WorldWideScience

Sample records for range 5-20 mev

  1. Elastic scattering of polarized protons by 20Ne between 4.5 Mev and 5.5 Mev

    International Nuclear Information System (INIS)

    Avila A, O.L.

    1979-01-01

    Starting with the study of 20 Ne(p,p) 20 nuclear reaction, we obtained information about the nuclear structure of 21 Na. The experiment was made at Notre Dame University; a target of 20 Ne was bombarded with polarized protons, changing the incident energy of them between 4.5 Mev and 5.5 Mev at intervals of 10 keV. Fourteen detectors were set covering angles from 35 degrees until 165 degrees, with intervals of 10 degrees each. In this form measurements for computing polarization and differential sections were obtained, with them an analysis of runnings of phase was made, and the parameters associated with two of the excited levels of the composed formed nucleous 21 Na, that are viewed as resonances in the section were settled; those resonances correspond to a level Psub(3/2) of energy excitation 6.877, a total width of 36 keV, and a level Fsub(7/2) of energy excitation 6.992 and total width of 48 keV. I hope that these results will be part of a set of values that will be utilized in order to confront them with the existent nuclear models. (author)

  2. Neutron radiative capture by the 241Am nucleus in the energy range 1 keV-20 MeV

    International Nuclear Information System (INIS)

    Zolotarev, K.I.; Ignatyuk, A.V.; Tolstikov, V.A.; Tertychnyj, G.Ya.

    1998-01-01

    Production of high actinides leads to many technological problems in the nuclear power. The 241 Am(n,γ) 242 Am reaction is one of the sources of high actinide buildup. So a knowledge of the radiative capture cross-section of 241 Am for neutron energies up to 20 MeV is of considerable important for present day fission reactors and future advanced reactors. The main goal of this paper is the evaluation of the excitation function for the reaction 241 Am(n,γ) 242 Am in the energy range 1 keV-20 MeV. The evaluation was done on the basis of analysed experimental data, data from theoretical model calculations and systematic predictions for 14.5 MeV and 20 MeV. Data from the present evaluation are compared with the cross-section values given in the evaluations carried out earlier. (author)

  3. Investigation of the neutron-proton-interaction in the energy range from 20 to 50 MEV

    International Nuclear Information System (INIS)

    Wilczynski, J.

    1984-07-01

    In the framework of the investigation of the isospin singlet part of the nucleon-nucleon-interaction in the energy range below 100 MeV two experiments were conducted, which were selected by sensitivity calculations. At the Karlsruhe polarized neutron facility POLKA the analyzing powers Asub(y) and Asub(yy) of the elastic n vector-p- and n vector-p vector-scattering were measured in the energy range from 20 to 50 MeV. The results of this epxeriment are compared to older data. In the energy range from 20 to 50 MeV the new data were analyzed together with other selected data of the nucleon-nucleon-system in phase shift analyses. The knowledge of the isospin singlet phase shifts 1 P 1 and 3 D 3 was improved by the new data. (orig./HSI) [de

  4. Actinide neutron-induced fission up to 20 MeV

    International Nuclear Information System (INIS)

    Maslov, V.M.

    2001-01-01

    Fission and total level densities modelling along with double-humped fission barrier parameters allow to describe available actinide neutron-induced fission cross section data in the incident neutron energy range of ∼ 10 keV - 20 MeV. Saddle asymmetries relevant to shell correction model calculations influence fission barriers, extracted by cross section data analysis. The inner barrier was assumed axially symmetric in case of U, Np and Pu neutron-deficient nuclei. It is shown that observed irregularities in neutron-induced fission cross section data in the energy range of 0.5-3 MeV could be attributed to the interplay of few-quasiparticle excitations in the level density of fissioning and residual nuclei. Estimates of first-chance fission cross section and secondary neutron spectrum model were validated by 238 U fission, (n,2n) and (n,3n) data description up to 20 MeV. (author)

  5. Actinide neutron-induced fission up to 20 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Maslov, V M [Radiation Physics and Chemistry Problems Institute, Minsk-Sosny (Belarus)

    2001-12-15

    Fission and total level densities modelling along with double-humped fission barrier parameters allow to describe available actinide neutron-induced fission cross section data in the incident neutron energy range of {approx} 10 keV - 20 MeV. Saddle asymmetries relevant to shell correction model calculations influence fission barriers, extracted by cross section data analysis. The inner barrier was assumed axially symmetric in case of U, Np and Pu neutron-deficient nuclei. It is shown that observed irregularities in neutron-induced fission cross section data in the energy range of 0.5-3 MeV could be attributed to the interplay of few-quasiparticle excitations in the level density of fissioning and residual nuclei. Estimates of first-chance fission cross section and secondary neutron spectrum model were validated by {sup 238}U fission, (n,2n) and (n,3n) data description up to 20 MeV. (author)

  6. Measurement of cross-sections for the reaction 103Rh (n,n')103mRh in the energy range 5.69 - 12 MeV and its evaluation from the threshold up to 20 MeV

    International Nuclear Information System (INIS)

    Hossain, M.M.M.

    1995-05-01

    The cross-sections for the reaction 103 R(n,n') 103m Rh were measured by the method of activation in the neutron energy range 5.69-12.00 MeV produced by the D(d,n) 3 He reaction. The irradiation of Rh foils was performed at zero degree to the incident beam direction and the activities of KX-rays from the decay of 103m Rh were measured by means of a calibrated Si(Li) detector. During irradiation, the neutron fluence was measured with a fission chamber in which a thin deposit of 238 U was located immediately behind the Rh foil. The measured cross-section with the corresponding uncertainty in the stated energy range is more accurate than all previous measurements in spite of rather large corrections due to break-up neutrons. The update of the evaluation for the same reaction in the energy range from threshold up to 20 MeV was carried out by using the weighted average of cross-sections based on both the experimental data including the present one and theoretical model calculations. The experimental data were renormalized with respect to the recent precision KX-ray emission probability (7.66 + 0.14) % where necessary. To perform the evaluation, the whole excitation function was divided into 33 energy groups of 0.2-1.0 MeV widths. The uncertainties of the evaluated cross-sections especially 6-12 MeV have been improved due to the inclusion of the new measurement. Overall, the results of the updated evaluation are a considerable improvement compared to the previous evaluation of this reaction and also to the recommended cross-section data of IRDF (International Reactor Dosimetry File). (author)

  7. Model calculation of neutron reaction data for 31P in the energy range from 0.1 to 20 MeV

    International Nuclear Information System (INIS)

    Li Jiangting; Ge Zhigang; Sun Xiuquan

    2006-01-01

    The neutron data calculation of 31 P in the energy range from 0.1 to 20 MeV was carried out. The neutron optical potential parameters for 31 P in energy range from O.1 to 20 MeV were obtained, based on the fitting of the available neutron experimental data with the code APOM94. The DWUCK4 code was used to investigate the cross section for neutron direct inelastic scattering. The re-evaluated neutron data is based on the available measured data by using the UNF code. The theoretical results reproduce the experimental data well, and the results were given in ENDF/B-6 format. (authors)

  8. Model calculation of neutron reaction data for {sup 31}P in the energy range from 0.1 to 20 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Jiangting, Li [Physics Department, Northwest Univ., Xi' an (China); Zhigang, Ge [China Nuclear Data Center, China Inst. of Atomic Energy, Beijing (China); Xiuquan, Sun [Engineering and Technology Department, Shenzhen University, Shenzhen (China)

    2006-07-15

    The neutron data calculation of {sup 31}P in the energy range from 0.1 to 20 MeV was carried out. The neutron optical potential parameters for {sup 31}P in energy range from O.1 to 20 MeV were obtained, based on the fitting of the available neutron experimental data with the code APOM94. The DWUCK4 code was used to investigate the cross section for neutron direct inelastic scattering. The re-evaluated neutron data is based on the available measured data by using the UNF code. The theoretical results reproduce the experimental data well, and the results were given in ENDF/B-6 format. (authors)

  9. NUCLEAR CROSS-SECTION CALCULATIONS IN THE 1 MEV TO 5 GEV RANGE WITH COMBINED SEMI-CLASSICAL AND QUANTUM MECHANICAL MODELS

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, F.B.

    2002-03-07

    In this work we describe neutron and proton induced reaction cross-sections for iron produced by the codes TNG and CEM95 in the 5 to 300 MeV energy range. TNG calculations cover the 5-90 MeV range, while CEM95 covers the 50-300 MeV high energy range. The two codes show some disagreements in the overlap energy range, both among themselves and with the experimental data, which are presently being addressed. The experimental data used are from NNDC and/or from LA150 NSE references. We also describe some developments for combining TNG and CEM95 into a new code called CETNG (Cascade Exciton TNG).

  10. Range-energy relations and stopping power of water, water vapour and tissue equivalent liquid for α particles over the energy range 0.5 to 8 MeV

    International Nuclear Information System (INIS)

    Palmer, R.B.J.; Akhavan-Rezayat, Ahmad

    1978-01-01

    Experimental range-energy relations are presented for alpha particles in water, water vapour and tissue equivalent liquid at energies up to 8 MeV. From these relations differential stopping powers are derived at 0.25 MeV energy intervals. Consideration is given to sources of error in the range-energy measurements and to the uncertainties that these will introduce into the stopping power values. The ratio of the differential stopping power of muscle equivalent liquid to that of water over the energy range 0.5 to 7.5 MeV is discussed in relation to the specific gravity and chemical composition of the muscle equivalent liquid. Theoretical molecular stopping power calculations based upon the Bethe formula are also presented for water. The effect of phase upon the stopping power of water is discussed. The molecular stopping power of water vapour is shown to be significantly higher than that of water for energies below 1.25 MeV and above 2.5 MeV, the ratio of the two stopping powers rising to 1.39 at 0.5 MeV and to 1.13 at 7.0 MeV. Stopping power measurements for other liquids and vapours are compared with the results for water and water vapour and some are observed to have stopping power ratios in the vapour and liquid phases which vary with energy in a similar way to water. It is suggested that there may be several factors contributing to the increased stopping power of liquids. The need for further experimental results on a wider range of liquids is stressed

  11. Microdosimetry of 0.5 to 2.0 MeV electron beams

    International Nuclear Information System (INIS)

    Braby, L.A.; Roesch, W.C.

    1980-08-01

    The energy imparted in microscopic volumes by electron beams with initial energies from 0.5 to 2.0 MeV has been measured at various depths in plastic. The problems associated with measuring energy deposition spectra of low LET radiations are serious, but the potential importance of these measurements in radiation biophysics justifies the effort required to obtain them. Recent results obtained by Goodhead et al. indicate an RBE greater than 2 for 0.3 keV x-rays compared to 250 kV x-rays, and our results with Chlamydomonas reinhardi indicate an RBE of 1.6 for a 1.5 MeV electron beam at a depth of 400 gm/cm 2 in lucite compared to the same beam at the surface. Development of a theory which appears to explain these results in terms of the microscopic distribution of energy deposition has motivated a detailed study of energy deposition spectra for an electron beam attenuated by various thicknesses of lucite. Simulated sites from 0.5 to 1.9 μm in diameter were studied. The values of anti y determined in these single event measurements compare favorably with those calculated from direct measurements of z reported previously. As expected, the means of the distributions increase significantly with increasing depth in an absorber

  12. A new evaluation of neutron data for the 209Bi between 10-5 eV and 20 MeV

    International Nuclear Information System (INIS)

    Bersillon, O.; Caput, B.; Philis, C.A.

    1982-09-01

    A new evaluation of neutron induced cross-sections on 209 Bi has been completed within the full energy range 10 - 5 eV - 20 MeV and put under ENDF format. A careful study of the resonance region led to a consistent set of resonance parameters. On this basis, the tabulated cross-sections (total, elastic, capture) have been calculated using the Reich-Moore formalism. At higher energies a consistent set of optical model parameters has been obtained by fitting mainly the total cross-section between 0.7 and 150 MeV and elastic scattering angular distributions from 4 to 24 MeV. The so obtained neutron penetrabilities have been used for Hauser-Feshbach statistical model calculations which have been completed with pre-equilibrium and direct interaction components to get elastic and inelastic cross sections, angular distributions, secondary neutron spectra and gamma production. All the results are generally in good agreement with the available experimental data [fr

  13. Neutron-induced fission cross-section of 233U, 241Am and 243Am in the energy range 0.5 MeV ≤ En ≤ 20 MeV

    International Nuclear Information System (INIS)

    Belloni, F.; Milazzo, P.M.; Calviani, M.

    2011-01-01

    Neutron-induced fission cross-sections of 233 U, 241 Am and 243 Am relative to 235 U have been measured in a wide energy range at the neutron time of flight facility n-TOF in Geneva to address the present discrepancies in evaluated and experimental databases for reactions and isotopes relevant for transmutation and new generation fast reactors. A dedicated fast ionization chamber was used. Each isotope was mounted in a different cell of the modular detector. The measurements took advantage of the characteristics of the n-TOF installation. Its intrinsically low background, coupled to its high instantaneous neutron flux, results in high accuracy data. Its wide energy neutron spectrum helps to reduce systematic uncertainties due to energy-domain matching problems while the 185 m flight path and a 6 ns pulse width assure an excellent energy resolution. This paper presents results obtained between 500 keV and 20 MeV neutron energy. (authors)

  14. Calculation of Multisphere Neutron Spectrometer Response Functions in Energy Range up to 20 MeV

    CERN Document Server

    Martinkovic, J

    2005-01-01

    Multisphere neutron spectrometer is a basic instrument of neutron measurements in the scattered radiation field at charged-particles accelerators for radiation protection and dosimetry purposes. The precise calculation of the spectrometer response functions is a necessary condition of the propriety of neutron spectra unfolding. The results of the response functions calculation for the JINR spectrometer with LiI(Eu) detector (a set of 6 homogeneous and 1 heterogeneous moderators, "bare" detector within cadmium cover and without it) at two geometries of the spectrometer irradiation - in uniform monodirectional and uniform isotropic neutron fields - are given. The calculation was carried out by the code MCNP in the neutron energy range 10$^{-8}$-20 MeV.

  15. The design and construction of a scintillation pair spectrometer for the detection of {gamma}-rays in the energy range 2-20 MeV; Realisation d'un spectrometre a scintillations et a paires pour la detection des rayonnements {gamma} d'energie comprise entre 2 et 20 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Longequeue, J P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-15

    The scintillation pair spectrometer is designed to allow the measurement of the energy of {gamma} rays in the range 2 to 20 MeV. Such an instrument is chosen because of its main features: high energy resolution and ease of working. Against this, however, the efficiency is low. It was possible to tolerate this low efficiency because of the facts that the {gamma}-rays studied emanated from (p, {gamma}) reactions and that the two electrostatic acceleration available could provide beams of 500 {mu}A having energy maxima at 300 and 600 keV. We used the {gamma} rays produced by the reactions {sup 23}Na (p, {gamma}) {sup 24}Mg, {sup 19}F (p, {alpha} {gamma}) {sup 16}O and {sup 7}Li (p, {gamma}) {sup 8}Be as well as the {gamma} rays emitted by sources of RTh and of {sup 24}Na. Under these conditions the spectrometer attained a resolving power of 6,5 {+-} 0,5 per cent at 6,1 MeV and it was able to separate the 14,8 and 17,6 MeV lines produced by the reaction {sup 7}Li (p, {gamma}) {sup 8}Be. As well as this, the efficiency which varied from 2.10{sup -4} to 1,7.10{sup -3} between 2 and 20 MeV was well above the efficiencies already obtained with this type of instrument. (author) [French] Le spectrometre a scintillations et a paires presente dans cette these a pour but de mesurer l'energie des rayonnements {gamma} dans la bande de 2 a 20 MeV. Le choix d'un tel appareil est du a ses caracteristiques essentielles: bonne resolution en energie et maniabilite. Par contre, son efficacite est faible. Nous avons pu tolerer cette faible efficacite car les rayonnements {gamma} que nous avons etudies provenaient de reactions (p, {gamma}) et les deux accelerateurs electrostatiques dont nous disposions pouvaient fournir des faisceaux de 500 {mu}A avec des energies maximum de 300 et 600 keV. Nous avons utilise les rayonnements {gamma} produits par les reactions {sup 23}Na (p, {gamma}) {sup 24}Mg, {sup 19}F (p, {alpha} {gamma}) {sup 16}O et {sup 7}Li (p, {gamma}) {sup 8}Be ainsi que les

  16. Measurement of the energy spectrum with proportional counters with spherical cathodes between 20 keV and 2.5 MeV with the propagation of 14 MeV neutrons in liquid nitrogen and liquid air

    International Nuclear Information System (INIS)

    Schneider-Kuehnle, P.

    1974-01-01

    This work deals with the measurement of the energy spectrum of a 14 MeV neutron source in liquid nitrogen and liquid air in the energy region of 20 keV to 2.5 MeV as a function of the distance from the source. The measured results together with those of a scintispectrometer which measures the energies between 2.5 MeV and 14 MeV, are to serve as experimentally-supported input data for shielding calculations and are to enable the checking of transport theoretical calculations. (orig./LH) [de

  17. Measurements of the prompt neutron spectra in 233U, 235U, 239Pu thermal neutron fission in the energy range of 0.01-5 MeV and in 252Cf spontaneous fission in the energy range of 0.01-10 MeV

    International Nuclear Information System (INIS)

    Starostov, B.I.; Semenov, A.F.; Nefedov, V.N.

    1978-01-01

    The measurement results on the prompt neutron spectra in 233 U, 235 U, 239 Pu thermal neutron fission in the energy range of 0.01-5 MeV and in 252 Cf spontaneous fission in the energy range of 0.01-10 MeV are presented. The time-of-flight method was used. The exceeding of the spectra over the Maxwell distributions is observed at E 252 Cf neutron fission spectra. The spectra analysis was performed after normalization of the spectra and corresponding Maxwell distributions for one and the same area. In the range of 0.05-0.22 MeV the yield of 235 U + nsub(t) fission neutrons is approximately 8 and approximately 15 % greater than the yield of 252 Cf and 239 Pu + nsub(t) fission neutrons, respectively. In the range of 0.3-1.2 MeV the yield of 235 U + nsub(t) fission neutrons is 8 % greater than the fission neutron yield in case of 239 Pu + nsub(t) fission. The 235 U + nsub(t) and 233 U + nsub(t) fission neutron spectra do not differ from one another in the 0.05-0.6 MeV range

  18. The evaluation of H total cross section from 20 MeV to 2 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Tingjin, Liu [Chinese Nuclear Data Center, Beijing, BJ (China)

    1996-06-01

    The H total cross section was evaluated in the neutron energy region from 20 to 2000 MeV. The recommended experimental data were fitted by using Spline fit program with knot optimization, the fit values are taken as recommended ones. The data are compared with those from ENDF/B-6 (<100 MeV), the differences are 0.5%{approx}2.0% from 20 to 40 MeV, and almost the same in the energy region 40{approx}100 MeV.

  19. Neutron total cross section measurements in the energy region from 47 keV to 20 MeV

    International Nuclear Information System (INIS)

    Poenitz, W.P.; Whalen, J.F.

    1983-05-01

    Neutron total cross sections were measured for 26 elements. Data were obtained in the energy range from 47 keV to 20 MeV for 11 elements in the range of light-mass fission products. Previously reported measurements for eight heavy and actinide isotopes were extended to 20 MeV. Data were also obtained for Cu (47 keV to 1.4 MeV) and for Sc, Zn, Nd, Hf, and Pt (1.8 to 20 MeV). The present work is part of a continuing effort to provide accurate neutron total cross sections for evaluations and for optical-model parameteriztions. The latter are required for the derivation of other nuclear-data information of importance to applied programs. 37 references

  20. Negative pion-nucleus elastic scattering at 20 and 40 MeV

    International Nuclear Information System (INIS)

    Burleson, G.; Blanpied, G.; Cottingame, W.; Daw, G.; Park, B.; Seth, K.K.; Barlow, D.; Iversen, S.; Kaletka, M.; Nann, H.; Saha, A.; Smith, D.; Redwine, R.P.; Burger, W.; Farkhondeh, M.; Saghai, B.; Anderson, R.

    1994-01-01

    Differential cross sections for the elastic scattering of 20 and 40 MeV π - by nuclei ranging from 12 C to 208 Pb are reported. Comparisons are made with the predictions of the Michigan State University (MSU) optical potential

  1. Ionization chamber with build-up cup spectral sensitivity to megavoltage (0.5-20 MeV) photon fluences in free air

    International Nuclear Information System (INIS)

    Gorlachev, G.E.

    2002-01-01

    In-air measurements of photon beam properties, used in radiation therapy, is common practice for determining radiation output dependence from the field size, known as head scatter factors (HSF). PMMA and brass build-up caps are most popular miniphantoms for providing electron equilibrium. Discrepancies up to 2% in HSF measurements by different combinations of detectors and equilibrium caps have been published. One of the main reasons of those discrepancies is the detector system spectral sensitivity and differences in primary and scatter radiation spectra. In the light of new model based dose calculation methods direct radiation fluence measurement is of great interest. So, understanding of detector spectral sensitivity is important task for modern dosimetry of radiation therapy. In the present study Monte Carlo (MC) method was employed to calculate ionization chamber response to monoenergetic photon fluences, normalized to water kerma units. Simulation was done using EGS4 package. Electron transport was performed with ESTEPE equal to 4%. PEGS cross sections were generated for maximal energy 20 MeV with cutoff kinetic energy 10 KeV both for photons and electrons. Scanditronix RK-05 ionization chamber was chosen as a prototype. Eight cylindrical miniphantoms, representing four materials (PMMA, Al, Cu, Pb) and two front wall thickness, were simulated. Results are presented. Miniphantom front wall thicknesses in each case are shown in the figure. Diameter depends on the material and equal respectively: PMMA - 4, Al - 2.5, Cu - 1.5, and PB - 1.5 cm. Ionization chamber outer diameter is equal to 0.7 cm. Detector sensitivity has considerable energy dependence. Two effects explain it. First is the radiation attenuation in the miniphantom. Second is pair production, which dominates in high atomic number miniphantoms for energies above 5 MeV. Depending on the miniphantom material detector response changes from 1.5 to 5 times in the energy range from 0.5 to 20 MeV. Correct

  2. Complete neutronic nuclear data evaluation for 85Rb and 87Rb from 10-5 eV to 20 MeV

    International Nuclear Information System (INIS)

    Simon, Gerard; Prince, Augustus; Lalie, Evelyne.

    1981-04-01

    The total, elastic, inelastic, capture, (n,p), (n,d), (n,t), (n, 3 He), (n,α), (n,2n), (n,n'p), (n,n'α) cross-sections have been evaluated for 85 Rb and 87 Rb in the 10 -5 eV - 20 MeV energy range. This evaluation is based on available experimental data and theoretical calculations carried out in the framework of spherical optical model and statistical model. Angular distributions for elastic and discret inelastic scattering, and energy distributions for continuum inelastic scattering and for (n,2n) reaction have also been calculated. This evaluation, set under ENDF/BIV format, completes and plainly improves the corresponding evaluation given in the ENDF/BIV files [fr

  3. Th{sup 232} (n,2n) Th{sup 231} cross section from threshold to 20.4 Mev

    Energy Technology Data Exchange (ETDEWEB)

    Butler, J P; Santry, D C

    1961-07-01

    The excitation curve for the reaction Th{sup 232} (n,2n) Th{sup 231} has been measured by the activation method from the threshold energy, 6.34 Mev, to 20.4 Mev, relative to the known cross section for the S{sup 32} (n, p) P{sup 32} reaction. Monoenergetic neutrons were obtained from the D (d,n) He{sup 3} and T (d,n) He{sup 4} reactions employing a Tandem Van de Graaff accelerator. From threshold to 9.0 Mev, the (n,2n) cross section rises rapidly, reaching its maximum value of 1.88 {+-} 0.09 barns in the region of 9.5 to 11.0 Mev. Above 11.5 Mev the (n,2n) cross section decreases due to competition of the (n,3n) and (n,2nf) reactions and at 20.4 Mev it has a value of 0.22{sub 5} {+-} 0.01{sub 5} barns. (author)

  4. Study of the thermal oxidation of titanium and zirconium under argon ion irradiation in the low MeV range (E = 15 MeV)

    International Nuclear Information System (INIS)

    Do, N.-L.

    2012-01-01

    We have shown that argon ion irradiation between 1 and 15 MeV produces damage on both titanium and zirconium surfaces, taking the form of accelerated oxidation and/or craterization effects, varying as a function of the projectile energy and the annealing atmosphere (temperature and pressure) simulating the environmental conditions of the fuel/cladding interface of PWR fuel rods. Using AFM, we have shown that the titanium and zirconium surface is attacked under light argon ion bombardment at high temperature (up to 500 C) in weakly oxidizing medium (under rarefied dry air pressure ranging from 5,7 10 -5 Pa to 5 10 -3 Pa) for a fixed fluence of about 5 10 14 ions.cm -2 . We observed the formation of nano-metric craters over the whole titanium surface irradiated between 2 and 9 MeV and the whole zirconium surface irradiated at 4 MeV, the characteristics of which vary depending on the temperature and the pressure. In the case of the Ar/Ti couple, the superficial damage efficiency increases when the projectile energy decreases from 9 to 2 MeV. Moreover, whereas the titanium surface seems to be transparent under the 15-MeV ion beam, the zirconium surface exhibits numerous micrometric craters surrounded by a wide halo. The crater characteristics (size and superficial density) differ significantly from that observed both in the low energy range (keV) where the energy losses are controlled by ballistic collisions (Sn) and in the high energy range (MeV - GeV) where the energy losses are controlled by electronic excitations (Se), which was not completely unexpected in this intermediate energy range for which combined Sn - Se stopping power effects are possibly foreseen. Using XPS associated to ionic sputtering, we have shown that there is an irradiation effect on thermal oxidation of titanium, enhanced under the argon ion beam between 2 and 9 MeV, and that there is also an energy effect on the oxide thickness and stoichiometry. The study conducted using Spectroscopic

  5. The H(n,n) cross section in the 20 MeV to 350 MeV range

    International Nuclear Information System (INIS)

    1997-01-01

    The differential H(n,n) cross section has been used as a standard relative to which other neutron emission cross sections, e.g., elastic or inelastic scattering, have been measured in several Mev region and these measured values are compared with the VL40 solution of R. Arndt, and R.L. Workman, Nuclear Data Standards for Nuclear Measurements, H. Conde (ed.). NEANDC-311, INDC (SEC)-101, 1992, p. 17. For hydrogen, the differential elastic scattering cross section can be directly related to the total cross section, since no other channels of importance are open below the pion production threshold at about 280 MeV (the capture and Bremsstrahlung cross section are very small). 16 refs, 3 figs

  6. Application of calorimeters for 5 MeV EB and bremsstrahlung dosimetry

    DEFF Research Database (Denmark)

    Sato, T.; Takahashi, T.; Saito, T.

    1993-01-01

    Graphite and water calorimeters, which were developed for use a 10 MeV electron beams (EB) at Riso National Laboratory, were used for process validation and routine dosimeter calibration at a 5 MeV EB. Water calorimeters were used for reference measurements for 5 MeV EB, the response was found...... to be directly proportional to the beam current and the variation among three water calorimeters was less than +/- 2 % in the range of 10 to 40 kGy. CTA, PMMA, RCD dosimeters were calibrated by irradiating the dosimeters and water calorimeters Simultaneously. The water calorimeter was proved to be an useful tool...... at 5 MeV EB. Graphite calorimeters gave reproducible readings within 3.3 % relative errors (95 % confidence level) for X-ray measurement....

  7. Application of calorimeters for 5 MeV EB and bremsstrahlung dosimetry

    International Nuclear Information System (INIS)

    Sato, Toshio; Takahashi, Toru; Saito, Toshio; Takehisa, Masaaki; Miller, A.

    1993-01-01

    Graphite and water calorimeters, which were developed for use with 10 MeV electron beams (EB) at Riso National Laboratory, were used for process validation and routine dosimeter calibration at a 5 MeV EB. Water calorimeters were used for reference measurements for 5 MeV EB, the response was found to be directly proportional to the beam current and the variation among three water calorimeters was less than ± 2% in the range of 10 to 40 kGy. CTA PMMA RCD dosimeters were calibrated by irradiating the dosimeters and water calorimeters simultaneously. The water calorimeter was proved to be an useful tool at 5 MeV EB. Graphite calorimeters gave reproducible readings within 3.3 % relative errors (95% confidence level) for X-ray measurement. (Author)

  8. Direct determination of k Q factors for cylindrical and plane-parallel ionization chambers in high-energy electron beams from 6 MeV to 20 MeV

    Science.gov (United States)

    Krauss, A.; Kapsch, R.-P.

    2018-02-01

    For the ionometric determination of the absorbed dose to water, D w, in high-energy electron beams from a clinical accelerator, beam quality dependent correction factors, k Q, are required. By using a water calorimeter, these factors can be determined experimentally and potentially with lower standard uncertainties than those of the calculated k Q factors, which are tabulated in various dosimetry protocols. However, one of the challenges of water calorimetry in electron beams is the small measurement depths in water, together with the steep dose gradients present especially at lower energies. In this investigation, water calorimetry was implemented in electron beams to determine k Q factors for different types of cylindrical and plane-parallel ionization chambers (NE2561, NE2571, FC65-G, TM34001) in 10 cm  ×  10 cm electron beams from 6 MeV to 20 MeV (corresponding beam quality index R 50 ranging from 1.9 cm to 7.5 cm). The measurements were carried out using the linear accelerator facility of the Physikalisch-Technische Bundesanstalt. Relative standard uncertainties for the k Q factors between 0.50% for the 20 MeV beam and 0.75% for the 6 MeV beam were achieved. For electron energies above 8 MeV, general agreement was found between the relative electron energy dependencies of the k Q factors measured and those derived from the AAPM TG-51 protocol and recent Monte Carlo-based studies, as well as those from other experimental investigations. However, towards lower energies, discrepancies of up to 2.0% occurred for the k Q factors of the TM34001 and the NE2571 chamber.

  9. Direct determination of k Q factors for cylindrical and plane-parallel ionization chambers in high-energy electron beams from 6 MeV to 20 MeV.

    Science.gov (United States)

    Krauss, A; Kapsch, R-P

    2018-02-06

    For the ionometric determination of the absorbed dose to water, D w , in high-energy electron beams from a clinical accelerator, beam quality dependent correction factors, k Q , are required. By using a water calorimeter, these factors can be determined experimentally and potentially with lower standard uncertainties than those of the calculated k Q factors, which are tabulated in various dosimetry protocols. However, one of the challenges of water calorimetry in electron beams is the small measurement depths in water, together with the steep dose gradients present especially at lower energies. In this investigation, water calorimetry was implemented in electron beams to determine k Q factors for different types of cylindrical and plane-parallel ionization chambers (NE2561, NE2571, FC65-G, TM34001) in 10 cm  ×  10 cm electron beams from 6 MeV to 20 MeV (corresponding beam quality index R 50 ranging from 1.9 cm to 7.5 cm). The measurements were carried out using the linear accelerator facility of the Physikalisch-Technische Bundesanstalt. Relative standard uncertainties for the k Q factors between 0.50% for the 20 MeV beam and 0.75% for the 6 MeV beam were achieved. For electron energies above 8 MeV, general agreement was found between the relative electron energy dependencies of the k Q factors measured and those derived from the AAPM TG-51 protocol and recent Monte Carlo-based studies, as well as those from other experimental investigations. However, towards lower energies, discrepancies of up to 2.0% occurred for the k Q factors of the TM34001 and the NE2571 chamber.

  10. Theoretical detection limit of PIXE analysis using 20 MeV proton beams

    Science.gov (United States)

    Ishii, Keizo; Hitomi, Keitaro

    2018-02-01

    Particle-induced X-ray emission (PIXE) analysis is usually performed using proton beams with energies in the range 2∼3 MeV because at these energies, the detection limit is low. The detection limit of PIXE analysis depends on the X-ray production cross-section, the continuous background of the PIXE spectrum and the experimental parameters such as the beam currents and the solid angle and detector efficiency of X-ray detector. Though the continuous background increases as the projectile energy increases, the cross-section of the X-ray increases as well. Therefore, the detection limit of high energy proton PIXE is not expected to increase significantly. We calculated the cross sections of continuous X-rays produced in several bremsstrahlung processes and estimated the detection limit of a 20 MeV proton PIXE analysis by modelling the Compton tail of the γ-rays produced in the nuclear reactions, and the escape effect on the secondary electron bremsstrahlung. We found that the Compton tail does not affect the detection limit when a thin X-ray detector is used, but the secondary electron bremsstrahlung escape effect does have an impact. We also confirmed that the detection limit of the PIXE analysis, when used with 4 μm polyethylene backing film and an integrated beam current of 1 μC, is 0.4∼2.0 ppm for proton energies in the range 10∼30 MeV and elements with Z = 16-90. This result demonstrates the usefulness of several 10 MeV cyclotrons for performing PIXE analysis. Cyclotrons with these properties are currently installed in positron emission tomography (PET) centers.

  11. 0,01-5 MeV heavy ion accelerators

    International Nuclear Information System (INIS)

    Golubev, V.P.; Ivanov, A.S.; Nikiforov, S.A.; Svin'in, M.P.; Tarvid, G.V.; Troshikhin, A.G.; Fedotov, M.T.

    1983-01-01

    The results of development of an accelerating complex on the base of the UP-2-1 heavy ion charge exchange accelerator and IMPLANT-500 high-voltage heavy ion accelerator are given. The accelerating complex provides overlapping of the 0.01 MeV to 5 MeV energy range at accelerated beam currents of 10 -3 -10 -6 A order. The structural features of accelerators and their basic units and systems are considered. The UP-2-1 accelerator is designed for researches in the field of experimental physics and applied problem solutions. The IMPLANT-500 accelerator is designed for commercial ion-beam facilities with closed loop of silicon plate treatment

  12. Recoil range distribution measurement in 20Ne + 181Ta reaction

    International Nuclear Information System (INIS)

    Tripathi, R.; Sudarshan, K.; Goswami, A.; Guin, R.; Reddy, A.V.R.

    2005-01-01

    In order to investigate linear momentum transfer in various transfer channels in 20 Ne + 181 Ta, recoil range distribution measurements have been carried out at E lab = 180 MeV, populating significant number of l-waves above l crit

  13. Fast neutron relaxation length in concretes in the range of neutron energies En=0.5 - 17.5 MeV

    International Nuclear Information System (INIS)

    Desdin, L.F.; Garcia, L.; Perez, G.; Hernandez, A.; Herrera, E.; Tellez, E.

    1998-01-01

    In the present research were determined the fast neutron relaxation length y in different type of concretes, having special interest for biological shielding as well as for ordinary construction purposes, in the energy interval of 0.5-17.5 MeV. The values of Y concrete are reported with an accuracy of 6 %

  14. Monte Carlo 20 and 45 MeV Bremsstrahlung and dose-reduction calculations

    Energy Technology Data Exchange (ETDEWEB)

    Goosman, D.R.

    1984-08-14

    The SANDYL electron-photon coupled Monte Carlo code has been compared with previously published experimental bremsstrahlung data at 20.9 MeV electron energy. The code was then used to calculate forward-directed spectra, angular distributions and dose-reduction factors for three practical configurations. These are: 20 MeV electrons incident on 1 mm of W + 59 mm of Be, 45 MeV electrons of 1 mm of W and 45 MeV electrons on 1 mm of W + 147 mm of Be. The application of these results to flash radiography is discussed. 7 references, 12 figures, 1 table.

  15. Monte Carlo 20 and 45 MeV Bremsstrahlung and dose-reduction calculations

    International Nuclear Information System (INIS)

    Goosman, D.R.

    1984-01-01

    The SANDYL electron-photon coupled Monte Carlo code has been compared with previously published experimental bremsstrahlung data at 20.9 MeV electron energy. The code was then used to calculate forward-directed spectra, angular distributions and dose-reduction factors for three practical configurations. These are: 20 MeV electrons incident on 1 mm of W + 59 mm of Be, 45 MeV electrons of 1 mm of W and 45 MeV electrons on 1 mm of W + 147 mm of Be. The application of these results to flash radiography is discussed. 7 references, 12 figures, 1 table

  16. Optimisation of 12 MeV electron beam simulation using variance reduction technique

    International Nuclear Information System (INIS)

    Jayamani, J; Aziz, M Z Abdul; Termizi, N A S Mohd; Kamarulzaman, F N Mohd

    2017-01-01

    Monte Carlo (MC) simulation for electron beam radiotherapy consumes a long computation time. An algorithm called variance reduction technique (VRT) in MC was implemented to speed up this duration. This work focused on optimisation of VRT parameter which refers to electron range rejection and particle history. EGSnrc MC source code was used to simulate (BEAMnrc code) and validate (DOSXYZnrc code) the Siemens Primus linear accelerator model with the non-VRT parameter. The validated MC model simulation was repeated by applying VRT parameter (electron range rejection) that controlled by global electron cut-off energy 1,2 and 5 MeV using 20 × 10 7 particle history. 5 MeV range rejection generated the fastest MC simulation with 50% reduction in computation time compared to non-VRT simulation. Thus, 5 MeV electron range rejection utilized in particle history analysis ranged from 7.5 × 10 7 to 20 × 10 7 . In this study, 5 MeV electron cut-off with 10 × 10 7 particle history, the simulation was four times faster than non-VRT calculation with 1% deviation. Proper understanding and use of VRT can significantly reduce MC electron beam calculation duration at the same time preserving its accuracy. (paper)

  17. Study of {sup 24}Na activity in concrete using 20-MeV proton beam on Cu

    Energy Technology Data Exchange (ETDEWEB)

    Oranj, Leila Mokhtanri; Jung, Nam Suk; Lee, Arim; Heo, Tae Min; Bakhtian, Mahdi; Lee, Hee Seock [POSTECH, Pohang (Korea, Republic of)

    2017-04-15

    The number of medical cyclotrons capable of accelerating protons to about 20 MeV is increasing in Korea. In such facilities, various radionuclides could be induced in shielding materials like concrete from secondary neutrons which Causes problems from the view point of radiation safety. Among these radionuclides, gamma-ray from {sup 24}Na (Tz1/2 = 15 h) is the most important origin of radiation exposure. {sup 24}Na could be produced from secondary neutrons on Na, Al and Mg component which exist in the concrete. {sup 24} Na Could be produced from thermal neutrons on Na and fast neutron with energy lower than 20 MeV on Al and Mg. Due to interaction of 20 MeV protons on Cu target, secondary neutrons with the energy of less than 20 MeV were produced. therefore, among the concrete components, Na, Al and Mg are only corespondent to produce {sup 24}Na. In this work, {sup 24}Na activity induced in concrete and chemical reagents of concrete (NaHCO{sub 3}, Al{sub 2}O{sub 3} and MgO) were measured. To produce neutrons, Cu target was irradiated by 20 MeV protons. Measured data were compared with results of simulations by FLUKA and MARS as well as earlier works and theocratical data. In the case of Mg and Al chemical reagents, FLUKA code overestimates our measurements by approximately four times, while, for Na sample, FLUKA underestimates the experimental data by almost 0.5. Data from FLUKA and measurement for the concrete are consistent. Calculation from TALYS for Mg overestimates the measured data by a factor of 2.5.

  18. Monte-Carlo method applied to the energy loss calculation of the gamma rays isotropic flux in the NaI(tau l) cylindrical scintillator between 0.5-20 MeV

    International Nuclear Information System (INIS)

    Martin, I.M.; Dutra, S.L.G.; Palmeira, R.A.R.

    1975-01-01

    Using the 'Monte Carlo' method, a determination was made of the response function of a NaI cylindrical crystal when exposed to an omnidirectional γ ray flux in the range 0.5 - 20 MeV. Improvements over previous similar calculations include considerations of the bremsstrahlung and multiple scattering processes in the slowing down of the secondary electrons. These calculations will be applied to the problem of determining the energy spectrum of an incident gamma ray flux from the measured response of the crystal in the space [pt

  19. Calculations of (n,2n) reaction cross sections for Barium isotopes from 5 to 20 MeV

    Science.gov (United States)

    Sahan, Halide; Sahan, Muhittin; Tel, Eyyup

    2017-09-01

    In this study, the excitation functions of (n,2n) reactions for 30,32,34,35,37,38Ba isotopes are calculated using TALYS 1.6, EMPIRE-3.2.2, and ALICE-GDH codes based on statistical model up to 20 MeV. Moreover, the cross section for each isotope have also been estimated at 14.2 MeV using semi empirical formula developed by four different authors. The calculated and estimated cross-sections are compared with experimental cross-sections from EXFOR and compared with the evaluation data in ENDF/B-VII.1 library. Results are close agreement with the experimental data from literature.

  20. Measurement of secondary neutrons and gamma rays produced by neutron interactions in aluminum over the incident energy range 1 to 20 MeV

    International Nuclear Information System (INIS)

    Morgan, G.L.

    1975-11-01

    The spectra of secondary neutrons and gamma rays produced by neutron interaction in a thin sample (approximately 1/6 mean free path) of aluminum have been measured as a function of the incident neutron energy over the range 1 to 20 MeV. Data were taken at an angle of 125 0 . A linac (ORELA) was used as a neutron source with a 47-m flight path. Incident energy was determined by time-of-flight, while secondary spectra were determined by pulse-height unfolding techniques. The results of the measurements are presented in forms suitable for comparison to calculations based on the evaluated data files. (6 tables, 4 figures)

  1. Double beta decay of Uranium-238: Proton reactions of 238U in 5--12 MeV range. Final report, April 15, 1987--March 31, 1992

    International Nuclear Information System (INIS)

    Turkevich, A.; Economou, T.E.

    1993-01-01

    This report is in two parts. The first part reports on the experimental work determining the half-life for double beta decay of 238 U to 238 PU to be (2.0 ± 0.6) x 10 21 years. This is the first evidence for a third mode of decay of this heaviest naturally occurring nucleus. This rate is about 10 6 times slower than spontaneous fission, which itself is about 10 6 times slower than alpha decay. The implication of this double beta decay to neutrino masses depends on uncertain theoretical calculations of the rate for such a heavy nucleus. The second part reports on yields of principal fission products from 5.6, 7.3, 9.4, and 11.5 MeV proton interactions with 238 U. The yields at 11.5 MeV are similar to those from 14 MeV neutron fission of 238 U. At the same time, the production cross sections of 238 Np at the same energies are determined. This nuclide is produced as often as fission at the lowest energy but only 3.8% as often at the highest energy

  2. Calibration of a large multi-element neutron counter in the energy range 85-430 MeV

    CERN Document Server

    Strong, J A; Esterling, R J; Garvey, J; Green, M G; Harnew, N; Jane, M R; Jobes, M; Mawson, J; McMahon, T; Robertson, A W; Thomas, D H

    1978-01-01

    Describes the calibration of a large 60 element neutron counter with a threshold of 2.7 MeV equivalent electron energy. The performance of the counter has been measured in the neutron kinetic energy range 8.5-430 MeV using a neutron beam at the CERN Synchrocyclotron. The results obtained for the efficiency as a function of energy are in reasonable agreement with a Monte Carlo calculation. (7 refs).

  3. Measurement of cross sections for the scattering of neutrons in the energy range from 2 MeV to 4 MeV with the 15N(p,n) reaction as neutron source

    International Nuclear Information System (INIS)

    Poenitz, Erik

    2010-01-01

    In future nuclear facilities, the materials lead and bismuth can play a more important role than in today's nuclear reactors. Reliable cross section data are required for the design of those facilities. In particular the neutron transport in the lead spallation target of an Accelerator-Driven Subcritical Reactor strongly depends on the inelastic neutron scattering cross sections in the energy region from 0.5 MeV to 6 MeV. In the recent 20 years, elastic and inelastic neutron scattering cross sections were measured with high precision for a variety of elements at the PTB time-of-flight spectrometer. The D(d,n) reaction was primarily used for the production of neutrons. Because of the Q value of the reaction and the available deuteron energies, neutrons in the energy range from 6 MeV to 16 MeV can be produced. For the cross section measurement at lower energies, however, another neutron producing reaction is required. The 15 N(p,n) 15 O reaction was chosen, as it allows the production of monoenergetic neutrons with up to 5.7MeV energy. In this work, the 15 N(p,n) reaction was studied with focus on the suitability as a source for monoenergetic neutrons in scattering experiments. This includes the measurement of differential cross sections for the neutron producing reaction and the choice of optimum target conditions. Differential elastic and inelastic neutron scattering cross sections were measured for lead at four energies in the region from 2 MeV to 4 MeV incident neutron energy using the time-of-flight technique. A lead sample with natural isotopic composition was used. NE213 liquid scintillation detectors with well-known detection efficiencies were used for the detection of the scattered neutrons. Angle-integrated cross sections were determined by a Legendre polynomial expansion using least-squares methods. Additionally, measurements were carried out for isotopically pure 209 Bi and 181 Ta samples at 4 MeV incident neutron energy. Results are compared with other

  4. Photonuclear and Radiation Effects Testing with a Refurbished 20 MeV Medical Electron Linac

    CERN Document Server

    Webb, Timothy; Beezhold, Wendland; De Veaux, Linda C; Harmon, Frank; Petrisko, Jill E; Spaulding, Randy

    2005-01-01

    An S-band 20 MeV electron linear accelerator formerly used for medical applications has been recommissioned to provide a wide range of photonuclear activation studies as well as various radiation effects on biological and microelectronic systems. Four radiation effect applications involving the electron/photon beams are described. Photonuclear activation of a stable isotope of oxygen provides an active means of characterizing polymer degradation. Biological irradiations of microorganisms including bacteria were used to study total dose and dose rate effects on survivability and the adaptation of these organisms to repeated exposures. Microelectronic devices including bipolar junction transistors (BJTs) and diodes were irradiated to study photocurrent from these devices as a function of peak dose rate with comparisons to computer modeling results. In addition, the 20 MeV linac may easily be converted to a medium energy neutron source which has been used to study neutron damage effects on transistors.

  5. Measurement of (n,/alpha/) cross sections of chromium, iron, and nickel in the 5- to 10-MeV neutron energy range

    International Nuclear Information System (INIS)

    Paulsen, A.; Liskien, H.; Arnotte, F.; Widera, R.

    1981-01-01

    A measuring program has been carried out at the Van de Graaff accelerator facility of the Central Bureau for Nuclear Measurements for the determination of (n,/alpha/) cross sections on the main constituents of fast reactor structural materials, namely the elements chromium, iron, and nickel. Results obtained in the energy range from 5 to 10 Mev are presented in terms of laboratory angle-differential cross sections, relative Legendre polynomial coefficients of angular distributions, angle-integrated cross sections, and average alpha energies. 13 refs

  6. Elastic scattering of 7Li projectiles in the energy range of 20 to 34 MeV

    International Nuclear Information System (INIS)

    Khallaf, S.A.E.

    1983-01-01

    As far as it is known, the Watanabe folding model has not been used to analyse the elastic scattering of 7 Li projectiles. The main purpose of the present work is to calculate the differential cross sections for 7 Li elastic scattering von 90 Zr, 48 , 40 Ca, 16 O and 12 C at incident energies of 20 to 34 MeV using the Watanabe folding model and to study the applicability of this model for 7 Li elastic scattering. The potentials of 7 Li ions are revealed by Taylor expansions of alpha and triton cluster potentials. The resulting differential cross sections are compared with the predicted cross sections using phenomenological potentials of 7 Li ions. (orig./WL)

  7. Performances of large BGO crystals below 20 MeV

    International Nuclear Information System (INIS)

    Burq, J.P.; Chemarin, M.; El Mamouni, H.

    1986-11-01

    This paper presents the performances of large tapered BGO crystals to low energy photons of 6 to 20 MeV. The read-out of the crystals was made with large area photodiodes associated to shaping amplifiers

  8. Software of the System Protection for the PEFP 20MeV Proton Linac

    International Nuclear Information System (INIS)

    Song, Young-Gi; Hong, In-Seok; Cho, Yong-Sub

    2007-01-01

    A 20 MeV proton linear accelerator (linac) has been developed at Proton Engineering Frontier Project (PEFP). A 20 MeV linac consists of 50 keV proton injector, 3 MeV radio frequency quadrupole (RFQ), and 20 MeV drift tube linac (DTL). PEFP control system is developed with several sub-systems (e.g. machine control, diagnostic control, timing control, and interlock systems). These systems have each EPICS based control system which provides a network-based real time distributed control. For stable and harmonic operation, we had developed sequential logic by using state notation language (SNL) and database records with alarm fields for warning signal. The various control system can drop a transmission rate of the control network traffic. We need to manage control signals by a control network gateway and protect values of control servers by security management. In this paper, the stabilization methods of the control signals are described and the results of the stabilized signals are presented

  9. HETC-3STEP calculations of proton induced nuclide production cross sections at incident energies between 20 MeV and 5 GeV

    International Nuclear Information System (INIS)

    Takada, Hiroshi; Yoshizawa, Nobuaki; Ishibashi, Kenji.

    1996-08-01

    For the OECD/NEA code intercomparison, nuclide production cross sections of 16 O, 27 Al, nat Fe, 59 Co, nat Zr and 197 Au for the proton incidence with energies of 20 MeV to 5 GeV are calculated with the HETC-3STEP code based on the intranuclear cascade evaporation model including the preequilibrium and high energy fission processes. In the code, the level density parameter derived by Ignatyuk, the atomic mass table of Audi and Wapstra and the mass formula derived by Tachibana et al. are newly employed in the evaporation calculation part. The calculated results are compared with the experimental ones. It is confirmed that HETC-3STEP reproduces the production of the nuclides having the mass number close to that of the target nucleus with an accuracy of a factor of two to three at incident proton energies above 100 MeV for nat Zr and 197 Au. However, the HETC-3STEP code has poor accuracy on the nuclide production at low incident energies and the light nuclide production through the fragmentation process induced by protons with energies above hundreds of MeV. Therefore, further improvement is required. (author)

  10. Pulse compression system for the ANL 20 MeV linac

    International Nuclear Information System (INIS)

    Mavrogenes, G.; Norem, J.; Simpson, J.

    1986-01-01

    This paper describes the pulse compression system being built on the Argonne 20 MeV electron linac. The system is designed to rotate the bunch from the present measured pulse length of 38 psec FWHM, to pulse lengths of 5 to 6 ps with the large instantaneous currents (1 to 4 kA) possible instantaneous current. This system was necessary to extend the study of reactive fragments of molecules to the time scale of a few picoseconds, in particular to examine the chemistry of electrons and ions before and during relaxation of the surrounding media. These experiments are not sensitive to the beam energy spread, High Energy Physics experiments studying wake fields have also been proposed using the short bunches and the facility was designed so that the wake field experiment could share the beam bunching system. The 20 MeV electron linac uses a double gap, 12th subharmonic prebuncher together with a one wavelength 1.3 Ghz prebuncher to produce a single pulse of 38 ps from one occupied rf bucket. Beam emittances of 15.7 mmmr have been measured for 40 nC of accelerated charge and 8 mmmr at 10 nC. The energy spread of dE/E = 1% (FWHM) has been measured at 40 nC. Thus the accelerated beam has excellent time structure, high current, and good emittance

  11. Evaluation of the 237Np neutron cross sections in the energy range from 10-5 eV to 5 MeV

    International Nuclear Information System (INIS)

    Derrien, H.; Fort, E.

    1979-01-01

    The 237 Np neutron cross-sections have been evaluated in the energy range from thermal to 5 MeV. A set of resonance parameters including a negative level, is recommanded after examination of the available experimental data. This set is used 1) to calculate the cross-sections from the thermal region to 150 ev, and 2) to provide the statistical parameters suitable to the calculations in the unresolved region. At higher energies, the transmission coefficients Te are calculated by the coupled channel optical model code ECIS. They are then used as input in the statistical model code FISINGA. The optical model parameters, including the deformation parameters, are those used by Lagrange for the Pu isotopes, slightly modified to reproduce at 40 KeV the total cross-sections obtained from the pure statistical parameters. The recommendations of Lynn concerning the level density parameters have been used. In this paper we describe the various steps of the evaluation

  12. Recoil proton polarization of neutral pion photoproduction from proton in the energy range between 400 MeV and 1142 MeV

    International Nuclear Information System (INIS)

    Kato, S.; Miyachi, T.; Sugano, K.; Toshioka, K.; Ukai, K.

    1979-08-01

    The recoil proton polarization of the reaction γp → π 0 p were measured at a C.M. angle of 100 0 for incident photon energies between 451 and 1106 MeV, and at an angle of 130 0 for energies from 400 MeV to 1142 MeV. One photon decayed from a π 0 -meson and a recoil proton were detected in coincidence. Two kinds of polarization scatterers were employed. In the range of proton kinetic energy less than 420 MeV and higher than 346 MeV, carbon plates and liquid hydrogen were used for determining the polarization. Results are compared with recent phenomenological analyses. From the Comparison between the present data and the asymmetry data given by the polarized target, the contribution of the invariant amplitudes A 3 can be estimated to be small at 100 0 . (author)

  13. HETC-3STEP calculations of proton induced nuclide production cross sections at incident energies between 20 MeV and 5 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Takada, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Yoshizawa, Nobuaki; Ishibashi, Kenji

    1996-08-01

    For the OECD/NEA code intercomparison, nuclide production cross sections of {sup 16}O, {sup 27}Al, {sup nat}Fe, {sup 59}Co, {sup nat}Zr and {sup 197}Au for the proton incidence with energies of 20 MeV to 5 GeV are calculated with the HETC-3STEP code based on the intranuclear cascade evaporation model including the preequilibrium and high energy fission processes. In the code, the level density parameter derived by Ignatyuk, the atomic mass table of Audi and Wapstra and the mass formula derived by Tachibana et al. are newly employed in the evaporation calculation part. The calculated results are compared with the experimental ones. It is confirmed that HETC-3STEP reproduces the production of the nuclides having the mass number close to that of the target nucleus with an accuracy of a factor of two to three at incident proton energies above 100 MeV for {sup nat}Zr and {sup 197}Au. However, the HETC-3STEP code has poor accuracy on the nuclide production at low incident energies and the light nuclide production through the fragmentation process induced by protons with energies above hundreds of MeV. Therefore, further improvement is required. (author)

  14. Exclusive data-based modeling of neutron-nuclear reactions below 20 MeV

    Science.gov (United States)

    Savin, Dmitry; Kosov, Mikhail

    2017-09-01

    We are developing CHIPS-TPT physics library for exclusive simulation of neutron-nuclear reactions below 20 MeV. Exclusive modeling reproduces each separate scattering and thus requires conservation of energy, momentum and quantum numbers in each reaction. Inclusive modeling reproduces only selected values while averaging over the others and imposes no such constraints. Therefore the exclusive modeling allows to simulate additional quantities like secondary particle correlations and gamma-lines broadening and avoid artificial fluctuations. CHIPS-TPT is based on the formerly included in Geant4 CHIPS library, which follows the exclusive approach, and extends it to incident neutrons with the energy below 20 MeV. The NeutronHP model for neutrons below 20 MeV included in Geant4 follows the inclusive approach like the well known MCNP code. Unfortunately, the available data in this energy region is mostly presented in ENDF-6 format and semi-inclusive. Imposing additional constraints on secondary particles complicates modeling but also allows to detect inconsistencies in the input data and to avoid errors that may remain unnoticed in inclusive modeling.

  15. Shielding calculations for industrial 5/7.5MeV electron accelerators using the MCNP Monte Carlo Code

    Science.gov (United States)

    Peri, Eyal; Orion, Itzhak

    2017-09-01

    High energy X-rays from accelerators are used to irradiate food ingredients to prevent growth and development of unwanted biological organisms in food, and by that extend the shelf life of the products. The production of X-rays is done by accelerating 5 MeV electrons and bombarding them into a heavy target (high Z). Since 2004, the FDA has approved using 7.5 MeV energy, providing higher production rates with lower treatments costs. In this study we calculated all the essential data needed for a straightforward concrete shielding design of typical food accelerator rooms. The following evaluation is done using the MCNP Monte Carlo code system: (1) Angular dependence (0-180°) of photon dose rate for 5 MeV and 7.5 MeV electron beams bombarding iron, aluminum, gold, tantalum, and tungsten targets. (2) Angular dependence (0-180°) spectral distribution simulations of bremsstrahlung for gold, tantalum, and tungsten bombarded by 5 MeV and 7.5 MeV electron beams. (3) Concrete attenuation calculations in several photon emission angles for the 5 MeV and 7.5 MeV electron beams bombarding a tantalum target. Based on the simulation, we calculated the expected increase in dose rate for facilities intending to increase the energy from 5 MeV to 7.5 MeV, and the concrete width needed to be added in order to keep the existing dose rate unchanged.

  16. CSDA range, stopping power and mean penetration depth energy relationships in some hydrocarbons and biologic materials for 10 eV to 100 MeV with the modified Rohrlich-Carlson model

    Energy Technology Data Exchange (ETDEWEB)

    Guemues, Hasan [Ondokuz Mayis University, Department of Physics, Faculty of Sciences and Arts, Samsun (Turkey); Bentabet, Abdelouahab [Bordj Bou Arreridj University, LCVRN, SNVSTU Faculty, El Anasser (Algeria)

    2017-05-15

    In this study, for some hydrocarbons and biological compounds, stopping power formula are presented, being valid for low and intermediate electron energies. In addition, calculation of the continuous slowing down approximation range (CSDA range) from the stopping power is also made. Calculation of the CSDA range for some hydrocarbons: C{sub 2}H{sub 6} (ethane), C{sub 4}H{sub 10} (butane), C{sub 6}H{sub 14} (hexane) C{sub 8}H{sub 18} (octane), C{sub 5}H{sub 5}N{sub 5} (adenine) and C{sub 5}H{sub 5}N{sub 5}O (guanine) have been introduced for incident electrons in the energy range 30 eV to 1 MeV. The range of electrons has been calculated within the continuous slowing down approximation (CSDA) using modified Rohrlich and Carlson formula of stopping power. Besides, we have calculated the mean penetration depths using a spherical geometric model developed by Bentabet (Vacuum 86:1855-1859, 35). The results have been compared with the other theoretical results, Monte Carlo code such as PENELOPE predictions and semi-empirical results. The calculated results of CSDA ranges for electrons in the energy range from 20 eV to 100 MeV are found to be in good agreement to within 10% with available date. (orig.)

  17. Cross section for the 103Rh(n,n')103Rhm reaction in the energy range 5.7 endash 12 MeV

    International Nuclear Information System (INIS)

    Miah, M.M.; Strohmaier, B.; Vonach, H.; Mannhart, W.; Schmidt, D.

    1996-01-01

    The 103 Rh(n,n ' ) 103 Rh m cross section was measured by the activation method in the neutron energy range 5.7 endash 12 MeV with an uncertainty of ≅5%. Monoenergetic neutrons produced by the D(d,n) 3 He reaction were used to irradiate metallic Rh samples at 0 degree relative to the deuteron beam. The K x rays from 103 Rh m were measured with a calibrated Si detector, and the neutron fluence was determined by means of a 238 U fission chamber. The measured cross sections resolve the discrepancies in previous data and agree with the results of recent statistical model calculations of the fast-neutron cross sections of rhodium. copyright 1996 The American Physical Society

  18. Development of polystyrene calorimeter for application at electron energies down to 1.5 MeV

    DEFF Research Database (Denmark)

    Miller, A.; Kovacs, A.; Kuntz, F.

    2002-01-01

    Polystyrene (PS) calorimeters developed at Riso National Laboratory for use below 4 MeV have been modified due to irradiation technology requirements concerning both design principles and dimensions. The temperature-time relationship after irradiation was measured, and two ways of dose measurement...... the average and the surface dose and to prove the applicability of the new low energy calorimeter for calibration purposes at 1.5 and 2 MeV electron energy. Alanine dosimeters of 2 mm thickness were used to calibrate the calorimeters and their use for nominal dose measurements was demonstrated in a series...... of intercomparisons. The use as routine dosimeters at electron accelerators operating in the energy range of 1.5-4 MeV was also demonstrated. (C) 2002 Elsevier Science Ltd. All rights reserved....

  19. Measurement of thick target neutron yield from the reaction (p+181 Ta) with projectiles in the range of 6-20 MeV

    Science.gov (United States)

    Paul, Sabyasachi; Sahoo, G. S.; Tripathy, S. P.; Sharma, S. C.; Joshi, D. S.; Bandyopadhyay, T.

    2018-02-01

    181Ta is a commonly used backing material for many targets in nuclear reaction studies. When the target thickness is less than the range of bombarded projectiles, the interaction via Ta(p,n) reactions in the backing can be a significant source of background. In this study, the neutron spectral yields from the reaction of protons of different energies (between 6 to 20 MeV) with a thick Ta target were determined using CR-39 detectors. The results from this study can be used as a correction factor in such situations. The parameters of registered tracks in CR-39 were analysed using an in-house image analysing program autoTRAK_n and then to derive the associated dose values. The spectral yields obtained experimentally were compared with those obtained from the theoretical calculations. The neutron yield was found to increase with increase in projectile energy mainly due to the opening of reaction channels from (p, n) to (p, 3n).

  20. Printed board dipole trim magnet design for 20 MeV LIA

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chengjun; Zhu, Wenjun; Zhang, Kaizhi; Zhang, Wenwei; Yu, Haijun [China Academy of Engineering Physics., Chengdu (China). Inst. of Fluid Physics

    1997-12-31

    The printed board dipole trim magnet design for a 20 MeV LIA is presented. The prototype dipole magnet with the sin/cos distributed windings has demonstrated more than 650 Gs-cm integrated dipole field and 1% integrated dipole field homogeneity within 5 cm in radius, which is about 40% of the magnet radius. Numerical modeling of two prototype magnet designs using the 3D magnetic field code SCMAG is presented as well as data from magnetic field measurements of the two magnets. The agreement between the calculations and measurements is accurate to 2-3%. (author). 3 figs., 4 refs.

  1. n + 2759Co(En≤20 MeV) nuclear data calculation and analysis

    International Nuclear Information System (INIS)

    Wang Shunuan

    2006-01-01

    Whole set of nuclear data calculation in ENDF/B-6 format for n + 27 59 Co (E n ≤20 MeV) has been finished by using spherical optical model, coupled channel optical model, pre-equilibrium exciton model and Hauser-Fashbach equilibrium statistical model. The calculated cross sections, angular distributions, spectrum and double differential cross sections by using codes of APOM, ECIS95 and UNF are compared with all existing experimental data for n + 27 59 Co(E n ≤20 MeV) takefrom EXFOR. The calculated results are analyzed from point of view of theoretical model and model parameters used. The work is for CENDL-3. (authors)

  2. Measurement of cross sections for the scattering of neutrons in the energy range from 2 MeV to 4 MeV with the {sup 15}N(p,n) reaction as neutron source; Messung von Wirkungsquerschnitten fuer die Streuung von Neutronen im Energiebereich von 2 MeV bis 4 MeV mit der {sup 15}N(p,n)-Reaktion als Neutronenquelle

    Energy Technology Data Exchange (ETDEWEB)

    Poenitz, Erik

    2010-04-26

    In future nuclear facilities, the materials lead and bismuth can play a more important role than in today's nuclear reactors. Reliable cross section data are required for the design of those facilities. In particular the neutron transport in the lead spallation target of an Accelerator-Driven Subcritical Reactor strongly depends on the inelastic neutron scattering cross sections in the energy region from 0.5 MeV to 6 MeV. In the recent 20 years, elastic and inelastic neutron scattering cross sections were measured with high precision for a variety of elements at the PTB time-of-flight spectrometer. The D(d,n) reaction was primarily used for the production of neutrons. Because of the Q value of the reaction and the available deuteron energies, neutrons in the energy range from 6 MeV to 16 MeV can be produced. For the cross section measurement at lower energies, however, another neutron producing reaction is required. The {sup 15}N(p,n){sup 15}O reaction was chosen, as it allows the production of monoenergetic neutrons with up to 5.7MeV energy. In this work, the {sup 15}N(p,n) reaction was studied with focus on the suitability as a source for monoenergetic neutrons in scattering experiments. This includes the measurement of differential cross sections for the neutron producing reaction and the choice of optimum target conditions. Differential elastic and inelastic neutron scattering cross sections were measured for lead at four energies in the region from 2 MeV to 4 MeV incident neutron energy using the time-of-flight technique. A lead sample with natural isotopic composition was used. NE213 liquid scintillation detectors with well-known detection efficiencies were used for the detection of the scattered neutrons. Angle-integrated cross sections were determined by a Legendre polynomial expansion using least-squares methods. Additionally, measurements were carried out for isotopically pure {sup 209}Bi and {sup 181}Ta samples at 4 MeV incident neutron energy

  3. Modification of EXIFON code and analysis of O16+n reactions in En=20-50 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Murata, Toru [Nippon Nuclear Fuel Development Co. Ltd., Oarai, Ibaraki (Japan)

    1997-03-01

    To evaluate the nuclear data concerning neutron induced reactions of O-16 and N-14 in the incident energy range of 20-50 MeV, the statistical multistep reaction code EXIFON was modified to include the outgoing channels of deuteron, triton and He-3. The calculated double differential cross sections (DDXs) with the modified code are compared with experimental DDXs. (author)

  4. The level structure of 13C around Esub(x)=20 MeV studied by polarised neutron scattering from 12C

    International Nuclear Information System (INIS)

    Tornow, W.; Woye, E.

    1987-01-01

    Analysing-power data for elastic scattering of neutrons from 12 C have been obtained at selected angles in small energy steps between incident energies of 15.55 and 17.35 MeV. The excitation energy, spin and parity of levels in 13 C have been determined for excitation energies around 20 MeV via a phase-shift analysis of these data and of previously measured n- 12 C total cross section data. In addition, an auxiliary phase-shift analysis has been performed in the neutron energy range from 12 to 15 MeV. All experimental data are well reproduced by the phase shifts obtained. The need for further experimental data is pointed out. (author)

  5. Polypropylene compositional evolution under 3.5 MeV He+ ion irradiation

    Science.gov (United States)

    Abdesselam, M.; Muller, D.; Djebara, M.; Chami, A. C.; Montgomery, P.

    2012-05-01

    A helium beam at 3.5 MeV was used to induce damage in thin polypropylene film of 5.1 μm in thickness. The fluence ranges from 2 × 1012 to 3.5 × 1015 cm-2. The evolution of the atomic composition (C and H) as a function of the fluence was investigated in situ by forward elastic scattering (C(α, α)C) and hydrogen elastic recoil detection (H(α, H)α), respectively. The helium beam was used at the same time for irradiation and analysis. In respect to the high sensitivity of the polypropylene to radiation damage, the beam current was kept at very low intensity of 0.5 nA. The mass loss becomes significant above a fluence of ˜5 × 1013 He+ cm-2. The carbon depletion levels off at a fluence of ˜5 × 1014 He+ cm-2 approximately while hydrogen loss continues to be present along the whole of the studied fluence range. The final carbon and hydrogen losses, at the highest fluence, are around 17% and 48% of their initial contents, respectively. Satisfactory fits to the release curves have been obtained in the framework of the bulk molecular recombination model (BMR). The deduced hydrogen and carbon release cross sections are 7.8 and 65.2 × 10-16 cm2, respectively. A comparison with our previous measurements of polyethylene terephthalate (PET) film irradiated with 3.7 MeV He+ beam is made.

