WorldWideScience

Sample records for range 38-45 microns

  1. Short range investigation of sub-micron zirconia particles

    Energy Technology Data Exchange (ETDEWEB)

    Caracoche, M C; Martinez, J A [Departamento de Fisica, IFLP, Facultad de Ciencias Exactas, CICPBA, Universidad Nacional de La Plata (Argentina); Rivas, P C [IFLP-CONICET, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata (Argentina); Bondioli, F; Cannillo, V [Dipartimento di Ingegniria dei Materiali e dell' Ambiente, Facolta di Ingegneria, Universita di Modena e Reggio Emilia (Italy); Ferrari, A M, E-mail: cristina@fisica.unlp.edu.a [Dipartimento di Scienza a Metodi dell' Ingegneria, Universita di Modena e Reggio Emilia (Italy)

    2009-05-01

    The Perturbed Angular Correlations technique was used to determine the configurations around Zirconium ions and their thermal behavior in non-aggregated sub-micron zirconia spherical particles. Three residues containing- Zr surroundings were determined for the non-crystalline starting particles, which were identified under the assumption of a certain chemical reactions sequence during synthesis. While the one made up mainly by hydroxyl groups was common to both samples, the two involving mainly organic residues were particle size dependent. Upon crystallization, both samples stabilized in the t'- and t- tetragonal forms and the Xc-cubic form but their amounts and temperatures of appearance were different. On heating, the structure of the smaller particles became gradually monoclinic achieving total degradation upon the subsequent cooling to RT.

  2. A two-level model of rise time in quantum cascade laser materials applied to 5 micron, 9 micron and terahertz-range wavelengths

    International Nuclear Information System (INIS)

    Webb, J F; Yong, K S C; Haldar, M K

    2014-01-01

    An equivalent circuit simulation of a two-level rate equation model for quantum cascade laser (QCL) materials is used to study the turn on delay and rise time for three QCLs with 5 micron, 9 micron and terahertz-range wavelengths. In order to do this it is necessary that the model can deal with large signal responses and not be restricted to small signal responses; the model used here is capable of this. The effect of varying some of the characteristic times in the model is also investigated. The comparison of the terahertz wave QCL with the others is particularly important given the increased interest in terahertz sources which have a large range of important applications, such as in medical imaging

  3. A large dynamic range radiation-tolerant analog memory in a quarter- micron CMOS technology

    CERN Document Server

    Anelli, G; Rivetti, A

    2001-01-01

    An analog memory prototype containing 8*128 cells has been designed in a commercial quarter-micron CMOS process. The aim of this work is to investigate the possibility of designing large dynamic range mixed-mode switched capacitor circuits for high-energy physics (HEP) applications in deep submicron CMOS technologies. Special layout techniques have been used to make the circuit radiation tolerant. The memory cells employ gate-oxide capacitors for storage, permitting a very high density. A voltage write-voltage read architecture has been chosen to minimize the sensitivity to absolute capacitor values. The measured input voltage range is 2.3 V (the power supply voltage V/sub DD/ is equal to 2.5 V), with a linearity of almost 8 bits over 2 V. The dynamic range is more than 11 bits. The pedestal variation is +or-0.5 mV peak-to-peak. The noise measured, which is dominated by the noise of the measurement setup, is around 0.8 mV rms. The characteristics of the memory have been measured before irradiation and after 1...

  4. A large dynamic range radiation tolerant analog memory in a quarter micron CMOS technology

    CERN Document Server

    Anelli, G; Rivetti, A

    2000-01-01

    A 8*128 cell analog memory prototype has been designed in a commercial 0.25 jam CMOS process. The aim of this work was to investigate the possibility of designing large dynamic range mixed- mode switched capacitor circuits for High-Energy Physics (HEP) applications in deep submicron CMOS technologies. Special layout techniques have been used to make the circuit radiation tolerant left bracket 1 right bracket . The memory cells employ gate-oxide capacitors for storage, allowing for a very high density. A voltage write - voltage read architecture has been chosen to minimize the sensitivity to absolute capacitor values. The measured input voltage range is 2.3 V (V//D//D = 2.5 V), with a linearity of at least 7.5 bits over 2 V. The dynamic range is more than 11 bits. The pedestal variation is plus or minus 0.5 mV peak-to-peak. The noise measured, which is dominated by the noise of the measurement setup, is around 0.8 mV rms. The characteristics of the memory have been measured before irradiation and after lOMrd (...

  5. Study and use of an infrared camera optimized for ground based observations in the 10 micron wavelength range

    International Nuclear Information System (INIS)

    Remy, Sophie

    1991-01-01

    Astronomical observations in the 10 micron atmospheric window provide very important information for many of astrophysical topics. But because of the very large terrestrial photon background at that wavelength, ground based observations have been impeded. On the other band, the ground based telescopes offer a greater angular resolution than the spatially based telescopes. The recent development of detector arrays for the mid infrared range made easier the development of infrared cameras with optimized detectors for astronomical observations from the ground. The CAMIRAS infrared camera, built by the 'Service d'Astrophysique' in Saclay is the instrument we have studied and we present its performances. Its sensitivity, given for an integration time of one minute on source and a signal to noise ratio of 3, is 0.15 Jy for punctual sources, and 20 mJy arcs"-"2 for extended sources. But we need to get rid of the enormous photon background so we have to find a better way of observation based on modulation techniques as 'chopping' or 'nodding'. Thus we show that a modulation about 1 Hz is satisfactory with our detectors arrays without perturbing the signal to noise ratio. As we have a good instrument and because we are able to get rid of the photon background, we can study astronomical objects. Results from a comet, dusty stellar disks, and an ultra-luminous galaxy are presented. (author) [fr

  6. The inhalation of insoluble iron oxide particles in the sub-micron ranges. Part II - Plutonium-237 labelled aerosols

    International Nuclear Information System (INIS)

    Waite, D.A.; Ramsden, D.

    1971-10-01

    The results of a series of inhalation studies using iron oxide particles in the size range 0.1 to 0.3 um (count median diameter) are described. In this series the aerosols were labelled with plutonium 237. In vivo detection, excretion analysis and crude location studies were obtainable and the results compared to the earlier studies using chromium 51 labelled aerosols. Plutonium 237 can be considered as a simulator for plutonium 239 and attempts are made to extrapolate the results to the problem of the estimation of plutonium 239 in the human lung. (author)

  7. Sub-micron filter

    Science.gov (United States)

    Tepper, Frederick [Sanford, FL; Kaledin, Leonid [Port Orange, FL

    2009-10-13

    Aluminum hydroxide fibers approximately 2 nanometers in diameter and with surface areas ranging from 200 to 650 m.sup.2/g have been found to be highly electropositive. When dispersed in water they are able to attach to and retain electronegative particles. When combined into a composite filter with other fibers or particles they can filter bacteria and nano size particulates such as viruses and colloidal particles at high flux through the filter. Such filters can be used for purification and sterilization of water, biological, medical and pharmaceutical fluids, and as a collector/concentrator for detection and assay of microbes and viruses. The alumina fibers are also capable of filtering sub-micron inorganic and metallic particles to produce ultra pure water. The fibers are suitable as a substrate for growth of cells. Macromolecules such as proteins may be separated from each other based on their electronegative charges.

  8. Measurement of Thermal Conductivity of Porcine Liver in the Temperature Range of Cryotherapy and Hyperthermia (250~315k) by A Thermal Sensor Made of A Micron-Scale Enameled Copper Wire.

    Science.gov (United States)

    Jiang, Z D; Zhao, G; Lu, G R

      BACKGROUND: Cryotherapy and hyperthermia are effective treatments for several diseases, especially for liver cancers. Thermal conductivity is a significant thermal property for the prediction and guidance of surgical procedure. However, the thermal conductivities of organs and tissues, especially over the temperature range of both cryotherapy and hyperthermia are scarce. To provide comprehensive thermal conductivity of liver for both cryotherapy and hyperthermia. A hot probe made of stain steel needle and micron-sized copper wire is used for measurement. To verify data processing, both the least square method and the Monte Carlo inversion method are used to determine the hot probe constants, respectively, with reference materials of water and 29.9 % Ca 2 Cl aqueous solution. Then the thermal conductivities of Hanks solution and pork liver bathed in Hanks solution are measured. The effective length for two methods is nearly the same, but the heat capacity of probe calibrated by the Monte Carlo inversion is temperature dependent. Fairly comprehensive thermal conductivity of porcine liver measured with these two methods in the target temperature range is verified to be similar. We provide an integrated thermal conductivity of liver for cryotherapy and hyperthermia in two methods, and make more accurate predictions possible for surgery. The least square method and the Monte Carlo inversion method have their advantages and disadvantages. The least square method is available for measurement of liquids that not prone to convection or solids in a wide temperature range, while the Monte Carlo inversion method is available for accurate and rapid measurement.

  9. 76 FR 18812 - Submission for Review: We Need the Social Security Number of the Person Named Below, RI 38-45

    Science.gov (United States)

    2011-04-05

    ... OFFICE OF PERSONNEL MANAGEMENT Submission for Review: We Need the Social Security Number of the... request (ICR) 3206-0144, We Need the Social Security Number of the Person Named Below, RI 38-45. As... Operations, Retirement Services, Office of Personnel Management. Title: We Need the Social Security Number of...

  10. Electronic holographic moire in the micron range

    Science.gov (United States)

    Sciammarella, Cesar A.; Sciammarella, Federico M.

    2001-06-01

    The basic theory behind microscopic electronic holographic moire is presented. Conditions of observation are discussed, and optimal parameters are established. An application is presented as an example where experimental result are statistically analyzed and successfully correlated with an independent method of measurement of the same quantity.

  11. Micron Scale Mineralogy

    Science.gov (United States)

    Caldwell, W. A.; Tamura, N.; Celestre, R. S.; Padmore, H. A.; Patel, J. R.

    2002-12-01

    Although x-ray diffraction has been used for nearly a century as the mineralogist's definitive tool in determining crystalline structures, it has proved impossible to use this technique to spatially resolve the highly heterogeneous nature of many minerals at the mesoscopic level. Due to recent revolutions in the brightness of x-ray sources and in our ability to focus x-rays, we can now carry out conventional monochromatic rotation crystallography as well as Laue diffraction with sub-micron spatial resolution and produce maps of orientation, strain, mineral type, and even chemical speciation over tens of microns in a short amount of time. We have pioneered the development of these techniques at the 3rd generation synchrotron radiation source (Advanced Light Source) in Berkeley, and will describe their application to understanding the structure of a quartz-geode. Our results show the manner in which grain structure and texture change as a function of distance from the cavity wall and are compared with models of crystal growth in such systems. This example highlights the great utility of a synchrotron based x-ray micro-diffraction beamline and the possibilities it opens to the mineralogist.

  12. Tunable Heterodyne Receiver from 100 Micron to 1,000 Micron for Airborne Observations

    Science.gov (United States)

    Roeser, H. P.; Wattenbach, R.; Vanderwal, P.

    1984-01-01

    Interest in high resolution spectrometers for the submillimeter wavelength range from 100 micron to 1,000 micron is mostly stimulated by molecular spectroscopy in radioastronomy and atmospheric physics, and by plasma diagnostic experiments. Schottky diodes in waveguide mixer technology and InSb-hot electron bolometers are successfully used in the 0.5 to a few millimeter range whereas tandem Fabry-Perot spectrometers combined with photoconductive detectors (Ge:Sb and Ge:Ga) are used for the 100 micron range. Recent research on heterodyne spectrometers, with Schottky diodes in an open structure mixer and a molecular laser as local oscillators, which can be used over the whole wavelength range is summarized.

  13. Measuring past a micron...

    CERN Multimedia

    Anaïs Schaeffer

    2011-01-01

    Infinity: That is the name of the new ultra-precision machine used by CERN's Metrology Service to measure the copper components for the CLIC accelerating structures. This project is the result of a collaboration between CLIC and the EN Department. Curious to find out more? Read on because there’ll be an opportunity for you to get a very close look at Infinity!    Infinity, the new, ultra-precise, measuring machine, is currently in operation at the CERN Metrology Service. The CLIC (Compact LInear Collider) radiofrequency structures will operate under very high electric fields (100 MV/m). They should be manufactured within minimal mechanical tolerances. To validate the quality of these components, they have to be measured with a precision that far exceeds the machining tolerances, i.e. 0.3 microns. No “ordinary” measuring machine can achieve this precision, but Infinity, the newly developed high-precision three-dimensional measuring machine i...

  14. Micron scale spectroscopic analysis of materials

    International Nuclear Information System (INIS)

    James, David; Finlayson, Trevor; Prawer, Steven

    1991-01-01

    The goal of this proposal is the establishment of a facility which will enable complete micron scale spectroscopic analysis of any sample which can be imaged in the optical microscope. Current applications include studies of carbon fibres, diamond thin films, ceramics (zirconia and high T c superconductors), semiconductors, wood pulp, wool fibres, mineral inclusions, proteins, plant cells, polymers, fluoride glasses, and optical fibres. The range of interests crosses traditional discipline boundaries and augurs well for a truly interdisciplinary collaboration. Developments in instrumentation such as confocal imaging are planned to achieve sub-micron resolution, and advances in computer software and hardware will enable the aforementioned spectroscopies to be used to map molecular and crystalline phases on the surfaces of materials. Coupled with existing compositional microprobes (e.g. the proton microprobe) the possibilities for the development of new, powerful, hybrid imaging technologies appear to be excellent

  15. Prescribed 3-D Direct Writing of Suspended Micron/Sub-micron Scale Fiber Structures via a Robotic Dispensing System.

    Science.gov (United States)

    Yuan, Hanwen; Cambron, Scott D; Keynton, Robert S

    2015-06-12

    A 3-axis dispensing system is utilized to control the initiating and terminating fiber positions and trajectory via the dispensing software. The polymer fiber length and orientation is defined by the spatial positioning of the dispensing system 3-axis stages. The fiber diameter is defined by the prescribed dispense time of the dispensing system valve, the feed rate (the speed at which the stage traverses from an initiating to a terminating position), the gauge diameter of the dispensing tip, the viscosity and surface tension of the polymer solution, and the programmed drawing length. The stage feed rate affects the polymer solution's evaporation rate and capillary breakup of the filaments. The dispensing system consists of a pneumatic valve controller, a droplet-dispensing valve and a dispensing tip. Characterization of the direct write process to determine the optimum combination of factors leads to repeatedly acquiring the desired range of fiber diameters. The advantage of this robotic dispensing system is the ease of obtaining a precise range of micron/sub-micron fibers onto a desired, programmed location via automated process control. Here, the discussed self-assembled micron/sub-micron scale 3D structures have been employed to fabricate suspended structures to create micron/sub-micron fluidic devices and bioengineered scaffolds.

  16. Facile synthesis of Li2S-P2S5 glass-ceramics electrolyte with micron range particles for all-solid-state batteries via a low-temperature solution technique (LTST)

    Science.gov (United States)

    Choi, Sunho; Lee, Sewook; Park, Jongyeop; Nichols, William T.; Shin, Dongwook

    2018-06-01

    A lithium ion conductive 75Li2Sṡ25P2S5 glass-ceramics electrolyte is, for the first time, successfully synthesized via a new low-temperature solution technique (LTST) and compared to the conventional mechanical-milling technique. Both samples are composed of the highly lithium ion conductive thio-LISICON III analog phase. Due to the uniform dispersion of reactants in an organic liquid, the use of LTST produced significantly smaller and more uniform particle sizes (2.2 ± 1.68 μm) resulting in a 6.5 times higher specific surface area compared to the mechanically-milled sample. A pronounced enhancement of both the rate capability and cyclability is demonstrated for the LTST solid electrolyte sample due to the more intimate contact with the LiCoO2 active material. Furthermore, the LTST sample shows excellent electrochemical stability throughout the potential range of -1 to 5 V. These results suggest that the proposed technique using the optimized LTST process is promising for the preparation of 75Li2Sṡ25P2S5 solid electrolytes for use in advanced Li-ion batteries.

  17. New spectrometric measurement of atmospheric 60 micron emission

    International Nuclear Information System (INIS)

    Grossmann, K.U.; Barthol, P.; Frings, W.; Hennig, R.; Offermann, D.

    1982-01-01

    Absolute zenith intensities of the atomic oxygen fine structure emission at 63 microns measured above Kiruna, Sweden, on December 9, 1981, in the altitude range of 85 km to 237 km are discussed. The data obtained are compared with theoretical predictions for this emission. For the model intensity calculations, both local thermodynamic equilibrium (LTE) and non-LTE conditions are assumed. The significance of the 63-micron emission as a cooling mechanism of the thermosphere is briefly discussed. It is noted that the geomagnetic field before and during the flight was very quiet

  18. MATHEMATICAL MODEL OF GRAIN MICRONIZATION

    Directory of Open Access Journals (Sweden)

    V. A. Afanas’ev

    2014-01-01

    Full Text Available Summary. During micronisation grain moisture evaporates mainly in decreasing drying rate period. Grain layer located on the surface of the conveyor micronisers will be regarded as horizontal plate. Due to the fact that the micronisation process the surface of the grain evaporates little moisture (within 2-7 % is assumed constant plate thickness. Because in the process of micronization grain structure is changing, in order to achieve an exact solution of the equations necessary to take into account changes thermophysical, optical and others. Equation of heat transfer is necessary to add a term that is responsible for the infrared heating. Because of the small thickness of the grain, neglecting the processes occurring at the edge of the grain, that is actually consider the problem of an infinite plate. To check the adequacy of the mathematical model of the process of micronisation of wheat grain moisture content must be comparable to the function of time, obtained by solving the system of equations with the measured experimental data of experience. Numerical solution of a system of equations for the period of decreasing drying rate is feasible with the help of the Maple 14, substituting the values of the constants in the system. Calculation of the average relative error does not exceed 7- 10 %, and shows a good agreement between the calculated data and the experimental values.

  19. Dissolution enhancement of Tibolone by micronization technique

    Directory of Open Access Journals (Sweden)

    Kailash Bansal

    2012-01-01

    Conclusion: Micronization technique has a significant impact on the dissolution of Tibolone. The experimental findings suggest that micronization can be used for the preparation of rapidly dissolving formulations of Tibolone, and could potentially lead to improvement in the in-vivo bioavailability of Tibolone oral tablets.

  20. MICRON-SIZED POLYMER PARTICLES FROM TANZANIAN ...

    African Journals Online (AJOL)

    Micron sized polymeric particles were prepared from cashew nut shell liquid and subsequently functionalized to produce micron-sized carboxylated cation exchange resin (MCCER). By titrimetry and analytical procedures employing atomic absorption spectrometry, an assessment of the cation exchange capability of the ...

  1. One Micron Laser Technology Advancements at GSFC

    Science.gov (United States)

    Heaps, William S.

    2010-01-01

    This slide presentation reviews the advancements made in one micron laser technology at Goddard Space Flight Center. It includes information about risk factors that are being addressed by GSFC, and overviews of the various programs that GSFC is currently managing that are using 1 micron laser technology.

  2. A high resolution atlas of the galactic plane at 12 microns and 25 microns

    Science.gov (United States)

    Price, Stephan D.; Korte, Rose M.; Sample, Rebecca S.; Kennealy, John P.; Gonsalves, Robert A.

    1994-01-01

    High resolution images of the 12 micron and 25 micron IRAS survey data from each HCON crossing the Galactic Plane are being created for those regions that the original IRAS processing labeled as confused. This encompasses the area within 100 deg longitude of the Galactic Center and within 3 deg to 10 deg of the Plane. The procedures used to create the images preserve the spatial resolution inherent in the IRAS instrument. The images are separated into diffuse and point source components and candidate sources are extracted from the point source image after non-linear spatial sharpening. Fluxes are estimated by convolving the candidate sources with the point response function and cross-correlating with the original point source image. A source is considered real if it is seen on at least two HCON's with a rather generous flux match but a stringent position criterion. A number of fields spanning a range of source densities from low to high have been examined. Initial analysis indicates that the imaging and extraction works quite well up to a source density of about 100 sources per square degree or down to roughly 0.8 Janskys.

  3. Compact 2 Micron Seed Laser, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is for the development of new compact, high power and extremely reliable 2 micron seed laser using newly developed Tm3+ doped germanate glass fibers,...

  4. Compact 2 Micron Seed Laser, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is for the development of innovative compact, high power and extremely reliable 2 micron seed laser using newly developed Tm3+ doped germanate glass...

  5. Non-uniform plastic deformation of micron scale objects

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Hutchinson, J. W.

    2003-01-01

    Significant increases in apparent flow strength are observed when non-uniform plastic deformation of metals occurs at the scale ranging from roughly one to ten microns. Several basic plane strain problems are analyzed numerically in this paper based on a new formulation of strain gradient...... plasticity. The problems are the tangential and normal loading of a finite rectangular block of material bonded to rigid platens and having traction-free ends, and the normal loading of a half-space by a flat, rigid punch. The solutions illustrate fundamental features of plasticity at the micron scale...... that are not captured by conventional plasticity theory. These include the role of material length parameters in establishing the size dependence of strength and the elevation of resistance to plastic flow resulting from constraint on plastic flow at boundaries. Details of the finite element method employed...

  6. Radiation Pressure Measurements on Micron-Size Individual Dust Grains

    Science.gov (United States)

    Abbas, M. M.; Craven, P. D.; Spann, J. F.; Witherow, W. K.; West, E. A.; Gallagher, D. L.; Adrian, M. L.; Fishman, G. J.; Tankosic, D.; LeClair, A.

    2003-01-01

    Measurements of electromagnetic radiation pressure have been made on individual silica (SiO2) particles levitated in an electrodynamic balance. These measurements were made by inserting single charged particles of known diameter in the 0.2- to 6.82-micron range and irradiating them from above with laser radiation focused to beam widths of approximately 175- 400 microns at ambient pressures particle due to the radiation force is balanced by the electrostatic force indicated by the compensating dc potential applied to the balance electrodes, providing a direct measure of the radiation force on the levitated particle. Theoretical calculations of the radiation pressure with a least-squares fit to the measured data yield the radiation pressure efficiencies of the particles, and comparisons with Mie scattering theory calculations provide the imaginary part of the refractive index of SiO2 and the corresponding extinction and scattering efficiencies.

  7. Status of 2 micron laser technology program

    Science.gov (United States)

    Storm, Mark

    1991-01-01

    The status of 2 micron lasers for windshear detection is described in viewgraph form Theoretical atmospheric and instrument system studies have demonstrated that the 2.1 micron Ho:YAG lasers can effectively measure wind speeds in both wet and dry conditions with accuracies of 1 m/sec. Two micron laser technology looks very promising in the near future, but several technical questions remain. The Ho:YAG laser would be small, compact, and efficient, requiring little or no maintenance. Since the Ho:YAG laser is laser diode pumped and has no moving part, the lifetime of this laser would be directly related to the diode laser lifetimes which can perform in excess of 10,000 hours. Efficiencies of 3 to 12 percent are expected, but laser demonstrations confirming the ability to Q-switch this laser are required. Coherent laser operation has been demonstrated for both the CW and Q-switched lasers.

  8. Radiation Pressure Measurements on Micron Size Individual Dust Grains

    Science.gov (United States)

    Abbas, M. M.; Craven, P.D.; Spann, J. F.; Tankosic, D.; Witherow, W. K.; LeClair, A.; West, E.; Sheldon, R.; Gallagher, D. L.; Adrian, M. L.

    2003-01-01

    Measurements of electromagnetic radiation pressure have been made on individual silica (SiO2) particles levitated in an electrodynamic balance. These measurements were made by inserting single charged particles of known diameter in the 0.2 micron to 6.82 micron range and irradiating them from above with laser radiation focused to beam-widths of approx. 175-400 micron, at ambient pressures approx. 10(exp -3) to 10(exp -4) torr. The downward displacement of the particle due to the radiation force is balanced by the electrostatic force indicated by the compensating dc potential applied to the balance electrodes, providing a direct measure of the radiation force on the levitated particle. Theoretical calculations of the radiation pressure with a least-squares fit to the measured data yield the radiation pressure efficiencies of the particles, and comparisons with Mie scattering theory calculations provide the imaginary part of the refractive index of silica and the corresponding extinction and scattering efficiencies.

  9. Two micron pore size MCP-based image intensifiers

    Science.gov (United States)

    Glesener, John; Estrera, Joseph

    2010-02-01

    Image intensifiers (I2) have many advantages as detectors. They offer single photon sensitivity in an imaging format, they're light in weight and analog I2 systems can operate for hours on a single AA battery. Their light output is such as to exploit the peak in color sensitivity of the human eye. Until recent developments in CMOS sensors, they also were one of the highest resolution sensors available. The closest all solid state solution, the Texas Instruments Impactron chip, comes in a 1 megapixel format. Depending on the level of integration, an Impactron based system can consume 20 to 40 watts in a system configuration. In further investing in I2 technology, L-3 EOS determined that increasing I2 resolution merited a high priority. Increased I2 resolution offers the system user two desirable options: 1) increased detection and identification ranges while maintaining field-of-view (FOV) or 2) increasing FOV while maintaining the original system resolution. One of the areas where an investment in resolution is being made is in the microchannel plate (MCP). Incorporation of a 2 micron MCP into an image tube has the potential of increasing the system resolution of currently fielded systems. Both inverting and non-inverting configurations are being evaluated. Inverting tubes are being characterized in night vision goggle (NVG) and sights. The non-inverting 2 micron tube is being characterized for high resolution I2CMOS camera applications. Preliminary measurements show an increase in the MTF over a standard 5 micron pore size, 6 micron pitch plate. Current results will be presented.

