Nuclear Information System (INIS)

    Bone, S.

    1996-01-01

    Time domain dielectric spectroscopy and hydration isotherm measurements as a function of temperature have been applied to hydrated lysozyme powder. Two dielectric dispersions were identified, the first centred at approximately 8 MHz and a second above 1 GHz. The higher dispersion is considered to be the result of rotational relaxation of water molecules bound to the enzyme. In this case the results indicate the existence of a population of 32 water molecules per lysozyme molecule which are irrotationally bound to the lysozyme structure. A larger population of water molecules is relatively free to respond to the electric field and exhibits a dipole moment close to that of vapour phase water molecules. Multi-temperature hydration isotherm measurements are used to calculate enthalpies and entropies associated with the binding of water to lysozyme. Discontinuities both in dielectric and in thermodynamic characteristics in the range 10-14% hydration are interpreted as a re-ordering of the water structure on the enzyme surface

  19. X-ray absorption spectroscopy in the keV range with laser generated high harmonic radiation

    International Nuclear Information System (INIS)

    Seres, Enikoe; Seres, Jozsef; Spielmann, Christian

    2006-01-01

    By irradiating He and Ne atoms with 3 mJ, 12 fs, near infrared laser pulses from a tabletop laser system, the authors generated spatially and temporally coherent x rays up to a photon energy of 3.5 keV. With this source it is possible to use high-harmonic radiation for x-ray absorption spectroscopy in the keV range. They were able to clearly resolve the L absorption edges of titanium and copper and the K edges of aluminum and silicon. From the fine structure of the x-ray absorption they estimated the interatomic distances

  20. Dual sightline measurements of MeV range deuterons with neutron and gamma-ray spectroscopy at JET

    DEFF Research Database (Denmark)

    Eriksson, J.; Nocente, M.; Binda, F.

    2015-01-01

    Observations made in a JET experiment aimed at accelerating deuterons to the MeV range by third harmonic radio-frequency (RF) heating coupled into a deuterium beam are reported. Measurements are based on a set of advanced neutron and gamma-ray spectrometers that, for the first time, observe......-ray spectroscopy based on a one-dimensional model and by a consistency check among the individual measurement techniques. A systematic difference is seen between the two lines of sight and is interpreted to originate from the sensitivity of the oblique detectors to the pitch-angle structure of the distribution...

  1. spectroscopy

    African Journals Online (AJOL)

    Aghomotsegin

    2015-10-14

    Oct 14, 2015 ... characterized by using phenotypic, API and Fourier transform infrared (FTIR) spectroscopy methods. One hundred and fifty-seven (157) strains were isolated from 13 cheese samples, and identification test was performed for 83 strains. At the end of the study, a total of 22 Lactococcus sp., 36 Enterecoccus ...

  2. GIARPS@TNG: GIANO-B and HARPS-N together for a wider wavelength range spectroscopy

    Science.gov (United States)

    Claudi, R.; Benatti, S.; Carleo, I.; Ghedina, A.; Guerra, J.; Micela, G.; Molinari, E.; Oliva, E.; Rainer, M.; Tozzi, A.; Baffa, C.; Baruffolo, A.; Buchschacher, N.; Cecconi, M.; Cosentino, R.; Fantinel, D.; Fini, L.; Ghinassi, F.; Giani, E.; Gonzalez, E.; Gonzalez, M.; Gratton, R.; Harutyunyan, A.; Hernandez, N.; Lodi, M.; Malavolta, L.; Maldonado, J.; Origlia, L.; Sanna, N.; Sanjuan, J.; Scuderi, S.; Seemann, U.; Sozzetti, A.; Perez Ventura, H.; Hernandez Diaz, M.; Galli, A.; Gonzalez, C.; Riverol, L.; Riverol, C.

    2017-08-01

    Since 2012, thanks to the installation of the high-resolution echelle spectrograph in the optical range HARPS-N, the Italian telescope TNG (La Palma) became one of the key facilities for the study of the extrasolar planets. In 2014 TNG also offered GIANO to the scientific community, providing a near-infrared (NIR) cross-dispersed echelle spectroscopy covering 0.97-2.45μm at a resolution of 50000. GIANO, although designed for direct light-feed from the telescope at the Nasmyth-B focus, was provisionally mounted on the rotating building and connected via fibers to only available interface at the Nasmyth-A focal plane. The synergy between these two instruments is particularly appealing for a wide range of science cases, especially for the search of exoplanets around young and active stars and the characterisation of their atmosphere. Through the funding scheme "WOW" (a Way to Others Worlds), the Italian National Institute for Astrophysics (INAF) proposed to position GIANO at the focal station for which it was originally designed and the simultaneous use of these spectrographs with the aim to achieve high-resolution spectroscopy in a wide wavelength range (0.383-2.45μm) obtained in a single exposure, giving rise to the project called GIARPS (GIANO-B & HARPS-N). Because of its characteristics, GIARPS can be considered the first and unique worldwide instrument providing not only high resolution in a large wavelength band, but also a high-precision radial velocity measurement both in the visible and in the NIR arm, since in the next future GIANO-B will be equipped with gas absorption cells.

  3. Investigation of the dielectric properties of shale

    International Nuclear Information System (INIS)

    Martemyanov, Sergey M.

    2011-01-01

    The article is dedicated to investigation of the dielectric properties of oil shale. Investigations for samples prepared from shale mined at the deposit in Jilin Province in China were done. The temperature and frequency dependences of rock characteristics needed to calculate the processes of their thermal processing are investigated. Frequency dependences for the relative dielectric constant and dissipation factor of rock in the frequency range from 0,1 Hz to 1 MHz are investigated. The temperature dependences for rock resistance, dielectric capacitance and dissipation factor in the temperature range from 20 to 600°C are studied. Key words: shale, dielectric properties, relative dielectric constant, dissipation factor, temperature dependence, frequency dependence

  4. Coherent Synchrotron Radiation for Rotational Spectroscopy: Application to the Rotational Spectrum of Propynal in the 200-750 GHz Range

    Science.gov (United States)

    Barros, J.; Roy, P.; Appadoo, D.; Naughton, D. Mc; Robertson, E.; Manceron, L.

    2013-06-01

    In storage rings, short electron bunches can produce an intense THz radiation called Coherent Synchrotron Radiation (CSR). The flux of this emission between 250 and 750 GHz (in the mW range, up the 10000 times the regular synchrotron emission) is very advantageous for broad band absorption spectroscopy, using interferometric techniques. This source is, however, inherently difficult to stabilize, and intensity fluctuations lead to artifacts on the FT-based measurements, which strongly limit the use of CSR in particular for high-resolution measurements. At SOLEIL however, by screening different currents and bunch lengths, we defined stable CSR conditions for which the signal-to-noise ratio (S/N) allows for measurements at high resolution. Moreover, we developed an artifact correction system, based on a simultaneous detection of the input and the output signals of the interferometer, which allows to further improve the S/N. For this purpose, the optics and electronics of two bolometers were matched. The stable CSR combined with this ingenious technique allowed us to record for the first time high-resolution FT spectra in the sub-THz range, with a S/N of 100 in a few hours. This enables many applications such as broadband rotational spectra in the THz range, studies of molecules with low frequency torsional modes, absolute intensities determinations, or studies of unstable species. Results obtained on Propynal illustrate these possibilities and enabled to improve significantly the ground state spectroscopic constants.

  5. Assessing the chronology of bedrock landslides in the Oregon Coastal Range using visible near-infrared spectroscopy

    Science.gov (United States)

    Mathabane, N.; Cerovski-Darriau, C.; Sweeney, K. E.; Roering, J. J.

    2013-12-01

    Obtaining accurate chronological data for landslides is critical to understanding their causes as well as their dynamics. The ability to easily and inexpensively date various parts of a landslide can provide insight not only into the 'When' of landslides but also on the 'How' and 'Why' as well. In this study, we apply visible near-infrared (VisNIR) spectroscopy as a means to date landslide soils in a setting with uniform climate and bedrock lithology. In our Oregon Coast Range site, as sandstone-derived soils weather over time, pedogenic hematite accumulates and alters the color of the soil at a quantifiable and discernable rate. This rate having already been established through a soil chronosequence study, we can use the redness of a soil as a proxy for soil age. This is a potentially economical dating method as it does not rely on expensive radioisotopes and requires only a small amount of sample to process. We collected 39 B-horizon soil samples from 7 different slides and used VisNIR spectroscopy to identify the soil residence time of the landslides. The majority of the samples possessed ages between 75,000 and 150,000 years of age, though several slides registered ages over 200,000 years. The average percent error associated with the landslide ages was ~30-35%, although this value was lower for younger slides (200,000 years). Younger slides were more homogenous in age while older slides exhibited more variability. Additionally, there was lower variability in auger-collected samples when compared to samples collected from road-cuts. Our results suggest that VisNIR spectroscopy may prove a more useful dating method on younger, less disturbed landslides but fail to truly capture the age of older, more complicated slides due to its reliance on a specific pedogentic model for hematite weathering as well as the increased risk for complex slide history. This method could be useful in a regional characterization of landslide chronology for similar biomes and provide

  6. Bioimpedance Spectroscopy

    DEFF Research Database (Denmark)

    Klösgen, Beate; Rümenapp, Christine; Gleich, Bernhard

    2011-01-01

    causes relaxation processes with characteristic contributions to the frequency-dependent complex dielectric constant. These dipolar relaxations were initially described by Debye (Polare Molekeln 1929). They are the basis of impedance spectroscopy (K’Owino and Sadik Electroanalysis 17(23):2101–2113, 2005...

  7. Structural, photoconductivity, and dielectric studies of polythiophene-tin oxide nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Murugavel, S., E-mail: starin85@gmail.com; Malathi, M., E-mail: mmalathi@vit.ac.in

    2016-09-15

    Highlights: • Synthesis of polythiophene-tin oxide nanocomposites confirmed by FTIR and EDAX. • SEM shows SnO{sub 2} nanoparticles embedded within polythiophene matrix. • Stability and isoelectric point suggest nanoparticle–matrix interaction. • High dielectric constant due to high Maxwell–Wagner interfacial polarization. - Abstract: Polythiophene-tinoxide (PT-SnO{sub 2}) nanocomposites were prepared by in situ chemical oxidative polymerization, in the presence of various concentrations of SnO{sub 2} nanoparticles. Samples were characterized by X-ray diffraction, Fourier-transform infrared spectroscopy, thermogravimetric analysis, X-ray photoelectron spectroscopy and Zeta potential measurements. Morphologies and elemental compositions were investigated by transmission electron microscopy, field-emission scanning electron microscopy and energy-dispersive X-ray spectroscopy. The photoconductivity of the nanocomposites was studied by field-dependent dark and photo conductivity measurements. Their dielectric properties were investigated using dielectric spectroscopy, in the frequency range of 1kHz–1 MHz. The results indicated that the SnO{sub 2} nanoparticles in the PT-SnO{sub 2} nanocomposite were responsible for its enhanced dielectric performance.

  8. Frequency and temperature dependent dielectric properties of TiO2-V2O5 nanocomposites

    Science.gov (United States)

    Ray, Apurba; Roy, Atanu; De, Sayan; Chatterjee, Souvik; Das, Sachindranath

    2018-03-01

    In this manuscript, we have reported the crystal structure, dielectric response, and transport phenomenon of TiO2-V2O5 nanocomposites. The nanocomposites were synthesized using a sol-gel technique having different molar ratios of Ti:V (10:10, 10:15, and 10:20). The phase composition and the morphology have been studied using X-ray diffraction and field emission scanning electron microscope, respectively. The impedance spectroscopy studies of the three samples over a wide range of temperature (50 K-300 K) have been extensively described using the internal barrier layer capacitor model. It is based on the contribution of domain and domain boundary, relaxations of the materials, which are the main crucial factors for the enhancement of the dielectric response. The frequency dependent ac conductivity of the ceramics strongly obeys the well-known Jonscher's power law, and it has been clearly explained using the theory of jump relaxation model. The temperature dependent bulk conductivity is fairly recognized to the variable-range hopping of localized polarons. The co-existence of mixed valence state of Ti ions (Ti3+ and Ti4+) in the sample significantly contributes to the change of dielectric property. The overall study of dielectric response explains that the dielectric constant and the dielectric loss are strongly dependent on temperature and frequency and decrease with an increase of frequency as well as temperature.

  9. Satellite monitoring of different vegetation types by differential optical absorption spectroscopy (DOAS in the red spectral range

    Directory of Open Access Journals (Sweden)

    T. Wagner

    2007-01-01

    Full Text Available A new method for the satellite remote sensing of different types of vegetation and ocean colour is presented. In contrast to existing algorithms relying on the strong change of the reflectivity in the red and near infrared spectral region, our method analyses weak narrow-band (few nm reflectance structures (i.e. "fingerprint" structures of vegetation in the red spectral range. It is based on differential optical absorption spectroscopy (DOAS, which is usually applied for the analysis of atmospheric trace gas absorptions. Since the spectra of atmospheric absorption and vegetation reflectance are simultaneously included in the analysis, the effects of atmospheric absorptions are automatically corrected (in contrast to other algorithms. The inclusion of the vegetation spectra also significantly improves the results of the trace gas retrieval. The global maps of the results illustrate the seasonal cycles of different vegetation types. In addition to the vegetation distribution on land, they also show patterns of biological activity in the oceans. Our results indicate that improved sets of vegetation spectra might lead to more accurate and more specific identification of vegetation type in the future.

  10. Raman micro-spectroscopy analysis of human lens epithelial cells exposed to a low-dose-range of ionizing radiation

    Science.gov (United States)

    Allen, Christian Harry; Kumar, Achint; Qutob, Sami; Nyiri, Balazs; Chauhan, Vinita; Murugkar, Sangeeta

    2018-01-01

    Recent findings in populations exposed to ionizing radiation (IR) indicate dose-related lens opacification occurs at much lower doses (micro-spectroscopy was used to investigate the effects of varying doses of radiation, ranging from 0.01 Gy to 5 Gy, on human lens epithelial (HLE) cells which were chemically fixed 24 h post-irradiation. Raman spectra were acquired from the nucleus and cytoplasm of the HLE cells. Spectra were collected from points in a 3  ×  3 grid pattern and then averaged. The raw spectra were preprocessed and principal component analysis followed by linear discriminant analysis was used to discriminate between dose and control for 0.25, 0.5, 2, and 5 Gy. Using leave-one-out cross-validation accuracies of greater than 74% were attained for each dose/control combination. The ultra-low doses 0.01 and 0.05 Gy were included in an analysis of band intensities for Raman bands found to be significant in the linear discrimination, and an induced repair model survival curve was fit to a band-difference-ratio plot of this data, suggesting HLE cells undergo a nonlinear response to low-doses of IR. A survival curve was also fit to clonogenic assay data done on the irradiated HLE cells, showing a similar nonlinear response.

  11. X-ray intensity fluctuation spectroscopy in the energy range from 1 to 4 keV

    Energy Technology Data Exchange (ETDEWEB)

    Retsch, C.C.

    2001-06-01

    X-ray intensity fluctuation spectroscopy was developed in the energy range of 1 to 4 keV and was used to study complex sample structures and dynamics in a liquid-crystal - aerosil dispersion. The advantages of a focusing versus a nonfocusing setup were explored, and the effects of using X-ray energies near absorption edges were investigated to enhance the capabilities of the method. It was found that even though excellent real space resolution and an increase in flux density can be gained from a Fresnel zone plate focusing setup, this usually comes at the expense of speckle contrast. At absorption edges, the speckle contrast is dominated by the imaginary part of the sample's index of refraction and therefore varies in a way similar to the total transmitted intensity. Employing these results, the dynamics of a dispersion of low-density silica aerosil in octylcyanobiphenyl (8CB) were studied. It was found that the known cross-over behavior of 8CB - aerosil samples towards the 3d-XY universality class should be understood as the coupling of the aerosil-gel dynamics to the dynamics of the director fluctuations in the liquid-crystal. This work indicates that the aerosil-gel mimics and dampens these director fluctuations and thus, by suppressing the director fluctuations, achieves a pure 3d-XY system. (orig.)

  12. A no-tune no-match wideband probe for nuclear quadrupole resonance spectroscopy in the VHF range

    Science.gov (United States)

    Scharfetter, Hermann; Petrovic, Andreas; Eggenhofer, Heidi; Stollberger, Rudolf

    2014-12-01

    Nuclear quadrupole resonance (NQR) spectroscopy is a method for the characterization of chemical compounds containing so-called quadrupolar nuclei. Similar to nuclear magnetic resonance (NMR), the sample under investigation is irradiated with strong radiofrequency (RF) pulses, which stimulate the emission of weak RF signals from the quadrupolar nuclei. The signals are then amplified and Fourier transformed so as to obtain a spectrum. In principle, narrowband NQR spectra can be measured with NMR spectrometers. However, pure NQR signals require the absence of a static magnetic field and several special applications require the characterization of a substance over a large bandwidth, e.g. 50-100% of the central frequency, which is hardly possible with standard NMR equipment. Dedicated zero-field NQR equipment is not widespread and current concepts employ resonating probes which are tuned and matched over a wide range by using mechanical capacitors driven by stepper motors. While providing the highest signal to noise ratio (SNR) such probes are slow in operation and can only be operated from dedicated NMR consoles. We developed a low-cost NQR wideband probe without tuning and matching for applications in the very high frequency (VHF) range below 300 MHz. The probe coil was realized as part of a reactive network which approximates an exponential transmission line. The input reflection coefficient of the two developed prototype probe coils is ≤ 20 dB between 90-145 MHz and 74.5-99.5 MHz, respectively. Two wideband NQR spectra of published test substances were acquired with an SNR of better than 20 dB after sufficient averaging. The measured signals and the SNR correspond very well to the theoretically expected values and demonstrate the feasibility of the method. Because there is no need for tuning and matching, our probes can be operated easily from any available NMR console.

  13. Laser amplification in excited dielectrics

    DEFF Research Database (Denmark)

    Winkler, Thomas; Haahr-Lillevang, Lasse; Sarpe, Cristian

    2018-01-01

    Wide-bandgap dielectrics such as glasses or water are transparent at visible and infrared wavelengths. This changes when they are exposed to ultrashort and highly intense laser pulses. Different interaction mechanisms lead to the appearance of various transient nonlinear optical phenomena. Using...... these, the optical properties of dielectrics can be controlled from the transparent to the metal-like state. Here we expand this range by a yet unexplored mechanism in excited dielectrics: amplification. In a two-colour pump-probe experiment, we show that a 400nm femtosecond laser pulse is coherently...

  14. Evaluation of the ID220 single photon avalanche diode for extended spectral range of photon time-of-flight spectroscopy

    DEFF Research Database (Denmark)

    Nielsen, Otto Højager Attermann; Dahl, Anders Bjorholm; Anderson-Engels, Stefan

    This paper describe the performance of the ID220 single photon avalanche diode for single photon counting, and investigates its performance for photon time-of-flight (PToF) spectroscopy. At first this report will serve as a summary to the group for PToF spectroscopy at the Department of Physics...

  15. Dielectric properties of residual water in amorphous lyophilized mixtures of sugar and drug

    Energy Technology Data Exchange (ETDEWEB)

    Moznine, R El [School of Pharmacy, De Montfort University, Leiceste (United Kingdom); Smith, G [School of Pharmacy, De Montfort University, Leicester (United Kingdom); Polygalov, E [School of Pharmacy, De Montfort University, Leicester (United Kingdom); Suherman, P M [School of Pharmacy, De Montfort University, Leicester (United Kingdom); Broadhead, J [AstraZeneca Charnwood R and D, Bakewell Rd, Loughborough (United Kingdom)

    2003-02-21

    Dielectric relaxation spectroscopy was used to investigate the properties of residual water in lyophilized formulations of a proprietary tri-phosphate drug containing a sugar (trehalose, lactose or sucrose) or dextran. The dielectric properties of each formulation were determined in the frequency range (0.1 Hz-0.1 MHz) and temperature range (30 deg. C-T{sub g}). The temperature dependence of the relaxation times for all samples showed Arrhenuis behaviour, from which the activation energy was derived. Proton hopping through the hydrogen-bonded network (clusters) of water molecules was suggested as the principle mode of charge transport. Significant differences in dielectric relaxation kinetics and activation energy were observed for the different formulations, which were found to correlate with the amount of monophosphate degradation product.

  16. Dielectric properties of polyethylene

    International Nuclear Information System (INIS)

    Darwish, S.; Riad, A.S.; El-Shabasy, M.

    2005-01-01

    The temperature dependence of dielectric properties in polyethylene was measured in the frequency range from 10 to 105 Hz. The frequency dependence of the complex impedance in the complex plane could be fitted by semicircles. The system could be represented by an equivalent circuit of a bulk resistance in series with parallel surface resistance-capacitance combination. The relaxation time, has been evaluated from experimental results. Results reveal that the temperature dependence, is a thermally activated process

  17. Electron spectroscopy in the X-ray range for occupied and free levels and the application to transition metal silicides

    International Nuclear Information System (INIS)

    Speier, W.

    1988-03-01

    Intermetallic compounds of transition metals are investigated by means of XPS, Bremsstrahlung Isochromate Spectroscopy and XAS. Occupied and free levels are characterized and moreover a systematic overview over the electronic structure of the transition element silicides is given. (BHO)

  18. Boron nitride hollow nanospheres: Synthesis, formation mechanism and dielectric property

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, B.; Tang, X.H. [School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264209 (China); Huang, X.X., E-mail: swliza@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Xia, L. [School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264209 (China); Zhang, X.D. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wang, C.J. [School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264209 (China); Wen, G.W., E-mail: g.wen@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264209 (China); School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2015-04-15

    Highlights: • BN hollow nanospheres are fabricated in large scale via a new CVD method. • Morphology and structure are elucidated by complementary analytical techniques. • Formation mechanism is proposed based on experimental observations. • Dielectric properties are investigated in the X-band microwave frequencies. • BN hollow nanospheres show lower dielectric loss than regular BN powders. - Abstract: Boron nitride (BN) hollow nanospheres have been successfully fabricated by pyrolyzing vapors decomposed from ammonia borane (NH{sub 3}BH{sub 3}) at 1300 °C. The final products have been extensively characterized by X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. The BN hollow nanospheres were ranging from 100 to 300 nm in diameter and around 30–100 nm in thickness. The internal structure of the products was found dependent on the reaction temperatures. A possible formation mechanism of the BN hollow nanospheres was proposed on the basis of the experimental observations. Dielectric measurements in the X-band microwave frequencies (8–12 GHz) showed that the dielectric loss of the paraffin filled by the BN hollow nanospheres was lower than that filled by regular BN powders, which indicated that the BN hollow nanospheres could be potentially used as low-density fillers for microwave radomes.

  19. Liquid identification by Hilbert spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lyatti, M; Divin, Y; Poppe, U; Urban, K, E-mail: M.Lyatti@fz-juelich.d, E-mail: Y.Divin@fz-juelich.d [Forschungszentrum Juelich, 52425 Juelich (Germany)

    2009-11-15

    Fast and reliable identification of liquids is of great importance in, for example, security, biology and the beverage industry. An unambiguous identification of liquids can be made by electromagnetic measurements of their dielectric functions in the frequency range of their main dispersions, but this frequency range, from a few GHz to a few THz, is not covered by any conventional spectroscopy. We have developed a concept of liquid identification based on our new Hilbert spectroscopy and high- T{sub c} Josephson junctions, which can operate at the intermediate range from microwaves to THz frequencies. A demonstration setup has been developed consisting of a polychromatic radiation source and a compact Hilbert spectrometer integrated in a Stirling cryocooler. Reflection polychromatic spectra of various bottled liquids have been measured at the spectral range of 15-300 GHz with total scanning time down to 0.2 s and identification of liquids has been demonstrated.

  20. Liquid identification by Hilbert spectroscopy

    Science.gov (United States)

    Lyatti, M.; Divin, Y.; Poppe, U.; Urban, K.

    2009-11-01

    Fast and reliable identification of liquids is of great importance in, for example, security, biology and the beverage industry. An unambiguous identification of liquids can be made by electromagnetic measurements of their dielectric functions in the frequency range of their main dispersions, but this frequency range, from a few GHz to a few THz, is not covered by any conventional spectroscopy. We have developed a concept of liquid identification based on our new Hilbert spectroscopy and high- Tc Josephson junctions, which can operate at the intermediate range from microwaves to THz frequencies. A demonstration setup has been developed consisting of a polychromatic radiation source and a compact Hilbert spectrometer integrated in a Stirling cryocooler. Reflection polychromatic spectra of various bottled liquids have been measured at the spectral range of 15-300 GHz with total scanning time down to 0.2 s and identification of liquids has been demonstrated.

  1. Liquid identification by Hilbert spectroscopy

    International Nuclear Information System (INIS)

    Lyatti, M; Divin, Y; Poppe, U; Urban, K

    2009-01-01

    Fast and reliable identification of liquids is of great importance in, for example, security, biology and the beverage industry. An unambiguous identification of liquids can be made by electromagnetic measurements of their dielectric functions in the frequency range of their main dispersions, but this frequency range, from a few GHz to a few THz, is not covered by any conventional spectroscopy. We have developed a concept of liquid identification based on our new Hilbert spectroscopy and high- T c Josephson junctions, which can operate at the intermediate range from microwaves to THz frequencies. A demonstration setup has been developed consisting of a polychromatic radiation source and a compact Hilbert spectrometer integrated in a Stirling cryocooler. Reflection polychromatic spectra of various bottled liquids have been measured at the spectral range of 15-300 GHz with total scanning time down to 0.2 s and identification of liquids has been demonstrated.

  2. Influence of Zn doping on structural, optical and dielectric properties of LaFeO3

    Science.gov (United States)

    Manzoor, Samiya; Husain, Shahid

    2018-05-01

    The effect of Zn doping on structural, optical and dielectric properties of nano-crystalline LaFe1‑xZnxO3 (0.0 ≤ x ≤ 0.3) samples have been investigated. These samples are synthesized using conventional solid state reaction route. X-ray diffraction patterns with Rietveld analysis confirm the single phase nature of samples. Further, the sample formation has been confirmed by FTIR spectroscopy. All the samples are formed in orthorhombic crystal symmetry with Pbnm space group. The average crystallite sizes, calculated from the Scherer’s formula, lie in the range below 50 nm. Rietveld refinement technique is used to determine lattice parameters, bond lengths and unit cell volume. Williamson-Hall analysis has been performed to calculate the crystallite size and lattice strain. Crystallite sizes are found to be of nanometer range while the strain is of the order of 10‑3. Zn doping leads to the expansion of volume due to the tensile strain. Optical bandgap has been determined from Kubelka-Munk function using Tauc’s relation. Zinc doping in LaFeO3 leads to decrease in optical bandgap. Dielectric constant as a function of frequency is measured in the frequency range of 75 kHz–5 MHz. The dielectric behavior has been investigated by analyzing ‘universal dielectric response’ (UDR) model. The dielectric constant (ε‧) shows colossal value with Zn doping in the whole frequency range. However, the imaginary part (ε″) shows relaxational behavior which may be attributed to the strong correlation that exists between conduction mechanism and dielectric behavior in ferrites. Cole-Cole analysis has been done that confirms the dielectric material does not follow the ideal Debye theory but shows distribution of relaxation times. The a.c conductivity increases with frequency and with Zn doping due to the increased polaron hopping.

  3. Silicone-based Dielectric Elastomers

    DEFF Research Database (Denmark)

    Skov, Anne Ladegaard

    Efficient conversion of energy from one form to another (transduction) is an important topic in our daily day, and it is a necessity in moving away from the fossil based society. Dielectric elastomers hold great promise as soft transducers, since they are compliant and light-weight amongst many...... energy efficient solutions are highly sought. These properties allow for interesting products ranging very broadly, e.g. from eye implants over artificial skins over soft robotics to huge wave energy harvesting plants. All these products utilize the inherent softness and compliance of the dielectric...... elastomer transducers. The subject of this thesis is improvement of properties of silicone-based dielectric elastomers with special focus on design guides towards electrically, mechanically, and electromechanically reliable elastomers. Strategies for improving dielectric elastomer performance are widely...

  4. Potential Hydrogen Yields from Ultramafic Rocks of the Coast Range Ophiolite and Zambales Ophiolite: Inferences from Mössbauer Spectroscopy

    Science.gov (United States)

    Stander, A.; Nelms, M.; Wilkinson, K.; Dyar, M. D.; Cardace, D.

    2013-12-01

    The reduced status of mantle rocks is a possible controller and indicator of deep life habitat, due to interactions between water and ultramafic (Fe, Mg-rich) minerals, which, under reducing conditions, can yield copious free hydrogen, which is an energy source for rock-hosted chemosynthetic life. In this work, Mössbauer spectroscopy was used to parameterize the redox status of Fe in altering peridotites of the Coast Range Ophiolite (CRO) in California, USA and Zambales Ophiolite (ZO) in the Philippines. Fe-bearing minerals were identified and data were collected for the percentages of Fe(III)and Fe(II)and bulk Fe concentration. Thin section analysis shows that relict primary olivines and spinels generally constitute a small percentage of the ZO and CRO rock, and given satisfactory estimates of the volume of the ultramafic units of the ZO and CRO, a stoichiometric H2 production can be estimated. In addition, ZO serpentinites are ~63,000 ppm Fe in bulk samples; they contain ~41-58% Fe(III)and ~23-34% Fe(II) in serpentine and relict minerals along with ~8-30% of the total Fe as magnetite. CRO serpentinites are ~42,000 ppm Fe in bulk samples; they contain ~15-50% Fe(III), ~22-88% Fe(II) in serpentine and relict minerals, and ~0-52% of total Fe is in magnetite (Fe(II)Fe(III)2O4). Assuming stoichiometric production of H2, and given the following representation of serpentinization 2(FeO)rock + H2O → (Fe2O3)rock +H2, we calculated the maximum quantity of hydrogen released and yet to be released through the oxidation of Fe(II). Given that relatively high Fe(III)/Fetotal values can imply higher water:rock ratios during rock alteration (Andreani et al., 2013), we can deduce that ZO ultramafics in this study have experienced a net higher water:rock ratio than CRO ultramafics. We compare possible H2 yields and contrast the tectonic and alteration histories of the selected ultramafic units. (M. Andreani, M. Muñoz, C. Marcaillou, A. Delacour, 2013, μXANES study of iron

  5. X-ray diffraction, dielectric, and Raman spectroscopy studies of BaSrTiO{sub 3}-NaNbO{sub 3} ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Abdessalem, L. Ben; Aydi, S.; Aydi, A.; Maalej, A.; Khemakhem, H. [Universite de Sfax, Laboratoire des Materiaux Multifonctionnels et Applications (LaMMA), Faculte des Sciences de Sfax (FSS), Sfax (Tunisia); Sassi, Z. [Laboratoire de Genie Electrique et Ferroelectricite (LGEF) de L' INSA de Lyon, Villeurbanne (France)

    2017-05-15

    Ba{sub 0.837}Sr{sub 0.093}Na{sub 0.07}Ti{sub 0.93}Nb{sub 0.07}O{sub 3} (BSNTN) ceramic was synthesized by the solid-state reaction at 1350 C for 3 h. The crystal structure, investigated by X-ray diffraction at room temperature, revealed a single-phase perovskite crystallizing with tetragonal P4mm group space. Dielectric properties were investigated as a function of applied frequency. The ferroelectric behavior has been confirmed by hysteresis investigation. The evolution of the Raman spectra was used to study the variations of the basic phase transition of BaTiO{sub 3}, at room temperature. It shows the introduction of a disorder in this composition, thus favoring a ferroelectric relaxor behavior. (orig.)

  6. Raman spectroscopy, dielectric properties and phase transitions of Ag{sub 0.96}Li{sub 0.04}NbO{sub 3} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Niewiadomski, Adrian, E-mail: aniewiadomski@us.edu.pl [A. Chelkowski Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland); Kania, Antoni [A. Chelkowski Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland); Kugel, Godefroy E. [LMPOS, University of Metz and Supelec Metz, 2 rue E. Belin, Metz 57070 (France); Hafid, Mustapha [LPGC Dept. of Physics BP 133, Faculty of Science, Ibn Tofail University, 14000 Kenitra (Morocco); Sitko, Dorota [Institute of Physics, Pedagogical University, ul. Podchorazych 2, PL 30-084 Krakow (Poland)

    2015-05-15

    Highlights: • First Raman scattering studies of Ag{sub 0.96}Li{sub 0.04}NbO{sub 3}, allowed us to correlate temperature evolution of relaxational frequency γ{sub R}(T) with the Nb-ion dynamics and showed its changes at freezing temperature and ferrielectric transition. - Abstract: Silver lithium niobates Ag{sub 1−x}Li{sub x}NbO{sub 3} are promising lead free piezoelectrics. Good quality Ag{sub 0.96}Li{sub 0.04}NbO{sub 3} ceramics were obtained. Dielectric and DSC studies showed that, in comparison to AgNbO{sub 3,} temperatures of phase transitions slightly decrease. Dielectric studies pointed to enhancement of polar properties. Remnant polarisations achieves value of 0.6 μC/cm{sup 2}. Maximum of ϵ(T) dependences related to the relaxor-like ferroelectric/ferrielectric M{sub 1}–M{sub 2} transition becomes higher and more frequency dependent. Analysis of Raman spectra showed that two modes at 50 and 194 cm{sup −1} exhibit significant softening. Low frequency part of the Raman spectra which involve central peak and soft mode were analysed using two models. CP was assumed as relaxational vibration and described by Debye function. The slope of temperature dependences of relaxational frequency γ{sub R}(T) changes at approximately 470 and 330 K, indicating that slowing down process of relaxational vibrations changes in the vicinity of partial freezing of Nb-ion dynamics T{sub f} and further freezing at ferroelectric/ferrielectric phase transition.

  7. Dielectric Properties Of Nanoferrites

    International Nuclear Information System (INIS)

    Jankov, Stevan B.; Cvejic, Zeljka N.; Rakic, Srdjan; Srdic, Vladimir

    2007-01-01

    Dielectric properties: permittivity, loss factor, tan delta and ionic conductivity of nanostructured ferrites have been measured. Samples used were nickel, zinc and yttrium doped ferrites mixed in various ratios. The synthesis has been performed using precipitation method and obtained powders were pressed in pellets under varying pressure. X-ray diffractography approach for the refinement of structure and microstructural analysis has been performed. All parameters have been measured in 1 Hz to 100 kHz frequency range and 30 deg. C to 80 deg. C temperature range. Significant improvements in permittivity, loss factor and ionic conductivity comparing to bulk samples have been observed

  8. Influence of the local structure in phase-change materials on their dielectric permittivity.

    Science.gov (United States)

    Shportko, Kostiantyn V; Venger, Eugen F

    2015-01-01

    Ge-Sb-Te alloys, which belong to the phase-change materials, are promising materials for data storage and display and data visualization applications due to their unique properties. This includes a remarkable difference of their electrical and optical properties in the amorphous and crystalline state. Pronounced change of optical properties for Ge-Sb-Te alloys is linked to the different bonding types and different atomic arrangements in amorphous and crystalline states. The dielectric function of phase-change materials has been investigated in the far infrared (FIR) range. Phonons have been detected by FTIR spectroscopy. Difference of the dispersion of the dielectric permittivity of amorphous and crystalline samples is caused by different structures in different states which contribute to the dielectric permittivity.

  9. The relationship between chemical structure and dielectric properties of plasma-enhanced chemical vapor deposited polymer thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Hao [Materials Sci and Tech Applications, LLC, 409 Maple Springs Drive, Dayton OH 45458 (United States)]. E-mail: hao.jiang@wpafb.af.mil; Hong Lianggou [Materials Sci and Tech Applications, LLC, 409 Maple Springs Drive, Dayton OH 45458 (United States); Venkatasubramanian, N. [Research Institute, University of Dayton, 300 College Park, Dayton, OH 45469-0168 (United States); Grant, John T. [Research Institute, University of Dayton, 300 College Park, Dayton, OH 45469-0168 (United States); Eyink, Kurt [Air Force Research Laboratory, Materials Directorate, 3005 Hobson Way, Wright-Patterson Air Force Base, OH 45433-7707 (United States); Wiacek, Kevin [Air Force Research Laboratory, Propulsion Directorate, 1950 Fifth Street, Wright-Patterson Air Force Base, OH 45433-7251 (United States); Fries-Carr, Sandra [Air Force Research Laboratory, Propulsion Directorate, 1950 Fifth Street, Wright-Patterson Air Force Base, OH 45433-7251 (United States); Enlow, Jesse [Air Force Research Laboratory, Materials Directorate, 3005 Hobson Way, Wright-Patterson Air Force Base, OH 45433-7707 (United States); Bunning, Timothy J. [Air Force Research Laboratory, Materials Directorate, 3005 Hobson Way, Wright-Patterson Air Force Base, OH 45433-7707 (United States)

    2007-02-26

    Polymer dielectric films fabricated by plasma enhanced chemical vapor deposition (PECVD) have unique properties due to their dense crosslinked bulk structure. These spatially uniform films exhibit good adhesion to a variety of substrates, excellent chemical inertness, high thermal resistance, and are formed from an inexpensive, solvent-free, room temperature process. In this work, we studied the dielectric properties of plasma polymerized (PP) carbon-based polymer thin films prepared from two precursors, benzene and octafluorocyclobutane. Two different monomer feed locations, directly in the plasma zone or in the downstream region (DS) and two different pressures, 80 Pa (high pressure) or 6.7 Pa (low pressure), were used. The chemical structure of the PECVD films was examined by X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy. The dielectric constant ({epsilon} {sub r}) and dielectric loss (tan {delta}) of the films were investigated over a range of frequencies up to 1 MHz and the dielectric strength (breakdown voltage) (F {sub b}) was characterized by the current-voltage method. Spectroscopic ellipsometry was performed to determine the film thickness and refractive index. Good dielectric properties were exhibited, as PP-benzene films formed in the high pressure, DS region showed a F{sub b} of 610 V/{mu}m, an {epsilon} {sub r} of 3.07, and a tan {delta} of 7.0 x 10{sup -3} at 1 kHz. The PECVD processing pressure has a significant effect on final film structure and the film's physical density has a strong impact on dielectric breakdown strength. Also noted was that the residual oxygen content in the PP-benzene films significantly affected the frequency dependences of the dielectric constant and loss.

  10. The relationship between chemical structure and dielectric properties of plasma-enhanced chemical vapor deposited polymer thin films

    International Nuclear Information System (INIS)

    Jiang Hao; Hong Lianggou; Venkatasubramanian, N.; Grant, John T.; Eyink, Kurt; Wiacek, Kevin; Fries-Carr, Sandra; Enlow, Jesse; Bunning, Timothy J.