  6. A technique for determining electron losses for a 20 MeV microtron

    International Nuclear Information System (INIS)

    Harisha, P.; Nayak, A.R.; Mehta, S.K.; Soni, H.C.; Siddappa, K.

    1999-01-01

    A 22 orbit, 20 MeV electron microtron is used as a preaccelerator for the 700 MeV booster synchrotron at INDUS-1, CAT, Indore. Estimation of electron losses at the RF cavity from each orbit is important in obtaining the radiation doses from the body of the microtron. Radiation mapping of the microtron can be used to estimate these loss terms as an alternate to actual measurement by using a measuring probe. (author)

  7. Analyses of Alpha-Alpha Elastic Scattering Data in the Energy Range 140 - 280 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Shehadeh, Zuhair F. [Taif University, Taif (Saudi Arabia)

    2017-01-15

    The differential and the reaction cross-sections for 4He-4He elastic scattering data have been nicely obtained at four energies ranging from 140 MeV to 280 MeV (lab system), namely, 140, 160, 198 and 280 MeV, by using a new optical potential with a short-range repulsive core. The treatment has been handled relativistically as υ/c > 0.25 for the two lower energies and υ/c > 0.31 for the two higher ones. In addition to explaining the elastic angular distributions, the adopted potentials accounted for the structure that may exist at angles close to 90◦ , especially for the 198 and the 280-MeV incident energies. No renormalization has been used, and all our potential parameters are new. The necessity of including a short-range repulsive potential term in our real nuclear potential part has been demonstrated. Our results contribute to solving a long-standing problem concerning the nature of the alpha-alpha potential. This is very beneficial in explaining unknown alpha-nucleus and nucleus-nucleus relativistic reactions by using the cluster formalism.

  8. Electrofission of 239Pu in the energy range 7 endash 12 MeV

    International Nuclear Information System (INIS)

    Arruda-Neto, J.D.; Yoneama, M.; Dias, J.F.; Garcia, F.; Reigota, M.A.; Likhachev, V.P.; Guzman, F.; Rodriguez, O.; Mesa, J.

    1997-01-01

    The electrofission cross section of 239 Pu(e,f) is measured between 7 and 12 MeV. The data are analyzed by means of the virtual photon formalism, assuming that E1, E2 (T=0), and M1 transitions are involved. Using known estimates for the E1 and E2 (T=0) fission strengths, it is deduced an M1 fission strength of 19±4μ N 2 concentrated near the fission barrier (between 5.4 and 5.8 MeV). The levels of the 239 Pu transition nucleus are theoretically obtained; a bunch of positive-parity levels shows up between 5.5 and 5.9 MeV, which might well be associated with the deduced M1 strength, since the E2 strength is negligible in this energy interval. copyright 1997 The American Physical Society

  9. Measurements of the 169Tm(n,2n)168Tm cross section between 9.0 and 17.5 MeV

    Science.gov (United States)

    Soter, J.; Bhike, Megha; Krishichayan, Fnu; Finch, S. W.; Tornow, W.

    2016-09-01

    Measurements of the 169Tm(n,2n)168Tm cross section have been performed in 0.5 MeV intervals for neutron energies ranging from 9.0 MeV to 17.5 MeV in order to resolve discrepancies in the current literature data. The neutron activation technique was used with 90Zr and 197Au as monitor foils. After irradiation, de-excitation gamma rays were recorded off-line with High-Purity Germanium (HPGE) detectors in TUNL's Low-Background Counting Facility. In addition, data for the 169Tm(n,3n)167Tm reaction have also been obtained from 15.5 MeV to 17.5 MeV. The results of these measurements provide the basis for investigating properties of the interial confinement fusion plasma in deuterium-tritium (DT) capsules at the National Ignition Facility located at Lawrence Livermore National Laboratory.

  10. Elastic scattering of He$sup 3$ AT 20 Mev

    Energy Technology Data Exchange (ETDEWEB)

    Klingensmith, R. W.; Hausman, H. J.; Ploughe, W. D.

    1963-08-15

    Absolute differential elastic scattering cross sections were measured for the scattering of 20-Mev /sup 3/He particles from V, Ni, Cu, Rh, /sup 118/Sn, Sm, Yb, and Pb. Where practical the measurements were made at laboratory angles extending from 20 to 170 degrees. The diffraction-like oscillations exhibited by the elastic-to-Coulomb cross section ratios are not highly pronounced. A preliminary optical model analysis was carried out using the HUNTER automatic search code of Drisko and Bassel. A Woods-Saxon potential with Thomas type spin-orbit coupling was considered. Reasonable fits to the data were obtained. (auth)

  11. Polypropylene compositional evolution under 3.5 MeV He+ ion irradiation

    International Nuclear Information System (INIS)

    Abdesselam, M.; Muller, D.; Djebara, M.; Chami, A.C.; Montgomery, P.

    2012-01-01

    A helium beam at 3.5 MeV was used to induce damage in thin polypropylene film of 5.1 μm in thickness. The fluence ranges from 2 × 10 12 to 3.5 × 10 15 cm −2 . The evolution of the atomic composition (C and H) as a function of the fluence was investigated in situ by forward elastic scattering (C(α, α)C) and hydrogen elastic recoil detection (H(α, H)α), respectively. The helium beam was used at the same time for irradiation and analysis. In respect to the high sensitivity of the polypropylene to radiation damage, the beam current was kept at very low intensity of 0.5 nA. The mass loss becomes significant above a fluence of ∼5 × 10 13 He + cm −2 . The carbon depletion levels off at a fluence of ∼5 × 10 14 He + cm −2 approximately while hydrogen loss continues to be present along the whole of the studied fluence range. The final carbon and hydrogen losses, at the highest fluence, are around 17% and 48% of their initial contents, respectively. Satisfactory fits to the release curves have been obtained in the framework of the bulk molecular recombination model (BMR). The deduced hydrogen and carbon release cross sections are 7.8 and 65.2 × 10 −16 cm 2 , respectively. A comparison with our previous measurements of polyethylene terephthalate (PET) film irradiated with 3.7 MeV He + beam is made.

  12. Level structure of /sup 13/C around Esub(x)=20 MeV studied by polarised neutron scattering from /sup 12/C

    Energy Technology Data Exchange (ETDEWEB)

    Tornow, W.; Woye, E.; Walter, R.L.

    1987-02-01

    Analysing-power data for elastic scattering of neutrons from /sup 12/C have been obtained at selected angles in small energy steps between incident energies of 15.55 and 17.35 MeV. The excitation energy, spin and parity of levels in /sup 13/C have been determined for excitation energies around 20 MeV via a phase-shift analysis of these data and of previously measured n-/sup 12/C total cross section data. In addition, an auxiliary phase-shift analysis has been performed in the neutron energy range from 12 to 15 MeV. All experimental data are well reproduced by the phase shifts obtained. The need for further experimental data is pointed out.

  13. The measurement of neutron differential scattering cross sections for 12C, 14N and 16O in the energy range 20-26 Mev

    International Nuclear Information System (INIS)

    Petler, J.S.; Finlay, R.W.; Meigooni, A.S.; Islam, M.S.; Rapaport, J.

    1985-01-01

    The Ohio University Beam Swinger provides a high resolution, low back-ground time-of-flight facility for the measurement of elastic and inelastic neutron scattering. It has been used to obtain a comprehensive set of differential scattering cross sections for 12 C, 14 N, 16 O and 40 Ca between 18 and 26 MeV. The elastic cross sections can be used directly to obtain partial kerma factors and, combined with the known total cross sections, provide accurate values for the reaction cross sections. Angular distributions have been measured for inelastic scattering from all the nuclear levels that cannot decay by particle emission thus providing (by subtraction) a limit on the sum of all charged-particle producing reactions. The integrated cross sections for inelastic scattering from some particle-unstable states in 12 C are in excellent agreement with the cross sections for three-body breakup obtained by Antolkovic et al. The differential data have been used, together with higher energy proton scattering data to produce energy-dependent optical model parameters for each of these nuclei in the energy range 20-60 MeV. It has been found that the elastic differential cross sections at theta > 100 0 for 12 C, 14 N and 16 O cannot be well described by a spherical optical model. Explicit consideration of coupled-channel effects, and in the case of 12 C, deformation of the ground state, improves the agreement between calculation and experiment. Heavy ion recoil kerma factors and reaction cross sections have been obtained for each element and compared with previous calculations and measurements

  14. Neutron cross section standards for the energy region above 20 MeV

    International Nuclear Information System (INIS)

    1991-01-01

    These proceedings of a specialists' meeting on Neutron cross section standards for the energy region above 20 MeV are divided into 6 sessions bearing on: - session 1: status of the date base for (n-p) scattering (2 conferences) - session 2: status of nucleon-nucleon phase shift calculations (1 conference) - session 3: recent and planned experimental work on n-p cross section measurements and facilities (7 conferences) - session 4: Instruments for utilizing the H (n.n) standard for neutron fluence measurement (4 conferences) - session 5: proposal for other neutron cross-section standards (4 conferences) - session 6: monitor reactions for radiation dosimetry (3 conferences)

  15. Energy monitoring device for 1.5-2.4 MeV electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Fuochi, P.G., E-mail: fuochi@isof.cnr.i [CNR-ISOF, Via P. Gobetti 101, I-40129 Bologna (Italy); Lavalle, M.; Martelli, A. [CNR-ISOF, Via P. Gobetti 101, I-40129 Bologna (Italy); Kovacs, A. [Institute of Isotopes, HAS, P.O.Box 77, H-1525 Budapest (Hungary); Mehta, K. [Arbeiterstrandbad Strasse 72, Vienna, A-1210 (Austria); Kuntz, F.; Plumeri, S. [Aerial, Parc d' Innovation Rue Laurent Fries F-67400 Illkirch (France)

    2010-03-11

    An easy-to-use and robust energy monitoring device has been developed for reliable detection of day-to-day small variations in the electron beam energy, a critical parameter for quality control and quality assurance in industrial radiation processing. It has potential for using on-line, thus providing real-time information. Its working principle is based on the measurement of currents, or charges, collected by two aluminium absorbers of specific thicknesses (dependent on the beam energy), insulated from each other and positioned within a faraday cup-style aluminium cage connected to the ground. The device has been extensively tested in the energy range of 4-12 MeV under standard laboratory conditions at Institute of Isotopes and CNR-ISOF using different types of electron accelerators; namely, a TESLA LPR-4 LINAC (3-6 MeV) and a L-band Vickers LINAC (7-12 MeV), respectively. This device has been also tested in high power electron beam radiation processing facilities, one equipped with a 7-MeV LUE-8 linear accelerator used for crosslinking of cables and medical device sterilization, and the other equipped with a 10 MeV Rhodotron TT100 recirculating accelerator used for in-house sterilization of medical devices. In the present work, we have extended the application of this method to still lower energy region, i.e. from 1.5 to 2.4 MeV. Also, we show that such a device is capable of detecting deviation in the beam energy as small as 40 keV.

  16. Energy monitoring device for 1.5-2.4 MeV electron beams

    Science.gov (United States)

    Fuochi, P. G.; Lavalle, M.; Martelli, A.; Kovács, A.; Mehta, K.; Kuntz, F.; Plumeri, S.

    2010-03-01

    An easy-to-use and robust energy monitoring device has been developed for reliable detection of day-to-day small variations in the electron beam energy, a critical parameter for quality control and quality assurance in industrial radiation processing. It has potential for using on-line, thus providing real-time information. Its working principle is based on the measurement of currents, or charges, collected by two aluminium absorbers of specific thicknesses (dependent on the beam energy), insulated from each other and positioned within a faraday cup-style aluminium cage connected to the ground. The device has been extensively tested in the energy range of 4-12 MeV under standard laboratory conditions at Institute of Isotopes and CNR-ISOF using different types of electron accelerators; namely, a TESLA LPR-4 LINAC (3-6 MeV) and a L-band Vickers LINAC (7-12 MeV), respectively. This device has been also tested in high power electron beam radiation processing facilities, one equipped with a 7-MeV LUE-8 linear accelerator used for crosslinking of cables and medical device sterilization, and the other equipped with a 10 MeV Rhodotron TT100 recirculating accelerator used for in-house sterilization of medical devices. In the present work, we have extended the application of this method to still lower energy region, i.e. from 1.5 to 2.4 MeV. Also, we show that such a device is capable of detecting deviation in the beam energy as small as 40 keV.

  17. Fission cross section ratios for 233,234,236U relative to 235U from 0.5 to 400 MeV

    International Nuclear Information System (INIS)

    Lisowski, P.W.; Gavron, A.; Parker, W.E.; Balestrini, S.J.; Carlson, A.D.; Wasson, O.A.; Hill, N.W.

    1991-01-01

    Neutron-induced fission cross section ratios from 0.5 to 400 MeV for samples of 233, 234, 236 U relative to 235 U have been measured at the WNR neutron Source at Los Alamos. The fission reaction rate was determined using a fast parallel plate ionization chamber at a 20-m flight path. Cross sections over most the energy range were also extracted using the neutron fluence determined with three different proton telescope arrangements. Those data provided the shape of the 235 U(n,f) cross section relative to the hydrogen scattering cross section. That shape was then normalized to the very accurately known value for 235 U(n,f) at 14.1 MeV to allow us to obtain cross section section values from the ratio data and our values for 235 U(n,f). 6 refs., 1 fig

  18. Fission cross section ratios for 233,234,236U relative to 235U from 0.5 to 400 MeV

    International Nuclear Information System (INIS)

    Lisowski, P.W.; Gavron, A.; Parker, W.E.; Balestrini, S.J.; Carlson, A.D.; Wasson, O.A.; Hill, N.W.

    1992-01-01

    Neutron-induced fission cross section ratios from 0.5 to 400 MeV for samples of 233,234,236 U relative to 235 U have been measured at the WNR neutron Source at Los Alamos. The fission reaction rate was determined using a fast parallel plate ionization chamber at a 20-m flight path. Cross sections over most of the energy range were also extracted using the neutron fluence determined with three different proton telescope arrangements. Those data provided the shape of the 235 U(n, f) cross section relative to the hydrogen scattering cross section. That shape was then normalized to the very accurately known value for 235 U(n, f) at 14.1 MeV which will allow us to obtain cross section values from the ratio data and our values for 235 U(n, f). (orig.)

  19. 5He, 7He, and 8Li (E*=2.26 MeV) intermediate ternary particles in the spontaneous fission of 252Cf

    International Nuclear Information System (INIS)

    Kopatch, Yu.N.; Mutterer, M.; Schwalm, D.; Thirolf, P.; Goennenwein, F.

    2002-01-01

    The neutron-unstable odd-N isotopes 5 He, 7 He, and 8 Li (in its excited state of E*=2.26 MeV) were measured to show up as short-lived (τ≅10 -21 -10 -20 s) intermediate light charged particles (LCPs) in ternary fission of 252 Cf. For the study a high-efficiency angular correlation measurement between neutrons, LCPs, and main fission fragments has been performed. The evidence for the ternary 5 He and 7 He particles (lifetimes: 1x10 -21 s, and 4x10 -21 s, respectively) was disclosed from the measured angular distributions of their decay neutrons focused by the emission in flight towards the direction of motion of 4 He and 6 He ternary particles. Similarly, neutrons observed to be peaked around Li-particle motion could be attributed to the decay of the second excited state at E*=2.26 MeV (lifetime: 2x10 -20 s) of 8 Li. The fractional yields of the intermediate 5 He and 7 He ternary fission modes relative to the 'true' ternary 4 He and 6 He modes, respectively, were determined to be 0.21(5) for both cases. The mean energy of the 4 He residues resulting from the 5 He decay was determined to be 12.4(3) MeV, compared to 15.7(2) MeV for all ternary α particles registered, and to 16.4(3) MeV for the true ternary α particles. The mean energy of the 6 He residues from the 7 He decay is 11.0(15) MeV, compared to 12.3(5) MeV for all ternary 6 He particles. The population of 8 Li* was deduced to be 0.06(2) relative to Li ternary fission, and 0.33(20) relative to the yield of particle stable 8 Li. The perspective of using the observed intermediate LCPs for probing the ternary scission configuration in 252 Cf fission with the aid of trajectory calculations is briefly discussed

  20. The quasi-monochromatic photon beam used in photoneutron experiments from 20-120 MeV at the 600 MeV Saclay Linac

    International Nuclear Information System (INIS)

    Veyssiere, A.; Beil, H.; Bergere, R.; Carlos, P.; Fagot, J.; Lepretre, A.; Ahrens, J.

    1979-01-01

    A beam of 20-130 MeV positrons, with average intensities between 10 nA and 50 nA, is used at the 600 MeV Saclay Linac to create a quasi-monochromatic photon beam with a continuously variable energy. This beam was used to measure photoneutron cross sections and the corresponding photonuclear facility is first described. The computer-controlled methods, implemented to measure the energy spectrum and the emittance of the positron beam are described. The quasi-monochromatic photon lines are produced by the annihilation in flight of monoenergetic positrons in two annihilation radiators with different Z successively. The photon beam emission angle theta is shown to be the most critical parameter in the search for an optimum overall signal to background ratio for a specific photoneutron experiment. The choice of an angle theta approximately 4 0 is explained for absolute measurements of sigma(γ, xn) cross-sections, for which the used average intensities of monochromatic photons were thus purposely reduced to approximately 5 X 10 3 s -1 , with an energy resolution approximately 12%. (Auth.)

  1. Energy dependence of relative abundances and periods of separate groups of delayed neutrons at neutron induced fission of 239Pu in a range of neutrons energies 0.37 - 5 MeV

    International Nuclear Information System (INIS)

    Roschenko, V.A.; Piksaikin, V.M.; Kazakov, L.E.; Isaev, S.G.; Korolev, G.G.; Tarasko, M.Z.; Tertychnyi, R.G.

    2001-01-01

    The fundamental role of delayed neutrons in behavior, control and safety of reactors is well known today. Delayed neutron data are of great interest not only for reactor physics but also for nuclear fission physics and astrophysics. The purpose of the present work was the measurement of energy dependence of delayed neutrons (DN) group parameters at fission of nuclei 239 Pu in a range of energies of primary neutrons from 0.37 up to 5 MeV. The measurements were executed on installation designed on the basis of the electrostatic accelerator of KG - 2.5 SSC RF IPPE. The data are obtained in 6-group representation. It is shown, that there is a significant energy dependence of DN group parameters in a range of primary neutrons energies from thermal meanings up to 5 MeV, which is expressed in reduction of the average half-life of nuclei of the DN precursors on 10 %. The data, received in the present work, can be used at creation of a set of group constants for reactors with an intermediate spectrum of neutrons. (authors)

  2. Evaluation of 235U(n,f) between 100 keV and 20 MeV

    International Nuclear Information System (INIS)

    Poenitz, W.P.

    1979-07-01

    The 235 U(n,f) cross section is evaluated in the energy range from 100 keV to 20 MeV. Experimental data are included up to the 1978 Harwell Conference on Neutron Physics. The evaluation methodology is discussed in detail. The shape and the normalization of the cross section are evalutated in separate steps. An extensive comparison of the evaluation result with experimental data sets is made. The shape of the cross section obtained in a preliminary version of the present evaluation and a normalization factor extracted from data provided within the framework of this evaluation were used by the Subcommittee on Standards and Normalizations of the Cross Sections Evaluation Working Group to establish 235 U(n,f) for ENDF/B-V above 100 keV. 20 figures, 6 tables

  3. A 20MeV (p,d) study of nuclear structure in the even and odd tin isotopes

    International Nuclear Information System (INIS)

    Fleming, D.G.; Paris-11 Univ., 91 - Orsay

    1978-01-01

    The even and odd tin isotopes have been studied by 20 MeV (p,d) reactions. States strongly populated in the odd isotopes are due to the valence neutron shells and extend up to only 2 MeV of excitation energy; 'deep hole' states were not identified. The occupation probabilities extracted from finite-range distorted-wave-Born-approximation calculations generally agree well with the predictions of the BCS theory of superconducting nuclei, particularly with the calculations of Clement and Baranger. In the even tin isotopes, strongly populated states are characterized predominantly by L=2 transfers extending up to 4 MeV excitation energy. The experimental spectroscopic factors are compared with the BCS calculated values of Clement and Baranger, Alzetta and Sawicki, and Van Gunsteren; relatively good agreement is obtained for L=2 transitions, but not for L=0 transitions. A considerable fraction of the sum rule L=2 strength in 118 Sn is missing in the 119 Sn(p,d) 118 Sn experimental spectrum; in like manner, no 4 + strength could be identified in either 114 Sn or 118 Sn

  4. Inter-comparison of High Energy Files (neutron-induced, from 20 to 150 MeV)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young-Ouk; Fukahori, Tokio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-11-01

    Recent new applications using accelerator-driven system require well-tested nuclear data when modeling the interaction of neutrons above 20 MeV. This work is aimed to review evaluation methods applied in currently available neutron high energy files above 20 to 150 MeV, to inter-compare their evaluated cross sections on some important isotopes, and to analyze resulting discrepancies. Through out these, integrities and consistencies of the high energy files are checked, applicability of physics models and evaluation methodologies are assessed, and some directions are derived to improve and expand current JENDL High Energy File. (author)

  5. Evaluated Nuclear Data Library for Transport Calculations at Energies up to 150 MeV

    International Nuclear Information System (INIS)

    Korovin, Yu.A.; Konobeyev, A.Yu.; Pilnov, G.B.; Stankovskiy, A.Yu.

    2005-01-01

    A new evaluated nuclear data library has been created. The library consists of two sub-libraries for neutron and proton incident particles. The first version of neutron sub-library has been completed and described in the present paper. The library contains nuclear data for transport, heating, and shielding applications for 242 nuclides ranging in atomic number from 8 to 82 in the energy region of primary neutrons from 10-5 eV to 150 MeV. Data below 20 MeV are taken mainly from ENDF/B-VI (Revision 8) and for some nuclides, from the JENDL-3.3 and JEFF-3.0 libraries. The evaluation of emitted particle energy and angular distributions at the energies above 20 MeV was performed with the help of the ALICE/ASH code and the analysis of available experimental data. The total cross sections, elastic cross sections, and elastic scattering angular distributions were calculated with the help of the coupled channel model. The results of the calculation were adjusted to the data from ENDF/B-VI, JENDL-3.3m or JEFF-3.0 at the neutron energy equal to 20 MeV. The library is written in ENDF/B-VI format using the MF=3/MT=5 and MF=6/MT=5 representations

  6. Fission cross section measurements at the LLL 100-MeV linac

    International Nuclear Information System (INIS)

    Browne, J.C.

    1975-01-01

    The fission cross section for 235 U was measured from thermal energy to 20 MeV in several steps. First, the cross section was measured from 8 MeV to 20 MeV relative to the n,p scattering cross section and then from thermal to one MeV relative to 6 Li(n,α). In addition, a measurement of the ratio of the fission cross sections of 235 U and 238 U relative to 235 U has been completed in the range 1 keV to 30 MeV for 233 U and 100 keV to 30 MeV for 238 U. Statistical uncertainties are less than 4 percent. (U.S.)

  7. RBE comparison between rapid electrons of 20 MeV and 45 MeV with survival rate, DNA synthesis, DNA reparation and nucleoid sedimentation

    International Nuclear Information System (INIS)

    Alth, G.; Weniger, P.; Turtzer, K.; Klein, W.; Kocsis, F.; Krankenhaus der Stadt Wien-Lainz; Oesterreichisches Forschungszentrum Seibersdorf G.m.b.H. Inst. fuer Biologie)

    1982-01-01

    In order to find out possible differences of the biologic efficacy of rapid electrons of different energies, the authors examined the influence of rapid electrons of 20 MeV and 45 MeV upon the survival rate of Hela cells S3, their cell growth, DNA synthesis, DNA reparation, and sedimentation of nucleoids. The results show a difference only for the nucleoid sedimentation, i.e. there are more fractured DNA cords after 45 MeV irradiation. No significant differences could be demonstrated for the parameters of the survival curve, DNA synthesis and DNA reparation. Four double tests were carried out corresponding to the indicated types of examination. (orig.) [de

  8. Toxicological and radiological safety of chicken meat irradiated with 7.5 MeV X-rays

    Science.gov (United States)

    Song, Beom-Seok; Lee, Yunjong; Park, Jong-Heum; Kim, Jae-Kyung; Park, Ha-Young; Kim, Dong-Ho; Kim, Chang-Jong; Kang, Il-Jun

    2018-03-01

    This study was conducted to evaluate the toxicological and radiological safety of chicken meat that had been irradiated at 30 kGy with 7.5 MeV X-rays. In a sub-chronic toxicity study, ICR mice were fed X-ray-irradiated chicken meat at 2500 mg/kg body weight daily for 90 days, and no mortality or abnormal clinical signs were observed throughout the study period. However, several hematological and serum biochemical parameters of the ICR mice differed significantly from those in the control group; nevertheless, the observed values were all within the normal range for the respective parameters. In addition, no toxicological effects were determined in male or female mice. Furthermore, no differences in gamma-ray spectrometric patterns were detected between the non-irradiated and irradiated samples, indicating that the radioactivity induced by 7.5 MeV X-ray irradiation was below the detection limit. These results tentatively suggest that chicken meat irradiated with 7.5 MeV X-rays would be safe for human consumption in terms of toxicology and radiology.

  9. Polypropylene compositional evolution under 3.5 MeV He{sup +} ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Abdesselam, M., E-mail: abdesselam_m@yahoo.fr [Faculte de Physique, USTHB, BP32, El Alia, 16111 BEZ (Algeria); Muller, D. [InESS, UMR7163, 23 rue du Loess, BP20, F-67037 Strasbourg Cedex 02 (France); Djebara, M.; Chami, A.C. [Faculte de Physique, USTHB, BP32, El Alia, 16111 BEZ (Algeria); Montgomery, P. [InESS, UMR7163, 23 rue du Loess, BP20, F-67037 Strasbourg Cedex 02 (France)

    2012-05-01

    A helium beam at 3.5 MeV was used to induce damage in thin polypropylene film of 5.1 {mu}m in thickness. The fluence ranges from 2 Multiplication-Sign 10{sup 12} to 3.5 Multiplication-Sign 10{sup 15} cm{sup -2}. The evolution of the atomic composition (C and H) as a function of the fluence was investigated in situ by forward elastic scattering (C({alpha}, {alpha})C) and hydrogen elastic recoil detection (H({alpha}, H){alpha}), respectively. The helium beam was used at the same time for irradiation and analysis. In respect to the high sensitivity of the polypropylene to radiation damage, the beam current was kept at very low intensity of 0.5 nA. The mass loss becomes significant above a fluence of {approx}5 Multiplication-Sign 10{sup 13} He{sup +} cm{sup -2}. The carbon depletion levels off at a fluence of {approx}5 Multiplication-Sign 10{sup 14} He{sup +} cm{sup -2} approximately while hydrogen loss continues to be present along the whole of the studied fluence range. The final carbon and hydrogen losses, at the highest fluence, are around 17% and 48% of their initial contents, respectively. Satisfactory fits to the release curves have been obtained in the framework of the bulk molecular recombination model (BMR). The deduced hydrogen and carbon release cross sections are 7.8 and 65.2 Multiplication-Sign 10{sup -16} cm{sup 2}, respectively. A comparison with our previous measurements of polyethylene terephthalate (PET) film irradiated with 3.7 MeV He{sup +} beam is made.

  10. Neutron cross-sections above 20 MeV for design and modeling of ...

    Indian Academy of Sciences (India)

    bination of a high-power, high-energy accelerator, a spallation target for neutron ... The development of the commercial critical reactors of today motivated a large effort on nuclear data up to about 20 MeV, and presently ..... facility in the world.

  11. Spectroscopic study of {sup 206,207,208}Pb isotopes by high resolution analysis of 24.5 MeV proton scattering; Etude spectroscopique des isotopes 206, 207 et 208 du plomb par analyse a haute resolution de la diffusion de protons de 24,5 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Vallois, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1968-03-01

    {sup 206,207,208}pb have been studied by 24.5 MeV proton inelastic scattering with a resolution of 20 keV. The angular distributions of the differential cross-sections corresponding to the different excited levels have been measured in a large angular region and analysed with the DWBA.This work shows that it exists between 4 and 5 MeV of excitation energy some strongly excited levels corresponding to transfer momenta l = 2, 4, 6 and 8. The single particle-hole models do not explain these states; so it will probably be necessary to introduce some several particle - hole configurations. (author) [French] Les isotopes 206, 207 et 208 du plomb ont ete etudies par diffusion inelastique de protons de 24,5 MeV avec une resolution de 20 keV. Les distributions angulaires des sections efficaces differentielles correspondant aux differents niveaux excites ont ete mesurees sur un large domaine angulaire et analysees a l'aide de la DWBA. Ce travail met en evidence l'existence, entre 4 et 5 MeV d'excitation, de niveaux fortement excites correspondant a des moments de transfert de 2, 4, 6 et 8. Les modeles a simple particule-trou ne rendant pas compte de ces niveaux, il faudra sans doute recourir a des configurations a plusieurs particules-trous pour les expliquer. (auteur)

  12. Wood efficiency as passive shield for particles and photons of 0,5 to 4,6 MeV between 940 and 377 mb

    International Nuclear Information System (INIS)

    Aguiar, O.D. de; Nordemann, D.J.R.

    1986-01-01

    A pair of scintillators NaI (Tl), 4'x4', one completly shielded with 20 g/cm 2 of high density wood (1.3 g/cm 3 ) and the other unshielded, has been flown aboard a Bandeirante aircraft over the region of Sao Jose dos Campos (23 0 14'S, 314 0 9'E), up to altitudes of 25000 feet (377mb). The spectra of the detectors with and without the wood shield are similar, and the spectral indices indicate that they are function of atmospheric depth in the range 0.6-2.4 MeV. Between 2.4 and 4.6 MeV the shielded detector presented a counting rate which is 20% lower than the counting rate obtained by the unshielded detector. In this same energy range the counting rate of the shielded detector is equal to the counting rate of the unshielded detector located at an atmospherical depth of 35 g/cm 2 higher. The Attenuation length showed a decrease with the energy in the 0.65 to 4.6 MeV range and an increase above this energy. This increase is, probably, due to the strong influence of muons and electrons in this range. (Author) [pt

  13. Investigation of transversal nuclear excitation in 208Pb at excitation energies between 6 MeV and 8 MeV using inelastic electron scattering

    International Nuclear Information System (INIS)

    Frey, R.W.

    1978-01-01

    Using high resolution inelastic electron scattering magnitic dipole and quadrupole excitations in 208 Pb were investigated in the energy range between 6 MeV and 8 MeV. The electron energy was 50 MeV and 63.5 MeV. With a mean absolute energy resolution of 33 kev. 44 excited states were found in the above energy range. The measured angular distributions were compared with DWBA-calculations using random phase approximated wave functions. (FKS)

  14. Fractional momentum transfer in incomplete fusion reaction: measurement of recoil range distributions in 20Ne + 159Tb system

    International Nuclear Information System (INIS)

    Ali, R.; Singh, D.; Pachouri, Dipti; Afzal Ansari, M.; Rashid, M.H.

    2007-01-01

    The recoil range distribution (RRD) of several residues have been measured for the system 20 Ne + 159 Tb at 165 MeV beam energy by collecting the recoiling residues in the Al-catcher foils of varying thickness

  15. Experimental determination of the cross sections of the n-3He-system in the energy range of 1 to 40 MeV

    International Nuclear Information System (INIS)

    Haesner, B.

    1982-08-01

    Cross sections have been measured in the n+ 3 He-system over a broad energy range. The experiments were conducted using the pulsed white neutron beam at the Karlsruhe Neutron Time of Flight Facility. The total cross sections were measured from 1-40 MeV using the 190 m flight path with 1.5 ns time resolution. This represents a substantial improvement over previous measurements. Angular distributions (THETAsub(c.m.) = 33 0 -179 0 ) for the elastic n- 3 He scattering were measured simultaneously in the energy range from 5 to 30 MeV. A liquid 3 He scintillation detector was used as the scatterer. The statistical errors are less than 2% for most (> 90%) of the data. Through the use of the L 3 He detector absolute cross sections for the neutron induced reactions 3 He(n,p)T and 3 He(n,d)D could be measured from 1 to 30 MeV. These measurements are in good agreement with the results of the corresponding (p,n) and (d,n) reactions using detailed balance. (orig.) [de

  16. Gamma-ray astronomy in the medium energy (10-50 MeV) range

    International Nuclear Information System (INIS)

    Kniffen, D.A.; Bertsch, D.L.; Palmeira, R.A.R.; Rao, K.R.

    1977-01-01

    Gamma-ray astronomy in the medium energy (10-50 MeV) range can provide unique information with which to study many astrophysical problems. Observations in the 10-50 MeV range provide the cleanest window with which to view the isotropic diffuse component of the radiation and to study the possible cosmological implications of the spectrum. For the study of compact sources, this is the important region between the X-ray sky and the vastly different γ-ray sky seen by SAS-2 and COS-B. To understand the implications of medium energy γ-ray astronomy to the study of the galactic diffuse γ-radiation, the model developed to explain the high energy γ-ray observations of SAS-2 is extended to the medium energy range. This work illustrates the importance of medium energy γ-ray astronomy for studying the electromagnetic component of the galactic cosmic rays. To observe the medium energy component of the intense galactic center γ-ray emission, two balloon flights of a medium energy γ-ray spark chamber telescope were flown in Brazil in 1975. These results indicate the emission is higher than previously thought and above the predictions of the theoretical model

  17. Evidence for two narrow pp resonances at 2020 MeV and 2200 MeV

    CERN Document Server

    Benkheiri, P; Bouquet, B; Briandet, P; D'Almagne, B; Dang-Vu, C; De Rosny, G; Eisenstein, B I; Ferrer, A; Fleury, P; Grossetête, B; Irwin, G; Jacholkowski, A; Lahellec, A; Nguyen, H; Petroff, P; Richard, F; Rivet, P; Roudeau, P; Rougé, A; Rumpf, M; Six, J; Thénard, J M; Treille, D; Volte, A; Yaffe, D; Yiou, T P; Yoshida, H

    1977-01-01

    From the study of the reaction pi /sup -/p to p/sub F/pp pi /sup -/ using a fast proton (p/sub F/) trigger device in the CERN Omega spectrometer, the authors find evidence for two narrow pp states produced mainly in association with a Delta degrees (1232) and a N degrees (1520). The statistical significance of each peak is greater than 6 standard deviations. Masses and natural widths of these resonances are respectively M/sub 1/=2020+or-3 MeV, Gamma /sub 1 /=24+or-12 MeV and M/sub 2/=2204+or-5 MeV, Gamma /sub 2/=16/sub -16 //sup +20/ MeV. The data are consistent with a small production of the narrow approximately 1935 MeV resonance already reported. Production cross sections for these new pp resonances are given. (8 refs).

  18. Measurement of Ay(θ) for n+208Pb from 6 to 10 MeV and the neutron-nucleus interaction over the energy range from bound states at -17 MeV up to scattering at 40 MeV

    International Nuclear Information System (INIS)

    Roberts, M.L.; Felsher, P.D.; Weisel, G.J.; Chen, Z.; Howell, C.R.; Tornow, W.; Walter, R.L.; Horen, D.J.

    1991-01-01

    High-accuracy measurements of A y (θ) data for elastic scattering and inelastic scattering to the first excited state for n+ 208 Pb have been performed at 6, 7, 8, 9, and 10 MeV. In addition, σ(θ) was measured at 8 MeV. These data provide an important subset for the growing database for the n+ 208 Pb system from bound-state energies to energies above 40 MeV, the limit of the range of interest here. This database has been interpreted via several approaches. First, a conventional Woods-Saxon spherical optical was used to obtain three potential representations for the energy range from 4 to 40 MeV: ''best fits'' at each energy, constant-geometry global fit with linear energy dependences for the potential strengths for the range 4.0--40 MeV, and an extension of the latter model to allow a linear energy dependence on the radii and diffuseness. A preference for a complex spin-orbit interaction was observed in all cases. Second, the dispersion relation was introduced into the spherical optical model to obtain a more ''realistic'' representation. In our approach, the strength and shape of the real potential was modified by calculating the dispersion-relation contributions that originate from the presence of the surface and volume imaginary terms. Two potentials were developed, one based only on the scattering data (from 4.0 to 40 MeV) and another based additionally on single-particle and single-hole information down to a binding energy of 17 MeV. In addition, the σ(θ) and A y (θ) measurements were compared to earlier conventional and dispersion-relation models. One of the latter of these included an l dependence in the absorptive surface term, and we applied this model in the 6- to 10-MeV region to describe all the σ(θ) and the new A y (θ)

  19. States in 94Zr from 94Zr(d,d')94Zr* at 15.5 Mev

    International Nuclear Information System (INIS)

    Frota-Pessoa, E.; Joffily, S.

    1986-01-01

    94 energy levels up to approx. 4.3 Mev excitation energy are studied in the 94 Zr(d,d') 94 Zr* reaction. Deuterons had a bombarding energy of 15.5 MeV. The emergent deuterons were analysed by a magnetic spectrograph and the detector was nuclear emulsion. The resolution in energy was about 11 KeV. The distorted-wave analysis was used to determine the l transferred, the β 2 l and J Π values for some 94 Zr excited states. These results are compared with previous ones. 32 levels of excitation energy in 94 Zr were found which did not appear in previous 94 Zr(d,d') reactions. 20 levels do not correspond to the ones. (Author) [pt

  20. A sub-picosecond pulsed 5 MeV electron beam system

    International Nuclear Information System (INIS)

    Farrell, J. Paul; Batchelor, K.; Meshkovsky, I.; Pavlishin, I.; Lekomtsev, V.; Dyublov, A.; Inochkin, M.; Srinivasan-Rao, T.

    2001-01-01

    Laser excited pulsed, electron beam systems that operate at energies from 1 MeV up to 5 MeV and pulse width from 0.1 to 100 ps are described. The systems consist of a high voltage pulser and a coaxial laser triggered gas or liquid spark gap. The spark gap discharges into a pulse forming line designed to produce and maintain a flat voltage pulse for 1 ns duration on the cathode of a photodiode. A synchronized laser is used to illuminate the photocathode with a laser pulse to produce an electron beam with very high brightness, short duration, and current at or near the space charge limit. Operation of the system is described and preliminary test measurements of voltages, synchronization, and jitter are presented for a 5 MeV system. Applications in chemistry, and accelerator research are briefly discussed

  1. Systematics of neutron-induced fission cross sections over the energy range 0.1 through 15 MeV, and at 0.0253 eV

    International Nuclear Information System (INIS)

    Behrens, J.W.

    1977-01-01

    Recent studies have shown straightforward systematic behavior as a function of constant proton and neutron number for neutron-induced fission cross sections of the actinide elements in the incident-neutron energy range 3 to 5 MeV. In this report, the second in a series, fission cross-section values are studied over the MeV incident-neutron energy range, and at 0.0253 eV. Fission-barrier heights and neutron-binding energies are correlated by constant proton and neutron number; however, these systematic behaviors alone do not explain the trends observed in the fission cross-section values

  2. High-resolution Auger spectroscopy on 79 MeV Ar5+, 89 MeV Ar6+, and 136 MeV Ar7+ ions after excitation by helium

    International Nuclear Information System (INIS)

    Schneider, T.

    1988-01-01

    In this thesis the atomic structure of highly excited Ar 6+ and Ar 7+ ions was studied. For this 79 MeV Ar 5+ , 89 MeV Ar 6+ , and 136 MeV Ar 7+ ions of a heavy ion accelerator were excited by a He gas target to autoionizing states and the Auger electrons emitted in the decay were measured in highly-resolving state. The spectra were taken under an observational angle of zero degree relative to the beam axis in order to minimize the kinematical broadening of the Auger lines. (orig./HSI) [de

  3. 5He, 7He and 8Li (E=2.26 MeV) intermediate ternary particles in the spontaneous fission of 252Cf

    International Nuclear Information System (INIS)

    Kopatch, Yu. N.; Goennenwein, F.

    2002-02-01

    The neutron-unstable odd-N isotopes 5 He, 7 He and 8 Li (in its excited state of E * = 2.26 MeV) were measured to show up as short-lived intermediate light-charged-particles (LCP) in ternary fission of 252 Cf. For the study a high-efficiency angular correlation measurement between neutrons, LCPs and main fission fragments has been performed. The evidence for the ternary 5 He and 7 He particles (lifetimes: 1 x 10 -21 s, and 4 x 10 -21 s, respectively) was disclosed from the measured angular distributions of their decay neutrons focused by the emission in flight towards the direction of motion of 4 He and 6 He ternary particles. Similarly, neutrons observed to be peaked around Li-particle motion could be attributed to the decay of the second excited state at E * = 2.26 MeV (lifetime: 2 x 10 -20 s) of 8 Li. The fractional yields of the intermediate 5 He and 7 He ternary fission modes relative to the ''true'' ternary 4 He and 6 He modes, respectively, were determined to be 0.21(5) for both cases. The mean energy of the 4 He residues resulting from the 5 He decay was determined to be 12.4(3) MeV, compared to 15.7(2) MeV for all ternary α-particles registered, and to 16.4(3) MeV for the true ternary α-particles. The mean energy of the 6 He residues from the 7 He decay is 11.0(15) MeV, compared to 12.3(5) MeV for all ternary 6 He particles. The population of 8 Li * was deduced to be 0.06(2) relative to Li ternary fission, and 0.33(20) relative to the yield of particle stable 8 Li. The perspective of using the observed intermediate LCPs for probing the ternary scission configuration in 252 Cf fission with the aid of trajectory calculations is briefly discussed. (orig.)

  4. Spectroscopic study of 206,207,208Pb isotopes by high resolution analysis of 24.5 MeV proton scattering

    International Nuclear Information System (INIS)

    Vallois, G.

    1968-03-01

    206,207,208 pb have been studied by 24.5 MeV proton inelastic scattering with a resolution of 20 keV. The angular distributions of the differential cross-sections corresponding to the different excited levels have been measured in a large angular region and analysed with the DWBA.This work shows that it exists between 4 and 5 MeV of excitation energy some strongly excited levels corresponding to transfer momenta l = 2, 4, 6 and 8. The single particle-hole models do not explain these states; so it will probably be necessary to introduce some several particle - hole configurations. (author) [fr

  5. 2.5 MeV CW 4-vane RFQ accelerator design for BNCT applications

    Science.gov (United States)

    Zhu, Xiaowen; Wang, Hu; Lu, Yuanrong; Wang, Zhi; Zhu, Kun; Zou, Yubin; Guo, Zhiyu

    2018-03-01

    Boron Neutron Capture Therapy (BNCT) promises a bright future in cancer therapy for its highly selective destruction of cancer cells, using the 10B +n→7Li +4 He reaction. It offers a more satisfactory therapeutic effect than traditional methods for the treatment of malignant brain tumors, head and neck cancer, melanoma, liver cancer and so on. A CW 4-vane RFQ, operating at 162.5 MHz, provides acceleration of a 20 mA proton beam to 2.5 MeV, bombarding a liquid lithium target for neutron production with a soft neutron energy spectrum. The fast neutron yield is about 1.73×1013 n/s. We preliminarily develop and optimize a beam shaping assembly design for the 7Li(p, n)7Be reaction with a 2.5 MeV proton beam. The epithermal neutron flux simulated at the beam port will reach up to 1 . 575 ×109 n/s/cm2. The beam dynamics design, simulation and benchmark for 2.5 MeV BNCT RFQ have been performed with both ParmteqM (V3.05) and Toutatis, with a transmission efficiency higher than 99.6% at 20 mA. To ease the thermal management in the CW RFQ operation, we adopt a modest inter-vane voltage design (U = 65 kV), though this does increase the accelerator length (reaching 5.2 m). Using the well-developed 3D electromagnetic codes, CST MWS and ANSYS HFSS, we are able to deal with the complexity of the BNCT RFQ, taking the contribution of each component in the RF volume into consideration. This allows us to optimize the longitudinal field distribution in a full-length model. Also, the parametric modeling technique is of great benefit to extensive modifications and simulations. In addition, the resonant frequency tuning of this RFQ is studied, giving the tuning sensitivities of vane channel and wall channel as -16.3 kHz/°C and 12.4 kHz/°C, respectively. Finally, both the multipacting level of this RFQ and multipacting suppressing in the coaxial coupler are investigated.

  6. Measurement and theoretical analysis of neutron-induced neutron-emission reactions of 6Li at 10 to 20 MeV region

    International Nuclear Information System (INIS)

    Ibaraki, Masanobu; Baba, Mamoru; Matsuyama, Shigeo

    1998-06-01

    We have measured the neutron elastic and inelastic scattering double-differential cross sections of 6 Li at incident neutron energies of 11.5, 14.1 and 18.0 MeV. Based on this data, together with information from other works, a phenomenological neutron optical model potential (OMP) of 6 Li was constructed to describe the total and elastic scattering cross sections from 5 MeV to several tens MeV. This potential also describes well the inelastic scattering to the 1st excited state (E x = 2.186 MeV) via the DWBA calculation with the macroscopic vibrational model. The continuum neutron energy spectra and angular distributions were then analyzed by the theory of final-state interaction extended to the DWBA form, with the assumption that the d-α interaction is dominant in the 3-body final state consisting of n, d and α particles. Such a calculation was found to be successful in explaining the major part of the low-excitation neutron spectra and angular distribution down to the Q-value region of -9 MeV, except for the Q-value range where the n-α quasi-free scattering will give a non-negligible contribution at forward angles. (author). 60 refs

  7. Equilibration in the reaction of 175 and 252 MeV 20Ne with 197Au

    International Nuclear Information System (INIS)

    Moulton, J.B.

    1978-06-01

    The highly inelastic nuclear reaction of 197 Au with 20 Ne at 175 and 252 MeV laboratory energies is studied. Energy-, elemental-, and angular- distributions for atomic numbers 5 to 30 (175 MeV) or 34 (252 MeV) are presented. The means and widths of the kinetic energy spectra for detected elements are compared with a theoretical calculation. The calculation postulates thermalization of the incident projectile kinetic energy, and includes one sha(e-vibrational degree of freedom and rigid rotation of the reaction complex. The effect of particle evaporation is considered. Good agreement of the expurimental mean energies with the theory is obtained. Poorer agreement of the kinetic energy widths with the theory may be due to a low-temperature quantal effect. The relative elemental yields are analyzed for their degree of equilibration, based on a model of diffusive nucleon exchange as described by the master equation. A similar degree of equilibration is observed for both reaction energies. The absolute elemental yields are reproduced qualitatively by employing an advanced diffusion code, coupled with calculation of the subsequent fission of heavy reaction products, including the compound nucleus. The angular distributions are analyzed with a simple model, to estimate the reaction lifetime of selected elements

  8. Fission cross section ratios for sup 233,234,236 U relative to sup 235 U from 0. 5 to 400 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Lisowski, P.W.; Gavron, A.; Parker, W.E.; Balestrini, S.J. (Los Alamos National Lab., NM (USA)); Carlson, A.D.; Wasson, O.A. (National Inst. of Standards and Technology, Gaithersburg, MD (USA)); Hill, N.W. (Oak Ridge National Lab., TN (USA))

    1991-01-01

    Neutron-induced fission cross section ratios from 0.5 to 400 MeV for samples of {sup 233, 234, 236}U relative to {sup 235}U have been measured at the WNR neutron Source at Los Alamos. The fission reaction rate was determined using a fast parallel plate ionization chamber at a 20-m flight path. Cross sections over most the energy range were also extracted using the neutron fluence determined with three different proton telescope arrangements. Those data provided the shape of the {sup 235}U(n,f) cross section relative to the hydrogen scattering cross section. That shape was then normalized to the very accurately known value for {sup 235}U(n,f) at 14.1 MeV to allow us to obtain cross section section values from the ratio data and our values for {sup 235}U(n,f). 6 refs., 1 fig.

  9. Studies on effective atomic numbers for photon energy absorption and electron density of some narcotic drugs in the energy range 1 keV-20 MeV

    Science.gov (United States)

    Gounhalli, Shivraj G.; Shantappa, Anil; Hanagodimath, S. M.

    2013-04-01

    Effective atomic numbers for photon energy absorption ZPEA,eff, photon interaction ZPI,eff and for electron density Nel, have been calculated by a direct method in the photon-energy region from 1 keV to 20 MeV for narcotic drugs, such as Heroin (H), Cocaine (CO), Caffeine (CA), Tetrahydrocannabinol (THC), Cannabinol (CBD), Tetrahydrocannabivarin (THCV). The ZPEA,eff, ZPI,eff and Nel values have been found to change with energy and composition of the narcotic drugs. The energy dependence ZPEA,eff, ZPI,eff and Nel is shown graphically. The maximum difference between the values of ZPEA,eff, and ZPI,eff occurs at 30 keV and the significant difference of 2 to 33% for the energy region 5-100 keV for all drugs. The reason for these differences is discussed.

  10. SMM observation of a cosmic gamma-ray burst from 20 keV to 100 MeV

    Science.gov (United States)

    Share, G. H.; Matz, S. M.; Messina, D. C.; Nolan, P. L.; Chupp, E. L.

    1986-01-01

    The Solar Maximum Mission gamma-ray spectrometer has detected an intense gamma-ray burst that occurred on August 5, 1984. The burst originated from a source in the constellation Hydra and lasted about 45 s. Its integral fluence at 20 keV was 0.003 erg/sq cm. Spectral evolution similar to other bursts detected by SMM was observed. The overall shape of the spectrum from 20 keV to 100 MeV, on timescales as short as 2 s, is relatively constant. This shape can be fitted by the sum of an exponential-type function and a power law. There is no evidence for narrow or broadened emission lines.

  11. (p,t) reaction on /sup 12/C, /sup 54/Fe and /sup 208/Pb at 80 MeV. [80 MeV, angular distributions, zerio-range DWBA

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, J R; Anderson, R E; Kraushaar, J J; Ristinen, R A [Colorado Univ., Boulder (USA). Nuclear Physics Lab.; Comfort, J R [Pittsburgh Univ., PA (USA). Dept. of Physics; King, N S.P. [Los Alamos Scientific Lab., NM (USA); Bacher, A; Jacobs, W W [Indiana Univ., Bloomington (USA). Dept. of Physics

    1979-06-11

    Angular distributions have been measured for the low-lying levels of the residual nuclei for the /sup 12/C, /sup 54/Fe and /sup 208/Pb(p,t) reactions at E/sub p/ = 80 MeV. The shapes of these angular distributions are generally well reproduced by the zero-range distorted-wave Born approximation (DWBA). Enhancement factors extracted from the data show that the DWBA predicts relative strengths consistent with those observed at lower bombarding energies. However, the overall empirical DWBA normalization at E/sub p/ = 80 MeV is observed to be 1/12(1/4) of that required at 40 MeV for /sup 208/Pb(/sup 54/Fe).

  12. Measurement of pair production cross sections in Ge for the 1. 238-3. 548 MeV energy range

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, R K; Singh, K; Sahota, H S

    1985-02-28

    Pair production cross sections have been determined for the 1.238-3.548 MeV energy range in germanium (Z = 32) using a Ge(Li) gamma ray detector. The experimental results have been compared with the theoretical cross sections of previous workers. The results of the present measurements agree with the Bethe-Heitler results down to 1.771 MeV. However, at 1.238 MeV the experimental results are higher than all the theories.

  13. Producing explicit UPSILON flavor in e/sup +/e/sup -/ annihilation at DORIS energies. [neutral currents, cross section, signature, 15 to 20 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Genz, H [Karlsruhe Univ. (TH) (Germany, F.R.). Inst. fuer Theoretische Kernphysik; Gorn, M [Karlsruhe Univ. (TH) (Germany, F.R.)

    1978-07-31

    If the neutral currents changing the flavor implicit in the UPSILON(9.5) are not suppressed, vector mesons with explicit UPSILON flavor should be produced in e/sup +/e/sup -/ annihilation at up to two e/sup +/e/sup -/ energies between ..sqrt..s approximately 5 - 6.5 GeV with a cross section sigma (peak, averaged over 7 MeV beam resolution) approximately 0.25% of sigma(e/sup +/e/sup -/..--> mu../sup +/..mu../sup -/). The signature would be monochromatic ..gamma.. lines with Esub(..gamma..)approximately 50-150 MeV, probably together with K production. Explicit flavor of a (anti QQ)sub(V) at 30 GeV would be produced at ..sqrt..s approximately 15-16 and ..sqrt..s approximately 20 GeV with sigmasup(averaged)sub(peak) approximately 3% and 5% of sigmasub(..mu../sup +/..mu../sup -/) with GAMMAsub(beam) = 27 and 48 MeV, respectively. The signature would be the same as above.

  14. Study of inclusive proton spectra from 20 MeV deuteron breakup by bismuth

    International Nuclear Information System (INIS)

    Badiger, N.M.; Hallur, B.R.; Madhusoodhanan, T.; Sathyavathiamma, M.P.; Puttaswamy, N.G.; Darshan, V.P.; Sharma, H.; Chintalapudi, S.N.

    1997-01-01

    The breakup of deuteron into proton and neutron has been studied earlier to understand the breakup mechanism. Inclusive measurements show the expected broad bumps near the beam velocity. In the present experiment, the breakup of 20 MeV deuterons by bismuth target has been investigated

  15. Development of a 20 MeV Dielectric-Loaded Accelerator Test Facility

    International Nuclear Information System (INIS)

    Gold, Steven H.; Fliflet, Arne W.; Kinkead, Allen K.; Gai Wei; Power, John G.; Konecny, Richard; Jing Chunguang; Tantawi, Sami G.; Nantista, Christopher D.; Hu, Y.; Chen, H.; Tang, C.; Lin, Y.; Bruce, Ralph W.; Bruce, Robert L.; Lewis, David III

    2004-01-01

    This paper describes a joint project by the Naval Research Laboratory (NRL) and Argonne National Laboratory (ANL), in collaboration with the StanFord Linear Accelerator Center (SLAC), to develop a dielectric-loaded accelerator (DLA) test facility powered by a high-power 11.424-GHz magnicon amplifier. The magnicon can presently produce 25 MW of output power in a 250-ns pulse at 10 Hz, and efforts are in progress to increase this to 50 MW. The facility will include a 5 MeV electron injector being developed by the Accelerator Laboratory of Tsinghua University in Beijing, China. The DLA test structures are being developed by ANL, and some have undergone testing at NRL at gradients up to ∼8 MV/m. SLAC is developing a means to combine the two magnicon output arms, and to drive an injector and accelerator with separate control of the power ratio and relative phase. RWBruce Associates, Inc., working with NRL, is developing a means to join short ceramic sections into a continuous accelerator tube by ceramic brazing using an intense millimeter-wave beam. The installation and testing of the first dielectric-loaded test accelerator, including injector, DLA structure, and spectrometer, should take place within the next year. The facility will be used for testing DLA structures using a variety of materials and configurations, and also for testing other X-band accelerator concepts. The initial goal is to produce a compact 20 MeV dielectric-loaded test accelerator

  16. 193Hg collective oblate band with Ex>5.7 MeV

    International Nuclear Information System (INIS)

    Roy, N.; Henry, E.A.; Becker, J.A.

    1993-01-01

    Rotational bands in the neutron-deficient Pb nuclei 192,194,196-201 Pb have been reported recently. Band members are connected by L = 1 transitions, with crossover L = 2 transitions observed at the higher γ-ray energies. Regular and irregular patterns of γ-ray energies are observed. Conversion coefficients determined from intensity balance suggest the L = 1 transitions are M1. The bands have generally been interpreted as collective oblate, involving deformation aligned high-j proton configurations such as π(s 1/2 -2 h 9/2 i 13/2 ), and rotation aligned i 13/2 -n neutrons. Evidence for a similar band in 193 Hg has been obtained. 193 Hg was populated in the reaction 176 Yb( 22 Ne,5n) at E i ( 22 Ne) = 110 MeV. Reaction γ rays were detected with the Ge detector array HERA. A new 'collective' structure was observed with E x >5.7 MeV. States of the structure extend from I≥47/2 to I +10, and they decay with competing dipole and quadrupole transitions. The ratio B(M1)/B(E2), ∼ 2μ 2 /(e b) 2 , is approximately 10x lower in 193 Hg than in the Pb bands. The lowest member is produced with ∼20% of the 193 Hg cross section. Evidence for a similar band in 196 Hg will be presented at this meeting

  17. Results of TGE Study in 0.03-10 MeV Energy Range in Ground Experiments near Moscow and Aragats

    International Nuclear Information System (INIS)

    Bogomolov, V.; Kovalenko, A.; Panasyuk, M.; Saleev, K.; Svertilov, S.; Maximov, I.; Garipov, G.; Iyudin, A.; Chilingarian, A.; Hovsepyan, G.; Karapetyan, T.; Mntasakanyan, E.

    2017-01-01

    Ground-based experiments with scintillator gamma-spectrometers were conducted to study the spectral, temporal and spatial characteristics of TGES as well, as to search the fast hard X-ray and gamma-ray flashes possibly appearing at the moment of lightning. The time of each gamma-quantum interaction was recorded with ∼15 us accuracy together with detailed spectral data. The measurements are similar to ones reported at TEPA-2015 but some important improvement of the instruments was done for 2016 season. First, GPS module was used to synchronize the instrument time with UTC. The accuracy of such synchronization allows one to look at the gamma-ray data at the moment of lightning fixed by radio-wave detector or any other instrument. Second, the energy range of gamma-spectrometers was shifted to higher energies where the radiation of natural isotopes is absent. In this case one can see background changes connected with particles accelerated in thundercloud together with the background increases during the rain caused by Rn-222 daughters. Long-term measurements with two instruments placed in different points of Moscow region were done in 2016 season. First one based on CsI (Tl) 80x80 mm has energy range 0.03-6 MeV. The range of the second one based on CsI (Tl) 100x100 mm is 0.05-10 MeV. A dozen of thunderstorms with increase of Rn-222 radiation were detected but no significant increase of gamma-ray flux above 3.2 MeV was observed at these periods. A lot of data was obtained from the experiment with small gamma-ray spectrometer (40x40 mm NaI (T1) at mountain altitude in Armenia at Aragats station. The analysis of readings during the TGE periods indicates on the presence of Rn-222 radiation in low-energy range (E< l MeV). The detector was improved during TEPA-2016. New 50x50 mm NaI (Tl) crystal was used and the energy range was prolonged up to 5 MeV. Exact timing with GPS-sensor was added and fast recording of the output signal at the moments of triggers from UV flash

  18. Empirical formulae for mass attenuation and energy absorption coefficients from 1 keV to 20 MeV

    International Nuclear Information System (INIS)

    Manjunatha, H.C.; Sowmya, N.; Seenappa, L.; Sridhar, K.N.; Hanumantharayappa, C.

    2017-01-01

    Mass attenuation and energy absorption coefficients represents attenuation and absorption of X-rays and gamma rays in the material medium. A new empirical formula is proposed for mass attenuation and energy absorption coefficients in the region 1 < Z < 92 and from 1 keV to 20 MeV. The mass attenuation and energy absorption coefficients do not varies linearly with energy. We have performed the nonlinear regressions/nonlinear least square fittings and proposed the simple empirical relations between mass attenuation coefficients (μ/ρ) and mass energy absorption coefficients (μ en /ρ) and energy. We have compared the values produced by this formula with that of experiments. A good agreement of present formula with the experiments/previous models suggests that the present formulae could be used to evaluate mass attenuation and energy absorption coefficients in the region 1 < Z < 92. This formula is a model-independent formula and is the first of its kind that produces a mass attenuation and energy absorption coefficient values with the only simple input of energy for wide energy range 1 keV - 20 MeV in the atomic number region 1 < Z < 92. This formula is very much useful in the fields of radiation physics and dosimetry

  19. SCANDAL -- A facility for elastic neutron scattering studies in the 50--130 MeV range

    International Nuclear Information System (INIS)

    Klug, J.; Blomgren, J.; Atac, A.; Bergenwall, B.; Dangtip, S.; Elmgren, K.; Johansson, C.; Olsson, N.; Prokofiev, A.V.; Rahm, J.; Oberstedt, A.; Tovesson, F.; Eudes, Ph.; Haddad, F.; Kerveno, M.; Kirchner, T.; Lebrun, C.; Stuttge, L.; Slypen, I.; Michel, R.; Neumann, S.; Herpers, U.

    2001-01-01

    A facility for detection of scattered neutrons in the energy interval 50--130 MeV, SCANDAL (SCAttered Nucleon Detection AssembLy), has recently been installed at the 20--180 MeV neutron beam facility of the The Svedberg Laboratory, Uppsala. It is primarily intended for studies of elastic neutron scattering, but can be used for the (n,p) and (n,d) reaction experiments as well. The performance of the spectrometer is illustrated in measurements of the (n,p) and (n,n) reactions on 1 H and 12 C. In addition, the neutron beam facility is described in some detail

  20. SCANDAL--a facility for elastic neutron scattering studies in the 50-130 MeV range

    CERN Document Server

    Klug, J; Atac, A; Bergenwall, B; Dangtip, S; Elmgren, K; Johansson, C; Olsson, N; Pomp, S; Prokofiev, A V; Rahm, J; Tippawan, U; Jonsson, O; Nilsson, L; Renberg, P U; Nadel-Turonski, P; Ringbom, A; Oberstedt, A; Tovesson, F; Blideanu, V; Le Brun, C; Lecolley, J F; Lecolley, F R; Louvel, M; Marie, N; Schweitzer, C; Varignon, C; Eudes, P; Haddad, F; Kerveno, M; Kirchner, T; Lebrun, C; Stuttgé, L; Slypen, I; Smirnov, A N; Michel, R; Neumann, S; Herpers, U

    2002-01-01

    A facility for detection of scattered neutrons in the energy interval 50-130 MeV, SCAttered Nucleon Detection AssembLy (SCANDAL), has recently been installed at the 20-180 MeV neutron beam facility of The Svedberg Laboratory, Uppsala. It is primarily intended for studies of elastic neutron scattering, but can be used for (n,p) and (n,d) reaction experiments as well. The performance of the spectrometer is illustrated in measurements of the (n,p) and (n,n) reactions on sup 1 H and sup 1 sup 2 C. In addition, the neutron beam facility is described in some detail.

  1. Measurement and theoretical analysis of neutron-induced neutron-emission reactions of {sup 6}Li at 10 to 20 MeV region

    Energy Technology Data Exchange (ETDEWEB)

    Ibaraki, Masanobu; Baba, Mamoru; Matsuyama, Shigeo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    1998-06-01

    We have measured the neutron elastic and inelastic scattering double-differential cross sections of {sup 6}Li at incident neutron energies of 11.5, 14.1 and 18.0 MeV. Based on this data, together with information from other works, a phenomenological neutron optical model potential (OMP) of {sup 6}Li was constructed to describe the total and elastic scattering cross sections from 5 MeV to several tens MeV. This potential also describes well the inelastic scattering to the 1st excited state (E{sub x} = 2.186 MeV) via the DWBA calculation with the macroscopic vibrational model. The continuum neutron energy spectra and angular distributions were then analyzed by the theory of final-state interaction extended to the DWBA form, with the assumption that the d-{alpha} interaction is dominant in the 3-body final state consisting of n, d and {alpha} particles. Such a calculation was found to be successful in explaining the major part of the low-excitation neutron spectra and angular distribution down to the Q-value region of -9 MeV, except for the Q-value range where the n-{alpha} quasi-free scattering will give a non-negligible contribution at forward angles. (author). 60 refs.

  2. Dislocation Climb Sources Activated by 1 MeV Electron Irradiation of Copper-Nickel Alloys

    DEFF Research Database (Denmark)

    Barlow, P.; Leffers, Torben

    1977-01-01

    Climb sources emitting dislocation loops are observed in Cu-Ni alloys during irradiation with 1 MeV electrons in a high voltage electron microscope. High source densities are found in alloys containing 5, 10 and 20% Ni, but sources are also observed in alloys containing 1 and 2% Ni. The range of ...

  3. THE HIGH-ENERGY EMISSION OF THE CRAB NEBULA FROM 20 keV TO 6 MeV WITH INTEGRAL SPI

    International Nuclear Information System (INIS)

    Jourdain, E.; Roques, J. P.

    2009-01-01

    The SPI spectrometer aboard the International Gamma-Ray Astrophysics Laboratory mission regularly observes the Crab Nebula since 2003. We report on observations distributed over 5.5 years and investigate the variability of the intensity and spectral shape of this remarkable source in the hard X-rays domain up to a few MeV. While single power-law models give a good description in the X-ray domain (mean photon index ∼ 2.05) and MeV domain (photon index ∼ 2.23), crucial information is contained in the evolution of the slope with energy between these two values. This study has been carried out through individual observations and long duration (∼ 400 ks) averaged spectra. The stability of the emission is remarkable and excludes a single power-law model. The slopes measured below and above 100 keV agree perfectly with the last values reported in the X-ray and MeV regions, respectively, but without indication of a localized break point. This suggests a gradual softening in the emission around 100 keV and thus a continuous evolution rather than an actual change in the mechanism parameters. In the MeV region, no significant deviation from the proposed power-law model is visible up to 5-6 MeV. Finally, we take advantage of the spectroscopic capability of the instrument to seek for previously reported spectral features in the covered energy range with negative results for any significant cyclotron or annihilation emission on 400 ks timescales. Beyond the scientific results, the performance and reliability of the SPI instrument is explicitly demonstrated, with some details about the most appropriate analysis method.

  4. Facility for the measurement of proton polarization in the range 50-70 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, M; Sakaguchi, H; Sakamoto, H; Ogawa, H; Cynshi, O; Kobayashi, S [Kyoto Univ. (Japan). Dept. of Physics; Kato, S [Osaka Univ., Toyonaka (Japan). Lab. of Nuclear Studies; Matsuoka, N; Hatanaka, K; Noro, T [Osaka Univ., Toyonaka (Japan). Research Center for Nuclear Physics

    1983-07-01

    A proton polarimetry facility based on silicon analyzers combined with high-purity germanium detectors is described. The scattering efficiency is 1.5 x 10/sup -5/ at 60 MeV with an effective analyzing power of 0.71 and the energy resolution is about 300 keV fwhm. The facility has succeeded in measuring the depolarization in p-/sup 13/C elastic scattering separated clearly from inelastic events. In order to use a silicon detector as an analyzer target, measurements of cross sections and analyzing powers have been performed at proton energies of 65, 60, 55, 50 and 45 MeV.

  5. Investigation of complete and incomplete fusion in 20Ne + 51V system using recoil range measurement

    Directory of Open Access Journals (Sweden)

    Ali Sabir

    2015-01-01

    Full Text Available Recoil range distributions of evaporation residues, populated in 20Ne + 51V reaction at Elab ≈ 145 MeV, have been studied to determine the degree of momentum transferred through the complete and incomplete fusion reactions. Evaporation residues (ERs populated through the complete and incomplete fusion reactions have been identified on the basis of their recoil range in the Al catcher medium. Measured recoil range of evaporation residues have been compared with the theoretical value calculated using the code SRIM. Range integrated cross section of observed ERs have been compared with the value predicted by statistical model code PACE4.