  10. Efavirenz Dissolution Enhancement I: Co-Micronization

    Directory of Open Access Journals (Sweden)

    Helvécio Vinícius Antunes Rocha

    2012-12-01

    Full Text Available AIDS constitutes one of the most serious infectious diseases, representing a major public health priority. Efavirenz (EFV, one of the most widely used drugs for this pathology, belongs to the Class II of the Biopharmaceutics Classification System for drugs with very poor water solubility. To improve EFV’s dissolution profile, changes can be made to the physical properties of the drug that do not lead to any accompanying molecular modifications. Therefore, the study objective was to develop and characterize systems with efavirenz able to improve its dissolution, which were co-processed with sodium lauryl sulfate (SLS and polyvinylpyrrolidone (PVP. The technique used was co-micronization. Three different drug:excipient ratios were tested for each of the two carriers. The drug dispersion dissolution results showed significant improvement for all the co-processed samples in comparison to non-processed material and corresponding physical mixtures. The dissolution profiles obtained for dispersion with co-micronized SLS samples proved superior to those of co-micronized PVP, with the proportion (1:0.25 proving the optimal mixture. The improvements may be explained by the hypothesis that formation of a hydrophilic layer on the surface of the micronized drug increases the wettability of the system formed, corroborated by characterization results indicating no loss of crystallinity and an absence of interaction at the molecular level.

  11. Beeldverwerking met de Micron Automatic Processor

    OpenAIRE

    Goyens, Frank

    2017-01-01

    Deze thesis is een onderzoek naar toepassingen binnen beeldverwerking op de Micron Automata Processor hardware. De hardware wordt vergeleken met populaire hedendaagse hardware. Ook bevat dit onderzoek nuttige informatie en strategieën voor het ontwikkelen van nieuwe toepassingen. Bevindingen in dit onderzoek omvatten proof of concept algoritmes en een praktische toepassing.

  12. Tribomechanical micronization and activation of whey protein ...

    Indian Academy of Sciences (India)

    Tribomechanics is a part of physics that is concerned with the study of phenomena that appear during milling under dynamic conditions. Tribomechanical micronization and activation (TMA) of whey protein concentrates (WPC) and zeolites (type clinoptilolite) were carried out. Samples of powdered WPC and zeolite were ...

  13. The 3 micron spectrum of NGC 4565

    International Nuclear Information System (INIS)

    Adamson, A.J.; Whittet, D.C.B.

    1990-01-01

    Researchers spectrum of NGC 4565 is essentially featureless. The absence of the 3.0 micron feature (Tau 3.0 less than 0.05) implies that the extinction to the nucleus does not arise to a significant degree in molecular clouds. Researchers deduce Tau 3.0/A sub V less than 0.01, compared with approx. 0.022 for GC-IRS7. These results support the conclusion (McFadzean et al. 1989) that the 3.0 micron absorption in the GC-IR sources is due to the presence of ice in a (probably single) foreground molecular cloud. The 3.4 micron feature is also weak or absent in the researchers spectrum of NGC 4565 (Tau 3.4 less than or equal to 0.07), hence, Tau 3.4/A sub V less than or equal to 0.016, compared with approx. 0.008 towards GC-IRS7. The absence of the feature in NGC 4565 at the signal-to-noise level of the current observations is consistent with a probable moderate degree of extinction towards the nucleus. The observations of NGC 4565 provide a useful comparison for studies of dust in the Galaxy. Limits have been set on the strengths of the 3.0 and 3.4 micron features in NGC 4565. The absence of 3.0 micron absorption is significant, and supports the view that the feature at this wavelength in the Galactic Centre is due to water-ice absorption in a foreground molecular cloud. The non-detection of the 3.4 micron absorption is less surprising and provides indirect support for the association between this feature and the diffuse interstellar medium. The current spectrum probably represents the best that can be achieved with a single-detector instrument within reasonable integration times. It will clearly be of interest in the future to obtain spectra of higher signal-to-noise, as a positive detection of the 3.4 micron feature in an external galaxy, even at a low level, would be of considerable astrophysical significance

  14. Lung deposition of sub-micron aerosols calculated as a function of age and breathing rate

    International Nuclear Information System (INIS)

    James, A.C.

    1978-01-01

    Experimental measurements of lung deposition and especially of regional deposition, of aerosols in the sub-micron size range have been so few that it is worthwhile establishing a method of calculation. A computer routine has therefore been developed to calculate aerosol deposition in successive bronchial and bronchiolar generations of the Weibel 'A' model of human lung for the sub-micron size range where deposition occurs solely by diffusion. This model can be scaled to represent lungs at various ages and vital capacities. Some calculated results are presented here and compared with measurements of lung deposition made under carefully controlled conditions in humans. (author)

  15. Diode laser trabeculoplasty in open angle glaucoma: 50 micron vs. 100 micron spot size.

    Science.gov (United States)

    Veljko, Andreić; Miljković, Aleksandar; Babić, Nikola

    2011-01-01

    The study was aimed at evaluating the efficacy of diode laser trabeculoplsaty in lowering intraocular pressure in patients with both primary open-angle glaucoma and exfoliation glaucoma by using different size of laser spot. This six-month, unmasked, controlled, prospective study included sixty-two patients with the same number of eyes, who were divided into two groups. Trabeculoplasty was performed with 50 micron and 100 micron laser spot size in the group I and group II, respectively. Other laser parameters were the same for both groups: the wave length of 532 nm, 0.1 second single emission with the power of 600-1200 mW was applied on the 180 degrees of the trabeculum. The mean intraocular pressure decrease in the 50 micron group (group 1) on day 7 was 24% from the baseline and after six-month follow-up period the intraocular pressure decrease was 29.8% (p < 0.001). In the 100 micron group (group II), the mean intraocular pressure decrease on day 7 was 26.5% and after six months it was 39% (p < 0.001).

  16. Chemigation with micronized sulfur rapidly reduces soil pH in northern highbush blueberry

    Science.gov (United States)

    Northern highbush blueberry is adapted to low soil pH in the range of 4.5–5.5. When pH is higher, soil is usually acidified by incorporating elemental sulfur (S) prior to planting. A study was conducted to determine the potential of applying micronized S by chemigation through the drip system to red...

  17. Two Micron Laser Technology Advancements at NASA Langley Research Center

    Science.gov (United States)

    Singh, Upendra N.

    2010-01-01

    An Independent Laser Review Panel set up to examine NASA s space-based lidar missions and the technology readiness of lasers appropriate for space-based lidars indicated a critical need for an integrated research and development strategy to move laser transmitter technology from low technical readiness levels to the higher levels required for space missions. Based on the review, a multiyear Laser Risk Reduction Program (LRRP) was initiated by NASA in 2002 to develop technologies that ensure the successful development of the broad range of lidar missions envisioned by NASA. This presentation will provide an overview of the development of pulsed 2-micron solid-state laser technologies at NASA Langley Research Center for enabling space-based measurement of wind and carbon dioxide.

  18. Parametric resonance in superconducting micron-scale waveguides

    International Nuclear Information System (INIS)

    Fomin, N.V.; Shalaev, O.L.; Shantsev, D.V.

    1997-01-01

    A parametric resonance due to temperature oscillations in superconducting micron-scale waveguides is considered. Oscillations of superconductor temperature are assumed to be induced by the irradiation of the waveguide with a laser beam. The laser power and parameters of the waveguide providing a possibility of parametric excitation have been calculated. It is shown that for a waveguide made of a YBa 2 Cu 3 O 7 microstrip with resonant frequency of 10 GHz a laser with a power of about 70 W/cm 2 is needed to excite oscillations. The effect can be used for the creation of high-sensitivity tuneable filters and optoelectric transformers on superconducting microstrips in the GHz range. copyright 1997 American Institute of Physics

  19. The 1.4-2.7 micron spectrum of the point source at the galactic center

    Science.gov (United States)

    Treffers, R. R.; Fink, U.; Larson, H. P.; Gautier, T. N., III

    1976-01-01

    The spectrum of the 2-micron point source at the galactic center is presented over the range from 1.4 to 2.7 microns. The two-level-transition CO band heads are seen near 2.3 microns, confirming that the radiation from this source is due to a cool supergiant star. The heliocentric radial velocity is found to be - 173 (+ or -90) km/s and is consistent with the star being in orbit about a dense galactic nucleus. No evidence is found for Brackett-gamma emission, and no interstellar absorption features are seen. Upper limits for the column densities of interstellar H2, CH4, CO, and NH3 are derived.

  20. 3 micron spectrophotometry of Comet Halley - Evidence for water ice

    Science.gov (United States)

    Bregman, Jesse D.; Tielens, A. G. G. M.; Witteborn, Fred C.; Rank, David M.; Wooden, Diane

    1988-01-01

    Structure has been observed in the 3-3.6 micron preperihelion spectrum of Comet Halley consistent with either an absorption band near 3.1 microns or emission near 3.3 microns. The results suggest that a large fraction of the water molecules lost by the comet are initially ejected in the form of small ice particles rather than in the gas phase.

  1. Passive athermalization of doublets in 8-13 micron waveband

    Science.gov (United States)

    Schuster, Norbert

    2014-10-01

    Passive athermalization of lenses has become a key-technology for automotive and other outdoor applications using modern uncooled 25, 17 and 12 micron pixel pitch bolometer arrays. Typical pixel counts for thermal imaging are 384x288 (qVGA), 640x480 (VGA), and 1024x768 (XGA). Two lens arrangements (called Doublets) represent a cost effective way to satisfy resolution requirements of these detectors with F-numbers 1.4 or faster. Thermal drift of index of refraction and the geometrical changes (in lenses and housing) versus temperature defocus the initial image plane from the detector plane. The passive athermalization restricts this drop of spatial resolution in a wide temperature range (typically -40°C…+80°C) to an acceptable value without any additional external refocus. In particular, lenses with long focal lengths and high apertures claim athermalization. A careful choice of lens and housing materials and a sophistical dimensioning lead to three different principles of passivation: The Passive Mechanical Athermalization (PMA) shifts the complete lens cell, the Passive Optical and Mechanical Athermalization (POMA) shifts only one lens inside the housing, the Passive Optical Athermalization (POA) works without any mechanism. All three principles will be demonstrated for a typical narrow-field lens (HFOV about 12°) with high aperture (aperture based F-number 1.3) for the actual uncooled reference detector (17micron VGA). Six design examples using different combinations of lens materials show the impact on spatial lens resolution, on overall length, and on weight. First order relations are discussed. They give some hints for optimization solutions. Pros and cons of different passive athermalization principles are evaluated in regards of housing design, availability of materials and costing. Examples with a convergent GASIR®1-lens in front distinguish by best resolution, short overall length, and lowest weight.

  2. Deformation Behavior of Sub-micron and Micron Sized Alumina Particles in Compression.

    Energy Technology Data Exchange (ETDEWEB)

    Sarobol, Pylin; Chandross, Michael E.; Carroll, Jay; Mook, William; Boyce, Brad; Kotula, Paul Gabriel; McKenzie, Bonnie Beth; Bufford, Daniel Charles; Hall, Aaron Christopher.

    2014-09-01

    The ability to integrate ceramics with other materials has been limited due to high temperature (>800degC) ceramic processing. Recently, researchers demonstrated a novel process , aerosol deposition (AD), to fabricate ceramic films at room temperature (RT). In this process, sub - micro n sized ceramic particles are accelerated by pressurized gas, impacted on the substrate, plastically deformed, and form a dense film under vacuum. This AD process eliminates high temperature processing thereby enabling new coatings and device integration, in which ceramics can be deposited on metals, plastics, and glass. However, k nowledge in fundamental mechanisms for ceramic particle s to deform and form a dense ceramic film is still needed and is essential in advancing this novel RT technology. In this wo rk, a combination of experimentation and atomistic simulation was used to determine the deformation behavior of sub - micron sized ceramic particle s ; this is the first fundamental step needed to explain coating formation in the AD process . High purity, singl e crystal, alpha alumina particles with nominal size s of 0.3 um and 3.0 um were examined. Particle characterization, using transmission electron microscopy (TEM ), showed that the 0.3 u m particles were relatively defect - free single crystals whereas 3.0 u m p articles were highly defective single crystals or particles contained low angle grain boundaries. Sub - micron sized Al 2 O 3 particles exhibited ductile failure in compression. In situ compression experiments showed 0.3um particles deformed plastically, fractured, and became polycrystalline. Moreover, dislocation activit y was observed within the se particles during compression . These sub - micron sized Al 2 O 3 particles exhibited large accum ulated strain (2 - 3 times those of micron - sized particles) before first fracture. I n agreement with the findings from experimentation , a tomistic simulation s of nano - Al 2 O 3 particles showed dislocation slip and

  3. Balloon observations of galactic and extragalactic objects at 100 microns.

    Science.gov (United States)

    Hoffmann, W. F.

    1972-01-01

    Recent far-infrared balloon-borne instruments have yielded observations of a number of bright sources at 100 microns. Many of these coincide with HII regions where molecular line emision has been detected. There is some indication of 100 micron emission which does not coincide with radio measurements.

  4. Ignition dynamics and activation energies of metallic thermites: From nano- to micron-scale particulate composites

    Science.gov (United States)

    Hunt, Emily M.; Pantoya, Michelle L.

    2005-08-01

    Ignition behaviors associated with nano- and micron-scale particulate composite thermites were studied experimentally and modeled theoretically. The experimental analysis utilized a CO2 laser ignition apparatus to ignite the front surface of compacted nickel (Ni) and aluminum (Al) pellets at varying heating rates. Ignition delay time and ignition temperature as a function of both Ni and Al particle size were measured using high-speed imaging and microthermocouples. The apparent activation energy was determined from this data using a Kissinger isoconversion method. This study shows that the activation energy is significantly lower for nano- compared with micron-scale particulate media (i.e., as low as 17.4 compared with 162.5kJ /mol, respectively). Two separate Arrhenius-type mathematical models were developed that describe ignition in the nano- and the micron-composite thermites. The micron-composite model is based on a heat balance while the nanocomposite model incorporates the energy of phase transformation in the alumina shell theorized to be an initiating step in the solid-solid diffusion reaction and uniquely appreciable in nanoparticle media. These models were found to describe the ignition of the Ni /Al alloy for a wide range of heating rates.

  5. Pengaruh Temperatur, Waktu, dan Aditif Dalam Pembuatan Zircon Micronized

    Directory of Open Access Journals (Sweden)

    Sajima

    2017-05-01

    Full Text Available Research on temperature, time and additives effects on milling process in micronized-zircon production has been conducted. The production of zircon micronized started from sorting process on mining products then followed by beneficiation, roasting, leaching, dryng and milling processes. The results showed that the optimum conditions of the roasting process was at the temperature of 425 °C, in 25 minutes and using 4% additives. In these conditions, micronized zircon (2 µm obtained as much as 92.10% in10 minutes milling time.

  6. Airborne spectrophotometry of Comet Halley from 5 to 9 microns

    Science.gov (United States)

    Campins, H.; Bregman, J. D.; Witteborn, F. C.; Wooden, D. H.; Rank, D. M.; Cohen, M.; Allamandola, Louis J.; Tielens, Alexander G. G. M.

    1986-01-01

    Spectrophotometry from 5 to 9 microns (resolution = 0.02) of comet Halley was obtained from the Kuiper Airborne Observatory on 1985 Dec. 12.1 and 1986 April 8.6 and 10.5 UT. Two spectral features are apparent in all the observations, one from 5.24 to 5.6 microns, and the silicate emission feature which has an onset between 7 and 8 microns. There is no evidence for the 7.5 microns feature observed by the Vega 1 spacecraft; the large difference between the areal coverage viewed from the spacecraft and the airplane may explain the discrepancy. Color temperatures significantly higher than a blackbody indicate that small particles are abundant in the coma. Significant spatial and temporal variations in the spectrum show trends similar to those observed from the ground.

  7. Single frequency narrow linewidth 2 micron laser, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA needs narrow linewidth lasers in the 1.5 or 2 micron wavelength regime for coherent Lidar applications. The laser should be tunable by several nm and frequency...

  8. Defect investigations of micron sized precipitates in Al alloys

    Science.gov (United States)

    Klobes, B.; Korff, B.; Balarisi, O.; Eich, P.; Haaks, M.; Kohlbach, I.; Maier, K.; Sottong, R.; Staab, T. E. M.

    2011-01-01

    A lot of light aluminium alloys achieve their favourable mechanical properties, especially their high strength, due to precipitation of alloying elements. This class of age hardenable Al alloys includes technologically important systems such as e.g. Al-Mg-Si or Al-Cu. During ageing different precipitates are formed according to a specific precipitation sequence, which is always directed onto the corresponding intermetallic equilibrium phase. Probing the defect state of individual precipitates requires high spatial resolution as well as high chemical sensitivity. Both can be achieved using the finely focused positron beam provided by the Bonn Positron Microprobe (BPM) [1] in combination with the High Momentum Analysis (HMA) [2]. Employing the BPM, structures in the micron range can be probed by means of the spectroscopy of the Doppler broadening of annihilation radiation (DBAR). On the basis of these prerequisites single precipitates of intermetallic phases in Al-Mg-Si and Al-Cu, i.e. Mg2Si and Al2Cu, were probed. A detailed interpretation of these measurements necessarily relies on theoretical calculations of the DBAR of possible annihilation sites. These were performed employing the DOPPLER program. However, previous to the DBAR calculation the structures, which partly contain vacancies, were relaxed using the ab-initio code SIESTA, i.e. the atomic positions in presence of a vacancy were recalculated.

  9. Defect investigations of micron sized precipitates in Al alloys

    Energy Technology Data Exchange (ETDEWEB)

    Klobes, B; Korff, B; Balarisi, O; Eich, P; Haaks, M; Kohlbach, I; Maier, K; Sottong, R [Helmholtz-Institut fuer Strahlen- und Kernphysik, Nussallee 14-16, D-53115 Bonn (Germany); Staab, T E M, E-mail: klobes@hiskp.uni-bonn.de [Fraunhofer ISC, Neunerplatz 2, D-97082 Wuerzburg (Germany)

    2011-01-01

    A lot of light aluminium alloys achieve their favourable mechanical properties, especially their high strength, due to precipitation of alloying elements. This class of age hardenable Al alloys includes technologically important systems such as e.g. Al-Mg-Si or Al-Cu. During ageing different precipitates are formed according to a specific precipitation sequence, which is always directed onto the corresponding intermetallic equilibrium phase. Probing the defect state of individual precipitates requires high spatial resolution as well as high chemical sensitivity. Both can be achieved using the finely focused positron beam provided by the Bonn Positron Microprobe (BPM) in combination with the High Momentum Analysis (HMA). Employing the BPM, structures in the micron range can be probed by means of the spectroscopy of the Doppler broadening of annihilation radiation (DBAR). On the basis of these prerequisites single precipitates of intermetallic phases in Al-Mg-Si and Al-Cu, i.e. Mg{sub 2}Si and Al{sub 2}Cu, were probed. A detailed interpretation of these measurements necessarily relies on theoretical calculations of the DBAR of possible annihilation sites. These were performed employing the DOPPLER program. However, previous to the DBAR calculation the structures, which partly contain vacancies, were relaxed using the ab-initio code SIESTA, i.e. the atomic positions in presence of a vacancy were recalculated.

  10. Penetration and Effectiveness of Micronized Copper in Refractory Wood Species.

    Science.gov (United States)

    Civardi, Chiara; Van den Bulcke, Jan; Schubert, Mark; Michel, Elisabeth; Butron, Maria Isabel; Boone, Matthieu N; Dierick, Manuel; Van Acker, Joris; Wick, Peter; Schwarze, Francis W M R

    2016-01-01

    The North American wood decking market mostly relies on easily treatable Southern yellow pine (SYP), which is being impregnated with micronized copper (MC) wood preservatives since 2006. These formulations are composed of copper (Cu) carbonate particles (CuCO3·Cu(OH)2), with sizes ranging from 1 nm to 250 μm, according to manufacturers. MC-treated SYP wood is protected against decay by solubilized Cu2+ ions and unreacted CuCO3·Cu(OH)2 particles that successively release Cu2+ ions (reservoir effect). The wood species used for the European wood decking market differ from the North American SYP. One of the most common species is Norway spruce wood, which is poorly treatable i.e. refractory due to the anatomical properties, like pore size and structure, and chemical composition, like pit membrane components or presence of wood extractives. Therefore, MC formulations may not suitable for refractory wood species common in the European market, despite their good performance in SYP. We evaluated the penetration effectiveness of MC azole (MCA) in easily treatable Scots pine and in refractory Norway spruce wood. We assessed the effectiveness against the Cu-tolerant wood-destroying fungus Rhodonia placenta. Our findings show that MCA cannot easily penetrate refractory wood species and could not confirm the presence of a reservoir effect.

  11. Characterization of micron-size hydrogen clusters using Mie scattering.

    Science.gov (United States)

    Jinno, S; Tanaka, H; Matsui, R; Kanasaki, M; Sakaki, H; Kando, M; Kondo, K; Sugiyama, A; Uesaka, M; Kishimoto, Y; Fukuda, Y

    2017-08-07

    Hydrogen clusters with diameters of a few micrometer range, composed of 10 8-10 hydrogen molecules, have been produced for the first time in an expansion of supercooled, high-pressure hydrogen gas into a vacuum through a conical nozzle connected to a cryogenic pulsed solenoid valve. The size distribution of the clusters has been evaluated by measuring the angular distribution of laser light scattered from the clusters. The data were analyzed based on the Mie scattering theory combined with the Tikhonov regularization method including the instrumental functions, the validity of which was assessed by performing a calibration study using a reference target consisting of standard micro-particles with two different sizes. The size distribution of the clusters was found discrete peaked at 0.33 ± 0.03, 0.65 ± 0.05, 0.81 ± 0.06, 1.40 ± 0.06 and 2.00 ± 0.13 µm in diameter. The highly reproducible and impurity-free nature of the micron-size hydrogen clusters can be a promising target for laser-driven multi-MeV proton sources with the currently available high power lasers.

  12. Imaging phase slip dynamics in micron-size superconducting rings

    Science.gov (United States)

    Polshyn, Hryhoriy; Naibert, Tyler R.; Budakian, Raffi

    2018-05-01

    We present a scanning probe technique for measuring the dynamics of individual fluxoid transitions in multiply connected superconducting structures. In these measurements, a small magnetic particle attached to the tip of a silicon cantilever is scanned over a micron-size superconducting ring fabricated from a thin aluminum film. We find that near the superconducting transition temperature of the aluminum, the dissipation and frequency of the cantilever changes significantly at particular locations where the tip-induced magnetic flux penetrating the ring causes the two lowest-energy fluxoid states to become nearly degenerate. In this regime, we show that changes in the cantilever frequency and dissipation are well-described by a stochastic resonance (SR) process, wherein small oscillations of the cantilever in the presence of thermally activated phase slips (TAPS) in the ring give rise to a dynamical force that modifies the mechanical properties of the cantilever. Using the SR model, we calculate the average fluctuation rate of the TAPS as a function of temperature over a 32-dB range in frequency, and we compare it to the Langer-Ambegaokar-McCumber-Halperin theory for TAPS in one-dimensional superconducting structures.

  13. Sub-micron resolution selected area electron channeling patterns.

    Science.gov (United States)

    Guyon, J; Mansour, H; Gey, N; Crimp, M A; Chalal, S; Maloufi, N

    2015-02-01

    Collection of selected area channeling patterns (SACPs) on a high resolution FEG-SEM is essential to carry out quantitative electron channeling contrast imaging (ECCI) studies, as it facilitates accurate determination of the crystal plane normal with respect to the incident beam direction and thus allows control the electron channeling conditions. Unfortunately commercial SACP modes developed in the past were limited in spatial resolution and are often no longer offered. In this contribution we present a novel approach for collecting high resolution SACPs (HR-SACPs) developed on a Gemini column. This HR-SACP technique combines the first demonstrated sub-micron spatial resolution with high angular accuracy of about 0.1°, at a convenient working distance of 10mm. This innovative approach integrates the use of aperture alignment coils to rock the beam with a digitally calibrated beam shift procedure to ensure the rocking beam is maintained on a point of interest. Moreover a new methodology to accurately measure SACP spatial resolution is proposed. While column considerations limit the rocking angle to 4°, this range is adequate to index the HR-SACP in conjunction with the pattern simulated from the approximate orientation deduced by EBSD. This new technique facilitates Accurate ECCI (A-ECCI) studies from very fine grained and/or highly strained materials. It offers also new insights for developing HR-SACP modes on new generation high-resolution electron columns. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. In-situ detection of micron-sized dust particles in near-Earth space

    Science.gov (United States)

    Gruen, E.; Zook, H. A.

    1985-01-01

    In situ detectors for micron sized dust particles based on the measurement of impact ionization have been flown on several space missions (Pioneer 8/9, HEOS-2 and Helios 1/2). Previous measurements of small dust particles in near-Earth space are reviewed. An instrument is proposed for the measurement of micron sized meteoroids and space debris such as solid rocket exhaust particles from on board an Earth orbiting satellite. The instrument will measure the mass, speed, flight direction and electrical charge of individually impacting debris and meteoritic particles. It is a multicoincidence detector of 1000 sq cm sensitive area and measures particle masses in the range from 10 to the -14th power g to 10 to the -8th power g at an impact speed of 10 km/s. The instrument is lightweight (5 kg), consumes little power (4 watts), and requires a data sampling rate of about 100 bits per second.