    2007-01-01

    Polymer dielectric films fabricated by plasma enhanced chemical vapor deposition (PECVD) have unique properties due to their dense crosslinked bulk structure. These spatially uniform films exhibit good adhesion to a variety of substrates, excellent chemical inertness, high thermal resistance, and are formed from an inexpensive, solvent-free, room temperature process. In this work, we studied the dielectric properties of plasma polymerized (PP) carbon-based polymer thin films prepared from two precursors, benzene and octafluorocyclobutane. Two different monomer feed locations, directly in the plasma zone or in the downstream region (DS) and two different pressures, 80 Pa (high pressure) or 6.7 Pa (low pressure), were used. The chemical structure of the PECVD films was examined by X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy. The dielectric constant (ε r ) and dielectric loss (tan δ) of the films were investigated over a range of frequencies up to 1 MHz and the dielectric strength (breakdown voltage) (F b ) was characterized by the current-voltage method. Spectroscopic ellipsometry was performed to determine the film thickness and refractive index. Good dielectric properties were exhibited, as PP-benzene films formed in the high pressure, DS region showed a F b of 610 V/μm, an ε r of 3.07, and a tan δ of 7.0 x 10 -3 at 1 kHz. The PECVD processing pressure has a significant effect on final film structure and the film's physical density has a strong impact on dielectric breakdown strength. Also noted was that the residual oxygen content in the PP-benzene films significantly affected the frequency dependences of the dielectric constant and loss

  11. High temperature dielectric studies of indium-substituted NiCuZn nanoferrites

    Science.gov (United States)

    Hashim, Mohd.; Raghasudha, M.; Shah, Jyoti; Shirsath, Sagar E.; Ravinder, D.; Kumar, Shalendra; Meena, Sher Singh; Bhatt, Pramod; Alimuddin; Kumar, Ravi; Kotnala, R. K.

    2018-01-01

    In this study, indium (In3+)-substituted NiCuZn nanostructured ceramic ferrites with a chemical composition of Ni0.5Cu0.25Zn0.25Fe2-xInxO4 (0.0 ≤ x ≤ 0.5) were prepared by chemical synthesis involving sol-gel chemistry. Single phased cubic spinel structure materials were prepared successfully according to X-ray diffraction and transmission electron microscopy analyses. The dielectric properties of the prepared ferrites were measured using an LCR HiTester at temperatures ranging from room temperature to 300 °C at different frequencies from 102 Hz to 5 × 106 Hz. The variations in the dielectric parameters ε‧ and (tanδ) with temperature demonstrated the frequency- and temperature-dependent characteristics due to electron hopping between the ions. The materials had low dielectric loss values in the high frequency range at all temperatures, which makes them suitable for high frequency microwave applications. A qualitative explanation is provided for the dependences of the dielectric constant and dielectric loss tangent on the frequency, temperature, and composition. Mӧssbauer spectroscopy was employed at room temperature to characterize the magnetic behavior.

  12. Structural, morphological, dielectric and impedance spectroscopy of lead-free Bi(Zn{sub 2/3}Ta{sub 1/3})O{sub 3} electronic material

    Energy Technology Data Exchange (ETDEWEB)

    Halder, S.; Bhuyan, S.; Das, S.N.; Sahoo, S.; Choudhary, R.N.P.; Parida, K. [Siksha ' O' Anusandhan University, Bhubaneswar (India); Das, P. [Midnapore College, Department of Physics, Midnapore, West Bengal (India)

    2017-12-15

    A lead-free dielectric material [Bi(Zn{sub 2/3}Ta{sub 1/3})O{sub 3}] has been prepared using a solid state reaction technique at high-temperature. The resistive, conducting and capacitive characteristics of the prepared electronic material have been studied in different experimental conditions. The determination of basic crystal parameters and reflection indices confirm the development of polycrystalline compound with orthorhombic crystal structure. The study of frequency-temperature dependence of ac conductivity illustrates the nature and conduction mechanism of the material. On the basis of observed impedance data and detailed dielectric analysis, the existence of non-Debye type relaxation has been affirmed. The electronic charge carriers of compound have short range order that has been validated from the complex modulus and impedance spectrum. The detailed studies of resistive, capacitive, microstructural characteristics of the prepared material provide some useful data for considering the material as an electronic component for fabrication of devices. (orig.)

  13. Broad-band dielectric spectroscopy of Ba.sub.2./sub.NaNb.sub.5./sub.O.sub.15./sub. single crystal

    Czech Academy of Sciences Publication Activity Database

    Buixaderas, Elena; Porokhonskyy, Viktor; Pashkin, Alexej; Savinov, Maxim; Petzelt, Jan

    2002-01-01

    Roč. 30, - (2002), s. 319-329 ISSN 1434-6028 R&D Projects: GA ČR GA202/01/0612; GA AV ČR IAA1010213 Institutional research plan: CEZ:AV0Z1010914 Keywords : incommensurate ferroelectrics * IR and time-domain THz spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.741, year: 2002

  14. Optical Emission Spectroscopy of High-Power Laser-Induced Dielectric Breakdown in Molecular Gases and Their Mixtures: Investigating Early Stages of Plasma Chemical Action in Planetary Atmospheres

    Czech Academy of Sciences Publication Activity Database

    Cihelka, Jaroslav; Matulková, Irena; Sovová, Kristýna; Kamas, Michal; Kubelík, Petr; Ferus, Martin; Juha, Libor; Civiš, Svatopluk

    2009-01-01

    Roč. 39, 3-4 (2009), s. 227-227 ISSN 0169-6149 R&D Projects: GA MŠk LC510; GA MŠk(CZ) LC528; GA ČR GA203/06/1278; GA MŠk LA08024 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z10100523 Keywords : planetary atmosphere * lasers * spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.053, year: 2009

  15. Thermally stimulated discharge current (TSDC) and dielectric ...

    Indian Academy of Sciences (India)

    Unknown

    2001-10-09

    Oct 9, 2001 ... Measurements of TSDC and dielectric constant, ε′, have been ... Keywords. Semiconducting glass; TSDC; trap energy; dielectric constant. 1. ... determination of mean depth of the internal charge, activation ... thermal charging, viz. (i) internal ... the basis of d.c. conductivity and short range Na+ ion motion.

  16. Study of SrBi4Ti4O15 (SBTi) dielectric properties of doped PbO

    International Nuclear Information System (INIS)

    Rodrigues Junior, C.A.; Silva Filho, J.M.; Freitas, D.B.; Oliveira, R.G.M.; Sombra, B.; Sales, J.C.

    2012-01-01

    The ceramic SrBi 4 Ti 4 O 15 (SBTI), cation-deficient perovskite A 5 B 4 O 15 , was prepared by the method of solid state reaction and then doped with PbO (in the range 2-10% by weight). The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and impedance spectroscopy at room temperature. The X-ray analysis was performed by the Rietveld refinement. The micrographs of the samples show globular-shaped grains (doped PbO). The dielectric properties: dielectric constant (Κ' or έ) and dielectric loss tangent (tan δ), were measured at room temperature in the frequency range 100 Hz - 1 MHz dielectric properties of these 1 MHz sample doped with 10 % PbO showed the dielectric constant Κ'= 168.34 and dielectric loss tangent tanδ, = 7,1.10 -2 . These results show a good possibility of miniaturization of electronic devices such as capacitors. (author)

  17. Absorption spectroscopy and multi-angle scattering measurements in the visible spectral range for the geographic classification of Italian exravirgin olive oils

    Science.gov (United States)

    Mignani, Anna G.; Ciaccheri, Leonardo; Cimato, Antonio; Sani, Graziano; Smith, Peter R.

    2004-03-01

    Absorption spectroscopy and multi-angle scattering measurements in the visible spectral range are innovately used to analyze samples of extra virgin olive oils coming from selected areas of Tuscany, a famous Italian region for the production of extra virgin olive oil. The measured spectra are processed by means of the Principal Component Analysis method, so as to create a 3D map capable of clustering the Tuscan oils within the wider area of Italian extra virgin olive oils.

  18. Nonlinear optical response of a gold surface in the visible range: A study by two-color sum-frequency generation spectroscopy. I. Experimental determination.

    Science.gov (United States)

    Dalstein, L; Revel, A; Humbert, C; Busson, B

    2018-04-07

    We experimentally determine the effective nonlinear second-order susceptibility of gold over the visible spectral range. To reach that goal, we probe by vibrational two-color sum-frequency generation spectroscopy the methyl stretching region of a dodecanethiol self-assembled monolayer adsorbed on a gold film. The sum-frequency generation spectra show a remarkable shape reversal when the visible probe wavelength is tuned from 435 to 705 nm. After correcting from Fresnel effects, the methyl stretching vibrations serve as an internal reference, allowing to extract the dispersion of the absolute phase and relative amplitude of the effective nonlinear optical response of gold in the visible range.

  19. Super dielectric capacitor using scaffold dielectric

    OpenAIRE

    Phillips, Jonathan

    2018-01-01

    Patent A capacitor having first and second electrodes and a scaffold dielectric. The scaffold dielectric comprises an insulating material with a plurality of longitudinal channels extending across the dielectric and filled with a liquid comprising cations and anions. The plurality of longitudinal channels are substantially parallel and the liquid within the longitudinal channels generally has an ionic strength of at least 0.1. Capacitance results from the migrations of...

  20. Influence of Al3+ substitution on the electrical resistivity and dielectric behavior of Ni0.25Cu0.20Zn0.55AlxFe2-xO4 ferrites synthesized by solid state reaction technique

    Science.gov (United States)

    Rahman, K. R.; Chowdhury, F.-U.-Z.; Khan, M. N. I.

    2017-12-01

    In this paper, the effect of Al3+ substitution on the electrical and dielectric properties of Ni0.25Cu0.20Zn0.55AlxFe2-xO4 ferrites with x = 0.0, 0.05. 0.10, 0.15 and 0.20, synthesized by solid state reaction has been reported. Using two probe method, the DC resistivity has been investigated in the temperature range from 30 °C to 300 °C. Activation energy was calculated from the Arrhenius plot. The electrical conduction is explained on the basis of the hopping mechanism. The frequency dependent dielectric properties of these spinel ferrites have been studied at room temperature by measuring AC resistivity, conductivity (σac), dielectric constant and dielectric loss tangent (tan δ) in the frequency range between 1 kHz and 120 MHz. The study of dielectric properties showed that the dielectric constant and dielectric loss increased with increasing non-magnetic Al ions. The dependence of dielectric constant with frequency has been explained by Maxwell-Wagner interfacial polarization. Cole-Cole plots show semicircular arc(s) for the samples, and equivalent RC circuits have been proposed to clarify the phenomena involved therein. The analysis of complex impedance spectroscopy has been used to distinguish between the grain and grain boundary contribution to the total resistance.

  1. Dielectric waveguide amplifiers and lasers

    NARCIS (Netherlands)

    Pollnau, Markus

    The performance of semiconductor amplifiers and lasers has made them the preferred choice for optical gain on a micro-chip. In the past few years, we have demonstrated that also rare-earth-ion-doped dielectric waveguides show remarkable performance, ranging from a small-signal gain per unit length

  2. Effect of argon ion implantation on the electrical and dielectric properties of CR-39

    International Nuclear Information System (INIS)

    Chawla, Mahak; Shekhawat, Nidhi; Goyal, Meetika; Gupta, Divya; Sharma, Annu; Aggarwal, Sanjeev

    2016-01-01

    The objective of the present work is to study the effect of 130 keV Ar"+ ions on the electrical and dielectric properties of CR-39 samples at various doses 5×10"1"4, 1×10"1"5 and 1×10"1"6 Ar"+ cm"−"2. Current-Voltage (I-V characteristics) measurements have been used to study the electrical properties of virgin and Ar"+ implanted CR-39 specimens. The current has been found to be increased with increasing voltage as well as with increasing ion dose. The dielectric spectroscopy of these specimens has been done in the frequency range of 100 kHz-100 MHz. The dielectric constant has been found to be decreasing whereas dielectric loss factor increases with increasing ion fluence. These kind of behavior observed in the implanted specimens indicate towards the formation of carbonaceous clusters due to the cross linking, chemical bond cleavage, formation of free radicals. The changes observed in the dielectric behavior have been further correlated with the structural changes observed through I-V characteristics.

  3. Insight into the dielectric response of transformer oil-based nanofluids

    Directory of Open Access Journals (Sweden)

    Ming Dong

    2017-02-01

    Full Text Available The oil-based nanofluids with greater dielectric strength have attracted much attention as a crucial insulating materials in high-voltage oil-immersed power equipment. In fact, the different microstructures of the transformer oil-based nanofluids (TNFs would result in different dielectric properties. In this work, the broadband dielectric spectroscopy measurement was used to establish the linkage between the electric double layer (EDL and dielectric response properties of TNFs which was performed at 298K temperature and with frequency range from 10-2Hz∼106Hz. The modified Havriliak-Negami (HN model function was used to analyze the measured results. The results demonstrate that both the real and imaginary parts of dielectric spectra of two kinds of oil are composed of the conductivity and polarization process. Compared with pure oil, two polarization process could be observed for the TNFs, explained by the EDL structure reasonably. The introduction of the EDL structure provides an idea to account for the insulating strength improvement of TNFs for the first time.

  4. A Comprehensive Study on Dielectric Properties of Volcanic Rock/PANI Composites

    Science.gov (United States)

    Kiliç, M.; Karabul, Y.; Okutan, M.; İçelli, O.

    2016-05-01

    Basalt is a very well-known volcanic rock that is dark colored and relatively rich in iron and magnesium, almost located each country in the world. These rocks have been used in the refused rock industry, to produce building tiles, construction industrial, highway engineering. Powders and fibers of basalt rocks are widely used of radiation shielding, thermal stability, heat and sound insulation. This study examined three different basalt samples (coded CM-1, KYZ-13 and KYZ-24) collected from different regions of Van province in Turkey. Polyaniline (PANI) is one of the representative conductive polymers due to its fine environmental stability, huge electrical conductivity, as well as a comparatively low cost. Also, the electrical and thermal properties of polymer composites containing PANI have been widely studied. The dielectric properties of Basalt/Polyaniline composites in different concentrations (10, 25, 50 wt.% PANI) have been investigated by dielectric spectroscopy method at the room temperature. The dielectric parameters (dielectric constants, loss and strength) were measured in the frequency range of 102 Hz-106 Hz at room temperature. The electrical mechanism change with PANI dopant. A detailed dielectrically analysis of these composites will be presented.

  5. Direct evaluation of electrical dipole moment and oxygen density ratio at high-k dielectrics/SiO2 interface by X-ray photoelectron spectroscopy analysis

    Science.gov (United States)

    Fujimura, Nobuyuki; Ohta, Akio; Ikeda, Mitsuhisa; Makihara, Katsunori; Miyazaki, Seiichi

    2018-04-01

    The electrical dipole moment at an ultrathin high-k (HfO2, Al2O3, TiO2, Y2O3, and SrO)/SiO2 interface and its correlation with the oxygen density ratio at the interface have been directly evaluated by X-ray photoelectron spectroscopy (XPS) under monochromatized Al Kα radiation. The electrical dipole moment at the high-k/SiO2 interface has been measured from the change in the cut-off energy of secondary photoelectrons. Moreover, the oxygen density ratio at the interface between high-k and SiO2 has been estimated from cation core-line signals, such as Hf 4f, Al 2p, Y 3d, Ti 2p, Sr 3d, and Si 2p. We have experimentally clarified the relationship between the measured electrical dipole moment and the oxygen density ratio at the high-k/SiO2 interface.

  6. Laser amplification in excited dielectrics

    Science.gov (United States)

    Winkler, Thomas; Haahr-Lillevang, Lasse; Sarpe, Cristian; Zielinski, Bastian; Götte, Nadine; Senftleben, Arne; Balling, Peter; Baumert, Thomas

    2018-01-01

    Wide-bandgap dielectrics such as glasses or water are transparent at visible and infrared wavelengths. This changes when they are exposed to ultrashort and highly intense laser pulses. Different interaction mechanisms lead to the appearance of various transient nonlinear optical phenomena. Using these, the optical properties of dielectrics can be controlled from the transparent to the metal-like state. Here we expand this range by a yet unexplored mechanism in excited dielectrics: amplification. In a two-colour pump-probe experiment, we show that a 400 nm femtosecond laser pulse is coherently amplified inside an excited sapphire sample on a scale of a few micrometres. Simulations strongly support the proposed two-photon stimulated emission process, which is temporally and spatially controllable. Consequently, we expect applications in all fields that demand strongly localized amplification.

  7. Dielectric properties of nanosilica filled epoxy nanocomposites

    Indian Academy of Sciences (India)

    M G Veena

    Polymer nanocomposites are the 21st century engineering materials with wide range of ... the electronic industry for dielectric materials in electrical insulation ..... be ascribed to the interface barriers and chain entangle- ments towards the ...

  8. Dielectric characterization of high-performance spaceflight materials

    Science.gov (United States)

    Kleppe, Nathan; Nurge, Mark A.; Bowler, Nicola

    2015-03-01

    As commercial space travel increases, the need for reliable structural health monitoring to predict possible weaknesses or failures of structural materials also increases. Monitoring of these materials can be done through the use of dielectric spectroscopy by comparing permittivity or conductivity measurements performed on a sample in use to that of a pristine sample from 100 μHz to 3 GHz. Fluctuations in these measured values or of the relaxation frequencies, if present, can indicate chemical or physical changes occurring within the material and the possible need for maintenance/replacement. In this work, we establish indicative trends that occur due to changes in dielectric spectra during accelerated aging of various high-performance polymeric materials: ethylene vinyl alcohol (EVOH), Poly (ether ether ketone) (PEEK), polyphenylene sulfide (PPS), and ultra-high molecular weight polyethylene (UHMWPE). Uses for these materials range from electrical insulation and protective coatings to windows and air- or space-craft parts that may be subject to environmental damage over long-term operation. Samples were prepared by thermal exposure and, separately, by ultraviolet/water-spray cyclic aging. The aged samples showed statistically-significant trends of either increasing or decreasing real or imaginary permittivity values, relaxation frequencies, conduction or the appearance of new relaxation modes. These results suggest that dielectric testing offers the possibility of nondestructive evaluation of the extent of age-related degradation in these materials.

  9. A simple method for reducing inevitable dielectric loss in high-permittivity dielectric elastomers

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Yu, Liyun; Mazurek, Piotr Stanislaw

    2016-01-01

    elastomer matrix, with high dielectric permittivity and a low Young's modulus, aligned with no loss of mechanical stability, was prepared through the use of commercially available chloropropyl-functional silicone oil mixed into a tough commercial liquid silicone rubber silicone elastomer. The addition...... also decreased the dielectric losses of an elastomer containing dielectric permittivity-enhancing TiO2 fillers. Commercially available chloropropyl-functional silicone oil thus constitutes a facile method for improved silicone DEs, with very low dielectric losses.......Commercial viability of dielectric elastomers (DEs) is currently limited by a few obstacles, including high driving voltages (in the kV range). Driving voltage can be lowered by either decreasing the Young's modulus or increasing the dielectric permittivity of silicone elastomers, or a combination...

  10. Dielectric barrier discharges applied for optical spectrometry

    Czech Academy of Sciences Publication Activity Database

    Brandt, S.; Schütz, A.; Klute, F. D.; Kratzer, Jan; Franzke, J.

    2016-01-01

    Roč. 123, SEP (2016), s. 6-32 ISSN 0584-8547 R&D Projects: GA ČR GA14-23532S Institutional support: RVO:68081715 Keywords : dielectric barrier discharge * analytical spectroscopy * applications Subject RIV: CB - Analytical Chemistry , Separation Impact factor: 3.241, year: 2016

  11. Dielectric barrier discharges applied for optical spectrometry

    Czech Academy of Sciences Publication Activity Database

    Brandt, S.; Schütz, A.; Klute, F. D.; Kratzer, Jan; Franzke, J.

    2016-01-01

    Roč. 123, SEP (2016), s. 6-32 ISSN 0584-8547 R&D Projects: GA ČR GA14-23532S Institutional support: RVO:68081715 Keywords : dielectric barrier discharge * analytical spectroscopy * applications Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.241, year: 2016

  12. Inertial polarization of dielectrics

    OpenAIRE

    Zavodovsky, A. G.

    2011-01-01

    It was proved that accelerated motion of a linear dielectric causes its polarization. Accelerated translational motion of a dielectric's plate leads to the positive charge of the surface facing the direction of motion. Metal plates of a capacitor were used to register polarized charges on a dielectric's surface. Potential difference between the capacitor plates is proportional to acceleration, when acceleration is constant potential difference grows with the increase of a dielectric's area, o...

  13. Broad Energy Range Neutron Spectroscopy using a Liquid Scintillator and a Proportional Counter: Application to a Neutron Spectrum Similar to that from an Improvised Nuclear Device.

    Science.gov (United States)

    Xu, Yanping; Randers-Pehrson, Gerhard; Marino, Stephen A; Garty, Guy; Harken, Andrew; Brenner, David J

    2015-09-11

    A novel neutron irradiation facility at the Radiological Research Accelerator Facility (RARAF) has been developed to mimic the neutron radiation from an Improvised Nuclear Device (IND) at relevant distances (e.g. 1.5 km) from the epicenter. The neutron spectrum of this IND-like neutron irradiator was designed according to estimations of the Hiroshima neutron spectrum at 1.5 km. It is significantly different from a standard reactor fission spectrum, because the spectrum changes as the neutrons are transported through air, and it is dominated by neutron energies from 100 keV up to 9 MeV. To verify such wide energy range neutron spectrum, detailed here is the development of a combined spectroscopy system. Both a liquid scintillator detector and a gas proportional counter were used for the recoil spectra measurements, with the individual response functions estimated from a series of Monte Carlo simulations. These normalized individual response functions were formed into a single response matrix for the unfolding process. Several accelerator-based quasi-monoenergetic neutron source spectra were measured and unfolded to test this spectroscopy system. These reference neutrons were produced from two reactions: T(p,n) 3 He and D(d,n) 3 He, generating neutron energies in the range between 0.2 and 8 MeV. The unfolded quasi-monoenergetic neutron spectra indicated that the detection system can provide good neutron spectroscopy results in this energy range. A broad-energy neutron spectrum from the 9 Be(d,n) reaction using a 5 MeV deuteron beam, measured at 60 degrees to the incident beam was measured and unfolded with the evaluated response matrix. The unfolded broad neutron spectrum is comparable with published time-of-flight results. Finally, the pair of detectors were used to measure the neutron spectrum generated at the RARAF IND-like neutron facility and a comparison is made to the neutron spectrum of Hiroshima.

  14. Optimal Super Dielectric Material

    Science.gov (United States)

    2015-09-01

    plate capacitor will reduce the net field to an unprecedented extent. This family of materials can form materials with dielectric values orders of... Capacitor -Increase Area (A)............8 b. Multi-layer Ceramic Capacitor -Decrease Thickness (d) .......10 c. Super Dielectric Material-Increase...circuit modeling, from [44], and B) SDM capacitor charge and discharge ...................................................22 Figure 15. Dielectric

  15. Atom spectroscopy

    International Nuclear Information System (INIS)

    Kodling, K.

    1981-01-01

    Experiments on atom photoabsorption spectroscopy using synchrotron radiation in the 10-1000 eV range are reviewed. Properties of the necessary synchrotron radiation and the experiment on absorption spectroscopy are briefly described. Comparison with other spectroscopy methods is conducted. Some data on measuring photoabsorption, photoelectron emission and atom mass spectra are presented [ru

  16. THROES: a caTalogue of HeRschel Observations of Evolved Stars. I. PACS range spectroscopy

    Science.gov (United States)

    Ramos-Medina, J.; Sánchez Contreras, C.; García-Lario, P.; Rodrigo, C.; da Silva Santos, J.; Solano, E.

    2018-03-01

    This is the first of a series of papers presenting the THROES (A caTalogue of HeRschel Observations of Evolved Stars) project, intended to provide a comprehensive overview of the spectroscopic results obtained in the far-infrared (55-670 μm) with the Herschel space observatory on low-to-intermediate mass evolved stars in our Galaxy. Here we introduce the catalogue of interactively reprocessed Photoconductor Array Camera and Spectrometer (PACS) spectra covering the 55-200 μm range for 114 stars in this category for which PACS range spectroscopic data is available in the Herschel Science Archive (HSA). Our sample includes objects spanning a range of evolutionary stages, from the asymptotic giant branch to the planetary nebula phase, displaying a wide variety of chemical and physical properties. The THROES/PACS catalogue is accessible via a dedicated web-based interface and includes not only the science-ready Herschel spectroscopic data for each source, but also complementary photometric and spectroscopic data from other infrared observatories, namely IRAS, ISO, or AKARI, at overlapping wavelengths. Our goal is to create a legacy-value Herschel dataset that can be used by the scientific community in the future to deepen our knowledge and understanding of these latest stages of the evolution of low-to-intermediate mass stars. The THROES/PACS catalogue is accessible at http://https://throes.cab.inta-csic.es/

  17. Structural characterization and dielectric properties of BaTiO3 thin films obtained by spin coating

    Directory of Open Access Journals (Sweden)

    Branimir Bajac

    2014-12-01

    Full Text Available Barium titanate thin films were prepared by spin coating deposition technique of an acetic precursor sol and sintered at 750, 900 and 1050 °C. Phase composition of the obtained thin films was characterized by X-ray diffraction and Raman spectroscopy. Their morphology was analysed by scanning electron microscopy and atomic force microscopy. Dielectric properties of thin films sintered at 750 and 900 °C were characterized by LCD device, where the influence of sintering temperature on dielectric permittivity and loss tangent was inspected. It was concluded that higher sintering temperature increases grain size and amount of tetragonal phase, hence higher relative permittivity was recorded. The almost constant relative permittivity in the measured frequency (800 Hz–0.5 MHz and temperature (25–200 °C ranges as well as low dielectric loss are very important for the application of BaTiO3 films in microelectronic devices.

  18. Terahertz spectroscopy

    DEFF Research Database (Denmark)

    Jepsen, Peter Uhd

    2009-01-01

    In this presentation I will review methods for spectroscopy in the THz range, with special emphasis on the practical implementation of the technique known ad THz time-domain spectroscopy (THz-TDS). THz-TDS has revived the old field of far-infrared spectroscopy, and enabled a wealth of new...... activities that promise commercial potential for spectroscopic applications in the THz range. This will be illustrated with examples of spectroscopy of liquids inside their bottles as well as sensitive, quantitative spectroscopy in waveguides....

  19. Dielectrics in electric fields

    CERN Document Server

    Raju, Gorur G

    2003-01-01

    Discover nontraditional applications of dielectric studies in this exceptionally crafted field reference or text for seniors and graduate students in power engineering tracks. This text contains more than 800 display equations and discusses polarization phenomena in dielectrics, the complex dielectric constant in an alternating electric field, dielectric relaxation and interfacial polarization, the measurement of absorption and desorption currents in time domains, and high field conduction phenomena. Dielectrics in Electric Fields is an interdisciplinary reference and text for professionals and students in electrical and electronics, chemical, biochemical, and environmental engineering; physical, surface, and colloid chemistry; materials science; and chemical physics.

  20. Lattices of dielectric resonators

    CERN Document Server

    Trubin, Alexander

    2016-01-01

    This book provides the analytical theory of complex systems composed of a large number of high-Q dielectric resonators. Spherical and cylindrical dielectric resonators with inferior and also whispering gallery oscillations allocated in various lattices are considered. A new approach to S-matrix parameter calculations based on perturbation theory of Maxwell equations, developed for a number of high-Q dielectric bodies, is introduced. All physical relationships are obtained in analytical form and are suitable for further computations. Essential attention is given to a new unified formalism of the description of scattering processes. The general scattering task for coupled eigen oscillations of the whole system of dielectric resonators is described. The equations for the  expansion coefficients are explained in an applicable way. The temporal Green functions for the dielectric resonator are presented. The scattering process of short pulses in dielectric filter structures, dielectric antennas  and lattices of d...

  1. VUV action spectroscopy of protonated leucine-enkephalin peptide in the 6-14 eV range

    Energy Technology Data Exchange (ETDEWEB)

    Ranković, M. Lj. [Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade (Serbia); Canon, F. [INRA, UMR1324 Centre des Sciences du Goût et de l’Alimentation, F-21000 Dijon (France); Nahon, L. [SOLEIL, l’Orme des Merisiers, St Aubin, BP48, 91192 Gif sur Yvette Cedex (France); Giuliani, A. [SOLEIL, l’Orme des Merisiers, St Aubin, BP48, 91192 Gif sur Yvette Cedex (France); INRA, UAR1008, CEPIA, Rue de la Géraudière, BP 71627, 44316 Nantes (France); Milosavljević, A. R., E-mail: vraz@ipb.ac.rs [Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade (Serbia); Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556 (United States)

    2015-12-28

    We have studied the Vacuum Ultraviolet (VUV) photodissociation of gas-phase protonated leucine-enkephalin peptide ion in the 5.7 to 14 eV photon energy range by coupling a linear quadrupole ion trap with a synchrotron radiation source. We report VUV activation tandem mass spectra at 6.7, 8.4, and 12.8 eV photon energies and photodissociation yields for a number of selected fragments. The obtained results provide insight into both near VUV radiation damage and electronic properties of a model peptide. We could distinguish several absorption bands and assign them to particular electronic transitions, according to previous theoretical studies. The photodissociation yields appear to be very different for the various observed fragmentation channels, depending on both the types of fragments and their position along the peptide backbone. The present results are discussed in light of recent gas-phase spectroscopic data on peptides.

  2. Two-color pump-probe laser spectroscopy instrument with picosecond time-resolved electronic delay and extended scan range

    Science.gov (United States)

    Yu, Anchi; Ye, Xiong; Ionascu, Dan; Cao, Wenxiang; Champion, Paul M.

    2005-11-01

    An electronically delayed two-color pump-probe instrument was developed using two synchronized laser systems. The instrument has picosecond time resolution and can perform scans over hundreds of nanoseconds without the beam divergence and walk-off effects that occur using standard spatial delay systems. A unique picosecond Ti :sapphire regenerative amplifier was also constructed without the need for pulse stretching and compressing optics. The picosecond regenerative amplifier has a broad wavelength tuning range, which suggests that it will make a significant contribution to two-color pump-probe experiments. To test this instrument we studied the rotational correlation relaxation of myoglobin (τr=8.2±0.5ns) in water as well as the geminate rebinding kinetics of oxygen to myoglobin (kg1=1.7×1011s-1, kg2=3.4×107s-1). The results are consistent with, and improve upon, previous studies.

  3. In-line process control for laser welding of titanium by high dynamic range ratio pyrometry and plasma spectroscopy

    Science.gov (United States)

    Lempe, B.; Taudt, C.; Baselt, T.; Rudek, F.; Maschke, R.; Basan, F.; Hartmann, P.

    2014-02-01

    The production of complex titanium components for various industries using laser welding processes has received growing attention in recent years. It is important to know whether the result of the cohesive joint meets the quality requirements of standardization and ultimately the customer requirements. Erroneous weld seams can have fatal consequences especially in the field of car manufacturing and medicine technology. To meet these requirements, a real-time process control system has been developed which determines the welding quality through a locally resolved temperature profile. By analyzing the resulting weld plasma received data is used to verify the stability of the laser welding process. The determination of the temperature profile is done by the detection of the emitted electromagnetic radiation from the material in a range of 500 nm to 1100 nm. As detectors, special high dynamic range CMOS cameras are used. As the emissivity of titanium depends on the wavelength, the surface and the angle of radiation, measuring the temperature is a problem. To solve these a special pyrometer setting with two cameras is used. That enables the compensation of these effects by calculating the difference between the respective pixels on simultaneously recorded images. Two spectral regions with the same emissivity are detected. Therefore the degree of emission and surface effects are compensated and canceled out of the calculation. Using the spatially resolved temperature distribution the weld geometry can be determined and the laser process can be controlled. The active readjustment of parameters such as laser power, feed rate and inert gas injection increases the quality of the welding process and decreases the number of defective goods.

  4. Hyper capacity of MCM-41 supramoleculer structure in the radio- frequency range

    OpenAIRE

    I.I. Grygorchak; S.A. Vojtovych; Z.A. Stotsko; B.A. Seredyuk; N.K. Tovstyuk

    2011-01-01

    Purpose: of this paper was: 1) to synthesize supramolecular МСМ-41 structure (p-cyanogen phenyl ether of n-heptyl benzoic acid - 40%)>> with inserted guested nematic and 2) to study its dielectric properties.Design/methodology/approach: Supramolecular МСМ-41 structure has been synthesized by vacuum encapsulated method at room temperature. Dielectric properties have been studied by impedance spectroscopy method in the frequency range 10-3-106 Hz by “AUTOLAB” complex of “ECO CHEMIE” (Holland),...

  5. From surface to volume plasmons in hyperbolic metamaterials: General existence conditions for bulk high-k waves in metal-dielectric and graphene-dielectric multilayers

    DEFF Research Database (Denmark)

    Zhukovsky, Sergei; Andryieuski, Andrei; Sipe, John E.

    2014-01-01

    -dielectric and recently introduced graphene-dielectric stacks. We confirm that short-range surface plasmons in thin metal layers can give rise to hyperbolic metamaterial properties and demonstrate that long-range surface plasmons cannot. We also show that graphene-dielectric multilayers tend to support high- k waves...

  6. Polymethyl methacrylate (PMMA)-bismuth ferrite (BFO) nanocomposite: low loss and high dielectric constant materials with perceptible magnetic properties.

    Science.gov (United States)

    Tamboli, Mohaseen S; Palei, Prakash K; Patil, Santosh S; Kulkarni, Milind V; Maldar, Noormahmad N; Kale, Bharat B

    2014-09-21

    Herein, poly(methyl methacrylate)-bismuth ferrite (PMMA-BFO) nanocomposites were successfully prepared by an in situ polymerization method for the first time. Initially, the as prepared bismuth ferrite (BFO) nanoparticles were dispersed in the monomer, (methyl methacrylate) by sonication. Benzoyl peroxide was used to initiate the polymerization reaction in ethyl acetate medium. The nanocomposite films were subjected to X-ray diffraction analysis (XRD), (1)H NMR, field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), thermogravimetric analysis (TGA), infrared spectroscopy (IR), dielectric and magnetic characterizations. The dielectric measurement of the nanocomposites was investigated at a frequency range of 10 Hz to 1 MHz. It was found that the nanocomposites not only showed a significantly increased value of the dielectric constant with an increase in the loading percentage of BFO as compared to pure PMMA, but also exhibited low dielectric loss values over a wide range of frequencies. The values of the dielectric constant and dielectric loss of the PMMA-BFO5 (5% BFO loading) sample at 1 kHz frequency was found be ~14 and 0.037. The variation of the ferromagnetic response of the nanocomposite was consistent with the varying volume percentage of the nanoparticles. The remnant magnetization (Mr) and saturation magnetization (Ms) values of the composites were found to be enhanced by increasing the loading percentage of BFO. The value of Ms for PMMA-BFO5 was found to be ~6 emu g(-1). The prima facie observations suggest that the nanocomposite is a potential candidate for application in high dielectric constant capacitors. Significantly, based on its magnetic properties the composite will also be useful for use in hard disk components.

  7. Dielectric polarization in random media

    International Nuclear Information System (INIS)

    Ramshaw, J.D.

    1984-01-01

    The theory of dielectric polarization in random media is systematically formulated in terms of response kernels. The primary response kernel K(12) governs the mean dielectric response at the point r 1 to the external electric field at the point r 2 in an infinite system. The inverse of K(12) is denoted by L(12);. it is simpler and more fundamental than K(12) itself. Rigorous expressions are obtained for the effective dielectric constant epsilon( in terms of L(12) and K(12). The latter expression involves the Onsger-Kirkwood function (epsilon(-epsilon 0 (2epsilon(+epsilon 0 )/epsilon 0 epsilon( (where epsilon 0 is an arbitrary reference value), and appears to be new to the random medium context. A wide variety of series representations for epsilon( are generated by means of general perturbation expansions for K(12) and L(12). A discussion is given of certain pitfalls in the theory, most of which are related to the fact that the response kernels are long ranged. It is shown how the dielectric behavior of nonpolar molecular fluids may be treated as a special case of the general theory. The present results for epsilon( apply equally well to other effective phenomenological coefficients of the same generic type, such as thermal and electrical conductivity, magnetic susceptibility, and diffusion coefficients

  8. In-beam dielectric properties of alumina

    International Nuclear Information System (INIS)

    Molla, J.; Ibarra, A.; Hodgson, E.R.

    1995-01-01

    The dielectric properties (permittivity and loss tangent) of a 99.7% purity alumina grade have been measured over a wide frequency range (1 kHz-15 GHz) before and after 2 MeV electron irradiation at different temperatures. The dielectric properties at 15 GHz were measured during irradiation. Both prompt and fluence effects are observed together with permanent changes which continue to evolve following irradiation. The behaviour is complex, consistent with both radiation induced electronic effects and aggregation processes. ((orig.))

  9. Optimization of a coherent synchrotron radiation source in the Tera-hertz range for high-resolution spectroscopy of molecules of astrophysical interest

    International Nuclear Information System (INIS)

    Barros, J.

    2012-01-01

    Fourier Transform spectroscopy is the most used multiplex tool for high-resolution measurements in the infrared range. Its extension to the Tera-hertz domain is of great interest for spectroscopic studies of interstellar molecules. This application is however hampered by the lack of dedicated, broadband sources with a sufficient intensity and stability. In this work, Coherent Synchrotron Radiation (CSR) was used as a source for molecular spectroscopy at high resolution on the AILES infrared and Tera-hertz beamline of SOLEIL synchrotron. The beamline being optimized for far-infrared, we could characterize the properties of CSR and compare them to the incoherent synchrotron radiation. A double detection system allowed to correct the effect of the source-related instabilities, hence to significantly increase the signal-to-noise ratio. Pure rotational spectra were measured using these developments. The case of the propynal molecule, for which a refined set of rotational and centrifugal distortion constants was calculated, proves the complementarity between CSR and the classical microwave or infrared sources. (author)

  10. Dielectric properties of carbon nanofibre/alumina composites

    Czech Academy of Sciences Publication Activity Database

    Fernandez-Garcia, L.; Suarez, M.; Menéndez, J.L.; Pecharromán, C.; Nuzhnyy, Dmitry; Bovtun, Viktor; Savinov, Maxim; Kempa, Martin; Petzelt, Jan

    2013-01-01

    Roč. 57, JUN (2013), s. 380-387 ISSN 0008-6223 R&D Projects: GA ČR GAP204/12/0232; GA MŠk LD12025 Institutional support: RVO:68378271 Keywords : alumina * carbon nanofibre * dielectric and THz spectroscopy * infrared spectroscopy * percolation threshold Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 6.160, year: 2013

  11. Characterization of dielectric materials

    Energy Technology Data Exchange (ETDEWEB)

    King, Danny J.; Babinec, Susan; Hagans, Patrick L.; Maxey, Lonnie C.; Payzant, Edward A.; Daniel, Claus; Sabau, Adrian S.; Dinwiddie, Ralph B.; Armstrong, Beth L.; Howe, Jane Y.; Wood, III, David L.; Nembhard, Nicole S.