  6. 7.5 MeV High Average Power Linear Accelerator System for Food Irradiation Applications

    International Nuclear Information System (INIS)

    Eichenberger, Carl; Palmer, Dennis; Wong, Sik-Lam; Robison, Greg; Miller, Bruce; Shimer, Daniel

    2005-09-01

    In December 2004 the US Food and Drug Administration (FDA) approved the use of 7.5 MeV X-rays for irradiation of food products. The increased efficiency for treatment at 7.5 MeV (versus the previous maximum allowable X-ray energy of 5 MeV) will have a significant impact on processing rates and, therefore, reduce the per-package cost of irradiation using X-rays. Titan Pulse Sciences Division is developing a new food irradiation system based on this ruling. The irradiation system incorporates a 7.5 MeV electron linear accelerator (linac) that is capable of 100 kW average power. A tantalum converter is positioned close to the exit window of the scan horn. The linac is an RF standing waveguide structure based on a 5 MeV accelerator that is used for X-ray processing of food products. The linac is powered by a 1300 MHz (L-Band) klystron tube. The electrical drive for the klystron is a solid state modulator that uses inductive energy store and solid-state opening switches. The system is designed to operate 7000 hours per year. Keywords: Rf Accelerator, Solid state modulator, X-ray processing

  7. Comparison of Bonner sphere responses calculated by different Monte Carlo codes at energies between 1 MeV and 1 GeV – Potential impact on neutron dosimetry at energies higher than 20 MeV

    CERN Document Server

    Rühm, W; Pioch, C; Agosteo, S; Endo, A; Ferrarini, M; Rakhno, I; Rollet, S; Satoh, D; Vincke, H

    2014-01-01

    Bonner Spheres Spectrometry in its high-energy extended version is an established method to quantify neutrons at a wide energy range from several meV up to more than 1 GeV. In order to allow for quantitative measurements, the responses of the various spheres used in a Bonner Sphere Spectrometer (BSS) are usually simulated by Monte Carlo (MC) codes over the neutron energy range of interest. Because above 20 MeV experimental cross section data are scarce, intra-nuclear cascade (INC) and evaporation models are applied in these MC codes. It was suspected that this lack of data above 20 MeV may translate to differences in simulated BSS response functions depending on the MC code and nuclear models used, which in turn may add to the uncertainty involved in Bonner Sphere Spectrometry, in particular for neutron energies above 20 MeV. In order to investigate this issue in a systematic way, EURADOS (European Radiation Dosimetry Group) initiated an exercise where six groups having experience in neutron transport calcula...

  8. Deuteron stripping on beryllium target in the 100-2300 MeV energy range

    International Nuclear Information System (INIS)

    Lecolley, J.F.; Varignon, C.; Durand, D.; Le Brun, C.; Lecolley, F.R.; Lefebvres, F.; Louvel, M.; Thun, J.; Borne, F.; Martinez, E.; Menard, S.; Pras, P.; Boudard, A.; Duchazeaubeneix, J.C.; Durand, J.M.; Frehaut, J.; Hanappe, F.; Ledoux, X.; Legrain, R.; Leray, S.; Milleret, G.; Patin, Y.; Stuttge, L.; Terrien, Y.

    1999-01-01

    Cross sections for stripping and dissociation of deuterons interacting with Be targets in the 100-2300 MeV energy range have been measured. Comparisons with model calculations suggest a dominant contribution of the stripping process. It is also shown that the deuteron break-up cross section exhibits the same energy dependence as the nucleon-nucleon cross section. (orig.)

  9. Mean field for the p + 90Zr system in the energy range -60 MeV 90Zr from a dispersive optical-model analysis

    International Nuclear Information System (INIS)

    Romanovsky, E.A.; Bespalova, O.V.; Goncharov, S.A.; Pleshkov, D.V.; Spasskaya, T.I.

    2000-01-01

    Data on the scattering of protons with energies 5 MeV 90 Zr nuclei and data on the energies of proton particle and hole levels in the A + 1 and A - 1 systems with A = 90 are analyzed within the dispersive optical model. The parameters of the mean proton field for 90 Zr are determined in the energy range -60 MeV 3 He), ( 3 He, d), (n, d), and (d, n) reactions for levels near the Fermi surface and in (e, e'p) and (p, 2p) reactions for deep levels

  10. Analyzing power measurements for n-p scattering between 13.5 and 16.9 MeV

    International Nuclear Information System (INIS)

    Tornow, W.; Lisowski, P.W.; Byrd, R.C.; Walter, R.L.

    1980-01-01

    The analyzing power A%sub(Y)(theta) for neutron-proton scattering has been measured for theta = 90 0 (c.m.) from 13.5 to 16.9 MeV and from theta = 50 0 to 145 0 (c.m.) at 16.9 MeV. Extensive Monte Carlo calculations have been made to correct for multiple scattering effects. Overall uncertainties are about +- 0.002. All the A%sub(Y)(theta) data, but primarily those at 16.9 MeV, disagree with predictions based on the phase-shift sets which have been derived previously by way of global analyses of nucleon-nucleon scattering data. Data for the product delta(theta)A%sub(Y)(theta) have been fitted with an expansion of the form (sin theta)(a 0 + a 1 cos theta + a 2 cos 2 theta). For the first time the need for a non-zero a 2 has been illustrated for energies below 20 MeV. This parameter is shown to be related to the nucleon-nucleon F-state spin-orbit phase parameter. In addition, the P, D, and F spin-orbit phase parameter values derived from the present data differ significantly from the ones based on the Yale-IV and Livermore-X global analyses. The derived D and F spin-orbit phase parameters also differ from those obtained in the recent analysis of nucleon-nucleon scattering data by Arndt et al. (orig.)

  11. Spin and isospin characteristics of the excited states of 36Ar through the reaction 32S(α,γ)36Ar in the bombarding energy range E/sub α/ = 4 to 5 MeV

    International Nuclear Information System (INIS)

    Chakrabarty, D.R.; Eswaran, M.A.; Ragoowansi, N.L.

    1983-01-01

    The α capture reaction 32 S(α,γ) 36 Ar was studied in the bombarding energy range of E/sub α/ = 4.13 to 5.00 MeV corresponding to the excitation energy range of E/sub x/ = 10.31 to 11.08 MeV in 36 Ar. Seven resonances have been located and their resonance strengths determined. Two of the resonances decay predominantly to the ground state while the other five decay predominantly to the first excited state of 36 Ar. Angular distribution measurements of the predominant decay gamma ray have been performed and the spin and parity of all the resonances assigned. The isospin of two of the resonances have been assigned as T = 0 while T = 1 has been assigned for three others. Evidence has been obtained for the operation of the isospin selection rule for the dipole (E1 and M1) and quadrupole (E2) gamma decay

  12. Radiological safety research of food irradiation with 7.5 MeV X-rays

    International Nuclear Information System (INIS)

    Yang Bin; Tang Weidong; Zhang Yue; Xu Tao; Jin Jianqiao; Ye Mingyang

    2012-01-01

    China and America both have 7.5 MeV high energy X-ray accelerator. The radiological safety of food irradiated with 7.5 MeV X-rays (bremsstrahlung) has been investigated. Samples of meat and meat ash were located in a large volume of fresh meat at the position of the highest photoneutron fluence and irradiated to an X-ray dose of 15 kGy, twice the maximum dose allowed by the US FDA for meat irradiation. An evaluation of the corresponding radiation exposure from ingestion of the irradiated product has been compared to natural background radiation. The paper concludes that the risk to individuals from intake of food irradiated with X-rays from 7.5 MeV electrons, even with a broad energy spectrum, would be trivial. The common target materials are Au, Ta and W. The U.S, requires only Au and Ta can be used as food irradiation target materials and China has not yet relevant provisions. The first 7.5 MeV accelerator for food irradiation in China is under built, and will do the explore research for the choice of target material. (authors)

  13. The 2.5-MeV neutron time-of-flight spectrometer TOFOR for experiments at JET

    International Nuclear Information System (INIS)

    Gatu Johnson, M.; Giacomelli, L.; Hjalmarsson, A.

    2007-08-01

    A time-of-flight (TOF) spectrometer for measurement of the 2.5-MeV neutron emission from fusion plasmas has been developed and put into use at the JET tokamak. It has been optimized for operation at high rates (TOFOR) for the purpose of performing advanced neutron emission spectroscopy (NES) diagnosis of deuterium plasmas with a focus on the fuel ion motional states for different auxiliary heating scenarios. This requires operation over a large dynamic range including high rates of >100 kHz with a maximum value of 0.5 MHz for the TOFOR design. This paper describes the design principles and their technical realization. The performance is illustrated with recent neutron time-of-flight spectra recorded for plasmas subjected to different heating scenarios. A data acquisition rate of 39 kHz has been achieved at about a tenth of the expected neutron yield limit of JET, giving a projected maximum of 400 kHz at peak JET plasma yield. This means that the count rate capability for NES diagnosis of D plasmas has been improved more than an order of magnitude. Another important performance factor is the spectrometer bandwidth where data have been acquired and analyzed successfully with a response function for neutrons over the energy range 1 to >5 MeV. The implications of instrumental advancement represented by TOFOR are discussed

  14. The 2.5-MeV neutron time-of-flight spectrometer TOFOR for experiments at JET

    International Nuclear Information System (INIS)

    Gatu Johnson, M.; Giacomelli, L.; Hjalmarsson, A.; Kaellne, J.; Weiszflog, M.; Andersson Sunden, E.; Conroy, S.; Ericsson, G.; Hellesen, C.; Ronchi, E.; Sjoestrand, H.; Gorini, G.; Tardocchi, M.; Combo, A.; Cruz, N.; Sousa, J.; Popovichev, S.

    2008-01-01

    A time-of-flight (TOF) spectrometer for measurement of the 2.5-MeV neutron emission from fusion plasmas has been developed and put into use at the JET tokamak. It has been optimized for operation at high rates (TOFOR) for the purpose of performing advanced neutron emission spectroscopy (NES) diagnosis of deuterium plasmas with a focus on the fuel ion motional states for different auxiliary heating scenarios. This requires operation over a large dynamic range, including high rates of >100 kHz with a maximum value of 0.5 MHz for the TOFOR design. This paper describes the design principles and their technical realization. The performance is illustrated with recent neutron TOF spectra recorded for plasmas subjected to different heating scenarios. A true event count rate of 39 kHz has been achieved at about a tenth of the expected neutron yield limit of JET, giving a projected maximum of 400 kHz at peak JET plasma yield. This means that the count rate capability for NES diagnosis of D plasmas has been improved more than an order of magnitude. Another important performance factor is the spectrometer bandwidth, where data have been acquired and analyzed successfully with a response function for neutrons over the energy range 1 to >5 MeV. The implications of instrumental advancement represented by TOFOR are discussed

  15. The 2.5-MeV neutron time-of-flight spectrometer TOFOR for experiments at JET

    Energy Technology Data Exchange (ETDEWEB)

    Gatu Johnson, M.; Giacomelli, L.; Hjalmarsson, A. (and others)

    2007-08-15

    A time-of-flight (TOF) spectrometer for measurement of the 2.5-MeV neutron emission from fusion plasmas has been developed and put into use at the JET tokamak. It has been optimized for operation at high rates (TOFOR) for the purpose of performing advanced neutron emission spectroscopy (NES) diagnosis of deuterium plasmas with a focus on the fuel ion motional states for different auxiliary heating scenarios. This requires operation over a large dynamic range including high rates of >100 kHz with a maximum value of 0.5 MHz for the TOFOR design. This paper describes the design principles and their technical realization. The performance is illustrated with recent neutron time-of-flight spectra recorded for plasmas subjected to different heating scenarios. A data acquisition rate of 39 kHz has been achieved at about a tenth of the expected neutron yield limit of JET, giving a projected maximum of 400 kHz at peak JET plasma yield. This means that the count rate capability for NES diagnosis of D plasmas has been improved more than an order of magnitude. Another important performance factor is the spectrometer bandwidth where data have been acquired and analyzed successfully with a response function for neutrons over the energy range 1 to >5 MeV. The implications of instrumental advancement represented by TOFOR are discussed.

  16. Characterisation of a compton suppressed clover detector for high energy gamma rays (5 MeV ≤ E ≤ 11 MeV)

    International Nuclear Information System (INIS)

    Saha Sarkar, M.; Kshetri, Ritesh; Raut, Rajarshi; Mukherjee, A.; Goswami, A.; Ray, S.; Basu, P.; Majumder, H.; Bhattacharya, S.; Dasmahapatra, B.; Sinha, Mandira; Ray, Maitreyee

    2004-01-01

    The Clover detectors in their add back mode have been seen to be excellent tools for detecting high energy gamma rays (≥ 2 MeV). Recently studies were carried out on the characteristics of a Compton suppressed Clover germanium detector up to 5 MeV using a radioactive 66 Ga (T 1/2 =9.41 h) source for the first time

  17. Secondary electron emission from 0.5--2.5-MeV protons and deuterons

    International Nuclear Information System (INIS)

    Thornton, T.A.; Anno, J.N.

    1977-01-01

    Measurement of the secondary electron currents leaving Al, V, Fe, 316 stainless steel, Nb, and Mo foils undergoing 0.5--2.5-MeV proton and deuteron bombardment were made to determine the secondary electron emission ratios for these ions. The measured secondary electron yields were of the order of 1.0, with the deuterons producing generally higher yields than the protons

  18. Calculated neutron-activation cross sections for E/sub n/ /le/ 100 MeV for a range of accelerator materials

    International Nuclear Information System (INIS)

    Bozoian, M.; Arthur, E.D.; Perry, R.T.; Wilson, W.B.; Young, P.G.

    1988-01-01

    Activation problems associated with particle accelerators are commonly dominated by reactions of secondary neutrons produced in reactions of beam particles with accelerator or beam stop materials. Measured values of neutron-activation cross sections above a few MeV are sparse. Calculations with the GNASH code have been made for neutrons incident on all stable nuclides of a range of elements common to accelerator materials. These elements include B, C, N, O, Ne, Mg, Al, Si, P, S, Ar, K, Ca, Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Mo, Nd, and Sm. Calculations were made for a grid of incident neutron energies extending to 100 MeV. Cross sections leading to the direct production of as many as 87 activation products for each of 84 target nuclide were tabulated on this grid of neutron energies, each beginning with the threshold for the product nuclide's formation. Multigrouped values of these cross sections have been calculated and are being integrated into the cross-section library of the REAC-2 neutron activation code. Illustrative cross sections are presented. 20 refs., 6 figs., 1 tab

  19. Fusion with projectiles from carbon to argon at energies between 20A MeV and 60A MeV

    International Nuclear Information System (INIS)

    Galin, J.

    1986-01-01

    Fusion reactions are known to be the dominant reaction channel at low bombarding energies and can now be investigated with a large variety of projectiles at several tens of MeV per nucleon. The gross characteristics of the fusion process can be studied by measuring global quantities, such as the linear momentum transferred from projectile to target and the dissipated energy of the reaction. The strong correlation between these two quantities is demonstrated at moderate bombarding energies, with a Ne projectile on a U target. It is expected that light particle (charged or neutron) multiplicity measurements can be extended to this higher energy domain and be used to selectively filter these collisions, according to their degree of violence. A review of the linear momentum transfer is made, considering essentially heavy targets and two important parameters in the entrance channel: the projectile energy and its mass. Over a broad mass range, and for energies up to 30A MeV, the momentum transfer scales with the mass of the projectile. At 30A MeV, the most probable value of projectile momentum transferred to the fused system is 80%, and this represents roughly 180 MeV/c per projectile nucleon. At higher bombarding energies, the momentum distribution in the fused systems, as observed from binary fission events, seems to depend on the mass of the projectile. Further studies are still needed to understand this behavior. Finally, the decay of highly excited (E* similarly ordered 500-800 MeV) fused systems, with masses close to 270 amu, is studied from the characteristics of both fusion fragments and light charged particles. It is shown that thermal equilibrium is reached before fission, even for such high energy deposition. However, the decay sequence is sensitive to dynamical effects and does not depend only on available phase space

  20. Experimental investigation of highly excited states of the 5,6He and 5,6Li nuclei in the (6Li, 7Be) and (6Li, 7Li) one-nucleon-pick-up reactions

    International Nuclear Information System (INIS)

    Sakuta, S.B.; Novatskij, B.G.; Stepanov, D.N.; Aleksandrov, D.V.; Glukhov, Yu.A.; Nikol'skij, E.Yu.

    2002-01-01

    ( 6 Li, 7 Be) and ( 6 Li, 7 Li) reactions on the 6 Li, 7 Li nuclei have been investigated in the angular range of 0-20 deg in laboratory system at the 93-MeV 6 Li energy. Besides low-lying states of 5,6 He and 5,6 Li nuclei, broad structures have been observed in the measured spectra close to the t( 3 He) + d and t( 3 He) + t threshold at excitation energies of 16.75 (3/2 + ) and ∼ 20 MeV ( 5 He), 16.66 (3/2 + ) and ∼ 20 MeV ( 5 Li), 14.0 and 25 MeV ( 6 He), and ∼ 20 MeV ( 6 Li). Angular distributions, which have been measured for transitions to the ground (0 + ) and exited states at E x =1.8 MeV (2 + ) and 14.0 MeV of the 6 He nucleus in the 7 Li( 6 Li, 7 Be) 6 He reaction, have been analyzed in the framework of the finite-range distorted-waves method assuming the 1p- and 1s-proton pick-up mechanism. It has been shown that ( 6 Li, 7 Be) and ( 6 Li, 7 Li) reactions predominately proceed by one-step pick-up mechanism and broad structures which are observed at high excitation energies should be considered as quasimolecular states of the t( 3 He) + d and t( 3 He) + t type [ru

  1. Structures in 20O from the 14C(7Li, p) reaction at 44 MeV

    International Nuclear Information System (INIS)

    Bohlen, H.G.; Oertzen, W. von; Kokalova, T.; Wheldon, C.; Milin, M.; Dorsch, T.; Kruecken, R.; Faestermann, T.; Mahgoub, M.; Hertenberger, R.; Wirth, H.F.

    2011-01-01

    We have studied the multi-nucleon transfer reaction 14 C( 7 Li, p) at E Lab ( 7 Li) = 44 MeV populating states of the neutron-rich oxygen isotope 20 O. The experiments have been performed at the Munich Tandem accelerator using the high-resolution Q3D magnetic spectrometer, with an overall energy resolution of 45keV. States were populated up to 20MeV excitation energy -65 states have been identified in the analysis, among which 42 are new. Rotational bands are proposed in terms of underlying intrinsic reflection-asymmetric cluster and prolate molecular structures (namely 14 C x 2n x α) as parity doublet bands. A rectangular oblate structure is suggested for some very narrow states at high excitation energies. (orig.)

  2. Optimization of the microwave coupler and microwave measurements of the microtron cavity for 20 MeV pre-injector microtron for INDUS-I SRS

    International Nuclear Information System (INIS)

    Wanmode, Y.D.; Shrivastava, Purushottam; Hannurkar, P.R.

    2003-01-01

    A 20 MeV microtron was developed indigenously by CAT for pre-injection of 20 MeV electrons to the 450 MeV/700 MeV Booster Synchrotron for INDUS-I and INDUS-II Synchrotron Radiation Sources. The injector microtron uses a high Q microwave cavity for acceleration of electrons. The microwave power is fed to the microtron cavity through an iris type coupler whose dimensions are optimized for the coupling factor and resonant frequency for the accelerator. The present paper gives the procedure details for coupling factor optimization, tuning of the resonant frequency and results achieved. (author)

  3. The 10B(p,α)7Be S(E)-factor from 5 keV to 1.5 MeV using the Trojan Horse Method

    Science.gov (United States)

    Puglia, Sebastiana Maria Regina; Spitaleri, Claudio; La Cognata, Marco; Lamia, Livio; Broggini, Carlo; Caciolli, Antonio; Carlin, Nelson; Cherubini, Silvio; Cvetinovic, Alexandra; D'Agata, Giuseppe; Dell'aquila, Daniele; Depalo, Rosanna; Gulino, Marisa; Guardo, Giovanni Luca; Indelicato, Iolanda; Lombardo, Ivano; Menegazzo, Roberto; Munhoz, Marcelo Gimenez; Pizzone, Rosario Gianluca; Rapisarda, Giuseppe Gabriele; Rigato, Valentino; Romano, Stefano; Sergi, Maria Letizia; Souza, Francisco; Sparta, Roberta; Tudisco, Salvo; Tumino, Aurora

    2018-01-01

    The 10B(p,α)7Be reaction is the main responsible for the 10B destruction in stellar interior [1]. In such environments this p-capture process occurs at a Gamow energy of 10 keV and takes places mainly through a resonant state (Ex = 8.701 MeV) of the compound 11C nucleus. Thus a resonance right in the region of the Gamow peak is expected to significantly influence the behavior of the astrophysical S(E)-factor. The 10B(p,α)7Be reaction was studied via the Trojan Horse Method (THM) applied to the 2H(10B,α7Be)n in order to extract the astrophysical S(E)-factor in a wide energy range from 5 keV to 1.5 MeV.

  4. Measurement of (n,Xn) reaction cross sections at 96 MeV; Measure des sections efficaces (n,Xn) a 96 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Sagrado Garcia, Melle Inmaculada C. [Ecole Doctorale: SINEM, U.F.R. de Sciences, Universite de Caen/Basse-Normandie, Esplanade Paix14000 Caen (France)

    2006-10-15

    Nucleon induced reactions in the 20-200 MeV energy range are intensively studied since a long time. The evaporation and the pre-equilibrium processes correspond to an important contribution of the production cross section in these reactions. Several theoretical approaches have been proposed and their predictions must be tested. The experimental results shown in this work are the only complete set of data for the (n,Xn) reactions in this energy range. Neutron double differential cross section measurements using lead and iron targets for an incident neutron beam at 96 MeV were carried out at TSL Laboratory in Uppsala, Sweden. The measurements have been performed for the first time with an energy threshold of 2 MeV and for a wide angular range (15 angle - 98 angle). Neutrons have been detected using two independent setups, DECOI and DEMON and CLODIA and SCANDAL, in order to cover the whole energy range (2-100) MeV. The angular distributions, the differential cross sections and the total inelastic production cross sections have been calculated using the double differential cross sections. The comparison between the experimental data and the predictions given by two of the most popular simulation codes, GEANT3 and MCNPX, have been performed, as well as the comparison with the predictions of the microscopic simulation model DYWAN, selected for its treatment of nucleon-nucleon reactions. (author)

  5. Measurement of neutron-induced fission cross-sections of Th232, U238, U233 and Np237 relative to U235 from 1 MeV to 200 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Shcherbakov, O.A.; Laptev, A.B.; Petrov, G.A. [Petersburg Nuclear Physics Inst., Gatchina, Leningrad district (Russian Federation); Fomichev, A.V.; Donets, A.Y.; Osetrov, O.I.

    1998-11-01

    The measurements of neutron-induced cross-section ratios for Th232, U238, U233 and Np237 relative to U235 have been carried out in the energy range from 1 MeV up to 200 MeV using the neutron time-of-flight spectrometer GNEIS based on 1 GeV proton synchrocyclotron. Below 20 MeV, the results of present measurements are roughly in agreement with evaluated data though there are some discrepances to be resolved. (author)

  6. Andromede project: Surface analysis and modification with probes from hydrogen to nano-particles in the MeV energy range

    International Nuclear Information System (INIS)

    Eller, Michael J.; Cottereau, Evelyne; Rasser, Bernard; Verzeroli, Elodie; Agnus, Benoit; Gaubert, Gabriel; Donzel, Xavier; Delobbe, Anne; Della-Negra, Serge

    2015-01-01

    The Andromede project is the center of a multi-disciplinary team which will build a new instrument for surface modification and analysis using the impact of probes from hydrogen to nano-particles (Au 400 +4 ) in the MeV range. For this new instrument a series of atomic, polyatomic, molecular and nano-particle ion beams will be delivered using two ion sources in tandem, a liquid metal ion source and an electron cyclotron resonance source. The delivered ion beams will be accelerated to high energy with a 4 MeV van de Graaff type accelerator. By using a suite of probes in the MeV energy range, ion beam analysis techniques, MeV atomic and cluster secondary ion mass spectrometry can all be performed in one location. A key feature of the instrument is its ability to produce an intense beam for injection into the accelerator. The commissioning of the two sources shows that intense beams from atomic ions to nano-particles can be delivered for subsequent acceleration. The calculations and measurements for the two sources are presented.

  7. Neutron scattering differential cross sections of carbon and bismuth at 37 MeV

    International Nuclear Information System (INIS)

    Zhou Zuying; Tang Hongqing; Qi Bujia; Zhou Chenwei; Du Yanfeng; Xia Haihong; Walter, R.L.; Tornow, W.; Howell, C.; Braun, R.; Roper, C.; Chen Zemin; Chen Zhengpeng; Chen Yingtang

    1997-01-01

    Elastic differential cross sections of 37 MeV neutrons scattered from carbon and bismuth were measured in the angular range 11 to 160 degrees by means of the multi-detector TOF facility. The 37 MeV neutrons were produced via the T(d,n) 4 He reaction in a tritium gas target. The pulsed 20 MeV deuteron beam was provided by the HI-13 tandem accelerator. The angular distribution of scattered neutrons from carbon and bismuth were measured in the angular range 11 degree to 145 degree and 11 degree to 160 degree respectively in steps of about 3 degree

  8. Electron capture on 20Ne and the ultimate fate of stars in the mass range 8-10 M⊙

    International Nuclear Information System (INIS)

    Kirsebom, Oliver S.; Cederkall, Joakim; Jenkins, David G.; Joshi, Pankaj; Julin, Rauno; Kankainen, Anu; Trzaska, Wladyslaw H.; Kibedi, Tibor; Tengblad, Olof

    2016-01-01

    Knowledge of the electron-capture rate on 20 Ne is of critical importance to understand the final evolution of stars in the mass range 8-10M⊙. A recent study has highlighted the importance of the second-forbidden transition between the ground states of 20 Ne and 20 F, which is believed to dominate the capture rate in an important temperature-density range. The strength of this transition is, however, not well constrained, neither experimentally nor theoretically, making an experimental determination highly desirable. The transition strength can be determined from the branching ratio of the inverse transition in the decay of 20 F, for which the experimental upper limit is 10 -5 , while the most recent theoretical prediction is 1.3 x 10 -6 . To facilitate an experimental determination of the branching ratio we are refurbishing an intermediate-image magnetic spectrometer capable of focusing 7 MeV electrons, and designing a scintillator detector surrounded by an active cosmic-ray veto shield, which will serve as an energy- dispersive device at the focal plane. In this contribution, GEANT4 simulations of the expected performance of the setup will be presented and the astrophysical motivation for the experiment will be discussed. (author)

  9. 238U neutron-induced fission cross section for incident neutron energies between 5 eV and 3.5 MeV

    International Nuclear Information System (INIS)

    Difilippo, F.C.; Perez, R.B.; de Saussure, G.; Olsen, D.K.; Ingle, R.W.

    1979-01-01

    A measurement of the 238 U neutron-induced fission cross section was performed at the ORELA Linac facility in the neutron energy range between 5 eV and 3.5 MeV. The favorable signal-to-background ratio and high resolution of this experiment resulted in the identificaion of 85 subthreshold fission resonances or clusters of resonances in the neutron energy region between 5 eV and 200 keV. The fission data below 100 keV are characteristic of a weak coupling situation between Class I and Class II levels. The structure of the fission levels at the 720 eV and 1210 eV fission clusters is discussed. There is an apparent enhancement of the fission cross section at the opening of the 2 + neutron inelastic channel in 238 U at 45 keV. An enhancement of the subthreshold fission cross section between 100 keV and 200 keV is tentatively interpreted in terms of the presence of a Class II, partially damped vibrational level. There is a marked structure in the fission cross section above 200 keV up to and including the plateau between 2 and 3.5 MeV. 11 figures and 6 tables

  10. THE ORIGIN OF THE COSMIC GAMMA-RAY BACKGROUND IN THE MeV RANGE

    International Nuclear Information System (INIS)

    Ruiz-Lapuente, Pilar; The, Lih-Sin; Hartmann, Dieter H.; Ajello, Marco; Canal, Ramon; Röpke, Friedrich K.; Ohlmann, Sebastian T.; Hillebrandt, Wolfgang

    2016-01-01

    There has been much debate about the origin of the diffuse γ-ray background in the MeV range. At lower energies, AGNs and Seyfert galaxies can explain the background, but not above ≃0.3 MeV. Beyond ∼10 MeV blazars appear to account for the flux observed. That leaves an unexplained gap for which different candidates have been proposed, including annihilations of WIMPS. One candidate is Type Ia supernovae (SNe Ia). Early studies concluded that they were able to account for the γ-ray background in the gap, while later work attributed a significantly lower contribution to them. All those estimates were based on SN Ia explosion models that did not reflect the full 3D hydrodynamics of SN Ia explosions. In addition, new measurements obtained since 2010 have provided new, direct estimates of high-z SN Ia rates beyond z ∼ 2. We take into account these new advances to see the predicted contribution to the gamma-ray background. We use here a wide variety of explosion models and a plethora of new measurements of SN Ia rates. SNe Ia still fall short of the observed background. Only for a fit, which would imply ∼150% systematic error in detecting SN Ia events, do the theoretical predictions approach the observed fluxes. This fit is, however, at odds at the highest redshifts with recent SN Ia rate estimates. Other astrophysical sources such as flat-spectrum radio quasars do match the observed flux levels in the MeV regime, while SNe Ia make up to 30%–50% of the observed flux

  11. THE ORIGIN OF THE COSMIC GAMMA-RAY BACKGROUND IN THE MeV RANGE

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Lapuente, Pilar [Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas, c/. Serrano 121, E-28006, Madrid (Spain); The, Lih-Sin; Hartmann, Dieter H.; Ajello, Marco [Department of Physics and Astronomy, Clemson University, Clemson, SC 29634 (United States); Canal, Ramon [Institut de Ciències del Cosmos (UB-IEEC), c/. Martí i Franqués 1, E-08028, Barcelona (Spain); Röpke, Friedrich K.; Ohlmann, Sebastian T. [Institute of Theoretical Physics and Astrophysics, University of Würzburg, D-97074, Würzburg (Germany); Hillebrandt, Wolfgang [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching bei München (Germany)

    2016-04-01

    There has been much debate about the origin of the diffuse γ-ray background in the MeV range. At lower energies, AGNs and Seyfert galaxies can explain the background, but not above ≃0.3 MeV. Beyond ∼10 MeV blazars appear to account for the flux observed. That leaves an unexplained gap for which different candidates have been proposed, including annihilations of WIMPS. One candidate is Type Ia supernovae (SNe Ia). Early studies concluded that they were able to account for the γ-ray background in the gap, while later work attributed a significantly lower contribution to them. All those estimates were based on SN Ia explosion models that did not reflect the full 3D hydrodynamics of SN Ia explosions. In addition, new measurements obtained since 2010 have provided new, direct estimates of high-z SN Ia rates beyond z ∼ 2. We take into account these new advances to see the predicted contribution to the gamma-ray background. We use here a wide variety of explosion models and a plethora of new measurements of SN Ia rates. SNe Ia still fall short of the observed background. Only for a fit, which would imply ∼150% systematic error in detecting SN Ia events, do the theoretical predictions approach the observed fluxes. This fit is, however, at odds at the highest redshifts with recent SN Ia rate estimates. Other astrophysical sources such as flat-spectrum radio quasars do match the observed flux levels in the MeV regime, while SNe Ia make up to 30%–50% of the observed flux.

  12. Measurement of the neutron-capture cross section on 63,65Cu between 0.4 and 7.5 MeV

    Science.gov (United States)

    Bray, Isabel; Bhike, Megha; Krishichayan, (None); Tornow, W.

    2015-10-01

    Copper is currently being used as a cooling and shielding material in most experimental searches for 0 ν β β decay. In order to accurately interpret background events in these experiments, the cross section of neutron-induced reactions on copper must be known. The purpose of this work was to measure the cross section of the 63,65Cu(n, γ)64,66Cu reactions. Data were collected through the activation method at a range of energies from approximately 0.4 MeV to 7.5 MeV, employing the neutron production reactions 3H(p,n)3Heand2H(d,n)3He. Previous data were limited to energies below approximately 3 MeV. The results are compared to predictions from the nuclear data libraries ENDF/B-VII.1 and TENDL-2014.

  13. Theoretical study of cylindrical energy analyzers for MeV range heavy ion beam probes

    International Nuclear Information System (INIS)

    Fujisawa, A.; Hamada, Y.

    1993-07-01

    A cylindrical energy analyzer with drift spaces is shown to have a second order focusing for beam incident angle when the deflection angle is properly chosen. The analyzer has a possibility to be applied to MeV range heavy ion beam probes, and will be also available for accurate particle energy measurements in many other fields. (author)

  14. Estimation of the measurement effective point in cylindrical ionization chamber used in electron beams with energies between 6 and 20 MeV

    International Nuclear Information System (INIS)

    Araujo, M.M. de.

    1984-01-01

    The radial displacement was determined in a water phantom for electrons beams at energies from 6 to 20 MeV for three commercial cylindrical ionization chambers of internal diameters varying from 3.5 to 9.0 mm. The chambers were irradiated with the main axis perpendicular to the direction of the beam. A 300 V bias voltage was applied and readings were taken with both polarities. It was observed that, with increasing depth in the water phantom, the radial displacement remains constant for the 8.9 MeV beam, it increases for the 12.6 MeV electrons and decreases for those of 16.8 and 19.7 MeV. A theoretical model was built in order to calculate the displacement of the effective point of measurement. The Fermi-Eyges multiple scattering theory and a retangular beam normalism developed by Jette (1983) for therapeutic electron beam are used. It was found that the radial displacement stays constant with increasing depth and it decreases with increasing average energy of the incident beam. The model also predicts that the displacement is dependent on the chamber radius. The experimental and theoretical results are compared. They show good agreement for 8.9 and 12.6 MeV electrons, while for 16.8 and 19.7 MeV electrons they indicate that modifications in the theoretical model are necessary. (Author) [pt

  15. Capture cross-section measurements for different elements at neutron energies between 0.5 and 3.0 MeV

    International Nuclear Information System (INIS)

    Grenier, Gerard; Voignier, Jacques; Joly, Serge.

    1981-03-01

    Neutron capture cross-sections have been measured for the nuclides: Rb, Y, Nb, Gd, W, Pt, Tl, and for the isotopes 155 Gd, 156 Gd, 157 Gd, 158 Gd, 160 Gd, 182 W, 183 W, 184 W, 186 W, 203 Tl and 205 Tl in the 0.5 MeV to 3.0 MeV neutron energy range. Neutron capture cross-sections are determined through direct γ-ray spectrum emitted by the sample. The gamma-rays are detected by a NaI scintillator surrounded by an annular NaI detector. The time-of-flight method is used. Our results are compared with previous data, evaluations and statistical model calculations [fr

  16. Study of imaging plate detector sensitivity to 5-18 MeV electrons

    Energy Technology Data Exchange (ETDEWEB)

    Boutoux, G., E-mail: boutoux@celia.u-bordeaux1.fr; Rabhi, N.; Batani, D.; Ducret, J.-E. [Univ. de Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, F-33405 Talence (France); Binet, A.; Nègre, J.-P.; Reverdin, C.; Thfoin, I. [CEA DAM DIF, F-91297 Arpajon (France); Jakubowska, K. [Institute of Plasma Physics and Laser Microfusion, Hery Street 23, 01-497 Warsaw (Poland)

    2015-11-15

    Imaging plates (IPs) are commonly used as passive detectors in laser-plasma experiments. We calibrated at the ELSA electron beam facility (CEA DIF) the five different available types of IPs (namely, MS-SR-TR-MP-ND) to electrons from 5 to 18 MeV. In the context of diagnostic development for the PETawatt Aquitaine Laser (PETAL), we investigated the use of stacks of IP in order to increase the detection efficiency and get detection response independent from the neighboring materials such as X-ray shielding and detector supports. We also measured fading functions in the time range from a few minutes up to a few days. Finally, our results are systematically compared to GEANT4 simulations in order to provide a complete study of the IP response to electrons over the energy range relevant for PETAL experiments.

  17. Number transmission of 0.6 and 0.8MeV electrons in elemental materials

    International Nuclear Information System (INIS)

    Harami, Taikan; Takagaki, Torao; Matsuda, Koji; Nakai, Yohta.

    1975-01-01

    The number transmissions of electrons in Be, Al, Cu and Ag were obtained experimentally for well collimated electron beams of 0.6 and 0.8 MeV. Experimental results of the present work join smoothly to the previous ones of 1.0 MeV to 2.0 MeV electrons. The ratios of extrapolated range Rsub(ex) to true range R 0 give generally minimum values near 1 MeV (approximately 2mc 2 ) as well as the stopping power. An investigation was done for empirical equation of the form eta=exp(-xP/CEsup(m)), where E is the incident electron energy, x, penetration depth, and p, C and m are the parameters determined from experimental data. (author)

  18. 2 MeV/20 kW industrial electron beam accelerator vis-s-vis its vacuum system

    International Nuclear Information System (INIS)

    Khader, S.A.; Assadullah, M.; Sarma, K.S.S.; Bandi, L.N.

    2003-01-01

    Full text: Electron beam accelerators in the energy range 200 keV to 10 MeV have been extensively used for many radiation processing applications that include polymerization, polymer modifications, radiation sterilization, food irradiation and gem coloration. The accelerator technology is a multidisciplinary one wherein production of stable vacuum in various accelerator systems is of utmost importance to achieve required output beam parameters like beam energy and current for processing industrial products at large through puts on continuous basis. A 2 MeV, 20 kW industrial electron beam accelerator has been in operation since 2001 at BARC-BRIT complex, Navi Mumbai for commercial and R and D applications like crosslinking of wire and cables, heat shrinkable tubes, PE O rings, PTEE degradation and color enhancement in diamonds. The machine is a ILU-6 type pulse RF accelerator consisting of a single resonator copper cavity of 1.2 m diameter and 1.2 m height (volume:∼ 1.5 m3) placed inside a stainless steel container (called cavity container) and a s.s. beam extraction window wherein vacuum needs to be maintained at a minimum 10-6 torr. Four sputter ion pumps are directly fixed on the cavity container to obtain maximum pumping efficiency. The fore vacuum is generated using a combination rotary and a roots pump. The beam extraction widow has a 50 and 956 m thick titanium foil acting as the exit window for electrons from the vacuum into air. Both the cavity and the beam extraction window are coupled through a gate valve which acts as a vacuum separator isolating the systems from each other during foil puncture, scanning system failure or any other related problems. This paper reports details of the vacuum system, measurements, vacuum leaks and detection and the operational experience related to maintenance and troubleshooting exercises that have been carried in the accelerator

  19. Study of one-nucleon transfer reactions with polarized deuterons of 20 MeV

    International Nuclear Information System (INIS)

    Seichert, N.

    1983-01-01

    In this thesis the results of the study of (d vector,p), (d vector,t), and (d vector, 3 He) reactions at Esub(d)approx.=20 MeV on the target nuclei 16 O, 18 O, 28 Si, 36 Ar, 40 Ca, 48 Ca, 54 Cr, 65 Cu, 90 Zr, 144 Sm, and 208 Pb in the framework of a DWBA analysis are presented. The collection of the results of the analysis over this wide mass range shall permit a survey, how well the conventional DWBA describes the measured angular distributions of dsigma/dΩ(theta) and iT 11 (theta). Furthermore in justified cases the contribution of higher order processes (inelastic transfer) are studied by means of a CCBA analysis. The spectroscopical possibilities given by the measurement of the analyzing power iT 11 (theta) are presented in detail on the example of the reaction 144 Sm (d vector,p) 145 Sm. The analysis of the tensor analyzing power T 21 (theta) in the framework of a finite range DWBA in the last part of the thesis permits quantitative statements about the D state amplitude in the relative wave function of the deuteron, the triton, and of 3 He. (orig./HSI) [de

  20. (n, Xn) cross sections measurements at 96 MeV

    International Nuclear Information System (INIS)

    Sagrado Garcia, Inmaculada C.

    2006-01-01

    Nucleon induced reactions in the 20-200 MeV energy range are intensively studied since a long time. The evaporation and the pre-equilibrium processes correspond to an important contribution of the production cross section in these reactions. Several theoretical approaches have been proposed and their predictions must be tested. The experimental results shown in this work are the only complete set of data for the (n, Xn) reactions in this energy range. Neutron double differential cross sections measurements using lead and iron targets for an incident neutron beam at 96 MeV were carried out at TSL laboratory, in Uppsala (Sweden). The measurements have been performed for the first time with an energy threshold of 2 MeV and for a wide angular range (15 deg.-98 deg.). Neutrons have been detected using two independent setups, DECOI and DEMON and CLODIA and SCANDAL, in order to cover the whole energy range (2-100 MeV). The angular distributions, the differential cross sections and the total inelastic production cross sections have been calculated using the double differential cross sections. The comparisons between the experimental data and the predictions given by two of the most popular simulation codes, GEANT3 and MCNPX, have been performed, as well as the comparison with the predictions of the microscopic simulation model DYWAN, selected for its original treatment of nucleon-nucleus reactions. (author) [fr

  1. Thermoluminescence response of Ge-, Al- and Nd- doped optical fibers by 6 MeV - electron and 6 MeV - photon irradiations

    International Nuclear Information System (INIS)

    Hossain, I.; Moburak, A. A.; Saeed, M.A.; Wagiran, H.; Hida, N.; Yaakob, H.N.

    2015-01-01

    In this paper, we report the prediction of thermoluminescence responses of Neodymium-doped SiO 2 optical fibre with various dose ranges from 0.5 Gy to 4.0 Gy by 6 MeV - electron irradiations without requirement for experimental measurements. A technique has been developed to calculate prediction of 6 MeV - electron response of Neodymium-doped SiO 2 optical fibre by observing the measured TL response of 6 MV - photon and the ratio of known measured photon/electron yield ratio distribution for Ge-doped, Al-doped optical fibre and standard TLD 100 dosimeter. The samples were kept in gelatin capsule an irradiated with 6 MV - photon at the dose range from 0.5 Gy to 4.0 Gy. Siemens model Primus 3368 linear accelerator located at Hospital Sultan Ismail, Johor Bahru has been used to deliver the photon beam to the samples. We found the average response ratio of 6 MV - photon and 6 MeV - electron in Ge-doped, Al-doped optical fibre and standard TLD-100 dosimeter are 0.83(3). Observing the measured value of 6 MV - photon irradiation this average ratio is useful to find the prediction of thermoluminescence responses by 6 MeV - electron irradiation of Neodymium-doped SiO 2 optical fibre by the requirement for experimental measurements with various dose ranges from 0.5 Gy to 4.0 Gy by 6 MV - photon irradiations.

  2. Commercial cyclotrons. Part I: Commercial cyclotrons in the energy range 10 30 MeV for isotope production

    Science.gov (United States)

    Papash, A. I.; Alenitsky, Yu. G.

    2008-07-01

    A survey of commercial cyclotrons for production of medical and industrial isotopes is presented. Compact isochronous cyclotrons which accelerate negative hydrogen ions in the energy range 10 30 MeV have been widely used over the last 25 years for production of medical isotopes and other applications. Different cyclotron models for the energy range 10 12 MeV with moderate beam intensity are used for production of 11C, 13N, 15O, and 18F isotopes widely applied in positron emission tomography. Commercial cyclotrons with high beam intensity are available on the market for production of most medical and industrial isotopes. In this work, the physical and technical parameters of different models are compared. Possibilities of improving performance and increasing intensity of H- beams up to 2 3 mA are discussed.

  3. Two body photodisintegration of the deuteron from 100 to 800 MeV

    International Nuclear Information System (INIS)

    Crawford, R.; Annand, J.R.M.; Anthony, I.; Altieri, S.; Pavia Univ.; Audit, G.; D'Hose, N.

    1996-01-01

    The total and the differential cross sections for the D(γ,p)n reaction have been measured over the photon energy range 100-800 MeV at the 855 MeV MAMI Microtron in Mainz. The data are presented in the form of thirty-five angular distributions at c.m. proton angles between 30 deg-160 deg in 10 deg intervals and at photon energies in steps of 20 MeV. Previous experimental work is reassessed in the light of the present results and the results compared with some recent theoretical calculations. (author)

  4. Mean lives of the 5.106 and 5.834 MeV levels of 14N

    International Nuclear Information System (INIS)

    Bhalla, R.K.; Poletti, A.R.

    1982-01-01

    The recoil distance method (RDM) has been used to measure the mean lives of the 5.106 and 5.834 MeV levels of 14 N as tau = 6.27 +- 0.10 ps and tau = 11.88 +- 0.24 ps respectively. The results are compared to previous measurements and to shell-model calculations. (orig.)

  5. The Efficiency of the BC-720 Scintillator in a High-Energy (20--800 MeV) Accelerator Neutron Field

    Energy Technology Data Exchange (ETDEWEB)

    Miles, Leslie H. [Univ. of Missouri, Columbia, MO (United States)

    2005-12-01

    High-energy neutron doses (>20 MeV) are of little importance to most radiation workers. However, space and flight crews, and people working around medical and scientific accelerators receive over half of their radiation dose from high-energy neutrons. Unfortunately, neutrons are difficult to measure, and no suitable dosimetry has yet been developed to measure this radiation. In this paper, basic high-energy neutron interactions, characteristics of high-energy neutron environments, present neutron dosimetry, and quantities used in neutron dosimetry are discussed before looking into the potential of the BC-720 scintillator to improve dosimetry. This research utilized 800 MeV protons impinging upon the WNR Facility spallation neutron source at Los Alamos National Laboratory. Time-of-flight methods and a U-238 Fission Chamber were used to aid evaluation of the efficiency of the BC-720. Results showed that the efficiency is finite over the 20–650 MeV energy region studied, although it decreases by a factor of ten between 40 and 100 MeV. This limits the use of this dosimeter to measure doses at sitespecific locations. It also encourages modifications to use this dosimeter for any unknown neutron field. As such, this dosimeter has the potential for a small, lightweight, real-time dose measurement, which could impact neutron dosimetry in all high-energy neutron environments.

  6. Polarization measurements for P-12C elastic scattering between 40-75 MeV

    International Nuclear Information System (INIS)

    Kato, S.; Okada, K.; Kondo, M.; Shimizu, A.; Hosono, K.; Saito, T.; Matsuoka, N.; Nagamachi, S.; Nisimura, K.; Tamura, N.

    1980-01-01

    Absolute values of the polarization in p- 12 C elastic scattering have been measured at 60.0 and 64.5 MeV at 47.5 0 in the laboratory system using a double scattering method and a method to measure an asymmetry with a polarized beam. The results are P(60.0 MeV, 47.5 0 ) = 0.965 +- 0.011 and P(64.5 MeV, 47.5 0 ) = 0.975 +- 0.011. Based on these values, the polarization measurements have been extended to the energy range from 40-75 MeV at several angles around 47.5 0 using the polarized proton beam and the energy degrader. Differential cross sections and polarizations from 15-115 0 are also presented at 65 MeV. These data will be valuable for the monitoring of beam polarization in this energy region. (orig.)

  7. Cross-sections of 45Sc(n,2n)44m,gSc reaction from the reaction threshold to 20 MeV

    International Nuclear Information System (INIS)

    Luo, J.; Peking Univ., Beijing; Liu, R.; Jiang, L.; Liu, Z.; Sun, G.; Ge, S.

    2013-01-01

    Cross sections of 45 Sc(n,2n) 44m,g Sc reactions and their isomeric cross section ratios σ m /σ g have been measured at three neutron energies between 13.5 and 14.8 MeV using the activation technique. The pure cross section of the groundstate was then obtained by utilizing the absolute cross section of the metastable state and analysis methods of residual nuclear decay. The monoenergetic neutron beam was produced via the 3 H(d, n) 4 He reaction. The cross sections were also estimated with the TALYS-1.2 nuclear model code using different level density options, at neutron energies varying from the reaction threshold to 20 MeV. Results are also discussed and compared with some corresponding values found in the literature. (orig.)

  8. Measurement of the neutron-induced deuteron breakup reaction cross-section between 5 and 25 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Laborie, J.M.; Ledoux, X.; Varignon, C.; Lazauskas, R.; Morillon, B.; Belier, G. [CEA, DAM, DIF, Arpajon (France)

    2012-06-15

    This article presents a full program devoted to the calculation and the measurement of the neutron-induced deuteron break-up reaction cross-section between 5 and 10 MeV, and between 20 and 25 MeV. Measurements are compared with theoretical calculations based on the solution of the Faddeev equations for a realistic nuclear Hamiltonian. The experiments were performed at the Tandem 7 MV accelerator at CEA, DAM, DIF, France. The measurements were carried out with a C{sub 6}D{sub 6} detector as active deuterium target located at the center of a 4{pi} neutron counter (see C. Varignon et al., Nucl. Instrum. Methods B 248, 329 (2006)) which allows to count the two neutrons emitted in the {sup 2}H(n, 2n)p reaction. Comparisons of the new data and calculations are made with the existing data as well as the CENDL2, JENDL3.3 and ENDF/B-VII evaluations. (orig.)

  9. Measurement of the neutron-induced deuteron breakup reaction cross-section between 5 and 25 MeV

    International Nuclear Information System (INIS)

    Laborie, J.M.; Ledoux, X.; Varignon, C.; Lazauskas, R.; Morillon, B.; Belier, G.

    2012-01-01

    This article presents a full program devoted to the calculation and the measurement of the neutron-induced deuteron break-up reaction cross-section between 5 and 10 MeV, and between 20 and 25 MeV. Measurements are compared with theoretical calculations based on the solution of the Faddeev equations for a realistic nuclear Hamiltonian. The experiments were performed at the Tandem 7 MV accelerator at CEA, DAM, DIF, France. The measurements were carried out with a C 6 D 6 detector as active deuterium target located at the center of a 4π neutron counter (see C. Varignon et al., Nucl. Instrum. Methods B 248, 329 (2006)) which allows to count the two neutrons emitted in the 2 H(n, 2n)p reaction. Comparisons of the new data and calculations are made with the existing data as well as the CENDL2, JENDL3.3 and ENDF/B-VII evaluations. (orig.)

  10. Sterilization of health care products by 5 MeV bremsstrahlung (X ray)

    International Nuclear Information System (INIS)

    Sato, Yoshishige; Takahashi, Thoru; Saito, Toshio; Sato, Toshio; Takehisa, Masaaki

    1993-01-01

    Radiation sensitivities of B. pumilis and B. subtilis spores were examined to bremsstrahlung of 5 MeV EB and Cobalt-60 γ rays in order to confirm the effects of radiation and dose rate. Biological indicators were irradiated with the X rays in the dose rate range of 4.7-47 kGy/h. D-value of B. pumilis spores was 1.4-1.5 kGy, and that of B. subtilis was 1.1-1.3 kGy. The D-values of B. pumilus and B. subtilis have very small dose rate dependences to X ray, and the D-values are similar to those of γ rays. Dose distribution by X-ray and γ irradiation was measured for cartons containing 32 unit dialyzers. The D max. /D min. of the X-ray irradiation (1.2) was smaller than that of γ ray (1.3). (author)

  11. Stopping power of liquid water for carbon ions in the energy range between 1 MeV and 6 MeV

    International Nuclear Information System (INIS)

    Rahm, J M; Baek, W Y; Rabus, H; Hofsäss, H

    2014-01-01

    The stopping power of liquid water was measured for the first time for carbon ions in the energy range between 1 and 6 MeV using the inverted Doppler shift attenuation method. The feasibility study carried out within the scope of the present work shows that this method is well suited for the quantification of the controversial condensed phased effect in the stopping power for heavy ions in the intermediate energy range. The preliminary results of this work indicate that the stopping power of water for carbon ions with energies prevailing in the Bragg-peak region is significantly lower than that of water vapor. In view of the relatively high uncertainty of the present results, a new experiment with uncertainties less than the predicted difference between the stopping powers of both water phases is planned. (paper)

  12. Analysis of the experimental data on carbon-neutron interactions for energy below 20MeV

    International Nuclear Information System (INIS)

    Haouat, G.; Lachkar, J.; Patin, Y.; Sigaud, J.; Cocu, F.

    1975-01-01

    An evaluation of the neutron-induced cross sections of carbon has been completed for the energy region 10 -4 eV to 20MeV. The recommended data are based on experiments, some of them being done in this laboratory. Energy and angular distributions of secondary neutrons and photons are included. The adopted values are discussed [fr

  13. Two body photodisintegration of the deuteron from 100 to 800 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, R.; Annand, J.R.M.; Anthony, I. [Glasgow Univ. (United Kingdom). Dept. of Physics and Astronomy; Ahrens, J.; Beck, R. [Mainz Univ. (Germany). Inst. fuer Kernphysik; Braghieri, A.; Pedroni, P. [Istituto Nazionale di Fisica Nucleare, Pavia (Italy); Altieri, S. [Istituto Nazionale di Fisica Nucleare, Pavia (Italy)]|[Pavia Univ. (Italy). Ist. di Fisica Nucleare; Audit, G.; D`Hose, N. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. d`Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l`Instrumentation Associee] [and others

    1996-01-01

    The total and the differential cross sections for the D({gamma},p)n reaction have been measured over the photon energy range 100-800 MeV at the 855 MeV MAMI Microtron in Mainz. The data are presented in the form of thirty-five angular distributions at c.m. proton angles between 30 deg-160 deg in 10 deg intervals and at photon energies in steps of 20 MeV. Previous experimental work is reassessed in the light of the present results and the results compared with some recent theoretical calculations. (author). Submitted to Nuclear Physics, B (NL); 23 refs.

  14. Complete fusion 20Ne + 12C at 110 MeV

    International Nuclear Information System (INIS)

    Saulnier, J.-C.

    1978-01-01

    Identification in mass and charge of products of the reaction 20 Ne (Elab = 110 MeV) + 12 C has been obtained using a time-of-flight system and a ΔE-E telescope. Angular distributions and energy spectra have been measured between laboratory angles of 3,7 0 and 17 0 . The fusion cross-section has been measured to be 1270 +- 150 mb, with the reaction cross-section of 1700 +- 170 mb. Yields of evaporation residues are compared to predictions of the code GROGI2, using the Hauser-Feshbach angular momentum dependent formalism. Calculations of the laboratory energy and angular distributions of evaporation residues are carried out and compared with the experimental data for several center of mass angular distributions (isotropic, 1/sin theta, 1/sin 2 theta) [fr

  15. Responses of conventional and extended-range neutron detectors in mixed radiation fields around a 150-MeV electron LINAC

    International Nuclear Information System (INIS)

    Lin, Yu-Chi; Sheu, Rong-Jiun; Chen, Ang-Yu

    2015-01-01

    This study analyzed the responses of two types of neutron detector in mixed gamma-ray and neutron radiation fields around a 150-MeV electron linear accelerator (LINAC). The detectors were self-assembled, high efficiency, and designed in two configurations: (1) a conventional moderated-type neutron detector based on a large cylindrical He-3 proportional counter; and (2) an extended-range version with an embedded layer of lead in the moderator to increase the detector’s sensitivity to high-energy neutrons. Two sets of the detectors were used to measure neutrons at the downstream and lateral locations simultaneously, where the radiation fields differed considerably in intensities and spectra of gamma rays and neutrons. Analyzing the detector responses through a comparison between calculations and measurements indicated that not only neutrons but also high-energy gamma rays (>5 MeV) triggered the detectors because of photoneutrons produced in the detector materials. In the lateral direction, the contribution of photoneutrons to both detectors was negligible. Downstream of the LINAC, where high-energy photons were abundant, photoneutrons contributed approximately 6% of the response of the conventional neutron detector; however, almost 50% of the registered counts of the extended-range neutron detector were from photoneutrons because of the presence of the detector rather than the effect of the neutron field. Dose readings delivered by extended-range neutron detectors should be interpreted cautiously when used in radiation fields containing a mixture of neutrons and high-energy gamma rays

  16. Characterization of 2 MeV, 4 MeV, 6 MeV and 18 MeV buildup caps for use with a 0.6 cubic centimeter thimble ionization chamber

    International Nuclear Information System (INIS)

    Salyer, R.L.; VanDenburg, J.W.; Prinja, A.K.; Kirby, T.; Busch, R.; Hong-Nian Jow

    1996-07-01

    The purpose of this research is to characterize existing 2 MeV, 4 MeV and 6 MeV buildup caps, and to determine if a buildup cap can be made for the 0.6 cm 3 thimble ionization chamber that will accurately measure exposures in a high-energy photon radiation field. Two different radiation transport codes were used to computationally characterize existing 2 MeV, 4 MeV, and 6 MeV buildup caps for a 0.6 cm 3 active volume thimble ionization chamber: ITS, The Integrated TIGER Series of Coupled Electron-Photon Monte Carlo Transport Codes; and CEPXS/ONEDANT, A One-Dimensional Coupled Electron-Photon Discrete Ordinates Code Package. These codes were also used to determine the design characteristics of a buildup cap for use in the 18 MeV photon beam produced by the 14 TW pulsed power HERMES-III electron accelerator. The maximum range of the secondary electron, the depth at which maximum dose occurs, and the point where dose and collision kerma are equal have been determined to establish the validity of electronic equilibrium. The ionization chamber with the appropriate buildup cap was then subjected to a 4 MeV and a 6 MeV bremmstrahlung radiation spectrum to determine the detector response

  17. Short range α-α repulsion and FR-DWIA analysis of the (α, 2α) reaction on 9Be and 20Ne

    International Nuclear Information System (INIS)

    Joshi, Bhushan N.; Jain, Arun K.

    2009-01-01

    The 9 Be and 20 Ne nuclei are supposed to be highly α-clustered because while 9 Be is a Borromean nucleus the 20 Ne nucleus is having 4-nucleons outside the closed shell 16 O nucleus. The same is also anticipated from the small α-separation energies for these two nuclei which are 2.4672 MeV and 4.7316 MeV respectively, in comparison the values for 16 O and 12 C nuclei are 7.1622 MeV, 7.367 MeV respectively. In order to verify the trend seen in 12 C and 16 O the theory should repeat itself in 9 Be and 20 Ne also

  18. p-p analyzing power excitation function between 510 and 725 MeV

    International Nuclear Information System (INIS)

    Beurtey, R.; Arvieux, J.; Boivin, M.; Boyard, J.L.; Durand, J.M.; Combes-Comets, M.P.; Courtat, P.; Gacougnolle, R.; Le Bornec, Y.; Garcon, M.

    1993-01-01

    In an earlier experiment some evidence was observed for narrow dibaryons in the analyzing power excitation function of p-p elastic scattering at √s=2160 MeV and 2192 MeV, with width Γ≅13-14 MeV. A different procedure has been carried out at the SATURNE synchrotron, in order to obtain a very high accuracy of the analyzing power for a large number of energies between 510 and 725 MeV. The results show no evidence for any structure with width ∼5 to 20 MeV. The reasons at the difference between the two experiments are discussed. (K.A.) 2 refs., 3 figs

  19. Measurement of neutron activation cross sections in the energy range between 2 and 7 MeV by using a Ti-deuteron target and a deuteron gas target

    Energy Technology Data Exchange (ETDEWEB)

    Senga, T.; Sakane, H.; Shibata, M.; Yamamoto, H.; Kawade, K. [Nagoya Univ. (Japan); Kasugai, Yoshimi; Ikeda, Yujiro; Takeuchi, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2000-03-01

    Using a Ti-deuteron target in the neutron energy range between 2 and 4.5 MeV and a deuteron gas target between 4.5 and 7 MeV, mono-energetic neutrons could be generated enough for activation cross section measurements. The KN-3750 Van de Grraff accelerator at Nagoya University and the Fusion Neutronics Source (FNS) at Japan Atomic Energy Research Institute (JAERI) were used. Preliminary results of activation cross sections were obtained for reactions of {sup 27}Al(n,p){sup 27}Mg, {sup 47}Ti(n,p){sup 47}Sc, {sup 58}Ni(n,p){sup 58}Co. The evaluation data of JENDL-3.2 showed reasonable agreement with our results. (author)

  20. Modification of Modulating Anode Voltage Supply of Klystron for PEFP 20 MeV Linac

    International Nuclear Information System (INIS)

    Kim, Dae Il; Kwon, Hyeok Jung; Kim, Han Sung; Cho, Yong Sub

    2011-01-01

    The klystron (TH2089F, THALES) for PEFP 20MeV proton linear accelerator has a triode type electron gun and the modulating anode voltage should be supplied. The klystron has gone through some modification in the modulating anode voltage supply circuit. Formerly, the mod-anode voltage was supplied by using the tetrode-controlled voltage divider. This system requires addition power supply for the tetrode and the grid control circuit. Recently we modified the mod-anode supply from the tetrode-controlled voltage divider to a resistive voltage divider. The resistors for the previous voltage divider were installed at a supporter with high voltage bushing structure next to the klystron. In the previous system, the resistors were exposed to the air and their size was very bulky, length of which was about 1m long. To reduce the space occupied by the voltage divider and to improve the electrical insulation performance, the voltage dividing resistors were moved into the oil tank of the klystron. During the operation of the 20 MeV linac, the klystron parameters were measured. In this paper, the modification of the voltage divider and the operational characteristics of the klystron with modified voltage divider circuit are presented

  1. Status Report on the 5 Mev Iphi RFQ

    OpenAIRE

    Ferdinand, R.; Beauvais, P-Y.; Duperrier, R.; France, A.; Gaiffier, J.; Lagniel, J-M.; Painchault, M.; Simoens, F.; CEA-Saclay; DSM-DAPNIA-SEA; Balleyguier, P.; Chatel, CEA-Bruyeres le; DAM

    2000-01-01

    A 5-MeV RFQ designed for a proton current up to 100-mA CW is now under construction as part of the High Intensity Proton Injector project (IPHI). Its computed transmission is greater than 99 %. The main goals of the project are to verify the accuracy of the design codes, to gain the know-how on fabrication, tuning procedures and operations, to measure the output beam characteristics in order to optimise the higher energy part of the linac, and to reach a high availability with minimum beam tr...

  2. Fusion with projectiles form carbon to argon at energies between 20A and 60A MeV

    International Nuclear Information System (INIS)

    Galin, J.

    1986-03-01

    A review of the linear momentum transfer is made, considering essentially heavy targets and two important parameters in the entrance channel: the projectile energy and its mass. Over a broad mass range, and for energies up to 30A MeV, the momentum transfer scales with the mass of the projectile. At 30A MeV, the most probable value of projectile momentum transferred to the fused system is 80%, and this represents roughly 180 MEV/c per projectile nucleon. At higher bombarding energies, the momentum distribution in the fused systems, as observed from binary fission events, seems to depend on the mass of the projectile. Further studies are still needed to understand this behaviour. Finally, the decay of highly excited (E* approximately 500-800 MeV) fused systems, with masses close to 270 amu, is studied from the characteristics of both fusion fragments and light charged particles. It is shown that thermal equilibrium is reached before fission, even for such high energy deposition. However, the decay sequence is sensitive to dynamical effects and does not depend only on available phase space

  3. First measurement of the VESUVIO neutron spectrum in the 30-80 MeV energy range using a Proton Recoil Telescope technique

    Science.gov (United States)

    Cazzaniga, C.; Tardocchi, M.; Croci, G.; Frost, C.; Giacomelli, L.; Grosso, G.; Hjalmarsson, A.; Rebai, M.; Rhodes, N. J.; Schooneveld, E. M.; Gorini, G.

    2013-11-01

    Measurements of the fast neutron energy spectrum at the ISIS spallation source are reported. The measurements were performed with a Proton Recoil Telescope consisting of a thin plastic foil placed in the neutron beam and two scintillator detectors. Results in the neutron energy range 30 MeV < En < 80 MeV are in good agreement with Monte Carlo simulations of the neutron spectrum.

  4. Neutron capture cross sections of rhodium, thulium, iridium, and gold between 0.5 and 3.0 MeV

    International Nuclear Information System (INIS)

    Joly, S.; Voignier, J.; Grenier, G.; Drake, D.M.; Nilsson, L.

    1979-01-01

    Measurements of the neutron capture cross sections of rhodium, thulium, gold, and iridium were carried out in the 0.5- to 3.0-MeV energy range. The cross sections are deduced from the capture gamma-ray spectra recorded by a NaI spectrometer consisting of central and annulus detectors. Time-of-flight techniques are used to improve the signal-to-background ratio. When comparison is possible, the present results are found to be in general agreement with the previous data. 5 figures, 3 tables

  5. Measurements of double-differential neutron emission cross sections of Nb and Bi for 11.5 MeV neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Ibaraki, Masanobu; Matsuyama, Shigeo; Soda, Daisuke; Baba, Mamoru; Hirakawa, Naohiro [Tohoku Univ., Sendai (Japan). Faculty of Engineering

    1997-03-01

    Double-differential neutron emission cross sections (DDXs) of Nb and Bi have been measured for 11.5MeV neutrons using the {sup 15N}(d,n){sup 16}O quasi-monoenergetic neutron source at Tohoku University 4.5MV Dynamitron facility. For En`>6MeV, DDXs were measured by the conventional TOF method (single-TOF:S-TOF). For En`<6MeV, where the S-TOF spectra were distorted by the background neutrons, we adopted a double-TOF method (D-TOF). By applying D-TOF method, we obtained DDXs down to 1MeV. (author)

  6. Elastic scattering of 7Li + 27Al at several angles in the 7-11 MeV energy range

    International Nuclear Information System (INIS)

    Abriola, D.; Carnelli, P.; Arazi, A.; Figueira, J.M.; Capurro, O.A.; Cardona, M.A.; Fernandez Niello, J.O.; Hojman, D.; Fimiani, L.; Grinberg, P.; Martinez Heimann, D.; Marti, G.V.; Negri, A.E.; Pacheco, A.J.

    2010-01-01

    Elastic cross sections for the 7 Li + 27 Al system were measured at laboratory energies between 7 and 11 MeV in steps of 0.25 MeV, and angles between 135 o and 170 o in steps of 5 o . Excitation functions for the elastic scattering were measured using an array of eight Si surface-barrier detectors whereas a solid-state telescope was used to estimate and subtract background from other reactions. Contamination from α particles arising from the 7 Li breakup process at E lab ≥ 10 MeV makes the use of these energies inadvisable for RBS applications. The present results are compared with previous data obtained at 165 o (E lab ≤ 6 MeV), 140 o and 170 o (E lab ≤ 8 MeV). The experimental data were analyzed in terms of the Optical Model. Two different energy-independent potentials were found. These optical potentials allow an interpolation with physical meaning to other energies and scattering angles. The experimental cross sections will be uploaded to the IBANDL database.

  7. Escaping 1 MeV tritons in TFTR

    International Nuclear Information System (INIS)

    Zweben, S.J.; Strachan, J.D.; Boivin, R.; Cavallo, A.; Fredrickson, E.D.; McGuire, K.; Mynick, H.E.; White, R.B.