  15. Influence of the Efavirenz Micronization on Tableting and Dissolution

    Directory of Open Access Journals (Sweden)

    Lucio Mendes Cabral

    2012-09-01

    Full Text Available The purpose of this study was to propose an analytical procedure that provides the effects of particle size and surface area on dissolution of efavirenz. Five different batches obtained by different micronization processes and with different particle size distribution and surface area were studied. The preformulation studies and dissolution curves were used to confirm the particle size distribution effect on drug solubility. No polymorphic variety or amorphization was observed in the tested batches and the particle size distribution was determined as directly responsible for the improvement of drug dissolution. The influence of the preparation process on the tablets derived from efavirenz was observed in the final dissolution result in which agglomeration, usually seen in non-lipophilic micronized material, was avoided through the use of an appropriate wet granulation method. For these reasons, micronization may represent one viable alternative for the formulation of brick dust drugs.

  16. RF discharge slab carbon monoxide laser: overtone lasing (2.5-4.0 micron) and fundamental band tuning (5.0-6.5 micron)

    Science.gov (United States)

    Ionin, Andrey A.; Kozlov, Andrey Yu.; Seleznev, Leonid V.; Sinitsyn, Dmitry V.

    2008-10-01

    Overtone lasing and fundamental band tuning was for the first time obtained in a slab carbon monoxide laser. The compact slab CO laser with active volume 3×30×250 mm3 was excited by a repetitively pulsed capacitive RF discharge (81.36 MHz) with pulse repetition rate 100-500 Hz. The laser electrodes were cooled down to 120 K. Gas mixture CO:Air:He at gas pressures 15-22 Torr was used. An optical scheme "frequency selective master oscillator - laser amplifier" was applied for getting fundamental band tuning. Single line lasing with average power up to several tens of mW was observed on ~100 rotational-vibrational transitions of CO molecule within the spectral range ~5.0 - 6.5 micron. Multiline overtone lasing was observed on ~80 spectral lines within the spectral range ~2.5 -4.0 micron, with maximum single line average output power 12 mW. Total output power of the slab overtone CO laser came up to 0.3 W, with maximum laser efficiency 0.5%. Results of parametric studies of the overtone CO laser including complicated time behavior for laser pulses on different overtone vibrational-rotational transitions are discussed.

  17. Airborne 2-Micron Double-Pulsed Integrated Path Differential Absorption Lidar for Column CO2 Measurement

    Science.gov (United States)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer F.; Remus, Ruben G.; Fay, James J.; Reithmaier, Karl

    2014-01-01

    Double-pulse 2-micron lasers have been demonstrated with energy as high as 600 millijouls and up to 10 Hz repetition rate. The two laser pulses are separated by 200 microseconds and can be tuned and locked separately. Applying double-pulse laser in DIAL system enhances the CO2 measurement capability by increasing the overlap of the sampled volume between the on-line and off-line. To avoid detection complicity, integrated path differential absorption (IPDA) lidar provides higher signal-to-noise ratio measurement compared to conventional range-resolved DIAL. Rather than weak atmospheric scattering returns, IPDA rely on the much stronger hard target returns that is best suited for airborne platforms. In addition, the IPDA technique measures the total integrated column content from the instrument to the hard target but with weighting that can be tuned by the transmitter. Therefore, the transmitter could be tuned to weight the column measurement to the surface for optimum CO2 interaction studies or up to the free troposphere for optimum transport studies. Currently, NASA LaRC is developing and integrating a double-Pulsed 2-micron direct detection IPDA lidar for CO2 column measurement from an airborne platform. The presentation will describe the development of the 2-micron IPDA lidar system and present the airborne measurement of column CO2 and will compare to in-situ measurement for various ground target of different reflectivity.

  18. Impact of micronized starfruit (Averrhoa carambola L.) fiber concentrate on lipid metabolism in mice.

    Science.gov (United States)

    Herman-Lara, Erasmo; Elvira-Torales, Laura I; Rodriguez-Miranda, Jesús; Torruco-Uco, Juan G; Carmona-García, Roselis; Mendoza-García, Patricia G; García, Hugo S; Soto-Rodríguez, Ida; Sánchez-Valdivieso, Enrique; Martínez-Sánchez, Cecilia E

    2014-11-01

    The objective of this study was to evaluate the effect of micronized insoluble fiber from starfruit bagasse as an ingredient of a functional food (FF) or as micronized insoluble fiber-rich fraction (IFRF) and its effects in vivo on lipids metabolism in a murine model. Experimental animals were divided in four isoproteic (15.8%) treatments differing on the fiber and cholesterol level used. The micronized IFRF particle size ranged from 37.5 to 149 μm. Treatments with added IFRF and those including the FF lowered serum triacylglycerols, total cholesterol (TC), high-density lipoproteins (HDL), and low-density lipoproteins (LDL) concentrations (IFRF: 14.2, 25.4, 55.06, and 12.18%, respectively; FF: 30.18, 39.47, 35.11, and 43.18%, respectively). IFRF produced the overall highest serum hypolipidemic effect and prevented the development of non-alcoholic fatty liver. Both the IFRF and the FF exhibited hypolipidemic effects that suggest a potential role of starfruit insoluble fiber as a component of FFs aimed against cardiovascular diseases.

  19. Variability of Jupiter's Five-Micron Hot Spot Inventory

    Science.gov (United States)

    Yanamandra-Fisher, Padma A.; Orton, G. S.; Wakefield, L.; Rogers, J. H.; Simon-Miller, A. A.; Boydstun, K.

    2012-01-01

    Global upheavals on Jupiter involve changes in the albedo of entire axisymmetric regions, lasting several years, with the last two occurring in 1989 and 2006. Against this backdrop of planetary-scale changes, discrete features such as the Great Red Spot (GRS), and other vortices exhibit changes on shorter spatial- and time-scales. We track the variability of the discrete equatorial 5-micron hot spots, semi-evenly spaced in longitude and confined to a narrow latitude band centered at 6.5degN (southern edge of the North Equatorial Belt, NEB), abundant in Voyager images. Tantalizingly similar patterns were observed in the visible (bright plumes and blue-gray regions), where reflectivity in the red is anti-correlated with 5-microns thermal radiance. Ortiz et al. (1998, GRL, 103) characterized the latitude and drift rates of the hot spots, including the descent of the Galileo probe at the southern edge of a 5-micron hot spot, as the superposition of equatorial Rossby waves, with phase speeds between 99 - 103m/s, relative to System III. We note that the high 5-micron radiances correlate well but not perfectly with high 8.57-micron radiances. Because the latter are modulated primarily by changes in the upper ammonia (NH3) ice cloud opacity, this correlation implies that changes in the ammonia ice cloud field may be responsible for the variability seen in the 5-m maps. During the NEB fade (2011 - early 2012), however, these otherwise ubiquitous features were absent, an atmospheric state not seen in decades. The ongoing NEB revival indicates nascent 5-m hot spots as early as April 2012, with corresponding visible dark spots. Their continuing growth through July 2012 indicates the possit.le re-establishment of Rossby waves. The South Equatorial Belt (SEB) and NEB revivals began similarly with an instability that developed into a major outbreak, and many similarities in the observed propagation of clear regions.

  20. Deposition and retention patterns for 3-, 9-, and 15-micron latex microspheres inhaled by rats and guinea pigs

    International Nuclear Information System (INIS)

    Snipes, M.B.; Olson, T.R.; Yeh, H.C.

    1988-01-01

    This study was designed to determine the deposition patterns and fate of large particles inhaled by two species of small laboratory animals during nose breathing. Rats and guinea pigs inhaled 3-, 9-, or 15 micron polystyrene latex microspheres labeled with 46 Sc. Approximately 1.4% and 0.55% of the initial internally deposited body burden of 3-micron microspheres was in the alveolar region of the respiratory tract of rats and guinea pigs, respectively. None of the 9- or 15-micron microspheres were detected in the alveolar regions of the rats or guinea pigs. Ninety-five to 99% of the deposited microspheres cleared from these animals with biological half-times of 0.5-1.0 day. Most of the cleared radioactivity was in the feces. Approximations for long-term biological half-times for alveolar retention of the 3-micron microspheres were 63 days for rats and 83 days for guinea pigs. About 1% of the initial lung burden of 3-micron microspheres was translocated from lung to lung-associated lymph nodes in both species; none of the 9- or 15-micron microspheres were detected in those lymph nodes. Small fractions of the microspheres initially deposited in the airways of the head were retained with biological clearance half-times ranging from 9 to 350 days. Results from this study do not allow projections for deposition and retention patterns for similar particles inhaled by humans. Such projections must come from studies with humans, or from studies with animal species having deposition patterns for inhaled materials more comparable to those of humans

  1. Study of lead phytoavailability for atmospheric industrial micronic and sub-micronic particles in relation with lead speciation

    Energy Technology Data Exchange (ETDEWEB)

    Uzu, G. [EcoLab UMR 5245 CNRS-INPT-UPS, ENSAT BP 32607 Auzeville Tolosane, 31326 Castanet Tolosan (France)], E-mail: gaelle.uzu@ensat.fr; Sobanska, S. [LASIR UMR 8516, Universite des Sciences et Technologies de Lille, Batiment C5, 59655 Villeneuve d' Ascq Cedex (France)], E-mail: Sophie.Sobanska@univ-lille1.fr; Aliouane, Y. [EcoLab UMR 5245 CNRS-INPT-UPS, ENSAT BP 32607 Auzeville Tolosane, 31326 Castanet Tolosan (France); Pradere, P. [Chemical Metal Treatment Company, STCM, 30-32 chemin de Fondeyre, 31200 Toulouse (France)], E-mail: p.pradere@stc-metaux.com; Dumat, C. [EcoLab UMR 5245 CNRS-INPT-UPS, ENSAT BP 32607 Auzeville Tolosane, 31326 Castanet Tolosan (France)], E-mail: camille.dumat@ensat.fr

    2009-04-15

    Particles from channelled emissions of a battery recycling facility were size-segregated and investigated to correlate their speciation and morphology with their transfer towards lettuce. Microculture experiments carried out with various calcareous soils spiked with micronic and sub-micronic particles (1650 {+-} 20 mg Pb kg{sup -1}) highlighted a greater transfer in soils mixed with the finest particles. According to XRD and Raman spectroscopy results, the two fractions presented differences in the amount of minor lead compounds like carbonates, but their speciation was quite similar, in decreasing order of abundance: PbS, PbSO{sub 4}, PbSO{sub 4}.PbO, {alpha}-PbO and Pb{sup 0}. Morphology investigations revealed that PM{sub 2.5} (i.e. Particulate Matter 2.5 composed of particles suspended in air with aerodynamic diameters of 2.5 {mu}m or less) contained many Pb nanoballs and nanocrystals which could influence lead availability. The soil-plant transfer of lead was mainly influenced by size and was very well estimated by 0.01 M CaCl{sub 2} extraction. - The soil-lettuce lead transfer from atmospheric industrial sub-micronic and micronic particles depends on particle size.

  2. Study of lead phytoavailability for atmospheric industrial micronic and sub-micronic particles in relation with lead speciation

    International Nuclear Information System (INIS)

    Uzu, G.; Sobanska, S.; Aliouane, Y.; Pradere, P.; Dumat, C.

    2009-01-01

    Particles from channelled emissions of a battery recycling facility were size-segregated and investigated to correlate their speciation and morphology with their transfer towards lettuce. Microculture experiments carried out with various calcareous soils spiked with micronic and sub-micronic particles (1650 ± 20 mg Pb kg -1 ) highlighted a greater transfer in soils mixed with the finest particles. According to XRD and Raman spectroscopy results, the two fractions presented differences in the amount of minor lead compounds like carbonates, but their speciation was quite similar, in decreasing order of abundance: PbS, PbSO 4 , PbSO 4 .PbO, α-PbO and Pb 0 . Morphology investigations revealed that PM 2.5 (i.e. Particulate Matter 2.5 composed of particles suspended in air with aerodynamic diameters of 2.5 μm or less) contained many Pb nanoballs and nanocrystals which could influence lead availability. The soil-plant transfer of lead was mainly influenced by size and was very well estimated by 0.01 M CaCl 2 extraction. - The soil-lettuce lead transfer from atmospheric industrial sub-micronic and micronic particles depends on particle size

  3. Technique for determination of elastic limit of micron band-thick amorphous

    International Nuclear Information System (INIS)

    Zakharov, E.K.; Pol'dyaeva, G.P.; Tret'yakov, B.N.

    1984-01-01

    A method is suggested to determine the elastic limit of micron-thick amorphous band under bending. The elastic limit is determined by bending an amorphous band sample around a series of cylindrical mandrels of gradually decreasing radius. Experimental data on measuring the elastic limit of some amorphous iron base alloys according to the suggested technique are presented. The elastic limit of amorphous alloys is shown to lie in the 3140-4110 MPa range depending on chemical composition, which is about 2-2.5 times higher as compared to high-strength crystal alloys

  4. High intensity laser interactions with sub-micron droplets

    International Nuclear Information System (INIS)

    Mountford, L.C.

    1999-01-01

    A high-density source of liquid ethanol droplets has been developed, characterised and used in laser interaction studies for the first time. Mie Scattering and attenuation measurements show that droplets with a radius of (0.5 ± 0.1) μm and atomic densities of 10 19 atoms/cm 3 can be produced, bridging the gap between clusters and macroscopic solids. Lower density (10 16 cm -3 ) sprays can also be produced and these are electrostatically split into smaller droplets with a radius of (0.3 ± 0.1) μm. This work has been accepted for publication in Review of Scientific Instruments. A range of high intensity interaction experiments have been carried out with this unique sub-micron source. The absolute yield of keV x-rays, generated using 527 nm, 2 ps pulses focused to ∼10 17 W/cm 2 , was measured for the first time. ∼7 μJ of x-rays with photon energies above 1 keV were produced, comparable to yields obtained from much higher Z Xenon clusters. At intensities ≤10 16 W/cm 2 the yield from droplets exceeds that from solid targets of similar Z. The droplet medium is debris free and self-renewing, providing a suitable x-ray source for lithographic techniques. Due to the spacing between the droplets, it was expected that the droplet plasma temperature would exceed that of a solid target plasma, which is typically limited by rapid heat conduction to <1 keV. Analysis of the x-ray data shows this to be true with a mean droplet plasma temperature of (2 ± 0.8) keV, and a number of measurements exceeding 5 keV (to appear in Applied Physics Letters). The absorption of high intensity laser pulses in the dense spray has been measured for the first time and this was found to be wavelength and polarisation independent and in excess of 60%. These first interaction measurements clearly indicate that there are significant differences between the laser heating of droplet, solid and cluster targets. (author)

  5. Diode-pumped two micron solid-state lasers

    International Nuclear Information System (INIS)

    Elder, I.F.

    1997-01-01

    This thesis presents an investigation of diode-pumped two micron solid-state lasers, concentrating on a comparison of the cw room temperature operation of Tm:YAP, Tm,Ho:YAP and Tm,Ho:YLF. Dopant concentrations in YAP were 4.2% thulium and 0.28% holmium; in YLF they were 6% thulium and 0.4% holmium. Thermal modelling was carried out in order to provide an insight into the thermal lensing and population distributions in these materials. Laser operation was achieved utilising an end-pumping geometry with a simple two mirror standing wave resonator. The pump source for these experiments was a 3 W laser diode. Maximum output power was achieved with Tm:YAP, generating 730 mW of laser output, representing 42% conversion efficiency in terms of absorbed pump power. Upper bounds on the conversion efficiency of Tm,Ho:YAP and Tm,Ho:YLF laser crystal of 14% and 30% were obtained, with corresponding output powers of 270 and 660 mW. In all three cases, the output beam was TEM 00 in nature. Visible upconversion fluorescence bands in the green and red were identified in Tm,Ho:YAP and Tm,Ho:YLF, with additional blue emission from the latter, all assigned to transitions on holmium. The principal upconversion mechanisms in these materials all involved the holmium first excited state. Upconversion in Tm:YAP was negligible. The spectral output of Tm:YAP consisted of a comb of lines in the range 1.965 to 2.020 μm. For both the double-doped crystals, the laser output was multilongitudinal mode on a single transition, wavelength 2.120 μm in YAP, 2.065 μm in YLF. In the time domain the output of Tm:YAP was dominated by large amplitude spiking, unlike both of the double-doped laser crystals. The long lifetime of the thulium upper laser level (4.4 ms) provided very weak damping of the spiking. Excitation sharing between thulium and holmium, with a measured characteristic lifetime in YAP of 11.9 μs and YLF of 14.8 μs, provided strong damping of any spiking behaviour. (author)

  6. Fast widely-tunable single-frequency 2-micron laser for remote-sensing applications

    Science.gov (United States)

    Henderson, Sammy W.; Hale, Charley P.

    2017-08-01

    We are developing a family of fast, widely-tunable cw diode-pumped single frequency solid-state lasers, called Swift. The Swift laser architecture is compatible with operation using many different solid-state laser crystals for operation at various emission lines between 1 and 2.1 micron. The initial prototype Swift laser using a Tm,Ho:YLF laser crystal near 2.05 micron wavelength achieved over 100 mW of single frequency cw output power, up to 50 GHz-wide, fast, mode-hop-free piezoelectric tunability, and 100 kHz/ms frequency stability. For the Tm,Ho:YLF laser material, the fast 50 GHz tuning range can be centered at any wavelength from 2047-2059 nm using appropriate intracavity spectral filters. The frequency stability and power are sufficient to serve as the local oscillator (LO) laser in long-range coherent wind-measuring lidar systems, as well as a frequency-agile master oscillator (MO) or injection-seed source for larger pulsed transmitter lasers. The rapid and wide frequency tunablity meets the requirements for integrated-path or range-resolved differential absorption lidar or applications where targets with significantly different line of sight velocities (Doppler shifts) must be tracked. Initial demonstration of an even more compact version of the Swift is also described which requires less prime power and produces less waste heat.

  7. Correlation of infrared reflectance ratios at 2.3 microns/1.6 micron and 1.1 micron/1.6 micron with delta O-18 values delineating fossil hydrothermal systems in the Idaho batholith

    Science.gov (United States)

    Gillespie, A. R.; Criss, R. E.

    1983-01-01

    Reflectance ratios from laboratory spectra and airborne multispectral images are found to be strongly correlated with delta O-18 values of granite rocks in the Idaho batholith. The correlation is largely a result of interactions between hot water and rock, which lowered the delta O-18 values of the rocks and produced secondary hydrous material. Maps of the ratio of reflectivities at 2.3 and 1.6 microns should delineate fossil hydrothermal systems and provide estimates of alteration intensity. However, hydrous minerals produced during deuteric alteration or weathering cannot be unambiguously distinguished in remotely sensed images from the products of propylitic alteration without the use of narrow-band scanners. The reflectivity at 1.6 micron is strongly correlated with rock density and may be useful in distinguishing rock types in granitic terranes.

  8. Scanning SQUID susceptometers with sub-micron spatial resolution

    International Nuclear Information System (INIS)

    Kirtley, John R.; Rosenberg, Aaron J.; Palmstrom, Johanna C.; Holland, Connor M.; Moler, Kathryn A.; Paulius, Lisa; Spanton, Eric M.; Schiessl, Daniel; Jermain, Colin L.; Gibbons, Jonathan; Fung, Y.-K.K.; Gibson, Gerald W.; Huber, Martin E.; Ralph, Daniel C.; Ketchen, Mark B.

    2016-01-01

    Superconducting QUantum Interference Device (SQUID) microscopy has excellent magnetic field sensitivity, but suffers from modest spatial resolution when compared with other scanning probes. This spatial resolution is determined by both the size of the field sensitive area and the spacing between this area and the sample surface. In this paper we describe scanning SQUID susceptometers that achieve sub-micron spatial resolution while retaining a white noise floor flux sensitivity of ≈2μΦ_0/Hz"1"/"2. This high spatial resolution is accomplished by deep sub-micron feature sizes, well shielded pickup loops fabricated using a planarized process, and a deep etch step that minimizes the spacing between the sample surface and the SQUID pickup loop. We describe the design, modeling, fabrication, and testing of these sensors. Although sub-micron spatial resolution has been achieved previously in scanning SQUID sensors, our sensors not only achieve high spatial resolution but also have integrated modulation coils for flux feedback, integrated field coils for susceptibility measurements, and batch processing. They are therefore a generally applicable tool for imaging sample magnetization, currents, and susceptibilities with higher spatial resolution than previous susceptometers.

  9. Soft tissue engineering with micronized-gingival connective tissues.

    Science.gov (United States)

    Noda, Sawako; Sumita, Yoshinori; Ohba, Seigo; Yamamoto, Hideyuki; Asahina, Izumi

    2018-01-01

    The free gingival graft (FGG) and connective tissue graft (CTG) are currently considered to be the gold standards for keratinized gingival tissue reconstruction and augmentation. However, these procedures have some disadvantages in harvesting large grafts, such as donor-site morbidity as well as insufficient gingival width and thickness at the recipient site post-treatment. To solve these problems, we focused on an alternative strategy using micronized tissue transplantation (micro-graft). In this study, we first investigated whether transplantation of micronized gingival connective tissues (MGCTs) promotes skin wound healing. MGCTs (≤100 µm) were obtained by mincing a small piece (8 mm 3 ) of porcine keratinized gingiva using the RIGENERA system. The MGCTs were then transplanted to a full skin defect (5 mm in diameter) on the dorsal surface of immunodeficient mice after seeding to an atelocollagen matrix. Transplantations of atelocollagen matrixes with and without micronized dermis were employed as experimental controls. The results indicated that MGCTs markedly promote the vascularization and epithelialization of the defect area 14 days after transplantation compared to the experimental controls. After 21 days, complete wound closure with low contraction was obtained only in the MGCT grafts. Tracking analysis of transplanted MGCTs revealed that some mesenchymal cells derived from MGCTs can survive during healing and may function to assist in wound healing. We propose here that micro-grafting with MGCTs represents an alternative strategy for keratinized tissue reconstruction that is characterized by low morbidity and ready availability. © 2017 Wiley Periodicals, Inc.

  10. Scanning SQUID susceptometers with sub-micron spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Kirtley, John R., E-mail: jkirtley@stanford.edu; Rosenberg, Aaron J.; Palmstrom, Johanna C.; Holland, Connor M.; Moler, Kathryn A. [Department of Applied Physics, Stanford University, Stanford, California 94305-4045 (United States); Paulius, Lisa [Department of Physics, Western Michigan University, Kalamazoo, Michigan 49008-5252 (United States); Spanton, Eric M. [Department of Physics, Stanford University, Stanford, California 94305-4045 (United States); Schiessl, Daniel [Attocube Systems AG, Königinstraße 11A, 80539 Munich (Germany); Jermain, Colin L.; Gibbons, Jonathan [Department of Physics, Cornell University, Cornell, Ithaca, New York 14853 (United States); Fung, Y.-K.K.; Gibson, Gerald W. [IBM Research Division, T. J. Watson Research Center, Yorktown Heights, New York 10598 (United States); Huber, Martin E. [Department of Physics, University of Colorado Denver, Denver, Colorado 80217-3364 (United States); Ralph, Daniel C. [Department of Physics, Cornell University, Cornell, Ithaca, New York 14853 (United States); Kavli Institute at Cornell, Ithaca, New York 14853 (United States); Ketchen, Mark B. [OcteVue, Hadley, Massachusetts 01035 (United States)

    2016-09-15

    Superconducting QUantum Interference Device (SQUID) microscopy has excellent magnetic field sensitivity, but suffers from modest spatial resolution when compared with other scanning probes. This spatial resolution is determined by both the size of the field sensitive area and the spacing between this area and the sample surface. In this paper we describe scanning SQUID susceptometers that achieve sub-micron spatial resolution while retaining a white noise floor flux sensitivity of ≈2μΦ{sub 0}/Hz{sup 1/2}. This high spatial resolution is accomplished by deep sub-micron feature sizes, well shielded pickup loops fabricated using a planarized process, and a deep etch step that minimizes the spacing between the sample surface and the SQUID pickup loop. We describe the design, modeling, fabrication, and testing of these sensors. Although sub-micron spatial resolution has been achieved previously in scanning SQUID sensors, our sensors not only achieve high spatial resolution but also have integrated modulation coils for flux feedback, integrated field coils for susceptibility measurements, and batch processing. They are therefore a generally applicable tool for imaging sample magnetization, currents, and susceptibilities with higher spatial resolution than previous susceptometers.

  11. Measuring micron size beams in the SLC final focus

    International Nuclear Information System (INIS)

    McCormick, D.; Ross, M.; DeBarger, S.

    1994-10-01

    A pair of high resolution wire scanners have been built and installed in the SLC final focus. The final focus optics uses a set of de-magnifying telescopes, and an ideal location for a beam size monitor is at one of the magnified image points of the interaction point. The image point chosen for these scanners is in the middle of a large bend magnet. The design beam spots here are about 2 microns in the vertical and 20 microns in the horizontal plane. The scanners presented a number of design challenges. In this paper we discuss the mechanical design of the scanner, and fabrication techniques of its ceramic wire support card which holds many 4 and 7 um carbon wires. Accurate motion of the wire during a scan is critical. In this paper we describe tests of stepper motors, gear combinations, and radiation hardened encoders needed to produce the required motion with a step resolution of 80 nanometers. Also presented here are the results of scattered radiation detector placement studies carried out to optimize the signal from the 4 micron wires. Finally, we present measurements from the scanner

  12. Solar-Powered, Micron-Gap Thermophotovoltaics for MEO Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is an InGaAs-based, radiation-tolerant, micron-gap thermophotovoltaic (MTPV) technology. The use of a micron wide gap between the radiation...