    2017-06-27

    A system and a method for characterizing a dielectric material are provided. The system and method generally include applying an excitation signal to electrodes on opposing sides of the dielectric material to evaluate a property of the dielectric material. The method can further include measuring the capacitive impedance across the dielectric material, and determining a variation in the capacitive impedance with respect to either or both of a time domain and a frequency domain. The measured property can include pore size and surface imperfections. The method can still further include modifying a processing parameter as the dielectric material is formed in response to the detected variations in the capacitive impedance, which can correspond to a non-uniformity in the dielectric material.

  12. Scanning tunneling spectroscopy to probe odd-triplet contributions to the long-ranged proximity effect in Al-EuS

    Energy Technology Data Exchange (ETDEWEB)

    Diesch, Simon; Machon, Peter; Belzig, Wolfgang; Scheer, Elke [Universitaet Konstanz, Konstanz (Germany); Suergers, Christoph; Beckmann, Detlef [Karlsruhe Institute of Technology, Karlsruhe (Germany)

    2016-07-01

    Experiments on superconductor-ferromagnet-systems have shown Cooper pairs tunneling through ferromagnetic layers, indicating Cooper pairs of equal spin, thus corresponding to a long-range triplet proximity effect. Most experimental evidence for triplet superconductivity comes from observations of the thickness dependence of the Josephson current through a ferromagnetic barrier, but there is an increasing interest in obtaining direct spectroscopic evidence. This project aims to analyze the DOS of thin films of the ferromagnetic insulator europium sulfide on superconducting aluminum or vice versa, using a scanning tunneling microscope in spectroscopy mode at 280 mK and in varying magnetic fields. We observe significant broadening of the superconducting energy gap and a variety of sub-gap structures induced by the presence of the ferromagnet and interpret our findings based on the diffusive theory.

  13. Inductive dielectric analyzer

    International Nuclear Information System (INIS)

    Agranovich, Daniel; Popov, Ivan; Ben Ishai, Paul; Feldman, Yuri; Polygalov, Eugene

    2017-01-01

    One of the approaches to bypass the problem of electrode polarization in dielectric measurements is the free electrode method. The advantage of this technique is that, the probing electric field in the material is not supplied by contact electrodes, but rather by electromagnetic induction. We have designed an inductive dielectric analyzer based on a sensor comprising two concentric toroidal coils. In this work, we present an analytic derivation of the relationship between the impedance measured by the sensor and the complex dielectric permittivity of the sample. The obtained relationship was successfully employed to measure the dielectric permittivity and conductivity of various alcohols and aqueous salt solutions. (paper)

  14. Method of making dielectric capacitors with increased dielectric breakdown strength

    Science.gov (United States)

    Ma, Beihai; Balachandran, Uthamalingam; Liu, Shanshan

    2017-05-09

    The invention is directed to a process for making a dielectric ceramic film capacitor and the ceramic dielectric laminated capacitor formed therefrom, the dielectric ceramic film capacitors having increased dielectric breakdown strength. The invention increases breakdown strength by embedding a conductive oxide layer between electrode layers within the dielectric layer of the capacitors. The conductive oxide layer redistributes and dissipates charge, thus mitigating charge concentration and micro fractures formed within the dielectric by electric fields.

  15. Piezoelectric and dielectric characterization of corona and contact poled PZT-epoxy-MWCNT bulk composites

    Science.gov (United States)

    Banerjee, S.; Cook-Chennault, K. A.; Du, W.; Sundar, U.; Halim, H.; Tang, A.

    2016-11-01

    Three-phase lead zirconate titanate (PZT, PbZr0.52Ti0.48O3)-epoxy-multi-walled carbon nanotube (MWCNT) bulk composites were prepared, where the volume fraction of PZT was held constant at 30%, while the volume fraction of the MWCNTs was varied from 1.0%-10%. The samples were poled using either a parallel plate contact or contactless (corona) poling technique. The piezoelectric strain coefficient (d33), dielectric constant (ɛ), and dielectric loss tangent (tan δ) of the samples were measured at 110 Hz, and compared as a function of poling technique and volume fraction of MWCNTs. The highest values for dielectric constant and piezoelectric strain coefficients were 465.82 and 18.87 pC/N for MWCNT volume fractions of 10% and 6%, respectively. These values were obtained for samples that were poled using the corona contactless method. The impedance and dielectric spectra of the composites were recorded over a frequency range of 100 Hz-20 MHz. The impedance values observed for parallel-plate contact poled samples are higher than that of corona poled composites. The fractured surface morphology and distribution of the PZT particles and MWCNTs were observed with the aid of electron dispersion spectroscopy and a scanning electron microscope. The surface morphology of the MWCNTs was observed with the aid of a field emission transmission electron microscope.

  16. Structural, optical spectroscopy, optical conductivity and dielectric

    Indian Academy of Sciences (India)

    Fe and W co-substituted BaTiO3 perovskite ceramics, compositional formula BaTi ... by the standard solid-state reaction method and studied by X-ray diffraction, ... refractive index, extinction coefficient and absorption coefficient were carried ...

  17. Structural, optical spectroscopy, optical conductivity, dielectric ...

    Indian Academy of Sciences (India)

    13

    different methods of preparation [36-41]. The electrical insulator materials with low refractive index and low absorption are needed for various optical devices, such as low loss waveguides, resonators, photonic crystals, distributed Bragg reflectors, light-emitting diodes, passive splitters, biosensors, attenuators and filters ...

  18. Temperature-Dependent Dielectric Properties of Al/Epoxy Nanocomposites

    Science.gov (United States)

    Wang, Zijun; Zhou, Wenying; Sui, Xuezhen; Dong, Lina; Cai, Huiwu; Zuo, Jing; Chen, Qingguo

    2016-06-01

    Broadband dielectric spectroscopy was carried out to study the transition in electrical properties of Al/epoxy nanocomposites over the frequency range of 1-107 Hz and the temperature range of -20°C to 200°C. The dielectric permittivity, dissipation factor, and electrical conductivity of the nanocomposites increased with temperature and showed an abrupt increase around the glass transition temperature ( T g). The results clearly reveal an interesting transition of the electrical properties with increasing temperature: insulator below 70°C, conductor at about 70°C. The behavior of the transition in electrical properties of the nanocomposites was explored at different temperatures. The presence of relaxation peaks in the loss tangent and electric modulus spectra of the nanocomposites confirms that the chain segmental dynamics of the polymer is accompanied by the absorption of energy given to the system. It is suggested that the temperature-dependent transition of the electric properties in the nanocomposite is closely associated with the α-relaxation. The large increase in the dissipation factor and electric conductivity depends on the direct current conduction of thermally activated charge carriers resulting from the epoxy matrix above T g.

  19. The Electrical Breakdown of Thin Dielectric Elastomers

    DEFF Research Database (Denmark)

    Zakaria, Shamsul Bin; Morshuis, Peter H. F.; Yahia, Benslimane Mohamed

    2014-01-01

    Dielectric elastomers are being developed for use in actuators, sensors and generators to be used in various applications, such as artificial eye lids, pressure sensors and human motion energy generators. In order to obtain maximum efficiency, the devices are operated at high electrical fields....... This increases the likelihood for electrical breakdown significantly. Hence, for many applications the performance of the dielectric elastomers is limited by this risk of failure, which is triggered by several factors. Amongst others thermal effects may strongly influence the electrical breakdown strength....... In this study, we model the electrothermal breakdown in thin PDMS based dielectric elastomers in order to evaluate the thermal mechanisms behind the electrical failures. The objective is to predict the operation range of PDMS based dielectric elastomers with respect to the temperature at given electric field...

  20. Structure, Raman, dielectric behavior and electrical conduction mechanism of strontium titanate

    Science.gov (United States)

    Trabelsi, H.; Bejar, M.; Dhahri, E.; Graça, M. P. F.; Valente, M. A.; Khirouni, K.

    2018-05-01

    Strontium titanate was prepared by solid-state reaction method. According to the XRD, it was single phase and has a cubic perovskite structure. The Raman spectroscopic investigation was carried out at room-temperature, and the second-order Raman modes were observed. By employing impedance spectroscopy, the dielectric relaxation and electrical properties were investigated over the temperature range of 500-700 K at various frequencies. The activation energies evaluated from dielectric and modulus studies are in good agreement and these values are attributed to the bulk relaxation. The impedance data were well fitted to an (R1//C1)-(R2//CPE1) equivalent electrical circuit. It could be concluded that the grain boundaries are more resistive and capacitive than the grains. The ac conductivity was found to follow the Jonscher's universal dynamic law ωS and the correlated barrier hopping model (CBH) has been proposed to describe the conduction mechanism.

  1. Contemporary dielectric materials

    CERN Document Server

    Saravanan, R

    2016-01-01

    This book deals with experimental results of the physical characterization of several important, dielectric materials of great current interest. The experimental tools used for the analysis of these materials include X-ray diffraction, dielectric measurements, magnetic measurements using a vibrating sample magnetometer, optical measurements using a UV-Visible spectrometer etc.

  2. Dielectric Modulated FET (DMFET)

    Indian Academy of Sciences (India)

    First page Back Continue Last page Graphics. Working Principle: Change in Dielectric constant due to immobilization of biomolecules in the nanogap cavity leads to change in effective gate capacitance and thus gate bias for FET. Working Principle: Change in Dielectric constant due to immobilization of biomolecules in the ...

  3. Thermal dielectric function

    International Nuclear Information System (INIS)

    Moneta, M.

    1999-01-01

    Thermal dielectric functions ε(k,ω) for homogeneous electron gas were determined and discussed. The ground state of the gas is described by the Fermi-Dirac momentum distribution. The low and high temperature limits of ε(k,ω) were related to the Lindhard dielectric function and to ε(k, omega) derived for Boltzmann and for classical momentum distributions, respectively. (author)

  4. Light in complex dielectrics

    NARCIS (Netherlands)

    Schuurmans, F.J.P.

    1999-01-01

    In this thesis the properties of light in complex dielectrics are described, with the two general topics of "modification of spontaneous emission" and "Anderson localization of light". The first part focuses on the spontaneous emission rate of an excited atom in a dielectric host with variable

  5. VUV photoionization of acetamide studied by electron/ion coincidence spectroscopy in the 8–24 eV photon energy range

    International Nuclear Information System (INIS)

    Schwell, Martin; Bénilan, Yves; Fray, Nicolas; Gazeau, Marie-Claire; Es-Sebbar, Et.; Garcia, Gustavo A.; Nahon, Laurent; Champion, Norbert; Leach, Sydney

    2012-01-01

    Highlights: ► We study the VUV photoionization of acetamide in the 8–24 eV photon energy range. ► Electron/ion coincidence measurements are performed using synchrotron radiation. ► The adiabatic ionization energy of acetamide is determined by TPEPICO measurements. ► VUV induced fragmentation pathways of acetamide are assigned and discussed. - Abstract: A VUV photoionization study of acetamide was carried out over the 8–24 eV photon energy range using synchrotron radiation and photoelectron/photoion coincidence (PEPICO) spectroscopy. Threshold photoelectron photoion coincidence (TPEPICO) measurements were also made. Photoion yield curves and branching ratios were measured for the parent ion and six fragment ions. The adiabatic ionization energy of acetamide was determined as I.E. (1 2 A′) = (9.71 ± 0.02) eV, in agreement with an earlier reported photoionization mass spectrometry (PIMS) value. The adiabatic energy of the first excited state of the ion, 1 2 A″, was determined to be ≈10.1 eV. Assignments of the fragment ions and the pathways of their formation by dissociative photoionization were made. The neutral species lost in the principal dissociative photoionization processes are CH 3 , NH 2 , NH 3 , CO, HCCO and NH 2 CO. Heats of formation are derived for all ions detected and are compared with literature values. Some astrophysical implications of these results are discussed.

  6. Metal-insulator phase transition in a VO2 thin film observed with terahertz spectroscopy

    DEFF Research Database (Denmark)

    Jepsen, Peter Uhd; Fischer, Bernd M.; Thoman, Andreas

    2006-01-01

    We investigate the dielectric properties of a thin VO2 film in the terahertz frequency range in the vicinity of the semiconductor-metal phase transition. Phase-sensitive broadband spectroscopy in the frequency region below the phonon bands of VO2 gives insight into the conductive properties...... of the film during the phase transition. We compare our experimental data with models proposed for the evolution of the phase transition. The experimental data show that the phase transition occurs via the gradual growth of metallic domains in the film, and that the dielectric properties of the film...

  7. Dielectric behaviour of erbium substituted Mn–Zn ferrites

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Dielectric properties such as dielectric constant (ε′) and dielectric loss tangent (tan δ) of mixed. Mn–Zn–Er ferrites having the compositional formula Mn0⋅58Zn0⋅37Fe2⋅05–xErxO4 (where x = 0⋅2, 0⋅4, 0⋅6, 0⋅8 and. 1⋅0) were measured at room temperature in the frequency range 1–13 MHz using a HP ...

  8. Ac-conductivity and dielectric response of new zinc-phosphate glass/metal composites

    Energy Technology Data Exchange (ETDEWEB)

    Maaroufi, A., E-mail: maaroufi@fsr.ac.ma [University of Mohammed V, Laboratory of Composite Materials, Polymers and Environment, Department of Chemistry, Faculty of Sciences, P.B. 1014, Rabat-Agdal (Morocco); Oabi, O. [University of Mohammed V, Laboratory of Composite Materials, Polymers and Environment, Department of Chemistry, Faculty of Sciences, P.B. 1014, Rabat-Agdal (Morocco); Lucas, B. [XLIM UMR 7252 – Université de Limoges/CNRS, 123 avenue Albert Thomas, 87060 Limoges Cedex (France)

    2016-07-01

    The ac-conductivity and dielectric response of new composites based on zinc-phosphate glass with composition 45 mol%ZnO–55 mol%P{sub 2}O{sub 5}, filled with metallic powder of nickel (ZP/Ni) were investigated by impedance spectroscopy in the frequency range from 100 Hz to 1 MHz at room temperature. A high percolating jump of seven times has been observed in the conductivity behavior from low volume fraction of filler to the higher fractions, indicating an insulator – semiconductor phase transition. The measured conductivity at higher filler volume fraction is about 10{sup −1} S/cm and is frequency independent, while, the obtained conductivity for low filler volume fraction is around 10{sup −8} S/cm and is frequency dependent. Moreover, the elaborated composites are characterized by high dielectric constants in the range of 10{sup 5} for conductive composites at low frequencies (100 Hz). In addition, the distribution of the relaxation processes was also evaluated. The Debye, Cole-Cole, Davidson–Cole and Havriliak–Negami models in electric modulus formalism were used to model the observed relaxation phenomena in ZP/Ni composites. The observed relaxation phenomena are fairly simulated by Davidson–Cole model, and an account of the interpretation of results is given. - Highlights: • Composites of ZnO-P{sub 2}O{sub 5}/metal were investigated by impedance spectroscopy. • Original ac-conductivity behavior was discovered in ZnO-P{sub 2}O{sub 5}/metal composites. • High dielectric constant is measured in ZnO-P{sub 2}O{sub 5}/metal composites. • Dielectric constant as filler function is well interpreted with percolation theory. • Observed relaxation processes are well described using electric modulus formalism.

  9. Structural and dielectric characterization of sputtered Tantalum Titanium Oxide thin films for high temperature capacitor applications

    Energy Technology Data Exchange (ETDEWEB)

    Rouahi, A., E-mail: rouahi_ahlem@yahoo.fr [Univ. Grenoble Alpes, G2Elab, F-38000 (France); Laboratoire Matériaux Organisation et Propriétés (LMOP), Université de Tunis El Manar, 2092 Tunis (Tunisia); Challali, F. [Laboratoire des Sciences des Procédés et des Matériaux (LSPM)-CNRS-UPR3407, Université Paris13, 99 Avenue Jean-Baptiste Clément, 93430, Villetaneuse (France); Dakhlaoui, I. [Laboratoire Matériaux Organisation et Propriétés (LMOP), Université de Tunis El Manar, 2092 Tunis (Tunisia); Vallée, C. [CNRS, LTM, CEA-LETI, F-38000 Grenoble (France); Salimy, S. [Institut des Matériaux Jean Rouxel (IMN) UMR CNRS 6502, Université de Nantes, 2, rue de la Houssinière, B.P. 32229, 44322, Nantes, Cedex 3 (France); Jomni, F.; Yangui, B. [Laboratoire Matériaux Organisation et Propriétés (LMOP), Université de Tunis El Manar, 2092 Tunis (Tunisia); Besland, M.P.; Goullet, A. [Institut des Matériaux Jean Rouxel (IMN) UMR CNRS 6502, Université de Nantes, 2, rue de la Houssinière, B.P. 32229, 44322, Nantes, Cedex 3 (France); Sylvestre, A. [Univ. Grenoble Alpes, G2Elab, F-38000 (France)

    2016-05-01

    In this study, the dielectric properties of metal-oxide-metal capacitors based on Tantalum Titanium Oxide (TiTaO) thin films deposited by reactive magnetron sputtering on aluminum bottom electrode are investigated. The structure of the films was characterized by Atomic Force Microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. The dielectric properties of TiTaO thin films were studied by complex impedance spectroscopy over a wide frequency range (10{sup -2} - to 10{sup 5} Hz) and temperatures in -50 °C to 325 °C range. The contributions of different phases, phases’ boundaries and conductivity effect were highlighted by Cole – Cole diagram (ε” versus ε’). Two relaxation processes have been identified in the electric modulus plot. A first relaxation process appears at low temperature with activation energy of 0.37 eV and it is related to the motion of Ti{sup 4+} (Skanavi’s model). A second relaxation process at high temperature is related to Maxwell-Wagner-Sillars relaxation with activation energy of 0.41 eV. - Highlights: • Titanium Tantalum Oxide thin films are grown on Aluminum substrate. • The existence of phases was confirmed by X-ray photoelectron spectroscopy. • Conductivity effect appears in Cole-Cole plot. • At low temperatures, a relaxation phenomenon obeys to Skanavi’s model. • Maxwell-Wagner-Sillars polarization is processed at high temperatures.

  10. Synthesis and characterization of multiferroic Sm-doped BiFeO{sub 3} nanopowders and their bulk dielectric properties

    Energy Technology Data Exchange (ETDEWEB)

    Yotburut, Benjaporn [School of Physics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand); Thongbai, Prasit [Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Yamwong, Teerapon [National Metals and Materials Technology Center (MTEC), Thailand Science Park, Pathumthani 12120 (Thailand); Maensiri, Santi, E-mail: santimaensiri@g.sut.ac.th [School of Physics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand); SUT Center of Excellence on Advanced Functional Materials, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand)

    2017-09-01

    Highlights: • Bi{sub 1−x}Sm{sub x}FeO{sub 3} nanopowders were prepared by a simple co-precipitation method. • The prepared samples were well characterized by XRD, TEM, SEM, and XAS. • The XANES spectra identified the valence state of Fe ion in all nanopowders as 3+. • Increasing in applied dc bias voltage from 0 to 20 V causes a decrease in the dielectric constant. • The relaxation activation energy of a LFR is larger than that of a HFR. - Abstract: Multiferroic Bi{sub 1−x}Sm{sub x}FeO{sub 3} (x = 0, 0.05, 0.1, 0.2, and 0.3) nanopowders with particle sizes of 69–22.6 nm were prepared by a simple co-precipitation method. The structure and morphology of the samples were examined using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The XRD patterns confirmed the phase transition from rhombohedral to orthorhombic phases. The results of X-ray absorption spectroscopy (XAS) data indicate that the oxidation state of Fe in the sample was Fe{sup 3+}. The results of magnetic properties revealed the enhancement of weak ferromagnetic property with increasing Sm doping in BFO nanopowders. SEM images revealed that the average grain size decreased with an increase in Sm concentration. Undoped BFO ceramics exhibited a high dielectric constant ε′ ∼1.1 × 10{sup 4} and a low loss tangent of tan δ ∼0.5 at room temperature for 1 kHz. The room temperature dielectric constant decreased with increasing concentration of Sm doping and the dielectric relaxation peaks were observed at x ≤ 0.1. The dielectric relaxation peaks which were observed at all frequency ranges were x ≤ 0.1 samples which were attributed to Maxwell-Wagner relaxation. As the temperature increased, great increases in dielectric permittivity were observed in all the Bi{sub 1−x}Sm{sub x}FeO{sub 3} samples. The effects of grain boundaries on the dielectric properties of Sm-doped BFO ceramics were investigated by measuring the dielectric responds in the frequencies of 100 Hz–1

  11. Dielectric effect on electric fields in the vicinity of the metal–vacuum–dielectric junction

    International Nuclear Information System (INIS)

    Chung, M.S.; Mayer, A.; Miskovsky, N.M.; Weiss, B.L.; Cutler, P.H.

    2013-01-01

    The dielectric effect was theoretically investigated in order to describe the electric field in the vicinity of a junction of a metal, dielectric, and vacuum. The assumption of two-dimensional symmetry of the junction leads to a simple analytic form and to a systematic numerical calculation for the field. The electric field obtained for the triple junction was found to be enhanced or reduced according to a certain criterion determined by the contact angles and dielectric constant. Further numerical calculations of the dielectric effect show that an electric field can experience a larger enhancement or reduction for a quadruple junction than that achieved for the triple junction. It was also found that even though it changes slowly in comparison with the shape effect, the dielectric effect was noticeably large over the entire range of the shape change. - Highlights: ► This work explains how a very strong electric field can be produced due to the dielectric in the vicinity of metal–dielectric contact. ► This work deals with configurations which enhance electric fields using the dielectric effect. The configuration is a type of junction at which metal, vacuum and dielectric meet. ► This work suggests the criterion to determine whether field enhancement occurs or not in the triple junction of metal, vacuum and dielectric. ► This work suggests that a quadruple junction is more effective in enhancing the electric field than a triple junction. The quadruple junction is formed by an additional vacuum portion to the triple junction. ► This work suggests that a triple junction can be a breakthrough candidate for a cold electron source

  12. Plasma chemistry in an atmospheric pressure Ar/NH3 dielectric barrier discharge

    DEFF Research Database (Denmark)

    Fateev, A.; Leipold, F.; Kusano, Y.

    2005-01-01

    An atmospheric pressure dielectric barrier discharge (DBD) in Ar/NH3 (0.1 - 10%) mixtures with a parallel plate electrode geometry was studied. The plasma was investigated by emission and absorption spectroscopy in the UV spectral range. Discharge current and voltage were measured as well. UV...... of an atmospheric pressure Ar/NH3 DBD are H-2, N-2 and N2H4. The hydrazine (N2H4) concentration in the plasma and in the exhaust gases at various ammonia concentrations and different discharge powers was measured. Thermal N2H4 decomposition into NH2 radicals may be used for NOx reduction processes....

  13. Electrical conduction and dielectric relaxation in p-type PVA/CuI polymer composite

    Directory of Open Access Journals (Sweden)

    M.H. Makled

    2013-11-01

    Full Text Available PVA/CuI polymer composite samples have been prepared and subjected to characterizations using FT-IR spectroscopy, DSC analysis, ac spectroscopy and dc conduction. The FT-IR spectral analysis shows remarkable variation of the absorption peak positions whereas DSC illustrates a little decrease of both glass transition temperature, Tg, and crystallization fraction, χ, with increasing CuI concentration. An increase of dc conductivity for PVA/CuI nano composite by increasing CuI concentration is recoded up to 15 wt%, besides it obeys Arhenuis plot with an activation energy in the range 0.54–1.32 eV. The frequency dependence of ac conductivity showed power law with an exponent 0.33 < s < 0.69 which predicts hopping conduction mechanism. The frequency dependence of both dielectric permittivity and dielectric loss obeys Debye dispersion relations in wide range of temperatures and frequency. Significant values of dipole relaxation time obtained which are thermally activated with activation energies in the range 0.33–0.87 eV. A significant value of hopping distance in the range 3.4–1.2 nm is estimated in agreement with the value of Bohr radius of the exciton.

  14. Modern spectroscopy

    CERN Document Server

    Hollas, J Michael

    2013-01-01

    The latest edition of this highly acclaimed title introduces the reader to a wide range of spectroscopies, and includes both the background theory and applications to structure determination and chemical analysis.  It covers rotational, vibrational, electronic, photoelectron and Auger spectroscopy, as well as EXAFs and the theory of lasers and laser spectroscopy. A  revised and updated edition of a successful, clearly written book Includes the latest developments in modern laser techniques, such as cavity ring-down spectroscopy and femtosecond lasers Provides numerous worked examples, calculations and questions at the end of chapters.

  15. Dielectric relaxation in AgI doped silver selenomolybdate glasses

    Science.gov (United States)

    Palui, A.; Shaw, A.; Ghosh, A.

    2016-05-01

    We report the study of dielectric properties of some silver ion conducting silver selenomolybdate mixed network former glasses in a wide frequency and temperature range. The experimental data have been analyzed in the framework of complex dielectric permittivity. The dielectric permittivity data have been well interpreted using the Cole-Cole function. The temperature dependence of relaxation time obtained from real part of dielectric permittivity data shows an Arrhenius behavior. The activation energy shows a decreasing trend with the increase of doping content. Values of stretched exponential parameter are observed to be independent of temperature and composition.

  16. Dielectric constant of ionic solutions: a field-theory approach.

    Science.gov (United States)

    Levy, Amir; Andelman, David; Orland, Henri

    2012-06-01

    We study the variation of the dielectric response of a dielectric liquid (e.g. water) when a salt is added to the solution. Employing field-theoretical methods, we expand the Gibbs free energy to first order in a loop expansion and calculate self-consistently the dielectric constant. We predict analytically the dielectric decrement which depends on the ionic strength in a complex way. Furthermore, a qualitative description of the hydration shell is found and is characterized by a single length scale. Our prediction fits rather well a large range of concentrations for different salts using only one fit parameter related to the size of ions and dipoles.

  17. Detection of Ionic liquid using terahertz time-domain spectroscopy

    Science.gov (United States)

    Wang, Cuicui; Zhao, Xiaojing; Liu, Shangjian; Zuo, Jian; Zhang, Cunlin

    2018-01-01

    Terahertz (THz, THz+1012Hz) spectroscopy is a far-infrared analytical technology with spectral bands locating between microware and infrared ranges. Being of excellent transmission, non-destruction and high discrimination, this technology has been applied in various fields such as physics, chemistry, nondestructive detection, communication, biomedicine public security. Terahertz spectrum is corresponding with vibration and rotation of liquid molecules, which is suitable to identify and study the liquid molecular dynamics. It is as a powerful spectral detection technology, terahertz time-domain spectroscopy is widely used in solution detection. can enable us to extract the material parameters or dielectric spectrum that show material micro-structure and dynamics by measuring amplitude and phase from coherent terahertz pulses. Ionic liquid exists in most biological tissues, and it is very important for life. It has recently been suggested that near-fired terahertz ionic contrast microscopy can be employed to image subtle changes in ionic concentrations arising from neuronal activity. In this paper, we detected Ionic liquid with different concentrations at room temperature by THz-TDS technique in the range of 0.2-1.5 THz. The liquid cell with a thickness of 0.2mm is made of quartz. The absorption coefficient, refractive index and dielectric function of solutions can be extracted based on THz-TDS. We use an expanded model for fitting the dielectric function based on a combination of a Debye relation for the anions and cations. We find A linear increase of the real and imaginary part of the dielectric function compared with pure water with increasing ion concentrations. A good agreement between the model and the experimental results is obtained. By means of dielectric relaxation process, it was found that the characteristic time of molecular movement and the information related to the liquid molecular structure and movement was obtained.

  18. Improved Dielectric Films For Capacitors

    Science.gov (United States)

    Yen, Shiao-Ping S.; Lewis, Carol R.; Cygan, Peter J.; Jow, T. Richard

    1994-01-01

    Dielectric films made from blends of some commercially available high-dielectric-constant cyanoresins with each other and with cellulose triacetate (CTA) have both high dielectric constants and high breakdown strengths. Dielectric constants as high as 16.2. Films used to produce high-energy-density capacitors.

  19. Delivering Microwave Spectroscopy to the Masses: a Design of a Low-Cost Microwave Spectrometer Operating in the 18-26 GHZ Frequency Range

    Science.gov (United States)

    Steber, Amanda; Pate, Brooks

    2014-06-01

    Advances in chip-level microwave technology in the communications field have led to the possibilities of low cost alternatives for current Fourier transform microwave (FTMW) spectrometers. Many of the large, expensive microwave components in a traditional design can now be replaced by robust, mass market monolithic microwave integrated circuits (MMICs). "Spectrometer on a board" designs are now feasible that offer dramatic cost reduction for microwave spectroscopy. These chip-level components can be paired with miniature computers to produce compact instruments that are operable through USB. A FTMW spectrometer design using the key MMIC components that drive cost reduction will be presented. Two dual channel synthesizers (Valon Technology Model 5008), a digital pattern generator (Byte Paradigm Wav Gen Xpress), and a high-speed digitizer/arbitrary waveform generator combination unit (Tie Pie HS-5 530 XM) form the key components of the spectrometer for operation in the 18-26.5 GHz range. The design performance is illustrated using a spectrometer that is being incorporated into a museum display for astrochemistry. For this instrument a user interface, developed in Python, has been developed and will be shown.

  20. VUV photoionization of acetamide studied by electron/ion coincidence spectroscopy in the 8-24 eV photon energy range

    KAUST Repository

    Schwell, Martin; Bé nilan, Yves; Fray, Nicolas; Gazeau, Marie Claire; Es-sebbar, Et-touhami; Garcí a, Gustavo A.; Nahon, Laurent; Champion, Norbert; Leach, Sydney Sydney

    2012-01-01

    A VUV photoionization study of acetamide was carried out over the 8-24 eV photon energy range using synchrotron radiation and photoelectron/photoion coincidence (PEPICO) spectroscopy. Threshold photoelectron photoion coincidence (TPEPICO) measurements were also made. Photoion yield curves and branching ratios were measured for the parent ion and six fragment ions. The adiabatic ionization energy of acetamide was determined as I.E. (1 2A′) = (9.71 ± 0.02) eV, in agreement with an earlier reported photoionization mass spectrometry (PIMS) value. The adiabatic energy of the first excited state of the ion, 1 2A″, was determined to be ≈10.1 eV. Assignments of the fragment ions and the pathways of their formation by dissociative photoionization were made. The neutral species lost in the principal dissociative photoionization processes are CH 3, NH 2, NH 3, CO, HCCO and NH 2CO. Heats of formation are derived for all ions detected and are compared with literature values. Some astrophysical implications of these results are discussed. © 2011 Elsevier B.V. All rights reserved.

  1. THE CHANGING Lyα OPTICAL DEPTH IN THE RANGE 6 < z < 9 FROM THE MOSFIRE SPECTROSCOPY OF Y-DROPOUTS

    International Nuclear Information System (INIS)

    Treu, Tommaso; Schmidt, Kasper B.; Trenti, Michele; Bradley, Larry D.; Stiavelli, Massimo

    2013-01-01

    We present the MOSFIRE spectroscopy of 13 candidate z ∼ 8 galaxies selected as Y-dropouts as part of the Brightest of Reionization Galaxies pure parallel survey. We detect no significant Lyα emission (our median 1σ rest-frame equivalent width sensitivity is in the range 2-16 Å). Using the Bayesian framework derived in a previous paper, we perform a rigorous analysis of a statistical subsample of non-detections for 10 Y-dropouts, including data from the literature, to study the cosmic evolution of the Lyα emission of Lyman break galaxies. We find that Lyα emission is suppressed at z ∼ 8 by at least a factor of three with respect to z ∼ 6 continuing the downward trend found by previous studies of z-dropouts at z ∼ 7. This finding suggests a dramatic evolution in the conditions of the intergalactic or circumgalactic media in just 300 Myr, consistent with the onset of reionization or changes in the physical conditions of the first generations of star-forming regions

  2. High-order nonlinear optical processes in ablated carbon-containing materials: Recent approaches in development of the nonlinear spectroscopy using harmonic generation in the extreme ultraviolet range

    Science.gov (United States)

    Ganeev, R. A.

    2017-08-01

    The nonlinear spectroscopy using harmonic generation in the extreme ultraviolet range became a versatile tool for the analysis of the optical, structural and morphological properties of matter. The carbon-contained materials have shown the advanced properties among other studied species, which allowed both the definition of the role of structural properties on the nonlinear optical response and the analysis of the fundamental features of carbon as the attractive material for generation of coherent short-wavelength radiation. We review the studies of the high-order harmonic generation by focusing ultrashort pulses into the plasmas produced during laser ablation of various organic compounds. We discuss the role of ionic transitions of ablated carbon-containing molecules on the harmonic yield. We also show the similarities and distinctions of the harmonic and plasma spectra of organic compounds and graphite. We discuss the studies of the generation of harmonics up to the 27th order (λ = 29.9 nm) of 806 nm radiation in the boron carbide plasma and analyze the advantages and disadvantages of this target compared with the ingredients comprising B4C (solid boron and graphite) by comparing plasma emission and harmonic spectra from three species. We also show that the coincidence of harmonic and plasma emission wavelengths in most cases does not cause the enhancement or decrease of the conversion efficiency of this harmonic.

  3. Infrared and dielectric spectroscopy of the relaxor ferroelectric Sr.sub.0.61./sub.Ba.sub.0.39./sub.Nb.sub.2./sub.O.sub.6./sub..

    Czech Academy of Sciences Publication Activity Database

    Buixaderas, Elena; Savinov, Maxim; Kempa, Martin; Veljko, Sergiy; Kamba, Stanislav; Petzelt, Jan; Pankrath, R.; Kapphan, S.

    2005-01-01

    Roč. 17, - (2005), s. 653-666 ISSN 0953-8984 R&D Projects: GA AV ČR(CZ) IAA1010213; GA ČR(CZ) GA202/04/0993 Institutional research plan: CEZ:AV0Z10100520 Keywords : relaxor ferroelectrics * dielectric relaxation * phonons Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.145, year: 2005

  4. Thermal Experimental Analysis for Dielectric Characterization of High Density Polyethylene Nanocomposites

    Directory of Open Access Journals (Sweden)

    Ahmed Thabet Mohamed

    2016-01-01

    Full Text Available The importance of nanoparticles in controlling physical properties of polymeric nanocomposite materials leads us to study effects of these nanoparticles on electric and dielectric properties of polymers in industry In this research, the dielectric behaviour of High-Density Polyethylene (HDPE nanocomposites materials that filled with nanoparticles of clay or fumed silica has been investigated at various frequencies (10 Hz-1 kHz and temperatures (20-60°C. Dielectric spectroscopy has been used to characterize ionic conduction, then, the effects of nanoparticles concentration on the dielectric losses and capacitive charge of the new nanocomposites can be stated. Capacitive charge and loss tangent in high density polyethylene nanocomposites are measured by dielectric spectroscopy. Different dielectric behaviour has been observed depending on type and concentration of nanoparticles under variant thermal conditions.

  5. Investigation of dielectric behavior of the PVC/BaTiO3 composite in low-frequencies

    Science.gov (United States)

    Berrag, A.; Belkhiat, S.; Madani, L.

    2018-04-01

    Polyvinyl chloride (PVC) is widely used as insulator in electrical engineering especially as cable insulation sheaths. In order to improve the dielectric properties, polymers are mixed with ceramics. In this paper, PVC composites with different weight percentages 2 wt.%, 5 wt.%, 8 wt.% and 10 wt.% were prepared and investigated. Loss index (𝜀″) and dielectric constant (𝜀‧) have been measured using an impedance analyzer RLC. Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) equipped with energy dispersive X-ray (EDX) have been used as characterization techniques. The incorporation of BaTiO3 does not modify the crystallinity and the morphology of the PVC but reduces the space charges, therefore the dielectric losses. The frequency response analysis has been followed in the frequency ranges (20-140 Hz and 115-1 MHz). Relaxation frequencies have been evaluated in each frequency range. Experimental measurements have been validated using Cole-Cole’s model. Experimental results show well that BaTiO3 as a filler improves the dielectric properties of PVC.

  6. Microwave dielectric characterization of binary mixture of formamide ...

    Indian Academy of Sciences (India)

    are fitted to the three different relaxation models [24–27] by the non-linear least squares fit method. It is observed that the Davidson–Cole model is adequate to describe major dispersion of the various solute and solvent mixtures over this fre- quency range. Static dielectric constant and dielectric relaxation time could be.

  7. Structural, dielectric and electrical properties of Sm-modified Pb ...

    Indian Academy of Sciences (India)

    Unknown

    diffraction (XRD) analysis, detailed temperature and frequency dependence dielectric measurements on them. The a.c. conductivity has been investigated over a wide range of temperature and the activation energy (Ea.c.) has also been calculated. It is observed that (i) the dielectric permittivity (ε) and loss tangent (tan δ) are.

  8. Frequency and temperature dependence of dielectric properties of chicken meat

    Science.gov (United States)

    Dielectric properties of chicken breast meat were measured with an open-ended coaxial-line probe between 200 MHz and 20 GHz at temperatures ranging from -20 degree C to +25 degree C. At a given temperature, the frequency dependence of the dielectric constant reveals two relaxations while those of th...

  9. Dielectric materials for electrical engineering

    CERN Document Server

    Martinez-Vega, Juan

    2013-01-01

    Part 1 is particularly concerned with physical properties, electrical ageing and modeling with topics such as the physics of charged dielectric materials, conduction mechanisms, dielectric relaxation, space charge, electric ageing and life end models and dielectric experimental characterization. Part 2 concerns some applications specific to dielectric materials: insulating oils for transformers, electrorheological fluids, electrolytic capacitors, ionic membranes, photovoltaic conversion, dielectric thermal control coatings for geostationary satellites, plastics recycling and piezoelectric poly

  10. Cast dielectric composite linear accelerator

    Science.gov (United States)

    Sanders, David M [Livermore, CA; Sampayan, Stephen [Manteca, CA; Slenes, Kirk [Albuquerque, NM; Stoller, H M [Albuquerque, NM

    2009-11-10

    A linear accelerator having cast dielectric composite layers integrally formed with conductor electrodes in a solventless fabrication process, with the cast dielectric composite preferably having a nanoparticle filler in an organic polymer such as a thermosetting resin. By incorporating this cast dielectric composite the dielectric constant of critical insulating layers of the transmission lines of the accelerator are increased while simultaneously maintaining high dielectric strengths for the accelerator.