    1989-01-01

    1 MeV tritons created by D-D reactions can simulate the 'single-particle' behavior expected with 3.5 MeV D-T alphas, since the gyroradii and slowing-down of these two particles are similar. This paper describes measurements of the flux of escaping 1 MeV tritons from the TFTR plasma during high power D 0 →D neutral beam injection, and shows that in most cases the observed triton loss is consistent with the classical (single-particle) first-orbit loss model. In this model tritons are lost if their first orbit intersects the wall due to their large banana width, while almost all tritons confined on their first orbit should stay confined until thermalized. The triton detectors are ZnS(Ag) scintillator screens housed in light-tight boxes located just outside the plasma boundary at the bottom of the TFTR vessel. They are particle 'pinhole' cameras which can resolve the triton flux vs. pitch angle (to ±5 o ), energy (to ±50 %), and time (to <20 μsec). The 2-D images of triton flux onto these scintillators are optically coupled to either an intensified TV camera or to photomultiplyer tubes for fast time resolution. The soft x-ray background in an earlier prototype has been eliminated. Although there are presently 8 such detectors in TFTR, this paper discusses results from only the detector located just below the vessel center (R=259 cm, r=102 cm). Note that the '1 MeV triton' signal discussed below also has about a 30 % contribution from 3 MeV protons; however, since these two particles have identical gyroradii they should behave alike. 5 refs., 5 figs

  8. Neutron induced 238U subthreshold fission cross section for neutron energies between 5 eV and 3.5 MeV

    International Nuclear Information System (INIS)

    Perez, R.B.; Difilippo, F.C.; Saussure, G. de; Ingle, R.W.

    1978-01-01

    A measurement of the 238 U fission cross section between 5 eV and 3.5 MeV was performed. Included is the identification of 85 resonances or clusters of resonances below 200 keV. Also the fission widths for the 27 resolved class I levels were computed from their fission areas, and a neutron width of 0.005 MeV was estimated for the quasi-class II level in the 721 eV fission cluster. The fission level spacing and cross sections are discussed. 9 references

  9. Measurement of (n,Xn) reaction cross sections at 96 MeV

    International Nuclear Information System (INIS)

    Sagrado Garcia, Melle Inmaculada C.

    2006-10-01

    Nucleon induced reactions in the 20-200 MeV energy range are intensively studied since a long time. The evaporation and the pre-equilibrium processes correspond to an important contribution of the production cross section in these reactions. Several theoretical approaches have been proposed and their predictions must be tested. The experimental results shown in this work are the only complete set of data for the (n,Xn) reactions in this energy range. Neutron double differential cross section measurements using lead and iron targets for an incident neutron beam at 96 MeV were carried out at TSL Laboratory in Uppsala, Sweden. The measurements have been performed for the first time with an energy threshold of 2 MeV and for a wide angular range (15 angle - 98 angle). Neutrons have been detected using two independent setups, DECOI and DEMON and CLODIA and SCANDAL, in order to cover the whole energy range (2-100) MeV. The angular distributions, the differential cross sections and the total inelastic production cross sections have been calculated using the double differential cross sections. The comparison between the experimental data and the predictions given by two of the most popular simulation codes, GEANT3 and MCNPX, have been performed, as well as the comparison with the predictions of the microscopic simulation model DYWAN, selected for its treatment of nucleon-nucleon reactions. (author)

  10. Measurements of Ay(θ) for 12C(n,n)12C from En=2.2 to 8.5 MeV

    International Nuclear Information System (INIS)

    Roper, C.D.; Tornow, W.; Braun, R.T.; Chen, Q.; Crowell, A.; Trotter, D. Gonzalez; Howell, C.R.; Salinas, F.; Setze, R.; Walter, R.L.; Chen Zemin; Tang Hongqing; Zhou Zuying

    2005-01-01

    The analyzing power A y (θ) for neutron elastic scattering from 12 C has been measured for 33 neutron energies between E n =2.2 and 8.5 MeV in the angular range from 25 deg. to 145 deg. in the laboratory system. The primary motivation for these measurements is the need for an accurate knowledge of A y (θ) for 12 C(n,n) 12 C elastic scattering to enable corrections to high-precision neutron-proton and neutron-deuteron A y (θ) data in the neutron-energy range below E n =30 MeV. In their own right, 12 C(n,n) 12 C A y (θ) data are of crucial importance for improving both the parametrization of n- 12 C scattering and our knowledge of the level scheme of 13 C. The present A y (θ) data are compared with published data and previous phase-shift-analysis results

  11. Monte-Carlo calculations of forward directed bremsstrahlung produced by 20 and 45 MeV electrons on tungsten

    International Nuclear Information System (INIS)

    Goosman, D.R.

    1983-01-01

    The SANDYL Monte-Carlo code has been used to calculate the Bremsstrahlung photon production from beams of parallel electrons incident upon three target geometries. These are 20 MeV electrons onto 1 mm of tungsten + 59 mm of Be, which simulates the operating parameters of the FXR electron accelerator at LLNL Bldg. 801, 45 MeV electrons onto 1 mm of tungsten, and finally 45 MeV electrons onto 1 mm of tungsten and 147 mm of Be. The latter two situations simulate possible future modifications to the FXR accelerator. Graphs of the spectral shape of the Bremsstrahlung photons emitted with angles between 0 0 and 1 0 to the electron direction, the angular distribution of photon-MeV, and the dose reduction curves for each of the three geometries are given. The latter dose reduction curves allow one to calculate forward-directed photon fluxes in real-life situations where the electron beam has non-zero angular divergence

  12. Response of E. coli AB2463 recA to fast neutron beams with mean energies in the range 4 to 27 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Redpath, J L [Michael Reese Hospital, Chicago, Ill. (USA)

    1978-07-01

    The radiosensitivity of E.coli AB2463 recA, given as the reciprical of the mean lethal dose, Do/sup -1/, has been shown to be the same for four fast neutron beams with widely different energy spectra. It is proposed that this organism can be used to intercompare dosimetry on fast neutron beams with mean energies in the range 4 to 25 MeV with an accuracy of +- 5%.

  13. Energy dependence of effective atomic numbers for photon energy absorption and photon interaction: Studies of some biological molecules in the energy range 1 keV-20 MeV

    DEFF Research Database (Denmark)

    Manohara, S.R.; Hanagodimath, S.M.; Gerward, Leif

    2008-01-01

    Effective atomic numbers for photon energy absorption, Z(PEA,eff), and for photon interaction, Z(PI,eff), have been calculated by a direct method in the photon-energy region from 1 keV to 20 MeV for biological molecules, such as fatty acids (lauric, myristic, palmitic, stearic, oleic, linoleic......, linolenic, arachidonic, and arachidic acids), nucleotide bases (adenine, guanine, cytosine, uracil, and thymine), and carbohydrates (glucose, sucrose, raffinose, and starch). The Z(PEA, eff) and Z(PI, eff) values have been found to change with energy and composition of the biological molecules. The energy...

  14. Nuclear and activation characteristics of materials in 14.1-MeV and 2.5-MeV neutron field

    International Nuclear Information System (INIS)

    Seki, Yasushi; Takeyasu, Yuuichi.

    1988-11-01

    The nuclear and activation characteristics of various materials and elements of interest in terms of fusion reactor design are calculated and the results are graphically shown. The elements and materials are placed in a simple geometry modelling a blanket and shield of a fusion reactor. The neutrons with 14.1-MeV and 2.5-MeV energy are generated from the region represented as D-T and D-D plasma, respectively. The following activation characteristics after neutron irradiation are shown for each material and element; 1. Time evolution of induced activity, 2. Time evolution of decay heat, 3. Delayed gamma-ray dose distribution, 4. Decay heat distribution. In addition to the above activation characteristics, nuclear characteristics during the neutron irradiation, e.g. neutron energy spectra, neutron and gamma-ray flux distribution, nuclear heating distributions, and neutron and gamma-ray dose rate are also shown. (author)

  15. Calibration of a dePangher long counter from 2 keV to 19 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Slaughter, D R; Rueppel, D W [California Univ., Livermore (USA). Lawrence Livermore Lab.

    1977-09-01

    The authors have measured the sensitivity of a dePangher precision long counter (PLC) relative to /sup 7/Li(p,n), T(p,n), and T(d,n) differential cross sections over the neutron energy range 10 keV-19 MeV. Absolute sensitivity at 2 keV is also measured, using a scandium filtered beam at a reactor. Results obtained with errors in the range 5-30% are consistent with the assumption of a nearly constant sensitivity over the range 2 keV-6 MeV, but exhibit a reduction above 12 MeV.

  16. The Karlsruhe Neutron Transmission Experiment (KANT): Spherical shell transmission measurements with 14 MeV neutrons on beryllium

    International Nuclear Information System (INIS)

    Moellendorff, U. von; Fischer, U.; Giese, H.; Kappler, F.; Tayama, R.; Wiegner, E.; Klein, H.; Alevra, A.

    1996-01-01

    This is a set of viewgraphs (no additional text) of a presentation on spherical shell transmission measurements with 14 MeV neutrons on beryllium; the cross for 9 Be(n,2n)2α for the energy range between threshold (1.85 MeV) and 20 MeV neutron energy is measured and the measurement is compared with the literature. Also, neutron leakage multiplication in spherical Be shells with various thicknesses are presented. Figs, tabs

  17. The SCANDAL facility - How to measure elastic neutron scattering in the 50-130 MeV range

    International Nuclear Information System (INIS)

    Klug, Joakim

    2001-01-01

    The interest in neutrons of energies above 20 MeV is growing rapidly, since new applications are being developed or have been identified. Transmutation of nuclear waste and cancer therapy with neutron beams are two research fields that would benefit from new neutron scattering data at these energies. A facility for detection of scattered neutrons in the energy interval 50-130 MeV, SCANDAL (SCAttered Nucleon Detection AssembLy), has been developed and installed at the neutron beam facility of the The Svedberg Laboratory in Uppsala. It can be used to study the (n,n), (n,p) and (n,d) reactions. This thesis describes the layout of the setup, the experimental procedure, and data analysis principles. The performance of the spectrometer is illustrated with measurements of the (n,p) and (n,n) reactions on 1 H and 12 C. In addition, the neutron beam facility is described in some detail

  18. Differential cross sections for carbon neutron elastic and inelastic scattering from 8.0 to 14.5 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Haouat, G.; Lachkar, J.; Patin, Y.; Sigaud, J.; Cocu, F.

    1975-06-01

    Differential elastic and inelastic cross sections for fast neutrons scattered by carbon have been measured between 8.0 and 14.5 MeV. No experimental results on {sup 12}C seem to have been reported, at this time, between 9 and 14 MeV. A complete and consistent set of data on carbon, including total, elastic and inelastic, (n,α) and (n,n'3α) cross sections, is now available for energies below 14.5MeV.

  19. The polarization of MeV neutrons elastically scattered from 4He

    International Nuclear Information System (INIS)

    Bond, J.E.; Firk, F.W.K.

    1976-01-01

    The analyzing power of 4 He for neutron elastic scattering has been measured at four angles between 20 0 and 80 0 (lab) throughout the energy range 1.5-6.0 MeV using a double-scattering method. The intense flux of polarized neutrons was generated via the reactions Pb(γ, n)→ 12 C(n, n(pol.) 12 C, and the magnitude of the polarization of the neutron beam measured absolutely in a separate double-scattering experiment. Neutron energies were determined with a nanosecond time-of-flight spectrometer, and the generalized neutron spin-precession method was used to minimize systematic uncertainties. (Auth.)

  20. Tensor analyzing power T20 of the dd →3Hen and dd →3Hp reactions at zero angle for energies 140, 200, and 270 MeV

    International Nuclear Information System (INIS)

    Ladygin, V. P.; Uesaka, T.; Saito, T.; Hatano, M.; Isupov, A. Yu.; Kato, H.; Ladygina, N. B.; Maeda, Y.; Malakhov, A. I.; Nishikawa, J.; Ohnishi, T.; Okamura, H.; Reznikov, S. G.; Sakai, H.; Sakamoto, N.; Sakoda, S.; Satou, Y.; Sekiguchi, K.; Suda, K.; Tamii, A.

    2006-01-01

    RIKEN Accelerator Research Facility data on the tensor analyzing power T 20 of the dd → 3 Hen and dd → 3 Hp reactions at zero angle for deuteron kinetic energies of 140, 200, and 270 MeV are reported. The observed positive sign of T 20 clearly demonstrates the sensitivity to the D/S-wave ratio in the 3 He and 3 H wave functions in the energy range of the experiment. Data on T 20 for the 3 Hen channel are in agreement with those for the 3 Hp channel within the experimental errors

  1. Measurement of double differential cross sections of secondary neutrons in the incident energy range 9-13 MeV

    International Nuclear Information System (INIS)

    Tang Hongqing; Qi Bujia; Zhou Zuying; Sa Jun; Ke Zunjian; Sui Qingchang; Xia Haihong; Shen Guanren

    1992-01-01

    The status and technique of double differential cross section measurement of secondary neutrons in the incident neutron energy range 9 to 13 MeV is reviewed with emphasis on the work done at CIAE. There are scarce measurements of secondary neutron double differential cross sections in this energy region up to now. A main difficulty for this is lack of an applicable monoenergetic neutron source. When monoenergetic neutron energy reaches 8 Me/v, the break-up neutrons from the d + D or p + T reaction starts to become significant. It is difficult to get a pure secondary neutron spectrum induced only by monoenergetic neutrons. To solve this problem an abnormal fast neutron TOF facility was designed and tested. Double differential neutron emission cross sections of 238 U and 209 Bi at 10 MeV were obtained by combining the data measured by both normal and abnormal TOF spectrometers and a good agreement between measurement and calculation was achieved

  2. First measurement of the VESUVIO neutron spectrum in the 30–80 MeV energy range using a Proton Recoil Telescope technique

    International Nuclear Information System (INIS)

    Cazzaniga, C; Tardocchi, M; Croci, G; Grosso, G; Rebai, M; Gorini, G; Frost, C; Rhodes, N J; Schooneveld, E M; Giacomelli, L; Hjalmarsson, A

    2013-01-01

    Measurements of the fast neutron energy spectrum at the ISIS spallation source are reported. The measurements were performed with a Proton Recoil Telescope consisting of a thin plastic foil placed in the neutron beam and two scintillator detectors. Results in the neutron energy range 30 MeV n < 80 MeV are in good agreement with Monte Carlo simulations of the neutron spectrum

  3. 5 MeV 300 kW electron accelerator project

    International Nuclear Information System (INIS)

    Auslender, V.L.; Cheskidov, V.G.; Gornakov, I.V.

    2004-01-01

    The paper presents a project of a high power linear accelerator for industrial applications. The accelerator has a modular structure and consists of the chain of accelerating cavities connected by the axis-located coupling cavities with coupling slots in the common walls. Main parameters of the accelerator are: operating frequency of 176 MHz, electron energy of up to 5 MeV, average beam power of 300 kW. The required RF pulse power can be supplied by the TH628 diacrode

  4. Extension of the energy range of experimental activation cross-sections data of deuteron induced nuclear reactions on indium up to 50MeV.

    Science.gov (United States)

    Tárkányi, F; Ditrói, F; Takács, S; Hermanne, A; Ignatyuk, A V

    2015-11-01

    The energy range of our earlier measured activation cross-sections data of longer-lived products of deuteron induced nuclear reactions on indium were extended from 40MeV up to 50MeV. The traditional stacked foil irradiation technique and non-destructive gamma spectrometry were used. No experimental data were found in literature for this higher energy range. Experimental cross-sections for the formation of the radionuclides (113,110)Sn, (116m,115m,114m,113m,111,110g,109)In and (115)Cd are reported in the 37-50MeV energy range, for production of (110)Sn and (110g,109)In these are the first measurements ever. The experimental data were compared with the results of cross section calculations of the ALICE and EMPIRE nuclear model codes and of the TALYS 1.6 nuclear model code as listed in the on-line library TENDL-2014. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Gamma-ray production cross sections for 0.9 to 20 MeV neutron interactions with 10B

    International Nuclear Information System (INIS)

    Bywater, R.L. Jr.

    1986-09-01

    Gamma-ray spectral data previously obtained at the 20-meter station of the Oak Ridge Electron Linear Accelerator flight-path 8 were studied to determine cross sections for 0.9- to 20-MeV neutron interactions with 10 B. Data reduction techniques, including those for determination of incident neutron fluences as well as those to compensate for Doppler-broadened gamma-ray-detection responses, are given in some detail in this report. 9 refs., 4 figs., 2 tabs

  6. Two-body photodisintegration of the deuteron from 100 to 800 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, R.; Ahrens, J.; Altieri, S.; Annand, J.R.M.; Anthony, I.; Audit, G.; Beck, R.; Braghieri, A.; D`Hose, N.; Hall, S.; Isbert, V.; Kellie, J.D.; Kerhoas, S.; MacCormick, M.; MacGeorge, J.C.; Medaglia, R.; Miller, G.J.; Murphy, L.Y.; Owens, R.O.; Pedroni, P.; Pinelli, T.; Tamas, G.; Wallace, P.A. [Glasgow Univ. (United Kingdom). Dept. of Phys. and Astron.]|[Mainz Univ. (Germany). Inst. fuer Kernphys.]|[INFN, Sezione di Pavia (Italy)]|[Pavia Univ. (Italy). Dipartimento di Fisica Nucleare e Teorica]|[CEA-DAPNIA/SPhN, 91 - Gif-sur-Yvette (France)

    1996-06-24

    The total and the differential cross sections for the D({gamma},p)n reaction have been measured over the photon energy range 100-800 MeV at the 855 MeV MAMI Microtron in Mainz. Using the large acceptance detector DAPHNE in conjunction with the Glasgow tagging spectrometer, high precision results with small systematic errors were obtained. The data are presented in the form of thirty-five angular distributions at c.m. proton angles between 30 {sup circle} -160 {sup circle} in 10 {sup circle} intervals and at photon energies in steps of 20 MeV. Previous experimental work is reassessed in the light of the present results and comparison with some recent theoretical calculations. (orig.).

  7. MeV ion-beam analysis of optical data storage films

    Science.gov (United States)

    Leavitt, J. A.; Mcintyre, L. C., Jr.; Lin, Z.

    1993-01-01

    Our objectives are threefold: (1) to accurately characterize optical data storage films by MeV ion-beam analysis (IBA) for ODSC collaborators; (2) to develop new and/or improved analysis techniques; and (3) to expand the capabilities of the IBA facility itself. Using H-1(+), He-4(+), and N-15(++) ion beams in the 1.5 MeV to 10 MeV energy range from a 5.5 MV Van de Graaff accelerator, film thickness (in atoms/sq cm), stoichiometry, impurity concentration profiles, and crystalline structure were determined by Rutherford backscattering (RBS), high-energy backscattering, channeling, nuclear reaction analysis (NRA) and proton induced X-ray emission (PIXE). Most of these techniques are discussed in detail in the ODSC Annual Report (February 17, 1987), p. 74. The PIXE technique is briefly discussed in the ODSC Annual Report (March 15, 1991), p. 23.

  8. Evaluated neutron-induced cross sections for 40Ca from 20 to 40 MeV

    International Nuclear Information System (INIS)

    Hetrick, D.M.; Fu, C.Y.; Larson, D.C.

    1982-09-01

    Nuclear model codes were used to compute cross sections for neutron-induced reactions on 40 Ca for incident energies from 20 to 40 MeV. The input parameters for the model codes were determined through analysis of experimental data in this energy region. Computed cross sections along with emission spectra for each product were combined into an Evaluated Nuclear Data File (ENDF) using the proposed format for charged-particle reactions. Discussion of the models used, the resulting calculations, and the final evaluated data file are presented

  9. Development of quasi-monochromatic p-7Li neutron generating system for 80-210 MeV

    International Nuclear Information System (INIS)

    Nakao, Noriaki; Shibata, Tokushi; Nakamura, Takashi; Uwamino, Yoshitomo; Nakanishi, Noriyoshi; Kurosawa, Tadahiro; Kim, Unju.

    1996-01-01

    Recently the requirements for the experimental data on the response characteristics of neutron detector and the cross section for neutron generation by charged particles have been increasing for shield designing. Here, a system for quasi-monochromatic neutron generation was developed in the facility of ring-cyclotron in Institute of Physical and Chemical Sciences. In this study, H 2 + accelerated to an energy range of 80-135 MeV/n and P + to 150-210 MeV was irradiated to E4 beam course and NE102A plastic scintillator was used for monitoring the neutron flux. The amount of neutrons generated was estimated from the radioactivity of 7 Be produced in 7 Li-target. The neutron spectres thus estimated as an energy range of 80-210 MeV were presented and the lower limit of these spectres was about 20 MeV. The peaks in the range of 150 and 210 MeV were comparatively wide because of the inferiority of energy resolving power at a higher energy level. (M.N.)

  10. Simulation study of neutron production in thick beryllium targets by 35 MeV and 50.5 MeV proton beams

    Science.gov (United States)

    Shin, Jae Won; Park, Tae-Sun

    2017-09-01

    A data-driven nuclear model dedicated to an accurate description of neutron productions in beryllium targets bombarded by proton beams is developed as a custom development that can be used as an add-on to GEANT4 code. The developed model, G4Data(Endf7.1), takes as inputs the total and differential cross section data of ENDF/B-VII.1 for not only the charge-exchange 9Be(p,n)9B reaction which produces discrete neutrons but also the nuclear reactions relevant for the production of continuum neutrons such as 9Be(p,pn)8Be and 9Be(p,n α) 5Li . In our benchmarking simulations for two experiments with 35 MeV and 50.5 MeV proton beams impinged on 1.16 and 1.05 cm thick beryllium targets, respectively, we find that the G4Data(Endf7.1) model can reproduce both the total amounts and the spectral shapes of the measured neutron yield data in a satisfactory manner, while all the considered hadronic models of GEANT4 cannot.

  11. Violence of heavy-ion reactions from neutron multiplicity: 11 to 20A MeV /sup 20/Ne+ /sup 238/U

    International Nuclear Information System (INIS)

    Jahnke, U.; Ingold, G.; Hilscher, D.; Lehmann, M.; Schwinn, E.; Zank, P.

    1986-01-01

    The suitability of the neutron multiplicity as a gauge for the violence of medium-energy heavy-ion reactions is investigated for the first time. For this purpose the number of neutrons emitted from fission reactions induced by 220-, 290-, and 400-MeV /sup 20/Ne on /sup 238/U is registered event-by-event with a large 4π scintillator tank. It is shown that the neutron multiplicity is indeed closely related to the two quantities characterizing the violence: the induced total intrinsic excitation and the linear momentum transfer

  12. Observation of an eta'/sub c/ candidate state with mass 3592 +- 5 MeV

    International Nuclear Information System (INIS)

    Edwards, C.; Partridge, R.; Peck, C.; Porter, F.C.; Antreasyan, D.; Gu, Y.F.; Kollmann, W.; Richardson, M.; Strauch, K.; Wacker, K.; Weinstein, A.; Aschman, D.; Burnett, T.; Cavalli-Sforza, M.; Coyne, D.; Newman, C.; Sadrozinski, H.F.W.; Gelphman, D.; Hofstadter, R.; Horisberger, R.; Kirkbride, I.; Kolanoski, H.; Koenigsmann, K.; Lee, R.; Liberman, A.; O'Reilly, J.; Osterheld, A.; Pollock, B.; Tompkins, J.; Bloom, E.; Bulos, F.; Chestnut, R.; Gaiser, J.; Godfrey, G.; Kiesling, C.; Lockman, W.; Oreglia, M.; Scharre, D.L.

    1982-01-01

    An eta'/sub c/ candidate state is observed at a mass M = 3592 +- 5 MeV and with a natural linewidth GAMMA<8 MeV (95% confidence level), by using the ''crystal ball'' NaI(Tl) detector at the Stanford Linear Accelerator Center (SPEAR). The evidence is found in the inclusive photon spectrum in decays of the psi'(3684), where a signal is observed corresponding to a radiative transition to this state with branching ratio between 0.2% and 1.3%

  13. Effective atomic numbers for photon energy absorption of essential amino acids in the energy range 1 keV to 20 MeV

    International Nuclear Information System (INIS)

    Manohara, S.R.; Hanagodimath, S.M.

    2007-01-01

    Effective atomic numbers for photon energy-absorption (Z PEAeff ) of essential amino acids histidine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan and valine have been calculated by a direct method in the energy region of 1 keV to 20 MeV. The Z PEAeff values have been found to change with energy and composition of the amino acids. The variations of mass energy-absorption coefficient, effective atomic number for photon interaction (Z PIeff ) and Z PEAeff with energy are shown graphically. Significant differences exist between Z PIeff and the Z PEAeff in the energy region of 8-100 keV for histidine and threonine; 6-100 keV for leucine, lysine, tryptophan, phenylalanine and valine; 15-400 keV for methionine. The effect of absorption edge on effective atomic numbers and the possibility of defining two set values of these parameters at the K-absorption edge of high-Z element present in the amino acids are discussed. The reasons for using Z PEAeff rather than the commonly used Z PIeff in medical radiation dosimetry for the calculation of absorbed dose in radiation therapy are also discussed

  14. Cross-sections of {sup 45}Sc(n,2n){sup 44m,g}Sc reaction from the reaction threshold to 20 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Luo, J. [Hexi Univ., Zhangye (China). School of Physics and Electromechanical Engineering; Peking Univ., Beijing (China). State Key Laboratory of Nuclear Physics and Technology; Liu, R.; Jiang, L. [Chinese Academy of Engineering Physics, Mianyang (China). Inst. of Nuclear Physics and Chemistry; Liu, Z.; Sun, G.; Ge, S. [Hexi Univ., Zhangye (China). School of Physics and Electromechanical Engineering

    2013-07-01

    Cross sections of {sup 45}Sc(n,2n){sup 44m,g}Sc reactions and their isomeric cross section ratios {sigma}{sub m}/{sigma}{sub g} have been measured at three neutron energies between 13.5 and 14.8 MeV using the activation technique. The pure cross section of the groundstate was then obtained by utilizing the absolute cross section of the metastable state and analysis methods of residual nuclear decay. The monoenergetic neutron beam was produced via the {sup 3}H(d, n){sup 4}He reaction. The cross sections were also estimated with the TALYS-1.2 nuclear model code using different level density options, at neutron energies varying from the reaction threshold to 20 MeV. Results are also discussed and compared with some corresponding values found in the literature. (orig.)

  15. 238U photonuclear studies with 5-10 MeV photons

    International Nuclear Information System (INIS)

    Hawkes, N.P.

    1986-02-01

    The 238 U photofission and photoneutron cross sections, and the mean number -ν of prompt neutrons per fission, have been measured between 5 and 10 MeV. The experiment was carried out using bremsstrahlung from the electron linear accelerator HELIOS at Harwell. Neutrons from (γ,f) and (γ,n) reactions on 238 U were detected, and neutron multiplicity distributions recorded. Photoneutron events were separated from photofission events by means of their different multiplicities. (author)

  16. Determination of the 20 MeV linear accelerator, new injector for the synchrotron Saturne. Choice of the electrical and dynamical particle parameters; Determination de l'accelerateur lineaire de 20 MeV, nouvel injecteur du synchrotron Saturne. Choix des parametres electriques, dynamique des particules

    Energy Technology Data Exchange (ETDEWEB)

    Prome, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1968-12-15

    This report takes place in the general determination of the 20 MeV linear accelerator which will be the new Saturne injector; it deals with particle dynamics. Starting from beam requirements at the output of the linac, cells lengths with variable synchronous phase angle, buncher and de-buncher parameters, beam emittances at the output in several phase spaces are successively determined. (author) [French] Dans le contexte general de la determination de l'accelerateur lineaire de 20 MeV, nouvel injecteur du synchrotron Saturne, ce rapport traite de la partie relative au mecanisme de l'acceleration des particules; a partir des caracteristiques souhaitees pour le faisceau a la sortie de cet accelerateur, on determine successivement les longueurs des cellules, compte tenu du choix d'un angle de phase synchrone variable, les caracteristiques du groupeur et du degroupeur et les emittances du faisceau en sortie dans les differents plans de phase. (auteur)

  17. Integral activation experiment of fusion reactor materials with d-Li neutrons up to 55 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Fujio; Ikeda, Yujiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Moellendorff, Ulrich von [Forschungszentrum Karlsruhe, Karlsruhe (Germany); Wada, Masayuki [Business Automation Co., Ltd., Tokyo (Japan)

    2000-03-01

    An integral activation experiment of fusion reactor materials with a deuteron-lithium neutron source was performed. Since the maximum energy of neutrons produced was 55 MeV, the experiment with associated analysis was one of the first attempts for extending the energy range beyond 20 MeV. The following keywords represent the present study: d-Li neutrons, 55 MeV, dosimetry, SAND-II, spectrum adjustment, LA-150, MCNP, McDeLi, IFMIF, fusion reactor materials, integral activation experiment, low-activation, F82H, vanadium-alloy, IEAF, ALARA, and sequential charged particle reaction. (author)

  18. Mass spectra and fusion cross sections for 20Ne+24Mg interaction at 55 and 85 MeV

    International Nuclear Information System (INIS)

    Grotowski, K.; Belery, P.; Delbar, T.; El Masri, Y.; Gregoire, G.; Janssens, R.; Vervier, J.; Paic, G.; Albinska, M.; Albinski, J.; Kopta, S.; Kozik, T.; Planeta, R.

    1981-01-01

    Inclusive γ spectra from the 20 Ne+ 24 Mg interaction have been measured using 55- and 85-MeV 20 Ne ions. The identification of γ lines allows the determination of mass spectra in the region 12< or =A< or =43. Experimental results are compared with statistical model calculations. The total reaction and fusion cross sections are extracted. Cross sections for inelastic scattering, few nucleon transfers, and deep inelastic scattering are estimated

  19. Multipurpose 5-MeV linear induction accelerator

    International Nuclear Information System (INIS)

    Birx, D.L.; Hawkins, S.A.; Poor, S.E.; Reginato, L.L.; Smith, M.W.

    1984-01-01

    Although linear induction accelerators (LIAs) are quite reliable by most standards, they are limited in repeating rate, average power, and reliability because the final stage of energy delivery is based on spark gap performance. In addition, they have a low duty factor of operation. To provide a higher burst rate and greater reliability, the researchers used new technology to develop a magnetic pulse compression scheme that eliminates all spark gaps and exceeds requirements. The paper describes the scheme. The magnetic drive system can be tailored to drive induction cells from a few kA to over 10 kA at 500 kV, with average beam power levels in the megawatts. This new 5-MeV, 2.5-kA LIA under construction at the Lawrence Livermore National Laboratory (LLNL) will be used for the development of high brightness sources and will provide a test bed for the new technology, which should lead to LIAs that surpass the radio frequency linacs for efficiency and reliability, as well as fit other industrial applications, such as sewage sterilization

  20. Energy dependence of relative abundances and periods of delayed neutron separate groups from neutron induced fission of 239Pu in the virgin neutron energy range 0.37-4.97 MeV

    International Nuclear Information System (INIS)

    Piksajkin, V.M.; Kazakov, L.E.; Isaev, S.T.; Korolev, G.G.; Roshchenko, V.A.; Tertychnyj, R.G.

    2002-01-01

    Relative yield and group period of delayed neutrons induced by the 239 Pu fission in the 0.37-4.97 MeV range were measured. Comparative analysis of experimental data was conducted in terms of middle period of half-life of delayed neutron nuclei-precursors. Character and scale of changing values of delayed neutron group parameters as changing excitation energy of fission compound-nucleus have been demonstrated for the first time. Considerable energy dependence of group parameters under the neutron induced 239 Pu fission that was expressed by the decreasing middle period of half-life of nuclei-precursors by 10 % in the 2.85 eV - 5 MeV range of virgin neutrons was detected [ru

  1. Calculations of complete data for n + 89Y in the energy region 0.001∼20 MeV

    International Nuclear Information System (INIS)

    Cai Chonghai

    1998-01-01

    All reaction cross sections, secondary neutron spectra and elastic scattering angular distributions of n + 89 Y in E n = 0.001 ∼20 MeV are calculated. Pretty good results in accordance with experimental data are obtained. And the data results are given in ENDF/B-6 format

  2. Gamma-ray response of NE-213 measured between 2 and 11.5 MeV

    International Nuclear Information System (INIS)

    Ingersoll, D.T.; Wehring, B.W.; Starr, R.D.

    1976-01-01

    Because of the capability to discriminate between neutrons and gamma rays, NE-213 scintillators are useful as both fast-neutron and gamma-ray spectrometers. However, measured NE-213 Compton-recoil spectra require unfolding to yield gamma-ray energy spectra which entails a detailed knowledge of the gamma-ray response of the NE-213 detector system. Absolute measurements of the gamma-ray response of an NE-213 scintillator in the energy range of 2 to 11.5 MeV were made. The measurements were made using the University of Illinois superconducting electron microtron equipped with a gamma-ray monochromator. The response measurements will be used to construct a gamma-ray response matrix for NE-213 to be used with the FORIST unfolding code

  3. Double-differential beryllium neutron cross sections at incident neutron energies of 5. 9, 10. 1, and 14. 2 MeV. [5. 9 to 14. 2 MeV, differential cross sections, ENDF/B-IV

    Energy Technology Data Exchange (ETDEWEB)

    Drake, D.M.; Auchampaugh, G.F.; Arthur, E.D.; Ragan, C.E.; Young, P.G.

    1976-08-01

    Beryllium neutron-production cross sections were measured using the time-of-flight technique at incident neutron energies of 5.9, 10.1, and 14.2 MeV, and at laboratory angles of 25, 27.5, 30, 35, 45, 60, 80, 100, 110, 125, and 145/sup 0/. The differential elastic and inelastic cross sections are presented. Inelastic is defined here as those reactions that proceed through the states at 1.69-, 2.43-, 2.8-, and 3.06-MeV excitation energy in /sup 9/Be. Comparison of emission energy spectra with calculations using the ENDF/B-IV beryllium cross sections shows that the ENDF/B cross sections strongly overemphasize the low lying states in /sup 9/Be.

  4. /sup 1/H(t,n)/sup 3/He reaction as monoenergetic neutron source in the (10/20) MeV energy interval

    Energy Technology Data Exchange (ETDEWEB)

    Zago, G. (Padua Univ. (Italy). Ist. di Fisica; Istituto Nazionale di Fisica Nucleare, Padua (Italy))

    1981-11-14

    This article examines the problem of finding a neutron source in the (10/20) MeV energy interval, having convenient properties for controlled thermonuclear-fusion researches and biomedical applications.

  5. Use of 13.5-MeV neutrons for protein determination in grain crops

    International Nuclear Information System (INIS)

    Barit, I.A.; Kuz'min, L.E.; Makarov, S.A.; Vozhzhov, V.F.; Pronman, I.M.

    1989-01-01

    One of the main objectives of the Food Supply Program, i.e., that of improving the quality of crop production, is bound up intimately with the intensification of work on the selection and genetics of high-protein grain and legume crops. High-protein stains cannot be isolated without the proper analytical service for mass testing of the nitrogen content in the grain, which is one of the main elements of protein. The neutron-activation method of nitrogen determination is based on the use of the 14 N(n, 2n) 13 N nuclear reaction (E th = 11.3 MeV) with an average neutron energy of ∼14.5 MeV. In this work the authors consider a new variant of the neutron-activation method of determining nitrogen in grain and legume crops. The method is based on the use of monoenergetic neutrons with an energy of ∼13.5 MeV, generated in relatively thin titanium-tritium targets by a mass-separated deuteron beam from neutron generators operating at 150-300 kV, in order to eliminate the interference of the reaction 39 K(n, 2n) 38 K (E thr = 13.4 MeV). The present method has been used to determine the protein content (mass %) in different grains and legumes at the All-Union Selection-Genetic Institute of the Lenin Academy of Agricultural Sciences. The correctness of the analysis was checked by comparison with the data of chemical analysis. The discrepancy between the results of the two methods does not exceed 3%, which is within the limits of the error of measurement of Δ and K s.r

  6. Average fast neutron flux in three energy ranges in the Quinta assembly irradiated by two types of beams

    Directory of Open Access Journals (Sweden)

    Strugalska-Gola Elzbieta

    2017-01-01

    Full Text Available This work was performed within the international project “Energy plus Transmutation of Radioactive Wastes” (E&T - RAW for investigations of energy production and transmutation of radioactive waste of the nuclear power industry. 89Y (Yttrium 89 samples were located in the Quinta assembly in order to measure an average high neutron flux density in three different energy ranges using deuteron and proton beams from Dubna accelerators. Our analysis showed that the neutron density flux for the neutron energy range 20.8 - 32.7 MeV is higher than for the neutron energy range 11.5 - 20.8 MeV both for protons with an energy of 0.66 GeV and deuterons with an energy of 2 GeV, while for deuteron beams of 4 and 6 GeV we did not observe this.

  7. Neutron-deuteron analyzing power data at En=22.5 MeV

    Science.gov (United States)

    Weisel, G. J.; Tornow, W.; Crowell, A. S.; Esterline, J. H.; Hale, G. M.; Howell, C. R.; O'Malley, P. D.; Tompkins, J. R.; Witała, H.

    2014-05-01

    We present measurements of n-d analyzing power, Ay(θ), at En=22.5 MeV. The experiment uses a shielded neutron source which produced polarized neutrons via the 2H(d⃗,n⃗)3He reaction. It also uses a deuterated liquid-scintillator center detector and six pairs of liquid-scintillator neutron side detectors. Elastic neutron scattering events are identified by using time-of-flight techniques and by setting a window in the center detector pulse-height spectrum. The beam polarization is monitored by using a high-pressure helium gas cell and an additional pair of liquid-scintillator side detectors. The n-d Ay(θ) data were corrected for finite-geometry and multiple-scattering effects using a Monte Carlo simulation of the experiment. The 22.5-MeV data demonstrate that the three-nucleon analyzing power puzzle also exists at this energy. They show a significant discrepancy with predictions of high-precision nucleon-nucleon potentials alone or combined with Tucscon-Melbourne or Urbana IX three-nucleon forces, as well as currently available effective-field theory based potentials of next-to-next-to-next-to-leading order.

  8. Characterization and optimization of laser-driven electron and photon sources in keV and MeV energy ranges

    International Nuclear Information System (INIS)

    Bonnet, Thomas

    2013-01-01

    This work takes place in the framework of the characterization and the optimization of laser-driven electron and photon sources. With the goal of using these sources for nuclear physics experiments, we focused on 2 energy ranges: one around a few MeV and the other around a few tens of keV. The first part of this work is thus dedicated to the study of detectors routinely used for the characterization of laser-driven particle sources: Imaging Plates. A model has been developed and is fitted to experimental data. Response functions to electrons, photons, protons and alpha particles are established for SR, MS and TR Fuji Imaging Plates for energies ranging from a few keV to several MeV. The second part of this work present a study of ultrashort and intense electron and photon sources produced in the interaction of a laser with a solid or liquid target. An experiment was conducted at the ELFIE facility at LULI where beams of electrons and photons were accelerated up to several MeV. Energy and angular distributions of the electron and photons beams were characterized. The sources were optimized by varying the spatial extension of the plasma at both the front and the back end of the initial target position. In the optimal configuration of the laser-plasma coupling, more than 1011 electrons were accelerated. In the case of liquid target, a photon source was produced at a high repetition rate on an energy range of tens of keV by the interaction of the AURORE Laser at CELIA (10 16 W.cm -2 ) and a melted gallium target. It was shown that both the mean energy and the photon number can be increased by creating gallium jets at the surface of the liquid target with a pre-pulse. A physical interpretation supported by numerical simulations is proposed. (author)

  9. Determination of partial decay widths for the 2-, 8.87 MeV level in 16O

    International Nuclear Information System (INIS)

    Vermeer, W.J.; Poletti, A.R.

    1982-01-01

    The E2/M1 mixing ratios for the decays of the 2 - , 8.87 MeV level in 16 O to the 1 - , 7.12 MeV and 3 - , 6.13 MeV levels were measured. The results were delta(2 - → 1 - )= + 2.1 +- 0.5 and delta(2 - → 3 - )= + 2.90 +- 0.20. These are compared with previous experiments and with shell-model predictions. (author)

  10. Theoretical model application to the evaluation of fission neutron data up to 20 MeV incidence energy

    International Nuclear Information System (INIS)

    Ruben, A.; Maerten, H.; Seeliger, D.

    1990-01-01

    A complex statistical theory of fission neutron emission combined with a phenomenological fission model has been used to calculate fission neutron data for 238 U. Obtained neutron multiplicities and energy spectra as well as average fragment energies for incidence energies from threshold to 20 MeV (including multiple-chance fission) are compared with traditional data representations. (author). 19 refs, 6 figs

  11. Shielding Calculations for Industrial 5/7.5MeV Electron Accelerators Using the MCNP Monte Carlo Code

    International Nuclear Information System (INIS)

    Peri, E.; Orion, I.

    2014-01-01

    High energy X-rays from accelerators are used to irradiate food ingredients to prevent growth and development of unwanted biological organisms in food, in order to extend the shelf life of products. High energy photons can cause food activation due to (D 3 ,n) reactions. Until 2004, to eliminate the possibility of food activation, the electron energy was limited to 5 MeV X-rays for food irradiation. In 2004, the FDA approved the usage of up to 7.5 MeV, but only with tantalum and gold targets (1). Higher X-ray energy results an increased flux of X-rays in the forward direction, increased penetration, and higher photon dose rate due to better electron-to-photon conversion. These improvements could decrease the irradiation time and allow irradiation of larger packages, thereby providing higher production rates with lower treatment cost. Medical accelerators usually work with 6-18 MV electron energy with tungsten target to convert the electron beam to X-rays. In order to protect the patients, the accelerator head is protected with a heavy lead shielding; therefore, the bremsstrahlung is emitted only in the forward direction. There are many publications and standards that guide how to design optimal shielding for medical accelerator rooms. The shielding data for medical accelerators is not applicable for industrial accelerators, since the data is for different conversion targets, different X-Ray energies, and only for the forward direction. Collimators are not always in use in industrial accelerators, and therefore bremsstrahlung photons can be emitted in all directions. The bremsstrahlung spectrum and dose rate change as a function of the emission angle. The dose rate decreases from maximum in the forward direction (0°) to minimum at 180° by 1-2 orders of magnitude. In order to design and calculate optimal shielding for food accelerator rooms, there is a need to have the bremsstrahlung spectrum data, dose rates and concrete attenuation data in all emission directions

  12. Cross Sections for High-Energy Gamma Transitions from MeV Neutron Capture in {sup 206}Pb

    Energy Technology Data Exchange (ETDEWEB)

    Bergqvist, I; Lundberg, B; Nilsson, L

    1970-03-15

    Gamma-ray spectra from neutron capture in Pb (radiogenic lead) in the energy range 1.5 to 8.5 MeV were recorded using time-of-flight techniques. The spectrometer was a Nal (Tl) crystal, 20.8 cm long and 22.6 cm in diameter. The spectra are dominated by gamma transitions to levels with large single-particle strength, in agreement with predictions of semi-direct capture theories. The theories predict enhancements of the direct capture cross section by a factor of 10 - 15 in the region of the giant dipole resonance. The observed enhancement is about 50.

  13. Calorimetry for absorbed dose measurement at 1-4 MeV electron accelerators

    International Nuclear Information System (INIS)

    Miller, A.

    2000-01-01

    Calorimeters are used for dose measurement, calibration and intercomparisons at industrial electron accelerators, and their use at 10 MeV electron accelerators is well documented. The work under this research agreement concerns development of calorimeters for use at electron accelerators with energies in the range of 2-4 MeV. The dose range of the calorimeters is 3-40 kGy, and their temperature stability after irradiation was found to be sufficient for practical use in an industrial environment. Measurement uncertainties were determined to be 5% at k = 2. (author)

  14. Calculation of the energy spectrum of atmospheric gamma-rays between 1 and 1000 MeV

    International Nuclear Information System (INIS)

    Martin, I.M.; Dutra, S.L.G.; Palmeira, R.A.R.

    The energy spectrum of atmospheric gamma-rays at 4 g/cm 2 has been calculated for cut-off rigidities of 4.5, 10 and 16 GV. The considered processes for the production of these gamma-rays were the π 0 decay plus the bremsstrahlung from primary, secondary like splash and re-entrant albedo electrons. The calculations indicated that the spectrum could be fitted to a power law in energy, with the exponential index varying from 1.1 in the energy range 1 - 10 MeV, to 1.4 in the energy range 10 - 200 MeV and 1.8 in the energy range 200 - 1000 MeV. These results are discussed [pt

  15. Analyzing power Ay(θ) of n-3He elastic scattering between 1.60 and 5.54 MeV.

    Science.gov (United States)

    Esterline, J; Tornow, W; Deltuva, A; Fonseca, A C

    2013-04-12

    Comprehensive and high-accuracy n-3He elastic scattering analyzing power Ay(θ) angular distributions were obtained at five incident neutron energies between 1.60 and 5.54 MeV. The data are compared to rigorous four-nucleon calculations using high-precision nucleon-nucleon potential models; three-nucleon force effects are found to be very small. The agreement between data and calculations is fair at the lower energies and becomes less satisfactory with increasing neutron energy. Comparison to p-3He scattering over the same energy range exhibits unexpectedly large isospin effects.

  16. Analyzing power T20 measurement of backscattering d.p. vector in the Δ resonance excitation range and theoretical analysis of this reaction

    International Nuclear Information System (INIS)

    Boudard, A.

    1983-12-01

    We have measured the analysing power T 20 in the backward elastic scattering d.p. for 16 energies of the deuteron from 300 MeV to 2300 MeV. This is the region of the observed bump in the backward excitation function of the cross section. This bump is usually thought to be a signature of a Δ(3/2,3/2 + ) dynamically excited in the intermediate state. We have also measured Ay and Ayy from 70 0 to 180 0 for Tsub(d)=1200 MeV. we have compared both T 20 and the backward cross section with a coherent sum between direct neutron exchange and Δ excitation by intermediate exchanges of π and rho mesons. The overall shape of the cross section is reproduced. Unlike the earlier measurements from Argonne, there is a deep minimum in T 20 at Tsub(d)=600 MeV, in agreement with the predictions of direct exchange models. However, an additional structure producing a second minimum at Tsub(d)=1400 MeV (√S=3240 MeV) is never reproduced by our calculations. This suggests either that refinements in the Δ treatment are needed or that a new reaction mechanism (resonance) takes place in that region [fr

  17. Comparison of the BNAB-78 and ENDF/B-V evaluated 238U radiative capture data in the energy range from 0.5 to 15 MeV

    International Nuclear Information System (INIS)

    Tolstikov, V.A.

    1991-01-01

    Evaluations of the 238 U capture cross-section as given in the BNAB-78 and ENDF/B-V evaluated data libraries are intercompared and their values compared to recently published data which had not been included in these evaluations. It is concluded that there is a need to re-assess the earlier experimental data, particularly those based on activation measurements, taking secondary neutron reactions and scattering effects into account. It is recommended that a precision measurement of the capture cross-section and its dependence on energy be done in the 1-7 MeV energy range. (author). 18 refs, 1 fig

  18. Secondary standards (non-activation) for neutron data measurements above 20 MeV

    International Nuclear Information System (INIS)

    Haight, R.C.

    1991-01-01

    In addition to H(n,p) scattering and 235,238 U(n,f) reactions, secondary standards for neutron flux determination may be useful for neutron energies above 20 MeV. For experiments where gamma rays are detected, reference gamma-ray production cross sections are relevant. For neutron-induced charged particle production, standard (n,p) and (n,alpha) cross sections would be helpful. Total cross section standards would serve to check the accuracy of these measurements. These secondary standards are desirable because they can be used with the same detector systems employed in measuring the quantities of interest. Uncertainties due to detector efficiency, geometrical effects, timing and length of flight paths can therefore be significantly reduced. Several secondary standards that do not depend on activation techniques are proposed. 14 refs

  19. Elastic Scattering of 7Li+27Al at Backward Angles in the 7-11 MeV Energy Range for Application in RBS

    International Nuclear Information System (INIS)

    Carnelli, P. F. F.; Arazi, A.; Cardona, M. A.; Figueira, J. M.; Hojman, D.; Martinez Heimann, D.; Negri, A. E.; Pacheco, A. J.; Abriola, D.; Capurro, O. A.; Fimiani, L.; Grinberg, P.; Marti, G. V.; Fernandez Niello, J. O.

    2010-01-01

    We have measured elastic excitation functions for the 7 Li+ 27 Al system, in an energy range close to its Coulomb barrier (E lab = 8.4 MeV) in steps of 0.25 MeV. For this purpose, an array of eight surface-barrier detectors was used. To get an insight on the background composition (mainly α particles), a telescope-detector was used for atomic-number identification. Identical measurements for the 6 Li+ 27 Al system are planned for the near future.

  20. Cross section measurements for gallium in the neutron energy range of 13.5 to 14.8 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Luo, J. [Hexi Univ., Zhangye (China). School of Physics and Electromechanical Engineering; Liu, R.; Jiang, L. [Chinese Academy of Engineering Physics, Mianyang (China). Inst. of Nuclear Physics and Chemistry

    2012-07-01

    Cross sections for (n, 2n), (n, p) and (n, n'{alpha}) reactions have been measured on gallium isotopes at the neutron energies of 13.5-14.8 MeV using the activation technique. The monoenergetic neutron beam was produced via the {sup 3}H(d, n){sup 4}He reaction. The neutron fluences were determined using the monitor reaction {sup 27}Al(n, {alpha}){sup 24}Na. The activities induced in the reaction products were measured using high-resolution gamma-ray spectrometry. Data are reported for the following reactions: {sup 69}Ga(n, 2n){sup 68}Ga, {sup 71}Ga(n, 2n) {sup 70}Ga, {sup 69}Ga(n, p){sup 69m}Zn, {sup 71}Ga(n, p){sup 71m}Zn and {sup 71} Ga(n, n'{alpha}){sup 67}Cu. Nuclear model calculations using the code HFTT, which employs the Hauser-Feshbach (statistical model) and exciton model (precompound effects) formalisms, were undertaken to describe the formation of the reaction products. Results are discussed and compared with some corresponding values found in the literature, with some established systematics and with the evaluated data given in ENDF/B-VII.0, CENDL-3.1 and JENDL-4.0. (orig.)

  1. Low-energy modes and medium-range correlated motions in Pd79Ge21 alloy glass

    International Nuclear Information System (INIS)

    Shibata, Kaoru; Mizuseki, Hiroshi; Suzuki, Kenji

    1993-01-01

    It is well known that there are excess modes over the sound wave in low energy region below about 10 meV in glass materials, which do not exist in corresponding crystalline materials. We examined the low energy modes in a Pd 79 Ge 21 alloys glass by means of inelastic neutron scattering. Measurements were performed on the crystal analyzer type time-of-flight spectrometer LAM-40 with PG(002) and Ge(311) analyzer mirror, which is installed at KENS. The dynamic structure factor S(Q,ω) was obtained over the wide momentum range from 0.5 to 5.2A -1 . The measured S(Q,ω)'s have almost same momentum (Q) dependence at each energy (ℎω) in the energy range from 2.0 to 8.0 meV. In the energy region below 3 meV, we found a small shoulder peak at Q = 1.7A -1 in the momentum dependence of S(Q,ω). It corresponds to a prepeak in S(Q). Therefore it is concluded that the low energy modes in Pd 79 Ge 21 alloy glass is mainly contributed from medium-range correlated motions in the cluster consisting of a few chemical short-range structure units of Pd 6 Ge trigonal prism. (author)

  2. 50 MeV Run of the IOTA / FAST Electron Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Edstrom Jr., D.; et al.

    2017-02-02

    The low-energy section of the photoinjector-based electron linear accelerator at the Fermilab Accelerator Science & Technology (FAST) facility was recently commissioned to an energy of 50 MeV. This linear accelerator relies primarily upon pulsed SRF acceleration and an optional bunch compressor to produce a stable beam within a large operational regime in terms of bunch charge, total average charge, bunch length, and beam energy. Various instrumentation was used to characterize fundamental properties of the electron beam including the intensity, stability, emittance, and bunch length. While much of this instrumentation was commissioned in a 20 MeV running period prior, some (including a new Martin- Puplett interferometer) was in development or pending installation at that time. All instrumentation has since been recommissioned over the wide operational range of beam energies up to 50 MeV, intensities up to 4 nC/pulse, and bunch structures from ~1 ps to more than 50 ps in length.

  3. Spin-flip (p,n) reactions on 26Mg, 54Fe, and 56Fe at selected proton bombarding energies in the range of 17 to 25 MeV

    International Nuclear Information System (INIS)

    Aron, D.L.

    1985-06-01

    New data are presented for the 26 Mg(p,n) 26 Al reaction at E/sub p/ = 19.12 and 24.97 MeV, for the 54 Fe(p,n) 54 Co reaction at E/sub p/ = 17.20, 18.60, and 24.60 MeV, and for the 56 Fe(p,n) 56 Co reaction at E/sub p/ = 19.12 and 24.59 MeV. Data were taken with the LLNL Cyclograaff at 16 angles from 3.5 0 to 159.0 0 . A large detector at 23.8 0 with a long neutron flight path collected high resolution spectra. This large detector also collected separate 0 0 high resolution data on the 26 Mg and 56 Fe(p,n) reactions at E/sub p/ = 19 MeV. Absolute differential (p,n) cross sections were extracted for 1 + states in 26 Al, 54 Co, and 56 Co, for the 0 + isobaric analong state (IAS) in 54 Co and 56 Co, for a 2 + state in each residual nucleus, and for the 0.199 MeV 7 + state of 54 Co. No new experimental states were identified. Only relative cross sections were extracted at 0 0 . Experimental angle-integrated cross sections were obtained for all but one state. DWBA79 was used, with the G-matrix effective nucleon-nucleon interaction of Bertsch et al. (with the central triplet-odd component V/sub to/ = O) and the Livermore shell model wave functions to calculate differential (p,n) cross sections to 1 + states and to the 54 Co and 56 Co IAS. Normalization of the DWBA angle-integrated cross sections to measurements for the 54 Co and 56 Co IAS (at E/sub p/ = 24.6 MeV) yielded the renormalized V/sub tau/ = 21.4 +- 2.1 MeV. Normalization of the DWBA angle-integrated cross sections to measurements for the 24.6 MeV 54 Co and 56 Co 1 + states, coupled with the normalization of the wave functions to previously experimentally determined GT strength, yield the renormalized V/sub sigmatau/ = 12.3 +- 1.2 MeV. The experimental Gamow-Teller strength B(GT)/sub exp./ of the T = 1 26 Al state at 9.44 MeV was found to be 0.69; B(GT)/sub exp/ of the T = 1 26 Al state at 10.47 MeV was found to be 0.39

  4. The 1H(t,n)3He reaction as monoenergetic neutron source in the (10/20) MeV energy interval

    International Nuclear Information System (INIS)

    Zago, G.

    1981-01-01

    The 1 H(t,n) 3 He reaction, considered as a neutron source in the (10/20) MeV energy interval, is a ''white'' neutron source having intensity, mean energy, and directionality which may prove advantageous in technological and biomedical researches. (author)

  5. Impact of x-ray dose on the response of CR-39 to 1-5.5 MeV alphas

    International Nuclear Information System (INIS)

    Rojas-Herrera, J.; Rinderknecht, H. G.; Zylstra, A. B.; Gatu Johnson, M.; Orozco, D.; Rosenberg, M. J.; Sio, H.; Seguin, F. H.; Frenje, J. A.; Li, C. K.; Petrasso, R. D.

    2015-01-01

    The CR-39 nuclear track detector is used in many nuclear diagnostics fielded at inertial confinement fusion (ICF) facilities. Large x-ray uences generated by ICF experiments may impact the CR-39 response to incident charged particles. To determine the impact of x-ray exposure on the CR-39 response to alpha particles, a thick-target bremsstrahlung x-ray generator was used to expose CR-39 to various doses of 8 keV Cu-K α and K β x-rays. The CR-39 detectors were then exposed to 1-5.5 MeV alphas from an Am-241 source. The regions of the CR-39 exposed to x-rays showed a smaller track diameter than those not exposed to x-rays: for example, a dose of 3.0 ± 0.1 Gy causes a decrease of (19 ± 2)% in the track diameter of a 5.5 MeV alpha particle, while a dose of 60.0 ± 1.3 Gy results in a decrease of (45 ± 5)% in the track diameter. The reduced track diameters were found to be predominantly caused by a comparable reduction in the bulk etch rate of the CR-39 with x-ray dose. A residual effect depending on alpha particle energy is characterized using an empirical formula

  6. Study of two photon production process in proton-proton collisions at 216 MeV

    International Nuclear Information System (INIS)

    Khrykin, A.S.

    2002-01-01

    The energy spectrum for high energy γ-rays (Eγ ≥ 10 MeV) from the process pp → γγX emitted at 90 deg. in the laboratory frame has been measured at 216 MeV. The resulting photon energy spectrum extracted from γ - γ coincidence events consists of a narrow peak (5.3σ) at a photon energy of about 24 MeV and a relatively broad peak (3.5σ) in the energy range of (50 - 70) MeV. This behavior of the photon energy spectrum is interpreted as a signature of the exotic dibaryon resonance d 1 * with a mass of about 1956 MeV which is assumed to be formed in the radiative process pp → γd 1 * followed by its electromagnetic decay via the d 1 * → ppγ mode. The experimental spectrum is compared with those obtained by means of Monte Carlo simulations

  7. Determination of the cross section for (n,p) and (n,α) reactions on 165Ho at 13.5 and 14.8 MeV

    International Nuclear Information System (INIS)

    Luo, Junhua; An, Li; Jiang, Li; He, Long

    2015-01-01

    Activation cross-sections for the 165 Ho(n,p) 165 Dy and 165 Ho(n,α) 162 Tb reactions were measured by means of the activation method at 13.5 and 14.8 MeV, to resolve inconsistencies in existing data. A neutron beam produced via the 3 H(d,n) 4 He reaction was used. Statistical model calculations were performed using the nuclear-reaction codes EMPIRE-3.2 Malta and TALYS-1.6 with default parameters, at neutron energies varying from the reaction threshold to 20 MeV. Results are also discussed and compared with some corresponding values found in the literature. The calculational results on the 165 Ho(n,α) 162 Tb reaction agreed fairly well with experimental data, but there were large discrepancies in the results for the 165 Ho(n,p) 165 Dy reaction. - Highlights: • 27 Al(n,α) 24 Na was used as a monitor for neutron fleunce. • The cross sections for the 165 Ho(n,p) 165 Dy and 165 Ho(n,α) 162 Tb reactions were measured at 13.5 and 14.8 MeV neutron energies. • Nuclear reaction codes TALYS-1.6 and EMPIRE-3.2 Malta were used to model the reactions. • Inconsistency with previous data and with model calculations are noted

  8. Neutron-deuteron elastic scattering and breakup reactions below 20 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Howell, C.R.; Tornow, W.; Pfuetzner, H.G.; Roberts, M.L.; Murphy, K.; Felsher, P.D.; Weisel, G.J.; Mertens, G.; Walter, R.L. (Duke Univ. and Triangle Universities Nuclear Lab., Durham, NC (USA)); Lambert, J.M.; Treado, P.A. (Physics Dept., Georgetown Univ., Washington, DC (USA)); Slaus, I. (Rudjer Boskovic Inst., Zagreb (Yugoslavia))

    1991-05-01

    In this paper we review the results of a series of high-accuracy measurements on the neutron-deuteron (n-d) scattering system at incident neutron energies below 20 MeV. These measurements were designed to: 1) provide data of sufficient accuracy to be used to refine the parametrization of the nucleon-nucleon force, 2) to test the reaction dynamics in the ''rigorous'' calculations of three-nucleon (3N) breakup reactions, and 3) identify 3N scattering observables that are specifically sensitive to three-nucleus forces and/or off-shell effects. At TUNL we have measured vector analyzing powers A{sub y}({theta}) for n-d elastic scattering and the breakup reaction to an accuracy better than {+-}0.005 and {+-}0.020, respectively. Recent results on items 1) and 2) will be presented. Also, results of cross-section measurements for n-d and p-d breakup will be compared to a ''rigorous'' 3N calculation. (orig.).

  9. Neutron-deuteron elastic scattering and breakup reactions below 20 MeV

    International Nuclear Information System (INIS)

    Howell, C.R.; Tornow, W.; Pfuetzner, H.G.; Roberts, M.L.; Murphy, K.; Felsher, P.D.; Weisel, G.J.; Mertens, G.; Walter, R.L.; Lambert, J.M.; Treado, P.A.; Slaus, I.

    1991-01-01

    In this paper we review the results of a series of high-accuracy measurements on the neutron-deuteron (n-d) scattering system at incident neutron energies below 20 MeV. These measurements were designed to: 1) provide data of sufficient accuracy to be used to refine the parametrization of the nucleon-nucleon force, 2) to test the reaction dynamics in the ''rigorous'' calculations of three-nucleon (3N) breakup reactions, and 3) identify 3N scattering observables that are specifically sensitive to three-nucleus forces and/or off-shell effects. At TUNL we have measured vector analyzing powers A y (θ) for n-d elastic scattering and the breakup reaction to an accuracy better than ±0.005 and ±0.020, respectively. Recent results on items 1) and 2) will be presented. Also, results of cross-section measurements for n-d and p-d breakup will be compared to a ''rigorous'' 3N calculation. (orig.)

  10. Measurement of the neutron fields produced by a 62 MeV proton beam on a PMMA phantom using extended range Bonner sphere spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Amgarou, K. [Grup de Recerca en Radiacions Ionitzants, Departament de Fisica, Universitat Autonoma de Barcelona, E-08193 Bellaterra (Spain); Bedogni, R., E-mail: roberto.bedogni@lnf.infn.it [INFN-Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, Via E. Fermi n. 40, 00044 Frascati (Italy); Domingo, C. [Grup de Recerca en Radiacions Ionitzants, Departament de Fisica, Universitat Autonoma de Barcelona, E-08193 Bellaterra (Spain); Esposito, A.; Gentile, A.; Carinci, G. [INFN-Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, Via E. Fermi n. 40, 00044 Frascati (Italy); Russo, S. [INFN-Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, via S. Sofia 44, 95123 Catania (Italy)

    2011-10-21

    The experimental characterization of the neutron fields produced as parasitic effect in medical accelerators is assuming an increased importance for either the patient protection or the facility design aspects. Medical accelerators are diverse in terms of particle type (electrons or hadrons) and energy, but the radiation fields around them have in common (provided that a given threshold energy is reached) the presence of neutrons with energy span over several orders of magnitude. Due to the large variability of neutron energy, field or dosimetry measurements in these workplaces are very complex, and in general, cannot be performed with ready-to-use commercial instruments. In spite of its poor energy resolution, the Bonner Sphere Spectrometer (BSS) is the only instrument able to simultaneously determine all spectral components in such workplaces. The energy range of this instrument is limited to E<20 MeV if only polyethylene spheres are used, but can be extended to hundreds of MeV by including metal-loaded spheres (extended range BSS, indicated with ERBSS). With the aim of providing useful data to the scientific community involved in neutron measurements at hadron therapy facilities, an ERBSS experiment was carried out at the Centro di AdroTerapia e Applicazioni Nucleari Avanzate (CATANA) of INFN-LNS (Laboratori Nazionali del Sud), where a proton beam routinely used for ophthalmic cancer treatments is available. The 62 MeV beam was directed towards a PMMA phantom, simulating the patient, and two neutron measurement points were established at 0{sup o} and 90{sup o} with respect to the beam-line. Here the ERBSS of UAB (Universidad Autonoma de Barcelona-Grup de Fisica de les Radiacions) and INFN (Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali di Frascati) were exposed to characterize the 'forward' and 'sideward' proton-induced neutron fields. The use of two ERBSS characterized by different set of spheres, central detectors, and

  11. A direct electron detector for time-resolved MeV electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Vecchione, T.; Denes, P.; Jobe, R. K.; Johnson, I. J.; Joseph, J. M.; Li, R. K.; Perazzo, A.; Shen, X.; Wang, X. J.; Weathersby, S. P.; Yang, J.; Zhang, D.

    2017-03-01

    The introduction of direct electron detectors enabled the structural biology revolution of cryogenic electron microscopy. Direct electron detectors are now expected to have a similarly dramatic impact on time-resolved MeV electron microscopy, particularly by enabling both spatial and temporal jitter correction. Here we report on the commissioning of a direct electron detector for time-resolved MeV electron microscopy. The direct electron detector demonstrated MeV single electron sensitivity and is capable of recording megapixel images at 180 Hz. The detector has a 15-bit dynamic range, better than 30-μmμm spatial resolution and less than 20 analogue-to-digital converter count RMS pixel noise. The unique capabilities of the direct electron detector and the data analysis required to take advantage of these capabilities are presented. The technical challenges associated with generating and processing large amounts of data are also discussed.

  12. DM2 results on e+e- annihilation into multihadrons in the 1350-2400 MeV energy range

    International Nuclear Information System (INIS)

    Bisello, D.; Busetto, G.; Castro, A.; Nigro, M.; Pescara, L.; Sartori, P.; Stanco, L.; Antonelli, A.; Baldini, R.; Biagini, M.E.; Calcaterra, A.; Schioppa, M.; Augustin, J.E.; Cosme, G.; Couchot, F.; Fulda, F.; Grosdidier, G.; Jean-Marie, B.; Lepeltier, V.; Szklarz, G.

    1990-06-01

    We present preliminary results on the study of e + e - annihilation into π + π - π + π - , π + π - π 0 π 0 , π + π - π 0 , π + π - π + π - π 0 , K + K - π + π - and K s 0 K ± π -+ in the 1350-2400 MeV energy range. Data have been collected with the DM2 detector at DCI, the Orsay colliding ring, and refer to about 2 pb -1 integrated luminosity

  13. Towards tabletop production of intense quasimonochromatic X-ray beams using small 2-20 MeV accelerators

    International Nuclear Information System (INIS)

    Avakian, R.O.; Ispirian, K.A.

    2004-01-01

    Full text: The existing synchrotron radiation sources and the fourth generation x-ray sources, which are projected at SLAC, USA, and DESY, Germany, are very expensive. For this reason the search of the novel and cheaper sources using various types of radiation produced by 5-20 MeV electrons available at many hospitals, universities and firms in various countries is of great interest. In this article a review of the physics, history, new theoretical and experimental results and of some applications is given with a purpose to consider the possibilities of construction of small tabletop sources of quasimonochromatic X-ray photon beams necessary for scientific, industrial, medicine and other applications. Simple formulae for almost all types of radiation are given with the help of which one can estimate the expected useful yield and background. PACS: 41.60.-m; 43.35.Ty; 61.85+p;m 78.67.Pt; 78.70.-g. Key words: Bremsstrahlung/Cherenkov radiation/ Transition radiation / Parametric X-ray radiation / Channeling radiation/ Compton scattering

  14. 1.5 MeV Kr+ irradiation of polycrystalline Ge

    International Nuclear Information System (INIS)

    Wang, L.M.; Birtcher, R.C.; Rehn, L.E.