  13. 2-Micron Laser Transmitter for Coherent CO2 DIAL Measurement

    Science.gov (United States)

    Singh, Upendra N.; Bai, Yingxin; Yu, Jirong

    2009-01-01

    Carbon dioxide (CO2) has been recognized as one of the most important greenhouse gases. It is essential for the study of global warming to accurately measure the CO2 concentration in the atmosphere and continuously record its variation. A high repetition rate, highly efficient, Q-switched 2-micron laser system as the transmitter of a coherent differential absorption lidar for CO2 measurement has been developed in NASA Langley Research Center. This laser system is capable of making a vertical profiling of CO2 from ground and column measurement of CO2 from air and space-borne platform. The transmitter is a master-slave laser system. The master laser operates in a single frequency, either on-line or off-line of a selected CO2 absorption line. The slave laser is a Q-switched ring-cavity Ho:YLF laser which is pumped by a Tm:fiber laser. The repetition rate can be adjusted from a few hundred Hz to 10 kHz. The injection seeding success rate is from 99.4% to 99.95%. For 1 kHz operation, the output pulse energy is 5.5mJ with the pulse length of 50 ns. The optical-to-optical efficiency is 39% when the pump power is 14.5W. A Ho:YLF laser operating in the range of 2.05 micrometers can be tuned over several characteristic lines of CO2 absorption. Experimentally, a diode pumped Ho:Tm:YLF laser has been successfully used as the transmitter of coherent differential absorption lidar for the measurement of CO2 with a repetition rate of 5 Hz and pulse energy of 75 mJ. For coherent detection, high repetition rate is required for speckle averaging to obtain highly precise measurements. However, a diode pumped Ho:Tm:YLF laser can not operate in high repetition rate due to the large heat loading and up-conversion. A Tm:fiber laser pumped Ho:YLF laser with low heat loading can operate in high repetition rate. A theoretical model has been established to simulate the performance of Tm:fiber laser pumped Ho:YLF lasers. For continuous wave (CW) operation, high pump intensity with small beam

  14. Spectrophotometry at 10 microns of T Tauri stars

    Science.gov (United States)

    Cohen, M.; Witteborn, F. C.

    1985-01-01

    New 8-13 micron spectra of 32 T Tau, or related young, stars are presented. Silicate emission features are commonly seen. Absorptions occur less frequently but also match the properties of silicate materials. The shape of the emission feature suggests that a more crystalline grain is responsible in the T Tau stars than those of the Trapezium region. The evolution of the silicate component of the circumstellar shell around T Tau stars, and its dependence upon stellar wind activity, visual linear polarization, and extinction are investigated. Several correlations suggest that the shells are likely to be flattened, disklike structures rather than spherical.

  15. Micron-scale lens array having diffracting structures

    Science.gov (United States)

    Goldberg, Kenneth A

    2013-10-29

    A novel micron-scale lens, a microlens, is engineered to concentrate light efficiently onto an area of interest, such as a small, light-sensitive detector element in an integrated electronic device. Existing microlens designs imitate the form of large-scale lenses and are less effective at small sizes. The microlenses described herein have been designed to accommodate diffraction effects, which dominate the behavior of light at small length scales. Thus a new class of light-concentrating optical elements with much higher relative performance has been created. Furthermore, the new designs are much easier to fabricate than previous designs.

  16. Ammonia in Jupiter’s troposphere from high-resolution 5-micron spectroscopy

    Science.gov (United States)

    Giles, Rohini; Fletcher, Leigh; Irwin, Patrick; Orton, Glenn S.; Sinclair, James Andrew

    2017-10-01

    Jupiter's tropospheric ammonia (NH3) abundance is studied using spatially-resolved 5-micron observations from CRIRES, a high-resolution spectrometer at the Very Large Telescope in 2012. The high resolving power (R=96,000) allows the line shapes of three NH3 absorption features to be resolved. These three absorption features have different line strengths and probe slightly different pressure levels, and they can therefore be used to constrain the vertical profile of NH3 in the 1-4 bar pressure range. The instrument slit was aligned north-south along Jupiter's central meridian, allowing us to search for latitudinal variability. The CRIRES observations do not provide evidence for belt-zone variability in NH3, as any spectral differences can be accounted for by the large differences in cloud opacity between the cloudy zones and the cloud-free belts. However, we do find evidence for localised small-scale variability in NH3. Specifically, we detect a strong enhancement in NH3 on the southern edge of the North Equatorial Belt (4-6°N). This is consistent with the ‘ammonia plumes’ observed by Fletcher et al. (2016, doi:10.1016/j.icarus.2016.06.008) at the 500-mbar level using 10-micron observations from TEXES/IRTF, as well as with measurements by Juno’s Microwave Radiometer (Li et al. 2017, doi:10.1002/2017GL073159).

  17. Kinetics of Sub-Micron Grain Size Refinement in 9310 Steel

    Science.gov (United States)

    Kozmel, Thomas; Chen, Edward Y.; Chen, Charlie C.; Tin, Sammy

    2014-05-01

    Recent efforts have focused on the development of novel manufacturing processes capable of producing microstructures dominated by sub-micron grains. For structural applications, grain refinement has been shown to enhance mechanical properties such as strength, fatigue resistance, and fracture toughness. Through control of the thermo-mechanical processing parameters, dynamic recrystallization mechanisms were used to produce microstructures consisting of sub-micron grains in 9310 steel. Starting with initial bainitic grain sizes of 40 to 50 μm, various levels of grain refinement were observed following hot deformation of 9310 steel samples at temperatures and strain rates ranging from 755 K to 922 K (482 °C and 649 °C) and 1 to 0.001/s, respectively. The resulting deformation microstructures were characterized using scanning electron microscopy and electron backscatter diffraction techniques to quantify the extent of carbide coarsening and grain refinement occurring during deformation. Microstructural models based on the Zener-Holloman parameter were developed and modified to include the effect of the ferrite/carbide interactions within the system. These models were shown to effectively correlate microstructural attributes to the thermal mechanical processing parameters.

  18. Micron-CT using quasi-monochromatic x-rays produced in micro-PIXE

    International Nuclear Information System (INIS)

    Ishii, K.

    2009-01-01

    In ion-atom collision, characteristic X-rays are intensively produced and can be considered as a monochromatic X-ray source. We apply this feature to X-ray CT. By using micro-beams, cross sectional images can be provided with a spatial resolution of about 1 μm. On the basis of this idea, we developed a micron-CT consisting of a micro-beam system and an X-ray CCD camera. A tube holding samples was rotated by a stepping motor and the transmission images of the sample were taken with characteristic K-X-rays of Ti (4.558 keV) produced by 3 MeV proton micro-beams. After image reconstruction, images of cross sections of small objects were obtained with a spatial resolution of 3 μm. Using an absorption edge, we can identify an element in a sample. It is expected that our micron-CT can provide cross sectional images of in-vivo cellular samples and can be applied to a wide range of researches in biology and medicine. (author)

  19. Constraints on exotic dipole-dipole couplings between electrons at the micron scale

    Science.gov (United States)

    Kotler, Shlomi; Ozeri, Roee; Jackson Kimball, Derek

    2015-05-01

    Until recently, the magnetic dipole-dipole coupling between electrons had not been directly observed experimentally. This is because at the atomic scale dipole-dipole coupling is dominated by the exchange interaction and at larger distances the dipole-dipole coupling is overwhelmed by ambient magnetic field noise. In spite of these challenges, the magnetic dipole-dipole interaction between two electron spins separated by 2.4 microns was recently measured using the valence electrons of trapped Strontium ions [S. Kotler, N. Akerman, N. Navon, Y. Glickman, and R. Ozeri, Nature 510, 376 (2014)]. We have used this measurement to directly constrain exotic dipole-dipole interactions between electrons at the micron scale. For light bosons (mass 0.1 eV), we find that coupling constants describing pseudoscalar and axial-vector mediated interactions must be | gPegPe/4 πℏc | <= 1 . 5 × 10-3 and | gAegAe/4 πℏc | <= 1 . 2 × 10-17 , respectively, at the 90% confidence level. These bounds significantly improve on previous constraints in this mass range: for example, the constraints on axial-vector interactions are six orders of magnitude stronger than electron-positron constraints based on positronium spectroscopy. Supported by the National Science Foundation, I-Core: the Israeli excellence center, and the European Research Council.

  20. Guilt by Association: The 13 micron Dust Feature in Circumstellar Shells and Related Spectral Features

    Science.gov (United States)

    Sloan, G. C.; Kraemer, K. E.; Goebel, J. H.; Price, S. D.

    A study of spectra from the SWS on ISO of optically thin oxygen-rich dust shells shows that the strength of the 13 micron dust emission feature is correlated with the CO2 bands (13--17 microns) and dust emission features at 19.8 and 28.1 microns. SRb variables tend to show stronger 13 micron features than Mira variables, suggesting that the presence of the 13 micron and related features depends on pulsation mode and mass-loss rate. The absence of any correlation to dust emission features at 16.8 and 32 microns makes spinel an unlikely carrier. The most plausible carrier of the 13 micron feature remains crystalline alumina, and we suggest that the related dust features may be crystalline silicates. When dust forms in regions of low density, it may condense into crystalline grain structures.

  1. Efficient CW diode-pumped Tm, Ho:YLF laser with tunability near 2.067 microns

    Science.gov (United States)

    Mcguckin, B. T.; Menzies, Robert T.

    1992-01-01

    A conversion efficiency of 42 percent and slope efficiency of approximately 60 percent relative to absorbed pump power are reported from a continuous wave diode-pumped Tm, Ho:YLF laser at 2 microns with output power of 84 mW at sub-ambient temperatures. The emission spectrum is etalon tunable over a range of 16/cm centered on 2.067 microns, with fine tuning capability of the transition frequency with crystal temperature at a measured rate of about -0.03/cm-K. The effective emission cross section is measured to be 5 x 10 exp -21 sq cm. These and other aspects of the laser performance are discussed in the context of calculated atmospheric absorption characteristics in this spectral region and potential use in remote sensing applications.

  2. Compact, High Energy 2-micron Coherent Doppler Wind Lidar Development for NASA's Future 3-D Winds Measurement from Space

    Science.gov (United States)

    Singh, Upendra N.; Koch, Grady; Yu, Jirong; Petros, Mulugeta; Beyon, Jeffrey; Kavaya, Michael J.; Trieu, Bo; Chen, Songsheng; Bai, Yingxin; Petzar, paul; hide

    2010-01-01

    This paper presents an overview of 2-micron laser transmitter development at NASA Langley Research Center for coherent-detection lidar profiling of winds. The novel high-energy, 2-micron, Ho:Tm:LuLiF laser technology developed at NASA Langley was employed to study laser technology currently envisioned by NASA for future global coherent Doppler lidar winds measurement. The 250 mJ, 10 Hz laser was designed as an integral part of a compact lidar transceiver developed for future aircraft flight. Ground-based wind profiles made with this transceiver will be presented. NASA Langley is currently funded to build complete Doppler lidar systems using this transceiver for the DC-8 aircraft in autonomous operation. Recently, LaRC 2-micron coherent Doppler wind lidar system was selected to contribute to the NASA Science Mission Directorate (SMD) Earth Science Division (ESD) hurricane field experiment in 2010 titled Genesis and Rapid Intensification Processes (GRIP). The Doppler lidar system will measure vertical profiles of horizontal vector winds from the DC-8 aircraft using NASA Langley s existing 2-micron, pulsed, coherent detection, Doppler wind lidar system that is ready for DC-8 integration. The measurements will typically extend from the DC-8 to the earth s surface. They will be highly accurate in both wind magnitude and direction. Displays of the data will be provided in real time on the DC-8. The pulsed Doppler wind lidar of NASA Langley Research Center is much more powerful than past Doppler lidars. The operating range, accuracy, range resolution, and time resolution will be unprecedented. We expect the data to play a key role, combined with the other sensors, in improving understanding and predictive algorithms for hurricane strength and track. 1

  3. Heterodyne spectrophotometry of ozone in the 9.6-micron band using a tunable diode laser

    Science.gov (United States)

    Mcelroy, C. T.; Goldman, A.; Fogal, P. F.; Murcray, D. G.

    1990-01-01

    Tunable diode laser heterodyne spectrophotometry (TDLHS) has been used to make extremely high resolution (0.0003/cm) solar spectra in the 9.6-micron ozone band. Observations have shown that a signal-to-noise ratio of 120:1 (about 30 percent of theoretical) for an integration time of 1/8 s can be achieved at a resolution of 0.0013 wave numbers. The spectral data have been inverted to yield a total column amount of ozone, in good agreement with that measured at the nearby NOAA ozone monitoring facility in Boulder, Colorado. Line positions for several ozone lines in the spectral region 996-997/cm are reported. Recent improvements have produced a signal-to-noise ratio of 95:1 (about 40 percent of theoretical) at 0.0003/cm and extended the range of wavelengths which can be observed.

  4. 2.0 to 2.4 micron spectroscopy of T Tauri stars

    Science.gov (United States)

    Hamann, F.; Simon, M.; Ridgway, S. T.

    1988-03-01

    Velocity-resolved 2.0-2.5-micron observations of the T Tau stars T, DF, DG, DK, HL, and RY Tau, SU Aur, and GW Ori are presented. For each of these stars except SU Aur, the Brackett gamma line was detected in emission with line widths inthe range of about 130-230 km/s. The Brackett gamma line profile of SU Aur is complex, having components of both emission and absorption. The first measurement of CO band-head emission in DG Tau is reported, and it is shown that published radio continuum fluxes of young stars far exceed what could be produced in an envelope ionized by only the stellar photospheric Lyman continuum. The excess of radio emission is found to be much greater in low-luminosity sources (e.g., the T Tau stars).

  5. Coherent spin transport through a 350 micron thick silicon wafer.

    Science.gov (United States)

    Huang, Biqin; Monsma, Douwe J; Appelbaum, Ian

    2007-10-26

    We use all-electrical methods to inject, transport, and detect spin-polarized electrons vertically through a 350-micron-thick undoped single-crystal silicon wafer. Spin precession measurements in a perpendicular magnetic field at different accelerating electric fields reveal high spin coherence with at least 13pi precession angles. The magnetic-field spacing of precession extrema are used to determine the injector-to-detector electron transit time. These transit time values are associated with output magnetocurrent changes (from in-plane spin-valve measurements), which are proportional to final spin polarization. Fitting the results to a simple exponential spin-decay model yields a conduction electron spin lifetime (T1) lower bound in silicon of over 500 ns at 60 K.

  6. Micron-sized and submicron-sized aerosol deposition in a new ex vivo preclinical model.

    Science.gov (United States)

    Perinel, Sophie; Leclerc, Lara; Prévôt, Nathalie; Deville, Agathe; Cottier, Michèle; Durand, Marc; Vergnon, Jean-Michel; Pourchez, Jérémie

    2016-07-07

    The knowledge of where particles deposit in the respiratory tract is crucial for understanding the health effects associated with inhaled drug particles. An ex vivo study was conducted to assess regional deposition patterns (thoracic vs. extrathoracic) of radioactive polydisperse aerosols with different size ranges [0.15 μm-0.5 μm], [0.25 μm-1 μm] and [1 μm-9 μm]. SPECT/CT analyses were performed complementary in order to assess more precisely the regional deposition of aerosols within the pulmonary tract. Experiments were set using an original respiratory tract model composed of a human plastinated head connected to an ex vivo porcine pulmonary tract. The model was ventilated by passive expansion, simulating pleural depressions. Aerosol was administered during nasal breathing. Planar scintigraphies allowed to calculate the deposited aerosol fractions for particles in the three size ranges from sub-micron to micron The deposited fractions obtained, for thoracic vs. extra-thoracic regions respectively, were 89 ± 4 % vs. 11 ± 4 % for [0.15 μm-0.5 μm], 78 ± 5 % vs. 22 ± 5 % for [0.25 μm-1 μm] and 35 ± 11 % vs.65 ± 11 % for [1 μm-9 μm]. Results obtained with this new ex vivo respiratory tract model are in good agreement with the in vivo data obtained in studies with baboons and humans.

  7. Airborne spectrophotometry of P/Halley from 16 to 30 microns

    Science.gov (United States)

    Herter, T.; Gull, G. E.; Campins, H.

    1986-01-01

    Comet Halley was observed in the 16 to 30 micron region using the Cornell University 7-channel spectrometer (resolution = 0.02) on board the Kuiper Airborne Observatory on 1985 Dec. 14.2. A 30-arcsec aperture (FWHM) was used. Measurements centered on the nuclear condensation micron indicate that if present, the 20 micron silicate feature is very weak, and that a relatively narrow strong feature centered at 28.4 microns possibly exists. However, this feature may be an artifact of incomplete correction for telluric water vapor absorption.

  8. Sub-micron accurate track navigation method ''Navi'' for the analysis of Nuclear Emulsion

    International Nuclear Information System (INIS)

    Yoshioka, T; Yoshida, J; Kodama, K

    2011-01-01

    Sub-micron accurate track navigation in Nuclear Emulsion is realized by using low energy signals detected by automated Nuclear Emulsion read-out systems. Using those much dense ''noise'', about 10 4 times larger than the real tracks, the accuracy of the track position navigation reaches to be sub micron only by using the information of a microscope field of view, 200 micron times 200 micron. This method is applied to OPERA analysis in Japan, i.e. support of human eye checks of the candidate tracks, confirmation of neutrino interaction vertexes and to embed missing track segments to the track data read-out by automated systems.

  9. Sub-micron accurate track navigation method ``Navi'' for the analysis of Nuclear Emulsion

    Science.gov (United States)

    Yoshioka, T.; Yoshida, J.; Kodama, K.

    2011-03-01

    Sub-micron accurate track navigation in Nuclear Emulsion is realized by using low energy signals detected by automated Nuclear Emulsion read-out systems. Using those much dense ``noise'', about 104 times larger than the real tracks, the accuracy of the track position navigation reaches to be sub micron only by using the information of a microscope field of view, 200 micron times 200 micron. This method is applied to OPERA analysis in Japan, i.e. support of human eye checks of the candidate tracks, confirmation of neutrino interaction vertexes and to embed missing track segments to the track data read-out by automated systems.

  10. Practical Considerations for Detection and Characterization of Sub-Micron Particles in Protein Solutions by Nanoparticle Tracking Analysis.

    Science.gov (United States)

    Gruia, Flaviu; Parupudi, Arun; Polozova, Alla

    2015-01-01

    Nanoparticle Tracking Analysis (NTA) is an emerging analytical technique developed for detection, sizing, and counting of sub-micron particles in liquid media. Its feasibility for use in biopharmaceutical development was evaluated with particle standards and recombinant protein solutions. Measurements of aqueous suspensions of NIST-traceable polystyrene particle standards showed accurate particle concentration detection between 2 × 10(7) and 5 × 10(9) particles/mL. Sizing was accurate for particle standards up to 200 nm. Smaller than nominal value sizes were detected by NTA for the 300-900 nm particles. Measurements of protein solutions showed that NTA performance is solution-specific. Reduced sensitivity, especially in opalescent solutions, was observed. Measurements in such solutions may require sample dilution; however, common sample manipulations, such as dilution and filtration, may result in particle formation. Dilution and filtration case studies are presented to further illustrate such behavior. To benchmark general performance, NTA was compared against asymmetric flow field flow fractionation coupled with multi-angle light scattering (aF4-MALS) and dynamic light scattering, which are other techniques for sub-micron particles. Data shows that all three methods have limitations and may not work equally well under certain conditions. Nevertheless, the ability of NTA to directly detect and count sub-micron particles is a feature not matched by aF4-MALS or dynamic light scattering. Thorough characterization of particulate matter present in protein therapeutics is limited by the lack of analytical methods for particles in the sub-micron size range. Emerging techniques are being developed to bridge this analytical gap. In this study, Nanoparticle Tracking Analysis is evaluated as a potential tool for biologics development. Our results indicate that method performance is molecule-specific and may not work as well under all solution conditions, especially when

  11. Underwater Ranging

    OpenAIRE

    S. P. Gaba

    1984-01-01

    The paper deals with underwater laser ranging system, its principle of operation and maximum depth capability. The sources of external noise and methods to improve signal-to-noise ratio are also discussed.

  12. Simultaneous micronization and purification of bioactive fraction by supercritical antisolvent technology

    Directory of Open Access Journals (Sweden)

    Stevanus Hiendrawan

    2017-01-01

    Full Text Available Simultaneous micronization and purification of DLBS3233 bioactive fraction, a combination of two Indonesian herbals Lagerstroemia speciosa and Cinnamomum burmannii has been successfully performed via supercritical anti-solvent (SAS technology. The objective of the present study was to investigate the effectiveness of SAS technology to micronize and reduce coumarin content of DLBS3233. The effects of four SAS process parameters, i.e. pressure, temperature, concentration and solution flow rate on particle formation were investigated. In SAS process, DLBS3233 was dissolved in dimethylformamide (DMF as the liquid solvent. The solution was then pumped through a nozzle into a chamber simultaneously with supercritical carbon dioxide (SC-CO2 which acts as the anti-solvent, resulting in DLBS3233 precipitation. Physicochemical properties of unprocessed DLBS3233 and SAS-processed DLBS3233 particles were analyzed using scanning electron microscopy (SEM and high pressure liquid chromatography (HPLC. Total polyphenol content (TPC was also analyzed.Particles with mean particle size ranging from 0.107±0.028 μm to 0.298±0.138 μm were obtained by varying the process parameters. SAS-processed DLBS3233 particles showed no coumarin content in all experiments studied in this work. Results of TPC analysis revealed no significant change in SAS-processed DLBS3233 particles compared to unprocessed DLBS3233. Nano-sized DLBS3233 particles with no coumarin content have been successfully produced using SAS process. This study demonstrates the ability of SAS for processing herbal medicine in single step process.

  13. Grain orientation and strain measurements in sub-micron wide passivated individual aluminum test structures

    International Nuclear Information System (INIS)

    Tamura, N.; Valek, B.C.; Spolenak, R.; MacDowell, A.A.; Celestre, R.S.; Padmore, H.A.; Brown, W.L.; Marieb, T.; Bravman, J.C.; Batterman, B.W.; Patel, J.R.

    2001-01-01

    An X-ray microdiffraction dedicated beamline, combining white and monochromatic beam capabilities, has been built at the Advanced Light Source. The purpose of this beamline is to address the myriad of problems in Materials Science and Physics that require submicron x-ray beams for structural characterization. Many such problems are found in the general area of thin films and nano-materials. For instance, the ability to characterize the orientation and strain state in individual grains of thin films allows us to measure structural changes at a very local level. These microstructural changes are influenced heavily by such parameters as deposition conditions and subsequent treatment. The accurate measurement of strain gradients at the micron and sub-micron level finds many applications ranging from the strain state under nano-indenters to gradients at crack tips. Undoubtedly many other applications will unfold in the future as we gain experience with the capabilities and limitations of this instrument. We have applied this technique to measure grain orientation and residual stress in single grains of pure Al interconnect lines and preliminary results on post-electromigration test experiments are presented. It is shown that measurements with this instrument can be used to resolve the complete stress tensor (6 components) in a submicron volume inside a single grain of Al under a passivation layer with an overall precision of about 20 MPa. The microstructure of passivated lines appears to be complex, with grains divided into identifiable subgrains and noticeable local variations of both tensile/compressive and shear stresses within single grains

  14. Micronized Coal Reburning Demonstration for NOx Control: A DOE Assessment

    Energy Technology Data Exchange (ETDEWEB)

    National Energy Technology Laboratory

    2001-08-15

    The goal of the U.S. Department of Energy's (DOE) Clean Coal Technology (CCT) program is to furnish the energy marketplace with a number of advanced, more efficient, and environmentally responsible coal utilization technologies through demonstration projects. These projects seek to establish the commercial feasibility of the most promising advanced coal technologies that have developed beyond the proof-of-concept stage. This document serves as a DOE post-project assessment of a project selected in CCT Round IV, the Micronized Coal Reburning (MCR) Demonstration for NO{sub x} Control, as described in a report to Congress (U.S. Department of Energy 1999). The need to meet strict emissions requirements at a minimum cost prompted the Tennessee Valley Authority (TVA), in conjunction with Fuller Company, Energy and Environmental Research Corporation (EER), and Fluor Daniel, to submit the proposal for this project to be sited at TVA's Shawnee Fossil Plant. In July 1992, TVA entered into a cooperative agreement with DOE to conduct the study. However, because of operational and environmental compliance strategy changes, the Shawnee site became unavailable.

  15. Discovering Motifs in Biological Sequences Using the Micron Automata Processor.

    Science.gov (United States)

    Roy, Indranil; Aluru, Srinivas

    2016-01-01

    Finding approximately conserved sequences, called motifs, across multiple DNA or protein sequences is an important problem in computational biology. In this paper, we consider the (l, d) motif search problem of identifying one or more motifs of length l present in at least q of the n given sequences, with each occurrence differing from the motif in at most d substitutions. The problem is known to be NP-complete, and the largest solved instance reported to date is (26,11). We propose a novel algorithm for the (l,d) motif search problem using streaming execution over a large set of non-deterministic finite automata (NFA). This solution is designed to take advantage of the micron automata processor, a new technology close to deployment that can simultaneously execute multiple NFA in parallel. We demonstrate the capability for solving much larger instances of the (l, d) motif search problem using the resources available within a single automata processor board, by estimating run-times for problem instances (39,18) and (40,17). The paper serves as a useful guide to solving problems using this new accelerator technology.