  11. Dielectric optical antenna thermal emitters and metamaterials

    Science.gov (United States)

    Schuller, Jonathan Aaron

    Optical antennas are critical components in nanophotonics research due to their unparalleled ability to concentrate electromagnetic energy into nanoscale volumes. Researchers typically construct such antennas from wavelength-size metallic structures. However, recent research has begun to exploit the scattering resonances of high-permittivity particles to realize all-dielectric optical antennas, emitters, and metamaterials. In this thesis, we experimentally and theoretically characterize the resonant modes of subwavelength rod-shaped dielectric particles and demonstrate their use in negative index metamaterials and novel infrared light emitters. At mid-infrared frequencies, Silicon Carbide (SiC) is an ideal system for studying the behavior of dielectric optical antennas. At frequencies below the TO phonon resonance, SiC behaves like a dielectric with very large refractive index. Using infrared spectroscopy and analytical Mie calculations we show that individual rod-shaped SiC particles exhibit a multitude of resonant modes. Detailed investigations of these SiC optical antennas reveal a wealth of new physics and applications. We discuss the distinct electromagnetic field profile for each mode, and demonstrate that two of the dielectric-type Mie resonances can be combined in a particle array to form a negative index metamaterial. We further show that these particles can serve as "broadcasting" antennas. Using a custom-built thermal emission microscope we collect emissivity spectra from single SiC particles at elevated temperatures, highlighting their use as subwavelength resonant light emitters. Finally, we derive and verify a variety of general analytical results applicable to all cylindrical dielectric antennas.

  12. Dielectric Optical Antenna Emitters and Metamaterials

    Science.gov (United States)

    Schuller, Jon

    2009-03-01

    Optical antennas are critical components in nanophotonics research due to their unparalleled ability to concentrate electromagnetic energy into nanoscale volumes. Researchers typically construct such antennas from wavelength-size metallic structures. However, recent research has begun to exploit the scattering resonances of high-permittivity particles to realize all-dielectric optical antennas, emitters, and metamaterials. In this talk, we experimentally and theoretically characterize the resonant modes of subwavelength rod-shaped dielectric particles and demonstrate their use in negative index metamaterials and novel infrared light emitters. At mid-infrared frequencies, Silicon Carbide (SiC) is an ideal system for studying the behavior of dielectric optical antennas. At frequencies below the TO phonon resonance, SiC behaves like a dielectric with very large refractive index. Using infrared spectroscopy and analytical Mie calculations we show that individual rod-shaped SiC particles exhibit a multitude of resonant modes. Detailed investigations of these SiC optical antennas reveal a wealth of new physics and applications. We discuss the distinct electromagnetic field profile for each mode, and demonstrate that two of the dielectric-type Mie resonances can be combined in a particle array to form a negative index metamaterial [1]. We further show that these particles can serve as ``broadcasting'' antennas. Using a custom-built thermal emission microscope we collect emissivity spectra from single SiC particles at elevated temperatures, highlighting their use as subwavelength resonant light emitters. Finally, we derive and verify a variety of general analytical results applicable to all cylindrical dielectric antennas and discuss extensions of the demonstrated concepts to different materials systems and frequency regimes. [1] J.A. Schuller, et al., Phys. Rev. Lett. 99, 107401 (2007)

  13. Optics of dielectric microstructures

    DEFF Research Database (Denmark)

    Søndergaard, Thomas

    2002-01-01

    From the work carried out within the ph.d. project two topics have been selected for this thesis, namely emission of radiation by sources in dielectric microstructures, and planar photonic crystal waveguides. The work done within the first topic, emission of radiation by sources in dielectric...... microstructures, will be presented in the part I of this thesis consisting of the chapters 2-5. An introductions is given in chapter 2. In part I three methods are presented for calculating spontaneous and classical emission from sources in dielectric microstructures. The first method presented in chapter 3...... is based on the Fermi Golden Rule, and spontaneous emission from emitters in a passive dielectric microstructure is calculated by summing over the emission into each electromagnetic mode of the radiation field. This method is applied to investigate spontaneous emission in a two-dimensional photonic crystal...

  14. Electron-beam-induced conduction in dielectrics

    Energy Technology Data Exchange (ETDEWEB)

    Acris, F C; Davies, P M; Lewis, T J [University Coll. of North Wales, Bangor (UK). School of Electronic Engineering Science

    1976-03-14

    A model for the enhanced conduction induced in dielectric films under electron bombardment while electrically stressed is discussed. It is assumed that the beam produces a virtual electrode at the end of its range in the dielectric and, as a consequence, the induced conduction is shown to depend on the properties of that part of the dielectric beyond the range of the beam. This model has also been discussed recently by Nunes de Oliviera and Gross. In the present treatment, it is shown how the model permits investigation of beam scattering and carrier generation and recombination processes. Experiments on electron-bombardment-induced conduction of thin (72 to 360 nm) films of anodic tantalum oxide are reported and it is shown that the theoretical model provides a very satisfactory explanation of all features of the results including the apparent threshold energy for enhanced conduction.

  15. Evaluation of high temperature capacitor dielectrics

    Science.gov (United States)

    Hammoud, Ahmad N.; Myers, Ira T.

    1992-01-01

    Experiments were carried out to evaluate four candidate materials for high temperature capacitor dielectric applications. The materials investigated were polybenzimidazole polymer and three aramid papers: Voltex 450, Nomex 410, and Nomex M 418, an aramid paper containing 50 percent mica. The samples were heat treated for six hours at 60 C and the direct current and 60 Hz alternating current breakdown voltages of both dry and impregnated samples were obtained in a temperature range of 20 to 250 C. The samples were also characterized in terms of their dielectric constant, dielectric loss, and conductivity over this temperature range with an electrical stress of 60 Hz, 50 V/mil present. Additional measurements are underway to determine the volume resistivity, thermal shrinkage, and weight loss of the materials. Preliminary data indicate that the heat treatment of the films slightly improves the dielectric properties with no influence on their breakdown behavior. Impregnation of the samples leads to significant increases in both alternating and direct current breakdown strength. The results are discussed and conclusions made concerning their suitability as high temperature capacitor dielectrics.

  16. Atomic-scale microstructures, Raman spectra and dielectric properties of cubic pyrochlore-typed Bi1.5MgNb1.5O7 dielectric ceramics

    KAUST Repository

    Li, Yangyang

    2014-07-01

    Single-phase cubic pyrochlore-typed Bi1.5MgNb 1.5O7 (BMN) dielectric ceramics were synthesized at temperatures of 1050-1200 °C by solid-state reaction method. Their atomic-scale microstructures and dielectric properties were investigated. X-ray diffraction patterns revealed that the BMN ceramics had an average cubic pyrochlore structure, whereas the Raman spectra indicated that they had an essentially cubic symmetry with small local deviations at the A and O\\' sites of the cubic pyrochlore structure. This was confirmed by selected electron area diffraction (SAED) patterns, where the reflections of {442} (not allowed in the cubic pyrochlore with Fd3̄m symmetry) were clearly observed. SEM and TEM images revealed that the average grain size was increased with the sintering temperature, and an un-homogeneous grain growth was observed at high temperatures. HRTEM images and SAED patterns revealed the single-crystalline nature of the BMN ceramic grains. Energy dispersive spectroscopy (EDS) elemental mapping studies indicated that the compositional distributions of Bi, Mg, Nb and O elements in the ceramic grains were homogenous, and no elemental precipitation was observed at the grain boundary. Quantitative EDS data on ceramic grains revealed the expected cationic stoichiometry based on the initial composition of Bi1.5MgNb1.5O7. Dielectric constants of all the BMN samples exhibited almost frequency independent characteristic in the frequency range of 102-106 Hz, and the highest value was 195 for the BMN ceramics sintered at sintered at 1150 °C with the highest bulk density. The dielectric losses were stable and less than 0.002 in the frequency range of 102-105 Hz. The high dielectric constants of the present BMN samples can be ascribed to the local atomic deviations at the A and O\\' sites from the ideal atomic positions of the pyrochlore structure, which affect the different polarization mechanisms in the BMN ceramics, and which in turn enhance the dielectric

  17. Atomic-scale microstructures, Raman spectra and dielectric properties of cubic pyrochlore-typed Bi1.5MgNb1.5O7 dielectric ceramics

    KAUST Repository

    Li, Yangyang; Zhu, Xinhua; Al-Kassab, Talaat

    2014-01-01

    Single-phase cubic pyrochlore-typed Bi1.5MgNb 1.5O7 (BMN) dielectric ceramics were synthesized at temperatures of 1050-1200 °C by solid-state reaction method. Their atomic-scale microstructures and dielectric properties were investigated. X-ray diffraction patterns revealed that the BMN ceramics had an average cubic pyrochlore structure, whereas the Raman spectra indicated that they had an essentially cubic symmetry with small local deviations at the A and O' sites of the cubic pyrochlore structure. This was confirmed by selected electron area diffraction (SAED) patterns, where the reflections of {442} (not allowed in the cubic pyrochlore with Fd3̄m symmetry) were clearly observed. SEM and TEM images revealed that the average grain size was increased with the sintering temperature, and an un-homogeneous grain growth was observed at high temperatures. HRTEM images and SAED patterns revealed the single-crystalline nature of the BMN ceramic grains. Energy dispersive spectroscopy (EDS) elemental mapping studies indicated that the compositional distributions of Bi, Mg, Nb and O elements in the ceramic grains were homogenous, and no elemental precipitation was observed at the grain boundary. Quantitative EDS data on ceramic grains revealed the expected cationic stoichiometry based on the initial composition of Bi1.5MgNb1.5O7. Dielectric constants of all the BMN samples exhibited almost frequency independent characteristic in the frequency range of 102-106 Hz, and the highest value was 195 for the BMN ceramics sintered at sintered at 1150 °C with the highest bulk density. The dielectric losses were stable and less than 0.002 in the frequency range of 102-105 Hz. The high dielectric constants of the present BMN samples can be ascribed to the local atomic deviations at the A and O' sites from the ideal atomic positions of the pyrochlore structure, which affect the different polarization mechanisms in the BMN ceramics, and which in turn enhance the dielectric constants of

  18. Dielectric anomaly and relaxation natures in a Zn-Cr pillar−layered metal−organic framework with cages and channels

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Chen; Yao, Zhi-Yuan; Liu, Shao-Xian; Luo, Hong-Bin [State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry & Molecular Engineering, Nanjing Tech University, Nanjing 210009 (China); Zou, Yang, E-mail: zouyang@njtech.edu.cn [State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry & Molecular Engineering, Nanjing Tech University, Nanjing 210009 (China); Li, Li [State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry & Molecular Engineering, Nanjing Tech University, Nanjing 210009 (China); Ren, Xiao-Ming, E-mail: xmren@njtech.edu.cn [State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry & Molecular Engineering, Nanjing Tech University, Nanjing 210009 (China); College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009 (China); State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093 (China)

    2017-06-15

    A bimetallic metal–organic framework (MOF) with the formula [Zn{sub 3}btc{sub 2}(Cr{sub 3}O(isonic){sub 6}(H{sub 2}O){sub 2}(OH))]·(DMF){sub 15.5}(H{sub 2}O){sub 8} (H{sub 3}btc=1,3,5-benzenetricarboxylic acid; isonic=isonicotinicate) shows a pillar-layered structure. The monolayer consists of hexagon-like rings formed by the [Zn(isonic){sub 2}(btc){sub 2}] tetrahedral and the consecutive monolayers are pillared by trigonal–prismatic clusters of [Cr{sub 3}O(isonic){sub 6}(H{sub 2}O){sub 2}(OH)]through the remaining binding sites of the Zn{sup 2+} ions. DMF and water molecules are confined in the cages and channels. TGA indicates that the lattice DMF and water molecules begin to be released at temperatures above 363 K. Dielectric measurements were carried out in the range of 173–363 K and 1–10{sup 7} Hz for three successive thermal cycles. The dielectric spectroscopy obtained in the first thermal cycle was different from that observed in the next two thermal cycles, while the dielectric spectra in the last two thermal cycles were almost identical. The dielectric nature of this MOF is discussed in detail for each thermal cycle. Since MOFs are unique host–guest systems in which the structure of the host framework is designable and the guests are exchangeable, it is no doubt those MOFs are materials with a variety of dielectric natures. This study gives a fresh impetus to achieve MOFs–based dielectric materials. - Graphical abstract: The bimetallic MOF [Zn{sub 3}btc{sub 2}(Cr{sub 3}O(isonic){sub 6}(H{sub 2}O){sub 2}(OH))]·(DMF){sub 15.5}(H{sub 2}O){sub 8}1, shows a pillar-layered open-framework structure. The dielectric spectra of 1 are almost identical in the last two thermal cycles, whereas significantly different from that observed in the first thermal cycle. The novel dielectric anomaly associated with a stacked structure transformation of the disordered guests. - Highlights: • A bimetallic metal-organic framework shows a pillar-layered structure.

  19. Laser-induced breakdown spectroscopy to monitor ion cyclotron range of frequency wall cleaning Li/D co-deposition in EAST tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Liu, P.; Wu, D.; Sun, L.Y.; Zhao, D.Y.; Hai, R.; Li, C. [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Chinese Ministry of Education, School of Physics and Optical Electronic Technology, Dalian University of Technology, Dalian, 116024 (China); Ding, H., E-mail: hding@dlut.edu.cn [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Chinese Ministry of Education, School of Physics and Optical Electronic Technology, Dalian University of Technology, Dalian, 116024 (China); Hu, Z.H.; Wang, L.; Hu, J.S.; Chen, J.L.; Luo, G.N. [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei, Anhui 230031 (China)

    2017-05-15

    Highlights: • LIBS was applied to EAST for monitoring the cleaning performance of the first wall using He-ICRF cleaning. • The cleaning performance is effective under helium ambient gas and some measurements have been obtained. • The results also indicate that the influence of magnetic field on LIBS signal is much stronger in helium ambient gas. • The effect of delay time and laser fluence on the LIBS signal has been investigated. - Abstract: In this paper, laser-induced breakdown spectroscopy (LIBS) under magnetic field condition has been studied in laboratory and EAST tokamak. The experimental results reveal that in helium ambient gas, the magnetic field significantly enhances the LIBS signal intensity (∼3 times). The effect of time delay and laser fluence on the intensity of LIBS has been investigated for optimizing the signal to background ratio (S/B). The developed LIBS approach has been applied to monitor the cleaning performance of the first wall in the fusion device of EAST using the ion cyclotron range of frequency (ICRF). The experimental results demonstrate that the cleaning performance for Li/D co-deposition layer is effective under helium ambient gas. The removing rate of Li on the surface of W tile is faster than that on Mo tile in He-ICRF cleaning and the D/(D + H) ratio on Mo tile is higher by ∼1.2 times than that on W tile. This work would indicate the feasibility of using LIBS to monitor the wall cleaning processes in EAST tokamak.

  20. Dielectric and electrical conductivity studies of bulk lead (II) oxide (PbO)

    Energy Technology Data Exchange (ETDEWEB)

    Darwish, A.A.A., E-mail: aaadarwish@gmail.com [Department of Physics, Faculty of Education at Al-Mahweet, Sana’a University, Al-Mahwit (Yemen); Department of Physics, Faculty of Science, University of Tabuk, P.O. Box 741, Tabuk 71491, Tabuk (Saudi Arabia); El-Zaidia, E.F.M.; El-Nahass, M.M. [Department of Physics, Faculty of Education, Ain Shams University, Rorxy, Cairo 11757 (Egypt); Hanafy, T.A. [Department of Physics, Faculty of Science, University of Tabuk, P.O. Box 741, Tabuk 71491, Tabuk (Saudi Arabia); Department of Physics, Faculty of Science, Fayoum University, 63514 El Fayoum (Egypt); Al-Zubaidi, A.A. [Department of Physics, Faculty of Science, University of Tabuk, P.O. Box 741, Tabuk 71491, Tabuk (Saudi Arabia)

    2014-03-15

    Highlights: • The AC measurements of PbO were measured at temperature range 313–523 K. • The dielectric constants increased with temperature. • The mechanism responsible for AC conduction is electronic hopping. -- Abstract: The dielectric properties, the impedance spectroscopy and AC conductivity of bulk PbO have been investigated as a function of frequency and temperature. The measurements were carried out in the frequency range from 40 to 5 × 10{sup 6} Hz and in temperature range from 313 to 523 K. The frequency response of dielectric constant, ε{sub 1}, and dielectric loss index, ε{sub 2}, as a function of temperature were studied. The values of ε{sub 1} and ε{sub 2} were found to decrease with the increase in frequency. However, they increase with the increase in temperature. The presence of a single arc in the complex modulus spectrum at different temperatures confirms the single-phase character of the PbO. The AC conductivity exhibited a universal dynamic response: σ{sub AC} = Aω{sup s}. The AC conductivity was also found to increase with increasing temperature and frequency. The correlation barrier hopping (CBH) model was found to apply to the AC conductivity data. The calculated values of s were decreased with temperature. This behavior reveals that the conduction mechanism for PbO samples is CBH. The activation energy for AC conductivity decreases with increasing frequency. This confirms that the hopping conduction to the dominant mechanism for PbO samples.

  1. Shear and dielectric responses of propylene carbonate, tripropylene glycol, and a mixture of two secondary amides

    DEFF Research Database (Denmark)

    Gainaru, Catalin; Hecksher, Tina; Olsen, Niels Boye

    2012-01-01

    Propylene carbonate and a mixture of two secondary amides, N-ethylformamide and Nethylacetamide, are investigated by means of broadband dielectric and mechanical shear spectroscopy. The similarities between the rheological and the dielectric responses of these liquids and of the previously invest...... in the secondary amides. In addition, the predictions of the shoving model are confirmed for the investigated liquids...

  2. Structural, dielectric and AC conductivity study of Sb2O3 thin film ...

    Indian Academy of Sciences (India)

    52

    However, to date, no reports have appeared on impedance spectroscopy, modulus behavior, electrical conductivity, dielectric relaxation and dielectric properties of crystalline Sb2O3 thin films. This paper deals for the first time with the frequency and temperature dependence of AC conductivity and complex electric modulus ...

  3. Millimeter wave and terahertz dielectric properties of biological materials

    Science.gov (United States)

    Khan, Usman Ansar

    Broadband dielectric properties of materials can be employed to identify, detect, and characterize materials through their unique spectral signatures. In this study, millimeter wave, submillimeter wave, and terahertz dielectric properties of biological substances inclusive of liquids, solids, and powders were obtained using Dispersive Fourier Transform Spectroscopy (DFTS). Two broadband polarizing interferometers were constructed to test materials from 60 GHz to 1.2 THz. This is an extremely difficult portion of the frequency spectrum to obtain a material's dielectric properties since neither optical nor microwave-based techniques provide accurate data. The dielectric characteristics of liquids such as cyclohexane, chlorobenzene, benzene, ethanol, methanol, 1,4 dioxane, and 10% formalin were obtained using the liquid interferometer. Subsequently the solid interferometer was utilized to determine the dielectric properties of human breast tissues, which are fixed and preserved in 10% formalin. This joint collaboration with the Tufts New England Medical Center demonstrated a significant difference between the dielectric response of tumorous and non-tumorous breast tissues across the spectrum. Powders such as anthrax, flour, talc, corn starch, dry milk, and baking soda have been involved in a number of security threats and false alarms around the globe in the last decade. To be able to differentiate hoax attacks and serious security threats, the dielectric properties of common household powders were also examined using the solid interferometer to identify the powders' unique resonance peaks. A new sample preparation kit was designed to test the powder specimens. It was anticipated that millimeter wave and terahertz dielectric characterization will enable one to clearly distinguish one powder from the other; however most of the powders had relatively close dielectric responses and only Talc had a resonance signature recorded at 1.135 THz. Furthermore, due to

  4. Improving dielectric properties of BaTiO_3/poly(vinylidene fluoride) composites by employing core-shell structured BaTiO_3@Poly(methylmethacrylate) and BaTiO_3@Poly(trifluoroethyl methacrylate) nanoparticles

    International Nuclear Information System (INIS)

    Zhang, Xianhong; Zhao, Sidi; Wang, Fang; Ma, Yuhong; Wang, Li; Chen, Dong; Zhao, Changwen; Yang, Wantai

    2017-01-01

    Highlights: • Core-shell structured BT@PMMA and BT@PTFEMA nanoparticles were synthesized. • The dispersity of BT nanoparticles in PVDF matrix was improved significantly. • Dielectric properties both of BT@PMMA/PVDF and BT@PTFEMA/PVDF composites were improved. • The frequency dependence of dielectric constant attenuation of BT@PTFEMA/PVDF composites was smaller than that of BT@PMMA/PVDF composites. - Abstract: Polymer based dielectric composites were fabricated through incorporation of core-shell structured BaTiO_3 (BT) nanoparticles into PVDF matrix by means of solution blending. Core-shell structured BT nanoparticles with different shell composition and shell thickness were prepared by grafting methacrylate monomer (MMA or TFEMA) onto the surface of BT nanoparticles via surface initiated atom transfer radical polymerization (SI-ATRP). The content of the grafted polymer and the micro-morphology of the core-shell structured BT nanoparticles were investigated by thermo gravimetric analyses (TGA) and transmission electron microscopy (TEM), respectively. The dielectric properties were measured by broadband dielectric spectroscopy. The results showed that high dielectric constant and low dielectric loss are successfully realized in the polymer based composites. Moreover, the type of the grafted polymer and its content had different effect on the dielectric constant. In detail, the attenuation of dielectric constant was 16.6% for BT@PMMA1/PVDF and 10.7% for BT@PMMA2/PVDF composite in the range of 10 Hz to 100 kHz, in which the grafted content of PMMA was 5.5% and 8.0%, respectively. However, the attenuation of dielectric constant was 5.5% for BT@PTFEMA1/PVDF and 4.0% for BT@PTFEMA2/PVDF composite, in which the grafted content of PTFEMA was 1.5% and 2.0%, respectively. These attractive features of BT@PTFEMA/PVDF composites suggested that dielectric ceramic fillers modified with fluorinated polymer can be used to prepare high performance composites, especially

  5. Broadband dielectric spectroscopy of standard and core-shell BaTiO.sub.3./sub.-NiO ceramic composites compared to the BaTiO.sub.3./sub. ceramics

    Czech Academy of Sciences Publication Activity Database

    Nuzhnyy, Dmitry; Petzelt, Jan; Bovtun, Viktor; Ostapchuk, Tetyana; Savinov, Maxim; Kempa, Martin; Bednyakov, Petr; Fernández-Garciá, L.; Rodriguez-Suarez, T.; Menendéz, J.L.

    2016-01-01

    Roč. 500, č. 1 (2016), s. 1-19 ISSN 0015-0193 R&D Projects: GA ČR GA15-08389S Institutional support: RVO:68378271 Keywords : core-shell composite * effective dielectric function * effective infrared response * effective medium approximation * percolation * barium titanate * nickel oxide Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.551, year: 2016

  6. Impedance spectroscopic and dielectric analysis of Ba0.7Sr0.3TiO3 thin films

    International Nuclear Information System (INIS)

    Rouahi, A.; Kahouli, A.; Sylvestre, A.; Defaÿ, E.; Yangui, B.

    2012-01-01

    Highlights: ► The material exhibits the contribution of both grain and grain boundaries in the electric response of Ba 0.7 Sr 0.3 TiO 3 . ► The plot of normalized complex dielectric modulus and impedance as a function of frequency exhibits both short and long-range conduction in the film. ► The frequency dependence of ac conductivity exhibits a polaron hopping mechanism with activation energy of 0.38 eV. ► The complex dielectric modulus analysis confirmed the presence of a non-Debye type of conductivity relaxation deduced from the KWW function. - Abstract: Polycrystalline Ba 0.7 Sr 0.3 TiO 3 thin film with Pt/BST/Pt/TiO 2 /SiO 2 structure was prepared by ion beam sputtering. The film was post annealed at 700 °C. The dielectric and electric modulus properties were studied by impedance spectroscopy over a wide frequency range [0.1–10 5 Hz] at different temperatures [175–350 °C]. The Nyquist plots (Z″ vs . Z′) show the contribution of both grain and grain boundaries at higher temperature on the electric response of BST thin films. Moreover, the resistance of grains decreases with the rise in temperature and the material exhibits a negative temperature coefficient of resistance. The electric modulus plot indicates the non-Debye type of dielectric relaxation. The values of the activation energy computed from both plots of Z″ and M″ are 0.86 eV and 0.81 eV respectively, which reveals that the species responsible for conduction are the same. The scaling behavior of M ″ /M ″ max shows the temperature independent nature of relaxation time. The plot of normalized complex dielectric modulus and impedance as a function of frequency exhibits both short and long-range conduction in the film.

  7. The apparent effect of sample surface damage on the dielectric parameters of GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Engelbrecht, J.A.A. [Physics Department, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa)], E-mail: Japie.Engelbrecht@nmmu.ac.za; Hashe, N.G. [Physics Department, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa); Hillie, K.T. [CSIR-NML Laboratory, P.O. Box 395, Pretoria 0001 (South Africa); Claassens, C.H. [Physics Department, University of the Free State, Bloemfontein 9300 (South Africa)

    2007-12-15

    The dielectric and optical parameters determined by infrared reflectance spectroscopy and computer simulation of a set of GaAs substrates of various surface topologies are reported. The influence of surface damage on the parameters is noted.

  8. The apparent effect of sample surface damage on the dielectric parameters of GaAs

    International Nuclear Information System (INIS)

    Engelbrecht, J.A.A.; Hashe, N.G.; Hillie, K.T.; Claassens, C.H.

    2007-01-01

    The dielectric and optical parameters determined by infrared reflectance spectroscopy and computer simulation of a set of GaAs substrates of various surface topologies are reported. The influence of surface damage on the parameters is noted

  9. Dielectric and magnetic characterization of the electroceramic Ba2Co2Fe12O22 doped with Bi2O3 for applications in electronics components

    International Nuclear Information System (INIS)

    Pires Junior, G.F.M.; Sales, A.J.M.; Rodrigues, H.O.; Sombra, A.S.B.

    2012-01-01

    The objective of this work is to study the dielectric and magnetic properties of electroceramics (Ba 2 Co 2 Fe 12 O 22 - Co 2 Y) doped with (3; 5 and 10 wt%) of Bi 2 O 3 in order to promote better dielectric and magnetic properties for applications in electronics. Phase Co 2 Y was obtained through the method of solid-state reaction. The structural characterization was performed by X-ray Diffraction using the Rietveld refinement. Magnetic hysteresis curves of the samples were obtained at room temperature. The Impedance Spectroscopy was used in the study of the dielectric function of frequency in the range 100-100 MHz, at room temperature. It follows that the Rietveld refinement confirmed the structure to the hexagonal crystalline phase obtained. The curve analysis confirmed the magnetic hysteresis behavior of the ferrimagnetic samples. Furthermore, the samples showed large values of dielectric permittivity (30.8) and small dielectric loss (3,66 x10 -1 ) at 100 MHz for the sample B1, making them passive miniaturization. (author)

  10. Preparation and Preliminary Dielectric Characterization of Structured C60-Thiol-Ene Polymer Nanocomposites Assembled Using the Thiol-Ene Click Reaction

    Directory of Open Access Journals (Sweden)

    Hanaa M. Ahmed

    2015-11-01

    Full Text Available Fullerene-containing materials have the ability to store and release electrical energy. Therefore, fullerenes may ultimately find use in high-voltage equipment devices or as super capacitors for high electric energy storage due to this ease of manipulating their excellent dielectric properties and their high volume resistivity. A series of structured fullerene (C60 polymer nanocomposites were assembled using the thiol-ene click reaction, between alkyl thiols and allyl functionalized C60 derivatives. The resulting high-density C60-urethane-thiol-ene (C60-Thiol-Ene networks possessed excellent mechanical properties. These novel networks were characterized using standard techniques, including infrared spectroscopy (FTIR, differential scanning calorimetry (DSC, dynamic mechanical analysis (DMA, and thermal gravimetric analysis (TGA. The dielectric spectra for the prepared samples were determined over a broad frequency range at room temperature using a broadband dielectric spectrometer and a semiconductor characterization system. The changes in thermo-mechanical and electrical properties of these novel fullerene-thiol-ene composite films were measured as a function of the C60 content, and samples characterized by high dielectric permittivity and low dielectric loss were produced. In this process, variations in chemical composition of the networks were correlated to performance characteristics.

  11. Room temperature magnetic and dielectric properties of cobalt doped CaCu3Ti4O12 ceramics

    Science.gov (United States)

    Mu, Chunhong; Song, Yuanqiang; Wang, Haibin; Wang, Xiaoning

    2015-05-01

    CaCu3Ti4-xCoxO12 (x = 0, 0.2, 0.4) ceramics were prepared by a conventional solid state reaction, and the effects of cobalt doping on the room temperature magnetic and dielectric properties were investigated. Both X-ray diffraction and energy dispersive X-ray spectroscopy confirmed the presence of Cu and Co rich phase at grain boundaries of Co-doped ceramics. Scanning electron microscopy micrographs of Co-doped samples showed a striking change from regular polyhedral particle type in pure CaCu3Ti4O12 (CCTO) to sheet-like grains with certain growth orientation. Undoped CaCu3Ti4O12 is well known for its colossal dielectric constant in a broad temperature and frequency range. The dielectric constant value was slightly changed by 5 at. % and 10 at. % Co doping, whereas the second relaxation process was clearly separated in low frequency region at room temperature. A multirelaxation mechanism was proposed to be the origin of the colossal dielectric constant. In addition, the permeability spectra measurements indicated Co-doped CCTO with good magnetic properties, showing the initial permeability (μ') as high as 5.5 and low magnetic loss (μ″ < 0.2) below 3 MHz. And the interesting ferromagnetic superexchange coupling in Co-doped CaCu3Ti4O12 was discussed.

  12. Optical properties and thermal stability of LaYbO3 ternary oxide for high-k dielectric application

    Science.gov (United States)

    Su, Wei-tao; Yang, Li; Li, Bin

    2011-01-01

    A new ternary rare oxide dielectric LaYbO3 film had been prepared on silicon wafers and quartz substrates by reactive sputtering method using a La-Yb metal target. A range of analysis techniques was performed to determine the optical band gap, thermal stability, and electrical property of the deposited samples. It was found the band gap of LaYbO3 film was about 5.8 eV. And the crystallization temperature for rapid thermal annealing (20 s) was between 900 and 950 °C. X-ray photoelectron spectroscopy results indicate the formation of the SiO2 and silicate in the interface between silicon wafer and LaYbO3 film. The dielectric constant is about 23 from the calculation of capacitance-voltage curve, which is comparable higher than previously reported La2O3 or Yb2O3 film.

  13. Modification of the refractive index and the dielectric constant of silicon dioxide by means of ion implantation

    International Nuclear Information System (INIS)

    Swart, J.W.; Diniz, J.A.; Doi, I.; Moraes, M.A.B. de

    2000-01-01

    The modification of silicon dioxide films by means of ion implantation of fluorine and carbon was studied. 19 F + and 12 C + ions were separately and sequentially implanted in 250 nm thick thermal SiO 2 films with energies ranging from 10 to 50 keV and fluences in the interval 5x10 15 to 5x10 16 cm -2 . Metal/oxide/semiconductor (MOS) capacitors were fabricated on half side of the wafers. The implanted SiO 2 /Si samples were characterized by means of ellipsometry and Fourier transform infrared (FTIR) spectroscopy. The MOS capacitors were used to determine the relative dielectric constant. Our results indicate a considerable reduction of the dielectric constant and refractive index. The refractive index was reduced from 1.46 to 1.29 when only fluorine was implanted or when fluorine with a higher dose was implanted in combination with carbon. For the same conditions, a relative dielectric constant of 3.4 was obtained and a shift in the Si-O bond stretching mode from 1085 to 1075 cm -1 was observed by FTIR spectroscopy

  14. Dielectric and AC Conductivity Studies in PPy-Ag Nanocomposites

    OpenAIRE

    Praveenkumar, K.; Sankarappa, T.; Ashwajeet, J. S.; Ramanna, R.

    2015-01-01

    Polypyrrole and silver nanoparticles have been synthesized at 277 K by chemical route. Nanoparticles of polypyrrole-silver (PPy-Ag) composites were prepared by mixing polypyrrole and silver nanoparticles in different weight percentages. Dielectric properties as a function of temperature in the range from 300 K to 550 K and frequency in the range from 50 Hz to 1 MHz have been measured. Dielectric constant decreased with increase in frequency and temperature. Dielectric loss decreased with incr...

  15. Moisture effect on the dielectric response and space charge behaviour of mineral oil impregnated paper insulation

    International Nuclear Information System (INIS)

    Hao Jian; Liao Ruijin; Chen, George

    2011-01-01

    Dielectric response and space charge behaviour of oil-paper insulation sample with different moisture contents were investigated using the frequency dielectric spectroscopy (FDS) and the pulsed electroacoustic (PEA) technique, respectively. The influence of moisture on the dielectric response and space charge behaviour of oil impregnated paper insulation was analysed. Results show that the moisture has great effect on the FDS and space charge behaviour of oil impregnated paper insulation. In the frequency range of 10 -2 ∼10 6 Hz, the conductivity and the capacitance of oil impregnated paper increases with its moisture content. The space charge distribution of oil-paper sample with lower and higher moisture contents is very different from each other. The higher the moisture concentration of the oil impregnated paper, the easier the negative charge penetration into the insulation paper. There is a significant amount of positive charge accumulated at the paper-paper interface near to the cathode for oilpaper sample with lower moisture content. However, the positive charge appears in the middle layer paper for oil-paper sample with higher moisture content. Due to the high conductivity, the charge trapped in the oil-paper sample with higher moisture content disappears much faster than that in the oil-paper sample with lower moisture content after removing the voltage.

  16. Moisture effect on the dielectric response and space charge behaviour of mineral oil impregnated paper insulation

    Energy Technology Data Exchange (ETDEWEB)

    Hao Jian; Liao Ruijin [State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University (China); Chen, George, E-mail: jh210v@ecs.soton.ac.uk [School of Electronics and Computer Science, University of Southampton (United Kingdom)

    2011-08-12

    Dielectric response and space charge behaviour of oil-paper insulation sample with different moisture contents were investigated using the frequency dielectric spectroscopy (FDS) and the pulsed electroacoustic (PEA) technique, respectively. The influence of moisture on the dielectric response and space charge behaviour of oil impregnated paper insulation was analysed. Results show that the moisture has great effect on the FDS and space charge behaviour of oil impregnated paper insulation. In the frequency range of 10{sup -2}{approx}10{sup 6}Hz, the conductivity and the capacitance of oil impregnated paper increases with its moisture content. The space charge distribution of oil-paper sample with lower and higher moisture contents is very different from each other. The higher the moisture concentration of the oil impregnated paper, the easier the negative charge penetration into the insulation paper. There is a significant amount of positive charge accumulated at the paper-paper interface near to the cathode for oilpaper sample with lower moisture content. However, the positive charge appears in the middle layer paper for oil-paper sample with higher moisture content. Due to the high conductivity, the charge trapped in the oil-paper sample with higher moisture content disappears much faster than that in the oil-paper sample with lower moisture content after removing the voltage.

  17. Super Dielectric Materials.

    Science.gov (United States)

    Fromille, Samuel; Phillips, Jonathan

    2014-12-22

    Evidence is provided here that a class of materials with dielectric constants greater than 10⁵ at low frequency (dielectric materials (SDM), can be generated readily from common, inexpensive materials. Specifically it is demonstrated that high surface area alumina powders, loaded to the incipient wetness point with a solution of boric acid dissolved in water, have dielectric constants, near 0 Hz, greater than 4 × 10⁸ in all cases, a remarkable increase over the best dielectric constants previously measured for energy storage capabilities, ca. 1 × 10⁴. It is postulated that any porous, electrically insulating material (e.g., high surface area powders of silica, titania, etc. ), filled with a liquid containing a high concentration of ionic species will potentially be an SDM. Capacitors created with the first generated SDM dielectrics (alumina with boric acid solution), herein called New Paradigm Super (NPS) capacitors display typical electrostatic capacitive behavior, such as increasing capacitance with decreasing thickness, and can be cycled, but are limited to a maximum effective operating voltage of about 0.8 V. A simple theory is presented: Water containing relatively high concentrations of dissolved ions saturates all, or virtually all, the pores (average diameter 500 Å) of the alumina. In an applied field the positive ionic species migrate to the cathode end, and the negative ions to the anode end of each drop. This creates giant dipoles with high charge, hence leading to high dielectric constant behavior. At about 0.8 V, water begins to break down, creating enough ionic species to "short" the individual water droplets. Potentially NPS capacitor stacks can surpass "supercapacitors" in volumetric energy density.

  18. Super Dielectric Materials

    Directory of Open Access Journals (Sweden)

    Samuel Fromille

    2014-12-01

    Full Text Available Evidence is provided here that a class of materials with dielectric constants greater than 105 at low frequency (<10−2 Hz, herein called super dielectric materials (SDM, can be generated readily from common, inexpensive materials. Specifically it is demonstrated that high surface area alumina powders, loaded to the incipient wetness point with a solution of boric acid dissolved in water, have dielectric constants, near 0 Hz, greater than 4 × 108 in all cases, a remarkable increase over the best dielectric constants previously measured for energy storage capabilities, ca. 1 × 104. It is postulated that any porous, electrically insulating material (e.g., high surface area powders of silica, titania, etc., filled with a liquid containing a high concentration of ionic species will potentially be an SDM. Capacitors created with the first generated SDM dielectrics (alumina with boric acid solution, herein called New Paradigm Super (NPS capacitors display typical electrostatic capacitive behavior, such as increasing capacitance with decreasing thickness, and can be cycled, but are limited to a maximum effective operating voltage of about 0.8 V. A simple theory is presented: Water containing relatively high concentrations of dissolved ions saturates all, or virtually all, the pores (average diameter 500 Å of the alumina. In an applied field the positive ionic species migrate to the cathode end, and the negative ions to the anode end of each drop. This creates giant dipoles with high charge, hence leading to high dielectric constant behavior. At about 0.8 V, water begins to break down, creating enough ionic species to “short” the individual water droplets. Potentially NPS capacitor stacks can surpass “supercapacitors” in volumetric energy density.

  19. Thermally switchable dielectrics

    Science.gov (United States)

    Dirk, Shawn M.; Johnson, Ross S.

    2013-04-30

    Precursor polymers to conjugated polymers, such as poly(phenylene vinylene), poly(poly(thiophene vinylene), poly(aniline vinylene), and poly(pyrrole vinylene), can be used as thermally switchable capacitor dielectrics that fail at a specific temperature due to the non-conjugated precursor polymer irreversibly switching from an insulator to the conjugated polymer, which serves as a bleed resistor. The precursor polymer is a good dielectric until it reaches a specific temperature determined by the stability of the leaving groups. Conjugation of the polymer backbone at high temperature effectively disables the capacitor, providing a `built-in` safety mechanism for electronic devices.

  20. On dielectric breakdown statistics

    International Nuclear Information System (INIS)

    Tuncer, Enis; James, D Randy; Sauers, Isidor; Ellis, Alvin R; Pace, Marshall O

    2006-01-01

    In this paper, we investigate the dielectric breakdown data of some insulating materials and focus on the applicability of the two- and three-parameter Weibull distributions. A new distribution function is also proposed. In order to assess the model distribution's trustworthiness, we employ the Monte Carlo technique and, randomly selecting data-subsets from the whole dielectric breakdown data, determine whether the selected probability functions accurately describe the breakdown data. The utility and strength of the proposed expression are illustrated distinctly by the numerical procedure. The proposed expression is shown to be a valuable alternative to the Weibull ones

  1. Perfect coupling of light to a periodic dielectric/metal/dielectric structure

    Science.gov (United States)

    Wang, Zhengling; Li, Shiqiang; Chang, R. P. H.; Ketterson, John B.