    1990-01-01

    This paper reports 1.5 MeV Kr + irradiation of polycrystalline Ge at room temperature, and subsequent annealing carried out with in situ TEM observations. After a Kr + dose of 1.2 x 10 14 ions/cm 2 , Ge in the electron transparent region was completely amorphized. Continuous irradiation of the amorphized Ge resulted in a high density of small cavities. These cavities, first observed after 7 x 10 14 ions/cm 2 with an average diameter of ∼3 nm, grew into large (∼50 nm) irregular-shaped holes, transforming the irradiated Ge into a sponge-like material after 8.5 x 10 15 ions/cm 2 . The crystallization temperature and the morphology of the crystallized Ge after annealing were found to be dependent on the Kr + dose. The sponge-like structure was retained after crystallization at ∼600 degrees C

  15. Reduction in 14 MeV neutron generation rate by ICRF injection in D-3He burning plasmas

    International Nuclear Information System (INIS)

    Matsuura, Hideaki; Nakao, Yasuyuki

    2004-01-01

    The triton distribution function during ion cyclotron range of frequency (ICRF) waves injection in D- 3 He plasmas is examined by solving the 2-dimensional Fokker-Planck equation. Triton distribution function originally has a non-Maxwellian (tail) component around 1.01 MeV birth energy range due to D(d,p)T fusion reaction. Owing to the extension of the original tail by ICRF injection, the high-energy resonance tritons further increase, and the velocity-averaged T(d,n) 4 He fusion reaction rate coefficient, i.e. 14 MeV neutron generation rate, decreases from the values when triton is assumed to be Maxwellian. It is shown that when tritons absorb ∼1/200 of the fusion power from the waves in typical D- 3 He plasma, i.e. T=80 keV, n D =2x10 20 m -3 , τ E0 =3 sec and B=6T, the 14 MeV neutron generation rate is reduced by about ∼20% from the values for Maxwellian plasmas. (author)

  16. The e-ASTROGAM mission: Exploring the extreme Universe with gamma rays in the MeV – GeV range

    DEFF Research Database (Denmark)

    De Angelis, A.; Tatischeff, V.; Tavani, M.

    2017-01-01

    e-ASTROGAM (‘enhanced ASTROGAM’) is a breakthrough Observatory space mission, with a detector composed by a Silicon tracker, a calorimeter, and an anticoincidence system, dedicated to the study of the non-thermal Universe in the photon energy range from 0.3 MeV to 3 GeV – the lower energy limit c...

  17. Measurement of the analysing power of elastic proton-proton scattering at 582 MeV

    International Nuclear Information System (INIS)

    Berdoz, A.; Favier, B.; Foroughi, F.; Weddigen, C.

    1984-01-01

    The authors have measured the analysing power of elastic proton-proton scattering at 582 MeV for 14 angles from 20 to 80 0 CM. The angular range was limited to >20 0 by the energy loss of the recoil protons. The experiment was performed at the PM1 beam line at SIN. A beam intensity of about 10 8 particles s -1 was used. (Auth.)

  18. Evaluation of the 235U fission cross-section from 100 eV to 20 MeV

    International Nuclear Information System (INIS)

    Bhat, M.R.

    1976-01-01

    The evaluation of the 235 U fission cross section from 100 eV to 20 MeV for ENDF/B-V is described. The evaluated average cross sections from 100 eV to 200 keV are given, and it is proposed to include structure in the cross section in this energy region. Above 200 keV, the cross section is given as a smooth curve, and is recommended as a standard. Preliminary error estimates in the cross section are also given

  19. Sister chromatid exchanges induced in CHO cells by X-rays or 5.5 MeV neutrons

    International Nuclear Information System (INIS)

    Bocian, E.; Rosiek, O.; Sablinski, J.; Ziemba-Zoltowska, B.

    1986-01-01

    The induction of sister chromatid exchanges (SCEs) by X-rays (1-9 Gy) and 5.5 MeV neutrons (0.5-4 Gy) was studied in CHO cells. A dose-dependent increase of the frequency of SCE was found for both radiations when cells with BrdUrd substituted DNA were irradiated. The similar doubling dose, approx. 4 Gy, was found for X-rays and neutrons. The increase of the SCE frequency was not clearly dependent on the dose when cells with BrdUrd unsubstituted DNA were irradiated. In this case a dose of 4 Gy enhanced the SCE frequency only by the factor of 1.3. (author)

  20. Measurement of the 209Bi(n ,4 n )206Bi and 169Tm(n ,3 n )167Tm cross sections between 23.5 and 30.5 MeV relevant to reaction-in-flight neutron studies at the National Ignition Facility

    Science.gov (United States)

    Gooden, M. E.; Bredeweg, T. A.; Champine, B.; Combs, D. C.; Finch, S.; Hayes-Sterbenz, A.; Henry, E.; Krishichayan, Rundberg, R.; Tornow, W.; Wilhelmy, J.; Yeamans, C.

    2017-08-01

    At the National Ignition Facility, experiments are being performed to measure charged-particle stopping powers in the previously unexplored warm dense plasma regime. These measurements are done using reaction-in-flight (RIF) neutrons from an inertial confinement fusion system. RIF neutrons are produced with a continuum of energies up to 30 MeV. By making activation measurements utilizing threshold reactions for neutrons in the energy range of 15 MeV , the number of RIF neutrons can be determined and from this the stopping power of the deuterium and tritium ions that produced the RIF neutrons can be inferred. Currently, the 169Tm(n ,3 n )167Tm reaction has been used. However, in an effort to provide a secondary complimentary measurement, efforts are underway to make use of the 209Bi(n ,4 n )206Bi reaction, with a threshold of 22.5 MeV. The cross sections were measured at the 10 MV tandem Van De Graaff accelerator at the Triangle Universities Nuclear Laboratory with quasimonoenergetic neutrons between 23.5 and 30.5 MeV, where few previous measurements have been made. Cross-section data are compared to calculations and other available measurements.

  1. Water sorption isotherms of skimmed milk powder within the temperature range of 520 °C

    Directory of Open Access Journals (Sweden)

    Jitka Langová

    2012-01-01

    Full Text Available Moisture sorption isotherms (MSI’s of skimmed milk powder in the temperature range of 520 °C were determined using manometric method. MSI’s, which show the water content versus water activity (Aw at a constant temperature, are used to describe relationships between water content and equilibrium state relative vapour pressure (RVP. The equilibrium moisture content (EMC of skimmed milk powder samples is growing with an increase of Aw at a constant temperature both for water adsorption and desorption. Isotherms were found to be type II of Brunauer-Emmett-Teller classification. It is the type most common for foods. The shape of created isotherms was sigmoid. Structural modifications of crystals were observed during adsorption in the microscope, too. Critical value of EMC of tested samples corresponding to the Aw equal to 0.6 for adsorption was 6.50% MC (w.b. at temperature 5 °C, 9.15% MC (w.b. at temperature 10 °C, and 7.71% MC (w.b. at temperature 20 °C. These values determine optimal conditions for storage from the point of view microorganisms grow, Aw<0.6.

  2. Characterization of a power bipolar transistor as high-dose dosimeter for 1.9-2.2 MeV electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Fuochi, P.G., E-mail: fuochi@isof.cnr.i [ISOF-CNR Institute, Via P. Gobetti 101, I-40129, Bologna (Italy); Lavalle, M.; Corda, U. [ISOF-CNR Institute, Via P. Gobetti 101, I-40129, Bologna (Italy); Kuntz, F.; Plumeri, S. [Aerial, Parc d' Innovation Rue Laurent Fries F-67400 Illkirch (France); Gombia, E. [IMEM-CNR Institute, Viale delle Scienze 37 A, Loc. Fontanini, 43010 Parma (Italy)

    2010-04-15

    Results of the characterization studies on a power bipolar transistor investigated as a possible radiation dosimeter under laboratory condition using electron beams of energies from 2.2 to 8.6 MeV and gamma rays from a {sup 60}Co source and tested in industrial irradiation plants having high-activity {sup 60}Co gamma-source and high-energy, high-power electron beam have previously been reported. The present paper describes recent studies performed on this type of bipolar transistor irradiated with 1.9 and 2.2 MeV electron beams in the dose range 5-50 kGy. Dose response, post-irradiation heat treatment and stability, effects of temperature during irradiation in the range from -104 to +22 deg. C, dependence on temperature during reading in the range 20-50 deg. C, and the difference in response of the transistors irradiated from the plastic side and the copper side are reported. DLTS measurements performed on the irradiated devices to identify the recombination centres introduced by radiation and their dependence on dose and energy of the electron beam are also reported.

  3. Proton and deuteron production in neutron-induced reactions on carbon at En=42.5, 62.7, and 72.8 MeV

    International Nuclear Information System (INIS)

    Slypen, I.; Corcalciuc, V.; Meulders, J.P.

    1995-01-01

    Double-differential cross sections for proton and deuteron production in fast neutron induced reactions on carbon are reported for three incident neutron energies: 42.5, 62.7, and 72.8 MeV. Angular distributions were measured at laboratory angles between 20 degree and 160 degree. Procedures for data taking and data reduction are presented. Energy-differential cross sections and total cross sections are also reported. Experimental cross sections are compared with existing data and with theoretical calculations in the frame of the intranuclear cascade model

  4. Development of a semi-analytical method for calculation of the radial dose profile for proton beams in the 0.5-1.0 MeV energy range

    International Nuclear Information System (INIS)

    Wiklund, Kristin

    2004-07-01

    There has been an increased interest in the application of protons for radiation therapy during the last decades. The main reason for this is the advantageous shape of the proton dose profile, which offers the possibility of improved treatment outcome. Proton beams and other light ions have because of this observed phenomenon a high efficiency to inflict lethal damage to tumor tissue while sparing normal tissue. Treatment with ions heavier than protons, have also been considered on the basis of radiological arguments. Recently scientists have discovered that not only high-energy electrons inflict severe damage to the DNA, but also low-energy electrons. Those electrons can be produced when protons with energy between 0.5-1 MeV interact with matter. High-accuracy calculations of dose distributions inside tumors and the surrounding tissue are essential for assessing the effectiveness of a given treatment in terms of probability of tumor control and of radiation-induced complications. The use of Monte Carlo methods to simulate radiation transport has become the most accurate means of predicting absorbed dose distributions and other quantities like numbers of track ends, track lengths and angular distributions. Today, there no accurate Monte-Carlo codes for proton transport, not even for low-energy electron transport. Much work is devoted to develop a Monte Carlo code for this purpose. However, for most practical cases in treatment planning, an advantageous solution has been found by combining the intrinsic accuracy of Monte Carlo methods with the swiftness of analytical techniques. In this work, a simple semi-analytical method is developed for fast dose distribution calculations for protons with energy range 0.5-1 MeV. The major part of the energy loss when protons traverse tissue, ends up in the ionizations of the target atoms. The double differential cross sections for this secondary electron production is calculated with Continuous distorted waves-eikonal initial

  5. Search for gamma ray emission above 20 MeV from the Crab nebula and the NP 0532 pulsar

    International Nuclear Information System (INIS)

    Leray, J.-P.

    1976-08-01

    The search for gamma-ray emission above 20 MeV from the Crab Nebula and Pulsar NP 0532 was undertaken. A critical analysis of the detector is presented together with a study of the background. The observed flux from the sources are compared with a theoretical model for the gamma-ray emission bases on the synchrotron process in the Crab Nebula and Pulsar NP 0532 [fr

  6. Empirical formulae for 14.5 MeV (n,p) cross sections

    International Nuclear Information System (INIS)

    Selvi, S.; Erbil, H.H.

    1989-12-01

    Six empirical formulae of the (n,p) cross sections for 14.5-MeV neutrons were obtained with respect to even and odd (N-Z) values, depending on the effective Q-Value, the Coulomb barrier height, the threshold and incident neutron energies and the mass number of the target. These formulae were compared with the experimental values. The present calculations fit the experimental results quite well compared to those predicted by the previous workers. (author). 8 refs, 1 fig., 1 tab

  7. Tritium production in thorium by 135 MeV protons

    International Nuclear Information System (INIS)

    Lefort, M.; Simonoff, G.; Tarrago, X.; Bibron, R.

    1960-01-01

    We have measured the cross-section of tritium production by bombardment of thorium by 135 MeV protons in the Orsay synchro-cyclotron. The tritium was separated from the targets by heating in a graphite crucible with a high-frequency generator, under hydrogen gas pressure. Tritiated water was synthesised and the tritium was measured with liquid scintillator. A value of 19.5 ± 0.05 mbarns was obtained for the tritium-cross section and ten percent of tritons have energies higher than 35 MeV. This large cross-section is attributed to a double pick-up process. Reprint of a paper published in Le Journal de Physique et le Radium, t. 20, p. 959, dec 1959 [fr

  8. Non-elastic cross-sections for neutron interactions with carbon and oxygen above 14 MeV

    International Nuclear Information System (INIS)

    Brenner, D.J.; Prael, R.E.

    1985-01-01

    In the light of the new generation of high energy (less than or equal to 80 MeV) neutron therapy facilities currently being tested, the need for neutron kerma factors in the range from 15 to 80 MeV on carbon and oxygen has become of urgent importance. Not enough experimental data currently exist or are likely to be measured soon, so a nuclear model is essential for interpolation or, less satisfactorily, extrapolation of available data. The use of a suitable model, applicable to light nuclei, is shown to be crucial. Such a model is described, and good agreement between its results and the experimental data in the energy range of interest is reported. Comparisons between the model predictions and the ENDF/B-V evaluation of the non-elastic cross section for carbon between 15 and 20 MeV indicate that a re-evaluation of ENDF is required. 35 refs., 12 figs., 6 tabs

  9. A beamline design and data acquisition with the 20-MeV, 20-ps electron beam for the higher-order mode studies of the APS SR-rf cavities

    International Nuclear Information System (INIS)

    Song, J.; Nassiri, A.; Daly, R.

    1993-01-01

    A beamline has been designed and assembled to use the ANL Chemistry Division 20-MeV electron linac for the testing of higher-order mode excitation and damping in rf cavities. The beamline consists of two sections (a beam collimating section with a 1.5 inches-OD vacuum line, and a cavity test section with a 3 inches-OD vacuum line), separated by two double aluminum foil windows. The beam diagnostics consist of a stripline beam position monitor, integrating current transformers, fluorescent screens, and a Faraday cup. EPICS (Experimental Physics and Industrial Control System) is used for beamline control, monitoring, and data acquisition. Also described is the diagnostic system used for beam image capture and analysis using EPICS-controlled hardware and PV-WAVE software. The rf cavity measurement will be described in a separate paper

  10. Pulsed-neutron production at the Brookhaven 200-MeV linac

    International Nuclear Information System (INIS)

    Ward, T.E.; Alessi, J.; Brennan, J.; Grand, P.; Lankshear, R.; Montemurro, P.; Snead, C.L. Jr.; Tsoupas, N.

    1988-01-01

    The new 750-kV RFQ preinjector and double chopper system capable of selecting single nanosecond micropulses with repetition rates of 0.1--20 MHz has been installed at the Brookhaven 200-MeV proton linac. The micropulse intensity is approximately 1 x 10 9 p/μpulse. Neutron time-of-flight path lengths of 30--100 meter at 0/degree/, 12/degree/, 30/degree/, 45/degree/, 90/degree/ and 135/degree/ are available, as well as a zero degree swinger capable of an angular range of 0--25/degree/. Pulsed neutron beams of monoenergetic (p 7 Li → n 7 Be) and spallation (p 238 U → nx) sources will be discussed in the present paper, as well as detailing the chopped-beam capabilities. 11 refs., 5 figs., 1 tab

  11. Interpretation of recent positron-electron measurements between 20 and 800 MeV

    International Nuclear Information System (INIS)

    Pellerin, C.J.; Hartman, R.C.

    1975-01-01

    The recent positron and negatron spectra measured by Hartman and Pellerin (see pages 402-407) are discussed with regard to the problem of solar modulation. At energies above 180 MeV, the spherically symmetric Fokker-Planck equation with a diffusion coefficient proportional to particle rigidity provides reasonable fits to both the positron and total electron data. At energies below 180 MeV the data are consistent with a continuation of the same diffusion coefficient and local source of negatrons, or a change in the diffusion coefficient to a constant value. (orig.) [de

  12. Electrical behaviour of butyl acrylate/methyl methacrylate copolymer films irradiated with 1.5 MeV electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Radwan, R.M. [Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority (AEA), P. O. Box 29, Nasr City, Cairo (Egypt)], E-mail: redaradwan_2000@yahoo.com; Fawzy, Y.H.A. [Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority (AEA), P. O. Box 29, Nasr City, Cairo (Egypt); El-Hag Ali, A. [Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority (AEA), P. O. Box 29, Nasr City, Cairo (Egypt)

    2008-02-15

    Electrical conductivity and dielectric parameters of the (BuA/MMA) copolymer films irradiated with 1.5 MeV electron beam (EB) have been studied. The samples were irradiated with different doses of the electron beam: 5, 10, 50, 125 and 200 kGy. The electrical conductivity of the samples was found to decrease as the irradiation dose increases. The temperature dependence of the direct current (dc) conductivity for unirradiated and irradiated samples has been obtained over a temperature range from 293 to 373 K. The activation energy values were calculated for all samples. Moreover, measurements of the dielectric constant, dielectric loss and alternating current (ac) conductivity were performed at a frequency range from 100 Hz to 5 MHz at room temperature. The results indicated that the EB irradiation has formed some traps in the energy gap, which reduce the movement of the charge carriers. Furthermore, a direct proportional relationship between the activation energy and the irradiation dose was estimated in two regions: below and above the glass transition temperature of the polymer. Dipole relaxation was observed in the samples, and the dose effect was found to shift this relaxation towards higher frequencies.

  13. Comprehensive Measurement of Neutron Yield Produced by 62 MeV Protons on Beryllium Target

    International Nuclear Information System (INIS)

    Osipenko, M.; Ripani, M.; Ricco, G.; Alba, R.; Schillaci, M.; Cosentino, L.; Del Zoppo, A.; Di Pietro, A.; Figuera, P.; Finocchiaro, P.; Maiolino, C.; Santonocito, D.; Scuderi, V.; Barbagallo, M.; Colonna, N.; Boccaccio, P.; Esposito, J.; Celentano, A.; Viberti, C.M.; Kostyukov, A.

    2013-06-01

    A low-power prototype of neutron amplifier, based on a 70 MeV, high current proton cyclotron being installed at LNL for the SPES RIB facility, was recently proposed within INFN-E project. This prototype uses a thick Beryllium converter to produce a fast neutron spectrum feeding a sub-critical reactor core. To complete the design of such facility the new measurement of neutron yield from a thick Beryllium target was performed at LNS. This measurement used liquid scintillator detectors to identify produced neutrons by Pulse Shape Discrimination and Time of Flight technique to measure neutron energy in the range 0.5-62 MeV. To extend the covered neutron energy range 3 He detector was used to measure neutrons below 0.5 MeV. The obtained yields were normalized to the charge deposited by the proton beam on the metallic Beryllium target. These techniques allowed to achieve a wide angular coverage from 0 to 150 degrees and to explore almost complete neutron energy interval. (authors)

  14. Measurement of neutron activation cross-sections for elements Co, Ni, Y, Nb, Tm and Au between 12 and 20 MeV

    International Nuclear Information System (INIS)

    Iwasaki, S.; Matsuyama, S.; Ohkubo, T.; Fukuda, H.; Sakuma, M.; Kitamura, M.; Odano, N.

    1995-01-01

    Neutron activation cross-sections for cobalt, nickel, yttrium, niobium, thulium and gold have been measured in the neutron energies from 12 to 20 MeV with the reference cross section of NEA 93 Nb(n,2n) 92m Nb at Tohoku Dynamitron Facility. (author)

  15. Long range absorption in the scattering of 6He on 208Pb and 197Au at 27 MeV

    International Nuclear Information System (INIS)

    Kakuee, O.R.; Alvarez, M.A.G.; Andres, M.V.; Cherubini, S.; Davinson, T.; Di Pietro, A.; Galster, W.; Gomez-Camacho, J.; Laird, A.M.; Lamehi-Rachti, M.; Martel, I.; Moro, A.M.; Rahighi, J.; Sanchez-Benitez, A.M.; Shotter, A.C.; Smith, W.B.; Vervier, J.; Woods, P.J.

    2006-01-01

    Quasi-elastic scattering of 6 He at E lab =27 MeV from 197 Au has been measured in the angular range of 6 o -72 o in the laboratory system employing LEDA and LAMP detection systems. These data, along previously analysed data of 6 He+ 208 Pb at the same energy, are analysed using optical model calculations. The role of Coulomb dipole polarizability has been investigated. Large imaginary diffuseness parameters are required to fit the data. This result is an evidence for long range absorption mechanisms in 6 He induced reactions

  16. Measurement of the X-ray mass attenuation coefficients of silver in the 5-20 keV range.

    Science.gov (United States)

    Islam, M Tauhidul; Tantau, Lachlan J; Rae, Nicholas A; Barnea, Zwi; Tran, Chanh Q; Chantler, Christopher T

    2014-03-01

    The X-ray mass attenuation coefficients of silver were measured in the energy range 5-20 keV with an accuracy of 0.01-0.2% on a relative scale down to 5.3 keV, and of 0.09-1.22% on an absolute scale to 5.0 keV. This analysis confirms that with careful choice of foil thickness and careful correction for systematics, especially including harmonic contents at lower energies, the X-ray attenuation of high-Z elements can be measured with high accuracy even at low X-ray energies (silver in the low energy range, indicating the possibility of obtaining high-accuracy X-ray absorption fine structure down to the L1 edge (3.8 keV) of silver. Comparison of results reported here with an earlier data set optimized for higher energies confirms accuracy to within one standard error of each data set collected and analysed using the principles of the X-ray extended-range technique (XERT). Comparison with theory shows a slow divergence towards lower energies in this region away from absorption edges. The methodology developed can be used for the XAFS analysis of compounds and solutions to investigate structural features, bonding and coordination chemistry.

  17. Neutron total and scattering cross sections of 6Li in the few MeV region

    International Nuclear Information System (INIS)

    Smith, A.; Guenther, P.; Whalen, J.

    1980-02-01

    Neutron total cross sections of 6 Li are measured from approx. 0.5 to approx. 4.8 MeV at intervals of approx. 10 scattering angles and at incident-neutron intervals of approx.< 100 keV. Neutron differential inelastic-scattering cross sections are measured in the incident-energy range 3.5 to 4.0 MeV. The experimental results are extended to lower energies using measured neutron total cross sections recently reported elsewhere by the authors. The composite experimental data (total cross sections from 0.1 to 4.8 MeV and scattering cross sections from 0.22 to 4.0 MeV) are interpreted in terms of a simple two-level R-matrix model which describes the observed cross sections and implies the reaction cross section in unobserved channels; notably the (n;α)t reaction (Q = 4.783 MeV). The experimental and calculational results are compared with previously reported results as summarized in the ENDF/B-V evaluated nuclear data file

  18. Activation cross sections of deuteron induced reactions on niobium in the 30–50 MeV energy range

    International Nuclear Information System (INIS)

    Ditrói, F.; Tárkányi, F.; Takács, S.; Hermanne, A.; Ignatyuk, A.V.

    2016-01-01

    Highlights: • Deuteron induced nuclear reactions on natural niobium up to 50 MeV. • Stacked foil irradiation technique. • Comparison of results with the ALICE-D, EMPIRE-D and TENDL-2015 calculations. • Application of radioisotopes in medicine and industry. - Abstract: Activation cross-sections of deuterons induced reactions on Nb targets were determined with the aim of different applications and comparison with theoretical models. We present the experimental excitation functions of "9"3Nb(d,x)"9"3"m","9"0Mo, "9"2"m","9"1"m","9"0Nb, "8"9","8"8Zr and "8"8","8"7"m","8"7"gY in the energy range of 30–50 MeV. The results were compared with earlier measurements and with the cross-sections calculated by means of the theoretical model codes ALICE-D, EMPIRE-D and TALYS (on-line TENDL-2014 and TENDL-2015 libraries). Possible applications of the radioisotopes are discussed in detail.

  19. The JHP 200-MeV proton linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Takao [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)

    1997-11-01

    A 200-MeV proton linear accelerator for the Japanese Hadron Project (JHP) has been designed. It consists of a 3-MeV radio-frequency quadrupole linac (RFQ), a 50-MeV drift tube linac (DTL) and a 200-MeV separated-type drift tube linac (SDTL). A frequency of 324 MHz has been chosen for all of the rf structures. A peak current of 30 mA (H{sup -} ions) of 400 {mu}sec pulse duration will be accelerated at a repetition rate of 25 Hz. A future upgrade plan up to 400 MeV is also presented, in which annular-coupled structures (ACS) of 972 MHz are used in an energy range of above 150 or 200 MeV. One of the design features is its high performance for a beam-loss problem during acceleration. It can be achieved by separating the transition point in the transverse motion from that of the longitudinal motion. The transverse transition at a rather low-energy range decreases the effects of space-charge, while the longitudinal transition at a rather high-energy range decreases the effects of nonlinear problems related to acceleration in the ACS. Coupled envelope equations and equipartitioning theory are used for the focusing design. The adoption of the SDTL structure improves both the effective shunt impedance and difficulties in fabricating drift tubes with focusing magnets. An accurate beam-simulation code on a parallel supercomputer was used for confirming any beam-loss problem during acceleration. (author)

  20. Measurement of neutron yield by 62 MeV proton beam on a thick beryllium target

    Energy Technology Data Exchange (ETDEWEB)

    Osipenko, M., E-mail: osipenko@ge.infn.it [INFN, sezione di Genova, 16146 Genova (Italy); Ripani, M. [INFN, sezione di Genova, 16146 Genova (Italy); Alba, R. [INFN, Laboratori Nazionali del Sud, 95123 Catania (Italy); Ricco, G. [INFN, sezione di Genova, 16146 Genova (Italy); Schillaci, M. [INFN, Laboratori Nazionali del Sud, 95123 Catania (Italy); Barbagallo, M. [INFN, sezione di Bari, 70126 Bari (Italy); Boccaccio, P. [INFN, Laboratori Nazionali di Legnaro, 35020 Legnaro (Italy); Celentano, A. [Dipartimento di Fisica dell' Università di Genova, 16146 Genova (Italy); Colonna, N. [INFN, sezione di Bari, 70126 Bari (Italy); Cosentino, L.; Del Zoppo, A.; Di Pietro, A. [INFN, Laboratori Nazionali del Sud, 95123 Catania (Italy); Esposito, J. [INFN, Laboratori Nazionali di Legnaro, 35020 Legnaro (Italy); Figuera, P.; Finocchiaro, P. [INFN, Laboratori Nazionali del Sud, 95123 Catania (Italy); Kostyukov, A. [Moscow State University, Moscow 119992 (Russian Federation); Maiolino, C.; Santonocito, D.; Scuderi, V. [INFN, Laboratori Nazionali del Sud, 95123 Catania (Italy); Viberti, C.M. [Dipartimento di Fisica dell' Università di Genova, 16146 Genova (Italy)

    2013-09-21

    The design of a low-power prototype of neutron amplifier recently proposed within the INFN-E project indicated the need for more accurate data on the neutron yield produced by a proton beam with energy of about 70 MeV impinging on a thick beryllium target. Such measurement was performed at the LNS superconducting cyclotron, covering a wide angular range from 0° to 150° and a complete neutron energy interval from thermal to beam energy. Neutrons with energy above 0.5 MeV were measured by liquid scintillators exploiting their time of flight to determine the kinetic energy. For lower energy neutrons, down to thermal energy, a {sup 3}He detector was used. The obtained data are in good agreement with previous measurements at 0° using 66 MeV proton beam, covering neutron energies >10MeV, as well as with measurements at few selected angles using protons of 46, 55 and 113 MeV energy. The present results extend the neutron yield data in the 60–70 MeV beam energy range. A comparison of measured yields to MCNP, FLUKA and Geant4 Monte Carlo simulations was performed.

  1. Measurement of cross sections for the 63Cu(α,γ)67Ga reaction from 5.9-8.7 MeV

    International Nuclear Information System (INIS)

    Basunia, M. Shamsuzzoha; Norman, Eric B.; Shugart, Howard A.; Smith, Alan R.; Dolinski, Michelle J.; Quiter, Brian J.

    2004-01-01

    We have measured cross sections for the 63Cu(alpha,gamma)67Ga reaction in the 5.9-8.7 MeV energy range using an activation technique. Natural Cu foils were bombarded with alpha beams from the 88 Cyclotron at Lawrence Berkeley National Laboratory (LBNL). Activated foils were counted using gamma spectrometry system at LBNL's Low Background Facility. The 63Cu(alpha,gamma)67Ga cross-sections were determined and compared with the latest NON-SMOKER theoretical values. Experimental cross sections were found to be in agreement with theoretical values

  2. 1500-MeV fixed-field alternating-gradient synchrotron for a pulsed-spallation neutron source

    International Nuclear Information System (INIS)

    Kustom, R.L.; Khoe, T.K.; Crosbie, E.A.

    1985-01-01

    The first conceptual design of the FFAG for ASPUN was an 1100-MeV, 20-sector machine with an injection radius of 17.5 m and an extraction radius of 18.75 m. The conceptual design currently under study has a higher extraction energy, a larger average radius, but still has 20 sectors. The current interest in higher extraction energy is stimulated by calculations that indicate that the useful neutron production per incident proton is still increasing proportionally up to 1500 MeV. The larger radius also matches existing buildings at Argonne that could be made available for the facility. 11 refs., 4 figs., 3 tabs

  3. /sup 1/H(t,n)/sup 3/He reaction as monoenergetic neutron source in the (10/20) MeV energy interval

    Energy Technology Data Exchange (ETDEWEB)

    Zago, G. (Padua Univ. (Italy). Ist. di Fisica)

    1981-11-14

    The /sup 1/H(t,n)/sup 3/He reaction, considered as a neutron source in the (10/20) MeV energy interval, is a ''white'' neutron source having intensity, mean energy, and directionality which may prove advantageous in technological and biomedical researches.

  4. Measurement of photon showers in lead produced by electrons of 150 MeV

    International Nuclear Information System (INIS)

    Goeringer, H.; Eyss, H.J. von; Schoch, B.

    1976-01-01

    The photon energy spectra induced by 150 MeV electrons in lead were measured in the energy range from 40 MeV up to the primary electron energy. The target thickness was varied between 0.1 and 2.5 radiation lengths X 0 . The photons were analyzed by use of a technique based on deuteron photodisintegration. Differential and integral shower spectra are presented and compared with Monte Carlo calculations of Nagel and Messel et al., both interpolated to our primary energy of 150 MeV. The measured spectra show good agreement with these Monte Carlo calculations for the thickest target of 2.5X 0 and with calculated bremsstrahlung spectra for the thinnest target of 0.1X 0 . Considerable discrepancies, however, are found for medium target thicknesses in the range 0 . Around the shower maxima, the shower spectra are narrower and the maxima are shifted about 0.3-0.4X 0 to lower target thicknesses, furthermore the number of photons at the shower maxima are up to 50% higher than calculated. (Auth.)

  5. Dual sightline measurements of MeV range deuterons with neutron and gamma-ray spectroscopy at JET

    DEFF Research Database (Denmark)

    Eriksson, J.; Nocente, M.; Binda, F.

    2015-01-01

    Observations made in a JET experiment aimed at accelerating deuterons to the MeV range by third harmonic radio-frequency (RF) heating coupled into a deuterium beam are reported. Measurements are based on a set of advanced neutron and gamma-ray spectrometers that, for the first time, observe......-ray spectroscopy based on a one-dimensional model and by a consistency check among the individual measurement techniques. A systematic difference is seen between the two lines of sight and is interpreted to originate from the sensitivity of the oblique detectors to the pitch-angle structure of the distribution...

  6. Optical model neutron cross sections calculations for Cu63, Cu65 and natural Cu in the energy range 1-15 Mev

    International Nuclear Information System (INIS)

    Iliescu, N.

    1975-01-01

    The theory of optical model and cross sections is developing. The neutron reactions considered in the high energy rate (0,1-15 MeV) were: total, elastic, elastic angular distributions, nonelastic, inelastic for resolved levels. This region was subdivided in two parts: in the first one, ranging from 0,1 to 1 MeV, the evaluation was mainly based on empirical fits of the experimental data, whereas in the second part the fits were carried out with theoretical models: optical and statistical. The potential parameters were obtained fitting the total, elastic, inelastic cross sections and elastic angular distributions. Using Hauser-Feshbach theory, angular distribution and cross sections for compound elastic scattering and inelastic scattering are calculated

  7. Identification and energy measurement of charged particles in the 50-300 MeV energy range by means of a magnet-free hardron spectrometer

    International Nuclear Information System (INIS)

    Bayukov, Yu D.; Bukiej, A.E.; Gavrilov, V.B.

    1980-01-01

    Studied are the main characteristics (efficiency, time delay and amplitude singal distribution) of a magnet-free hadron spectrometer, in which a plastic scintillator block is the main part. The plastic scintillator having the form of a cylinder of the 20 cm diameter and the 20 cm height is examined with a photomultiplier through a 50 cm light guide. The dependencies of the amplitude conversion coefficient and signal time delay on the distance between the scintillation point and the light guide are resented. The analysis of the results obtained has shown that the closer the beam passes to the light guide, the greater is the signal amplitude. The counter signal delay linearly increases with the distance increase between the beam and the light guide. The dependence of the spectrometer efficiency on the proton energy is measured as well. The investigations have proved possible utilization of the scintillation detector described for identification of charged particles in the 50-300 MeV range and measurement of their energy with the 3-8% accuracy

  8. Experimental and simulated efficiency of a HPGe detector in the energy range of 0.06∼11 MeV

    International Nuclear Information System (INIS)

    Park, Chang Su; Choi, H. D.; Sun, Gwang Min

    2003-01-01

    The full energy peak efficiency of a Hyper Pure Germanium (HPGe) detector was calibrated in a wide energy range from 0.06 to 11 MeV. Both the experimental technique and the Monte Carlo method were used for the efficiency calibration. The measurement was performed using the standard radioisotopes in the low energy region of 60∼1408 keV, which was further extended up to 11 MeV by using the 14 N(n,γ) and 35 Cl(n,γ) reactions. The GEANT Monte Carlo code was used for efficiency calculation. The calculated efficiency had the same dependency on the γ-ray energy with the measurement, and the discrepancy between the calculation and the measurement was minimized by fine-tuning of the detector geometry. From the calculated result, the efficiency curve of the HPGe detector was reliably determined particularly in the high energy region above several MeV, where the number of measured efficiency points is relatively small despite the wide energy region. The calculated efficiency agreed with the measurement within about 7%. In addition to the efficiency calculation, the origin of the local minimum near 600 keV on the efficiency curve was analyzed as a general characteristics of a HPGe detector

  9. Cross-sections for the formation of isomeric pair {sup 75}Ge{sup m,g} through (n, 2n), (n, p) and (n, {alpha}) reactions measured over 13.73 MeV to 14.77 MeV and calculated from near threshold to 20 MeV neutron energies

    Energy Technology Data Exchange (ETDEWEB)

    Attar, F.M.D.; Dhole, S.D. [Department of Physics, University of Pune, Pune-411007 (India); Kailas, S. [Nuclear Physics Division, BARC, Mumbai-400085 (India); Bhoraskar, V.N. [Department of Physics, University of Pune, Pune-411007 (India)], E-mail: vnb@physics.unipune.ernet.in

    2009-09-15

    The cross-sections for formation of isomeric pair, {sup 75}Ge{sup m}({sigma}{sub m}) and {sup 75}Ge{sup g}({sigma}{sub g}), through {sup 76}Ge(n, 2n), {sup 75}As(n, p) and {sup 78}Se(n, {alpha}) reactions were measured at 13.73 MeV, 14.42 MeV and 14.77 MeV neutrons and also estimated using EMPIRE-II and TALYS codes over neutron energies from near threshold to 20 MeV. For each (n, 2n), (n, p) and (n, {alpha}) reaction, the cross-section initially increases with neutron energy, but starts decreasing as the neutron energy exceeds the respective threshold of (n, 3n), (n, pn) and (n, {alpha}n) reactions. The higher values of {sigma}{sub m} relative to {sigma}{sub g} reveal that the transitions of the excited {sup 75}Ge from higher energy levels to metastable state (7{sup +}/2) are favored as compared to unstable ground state (1{sup -}/2). The present values of cross sections for formation of {sup 75}Ge{sup m,g} through (n, 2n) and (n, {alpha}) reactions are lower, and that of (n, p) reaction are higher compared to most of the corresponding literature cross-sections.

  10. Alpha-heavy-ion angular correlations from /sup 28/Si + /sup 12/C. [84 to 91. 5 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Ost, R; Cole, A J [Institut des Sciences Nucleaires, 38 - Grenoble (France); Clover, M R; Fulton, B R; Sikora, B [Rochester Univ., NY (USA). Nuclear Structure Research Lab.

    1980-06-01

    Alpha particles have been measured in coincidence with heavy recoil nuclei from the /sup 28/Si + /sup 12/C reaction. At Esub(lab) = 87 MeV angular correlations for alphas between 15/sup 0/ and 55/sup 0/ and heavy ions at angles -9/sup 0/, -12/sup 0/ and -15/sup 0/ have been taken. An excitation function of coincidence events with THETAsub(..cap alpha..) = 30/sup 0/ and THETAsub(HI) = -12/sup 0/ has been measured for 84 MeV < Esub(lab) < 91.5 MeV. The results are well described by a statistical-model calculation for compound nucleus decay. No evidence is found for additional processes.

  11. On the Design and Test of a Neutron Collimator for Real-time Neutron Imaging in the MeV Energy Range

    International Nuclear Information System (INIS)

    Beaumont, Jonathan; Colling, Bethany; Joyce, Malcolm J.; Mellor, M.

    2013-06-01

    A neutron collimator has been designed in MCNP5 and tested for feasibility of use in imaging applications. Tungsten, polyethylene, PVC and lead have been compared as collimating materials for neutrons in the MeV energy range; tungsten is predicted to be the most successful material for a restricted volume, giving the highest signal-to-noise ratio and the best resolving power. Experimental data has been used to confirm that tungsten works effectively as a neutron collimator although some discrepancies between real and MCNP5 results were observed. A suspension of tungsten powder in polyethylene has also been tested to address the machining difficulties, mass and cost issues associated with tungsten. This material performs midway between tungsten and polyethylene for a constant volume, and more successfully than tungsten for a constant mass therefore giving this material potential as a collimation material in some scenarios. Further MCNP5 modelling has been performed by varying model parameters and monitoring the collimator functions produced by these changes. These results are conclusive but dependent on the applications of the imaging system. (authors)

  12. Impact of x-ray dose on the response of CR-39 to 1–5.5 MeV alphas

    Energy Technology Data Exchange (ETDEWEB)

    Rojas-Herrera, J., E-mail: jimmy06@mit.edu; Rinderknecht, H. G.; Zylstra, A. B.; Gatu Johnson, M.; Orozco, D.; Rosenberg, M. J.; Sio, H.; Seguin, F. H.; Frenje, J. A.; Li, C. K.; Petrasso, R. D. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2015-03-15

    The CR-39 nuclear track detector is used in many nuclear diagnostics fielded at inertial confinement fusion (ICF) facilities. Large x-ray fluences generated by ICF experiments may impact the CR-39 response to incident charged particles. To determine the impact of x-ray exposure on the CR-39 response to alpha particles, a thick-target bremsstrahlung x-ray generator was used to expose CR-39 to various doses of 8 keV Cu-K{sub α} and K{sub β} x-rays. The CR-39 detectors were then exposed to 1–5.5 MeV alphas from an Am-241 source. The regions of the CR-39 exposed to x-rays showed a smaller track diameter than those not exposed to x-rays: for example, a dose of 3.0 ± 0.1 Gy causes a decrease of (19 ± 2)% in the track diameter of a 5.5 MeV alpha particle, while a dose of 60.0 ± 1.3 Gy results in a decrease of (45 ± 5)% in the track diameter. The reduced track diameters were found to be predominantly caused by a comparable reduction in the bulk etch rate of the CR-39 with x-ray dose. A residual effect depending on alpha particle energy is characterized using an empirical formula.

  13. 3.5 MeV pulsed power system for LIA injector

    International Nuclear Information System (INIS)

    Li Jin; Dai Guangsen; Liu Xiaoping; Zhang Kaizhi; Li Xin; Li Yuan; Xia Liansheng; Xie Min; Zhang Linwen; Deng Jianjun; Ding Bonan

    2005-01-01

    A 3.5 MeV injector for linear induction accelerator has been built up at Institute of Fluid Physics, China Academy of Engineering Physics. The injector is based on the principle of inductive adder. It consists of 12 induction cells. Seven induction cells are on the cathode stem side, which are connected in series, and provide about 2 MV on the cathode of the diode. The other five are connected in series on the anode stem side and provide about 1.5 MV on the anode of the diode. A 3.5 MV pulsed power system to provide energy for the injector has been designed, which consists of two Marx generators, 12 water insulated Blumleins, and trigger system. Charge voltage of each water insulated Blumlein is 200 kV. A 300 kV/90 ns high voltage pulse is fed into one induction cell since load impedance is higher. The pulsed power system can generate an intense electron beam with 2-3 kA. (authors)

  14. Optics simulations of the 5 MeV NPBSE FOX telescope

    International Nuclear Information System (INIS)

    Reusch, M.F.; Bruhwiler, D.L.

    1993-01-01

    The far-field optics experiment (FOX) is a proposed design for the neutral particle beam space experiment (NPBSE) program. This 425 MHz straight beam line includes a 4.3 meter large-bore telescope. It is designed to deliver an 8 mA, 5 MeV neutral hydrogen beam with a transverse divergence of approximately 30 micro-radians to a target space vehicle (TSV) located up to 5 km away. The authors present zero current simulations, made with Grummann's TOPKARK code, of the telescope optics and the resulting 5 km target footprint. These simulations demonstrate the need for momentum compactation to minimize chromatic aberrations and for the careful use of octupoles to correct geometric aberrations. TOPKARK uses a novel line dipole model for the large-bore, combined function telescope objective lenses, constructed with rods of permanent magnet material, proposed for use in the FOX. The authors describe this model and its effect on the dynamics

  15. Neutron production from 40 GeV/c mixed proton/pion beam on copper, silver and lead targets in the angular range 30-135 degree

    CERN Document Server

    Agosteo, S; Dimovasili, E; Foglio-Para, A; Silari, M; Ulrici, L; Vincke, H

    2005-01-01

    The neutron emission from 50 mm thick copper, silver and lead targets bombarded by a mixed proton/pion beam with momentum of 40 GeV/c were measured at the CERN Super Proton Synchrotron. The neutron yield and spectral fluence per incident particle on target were measured with an extended range Bonner sphere spectrometer in the angular range 30-135 degree with respect to the beam direction. Monte Carlo simulations with the FLUKA code were performed to provide a priori information for the unfolding of the experimental data. The spectral fluences show two peaks, an isotropic evaporation component centred at 3 MeV and a high-energy peak sitting around 100-150 MeV. The experimental neutron yields are given in four energy bins: less than 100 keV, 0.1-20 MeV, 20-500 MeV and 0.5-2 GeV. The total yields show a systematic discrepancy of 30-50%, with a peak of 70% at the largest angles, with respect to the results of the Monte Carlo simulations, which it is believed to be mainly due to uncertainties in the beam normaliza...

  16. Adjustment of a goniometer for X-rays optics calibration in the spectral range 1.5-20 KeV

    International Nuclear Information System (INIS)

    Legistre, S.

    1992-10-01

    The aim of this memoir is the adjustment of a (θ, 2θ) goniometer coupled to X-rays source to calibrate mirrors (single layers like C, Ni, Au, etc... and multilayers like C/W, Si/W, etc...) in the spectral range 1.5 - 20 keV. For each kind of tested optics the adjustment of the goniometer include the procedure alignment of the different components (X-ray source, collimation slits, optics, detectors) and the first reflectivity measurements. Those measurements are compared those realized at LURE, using synchrotron radiation provided by SUPER ACO storage ring, and to a theoretical simulation

  17. Emittance measurements in Grumman 1 MeV beamline

    International Nuclear Information System (INIS)

    Debiak, T.; Gammel, G.; Melnychuk, S.

    1992-01-01

    The emittance of a 30 keV H - beam has been measured with an Allison type electrostatic analyser at two positions separated by 85 cm along the Grumman 1 MeV beamline LEBT at low currents (about 4 mA, no Cs 2 O additive in the source) and at higher currents (10-15 mA, with Cs 2 O additive in the source). No emittance growth was observed between the two positions, but, at the higher current level, the emittance was about 60% higher than at the low current level (Σ n ,rms = .0045 π cm-mrad vs. 0070 π cm-mrad). Argon was then introduced up to a partial pressure of 4x10 -5 torr, and the emittance decreased back to a range corresponding to that found at the lower currents. However, beam noise was observed at the downstream position, and there is evidence for a small amount of emittance growth (<20%) between the two positions

  18. The 600 MeV Saclay electron linac: 40000 hour operation

    International Nuclear Information System (INIS)

    Netter, F.

    1977-01-01

    After 40000 hours of operation, the 600 MeV Saclay's electron linac (ALS) does appear as an efficient and versatile tool, for high resolution work (20 μA in ΔE = 40 keV at E = 200MeV), for high power pion production (300 μA in 20 μs pulses at 1000 Hz and 400 MeV or 240 μA in 4 μs pulses at 3000 Hz and 390 MeV), for highly reliable positron beams acceleration, a.s.o. Main improvements made in the recent years are described in particular the automatic beam switching between any two ways among the beam handling system; and the computer newly installed in the control room with a powerful visual display allowing an easy and flexible dialogue of the operators with the computer [fr

  19. Attenuation of 10 MeV electron beam energy to achieve low doses does not affect Salmonella spp. inactivation kinetics

    International Nuclear Information System (INIS)

    Hieke, Anne-Sophie Charlotte; Pillai, Suresh D.

    2015-01-01

    The effect of attenuating the energy of a 10 MeV electron beam on Salmonella inactivation kinetics was investigated. No statistically significant differences were observed between the D 10 values of either Salmonella 4,[5],12:i:- or a Salmonella cocktail (S. 4,[5],12:i:-, Salmonella Heidelberg, Salmonella Newport, Salmonella Typhimurium, Salmonella) when irradiated with either a non-attenuated 10 MeV eBeam or an attenuated 10 MeV eBeam (~2.9±0.22 MeV). The results show that attenuating the energy of a 10 MeV eBeam to achieve low doses does not affect the inactivation kinetics of Salmonella spp. when compared to direct 10 MeV eBeam irradiation. - Highlights: • 10 MeV eBeam energy was attenuated to 2.9±0.22 MeV using HDPE sheets. • Attenuation of eBeam energy does not affect the inactivation kinetics of Salmonella. • Microbial inactivation is independent of eBeam energy in the range of 3–10 MeV

  20. Development and application of a water calorimeter for the absolute dosimetry of short-range particle beams

    Science.gov (United States)

    Renaud, J.; Rossomme, S.; Sarfehnia, A.; Vynckier, S.; Palmans, H.; Kacperek, A.; Seuntjens, J.

    2016-09-01

    In this work, we describe a new design of water calorimeter built to measure absorbed dose in non-standard radiation fields with reference depths in the range of 6-20 mm, and its initial testing in clinical electron and proton beams. A functioning calorimeter prototype with a total water equivalent thickness of less than 30 mm was constructed in-house and used to obtain measurements in clinical accelerator-based 6 MeV and 8 MeV electron beams and cyclotron-based 60 MeV monoenergetic and modulated proton beams. Corrections for the conductive heat transfer due to dose gradients and non-water materials was also accounted for using a commercial finite element method software package. Absorbed dose to water was measured with an associated type A standard uncertainty of approximately 0.4% and 0.2% for the electron and proton beam experiments, respectively. In terms of thermal stability, drifts were on the order of a couple of hundred µK min-1, with a short-term variation of 5-10 µK. Heat transfer correction factors ranged between 1.021 and 1.049. The overall combined standard uncertainty on the absorbed dose to water was estimated to be 0.6% for the 6 MeV and 8 MeV electron beams, as well as for the 60 MeV monoenergetic protons, and 0.7% for the modulated 60 MeV proton beam. This study establishes the feasibility of developing an absorbed dose transfer standard for short-range clinical electrons and protons and forms the basis for a transportable dose standard for direct calibration of ionization chambers in the user’s beam. The largest contributions to the combined standard uncertainty were the positioning (⩽0.5%) and the correction due to conductive heat transfer (⩽0.4%). This is the first time that water calorimetry has been used in such a low energy proton beam.

  1. Neutron-Neutron effective range from a comparison of n-n and n-p quasi-free scattering at 24 MeV

    International Nuclear Information System (INIS)

    Witsch, W. von; Gomez Moreno, B.; Rosenstock, W.; Franke, R.; Steinheuer, B.

    1980-01-01

    Neutron-neutron and neutron-proton quasi-free scattering have been measured at Esub(n) = 24 MeV the d + n reaction to deduce the n-n effective range from a comparison of relative cross sections, reducing considerably experimental as well as theoretical uncertainties. A Monte Carlo analysis with exact three-body calculations yields rsub(nn) = 2.65 +- 0.18 fm. (orig.)

  2. Pulsed-neutron production at the Brookhaven 200-MeV linac

    International Nuclear Information System (INIS)

    Ward, T.E.; Alessi, J.; Brennan, J.; Grand, P.; Lankshear, R.; Montemurro, P.; Snead, C.L. Jr.; Tsoupas, N.

    1989-01-01

    The new 750-kV RFQ preinjector and double chopper system capable of selecting single nanosecond micropulses with repetition rates of 0.1 to 20 MHz has been installed at the Brookhaven 200-MeV proton linac. The micropulse intensity is approximately 1 x 10 9 p/μpulse. Neutron time-of-flight path lengths of 30 to 100 meters at 0 degree, 12 degree, 30 degree, 45 degree, 90 degree and 135 degree are available as well as a zero-degree beam swinger capable of an angular range of 0 degree to 25 degree. Pulsed neutron beams of monoenergetic (p 7 Li → n 7 Be) and spallation (p 238 U → nx) sources will be discussed in the present paper as well as detailing the chopped-beam capabilities. 11 refs., 5 figs., 1 tab

  3. Dosimetry measurements for a criticality exercise based on moderated 2.5 MeV accelerator neutrons

    International Nuclear Information System (INIS)

    Delafield, H.J.; Harrison, K.G.; Harvey, J.R.; Hudd, W.H.R.

    1979-02-01

    A joint criticality exercise between BNL and Harwell was held on 22 March 1978 to test criticality dosimetry procedures, and to establish an irradiation technique which could be used to simulate the irradiation of criticality dosimeters in a criticality excursion. Dosimeters were irradiated on a phantom by moderated 2.5 MeV accelerator neutrons using facilities at BNL, and then transported rapidly to Harwell for assessment. This exercise showed that despite the limited dose rate available from the accelerator, such an irradiation could be used successfully to simulate a criticality incident. The induced dosimeter activities were adequate for the initial monitoring at BNL and a subsequent full dose assessment at Harwell. Neutron dose assessments obtained by different methods of interpretation were both self-consistent (1.7 +- 0.2 rad), and in good agreement with an independent estimate of dose (2.0 +- 1.0 rad) based on measurements made with a De Pangher Long counter at BNL. (author)

  4. 2n-emission from {sup 205}Pb* nucleus using clusterization approach at E{sub beam}∼14-20 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Amandeep, E-mail: adeepkaur89@gmail.com; Sandhu, Kiran; Sharma, Manoj Kumar, E-mail: msharma@thapar.edu [School of Physics and Materials Science, Thapar University, Patiala-147004, Punjab (India)

    2016-05-06

    The dynamics involved in n-induced reaction with {sup 204}Pb target is analyzed and the decay of the composite system {sup 205}Pb* is governed within the collective clusterization approach of the Dynamical Cluster-decay Model (DCM). The experimental data for 2n-evaporation channel is available for neutron energy range of 14-20 MeV and is addressed by optimizing the only parameter of the model, the neck-length parameter (ΔR). The calculations are done by taking the quadrupole (β{sub 2}) deformations of the decaying fragments and the calculated 2n-emission cross-sections find nice agreement with available data. An effort is made to study the role of level density parameter in the decay of hot-rotating nucleus, and the mass dependence in level density parameter is exercised for the first time in DCM based calculations. It is to be noted that the effect of deformation, temperature and angular momentum etc. is studied to extract better description of the dynamics involved.

  5. The method to set up file-6 in neutron data library of light nuclei below 20 MeV

    International Nuclear Information System (INIS)

    Zhang Jingshang; Han Yinlu

    2001-01-01

    So far there is no file-6 (double differential cross section data, DDX) of the light nuclei in the main evaluated neutron nuclear data libraries in the world. Therefore, locating a proper description on the double differential cross section of all kinds of outgoing particles from neutron induced light nucleus reaction below 20 MeV is necessary. The motivation for this work is to introduce a way to set up file-6 in the neutron data library

  6. The reaction p12C→ηX from Tp=800 MeV to Tp=1500 MeV

    International Nuclear Information System (INIS)

    Chiavassa, E.; Dellacasa, G.; De Marco, N.; De Oliveira Martins, O.; Gallio, M.; Guaita, P.; Musso, A.; Piccotti, A.; Scomparin, E.; Vercellin, E.

    1998-01-01

    The reaction p 12 C→nX has been studied, at several proton kinetic energies ranging from 800 MeV to 1500 MeV, at the proton synchrotron Saturne at Saclay. The measured doubly differential cross-sections are presented and discussed in the framework of a simple theoretical model. The model fails in describing the deepest subthreshold data while the above-threshold data are fairly well reproduced. (orig.)

  7. Neutron-induced fission cross sections of uraniums up to 40 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Maslov, V.M. [Radiation Physics and Chemistry Problems Inst., Minsk-Sosny (Belarus); Hasegawa, A.

    1998-11-01

    Statistical theory of nuclear reactions, well-proved below 20 MeV, is applied for {sup 235}U and {sup 238}U fission data analysis up to {approx}40 MeV. It is shown that measured data could be reproduced. Chance structure of measured fission cross section is provided, it`s validity is supported by description of data for competing (n,xn)-reactions. Role of fissility of target nucleus is addressed. It seems that gap in incident neutron energy interval of 20 MeV - 50 MeV, below which evaluation approaches are well-developed, and above which simplified statistical approaches are valid, could be covered. (author)

  8. High-resolution inelastic electron scattering on 208Pb at 50 and 63.5 MeV and fragmentation of the magnetic quadrupole strength

    International Nuclear Information System (INIS)

    Knuepfer, W.; Frey, R.; Richter, A.; Schwierczinski, A.; Spamer, E.; Titze, O.

    1977-12-01

    High-resolution inelastic electron scattering (FWHM approximately equal to 33 keV) with 50 MeV and 63.5 MeV electrons on 208 Pb has been used to study magnetic excitations between Esub(x) = 6 MeV and 8 MeV. Angular distributions were analyzed in terms of the DWBA with RPA wave functions. Eight Isup(π) = 2- states carrying a total strength ΣB(M2) = 8500 μ 2 sub(K) fm 2 have been found. The strong fragmentation is in qualitative agreement with theoretical predictions. (orig.) [de

  9. Calibration of GafChromic EBT3 for absorbed dose measurements in 5 MeV proton beam and 60Co γ-rays

    International Nuclear Information System (INIS)

    Vadrucci, M.; Ronsivalle, C.; Marracino, F.; Montereali, R. M.; Picardi, L.; Piccinini, M.; Vincenti, M. A.; Esposito, G.; De Angelis, C.; Cherubini, R.; Pimpinella, M.

    2015-01-01

    Purpose: To study EBT3 GafChromic film in low-energy protons, and for comparison purposes, in a reference 60 Co beam in order to use it as a calibrated dosimetry system in the proton irradiation facility under construction within the framework of the Oncological Therapy with Protons (TOP)-Intensity Modulated Proton Linear Accelerator for RadioTherapy (IMPLART) Project at ENEA-Frascati, Italy. Methods: EBT3 film samples were irradiated at the Istituto Nazionale di Fisica Nucleare—Laboratori Nazionali di Legnaro, Italy, with a 5 MeV proton beam generated by a 7 MV Van de Graaff CN accelerator. The nominal dose rates used were 2.1 Gy/min and 40 Gy/min. The delivered dose was determined by measuring the particle fluence and the energy spectrum in air with silicon surface barrier detector monitors. A preliminary study of the EBT3 film beam quality dependence in low-energy protons was conducted by passively degrading the beam energy. EBT3 films were also irradiated at ENEA-National Institute of Ionizing Radiation Metrology with gamma radiation produced by a 60 Co source characterized by an absorbed dose to water rate of 0.26 Gy/min as measured by a calibrated Farmer type ionization chamber. EBT3 film calibration curves were determined by means of a set of 40 film pieces irradiated to various doses ranging from 0.5 Gy to 30 Gy absorbed dose to water. An EPSON Expression 11000XL color scanner in transmission mode was used for film analysis. Scanner response stability, intrafilm uniformity, and interfilm reproducibility were verified. Optical absorption spectra measurements were performed on unirradiated and irradiated EBT3 films to choose the most sensitive color channel to the dose range used. Results: EBT3 GafChromic films show an under response up to about 33% for low-energy protons with respect to 60 Co gamma radiation, which is consistent with the linear energy transfer dependence already observed with higher energy protons, and a negligible dose-rate dependence in

  10. Neutron scattering on natural iron at incident energies between 9.4 and 15.2 MeV

    International Nuclear Information System (INIS)

    Schmidt, D.; Mannhart, W.; Klein, H.; Nolte, R.

    1994-11-01

    Neutrons were scattered on a sample of natural iron at 12 incident energies in the range between 9.4 MeV and 15.2 MeV. Differential cross sections of the elastic scattering (natural iron) and of the inelastic scattering to the first excited level of 56 Fe (Q=-0.847 MeV) were determined for angles between 12.5 deg and 160 deg with total uncertainties between of 3% and 10%. Legendre polynomial least-squares fits resulted in integrated cross sections with uncertainties of 2% (elastic data) and 7% (inelastic data). The cross sections obtained in this work were compared with data from the literature. Inelastic scattering cross sections were determined within the scope of a pseudolevel analysis up to excitation energies of nearly 5.5 MeV. At higher excitation energies the scattering spectrum is contaminated by scattered breakup neutrons from the D+d source used hampering an analysis of the data. (orig.) [de

  11. Ground-state and isomeric-state cross sections for the {sup 138}Ce(n,2n){sup 137}Ce reaction from its threshold to 20 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Junhua [Hexi Univ., Zhangye (China). Inst. of Theoretical Physics; Hexi Univ., Zhangye (China). School of Physics and Electromechanical Engineering; An, Li; Jiang, Li [Chinese Academy of Engineering Physics, Mianyang (China). Inst. of Nuclear Physics and Chemistry

    2015-07-01

    The cross sections of the {sup 138}Ce(n,2n){sup 137}Ce reactions and their isomeric cross section ratios σ{sub m}/σ{sub g} were measured at three neutron energies between 13.5 and 14.8 MeV using the activation technique. CeO{sub 2} samples and Nb monitor foils were activated together to determine the reaction cross section and the incident neutron flux. The monoenergetic neutron beams were formed via the {sup 3}H(d,n){sup 4}He reaction. The activities induced in the reaction products were measured using high-resolution γ-ray spectroscopy. The pure cross section of the ground-state was derived from the absolute cross section of the metastable state and the residual nuclear decay analysis. The cross sections were also estimated using the nuclear model code, TALYS-1.6 with different level density options at neutron energies varying from the reaction threshold to 20 MeV. Results are discussed and compared with the corresponding literature data.

  12. Total neutron cross sections at energies around 20 MeV

    International Nuclear Information System (INIS)

    Morales, J.R.; Romero, J.L.; Martens, P.

    1990-09-01

    The results for measurements of total cross sections on C, Al, Mg, Cu, Ge and Pb at 17.6 and 19.8 MeV are reported. A detailed comparison is presented with previous data and with the global optical model by the Ohio group. We also discuss plans for total non elastic cross section measurements. 31 refs, 12 figs, 2 tabs

  13. Comparison of GATE/GEANT4 with EGSnrc and MCNP for electron dose calculations at energies between 15 keV and 20 MeV.

    Science.gov (United States)

    Maigne, L; Perrot, Y; Schaart, D R; Donnarieix, D; Breton, V

    2011-02-07

    The GATE Monte Carlo simulation platform based on the GEANT4 toolkit has come into widespread use for simulating positron emission tomography (PET) and single photon emission computed tomography (SPECT) imaging devices. Here, we explore its use for calculating electron dose distributions in water. Mono-energetic electron dose point kernels and pencil beam kernels in water are calculated for different energies between 15 keV and 20 MeV by means of GATE 6.0, which makes use of the GEANT4 version 9.2 Standard Electromagnetic Physics Package. The results are compared to the well-validated codes EGSnrc and MCNP4C. It is shown that recent improvements made to the GEANT4/GATE software result in significantly better agreement with the other codes. We furthermore illustrate several issues of general interest to GATE and GEANT4 users who wish to perform accurate simulations involving electrons. Provided that the electron step size is sufficiently restricted, GATE 6.0 and EGSnrc dose point kernels are shown to agree to within less than 3% of the maximum dose between 50 keV and 4 MeV, while pencil beam kernels are found to agree to within less than 4% of the maximum dose between 15 keV and 20 MeV.

  14. Intensity maps of MeV electrons and protons below the radiation belt

    International Nuclear Information System (INIS)

    Kohno, T.; Munakata, K.; Murakami, H.; Nakamoto, A.; Hasebe, N.; Kikuchi, J.; Doke, T.

    1988-01-01

    The global distributions of energetic electrons (0.19 - 3.2 MeV) and protons (0.64 - 35 MeV) are shown in the form of contour maps. The data were obtained by two sets of energetic particle telescopes on board the satellite OHZORA. The observed altitude range is 350 - 850 Km. Ten degress meshes in longitude and latitude were used to obtain the intensity contours. A pitch angle distribution of J(α) = J(90). sin n α with n = 5 A is assumed to get the average intensity in each mesh. (author) [pt

  15. Excitation functions for 121,123Sb(α,xn), (x=1-4) reactions in approx. 10-40 MeV range

    International Nuclear Information System (INIS)

    Prasad, R.; Bhardwaj, H.D.

    1986-04-01

    Excitation functions for 121 Sb(α,n), 121 Sb(α,2n), 123 Sb(α,n) and 123 Sb(α,3n) reactions in the energy range approx. 10 to 40 MeV have been measured using stacked-foil technique and are calculated theoretically using statistical model with and without the inclusion of pre-equilibrium emission. Inclusion of pre-equilibrium emission is found to give good agreement between the experimental and measured excitation functions. (author)

  16. Study of the gamma spectra emitted in a nuclear reaction - Measurement of the half-lives of the levels 6.13 MeV, 6.92 MeV and 7.12 MeV of 16O

    International Nuclear Information System (INIS)

    Leccia, F.

    1967-01-01

    When the energy shifts of the gamma spectrum released during a nuclear reaction are important compared with the detector resolution, the comparison of the experimental spectrum with theoretical spectra allows us to determine the half-life of the initial state of the transition. The calculation of the experimental spectrum implies to know the slowing-down of the recoil nucleus in the matter in order to take into account the Doppler effect. For recoil energies in the range of the MeV and for solid media, the Lindhard theory agrees well with experimental data. The phenomenon of deflection which appears at very low energies must be taken into account by restraining the measurement domain. By choosing an adequate media we can measure half-lives in the domain 1 and 100 fs without needing to take into account deflection effects. We have measured the half-life of the first 3 energy levels of 16 O (6.135 MeV, 6.923 MeV and 7.121 MeV), these levels are reached through the reaction 19 F(p,αγ) 16 O with proton incident energies ranging from 0.872 MeV to 2.42 MeV. We have used a coaxial germanium semi-conductor with lithium additions that was connected to an amplification line of Ortec type. 2 kinds of target have been used: calcium fluoride and copper fluoride evaporated on tantalum support. We have obtained the following values for the half-life: (16±4) fs for the 6.923 MeV level, (18±4) fs for the 7.121 MeV level, and for the 6.135 MeV we can only give a lower limit since the gamma decay occurs when the nucleus is at rest τ > 200 fs

  17. Effect of 1.5 MeV electron irradiation on β-Ga2O3 carrier lifetime and diffusion length

    Science.gov (United States)

    Lee, Jonathan; Flitsiyan, Elena; Chernyak, Leonid; Yang, Jiancheng; Ren, Fan; Pearton, Stephen J.; Meyler, Boris; Salzman, Y. Joseph

    2018-02-01

    The influence of 1.5 MeV electron irradiation on minority transport properties of Si doped β-Ga2O3 vertical Schottky rectifiers was observed for fluences up to 1.43 × 1016 cm-2. The Electron Beam-Induced Current technique was used to determine the minority hole diffusion length as a function of temperature for each irradiation dose. This revealed activation energies related to shallow donors at 40.9 meV and radiation-induced defects with energies at 18.1 and 13.6 meV. Time-resolved cathodoluminescence measurements showed an ultrafast 210 ps decay lifetime and reduction in carrier lifetime with increased irradiation.

  18. Fluence measurements applied to 5-20 MeV/amu ion beam dosimetry by simultaneous use of a total-absorption calorimeter and a Faraday cup

    CERN Document Server

    Kojima, T; Takizawa, H; Tachibana, H; Tanaka, R

    1998-01-01

    A Faraday cup was fabricated for measuring the beam current of a few tens MeV/amu ion beams of the TIARA AVF cyclotron. It has been applied as a beam monitor for studying the characteristics of film dosimeters that are well-established for high doses of sup 6 sup 0 Co gamma-rays and 1 to 10 MeV electrons. A total absorption calorimeter designed to measure energy fluence has also been tested for estimating the uncertainty in fluence measurement of 5-20 MeV/amu ion beams, by simultaneous use of the calorimeter and the Faraday cup in a broad uniform fluence field. The estimated fluence was evaluated on the basis of nominal particle energy values derived from the cyclotron acceleration parameters. The average ratio of the measured fluence values to the estimated values is 1.024, and the average precision is within +-2% at a 68% confidence level, for most of the ion beams with a range of kinetic energy per nucleon, 5-20 MeV/amu, at an integrated charge above 5 nC/cm sup 2.

  19. Measurement of the diffuse atmospheric and cosmic γ-radiation in the energy range 1-10 MeV by a balloon carried Compton-telescope

    International Nuclear Information System (INIS)

    Lichti, G.

    1975-01-01

    The operation and design of a low-energy γ-compton telescope, developed and constructed at the Max-Planck-Institut fuer extraterrestrische Physik, are reported on. For energies of about 1 MeV, the telescope has an energy resolution of 30% (FWHM) and an angular resolution of +- 20 0 . In spite of the low efficiency of only about 0.5%, the vertical γ-flux could be measured for the first time in two balloon flights, and the extragalactic origin of the diffuse component of the cosmic γ-radiation could be demonstrated. The energy spectrum of this radiation was measured. The result is compared with measurements of other experiments, and theoretical models to describe the origin of this radiation are discussed. (orig.) [de

  20. Calculations and Evaluations of Cross Sections for n + 204,206,207,208,natPb Reactions in the En ≤ 250 MeV Energy Range

    International Nuclear Information System (INIS)

    Han Yinlu; Shen Qingbiao; Zhang Zhengjun; Cai Chonghai

    2005-01-01

    The quality and reliability of the computational simulation of a macroscopic nuclear device are directly related to the quality of the underlying basic nuclear data. To meet these needs, according to advanced nuclear models that account for details of nuclear structure and the quantum nature of nuclear reaction and the experimental data of total, nonelastic, and elastic scattering cross sections, and elastic scattering angular distributions of Pb and its isotopes, all cross sections of neutron-induced reaction, angular distributions, energy spectra, especially the double-differential cross sections for neutron, proton, deuteron, triton, helium, and alpha emissions are calculated and analyzed for n + 204,206,207,208,nat Pb at incident neutron energies below 20 MeV by using the UNF nuclear model code. At neutron incident energies 20 n ≤ 250 MeV, MEND codes are used. Theoretical calculations are compared with existing experimental data and other evaluated data from ENDF/B-VI and JENDL-3

  1. Upgrading of sesame from 800 MeV to 2.5 GeV (Summary of the Technical Design)

    International Nuclear Information System (INIS)

    Asfour, F.I.