  16. Marketing activities in the area of micronization services

    Directory of Open Access Journals (Sweden)

    Sołtysik Barbara

    2016-12-01

    Full Text Available Under conditions of constantly growing competition, what is becoming a key problem is keeping the previously acquired clients. Their trust in the provider and regularly repeated purchases are an expression of the efficiency of marketing activities conducted by companies. What is becoming a measure of success is the satisfaction and loyalty of buyers. Companies spend a lot of money to attract clients and the competition keeps trying to take away their clients. A lost client means not just the loss of a future order – this is the loss of revenues equal to the value of all products which a particular buyer could purchase in his entire life. On top of that comes the cost of acquiring new client to replace the old one. TARP research shows that the cost of acquiring a new client is five times higher than the cost of pleasing an existing client (Kotler, 2006. In the publication the significance of the relations with the client are discussed with regard to efficient marketing strategy. Moreover, the results of client satisfaction surveys and market analysis taking into consideration the revenues from sale of services in the area of micronization are presented.

  17. Line parameters of methanol (CH3OH) at 10 microns

    Science.gov (United States)

    Lees, R. M.; Xu, L.-H.; Wang, P.; Brown, L. R.; Kleiner, I.; Johns, J. W. C.

    2003-05-01

    Laboratory spectra of methanol have been measured at high resolution and analyzed to provide spectroscopic information required for astrophysics and solar system studies. Line positions and quantum assignments have been obtained using spectra recorded at 0.002 cm-1 resolution using a modified Bomem DA3,002 spectrometer. Line intensities have been retrieved using laboratory scans from the McMath-Pierce Fourier-transform spectrometer located at the National Solar Observatory. The 10 micron region methanol absorption arises mainly from the fundamental CO-stretch mode (nu8) at 1033 cm-1, along with occasional transitions perturbed in the region by several nearby interacting states of the methyl rock (nu7), methyl bends (nu5, nu10, nu4) and the OH-bending (nu6) in combination with the torsion (nu12). Overall, the nu8 CO-stretch mode follows the traditional torsion-rotational pattern. We modeled the line positions and intensities for the CO-stretch mode with the one-dimensional torsional Hamiltonian and produced a HITRAN line list for cometary studies. The research described in this paper was carried out by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. RML and LHXu wish to acknowledge financial support from the Natural Sciences and Engineering Research Council of Canada. IK would like to thank the French Programme National de Planétologie (PNP) for funding this research.

  18. Immobilization of trypsin on sub-micron skeletal polymer monolith

    Energy Technology Data Exchange (ETDEWEB)

    Yao Chunhe [Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Graduate School, Chinese Academy of Sciences, Beijing 100049 (China); Qi Li, E-mail: qili@iccas.ac.cn [Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Hu Wenbin [Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Graduate School, Chinese Academy of Sciences, Beijing 100049 (China); Wang Fuyi [Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Yang Gengliang [College of Pharmacy, Hebei University, Baoding 071002 (China)

    2011-04-29

    A new kind of immobilized trypsin reactor based on sub-micron skeletal polymer monolith has been developed. Covalent immobilization of trypsin on this support was performed using the epoxide functional groups in either a one- or a multi-step reaction. The proteolytic activity of the immobilized trypsin was measured by monitoring the formation of N-{alpha}-benzoyl-L-arginine (BA) which is the digestion product of a substrate N-{alpha}-benzoyl-L-arginine ethyl ester (BAEE). Results showed that the digestion speed was about 300 times faster than that performed in free solution. The performance of such an enzyme reactor was further demonstrated by digesting protein myoglobin. It has been found that the protein digestion could be achieved in 88 s at 30 deg. C, which is comparable to 24 h digestion in solution at 37 {sup o}C. Furthermore, the immobilized trypsin exhibits increased stability even after continuous use compared to that in free solution. The present monolithic enzyme-reactor provides a promising platform for the proteomic research.

  19. Method of producing carbon coated nano- and micron-scale particles

    Science.gov (United States)

    Perry, W. Lee; Weigle, John C; Phillips, Jonathan

    2013-12-17

    A method of making carbon-coated nano- or micron-scale particles comprising entraining particles in an aerosol gas, providing a carbon-containing gas, providing a plasma gas, mixing the aerosol gas, the carbon-containing gas, and the plasma gas proximate a torch, bombarding the mixed gases with microwaves, and collecting resulting carbon-coated nano- or micron-scale particles.

  20. Pattern imprinting in deep sub-micron static random access memories induced by total dose irradiation

    International Nuclear Information System (INIS)

    Zheng Qi-Wen; Yu Xue-Feng; Cui Jiang-Wei; Guo Qi; Ren Di-Yuan; Cong Zhong-Chao; Zhou Hang

    2014-01-01

    Pattern imprinting in deep sub-micron static random access memories (SRAMs) during total dose irradiation is investigated in detail. As the dose accumulates, the data pattern of memory cells loading during irradiation is gradually imprinted on their background data pattern. We build a relationship between the memory cell's static noise margin (SNM) and the background data, and study the influence of irradiation on the probability density function of ΔSNM, which is the difference between two data sides' SNMs, to discuss the reason for pattern imprinting. Finally, we demonstrate that, for micron and deep sub-micron devices, the mechanism of pattern imprinting is the bias-dependent threshold shift of the transistor, but for a deep sub-micron device the shift results from charge trapping in the shallow trench isolation (STI) oxide rather than from the gate oxide of the micron-device. (condensed matter: structural, mechanical, and thermal properties)

  1. Pattern imprinting in deep sub-micron static random access memories induced by total dose irradiation

    Science.gov (United States)

    Zheng, Qi-Wen; Yu, Xue-Feng; Cui, Jiang-Wei; Guo, Qi; Ren, Di-Yuan; Cong, Zhong-Chao; Zhou, Hang

    2014-10-01

    Pattern imprinting in deep sub-micron static random access memories (SRAMs) during total dose irradiation is investigated in detail. As the dose accumulates, the data pattern of memory cells loading during irradiation is gradually imprinted on their background data pattern. We build a relationship between the memory cell's static noise margin (SNM) and the background data, and study the influence of irradiation on the probability density function of ΔSNM, which is the difference between two data sides' SNMs, to discuss the reason for pattern imprinting. Finally, we demonstrate that, for micron and deep sub-micron devices, the mechanism of pattern imprinting is the bias-dependent threshold shift of the transistor, but for a deep sub-micron device the shift results from charge trapping in the shallow trench isolation (STI) oxide rather than from the gate oxide of the micron-device.

  2. Detection Range Estimation of UV Spectral Band Laser Radar

    Directory of Open Access Journals (Sweden)

    V. A. Gorodnichev

    2014-01-01

    Full Text Available Recently, has come into existence an interest in the systems operating in the ultra-violet (UF band of wavelengths, which use other spectral information (coefficients of reflection or radiation in UF range about location objects, than laser systems in the visible, near or average infrared bands. Thus, a point is not only to receive additional (in another spectral range information on location objects. Laser radiation in the UF spectral band of 0.315 – 0.4 microns is safer than laser radiation with the wavelengths of 0.38 – 1.4 microns.The work presents a comparative estimation of the detection systems range of laser radars in the UV and visible spectral bands for the following wavelengths of radiation:- UF band: 0.266 microns (the fourth harmonic of YAG-laser activated by neodymium ions, 0.308 microns (the XeCl-excimer laser, 0.355 microns (the third harmonic of YAG-laser activated by neodymium ions;- visible band: 0.532 microns (the second harmonic of YAG-laser activated by neodymium ions.Results of calculations show that for the horizontal pathway in the terrestrial atmosphere at the selected radiation wavelengths a detection range is in the range of 2510m – 5690 m.The maximum range of detection corresponds to the visible spectral band. A sweep range decreases with transition to the UF band. This is caused by the fact that with transition to the UF band there is a rise of atmosphere attenuation (generally, because of absorption by ozone, this effect being smoothed by reducing background radiation.In the UF band a wavelength of 0.355 microns is the most acceptable. For this wavelength a detection range is about 1,5 times less (in comparison with the visible band of 0.532 microns. However, this is the much more eye-safe wavelength. With transition to the UV band a detection range decreases not that much and can be compensated by changing parameters of transmitting or receiving channels of laser radar.

  3. Water ice and sub-micron ice particles on Tethys and Mimas

    Science.gov (United States)

    Scipioni, Francesca; Nordheim, Tom; Clark, Roger Nelson; D'Aversa, Emiliano; Cruikshank, Dale P.; Tosi, Federico; Schenk, Paul M.; Combe, Jean-Philippe; Dalle Ore, Cristina M.

    2017-10-01

    IntroductionWe present our ongoing work, mapping the variation of the main water ice absorption bands, and the distribution of the sub-micron particles, across Mimas and Tethys’ surfaces using Cassini-VIMS cubes acquired in the IR range (0.8-5.1 μm). We present our results in the form of maps of variation of selected spectral indicators (depth of absorption bands, reflectance peak height, spectral slopes).Data analysisVIMS acquires hyperspectral data in the 0.3-5.1 μm spectral range. We selected VIMS cubes of Tethys and Mimas in the IR range (0.8-5.1 μm). For all pixels in the selected cubes, we measured the band depths for water-ice absorptions at 1.25, 1.5 and 2.02 μm and the height of the 3.6 μm reflection peak. Moreover, we considered the spectral indictors for particles smaller than 1 µm [1]: (i) the 2 µm absorption band is asymmetric and (ii) it has the minimum shifted to longer λ (iii) the band depth ratio 1.5/2.0 µm decreases; (iv) the reflection peak at 2.6 µm decreases; (v) the Fresnel reflection peak is suppressed; (vi) the 5 µm reflectance is decreased relative to the 3.6 µm peak. To characterize the global variation of water-ice band depths, and of sub-micron particles spectral indicators, across Mimas and Tethys, we sampled the two satellites’ surfacees with a 1°x1° fixed-resolution grid and then averaged the band depths and peak values inside each square cell.3. ResultsFor both moons we find that large geologic features, such as the Odysseus and Herschel impact basins, do not correlate with water ice’s abundance variation. For Tethys, we found a quite uniform surface on both hemispheres. The only deviation from this pattern shows up on the trailing hemisphere, where we notice two north-oriented, dark areas around 225° and 315°. For Mimas, the leading and trailing hemispheres appear to be quite similar in water ice abundance, the trailing portion having water ice absorption bands lightly more suppressed than the leading side

  4. Removal of Thin Cirrus Path Radiances in the 0.4-1.0 micron Spectral Region Using the 1.375-micron Strong Water Vapor Absorption Channel

    Science.gov (United States)

    Gao, Bo-Cai; Kaufman, Yoram J.; Han, Wei; Wiscombe, Warren J.

    1998-01-01

    Through analysis of spectral imaging data acquired with the Airborne Visible Infrared Imaging Spectrometer (AVIRIS) from an ER-2 aircraft at 20 km altitude during several field programs, it was found that narrow channels near the center of the strong 1.38-micron water vapor band are very sensitive in detecting thin cirrus clouds. Based on this observation from AVIRIS data, a channel centered at 1.375 microns with a width of 30 nm was selected for the Moderate Resolution Imaging Spectrometer (MODIS) for remote sensing of cirrus clouds from space. The sensitivity of the 1.375-micron MODIS channel to detect thin cirrus clouds during the day time is expected to be one to two orders of magnitude better than the current infrared emission techniques. As a result, a larger fraction of the satellite data will likely be identified as containing cirrus clouds. In order to make better studies of surface reflectance properties, thin cirrus effects must be removed from satellite images. We have developed an empirical approach for removing/correcting thin cirrus effects in the 0.4 - 1.0 micron region using channels near 1.375 microns. This algorithm will be incorporated into the present MODIS atmospheric correction algorithms for ocean color and land applications and will yield improved MODIS atmospheric aerosol, land surface, and ocean color products.

  5. Nanomechanical testing of circular freestanding polymer films with sub-micron thickness

    International Nuclear Information System (INIS)

    Maner, Kyle C.; Begley, Matthew R.; Oliver, Warren C.

    2004-01-01

    This paper describes techniques to create freestanding films over perfectly circular spans (windows) and measure their mechanical properties using instrumented nanoindentation. Test samples were created by spin-casting polymer films over glass plates with embedded fibers, which were subsequently etched using a relatively weak acid to leave freestanding circular spans. The freestanding spans were tested using an instrumented nanoindenter over a wide range of applied loads and displacements. Material properties can be extracted from measured load-deflection responses using straightforward models for point-loads on circular plates or membranes. Results are presented for poly(methyl methacrylate) and poly(2,6,dimethyl,1,4,phenylene ether) films with thickness ranging from 350 to 750 nm. The properties derived from freestanding tests are compared with traditional nanoindentation of films on intact substrates. The freestanding approach has key advantages for characterizing micron-scale behavior of compliant materials, notably greater ease and applicability of sample preparation over other micro-fabrication techniques and straightforward analytical or numerical models

  6. Development of micronic GMR-magnetoresistive sensors for non-destructive sensing applications (Presentation Recording)

    Science.gov (United States)

    Jaffrès, Henri; LeMaitre, Yves; Collin, Sophie; Nguyen Vandau, Frédéric; Sergeeva-Chollet, Natalia; Decitre, Jean-Marc

    2015-09-01

    We will present our last development of GMR-based magnetic sensors devoted to sensing application for non-destructive control application. In these first realizations, we have chosen a so-called shape anisotropy - exchange biased strategy to fulfill the field-sensing criteria in the μT range in devices made of micronic single elements. Our devices realized by optical lithography, and whose typical sizes range from 150 μm x 150 μm to 500 μm x 500 μm elements, are made of trilayers GMR-based technology and consist of several circuitries of GMR elements of different lengths, widths and gaps. To obtain a full sensing linearity and reversibility requiring a perpendicular magnetic arrangement between both sensitive and hard layer, the magnetization of the latter have been hardened by pinning it with an antiferromagnetic material. The specific geometry of the design have been engineered in order to optimize the magnetic response of the soft layer via the different magnetic torques exerted on it essentially played by the dipolar fields or shape anisotropy, and the external magnetic field to detect. The smaller dimensions in width and in gap are then respectively of 2 μm and 3 μm to benefit of the full shape anisotropy formatting the magnetic response.

  7. Micronization increases vitamin E carrying and releasing abilities of insoluble fiber.

    Science.gov (United States)

    Hsu, Pang-Kuei; Chien, Po-Jung; Chau, Chi-Fai

    2008-03-26

    This study was to investigate the effects of micronization on vitamin-carrying capacity and slow-release ability of carambola (starfruit) insoluble fiber (IF) and cellulose using in vitro and in vivomodels. Upon micronization, carambola IF (8.1 microm) underwent structural changes to expose more functional groups in the fiber matrix and to exhibit higher oil-holding capacity ( approximately 20.4-fold). Micronized fibers in forms of fiber-vitamin composites, particularly the micronized carambola IF-vitamin composite, were capable of carrying vitamin E (alpha-tocopherol) up to 9.6-fold over their unmicronized forms and releasing nutrient gradually. Animal studies demonstrated that the adminstration of micronized carambola IF-vitamin composite could maintain the plasma vitamin E of rats at relatively higher levels (2.1-3.6-fold of the initial values) for at least 5 h. The results suggested that micronized fibers, particularly the micronized carambola IF, could be exploited as potential nutrient carriers in food applications and also be used to produce slow-release formulations.

  8. 8- to 13-micron spectrophotometry of Comet IRAS-Araki-Alcock

    Science.gov (United States)

    Feierberg, M. A.; Witteborn, F. C.; Johnson, J. R.; Campins, H.

    1984-01-01

    Spectrophotometry between 8.0 and 13.0 microns at 2 percent spectral resolution is presented for areas in and near the nuclear condensation of Comet IRAS-Araki-Alcock (1983d) on May 11 and 12, 1983. All the spectra can be fit very well by blackbody curves, and no 10-micron silicate emissions are seen. The temperature structure of the coma suggests the presence of small (radii less than 5 microns) dust particles within 150 km of the nucleus and larger ones further out. The change in the spatial distribution of the infrared flux between the two nights suggests that an outburst may have occurred sometime on May 11.

  9. Replication of each copy of the yeast 2 micron DNA plasmid occurs during the S phase.

    Science.gov (United States)

    Zakian, V A; Brewer, B J; Fangman, W L

    1979-08-01

    Saccharomyces cerevisiae contains 50-100 copies per cell of a circular plasmid called 2 micron DNA. Replication of this DNA was studied in two ways. The distribution of replication events among 2 micron DNA molecules was examined by density transfer experiments with asynchronous cultures. The data show that 2 micron DNA replication is similar to chromosomal DNA replication: essentially all 2 micron duplexes were of hybrid density at one cell doubling after the density transfer, with the majority having one fully dense strand and one fully light strand. The results show that replication of 2 micron DNA occurs by a semiconservative mechanism where each of the plasmid molecules replicates once each cell cycle. 2 micron DNA is the only known example of a multiple-copy, extrachromosomal DNA in which every molecule replicates in each cell cycle. Quantitative analysis of the data indicates that 2 micron DNA replication is limited to a fraction of the cell cycle. The period in the cell cycle when 2 micron DNA replicates was examined directly with synchronous cell cultures. Synchronization was accomplished by sequentially arresting cells in G1 phase using the yeast pheromone alpha-factor and incubating at the restrictive temperature for a cell cycle (cdc 7) mutant. Replication was monitored by adding 3H-uracil to cells previously labeled with 14C-uracil, and determining the 3H/14C ratio for purified DNA species. 2 micron DNA replication did not occur during the G1 arrest periods. However, the population of 2 micron DNA doubled during the synchronous S phase at the permissive temperature, with most of the replication occurring in the first third of S phase. Our results indicate that a mechanism exists which insures that the origin of replication of each 2 micron DNA molecule is activated each S phase. As with chromosomal DNA, further activation is prevented until the next cell cycle. We propose that the mechanism which controls the replication initiation of each 2 micron DNA

  10. Performance of a 1-micron, 1-joule Coherent Launch Site Atmospheric Wind Sounder

    Science.gov (United States)

    Hawley, James G.; Targ, Russell; Bruner, Richard; Henderson, Sammy W.; Hale, Charles P.; Vetorino, Steven; Lee, R. W.; Harper, Scott; Khan, Tayyab

    1992-01-01

    The paper describes the design and performance of the Coherent Launch Site Atmospheric Wind Sounder (CLAWS), which is a test and demonstration program designed for monitoring winds with a solid-state lidar in real time for the launch site vehicle guidance and control application. Analyses were conducted to trade off CO2 (9.11- and 10.6-microns), Ho:YAG (2.09 microns), and Nd:YAG (1.06-micron) laser-based lidars. The measurements set a new altitude record (26 km) for coherent wind measurements in the stratosphere.

  11. IS THE TWO MICRON ALL SKY SURVEY CLUSTERING DIPOLE CONVERGENT?

    International Nuclear Information System (INIS)

    Bilicki, Maciej; Chodorowski, Michal; Jarrett, Thomas; Mamon, Gary A.

    2011-01-01

    There is a long-standing controversy about the convergence of the dipole moment of the galaxy angular distribution (the so-called clustering dipole). Is the dipole convergent at all, and if so, what is the scale of the convergence? We study the growth of the clustering dipole of galaxies as a function of the limiting flux of the sample from the Two Micron All Sky Survey (2MASS). Contrary to some earlier claims, we find that the dipole does not converge before the completeness limit of the 2MASS Extended Source Catalog, i.e., up to 13.5 mag in the near-infrared K s band (equivalent to an effective distance of 300 Mpc h -1 ). We compare the observed growth of the dipole with the theoretically expected, conditional one (i.e., given the velocity of the Local Group relative to the cosmic microwave background), for the ΛCDM power spectrum and cosmological parameters constrained by the Wilkinson Microwave Anisotropy Probe. The observed growth turns out to be within 1σ confidence level of its theoretical counterpart once the proper observational window of the 2MASS flux-limited catalog is included. For a contrast, if the adopted window is a top hat, then the predicted dipole grows significantly faster and converges (within the errors) to its final value for a distance of about 300 Mpc h -1 . By comparing the observational windows, we show that for a given flux limit and a corresponding distance limit, the 2MASS flux-weighted window passes less large-scale signal than the top-hat one. We conclude that the growth of the 2MASS dipole for effective distances greater than 200 Mpc h -1 is only apparent. On the other hand, for a distance of 80 Mpc h -1 (mean depth of the 2MASS Redshift Survey) and the ΛCDM power spectrum, the true dipole is expected to reach only ∼80% of its final value. Eventually, since for the window function of 2MASS the predicted growth is consistent with the observed one, we can compare the two to evaluate β ≡ Ω m 0.55 /b. The result is β = 0.38

  12. Transformation and Release of Micronized Cu Used as a Wood Preservative in Treated Wood in Wetland Soil.

    Science.gov (United States)

    Micronized Cu (µ-Cu) is used as a wood preservative, replacing toxic Chromated Copper Arsenates. Micronized Cu is Malachite [Cu2CO3(OH)2] that has been milled to micron/submicron particles, many with diameters less than 100 nm, and then mixed with quat or azol biocides. I...

  13. HIRDLS/Aura Level 3 Extinction at 12.1 Microns Zonal Fourier Coefficients V007

    Data.gov (United States)

    National Aeronautics and Space Administration — The "HIRDLS/Aura Level 3 Extinction at 12.1 Microns Zonal Fourier Coefficients" version 7 data product (H3ZFC12MEXT) contains the entire mission (~3 years) of HIRDLS...

  14. High Power Narrow Linewidth 1.26 Micron Ho-Doped Fiber Amplifier, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is for the development of an innovative, high power, and extremely reliable 1.26-micron Ho-doped fluoride fiber amplifier. The proposed fiber amplifier...

  15. High Power Narrow Linewidth 1.26 Micron Ho-Doped Fiber Amplifier, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is for the development of an innovative, high power, and extremely reliable 1.26-micron Ho-doped fluoride fiber amplifier. The proposed fiber amplifier...

  16. Nimbus-5/THIR Level 1 Brightness Temperature at 11.5 microns V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The Nimbus-5 Temperature-Humidity Infrared Radiometer (THIR) Level 1 Brightness Temperature at 11.5 microns data product contains radiances expressed in units of...

  17. Adiabatic pressure dependence of the 2.7 and 1.9 micron water vapor bands

    Science.gov (United States)

    Mathai, C. V.; Walls, W. L.; Broersma, S.

    1977-01-01

    An acoustic excitation technique is used to determine the adiabatic pressure derivative of the spectral absorptance of the 2.7 and 1.9 micron water vapor bands, and the 3.5 micron HCl band. The dependence of this derivative on thermodynamic parameters such as temperature, concentration, and pressure is evaluated. A cross-flow water vapor system is used to measure spectral absorptance. Taking F as the ratio of nonrigid to rotor line strengths, it is found that an F factor correction is needed for the 2.7 micron band. The F factor for the 1.9 micron band is also determined. In the wings of each band a wavelength can be found where the concentration dependence is predominant. Farther out in the wings a local maximum occurs for the temperature derivative. It is suggested that the pressure derivative is significant in the core of the band.

  18. Radiation-Hardened 1.55 Micron Fiber Laser for Coherent LIDAR, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposal, we propose to demonstrate and build high pulse energy near 1.55 micron wavelength single frequency fiber laser by developing an innovative...

  19. Bench-scale testing of a micronized magnetite, fine-coal cleaning process

    Energy Technology Data Exchange (ETDEWEB)

    Suardini, P.J. [Custom Coals, International, Pittsburgh, PA (United States)

    1995-11-01

    Custom Coals, International has installed and is presently testing a 500 lb/hr. micronized-magnetite, fine-coal cleaning circuit at PETC`s Process Research Facility (PRF). The cost-shared project was awarded as part of the Coal Preparation Program`s, High Efficiency Preparation Subprogram. The project includes design, construction, testing, and decommissioning of a fully-integrated, bench-scale circuit, complete with feed coal classification to remove the minus 30 micron slimes, dense medium cycloning of the 300 by 30 micron feed coal using a nominal minus 10 micron size magnetite medium, and medium recovery using drain and rinse screens and various stages and types of magnetic separators. This paper describes the project circuit and goals, including a description of the current project status and the sources of coal and magnetite which are being tested.

  20. Silicon Germanium Alloy Photovoltaics for 1.06 Micron Wireless Power Transmission, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Phase I SBIR effort, Structured Materials Industries, Inc. (SMI)will design, fabricate, and test more efficient photovoltaics for 1.06 micron wavelength...

  1. 1300 micron continuum observations of the Sagittarius B2 molecular cloud core

    International Nuclear Information System (INIS)

    Goldsmith, P.F.; Snell, R.L.; Lis, D.C.

    1987-01-01

    Observations with 23-arcsec angular resolution are obtained of the continuum emission at 1300 microns wavelength from the central region of the Sgr B2 molecular cloud, which contains the north and middle high-mass star-forming regions and associated radio continuum and maser sources. The spatial resolution of the present data shows that the 1300-micron continuum emission peak is located at Sgr B2(N), in contrast to the midinfrared emission, which is centered on Sgr B2(M). Comparison with 53 micron data having comparable angular resolution suggests that there is optically thick foreground dust which prevents detection of Sgr B2(N) at wavelengths not greater than 100 microns. Within the about 1.5 x 3.5 pc region mapped, the total mass is 500,000 solar masses and the mean H2 density is 300,000/cu cm, somewhat larger than found in previous investigations. 27 references

  2. Frequency-Locked Single-Frequency Fiber Laser at 2 Micron, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Frequency-locked single-frequency 2 micron fiber laser is proposed to be used for airborne/spaceborne coherent lidar measurements, i.e., Active Sensing of CO2...