    2014-07-01

    Using the finite difference time domain method, it is demonstrated that perfect coupling can be achieved between normally incident light and a periodic dielectric/metal/dielectric structure. The structure serves as a diffraction grating that excites modes related to the long range surface plasmon and short range surface plasmon modes that propagate on continuous metallic films. By optimizing the structural dimensions, perfect coupling is achieved between the incident light and these modes. A high Q of 697 and an accompanying ultrasharp linewidth of 0.8 nm are predicted for a 10 nm silver film for optimal conditions.

  2. Dielectric properties of perbunan rubber: γ-irradiation effects

    International Nuclear Information System (INIS)

    El-Nour, K.N.A.; Fouda, I.M.; Migahed, M.D.

    1987-01-01

    A systematic dielectric study over a frequency range extending from 200 Hz to 100 kHz and temperature ranging from 20 0 to 60 0 C has been carried out on perbunan rubber. The acrylonitrile content of the rubber samples was 28% and 38%. The effect of 15 MR γ-irradiation on the dielectric properties of both samples was studied and the results are interpreted. The study revealed that NBR-38 is better than NBR-28 for insulating purposes. (author)

  3. Ionic Structure at Dielectric Interfaces

    Science.gov (United States)

    Jing, Yufei

    The behavior of ions in liquids confined between macromolecules determines the outcome of many nanoscale assembly processes in synthetic and biological materials such as colloidal dispersions, emulsions, hydrogels, DNA, cell membranes, and proteins. Theoretically, the macromolecule-liquid boundary is often modeled as a dielectric interface and an important quantity of interest is the ionic structure in a liquid confined between two such interfaces. The knowledge gleaned from the study of ionic structure in such models can be useful in several industrial applications, such as biosensors, lithium-ion batteries double-layer supercapacitors for energy storage and seawater desalination. Electrostatics plays a critical role in the development of such functional materials. Many of the functions of these materials, result from charge and composition heterogeneities. There are great challenges in solving electrostatics problems in heterogeneous media with arbitrary shapes because electrostatic interactions remains unknown but depend on the particular density of charge distributions. Charged molecules in heterogeneous media affect the media's dielectric response and hence the interaction between the charges is unknown since it depends on the media and on the geometrical properties of the interfaces. To determine the properties of heterogeneous systems including crucial effects neglected in classical mean field models such as the hard core of the ions, the dielectric mismatch and interfaces with arbitrary shapes. The effect of hard core interactions accounts properly for short range interactions and the effect of local dielectric heterogeneities in the presence of ions and/or charged molecules for long-range interactions are both analyzed via an energy variational principle that enables to update charges and the medium's response in the same simulation time step. In particular, we compute the ionic structure in a model system of electrolyte confined by two planar dielectric

  4. Optical and dielectric properties of neutron irradiated MgAl2O4 spinels

    International Nuclear Information System (INIS)

    Ibarra, A.

    1996-01-01

    The radiation effects on the optical and electrical properties of stoichiometric MgAl 2 O 4 spinel specimens irradiated in FFTF-MOTA at temperatures between 385 and 750 C to fluence ranging from 5.3 to 24.9 x 10 26 n m -2 (E>0.1 McV) are measured. In the optical properties a strong absorption in the ultraviolet range is observed together with a small band around 20 000 cm -1 (510 nm). Two strong luminescence emissions are also observed around 700 nm, with excitation spectra in the ultraviolet region. In the electrical properties a strong decrease of conductivity is observed in the temperature range from 0 to 500 C. Other techniques (like dielectric spectroscopy and EPR) have been used. (orig.)

  5. Dielectric properties of proton irradiated PES

    International Nuclear Information System (INIS)

    Shah, Nilam; Singh, N.L.; Singh, K.P.

    2005-01-01

    Polyethersulfone films were irradiated with 3 MeV proton beam at fluences ranging from 10 13 to 10 15 ions/cm 2 . AC electrical properties of irradiated samples were studied in the frequency range 100 Hz to 1MHz by LCR meter. There is an exponential increase in conductivity with frequency but the effect of irradiation is not significant. The dielectric loss/constant are observed to change with fluence. (author)

  6. Probing long-range structural order in SnPc/Ag(111) by umklapp process assisted low-energy angle-resolved photoelectron spectroscopy

    Science.gov (United States)

    Jauernik, Stephan; Hein, Petra; Gurgel, Max; Falke, Julian; Bauer, Michael

    2018-03-01

    Laser-based angle-resolved photoelectron spectroscopy is performed on tin-phthalocyanine (SnPc) adsorbed on silver Ag(111). Upon adsorption of SnPc, strongly dispersing bands are observed which are identified as secondary Mahan cones formed by surface umklapp processes acting on photoelectrons from the silver substrate as they transit through the ordered adsorbate layer. We show that the photoemission data carry quantitative structural information on the adsorbate layer similar to what can be obtained from a conventional low-energy electron diffraction (LEED) study. More specifically, we compare photoemission data and LEED data probing an incommensurate-to-commensurate structural phase transition of the adsorbate layer. Based on our results we propose that Mahan-cone spectroscopy operated in a pump-probe configuration can be used in the future to probe structural dynamics at surfaces with a temporal resolution in the sub-100-fs regime.

  7. Eeonomer 200F®: A High-Performance Nanofiller for Polymer Reinforcement—Investigation of the Structure, Morphology and Dielectric Properties of Polyvinyl Alcohol/Eeonomer-200F® Nanocomposites for Embedded Capacitor Applications

    Science.gov (United States)

    Deshmukh, Kalim; Ahamed, M. Basheer; Deshmukh, Rajendra R.; Sadasivuni, Kishor Kumar; Ponnamma, Deepalekshmi; Pasha, S. K. Khadheer; AlMaadeed, Mariam Al-Ali; Polu, Anji Reddy; Chidambaram, K.

    2017-04-01

    In the present study, Eeonomer 200F® was used as a high-performance nanofiller to prepare polyvinyl alcohol (PVA)-based nanocomposite films using a simple and eco-friendly solution casting technique. The prepared PVA/Eeonomer nanocomposite films were further investigated using various techniques including Fourier transform infrared spectroscopy, x-ray diffraction, thermogravimetric analysis, polarized optical microscopy, scanning electron microscopy and mechanical testing. The dielectric behavior of the nanocomposites was examined over a broad frequency range from 50 Hz to 20 MHz and temperatures ranging from 40°C to 150°C. A notable improvement in the thermal stability of the PVA was observed with the incorporation of Eeonomer. The nanocomposites also demonstrated improved mechanical properties due to the fine dispersion of the Eeonomer, and good compatibility and strong interaction between the Eeonomer and the PVA matrix. A significant improvement was observed in the dielectric properties of the PVA upon the addition of Eeonomer. The nanocomposites containing 5 wt.% Eeonomer exhibited a dielectric constant of about 222.65 (50 Hz, 150°C), which was 18 times that of the dielectric constant (12.33) of neat PVA film under the same experimental conditions. These results thus indicate that PVA/Eeonomer nanocomposites can be used as a flexible high-k dielectric material for embedded capacitor applications.

  8. Structural and dielectric characterization of praseodymium-modified lead titanate ceramics synthesized by the OPM route

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Alexandre H., E-mail: alehp1@yahoo.com.br [LIEC-Laboratorio Interdisciplinar de Eletroquimica e Ceramica, Department of Chemistry, UFSCar-Federal University of Sao Carlos, Rod. Washington Luis km 235, CP 676, Sao Carlos 13565-905, SP (Brazil); Souza, Flavio L., E-mail: fleandro.ufabc@gmail.com [Centro de Ciencias Naturais e Humanas, UFABC - Universidade Federal do ABC, Santo Andre 09210-170, SP (Brazil); Longo, Elson, E-mail: elson@iq.unesp.br [Department of Biochemistry, Chemistry Institute of Araraquara, UNESP - Sao Paulo State University, Rua Francisco Degni, CP 355, Araraquara 14801-907, SP (Brazil); Leite, Edson R., E-mail: derl@power.ufscar.br [LIEC-Laboratorio Interdisciplinar de Eletroquimica e Ceramica, Department of Chemistry, UFSCar-Federal University of Sao Carlos, Rod. Washington Luis km 235, CP 676, Sao Carlos 13565-905, SP (Brazil); Camargo, Emerson R., E-mail: camargo@ufscar.br [LIEC-Laboratorio Interdisciplinar de Eletroquimica e Ceramica, Department of Chemistry, UFSCar-Federal University of Sao Carlos, Rod. Washington Luis km 235, CP 676, Sao Carlos 13565-905, SP (Brazil)

    2011-10-17

    Highlights: {yields} Highly reactive nanosized powders of Pb(0.8)Pr(0.2)TiO(3) were obtained by the OPM route. {yields} Tetragonal phase was observed by X-ray diffraction and confirmed by Raman spectroscopy. {yields} SEM images showed powders partially sintered with particles of approximately 54 nm. {yields} Dielectric measurements show a normal behavior for the ferroelectric to paraelectric transition. - Abstract: Quasi-spherical nanoparticles of praseodymium-modified lead titanate powder (Pb{sub 0.80}Pr{sub 0.20}TiO{sub 3}) with an average size of 54.8 nm were synthesized successfully by the oxidant-peroxo method (OPM) and were used to prepare highly dense ceramic bodies which were sintered at 1100 and 1150 deg. C for 2 h. A tetragonal phase was identified in the powder and ceramic samples by X-ray powder diffraction and FT-Raman spectroscopy at room temperature. The fractured surface of the ceramic sample showed a high degree of densification with fairly uniform grain sizes. Dielectric constants measured in the range of 30-300 deg. C at different frequencies (120 Hz and at 1, 10 and 100 kHz) indicated that samples with 20 mol% praseodymium showed normal ferroelectric behavior regardless of the sintering temperature.

  9. Structural and dielectric characterization of praseodymium-modified lead titanate ceramics synthesized by the OPM route

    International Nuclear Information System (INIS)

    Pinto, Alexandre H.; Souza, Flavio L.; Longo, Elson; Leite, Edson R.; Camargo, Emerson R.

    2011-01-01

    Highlights: → Highly reactive nanosized powders of Pb(0.8)Pr(0.2)TiO(3) were obtained by the OPM route. → Tetragonal phase was observed by X-ray diffraction and confirmed by Raman spectroscopy. → SEM images showed powders partially sintered with particles of approximately 54 nm. → Dielectric measurements show a normal behavior for the ferroelectric to paraelectric transition. - Abstract: Quasi-spherical nanoparticles of praseodymium-modified lead titanate powder (Pb 0.80 Pr 0.20 TiO 3 ) with an average size of 54.8 nm were synthesized successfully by the oxidant-peroxo method (OPM) and were used to prepare highly dense ceramic bodies which were sintered at 1100 and 1150 deg. C for 2 h. A tetragonal phase was identified in the powder and ceramic samples by X-ray powder diffraction and FT-Raman spectroscopy at room temperature. The fractured surface of the ceramic sample showed a high degree of densification with fairly uniform grain sizes. Dielectric constants measured in the range of 30-300 deg. C at different frequencies (120 Hz and at 1, 10 and 100 kHz) indicated that samples with 20 mol% praseodymium showed normal ferroelectric behavior regardless of the sintering temperature.

  10. Dielectric relaxation and spectroscopic investigation of poly hydroxybutyrate PHB blended with polyvinyl acetate PVAc and poly(vinylacetate-co-vinyl alcohol) PACA

    International Nuclear Information System (INIS)

    Abou-Aiad, T.H.M.; Abd-El-Nour, K.N.; Hakim, I.K.; El-Sabee, M.S.

    2005-01-01

    Using frequency response analyzer covering a frequency range from 102 - 106 Hz in a wide range of temperature, the dielectric behaviour of the investigated systems was studied. In order to investigate the relaxation mechanisms of such systems, the dielectric loss data on the frequency domain were analysed using Havriliak-Nagami and/or Frohlich functions in addition to the conductivity term. These mechanisms are discussed in terms of the orientation of the main chain and its related motions. The relaxation times related to both mechanisms noticed for PHB/PVAc blend with composition 50% are found to be higher than those for other compositions. This could be attributed to the interaction that expected through hydrogen bond formation. This result is supported by the data given by FTIR spectroscopy as the carbonyl region at 1750 cm-1 showed a more broad band spectrum when compared with those for the other compositions

  11. Core Analysis Combining MT (TIPPER) and Dielectric Sensors (Sans EC) in Earth and Space

    Science.gov (United States)

    Mound, Michael C.; Dudley, Kenneth L.

    2015-01-01

    On terrestrial planets and moons of our solar system cores reveal details about a geological structure's formation, content, and history. The strategy for the search for life is focused first on finding water which serves as a universal solvent, and identifying the rocks which such solvent act upon to release the constituent salts, minerals, ferrites, and organic compounds and chemicals necessary for life. Dielectric spectroscopy measures the dielectric properties of a medium as a function of frequency. Reflection measurements in the frequency range from 300 kHz to 300 MHz were carried out using RF and microwave network analyzers interrogating SansEC Sensors placed on clean geological core samples. These were conducted to prove the concept feasibility of a new geology instrument useful in the field and laboratory. The results show that unique complex frequency spectra can be acquired for a variety of rock core samples. Using a combination of dielectric spectroscopy and computer simulation techniques the magnitude and phase information of the frequency spectra can be converted to dielectric spectra. These low-frequency dielectric properties of natural rock are unique, easily determined, and useful in characterizing geology. TIPPER is an Electro-Magnetic Passive-Source Geophysical Method for Detecting and Mapping Geothermal Reservoirs and Mineral Resources. This geophysical method uses distant lightning and solar wind activity as its energy source. The most interesting deflections are caused by the funneling of electrons into more electrically conductive areas like mineralized faults, water or geothermal reservoirs. We propose TIPPER to be used with SansEC for determining terrain/ocean chemistry, ocean depth, geomorphology of fracture structures, and other subsurface topography characteristics below the ice crust of Jovian moons. NASA envisions lander concepts for exploration of these extraterrestrial icy surfaces and the oceans beneath. One such concept would use a

  12. Dielectric, ferroelectrics properties and impedance spectroscopy analysis of the [(Na0.535K0.4800.966Li0.058](Nb0.90Ta0.10O3-based lead-free ceramics

    Directory of Open Access Journals (Sweden)

    M. Saidi

    2015-03-01

    Full Text Available Polycrystalline of [(Na0.535K0.4800.966Li0.058](Nb0.90Ta0.10O3 samples were prepared using the high-temperature solid-state reaction technique. X-ray diffraction (XRD analysis indicates the formation of a single-phase with orthorhombic structure. AC impedance plots were used as tool to analyze the electrical behavior of the sample as a function of frequency at different temperatures. The AC impedance studies revealed the presence of grain effect, from 425°C onwards. Complex impedance analysis indicated non-Debye type dielectric relaxation. The Nyquist plot showed the negative temperature coefficient of resistance (NTCR characteristic of NKLNT. The AC conductivity results were used to correlate with the barrier hopping (CBH model to evaluate the binding energy (Wm, the minimum hopping distance (Rmin, the density of states at Fermi level (N(Ef, and the activation energy of the compound.

  13. Lanthanum titanium perovskite compound: Thin film deposition and high frequency dielectric characterization

    Energy Technology Data Exchange (ETDEWEB)

    Le Paven, C., E-mail: claire.lepaven@univ-rennes1.fr [Institut d' Electronique et de Télécommunications de Rennes (IETR, UMR-CNRS 6164), Equipe Matériaux Fonctionnels, IUT Saint Brieuc, Université de Rennes 1, 22000 Saint Brieuc (France); Lu, Y. [Institut d' Electronique et de Télécommunications de Rennes (IETR, UMR-CNRS 6164), Equipe Matériaux Fonctionnels, IUT Saint Brieuc, Université de Rennes 1, 22000 Saint Brieuc (France); Nguyen, H.V. [Institut d' Electronique et de Télécommunications de Rennes (IETR, UMR-CNRS 6164), Equipe Matériaux Fonctionnels, IUT Saint Brieuc, Université de Rennes 1, 22000 Saint Brieuc (France); CEA LETI, Minatec Campus, 38054 Grenoble (France); Benzerga, R.; Le Gendre, L. [Institut d' Electronique et de Télécommunications de Rennes (IETR, UMR-CNRS 6164), Equipe Matériaux Fonctionnels, IUT Saint Brieuc, Université de Rennes 1, 22000 Saint Brieuc (France); Rioual, S. [Laboratoire de Magnétisme de Brest (EA CNRS 4522), Université de Bretagne Occidentale, 29000 Brest (France); Benzegoutta, D. [Institut des Nanosciences de Paris (INSP, UMR CNRS 7588), Université Pierre et Marie Curie, 75005 Paris (France); Tessier, F.; Cheviré, F. [Institut des Sciences Chimiques de Rennes (ISCR, UMR-CNRS 6226), Equipe Verres et Céramiques, Université de Rennes 1, 35000 Rennes (France); and others

    2014-02-28

    Perovskite lanthanum titanium oxide thin films were deposited on (001) MgO, (001) LaAlO{sub 3} and Pt(111)/TiO{sub 2}/SiO{sub 2}/(001)Si substrates by RF magnetron sputtering, using a La{sub 2}Ti{sub 2}O{sub 7} homemade target sputtered under oxygen reactive plasma. The films deposited at 800 °C display a crystalline growth different than those reported on monoclinic ferroelectric La{sub 2}Ti{sub 2}O{sub 7} films. X-ray photoelectron spectroscopy analysis shows the presence of titanium as Ti{sup 4+} ions, with no trace of Ti{sup 3+}, and provides a La/Ti ratio of 1.02. The depositions being performed from a La{sub 2}Ti{sub 2}O{sub 7} target under oxygen rich plasma, the same composition (La{sub 2}Ti{sub 2}O{sub 7}) is proposed for the deposited films, with an unusual orthorhombic cell and Cmc2{sub 1} space group. The films have a textured growth on MgO and Pt/Si substrates, and are epitaxially grown on LaAlO{sub 3} substrate. The dielectric characterization displays stable values of the dielectric constant and of the losses in the frequency range [0.1–20] GHz. No variation of the dielectric constant has been observed when a DC electric field up to 250 kV/cm was applied, which does not match a classical ferroelectric behavior at high frequencies and room temperature for the proposed La{sub 2}Ti{sub 2}O{sub 7} orthorhombic phase. At 10 GHz and room temperature, the dielectric constant of the obtained La{sub 2}Ti{sub 2}O{sub 7} films is ε ∼ 60 and the losses are low (tanδ < 0.02). - Highlights: • Lanthanum titanium oxide films were deposited by reactive magnetron sputtering. • A La{sub 2}Ti{sub 2}O{sub 7} chemical composition is proposed, with an unusual orthorhombic cell. • At 10 GHz, the dielectric losses are lower than 0.02. • No variation of the dielectric constant is observed under DC electric biasing.

  14. Lanthanum titanium perovskite compound: Thin film deposition and high frequency dielectric characterization

    International Nuclear Information System (INIS)

    Le Paven, C.; Lu, Y.; Nguyen, H.V.; Benzerga, R.; Le Gendre, L.; Rioual, S.; Benzegoutta, D.; Tessier, F.; Cheviré, F.

    2014-01-01

    Perovskite lanthanum titanium oxide thin films were deposited on (001) MgO, (001) LaAlO 3 and Pt(111)/TiO 2 /SiO 2 /(001)Si substrates by RF magnetron sputtering, using a La 2 Ti 2 O 7 homemade target sputtered under oxygen reactive plasma. The films deposited at 800 °C display a crystalline growth different than those reported on monoclinic ferroelectric La 2 Ti 2 O 7 films. X-ray photoelectron spectroscopy analysis shows the presence of titanium as Ti 4+ ions, with no trace of Ti 3+ , and provides a La/Ti ratio of 1.02. The depositions being performed from a La 2 Ti 2 O 7 target under oxygen rich plasma, the same composition (La 2 Ti 2 O 7 ) is proposed for the deposited films, with an unusual orthorhombic cell and Cmc2 1 space group. The films have a textured growth on MgO and Pt/Si substrates, and are epitaxially grown on LaAlO 3 substrate. The dielectric characterization displays stable values of the dielectric constant and of the losses in the frequency range [0.1–20] GHz. No variation of the dielectric constant has been observed when a DC electric field up to 250 kV/cm was applied, which does not match a classical ferroelectric behavior at high frequencies and room temperature for the proposed La 2 Ti 2 O 7 orthorhombic phase. At 10 GHz and room temperature, the dielectric constant of the obtained La 2 Ti 2 O 7 films is ε ∼ 60 and the losses are low (tanδ < 0.02). - Highlights: • Lanthanum titanium oxide films were deposited by reactive magnetron sputtering. • A La 2 Ti 2 O 7 chemical composition is proposed, with an unusual orthorhombic cell. • At 10 GHz, the dielectric losses are lower than 0.02. • No variation of the dielectric constant is observed under DC electric biasing

  15. Dielectric relaxation in glassy Se75In25− xPbx alloys

    Indian Academy of Sciences (India)

    In this paper we report the effect of Pb incorporation in the dielectric properties of a-Se75In25 glassy alloy. The temperature and frequency dependence of the dielectric constants and the dielectric losses in glassy Se75In25−Pb ( = 0, 5, 10 and 15) alloys in the frequency range (1 kHz–5 MHz) and temperature range ...

  16. Short-ranged structural rearrangement and enhancement of mechanical properties of organosilicate glasses induced by ultraviolet radiation

    International Nuclear Information System (INIS)

    Iacopi, F.; Travaly, Y.; Eyckens, B.; Waldfried, C.; Abell, T.; Guyer, E.P.; Gage, D.M.; Dauskardt, R.H.; Sajavaara, T.; Houthoofd, K.; Grobet, P.; Jacobs, P.; Maex, K.

    2006-01-01

    The short-ranged bonding structure of organosilicate glasses can vary to a great extent and is directly linked to the mechanical properties of the thin film material. The combined action of ultraviolet (UV) radiation and thermal activation is shown to generate a pronounced rearrangement in the bonding structure of thin organosilicate glass films involving no significant compositional change or film densification. Nuclear magnetic resonance spectroscopy indicates loss of -OH groups and an increase of the degree of cross-linking of the organosilicate matrix for UV-treated films. Fourier transform infrared spectroscopy shows a pronounced enhancement of the Si-O-Si network bond structure, indicating the formation of more energetically stable silica bonds. Investigation with x-ray reflectivity and ellipsometric porosimetry indicated only minor film densification. As a consequence, the mechanical properties of microporous organosilicate dielectric films are substantially enhanced while preserving the organosilicate nature and pristine porosity of the films. UV-treated films show an increase in elastic modulus and hardness of more than 40%, and a similar improvement in fracture energy compared to untreated films. A minor increase in material dielectric constant from 3.0 to 3.15 was observed after UV treatment. This mechanism is of high relevance for the application of organosilicate glasses as dielectric materials for microelectronics interconnects, for which a high mechanical stability and a low dielectric constant are both essential film requirements

  17. Dielectric nanoresonators for light manipulation

    Science.gov (United States)

    Yang, Zhong-Jian; Jiang, Ruibin; Zhuo, Xiaolu; Xie, Ya-Ming; Wang, Jianfang; Lin, Hai-Qing

    2017-07-01

    Nanostructures made of dielectric materials with high or moderate refractive indexes can support strong electric and magnetic resonances in the optical region. They can therefore function as nanoresonators. In addition to plasmonic metal nanostructures that have been widely investigated, dielectric nanoresonators provide a new type of building blocks for realizing powerful and versatile nanoscale light manipulation. In contrast to plasmonic metal nanostructures, nanoresonators made of appropriate dielectric materials are low-cost, earth-abundant and have very small or even negligible light energy losses. As a result, they will find potential applications in a number of photonic devices, especially those that require low energy losses. In this review, we describe the recent progress on the experimental and theoretical studies of dielectric nanoresonators. We start from the basic theory of the electromagnetic responses of dielectric nanoresonators and their fabrication methods. The optical properties of individual dielectric nanoresonators are then elaborated, followed by the coupling behaviors between dielectric nanoresonators, between dielectric nanoresonators and substrates, and between dielectric nanoresonators and plasmonic metal nanostructures. The applications of dielectric nanoresonators are further described. Finally, the challenges and opportunities in this field are discussed.

  18. Center for dielectric studies

    Science.gov (United States)

    Cross, L. E.; Newnham, R. E.; Biggers, J. V.

    1984-05-01

    This report focuses upon the parts of the Center program which have drawn most extensively upon Navy funds. In the basic study of polarization processes in high K dielectrics, major progress has been made in understanding the mechanisms in relaxor ferroelectric in the perovskite structure families. A new effort is also being mounted to obtain more precise evaluation of the internal stress effects in fine grained barium titanate. Related to reliability, studies of the effects of induced macro-defects are described, and preparation for the evaluation of space charge by internal potential distribution measurements discussed. To develop new processing methods for very thin dielectric layers, a new type of single barrier layer multilayer is discussed, and work on the thermal evaporation of oriented crystalline antimony sulphur iodide describe.

  19. Dielectric Characteristics of Microstructural Changes and Property Evolution in Engineered Materials

    Science.gov (United States)

    Clifford, Jallisa Janet

    Heterogeneous materials are increasingly used in a wide range of applications such as aerospace, civil infrastructure, fuel cells and many others. The ability to take properties from two or more materials to create a material with properties engineered to needs is always very attractive. Hence heterogeneous materials are evolving into more complex formulations in multiple disciplines. Design of microstructure at multiple scales control the global functional properties of these materials and their structures. However, local microstructural changes do not directly cause a proportional change to the global properties (such as strength and stiffness). Instead, local changes follow an evolution process including significant interactions. Therefore, in order to understand property evolution of engineered materials, microstructural changes need to be effectively captured. Characterizing these changes and representing them by material variables will enable us to further improve our material level understanding. In this work, we will demonstrate how microstructural features of heterogeneous materials can be described quantitatively using broadband dielectric spectroscopy (BbDS). The frequency dependent dielectric properties can capture the change in material microstructure and represent these changes in terms of material variables, such as complex permittivity. These changes in terms of material properties can then be linked to a number of different conditions, such as increasing damage due to impact or fatigue. Two different broadband dielectric spectroscopy scanning modes are presented: bulk measurements and continuous scanning to measure dielectric property change as a function of position across the specimen. In this study, we will focus on ceramic materials and fiber reinforced polymer matrix composites as test bed material systems. In the first part of the thesis, we will present how different micro-structural design of porous ceramic materials can be captured

  20. 7th International Symposium on Gaseous Dielectrics

    CERN Document Server

    James, David

    1994-01-01

    The Seventh International Symposium on Gaseous Dielectrics was held in Knoxville, Tennessee, U. S. A. , on April 24-28, 1994. The symposium continued the interdisciplinary character and comprehensive approach of the preceding six symposia. Gaseous DielecIries VII is a detailed record of the symposium proceedings. It covers recent advances and developments in a wide range of basic, applied and industrial areas of gaseous dielectrics. It is hoped that Gaseous DielecIries VII will aid future research and development in, and encourage wider industrial use of, gaseous dielectrics. The Organizing Committee of the Seventh International Symposium on Gaseous Dielectrics consisted of G. Addis (U. S. A. ), L. G. Christophorou (U. S. A. ), F. Y. Chu (Canada), A. H. Cookson (U. S. A. ), O. Farish (U. K. ), I. Gallimberti (Italy) , A. Garscadden (U. S. A. ), D. R. James (U. S. A. ), E. Marode (France), T. Nitta (Japan), W. Pfeiffer (Germany), Y. Qiu (China), I. Sauers (U. S. A. ), R. J. Van Brunt (U. S. A. ), and W. Zaengl...

  1. Dielectric Wakefield Researches

    International Nuclear Information System (INIS)

    Kiselev, V.A.; Linnik, A.F.; Onishchenko, N.I.; Uskov, V.V.; Marshall, T.C.

    2006-01-01

    Excitation of wakefield in cylindrical dielectric waveguide/resonator by a sequence of relativistic electron bunches was investigated using an electron linac 'Almaz-2' (4.5 MeV, 6·10 3 bunches of duration 60 ps and charge 0.32 nC each). Energy spectrum of electrons, radial topography and longitudinal distribution of wakefield, and total energy of excited wakefield were measured by means of magnetic analyzer, high frequency probe, and a sensitive calorimeter

  2. Oblique surface waves at an interface between a metal-dielectric superlattice and an isotropic dielectric

    International Nuclear Information System (INIS)

    Vuković, Slobodan M; Miret, Juan J; Zapata-Rodriguez, Carlos J; Jakšić, Zoran

    2012-01-01

    We investigate the existence and dispersion characteristics of surface waves that propagate at an interface between a metal-dielectric superlattice and an isotropic dielectric. Within the long-wavelength limit, when the effective-medium (EM) approximation is valid, the superlattice behaves like a uniaxial plasmonic crystal with the main optical axes perpendicular to the metal-dielectric interfaces. We demonstrate that if such a semi-infinite plasmonic crystal is cut normally to the layer interfaces and brought into contact with a semi-infinite dielectric, a new type of surface mode can appear. Such modes can propagate obliquely to the optical axes if favorable conditions regarding the thickness of the layers and the dielectric permittivities of the constituent materials are met. We show that losses within the metallic layers can be substantially reduced by making the layers sufficiently thin. At the same time, a dramatic enlargement of the range of angles for oblique propagation of the new surface modes is observed. This can lead, however, to field non-locality and consequently to failure of the EM approximation.

  3. Dielectric lattice gauge theory

    International Nuclear Information System (INIS)

    Mack, G.

    1983-06-01

    Dielectric lattice gauge theory models are introduced. They involve variables PHI(b)epsilong that are attached to the links b = (x+esub(μ),x) of the lattice and take their values in the linear space g which consists of real linear combinations of matrices in the gauge group G. The polar decomposition PHI(b)=U(b)osub(μ)(x) specifies an ordinary lattice gauge field U(b) and a kind of dielectric field epsilonsub(ij)proportionalosub(i)osub(j)sup(*)deltasub(ij). A gauge invariant positive semidefinite kinetic term for the PHI-field is found, and it is shown how to incorporate Wilson fermions in a way which preserves Osterwalder Schrader positivity. Theories with G = SU(2) and without matter fields are studied in some detail. It is proved that confinement holds, in the sense that Wilson loop expectation values show an area law decay, if the Euclidean action has certain qualitative features which imply that PHI = 0 (i.e. dielectric field identical 0) is the unique maximum of the action. (orig.)

  4. Dielectric lattice gauge theory

    International Nuclear Information System (INIS)

    Mack, G.

    1984-01-01

    Dielectric lattice gauge theory models are introduced. They involve variables PHI(b)element ofG that are attached to the links b = (x+esub(μ), x) of the lattice and take their values in the linear space G which consists of real linear combinations of matrices in the gauge group G. The polar decomposition PHI(b)=U(b)sigmasub(μ)(x) specifies an ordinary lattice gauge field U(b) and a kind of dielectric field epsilonsub(ij)proportional sigmasub(i)sigmasub(j)sup(*)deltasub(ij). A gauge invariant positive semidefinite kinetic term for the PHI-field is found, and it is shown how to incorporate Wilson fermions in a way which preserves Osterwalder-Schrader positivity. Theories with G = SU(2) and without matter fields are studied in some detail. It is proved that confinement holds, in the sense that Wilson-loop expectation values show an area law decay, if the euclidean action has certain qualitative features which imply that PHI=0 (i.e. dielectric field identical 0) is the unique maximum of the action. (orig.)

  5. Dielectric constant of atomic fluids with variable polarizability

    OpenAIRE

    Alder, B. J.; Beers, J. C.; Strauss, H. L.; Weis, J. J.

    1980-01-01

    The Clausius-Mossotti function for the dielectric constant is expanded in terms of single atom and pair polarizabilities, leading to contributions that depend on both the trace and the anisotropy of the pair-polarizability tensor. The short-range contribution of the anisotropic part to the pair polarizabilities has previously been obtained empirically from light scattering experiments, whereas the trace contribution is now empirically determined by comparison to dielectric experiments. For he...

  6. High temperature polymer film dielectrics for aerospace power conditioning capacitor applications

    Energy Technology Data Exchange (ETDEWEB)

    Venkat, Narayanan, E-mail: venkats3@gmail.co [University of Dayton Research Institute (UDRI), Dayton, OH 45469 (United States); Dang, Thuy D. [Air Force Research Laboratory-Nanostructured and Biological Materials Branch (AFRL/RXBN) (United States); Bai Zongwu; McNier, Victor K. [University of Dayton Research Institute (UDRI), Dayton, OH 45469 (United States); DeCerbo, Jennifer N. [Air Force Research Laboratory-Electrical Technology Branch (AFRL/RZPE), Wright-Patterson Air Force Base, OH 45433 (United States); Tsao, B.-H. [University of Dayton Research Institute (UDRI), Dayton, OH 45469 (United States); Stricker, Jeffery T. [Air Force Research Laboratory-Electrical Technology Branch (AFRL/RZPE), Wright-Patterson Air Force Base, OH 45433 (United States)

    2010-04-15

    Polymer dielectrics are the preferred materials of choice for capacitive energy-storage applications because of their potential for high dielectric breakdown strengths, low dissipation factors and good dielectric stability over a wide range of frequencies and temperatures, despite having inherently lower dielectric constants relative to ceramic dielectrics. They are also amenable to large area processing into films at a relatively lower cost. Air Force currently has a strong need for the development of compact capacitors which are thermally robust for operation in a variety of aerospace power conditioning applications. While such applications typically use polycarbonate (PC) dielectric films in wound capacitors for operation from -55 deg. C to 125 deg. C, future power electronic systems would require the use of polymer dielectrics that can reliably operate up to elevated temperatures in the range of 250-350 deg. C. The focus of this research is the generation and dielectric evaluation of metallized, thin free-standing films derived from high temperature polymer structures such as fluorinated polybenzoxazoles, post-functionalized fluorinated polyimides and fluorenyl polyesters incorporating diamond-like hydrocarbon units. The discussion is centered mainly on variable temperature dielectric measurements of film capacitance and dissipation factor and the effects of thermal cycling, up to a maximum temperature of 350 deg. C, on film dielectric performance. Initial studies clearly point to the dielectric stability of these films for high temperature power conditioning applications, as indicated by their relatively low temperature coefficient of capacitance (TCC) (approx2%) over the entire range of temperatures. Some of the films were also found to exhibit good dielectric breakdown strengths (up to 470 V/mum) and a film dissipation factor of the order of <0.003 (0.3%) at the frequency of interest (10 kHz) for the intended applications. The measured relative dielectric

  7. Improving dielectric properties of BaTiO{sub 3}/poly(vinylidene fluoride) composites by employing core-shell structured BaTiO{sub 3}@Poly(methylmethacrylate) and BaTiO{sub 3}@Poly(trifluoroethyl methacrylate) nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xianhong; Zhao, Sidi; Wang, Fang [Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029 (China); Ma, Yuhong, E-mail: mayh@mail.buct.edu.cn [Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029 (China); Beijing Engineering Research Center of Syntheses and Applications of Waterborne Polymers, Beijing University of Chemical Technology, 100029 (China); Wang, Li; Chen, Dong; Zhao, Changwen [Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029 (China); Beijing Engineering Research Center of Syntheses and Applications of Waterborne Polymers, Beijing University of Chemical Technology, 100029 (China); Yang, Wantai, E-mail: yangwt@mail.buct.edu.cn [Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029 (China); Beijing Engineering Research Center of Syntheses and Applications of Waterborne Polymers, Beijing University of Chemical Technology, 100029 (China)

    2017-05-01

    Highlights: • Core-shell structured BT@PMMA and BT@PTFEMA nanoparticles were synthesized. • The dispersity of BT nanoparticles in PVDF matrix was improved significantly. • Dielectric properties both of BT@PMMA/PVDF and BT@PTFEMA/PVDF composites were improved. • The frequency dependence of dielectric constant attenuation of BT@PTFEMA/PVDF composites was smaller than that of BT@PMMA/PVDF composites. - Abstract: Polymer based dielectric composites were fabricated through incorporation of core-shell structured BaTiO{sub 3} (BT) nanoparticles into PVDF matrix by means of solution blending. Core-shell structured BT nanoparticles with different shell composition and shell thickness were prepared by grafting methacrylate monomer (MMA or TFEMA) onto the surface of BT nanoparticles via surface initiated atom transfer radical polymerization (SI-ATRP). The content of the grafted polymer and the micro-morphology of the core-shell structured BT nanoparticles were investigated by thermo gravimetric analyses (TGA) and transmission electron microscopy (TEM), respectively. The dielectric properties were measured by broadband dielectric spectroscopy. The results showed that high dielectric constant and low dielectric loss are successfully realized in the polymer based composites. Moreover, the type of the grafted polymer and its content had different effect on the dielectric constant. In detail, the attenuation of dielectric constant was 16.6% for BT@PMMA1/PVDF and 10.7% for BT@PMMA2/PVDF composite in the range of 10 Hz to 100 kHz, in which the grafted content of PMMA was 5.5% and 8.0%, respectively. However, the attenuation of dielectric constant was 5.5% for BT@PTFEMA1/PVDF and 4.0% for BT@PTFEMA2/PVDF composite, in which the grafted content of PTFEMA was 1.5% and 2.0%, respectively. These attractive features of BT@PTFEMA/PVDF composites suggested that dielectric ceramic fillers modified with fluorinated polymer can be used to prepare high performance composites, especially

  8. Dielectric barrier discharges applied for soft ionization and their mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, Sebastian; Klute, Felix David; Schütz, Alexander; Franzke, Joachim, E-mail: joachim.franzke@isas.de

    2017-01-25

    Dielectric barrier discharges are used for analytical applications as dissociative source for optical emission spectrometry and for ambient-ionization techniques. In the range of ambient-ionization techniques it has attracted much attention in fields like food safety, biological analysis, mass spectrometry for reaction monitoring and imaging forensic identification. In this review some examples are given for the application as desorption/ionization source as well as for the sole application as ionization source with different sample introductions. It will be shown that the detection might depend on the certain distance of the plasma in reference to the sample or the kind of discharge which might be produced by different shapes of the applied high voltage. Some attempts of characterization are presented. A more detailed characterization of the dielectric barrier discharge realized with two ring electrodes, each separately covered with a dielectric layer, is described. - Highlights: • Dielectric barrier discharge applied as desorption/ionization source. • Dielectric barrier discharge applied solely as ionization source. • Different geometries in order to maintain soft ionization. • Characterization of the LTP probe. • Dielectric barrier discharges with two dielectric barriers (ring-ring shape).

  9. Plasma polymerized high energy density dielectric films for capacitors

    Science.gov (United States)

    Yamagishi, F. G.