    2004-01-01

    A Synchrotron-light for Experimental Science and Applications in the Middle East (SESAME), was decided to be built in Jordan as a gift by Germany, based on BESSY 800 MeV synchrotron in Berlin after upgrading to serve as a seed for a new research center in 1998. The initial proposal for SESAME issued in 1999 to move BESSY to the Middle East in a modified form to high performance machine that would cover a broad spectral range, including hard X-rays. For chat BESSY-1, is changed to six-fold symmetry by changing the circumference from 64 to 100 meters and modification of bending magnets, thus the energy was increased to 1 GeV. To reach hard X-ray the intention was to introduce two 13 - pole superconducting wigglers with magnetic field 7.5 tesla, these wigglers provide a critical energy of 5 KeV and useful flux up to 20 KeV. However these wigglers have some disadvantages :1) they are costly, 2) need a special knowledge for running and 3) have an influence on beam behavior. In 2000 - 2001 appeared a scientific need of more beam lines in this spectral range (most users require hard X-ray). The simplest way of doing this is by getting hard X-ray from bending magnets. This is possible by increasing the energy to 2 GeV. Since Jordan will provide the building as a copy of the ANKA (60 m x 60 m) Synchrotron Light Source with 2.5 GeV storage ring. The design of SESAME project has been worked with maximum circumference 124 m. It is a 8- fold symmetry machine with energy 2 GeV. By using gradient bending magnets it is possible to have 12 for the installation of insertion devices and furthermore a reduction of natural emittance down to 18 nm rad. This is really the art of synchrotron light source. This was done in July 2002. To enhance the hard X-ray capability to be more in line, it was suggested to increase the energy up to 2.5 GeV. The option of 2.5 GeV machine is to explore its use with 2 in vacuum undulators, and of running the 2.5 machine at 2 GeV if that is needed for ultra

  2. Development of a 20 MeV Dielectric-Loaded Test Accelerator

    International Nuclear Information System (INIS)

    Gold, Steven H.; Fliflet, Arne W.; Lombardi, Marcie; Kinkead, Allen K.; Gai, Wei; Power, John G.; Konecny, Richard; Long, Jidong; Jing, Chunguang; Tantawi, Sami G.; Nantista, Christopher D.; Bruce, Ralph W.; Lewis, David III

    2006-01-01

    This paper presents a progress report on a joint project by the Naval Research Laboratory (NRL) and Argonne National Laboratory (ANL), in collaboration with the Stanford Linear Accelerator Center (SLAC), to develop a dielectric-loaded test accelerator in the magnicon facility at NRL. The accelerator will be powered by an experimental 11.424-GHz magnicon amplifier that presently produces 25 MW of output power in a ∼250-ns pulse at up to 10 Hz. The accelerator will include a 5-MeV electron injector originally developed at the Tsinghua University in Beijing, China, and can incorporate DLA structures up to 0.5 m in length. The DLA structures are being developed by ANL, and shorter test structures fabricated from a variety of dielectric materials have undergone testing at NRL at gradients up to ∼8 MV/m. SLAC has developed components to distribute the power from the two magnicon output arms to the injector and to the DLA accelerating structure with separate control of the power ratio and relative phase. RWBruce Associates, Inc., working with NRL, has investigated means to join short ceramic sections into a continuous accelerator tube by a brazing process using an intense 83-GHz beam. The installation and testing of the first dielectric-loaded test accelerator, including injector, DLA test structure, and spectrometer, should take place within the next year

  3. The analysis of air particulate deposits using 2 MeV protons

    International Nuclear Information System (INIS)

    Barfoot, K.M.; Mitchell, I.V.; Eschbach, H.L.; Mason, P.I.; Gilboy, W.B.

    1979-01-01

    Particle-induced X-ray emission (PIXE) analysis of the lighter elements in time-resolved air particulate deposits has been carried out. Minimum detection limits have been determined for 1.0, 2.0 and 3.5 MeV protons. Quantitative PIXE analysis results, obtained with 2 MeV protons, are given for temporal variations in the elemental concentrations of Na, Al, Si, S, Cl, K, Ca and Fe. Rutherford backscattering (RBS) spectra were taken simultaneously with the PIXE spectra to provide information on lead concentrations and deposit thicknesses. The experimental problems associated with the quantitative analysis of light elements on cellulose acetate filters are described. The relationship between these results and meteorological data is discussed. (author)

  4. The new JET 2.5-MeV neutron time-of-flight spectrometer

    International Nuclear Information System (INIS)

    Elevant, T.; Belle, P.v.; Grosshoeg, G.; Hoek, M.; Jarvis, O.N.; Olsson, M.; Sadler, G.

    1992-01-01

    A major upgrade of the JET 2.5-MeV neutron time-of-flight spectrometer has been completed. The improvement has permitted ion temperature measurements for Maxwellian deuterium plasmas with T i >4 keV to be obtained in 0.5-s intervals. By combining observations of neutron and x-ray energy spectra with studies of γ-ray emission from reactions between fast deuterons and impurities, the effects of ICRF heating on the deuterium energy distribution have been studied. The time evolution of neutron energy spectra from deuterium-beam heated deuterium plasmas is illustrated and a method for evaluating the ion temperature from such sequences is indicated. Furthermore, the spectrometer has shown stable performance during high neutron fluxes

  5. Measurement of the uranium-235 fission cross section over the neutron energy range 1 to 6 MeV

    International Nuclear Information System (INIS)

    Barton, D.M.; Diven, B.C.; Hansen, G.E.; Jarvis, G.A.; Koontz, P.G.; Smith, R.K.

    1976-01-01

    The ratio of the fission cross section of 235 U to the scattering cross section of 1 H was measured in the 1- to 6-MeV range using monoenergetic neutrons from a pulsed 3 H(p,n) 3 He source. In this measurement, solid-state detectors determined fission fragment and recoil proton emissions from back-to-back U(99.7%) and polyethylene disks. Timing permitted discrimination against room-scattered neutron backgrounds. Absolute values for 235 U(n,f) are obtained using the Hopkins-Breit evaluation of the hydrogen-scattering cross section

  6. Neutron production from 40 GeV/c mixed proton/pion beam on copper, silver and lead targets in the angular range 30-135 deg

    Energy Technology Data Exchange (ETDEWEB)

    Agosteo, S. [Dipartimento di Ingegneria Nucleare, Politecnico di Milano, via Ponzio 34/3, 20133 Milan (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Milano, via Celoria 16, 20133 Milan (Italy); Birattari, C. [Istituto Nazionale di Fisica Nucleare, Sezione di Milano, via Celoria 16, 20133 Milan (Italy); Universita degli Studi di Milano, Dipartimento di Fisica, via Celoria 16, 20133 Milan (Italy); Dimovasili, E. [CERN, 1211 Geneva 23 (Switzerland); Foglio Para, A. [Dipartimento di Ingegneria Nucleare, Politecnico di Milano, via Ponzio 34/3, 20133 Milan (Italy); Silari, M. [CERN, 1211 Geneva 23 (Switzerland)]. E-mail: marco.silari@cern.ch; Ulrici, L. [CERN, 1211 Geneva 23 (Switzerland); Vincke, H. [CERN, 1211 Geneva 23 (Switzerland)

    2005-02-01

    The neutron emission from 50 mm thick copper, silver and lead targets bombarded by a mixed proton/pion beam with momentum of 40 GeV/c were measured at the CERN Super Proton Synchrotron. The neutron yield and spectral fluence per incident particle on target were measured with an extended range Bonner sphere spectrometer in the angular range 30-135 deg with respect to the beam direction. Monte Carlo simulations with the FLUKA code were performed to provide a priori information for the unfolding of the experimental data. The spectral fluences show two peaks, an isotropic evaporation component centred at 3 MeV and a high-energy peak sitting around 100-150 MeV. The experimental neutron yields are given in four energy bins: <100 keV, 0.1-20 MeV, 20-500 MeV and 0.5-2 GeV. The total yields show a systematic discrepancy of 30-50%, with a peak of 70% at the largest angles, with respect to the results of the Monte Carlo simulations, which it is believed to be mainly due to uncertainties in the beam normalization factor. Analytic expressions are given for the variation of the integral yield as a function of emission angle and of target mass number.

  7. Neutron production from 40 GeV/c mixed proton/pion beam on copper, silver and lead targets in the angular range 30-135 deg

    International Nuclear Information System (INIS)

    Agosteo, S.; Birattari, C.; Dimovasili, E.; Foglio Para, A.; Silari, M.; Ulrici, L.; Vincke, H.

    2005-01-01

    The neutron emission from 50 mm thick copper, silver and lead targets bombarded by a mixed proton/pion beam with momentum of 40 GeV/c were measured at the CERN Super Proton Synchrotron. The neutron yield and spectral fluence per incident particle on target were measured with an extended range Bonner sphere spectrometer in the angular range 30-135 deg with respect to the beam direction. Monte Carlo simulations with the FLUKA code were performed to provide a priori information for the unfolding of the experimental data. The spectral fluences show two peaks, an isotropic evaporation component centred at 3 MeV and a high-energy peak sitting around 100-150 MeV. The experimental neutron yields are given in four energy bins: <100 keV, 0.1-20 MeV, 20-500 MeV and 0.5-2 GeV. The total yields show a systematic discrepancy of 30-50%, with a peak of 70% at the largest angles, with respect to the results of the Monte Carlo simulations, which it is believed to be mainly due to uncertainties in the beam normalization factor. Analytic expressions are given for the variation of the integral yield as a function of emission angle and of target mass number

  8. Neutron production from 40 GeV/c mixed proton/pion beam on copper, silver and lead targets in the angular range 30-135°

    Science.gov (United States)

    Agosteo, S.; Birattari, C.; Dimovasili, E.; Foglio Para, A.; Silari, M.; Ulrici, L.; Vincke, H.

    2005-02-01

    The neutron emission from 50 mm thick copper, silver and lead targets bombarded by a mixed proton/pion beam with momentum of 40 GeV/c were measured at the CERN Super Proton Synchrotron. The neutron yield and spectral fluence per incident particle on target were measured with an extended range Bonner sphere spectrometer in the angular range 30-135° with respect to the beam direction. Monte Carlo simulations with the FLUKA code were performed to provide a priori information for the unfolding of the experimental data. The spectral fluences show two peaks, an isotropic evaporation component centred at 3 MeV and a high-energy peak sitting around 100-150 MeV. The experimental neutron yields are given in four energy bins: <100 keV, 0.1-20 MeV, 20-500 MeV and 0.5-2 GeV. The total yields show a systematic discrepancy of 30-50%, with a peak of 70% at the largest angles, with respect to the results of the Monte Carlo simulations, which it is believed to be mainly due to uncertainties in the beam normalization factor. Analytic expressions are given for the variation of the integral yield as a function of emission angle and of target mass number.

  9. Review of neutron data: 10 to 40 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Haight, R.C.

    1977-04-01

    Neutron data are reviewed for incident neutron energies between 10 and 40 MeV. A census of the data shows that there are many gaps in this range and that the existing data are primarily for neutron energies around 14 MeV. Aside from total cross sections, there are few data between 10 and 13 MeV and between 15 and 40 MeV. Examples are presented to show the quality of selected data for total, elastic, inelastic, activation, and charged-particle and gamma-ray production cross sections. The spectra of emitted particles are also discussed.

  10. Review of neutron data: 10 to 40 MeV

    International Nuclear Information System (INIS)

    Haight, R.C.

    1977-04-01

    Neutron data are reviewed for incident neutron energies between 10 and 40 MeV. A census of the data shows that there are many gaps in this range and that the existing data are primarily for neutron energies around 14 MeV. Aside from total cross sections, there are few data between 10 and 13 MeV and between 15 and 40 MeV. Examples are presented to show the quality of selected data for total, elastic, inelastic, activation, and charged-particle and gamma-ray production cross sections. The spectra of emitted particles are also discussed

  11. Fast neutron (14.5 MeV) radiography: a comparative study

    International Nuclear Information System (INIS)

    Klann, R.T.

    1996-01-01

    Fast neutron (14.5 MeV) radiography is a type of non-destructive analysis tool that offers its own benefits and drawbacks. Because cross-sections vary with energy, a different range of materials can be examined with fast neutrons than can be studied with thermal neutrons, epithermal neutrons, or x-rays. This paper details these differences through a comparative study of fast neutron radiography to the other types of radiography available. The most obvious difference among the different types of radiography is in the penetrability of the sources. Fast neutrons can probe much deeper and can therefore obtain details of the internals of thick objects. Good images have been obtained through as much as 15 cm of steel, 10 cm of water, and 15 cm of borated polyethylene. In addition, some objects were identifiable through as much as 25 cm of water or 30 cm of borated polyethylene. The most notable benefit of fast neutron radiography is in the types of materials that can be tested. Fast neutron radiography can view through materials that simply cannot be viewed by X rays, thermal neutrons, or epithermal neutrons due to the high cross-sections or linear attenuation coefficients involved. Cadmium was totally transparent to the fast neutron source. Fast neutron radiography is not without drawbacks. The most pronounced drawback has been in the quality of radiograph produced. The image resolution is only about 0.8 mm for a 1.25 cm thick object, whereas, other forms of radiography have much better resolution

  12. Elastic scattering of 90 - 120 MeV 3He particles and unique optical potential

    International Nuclear Information System (INIS)

    Hyakutake, M.; Matoba, M.; Kumabe, I.; Fukada, M.; Komatuzaki, T.

    1978-01-01

    The elastic scattering of 109.2 MeV 3 He particles by 40 Ca, 58 Ni, 90 Zr and 116 Sn has been investigated over a wide angular range. The elastic scattering cross sections have been analyzed in terms of the optical model. The data for each nucleus studied were sufficient to eliminate the discrete ambiguity in the strength of the optical potential; the unique potential which fits the data has real well depth of about 100 MeV and a corresponding volume integral per nucleon pair of about 310 MeV fm 3 . The elastic scattering of 3 He particles by 58 Ni has been further measured at bombarding energies of 89.3 and 118.5 MeV, and the incident-energy dependence of the optical potential of 3 He particles for 58 Ni was obtained. (author)

  13. Elastic scattering of deuterons from hydrogen at 2.0, 1.6 and 1.2 GeV, and search for critical opalescence in inelastic scattering of proton from carbon-12 at 800 MeV

    International Nuclear Information System (INIS)

    Haji-Saeid, S.M.

    1980-01-01

    Large deuteron vector and tensor asymmetries have been measured for the first time at intermediate energies. The polarized deuteron beam whose tensor and vector components were 0.75 and 0.25, respectively, were used at energies of 2.0, 1.6 and 1.2 GeV. The tensor and vector quantities Pyy and Py were extracted from the data obtained within beam polarization normal to the scattering plane, and Pxx was obtained when the polarization was precessed into the scattering plane. Analysis of the data using multiple scattering theory demonstrates the importance of the non-eikonal correction to the Glauber Model and also the sensitivity of the data to double-spin flip components of the NN amplitudes. In another experiment the differential cross section for the 12C(P,P')12C*(15.11 MeV, 1 + T = 1) reaction has been measured at 800 MeV; the range of the angular distribution corresponds to momentum transfers of 0.7 to 2.4 fm -1 (1 to 3.3 mπ). The cross section decreases almost exponentially at large angles; no maximum is observed in the region where nuclear critical opalescence might be expected. The cross sections which measured in parallel to the 15.11 MeV state were for the levels at 11.83 (2 - ), 12.71 (1 + ), 13.35 (2 - ), 16.1 (2 + ) and 16.58 (2 - ) MeV

  14. Microscopic analysis of proton elastic scattering in the range 80-200 MeV

    International Nuclear Information System (INIS)

    Dietrich, F.S.; Petrovich, F.

    1983-01-01

    A systematic comparison is made of differential cross-section and analyzing-power data on 12 C, 28 Si, 40 Ca, 90 Zr, and 208 Pb at 80-200 MeV with calculations based on the single-step folding-model approach to the optical potential. In these calculations, proton densities have been inferred from electron scattering results, with neutron densities either the same as for protons ( 12 C, 28 Si, 40 Ca) or with a small neutron skin consistent with 800-MeV proton scattering results ( 80 Zr, 208 Pb). The effective two-body interactions that have been used are the Love-Franey t-matrix, a density-dependent interaction based on the Paris potential (calculated by von Geramb), and finally the Brieva-Rook density-dependent central interaction used with the spin-orbit part of the Love-Franey interaction

  15. Ion heating up to 1 MeV range with higher harmonic ICRF wave on JT-60U

    International Nuclear Information System (INIS)

    Nemoto, M.; Kusama, Y.; Hamamatsu, K.; Kimura, H.; Fujii, T.; Moriyama, S.; Saigusa, M.; Afanassiev, V.I.

    1997-01-01

    The properties of protons under accleration by an ion cyclotron range of frequency (ICRF) waves with the second to fourth hydrogen harmonics have been investigated in the JT-60U tokamak at the Japan Atomic Energy Research Institute (JAERI). Protons have been accelerated up to 1 MeV in the presence of an ICRF wave of fixed frequency, neutral beams (NB), and a fixed toroidal magnetic field which is scanned through several plasma discharges. The tail temperature of the protons, which is evaluated in the range 0.32-0.86 MeV, has been observed to increase in the second to third harmonics, however increase of the tail temperature in the third to fourth harmonics has not been observed clearly. Furthermore, the dependence of tail temperature on the harmonic number has been found to be in qualitative agreement with results from a simulation code analysis based upon the one-dimensional Fokker-Planck equation coupled with the kinetic wave equation. Experimental values for the stored energy of the accelerated ions have shown, however, that the response of stored energy to changes in absorbed ICRF power is much stronger than the response to changes in harmonic number. Also, the incremental energy confinement times for heating discharges matching the third and fourth harmonics (3 ω CH) and 4 ω CH) of hydrogen have been observed to be less than half that for those matching the second harmonic. It has been found that suppression of the absorbed ICRF power accompanied with the occurence of cavity resonance in the 3ω CH and 4ω CH heating discharges reduces the stored energy of the accelerated ions and the incremental energy confinement time. (Author)

  16. NSRL 200 MeV linac beam energy stabilization system

    International Nuclear Information System (INIS)

    Huang Guirong; Pei Yuanji; Dong Sai

    2001-01-01

    By using the computer image processing technology and RF phase auto-shifting system, the ESS (Energy Stabilization System) was applied to 200 MeV Linac. the ESS adjusts beam energy automatically in a range of +-4 MeV. After adjustment beam energy stability is improved to +-6%

  17. Dedicated Tool for Irradiation and Electrical Measurement of Large Surface Samples on the Beamline of a 2.5 Mev Pelletron Electron Accelerator: Application to Solar Cells

    OpenAIRE

    Lefèvre Jérémie; Le Houedec Patrice; Losco Jérôme; Cavani Olivier; Boizot Bruno

    2017-01-01

    We designed a tool allowing irradiation of large samples over a surface of A5 size dimension by means of a 2.5 MeV Pelletron electron accelerator. in situ electrical measurements (I-V, conductivity, etc.) can also be performed, in the dark or under illumination, to study radiation effects in materials. Irradiations and electrical measurements are achievable over a temperature range from 100 K to 300 K. The setup was initially developed to test real-size triple junction solar cells at low t...

  18. Cross section of the {sup 11}B(n,p) {sup 11}Be reaction for 14.7-16.9 MeV neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Stepancinc, B Z; Stanojevic, D M; Popic, V R; Aleksic, M R [Institute of nuclear sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1966-07-15

    The cross section of the {sup 11}B(n,p){sup 11}Be reaction was determined for neutron energy range from 14.7 to 16.9 MeV using the activation method. Activity measurements were done by using a coincidence spectrometer essentially consisting of two plastic scintillators. Energy dependent cross section values are presented together with the previously measured values for the energy range 14.5 - 16.9 MeV.

  19. Elastic and Raman scattering of 8.5-11.4 MeV photons from 159Tb, 165Ho, and 237Np

    International Nuclear Information System (INIS)

    Bar-Noy, T.; Moreh, R.

    1977-01-01

    Differential cross sections for elastic and inelastic Raman scattering from the deformed heavy nuclei 159 Tb, 165 Ho and 237 Np were measured at five energies between 8.5 and 11.4 MeV. Angular distributions at four angles between 90 0 and 140 0 for both elastic and inelastic scattering at 9.0 and 11.4 MeV were also measured. The monoenergetic photons were obtained from thermal neutron capture in Ni and Cr. All the angular distributions and the elastic and Raman scattering at the higher energies are in good overall agreement with theoretical predictions. The theory is based on a modified simple rotator model of the giant resonance in which the effect of Delbrueck scattering was included. A trend of both the elastic and Raman scattering at lower energies to be stronger than expected are suggested by the data. However, the ratio between the Raman and elastic scattering seem to be in good agreement with theory throughout the whole energy range. This shows that there is no need to introduce a direct nonresonant component to the imaginary part of the elastic scattering amplitude to explain the experimental data. (Auth.)

  20. Exact finite range DWBA results for the /sup 12/C(p,d)/sup 11/C reaction at 700 MeV. [Differential cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Rost, E; Shepard, J R [Colorado Univ., Boulder (USA). Nuclear Physics Lab.

    1975-12-08

    The differential cross sections for the /sup 12/C(p,d)/sup 11/C(g.s.) reaction at 700 MeV have been calculated in a full finite range DWBA approach. The absolute cross sections agree with the data and are dominated by contributions arising from the deuteron D-state.

  1. Effect of 520 MeV Kr{sup 20+} ion irradiation on the critical current density of Bi-2212 single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Terai, Takayuki; Ito, Yasuyuki [Tokyo Univ. (Japan). Faculty of Engineering; Kishio, Kouji

    1996-10-01

    Change in magnetic properties of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+y} (Bi-2212) single crystals due to Kr{sup 20+} ion irradiation is reported, focused on critical current density and irreversibility magnetic field. The Bi-2212 single crystal specimens (3x3x0.3 mm{sup 3}) were prepared by the floating zone method. Each specimen was irradiated with 520 MeV Kr{sup 20+} ions of 10{sup 10}-10{sup 11} cm{sup -2} in the fluence. Magnetic hysteresis was measured at 4.2K-60K with a vibrating sample magnetometer before and after irradiation. Very large enhancement was observed in critical current density and irreversibility magnetic field above 20K. (author)

  2. Multiple ionization of noble gases by 2.0 MeV proton impact: comparison with equi-velocity electron impact ionization

    International Nuclear Information System (INIS)

    Melo, W.S.; Santos, A.C.F.; Sant'Anna, M.M.; Sigaud, G.M.; Montenegro, E.C.

    2002-01-01

    Absolute single- and multiple-ionization cross sections of rare gases (He, Ne, Ar, Kr and Xe) have been measured for collisions with 2.0 MeV p + . A comparison is made with equi-velocity electron impact ionization cross sections as well as with the available proton impact data. For the light rare gases the single-ionization cross sections are essentially the same for both proton and electron impacts, but increasing differences appear for the heavier targets. (author). Letter-to-the-editor

  3. Neutron total, scattering and inelastic gamma-ray cross sections of yttrium at few MeV energies

    International Nuclear Information System (INIS)

    Budtz-Joergensen, C.; Guenther, P.; Smith, A.; Whalen, J.; McMurray, W.R.; Renan, M.J.; Heerden, I.J. van

    1984-01-01

    Neutron total, scattering and (n; n', γ) cross sections of elemental yttrium ( 89 Y) were measured in the few-MeV region. The neutron total-cross-section measurements were made with broad resolutions from approx.=0.5 to 4.2 MeV in steps of < or approx.0.1 MeV. Neutron elastic- and inelastic-scattering cross sections were measured from approx.=1.5 to 4.0 MeV, at incident-neutron energy intervals of approx.=50 keV and at ten or more scattering angles distributed between 20 and 160 degrees using neutron detection. Inelastic-scattering cross sections were also determined using the (n; n', γ) reaction at incident energies from 1.6 to 3.8 MeV at intervals of 0.1 MeV. Gamma-rays and/or inelastically-scattered neutrons were observed corresponding to the excitation of levels at: 909.0+-0.5, 1,507.4+-0.3, 1,744.5+-0.3, 2,222.6+-0.5, 2,530+-0.8, 2,566.4+-1.0, 2,622.5+-1.0, 2,871.9+-1.5, 2,880.6+-2.0, 3,067.0+-2.0, 3,107.0+-2.0, 3,140.0+-2.0, 3,410.0+-2.0, 3,450.0+-2.0, 3,504.0+-1.5, 3,514.0+-2.0, 3,556.0+-2.0, 3,619.0+-3.0, 3,629.0+-3.0 and 3,715.0+-3.0 keV. The experimental results are discussed in terms of the spherical-optical-statistical, coupled-channels, and core-coupling models, and in the context of previously reported excited-level structure. (orig.)

  4. Cross measurements of linear momentum transfer and energy dissipation in collisions between 290 MeV 20Ne and 238U

    International Nuclear Information System (INIS)

    Galin, J.; Ingold, G.; Jahnke, U.; Hilscher, D.; Lehmann, M.; Rossner, H.; Schwinn, E.

    1988-01-01

    The 20 Ne+U reactions are investigated at 290 MeV bombarding energy. The linear momentum transfer and excitation energy are deduced eventwise from the respective measurements of the folding angle between correlated fission fragments and the neutron multiplicity. A simple incomplete fusion picture is shown to essentially account for the data. The sensitivity of the two measurements in order to infer the violence of a collision is discussed in details. (orig.)

  5. Development of an MeV ion beam lithography system in Jyvaeskylae

    Energy Technology Data Exchange (ETDEWEB)

    Gorelick, Sergey [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FIN-40014 (Finland)]. E-mail: Sergey.Gorelick@phys.jyu.fi; Ylimaeki, Tommi [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FIN-40014 (Finland); Sajavaara, Timo [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FIN-40014 (Finland); Laitinen, Mikko [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FIN-40014 (Finland); Sagari, A.R.A. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FIN-40014 (Finland); Whitlow, Harry J. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FIN-40014 (Finland)

    2007-07-15

    A lithographic facility for writing patterns with ion beams from cyclotron beams is under development for the Jyvaeskylae cyclotron. Instead of focusing and deflecting the beam with electrostatic and magnetic fields a different approach is used. Here a small rectangular beam spot is defined by the shadow of a computer-controlled variable aperture in close proximity to the sample. This allows parallel exposure of rectangular pattern elements of 5-500 {mu}m side with protons up to 6 MeV and heavy ions ({sup 20}Ne, {sup 85}Kr) up to few 100 MeV. Here we present a short overview of the system under construction and development of the aperture design, which is a critical aspect for all ion beam lithography systems.

  6. Evaluation of the cell death mechanisms activated by the radiopharmaceutical 177Lu-DOTA-anti-CD20 in a dose range of 1 to 5 Gy

    International Nuclear Information System (INIS)

    Azorin V, E.P.; Rojas C, E. L.; Martinez V, B. E.; Ramos B, J. C.; Jimenez M, N. P.; Ferro F, G.

    2016-10-01

    The radio immunotherapy with anti-CD20 antibodies significantly increases the remission rate of patients with B-cell lymphomas over expressing the CD20. The radiolabeled antibodies directed to surface antigens allow delivering scaled doses of radiation to specific targets thus limiting the dose to healthy tissue. The anti-CD20 causes cell death by two major pathways; activating the immune system to destroy malignant cells and inducing the activation of cell death pathways. The 177 Lu is a beta particle emitter (max. 0.497 MeV) with a maximum reach on soft tissue of 0.7 mm and a half-life of 6.7 days. Several clinical studies have established a maximum tolerated dose (45 m Ci/m 2 ) for 177 Lu-DOTA-rituximab, which shows a favorable clinical response without hematological toxicity. However, the molecular mechanisms of action by synergistic effect of anti-CD20 and radionuclide have not been studied. In this work was evaluated; by flow cytometry, the activation kinetics of the cell death mechanisms induced by the treatment with 177 Lu-DOTA-Anti-CD20 in non-Hodgkin (Raji) lymphoma cells. The absorbed radiation dose delivered to the cell nucleus was calculated by Monte Carlo simulation, considering the contribution of the beta emissions of the radiopharmaceutical present in the cell membrane and surrounding environment, as well as crossfire. This work shows that the application of radiation doses of 1 to 5 Gy of the radiopharmaceutical 177 Lu-DOTA-anti-CD20, are sufficient to induce cell death by apoptosis and arrest of the cell cycle. The combination of these factors (continuous delivery of radiation, activation of repair mechanisms and increased radio sensitivity) causes the acute activation of the apoptotic program resulting in significant cell death after 96 h of treatment. The temporal analysis of cell death suggests the early activation of apoptosis that is counteracted by the activation of repair processes caused by sustained irradiation, which leads to cell

  7. Correlations of light particles in the reaction 40Ar on 197Au at E/A=200 MeV

    International Nuclear Information System (INIS)

    Kunde, G.J.

    1990-08-01

    For the study of small-angle correlations of light particles an experiment at the SATURNE synchrotron with 40 Ar on 197 Au at an incident energy of E/A=200 MeV was performed. A hodoscope consisting of an 8x8 matrix of silicon-cesium iodide detectors was applied under a mean angle of 40 degrees. The evaluation of the coincident particle information was performed via correlation functions, which were determined for systems with Z ≤ = 3. For three different fragments emission temperatures were measured via the determination of population ratios for particle-unstable states. Furthermore by means of p-p correlations the reaction volume was studied. The results are: For 5 Li a mean emission temperature of 6.4 -1.0 1.1 MeV resulted, for 4 He a mean emission temperature of 5.4 -1.2 +1.8 MeV was found. The temperature of 2.3 -0.2 0.6 MeV determined for 8 Be is strongly influenced by feeding. For the states at 21.1 and 22.1 MeV in 4 He a dependence of the temperature on the kinetic sum energy of the coincident particles was found, a temperature growth with increasing sum energy of about 3 MeV over the measured range of the sum energies resulted. Via p-p correlations a source radius of 5.8 ± 0.3 fm was determined. The correction for protons from sequential decays leads to radii, which are about 1 fm smaller. The radii and radius ratios for different ranges of the sum energy of the protons were analyzed. The measured emission temperatures are about 1 MeV higher than the values for the same system at E/A = 60 MeV. The temperatures correspond in the model of the statistical multifragmentation to an excitation energy of about 2 GeV, while they follow in the model of the sequential fragment emission for an excitation energy of about 1 GeV. (orig.) [de

  8. Trace element analysis with PIXE using Trombay 5.5 MeV Van de Graaff accelerator

    International Nuclear Information System (INIS)

    Govil, Rekha; Kataria, S.K.; Kapoor, S.S.; Madan Lal; Nadkarni, D.M.; Rama Rao, P.N.; Viswanathan, K.V.

    1980-01-01

    The work on trace element analysis using proton induced X-ray emission technique (PIXE) with the proton beam from 5.5 MeV Van de Graaff accelerator at Trombay, is described. The experimental set up consisted of an indigeneously built 220 eV resolution Si(Li) x-ray spectrometer and target chamber having arrangements to mount upto twelve targets. In the present work, a variety of samples of biological nature, monazite mineral and some other samples were analyzed along with a standard multi-element sample. The sample preparation technique for different samples is also given in the report. For quantitative estimation of trace elements, a computer code developed earlier was used. The proton induced x-ray spectra of various samples and their computer fits are presented and quantitative results for some selected samples are also given. The minimum detection limits which were achieved with the present set up are also given. (auth.)

  9. Cross sections for the 14N(n,p0), (n,α0), and (n,α1) reactions from 0.5 to 15 MeV

    International Nuclear Information System (INIS)

    Morgan, G.L.

    1978-09-01

    Cross sections were measured for the 14 N(n,p 0 ) reaction from 0.5 to 7.0 MeV and for the (n,α 0 ) and (n,α 1 ) reactions from 1 to 15 MeV and 4 to 15 MeV, respectively. The data were obtained using a gaseous scintillator containing N 2 and Xe mixtures. A linac was used as a pulsed, white neutron source with a 29-m fight path. The results of the measurement are compared to the current evaluated file for nitrogen; agreement is good for neutron energies below 8 MeV, but the measurement is substantially higher than the evaluation for neutron energies near 10 MeV

  10. Measurements of the Fe-54 (n,p) Mn-54 Reaction Cross Section in the Neutron Energy Range 2.3-3.8 MeV

    International Nuclear Information System (INIS)

    Lauber, A.; Malmskog, S.

    1964-10-01

    We have measured the 54 Fe (n, p) 54 Mn reaction cross section using a surface barrier detector to record the number of protons released in the reaction. The neutron flux was determined by means of a hydrogenous radiator, detecting the scattered protons with the solid state detector, and calculating the number of impinging neutrons from the well known n-p scattering cross section. The 54 Fe (n, p) 54 Mn reaction cross section is found to increase from 25 mb at 2.3 MeV to 208 mb at 3.5 MeV

  11. Cross sections and differential spectra for reactions of 2-20 MeV neutrons on /sup nat/Cr

    International Nuclear Information System (INIS)

    Blann, M.; Komoto, T.T.

    1988-01-01

    This report summarizes product yields, secondary n,p and α spectra, and γ-ray spectra calculated for incident neutrons of 2 to 20 MeV on /sup nat/Cr targets. Results are all from the code ALICE, using the version ALISO which does weighting of results for targets which are a mix of isotopes. Where natural isotopic targets are involved, yields and n,p,α spectra will be reported weighted over isotopic yields. Gamma-ray spectra, however, will be reported for the most abundant isotope. We present product yields versus incident neutron energy, n,p,α spectra versus incident neutron energy, and calculated γ-ray spectra

  12. Simulations of Beam Quality in a 13 MeV PET Cyclotron

    Directory of Open Access Journals (Sweden)

    A. Pramudita

    2015-12-01

    Full Text Available Simulation of the trajectories of negative hydrogen ion (H− beam in a 13 MeV PET cyclotron (DECY-13 were carried out by using the Runge-Kutta (RK4 approximation method and Scilab 5.4.1. The magnetic and electric fields were calculated using Opera-3d/TOSCA softwares at 1 mm resolution. The cyclotron is of a fourth-harmonics type, meaning that the acceleration occurs four times per cycle, with a radiofrequency (RF field of 77.66 MHz frequency and 40 kV amplitude. The calculations and simulations show that the maximum distance between the ion source and the puller is about 6 mm, while the maximum width of the beam at 13 MeV is about 10 mm, and the initial phase between the RF field and the beam ranges from -10° to 10°, with a yield of about 10% of the beam from the ion source getting accelerated to 13 MeV.

  13. Determination of the 20 MeV linear accelerator, new injector for the synchrotron Saturne. Choice of the electrical and dynamical particle parameters

    International Nuclear Information System (INIS)

    Prome, M.

    1968-12-01

    This report takes place in the general determination of the 20 MeV linear accelerator which will be the new Saturne injector; it deals with particle dynamics. Starting from beam requirements at the output of the linac, cells lengths with variable synchronous phase angle, buncher and de-buncher parameters, beam emittances at the output in several phase spaces are successively determined. (author) [fr

  14. An experimental accelerator driven system based on plutonium subcritical assembly and 660 MeV protons accelerator

    International Nuclear Information System (INIS)

    Barashenkov, V.S.; Puzynin, I.V.; Sisakyan, A.N.; Polanski, A.

    1999-01-01

    We present a Plutonium Based Energy Amplifier Testing Concept, which employs a plutonium subcritical assembly and a 660 MeV proton accelerator operating in the JINR Laboratory of Nuclear Problems. Fuel designed for the pulsed neutron source IREN (Laboratory of Neutron Physics, JINR) will be adopted for the core of the assembly. To make the present conceptual design of the Plutonium Energy Amplifier we have chosen a nominal unit capacity of 20 kW (thermal). This corresponds to the multiplication coefficient K eff ranging between 0.94 and 0.95 and the energetic gain about 20. Accelerated current is in the range of 1-1.6μA

  15. Measurement and calculation of neutron leakage spectra from slab samples of beryllium, gallium and tungsten irradiated with 14.8 MeV neutrons

    Science.gov (United States)

    Nie, Y. B.; Ruan, X. C.; Ren, J.; Zhang, S.; Han, R.; Bao, J.; Huang, H. X.; Ding, Y. Y.; Wu, H. C.; Liu, P.; Zhou, Z. Y.

    2017-09-01

    In order to make benchmark validation of the nuclear data for gallium (Ga), tungsten (W) and beryllium (Be) in existing modern evaluated nuclear data files, neutron leakage spectra in the range from 0.8 to 15 MeV from slab samples were measured by time-of-flight technique with a BC501 scintillation detector. The measurements were performed at China Institute of Atomic Energy (CIAE) using a D-T neutron source. The thicknesses of the slabs were 0.5 to 2.5 mean free path for 14.8 MeV neutrons, and the measured angles were chosen to be 60∘ and 120∘. The measured spectra were compared with those calculated by the continuous energy Monte-Carlo transport code MCNP, using the data from the CENDL-3.1, ENDF/B-VII.1 and JENDL-4.0 nuclear data files, the comparison between the experimental and calculated results show that: The results from all three libraries significantly underestimate the cross section in energy range of 10-13 MeV for Ga; For W, the calculated spectra using data from CENDL-3.1 and JENDL-4.0 libraries show larger discrepancies with the measured ones, especially around 8.5-13.5 MeV; and for Be, all the libraries led to underestimation below 3 MeV at 120∘.

  16. A novel source of MeV positron bunches driven by energetic protons for PAS application

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Zongquan, E-mail: tqq1123@mail.ustc.edu.cn [State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Xu, Wenzhen; Liu, Yanfen; Xiao, Ran; Kong, Wei [State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Ye, Bangjiao, E-mail: bjye@ustc.edu.cn [State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2014-11-01

    This paper proposes a novel methodology of MeV positrons generation for PAS application. Feasibility of this proposal analyzed by G4Beamline and Transport have shown reasonable success. Using 2 Hz, 1.6 GeV, 100 ns and 1.5 μC/bunch proton bunches for bombarding a graphite target, about 100 ns e{sup +} bunches are generated. Quasi-monochromatic positrons in the range of 1–10 MeV included in these bunches have a flux of >10{sup 7}/s, peak brightness of 10{sup 14}/s. A magnetic-confinement beamline is utilized to transport the positrons and a “Fast Beam Chopper” is unprecedentedly extended to chop those relativistic bunches. The positron beam can be finally characterized by the energy range of 1–10 MeV and bunch width from one hundred ps up to 1 ns. Such ultrashort bunches can be useful in tomography-type positron annihilation spectroscopy (PAS) as well as other applications.

  17. A novel source of MeV positron bunches driven by energetic protons for PAS application

    Science.gov (United States)

    Tan, Zongquan; Xu, Wenzhen; Liu, Yanfen; Xiao, Ran; Kong, Wei; Ye, Bangjiao

    2014-11-01

    This paper proposes a novel methodology of MeV positrons generation for PAS application. Feasibility of this proposal analyzed by G4Beamline and Transport have shown reasonable success. Using 2 Hz, 1.6 GeV, 100 ns and 1.5 μC/bunch proton bunches for bombarding a graphite target, about 100 ns e+ bunches are generated. Quasi-monochromatic positrons in the range of 1-10 MeV included in these bunches have a flux of >107/s, peak brightness of 1014/s. A magnetic-confinement beamline is utilized to transport the positrons and a "Fast Beam Chopper" is unprecedentedly extended to chop those relativistic bunches. The positron beam can be finally characterized by the energy range of 1-10 MeV and bunch width from one hundred ps up to 1 ns. Such ultrashort bunches can be useful in tomography-type positron annihilation spectroscopy (PAS) as well as other applications.

  18. Determination of the neutron detection efficiency of an NE213 scintillator for En=2.5 to 16 MeV using the 2H(d,n)3He reaction

    International Nuclear Information System (INIS)

    Al-Ohali, M.A.; Aksoy, A.; Coban, A.

    1997-01-01

    The absolute efficiency of an NE213 liquid scintillator of 12.7 cm diameter and 5.08 cm thickness was measured in the neutron energy range 2.5-16 MeV using the 2 H(d,n) 3 He reaction as a source of monoenergetic neutrons. The efficiencies were measured at the time-of-flight facility of Triangle Universities Nuclear Laboratory TUNL. The experimental data are compared to calculations from the Monte Carlo code NEFF of Physikalisch-Technische Bundesanstalt, Braunschweig, Germany PTB. (orig.)

  19. 29Si(d,3He)28Al reaction at 29 MeV

    International Nuclear Information System (INIS)

    Vernotte, J.; Berrier-Ronsin, G.; Fortier, S.; Hourani, E.; Kalifa, J.; Khendriche, A.; Maison, J.M.; Rosier, L.H.; Rotbard, G.

    1994-01-01

    The 29 Si(d, 3 He) 28 Al reaction has been investigated at 29 MeV incident energy. Observations using a split-pole magnetic spectrograph have been made of 55 levels of 28 Al in the range of excitation energy between 0 and 6.7 MeV. Most of them have been identified with 28 Al levels which have been previously observed by other techniques. The spectroscopic factors have been obtained for 23 of these levels through distorted-wave Born approximation analyses of measured angular distributions. The levels at E x =3.105 and 3.762 MeV have been definitely assigned J π =1 + and 0 + , respectively. Four levels which are populated through the pickup of a l p =1 proton have been observed at E x =4.998, 5.406, 6.021, and 6.652 MeV. The excitation energies and spectroscopic factors for positive-parity states were compared with the results of a recent, complete sd-shell space, shell-model calculation. This comparison led to the identification of 21 shell-model levels with experimental levels. This comparison seems accurate enough to make very likely the J π =3 + assignment for the levels at E x =2.988 and 4.597 MeV which were previously assigned J π =(1,3) +

  20. Neutron-neutron quasifree scattering in nd breakup at 10 MeV

    Science.gov (United States)

    Malone, R. C.; Crowe, B.; Crowell, A. S.; Cumberbatch, L. C.; Esterline, J. H.; Fallin, B. A.; Friesen, F. Q. L.; Han, Z.; Howell, C. R.; Markoff, D.; Ticehurst, D.; Tornow, W.; Witała, H.

    2016-03-01

    The neutron-deuteron (nd) breakup reaction provides a rich environment for testing theoretical models of the neutron-neutron (nn) interaction. Current theoretical predictions based on rigorous ab-initio calculations agree well with most experimental data for this system, but there remain a few notable discrepancies. The cross section for nn quasifree (QFS) scattering is one such anomaly. Two recent experiments reported cross sections for this particular nd breakup configuration that exceed theoretical calculations by almost 20% at incident neutron energies of 26 and 25 MeV [1, 2]. The theoretical values can be brought into agreement with these results by increasing the strength of the 1S0 nn potential matrix element by roughly 10%. However, this modification of the nn effective range parameter and/or the 1S0 scattering length causes substantial charge-symmetry breaking in the nucleon-nucleon force and suggests the possibility of a weakly bound di-neutron state [3]. We are conducting new measurements of the cross section for nn QFS in nd breakup. The measurements are performed at incident neutron beam energies below 20 MeV. The neutron beam is produced via the 2H(d, n)3He reaction. The target is a deuterated plastic cylinder. Our measurements utilize time-of-flight techniques with a pulsed neutron beam and detection of the two emitted neutrons in coincidence. A description of our initial measurements at 10 MeV for a single scattering angle will be presented along with preliminary results. Also, plans for measurements at other energies with broad angular coverage will be discussed.

  1. Exfoliation of GaAs caused by MeV 1H and 4He ion implantation at left angle 100 right angle , left angle 110 right angle axial and random orientations

    International Nuclear Information System (INIS)

    Rauhala, E.; Raeisaenen, J.

    1994-01-01

    The exfoliation procedure of the ion range determination of gaseous implants in single crystal GaAs is investigated. The correlation of the observed crater depth with the ion range is studied for random, left angle 100 right angle and left angle 110 right angle axial orientation high dose implantations of 1.5-2.5 MeV 1 H and 4 He ions. Depending on the experimental conditions, the crater depths corresponded to range values between the modal range and the range maximum. The observed crater depths could be related to the actual He concentration depth distributions by determining the profiles of the 4 He implants by 2.7 MeV proton backscattering. The implantation parameters affecting the exfoliation process, and especially the increase rate of the sample temperature, are investigated. The range distribution parameters for the 1.5 MeV 4 He implants are presented. ((orig.))

  2. Elastic scattering of 16O+16O at energies E/A between 5 and 8 MeV

    International Nuclear Information System (INIS)

    Nicoli, M. P.; Haas, F.; Freeman, R. M.; Aissaoui, N.; Beck, C.; Elanique, A.; Nouicer, R.; Morsad, A.; Szilner, S.; Basrak, Z.

    1999-01-01

    The elastic scattering of 16 O+ 16 O has been measured at nine energies between E lab =75 and 124 MeV. The data cover up to 100 degree sign in the c.m. and can be described in terms of phenomenological and folding model potentials which reproduce the main features observed. In agreement with studies at higher energies in this and similar systems, refractive effects are present in the angular distributions at all energies. In particular, the passage of Airy minima through 90 degree sign at E c.m. =40, 47.5, and 62 MeV explains the deep minima observed in the excitation function. The real part of the optical potential is found to vary very little with energy over the studied interval, but the imaginary part shows a rapid change in its shape at incident energy about 90 MeV. Nonetheless, the energy dependence of the volume integral of the real and imaginary parts is in agreement with dispersion relation predictions. (c) 1999 The American Physical Society

  3. Detection of electrons in the 10 MeV range by plastic scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Beaudoin, G; Champagne, A; Jeremie, H; Lessard, L

    1986-09-10

    Response functions for electrons from 1 to 12 MeV have been measured with a plastic scintillator telescope. A parametrization model for these response functions has been found to give good results at all energies. Furthermore it was established that the type of reflector used for the scintillator has a considerable influence on the response functions. A mechanism for this influence has been proposed and tested by Monte Carlo calculations.

  4. The Fermilab 400-MeV Linac Upgrade

    International Nuclear Information System (INIS)

    Schmidt, C.W.

    1993-05-01

    The Fermilab Linac Upgrade will increase the linac energy from 201 MeV to 401.5 MeV. Seven accelerating modules, composed of 805-MHz side-coupled cells, will accelerate H - beams from 116.5 to 401.5 MeV. The side-coupled structure (SCS) has been built, tuned, tested to full power, and placed in the linac enclosure along side the operating Linac. All seven accelerating modules, each containing four sections of sixteen cells, have been connected to 12-MW power klystrons and tested to full power for a significant period. The transition section to match the beam from the 201.25-MHz drift-tube linac to the SCS, consisting of a sixteen-cell cavity and a vernier four-cell cavity, has also been tested at full power. A new import line from the Linac to the Booster synchrotron with a new Booster injection girder is to be installed. Removal of the last four Alvarez linac tanks (116.5 to 201 MeV) and beam-line installation of the Upgrade components is to begin in early June 1993 and should take about 12 weeks. Beam commissioning of the project will follow and normal operation is expected in a short period. In preparation for beam commissioning, studies are being done with done operating linac to characterize the beam at transition and prepare for phase, amplitude and energy measurements to commission the new linac. The past, present and future activities of the 400-MeV Upgrade will be reviewed

  5. MeV Mott polarimetry at Jefferson Lab

    International Nuclear Information System (INIS)

    Steigerwald, M.

    2001-01-01

    In the recent past, Mott polarimetry has been employed only at low electron beam energies (≅100 keV). Shortly after J. Sromicki demonstrated the first Mott scattering experiment on lead foils at 14 MeV (MAMI, 1994), a high energy Mott scattering polarimeter was developed at Thomas Jefferson National Accelerator Facility (5 MeV, 1995). An instrumental precision of 0.5% was achieved due to dramatic improvement in eliminating the background signal by means of collimation, shielding, time of flight and coincidence methods. Measurements for gold targets between 0.05 μm and 5 μm for electron energies between 2 and 8 MeV are presented. A model was developed to explain the depolarization effects in the target foils due to double scattering. The instrumental helicity correlated asymmetries were measured to smaller than 0.1%

  6. Fluence-to-Absorbed Dose Conversion Coefficients for Use in Radiological Protection of Embryo and Foetus Against External Exposure to Muons from 20MeV to 50GeV

    International Nuclear Information System (INIS)

    Chen Jing

    2008-01-01

    This study used the Monte-Carlo code MCNPX to determine mean absorbed doses to the embryo and foetus when the mother is exposed to external muon fields. Monoenergetic muons ranging from 20 MeV to 50 GeV were considered. The irradiation geometries include anteroposterior (AP), postero-anterior (PA), lateral (LAT), rotational (ROT), isotropic (ISO), and top-down (TOP). At each of these irradiation geometries, absorbed doses to the foetal body were calculated for the embryo of 8 weeks and the foetus of 3, 6 or 9 months, respectively. Muon fluence-to-absorbed-dose conversion coefficients were derived for the four prenatal ages. Since such conversion coefficients are yet unknown, the results presented here fill a data gap

  7. Comparison of 4.2 MeV Fe+ and 46.5 MeV Ni6+ ion irradiation for the study of void swelling

    International Nuclear Information System (INIS)

    Blamires, N.G.; Worth, J.H.

    1975-11-01

    Void formation in pure nickel and 316 steel containing 10 ppm He has been studied using 4.2 MeV Fe+ ions from the Harwell Van de Graaff accelerator. The dose dependence of swelling in nickel at 525degC and the dose and temperature dependence of swelling in 316 steel is reported. The results are compared with those of other workers, especially those sup(13,14) using 46.5 MeV Ni 6+ ions. In general, there is good agment, except for a marked decrease in swelling of 316 steel at 650degC and 700degC compared with the Ni 6+ bombardment. The reason for this is thought to result from the restricted width of the damaged region in the low energy case which at the high temperatures is comparable with the inter-void spacing. Anomalous void distributions adjacent to grain boundaries are reported and are probably caused by grain boundary movement. Denuded zones at grain boundaries in 316 steel vary in width from approximatly 1300A at 450degC to approximatly 8800A at 700degC. The region adjacent to the surface of the nickel specimens exhibits an abnormally high swelling. Possible explanations are suggested

  8. Estimation of Electron Dose Delivered by a 0.4 MeV Accelerator from Bremsstrahlung Dose Measurements

    DEFF Research Database (Denmark)

    Karadjov, A. G.; Hansen, Jørgen-Walther

    1980-01-01

    Determination of a 0.4 MeV electron dose from a bremsstrahlung dose measurement using a converter-detector system is considered. The detector used is a Frickle dosimeter, and the converters are aluminum, copper and lead foils. Optimal converter thickness is ascertained experimentally for each mat...... materials within a Z-range of 13–82. A linear relation is found between bremsstrahlung dose and electron dose ranging from 2 to 20 Mrad. Finally the effect of converter area on detector response is studied....

  9. Excitation functions of inelastic and transfer channels in {sup 12} C+{sup 12} C around E{sub c.m.} = 32.5 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Szilner, S.; Basrak, Z.; Freeman, R.M.; Haas, F.; Beck, C. [Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires]|[Strasbourg-1 Univ., 67 (France); Morsad, A. [Universite Hassan II, Casablanca (Morocco). Faculte des Sciences

    1996-12-31

    A prominent and wide resonance centered at E{sub c.m.} = 32.5 MeV has recently been found in the (0{sub 2}{sup +}, 0{sub 2}{sup +}) inelastic channel of the {sup 12}C+{sup 12}C reaction. It has been suggested that it corresponds to a 6{alpha}-particle-chain state in {sup 24}Mg. In the present work we study {sup 12}C+{sup 12}C excitation functions between center-of-mass energies of 30 and 35 MeV in steps of 250 keV for weakly populated outgoing channels. We present the inelastic channels to the states above the {alpha}-particle decay threshold, (0{sub 1}{sup +},0{sub 2}{sup +}), (0{sub 1}{sup +},3{sub 1}{sup -}), and (0{sub 1}{sup +},4{sub 1}{sup 4}), and the one- and two-nucleon transfer channels. In the inelastic and the transfer channels we observe correlated intermediate-width structures at E{sub c.m.} = 31, 32.5, and 33.5 MeV, whose widths are appreciably smaller than the width measured in the (0{sub 2}{sup +},0{sub 2}{sup +}) channel. Our E{sub c.m.} = 31, 32.5, and 33.5 MeV, whose widths are appreciably smaller than the width measured in the (0{sub 2}{sup +},0{sub 2}{sup +}) channel. Our E{sub c.m.} = 32.5 MeV angular distribution of the (0{sub 1}{sup +},0{sub 2}{sup +})channel exhibits oscillatory behavior and, unlike that of the (0{sup +}{sub 2}, 0{sup +}{sub 2}) channel, does not display enhancement around {Theta}{sub c.m.} = 90 deg. Data were collected via the kinematic coincidence technique. For data reduction we use a novel approach allowing for the extraction of results on non-binary channels. (authors). 39 refs.

  10. A measurement of auroral electrons in the 1–10 MeV range

    NARCIS (Netherlands)

    Gils, J.N. van; Beek, H.F. van; Fetter, L.D. de; Hendrickx, R.V.

    Particle fluxes have been measured by means of shielded Geiger-Müller telescopes mounted m a rocket, which was launched from ESRANGE(Kiruna) into a diffuse aurora. The analysis of the dependence of the counting rates on altitude indicates that a weak flux of energetic electrons, 1–10 MeV, has been

  11. Angular distribution of photofission fragments in 238U at 5.43 MeV

    International Nuclear Information System (INIS)

    Kuniyoshi, S.; Mafra, O.Y.; Renner, C.; Goldemberg, J.

    1974-01-01

    The angular distribution of photofission fragments of 238 U, produced by 5.43 MeV monochromatic photons from the eta,γ reaction in sulphur, has been measured using glass plates as detectors. In the analysis of the results only the contributions from the (J sup(π), K) 1= (1 - ,0), (1 - ,1) and (2 + ,0) terms were considered. The coefficients of the angular distributions of the fission fragments were obtained. An analysis of the data available in the literature on the angular distribution near the photofission threshold is also presented

  12. Angular distribution of photofission fragments in 238U at 5.43 MeV

    International Nuclear Information System (INIS)

    Kuniyoshi, Susumo

    1973-01-01

    The angular distribution of photofission fragments of 238 U, produced by 5.43 MeV monochromatic photons from the η,γ reaction in sulphur, has been measured using glass plates as detectors. In the analysis of the results only the contributions from the (J π , K) 1= (1 - ,0), (1 - ,1) and (2 + ,0) terms were considered. The coefficients of the angular distributions of the fission fragments were obtained. An analysis of the data available in the literature on the angular distribution near the photofission threshold is also presented. (author)

  13. Design and modelling of a 5 MeV radio frequency electron gun

    International Nuclear Information System (INIS)

    Batchelor, K.; Sheehan, J.; Woodle, M.

    1988-01-01

    The Accelerator Test Facility (ATF) at Brookhaven National Laboratory is a linac-laser complex for research into laser acceleration and for the generation of coherent radiation from electron beams. In order to achieve the design 50 MeV output emittance (γσ/sub x/σ/sub x/') of less than 3 /times/ 10/sup /minus/5/ m rad a high brightness electron gun is required. This paper describes computations and measurements made on a full scale brass model of a 1-1/2 cell, π-mode, resonant, disc loaded, radiofrequency gun structure which has been designed for this purpose. 7 refs., 9 figs., 6 tabs

  14. Pre-equilibrium effects in (n,2n) cross sections at 14.5 MeV

    International Nuclear Information System (INIS)

    Gupta, S.K.; Chatterjee, Ambar

    The Griffin-Williams exciton model is used to calculate the pre-equilibrium contribution to the (n,2n) reaction around 14.5 MeV neutron energy for nuclei throughout the periodic table. The experimental cross sections for 60< A<209 are explained with an r.m.s. deviation of 0.31 by including a statistical evaporation and a pre-equilibrium component taking into account the competing proton emission. For A<60 the data is not reproduced very well. (auth.)

  15. Fundamental absorption edge in CuIn5Se8 and CuGa3Se5 single crystals

    International Nuclear Information System (INIS)

    Leon, M.; Merino, J.M.; Levcenko, S.; Nateprov, A.; Tezlevan, V.; Arushanov, E.; Syrbu, N.N.

    2006-01-01

    Optical absorption spectra of CuIn 5 Se 8 and CuGa 3 Se 5 single crystals have been investigated. The energy gap E g for CuIn 5 Se 8 (CuGa 3 Se 5 ) was found to be varied from 1.27(1.79) to 1.21(1.71) eV in the temperature range between 10 and 300 K. The temperature dependence of E g was studied by means of the Einstein model and the Paessler model. The Einstein temperature {222(267)K}, the Debye temperature {310(380)K}, a dimensionless constant related to the electron-phonon coupling {1.62(2.65)} as well as an effective energy {20 (24) meV} and a cut-off phonon energy {35(39) meV} have been estimated for CuIn 5 Se 8 (CuGa 3 Se 5 ). It was also found that the major contribution of phonons to the shift of E g versus temperature in CuIn 5 Se 8 (CuGa 3 Se 5 ) is mainly from optical phonons. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  16. Measurements of the Fe-54 (n,p) Mn-54 Reaction Cross Section in the Neutron Energy Range 2.3-3.8 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Lauber, A; Malmskog, S

    1964-10-15

    We have measured the {sup 54}Fe (n, p) {sup 54}Mn reaction cross section using a surface barrier detector to record the number of protons released in the reaction. The neutron flux was determined by means of a hydrogenous radiator, detecting the scattered protons with the solid state detector, and calculating the number of impinging neutrons from the well known n-p scattering cross section. The {sup 54}Fe (n, p) {sup 54}Mn reaction cross section is found to increase from 25 mb at 2.3 MeV to 208 mb at 3.5 MeV.

  17. The response of CR-39 nuclear track detector to 1-9 MeV protons

    International Nuclear Information System (INIS)

    Sinenian, N.; Rosenberg, M. J.; Manuel, M.; McDuffee, S. C.; Casey, D. T.; Zylstra, A. B.; Rinderknecht, H. G.; Gatu Johnson, M.; Seguin, F. H.; Frenje, J. A.; Li, C. K.; Petrasso, R. D.

    2011-01-01

    The response of CR-39 nuclear track detector (TasTrak) to protons in the energy range of 0.92-9.28 MeV has been studied. Previous studies of the CR-39 response to protons have been extended by examining the piece-to-piece variability in addition to the effects of etch time and etchant temperature; it is shown that the shape of the CR-39 response curve to protons can vary from piece-to-piece. Effects due to the age of CR-39 have also been studied using 5.5 MeV alpha particles over a 5-year period. Track diameters were found to degrade with the age of the CR-39 itself rather than the age of the tracks, consistent with previous studies utilizing different CR-39 over shorter time periods.

  18. MeV fullerene impacts on mica

    Energy Technology Data Exchange (ETDEWEB)

    Doebeli, M.; Scandella, L. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Ames, F. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-09-01

    Hillock heights on mica irradiated with MeV C{sub 60} ions have been investigated systematically. Results show that the small range of secondary particles along the track plays a crucial role in defect production. (author) figs., tab., refs.

  19. Cross section ratio and angular distributions of the reaction p + d → 3He + η at 48.8 MeV and 59.8 MeV excess energy

    International Nuclear Information System (INIS)

    Adlarson, P.; Calen, H.; Fransson, K.; Gullstroem, C.O.; Heijkenskjoeld, L.; Hoeistad, B.; Johansson, T.; Marciniewski, P.; Redmer, C.F.; Wolke, M.; Zlomanczuk, J.; Augustyniak, W.; Marianski, B.; Morsch, H.P.; Trzcinski, A.; Zupranski, P.; Bardan, W.; Ciepal, I.; Czerwinski, E.; Hodana, M.; Jany, A.; Jany, B.R.; Jarczyk, L.; Kamys, B.; Kistryn, S.; Krzemien, W.; Magiera, A.; Moskal, P.; Ozerianska, I.; Podkopal, P.; Rudy, Z.; Skurzok, M.; Smyrski, J.; Wronska, A.; Zielinski, M.J.; Bashkanov, M.; Clement, H.; Doroshkevich, E.; Perez del Rio, E.; Pricking, A.; Skorodko, T.; Wagner, G.J.; Bergmann, F.S.; Demmich, K.; Goslawski, P.; Huesken, N.; Khoukaz, A.; Passfeld, A.; Taeschner, A.; Berlowski, M.; Stepaniak, J.; Bhatt, H.; Lalwani, K.; Varma, R.; Buescher, M.; Engels, R.; Goldenbaum, F.; Hejny, V.; Khan, F.A.; Lersch, D.; Lorentz, B.; Maier, R.; Ohm, H.; Prasuhn, D.; Schadmand, S.; Sefzick, T.; Stassen, R.; Sterzenbach, G.; Stockhorst, H.; Stroeher, H.; Wurm, P.; Zurek, M.; Coderre, D.; Ritman, J.; Erven, A.; Erven, W.; Kemmerling, G.; Kleines, H.; Wuestner, P.; Eyrich, W.; Hauenstein, F.; Krapp, M.; Zink, A.; Fedorets, P.; Foehl, K.; Goswami, A.; Grigoryev, K.; Kirillov, D.A.; Piskunov, N.M.; Klos, B.; Stephan, E.; Weglorz, W.; Kulessa, P.; Pysz, K.; Siudak, R.; Szczurek, A.; Kupsc, A.; Pszczel, D.; Mikirtychiants, M.; Pyszniak, A.; Roy, A.; Sawant, S.; Serdyuk, V.; Sopov, V.; Yamamoto, A.; Yurev, L.; Zabierowski, J.

    2014-01-01

    We present new data for angular distributions and on the cross section ratio of the p+d → 3 He + η reaction at excess energies of Q = 48.8 MeV and Q = 59.8 MeV. The data have been obtained at the WASA-at-COSY experiment (Forschungszentrum Juelich) using a proton beam and a deuterium pellet target. While the shape of obtained angular distributions show only a slow variation with the energy, the new results indicate a distinct and unexpected total cross section fluctuation between Q = 20 MeV and Q = 60 MeV, which might indicate the variation of the production mechanism within this energy interval. (orig.)

  20. Microwave matching and tuning on the 20-MeV medical electron linac with feedback of rf power

    International Nuclear Information System (INIS)

    Yuan-ling, Wang

    1983-01-01

    This article describes the 20 Mev medical electron linac at Jiangsu Tumour Hospital. In the linac, feedback of rf power is used. In the linac with feedback (or with the resonator) the reflection affects the energy gain of the electron and the performance of the accelerator. By means of the theory of the traveling wave resonator, the field multiplication factor and the reflection coefficients inside and outside the feedback ring are calculated. The bands of the linacs without and with feedback are measured. In order to achieve a desirable band in front of the load (i.e. outside the feedback ring) a matching iris is added. After the linac with feedback has been matched, the band is given

  1. Design, calibration and tests of an extended-range Bonner sphere spectrometer

    CERN Document Server

    Mitaroff, Angela; Silari, Marco

    2001-01-01

    Stray radiation fields outside the shielding of hadron accelerators are of complex nature. They consist of a multiplicity of radiation components (neutrons, photons, electrons, pions, muons, ...) which extend over a wide range of energies. Since the dose equivalent in these mixed fields is mainly due to neutrons, neutron dosimetry is a particularly important task. The neutron energy in these fields ranges from thermal up to several hundreds of MeV, thus making dosimetry difficult. A well known instrument for measuring neutron energy distributions from thermal energies up to about E=10 MeV is the Bonner sphere spectrometer (BSS). It consists of a set of moderating spheres of different radii made of polyethylene, with a thermal neutron counter in the centre. Each detector (sphere plus counter) has a maximum response at a certain energy value depending on its size, but the overall response of the conventional BSS drops sharply between E=10-20 MeV. This thesis focuses on the development, the calibration and tests...

  2. Elastic scattering of polarized deuterons from hydrogen at 2.0, 1.6, and 1.2 GeV and search for critical opalescence in inelastic scattering of protons from carbon-12 at 800 MeV

    International Nuclear Information System (INIS)

    Haji-Saeid, S.M.

    1981-01-01

    Large deuteron vector and tensor asymmetries were measured for the first time at intermediate energies. The polarized deuteron beam (with tensor and vector components of 0.75 and 0.25, respectively) was used at energies of 2.0, 1.6, and 1.2 GeV. The tensor and vector quantities P/sub yy/ and P/sub y/ were extracted from the data obtained within beam polarization normal to the scattering plane, and P/sub xx/ was obtained when the polarization was precessed into the scattering plane. Analysis of the data using multiple scattering theory demonstrates the importance of the noneikona correction to the Glauber Model and also the sensitivity of the data to double-spin flip components of the NN amplitudes. The differential cross section for the 12 C(p,p') 12 C* (15.11 MeV, 1 + , T=1) reaction was measured at 800 MeV; the range of the angular distribution corresponds to momentum transfers of 0.7 to 2.4 fm -1 (1 to 3.3 m/sub π/). The cross section decreases almost exponentially at large angles; no maximum is observed in the region where nuclear critical opalescence might be expected. Cross sections measured in parallel to the 15.11-MeV state were for the levels at 11.83 (2 - ), 12.71 (1 + ), 13.35 (2 - ), 16.1 (2 + ), and 16.58 (2 - ) MeV. 86 figures 18 tables

  3. Gamma-gamma directional correlations for levels excited up to 2.5 MeV of 214Po

    International Nuclear Information System (INIS)

    Morales, A.; Nunez-Lagos, R.; Morales, J.; Plo, M.

    1984-01-01

    The spin of twenty two excited states (up to an energy of 2.5 MeV) of 214 Po have been measured by using gamma-gamma directional correlation techniques, twelve of them for the first time. The multipole mixing ratios of the corresponding electromagnetic transition from these levels to the first excited level have also been determined. (author)

  4. Neutron spectrum at 900 from 800 MeV (p,n) reactions on a Ta target

    International Nuclear Information System (INIS)

    Howe, S.D.; Lisowski, P.W.; King, N.S.P.; Russell, G.J.; Donnert, H.J.

    1979-01-01

    The neutron time-of-flight spectrum produced by a thick tantalum target bombarded by 800-MeV protons was measured at an angle of 90 0 . The data were taken at the Weapons Neutron Research facility by use of a cylindrical Ta target with a radius of 1.27 cm and a length of 15 cm. An NE-213 liquid scintillator was used to detect the neutrons over an energy range of 0.5 to 350 MeV. The neutron yield is presented and compared to a intranuclear-cascade/evaporation model prediction. 3 figures

  5. Oxidation of SO2 and formation of water droplets under irradiation of 20MeV protons in N2/H2O/SO2

    DEFF Research Database (Denmark)

    Tomita, Shigeo; Nakai, Yoichi; Funada, Shuhei

    2015-01-01

    We have performed an experiment on charged droplet formation in a humidified N2 gas with trace SO2 concentration and induced by 20MeV proton irradiation. It is thought that SO2 reacts with the chemical species, such as OH radicals, generated through the reactions triggered by N2+ production. Both...