  3. Efficient high power 2 micron Tm3+-Doped Fiber Laser, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is for the development of new Tm3+ doped germanate glass fibers for efficient high power 2 micron fiber lasers capable of generating an output power of...

  4. Observations of the 63 micron forbidden O I line in Herbig-Haro objects

    International Nuclear Information System (INIS)

    Cohen, M.; Hollenbach, D.J.; Haas, M.R.; Erickson, E.F.

    1988-01-01

    The paper presents observations of the 63 micron forbidden O I line from Herbig-Haro objects and their exciting stars. Forbidden O I 63 micron emission is detected toward the HH-exciting stars T Tau, DG Tau, L1551 IRS 5, and toward the HH objects HH 7-11, HH 42A, and HH 43 which are displaced from their exciting stars. The forbidden O I emission is associated with these flows on the basis of its spatial coincidence and its negative radial velocities. If the exciting stars drive bipolar flows in which the 63 micron emission follows that at 6300 A, the absence of redshifted 63 micron lines from the three exciting stars might indicate that the disks hypothesized to overlie the receding lobes of these flows are still optically thick in the far-infrared. 50 references

  5. A laboratory exposure system to study the effects of aging on super-micron aerosol particles

    Energy Technology Data Exchange (ETDEWEB)

    Santarpia, Joshua; Sanchez, Andres L.; Lucero, Gabriel Anthony; Servantes, Brandon Lee; Hubbard, Joshua Allen

    2014-02-01

    A laboratory system was constructed that allows the super-micron particles to be aged for long periods of time under conditions that can simulate a range of natural environments and conditions, including relative humidity, oxidizing chemicals, organics and simulated solar radiation. Two proof-of-concept experiments using a non-biological simulant for biological particles and a biological simulant demonstrate the utility of these types of aging experiments. Green Visolite®, which is often used as a tracer material for model validation experiments, does not degrade with exposure to simulated solar radiation, the actual biological material does. This would indicate that Visolite® should be a good tracer compound for mapping the extent of a biological release using fluorescence as an indicator, but that it should not be used to simulate the decay of a biological particle when exposed to sunlight. The decay in the fluorescence measured for B. thurengiensis is similar to what has been previously observed in outdoor environments.

  6. The evaluation of microstructure and mechanical properties of sintered sub-micron WC-Co powders

    International Nuclear Information System (INIS)

    Nor Izan Izura; Mohd Asri Selamat; Noraizham Mohamad Diah; Talib Ria Jaafar

    2007-01-01

    A cemented tungsten carbide (WC-Co) is widely used for a variety of machining, cutting, drilling and other applications. The properties of this tungsten heavy alloy are sensitive to processing and degraded by residual porosity. The sequence of high end powder metallurgy process include mixing, compacting and followed by multi-atmosphere sintering of green compact were analyzed. The sub micron (<1.0 μm) and less than 10.0 μm of WC powders are sintered with a metal binder 6% Co to provide pore-free part. The powder compacts were sintered at temperatures cycle in the range of 1200 degree Celsius-1550 degree Celsius in nitrogen-based sintering atmosphere. To date, however there have been few reported studies in the literature that the best sintering was carried out via liquid phase sintering in vacuum at approximately 1500 degree Celsius. from this study we found that in order to attain high mechanical properties, a fine grain size of powder is necessary. Therefore, the attention of this work is to develop and produce wear resistant component with better properties or comparable to the commercial ones. (author)

  7. Microfluidic rheometry of a polymer solution by micron resolution particle image velocimetry: a model validation study

    International Nuclear Information System (INIS)

    Hemaka Bandalusena, H C; Zimmerman, William B; Rees, Julia M

    2009-01-01

    The main purpose of this study is to model non-Newtonian fluid flows in microgeometries. Velocity fields of dilute xanthan gum solutions in a microfluidic T-junction have been measured for pressure-driven flow using micron resolution particle image velocimetry (µ-PIV). Xanthan gum at a fixed concentration is a power-law fluid. Varying the concentration changes the rheology, effectively altering the power-law parameters reflecting the changes in the fluid's shear response since viscoelasticity and extensional viscosity are negligible for dilute solutions of this substance. As the flow is forced to turn the corner of the T-junction, a range of shear rates, and hence viscosities, is produced. If this feature could be incorporated into a viscometer, then potentially the constitutive parameters of a complex fluid could be ascertained from a single experiment. A mathematical model based on a finite element technique has been developed to simulate the fluid flow in the experimental system. Model predictions of the velocity field are found to agree well (less than 5% error) with observations, thus validating the model

  8. Solid methane on Triton and Pluto - 3- to 4-micron spectrophotometry

    Science.gov (United States)

    Spencer, John R.; Buie, Marc W.; Bjoraker, Gordon L.

    1990-01-01

    Methane has been identified in the Pluto/Charon system on the basis of absorption features in the reflectance spectrum at 1.5 and 2.3 microns; attention is presently given to observations of a 3.25 micron-centered deep absorption feature in Triton and Pluto/Charon system reflectance spectra. This absorption may indicate the presence of solid methane, constituting either the dominant surface species or a mixture with a highly transparent substance, such as N2 frost.

  9. Heterodyne spatial interferometry of circumstellar dust shells at a wavelength of 11 microns

    International Nuclear Information System (INIS)

    Sutton, E.C.

    1979-01-01

    The spatial distribution of the 11 micron thermal emission from circumstellar dust envelopes has been studied using an infrared heterodyne interferometer. Circumstellar dust envelopes often exist around cool, late-type stars. These envelopes radiate strongly at 11 microns, particularly if they are composed of silicate grains, which have a strong emission feature near this wavelength. By measuring the spatial distribution of this dust emission it is possible to probe the temperatures and densities of the circumstellar material and thereby to gain an understanding of the structures of circumstellar envelopes. Among the sources which have been observed with this interferometer are α Orionis, o Ceti, VY Canis Majoris, and IRC + 10216. The 11 micron brightness distributions of these objects all have spatially extended dust-emission components which are resolved in these measurements. The dust envelopes of α Orionis and o Ceti are optically thin, having optical depths at 11 microns of 0.02 and 0.04, respectively. In addition, variations are seen in the 11 micron brightness distribution of o Ceti which correlate with the stellar variability. These variations primarily represent changes in the relative amount of spatially compact photospheric emission and spatially extended dust emission. The source VY Canis Majoris, on the other had, has a dust envelope which is optically thick at 11 microns. The dust envelope of IRC + 10216, although optically thick at visible wavelengths, does not seem to be optically thick at 11 microns since there is a spatially compact component of the 11 micron brightness distribution which presumably represents emission from the central star

  10. 32x32 HgCdTe/CCD infrared camera for the 2-5 micron range

    International Nuclear Information System (INIS)

    Monin, J.L.; Vauglin, I.; Sibille, F.

    1988-01-01

    The paper presents a complete infrared camera system, based on a high electron capacity detector (HgCdTe/CCD), that has been used under high background conditions to generate astronomical images. The performance of the system and some results are presented, and the use of such a detector in astronomy is discussed. 8 references

  11. High Precision Ranging and Range-Rate Measurements over Free-Space-Laser Communication Link

    Science.gov (United States)

    Yang, Guangning; Lu, Wei; Krainak, Michael; Sun, Xiaoli

    2016-01-01

    We present a high-precision ranging and range-rate measurement system via an optical-ranging or combined ranging-communication link. A complete bench-top optical communication system was built. It included a ground terminal and a space terminal. Ranging and range rate tests were conducted in two configurations. In the communication configuration with 622 data rate, we achieved a two-way range-rate error of 2 microns/s, or a modified Allan deviation of 9 x 10 (exp -15) with 10 second averaging time. Ranging and range-rate as a function of Bit Error Rate of the communication link is reported. They are not sensitive to the link error rate. In the single-frequency amplitude modulation mode, we report a two-way range rate error of 0.8 microns/s, or a modified Allan deviation of 2.6 x 10 (exp -15) with 10 second averaging time. We identified the major noise sources in the current system as the transmitter modulation injected noise and receiver electronics generated noise. A new improved system will be constructed to further improve the system performance for both operating modes.

  12. New long-wavelength Nd:YAG laser at 1.44 micron: effect on brain.

    Science.gov (United States)

    Martiniuk, R; Bauer, J A; McKean, J D; Tulip, J; Mielke, B W

    1989-02-01

    A wavelength-shifted Nd:YAG laser, tuned to coincide with the infrared absorption peak of water at 1.44 microns, was used to make lesions in normal rabbit brain. A total of 48 lesions were made with power up to 20 W, with energy up to 40 joules, and with two different spot sizes. These lesions were compared to lesions made with 1.06 microns radiation from an Nd:YAG laser under identical operating conditions. Measurements of blood-brain barrier damage and width, depth, and volume of tissue affected were obtained 30 minutes after placement of the lesions. It was found that 1.44-microns lesions produced photoevaporative tissue loss at the highest intensities used. The layer of coagulated tissue remaining after photovaporization had a mean thickness of 0.6 mm irrespective of the volume of tissue removed. There was no photovaporization in the 1.06-microns lesions. In addition, the amount of peripheral edema per unit volume of tissue coagulated was approximately half at the 1.44-microns wavelength. These findings suggest that the 1.44-microns Nd:YAG laser may be a useful surgical instrument since it combines the photoevaporative effect of the CO2 laser while maintaining the advantages of the conventional Nd:YAG laser (quartz fiber delivery and effective hemostasis).

  13. The Carnegie Hubble Program: The Leavitt Law at 3.6 microns and 4.5 microns in the Large Magellanic Cloud

    Science.gov (United States)

    Scowcroft, Victoria; Freedman, Wendy L.; Madore, Barry F.; Monson, Andrew J.; Persson, S. E.; Seibert, Mark; Rigby, Jane R.; Sturch, Laura

    2011-01-01

    The Carnegie Hubble Program (CHP) is designed to improve the extragalactic distance scale using data from the post-cryogenic era of Spitzer. The ultimate goal is a determination of the Hubble constant to an accuracy of 2%. This paper is the first in a series on the Cepheid population of the Large Magellanic Cloud, and focuses on the period-luminosity relations (Leavitt laws) that will be used, in conjunction with observations of Milky Way Cepheids, to set the slope and zero-point of the Cepheid distance scale in the mid-infrared. To this end, we have obtained uniformly-sampled light curves for 85 LMC Cepheids, having periods between 6 and 140 days. Period- luminosity and period-color relations are presented in the 3.6 micron and 4.5 micron bands. We demonstrate that the 3.6 micron band is a superb distance indicator. The cyclical variation of the [3.6]-[4.5] color has been measured for the first time. We attribute the amplitude and phase of the color curves to the dissociation and recombination of CO molecules in the Cepheid s atmosphere. The CO affects only the 4.5 micron flux making it a potential metallicity indicator.

  14. Transport dynamics calculated under the full Mie scattering theory for micron and submicron lunar ejecta in selenocentric, cislunar, and geocentric space

    Science.gov (United States)

    Hyde, T. W.; Alexander, W. M.

    1989-01-01

    In 1967, Lunar Explorer 35 was launched from the earth and placed into a stable orbit around the moon. The data from the dust particle experiment on this spacecraft were essentially continuous over a 5-yr period from the time of insertion in lunar orbit. Analysis of this data has been interpreted to show that micron-sized lunar ejecta leave the moon and traverse through selenocentric and cislunar space and obtain either interplanetary/heliocentric orbits or intercept the earth's magnetosphere and move into geocentric orbits. Extensive studies of the orbital trajectories of lunar particles in this size range have now been conducted that include a calculation of the solar radiation force using the full Mie scattering theory. A significant flux of particles with radii less than 0.1 micron are found to intercept the earth's magnetopause surface. This flux is shown to be strongly dependent upon both the particle's density and its index of refraction.

  15. Design and implementation of a micron-sized electron column fabricated by focused ion beam milling

    Energy Technology Data Exchange (ETDEWEB)

    Wicki, Flavio, E-mail: flavio.wicki@physik.uzh.ch; Longchamp, Jean-Nicolas; Escher, Conrad; Fink, Hans-Werner

    2016-01-15

    We have designed, fabricated and tested a micron-sized electron column with an overall length of about 700 microns comprising two electron lenses; a micro-lens with a minimal bore of 1 micron followed by a second lens with a bore of up to 50 microns in diameter to shape a coherent low-energy electron wave front. The design criteria follow the notion of scaling down source size, lens-dimensions and kinetic electron energy for minimizing spherical aberrations to ensure a parallel coherent electron wave front. All lens apertures have been milled employing a focused ion beam and could thus be precisely aligned within a tolerance of about 300 nm from the optical axis. Experimentally, the final column shapes a quasi-planar wave front with a minimal full divergence angle of 4 mrad and electron energies as low as 100 eV. - Highlights: • Electron optics • Scaling laws • Low-energy electrons • Coherent electron beams • Micron-sized electron column.

  16. Characterization of solar cells for space applications. Volume 11: Electrical characteristics of 2 ohm-cm, 228 micron wraparound solar cells as a function of intensity, temperature, and irradiation. [for solar electric propulsion

    Science.gov (United States)

    Anspaugh, B. E.; Beckert, D. M.; Downing, R. G.; Weiss, R. S.

    1980-01-01

    Parametric characterization data on Spectrolab 2 by 4 cm, 2 ohm/cm, 228 micron thick wraparound cell, a candidate for the Solar Electric Propulsion Mission, are presented. These data consist of the electrical characteristics of the solar cell under a wide range of temperature and illumination intensity combinations of the type encountered in space applications.

  17. Dynamics of vortex matter in YBCO sub-micron bridges

    Energy Technology Data Exchange (ETDEWEB)

    Papari, G., E-mail: papari@fisica.unina.it [Dipartimento di Fisica, Università degli Studi di Napoli Federico II, I-80126 Napoli (Italy); Carillo, F. [NEST, CNR-NANO and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa (Italy); Stornaiuolo, D.; Massarotti, D. [Dipartimento di Fisica, Università degli Studi di Napoli Federico II, I-80126 Napoli (Italy); CNR-SPIN UOS Napoli, Complesso Universitario di Monte SantAngelo, via Cinthia, 80126 Napoli (Italy); Longobardi, L. [American Physical Society, 1 Research Road, Ridge, NY 11961 (United States); Beltram, F. [NEST, CNR-NANO and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa (Italy); Tafuri, F. [CNR-SPIN UOS Napoli, Complesso Universitario di Monte SantAngelo, via Cinthia, 80126 Napoli (Italy); Dipartimento di Ingegneria Industriale e dell' informazione, Seconda Universit‘a di Napoli, via Roma 29, 81031 Aversa (CE) (Italy)

    2014-11-15

    Highlights: • Superconducting properties of YBCO nanowires in the width range ξrange ξ

  18. Interstellar matter near the Pleiades. III. A search for H2 2.4-micron vibration-rotation emission

    International Nuclear Information System (INIS)

    White, R.E.

    1988-01-01

    Results are reported from a search for 2.4-micron v = 1-0 H2 emission near five stars in the Pleiades, performed using a cooled InSb photometer and a 10-arcsec entrance aperture on the 2.3-m telescope at Wyoming IR Observatory. The calibration and data-reduction procedures are described, and the results are presented in a table. No emission is detected, and upper limits in the range 0.000026-0.000072 erg/sec sq cm sr are obtained, corresponding to limiting column densities of (1.3-3.7) x 10 to the 15th/sq cm and H2 densities of 400-1100/cu cm (assuming fluorescence and dissociation of the gas as it passes the stars). 16 references

  19. A Multi-Baseline 12 GHz Atmospheric Phase Interferometer with One Micron Path Length Sensitivity

    Science.gov (United States)

    Kimberk, Robert S.; Hunter, Todd R.; Leiker, Patrick S.; Blundell, Raymond; Nystrom, George U.; Petitpas, Glen R.; Test, John; Wilson, Robert W.; Yamaguchi, Paul; Young, Kenneth H.

    2012-12-01

    We have constructed a five station 12 GHz atmospheric phase interferometer (API) for the Submillimeter Array (SMA) located near the summit of Mauna Kea, Hawaii. Operating at the base of unoccupied SMA antenna pads, each station employs a commercial low noise mixing block coupled to a 0.7 m off-axis satellite dish which receives a broadband, white noise-like signal from a geostationary satellite. The signals are processed by an analog correlator to produce the phase delays between all pairs of stations with projected baselines ranging from 33-261 m. Each baseline's amplitude and phase is measured continuously at a rate of 8 kHz, processed, averaged and output at 10 Hz. Further signal processing and data reduction is accomplished with a Linux computer, including the removal of the diurnal motion of the target satellite. The placement of the stations below ground level with an environmental shield combined with the use of low temperature coefficient, buried fiber optic cables provides excellent system stability. The sensitivity in terms of rms path length is 1.3 microns which corresponds to phase deviations of about 1° of phase at the highest operating frequency of the SMA. The two primary data products are: (1) standard deviations of observed phase over various time scales, and (2) phase structure functions. These real-time statistical data measured by the API in the direction of the satellite provide an estimate of the phase front distortion experienced by the concurrent SMA astronomical observations. The API data also play an important role, along with the local opacity measurements and weather predictions, in helping to plan the scheduling of science observations on the telescope.

  20. The use of mechanically activated micronized coal in thermal power engineering

    Directory of Open Access Journals (Sweden)

    Burdukov Anatoliy P.

    2016-01-01

    Full Text Available Coal is one of the main energy resources and development of new promising technologies on its basis is certainly topical. This article discusses the use of new technology of gas and fuel oil replacement by mechanically activated micronized coal in power engineering: ignition and stabilization of pulverized coal flame combustion, as well as gasification of micronized coal in the flow. The new technology coal combustion with two stages of grinding is suggested. Optimization of the scheme of two-stage combustion is calculated. The first experimental data on the combustion process are obtained. The first demonstration tests on gas and heavy oil replacement by micronized coal during boiler ignition were carried out in the real power boiler with the capacity of 320 tons of steam per hour.

  1. Continuous micron-scaled rope engineering using a rotating multi-nozzle electrospinning emitter

    Science.gov (United States)

    Zhang, Chunchen; Gao, Chengcheng; Chang, Ming-Wei; Ahmad, Zeeshan; Li, Jing-Song

    2016-10-01

    Electrospinning (ES) enables simple production of fibers for broad applications (e.g., biomedical engineering, energy storage, and electronics). However, resulting structures are predominantly random; displaying significant disordered fiber entanglement, which inevitably gives rise to structural variations and reproducibility on the micron scale. Surface and structural features on this scale are critical for biomaterials, tissue engineering, and pharmaceutical sciences. In this letter, a modified ES technique using a rotating multi-nozzle emitter is developed and utilized to fabricate continuous micron-scaled polycaprolactone (PCL) ropes, providing control on fiber intercalation (twist) and structural order. Micron-scaled ropes comprising 312 twists per millimeter are generated, and rope diameter and pitch length are regulated using polymer concentration and process parameters. Electric field simulations confirm vector and distribution mechanisms, which influence fiber orientation and deposition during the process. The modified fabrication system provides much needed control on reproducibility and fiber entanglement which is crucial for electrospun biomedical materials.

  2. Fabrication, microstructure, and mechanical properties of high strength cobalt sub-micron structures

    International Nuclear Information System (INIS)

    Jin Sumin; Burek, Michael J.; Evans, Robert D.; Jahed, Zeinab; Leung, Michael C.; Evans, Neal D.; Tsui, Ting Y.

    2012-01-01

    The mechanical properties exhibited by sub-micron scale columnar structures of cobalt, fabricated by electron beam lithography and electroplating techniques, were investigated through uniaxial compression. Transmission electron microscopy analyses show these specimens possess a microstructure with sub-micron grains which are elongated and aligned near to the pillar loading axis. In addition, small nanocrystalline cobalt crystals are also present within the columnar structure. These specimens display exceptional mechanical strength comparable with both bulk polycrystalline and nanocrystalline cobalt deposited by electroplating. Size-dependent softening with shrinking sample dimensions is also observed in this work. Additionally, the strength of these sub-micron structures appears to be strain rate sensitive and comparable with bulk nanocrystalline cobalt specimens.

  3. Identification of Nonlinear Micron-Level Mechanics for a Precision Deployable Joint

    Science.gov (United States)

    Bullock, S. J.; Peterson, L. D.

    1994-01-01

    The experimental identification of micron-level nonlinear joint mechanics and dynamics for a pin-clevis joint used in a precision, adaptive, deployable space structure are investigated. The force-state mapping method is used to identify the behavior of the joint under a preload. The results of applying a single tension-compression cycle to the joint under a tensile preload are presented. The observed micron-level behavior is highly nonlinear and involves all six rigid body motion degrees-of-freedom of the joint. it is also suggests that at micron levels of motion modelling of the joint mechanics and dynamics must include the interactions between all internal components, such as the pin, bushings, and the joint node.

  4. Emission features in the spectrum of NGC 7027 near 3. 3 microns at very high resolution

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, R.P.; Moorhead, J.M.; Wehlau, W.H.; Maillard, J.P. (Western Ontario Univ., London (Canada) CNRS, Institut d' Astrophysique, Paris (France))

    1991-02-01

    A very high resolution spectrum is presented of the planetary nebula NGC 7027 over a 200/cm interval centered at 2950/cm, and the features found are described: (1) nebular continuum, (2) atomic recombination lines of H and He II, and (3) three broader emission features of uncertain origin. For the latter the first evidence is presented that the 3.46 micron feature and possibly the 3.40 micron feature are resolvable into a sequence of narrower features. The interpretation of the broader features is discussed in terms of the hypothesis of identification with emission by polycyclic aromatic hydrocarbons. 18 refs.

  5. Observations of 40-70 micron bands of ice in IRAS 09371 + 1212 and other stars

    Science.gov (United States)

    Omont, A.; Forveille, T.; Moseley, S. H.; Glaccum, W. J.; Harvey, P. M.; Likkel, L.; Loewenstein, R. F.; Lisse, C. M.

    1990-01-01

    IRAS 09371 + 1212 is still an absolutely unique object. This M giant star, with circumstellar CO and a spectacular bipolar nebula, displays unique IRAS FIR colors which had been attributed to strong emission in the 40-70-micron bands of ice, as subsequently supported by the observation of a strong 3.1-micron absorption band. The results of the KAO observations have confirmed its unusual nature: the far-infrared bands of ice are by far the strongest known. Its dust temperature, 50 K or less, is by far the lowest known for a late-type circumstellar envelope.

  6. Hidden Broad Line Seyfert 2 Galaxies in the CfA and 12micron Samples

    OpenAIRE

    Tran, Hien D.

    2001-01-01

    We report the results of a spectropolarimetric survey of the CfA and 12micron samples of Seyfert 2 galaxies (S2s). Polarized (hidden) broad line regions (HBLRs) are confirmed in a number of galaxies, and several new cases (F02581-1136, MCG -3-58-7, NGC 5995, NGC 6552, NGC 7682) are reported. The 12micron S2 sample shows a significantly higher incidence of HBLR (50%) than its CfA counterpart (30%), suggesting that the latter may be incomplete in hidden AGNs. Compared to the non-HBLR S2s, the H...

  7. Cross-calibration of Fuji TR image plate and RAR 2492 x-ray film to determine the response of a DITABIS Super Micron image plate scanner

    Energy Technology Data Exchange (ETDEWEB)

    Dunham, G., E-mail: gsdunha@sandia.gov; Harding, E. C.; Loisel, G. P.; Lake, P. W.; Nielsen-Weber, L. B. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

    2016-11-15

    Fuji TR image plate is frequently used as a replacement detector medium for x-ray imaging and spectroscopy diagnostics at NIF, Omega, and Z facilities. However, the familiar Fuji BAS line of image plate scanners is no longer supported by the industry, and so a replacement scanning system is needed. While the General Electric Typhoon line of scanners could replace the Fuji systems, the shift away from photo stimulated luminescence units to 16-bit grayscale Tag Image File Format (TIFF) leaves a discontinuity when comparing data collected from both systems. For the purposes of quantitative spectroscopy, a known unit of intensity applied to the grayscale values of the TIFF is needed. The DITABIS Super Micron image plate scanning system was tested and shown to potentially rival the resolution and dynamic range of Kodak RAR 2492 x-ray film. However, the absolute sensitivity of the scanner is unknown. In this work, a methodology to cross calibrate Fuji TR image plate and the absolutely calibrated Kodak RAR 2492 x-ray film is presented. Details of the experimental configurations used are included. An energy dependent scale factor to convert Fuji TR IP scanned on a DITABIS Super Micron scanner from 16-bit grayscale TIFF to intensity units (i.e., photons per square micron) is discussed.

  8. The magnetoresistance of sub-micron Fe wires

    Science.gov (United States)

    Blundell, S. J.; Shearwood, C.; Gester, M.; Baird, M. J.; Bland, J. A. C.; Ahmed, H.

    1994-07-01

    A novel combination of electron- and ion-beam lithography has been used to prepare Fe gratings with wire widths of 0.5 μm and wire separations in the range 0.5-4 μm from an Fe/GaAs (001) film of thickness 25 nm. With an in-plane magnetic field applied perpendicular to the length of the wires, a harder magnetisation loop is observed using the magneto-optic Kerr effect (MOKE), compared with that observed in the unprocessed film. We observe a strong effect in the magnetoresistance (MR) when the magnetic field is applied transverse to the wires. It is believed that this effect originates from the highly non-uniform demagnetising field in each wire of the grating. These results demonstrate that the combination of MOKE and MR measurements can provide important information about the magnetisation reversal processes in magnetic gratings and can be used to understand the effect of shape anisotropy on magnetic properties.