    1983-01-01

    High energy density polymeric dielectric films were prepared by plasma polymerization of a variety of gaseous monomers. This technique gives thin, reproducible, pinhole free, conformable, adherent, and insoluble coatings and overcomes the processing problems found in the preparation of thin films with bulk polymers. Thus, devices are prepared completely in a vacuum environment. The plasma polymerized films prepared all showed dielectric strengths of greater than 1000 kV/cm and in some cases values of greater than 4000 kV/cm were observed. The dielectric loss of all films was generally less than 1% at frequencies below 10 kHz, but this value increased at higher frequencies. All films were self healing. The dielectric strength was a function of the polymerization technique, whereas the dielectric constant varied with the structure of the starting material. Because of the thin films used (thickness in the submicron range) surface smoothness of the metal electrodes was found to be critical in obtaining high dielectric strengths. High dielectric strength graft copolymers were also prepared. Plasma polymerized ethane was found to be thermally stable up to 150 C in the presence of air and 250 C in the absence of air. No glass transitions were observed for this material.

  10. Synthesis and controlling the optical and dielectric properties of CMC/PVA blend via γ-rays irradiation

    Energy Technology Data Exchange (ETDEWEB)

    El Sayed, A.M., E-mail: ams06@fayoum.edu.eg

    2014-02-15

    Highlights: • PVA/CMC blend films were prepared by solution casting method. • The films were irradiated with γ-rays at the dose range of 0–70 kGy. • UV-vis spectroscopy was performed to study the changes in the optical properties. • The influence of γ-rays irradiation on the dielectric relaxation was studied. -- Abstract: Carboxymethyl cellulose (CMC)/Polyvinyl alcohol (PVA) blend films were prepared by solution casting method. Then, these films were irradiated with γ-rays from a Co-60 source at doses over the range 0–70 kGy to investigate the modifications induced in the optical and dielectric properties. The dielectric constant (ε′) was measured in the temperature range 303–408 K and in the frequency range 10 kHz–1 MHz. The indirect optical band gap was found to increase within the dose range 0–10 kGy, and to decrease at the higher doses. The refractive index values, however, showed a reversed behavior. The highest transmittance percentage was obtained at 10 kGy dose. According to the frequency and temperature dependence of ε′, α- relaxation peaks were observed in all samples and assigned to the micro-Brownian motion of the blend chains. The values of ε′ showed a decrease in the dose range 0–10 kGy and an increase in the dose range 10–70 kGy. The ac conductivity σ{sub ac} (T) showed an Arrhenius type behavior separated into two distinct regions. The results of the present system are compared with those of similar materials.

  11. Synthesis and controlling the optical and dielectric properties of CMC/PVA blend via γ-rays irradiation

    International Nuclear Information System (INIS)

    El Sayed, A.M.

    2014-01-01

    Highlights: • PVA/CMC blend films were prepared by solution casting method. • The films were irradiated with γ-rays at the dose range of 0–70 kGy. • UV-vis spectroscopy was performed to study the changes in the optical properties. • The influence of γ-rays irradiation on the dielectric relaxation was studied. -- Abstract: Carboxymethyl cellulose (CMC)/Polyvinyl alcohol (PVA) blend films were prepared by solution casting method. Then, these films were irradiated with γ-rays from a Co-60 source at doses over the range 0–70 kGy to investigate the modifications induced in the optical and dielectric properties. The dielectric constant (ε′) was measured in the temperature range 303–408 K and in the frequency range 10 kHz–1 MHz. The indirect optical band gap was found to increase within the dose range 0–10 kGy, and to decrease at the higher doses. The refractive index values, however, showed a reversed behavior. The highest transmittance percentage was obtained at 10 kGy dose. According to the frequency and temperature dependence of ε′, α- relaxation peaks were observed in all samples and assigned to the micro-Brownian motion of the blend chains. The values of ε′ showed a decrease in the dose range 0–10 kGy and an increase in the dose range 10–70 kGy. The ac conductivity σ ac (T) showed an Arrhenius type behavior separated into two distinct regions. The results of the present system are compared with those of similar materials

  12. Incipient ferroelectric to a possible ferroelectric transition in Te4+ doped calcium copper titanate (CaCu3Ti4O12 ceramics at low temperature as evidenced by Raman and dielectric spectroscopy

    Directory of Open Access Journals (Sweden)

    Nabadyuti Barman

    2017-03-01

    Full Text Available Partial replacement of Ti4+ by Te4+ ions in calcium copper titanate lattice improved its dielectric behaviour mostly due to cubic-to-tetragonal structural transformation and associated distortion in TiO6 octahedra. The relative permittivity values (23–30 x 103 of Te4+ doped ceramics is more than thrice that of un-doped ceramics (8 x 103 at 1 kHz. A decreasing trend in relative permittivity with increasing temperature (50–300 K is observed for all the samples. Barrett’s formula, as a signature of incipient ferroelectricity, is invoked to rationalize the relative permittivity variation as a function of temperature. A systematic investigation supported by temperature dependent Raman studies reveal a possible ferroelectric transition in Te4+ doped ceramic samples below 120 K. The possible ferroelectric transition is attributed to the interactions between quasi-local vibrations associated with the micro-clusters comprising TiO6 and TeO6 structural units and indirect dipole-dipole interactions of off-center B–cations (Ti4+ and Te4+ in double perovskite lattice.

  13. Ultra-broad-band dielectric spectroscopy and phonons in (Pb.sub.1-x/2./sub.La.sub.x./sub.)(Zr.sub.0.9./sub.Ti.sub.0.1./sub.)O.sub.3./sub..

    Czech Academy of Sciences Publication Activity Database

    Buixaderas, Elena; Bovtun, Viktor; Veljko, Sergiy; Savinov, Maxim; Kužel, Petr; Gregora, Ivan; Kamba, Stanislav; Reaney, I.

    2010-01-01

    Roč. 108, č. 10 (2010), 104101/1-104101/10 ISSN 0021-8979 R&D Projects: GA AV ČR KAN301370701; GA ČR GAP204/10/0616 Institutional research plan: CEZ:AV0Z10100520 Keywords : PLZT * phase transitions * Raman and IR spectroscopy * ferro-antiferroelectricity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.064, year: 2010

  14. Dielectric properties of polymer-particle nanocomposites influenced by electronic nature of filler surfaces.

    Science.gov (United States)

    Siddabattuni, Sasidhar; Schuman, Thomas P; Dogan, Fatih

    2013-03-01

    The interface between the polymer and the particle has a critical role in altering the properties of a composite dielectric. Polymer-ceramic nanocomposites are promising dielectric materials for many electronic and power devices, combining the high dielectric constant of ceramic particles with the high dielectric breakdown strength of a polymer. Self-assembled monolayers of electron rich or electron poor organophosphate coupling groups were applied to affect the filler-polymer interface and investigate the role of this interface on composite behavior. The interface has potential to influence dielectric properties, in particular the leakage and breakdown resistance. The composite films synthesized from the modified filler particles dispersed into an epoxy polymer matrix were analyzed by dielectric spectroscopy, breakdown strength, and leakage current measurements. The data indicate that significant reduction in leakage currents and dielectric losses and improvement in dielectric breakdown strengths resulted when electropositive phenyl, electron-withdrawing functional groups were located at the polymer-particle interface. At a 30 vol % particle concentration, dielectric composite films yielded a maximum energy density of ~8 J·cm(-3) for TiO2-epoxy nanocomposites and ~9.5 J·cm(-3) for BaTiO3-epoxy nanocomposites.

  15. Dielectric properties-based method for rapid and nondestructive moisture sensing in almonds

    Science.gov (United States)

    A dielectric-based method is presented for moisture determination in almonds independent of bulk density. The dielectric properties of almond were measured between 5 and 15 GHz, with a 1-GHz increments, for samples with moisture contents ranging from 4.8% to 16.5%, wet basis, bulk densities ranging ...

  16. A Study of Moisture Sorption and Dielectric Processes of Starch and Sodium Starch Glycolate : Theme: Formulation and Manufacturing of Solid Dosage Forms Guest Editors: Tony Zhou and Tonglei Li.

    Science.gov (United States)

    Hiew, Tze Ning; Huang, Rongying; Popov, Ivan; Feldman, Yuri; Heng, Paul Wan Sia

    2017-12-01

    This study explored the potential of combining the use of moisture sorption isotherms and dielectric relaxation profiles of starch and sodium starch glycolate (SSG) to probe the location of moisture in dried and hydrated samples. Starch and SSG samples, dried and hydrated, were prepared. For hydrated samples, their moisture contents were determined. The samples were probed by dielectric spectroscopy using a frequency band of 0.1 Hz to 1 MHz to investigate their moisture-related relaxation profiles. The moisture sorption and desorption isotherms of starch and SSG were generated using a vapor sorption analyzer, and modeled using the Guggenheim-Anderson-de Boer equation. A clear high frequency relaxation process was detected in both dried and hydrated starches, while for dried starch, an additional slower low frequency process was also detected. The high frequency relaxation processes in hydrated and dried starches were assigned to the coupled starch-hydrated water relaxation. The low frequency relaxation in dried starch was attributed to the local chain motions of the starch backbone. No relaxation process associated with water was detected in both hydrated and dried SSG within the frequency and temperature range used in this study. The moisture sorption isotherms of SSG suggest the presence of high energy free water, which could have masked the relaxation process of the bound water during dielectric measurements. The combined study of moisture sorption isotherms and dielectric spectroscopy was shown to be beneficial and complementary in probing the effects of moisture on the relaxation processes of starch and SSG.

  17. STRUCTURAL AND DIELECTRIC STUDIES ON Sr0.5-3y/2LayBa0.5Nb2O6 CERAMIC SYSTEMS WITH VARIED SINTERING TIME AND La CONCENTRATION

    Directory of Open Access Journals (Sweden)

    Zahariman S. R.

    2013-12-01

    Full Text Available Sr0.5Ba0.5Nb2O6 (SBN50 ceramic doped with different concentration of Lanthanum, La according to stoichiometric formulation of Sr0.5-3y/2LayBa0.5Nb2O6 (LSBN with y = 0.01, 0.03, 0.05 and 0.07 prepared using traditional ceramic method at the calcination temperature of 1200°C and sintered at 1300°C at varied sintering time. The effects of the sintering time and La3+ substitution on the morphological, compositional, structural and electrical properties of the LSBN is presented using scanning electronic microscopy (SEM, energy dispersive spectroscopy (EDS, X-ray diffraction (XRD and dielectric analysis. The XRD spectra confirm the presence of TTB structure in the ceramics. The Curie temperature (Tc of the ceramic identified from the dielectric studies performed in the temperature range of 28°C to 300°C. The temperature dependent dielectric exhibits broad peaks indicating a diffuse phase transition and relaxor behavior of the ceramic. The measured density of the samples is proportional to the sintering time and inversely proportional to the amount of the La3+ substitution. The solubility limit of La3+ ions in the SBN solid solution is at y ~ 0.05. This observation is also supported by the dielectric results where the dielectric properties of the ceramic deteriorate for y > 0.05 La substitution.

  18. Structural, Dielectric, and Electrical Properties of Bi1- x Pb x Fe1- x (Zr0.5Ti0.5) x O3

    Science.gov (United States)

    Panda, Niranjan; Pattanayak, Samita; Choudhary, R. N. P.

    2015-12-01

    Polycrystalline samples of Bi1- x Pb x Fe1- x (Zr0.5Ti0.5) x O3 (BPFZTO) with x = 0.0, 0.2, 0.3, and 0.4 were prepared by high-temperature solid-state reaction. Preliminary structural analysis of calcined powders of the materials by use of x-ray powder diffraction confirmed formation of single-phase systems with the tetragonal structure. Room-temperature scanning electron micrographs of the samples revealed uniform distribution of grains of low porosity and different dimensions on the surface of the samples. The frequency-temperature dependence of dielectric and electric properties was studied by use of dielectric and complex impedance spectroscopy over a wide range of frequency (1 kHz to 1 MHz) at different temperatures (25-500°C). The dielectric constant of BiFeO3 (BFO) was enhanced by substitution with Pb(Zr0.5Ti0.5)O3 (PZT) whereas the dielectric loss of the BPFZTO compounds decreased with increasing PZT content. A significant contribution of both grains and grain boundaries to the electrical response of the materials was observed. The frequency-dependence of the ac conductivity of BPFZTO followed Jonscher's power law. Negative temperature coefficient of resistance behavior was observed for all the BPFZTO samples. Conductivity by thermally excited charge carriers and oxygen vacancies in the materials was believed to be of the Arrhenius-type.

  19. Synthesis, structural and microwave dielectric properties of Al2W3-xMoxO12 (x = 0-3) ceramics

    International Nuclear Information System (INIS)

    Surjith, A.; James, Nijesh K.; Ratheesh, R.

    2011-01-01

    Highlights: → Solid state synthesis of phase pure Al 2 W 3-x Mo x O 12 (x = 0-3) compositions. → Sintering studies of Al 2 W 3-x Mo x O 12 (x = 0-3) ceramics. → Structural and microstructural evaluation using powder X-ray diffraction and SEM studies. → Microwave dielectric property evaluation of Al 2 W 3-x Mo x O 12 (x = 0-3) ceramics through Hakki and Coleman post resonator and cavity perturbation techniques. → Structure-property correlation through Laser Raman studies. - Abstract: Low dielectric ceramics in the Al 2 W 3-x Mo x O 12 (x = 0-3) system have been prepared through solid state ceramic route. The phase purity of the ceramic compositions has been studied using powder X-ray diffraction (XRD) studies. The microstructure of the sintered ceramics was evaluated by Scanning Electron Microscopy (SEM). The crystal structure of the ceramic compositions as a result of Mo substitution has been studied using Laser Raman spectroscopy. The microwave dielectric properties of the ceramics were studied by Hakki and Coleman post resonator and cavity perturbation techniques. Al 2 Mo x W 3-x O 12 (x = 0-3) ceramics exhibited low dielectric constant and relatively high unloaded quality factor. The temperature coefficient of resonant frequency of the compositions is found to be in the range -41 to -72 ppm/deg. C.

  20. Electrodynamic properties of porous PZT-Pt films at terahertz frequency range

    Energy Technology Data Exchange (ETDEWEB)

    Komandin, Gennady A.; Porodinkov, Oleg E.; Spektor, Igor E.; Volkov, Alexander A. [Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation); Vorotilov, Konstantin A.; Seregin, Dmitry S.; Sigov, Alexander S. [Moscow Technological University (MIREA), Moscow (Russian Federation)

    2017-01-15

    Electrodynamics of Si-SiO{sub 2}-TiO{sub 2}-Pt-PZT heterostructures is studied in the frequency range from 5 to 5000 cm{sup -1} by monochromatic BWO (backward wave oscillator) and infrared Fourier-transform spectroscopy techniques to derive the dielectric characteristics of the sol-gel porous ferroelectric PbZr{sub 0.48}Ti{sub 0.52}O{sub 3} films. Broad frequency band dielectric response of PZT films with different density is constructed using the oscillator dispersion models. The main contribution to the film permittivity is found to form at frequencies below 100 cm{sup -1} depending strongly and non-linearly on the film medium density. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Optical Spectroscopy

    DEFF Research Database (Denmark)

    Thyrhaug, Erling

    The work presented in this thesis is broadly concerned with how complexation reactions and molecular motion can be characterized with the standard techniques in optical spectroscopy. The thesis aims to show a relatively broad range of methods for probing physico-chemical properties in fluorophore...... information about chemical equilibria, kinetics and molecular motion by monitoring changes in optical properties of the system. The five presented research projects are largely unrelated to each other both in aim and in what property is probed, however they are all connected in that they are fluorophore...... reactions by optical spectroscopy. In project 1 simple steady-state absorption and fluorescence spectroscopy is used to determine the stoichiometries and equilibrium constants in the inclusion complex formation between cyclodextrins and derivatives of the water-insoluble oligo(phenylene vinylene) in aqueous...

  2. Characteristics of dielectric properties and conduction mechanism of TlInS2:Cu single crystals

    Science.gov (United States)

    El-Nahass, M. M.; Ali, H. A. M.; El-Zaidia, E. F. M.

    2013-12-01

    Single crystals of TlInS2:Cu were grown by the modified Bridgman method. The dielectric behavior of TlInS2:Cu was investigated using the impedance spectroscopy technique. The real (ε1), imaginary (ε2) parts of complex dielectric permittivity and ac conductivity were measured in the frequency range (42-2×105) Hz with a variation of temperature in the range from 291 K to 483 K. The impedance data were presented in Nyquist diagrams for different temperatures. The frequency dependence of σtot (ω) follows the Jonscher's universal dynamic law with the relation σtot (ω)=σdc+Aωs, (where s is the frequency exponent). The mechanism of the ac charge transport across the layers of TlInS2:Cu single crystals was referred to the hopping over localized states near the Fermi level. The examined system exhibits temperature dependence of σac (ω), which showed a linear increase with the increase in temperature at different frequencies. Some parameters were calculated as: the density of localized states near the Fermi level, NF, the average time of charge carrier hopping between localized states, τ, and the average hopping distance, R.

  3. Wide temperature range (T = 295 K and 770-1305 K) study of the kinetics of the reactions HCO + NO and HCO + NO2 using frequency modulation spectroscopy.

    Science.gov (United States)

    Dammeier, J; Colberg, M; Friedrichs, G

    2007-08-21

    The rate constants for , HCO + NO --> HNO + CO, and , HCO + NO(2)--> products, have been measured at temperatures between 770 K modulation (FM) absorption spectroscopy. Kinetic simulations based on a comprehensive reaction mechanism showed that the rate constants for the title reactions could be sensitively extracted from the measured HCO profiles. The determined high temperature rate constants are k(1)(769-1307 K) = (7.1 +/- 2.7) x 10(12) cm(3) mol(-1) s(-1) and k(2)(804-1186 K) = (3.3 +/- 1.8) x 10(13) cm(3) mol(-1) s(-1). The room temperature values were found to be in very good agreement with existing literature data and show that both reactions are essentially temperature independent. The weak temperature dependence of can be explained by the interplay of a dominating direct abstraction pathway and a complex-forming mechanism. Both pathways yield the products HNO + CO. In contrast to , no evidence for a significant contribution of a direct high temperature abstraction channel was found for . Here, the observed temperature independent overall rate constant can be described by a complex-forming mechanism with several product channels. Detailed information on the strongly temperature dependent channel branching ratios is provided. Moreover, the high temperature rate constant of , OH + (CHO)(2), has been determined to be k(7) approximately 1.1 x 10(13) cm(3) mol(-1) s(-1).

  4. Boron nitride as two dimensional dielectric: Reliability and dielectric breakdown

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Yanfeng; Pan, Chengbin; Hui, Fei; Shi, Yuanyuan; Lanza, Mario, E-mail: mlanza@suda.edu.cn [Institute of Functional Nano and Soft Materials, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 199 Ren-Ai Road, Suzhou 215123 (China); Zhang, Meiyun; Long, Shibing [Key Laboratory of Microelectronics Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029 (China); Lian, Xiaojuan; Miao, Feng [National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Larcher, Luca [DISMI, Università di Modena e Reggio Emilia, 42122 Reggio Emilia (Italy); Wu, Ernest [IBM Research Division, Essex Junction, Vermont 05452 (United States)

    2016-01-04

    Boron Nitride (BN) is a two dimensional insulator with excellent chemical, thermal, mechanical, and optical properties, which make it especially attractive for logic device applications. Nevertheless, its insulating properties and reliability as a dielectric material have never been analyzed in-depth. Here, we present the first thorough characterization of BN as dielectric film using nanoscale and device level experiments complementing with theoretical study. Our results reveal that BN is extremely stable against voltage stress, and it does not show the reliability problems related to conventional dielectrics like HfO{sub 2}, such as charge trapping and detrapping, stress induced leakage current, and untimely dielectric breakdown. Moreover, we observe a unique layer-by-layer dielectric breakdown, both at the nanoscale and device level. These findings may be of interest for many materials scientists and could open a new pathway towards two dimensional logic device applications.

  5. Dielectric materials and electrostatics

    CERN Document Server

    Gallot-Lavalle, Olivier

    2013-01-01

    An introduction to the physics of electrical insulation, this book presents the physical foundations of this discipline and the resulting applications. It is structured in two parts. The first part presents a mathematical and intuitive approach to dielectrics; various concepts, including polarization, induction, forces and losses are discussed. The second part provides readers with the keys to understanding the physics of solid, liquid and gas insulation. It comprises a phenomenological description of discharges in gas and its resulting applications. Finally, the main electrical properties

  6. Dielectric relaxation of selenium-tellurium mixed former glasses

    Science.gov (United States)

    Palui, A.; Ghosh, A.

    2017-05-01

    We report the study of dielectric properties of mixed network former glasses of composition 0.3Ag2O-0.7(xSeO2-(1-x)TeO2); x=0, 0.1, 0.3, 0.4, 0.5 and 0.6 in a wide frequency 10 Hz - 2 MHz and temperature range 223 K - 403 K. The experimental data have been analyzed in the framework of complex dielectric permittivity. The dielectric permittivity data have been analyzed using the Cole-Cole function. The inverse temperature dependence of relaxation time obtained from real part of dielectric permittivity data follows the Arrhenius relation. The activation energy shows mixed glass former effect with variation of mixed former ratio. A non-zero value of shape parameters is observed and it is almost independent of temperature and composition.

  7. Large Dielectric Constant Enhancement in MXene Percolative Polymer Composites

    KAUST Repository

    Tu, Shao Bo

    2018-04-06

    near the percolation limit of about 15.0 wt % MXene loading, which surpasses all previously reported composites made of carbon-based fillers in the same polymer. With up to 10 wt % MXene loading, the dielectric loss of the MXene/P(VDF-TrFE-CFE) composite indicates only an approximately 5-fold increase (from 0.06 to 0.35), while the dielectric constant increased by 25 times over the same composition range. Furthermore, the ratio of permittivity to loss factor of the MXene-polymer composite is superior to that of all previously reported fillers in this same polymer. The dielectric constant enhancement effect is demonstrated to exist in other polymers as well when loaded with MXene. We show that the dielectric constant enhancement is largely due to the charge accumulation caused by the formation of microscopic dipoles at the surfaces between the MXene sheets and the polymer matrix under an external applied electric field.

  8. Structural, ac conductivity and dielectric properties of 3-formyl chromone

    Science.gov (United States)

    Ali, H. A. M.

    2017-07-01

    The structure for the powder of 3-formyl chromone was examined by X-ray diffraction technique in the 2θ° range ( 4° - 60° . The configuration of Al/3-formyl chromone/Al samples was designed. The electrical and dielectric properties were studied as a function of frequency (42- 5 × 106 Hz) and temperature (298-408K). The ac conductivity data of bulk of 3-formyl chromone varies as a power law with the frequency at different temperatures. The predominant mechanism for ac conduction was deduced. The ac conductivity shows a thermally activated process at different frequencies. The dielectric constant and dielectric loss were determined using the capacitance and dissipation factor measurements at different temperatures. The dielectric loss shows a peak of relaxation time that shifted to higher frequency with an increase in the temperature. The activation energy of the relaxation process was estimated.

  9. Analysis of terahertz dielectric properties of pork tissue

    Science.gov (United States)

    Huang, Yuqing; Xie, Qiaoling; Sun, Ping

    2017-10-01

    Seeing that about 70% component of fresh biological tissues is water, many scientists try to use water models to describe the dielectric properties of biological tissues. The classical water dielectric models are Debye model, Double Debye model and Cole-Cole model. This work aims to determine a suitable model by comparing three models above with experimental data. These models are applied to fresh pork tissue. By means of least square method, the parameters of different models are fitted with the experimental data. Comparing different models on both dielectric function, the Cole-Cole model is verified the best to describe the experiments of pork tissue. The correction factor α of the Cole-Cole model is an important modification for biological tissues. So Cole-Cole model is supposed to be a priority selection to describe the dielectric properties for biological tissues in the terahertz range.

  10. Silver Nanowire/MnO2 Nanowire Hybrid Polymer Nanocomposites: Materials with High Dielectric Permittivity and Low Dielectric Loss.

    Science.gov (United States)

    Zeraati, Ali Shayesteh; Arjmand, Mohammad; Sundararaj, Uttandaraman

    2017-04-26

    This study reports the fabrication of hybrid nanocomposites based on silver nanowire/manganese dioxide nanowire/poly(methyl methacrylate) (AgNW/MnO 2 NW/PMMA), using a solution casting technique, with outstanding dielectric permittivity and low dielectric loss. AgNW was synthesized using the hard-template technique, and MnO 2 NW was synthesized employing a hydrothermal method. The prepared AgNW:MnO 2 NW (2.0:1.0 vol %) hybrid nanocomposite showed a high dielectric permittivity (64 at 8.2 GHz) and low dielectric loss (0.31 at 8.2 GHz), which are among the best reported values in the literature in the X-band frequency range (8.2-12.4 GHz). The superior dielectric properties of the hybrid nanocomposites were attributed to (i) dimensionality match between the nanofillers, which increased their synergy, (ii) better dispersion state of AgNW in the presence of MnO 2 NW, (iii) positioning of ferroelectric MnO 2 NW in between AgNWs, which increased the dielectric permittivity of nanodielectrics, thereby increasing dielectric permittivity of the hybrid nanocomposites, (iv) barrier role of MnO 2 NW, i.e., cutting off the contact spots of AgNWs and leading to lower dielectric loss, and (v) AgNW aligned structure, which increased the effective surface area of AgNWs, as nanoelectrodes. Comparison of the dielectric properties of the developed hybrid nanocomposites with the literature highlights their great potential for flexible capacitors.

  11. Controlling of dielectric parameters of insulating hydroxyapatite by simulated body fluid

    Energy Technology Data Exchange (ETDEWEB)

    Kaygili, Omer, E-mail: okaygili@firat.edu.tr [Department of Physics, Faculty of Science, Firat University, Elazig (Turkey); Keser, Serhat [Department of Chemistry, Faculty of Science, Firat University, Elazig (Turkey); Ates, Tankut; Tatar, Cengiz; Yakuphanoglu, Fahrettin [Department of Physics, Faculty of Science, Firat University, Elazig (Turkey)

    2015-01-01

    Hydroxyapatite (HAp) samples were synthesized under various amounts of citric acid using the sol–gel method. Before and after immersion in simulated body fluid (SBF) for 14 and 28 days, the structural properties of HAp samples were analyzed by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy with energy dispersive X-ray (EDX) spectroscopy and dielectric measurements. The crystallite size (D) was found to be in the range of 25.17–33.06 nm with the crystallinity percent (X{sub C}%) of 69.53–86.09. The lattice parameters of a and c were calculated to be in the ranges of 9.373–9.434 Å and 6.828–6.896 Å, respectively. The morphology of the as-synthesized samples was changed with the amount of citric acid and soaking period in SBF. The Ca/P molar ratios indicated a decrease with increasing immersion time, and Ca-deficiency was observed. The relative permittivity (ε′) and dielectric loss (ε″) were significantly affected by citric acid content and soaking period in SBF. It was seen that the alternating current conductivity (σ{sub ac}) increased with increasing frequency and the σ{sub ac} values changed with increasing soaking period and amount of citric acid. - Highlights: • The crystallite size is in the range of 25.17–33.06 nm. • The Ca/P molar ratio showed a decrease with increasing immersion time. • Citric acid content and soaking period in SBF affect the relative permittivity. • The alternating current conductivity increased with increasing frequency.

  12. Characterization of dielectric properties of nanocellulose from wood and algae for electrical insulator applications.

    Science.gov (United States)

    Le Bras, David; Strømme, Maria; Mihranyan, Albert

    2015-05-07

    Cellulose is one of the oldest electrically insulating materials used in oil-filled high-power transformers and cables. However, reports on the dielectric properties of nanocellulose for electrical insulator applications are scarce. The aim of this study was to characterize the dielectric properties of two nanocellulose types from wood, viz., nanofibrillated cellulose (NFC), and algae, viz., Cladophora cellulose, for electrical insulator applications. The cellulose materials were characterized with X-ray diffraction, nitrogen gas and moisture sorption isotherms, helium pycnometry, mechanical testing, and dielectric spectroscopy at various relative humidities. The algae nanocellulose sample was more crystalline and had a lower moisture sorption capacity at low and moderate relative humidities, compared to NFC. On the other hand, it was much more porous, which resulted in lower strength and higher dielectric loss than for NFC. It is concluded that the solid-state properties of nanocellulose may have a substantial impact on the dielectric properties of electrical insulator applications.

  13. Discharge ignition near a dielectric

    NARCIS (Netherlands)

    Sobota, A.; Veldhuizen, van E.M.; Stoffels, W.W.

    2008-01-01

    Electrical breakdown in noble gas near a dielectric is an important issue in lighting industry. In order to investigate the influence of the dielectric on the ignition process, we perform measurements in argon, with pressure varying from 0.1 to 1 bar, using a pin–pin electrode geometry. Here, we

  14. Effect of the dielectric constant of mesoscopic particle on the exciton binding energy

    International Nuclear Information System (INIS)

    Lai Zuyou; Gu Shiwei

    1991-09-01

    For materials with big exciton reduced mass and big dielectric constant, such as TiO 2 , the variation of dielectric constant with the radius of an ultrafine particle (UFP) is important for determining the exciton binding energy. For the first time a phenomenological formula of the dielectric constant of a UFP with its radius in mesoscopic range is put forward in order to explain the optical properties of TiO 2 UFP. (author). 22 refs, 3 figs, 1 tab

  15. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    1997-01-01

    This series describes selected advances in the area of atomic spectroscopy. It is primarily intended for the reader who has a background in atmoic spectroscopy; suitable to the novice and expert. Although a widely used and accepted method for metal and non-metal analysis in a variety of complex samples, Advances in Atomic Spectroscopy covers a wide range of materials. Each Chapter will completely cover an area of atomic spectroscopy where rapid development has occurred.

  16. Structure and performance of dielectric films based on self-assembled nanocrystals with a high dielectric constant.

    Science.gov (United States)

    Huang, Limin; Liu, Shuangyi; Van Tassell, Barry J; Liu, Xiaohua; Byro, Andrew; Zhang, Henan; Leland, Eli S; Akins, Daniel L; Steingart, Daniel A; Li, Jackie; O'Brien, Stephen

    2013-10-18

    Self-assembled films built from nanoparticles with a high dielectric constant are attractive as a foundation for new dielectric media with increased efficiency and range of operation, due to the ability to exploit nanofabrication techniques and emergent electrical properties originating from the nanoscale. However, because the building block is a discrete one-dimensional unit, it becomes a challenge to capture potential enhancements in dielectric performance in two or three dimensions, frequently due to surface effects or the presence of discontinuities. This is a recurring theme in nanoparticle film technology when applied to the realm of thin film semiconductor and device electronics. We present the use of chemically synthesized (Ba,Sr)TiO3 nanocrystals, and a novel deposition-polymerization technique, as a means to fabricate the dielectric layer. The effective dielectric constant of the film is tunable according to nanoparticle size, and effective film dielectric constants of up to 34 are enabled. Wide area and multilayer dielectrics of up to 8 cm(2) and 190 nF are reported, for which the building block is an 8 nm nanocrystal. We describe models for assessing dielectric performance, and distinct methods for improving the dielectric constant of a nanocrystal thin film. The approach relies on evaporatively driven assembly of perovskite nanocrystals with uniform size distributions in a tunable 7-30 nm size range, coupled with the use of low molecular weight monomer/polymer precursor chemistry that can infiltrate the porous nanocrystal thin film network post assembly. The intercrystal void space (low k dielectric volume fraction) is minimized, while simultaneously promoting intercrystal connectivity and maximizing volume fraction of the high k dielectric component. Furfuryl alcohol, which has good affinity to the surface of (Ba,Sr)TiO3 nanocrystals and miscibility with a range of solvents, is demonstrated to be ideal for the production of nanocomposites. The

  17. Dielectric Constant Measurements of Solid 4He

    Science.gov (United States)

    Yin, L.; Xia, J. S.; Huan, C.; Sullivan, N. S.; Chan, M. H. W.

    2011-03-01

    Careful measurements of the dielectric properties of solid 4He have been carried out down to 35 mK, considerably lower than the temperature range of previous studies. The sample was prepared from high purity gas with 3He concentrations of the order of 200 ppb and were formed by the blocked capillary method. The molar volume of the sample was 20.30 cm3. The dielectric constant of the samples was found to be independent of temperature down to 120 mK before showing a continuous increase with decreasing temperature and saturating below 50 mK. The total increase in ɛ is 2 parts in 10-5. The temperature dependence of ɛ mimics the increase in the resonant frequency found in the torsional oscillator studies and also the increase found in the shear modulus measurements.

  18. Generalized dielectric permittivity tensor

    International Nuclear Information System (INIS)

    Borzdov, G.N.; Barkovskii, L.M.; Fedorov, F.I.

    1986-01-01

    The authors deal with the question of what is to be done with the formalism of the electrodynamics of dispersive media based on the introduction of dielectric-permittivity tensors for purely harmonic fields when Voigt waves and waves of more general form exist. An attempt is made to broaden and generalize the formalism to take into account dispersion of waves of the given type. In dispersive media, the polarization, magnetization, and conduction current-density vectors of point and time are determined by the values of the electromagnetic field vectors in the vicinity of this point (spatial dispersion) in the preceding instants of time (time dispersion). The dielectric-permittivity tensor and other tensors of electrodynamic parameters of the medium are introduced in terms of a set of evolution operators and not the set of harmonic function. It is noted that a magnetic-permeability tensor and an elastic-modulus tensor may be introduced for an acoustic field in dispersive anisotropic media with coupling equations of general form

  19. Structural and dielectric studies on Ag doped nano ZnSnO3

    Science.gov (United States)

    Deepa, K.; Angel, S. Lilly; Rajamanickam, N.; Jayakumar, K.; Ramachandran, K.

    2018-04-01

    Undoped and Ag-doped nano Zinc Stannate (ZSO) ternary oxide were prepared by co-precipitation method. The crystallographic, morphological and optical properties of the synthesized nanoparticles were studied using X-ray diffraction (XRD) and UV-Visible spectroscopy (UV-Vis) and Scanning electron microscopy (SEM). The electrical properties of the synthesized samples were studied by dielectric measurements. Higher concentration Ag doped ZSO nanoparticles exhibit higher dielectric constant at low frequency.

  20. Dielectric Actuation of Polymers

    Science.gov (United States)

    Niu, Xiaofan

    Dielectric polymers are widely used in a plurality of applications, such as electrical insulation, dielectric capacitors, and electromechanical actuators. Dielectric polymers with large strain deformations under an electric field are named dielectric elastomers (DE), because of their relative low modulus, high elongation at break, and outstanding resilience. Dielectric elastomer actuators (DEA) are superior to traditional transducers as a muscle-like technology: large strains, high energy densities, high coupling efficiency, quiet operation, and light weight. One focus of this dissertation is on the design of DE materials with high performance and easy processing. UV radiation curing of reactive species is studied as a generic synthesis methodology to provide a platform for material scientists to customize their own DE materials. Oligomers/monomers, crosslinkers, and other additives are mixed and cured at appropriate ratios to control the stress-strain response, suppress electromechanical instability of the resulting polymers, and provide stable actuation strains larger than 100% and energy densities higher than 1 J/g. The processing is largely simplified in the new material system by removal of the prestretching step. Multilayer stack actuators with 11% linear strain are demonstrated in a procedure fully compatible with industrial production. A multifunctional DE derivative material, bistable electroactive polymer (BSEP), is invented enabling repeatable rigid-to-rigid deformation without bulky external structures. Bistable actuation allows the polymer actuator to have two distinct states that can support external load without device failure. Plasticizers are used to lower the glass transition temperature to 45 °C. Interpenetrating polymer network structure is established inside the BSEP to suppress electromechanical instability, providing a breakdown field of 194 MV/m and a stable bistable strain as large as 228% with a 97% strain fixity. The application of BSEP

  1. Self assembled monolayers of octadecyltrichlorosilane for dielectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Vijay, E-mail: cirivijaypilani@gmail.com [Centre for Nanoscience and Engineering, Indian Institute of Science-Bangalore (India); Mechanical Engineering Department, Birla Institute of Technology and Science-Pilani (India); Puri, Paridhi; Nain, Shivani [Mechanical Engineering Department, Birla Institute of Technology and Science-Pilani (India); Bhat, K. N. [Centre for Nanoscience and Engineering, Indian Institute of Science-Bangalore (India); Sharma, N. N. [Mechanical Engineering Department, Birla Institute of Technology and Science-Pilani (India); School of Automobile, Mechanical & Mechatronics, Manipal University-Jaipur (India)

    2016-04-13

    Treatment of surfaces to change the interaction of fluids with them is a critical step in constructing useful microfluidics devices, especially those used in biological applications. Selective modification of inorganic materials such as Si, SiO{sub 2} and Si{sub 3}N{sub 4} is of great interest in research and technology. We evaluated the chemical formation of OTS self-assembled monolayers on silicon substrates with different dielectric materials. Our investigations were focused on surface modification of formerly used common dielectric materials SiO{sub 2}, Si{sub 3}N{sub 4} and a-poly. The improvement of wetting behaviour and quality of monolayer films were characterized using Atomic force microscope, Scanning electron microscope, Contact angle goniometer, Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) monolayer deposited oxide surface.

  2. Top-gate dielectric induced doping and scattering of charge carriers in epitaxial graphene

    Science.gov (United States)

    Puls, Conor P.; Staley, Neal E.; Moon, Jeong-Sun; Robinson, Joshua A.; Campbell, Paul M.; Tedesco, Joseph L.; Myers-Ward, Rachael L.; Eddy, Charles R.; Gaskill, D. Kurt; Liu, Ying

    2011-07-01

    We show that an e-gun deposited dielectric impose severe limits on epitaxial graphene-based device performance based on Raman spectroscopy and low-temperature transport measurements. Specifically, we show from studies of epitaxial graphene Hall bars covered by SiO2 that the measured carrier density is strongly inhomogenous and predominantly induced by charged impurities at the grapheme/dielectric interface that limit mobility via Coulomb interactions. Our work emphasizes that material integration of epitaxial graphene and a gate dielectric is the next major road block towards the realization of graphene-based electronics.