  6. An improved energy-range relationship for high-energy electron beams based on multiple accurate experimental and Monte Carlo data sets

    International Nuclear Information System (INIS)

    Sorcini, B.B.; Andreo, P.; Hyoedynmaa, S.; Brahme, A.; Bielajew, A.F.

    1995-01-01

    A theoretically based analytical energy-range relationship has been developed and calibrated against well established experimental and Monte Carlo calculated energy-range data. Only published experimental data with a clear statement of accuracy and method of evaluation have been used. Besides published experimental range data for different uniform media, new accurate experimental data on the practical range of high-energy electron beams in water for the energy range 10-50 MeV from accurately calibrated racetrack microtrons have been used. Largely due to the simultaneous pooling of accurate experimental and Monte Carlo data for different materials, the fit has resulted in an increased accuracy of the resultant energy-range relationship, particularly at high energies. Up to date Monte Carlo data from the latest versions of the codes ITS3 and EGS4 for absorbers of atomic numbers between four and 92 (Be, C, H 2 O, PMMA, Al, Cu, Ag, Pb and U) and incident electron energies between 1 and 100 MeV have been used as a complement where experimental data are sparse or missing. The standard deviation of the experimental data relative to the new relation is slightly larger than that of the Monte Carlo data. This is partly due to the fact that theoretically based stopping and scattering cross-sections are used both to account for the material dependence of the analytical energy-range formula and to calculate ranges with the Monte Carlo programs. For water the deviation from the traditional energy-range relation of ICRU Report 35 is only 0.5% at 20 MeV but as high as - 2.2% at 50 MeV. An improved method for divergence and ionization correction in high-energy electron beams has also been developed to enable use of a wider range of experimental results. (Author)

  7. Subnanosecond pulsing of an 1 MeV ELIT electron accelerator by beam deflection

    International Nuclear Information System (INIS)

    Vasserman, S.B.; Kuzenko, V.; Mehnert, R.; Hermann, R.

    1984-01-01

    Operation principle and performance of a beam deflection system developed for subnanosecond pulsing of an 1 MeV ELIT resonance transformer accelerator are described. Using this system a minimum pulse duration of 0.5 ns (FWHM) and a dose per pulse of about 20 Gy were obtained. As an example the fluorescence of cyclohexane excited by the subnanosecond electron pulse was measured. (author)

  8. Long range absorption in the scattering of {sup 6}He on {sup 208}Pb and {sup 197}Au at 27 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Kakuee, O.R. [Van De Graaf Laboratory, Nuclear Research Centre, AEOI, P.O. Box 14155-1339, Tehran (Iran, Islamic Republic of)]|[Departamento de Fisica Atomica, Molecular y Nuclear, Apartado 1065, Universidad de Sevilla, E-41080 Sevilla (Spain); Alvarez, M.A.G. [Departamento de Fisica Atomica, Molecular y Nuclear, Apartado 1065, Universidad de Sevilla, E-41080 Sevilla (Spain); Andres, M.V. [Departamento de Fisica Atomica, Molecular y Nuclear, Apartado 1065, Universidad de Sevilla, E-41080 Sevilla (Spain); Cherubini, S. [Department de Physique Nucleaire, Universite Catholique, Louvain-la-Neuve (Belgium)]|[Institut fuer Experimentalphysik III, Ruhr-Universitaet Bochum (Germany); Davinson, T.; Di Pietro, A.; Laird, A.M.; Shotter, A.C.; Smith, W.B.; Woods, P.J. [Department of Physics and Astronomy, Edinburgh University, EH9 3JZ (United Kingdom); Galster, W. [Department de Physique Nucleaire, Universite Catholique, Louvain-la-Neuve (Belgium); Gomez-Camacho, J. [Departamento de Fisica Atomica, Molecular y Nuclear, Apartado 1065, Universidad de Sevilla, E-41080 Sevilla (Spain)]. E-mail: gomez@us.es; Lamehi-Rachti, M. [Van De Graaf Laboratory, Nuclear Research Centre, AEOI, P.O. Box 14155-1339, Tehran (Iran, Islamic Republic of); Martel, I. [Departamento de Fisica Aplicada, Universidad de Huelva, E-21819 Huelva (Spain); Moro, A.M. [Departamento de Fisica Atomica, Molecular y Nuclear, Apartado 1065, Universidad de Sevilla, E-41080 Sevilla (Spain); Rahighi, J. [Van De Graaf Laboratory, Nuclear Research Centre, AEOI, P.O. Box 14155-1339, Tehran (Iran, Islamic Republic of)]|[Department of Physics and Astronomy, Edinburgh University, EH9 3JZ (United Kingdom); Sanchez-Benitez, A.M. [Departamento de Fisica Aplicada, Universidad de Huelva, E-21819 Huelva (Spain); Vervier, J. [Department de Physique Nucleaire, Universite Catholique, Louvain-la-Neuve (Belgium)

    2006-02-06

    Quasi-elastic scattering of {sup 6}He at E{sub lab}=27 MeV from {sup 197}Au has been measured in the angular range of 6{sup o}-72{sup o} in the laboratory system employing LEDA and LAMP detection systems. These data, along previously analysed data of {sup 6}He+{sup 208}Pb at the same energy, are analysed using optical model calculations. The role of Coulomb dipole polarizability has been investigated. Large imaginary diffuseness parameters are required to fit the data. This result is an evidence for long range absorption mechanisms in {sup 6}He induced reactions.

  9. Neutron radiative capture cross section of 232Th in the energy range 0.1 to 1.2 MeV

    International Nuclear Information System (INIS)

    Jain, H.M.; Kailas, S.

    1987-01-01

    Recently reported neutron radiative capture cross section of 232 Th measurements in the energy range 0.1 to 1.2 MeV are compared with the calculations based on the statistical model Hauser-Feshbach theory using the spherical optical model transmission coefficients and simple Fermi gas level density formula. The calculations are in good agreement with the recent experimental data, reproducing both the absolute magnitude and the shape exhibited by the excitation function. The results of this comparative study can be used for improving the evaluation of the neutron radiative capture cross section of 232 Th. 16 refs., 3 tables, 4 figures. (author)

  10. Neutron radiative capture cross section of 232Th in the energy range 0.1 to 1.2 MeV

    International Nuclear Information System (INIS)

    Jain, H.M.; Kailas, S.

    1987-03-01

    Recently reported neutron radiative capture cross section of Th-232 measurements in the energy range 0.1 to 1.2 MeV are compared with the calculations based on the statistical model Hauser-Feshbach theory using the spherical optical model transmission coefficients and simple Fermi gas level density formula. The calculations are in good agreement with the recent experimental data, reproducing both the absolute magnitude and the shape exhibited by the excitation function. The results of this comparative study can be used for improving the evaluation of the neutron radiative capture cross section of Th-232. (author)

  11. Study of the 28Si(16O,20Ne)24Mg reaction

    International Nuclear Information System (INIS)

    Portezan Filho, O.

    1988-01-01

    In this work, measurements of elastic and inelastic angular distributions in the system 16 O+ 20 Si and in the alpha transfer reactions 20 Si( 16 O, 20 Ne) 24 Mg were made in the angular range of 20 0 0 and the transfer reaction 20 Si( 16 O, 12 C) 32 S in the angular range 16 0 0 at the energy of E cm = 31.57 MeV. Optical potential parameters and β 2 deformation parameters as well as spectroscopic factors were determined for the alpha transfer reactions. (A.C.A.S.) [pt

  12. Design Concept of a Seal-off Type 14 MeV Neutron Generator of 10''1''1n/s Range

    Energy Technology Data Exchange (ETDEWEB)

    In, S. R.; Oh, B. H. [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    The total neutron fluence during the life time is expected to be around 10MW·yr/m''2 which may cause a damage of -100 dpa in materials. To estimate the adaptability of candidate materials in a few years, a 14MeV neutron source with a flux level of 3 - 5 x 10''1''8 n/s·m''2, which is the goal of the IFMIF facility costing more than ¤1000M, is necessitated. The problem in making an intense neutron generator of beam target type is really not on the neutron production rate, but on the huge heat generated in the target, because the fusion power is only one of thousands of beam power exerted on the target. We have a plan to develop neutron generators step by step from a 10''8 n/s level. The final goal is establishing a 14MeV neutron irradiation facility at 10''1''4 intensity level.. Up to the 10''1''0 n/s level, there occurs basically no critical thermal problem, because beam power density is in the range of tens W/cm''2. The neutron generator designed in a sealed-off type because of tritium safety is mainly composed of an ion source, target, reaction chamber, and getter pump.. The major design concepts for the neutron generator with the neutron production rate of 10''1''1 n/s range were presented. The specifications of the ion source, target and getter have been determined for attaining the goal of the neutron generation rate.

  13. Upper limit on the inner radiation belt MeV electron intensity

    Science.gov (United States)

    Li, X; Selesnick, RS; Baker, DN; Jaynes, AN; Kanekal, SG; Schiller, Q; Blum, L; Fennell, J; Blake, JB

    2015-01-01

    No instruments in the inner radiation belt are immune from the unforgiving penetration of the highly energetic protons (tens of MeV to GeV). The inner belt proton flux level, however, is relatively stable; thus, for any given instrument, the proton contamination often leads to a certain background noise. Measurements from the Relativistic Electron and Proton Telescope integrated little experiment on board Colorado Student Space Weather Experiment CubeSat, in a low Earth orbit, clearly demonstrate that there exist sub-MeV electrons in the inner belt because their flux level is orders of magnitude higher than the background, while higher-energy electron (>1.6 MeV) measurements cannot be distinguished from the background. Detailed analysis of high-quality measurements from the Relativistic Electron and Proton Telescope on board Van Allen Probes, in a geo-transfer-like orbit, provides, for the first time, quantified upper limits on MeV electron fluxes in various energy ranges in the inner belt. These upper limits are rather different from flux levels in the AE8 and AE9 models, which were developed based on older data sources. For 1.7, 2.5, and 3.3 MeV electrons, the upper limits are about 1 order of magnitude lower than predicted model fluxes. The implication of this difference is profound in that unless there are extreme solar wind conditions, which have not happened yet since the launch of Van Allen Probes, significant enhancements of MeV electrons do not occur in the inner belt even though such enhancements are commonly seen in the outer belt. Key Points Quantified upper limit of MeV electrons in the inner belt Actual MeV electron intensity likely much lower than the upper limit More detailed understanding of relativistic electrons in the magnetosphere PMID:26167446

  14. Inelastic scattering of 1-2.5 MeV neutrons by 235U and 238U nuclei

    International Nuclear Information System (INIS)

    Kornilov, N.V.; Kagalenko, A.B.; Baryba, V.Ya.; Balitskij, A.V.; Androsenko, A.A.; Androsenko, P.A.

    1993-07-01

    The inelastic scattering cross-sections of 1-2.5 MeV neutrons for 235 U and 238 0 nuclei were measured. A detailed description is given of the data processing procedures used, and the methods for determining the neutron flux in the sample. The Monte Carlo method was used to calculate the corrections for multiple neutron scattering and neutron flux attenuation in the sample. Pursuant to an analysis of the fission neutron spectra, we concluded that the systematic error level of the results is ± 3.27%. The results of these cross-section and spectrum measurements for inelastically scattered neutrons are compared with results from other sources and existing evaluations, the possible causes of the divergences for neutrons with an energy level of less than 1 MeV are analysed, and suggestions are put forward for future research work. (author)

  15. Measurement of {sup 232}Th(n, 5nγ) cross sections from 29 MeV to 42 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Kerveno, M.; Baumann, P.; Dessagne, P.; Rudolf, G. [Universite de Strasbourg, IPHC, Strasbourg (France); CNRS, UMR7178, Strasbourg (France); Nolte, R.; Reginatto, M. [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany); Jericha, E. [Technische Universitaet Wien, Atominstitut, Wien (Austria); Jokic, S.; Lukic, S. [Vinca Institute of Nuclear Sciences, Belgrade (Serbia); Koning, A.J. [Nuclear Research and Consultancy Group, Petten (Netherlands); Meulders, J.P. [Institut de Physique Nucleaire, Louvain-la-Neuve (Belgium); Nachab, A. [Universite Cadi Ayyad, Departement de physique, Faculte Poly-disciplinaire de Safi, Safi (Morocco); Pavlik, A. [Faculty of Physics, University of Vienna, Wien (Austria)

    2014-10-15

    The excitation function of the reaction {sup 232} Th(n, 5nγ){sup 228} Th from 29 to 42 MeV has been measured for the first time at the quasi-monoenergetic neutron beam of the UCL cyclotron CYCLONE employing the {sup 7}Li(p,n) source reaction. Taking advantage of the good energy resolution of the planar High-Purity Germanium (HPGe) detectors, prompt γ-ray spectroscopy was used to detect the γ-rays resulting from the decay of excited states of nuclei created by the (n,xn) reactions. The neutron beam was characterized by a combination of time of flight measurements carried out using a liquid scintillation detector and a {sup 238}U fission ionization chamber. Fluence measurements were performed using a proton recoil telescope. The results are compared with TALYS-1.4 code calculations. (orig.)

  16. Probability of spin flipping of proton with energy 6.9 MeV at inelastic scattering with sup(54,56)Fe nuclei

    International Nuclear Information System (INIS)

    Prokopenko, V.S.; Sklyarenko, V.; Chernievskij, V.K.; Shustov, A.V.

    1980-01-01

    Spin-orbital effects of inelastic scattering of protons by nuclei with mean atomic weight are investigated along with the mechanisms of the reaction course by measuring proton spin flip. The experiment consists in measuring proton-gamma coincidences in mutually perpendicular planes by the technique of quick-slow coincidences. The excitation function of the 56 Fe(P,P 1 ) reaction is measured in the 3.5-6.2 MeV energy range. Angular dependences of probability of proton spin flip (a level of 2 + , 0.847 MeV) are measured at energies of incident protons of 4.96; 5.58 and 5.88 MeV. Measurements of probabilities of proton spin flipping at inelastic scattering by sup(54,56)Fe nuclei are performed in the process of studying spin-orbital effects and mechanisms of the reaction course. A conclusion is made that the inelastic scattering process in the energy range under investigation is mainly realized by two equivalent mechanisms: direct interaction and formation of a compound nucleus. Angular dependences for 54 Fe and 56 Fe noticeably differ in the values of probability of spin flip in the angular range of 50-150 deg

  17. Contrast of dry and water-saturated arabidopsis seeds irradiated by MeV energy ions

    International Nuclear Information System (INIS)

    Mei Tao; Qin Huaili; Xue Jianming; Wang Yugang

    2007-01-01

    The dry and water-saturated seeds of Arabidopsis thaliana were irradiated by H + ions with 6.5 MeV in atmosphere. The ion fluence used in this experiment was in the range of 4 x 10 9 -1 x 10 14 ions/cm 2 . According to the structure of the seed and TRIM simulation, the ions with the energy of 6.5 MeV can penetrate the whole seed. The experiment shows that the fluence-response curves for the dry seeds and water-saturated seeds had distinct shoulders and reduced rapidly. The experimental results show that the water-imbibed seeds were more sensitive than the dry seeds and the reason is from free radicals reaction. A model has been constructed, and primely simulates the experiment data. (authors)

  18. Surface temperature measurements for ion-bombarded Si and GaAs at 1.0 to 2.0 MeV

    International Nuclear Information System (INIS)

    Lowe, L.F.; Kennedy, J.K.; Davies, D.E.; Deane, M.L.; Eyges, L.J.

    1975-01-01

    Surface temperatures of ion-bombarded silicon and gallium arsenide have been measured using an infrared detector. Ion beams of N + , N + 2 , O + , O + 2 , C + , CO + , and H + were used at energies from 1--2.0 MeV and at current densities up to 12 μAcenter-dotcm/sup -2/. No temperature dependence was found on ion species, energy, or current. The change in temperature depended only on beam power, target material, and sample mounting technique. With proper mounting temperature increases of 20 degreeC for silicon and 65 degreeC for gallium arsenide were observed for a beam power density of 1.0 Wcenter-dotcm/sup -2/

  19. Probing the Cosmic X-Ray and MeV Gamma-Ray Background Radiation through the Anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Yoshiyuki [Stanford Univ., CA (United States). Kavli Inst. for Particle Astrophysics and Cosmology; SLAC National Accelerator Lab., Menlo Park, CA (United States); Murase, Kohta [Inst. for Advanced Study, Princeton, NJ (United States). School of Natural Sciences; Madejski, Grzegorz M. [Stanford Univ., CA (United States). Kavli Inst. for Particle Astrophysics and Cosmology; SLAC National Accelerator Lab., Menlo Park, CA (United States); Uchiyama, Yasunobu [Stanford Univ., CA (United States). Kavli Inst. for Particle Astrophysics and Cosmology; SLAC National Accelerator Lab., Menlo Park, CA (United States); Rikkyo Univ., Tokyo (Japan). Dept. of Physics

    2013-09-24

    While the cosmic soft X-ray background is very likely to originate from individual Seyfert galaxies, the origin of the cosmic hard X-ray and MeV gamma-ray background is not fully understood. It is expected that Seyferts including Compton thick population may explain the cosmic hard X-ray background. At MeV energy range, Seyferts having non-thermal electrons in coronae above accretion disks or MeV blazars may explain the background radiation. We propose that future measurements of the angular power spectra of anisotropy of the cosmic X-ray and MeV gamma-ray backgrounds will be key to deciphering these backgrounds and the evolution of active galactic nuclei (AGNs). As AGNs trace the cosmic large-scale structure, spatial clustering of AGNs exists. We show that e-ROSITA will clearly detect the correlation signal of unresolved Seyferts at 0.5-2 keV and 2-10 keV bands and will be able to measure the bias parameter of AGNs at both bands. Once the future hard X-ray all sky satellites achieve the sensitivity better than 10-12 erg/cm2/s-1 at 10-30 keV or 30-50 keV - although this is beyond the sensitivities of current hard X-ray all sky monitors - angular power spectra will allow us to independently investigate the fraction of Compton-thick AGNs in all Seyferts. We also find that the expected angular power spectra of Seyferts and blazars in the MeV range are different by about an order of magnitude, where the Poisson term, so-called shot noise, is dominant. Current and future MeV instruments will clearly disentangle the origin of the MeV gamma-ray background through the angular power spectrum.

  20. Probing the cosmic x-ray and MeV gamma ray background radiation through the anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Yoshiyuki [Stanford Univ., CA (United States); Murase, Kohta [Inst. for Advanced Study, Princeton, NJ (United States); Madejski, Grzegorz M. [Stanford Univ., CA (United States); Uchiyama, Yasunobu [Stanford Univ., CA (United States); Rikkyo Univ., Tokyo (Japan)

    2013-09-24

    While the cosmic soft X-ray background is very likely to originate from individual Seyfert galaxies, the origin of the cosmic hard X-ray and MeV gamma-ray background is not fully understood. It is expected that Seyferts including Compton thick population may explain the cosmic hard X-ray background. At MeV energy range, Seyferts having non-thermal electrons in coronae above accretion disks or MeV blazars may explain the background radiation. We propose that future measurements of the angular power spectra of anisotropy of the cosmic X-ray and MeV gamma-ray backgrounds will be key to deciphering these backgrounds and the evolution of active galactic nuclei (AGNs). As AGNs trace the cosmic large-scale structure, spatial clustering of AGNs exists. We show that e-ROSITA will clearly detect the correlation signal of unresolved Seyferts at 0.5-2 keV and 2-10 keV bands and will be able to measure the bias parameter of AGNs at both bands. Once future hard X-ray all sky satellites achieve a sensitivity better than 10–12 erg cm–2 s–1 at 10-30 keV or 30-50 keV—although this is beyond the sensitivities of current hard X-ray all sky monitors—angular power spectra will allow us to independently investigate the fraction of Compton-thick AGNs in all Seyferts. We also find that the expected angular power spectra of Seyferts and blazars in the MeV range are different by about an order of magnitude, where the Poisson term, so-called shot noise, is dominant. Current and future MeV instruments will clearly disentangle the origin of the MeV gamma-ray background through the angular power spectrum.

  1. Cross section ratio and angular distributions of the reaction p + d → {sup 3}He + η at 48.8 MeV and 59.8 MeV excess energy

    Energy Technology Data Exchange (ETDEWEB)

    Adlarson, P.; Calen, H.; Fransson, K.; Gullstroem, C.O.; Heijkenskjoeld, L.; Hoeistad, B.; Johansson, T.; Marciniewski, P.; Redmer, C.F.; Wolke, M.; Zlomanczuk, J. [Uppsala University, Division of Nuclear Physics, Department of Physics and Astronomy, Box 516, Uppsala (Sweden); Augustyniak, W.; Marianski, B.; Morsch, H.P.; Trzcinski, A.; Zupranski, P. [National Centre for Nuclear Research, Department of Nuclear Physics, Warsaw (Poland); Bardan, W.; Ciepal, I.; Czerwinski, E.; Hodana, M.; Jany, A.; Jany, B.R.; Jarczyk, L.; Kamys, B.; Kistryn, S.; Krzemien, W.; Magiera, A.; Moskal, P.; Ozerianska, I.; Podkopal, P.; Rudy, Z.; Skurzok, M.; Smyrski, J.; Wronska, A.; Zielinski, M.J. [Jagiellonian University, Institute of Physics, Krakow (Poland); Bashkanov, M.; Clement, H.; Doroshkevich, E.; Perez del Rio, E.; Pricking, A.; Skorodko, T.; Wagner, G.J. [Eberhard-Karls-Universitaet Tuebingen, Physikalisches Institut, Tuebingen (Germany); Physikalisches Institut der Universitaet Tuebingen, Kepler Center fuer Astro- und Teilchenphysik, Tuebingen (Germany); Bergmann, F.S.; Demmich, K.; Goslawski, P.; Huesken, N.; Khoukaz, A.; Passfeld, A.; Taeschner, A. [Westfaelische Wilhelms-Universitaet Muenster, Institut fuer Kernphysik, Muenster (Germany); Berlowski, M.; Stepaniak, J. [National Centre for Nuclear Research, High Energy Physics Department, Warsaw (Poland); Bhatt, H.; Lalwani, K.; Varma, R. [Indian Institute of Technology Bombay, Department of Physics, Mumbai, Maharashtra (India); Buescher, M.; Engels, R.; Goldenbaum, F.; Hejny, V.; Khan, F.A.; Lersch, D.; Lorentz, B.; Maier, R.; Ohm, H.; Prasuhn, D.; Schadmand, S.; Sefzick, T.; Stassen, R.; Sterzenbach, G.; Stockhorst, H.; Stroeher, H.; Wurm, P.; Zurek, M. [Forschungszentrum Juelich, Institut fuer Kernphysik, Juelich (Germany); Forschungszentrum Juelich, Juelich Center for Hadron Physics, Juelich (Germany); Coderre, D.; Ritman, J. [Forschungszentrum Juelich, Institut fuer Kernphysik, Juelich (Germany); Forschungszentrum Juelich, Juelich Center for Hadron Physics, Juelich (Germany); Ruhr-Universitaet Bochum, Institut fuer Experimentalphysik I, Bochum (Germany); Erven, A.; Erven, W.; Kemmerling, G.; Kleines, H.; Wuestner, P. [Forschungszentrum Juelich, Juelich Center for Hadron Physics, Juelich (Germany); Forschungszentrum Juelich, Zentralinstitut fuer Engineering, Elektronik und Analytik, Juelich (Germany); Eyrich, W.; Hauenstein, F.; Krapp, M.; Zink, A. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Physikalisches Institut, Erlangen (Germany); Fedorets, P. [Forschungszentrum Juelich, Institut fuer Kernphysik, Juelich (Germany); Forschungszentrum Juelich, Juelich Center for Hadron Physics, Juelich (Germany); State Scientific Center of the Russian Federation, Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Foehl, K. [Justus-Liebig-Universitaet Giessen, II. Physikalisches Institut, Giessen (Germany); Goswami, A. [Forschungszentrum Juelich, Institut fuer Kernphysik, Juelich (Germany); Forschungszentrum Juelich, Juelich Center for Hadron Physics, Juelich (Germany); Indian Institute of Technology Indore, Department of Physics, Indore, Madhya Pradesh (India); Grigoryev, K. [Forschungszentrum Juelich, Juelich Center for Hadron Physics, Juelich (Germany); RWTH Aachen, III. Physikalisches Institut B, Physikzentrum, Aachen (Germany); Petersburg Nuclear Physics Institute, High Energy Physics Division, Leningrad district (Russian Federation); Kirillov, D.A.; Piskunov, N.M. [Joint Institute for Nuclear Physics, Veksler and Baldin Laboratory of High Energiy Physics, Moscow region (Russian Federation); Klos, B.; Stephan, E.; Weglorz, W. [University of Silesia, August Chelkowski Institute of Physics, Katowice (Poland); Kulessa, P.; Pysz, K.; Siudak, R.; Szczurek, A. [Polish Academy of Sciences, The Henryk Niewodniczanski Institute of Nuclear Physics, Krakow (Poland); Kupsc, A.; Pszczel, D. [Uppsala University, Division of Nuclear Physics, Department of Physics and Astronomy, Box 516, Uppsala (Sweden); National Centre for Nuclear Research, High Energy Physics Department, Warsaw (Poland); Mikirtychiants, M. [Forschungszentrum Juelich, Institut fuer Kernphysik, Juelich (Germany); Forschungszentrum Juelich, Juelich Center for Hadron Physics, Juelich (DE); Ruhr-Universitaet Bochum, Institut fuer Experimentalphysik I, Bochum (DE); Petersburg Nuclear Physics Institute, High Energy Physics Division, Leningrad district (RU); Pyszniak, A. [Uppsala University, Division of Nuclear Physics, Department of Physics and Astronomy, Box 516, Uppsala (SE); Jagiellonian University, Institute of Physics, Krakow (PL); Roy, A. [Indian Institute of Technology Indore, Department of Physics, Indore, Madhya Pradesh (IN); Sawant, S. [Indian Institute of Technology Bombay, Department of Physics, Mumbai, Maharashtra (IN); Forschungszentrum Juelich, Institut fuer Kernphysik, Juelich (DE); Forschungszentrum Juelich, Juelich Center for Hadron Physics, Juelich (DE); Serdyuk, V. [Forschungszentrum Juelich, Institut fuer Kernphysik, Juelich (DE); Forschungszentrum Juelich, Juelich Center for Hadron Physics, Juelich (DE); Joint Institute for Nuclear Physics, Dzhelepov Laboratory of Nuclear Problems, Moscow region (RU); Sopov, V. [State Scientific Center of the Russian Federation, Institute for Theoretical and Experimental Physics, Moscow (RU); Yamamoto, A. [High Energy Accelerator Research Organization KEK, Tsukuba, Ibaraki (JP); Yurev, L. [Joint Institute for Nuclear Physics, Dzhelepov Laboratory of Nuclear Problems, Moscow region (RU); Zabierowski, J. [National Centre for Nuclear Research, Department of Cosmic Ray Physics, Lodz (PL); Collaboration: WASA-at-COSY Collaboration

    2014-06-15

    We present new data for angular distributions and on the cross section ratio of the p+d → {sup 3}He + η reaction at excess energies of Q = 48.8 MeV and Q = 59.8 MeV. The data have been obtained at the WASA-at-COSY experiment (Forschungszentrum Juelich) using a proton beam and a deuterium pellet target. While the shape of obtained angular distributions show only a slow variation with the energy, the new results indicate a distinct and unexpected total cross section fluctuation between Q = 20 MeV and Q = 60 MeV, which might indicate the variation of the production mechanism within this energy interval. (orig.)

  2. Analysis of Residual Nuclide in a ACM and ACCT of 100-MeV proton beamline By measurement X-ray Spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jeong-Min; Yun, Sang-Pil; Kim, Han-Sung; Kwon, Hyeok-Jung; Cho, Yong-Sub [Korea Atomic Energy Research Institute, Gyeongju (Korea, Republic of)

    2015-10-15

    The proton beam is provides to users as various energy range from 20 MeV to 100 MeV. After protons generated from the ion source are accelerated to 100 MeV and irradiated to target through bending magnet and AC magnet. At this time, relatively high dose X-ray is emitted due to collision of proton and components of beamline. The generated X-ray is remaining after the accelerator is turned off and analyzing residual nuclides through the measurement of X-ray spectrum. Then identify the components that are the primary cause of residual nuclides are detected form the AC magnet(ACM) and associated components (ACCT). Analysis of the X-ray spectrum generated form the AC magnet(ACM) and AC current transformer(ACCT) of 100 MeV beamline according to the proton beam irradiation, most of the residual nuclides are identified it can be seen that emission in the stainless steel by beam loss.

  3. Cross-sections for formation of {sup 89}Zr{sup m} through {sup 90}Zr(n,2n){sup 89}Zr{sup m} reaction over neutron energy range 13.73 MeV to 14.77 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Attar, F.M.D. [Department of Physics, University of Pune, Pune-411007 (India); Mandal, R. [Department of Physics, University of Pune, Pune-411007 (India); Indian Institute of Technology, Kharagpur (India); Dhole, S.D. [Department of Physics, University of Pune, Pune-411007 (India); Saxena, A. [Nuclear Physics Division, BARC, Mumbai (India); Ashokkumar,; Ganesan, S. [Reactor Physics Design Division, BARC, Mumbai (India); Kailas, S. [Nuclear Physics Division, BARC, Mumbai (India); Bhoraskar, V.N. [Department of Physics, University of Pune, Pune-411007 (India)], E-mail: vnb@physics.unipune.ernet.in

    2008-04-01

    The cross-sections for formation of metastable state of {sup 89}Zr ({sup 89}Zr{sup m}, 0.588 MeV, 4.16 m) through {sup 90}Zr(n,2n){sup 89}Zr{sup m} reaction induced by 13.73 MeV to 14.77 MeV neutrons were measured for the first time and also theoretically estimated using Empire-II and Talys programs. At 13.73 MeV neutron energy, the {sup 89}Zr nuclei can be excited to metastable state, {sup 89}Zr{sup m}, when the first and the second emitted neutrons have energies lower than the most probable energy {approx}0.64 MeV. The probability of exciting {sup 89}Zr nuclei to energy levels higher than 0.588 MeV and therefore of populating the metastable state through decay process increases with increasing neutron energy. The measured cross-sections vary from 41{+-}3mb to 221{+-}15mb over neutron energies 13.73 MeV to 14.77 MeV, and are in agreement with the cross-sections estimated using Empire-II code. The formation of {sup 89}Zr{sup m} is favoured when the first and the second reaction neutrons are emitted with the most probable energies rather than lower energy, except for 13.73 MeV neutrons.

  4. The studies of surface properties of 1.5 MeV Si-implanted silicon by multiphonon Raman spectrum

    International Nuclear Information System (INIS)

    Huang, X.

    1995-01-01

    The surface layer of crystalline silicon implanted by 1.5 MeV Si ions with doses ranging from 1 x 10 11 to 1 x 10 15 Si + cm -2 has been studied by two-phonon Raman spectra in both the acoustical overtone region and optical overtone region. Two-phonon Raman line intensities and shifts have been used to investigate the properties in the skin layer. The experimental two-phonon Raman spectra showed a decrease in intensity for both optical and acoustical two-phonon Raman peaks and also showed shifts by different amounts in different directions depending on the particular phonons. The stress values obtained by two-phonon Raman line shifts are compared with those obtained previously by one-phonon Raman shifts. The comparison shows that the surface defects make no contribution to two-phonon Raman line shifts. The two-phonon Raman line shifts show that the surface stress increases as a function of implantation doses. (author)

  5. Study of the process e+e- → K+K- in the center-of-mass energy range 1010-1060 MeV with the CMD-3 detector

    Science.gov (United States)

    Kozyrev, E. A.; Solodov, E. P.; Akhmetshin, R. R.; Amirkhanov, A. N.; Anisenkov, A. V.; Aulchenko, V. M.; Banzarov, V. S.; Bashtovoy, N. S.; Berkaev, D. E.; Bondar, A. E.; Bragin, A. V.; Eidelman, S. I.; Epifanov, D. A.; Epshteyn, L. B.; Erofeev, A. L.; Fedotovich, G. V.; Gayazov, S. E.; Grebenuk, A. A.; Gribanov, S. S.; Grigoriev, D. N.; Ignatov, F. V.; Ivanov, V. L.; Karpov, S. V.; Kasaev, A. S.; Kazanin, V. F.; Korobov, A. A.; Koop, I. A.; Kozyrev, A. N.; Krokovny, P. P.; Kuzmenko, A. E.; Kuzmin, A. S.; Logashenko, I. B.; Lukin, P. A.; Lysenko, A. P.; Mikhailov, K. Yu.; Okhapkin, V. S.; Perevedentsev, E. A.; Pestov, Yu. N.; Popov, A. S.; Razuvaev, G. P.; Rogovsky, Yu. A.; Ruban, A. A.; Ryskulov, N. M.; Ryzhenenkov, A. E.; Shebalin, V. E.; Shemyakin, D. N.; Shwartz, B. A.; Shwartz, D. B.; Sibidanov, A. L.; Shatunov, Yu. M.; Talyshev, A. A.; Vorobiov, A. I.; Yudin, Yu. V.

    2018-04-01

    The process e+e- →K+K- has been studied using 1.7 ×106 events from a data sample corresponding to an integrated luminosity of 5.7 pb-1 collected with the CMD-3 detector in the center-of-mass energy range 1010-1060 MeV. The cross section is measured with about 2% systematic uncertainty and is used to calculate the contribution to the anomalous magnetic moment of the muon aμK+K- = (19.33 ± 0.40) ×10-10, and to obtain the ϕ (1020) meson parameters. We consider the relationship between the e+e- →K+K- and e+e- → KS0 KL0 cross sections and compare it to the theoretical prediction.

  6. A new study of 25Mg(α, n)28Si angular distributions at Eα =3-5 MeV

    International Nuclear Information System (INIS)

    Caciolli, A.; Marchi, T.; Depalo, R.; Collazuol, G.; Montagnoli, G.; Appannababu, S.; Cinausero, M.; Gramegna, F.; Mastinu, P.; Rossi Alvarez, C.; Rigato, V.; Blasi, N.; Wieland, O.; Broggini, C.; Fabris, D.; Menegazzo, R.; Degerlier, M.; Leone, M.

    2014-01-01

    The observation of 26 Al gives us the proof of active nucleosynthesis in the Milky Way. However the identification of the main producers of 26 Al is still a matter of debate. Many sites have been proposed, but our poor knowledge of the nuclear processes involved introduces high uncertainties. In particular, the limited accuracy on the 25 Mg(α, n) 28 Si reaction cross section has been identified as the main source of nuclear uncertainty in the production of 26 Al in C/Ne explosive burning in massive stars, which has been suggested to be the main source of 26 Al in the Galaxy. We studied this reaction through neutron spectroscopy at the CN Van de Graaff accelerator of the Legnaro National Laboratories. Thanks to this technique we are able to discriminate the (α, n) events from possible contamination arising from parasitic reactions. In particular, we measured the neutron angular distributions at 5 different beam energies (between 3 and 5 MeV) in the 17.5 circle - 106 circle laboratory system angular range. The presented results disagree with the assumptions introduced in the analysis of a previous experiment. (orig.)

  7. Beam generation and planar imaging at energies below 2.40 MeV with carbon and aluminum linear accelerator targets.

    Science.gov (United States)

    Parsons, David; Robar, James L

    2012-07-01

    Recent work has demonstrated improvement of image quality with low-Z linear accelerator targets and energies as low as 3.5 MV. In this paper, the authors lower the incident electron beam energy between 1.90 and 2.35 MeV and assess the improvement of megavoltage planar image quality with the use of carbon and aluminum linear accelerator targets. The bending magnet shunt current was adjusted in a Varian linear accelerator to allow selection of mean electron energy between 1.90 and 2.35 MeV. Linac set points were altered to increase beam current to allow experimental imaging in a practical time frame. Electron energy was determined through comparison of measured and Monte Carlo modeled depth dose curves. Planar image CNR and spatial resolution measurements were performed to quantify the improvement of image quality. Magnitudes of improvement are explained with reference to Monte Carlo generated energy spectra. After modifications to the linac, beam current was increased by a factor greater than four and incident electron energy was determined to have an adjustable range from 1.90 MeV to 2.35 MeV. CNR of cortical bone was increased by a factor ranging from 6.2 to 7.4 and 3.7 to 4.3 for thin and thick phantoms, respectively, compared to a 6 MV therapeutic beam for both aluminum and carbon targets. Spatial resolution was degraded slightly, with a relative change of 3% and 10% at 0.20 lp∕mm and 0.40 lp∕mm, respectively, when reducing energy from 2.35 to 1.90 MV. The percentage of diagnostic x-rays for the beams examined here, ranges from 46% to 54%. It is possible to produce a large fraction of diagnostic energy x-rays by lowering the beam energy below 2.35 MV. By lowering the beam energy to 1.90 MV or 2.35 MV, CNR improves by factors ranging from 3.7 to 7.4 compared to a 6 MV therapy beam, with only a slight degradation of spatial resolution when lowering the energy from 2.35 MV to 1.90 MV.

  8. Neutron spectrum determination of d(20)+Be source reaction by the dosimetry foils method

    Science.gov (United States)

    Stefanik, Milan; Bem, Pavel; Majerle, Mitja; Novak, Jan; Simeckova, Eva

    2017-11-01

    The cyclotron-based fast neutron generator with the thick beryllium target operated at the NPI Rez Fast Neutron Facility is primarily designed for the fast neutron production in the p+Be source reaction at 35 MeV. Besides the proton beam, the isochronous cyclotron U-120M at the NPI provides the deuterons in the energy range of 10-20 MeV. The experiments for neutron field investigation from the deuteron bombardment of thick beryllium target at 20 MeV were performed just recently. For the neutron spectrum measurement of the d(20)+Be source reaction, the dosimetry foils activation method was utilized. Neutron spectrum reconstruction from resulting reaction rates was performed using the SAND-II unfolding code and neutron cross-sections from the EAF-2010 nuclear data library. Obtained high-flux white neutron field from the d(20)+Be source is useful for the intensive irradiation experiments and cross-section data validation.

  9. The electron beam characteristics of energies up to 20 MeV and comparison of electron parameters of linear accelerators

    International Nuclear Information System (INIS)

    Awada, M.; Elleithy, M.A.; ElWihady, G.F.; Mostafa, K.A.

    2005-01-01

    The electron beams characteristics studded for the energies 4-20 MeV of Varian 23 EX ,experimental results are presented and compared with the published data. The CADD curves are measured for all energies and carried out the PDD of different applicator sizes ,that compared with the PDD of in the BJR. The quality beam parameters are determined from the CADD curves and calculated the yielded parameters of the corresponding electron energies which compared with the published data of other accelerators and theoretical Monte-Carlo calculation. The beam profiles are measured at different depths to construct the isodose distribution

  10. Calculated neutron-induced cross sections for /sup 58,60/Ni from 1 to 20 MeV and comparisons with experiments

    International Nuclear Information System (INIS)

    Hetrick, D.M.; Fu, C.Y.; Larson, D.C.

    1987-06-01

    Nuclear model codes were used to compute cross sections for neutron-induced reactions on both 58 Ni and 60 Ni for incident energies from 1 to 20 MeV. The input parameters for the model codes were determined through analysis of experimental data in this energy region. Discussion of the models used, the input data, the resulting calculations, extensive comparisons to measured data, and comparisons to the Evaluated Nuclear Data File (ENDF/B-V) for Ni (MAT 1328) are included in this report. 118 refs., 101 figs., 19 tabs

  11. Calculation of a complete data set for n + 83Kr, 84Kr, 85Kr and 86Kr in the energy region 0.001-20 MeV

    International Nuclear Information System (INIS)

    Cai Chonghai

    1999-01-01

    Complete reaction cross sections, secondary neutron spectra and elastic scattering angular distributions of 83 Kr, 84 Kr, 85 Kr and 86 Kr in the energy region 0.001-20 MeV are calculated, theoretical results are in ENDF/B-6 in pretty good accordance with experimental data

  12. Inelastic proton scattering at 800 MeV to the 12C 15.11-MeV state: A search for nuclear critical opalescence

    International Nuclear Information System (INIS)

    Haji-Saeid, M.; Glashausser, C.; Igo, G.; Cornelius, W.; Gazzaly, M.; Irom, F.; McClelland, J.; Moss, J.M.; Pauletta, G.; Thiessen, H.A.; Whitten, C.A. Jr.

    1980-01-01

    The differential cross section for the reaction 12 C(p,p') 12 C* (15.11 MeV, 1 + , T=1) has been measured at 800 MeV; the range of the angular distribution corresponds to momentum transfers of 0.7--2.4 fm -1 [(1-3.3)m/sub π/]. The cross section decreases almost exponentially at large angles; no maximum is observed in the region where nuclear critical opalescence might be expected

  13. Sub 20 meV Schottky barriers in metal/MoTe2 junctions

    Science.gov (United States)

    Townsend, Nicola J.; Amit, Iddo; Craciun, Monica F.; Russo, Saverio

    2018-04-01

    The newly emerging class of atomically-thin materials has shown a high potential for the realisation of novel electronic and optoelectronic components. Amongst this family, semiconducting transition metal dichalcogenides (TMDCs) are of particular interest. While their band gaps are compatible with those of conventional solid state devices, they present a wide range of exciting new properties that is bound to become a crucial ingredient in the future of electronics. To utilise these properties for the prospect of electronics in general, and long-wavelength-based photodetectors in particular, the Schottky barriers formed upon contact with a metal and the contact resistance that arises at these interfaces have to be measured and controlled. We present experimental evidence for the formation of Schottky barriers as low as 10 meV between MoTe2 and metal electrodes. By varying the electrode work functions, we demonstrate that Fermi level pinning due to metal induced gap states at the interfaces occurs at 0.14 eV above the valence band maximum. In this configuration, thermionic emission is observed for the first time at temperatures between 40 K and 75 K. Finally, we discuss the ability to tune the barrier height using a gate electrode.

  14. Electron irradiation effect on short-range ordering in Cu-Al and Ag-Al alloys

    International Nuclear Information System (INIS)

    Kulish, N.P.; Mel'nikova, N.A.; Petrenko, P.V.; Ryabishchuk, A.L.; Tatarov, A.A.

    1990-01-01

    Method of X-ray diffuse scattering is used to study short-range order variation in Cu-Al and Ag-Al alloys under radiation effect and the following heat treatment. Irradiation was carried out at -40 deg C by 1.6 MeV electrons, fluence of 5x10 7 cm -2 and 0.5 MeV gamma-rays, the dose being 10 7 pH

  15. Contribution to the study of the diffusion {alpha}-proton for {alpha} particles of 3,1 and 5,3 MeV; Contribution a l'etude de la diffusion {alpha}-proton pour des particules {alpha} d'energie comprise entre 3,1 et 5,3 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Ruhla, C [Commissariat a l' Energie Atomique, Saclay(France). Centre d' Etudes Nucleaires

    1953-07-01

    The diffusion of the particles has by the light cores that present a weak gate of potential, must permit the survey of the nuclear strengths. Some authors, studying the distribution in energy of the protons given out by a hydrogenated target submitted to a bombardment has variable energy, signal that this distribution has a structure of groups. We tried to reproduce experiences of diffusion {alpha}-proton, in order to verify the existence of the groups of signaled protons in the previous works. However in spite of finer experimental conditions, we had recovered any group structures in the distribution of the protons. This work permits to conclude that there is not a resonance in the {alpha}-proton diffusion for included energies between 3,1 and 5,3 MeV. The absence of resonances confirms the existence of the fundamental level of {sup 5}Li above in the neighborhood of 1,8 MeV {sup 4}He + {sup 1}H. (M.B.) [French] La diffusion des particules a par les noyaux legers qui presentent une faible barriere de potentiel, doit permettre l'etude des forces nucleaires. certains auteurs, etudiant la distribution en energie des protons emis par une cible hydrogenee soumise a un bombardement a d'energie variable, signalent que cette distribution a une structure de groupes. Nous avons essaye de reproduire les experiences du type diffusion {alpha}-proton, afin de verifier l'existence des groupes de protons signales dans les travaux anterieurs. Cependant malgre des conditions experimentales plus fines, nous n'avons retrouve aucunce structure de groupe dans la distribution des protons. Ce travail permet de conclure qu'il n'y a pas de resonance dans la diffusion {alpha}-proton pour des energies comprises entre 3,1 et 5,3 MeV. L'absence de resonances confirme l'existence du niveau fondamental de {sup 5}Li au voisinage de 1,8 MeV au-dessus de {sup 4}He + {sup 1}H. (M.B.)

  16. Search for narrow resonances in e+e- annihilation in the mass region 3.2 to 5.9 GeV

    International Nuclear Information System (INIS)

    Boyarski, A.M.; Breidenbach, M.; Bulos, F.

    1975-01-01

    The mass region 3.2 to 5.9 GeV was searched for evidence of narrow resonances in e + e - /sub f/ → hadron. No evidence was found for any such resonances other than the psi (3695) in this region with a sensitivity ranging from about 12 to 45 percent of the integrated cross section of the psi (3695). The more stringent bounds apply to resonances of a few MeV width, while the looser bounds apply to resonances of up to 20 MeV width. (U.S.)

  17. Scintillator-CCD camera system light output response to dosimetry parameters for proton beam range measurement

    Energy Technology Data Exchange (ETDEWEB)

    Daftari, Inder K., E-mail: idaftari@radonc.ucsf.edu [Department of Radiation Oncology, 1600 Divisadero Street, Suite H1031, University of California-San Francisco, San Francisco, CA 94143 (United States); Castaneda, Carlos M.; Essert, Timothy [Crocker Nuclear Laboratory,1 Shields Avenue, University of California-Davis, Davis, CA 95616 (United States); Phillips, Theodore L.; Mishra, Kavita K. [Department of Radiation Oncology, 1600 Divisadero Street, Suite H1031, University of California-San Francisco, San Francisco, CA 94143 (United States)

    2012-09-11

    The purpose of this study is to investigate the luminescence light output response in a plastic scintillator irradiated by a 67.5 MeV proton beam using various dosimetry parameters. The relationship of the visible scintillator light with the beam current or dose rate, aperture size and the thickness of water in the water-column was studied. The images captured on a CCD camera system were used to determine optimal dosimetry parameters for measuring the range of a clinical proton beam. The method was developed as a simple quality assurance tool to measure the range of the proton beam and compare it to (a) measurements using two segmented ionization chambers and water column between them, and (b) with an ionization chamber (IC-18) measurements in water. We used a block of plastic scintillator that measured 5 Multiplication-Sign 5 Multiplication-Sign 5 cm{sup 3} to record visible light generated by a 67.5 MeV proton beam. A high-definition digital video camera Moticam 2300 connected to a PC via USB 2.0 communication channel was used to record images of scintillation luminescence. The brightness of the visible light was measured while changing beam current and aperture size. The results were analyzed to obtain the range and were compared with the Bragg peak measurements with an ionization chamber. The luminescence light from the scintillator increased linearly with the increase of proton beam current. The light output also increased linearly with aperture size. The relationship between the proton range in the scintillator and the thickness of the water column showed good linearity with a precision of 0.33 mm (SD) in proton range measurement. For the 67.5 MeV proton beam utilized, the optimal parameters for scintillator light output response were found to be 15 nA (16 Gy/min) and an aperture size of 15 mm with image integration time of 100 ms. The Bragg peak depth brightness distribution was compared with the depth dose distribution from ionization chamber measurements

  18. Systematic of fusion incompleteness in 20Ne induced reactions at energy 4-7 MeV/nucleon

    International Nuclear Information System (INIS)

    Ali, Sabir; Ahmad, Tauseef; Kumar, Kamal

    2016-01-01

    In the present work, a study of fusion incompleteness using the 20 Ne projectile over 51 V, 55 Mn and 59 Co and targets has been carried out. The experiment involving 20 N e+ 51 V system was performed at VECC, Kolkata, India. The targets of thickness range 1.19-1.50 rug/cm 2 of spectroscopically pure 51 V (purity 99.99%) were prepared by depositing on aluminum backing of thickness range 1.47-1.64 mg/cm 2 by the vacuum evaporation technique at the target lab of VECC. A stack of six 51 V targets was irradiated for ≈ 11 hrs by 20 Ne 6+ beam at ≈145 MeV. The irradiation of the stack covered the desired energy range of 82-145 MeV. The beam current was ≈ 40 nA during the irradiation hours. The energy of the 20 Ne ion beam incident on each target foil was calculated using stopping power software SRIM. The overall error in the present work is estimated to be ≤20%

  19. Ion emission in solids bombarded with Aun+ (n = 1 - 9) clusters accelerated within the 0.15 - 1.25 MeV energy range

    International Nuclear Information System (INIS)

    Wehbe, Nimer

    2006-06-01

    This experimental work is devoted to the study of the ion emission in solids at the impact of gold clusters of energies within 0.15 to 1.25 MeV range. The physics of ion-solid collisions and the theoretical models of sputtering of solids under ion bombardment are presented in the first chapter. The chapter no. 2 deals with the description of the experimental setup. The study of a gold target allowed to evidence the role of the size and energy of the clusters in determining the emission intensity and the mass distribution of the ions. The 4. chapter gives results from the study of cesium iodide in which the intense emission of CsI clusters could be investigated quantitatively due to multiplicity measurements. Finally, the chapter no. 5 was devoted to the study of a biologic molecule, the phenylalanine, and of a pesticide molecule, chlorosulfuron. This work evidenced the importance of clusters for surface analyses by mass spectrometry

  20. Defect microstructure in copper alloys irradiated with 750 MeV protons

    DEFF Research Database (Denmark)

    Zinkle, S.J.; Horsewell, A.; Singh, B.N.

    1994-01-01

    Transmission electron microscopy (TEM) disks of pure copper and solid solution copper alloys containing 5 at% of Al, Mn, or Ni were irradiated with 750 MeV protons to damage levels between 0.4 and 2 displacements per atom (dpa) at irradiation temperatures between 60 and 200 degrees C. The defect...... significant effect on the total density of small defect clusters, but they did cause a significant decrease in the fraction of defect clusters resolvable as SFT to similar to 20 to 25%. In addition, the dislocation loop density (> 5 nm diameter) was more than an order of magnitude higher in the alloys...

  1. Evaluation of the capture cross section of natural Ti from 10-5eV to 20.106eV

    International Nuclear Information System (INIS)

    Simon, G.; Bersillon, O.; Mosinski, G.; Philis, C.; Trochon, J.; Verges, N.

    1977-01-01

    In the 10 -5 eV - 200 keV energy range a coherent resolved resonance parameter set has been determined for each titanium isotope. From these sets the titanium capture cross section has been calculated with the Reich-Moore formalism and corrected for the missing resonances. From 200 keV up to 20 MeV all the isotopic cross sections were calculated with the help of two statistical model codes NCNR and FISPRO. These calculations have been adjusted on available 50 Ti(n,γ) 51 Ti and Ti(n,γ) experimental results. The elemental titanium capture cross section has been obtained as the weighted sum of the isotopic cross sections. The present evaluation is descriptive of the experimental values. The comparison of the present evaluation with ENDF/BIV shows the ameliorations brought in this cross section: a better description of all the resonances known in the 1 keV - 200 keV energy range; above 200 keV the new data give a more realistic shape showing compound nucleus competition of prominent inelastic scattering channels. As titanium is used as structural material for fast reactors the capture cross section integrals for the two evaluations in different energy ranges are compared. These comparisons show considerable discrepancies in some areas. Thus the new evaluation may change the results of reactor calculations

  2. Nanoparticle formation in H2O/N-2 and H2O/Ar mixtures under irradiation by 20 MeV protons and positive corona discharge

    DEFF Research Database (Denmark)

    Imanaka, M.; Tomita, S.; Kanda, S.

    2010-01-01

    To investigate the contribution of ions to gas nucleation, we have performed experiments on the formation of water droplets in H2O/N-2 and H2O/Ar gas mixtures by irradiation with a 20 MeV proton beam and by positive corona discharge. The size of the formed nanoparticles was measured using...

  3. Neutron-proton analyzing power data between 7.6 and 18.5 MeV

    International Nuclear Information System (INIS)

    Weisel, G.J.; Tornow, W.; Howell, C.R.; Felsher, P.D.; AlOhali, M.; Chen, Z.P.; Walter, R.L.; Lambert, J.M.; Treado, P.A.; Slaus, I.

    1992-01-01

    Measurements of the analyzing power A y (θ) for neutron-proton scattering have been performed at 7.6, 12.0, 14.1, 16.0, and 18.5 MeV. The experimental setup is described as are the finite-geometry corrections applied to the data. One of these corrections, due to the presence of carbon in the scintillators used for neutron detection, is discussed in detail. The A y (θ) data are compared to the predictions of the Paris and Bonn nucleon-nucleon potentials and the predictions of two phase-shift analyses, one of which incorporates charge-independence breaking effects in the 3 P waves

  4. Fracture behaviour of steel 20 MnMoNi 5 5 under stress wave loading

    International Nuclear Information System (INIS)

    Clos, R.; Schreppel, U.; Veit, P.; Zencker, U.; Specht, E.

    1994-01-01

    Crack initiation in fine grained 20 MnMoNi 5 5 steel has been investigated under stress wave loading conditions in the temperature range from -50 C to 20 C by a loading setup similar the ''Split Hopkinson Pressure Bar'' technique. For temperatures up to 20 C, fracture occurs by cleavage and K Id approaches and falls below the reference fracture toughness, while at room temperature stable crack growth occurs with a J i close to the static initiation value of the J-integral. The analysis of the crack tip configuration suggests that stable crack growth is the result of the following simultaneously induced stochastical processes: generation of constrained local microcracks, blunting of the individual crack tips and the deformation of material bridges at different regions along the crack tip front. (orig.)

  5. Calculated neutron-induced cross sections for /sup 63/ /sup 65/Cu from 1 to 20 MeV and comparisons with experiments

    Energy Technology Data Exchange (ETDEWEB)

    Hetrick, D.M.; Fu, C.Y.; Larson, D.C.

    1984-08-01

    Nuclear model codes were used to compute cross sections for neutron-induced reactions on both /sup 63/Cu and /sup 65/Cu for incident energies from 1 to 20 MeV. The input parameters for the model codes were determined through analysis of experimental data in this energy region. Discussion of the models used, the input data, the resulting calculations, extensive comparisons to measured data, and comparisons to the Evaluated Nuclear Data File (ENDF/B-V) for Cu (MAT 1329) are included in this report.

  6. Kerma factors for neutrons of 14 MeV to 60 MeV in elemental H, C, N and O

    Energy Technology Data Exchange (ETDEWEB)

    Behrooz, M.A.; Watt, D.E. (Dundee Univ. (UK). Dept. of Medical Biophysics)

    1981-01-01

    Total kerma factors, and partial kerma factors for production of specified charged H and He particles and heavier recoils, have been computed using basic theoretical and experimental nuclear data for neutrons at energies between 14 MeV and 60 MeV in the main tissue elements and in ICRU muscle tissue. All the more recent computations of total kerma factors, along with those determined from direct experimental measurements of partial kerma factors, now form a reasonably consistent set of data enabling average total kerma factors with coefficients of better than 3% for hydrogen, 16% for carbon, 23% for nitrogen and 9% for oxygen to be recommended for application to medical dosimetry and radiation protection. Total kerma factors for ICRU muscle tissue have a precision of better than 2.5% over the neutron energy range considered. Although there is adequate precision for total kerma factors for soft tissue, nevertheless analysis of the partial kerma factors indicates that caution must be exercised in use of the information for quality specification, e.g. in microdose spectra, and that more detailed basic reaction data is required for fast neutrons.

  7. Annealing behaviour of MeV erbium implanted lithium niobate

    Energy Technology Data Exchange (ETDEWEB)

    Gortmaker, P.; McCallum, J.C. [Royal Melbourne Inst. of Tech., VIC (Australia)

    1993-12-31

    Lithium niobate (LiNbO{sub 3}) is a crystalline ceramic commonly used in the fabrication of optoelectronic devices. Recently, rare earth doping of LiNbO{sub 3} has become a topic of particular interest. The electronic configuration of rare earth elements such as Erbium (Er) and Neodymium (Nd) allows them to lase in nearly any host matrix making fabrication of a whole range of new optoelectronic devices possible. At present, the doping technique, for LiNbO{sub 3} are centred upon diffusion technology, but the diffusion profiles for the rare earths are not generally well-matched to the optical modes of the device. The aim of this research is to develop MeV implantation and annealing conditions of rare earth doped LiNbO{sub 3} that would be compatible with optoelectronic device fabrication. To determine the characteristics of the rare earth elements in the LiNbO{sub 3} host material over the depth range of interest in optoelectronic device applications, high energy Rutherford backscattering spectrometry and ion channeling (RBS-C) must be used. Presented here are the Er depth profile and lattice damage results obtained from 5 MeV RBS-C measurements on samples of LiNbO{sub 3} implanted with various doses of MeV Erbium and subsequently thermally annealed at a temperature of 1000 deg C. It was found that there is a peak implant concentration (2 x 10{sup 16} Er/cm{sup 2}) for which erbium no longer goes substitutional in the lattice, and the implantation damage is not fully removed by annealing. 8 refs., 3 figs.

  8. Annealing behaviour of MeV erbium implanted lithium niobate

    Energy Technology Data Exchange (ETDEWEB)

    Gortmaker, P; McCallum, J C [Royal Melbourne Inst. of Tech., VIC (Australia)

    1994-12-31

    Lithium niobate (LiNbO{sub 3}) is a crystalline ceramic commonly used in the fabrication of optoelectronic devices. Recently, rare earth doping of LiNbO{sub 3} has become a topic of particular interest. The electronic configuration of rare earth elements such as Erbium (Er) and Neodymium (Nd) allows them to lase in nearly any host matrix making fabrication of a whole range of new optoelectronic devices possible. At present, the doping technique, for LiNbO{sub 3} are centred upon diffusion technology, but the diffusion profiles for the rare earths are not generally well-matched to the optical modes of the device. The aim of this research is to develop MeV implantation and annealing conditions of rare earth doped LiNbO{sub 3} that would be compatible with optoelectronic device fabrication. To determine the characteristics of the rare earth elements in the LiNbO{sub 3} host material over the depth range of interest in optoelectronic device applications, high energy Rutherford backscattering spectrometry and ion channeling (RBS-C) must be used. Presented here are the Er depth profile and lattice damage results obtained from 5 MeV RBS-C measurements on samples of LiNbO{sub 3} implanted with various doses of MeV Erbium and subsequently thermally annealed at a temperature of 1000 deg C. It was found that there is a peak implant concentration (2 x 10{sup 16} Er/cm{sup 2}) for which erbium no longer goes substitutional in the lattice, and the implantation damage is not fully removed by annealing. 8 refs., 3 figs.

  9. High-dose MeV electron irradiation of Si-SiO2 structures implanted with high doses Si+

    Science.gov (United States)

    Kaschieva, S.; Angelov, Ch; Dmitriev, S. N.

    2018-03-01

    The influence was studied of 22-MeV electron irradiation on Si-SiO2 structures implanted with high-fluence Si+ ions. Our earlier works demonstrated that Si redistribution is observed in Si+-ion-implanted Si-SiO2 structures (after MeV electron irradiation) only in the case when ion implantation is carried out with a higher fluence (1016 cm-2). We focused our attention on the interaction of high-dose MeV electron irradiation (6.0×1016 cm-2) with n-Si-SiO2 structures implanted with Si+ ions (fluence 5.4×1016 cm-2 of the same order magnitude). The redistribution of both oxygen and silicon atoms in the implanted Si-SiO2 samples after MeV electron irradiation was studied by Rutherford back-scattering (RBS) spectroscopy in combination with a channeling technique (RBS/C). Our results demonstrated that the redistribution of oxygen and silicon atoms in the implanted samples reaches saturation after these high doses of MeV electron irradiation. The transformation of amorphous SiO2 surface into crystalline Si nanostructures (after MeV electron irradiation) was evidenced by atomic force microscopy (AFM). Silicon nanocrystals are formed on the SiO2 surface after MeV electron irradiation. The shape and number of the Si nanocrystals on the SiO2 surface depend on the MeV electron irradiation, while their size increases with the dose. The mean Si nanocrystals height is 16-20 nm after irradiation with MeV electrons at the dose of 6.0×1016 cm-2.

  10. Measurement of the angular distribution of 14 MeV neutrons scattered inelastically from the 0+ level at 7.65 MeV to {sup 12}C (1964); Mesure de la distribution angulaire a 14 MeV de neutrons de diffusion inelastique sur le niveau 0+ de 7,65 MeV du {sup 12}C (1964)

    Energy Technology Data Exchange (ETDEWEB)

    Szabo, I [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1963-11-15

    Inelastic scattering of 14 MeV neutrons from {sup 12}C and angular distribution for the 0{sup +} (7,65 MeV) level, with a time-of-flight spectrometer (over-all resolution 1.4 ns), gives strong forward maximum {sigma}({theta} 15 deg.) {approx_equal} 8 mb/sr suggesting a direct-interaction process. (author) [French] Realisation d'un spectrometre de neutrons rapides a temps-de-vol de resolution totale 1,4 ns. Application: {sup 12}C (n,n') {sup 12}C (7,65 MeV) donnant {sigma}{sub t} {approx_equal} 20 mb, une forte emission vers l'avant {sigma}({theta} 15 deg.) {approx_equal} 8 mb/sr indiquont un processus d'interaction directe. (auteur)

  11. Light charged particle production induced by fast neutrons (En=25-65 MeV) on 209Bi

    International Nuclear Information System (INIS)

    Raeymackers, Erwin; Slypen, Isabelle; Benck, Sylvie; Meulders, Jean-Pierre; Nica, Ninel; Corcalciuc, Valentin

    2002-01-01

    This paper presents the experimental set-up and data reduction procedures regarding the measurement of double-differential cross sections for light charged particle production in fast neutron induced reactions (n, px), (n, dx), (n, tx) and (n, αx) on bismuth in the incident neutron energy range 25-65 MeV and at laboratory angles from 20deg to 160deg. preliminary double-differential and energy-differential cross sections for hydrogen isotopes are presented. (author)

  12. Scattering of 130 MeV helions on 58Ni

    International Nuclear Information System (INIS)

    Djaloeis, A.; Alderliesten, C.; Bojowald, J.; Oelert, W.; Turek, P.

    1982-01-01

    Angular distributions for the tau + 58 Ni scattering to the (g.s., 0 + ) (1.45 MeV, 2 + ) and giant resonance (Esub(x) approximately 63Asup(-1/3) MeV) states in 58 Ni have been measured at Esub(tau) = 130 MeV in an angular range thetasub(c.m.) = 6 0 -83 0 . Optical model and DWBA analyses have been performed. The use of helion optical potentials with either a volume (Woods-Saxon) or a surface (Woods-Saxon derivative) absorption results in good fits to the g.s. and 1.45 MeV data. However, the volume absorption gives consistently a better fit quality. The discrete ambiguity of the helion optical potential has been resolved in favour of the shallow potential family. The giant resonance is found to have a dominant quadrupole (L=2) character with about 6% (EWSR) L=4 admixture. (Auth.)

  13. ENDF/B-V 7 Standards Data File (EN5-ST Library)

    International Nuclear Information System (INIS)

    DayDay, N.; Lemmel, H.D.

    1980-10-01

    This document summarizes the contents and documentation of the ENDF/B-V 7 Standards Data File (EN5-ST Library) released in September 1979. The library contains complete evaluations for all significant neutron reactions in the energy range 10 -5 eV to 20 MeV for H-1, He-3, Li-6, B-10, C-12, Au-197 and U-235 isotopes. The entire library or selective retrievals from it can be obtained free of charge from the IAEA Nuclear Data Section. (author)

  14. L-shell ionization in Au by O5+ -and Ni5+ -ion impact

    International Nuclear Information System (INIS)

    Goyal, D.P.; Singh, B.P.; Verma, H.R.

    1995-01-01

    The L X-ray production cross sections in gold by 60 to 72 MeV O 5+ ions and 58 to 87 MeV Ni 5+ -ions have been measured. The L-subshell ionization cross sections derived from these experimental results have been compared with the direct ionization theories viz. plane wave Born approximation (PWBA) theory and modified perturbed-stationary-state theory with energy loss, Coulomb deflection and relativistic effects (MECPSSR). A new procedure has been described to account for the change in the yield ratio Lβ 1 /Lβ 2.15 with energy, for Ni 5+ -ion impact on gold. The L sub-shell ionization cross sections have been derived from Lβ 1 , Lβ 4 and Lβ 2.15 lines of the Lβ group in addition to those calculated by the conventional Datz TRY3 technique using Lα, Lγ 1 and Lγ 2.3 X-ray lines. From the shift in the energies of various L X-ray lines and changes in their intensities, 3 and 5 spectator vacancies in the M-and N-shells in gold have been estimated with O 5+ -ion impact while 7, 20 and 4 to 6 spectator vacancies have been inferred in the M-, N- and O-shells respectively with Ni 5+ -ion impact in the energy range of the projectiles undertaken in the present studies. (orig.)

  15. Study of the /sup 12/N 2. 43 MeV level. [Differential cross sections; 44 MeV /sup 3/He; 52 MeV p

    Energy Technology Data Exchange (ETDEWEB)

    Cecil, F E; Shepard, J R; Sercely, R R; Peterson, R J [Colorado Univ., Boulder (USA). Nuclear Physics Lab.; King, N S.P. [California Univ., Davis (USA). Crocker Nuclear Lab.

    1976-10-11

    The differential cross sections have been measured for the reactions /sup 12/C(/sup 3/He, /sup 3/He')/sup 12/C(17.77 MeV 0/sup +/ T = 1) and /sup 12/C(/sup 3/He, t)/sup 12/N(2.43 MeV) at Esub(/sup 3/He) = 44 MeV. The similar shapes of the angular distributions and the relative magnitudes of the cross sections suggest that the /sup 12/N 2.43 MeV level is the 0/sup +/ T = 1 analog to the /sup 12/C 17.77 MeV level. The reaction /sup 14/N(p, t)/sup 12/N(2.43 MeV) at Esub(p) = 52 MeV is also studied. The strength with which this level is excited in this reaction is consistent with reasonable two-step calculations assuming the 2.43 MeV level to have Jsup(..pi..) = 0/sup +/.

  16. Studying the Range of Incident Alpha Particles on Cu , Ge , Ag , Cd , Te and Au, With Energy (4-15 MeV)

    International Nuclear Information System (INIS)

    Kadhim, R.O.; Jasim, W.N.

    2015-01-01

    In this paper theoretical calculation of the range for alpha particles with the energy range (4 – 15)MeV when passing in some metallic media (Cu , Ge , Ag , Cd , Te and Au).Semi empirical formula was used in addition to (SRIM-2012) program. The Semi empirical equation was programmed to calculate the range using Matlab Language.The results of the range in these media were compared with the results obtained from SRIM-2012 and )(2011)Andnet) results.There was good agreement among the semi empirical equation result , SRIM- 2012 results and with )(2011)Andnet) results in the low energy.The results showed exponential relation between the range of alpha particles in these media and the velocity of the particles.By recourse with SRIM- 2012 results and application them in Matlab program and by using Curve Fitting Tool we extraction equation with its constants to calculate the range of alpha particles in any element of these six elements with the energy range (4 – 15)MeV.The maximum deviation between the results from the semi empirical calculation and SRIM-2012 results was calculated the statistical test ( kstest2) in Matlab program

  17. Optimization of beam parameters of electron gun for 2.5 MeV/100 kW high power industrial accelerator

    International Nuclear Information System (INIS)

    Pramod, R.; Petwal, V.C.