  9. Efficient 1.6 Micron Laser Source for Methane DIAL

    Science.gov (United States)

    Shuman, Timothy; Burnham, Ralph; Nehrir, Amin R.; Ismail, Syed; Hair, Johnathan W.

    2013-01-01

    Methane is a potent greenhouse gas and on a per molecule basis has a warming influence 72 times that of carbon dioxide over a 20 year horizon. Therefore, it is important to look at near term radiative effects due to methane to develop mitigation strategies to counteract global warming trends via ground and airborne based measurements systems. These systems require the development of a time-resolved DIAL capability using a narrow-line laser source allowing observation of atmospheric methane on local, regional and global scales. In this work, a demonstrated and efficient nonlinear conversion scheme meeting the performance requirements of a deployable methane DIAL system is presented. By combining a single frequency 1064 nm pump source and a seeded KTP OPO more than 5 mJ of 1.6 µm pulse energy is generated with conversion efficiencies in excess of 20%. Even without active cavity control instrument limited linewidths (50 pm) were achieved with an estimated spectral purity of 95%. Tunable operation over 400 pm (limited by the tuning range of the seed laser) was also demonstrated. This source demonstrated the critical needs for a methane DIAL system motivating additional development of the technology.

  10. Sub-micron indent induced plastic deformation in copper and irradiated steel

    International Nuclear Information System (INIS)

    Robertson, Ch.

    1998-09-01

    In this work we aim to study the indent induced plastic deformation. For this purpose, we have developed a new approach, whereby the indentation curves provides the mechanical behaviour, while the deformation mechanisms are observed thanks to Transmission Electron Microscopy (TEM). In order to better understand how an indent induced dislocation microstructure forms, numerical modeling of the indentation process at the scale of discrete dislocations has been worked out as well. Validation of this modeling has been performed through direct comparison of the computed microstructures with TEM micrographs of actual indents in pure Cu [001]. Irradiation induced modifications of mechanical behaviour of ion irradiated 316L have been investigated, thanks to the mentioned approach. An important hardening effect was reported from indentation data (about 50%), on helium irradiated 316L steel. TEM observations of the damage zone clearly show that this behaviour is associated with the presence of He bubbles. TEM observations of the indent induced plastic zone also showed that the extent of the plastic zone is strongly correlated with hardness, that is to say: harder materials gets a smaller plastic zone. These results thus clearly established that the selected procedure can reveal any irradiation induced hardening in sub-micron thick ion irradiated layers. The behaviour of krypton irradiated 316L steel is somewhat more puzzling. In one hand indeed, a strong correlation between the defect cluster size and densities on the irradiation temperature is observed in the 350 deg C -600 deg C range, thanks to TEM observations of the damage zone. On the other hand, irradiation induced hardening reported from indentation data is relatively small (about 10%) and shows no dependence upon the irradiation temperature (within the mentioned range). In addition, it has been shown that the reported hardening vanishes following appropriate post-irradiation annealing, although most of the TEM

  11. Evaluation of physical structural features on influencing enzymatic hydrolysis efficiency of micronized wood

    Science.gov (United States)

    Jinxue Jiang; Jinwu Wang; Xiao Zhang; Michael Wolcott

    2016-01-01

    Enzymatic hydrolysis of lignocellulosic biomass is highly dependent on the changes in structural features after pretreatment. Mechanical milling pretreatment is an effective approach to alter the physical structure of biomass and thus improve enzymatic hydrolysis. This study examined the influence of structural characteristics on the enzymatic hydrolysis of micronized...

  12. PROXIMATE COMPOSITION AND TECHNOLOGICAL CHARACTERISTICS OF DRY PASTA INCORPORATED WITH MICRONIZED CORN PERICARP

    Directory of Open Access Journals (Sweden)

    JOÃO RENATO DE JESUS JUNQUEIRA

    2017-01-01

    Full Text Available Pastas are generally accepted all over the world, mainly because they are versatile, cheap and easy - to - prepare. They are not nutritionally balanced, since they provide mainly carbohydrates. As a result of this, it is important to use ingredients which could improve the nutritional deficiencies, without affecting the technological and sensorial characteristics. This study evaluated the effect of using wheat semolina and micronized corn pericarp (MCP, on the proximate composition, cooking quality and color of spaghetti type pasta. Spaghetti pasta was produced using wheat semolina with the incorporation of micronized corn pericarp, at levels of 0, 10, 20 and 30%. There were no significant differences (p > 0.05 between the formulated samples with regards to the contents of moisture and lipid, cooking time, weight gain and volume increase. As observed, supplementation with micronized corn pericarp presented significant difference on the contents of proteins, minerals, dietary fiber and solid soluble loss of the spaghetti pasta (p < 0.05. With increase in micronized corn pericarp concentration, the color difference became accentuated. The use of MCP appears to be viable, providing a nutritionally enriched product without further impairment on pasta quality.

  13. Removal of nano- and micronized-copper from treated wood by chelating agents

    Science.gov (United States)

    S. Nami Kartal; Evren Terzi; Bessie Woodward; Carol A. Clausen; Stan T. Lebow

    2013-01-01

    Micronized and nano-copper (Cu)-based and arsenic and chromium-free systems have received much attention for wood protection in recent years. Because they have different fixation, and micro-distribution properties, such copper systems may be more or less subject to release using known remediation methods than soluble forms of Cu. This study evaluated Cu recovery from...

  14. Simultaneous formation and micronization of pharmaceutical cocrystals by rapid expansion of supercritical solutions (RESS).

    Science.gov (United States)

    Müllers, Katrin C; Paisana, Maria; Wahl, Martin A

    2015-02-01

    We investigated the RESS process as a means of simultaneous micronization and cocrystallization of a model drug with poor aqueous solubility. 1:1 cocrystals of ibuprofen (IBU) and nicotinamide (NA) were produced with a pilot scale unit for RESS processing.IBU and NA were dissolved in scCO2 at 30 MPa and 50°C. After 24 h, the supercritical solution was expanded at a medium CO2 flow rate of 3.8 kg/h during 60 min into an expansion vessel kept at ambient conditions. Cocrystals were identified with DSC, XRD and confocal Raman microscopy (CRM) and further characterized by SEM, specific surface area, wetting ability, solubility and dissolution testing. Judging by DSC, XRD and CRM, cocrystals with high purity could be produced with the RESS technique. Micronization via RESS was successful, since the specific surface area of RESS cocrystals was increased almost tenfold in comparison to cocrystals produced by slow solvent evaporation. Due to the additional micronization, the mean dissolution time of IBU from RESS cocrystals was decreased. RESS cocrystallization offers the advantage of combining micronization and cocrystallization in a single production step. For drugs with dissolution-limited bioavailability, RESS cocrystallization may therefore be a superior approach in comparison to established cocrystallization techniques.

  15. Observation of Shapiro-steps in AFM-plought micron-size YBCO planar construction

    CSIR Research Space (South Africa)

    Elkaseh, AAO

    2009-01-01

    Full Text Available Using an Atomic Force Microscope (AFM), micron size planar constriction type junctions was successfully ploughed on YBa2Cu3O7-x thin films. The 100 nanometer (nm) thin films are deposited on MgO substrates by an Inverted Cylindrical Magnetron (ICM...

  16. Comparison of Experimental Models for Predicting Laser Tissue Interaction from 3.8-Micron Lasers

    National Research Council Canada - National Science Library

    Williams, Charles Melville

    2004-01-01

    The purpose of this study was to compare and contrast the effects of single 3.8-micron laser pulses in an in-vitro and in-vivo model of human skin and to demonstrate the efficacy of in-vitro laser tissue interaction models...

  17. Bromatological and mycotoxin analysis on soybean meal before and after the industrial process of micronization

    Directory of Open Access Journals (Sweden)

    Andressa Daga

    2015-07-01

    Full Text Available Aflatoxins, fumonisins and zearalenone take part of the most studied mycotoxin groups due to their toxic effects on animal and human health. This research evaluated samples of soybeans meal used in animal food industry. A hundred and twenty one soybean meal samples were analyzed, so that 66 were analyzed before the industrial processing of micronization and 55 after it. The bromatological average of samples before micronization showed the following answers: 12.4% moisture; 46.4% protein; 79.5% protein solubility; 5.9% ash content; 2.2% fat; 4.3% fiber and 0.02 (ΔpH of urease activity. The samples of micronization soybean meal showed 7.0% average values for moisture and 48.6% for crude protein. The mycotoxin levels were low in natura soybean meal; therefore, average values were 0.5μg kg-1, 29.6μg kg-1 and 56.8μg kg-1 for aflatoxin, zearelenone and fumonisin, respectively. After micronization, the average values for the studied samples were 1.3μg kg-1, 67.5μg kg-1 and 89.1μg kg-1, respectively for the same mycotoxins. The results for bromatological and mycotoxin analyses indicate similarity with the established patterns according to the Brazilian Compendium for Animal feed and reference literature. However, at least one of the three studied mycotoxin was detected in all of the analyzed samples and there was greater contamination of soybeans meal after the micronization process.

  18. The rings of Saturn - New near-infrared reflectance measurements and a 0.326-4.08 micron summary

    International Nuclear Information System (INIS)

    Clark, R.N.; McCord, T.B.

    1980-01-01

    A new high-photometric-precision reflectance spectrum of Saturn's rings covering the spectral region 0.65 to 2.5 microns is presented and three previously unreported absorption features at 1.25, 0.85, and probably 1.04 microns are identified. The 1.25- and 1.04 micron absorptions are due to water ice. The 0.85 microns feature may be due to a combination of 0.81- and 0.90 micron ice absorptions but this feature appears too strong relative to the 1.04 micron band to be completely explained by water ice. Another possibility is that the 0.85 micron band is due to Fe(3+)-bearing minerals in an ice-mineral mixture. This explanation could also account for the drop in the visible and ultraviolet reflectance and the rise in reflectance around 3.6 microns. Finally, a composite spectrum from 0.325 to 4.08 is presented which will be useful for future analysis and laboratory studies

  19. Influence of Process Control Agent on Characterization and Structure of Micron Chitosan Powders Prepared by Ball Milling Method

    Directory of Open Access Journals (Sweden)

    ZHANG Chuan-jie

    2016-12-01

    Full Text Available With ethyl alcohol or distilled water as process control agent (PCA, micron chitosan powder was prepared by ball milling method. The yield rate, particle size distribution, micro morphology, viscosity average molecular mass, chemical and crystal structures, and thermal properties of these different micron chitosan powders were measured. The results indicate that the yield rate of micron chitosan powders prepared with ethyl alcohol as PCA increases significantly, and improves to 94.7% from 25% while the amount of ethyl alcohol is 0.75mL/g. The particle size distribution of micron chitosan powder prepared with ethyl alcohol as PCA is concentrated, while the D50 and D90 in size are 824nm and 1629nm respectively. Chitosan do not react with ethyl alcohol used as PCA, but the viscosity average molecular mass of prepared micron chitosan powder decreases by 23%, the crystal structures are destroyed slightly, and its thermal stability is slightly weakened.

  20. Detection of the 3.4- and 2.8-micron emission features in Comet Bradfield (1987s)

    International Nuclear Information System (INIS)

    Brooke, T.Y.; Tokunaga, A.T.; Knacke, R.F.; Owen, T.C.; Mumma, M.J.

    1990-01-01

    Comet Bradfield's 3.4-micron C-H emission feature at 3.4 microns, as well as the emission feature near 2.8 microns, exhibit spectral shapes similar to those noted in Comets Halley and Wilson; the derived abundances of the C-H bonds in all three comets are also comparable (within water production rate uncertainties). These data support the hypothesis that the species responsible for the 3.4- and 2.8-micron features may be common to all comets. Beyond this, the widely differing ages of the three comets suggest that the 3.4-micron feature-emitting organics are not the product of surface irradiation processes after the comets' formation. 25 refs

  1. Advances in High Energy Solid-State Pulsed 2-Micron Lidar Development for Ground and Airborne Wind, Water Vapor and CO2 Measurements

    Science.gov (United States)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer; Kavaya, Michael J.; Remus, Ruben

    2015-01-01

    NASA Langley Research Center has a long history of developing 2-micron lasers. From fundamental spectroscopy research, theoretical prediction of new materials, laser demonstration and engineering of lidar systems, it has been a very successful program spanning around two decades. Successful development of 2-micron lasers has led to development of a state-of-the-art compact lidar transceiver for a pulsed coherent Doppler lidar system for wind measurement with an unprecedented laser pulse energy of 250 millijoules in a rugged package. This high pulse energy is produced by a Ho:Tm:LuLiF laser with an optical amplifier. While the lidar is meant for use as an airborne instrument, ground-based tests were carried out to characterize performance of the lidar. Atmospheric measurements will be presented, showing the lidar's capability for wind measurement in the atmospheric boundary layer and free troposphere. Lidar wind measurements are compared to a balloon sonde, showing good agreement between the two sensors. Similar architecture has been used to develop a high energy, Ho:Tm:YLF double-pulsed 2-micron Integrated Differential Absorption Lidar (IPDA) instrument based on direct detection technique that provides atmospheric column CO2 measurements. This instrument has been successfully used to measure atmospheric CO2 column density initially from a ground mobile lidar trailer, and then it was integrated on B-200 plane and 20 hours of flight measurement were made from an altitude ranging 1500 meters to 8000 meters. These measurements were compared to in-situ measurements and National Oceanic and Atmospheric Administration (NOAA) airborne flask measurement to derive the dry mixing ratio of the column CO2 by reflecting the signal by various reflecting surfaces such as land, vegetation, ocean surface, snow and sand. The lidar measurements when compared showed a very agreement with in-situ and airborne flask measurement. NASA Langley Research Center is currently developing a

  2. Challenges, constraints, and results of lens design for 17 micron-bolometer focal plane arrays in 8-12 micron waveband

    Science.gov (United States)

    Schuster, Norbert; Franks, John

    2011-06-01

    In the 8-12 micron waveband Focal Plane Arrays (FPA) are available with a 17 micron pixel pitch in different arrays sizes (e.g. 512 x 480 pixels and 320 x 240 pixels) and with excellent electrical properties. Many applications become possible using this new type of IR-detector which will become the future standard in uncooled technology. Lenses with an f-number faster than f/1.5 minimize the diffraction impact on the spatial resolution and guarantee a high thermal resolution for uncooled cameras. Both effects will be quantified. The distinction between Traditional f-number (TF) and Radiometric f-number (RF) is discussed. Lenses with different focal lengths are required for applications in a variety of markets. They are classified by their Horizontal field of view (HFOV). Respecting the requirements for high volume markets, several two lens solutions will be discussed. A commonly accepted parameter of spatial resolution is the Modulation Transfer Function (MTF)-value at the Nyquist frequency of the detector (here 30cy/mm). This parameter of resolution will be presented versus field of view. Wide Angle and Super Wide Angle lenses are susceptible to low relative illumination in the corner of the detector. Measures to reduce this drop to an acceptable value are presented.

  3. Impact-disrupted gunshot residue: A sub-micron analysis using a novel collection protocol

    Directory of Open Access Journals (Sweden)

    V. Spathis

    2017-06-01

    Full Text Available The analysis of gunshot residue (GSR has played an integral role within the legal system in relation to shooting cases. With a characteristic elemental composition of lead, antimony, barium, and a typically discriminative spheroidal morphology, the presence and distribution of GSR can aid in firearm investigations. In this experiment, three shots of low velocity rim-fire ammunition were fired over polished silicon collection substrates placed at six intervals over a 100 cm range. The samples were analysed using a Field Emission Gun Scanning Electron Microscope (FEG-SEM in conjunction with an X-flash Energy Dispersive X-ray (EDX detector, allowing for GSR particle analyses of composition and structure at the sub-micron level. The results of this experiment indicate that although classic spheroidal particles are present consistently throughout the entire range of samples their sizes vary significantly, and at certain distances from the firearm particles with an irregular morphology were discerned, forming “impact-disrupted” GSR particles, henceforth colloquially referred to as “splats”. Upon further analysis, trends with regards to the formation of these splat particles were distinguished. An increase in splat frequency was observed starting at 10 cm from the firearm, with 147 mm−2 splat density, reaching a maximal flux at 40 cm (451 mm−2, followed by a gradual decrease to the maximum range sampled. Moreover, the structural morphology of the splats changes throughout the sampling range. At the distances closest to the firearm, molten-looking particles were formed, demonstrating the metallic residues were in a liquid state when their flight path was disrupted. However, at increased distances-primarily where the discharge plume was at maximum dispersion and moving away from the firearm, the residues have had time to cool in-fight resulting in semi-congealed and solid particles that subsequently disrupted upon impact, forming more

  4. Studying Titan's surface photometry in the 5 microns atmospheric window with the Cassini/VIMS instrument

    Science.gov (United States)

    Cornet, T.; Altobelli, N.; Sotin, C.; Le Mouelic, S.; Rodriguez, S.; Philippe, S.; Brown, R. H.; Barnes, J. W.; Buratti, B. J.; Baines, K. H.; Clark, R. N.; Nicholson, P. D.

    2014-12-01

    Due to the influence of methane gas and a thick aerosols haze in the atmosphere, Titan's surface is only visible in 7 spectral atmospheric windows centered at 0.93, 1.08, 1.27, 1.59, 2.01, 2.7-2.8 and 5 microns with the Cassini Visual and Infrared Mapping Spectrometer (VIMS). The 5 microns atmospheric window constitutes the only one being almost insensitive to the haze scattering and which presents only a reduced atmospheric absorption contribution to the signal recorded by the instrument. Despite these advantages leading to the almost direct view of the surface, the 5 microns window is also the noisiest spectral window of the entire VIMS spectrum (an effect highly dependent on the time exposure used for the observations), and it is not totally free from atmospheric contributions, enough to keep "artefacts" in mosaics of several thousands of cubes due to atmospheric and surface photometric effects amplified by the very heterogeneous viewing conditions between each Titan flyby. At first order, a lambertian surface photometry at 5 microns has been used as an initial parameter in order to estimate atmospheric opacity and surface photometry in all VIMS atmospheric windows and to determine the albedo of the surface, yet unknown, both using radiative transfer codes on single cubes or empirical techniques on global hyperspectral mosaics. Other studies suggested that Titan's surface photometry would not be uniquely lambertian but would also contain anisotropic lunar-like contributions. In the present work, we aim at constraining accurately the surface photometry of Titan and residual atmospheric absorption effects in this 5 microns window using a comprehensive study of relevant sites located at various latitudes. Those include bright and dark (dunes) terrains, 5-microns bright terrains (Hotei Regio and Tui Regio), the Huygens Landing Site and high latitudes polar lakes and seas. The VIMS 2004 to 2014 database, composed of more than 40,000 hyperspectral cubes acquired on

  5. Deposition of micron liquid droplets on wall in impinging turbulent air jet

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Tianshu; Nink, Jacob; Merati, Parviz [Western Michigan University, Department of Mechanical and Aeronautical Engineering, Kalamazoo, MI (United States); Tian, Tian; Li, Yong [Massachusetts Institute of Technology, Sloan Automotive Laboratory, Cambridge, MA (United States); Shieh, Tom [Toyota Technical Center, Toyota Motor Engineering and Manufacturing North America, Inc, Ann Arbor, MI (United States)

    2010-06-15

    The fluid mechanics of the deposition of micron liquid (olive oil) droplets on a glass wall in an impinging turbulent air jet is studied experimentally. The spatial patterns of droplets deposited on a wall are measured by using luminescent oil visualization technique, and the statistical data of deposited droplets are obtained through microscopic imagery. Two distinct rings of droplets deposited on a wall are found, and the mechanisms of the formation of the inner and outer rings are investigated based on global diagnostics of velocity and skin friction fields. In particular, the intriguing effects of turbulence, including large-scale coherent vortices and small-scale random turbulence, on micron droplet deposition on a wall and coalescence in the air are explored. (orig.)

  6. Airborne spectrophotometry of P/Halley from 20 to 65 microns

    Science.gov (United States)

    Glaccum, W.; Moseley, S. H.; Campins, H.; Loewenstein, R. F.

    1986-01-01

    Simultaneous 20 to 65 microns spectrometry and 100 microns photometry of P/Halley obtained on board the Kuiper Airborne Observatory (KAO) in 1985 Dec. and 1986 April are discussed. Spectra with resolution 30 to 50 were obtained with the NASA/Goddard 24 channel grating spectrometer. Measurements were made on the nucleus as well as 5 points along and perpendicular to the Sun-tail direction. The observations reveal the absence of any strong spectral features. The color temperature of the dust varies over time scales as short as 2 days, but is higher than that expected for a rapidly rotating blackbody at the same distance from the Sun. The color temperature does not vary within 1 arcmin of the nucleus, but the coma is brighter on the sunward side than on the antisunward side.

  7. Characteristics of scandate-impregnated cathodes with sub-micron scandia-doped matrices

    International Nuclear Information System (INIS)

    Yuan Haiqing; Gu Xin; Pan Kexin; Wang Yiman; Liu Wei; Zhang Ke; Wang Jinshu; Zhou Meiling; Li Ji

    2005-01-01

    We describe in this paper scandate-impregnated cathodes with sub-micron scandia-doped tungsten matrices having an improved uniformity of the Sc distribution. The scandia-doped tungsten powders were made by both liquid-solid doping and liquid-liquid doping methods on the basis of previous research. By improving pressing, sintering and impregnating procedures, we have obtained scandate-impregnated cathodes with a good uniformity of the Sc 2 O 3 - distribution. The porosity of the sub-micron structure matrix and content of impregnants inside the matrix are similar to those of conventionally impregnated cathodes. Space charge limited current densities of more than 30 A/cm 2 at 850 deg. C b have been obtained in a reproducible way. The current density continuously increases during the first 2000 h life test at 950 deg. C b with a dc load of 2 A/cm 2 and are stable for at least 3000 h

  8. Observations of the 12.3 micron Mg I emission line during a major solar flare

    Science.gov (United States)

    Deming, Drake; Jennings, Donald E.; Osherovich, Vladimir; Wiedemann, Gunter; Hewagama, Tilak

    1990-01-01

    The extremely Zeeman-sensitive 12.32 micron Mg I solar emission line was observed during a 3B/X5.7 solar flare on October 24, 1989. When compared to postflare values, Mg I emission-line intensity in the penumbral flare ribbon was 20 percent greater at the peak of the flare in soft X-rays, and the 12 micron continuum intensity was 7 percent greater. The flare also excited the emission line in the umbra where it is normally absent. The umbral flare emission exhibits a Zeeman splitting 200 G less than the adjacent penumbra, suggesting that it is excited at higher altitude. The absolute penumbral magnetic field strength did not change by more than 100 G between the flare peak and postflare period. However, a change in the inclination of the field lines, probably related to the formation and development of the flare loop system, was seen.

  9. Micron system for automatization and analysis of measurements in nuclear photoemulsion

    International Nuclear Information System (INIS)

    Dajon, M.I.; Kotel'nikov, K.A.; Martynov, A.G.; Rappoport, V.M.; Smirnitskij, V.A.; Ozerskij, M.A.

    1987-01-01

    The automatized ''Micron'' system designed for measuring, processing and analyzing events in nuclear photoemulsion is described. The flowsheets of the device, program packages for searching neutrino interactions in nuclear photoemulsion and plotting target diagrams in X-ray emulsion chambers are presented. The ''Micron'' system consists of the following functional units: a three-coordinate measuring microscope MPEh-11 combined with a coordinate recording unit, designed for measuring coordinates of grains in the emulsion and displaying them on a peripheral, a control unit based on ''Elektronika-60'' microcomputer, a controller KK-60 for connecting the CAMAC highway, an analog-to-digital display with the keyboard. The PDP-11/70 is the basic computer. The event of charmed Λ c + barion production followed by the Λ c + →Σ + π + π - decay observed in nuclear photoemulsion is described

  10. Trace element composition and distribution in micron area of dinosaur eggshell fossils determined by proton microprobe

    International Nuclear Information System (INIS)

    Chen Youhong; Zhu Jieqing; Wang Xiaohong; Wang Yimin

    1997-01-01

    The scanning proton microprobe and micro-PIXE quantitative analysis technique have been used to determine composition and distribution of the trace elements in micron areas of dinosaur eggshell fossils from the stratum of Upper Cretaceous system at Nanxiong Basin in Guangdong Province, China. The study shows that the trace elements mainly include Ti, V, Cr, Mn, Co, Ni, Cu, Zn, As, Rb, Sr, Y, Zr, Sb, Ba and Pb in the micron area, but they present different distributions. While the element Sr is mainly enriched in the near surface layer, others mainly reside in the near inner layer. A preliminary discussion on the reason of the dinosaur extinction is given based on the above study

  11. Trace element composition and distribution in micron area of dinosaur eggshell fossils determined by proton microprobe

    International Nuclear Information System (INIS)

    Chen Youhong; Zhu Jieqing; Wang Xiaohong; Wang Yimin

    1997-01-01

    The scanning proton microprobe and micro-PIXE quantitative analysis technique have been used to determine composition and distribution of the trace elements in micron areas of dinosaur eggshell fossils from the stratum of Upper Cretaceous system at Nanxiong Basin in Guangdong Province, China. The study shows that the trace elements mainly include Ti, V, Cr, Mn, Co, Ni, Cu, Zn, As, Rb, Sr, Y, Zr, Sb, Ba and Pb in the micron area, but they present different distributions. While the elements Sr is mainly enriched in the near surface layer, others mainly reside in the near inner layer. A preliminary discussion on the reason of the dinosaur extinction is given based on the above study

  12. The mean intensity of radiation at 2 microns in the solar neighborhood

    International Nuclear Information System (INIS)

    Jura, M.