  3. Structural, optical, dielectric and magnetic studies of gadolinium-added Mn-Cu nanoferrites

    Science.gov (United States)

    Kanna, R. Rajesh; Lenin, N.; Sakthipandi, K.; Kumar, A. Senthil

    2018-05-01

    Spinel ferrite with the general formula Mn1-xCuxFe1.85Gd0.15O4 (x = 0.2, 0.4, 0.6 and 0.8) was synthesized using the standard sonochemical method. The structure, optical, morphology, dielectric and magnetic properties of the prepared Mn1-xCuxFe1.85Gd0.15O4 nanoferrites were exhaustively investigated using various characterization techniques. The phase purity, secondary phase and crystallite parameters were studied from X-ray diffraction patterns. Fourier transform infrared spectra showed two absorption bands of transition metal oxides in the frequency range from 400 to 650 cm-1, which are related to asymmetric stretching modes of the spinel ferrites (AB2O4). Raman spectra have five active modes illustrating the vibration of O2- ions at both tetrahedral (A) site and octahedral (B) site ions. The wide and narrow scan spectrum from X-ray photoelectron spectroscopy results confirmed the presence of Mn, Cu, Gd, Fe, C and O elements in the composition. The oxidation state and core level of the photo electron peaks of Mn 2p, Cu 2p, Gd 3d, Fe 2p and O 1s were analyzed. The influence of the Cu2+ concentration in Mn1-xCuxFe1.85Gd0.15O4 on the morphology, varying from nanorods, nanoflakes to spherical, was explored on the basis of scanning electron microscopy images. Ultraviolet diffuse reflectance spectroscopy studies indicated that the optical bandgap (5.12-5.32 eV) of the nanoferrites showed an insulating behavior. The dielectric constant, loss tangent and complex dielectric constant values decreased with an increase in frequency with the addition of Gd3+ content. A vibrating sample magnetometer showed that the prepared nanoferrites had a soft ferromagnetic nature. The magnetic parameter changed markedly with an increase in the Cu content in Mn1-xCuxFe1.85Gd0.15O4 nanoferrites. The optical, dielectric and magnetic properties were considerably enhanced with the addition of Gd3+ ions in the spinel nanoferrites.

  4. Dielectric, thermal and mechanical properties of ADP doped PVA composites

    Science.gov (United States)

    Naik, Jagadish; Bhajantri, R. F.; Ravindrachary, V.; Rathod, Sunil G.; Sheela, T.; Naik, Ishwar

    2015-06-01

    Polymer composites of poly(vinyl alcohol) (PVA), doped with different concentrations of ammonium dihydrogen phosphate (ADP) has been prepared by solution casting. The formation of complexation between ADP and PVA was confirmed with the help of Fourier transforms infrared (FTIR) spectroscopy. Thermogravimetric analysis (TGA) shows thermal stability of the prepared composites. Impedance analyzer study revealed the increase in dielectric constant and loss with increase the ADP concentration and the strain rate of the prepared composites decreases with ADP concentration.

  5. Low-Loss, Low-Noise, Crystalline Silicon Dielectric for Superconducting Microstrip and Kinetic Inductance Detector Capacitors

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of technology to use crystalline dielectrics in superconducting spectroscopic sensors operating in the infrared/sub-millimeter wavelength range. The...

  6. GLOBULAR CLUSTER ABUNDANCES FROM HIGH-RESOLUTION, INTEGRATED-LIGHT SPECTROSCOPY. II. EXPANDING THE METALLICITY RANGE FOR OLD CLUSTERS AND UPDATED ANALYSIS TECHNIQUES

    Energy Technology Data Exchange (ETDEWEB)

    Colucci, Janet E.; Bernstein, Rebecca A.; McWilliam, Andrew [The Observatories of the Carnegie Institution for Science, 813 Santa Barbara St., Pasadena, CA 91101 (United States)

    2017-01-10

    We present abundances of globular clusters (GCs) in the Milky Way and Fornax from integrated-light (IL) spectra. Our goal is to evaluate the consistency of the IL analysis relative to standard abundance analysis for individual stars in those same clusters. This sample includes an updated analysis of seven clusters from our previous publications and results for five new clusters that expand the metallicity range over which our technique has been tested. We find that the [Fe/H] measured from IL spectra agrees to ∼0.1 dex for GCs with metallicities as high as [Fe/H] = −0.3, but the abundances measured for more metal-rich clusters may be underestimated. In addition we systematically evaluate the accuracy of abundance ratios, [X/Fe], for Na i, Mg i, Al i, Si i, Ca i, Ti i, Ti ii, Sc ii, V i, Cr i, Mn i, Co i, Ni i, Cu i, Y ii, Zr i, Ba ii, La ii, Nd ii, and Eu ii. The elements for which the IL analysis gives results that are most similar to analysis of individual stellar spectra are Fe i, Ca i, Si i, Ni i, and Ba ii. The elements that show the greatest differences include Mg i and Zr i. Some elements show good agreement only over a limited range in metallicity. More stellar abundance data in these clusters would enable more complete evaluation of the IL results for other important elements.

  7. High performance direct absorption spectroscopy of pure and binary mixture hydrocarbon gases in the 6-11 μm range

    Science.gov (United States)

    Heinrich, Robert; Popescu, Alexandru; Hangauer, Andreas; Strzoda, Rainer; Höfling, Sven

    2017-08-01

    The availability of accurate and fast hydrocarbon analyzers, capable of real-time operation while enabling feedback-loops, would lead to a paradigm change in the petro-chemical industry. Primarily gas chromatographs measure the composition of hydrocarbon process streams. Due to sophisticated gas sampling, these analyzers are limited in response time. As hydrocarbons absorb in the mid-infrared spectral range, the employment of fast spectroscopic systems is highly attractive due to significantly reduced maintenance costs and the capability to setup real-time process control. New developments in mid-infrared laser systems pave the way for the development of high-performance analyzers provided that accurate spectral models are available for multi-species detection. In order to overcome current deficiencies in the availability of spectroscopic data, we developed a laser-based setup covering the 6-11 μm wavelength range. The presented system is designated as laboratory reference system. Its spectral accuracy is at least 6.6× 10^{-3} cm^{-1} with a precision of 3× 10^{-3} cm^{-1}. With a "per point" minimum detectable absorption of 1.3× 10^{-3} cm^{-1} Hz^{{-}{1/2}} it allows us to perform systematic measurements of hydrocarbon spectra of the first 7 alkanes under conditions which are not tabulated in spectroscopic database. We exemplify the system performance with measured direct absorption spectra of methane, propane, iso-butane, and a mixture of methane and propane.

  8. High-frequency dielectric response of polyaniline pellets as nanocomposites of metallic emeraldine salt and dielectric base

    Czech Academy of Sciences Publication Activity Database

    Nuzhnyy, Dmitry; Petzelt, Jan; Rychetský, Ivan; Trchová, Miroslava; Stejskal, Jaroslav

    2015-01-01

    Roč. 209, Nov (2015), s. 561-569 ISSN 0379-6779 R&D Projects: GA ČR GAP204/12/0232; GA ČR(CZ) GAP205/12/0911 Institutional support: RVO:68378271 ; RVO:61389013 Keywords : polyaniline * infrared and THz spectroscopy * optical conductivity * dielectric permittivity * vibrational mode * effective medium approach Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.299, year: 2015

  9. Dielectric Properties of PANI/CuO Nanocomposites

    Science.gov (United States)

    Ambalagi, Sharanabasamma M.; Devendrappa, Mahalesh; Nagaraja, Sannakki; Sannakki, Basavaraja

    2018-02-01

    The combustion method is used to prepare the Copper Oxide (CuO) nanoparticles. The nanocomposites of Polyaniline (PANI) by doping with copper oxide nanoparticles have synthesized at 10, 20, 30, 40 and 50 different weight percentages during the in-situ polymerization. The samples of nanocomposite of PANI-CuO were characterized by using X-Ray diffraction (XRD) technique. The physical properties such as dielectric constant, dielectric loss and A C conductivity of the nanocomposites are studied as a function of frequency in the range 5Hz-35MHz at room temperature. It is found that the dielectric constant decreases as the frequency increases. The dielectric constant it remains constant at higher frequencies and it is also observed that in particular frequency both the dielectric constant and dielectric loss are decreased as a weight percentage of CuO increased. In case of AC conductivity it is found that as the frequency increases the AC conductivity remains constant up to 3.56MHz and afterwards it increases as frequency increases. This is due to the increase in charge carriers through the hopping mechanism in the polymer nanocomposites. It is also observed that as a weight percentage of CuO increased the AC conductivity is also increasing at a particular frequency.

  10. Evaluation of Dielectric-Barrier-Discharge Actuator Substrate Materials

    Science.gov (United States)

    Wilkinson, Stephen P.; Siochi, Emilie J.; Sauti, Godfrey; Xu, Tian-Bing; Meador, Mary Ann; Guo, Haiquan

    2014-01-01

    A key, enabling element of a dielectric barrier discharge (DBD) actuator is the dielectric substrate material. While various investigators have studied the performance of different homogeneous materials, most often in the context of related DBD experiments, fundamental studies focused solely on the dielectric materials have received less attention. The purpose of this study was to conduct an experimental assessment of the body-force-generating performance of a wide range of dielectric materials in search of opportunities to improve DBD actuator performance. Materials studied included commonly available plastics and glasses as well as a custom-fabricated polyimide aerogel. Diagnostics included static induced thrust, electrical circuit parameters for 2D surface discharges and 1D volume discharges, and dielectric material properties. Lumped-parameter circuit simulations for the 1D case were conducted showing good correspondence to experimental data provided that stray capacitances are included. The effect of atmospheric humidity on DBD performance was studied showing a large influence on thrust. The main conclusion is that for homogeneous, dielectric materials at forcing voltages less than that required for streamer formation, the material chemical composition appears to have no effect on body force generation when actuator impedance is properly accounted for.

  11. Dielectric property study of poly(4-vinylphenol)-graphene oxide nanocomposite thin film

    Science.gov (United States)

    Roy, Dhrubojyoti

    2018-05-01

    Thin film capacitor device having a sandwich structure of indium tin oxide (ITO)-coated glass/polymer or polymer nanocomposite /silver has been fabricated and their dielectric and leakage current properties has been studied. The dielectric properties of the capacitors were characterized for frequencies ranging from 1 KHz to 1 MHz. 5 wt% Poly(4-vinylphenol)(PVPh)-Graphene (GO) nanocomposite exhibited an increase in dielectric constant to 5.6 and small rise in dielectric loss to around˜0.05 at 10 KHz w.r.t polymer. The DC conductivity measurements reveal rise of leakage current in nanocomposite.

  12. High performance solution processed zirconium oxide gate dielectric appropriate for low temperature device application

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, Musarrat; Nguyen, Manh-Cuong; Kim, Hyojin; You, Seung-Won; Jeon, Yoon-Seok; Tong, Duc-Tai; Lee, Dong-Hwi; Jeong, Jae Kyeong; Choi, Rino, E-mail: rino.choi@inha.ac.kr

    2015-08-31

    This paper reports a solution processed electrical device with zirconium oxide gate dielectric that was fabricated at a low enough temperature appropriate for flexible electronics. Both inorganic dielectric and channel materials were synthesized in the same organic solvent. The dielectric constant achieved was 13 at 250 °C with a reasonably low leakage current. The bottom gate transistor devices showed the highest mobility of 75 cm{sup 2}/V s. The device is operated at low voltage with high-k dielectric with excellent transconductance and low threshold voltage. Overall, the results highlight the potential of low temperature solution based deposition in fabricating more complicated circuits for a range of applications. - Highlights: • We develop a low temperature inorganic dielectric deposition process. • We fabricate oxide semiconductor channel devices using all-solution processes. • Same solvent is used for dielectric and oxide semiconductor deposition.

  13. High Dielectric Low Loss Transparent Glass Material Based Dielectric Resonator Antenna with Wide Bandwidth Operation

    Science.gov (United States)

    Mehmood, Arshad; Zheng, Yuliang; Braun, Hubertus; Hovhannisyan, Martun; Letz, Martin; Jakoby, Rolf

    2015-01-01

    This paper presents the application of new high permittivity and low loss glass material for antennas. This glass material is transparent. A very simple rectangular dielectric resonator antenna is designed first with a simple microstrip feeding line. In order to widen the bandwidth, the feed of the design is modified by forming a T-shaped feeding. This new design enhanced the bandwidth range to cover the WLAN 5 GHz band completely. The dielectric resonator antenna cut into precise dimensions is placed on the modified microstrip feed line. The design is simple and easy to manufacture and also very compact in size of only 36 × 28 mm. A -10 dB impedance bandwidth of 18% has been achieved, which covers the frequency range from 5.15 GHz to 5.95 GHz. Simulations of the measured return loss and radiation patterns are presented and discussed.

  14. The correlation of in vivo and ex vivo tissue dielectric properties to validate electromagnetic breast imaging: initial clinical experience

    International Nuclear Information System (INIS)

    Halter, Ryan J; Zhou, Tian; Meaney, Paul M; Hartov, Alex; Barth, Richard J Jr; Rosenkranz, Kari M; Wells, Wendy A; Kogel, Christine A; Borsic, Andrea; Rizzo, Elizabeth J; Paulsen, Keith D

    2009-01-01

    Electromagnetic (EM) breast imaging provides low-cost, safe and potentially a more specific modality for cancer detection than conventional imaging systems. A primary difficulty in validating these EM imaging modalities is that the true dielectric property values of the particular breast being imaged are not readily available on an individual subject basis. Here, we describe our initial experience in seeking to correlate tomographic EM imaging studies with discrete point spectroscopy measurements of the dielectric properties of breast tissue. The protocol we have developed involves measurement of in vivo tissue properties during partial and full mastectomy procedures in the operating room (OR) followed by ex vivo tissue property recordings in the same locations in the excised tissue specimens in the pathology laboratory immediately after resection. We have successfully applied all of the elements of this validation protocol in a series of six women with cancer diagnoses. Conductivity and permittivity gauged from ex vivo samples over the frequency range 100 Hz–8.5 GHz are found to be similar to those reported in the literature. A decrease in both conductivity and permittivity is observed when these properties are gauged from ex vivo samples instead of in vivo. We present these results in addition to a case study demonstrating how discrete point spectroscopy measurements of the tissue can be correlated and used to validate EM imaging studies

  15. In situ generated CdS nanostructure induced enhanced photoluminescence from Dy{sup 3+} ions doped dielectric nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Dey, Chirantan; Karmakar, Basudeb [Glass Science and Technology Section, Glass Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata (India)

    2017-08-15

    We report CdS nanostructure induced enhanced photoluminescence (PL) from Dy{sup +3}:CdS co-doped dielectric-nanocomposites synthesized by the conventional melt-quench technique. CdS nanocrystals (NCs) were synthesized as in situ within the dielectric medium and their growth was controlled by heat treatment duration. Nanoparticles were investigated with absorption spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), and Raman spectroscopy. The experimentally obtained sizes of the NCs are found to increase from 5-11 nm to 50-80 nm. Bandgap enhancement for the carrier confinement was found to alter within the range of 0.20-0.38 eV. Phonon confinement effect has been confirmed by blue shifting of Raman peak for CdS NCs at 303 cm{sup -1}. Enhanced highly intense sharp PL peak at 576 nm was detected, and different parameters associated with the PL enhancement including energy transfer from CdS NCs to Dy{sup 3+} ions have been studied. This PL enhancement was steered by varying CdS NC sizes. Enhanced PL of these nanocomposites finds their potential applications as gain medium in the field of solid state lasers. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Characterization of Bi4Ge3O12 single crystal by impedance spectroscopy

    Directory of Open Access Journals (Sweden)

    Zélia Soares Macedo

    2003-12-01

    Full Text Available Bi4Ge3O12 (bismuth germanate - BGO single crystals were produced by the Czochralski technique and their electrical and dielectric properties were investigated by impedance spectroscopy. The isothermal ac measurements were performed for temperatures from room temperature up to 750 °C, but only the data taken above 500 °C presented a complete semicircle in the complex impedance diagrams. Experimental data were fitted to a parallel RC equivalent circuit, and the electrical conductivity was obtained from the resistivity values. Conductivity values from 5.4 × 10(9 to 4.3 × 10-7 S/cm were found in the temperature range of 500 to 750 °C. This electrical conductivity is thermally activated, following the Arrhenius law with an apparent activation energy of (1.41 ± 0.04 eV. The dielectric properties of BGO single crystal were also studied for the same temperature interval. Permittivity values of 20 ± 2 for frequencies higher than 10³ Hz and a low-frequency dispersion were observed. Both electric and dielectric behavior of BGO are typical of systems in which the conduction mechanism dominates the dielectric response.

  17. Collision-induced spectroscopy with long-range intermolecular interactions: A diagrammatic representation and the invariant form of the induced properties

    International Nuclear Information System (INIS)

    Kouzov, A. P.; Chrysos, M.; Rachet, F.; Egorova, N. I.

    2006-01-01

    Collision-induced properties of two interacting molecules a and b are derived by means of a general diagrammatic method involving M molecule-molecule and N photon-molecule couplings. The method is an extension of previous graphical treatments of nonlinear optics because it exhaustively determines interaction-induced polarization mechanisms in a trustworthy and handy fashion. Here we focus on long-range intermolecular interactions. Retardation effects are neglected. A fully quantum-mechanical treatment of the molecules is made whereas second quantization for the electromagnetic field, in the nonrelativistic approximation, is implicitly applied. The collision-induced absorption, Raman, and hyper-Raman processes are viewed and studied, through guiding examples, as specific cases N=1, 2, and 3, respectively. In Raman (N=2), the standard first-order (M=1) dipole-induced dipole term of the incremental polarizability, Δα, is the result of a coupling of the two photons with distinct molecules, a and b, which perturb each other via a dipole-dipole mechanism. Rather, when the two photons interact with the same molecule, a or b, the (N=2, M=1) graphs predict the occurrence of a nonlinear polarization mechanism. The latter is expected to contribute substantially to the collision-induced Raman bands by certain molecular gases

  18. Sub-Doppler spectroscopy

    International Nuclear Information System (INIS)

    Hansch, T.W.

    1983-01-01

    This chapter examines Doppler-free saturation spectroscopy, tunable cw sources, and Doppler-free two-photon spectroscopy. Discusses saturation spectroscopy; continuous wave saturation spectroscopy in the ultraviolet; and two-photon spectroscopy of atomic hydrogen 1S-2S. Focuses on Doppler-free laser spectroscopy of gaseous samples. Explains that in saturation spectroscopy, a monochromatic laser beam ''labels'' a group of atoms within a narrow range of axial velocities through excitation or optical pumping, and a Doppler-free spectrum of these selected atoms is observed with a second, counterpropagating beam. Notes that in two-photon spectroscopy it is possible to record Doppler-free spectra without any need for velocity selection by excitation with two counterpropagating laser beams whose first order Doppler shifts cancel

  19. Dielectric Properties of PE/Clay Nanocomposites

    Directory of Open Access Journals (Sweden)

    E. David

    2013-01-01

    Full Text Available Polyethylene/nanoclay specimens containing from 0 to 5% nanoclays were prepared from a commercially available premixed PE/nanoclay masterbatch containing 50% wt of nanoclay. The masterbatch was diluted to the desired concentration by adding PE along with various amounts of compatibilizer in order to achieve the best possible dispersion of the nanoclay platelets. The dielectric response of the compounded samples was investigated using a combination of time and frequency-domain spectroscopy in order to cover a wide frequency window. Both techniques were in good agreement when the time-domain data was transformed into frequency-domain data. Despite their low concentration, the addition of the dispersed nanoclays led to a significant alteration of the material dielectric response in the form of the appearance of various interfacial relaxation processes and an increase of charge carrier transport within the insulation material. Moreover, an onset of nonlinear charge transport process was observed at moderate fields for specimens containing a relatively low level of nanoclays. The high-field breakdown strength was shown to have been improved by the incorporation of the nanoparticles, particularly when the exfoliation was enhanced by the use of a maleic anhydride grafted polyethylene compatibilizer.

  20. Dielectric response and electric conductivity of ceramics obtained from BiFeO{sub 3} synthesized by microwave hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Chybczyńska, K.; Markiewicz, E., E-mail: ewamar@ifmpan.poznan.pl; Błaszyk, M.; Hilczer, B.; Andrzejewski, B.

    2016-06-25

    BiFeO{sub 3} powder which formed ball-like structures resembling flowers was obtained by microwave hydrothermal synthesis. The flowers were of a dozen or so μm in diameter and the thickness of the crystallites forming petals could be controlled. The material was characterized by X-ray diffraction, scanning electron microscopy and X-ray photoelectron spectroscopy. Dielectric response of ceramics obtained from the powder contained three extrinsic contributions, which could be correlated with the differences in temperature variation of the ac conductivity. The dielectric relaxation between 150 K and 300 K was related to reorientations of Fe{sup 3+}–Fe{sup 2+} dipoles and characterized by an activation energy of 0.4 eV, which was independent of the petal thickness. The dielectric and electric response in the range 300 K ÷ 450 K usually ascribed to the grain boundary and interfacial polarization effect was diffused and could not be characterized. Above 450 K the activation energy of dc conductivity was 1.73 eV and 1.52 eV for ceramics consisting of crystallites of mean thickness of 160 nm and 260 nm, respectively. The energies, which are considerably higher than those reported earlier for BFO nanoceramics, were discussed considering the interactions between oxygen vacancies and size scaled ferroelectric domain walls, which in BiFeO{sub 3} are associated with electrostatic potential steps. - Highlights: • BiFeO{sub 3} with controllable thickness of crystallites was synthesized hydrothermally. • The powder and ceramics obtained were characterized by XRD, SEM and XPS methods. • Dielectric response of the ceramics is correlated with the ac conductivity. • Size-scaled ferroelectric domains and oxygen vacancies interact above 450 K.

  1. Dielectric constant of atomic fluids with variable polarizability.

    Science.gov (United States)

    Alder, B J; Beers, J C; Strauss, H L; Weis, J J

    1980-06-01

    The Clausius-Mossotti function for the dielectric constant is expanded in terms of single atom and pair polarizabilities, leading to contributions that depend on both the trace and the anisotropy of the pair-polarizability tensor. The short-range contribution of the anisotropic part to the pair polarizabilities has previously been obtained empirically from light scattering experiments, whereas the trace contribution is now empirically determined by comparison to dielectric experiments. For helium, the short-range trace part agrees well with electronic structure calculations, whereas for argon qualitative agreement is achieved.

  2. 3D-Printed Broadband Dielectric Tube Terahertz Waveguide with Anti-Reflection Structure

    Science.gov (United States)

    Vogt, Dominik Walter; Leonhardt, Rainer

    2016-11-01

    We demonstrate broadband, low loss, and close-to-zero dispersion guidance of terahertz (THz) radiation in a dielectric tube with an anti-reflection structure (AR-tube waveguide) in the frequency range from 0.2 to 1.0 THz. The anti-reflection structure (ARS) consists of close-packed cones in a hexagonal lattice arranged on the outer surface of the tube cladding. The feature size of the ARS is in the order of the wavelength between 0.2 and 1.0 THz. The waveguides are fabricated with the versatile and cost efficient 3D-printing method. Terahertz time-domain spectroscopy (THz-TDS) measurements as well as 3D finite-difference time-domain simulations (FDTD) are performed to extensively characterize the AR-tube waveguides. Spectrograms, attenuation spectra, effective phase refractive indices, and the group-velocity dispersion parameters β 2 of the AR-tube waveguides are presented. Both the experimental and numerical results confirm the extended bandwidth and smaller group-velocity dispersion of the AR-tube waveguide compared to a low loss plain dielectric tube THz waveguide. The AR-tube waveguide prototypes show an attenuation spectrum close to the theoretical limit given by the infinite cladding tube waveguide.

  3. Microwave measurement and modeling of the dielectric properties of vegetation

    Science.gov (United States)

    Shrestha, Bijay Lal

    Some of the important applications of microwaves in the industrial, scientific and medical sectors include processing and treatment of various materials, and determining their physical properties. The dielectric properties of the materials of interest are paramount irrespective of the applications, hence, a wide range of materials covering food products, building materials, ores and fuels, and biological materials have been investigated for their dielectric properties. However, very few studies have been conducted towards the measurement of dielectric properties of green vegetations, including commercially important plant crops such as alfalfa. Because of its high nutritional value, there is a huge demand for this plant and its processed products in national and international markets, and an investigation into the possibility of applying microwaves to improve both the net yield and quality of the crop can be beneficial. Therefore, a dielectric measurement system based upon the probe reflection technique has been set up to measure dielectric properties of green plants over a frequency range from 300 MHz to 18 GHz, moisture contents from 12%, wet basis to 79%, wet basis, and temperatures from -15°C to 30°C. Dielectric properties of chopped alfalfa were measured with this system over frequency range of 300 MHz to 18 GHz, moisture content from 11.5%, wet basis, to 73%, wet basis, and density over the range from 139 kg m-3 to 716 kg m-3 at 23°C. The system accuracy was found to be +/-6% and +/-10% in measuring the dielectric constant and loss factor respectively. Empirical, semi empirical and theoretical models that require only moisture content and operating frequency were determined to represent the dielectric properties of both leaves and stems of alfalfa at 22°C. The empirical models fitted the measured dielectric data extremely well. The root mean square error (RMSE) and the coefficient of determination (r2) for dielectric constant and loss factor of leaves

  4. On the Dielectric Constant for Acetanilide: Experimental Measurements and Effect on Energy Transport

    Science.gov (United States)

    Careri, G.; Compatangelo, E.; Christiansen, P. L.; Halding, J.; Skovgaard, O.

    1987-01-01

    Experimental measurements of the dielectric constant for crystalline acetanilide powder for temperatures ranging from - 140°C to 20°C and for different hydration levels are presented. A Davydov-soliton computer model predicts dramatic changes in the energy transport and storage for typically increased values of the dielectric constant.

  5. Dielectric properties of almond shells in the development of radio frequency and microwave pasteurization

    Science.gov (United States)

    To develop pasteurization treatments based on radio frequency (RF) or microwave energy, dielectric properties of almond shells were determined using an open-ended coaxial-probe with an impedance analyzer over a frequency range of 10 to 1800 MHz. Both the dielectric constant and loss factor of almond...

  6. Structural, electrical, and dielectric properties of Cr doped ZnO thin films: Role of Cr concentration

    Energy Technology Data Exchange (ETDEWEB)

    Gürbüz, Osman, E-mail: osgurbuz@yildiz.edu.tr; Okutan, Mustafa

    2016-11-30

    Highlights: • Magnetic material of Cr and semiconductor material of ZnO were grown by the magnetron sputtering co-sputter technique. • Perfect single crystalline structures were grown. • DC and AC conductivity with dielectric properties as a function of frequency (f = 5Hz–13 MHz) at room temperature were measured and compared. • Cr doped ZnO can be used in microwave, sensor and optoelectronic devices as the electrical conductivity increases while dielectric constant decreases with the Cr content. - Abstract: An undoped zinc oxide (ZnO) and different concentrations of chromium (Cr) doped ZnO Cr{sub x}ZnO{sub 1−x} (x = 3.74, 5.67, 8.10, 11.88, and 15.96) thin films were prepared using a magnetron sputtering technique at room temperature. These films were characterized by X-ray diffraction (XRD), High resolution scanning electron microscope (HR-SEM), and Energy dispersive X-ray spectrometry (EDS). XRD patterns of all the films showed that the films possess crystalline structure with preferred orientation along the (100) crystal plane. The average crystallite size obtained was found to be between 95 and 83 nm which was beneficial in high intensity recording peak. Both crystal quality and crystallite sizes decrease with increasing Cr concentration. The crystal and grain sizes of the all film were investigated using SEM analysis. The surface morphology that is grain size changes with increase Cr concentration and small grains coalesce together to form larger grains for the Cr{sub 11.88}ZnO and Cr{sub 15.96}ZnO samples. Impedance spectroscopy studies were carried out in the frequencies ranging from 5 Hz to 13 MHz at room temperature. The undoped ZnO film had the highest dielectric value, while dielectric values of other films decreased as doping concentrations increased. Besides, the dielectric constants decreased whereas the loss tangents increased with increasing Cr content. This was considered to be related to the reduction of grain size as Cr content in Zn

  7. Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy

    International Nuclear Information System (INIS)

    Fischer, B M; Walther, M; Jepsen, P Uhd

    2002-01-01

    The far-infrared dielectric function of a wide range of organic molecules is dominated by vibrations involving a substantial fraction of the atoms forming the molecule and motion associated with intermolecular hydrogen bond vibrations. Due to their collective nature such modes are highly sensitive to the intra- and intermolecular structure and thus provide a unique fingerprint of the conformational state of the molecule and effects of its environment. We demonstrate the use of terahertz time-domain spectroscopy (THz-TDS) for recording the far-infrared (0.5-4.0 THz) dielectric function of the four nucleobases and corresponding nucleosides forming the building blocks of deoxyribose nucleic acid (DNA). We observe numerous distinct spectral features with large differences between the molecules in both frequency-dependent absorption coefficient and index of refraction. Assisted by results from density-functional calculations we interpret the origin of the observed resonances as vibrations of hydrogen bonds between the molecules

  8. Degradation diagnosis of transformer insulating oils with terahertz time-domain spectroscopy

    Science.gov (United States)

    Kang, Seung Beom; Kim, Won-Seok; Chung, Dong Chul; Joung, Jong Man; Kwak, Min Hwan

    2017-12-01

    We report the frequency-dependent complex optical constants, refractive index and absorption, and complex dielectric properties over the frequency range from 0.2 to 3.0 THz for aged power transformer mineral insulating oils. These results have been obtained using terahertz time-domain spectroscopy (THz-TDS) and demonstrate the double-Debye relaxation behavior of the mineral insulating oil. The measured complex optical and dielectric characteristics can be important benchmarks for liquid molecular dynamics and theoretical studies of insulating oils. Due to clear differences in THz responses of aged mineral insulating oils, THz-TDS can be used as a novel on-site diagnostic technique to monitor the insulation condition in aged power transformers and may be valuable alternative to characterize other developing eco-friendly insulating oils and industrial liquids.

  9. Improvement in photoconductor film properties by changing dielectric layer structures

    International Nuclear Information System (INIS)

    Kim, S; Oh, K; Lee, Y; Jung, J; Cho, G; Jang, G; Cha, B; Nam, S; Park, J

    2011-01-01

    In recent times, digital X-ray detectors have been actively applied to the medical field; for example, digital radiography offers the potential of improved image quality and provides opportunities for advances in medical image management, computer-aided diagnosis and teleradiology. In this study, two candidate materials (HgI 2 and PbI 2 ) have been employed to study the influence of the dielectric structure on the performance of fabricated X-ray photoconducting films. Parylene C with high permittivity was deposited as a dielectric layer using a parylene deposition system (PDS 2060). The structural and morphological properties of the samples were evaluated field emission scanning electron microscopy and X-ray diffraction. Further, to investigate improvements in the electrical characteristics, a dark current in the dark room and sensitivity to X-ray exposure in the energy range of general radiography diagnosis were measured across the range of the operating voltage. The electric signals varied with the dielectric layer structure of the X-ray films. The PbI 2 film with a bottom dielectric layer showed optimized electric properties. On the other hand, in the case of HgI 2 , the film with a top dielectric layer showed superior electric characteristics. Further, although the sensitivity of the film decreased, the total electrical efficiency of the film improved as a result of the decrease in dark current. When a dielectric layer is deposited on a photoconductor, the properties of the photoconductor, such as hole-electron mobility, should be considered to improve the image quality in digital medical imaging application. In this study, we have thus demonstrated that the use of dielectric layer structures improves the performance of photoconductors.

  10. Interconnect Between a Waveguide and a Dielectric Waveguide Comprising an Impedance Matched Dielectric Lens

    Science.gov (United States)

    Decrossas, Emmanuel (Inventor); Chattopadhyay, Goutam (Inventor); Chahat, Nacer (Inventor); Tang, Adrian J. (Inventor)

    2016-01-01

    A lens for interconnecting a metallic waveguide with a dielectric waveguide is provided. The lens may be coupled a metallic waveguide and a dielectric waveguide, and minimize a signal loss between the metallic waveguide and the dielectric waveguide.

  11. Electron spectroscopy

    International Nuclear Information System (INIS)

    Hegde, M.S.

    1979-01-01

    An introduction to the various techniques in electron spectroscopy is presented. These techniques include: (1) UV Photoelectron spectroscopy, (2) X-ray Photoelectron spectroscopy, (3) Auger electron spectroscopy, (4) Electron energy loss spectroscopy, (5) Penning ionization spectroscopy and (6) Ion neutralization spectroscopy. The radiations used in each technique, the basis of the technique and the special information obtained in structure determination in atoms and molecules by each technique are summarised. (A.K.)

  12. Impedance spectroscopy of p-ZnGa{sub 2}Te{sub 4}/n-Si nano-HJD

    Energy Technology Data Exchange (ETDEWEB)

    Fouad, S.S. [Thin film Laboratory, Department of Physics, Faculty of Education, Ain Shams University, Roxy, Cairo (Egypt); Sakr, G.B. [Nano-Science Laboratory, Physics Department, Faculty of Education, Ain Shams University, Roxy, Cairo (Egypt); Yahia, I.S., E-mail: dr_isyahia@yahoo.com [Nano-Science Laboratory, Physics Department, Faculty of Education, Ain Shams University, Roxy, Cairo (Egypt); Semiconductor Laboratory, Physics Department, Faculty of Education, Ain Shams University, Roxy, Cairo (Egypt); Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha (Saudi Arabia); Abdel-Basset, D.M. [Nano-Science Laboratory, Physics Department, Faculty of Education, Ain Shams University, Roxy, Cairo (Egypt); Yakuphanoglu, F. [Department of Physics, Faculty of Science, Firat University, Elazig (Turkey)

    2013-04-15

    The dielectric relaxation and alternating current mechanisms of nano-crystalline p-ZnGa{sub 2}Te{sub 4}/n-Si heterojunction diode (HJD) were investigated by complex impedance spectroscopy over a wide range of temperature (297–473 K) and a frequency range (42 Hz–5 MHz). The bulk resistance R{sub b} as well as the bulk capacitance C{sub b} were found to increase with increasing temperature. The dc conductivity exhibits a typical Arrhenius behavior. The electrical activation energy ΔE{sub σ} was determined to be (0.28 eV). The ac conductivity spectrum was found to obey Jonscher's universal power law. The frequency exponent s decreases slightly with increasing temperature. The temperature dependence of ac conductivity can be reasonably interpreted in terms of the correlated barrier hopping (CBH) model. The dielectric constant ε{sub 1}(ω) and dielectric loss ε{sub 2}(ω) were found to decrease with increasing frequency and to increase with increasing temperature. The mean value of the exponent m decreases with increasing temperature. The dielectric analysis is described by non-Debye type behavior.

  13. Transformation Algorithm of Dielectric Response in Time-Frequency Domain

    Directory of Open Access Journals (Sweden)

    Ji Liu

    2014-01-01

    Full Text Available A transformation algorithm of dielectric response from time domain to frequency domain is presented. In order to shorten measuring time of low or ultralow frequency dielectric response characteristics, the transformation algorithm is used in this paper to transform the time domain relaxation current to frequency domain current for calculating the low frequency dielectric dissipation factor. In addition, it is shown from comparing the calculation results with actual test data that there is a coincidence for both results over a wide range of low frequencies. Meanwhile, the time domain test data of depolarization currents in dry and moist pressboards are converted into frequency domain results on the basis of the transformation. The frequency domain curves of complex capacitance and dielectric dissipation factor at the low frequency range are obtained. Test results of polarization and depolarization current (PDC in pressboards are also given at the different voltage and polarization time. It is demonstrated from the experimental results that polarization and depolarization current are affected significantly by moisture contents of the test pressboards, and the transformation algorithm is effective in ultralow frequency of 10−3 Hz. Data analysis and interpretation of the test results conclude that analysis of time-frequency domain dielectric response can be used for assessing insulation system in power transformer.

  14. Spectroscopy for Dummies

    DEFF Research Database (Denmark)

    Lindvold, Lars René

    This presentation will give short introduction to the most pertinent topics of optical spectroscopy. The following topics will be discussed: • The origin of spectra in UV, VIS and IR spectral range • Spectroscopic methods like absorption, luminescence and Raman • Wavelength dispersive optical...... components • Materials for use optical spectroscopy • Spectrometer geometries • Detectors for use in spectrometer • Practical examples of optical spectroscopy The objective of this presentation is to give the audience a good feel for the range of possibilities that optical spectroscopy can provide....

  15. Studies of the Room-Temperature Multiferroic Pb(Fe0.5Ta0.5)0.4(Zr0.53Ti0.47)0.6O3: Resonant Ultrasound Spectroscopy, Dielectric, and Magnetic Phenomena

    Science.gov (United States)

    Schiemer, J; Carpenter, M A; Evans, D M; Gregg, J M; Schilling, A; Arredondo, M; Alexe, M; Sanchez, D; Ortega, N; Katiyar, R S; Echizen, M; Colliver, E; Dutton, S; Scott, J F

    2014-01-01

    Recently, lead iron tantalate/lead zirconium titanate (PZTFT) was demonstrated to possess large, but unreliable, magnetoelectric coupling at room temperature. Such large coupling would be desirable for device applications but reproducibility would also be critical. To better understand the coupling, the properties of all 3 ferroic order parameters, elastic, electric, and magnetic, believed to be present in the material across a range of temperatures, are investigated. In high temperature elastic data, an anomaly is observed at the orthorhombic mm2 to tetragonal 4mm transition, Tot = 475 K, and a softening trend is observed as the temperature is increased toward 1300 K, where the material is known to become cubic. Thermal degradation makes it impossible to measure elastic behavior up to this temperature, however. In the low temperature region, there are elastic anomalies near ≈40 K and in the range 160–245 K. The former is interpreted as being due to a magnetic ordering transition and the latter is interpreted as a hysteretic regime of mixed rhombohedral and orthorhombic structures. Electrical and magnetic data collected below room temperature show anomalies at remarkably similar temperature ranges to the elastic data. These observations are used to suggest that the three order parameters in PZTFT are strongly coupled. PMID:25844085

  16. Effect of SiO2/B2O3 Ratio on the Crystallization Behavior and Dielectric Properties of Barium Strontium Titanate Glass-Ceramics Prepared by Sol-Gel Process

    Science.gov (United States)

    Chen, Yongzhou; Zhang, Yong; Song, Xiaozhen; Shen, Ziqin; Zhang, Tianyuan

    2018-05-01

    Ferroelectric glass-ceramics, with a basic composition 90 wt.% (Ba0.65Sr0.35)TiO3-10 wt.% (B2O3-nSiO2) (n = 0.5, 1, 3, 5) were synthesized by the sol-gel method and their phase development and dielectric properties were investigated by differential thermal analysis, x-ray diffraction, field emission scanning electron microscopy, dielectric temperature curves and impedance spectroscopy. From the differential thermal analysis, glass transition and crystallization behavior can be observed. From the x-ray diffraction study, two crystalline phases (Ba,Sr)TiO3 and Ba2TiSi2O8 were formed over the entire composition range of the glass-ceramics. In addition, the main crystal phase has undergone a transformation from (Ba,Sr)TiO3 to Ba2TiSi2O8 with the increase of n. A typical structure in which the crystal phase was surrounded by a glassy matrix has been observed in the scanning electron microscope images. As a result of temperature dependent dielectric property measurements, the dielectric constant increased obviously with the increase of n from 0.5 to 1. Further increasing n led to a reduction of the dielectric constant, which is in coincidence with the variation of the intensity of (Ba,Sr)TiO3 phase with n. According to the impedance spectroscopy analysis and the activation energy calculation, the relaxation peak in both Z″ and M″ data should be attributed to the crystal-glass interface, and the change of conduction mechanism with the increase of SiO2/B2O3 ratio may be attributed to the corresponding transition of the main crystal phase.