    2009-01-01

    A 2.5 MeV/100 kW transformer type industrial accelerator is being developed at RRCAT. A Pierce type electron gun consisting of 10 mm diameter LaB 6 disc (indirectly heated) is used as a source of electron beam. The cathode assembly is put on the top of the accelerating structure, which consists of many electrostatic lenses of which the first lens acts as anode of the gun. The quality of the beam injected into the accelerating structure depends on the anode voltage, shape and size of anode and its distance from the cathode. The anode is subjected to variable voltage during the operation of accelerator from energy 1 MeV to 2.5 MeV, which results in variable emittance at the exit of the electron gun. The electron beam from the gun should provide parallel or slightly convergent beam with long focal length and the emittance of the beam at the exit of electron gun should match the beam acceptance limit of the accelerating structure. The EGUN code is used to optimize the shape and size of the anode, its distance from the cathode to achieve above objectives. Our study suggests that the desired beam parameters at the exit of the anode can be obtained by reducing the aperture size of the anode and by applying suitable voltage gradient to the anode. (author)

  18. 22 CFR 20.5 - Survivor benefits.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Survivor benefits. 20.5 Section 20.5 Foreign Relations DEPARTMENT OF STATE PERSONNEL BENEFITS FOR CERTAIN FORMER SPOUSES § 20.5 Survivor benefits. (a) Type of benefits. A former spouse who meets the eligibility requirements of § 20.3 is entitled to...

  19. Klystron High Power Operation for KOMAC 100-MeV Proton Linac

    Energy Technology Data Exchange (ETDEWEB)

    Seol, Kyung-Tae; Kim, Seong-Gu; Kwon, Hyeok-Jung; Kim, Han-Sung; Cho, Yong-Sub [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    The Korea multi-purpose accelerator complex (KOMAC) accelerator facility has a 100-MeV proton linac, five beam lines for 20-MeV beam utilization, and another five beam lines for 100-MeV beam utilization. The 100-MeV linac consists of a 50-keV proton injector based on a microwave ion source, a 3-MeV RFQ with a four-vane structure, and a 100-MeV DTL. Nine sets of 1MW klystrons have been operated for the 100-MeV proton linac. The klystron filament heating time was approximately 5700 hours in 2014, and RF operation time was 2863.4 hours. During the high power operation of the klystron, unstable RF waveforms appeared at the klystron output, and we have checked and performed cavity frequency adjustments, magnet and heater current, reflection from a circulator, klystron test without a circulator, and the frequency spectrum measurement. Nine sets of the klystrons have been operated for the KOMAC 100-MeV proton linac. The klystron filament heating time was 5700 hours and RF operation time was 2863.4 hours during the operation in 2014. Some klystrons have unstable RF waveforms at specific power level. We have checked and tested the cavity frequency adjustment, reflection from a circulator, high power test without a circulator, and frequency spectrum at the unstable RF.

  20. Measurement of the neutron and gamma-ray spectra originating from a 14-MeV neutron source in liquid nitrogen and liquid air

    International Nuclear Information System (INIS)

    Broecker, B.; Clausen, K.; Schneider-Kuehnle, P.; Weinert, M.

    1975-01-01

    An experiment to measure the radiation transport originating from a 14-MeV neutron source in liquid nitrogen and liquid air is presented. Neutron and gamma-ray spectra were measured with a proton-recoil NE 213 scintillator and with four spherical proportional counters in a tank filled with liquid nitrogen or liquid air. The neutron spectra cover the energy range of 20 keV to 18 MeV. The source-detector separation varies in the liquid medium between 60 and 240 cm. The experimental setup is briefly described and the errors are estimated. (2 tables, 9 figures) (auth)

  1. Measurement of the D(n,2n)p reaction cross section up to 30 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Laborie, J.M.; Ledoux, X.; Varignon, C.; Lazauskas, R.; Morillon, B.; Belier, G.; Arnal, N. [CEA Bruyeres-le-Chatel (DPTA/SPN), 91 (France). Dept. de Physique Theorique et Appliquee; Dore, D. [CEA Saclay, Dept. d' Astrophysique, de Physique des Particules, de Physique Nucleaire et de l' Instrumentation Associee (DAPNIA/SPhN), 91- Gif sur Yvette (France)

    2008-07-01

    This article presents a running experimental program to measure the neutron-induced deuteron break-up reaction between 5 and 10 MeV, and between 20 and 30 MeV. The measurements are performed with a C{sub 6}D{sub 6} detector as deuteron target placed in a beam line of the Tandem 7 MV accelerator in Cea facilities, dedicated to the use of a 4{pi} neutron detector which allows us to measure the two emitted neutrons. The total uncertainty is evaluated from 8.5 to 11 per cent. This experimental work is done in parallel with an ab-initio calculation of the reaction which is sum up in the text. Comparisons to the measured cross section are done together with CENDL2 and Endf/B-VII evaluations. (authors)

  2. Measurement of the D(n,2n)p reaction cross section up to 30 MeV

    International Nuclear Information System (INIS)

    Laborie, J.M.; Ledoux, X.; Varignon, C.; Lazauskas, R.; Morillon, B.; Belier, G.; Arnal, N.

    2008-01-01

    This article presents a running experimental program to measure the neutron-induced deuteron break-up reaction between 5 and 10 MeV, and between 20 and 30 MeV. The measurements are performed with a C 6 D 6 detector as deuteron target placed in a beam line of the Tandem 7 MV accelerator in Cea facilities, dedicated to the use of a 4π neutron detector which allows us to measure the two emitted neutrons. The total uncertainty is evaluated from 8.5 to 11 per cent. This experimental work is done in parallel with an ab-initio calculation of the reaction which is sum up in the text. Comparisons to the measured cross section are done together with CENDL2 and Endf/B-VII evaluations. (authors)

  3. Design study of a far-infrared free electron laser with a 20 MeV RF linear accelerator

    International Nuclear Information System (INIS)

    Nakata, S.; Tsukishima, C.; Hifumi, T.; Okuda, S.; Sato, S.; Yosojima, Y.

    1991-01-01

    A FEL in the far-infrared region has been designed using a low energy RF linear accelerator. First we estimate a small signal gain from spontaneous emission using the Madey's theorem. In the calculation following effects are included: an actual field distribution (using a measured magnetic field), beam envelope in the phase space through the undulator, energy spread, and electron beam mis-alignment to the undulator axis. We have developed a code which can simulate three dimensional processes of the electron interaction with multi-mode laser fields in the undulator. From this code we could obtain the time dependent bunching process of electrons and amplification of the laser field. During the calculation we assume an electron beam of 20 MeV, 100 mA with a pulse length of 3 μs, and an undulator of 28 periods, 6 cm periodic length and 2.5 kG peak field. The results from these calculations show that the small-signal gain over 40 % can be obtained, but mis-alignment of the beam severely degrades the gain. The results also show that the output power of several MW can be obtained under the above conditions. Considering the simulation results, a FEL beam line was constructed and the beam size at the undulator was measured. And electrons were focused enough for the FEL experiment. (author)

  4. Unified 1.9...4.0 MeV linear accelerators with interchangeable accelerating structures for customs inspection

    International Nuclear Information System (INIS)

    Budtov, A.A.; Klinov, A.P.; Krestianinov, A.S.

    2004-01-01

    A series of compact linear electron accelerators for 1.9, 2.5 and 4.0 MeV equipped with a local radiation shielding has been designed and constructed in the NPK LUTS, the D.V.Efremov Institute (NIIEFA). The accelerators are intended for mobile facilities used for customs inspection of large-scale containers. Results of optimizing calculations of irradiator parameters and electron dynamics, verified under accelerators testing, are presented in the report. The main design approaches allowing the construction of unified accelerators with interchangeable accelerating structures for energies in the range of 1.9...4.0 MeV are also given

  5. Fast Neutron Radiative Capture Cross Sections for some Important Standards from 30 keV to 1.5 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Hellstroem, J

    1971-12-15

    Neutron capture radiative cross sections for Ta, Ag, In and Au have been measured between 30 keV and 1.5 MeV using time-of-flight technique. The detector used was a large liquid scintillator. Cross sections are given in relative and absolute units

  6. Fast Neutron Radiative Capture Cross Sections for some Important Standards from 30 keV to 1.5 MeV

    International Nuclear Information System (INIS)

    Hellstroem, J.

    1971-12-01

    Neutron capture radiative cross sections for Ta, Ag, In and Au have been measured between 30 keV and 1.5 MeV using time-of-flight technique. The detector used was a large liquid scintillator. Cross sections are given in relative and absolute units

  7. Photon mass energy absorption coefficients from 0.4 MeV to 10 MeV for silicon, carbon, copper and sodium iodide

    International Nuclear Information System (INIS)

    Oz, H.; Gurler, O.; Gultekin, A.; Yalcin, S.; Gundogdu, O.

    2006-01-01

    The absorption coefficients have been widely used for problems and applications involving dose calculations. Direct measurements of the coefficients are difficult, and theoretical computations are usually employed. In this paper, analytical equations are presented for determining the mass energy absorption coefficients for gamma rays with an incident energy range between 0.4 MeV and 10 MeV in silicon, carbon, copper and sodium iodide. The mass energy absorption coefficients for gamma rays were calculated, and the results obtained were compared with the values reported in the literature.

  8. Photon mass energy absorption coefficients from 0.4 MeV to 10 MeV for silicon, carbon, copper and sodium iodide

    Energy Technology Data Exchange (ETDEWEB)

    Oz, H.; Gurler, O.; Gultekin, A. [Uludag University, Bursa (Turkmenistan); Yalcin, S. [Kastamonu University, Kastamonu (Turkmenistan); Gundogdu, O. [University of Surrey, Guildford (United Kingdom)

    2006-07-15

    The absorption coefficients have been widely used for problems and applications involving dose calculations. Direct measurements of the coefficients are difficult, and theoretical computations are usually employed. In this paper, analytical equations are presented for determining the mass energy absorption coefficients for gamma rays with an incident energy range between 0.4 MeV and 10 MeV in silicon, carbon, copper and sodium iodide. The mass energy absorption coefficients for gamma rays were calculated, and the results obtained were compared with the values reported in the literature.

  9. Feasibility of Colliding-beam fast-fission reactor via 238U80++238 U80+ --> 4 FF + 5n + 430 MeV beam with suppressed plutonium and direct conversion of fission fragment (FF) energy into electricity and/or Rocket propellant with high specific impulse

    Science.gov (United States)

    Maglich, Bogdan; Hester, Tim; Calsec Collaboration

    2015-10-01

    Uranium-uranium colliding beam experiment1, used fully ionized 238U92+ at energy 100GeV --> accelerated through 3 MV accelerator, will collide beam 240 MeV --> 4 FF + 5n + 430 MeV. Using a simple model1 fission σf ~ 100 b. Suppression of Pu by a factor of 106 will be achieved because NO thermal neutron fission can take place; only fast, 1-3 MeV, where σabs is negligible. Direct conversion of 95% of 430 MeV produced is carried by electrically charged FFs which are magnetically funneled for direct conversion of energy of FFs via electrostatic decelerators4,11. 90% of 930 MeV is electrically recoverable. Depending on the assumptions, we project electric _ power density production of 20 to 200 MWe m-3, equivalent to Thermal 1.3 - 13 GWthm-3. If one-half of unburned U is used for propulsion while rest powers system, heavy FF ion mass provides specific impulse Isp = 106 sec., 103 times higher than current rocket engines.

  10. Analyzing power measurements for 209Bi(n,n) at 6 and 9 MeV and consistent dispersive optical-model analyses for n+209Bi and n+208Pb from -20 to +80 MeV

    International Nuclear Information System (INIS)

    Weisel, G.J.; Tornow, W.; Howell, C.R.; Felsher, P.D.; AlOhali, M.; Roberts, M.L.; Das, R.K.; Walter, R.L.; Mertens, G.

    1996-01-01

    High-accuracy measurements of A y (θ) data for elastic scattering for n+ 209 Bi have been performed at 6 and 9 MeV. The data are incorporated into a large database of σ(θ), A y (θ), and σ T for n+ 209 Bi covering the energy range 1.0 endash 80 MeV. A complementary database is constructed for n+ 208 Pb and a dispersive optical-model analysis is performed for both scattering systems while constraining many of the parameters to be identical for both systems. A good representation of both databases is obtained with conventional geometry and spin-orbit parameters. The 208 Pb model predicts quite well the measured energies of valence single-particle and single-hole bound states. Occupation probabilities and spectroscopic factors for the same bound states are also calculated. Finally, a fully constrained model is presented in which the only differences between the n+ 208 Pb and the n+ 209 Bi systems are the Fermi energy and the isospin dependence in the real volume potential. copyright 1996 The American Physical Society

  11. 75 MeV boron ion irradiation studies on Si PIN photodiodes

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakara Rao, Y.P.; Praveen, K.C. [Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore 570006 (India); Rejeena Rani, Y. [Integrated Circuits Division, Bharat Electronics Limited, Bangalore 560013, Karnataka (India); Tripathi, Ambuj [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Gnana Prakash, A.P., E-mail: gnanap@hotmail.com [Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore 570006 (India)

    2013-12-01

    The highly sensitive silicon PIN photodiodes were fabricated to use in radiation environments. The Si PIN photodiodes are coated with 150 nm silicon dioxide (SiO{sub 2}) as anti-reflective (AR) coating. The presence of AR coating on the performance of irradiated PIN photodiodes is studied up to a total dose of 10 Mrad. The effects of 75 MeV boron (B{sup 5+}) ions and {sup 60}Co gamma radiation on the I–V, C–V and spectral responses of PIN photodiodes were studied systematically to understand the radiation tolerance of the devices. The 75 MeV B{sup 5+} irradiation results are compared with {sup 60}Co gamma irradiated results in the same dose range for 1 mm × 1 mm and 10 mm × 10 mm active area PIN photodiodes. The irradiation results show that the ion irradiated PIN photodiodes show more degradation when compared {sup 60}Co gamma irradiated devices. The irradiation results are presented in this paper and the possible mechanism behind the degradation of photodiodes is also discussed in the paper.

  12. XRD study of yttria stabilized zirconia irradiated with 7.3 MeV Fe, 10 MeV I, 16 MeV Au, 200 MeV Xe and 2.2 GeV Au ions

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, K.; Yoshizaki, H. [Department of Materials Science, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Saitoh, Y. [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, Takasaki, Gunma 370-1292 (Japan); Ishikawa, N. [Tokai Research and Development Center, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Iwase, A., E-mail: iwase@mtr.osakafu-u.ac.jp [Department of Materials Science, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan)

    2016-03-01

    To simulate energetic neutron irradiation effects, yttria-stabilized zirconia (YSZ) which is one of the major materials for electrical corrosion potential sensors (ECP sensors) was irradiated with heavy ions at energies ranging from 7.3 MeV to 2.2 GeV. Ion irradiation effects on the lattice structure were analyzed using the X-ray diffraction (XRD). The increase in lattice constant was induced by the ion irradiation. It was dominated by the elastic collision process and not by the electronic excitation process. The lattice disordering which was observed as a broadening of XRD peaks was also induced by the irradiation especially for 200 MeV Xe ion irradiation. The present result suggests that the expansion and/or the disordering of YSZ lattice induced by energetic neutrons may affect the durability of a joint interface between a metal housing and YSZ membrane for the usage of ECP sensors in nuclear power reactors.

  13. Neutron Elastic Scattering Cross Sections of Iron and Zinc in the Energy Region 2.5 to 8.1 MeV

    International Nuclear Information System (INIS)

    Holmqvist, B.; Johansson, S.G.; Lodin, G.; Wiedling, T.; Kiss, A.

    1966-12-01

    Angular distributions were measured for the elastic scattering of neutrons from iron at five energies between 3.0 and 8. 1 MeV and from zinc at eight energies between 2.5 and 8.1 MeV. Time-of-flight technique was used. Corrections for neutron flux attenuation, multiple elastic scattering, and the finite geometry of the source-sample detector system were made by using a Monte Carlo program. An optical model potential with Saxon-Woods form factors was used to fit theoretical angular distributions to the experimental ones. The parameter values giving the best fits to the experimental distributions were calculated by a computer

  14. Neutron Elastic Scattering Cross Sections of Iron and Zinc in the Energy Region 2.5 to 8.1 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Holmqvist, B; Johansson, S G; Lodin, G; Wiedling, T [AB Atomenergi, Nyko eping (Sweden); Kiss, A [Inst. for Experimental Physics, Univ. of Debrecen, De brecen (Hungary)

    1966-12-15

    Angular distributions were measured for the elastic scattering of neutrons from iron at five energies between 3.0 and 8. 1 MeV and from zinc at eight energies between 2.5 and 8.1 MeV. Time-of-flight technique was used. Corrections for neutron flux attenuation, multiple elastic scattering, and the finite geometry of the source-sample detector system were made by using a Monte Carlo program. An optical model potential with Saxon-Woods form factors was used to fit theoretical angular distributions to the experimental ones. The parameter values giving the best fits to the experimental distributions were calculated by a computer.

  15. Determination of the absolute efficiency of an organic scintillator for neutrons with energies between 0.5 and 800 MeV

    International Nuclear Information System (INIS)

    Howe, S.D.; Lisowski, P.W.; Russell, G.J.; King, N.S.P.; Donnert, H.J.

    1984-01-01

    We have determined the absolute efficiency of an NE-213 scintillator for neutrons with energies from 0.5 to 800 MeV. The detector was 5.1 cm in diameter and 2.5 cm deep. The efficiencies were obtained for detector thresholds of 0.011, 0.48, 1.12, and 4.48 MeVee. Our results are compared to predictions of the STANTON computer code. (orig.)

  16. Pion production from deuterium by the bombardment with polarized protons of 277 and 500 MeV

    International Nuclear Information System (INIS)

    Lolos, G.J.; Auld, E.G.; Giles, G.; Jones, G.; McParland, B.; Ottewell, D.; Walden, P.L.; Zeigler, W.

    1982-11-01

    Analyzing power measurements of the (anti) pd → tπ + reaction are reported at incident proton energies of 277 and 500 MeV. The 277 MeV results span the angular range from 70 0 to 130 0 in the centre of mass while the two 500 MeV measurements at large angles were taken as a check of published results. With the angular distribution of the analyzing power at 277 MeV being now available, an examination of the energy dependence of the analyzing power shows that it exhibits characteristics closely resembling the shape and magnitude of the distribution observed for nuclei in the 9-12 mass range

  17. L-shell X-ray production cross sections of Ce, Nd, Sm, Eu, Gd, and Dy by impact of {sup 14}N{sup 2+} ions with energies between 7.0 MeV and 10.5 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Murillo, G.; Méndez, B.; López-Monroy, J. [Departamento de Aceleradores, Instituto Nacional de Investigaciones Nucleares, Carr. México-Toluca S/N, Ocoyoacac, Edo. Méx. 52750 (Mexico); Miranda, J., E-mail: miranda@fisica.unam.mx [Instituto de Física, Universidad Nacional Autónoma de México, A.P. 20-364, México, Cd. Mx. 01000 (Mexico); Villaseñor, P. [Departamento de Aceleradores, Instituto Nacional de Investigaciones Nucleares, Carr. México-Toluca S/N, Ocoyoacac, Edo. Méx. 52750 (Mexico)

    2016-09-15

    Highlights: • A new data set of L X-ray production cross sections by nitrogen ion impact is given. • The target elements have atomic numbers in the range 58–66 (lanthanoids). • A universal scaling as function of a reduced velocity variable is applied. • The eCPSSR model with EC and MI corrections gives very good results. - Abstract: L-shell X-ray production cross sections from the lanthanoid elements Ce, Nd, Sm, Eu, Gd, and Dy, induced by the impact of {sup 14}N{sup 2+} ions with energies in the interval 7.0 MeV to 10.5 MeV (0.50 MeV/μ to 0.75 MeV/μ), were measured and then compared with theoretical calculations obtained with the ECPSSR model with exact limits of integration (eCPSSR) and related corrections. These include the electron capture by the incoming ion and multiple ionizations of higher shells. Data from this work were contrasted with previously published L X-ray production cross sections for {sup 14}N{sup 2+} ion impact. As with other ions, a universal behavior is found when L{sub α} and L{sub γ} X-ray production cross sections are plotted as a function of reduced velocity parameters. The agreement with theoretical predictions was very good when the corrections were applied to the eCPSSR model.

  18. Effects of repulsive three-body force in 12C + 12C scattering at 100A MeV

    Directory of Open Access Journals (Sweden)

    W.W. Qu

    2015-12-01

    Full Text Available The angular distribution of 12C + 12C scattering at an incident energy of 100A MeV has been measured. The elastic and inelastic scatterings in 12C to the excitation energies of up to ∼45 MeV were measured simultaneously for the first time with the high-resolution Grand Raiden spectrometer at the Research Center for Nuclear Physics (RCNP. The angular distributions of the elastic scattering to the ground state (01+ and inelastic scattering to the 4.44 MeV (21+ excited state were precisely obtained in the angular range of 1.0°–7.5° with a step of 0.1°. Additionally, the angular distribution was obtained for the sum of the cross sections for excitation energies above the 4.44 MeV state up to 11 MeV, which includes the 7.65 MeV (02+, 9.64 MeV (31−, and 10.30 MeV (22+ states, in addition to probably the simultaneous excitation of the 4.44 MeV state in the projectile and the target nuclei. Those combined data provide a means to study the effects of channel coupling on the elastic cross section. The observed angular distributions are compared with theoretical calculations based on three double-folding models with complex G-matrix interactions, the CEG07b, MPa, and ESC models. The importance of three-body repulsive forces included in the CEG07b and MPa models will be discussed.

  19. Quasi-monoenergetic neutron energy spectra for 246 and 389 MeV (7)Li(p,n) reactions at angles from 0 degrees to 300 degrees

    CERN Document Server

    Iwamoto, Y; Nakamura, T; Nakashima, H; Mares, V; Itoga, T; Matsumoto, T; Nakane, Y; Feldbaumer, E; Jaegerhofer, L; Pioch, C; Tamii, A; Satoh, D; Masuda, A; Sato, T; Iwase, H; Yashima, H; Nishiyama, J; Hagiwara, M; Hatanaka, K; Sakamoto, Y

    2011-01-01

    The authors measured the neutron energy spectra of a quasi-monoenergetic (7)Li(p,n) neutron source with 246 and 389 MeV protons set at seven angles (0 degrees, 2.5 degrees, 5 degrees, 10 degrees, 15 degrees, 20 degrees and 30 degrees), using a time-of-flight (TOF) method employing organic scintillators NE213 at the Research Center for Nuclear Physics (RCNP) of Osaka University. The energy spectra of the source neutrons were precisely deduced down to 2 MeV at 0 degrees and 10 MeV at other angles. The cross-sections of the peak neutron production reaction at 0 degrees were on the 35-40 mb line of other experimental data, and the peak neutron angular distribution agreed well with the Taddeucci formula. Neutron energy spectra below 100 MeV at all angles were comparable, but the shapes of the continuum above 150 MeV changed considerably with the angle. In order to consider the correction required to derive the response in the peak region from the measured total response for high-energy neutron monitors such as DAR...

  20. Forecasting E > 50-MeV Proton Events with the Proton Prediction System (PPS)

    Science.gov (United States)

    Kahler, S. W.; White, S. M.; Ling, A. G.

    2017-12-01

    Forecasting solar energetic (E > 10 MeV) particle (SEP) events is an important element of space weather. While several models have been developed for use in forecasting such events, satellite operations are particularly vulnerable to higher-energy (> 50 MeV) SEP events. Here we validate one model, the proton prediction system (PPS), which extends to that energy range. We first develop a data base of E > 50-MeV proton events > 1.0 proton flux units (pfu) events observed on the GOES satellite over the period 1986 to 2016. We modify the PPS to forecast proton events at the reduced level of 1 pfu and run PPS for four different solar input parameters: (1) all > M5 solar X-ray flares; (2) all > 200 sfu 8800-MHz bursts with associated > M5 flares; (3) all > 500 sfu 8800-MHz bursts; and (4) all > 5000 sfu 8800-MHz bursts. For X-ray flare inputs the forecasted event peak intensities and fluences are compared with observed values. The validation contingency tables and skill scores are calculated for all groups and used as a guide to use of the PPS. We plot the false alarms and missed events as functions of solar source longitude.

  1. Supralinear response and efficiency of LiF:Mg,Ti to 0.7, 1.5 and 3 MeV protons

    International Nuclear Information System (INIS)

    Gamboa-deBuen, I.; Aviles, P.; Rodriguez-Villafuerte, M.; Buenfil, A.E.; Ruiz-Trejo, C.; Brandan, M.E.

    2001-01-01

    The thermoluminescent (TL) response, supralinearity function, and relative efficiency with respect to 60 Co γ-rays, of TLD-100 exposed to 0.7, 1.5 and 3 MeV protons have been measured. The TL response of the glow curve peaks using two different deconvolutions, separating in either 7 (3-9) or 9 peaks (3-10 and peaks 6a and 6b), was investigated. Results for the supralinearity function of peaks 5 and 7-9 and the relative response of peaks 5 and 7 are insensitive to the chosen deconvolution scheme. At all energies we observe that peak 5 is slightly supralinear and that supralinearity increases as a function of the peak temperature. The relative efficiencies, measured for the total TL signal (area under the glow curve) and peaks 5 and 7, decrease with the proton energy having values of 0.33, 0.46 and 0.70 (total TL signal), 0.22, 0.32 and 0.53 (peak 5) and 1.4, 2.6 and 3.6 (peak 7) at 0.7, 1.5 and 3 MeV, respectively. These data agree with the systematics reported in the literature. The measurements of the supralinearity function are compared with Monte Carlo track interaction model calculations. The analysis suggests that the model ion track effective radius and the saturation radius are independent of the incident ion energy

  2. Elastic scattering of 120, 145 and 172.5 MeV α-particles by 12C, 24Mg and 27Al and optical model analysis

    International Nuclear Information System (INIS)

    Wiktor, S.; Mayer-Boericke, C.; Kiss, A.; Rogge, M; Turek, P.

    1980-12-01

    The 120,145 and 172.5 MeV α-particle beams from JULIC were used to measure differential cross sections for elastic scattering on 12 C, 24 Mg and 27 Al in the angular range from about 5deg to 70deg (c.m. system). The angular distributions were analysed extensively in terms of the optical model using a variety of potential forms. Apart from the parametrized forms of potential, as Wood-Saxon (WS) or rather (WS)sup(ν) also a model independent representation of potential spline potential was employed. The analysis based on the parametrized forms of the potential made it possible to find the best fit parameter sets, which were than examined on their uniqueness and energy dependence. Emphasis was given to gaining information on the radial shape of the potential. (author)

  3. Excitation energy partition in deeply inelastic collisions between 40Ar and Ag at 27 MeV per nucleon

    International Nuclear Information System (INIS)

    Borderie, B.; Rivet, M.F.; Cabot, C.; Fuchs, H.; Gardes, D.; Hanappe, F.; Jouan, D.; Montoya, M.

    1991-01-01

    The dynamics of the two partners produced in dissipative collisions has been experimentally studied for the system 40 Ar+Ag at 27 MeV per nucleon. Primary masses of the fragments can then be calculated; the excitation energy partition between the two fragments is derived from the number of particles evaporated by each fragment. We found that this division evolves from equipartition to a repartition close to thermal equilibrium in the excitation energy range 300-350 MeV or interaction times 5-10x10 -22 s. (orig.)

  4. Spectrum of atmospheric gamma rays to 10 MeV at lambda = 40 deg. [as function of altitude

    Science.gov (United States)

    Peterson, L. E.; Schwartz, D. A.; Ling, J. C.

    1973-01-01

    Results of measurements of the differential counting rate spectra due to atmospheric gamma rays as a function of altitude to 3.6 g/sq cm over Texas. Two gain settings and a 128-channel pulse height analyzer were used to cover the range from 0.2 to 10 MeV. The detector was a 7.6 x 7.6 cm NaI crystal, which was surrounded on five sides by a 2-cm-thick plastic anticoincidence shield for charged particle rejection. The system had a nearly isotropic response to photons above 0.2 MeV. The spectrum at ceiling appeared as a steep continuum with a power-law index of about 1.4. The only obvious feature was the 0.51-MeV positron annihilation line. The spectral shape was independent for depths less than 20 g/sq cm, the absolute intensity varying in proportion to the intensity of the cosmic ray secondary charged particles. Also, at depths less than 30 g/sq cm the observed flux variation with altitude can be described in terms of an empirical depth-dependent source function.

  5. 46 CFR 58.20-5 - Design.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Design. 58.20-5 Section 58.20-5 Shipping COAST GUARD... SYSTEMS Refrigeration Machinery § 58.20-5 Design. (a) Refrigeration machinery may be accepted for installation provided the design, material, and fabrication comply with the applicable requirements of the ABS...

  6. Enhanced diffusion of dopants in vacancy supersaturation produced by MeV implantation

    International Nuclear Information System (INIS)

    Venezia, V.C.; Univ. of North Texas, Denton, TX; Haynes, T.E.; Agarwal, A.; Lucent Technologies, Murray Hill, NJ; Gossmann, H.J.; Eaglesham, D.J.

    1997-04-01

    The diffusion of Sb and B markers has been studied in vacancy supersaturations produced by MeV Si implantation in float zone (FZ) silicon and bonded etch-back silicon-on-insulator (BESOI) substrates. MeV Si implantation produces a vacancy supersaturated near-surface region and an interstitial-rich region at the projected ion range. Transient enhanced diffusion (TED) of Sb in the near surface layer was observed as a result of a 2 MeV Si + , 1 x 10 16 /cm 2 , implant. A 4x larger TED of Sb was observed in BESOI than in FZ silicon, demonstrating that the vacancy supersaturation persists longer in BESOI than in FZ. B markers in samples with MeV Si implant showed a factor of 10x smaller diffusion relative to markers without the MeV Si + implant. This data demonstrates that a 2 MeV Si + implant injects vacancies into the near surface region

  7. Damage of niobium surfaces caused by bombardment with 4He+ ions of different energies typical for T-20

    International Nuclear Information System (INIS)

    Guseva, M.I.; Gusev, V.; Martynenko, Yu.V.; Das, S.K.; Kaminsky, N.

    1979-01-01

    The surface damage of cold worked and annealed polycrystalline Nb irradiated at room temperature with He + ions sequentially at different energies over the range from 0.5 keV to 1.8 MeV has been investigated. The individual energy and the dose of the He + ion was chosen to match the theoretically calculated He + ion spectrum expected in the Tokamak T-20. In one set of irradiations, targets were irradiated at Kurchatov Institute starting with 0.5 keV 4 He + ions and extending up to 90 keV in eleven steps. Subsequently, the same area was irradiated at ANL starting at 150 keV and increased in eight steps up to 1.8 MeV. The irradiations were carried out for a total dose of 5.0 C/cm 2 . In another set of irradiations the sequence was reversed. Scanning electron microscopy results show formation of blisters and exfoliation. For the same dose the broad energy implant (due to sequential irradiation) appears to decrease the blister diameter and density as compared to irradiation with monoenergetic He + ions at a given energy (in the energy range considered). Some estimates of surface erosion yields due to blistering are given

  8. Non-Rutherford backscattering microscopy using 25 MeV protons

    Energy Technology Data Exchange (ETDEWEB)

    Peeper, Katrin, E-mail: katrin.peeper@unibw.de [Universitaet der Bundeswehr, Angewandte Physik und Messtechnik, Werner-Heisenberg-Weg 39, 85577 Neubiberg (Germany); Moser, Marcus; Reichart, Patrick; Dollinger, Guenther [Universitaet der Bundeswehr, Angewandte Physik und Messtechnik, Werner-Heisenberg-Weg 39, 85577 Neubiberg (Germany)

    2012-02-15

    Protons at energies between 10 and 25 MeV are a very sensitive probe for hydrogen using coincident proton-proton scattering with the possibility for depth profiling samples up to several 100 {mu}m thickness. At the Munich microprobe SNAKE we have developed this method for sensitive 3D hydrogen microscopy . In parallel to sensitive 3D hydrogen microscopy by proton-proton scattering we introduce a non-Rutherford backscattering analysis utilizing 25 MeV protons in order to obtain 3D depth profiles of all major elements. We present energy spectra of backscattered protons at various thin and thick film samples of pure elements which we use as fingerprints to analyse more complex materials like minerals or metals. It is due to the low stopping power of the high energy protons that the depth profiles of several elements do not or do only partially overlap when analysing freestanding samples with thicknesses in the 100 {mu}m range. The merit of our method is that signals of the light elements may not be affected by heavier matrix elements. Analysing thin films smaller than 5 {mu}m we have achieved a mass resolution of {Delta}A/A{<=}1/28 for non-overlapping mass signals utilizing a 5 mm thick Si(Li)-detector.

  9. Scalability of the LEU-Modified Cintichem Process: 3-MeV Van de Graaff and 35-MeV Electron Linear Accelerator Studies

    Energy Technology Data Exchange (ETDEWEB)

    Rotsch, David A. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Brossard, Tom [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Roussin, Ethan [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Quigley, Kevin [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Chemerisov, Sergey [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Gromov, Roman [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Jonah, Charles [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Hafenrichter, Lohman [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Tkac, Peter [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Krebs, John [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Vandegrift, George F. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division

    2016-10-31

    Molybdenum-99, the mother of Tc-99m, can be produced from fission of U-235 in nuclear reactors and purified from fission products by the Cintichem process, later modified for low-enriched uranium (LEU) targets. The key step in this process is the precipitation of Mo with α-benzoin oxime (ABO). The stability of this complex to radiation has been examined. Molybdenum-ABO was irradiated with 3 MeV electrons produced by a Van de Graaff generator and 35 MeV electrons produced by a 50 MeV/25 kW electron linear accelerator. Dose equivalents of 1.7–31.2 kCi of Mo-99 were administered to freshly prepared Mo-ABO. Irradiated samples of Mo-ABO were processed according to the LEU Modified-Cintichem process. The Van de Graaff data indicated good radiation stability of the Mo-ABO complex up to ~15 kCi dose equivalents of Mo-99 and nearly complete destruction at doses >24 kCi Mo-99. The linear accelerator data indicate that even at 6.2 kCi of Mo-99 equivalence of dose, the sample lost ~20% of Mo-99. The 20% loss of Mo-99 at this low dose may be attributed to thermal decomposition of the product from the heat deposited in the sample during irradiation.

  10. Measurement of activation yields for platinum group elements using Bremsstrahlung radiation with end-point energies in the range 11-14 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Tickner, James, E-mail: james.tickner@csiro.a [CSIRO Process Science and Engineering, PMB 5, Menai, NSW 2234 (Australia); Bencardino, Raffaele; Roach, Greg [CSIRO Process Science and Engineering, PMB 5, Menai, NSW 2234 (Australia)

    2010-01-15

    Activation yields have been measured for (gamma,n) reactions of the elements Ru, Rh, Pd, Ir and Pt. Metallic foils of natural isotopic composition were irradiated using Bremsstrahlung radiation produced from an electron linear accelerator operated with electron beam energies in the range 11-14 MeV. Activation products, including both unstable ground states and metastates were measured using a high-purity germanium detector. Cross-sections were estimated from the yield data by assuming a simple two-parameter model for the shape of the cross-section with energy.

  11. Measurement of activation yields for platinum group elements using Bremsstrahlung radiation with end-point energies in the range 11-14 MeV

    International Nuclear Information System (INIS)

    Tickner, James; Bencardino, Raffaele; Roach, Greg

    2010-01-01

    Activation yields have been measured for (γ,n) reactions of the elements Ru, Rh, Pd, Ir and Pt. Metallic foils of natural isotopic composition were irradiated using Bremsstrahlung radiation produced from an electron linear accelerator operated with electron beam energies in the range 11-14 MeV. Activation products, including both unstable ground states and metastates were measured using a high-purity germanium detector. Cross-sections were estimated from the yield data by assuming a simple two-parameter model for the shape of the cross-section with energy.

  12. Determination of the neutron detection efficiency of an NE213 scintillator for E{sub n}=2.5 to 16 MeV using the {sup 2}H(d,n){sup 3}He reaction

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ohali, M.A.; Aksoy, A.; Coban, A. [King Fahd Univ. of Pet. and Miner., Dhahran (Saudi Arabia). Energy Res. Lab.; Hanly, J.M.; Felsher, P.D.; Howell, C.R.; Tornow, W.; Salinas, F.; Walter, R.L. [Duke University and Triangle Universities Nuclear Laboratories, Durham, NC 27708 (United States)

    1997-09-11

    The absolute efficiency of an NE213 liquid scintillator of 12.7 cm diameter and 5.08 cm thickness was measured in the neutron energy range 2.5-16 MeV using the {sup 2}H(d,n){sup 3}He reaction as a source of monoenergetic neutrons. The efficiencies were measured at the time-of-flight facility of Triangle Universities Nuclear Laboratory TUNL. The experimental data are compared to calculations from the Monte Carlo code NEFF of Physikalisch-Technische Bundesanstalt, Braunschweig, Germany PTB. (orig.). 7 refs.

  13. Liquid argon as an electron/photon detector in the energy range of 50 MeV to 2 GeV: a Monte Carlo investigation

    International Nuclear Information System (INIS)

    Goodman, M.S.; Denis, G.; Hall, M.; Karpovsky, A.; Wilson, R.; Gabriel, T.A.; Bishop, B.L.

    1980-12-01

    Monte Carlo techniques which have been used to study the characteristics of a proposed electron/photon detector based on the total absorption of electromagnetic showers in liquid argon have been investigated. The energy range studied was 50 MeV to 2 GeV. Results are presented on the energy and angular resolution predicted for the device, along with the detailed predictions of the transverse and longitudinal shower distributions. Comparisons are made with other photon detectors, and possible applications are discussed

  14. The investigation of deuteron production double differential cross section induced by 392 MeV protons

    International Nuclear Information System (INIS)

    Kin, Tadahiro; Nakano, Masahiro; Imamura, Minoru

    2006-01-01

    We have investigated the deuteron productions from 392 MeV proton induced reaction for target nuclei of 12 C, 27 Al, 93 Nb. Deuteron production double differential cross sections were determined over a broad energy range and scattered angles from 20 to 105 degrees in laboratory system. Those spectra were compared with two theoretical models; Quantum Molecular Dynamics model and Intranuclear Cascade model. We developed the code of Intra Nuclear Cascade model and we've got good results to reproduce the experimental data. (author)

  15. Calculation of neutron cross sections on iron up to 40 MeV

    International Nuclear Information System (INIS)

    Arthur, E.D.; Young, P.G.

    1980-01-01

    The development of high energy d + Li neutron sources for fusion materials radiation damage studies will require neutron cross sections up to 40 MeV. Experimental data above 15 MeV are generally sparse or nonexistent, and reliance must be placed upon nuclear-model calculations to produce the needed cross sections. To satisfy such requirements for the Fusion Materials Irradiation Test Facility (FMIT), neutron cross sections have been calculated for 54 56 Fe between 3 and 40 MeV. These results were joined to the existing ENDF/B-V evaluation below 3 MeV. In this energy range, most neutron reactions can be described using the Hauser-Feshbach statistical model with corrections for preequilibrium and direct-reaction effects. To properly use these models to obtain realistic cross sections, emphasis must be placed upon the determination of suitable input parameters (optical model sets, gamma-ray strength functions, level densities) valid over the energy range of the calculation. To do this, several types of independent data were used to arrive at consistent parameter sets as described

  16. Measurement of omega, the energy required to create an ion pair, for 150-MeV protons in nitrogen and argon

    International Nuclear Information System (INIS)

    Petti, P.L.

    1985-01-01

    The purpose of this thesis is to provide a 1% measurement of omega, the energy required to produce an ion pair, for 150 MeV protons in various gases. Such a measurement should improve the accuracy of proton ionization chamber dosimetry at the Harvard Cyclotron Laboratory. Currently, no measurements of omega exist in the energy range of 30 to 150 MeV, and present ionization chamber dosimetry at the Cyclotron relies on average values of measurements at lower and higher energies (i.e. for E < 3 MeV and E = 340 MeV). Contrary to theoretical expectations, these low and high energy data differ by as much as 9% in some gases. The results of this investigation demonstrate that the existing high energy data is probably in error, and current proton ionization chamber dosimetry underestimates omega, and hence the proton dose, by 5%

  17. Response of CR-39 to 0.9-2.5 MeV protons for KOH and NaOH etching solutions

    Science.gov (United States)

    Bahrami, F.; Mianji, F.; Faghihi, R.; Taheri, M.; Ansarinejad, A.

    2016-03-01

    In some circumstances passive detecting methods are the only or preferable measuring approaches. For instance, defining particles' energy profile inside the objects being irradiated with heavy ions and measuring fluence of neutrons or heavy particles in space missions are the cases covered by these methods. In this paper the ability of polyallyl diglycol carbonate (PADC) track detector (commercially known as CR-39) for passive spectrometry of proton particles is studied. Furthermore, the effect of KOH and NaOH as commonly used chemical etching solutions on the response of the detector is investigated. The experiments were carried out with protons in the energy range of 0.94-2.5 MeV generated by a Van de Graaff accelerator. Then, the exposed track dosimeters were etched in the two aforementioned etchants through similar procedure with the same normality of 6.25 N and the same temperature of 85 °C. Formation of the tracks was precisely investigated and the track diameters were recorded following every etching step for each solution using a multistage etching process. The results showed that the proposed method can be efficiently used for the spectrometry of protons over a wider dynamic range and with a reasonable accuracy. Moreover, NaOH and KOH outperformed each other over different regions of the proton energy range. The detection efficiency of both etchants was approximately 100%.

  18. Neutron Elastic Scattering Cross Sections of the Elements Ni, Co, and Cu between 1.5 and 8.0 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Holmqvist, B; Wiedling, T

    1967-12-15

    Angular distributions of elastically scattered neutrons have been measured for natural nickel at seven energies between 3.0 and 8.1 MeV and for cobalt and copper at ten energies between 1.5 and 8.1 MeV, by using time-of-flight technique. The observed angular distributions were corrected for neutron flux attenuation, multiple elastic scattering, and the finite geometry of the source-sample-detector system by using a Monte Carlo computer program. Theoretical angular distributions have been fitted to the experimental angular distributions by using an optical model potential with Saxon-Woods form factors. A computer program was used to find parameter values of the potential giving the best fittings to the experimental angular distributions.

  19. High energy proton simulation of 14-MeV neutron damage in Al2O3

    International Nuclear Information System (INIS)

    Muir, D.W.; Bunch, J.M.

    1975-01-01

    High-energy protons are a potentially useful tool for simulating the radiation damage produced by 14-MeV neutrons in CTR materials. A comparison is given of calculations and measurements of the relative damage effectiveness of these two types of radiation in single-crystal Al 2 O 3 . The experiments make use of the prominent absorption band at 206 nm as an index to lattice damage, on the assumption that peak absorption is proportional to the concentration of lattice vacancies. The induced absorption is measured for incident proton energies ranging from 5 to 15 MeV and for 14-MeV neutrons. Recoil-energy spectra are calculated for elastic and inelastic scattering using published angular distributions. Recoil-energy spectra also are calculated for the secondary alpha particles and 12 C nuclei produced by (p,p'α) reactions on 16 O. The recoil spectra are converted to damage-energy spectra and then integrated to yield the damage-energy cross section at each proton energy and for 14 MeV neutrons. A comparison of the calculations with experimental results suggests that damage energy, at least at high energies, is a reasonable criterion for estimating this type of radiation damage. (auth)

  20. Range-energy relation, range straggling and response function of CsI(Tl), BGO and GSO(Ce) scintillators for light ions

    CERN Document Server

    Avdeichikov, V; Jakobsson, B; Rodin, A M; Ter-Akopian, G M

    2000-01-01

    Range-energy relations and range straggling of sup 1 sup , sup 2 sup , sup 3 H and sup 4 sup , sup 6 He isotopes with the energy approx 50A MeV are measured for the CsI(Tl), BGO and GSO(Ce) scintillators with an accuracy better than 0.2% and 5%, respectively. The Si-Sci/PD telescope was exposed to secondary beams from the mass separator ACCULINNA. The experimental technique is based on the registration of the 'jump' in the amplitude of the photodiode signal for ions passing through the scintillation crystal. Light response of the scintillators for ions 1<=Z<=4 is measured in energy range (5-50)A MeV, the results are in good agreement with calculations based on Birks model. The energy loss straggling for particles with DELTA E/E=0.01-0.50 and mass up to A=10 in 286 mu m DELTA E silicon detector is studied and compared with theoretical prescriptions. The results allow a precise absolute calibration of the scintillation crystal and to optimize the particle identification by the DELTA E-E(Sci/PD) method.

  1. Production of low energy gamma rays by neutron interactions with fluorine for incident neutron energies between 0.1 and 20 MeV

    International Nuclear Information System (INIS)

    Morgan, G.L.; Dickens, J.K.

    1975-06-01

    Differential cross sections for the production of low-energy gamma rays (less than 240 keV) by neutron interactions in fluorine have been measured for neutron energies between 0.1 and 20 MeV. The Oak Ridge Electron Linear Accelerator was used as the neutron source. Gamma rays were detected at 92 0 using an intrinsic germanium detector. Incident neutron energies were determined by time-of-flight techniques. Tables are presented for the production cross sections of three gamma rays having energies of 96, 110, and 197 keV. (14 figures, 3 tables) (U.S.)

  2. Extension of the calibration of an NE-213 liquid scintillator based pulse height response spectrometer up to 18 MeV neutron energy and leakage spectrum measurements on bismuth at 8 MeV and 18 MeV neutron energies

    International Nuclear Information System (INIS)

    Fenyvesi, A.; Valastyan, I.; Olah, L.; Csikai, J.; Plompen, A.; Jaime, R.; Loevestam, G.; Semkova, V.

    2011-01-01

    Monoenergetic neutrons were produced at the Van de Graaff accelerator of the EC-JRC-Institute for Reference Materials and Measurements (IRMM, Geel, Belgium). An air-jet cooled D_2-gas target (1.2 bar, ΔE_d = 448 keV) was bombarded with E_d =4976 keV deuterons to produce neutrons up to E_n = 8 MeV energy via the D(d,n)"3He reaction. Higher energy neutrons up to E_n = 18 MeV were produced via the T(d,n)"4He reaction by bombarding a TiT target with E_d =1968 keV deuterons. Pulse height spectra were measured at different neutron energies from E_n = 8 MeV up to E_n = 18 MeV with the NE-213 liquid scintillator based Pulse Height Response Spectrometer (PHRS) of UD-IEP. The energy calibration of the PHRS system has been extended up to E_n = 18 MeV. Pulse height spectra induced by gamma photons have been simulated by the GRESP7 code. Neutron induced pulse height spectra have been simulated by the NRESP7 and MCNP-POLIMI codes. Comparison of the results of measurements and simulations enables the improvement of the parameter set of the function used by us to describe the light output dependence of the resolution of the PHRS system at light outputs of L > 2 light units. Also, it has been shown that the derivation method for unfolding neutron spectra from measured pulse height spectra performs well when relative measurements are done up to E_n = 18 MeV neutron energy. For matrix unfolding purposes, the NRESP7 code has to be preferred to calculate the pulse height response matrix of the PHRS system. Leakage spectra of neutrons behind bismuth slabs of different thicknesses have been measured with the PHRS system by using monoenergetic neutrons. The maximum slab thickness was d = 14 cm. Simulations of the measurements have been carried out with the MCNP-4c code. The necessary nuclear cross-sections were taken from the from the ENDF/B-VII and JEFF.3.1 data libraries. For both libraries, the agreement of measured and simulated neutron spectra is good for the 5 MeV ≤ En ≤ 18 MeV

  3. Experimental evaluation of the response of micro-channel plate detector to ions with 10s of MeV energies

    Science.gov (United States)

    Jeong, Tae Won; Singh, P. K.; Scullion, C.; Ahmed, H.; Kakolee, K. F.; Hadjisolomou, P.; Alejo, A.; Kar, S.; Borghesi, M.; Ter-Avetisyan, S.

    2016-08-01

    The absolute calibration of a microchannel plate (MCP) assembly using a Thomson spectrometer for laser-driven ion beams is described. In order to obtain the response of the whole detection system to the particles' impact, a slotted solid state nuclear track detector (CR-39) was installed in front of the MCP to record the ions simultaneously on both detectors. The response of the MCP (counts/particles) was measured for 5-58 MeV carbon ions and for protons in the energy range 2-17.3 MeV. The response of the MCP detector is non-trivial when the stopping range of particles becomes larger than the thickness of the detector. Protons with energies E ≳ 10 MeV are energetic enough that they can pass through the MCP detector. Quantitative analysis of the pits formed in CR-39 and the signal generated in the MCP allowed to determine the MCP response to particles in this energy range. Moreover, a theoretical model allows to predict the response of MCP at even higher proton energies. This suggests that in this regime the MCP response is a slowly decreasing function of energy, consistently with the decrease of the deposited energy. These calibration data will enable particle spectra to be obtained in absolute terms over a broad energy range.

  4. Astrophysical s-factor measurements for {sup 1}20Te(p,{gamma}){sup 1}21I and {sup 1}20Te(p,n){sup 1}20I reactions; {sup 1}20Te(p,{gamma}){sup 1}21I ve {sup 1}20Te(p,n){sup 1}20I reaksiyonlarinin astrofiziksel s-factor oelcuemleri

    Energy Technology Data Exchange (ETDEWEB)

    Gueray, R T; Oezkan, N; Yalcin, C [Kocaeli University, Kocaeli (Turkey); Goerres, J; DeBoer, R; Palumbo, A; Tan, W P; Wiescher, M [University of Notre Dame, (United States); Fueloep, Zs; Somorjai, E [Institute of Nuclear Research ATOMKI (Hungary); Lee, H Y [Argonne National Laboratory (United States)

    2009-07-01

    Astrophysical S-factors for the {sup 1}20Te(p,{gamma}){sup 1}21I and {sup 1}20Te(p,n){sup 1}20I reactions have been measured in the effective center-of-mass energies between 2.47 MeV and 7.93 MeV. Experimental data have been compared with the Hauser-Fesbach statistical model calculations obtained with the model codes NON-SMOKER and TALYS. The discrepancies between the experimental results and calculations can mainly be attributed to the optical model potentials used in the codes.

  5. Angular distribution and cross section measurements of 64Zn(n,α)61Ni reaction for neutron energy 5 MeV

    International Nuclear Information System (INIS)

    Chen Yingtang; Chen Zemin; Qi Huiquan; Li Mingtao

    1995-01-01

    A twin gridded ionization chamber with dual parameter data acquisition system is used to study neutron induced charged particle emission reaction. The angular distribution and cross section of α-particles from the 64 Zn(n,α) 61 Ni reaction are measured at neutron energy 5 MeV

  6. Using 3.05 MeV resonance for determination of oxygen impurities

    International Nuclear Information System (INIS)

    Burkova, I.E.; Polyanskij, V.N.; Yatis, A.A.

    1983-01-01

    The method of determining oxygen impurities behind thin films using the isolated resonance in the 16 O(α, α) 16 O reaction at E=3.048 MeV with the width GITA approximately 20 keV, is considered. Cross section in resonance is σsUb(R) = 0.95 b apd it increases cross section of Rutherford scattering by the factor of 25. The conclusion is made on the possibility of using 3.048 MeV resonance when investigating Me-Si film structures

  7. Measurements of the total neutron cross-section of cerium and thulium in the energy range from 1.8 MeV to 1.8 eV

    International Nuclear Information System (INIS)

    Adib, M.; Maayouf, R.M.A.; Abdel-Kawy, A.; Abu-Elnour, F.; Hamouda, I.

    1979-01-01

    Total neutron cross-section measurements have been carried out for cerium and thulium in the energy range from 1.8 meV to 1.8 eV. The measurements were performed using the time-of-flight spectrometer installed in front of one of the horizontal channels of the ET-RR-1 reactor. The obtained total neutron cross-sections were analyzed using the single level Breit-Wigner formula and the magnetic form factor. The potential scattering cross-section of Ce was found to be (3.14 +- 0.3) barns. Its coherent scattering amplitude was determined from the Bragg reflections observed in the total neutron cross-section of CeO 2 and found to be (4,8 +- 0.2) fm. The potential scattering and absorption cross-sections of Tm, at E = 0.025 eV, were found to be (7.5 +- 0.7) barns and (89.1 +- 4.1) barns respectively. (orig.) [de

  8. PICA95: An intranuclear-cascade code for 25-MeV to 3.5-GeV photon-induced nuclear reactions

    International Nuclear Information System (INIS)

    Fu, C.Y.; Gabriel, T.A.; Lillie, R.A.

    1997-01-01

    PICA95, an intranuclear-cascade code for calculating photon-induced nuclear reactions for incident photon energies up to 3.5 GeV, is an extension of the original PICA code package that works for incident photon energies up to 400 MeV. The original code includes the quasi-deuteron breakup and single-pion production channels. The extension to an incident photon energy of 3.5 GeV requires the addition of multiple-pion production channels capable of emitting up to five pions. Relativistic phase-space relations are used to conserve energy and momentum in multi-body breakups. Fermi motion of the struck nucleon is included in the phase-space calculations as well as secondary nuclear collisions of the produced particles. Calculated doubly differential cross sections for the productions of protons, neutrons, π + , π 0 , and π - for incident photon energies of 500 MeV, 1 GeV, and 2 GeV are compared with predictions by other codes. Due to the sparsity of experimental data, more experiments are needed in order to refine the gamma nuclear collision model

  9. The shielding performance of multilayer composite shielding structures to 14.8 MeV fast neutrons

    International Nuclear Information System (INIS)

    Shen Zhiqiang; Kang Qing; Xu Jun; Wang Zhenggang; Lu Nan

    2014-01-01

    Cement-based round thin-layer samples mixed with 30% quality content of barite, and 20% quality content of carbide boron has Prepared, the same-diameter sliced samples of pure graphite and pure polyethylene has cut, then, samples combination and cross stack order has designed, formed four species Multilayer Composite shield structure, at last, neutron attenuation measurements has been done by experimental system of using 14.8 MeV neutrons from the 5SDH-2 accelerator and long counter composition, penetrating rate of samples and the shield structure to 14.8 MeV fast neutron has tested, and attenuation section has calculated. Results show that 14.8 MeV fast neutrons to higher penetration rates of thin layer samples, attenuation cross section of samples distinguish small between each other, must be increasing the thickness of the samples to reduce the experimental uncertainty; through composed of attenuation cross section and thickness parameters of composite structure, can more accurately predict the shielding ability of composite structures, error between calculation results and experimental results in 4%. (authors)

  10. The reaction 12C + 12C at bombarding energies from 5 to 10 MeV per nucleon

    International Nuclear Information System (INIS)

    Morsad, A.

    1986-01-01

    The reaction 12 C + 12 C has been studied for energies ranging from E LAB = 60 to 120 MeV. The excitation functions and angular distributions were obtained for the elastic (0 + , 0 + ) and inelastic (2 + , 0 + ), (2 + , 2 + ) channels as well as for the transfer channels of one and two nucleons. For the transfer reactions, the feeding of the final bound states was very selective. Narrow correlated structures were found in the transfer and especially in the elastic and inelastic channels. In this energy range, there appears to be a transition from surface transparency to interference phenomena. The optical model in its simplest form is unable to describe the elastic scattering at large angles. This has been interpreted as a consequence of the coupling between the elastic and inelastic channels which is particularly strong of these energies. 80 refs [fr

  11. Test of time reversal invariance in p-p elastic scattering at 198.5 MeV

    International Nuclear Information System (INIS)

    Davis, C.A.; Greeniaus, L.G.; Moss, G.A.

    1986-01-01

    A precise measurement of the polarization-analyzing power difference in p-p elastic scattering has been made at 198.5 MeV to improve the experimental limits on time reversal violation in proton-proton scattering in this energy region. The experiment was performed in a kinematic regime where sensitivities to time reversal violating amplitudes should be high. Experimental methods which eliminated the need to refer to absolute values of the beam polarization or to the analyzing power of a polarimeter were used. The result is (P-A) = 0.0047 with a statistical uncertainty of +- 0.0025 and a systematic uncertainty of +- 0.0015

  12. A high-resolution study of the sup 20 Ne( sup 3 He,t) sup 20 Na reaction and the sup 19 Ne(p,. gamma. ) sup 20 Na reaction rate

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M S; Magnus, P V; Hahn, K I; Howard, A J; Parker, P D [A.W. Wright Nuclear Structure Lab., Yale Univ., New Haven, CT (United States); Champagne, A E; Mao, Z Q [Dept. of Physics, Princeton Univ., NJ (United States)

    1992-01-13

    A high-precision measurement of the {sup 20}Ne({sup 3}He,t){sup 20}Na reaction has been made using implanted {sup 20}Ne transmission targets to obtain pertinent information on the low-energy resonances in the {sup 19}Ne(p,{gamma}){sup 20}Na reaction. Resonance energies (447{+-}5, 658{+-}5, 787{+-}5, and 857{+-}5 keV) and upper limits on total intrinsic widths (<10, <6, <10, and <16 keV) have been measured for four excited states above the 2.199 MeV proton threshold in {sup 20}Na. The stellar {sup 19}Ne(p,{gamma}){sup 20}Na reaction rate is calculated for temperatures between 1x10{sup 8} and 1x10{sup 9} K. When combined with a recent study of the {sup 15}O({alpha},{gamma}){sup 19}Ne reaction, a new estimate is made of the conditions required for breakout from the Hot CNO cylce to the rapid proton capture process. (orig.).

  13. Dispersive optical-model and coupled-channels descriptions of neutron scattering from 27Al and 59Co up to 80 MeV

    International Nuclear Information System (INIS)

    Nagadi, M.M.; Howell, C.R.; Tornow, W.; Weisel, G.J.; Al-Ohali, M.A.; Braun, R.T.; Setze, H.R.; Chen Zemin; Walter, R.L.; Delaroche, J.P.; Romain, P.

    2003-01-01

    Differential cross sections σ(θ) and analyzing powers A y (θ) have been measured for neutron scattering from 27 Al and 59 Co at 15 MeV at the Triangle Universities Nuclear Laboratory using standard time-of-flight techniques. In addition, σ(θ) was measured for 59 Co at 10, 12, 14, 17, and 19 MeV . Two large databases covering the energy range from 0.1 to 80 MeV were formed for these nuclei from this new data and previously published data, including that for the total cross section σ T . These sets of data were analyzed using spherical dispersive optical-model (DOM) potentials, as well as coupled-channels model (CCM) potentials. The 59 Co DOM gives good agreement with the σ(θ) data, except in the region of the first minimum. It also gives a reasonable description of our A y (θ) measurement. The 27 Al DOM gives good agreement with the data, except for σ(θ) at backward angles below 9.4 MeV and for σ T , for which there is up to 5% disagreement in the 10-50 MeV range. Compared to the DOM, the 59 Co CCM calculations give improved agreement with the σ(θ) data, especially at the first minimum. The σ T calculations agree with the data to within about 3% above 1.0 MeV . The three-level CCM calculations for 27 Al give excellent agreement with the entire database

  14. HIGH ENERGY RADIOGRAPHY-1-30 Mev

    Energy Technology Data Exchange (ETDEWEB)

    Bly, James H.

    1963-10-15

    From 1963 American Society of Metals/Materials Show, Cleveland, Oct. 1963. A survey of the field of radiographic inspection of thick sections, at one million volts energy or more, shows that this field has become a major branch of radiographic testing. More than a dozen models of x-ray generators are now commercially available in this field, over the range from 1 to 31 Mev, with outputs up to more than two orders of magnitude greater than can be obtained from radiographic isotope sources, and with smaller spot size. A study of the radiographic characteristics of x rays in this region shows that energies available cover the range of minimum absorption and scattering for most materials and approach this range for solid propellant; at higher energies severe coverage restrictions are imposed; output powers on small spots are near the limits of present target technology. It would appear that some degree of technological maturity'' has been achieved. Radiographic technique at 1 to 30 Mev is straightforward, following the same basic principles as in conventional radiography. Specialized aspects of technique are individually discussed. The wellknown 1 and 2 million volt equlpments are supplemented by a wide variety of higher-energy machines, with energy and output ratings to satisfy almost any radiographic need. Some examples are epitomized, and a brief discussion of possible future developments is presented. (auth)

  15. Scattering of antiprotons from carbon at 46.8 MeV

    International Nuclear Information System (INIS)

    Garetta, D.; Birien, P.; Bruge, G.; Chaumeaux, A.; Janouin, S.; Legrand, D.; Mallet-Lemaire, M.C.; Mayer, B.; Pain, J.; Drake, D.M.; Peng, J.C.

    1984-01-01

    Antiproton-carbon elastic and inelastic scattering cross sections have been measured at 46.8 MeV over an angular range 6 0 0 with a magnetic spectrometer. Fits to the elastic and inelastic 4.44 MeV excited state cross sections put realistic limits on the strengths of the real and imaginary parts of the antiproton-carbon optical potential. The continuum cross section due to carbon break-up appears to be smaller than it is for corresponding proton data. (orig.)

  16. Elastic scattering of 16O on 28Si between 45.0 and 73.5 MeV

    International Nuclear Information System (INIS)

    Shkolnik, V.; Dehnhard, D.; Kubono, S.; Franey, M.A.; Tripp, S.; Artz, J.L.; Weber, D.J.

    1977-01-01

    Angular distributions of 16 O elastically scattering by Si isotopes were analyzed by the optical model. Differential cross sections are shown for all isotopes at 60 MeV, and for 28 Si at energies from 45 to 63 MeV. The potentials found are discussed in some detail; the best fits were produced by surface-transparent potentials. 3 figures, 2 tables

  17. Nucleon-induced reactions at intermediate energies: new data at 96 MeV and theoretical status

    Energy Technology Data Exchange (ETDEWEB)

    Blideanu, V.; Lecolley, F.R.; Lecolley, J.F.; Lefort, T.; Marie, N.; Ban, G.; Louvel, M. [Caen Univ., Lab. de Physique Corpusculaire, ENSICAEN, IN2P3-CNRS ISMRA, 14 (France); Atac, A.; Bergenwall, B.; Blomgren, J.; Dangtip, S.; Hildebrand, A.; Hohansson, C.; Klug, J.; Nilsson, L.; Ollson, N.; Pomp, S.; Tippawan, U.; Osterlund, M. [Uppsala Univ., Nykoeping (Sweden). Dept. of Neutron Research; Tippawan, U. [Chiang Mai University, Fast Neutron Research Facility (Thailand); Elmgren, K.; Olsson, N. [Swedish Defense Research Agency, Stokholm (Sweden); Eudes, Ph.; Guertin, A.; Haddad, F.; Kirchner, T.; Lebrun, C.; Riviere, G. [Nantes Univ., Subatech, 44 (France); Foucher, Y. [CEA Saclay, Dept. d' Astrophysique, de Physique des Particules de Physique Nucleaire et de l' Instrumentation Associee, 91- Gif sur Yvette (France); Jonsson, O.; Prokofiev, A.V.; Renberg, P.U. [Uppsala Univ., Svedberg Laboratory (Sweden); Kerveno, M.; Stuttge, L. [IReS, Strasbourg (France); Le Brun, Ch. [Laboratoire de Physique Subatomique et de Cosmologie, 38 - Grenoble (France); Nadel-Turonski, P. [Uppsala Univ. (Sweden). Dept. of Radiation Sciences; Slypen, I. [Universite Catholique de Louvain (UCL), Institut de Physique Nucleaire, Louvain-la-Neuve (Belgium)

    2004-04-01

    Double-differential cross sections for light charged particle production (up to A = 4) were measured in 96 MeV neutron-induced reactions, at TSL laboratory cyclotron in Uppsala (Sweden). Measurements for three targets, Fe, Pb, and U, were performed using two independent devices, SCANDAL and MEDLEY. The data were recorded with low energy thresholds and for a wide annular range (20 - 160 degrees). The normalization procedure used to extract the cross sections is based on the np elastic scattering reaction that we measured and for which we present experimental results. A good control of the systematic uncertainties affecting the results is achieved. Calculations using the exciton model are reported. Two different theoretical approaches proposed to improve its predictive power regarding the complex particle emission are tested. The capabilities of each approach is illustrated by comparison with the 96 MeV data that we measured, and with other experimental results available in the literature. (authors)

  18. Non-Rutherford cross-sections for alpha elastic scattering off Z = 28-38 elements in the energy range up to 10 MeV

    Science.gov (United States)

    Gurbich, A. F.; Bokhovko, M. V.

    2018-04-01

    The alpha elastic scattering cross-sections for Ni, Cu, and Y were measured at the energies above the onset of the non-Rutherford scattering. The obtained experimental data along with data from literature were incorporated into the theoretical analysis in the framework of the optical model. The optimization of the model parameters provided a basis for the calculations of the differential cross-sections for Z = 28-38 elements in the energy range up to 10 MeV. The obtained cross sections were made available for common use through the SigmaCalc web site at http://sigmacalc.iate.obninsk.ru/.

  19. Application of clear polymethylmethacrylate dosimeter Radix W to a few MeV electron in radiation processing

    International Nuclear Information System (INIS)

    Seito, Hajime; Ichikawa, Tatsuya; Hanaya, Hiroaki; Sato, Yoshishige; Kaneko, Hirohisa; Haruyama, Yasuyuki; Watanabe, Hiroshi; Kojima, Takuji

    2009-01-01

    Characteristics of clear PMMA dosimeter (Radix W) were studied for electron irradiation and compared with the response for gamma irradiation. The dose-response curves were nearly linear up to 30 kGy and become sublinear at higher doses. The radiation-induced absorbance was reduced with 6% within 4 h after irradiation. Dose comparisons were performed for 2, 3, 4 and 5 MeV electron irradiation using cellulose triacetate dosimeter (CTA) (FTR-125) and Radix W dosimeters which were independently calibrated for 2 MeV electrons and 60 Co gamma-rays using calorimeter and ionizing chamber, respectively. The doses estimated by CTA and Radix W were different by about 20%. The magnitude of this difference was, however, independent of electron energy.

  20. Neutron Inelastic Scattering on 134Xe at En = 5 - 8 MeV

    Science.gov (United States)

    Kidd, Mary; Tornow, Werner; Finch, Sean; Krishichayan, Fnu; Bhike, Megha

    2017-09-01

    Neutrinoless double-beta decay (0 νββ) studies are both the best way to determine the Majorana nature of the neutrino and determine its effective mass. The two main experiments searching for 0 νββ -decay of 136Xe (Q value = 2457.8 keV) are Kamland-Zen and EXO-200. Though both experiments have enriched 136Xe targets, these targets still contain significant quantities of 134Xe. Recently, a new nuclear level was discovered in 134Xe that decays to the ground state emitting a 2485.7 keV gamma ray. The γ-ray production cross section for this branch was found to be on the order of 10 mb for incident neutron energies of 2.5-4.5 MeV. Here, we have extended the investigation of this level to higher incident neutron energies, and further explore the potential neutron-induced backgrounds on both 134Xe and 136Xe for extended neutron energies. We will report our preliminary results for neutron inelastic scattering on 134Xe in applications to 0 νββ decay searches. NSF PHY-1614348, DE-FG02-97ER41033.