  17. Study of HV Dielectrics for High Frequency Operation in Linear & Nonlinear Transmission Lines & Simulation & Development of Hybrid Nonlinear Lines for RF Generation

    Science.gov (United States)

    2015-08-27

    As shown in [4], [5], the capacitors based on PZT (lead-zirconate- titanate) and BT dielectrics have dielectric BD strength of the order of 50 kV/cm...results. Depending on the nonlinearity properties of the capacitor dielectric , input pulse rise time, output pulse sharpening and or RF soliton... capacitors in a frequency range up to 2 MHz, below the resonant frequency of the both dielectrics . As seen in Fig. 1, PZTs have better performance than

  18. Time domain spectroscopy to monitor the condition of cable insulation

    International Nuclear Information System (INIS)

    Mopsik, F.I.; Martzloff, F.D.

    1989-01-01

    The use of Time Domain Spectroscopy, the measurement of dielectric constant and loss using time-domain response, the monitoring the aging of reactor cable insulation is examined. The method is presented, showing its sensitivity, accuracy and wide frequency range. The method's ability to acquire a great deal of information in a short time and its superiority to conventional single frequency data is shown. Different cable samples are examined before and after exposure to radiation and changes with exposure are clearly seen to occur. Also it is shown that a wide range of behavior can be found in different insulation systems. The requirements for performing valid measurements is presented. The need for controlled samples and correlation with other criteria for aging is discussed. 14 refs., 9 figs

  19. Characterization, Microstructure, and Dielectric properties of cubic pyrochlore structural ceramics

    KAUST Repository

    Li, Yangyang

    2013-05-01

    The (BMN) bulk materials were sintered at 1050°C, 1100°C, 1150°C, 1200°C by the conventional ceramic process, and their microstructure and dielectric properties were investigated by Scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, Transmission electron microscopy (TEM) (including the X-ray energy dispersive spectrometry EDS and high resolution transmission electron microscopy HRTEM) and dielectric impedance analyzer. We systematically investigated the structure, dielectric properties and voltage tunable property of the ceramics prepared at different sintering temperatures. The XRD patterns demonstrated that the synthesized BMN solid solutions had cubic phase pyrochlore-type structure when sintered at 1050°C or higher, and the lattice parameter (a) of the unit cell in BMN solid solution was calculated to be about 10.56Å. The vibrational peaks observed in the Raman spectra of BMN solid solutions also confirmed the cubic phase pyrochlore-type structure of the synthesized BMN. According to the Scanning Electron Microscope (SEM) images, the grain size increased with increasing sintering temperature. Additionally, it was shown that the densities of the BMN ceramic tablets vary with sintering temperature. The calculated theoretical density for the BMN ceramic tablets sintered at different temperatures is about 6.7521 . The density of the respective measured tablets is usually amounting more than 91% and 5 approaching a maximum value of 96.5% for sintering temperature of 1150°C. The microstructure was investigated by using Scanning Transmission Electron Microscope (STEM), X-ray diffraction (XRD). Combined with the results obtained from the STEM and XRD, the impact of sintering temperature on the macroscopic and microscopic structure was discussed. The relative dielectric constant ( ) and dielectric loss ( ) of the BMN solid solutions were measured to be 161-200 and (at room temperature and 100Hz-1MHz), respectively. The BMN solid

  20. Structural and dielectric properties of yttrium-substituted hydroxyapatites

    Energy Technology Data Exchange (ETDEWEB)

    Kaygili, Omer, E-mail: okaygili@firat.edu.tr [Department of Physics, Faculty of Science, Firat University, 23119 Elazig (Turkey); Dorozhkin, Sergey V. [Kudrinskaja sq. 1-155, 123242 Moscow (Russian Federation); Ates, Tankut [Department of Physics, Faculty of Science, Firat University, 23119 Elazig (Turkey); Canan Gursoy, N. [Department of Microbiology and Clinic Microbiology, Inonu University, 44280 Malatya (Turkey); Keser, Serhat [Department of Chemistry, Faculty of Science, Firat University, 23119 Elazig (Turkey); Yakuphanoglu, Fahrettin [Department of Physics, Faculty of Science, Firat University, 23119 Elazig (Turkey); Birkan Selçuk, A. [Technology Department, Saraykoy Nuclear Research and Training Centre, 06983 Ankara (Turkey)

    2015-02-01

    Hydroxyapatite (HAp) samples doped with 0, 2 and 4 at.% of yttrium (Y) were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy attached with energy dispersive X-ray (EDX) spectroscopy, antimicrobial activity tests and dielectric studies. The hydroxyl groups observed in FTIR spectra confirmed the formation of HAp phase in the studied samples. The crystallite size, crystallinity degree and lattice parameters of the samples were changed with Y content. The volume of the unit cell was gradually decreased with the addition of Y. Undoped and Y-containing HAp samples were screened to determine their in vitro antimicrobial activities against the standard strains. It was found that no samples have any antimicrobial effect. The relative dielectric permittivity and dielectric loss are affected by Y content. While the alternating current conductivity increases with increasing frequency, it decreases with increasing Y content. - Highlights: • The lattice parameters and crystal size are affected by Y content. • The volume of the unit cell was gradually decreased with the addition of Y. • No samples have any antimicrobial effect. • The alternating current conductivity decreases with increasing Y content.

  1. Structural and dielectric properties of yttrium-substituted hydroxyapatites

    International Nuclear Information System (INIS)

    Kaygili, Omer; Dorozhkin, Sergey V.; Ates, Tankut; Canan Gursoy, N.; Keser, Serhat; Yakuphanoglu, Fahrettin; Birkan Selçuk, A.

    2015-01-01

    Hydroxyapatite (HAp) samples doped with 0, 2 and 4 at.% of yttrium (Y) were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy attached with energy dispersive X-ray (EDX) spectroscopy, antimicrobial activity tests and dielectric studies. The hydroxyl groups observed in FTIR spectra confirmed the formation of HAp phase in the studied samples. The crystallite size, crystallinity degree and lattice parameters of the samples were changed with Y content. The volume of the unit cell was gradually decreased with the addition of Y. Undoped and Y-containing HAp samples were screened to determine their in vitro antimicrobial activities against the standard strains. It was found that no samples have any antimicrobial effect. The relative dielectric permittivity and dielectric loss are affected by Y content. While the alternating current conductivity increases with increasing frequency, it decreases with increasing Y content. - Highlights: • The lattice parameters and crystal size are affected by Y content. • The volume of the unit cell was gradually decreased with the addition of Y. • No samples have any antimicrobial effect. • The alternating current conductivity decreases with increasing Y content

  2. Laser spectroscopy

    CERN Document Server

    Demtröder, Wolfgang

    2008-01-01

    Keeping abreast of the latest techniques and applications, this new edition of the standard reference and graduate text on laser spectroscopy has been completely revised and expanded. While the general concept is unchanged, the new edition features a broad array of new material, e.g., frequency doubling in external cavities, reliable cw-parametric oscillators, tunable narrow-band UV sources, more sensitive detection techniques, tunable femtosecond and sub-femtosecond lasers (X-ray region and the attosecond range), control of atomic and molecular excitations, frequency combs able to synchronize independent femtosecond lasers, coherent matter waves, and still more applications in chemical analysis, medical diagnostics, and engineering.

  3. Gamma Spectroscopy

    NARCIS (Netherlands)

    Niemantsverdriet, J.W.; Butz, Tilman; Ertl, G.; Knözinger, H.; Schüth, F.

    2008-01-01

    No abstract. The sections in this article are 1 Introduction 2 Mössbauer Spectroscopy 3 Time-Differential Perturbed Angular Correlations (TDPAC) 4 Conclusions and Outlook Keywords: Mössbauer spectroscopy; gamma spectroscopy; perturbed angular correlation; TDPAC

  4. Dielectric properties of polycarbonate coated natural fabric Grewia tilifolia

    CSIR Research Space (South Africa)

    Ramana, CHVV

    2011-12-01

    Full Text Available attraction of bio-fiber reinforced composites lie in their low density and high strength. Polymer composites of a polycarbonate coated with natural fabric Grewia tilifolia were studied by means of dielectric properties in the frequency range 100 Hz to 1 MHz...

  5. SFG analysis of the molecular structures at the surfaces and buried interfaces of PECVD ultralow-dielectric constant pSiCOH: Reactive ion etching and dielectric recovery

    Science.gov (United States)

    Myers, John N.; Zhang, Xiaoxian; Huang, Huai; Shobha, Hosadurga; Grill, Alfred; Chen, Zhan

    2017-05-01

    Molecular structures at the surface and buried interface of an amorphous ultralow-k pSiCOH dielectric film were quantitatively characterized before and after reactive ion etching (RIE) and subsequent dielectric repair using sum frequency generation (SFG) vibrational spectroscopy and Auger electron spectroscopy. SFG results indicated that RIE treatment of the pSiCOH film resulted in a depletion of ˜66% of the surface methyl groups and changed the orientation of surface methyl groups from ˜47° to ˜40°. After a dielectric recovery process that followed the RIE treatment, the surface molecular structure was dominated by methyl groups with an orientation of ˜55° and the methyl surface coverage at the repaired surface was 271% relative to the pristine surface. Auger depth profiling indicated that the RIE treatment altered the top ˜25 nm of the film and that the dielectric recovery treatment repaired the top ˜9 nm of the film. Both SFG and Auger profiling results indicated that the buried SiCNH/pSiCOH interface was not affected by the RIE or the dielectric recovery process. Beyond characterizing low-k materials, the developed methodology is general and can be used to distinguish and characterize different molecular structures and elemental compositions at the surface, in the bulk, and at the buried interface of many different polymer or organic thin films.

  6. Dielectric fluid directional spreading under the action of corona discharge

    Science.gov (United States)

    Zhou, Shangru; Liu, Jie; Hu, Qun; Jiang, Teng; Yang, Jinchu; Liu, Sheng; Zheng, Huai

    2018-01-01

    Liquid spreading is a very common nature phenomenon and of significant importance for a broad range of applications. In this study, a dielectric fluid directional spreading phenomenon is presented. Under the action of corona discharge, a dielectric fluid, here a typical silicone directionally spreads along conductive patterns on conductive/nonconductive substrates. Directional spreading behaviors of silicone were experimentally observed on different conductive patterns in detail. Spreading speeds were analyzed at different driving voltages, which induced the corona discharge. The presented phenomenon may be useful to inspire several techniques of manipulating liquid transportation and fabricating micropatterns.

  7. Dielectric properties of a potassium nitrate–ammonium nitrate system

    OpenAIRE

    Alexey Yu. Milinskiy; Anton A. Antonov

    2015-01-01

    Potassium nitrate has a rectangular hysteresis loop and is thought to be a promising material for non-volatile ferroelectric memory. However, its polar phase is observed in a narrow temperature range. This paper deals with an effect of ammonium nitrate NH4NO3 on the dielectric properties of potassium nitrate. Thermal dependencies of the linear dielectric permittivity ε and the third-harmonic coefficient g3 for potassium nitrate and polycrystalline binary (KNO3)1–x(NH4NO3)x system (x = 0.025, ...

  8. Absorption in one-dimensional metallic-dielectric photonic crystals

    International Nuclear Information System (INIS)

    Yu Junfei; Shen Yifeng; Liu Xiaohan; Fu Rongtang; Zi Jian; Zhu Zhiqiang

    2004-01-01

    We show theoretically that the absorption of one-dimensional metallic-dielectric photonic crystals can be enhanced considerably over the corresponding constituent metal. By properly choosing the structural and material parameters, the absorption of one-dimensional metallic-dielectric photonic crystals can be enhanced by one order of magnitude in the visible and in the near infrared regions. It is found that the absorptance of such photonic crystals increases with increasing number of periods. Rules on how to obtain a absorption enhancement in a certain frequency range are discussed. (letter to the editor)

  9. Dielectric and conductivity properties of composite polyaniline/polyurethane network

    Science.gov (United States)

    Liang, C.; Gest, J.; Leroy, G.; Carru, J.-C.

    2013-09-01

    In this work, we present the dielectric characterization of polyaniline/polyurethane composite. The samples consisting of 0.5%, 1%, and 5% of polyaniline were deposited on glass fiber, and the measurements were performed in a frequency range of 20 Hz to 20 GHz. The results showed a dielectric relaxation strongly dependent on the concentration of polyaniline. This phenomenon is explained by a theoretical model. In this model, we assume that the alternative conductivity of the polymer network systems is due to conducting clusters whose lengths followed a Gaussian distribution. Depending on their size and the frequency of the excitation signal, the clusters showed a resistive or capacitive effect.

  10. Electrical actuation of dielectric droplets

    International Nuclear Information System (INIS)

    Kumari, N; Bahadur, V; Garimella, S V

    2008-01-01

    Electrical actuation of liquid droplets at the microscale offers promising applications in the fields of microfluidics and lab-on-a-chip devices. Much prior research has targeted the electrical actuation of electrically conducting liquid droplets; however, the actuation of dielectric droplets has remained relatively unexplored, despite the advantages associated with the use of a dielectric droplet. This paper presents modeling and experimental results on the electrical actuation of dielectric droplets between two flat plates. A first-order analytical model, based on the energy-minimization principle, is developed to estimate the electrical actuation force on a dielectric droplet as it moves between two flat plates. Two versions of this analytical model are benchmarked for their suitability and accuracy against a detailed numerical model. The actuation force prediction is then combined with available semi-analytical expressions for predicting the forces opposing droplet motion to develop a model that predicts transient droplet motion under electrical actuation. Electrical actuation of dielectric droplets is experimentally demonstrated by moving transformer oil droplets between two flat plates under the influence of an actuation voltage. Droplet velocities and their dependence on the plate spacing and the applied voltage are experimentally measured and showed reasonable agreement with predictions from the models developed

  11. Method to characterize dielectric properties of powdery substances

    Science.gov (United States)

    Tuhkala, M.; Juuti, J.; Jantunen, H.

    2013-07-01

    An open ended coaxial cavity method for dielectric characterization of powdery substance operating at 4.5 GHz in TEM mode is presented. Classical mixing rules and electromagnetic modeling were utilized with measured effective permittivities and Q factors to determine the relative permittivity and dielectric loss tangent of different powders with ɛr up to 30. The modeling enabled determination of the correction factor for the simplified equation for the relative permittivity of an open ended coaxial resonator and mixing rules having the best correlation with experiments. SiO2, Al2O3, LTCC CT 2000, ZrO2, and La2O3 powders were used in the experiments. Based on the measured properties and Bruggeman symmetric and Looyenga mixing rules, the determined dielectric characteristics of the powders exhibited good correlation with values in the literature. The presented characterization method enabled the determination of dielectric properties of powdery substances within the presented range, and therefore could be applied to various research fields and applications where dielectric properties of powders need to be known and controlled.

  12. Hydrostatic pressure effects on the dielectric response of potassium cyanide

    International Nuclear Information System (INIS)

    Ortiz Lopez, J.

    1992-01-01

    The complex dielectric constant of crystalline KCN was measured under hydrostatic pressures up to 6.1 kbar in the temperature and frequency ranges of 50-300 K and 10-10 5 Hz, respectively. It is found that the pressure derivative of the real part of the dielectric constant at all measured temperatures is negative. From these results we obtain estimates for the pressure and volume derivatives of polarizabilities. The anomaly in the real part of the dielectric constant at the elastic order-disorder transition shifts to higher temperatures with increasing pressure at a rate of 2.05 K/kbar. By carefully avoiding thermal cycling through this transition we find no evidence of the monoclinic phase reported to exist in the P-T phase diagram of KCN at relatively low pressures. Dielectric loss measurements show thermally-activated CN - reorientation rates in the elastically ordered phase with pressure-independent reorientational barriers and decreasing attempt frequencies for increasing pressures. Additional pressure effects on dielectric loss allow to obtain the pressure derivative of the antiferroelectric transition temperature as 1.97 K/kbar. (Author)

  13. Dielectric properties of the ternary TeO2/Nb2O5/ZnO glasses

    International Nuclear Information System (INIS)

    Ahmad, Mohamad M.; Yousef, El Sayed; Moustafa, El Sayed

    2006-01-01

    Glasses of the system TeO 2 /Nb 2 O 5 /ZnO containing different concentration of ZnO (ranging from 5 to 20 mol%) were prepared. The dielectric properties over wide ranges of frequencies and temperatures were investigated as a function of ZnO content by impedance spectroscopy measurements. The impedance spectra of the present glasses were modeled by appropriate equivalent circuit. The dielectric constant has a value of 66 for the 85TeO 2 /10Nb 2 O 5 /5ZnO glass, which is three times larger than that of pure TeO 2 glass and other binary, e.g. TeO 2 /ZnCl 2 , tellurite glassy systems. The results have been analyzed in light of varying NbO 6 octahedra and NbO 4 tetrahedra of niobium oxide as zinc oxide varies from 5 to 20 mol%. The relaxation properties of the investigated glasses are presented in the electric modulus formalism, where the relaxation time and the respective activation energy are determined

  14. Ultralow frequency bridge for dielectric measurements: applications to electrects

    International Nuclear Information System (INIS)

    Slaets, J.

    1976-01-01

    The problem of U.L.F. (Ultra Low Frequency) dielectric relaxation is investigated. An experimental model is proposed for a bridge covering the range of 10 -3 Hz-10Hz, pased on phase shift measurements originally proposed by Van Turhout and collaborators. The main experimental problems are also analyzed with such U.L.F. measurements and describe its construction and performance. The theoretical correlation between U.L.F. dielectric relaxation and electret thermal stimulated currents is also investigated. A correction for the integral expression given by Turnhout and collaborators, is calculated in particular that takes into account the value of the activation energy in the relation between the two techniques.The correction is important for values of the activation energy below 0,5eV, which occur frequently in dielectric relaxation processes. (Author) [pt

  15. Dielectric studies of Graphene and Glass Fiber reinforced composites

    Science.gov (United States)

    Praveen, D.; Shashi Kumar, M. E.; Pramod, R.

    2018-02-01

    Graphene and E-glass fibres are one of the key materials used currently due to their unique chemical and mechanical properties. Lately graphene has attracted many researchers across academic fraternity as it can yield better properties with lesser reinforcement percentages. The current research emphasizes on the development of graphene-based nanocomposites and its investigation on dielectric applications. The composites were fabricated by adding graphene reinforcements from 1%-3% by weight using conventional Hand-lay process. A thorough investigation was carried out to determine the dielectric behaviour of the nano-composites using impedance analyser according to ASTM standards. The dielectric measurements were carried out in the temperature range of 300K to 400K in a step of 20K. The current research proposes the material for application in capacitor industry as the sample of 2.5% weight fraction showed highest value of K with 14 at 26.1 Hz and 403K.

  16. Investigation on ultracold RbCs molecules in (2)0{sup +} long-range state below the Rb(5S{sub 1/2}) + Cs(6P{sub 1/2}) asymptote by high resolution photoassociation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Jinpeng; Ji, Zhonghua; Li, Zhonghao; Zhao, Yanting, E-mail: zhaoyt@sxu.edu.cn; Xiao, Liantuan; Jia, Suotang [State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006 (China)

    2015-07-28

    We present high resolution photoassociation spectroscopy of RbCs molecules in (2)0{sup +} long-range state below the Rb(5S{sub 1/2}) + Cs(6P{sub 1/2}) asymptote and derive the corresponding C{sub 6} coefficient, which is used to revise the potential energy curves. The excited state molecules are produced in a dual-species dark spontaneous force optical trap and detected by ionizing ground state molecules after spontaneous decay, using a high sensitive time-of-flight mass spectrum. With the help of resonance-enhanced two-photon ionization technique, we obtain considerable high resolution photoassociation spectrum with rovibrational states, some of which have never been observed before. By applying the LeRoy-Bernstein method, we assign the vibrational quantum numbers and deduce C{sub 6} coefficient, which agrees with the theoretical value of A{sup 1}Σ{sup +} state correlated to Rb(5S{sub 1/2}) + Cs(6P{sub 1/2}) asymptote. The obtained C{sub 6} coefficient is used to revise the long-range potential energy curve for (2)0{sup +} state, which possesses unique A − b mixing characteristic and can be a good candidate for the production of absolutely ground state molecule.

  17. Application of attenuated total reflectance Fourier Transform Infrared spectroscopy (ATR-FTIR) in MIR range coupled with chemometrics for detection of pig body fat in pure ghee (heat clarified milk fat)

    Science.gov (United States)

    Upadhyay, Neelam; Jaiswal, Pranita; Jha, Shyam Narayan

    2018-02-01

    Pure ghee is superior to other fats and oils due to the presence of bioactive lipids and its rich flavor. Adulteration of ghee with cheaper fats and oils is a prevalent fraudulent practice. ATR-FTIR spectroscopy was coupled with chemometrics for the purpose of detection of presence of pig body fat in pure ghee. Pure mixed ghee was spiked with pig body fat @ 3, 4, 5, 10, 15% level. The spectra of pure (ghee and pig body fat) along with the spiked samples was taken in MIR from 4000 to 500 cm-1. Some wavenumber ranges were selected on the basis of differences in the spectra obtained. Separate clusters of the samples were obtained by employing principal component analysis at 5% level of significance on the selected wavenumber range. Probable class membership was predicted by applying SIMCA approach. Approximately, 90% of the samples classified into their respective class and pure ghee and pig body fat never misclassified themselves. The value of R2 was >0.99 for both calibration and validation sets using partial least square method. The study concluded that spiking of pig body fat in pure ghee can be detected even at a level of 3%.

  18. Non-linear dielectric monitoring of biological suspensions

    International Nuclear Information System (INIS)

    Treo, E F; Felice, C J

    2007-01-01

    Non-linear dielectric spectroscopy as a tool for in situ monitoring of enzyme assumes a non-linear behavior of the sample when a sinusoidal voltage is applied to it. Even many attempts have been made to improve the original experiments, all of them had limited success. In this paper we present upgrades made to a non-linear dielectric spectrometer developed and the results obtained when using different cells. We emphasized on the electrode surface, characterizing the grinding and polishing procedure. We found that the biological medium does not behave as expected, and the non-linear response is generated in the electrode-electrolyte interface. The electrochemistry of this interface can bias unpredictably the measured non-linear response

  19. Coherent atomic spectroscopy

    International Nuclear Information System (INIS)

    Garton, W.R.S.

    1988-01-01

    The Argonne Spectroscopy Laboratory, initiated and advanced over several decades by F.S. Tomkins and M. Fred, has been a major international facility. A range of collaborative work in atomic spectroscopy is selected to illustrate advances in experimental physics which have been made possible by combination of the talents of Tomkins and Fred with the unique facilities of the Argonne Laboratory. (orig.)

  20. Solid binary mixtures of neopentanol with tert-Butyl chloride and carbon tetrachloride studied by thermal, X-ray and dielectric techniques

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, Girish; Murthy, S.S.N., E-mail: ssnm0700@gmail.com

    2016-05-10

    Highlights: • DSC, dielectric and X-ray measurements have been done on TBC-NPOH and CTC-NPOH. • The results show the formation of solid solution for concentrations 0.7 ≤ x{sub m} ≤ 0.9. • A primary α-process and two sub-T{sub g} processes are found for TBC-NPOH. • For CTC-NPOH only one sub-T{sub g} process is found. • All the three sub-T{sub g} processes are Johari–Goldstein type. - Abstract: The binary mixtures of Neopentanol (NPOH) with tert-Butyl chloride (TBC) and Carbon tetrachloride (CTC), have been studied using Differential Scanning Calorimetry, Dielectric spectroscopy and X-ray diffraction techniques. The results indicate the formation of the solid solutions. The crystalline solid thus formed is found to be orientationally disordered and supercools easily to form glassy crystal for mole fraction of NPOH in the range of 0.7–0.9. The T{sub g} values are in the range of 140–147 K. In the dielectric study, a primary α-process and two sub-T{sub g} processes are found for TBC-NPOH, whereas for CTC-NPOH only one sub-T{sub g} process is found. The dielectric spectra of α- process follows the Havriliak–Negami equation. The sub-T{sub g} processes follow the Cole–Cole equation, and are found to be of Johari–Goldstein type, indicating intermolecular nature.

  1. Materials Fundamentals of Gate Dielectrics

    CERN Document Server

    Demkov, Alexander A

    2006-01-01

    This book presents materials fundamentals of novel gate dielectrics that are being introduced into semiconductor manufacturing to ensure the continuous scalling of the CMOS devices. This is a very fast evolving field of research so we choose to focus on the basic understanding of the structure, thermodunamics, and electronic properties of these materials that determine their performance in device applications. Most of these materials are transition metal oxides. Ironically, the d-orbitals responsible for the high dielectric constant cause sever integration difficulties thus intrinsically limiting high-k dielectrics. Though new in the electronics industry many of these materials are wel known in the field of ceramics, and we describe this unique connection. The complexity of the structure-property relations in TM oxides makes the use of the state of the art first-principles calculations necessary. Several chapters give a detailed description of the modern theory of polarization, and heterojunction band discont...

  2. Dielectric function of semiconductor superlattice

    International Nuclear Information System (INIS)

    Qin Guoyi.

    1990-08-01

    We present a calculation of the dielectric function for semiconductor GaAs/Ga 1-x Al x As superlattice taking account of the extension of the electron envelope function and the difference of both the dielectric constant and width between GaAs and Ga 1-x Al x As layers. In the appropriate limits, our results exactly reduce to the well-known results of the quasi two-dimensional electron gas obtained by Lee and Spector and of the period array of two-dimensional electron layers obtained by Das Sarma and Quinn. By means of the dielectric function of the superlattice, the dispersion relation of the collective excitation and the screening property of semiconductor superlattice are discussed and compared with the results of the quasi two-dimensional system and with the results of the periodic array of the two-dimensional electron layers. (author). 4 refs, 3 figs

  3. Investigation on dielectric relaxation of PMMA-grafted natural rubber incorporated with LiCF3SO3

    International Nuclear Information System (INIS)

    Yap, K.S.; Teo, L.P.; Sim, L.N.; Majid, S.R.; Arof, A.K.

    2012-01-01

    Natural rubber (NR) grafted with 30 wt% poly (methyl methacrylate) (PMMA) and designated as MG30 has been added with varying amounts of LiCF 3 SO 3 . X-ray diffraction (XRD) shows the samples to be amorphous. Fourier transform infrared (FTIR) spectroscopy indicates complexation between the cation of the salt and the oxygen atom of the C=O and -COO- groups of MG30. From electrochemical impedance spectroscopy (EIS), MG30 with 30 wt% LiCF 3 SO 3 salt exhibits the highest ambient conductivity of 1.69×10 -6 S cm -1 and lowest activation energy of 0.24 eV. The dielectric behavior has been analyzed using dielectric permittivity (ε′), dissipation factor (tan δ) and dielectric modulus (M ⁎ ) of the samples. The dielectric constant of pure MG30 has been estimated to be ∼1.86.

  4. Dielectric properties study of surface engineered nanoTiO2/epoxy ...

    Indian Academy of Sciences (India)

    2018-02-02

    Feb 2, 2018 ... 2Department of Physics, Sri Sathya Sai Institute of Higher Learning, Vidyagiri, ... the surface modifiers were not successful in obtaining the improved dielectric .... lent Technologies Inc., Santa Clara, CA) at a frequency range.

  5. Capacitive Cells for Dielectric Constant Measurement

    Science.gov (United States)

    Aguilar, Horacio Munguía; Maldonado, Rigoberto Franco

    2015-01-01

    A simple capacitive cell for dielectric constant measurement in liquids is presented. As an illustrative application, the cell is used for measuring the degradation of overheated edible oil through the evaluation of their dielectric constant.

  6. Dielectric behaviour of strontium tartrate single crystals

    Indian Academy of Sciences (India)

    Unknown

    dielectric loss (tan δ) as functions of frequency and temperature. Ion core type ... Since the data on dielectric properties of strontium tartrate trihydrate (STT) do not ... through 'AE' make 15-amp dimmerstat, the rate of heating was maintained ...

  7. The Dielectric Constant of Lubrication Oils

    National Research Council Canada - National Science Library

    Carey, A

    1998-01-01

    The values of the dielectric constant of simple molecules is discussed first, along with the relationship between the dielectric constant and other physical properties such as boiling point, melting...

  8. Changes of Dielectric Properties induced by Fast neutrons in Tissue Equivalent Plastic A-150

    International Nuclear Information System (INIS)

    Abdou, M.S.

    2000-01-01

    Tissue equivalent plastic A-150 (TEP A-150) samples are exposed to fast neutrons. Dielectric studies for TEP A-150 are carried out in the frequency range from 40 Hz to 4 MHz in the temperature range 295-343 K. The obtained data revealed that, both the dielectric properties and conductivity sigma ac (omega) of TEP A-150 are altered when irradiated by a relatively high fast neutron dose (15 Sv). The values of dielectric constant and conductivity are increased for the irradiated samples to about 24% than the blank samples

  9. Effects of ultrasonication and conventional mechanical homogenization processes on the structures and dielectric properties of BaTiO3 ceramics.

    Science.gov (United States)

    Akbas, Hatice Zehra; Aydin, Zeki; Yilmaz, Onur; Turgut, Selvin

    2017-01-01

    The effects of the homogenization process on the structures and dielectric properties of pure and Nb-doped BaTiO 3 ceramics have been investigated using an ultrasonic homogenization and conventional mechanical methods. The reagents were homogenized using an ultrasonic processor with high-intensity ultrasonic waves and using a compact mixer-shaker. The components and crystal types of the powders were determined by Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analyses. The complex permittivity (ε ' , ε″) and AC conductivity (σ') of the samples were analyzed in a wide frequency range of 20Hz to 2MHz at room temperature. The structures and dielectric properties of pure and Nb-doped BaTiO 3 ceramics strongly depend on the homogenization process in a solid-state reaction method. Using an ultrasonic processor with high-intensity ultrasonic waves based on acoustic cavitation phenomena can make a significant improvement in producing high-purity BaTiO 3 ceramics without carbonate impurities with a small dielectric loss. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. High-throughput identification of higher-κ dielectrics from an amorphous N2-doped HfO2–TiO2 library

    International Nuclear Information System (INIS)

    Chang, K.-S.; Lu, W.-C.; Wu, C.-Y.; Feng, H.-C.

    2014-01-01

    Highlights: • Amorphous N 2 -doped HfO 2 –TiO 2 libraries were fabricated using sputtering. • Structure and quality of the dielectric and interfacial layers were investigated. • κ (54), J L < 10 −6 A/cm 2 , and equivalent oxide thickness (1 nm) were identified. - Abstract: High-throughput sputtering was used to fabricate high-quality, amorphous, thin HfO 2 –TiO 2 and N 2 -doped HfO 2 –TiO 2 (HfON–TiON) gate dielectric libraries. Electron probe energy dispersive spectroscopy was used to investigate the structures, compositions, and qualities of the dielectric and interfacial layers of these libraries to determine their electrical properties. A κ value of approximately 54, a leakage current density <10 −6 A/cm 2 , and an equivalent oxide thickness of approximately 1 nm were identified in an HfON–TiON library within a composition range of 68–80 at.% Ti. This library exhibits promise for application in highly advanced metal–oxide–semiconductor (higher-κ) gate stacks

  11. Silicone elastomers with high dielectric permittivity and high dielectric breakdown strength based on tunable functionalized copolymers

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Yu, Liyun; Daugaard, Anders Egede

    2015-01-01

    system, with respect to functionalization, is achieved. It is investigated how the different functionalization variables affect essential DE properties, including dielectric permittivity, dielectric loss, elastic modulus and dielectric breakdown strength, and the optimal degree of chemical......%) was obtained without compromising other vital DE properties such as elastic modulus, gel fraction, dielectric and viscous loss and electrical breakdown strength....

  12. Oscillatory shear and high-pressure dielectric study of 5-methyl-3-heptanol

    DEFF Research Database (Denmark)

    Hecksher, Tina; Jakobsen, Bo; Dyre, J. C.

    2014-01-01

    The monohydroxy alcohol 5-methyl-3-heptanol is studied using rheology at ambient pressure and using dielectric spectroscopy at elevated pressures up to 1.03 GPa. Both experimental techniques reveal that the relaxational behavior of this liquid is intermediate between those that show a large Debye...

  13. Magnetic and dielectric properties of hexagonal InMnO.sub.3./sub..

    Czech Academy of Sciences Publication Activity Database

    Belik, A.A.; Kamba, Stanislav; Savinov, Maxim; Nuzhnyy, Dmitry; Tachibana, M.; Takayama-Muromachi, E.; Goian, Veronica

    2009-01-01

    Roč. 79, č. 5 (2009), 054411/1-054411/7 ISSN 1098-0121 R&D Projects: GA ČR(CZ) GA202/09/0682 Institutional research plan: CEZ:AV0Z10100520 Keywords : magnetoelectric multiferroics * phase transitions * dielectric spectroscopy * magnetic properties Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.475, year: 2009

  14. Dynamic mechanical and dielectric properties of ethylene vinyl acetate/carbon nanotube composites

    Czech Academy of Sciences Publication Activity Database

    Valentová, H.; Ilčíková, M.; Czaniková, K.; Špitalský, Z.; Šlouf, Miroslav; Nedbal, J.; Omastová, M.

    2014-01-01

    Roč. 53, č. 3 (2014), s. 496-512 ISSN 0022-2348 R&D Projects: GA TA ČR TE01020118 Institutional support: RVO:61389013 Keywords : carbon nanotubes * dielectric relaxation spectroscopy * dynamic mechanical analysis Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.740, year: 2014

  15. Mechanical, Dielectric, and Spectroscopic Characteristics of "Micro/Nanocellulose + Oxide" Composites

    Science.gov (United States)

    Nedielko, Maksym; Hamamda, Smail; Alekseev, Olexander; Chornii, Vitalii; Dashevskii, Mykola; Lazarenko, Maksym; Kovalov, Kostiantyn; Nedilko, Sergii G.; Tkachov, Sergii; Revo, Sergiy; Scherbatskyi, Vasyl

    2017-02-01

    The set of composite materials that consist of micro/nanocellulose and complex K2Eu(MoO4)(PO4) luminescent oxide particles was prepared. The composites were studied by means of scanning electron microscopy, XRD analysis, dilatometry, differential scanning calorimetry and thermogravimetric analysis, and dielectric and luminescence spectroscopy.

  16. Geometric phase from dielectric matrix

    International Nuclear Information System (INIS)

    Banerjee, D.

    2005-10-01

    The dielectric property of the anisotropic optical medium is found by considering the polarized photon as two component spinor of spherical harmonics. The Geometric Phase of a polarized photon has been evaluated in two ways: the phase two-form of the dielectric matrix through a twist and the Pancharatnam phase (GP) by changing the angular momentum of the incident polarized photon over a closed triangular path on the extended Poincare sphere. The helicity in connection with the spin angular momentum of the chiral photon plays the key role in developing these phase holonomies. (author)

  17. Charge accumulation in lossy dielectrics: a review

    DEFF Research Database (Denmark)

    Rasmussen, Jørgen Knøster; McAllister, Iain Wilson; Crichton, George C

    1999-01-01

    At present, the phenomenon of charge accumulation in solid dielectrics is under intense experimental study. Using a field theoretical approach, we review the basis for charge accumulation in lossy dielectrics. Thereafter, this macroscopic approach is applied to planar geometries such that the mat......At present, the phenomenon of charge accumulation in solid dielectrics is under intense experimental study. Using a field theoretical approach, we review the basis for charge accumulation in lossy dielectrics. Thereafter, this macroscopic approach is applied to planar geometries...

  18. Characterization and study of the electrical and dielectric properties of SrBi_4Ti_4O_1_5 (SBTi) added PbO and V_2O_5 for radio frequency (RF) applications

    International Nuclear Information System (INIS)

    Rodrigues Junior, C.A.; Freitas, D.B.; Fernandes, T.S.M.; Sombra, A.S.B.

    2011-01-01

    The objective of this work was to study the dielectric and electric properties in radio frequency (RF) of the compound SrBi_4Ti_4O_1_5 (SBTi) added with PbO and V_2O_5. The SBT ceramic, perovskite with cation deficiency A_5B_4O_1_5, was prepared by the solid state reaction method and then added with PbO (0, 2, 5, 10 and 15% by weight) and with V_2O_3 (in the range of 0.2 %, 5%, 10% and 15% by weight). The samples were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM). A study based on Impedance Spectroscopy was also performed. X-ray analysis indicates that all samples have orthorhombic crystalline system and spatial group A21am. The quantitative phase analysis performed by the Rietveld refinement confirmed the crystal structure with net parameter a = 5.4400 Å, b = 5.4326 Å and c = 41.2169 Å. Scanning electron microscopy shows globular and crystal shaped grains, with a certain uniformity in the grain size that is very small, between 1 and 2 μm approximately. Dielectric properties: dielectric constant (K ') and dielectric loss (tang δ) were measured at room temperature in the 40 Hz - 110 MHz frequency range, as well as the a.c. conductivity and have very relevant properties, such as dielectric constant above 50, for the production of possible capacitive devices. All samples were investigated for possible applications in electronic circuits

  19. Experimental Investigation of an X-Band Tunable Dielectric Accelerating Structure

    CERN Document Server

    Kanareykin, Alex; Karmanenko, Sergei F; Nenasheva, Elisaveta; Power, John G; Schoessow, Paul; Semenov, Alexei

    2005-01-01

    Experimental study of a new scheme to tune the resonant frequency for dielectric based accelerating structure (driven either by the wakefield of a beam or an external rf source) is underway. The structure consists of a single layer of conventional dielectric surrounded by a very thin layer of ferroelectric material situated on the outside. Carefully designed electrodes are attached to a thin layer of ferroelectric material. A DC bias can be applied to the electrodes to change the permittivity of the ferroelectric layer and therefore, the dielectric overall resonant frequency can be tuned. In this paper, we present the test results for an 11.424 GHz rectangular DLA prototype structure that the ferroelectric material's dielectric constant of 500 and show that a frequency tuning range of 2% can be achieved. If successful, this scheme would compensate for structure errors caused by ceramic waveguide machining tolerances and dielectric constant heterogeneity.

  20. The 'emergent scaling' phenomenon and the dielectric properties of random resistor-capacitor networks

    CERN Document Server

    Bouamrane, R

    2003-01-01

    An efficient algorithm, based on the Frank-Lobb reduction scheme, for calculating the equivalent dielectric properties of very large random resistor-capacitor (R-C) networks has been developed. It has been used to investigate the network size and composition dependence of dielectric properties and their statistical variability. The dielectric properties of 256 samples of random networks containing: 512, 2048, 8192 and 32 768 components distributed randomly in the ratios 60% R-40% C, 50% R-50% C and 40% R-60% C have been computed. It has been found that these properties exhibit the anomalous power law dependences on frequency known as the 'universal dielectric response' (UDR). Attention is drawn to the contrast between frequency ranges across which percolation determines dielectric response, where considerable variability is found amongst the samples, and those across which power laws define response where very little variability is found between samples. It is concluded that the power law UDRs are emergent pr...