    1979-01-01

    Consideration is given to the value of the mean intensity at 2 microns in the solar neighborhood, and it is found that it is likely to be a factor of four greater than previously estimated on theoretical grounds. It is noted however, that the estimate does agree with a reasonable extrapolation of the results of the survey of the Galactic plane by the Japanese group. It is concluded that the mean intensity in the solar neighborhood therefore probably peaks somewhat longward of 1 micron, and that this result is important for understanding the temperature of interstellar dust and the intensity of the far infrared background. This means specifically that dark clouds probably emit significantly more far infrared radiation than previously predicted

  13. Mini-Conference on the First Microns of the First Wall

    International Nuclear Information System (INIS)

    Stotler, D.P.; Rognlien, T.D.; Krasheninnikov, S.I.

    2008-01-01

    Interactions between plasmas and their surrounding materials (plasma facing components) are of great interest to present and future magnetic fusion experiments, and ITER (ITER Physics Basis Editors, ITER Physics Exper Group Chairs, ITER Joint Central Team, and Physics Integration Unit, Nucl. Fusion 39, 2137 (1999)) in particular. This interest is the result of concerns with the survivability of these materials, as well as the impact of these interactions back on the plasma. These interactions begin on the surface, but can have consequences a few microns into the material. This mini-conference on these 'first microns' was designed to bring to the Division of Plasma Physics Meeting experts on these topics who would otherwise not attend. At the same time, the mini-conference was intended to expose the broader fusion community to these issues. The mini-conference covered in three, half-day sessions the topics of lithium coatings and surfaces, mixed materials characteristics, and issues associated with graphite

  14. Mini-Conference on the First Microns of the First Wall

    Energy Technology Data Exchange (ETDEWEB)

    Stotler, D. P.; Rognlien, T. D.; Krasheninnikov, S. I.

    2008-03-20

    Interactions between plasmas and their surrounding materials (plasma facing components) are of great interest to present and future magnetic fusion experiments, and ITER [ITER Physics Basis Editors, ITER Physics Exper Group Chairs, ITER Joint Central Team, and Physics Inte gration Unit, Nucl. Fusion 39, 2137 (1999)] in particular. This interest is the result of concerns with the survivability of these materials, as well as the impact of these interactions back on the plasma. These interactions begin on the surface, but can have consequences a few microns into the material.This mini-conference on these "first microns" was designed to bring to the Division of Plasma Physics Meeting experts on these topics who would otherwise not attend. At the same time, the mini-conference was intended to expose the broader fusion community to these issues. The mini-conference covered in three, half-day sessions the topics of lithium coatings and surfaces, mixed materials characteristics, and issues associated with graphite.

  15. Using micronized progesterone for treatment of premenopausal age women suffering from severe premenstrual syndrome

    Directory of Open Access Journals (Sweden)

    Horbatiuk Olha

    2017-09-01

    Full Text Available In this study, we carried out the clinical and laboratory research of severe PMS (premenstrual syndrome treatment in premenopausal age women. Herein, 37 women were examined and observed before the beginning of treatment and three months after it. Medication containing micronized progesterone was used for treatment (sublingually, 100 mg from 11 to 25 days of menstrual cycle. After three months of micronized progesterone treatment, 86.5% of all women-participants of the study were observed to have full regression of clinical symptoms, while 13.5% of all patients were observed to have decrease in clinical symptoms of severe PMS. Moreover, hormonal research results revealed significant (1.3 times decrease in LH (Luteinizing hormone level and (1.3 times increase in progesterone level after three months of treatment (р<0.05. The high bio-accessibility of the medication and its natural structure made it possible to decrease the dose and avoid risks of hepatotoxicity.

  16. Development of Micron-Resolved Electron Spectroscopy to Study Organic Thin Films in Real Devices

    International Nuclear Information System (INIS)

    Wang, C.-H.; Fan, L.-J.; Yang, Y.-W.; Su, J.-W.; Chan, S.-W.; Chen, M.-C.

    2010-01-01

    A straightforward application of an electron energy analyzer equipped with an image detector to micron-resolved electron spectroscopic studies of organic thin film devices is reported. The electron spectroscopies implemented include synchrotron-based UPS, XPS, and Auger yield NEXAFS. Along the non-energy-dispersion direction of the analyzer, a spatial resolution of ∼40 μm is obtained through the employment of entrance slits, electrostatic lenses and segmented CCD detector. One significant benefit offered by the technique is that the electronic transport and electronic structure of the same micron-sized sample can be directly examined. The example illustrated is a top-contact organic field effect transistor (OFET) fabricated from semiconducting triethylsilylethynyl anthradithiophene and gold electrodes. It is found that an extensive out-diffusion of gold atoms to adjacent conduction channels takes place, presumably due to the inability of soft organic materials in dissipating the excess energy with which gaseous Au atoms possess.

  17. Two micron spectroscopy of the Blue Compact Dwarf Galaxy Haro 2

    International Nuclear Information System (INIS)

    Davidge, T.J.; Maillard, J.P.

    1990-01-01

    This paper discusses the results of 2-micron spectroscopic observations of the Blue Compact Dwarf Galaxy (BCDG) Haro 2, obtained with the 3.6-m Canada-France-Hawaii Telescope. The spectrum contains emission lines of H I, He I, Fe II, and H2 and strong absorption originating from Delta-v = 2 transitions of CO. The strengths of the various features are discussed and the extinction in the 2-micron region is estimated. The spectrum of Haro 2 is compared with those of other BCDGs and the starburst galaxies NGC 253 and M82. It is found that, in many respects, Haro 2 is a typical starburst galaxy and that its blue near-IR colors are not necessarily a sign of youth. 35 refs

  18. New constraints on deformation processes in serpentinite from sub-micron Raman Spectroscopy and TEM

    Science.gov (United States)

    Smith, S. A. F.; Tarling, M.; Rooney, J. S.; Gordon, K. C.; Viti, C.

    2017-12-01

    Extensive work has been performed to characterize the mineralogical and mechanical properties of the various serpentine minerals (i.e. antigorite, lizardite, chrysotile, polyhedral and polygonal serpentine). However, correct identification of serpentine minerals is often difficult or impossible using conventional analytical techniques such as optical- and SEM-based microscopy, X-ray diffraction and infrared spectroscopy. Transmission Electron Microscopy (TEM) is the best analytical technique to identify the serpentine minerals, but TEM requires complex sample preparation and typically results in very small analysis areas. Sub-micron confocal Raman spectroscopy mapping of polished thin sections provides a quick and relatively inexpensive way of unambiguously distinguishing the main serpentine minerals within their in-situ microstructural context. The combination of high spatial resolution (with a diffraction-limited system, 366 nm), large-area coverage (up to hundreds of microns in each dimension) and ability to map directly on thin sections allows intricate fault rock textures to be imaged at a sample-scale, which can then form the target of more focused TEM work. The potential of sub-micron Raman Spectroscopy + TEM is illustrated by examining sub-micron-scale mineral intergrowths and deformation textures in scaly serpentinites (e.g. dissolution seams, mineral growth in pressure shadows), serpentinite crack-seal veins and polished fault slip surfaces from a serpentinite-bearing mélange in New Zealand. The microstructural information provided by these techniques has yielded new insights into coseismic dehydration and amorphization processes and the interplay between creep and localised rupture in serpentinite shear zones.

  19. Simulation of Micron-Sized Debris Populations in Low Earth Orbit

    Science.gov (United States)

    Xu, Y.-L.; Matney, M.; Liou, J.-C.; Hyde, J. L.; Prior, T. G.

    2010-01-01

    The update of ORDEM2000, the NASA Orbital Debris Engineering Model, to its new version . ORDEM2010, is nearly complete. As a part of the ORDEM upgrade, this paper addresses the simulation of micro-debris (greater than 10 micron and smaller than 1 mm in size) populations in low Earth orbit. The principal data used in the modeling of the micron-sized debris populations are in-situ hypervelocity impact records, accumulated in post-flight damage surveys on the space-exposed surfaces of returned spacecrafts. The development of the micro-debris model populations follows the general approach to deriving other ORDEM2010-required input populations for various components and types of debris. This paper describes the key elements and major steps in the statistical inference of the ORDEM2010 micro-debris populations. A crucial step is the construction of a degradation/ejecta source model to provide prior information on the micron-sized objects (such as orbital and object-size distributions). Another critical step is to link model populations with data, which is rather involved. It demands detailed information on area-time/directionality for all the space-exposed elements of a shuttle orbiter and damage laws, which relate impact damage with the physical properties of a projectile and impact conditions such as impact angle and velocity. Also needed are model-predicted debris fluxes as a function of object size and impact velocity from all possible directions. In spite of the very limited quantity of the available shuttle impact data, the population-derivation process is satisfactorily stable. Final modeling results obtained from shuttle window and radiator impact data are reasonably convergent and consistent, especially for the debris populations with object-size thresholds at 10 and 100 micron.

  20. Spinning and tumbling of micron-sized triangles in a micro-channel shear flow

    Science.gov (United States)

    Fries, J.; Kumar, M. Vijay; Mihiretie, B. Mekonnen; Hanstorp, D.; Mehlig, B.

    2018-03-01

    We report on measurements of the angular dynamics of micron-sized equilaterally triangular platelets suspended in a micro-channel shear flow. Our measurements confirm that such particles spin and tumble like a spheroid in a simple shear. Since the triangle has corners, we can observe the spinning directly. In general, the spinning frequency is different from the tumbling frequency and the spinning is affected by tumbling. This gives rise to doubly periodic angular dynamics.

  1. Charging of Individual Micron-Size Interstellar/Planetary Dust Grains by Secondary Electron Emissions

    Science.gov (United States)

    Tankosic, D.; Abbas, M. M.

    2012-01-01

    Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with UV/X-ray radiation, as well as by electron/ion impact. Knowledge of physical and optical properties of individual dust grains is required for understanding of the physical and dynamical processes in space environments and the role of dust in formation of stellar and planetary systems. In this paper, we discuss experimental results on dust charging by electron impact, where low energy electrons are scattered or stick to the dust grains, thereby charging the dust grains negatively, and at sufficiently high energies the incident electrons penetrate the grain leading to excitation and emission of electrons referred to as secondary electron emission (SEE). Currently, very limited experimental data are available for charging of individual micron-size dust grains, particularly by low energy electron impact. Available theoretical models based on the Sternglass equation (Sternglass, 1954) are applicable for neutral, planar, and bulk surfaces only. However, charging properties of individual micron-size dust grains are expected to be different from the values measured on bulk materials. Our recent experimental results on individual, positively charged, micron-size lunar dust grains levitated in an electrodynamic balance facility (at NASA-MSFC) indicate that the SEE by electron impact is a complex process. The electron impact may lead to charging or discharging of dust grains depending upon the grain size, surface potential, electron energy, electron flux, grain composition, and configuration (e.g. Abbas et al, 2010). Here we discuss the complex nature of SEE charging properties of individual micron-size lunar dust grains and silica microspheres.

  2. Deep sub-micron FD-SOI for front-end application

    International Nuclear Information System (INIS)

    Ikeda, H.; Arai, Y.; Hara, K.; Hayakawa, H.; Hirose, K.; Ikegami, Y.; Ishino, H.; Kasaba, Y.; Kawasaki, T.; Kohriki, T.; Martin, E.; Miyake, H.; Mochizuki, A.; Tajima, H.; Tajima, O.; Takahashi, T.; Takashima, T.; Terada, S.; Tomita, H.; Tsuboyama, T.

    2007-01-01

    In order to confirm benefits of a deep sub-micron FD-SOI and to identify possible issues concerning front-end circuits with the FD-SOI, we have submitted a small design to Oki Electric Industry Co., Ltd. via the multi-chip project service of VDEC, the University of Tokyo. The initial test results and future plans for development are presented

  3. Two-micron (Thulium) Laser Prostatectomy: An Effective Method for BPH Treatment.

    Science.gov (United States)

    Jiang, Qi; Xia, Shujie

    2014-01-01

    The two-micron (thulium) laser is the newest laser technique for treatment of bladder outlet obstruction resulting from benign prostatic hyperplasia (BPH). It takes less operative time than standard techniques, provides clear vision and lower blood loss as well as shorter catheterization times and hospitalization times. It has been identified to be a safe and efficient method for BPH treatment regardless of the prostate size.

  4. Target vs. background discrimination using multispectral data in 1.5-14.5 micron

    Science.gov (United States)

    Cogliandro, Santo; Panizza, Marco; Castelli, Paola

    1987-01-01

    LOWTRAN V model calculations are compared to experimental spectral background radiance and spectral transmittance data in the 1.5 to 14.5-micron band, in order to identify the most important parameters affecting the discrimination of targets from background. Attention is accordingly given to the IR energy emitted by a reference plate at different values of temperature and emissivity vs various previously investigated backgrounds. Targets at near-ambient temperature are also considered.

  5. Quantitative determination of micronization-induced changes in the solid state of lactose.

    Science.gov (United States)

    Della Bella, A; Müller, M; Soldati, L; Elviri, L; Bettini, R

    2016-05-30

    Lactose, in particular α-lactose monohydrate, is the most used carrier for inhalation. Its surface and solid-state properties play a key role in determining Dry Powder Inhalers (DPIs) performance. Techniques such as X-Ray Powder Diffraction (XRPD) and Differential Scanning Calorimetry (DSC), which are commonly used for the characterization of lactose, are not always capable of explaining the solid-state changes induced by processing, such as micronization. In the present work, the evaluation of the effect of the micronization process on the solid-state properties of lactose was carried out by XRPD and DSC and a satisfactory, although not unequivocal, interpretation of the thermal behaviour of lactose was obtained. Thus, a new gravimetric method correlating in a quantitative manner the weight change in specific sections of the Dynamic Vapour Sorption (DVS) profile and the amount of different forms of α-lactose (hygroscopic anhydrous, stable anhydrous and amorphous) simultaneously present in a given sample was developed and validated. The method is very simple and provides acceptable accuracy in phase quantitation (LOD=1.6, 2.4 and 2.7%, LOQ=5.4, 8.0 and 8.9% for hygroscopic anhydrous, stable anhydrous and amorphous α-lactose, respectively). The application of this method to a sample of micronized lactose led to results in agreement with those obtained by DSC and evidenced that hygroscopic anhydrous α-lactose, rather than amorphous lactose, can be generated in the micronization process. The proposed method may find a more general application for the quantification of polymorphs of compounds different than lactose, provided that the various solid phases afford different weight variations in specific regions of the DVS profile. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Asymmetric Membranes Containing Micron-Size Silicon for High Performance Lithium Ion Battery Anode

    International Nuclear Information System (INIS)

    Byrd, Ian; Wu, Ji

    2016-01-01

    Micron-size Si anode is notorious for having extremely poor cycle life. It is mainly caused by the large volume change (∼300%) and poor mechanical strength of the Si electrode. Satisfying methods to address this issue are seriously lacking in literature. In this study, novel single-layer, double-layer and triple-layer asymmetric membranes containing micron-size silicon have been fabricated using a simple phase inversion method to dramatically improve its cyclability. The electrochemical performance of these asymmetric membranes as lithium ion battery anodes are evaluated and compared to pure micron-size Si powders and carbonaceous asymmetric membranes. All three types of asymmetric membrane electrodes demonstrate significantly enhanced stability as compared to pure Si powders. The single-layer asymmetric membrane has the largest capacity degradation due to the loss of pulverized Si powders from the membrane surface, only 40% of whose capacity can be retained in 100 cycles. But this performance is still much better than pure micron-size silicon electrode. After being coated with nanoporous carbonaceous layers on both sides of a single-layer asymmetric membrane to make a triple-layer asymmetric membrane (sandwich structure), the capacity retention is notably increased to 88% in 100 cycles at 610 mAh g"−"1 and 0.5C. The enhanced stability is attributed to the extra nanoporous coatings that can prevent the fractured Si powders from being leached out and allow facile lithium ion diffusions. Such a novel, efficient and scalable method may provide beneficiary guidance for designing high capacity lithium ion battery anodes with large volume change issues.

  7. Micron-size hydrogen cluster target for laser-driven proton acceleration

    Science.gov (United States)

    Jinno, S.; Kanasaki, M.; Uno, M.; Matsui, R.; Uesaka, M.; Kishimoto, Y.; Fukuda, Y.

    2018-04-01

    As a new laser-driven ion acceleration technique, we proposed a way to produce impurity-free, highly reproducible, and robust proton beams exceeding 100 MeV using a Coulomb explosion of micron-size hydrogen clusters. In this study, micron-size hydrogen clusters were generated by expanding the cooled high-pressure hydrogen gas into a vacuum via a conical nozzle connected to a solenoid valve cooled by a mechanical cryostat. The size distributions of the hydrogen clusters were evaluated by measuring the angular distribution of laser light scattered from the clusters. The data were analyzed mathematically based on the Mie scattering theory combined with the Tikhonov regularization method. The maximum size of the hydrogen cluster at 25 K and 6 MPa in the stagnation state was recognized to be 2.15 ± 0.10 μm. The mean cluster size decreased with increasing temperature, and was found to be much larger than that given by Hagena’s formula. This discrepancy suggests that the micron-size hydrogen clusters were formed by the atomization (spallation) of the liquid or supercritical fluid phase of hydrogen. In addition, the density profiles of the gas phase were evaluated for 25 to 80 K at 6 MPa using a Nomarski interferometer. Based on the measurement results and the equation of state for hydrogen, the cluster mass fraction was obtained. 3D particles-in-cell (PIC) simulations concerning the interaction processes of micron-size hydrogen clusters with high power laser pulses predicted the generation of protons exceeding 100 MeV and accelerating in a laser propagation direction via an anisotropic Coulomb explosion mechanism, thus demonstrating a future candidate in laser-driven proton sources for upcoming multi-petawatt lasers.

  8. Combustion synthesis of micron-sized Sm2Co17 particles via mechanochemical processing

    International Nuclear Information System (INIS)

    Liu, W.; McCormick, P.G.

    1998-01-01

    Full text: The spontaneous formation of Sm 2 Co 17 micron-sized particles via a mechanically induced combustion reaction has been investigated. Sm 2 Co 17 alloy particles of 0.1--2 μm in size embedded in a CaO matrix formed directly via a combustion reaction induced by milling the powder mixture of Sm 2 O 3 , CoO, CaO and Ca over a critical time. The micron-sized Sm 2 Co 17 particles were found to have the TbCu 7 -type structure and characterized by a coercivity value of 7.8 kOe while embedded in the CaO matrix. The effect of subsequent heat treatment on the structure and magnetic properties of as-milled samples was also investigated. Removal of the CaO by a carefully controlled washing process yielded micron-sized Sm 2 Co 17 particles without significant oxidation of the particles. These fine Sm 2 Co 17 particles can be used to produce anisotropic bulk or bonded magnets

  9. Unlocking the energy capabilities of micron-sized LiFePO4.

    Science.gov (United States)

    Guo, Limin; Zhang, Yelong; Wang, Jiawei; Ma, Lipo; Ma, Shunchao; Zhang, Yantao; Wang, Erkang; Bi, Yujing; Wang, Deyu; McKee, William C; Xu, Ye; Chen, Jitao; Zhang, Qinghua; Nan, Cewen; Gu, Lin; Bruce, Peter G; Peng, Zhangquan

    2015-08-03

    Utilization of LiFePO4 as a cathode material for Li-ion batteries often requires size nanonization coupled with calcination-based carbon coating to improve its electrochemical performance, which, however, is usually at the expense of tap density and may be environmentally problematic. Here we report the utilization of micron-sized LiFePO4, which has a higher tap density than its nano-sized siblings, by forming a conducting polymer coating on its surface with a greener diazonium chemistry. Specifically, micron-sized LiFePO4 particles have been uniformly coated with a thin polyphenylene film via the spontaneous reaction between LiFePO4 and an aromatic diazonium salt of benzenediazonium tetrafluoroborate. The coated micron-sized LiFePO4, compared with its pristine counterpart, has shown improved electrical conductivity, high rate capability and excellent cyclability when used as a 'carbon additive free' cathode material for rechargeable Li-ion batteries. The bonding mechanism of polyphenylene to LiFePO4/FePO4 has been understood with density functional theory calculations.

  10. The origin of the 3.4 micron feature in Wild 2 cometary particles and in ultracarbonaceous interplanetary dust particles

    OpenAIRE

    Matrajt, Graciela; Flynn, George; Brownlee, Don; Joswiak, Dave; Bajt, Sasa

    2013-01-01

    We analyzed 2 ultra-carbonaceous interplanetary dust particles and 2 cometary Wild 2 particles with infrared spectroscopy. We characterized the carrier of the 3.4 micron band in these samples and compared its profile and the CH2/CH3 ratios to the 3.4 micron band in the diffuse interstellar medium (DISM), in the insoluble organic matter (IOM) from 3 primitive meteorites, in asteroid 24 Themis and in the coma of comet 103P/Hartley 2. We found that the 3.4 micron band in both Wild 2 and IDPs is ...

  11. Multiband carbon monoxide laser (2.5 -- 4.0 and 5.0 -- 6.5 micron) pumped by capacitive slab RF discharge

    Science.gov (United States)

    Ionin, Andrey; Kozlov, Andrey; Seleznev, Leonid; Sinitsyn, Dmitry

    2008-10-01

    Overtone lasing and fundamental band tuning was for the first time obtained in a carbon monoxide laser excited by repetitively pulsed capacitive slab RF discharge (81.36 MHz). RF discharge pulse repetition rate was 100--500 Hz. The active volume was 3x30x250 cubic mm. Laser electrodes were cooled down to 120 K. Gas mixture CO:air:He at gas pressure 15 Torr was used. The optical scheme ``frequency selective master oscillator - laser amplifier'' was applied for getting fundamental band tuning. Single line lasing with average power up to several tens of mW was observed on about 100 rotational-vibrational transitions of CO molecule within the spectral range 5.0--6.5 micron. Multiline overtone lasing was observed on about 80 spectral lines within the spectral range 2.5-4.0 micron, with maximum single line average output power 12 mW. The total output power of the slab overtone CO laser came up to 0.35 W, with laser efficiency 0.5 percent. The results of parametric studies of capacitive slab RF discharge in carbon monoxide mixtures, and overtone and fundamental band CO laser characteristics are discussed.

  12. The effect of arsenic thermal diffusion on the morphology and photoluminescence properties of sub-micron ZnO rods

    Energy Technology Data Exchange (ETDEWEB)

    Ding Meng [Department of Physics, Jilin University, Changchun 130023 (China); Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130021 (China); Yao Bin, E-mail: binyao@jlu.edu.c [Department of Physics, Jilin University, Changchun 130023 (China); Zhao Dongxu, E-mail: dxzhao2000@yahoo.com.c [Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130021 (China); Fang Fang; Shen Dezhen; Zhang Zhenzhong [Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130021 (China)

    2010-05-31

    As-doped sub-micron ZnO rods were realized by a simple thermal diffusion process using a GaAs wafer as an arsenic resource. The surface of the sub-micron ZnO rods became rough and the morphology of As-doped sub-micron ZnO rods changed markedly with increasing diffusion temperature. From the results of energy-dispersive X-ray spectroscopy, X-ray diffraction and photoluminescence, arsenic elements were confirmed to be introduced into the sub-micron ZnO rods. The acceptor ionization energy was deduced to be about 110 meV based on the temperature-dependent PL spectra.

  13. The effect of arsenic thermal diffusion on the morphology and photoluminescence properties of sub-micron ZnO rods

    International Nuclear Information System (INIS)

    Ding Meng; Yao Bin; Zhao Dongxu; Fang Fang; Shen Dezhen; Zhang Zhenzhong

    2010-01-01

    As-doped sub-micron ZnO rods were realized by a simple thermal diffusion process using a GaAs wafer as an arsenic resource. The surface of the sub-micron ZnO rods became rough and the morphology of As-doped sub-micron ZnO rods changed markedly with increasing diffusion temperature. From the results of energy-dispersive X-ray spectroscopy, X-ray diffraction and photoluminescence, arsenic elements were confirmed to be introduced into the sub-micron ZnO rods. The acceptor ionization energy was deduced to be about 110 meV based on the temperature-dependent PL spectra.

  14. Tunable Single Frequency 2.054 Micron Fiber Laser Using New Ho-Doped Fiber, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposal, we propose to demonstrate and build a near 2 micron widely tunable, narrow linewidth, single frequency fiber laser by developing an innovative...

  15. Tunable Single Frequency 2.05 Micron Fiber Laser Using New Ho-Doped Fiber, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposal, we propose to demonstrate and build a widely tunable, narrow linewidth, single frequency fiber laser near 2.05 micron by developing an innovative...

  16. Nanometer, submicron and micron sized aluminum powder prepared by semi-solid mechanical stirring method with addition of ceramic particles

    International Nuclear Information System (INIS)

    Qin, X.H.; Jiang, D.L.; Dong, S.M.

    2004-01-01

    Composite powder, which is a mixture of Al/Al 2 O 3 composite particles and nanometer, submicron and micron sized aluminum powder, was prepared by semi-solid mechanical stirring method with addition of Al 2 O 3 ceramic particles. The ceramic particles have an average diameter of 80 μm and a volume fraction of 15% in the slurry. The methods used to measure the size distribution of particles greater than 50 μm and less than 50 μm were sieve analysis and photosedimentation, respectively. The surface morphology and transverse sections of the composite powder of different sizes were examined by scanning electron microscope (SEM), optical microscope and auger electron spectroscopy (AES). The results indicate that the composite powder prepared in present work have a wide size distribution ranging from less than 50-900 μm, and the aluminum particles and Al/Al 2 O 3 composite particles are separated and isolated. The particles greater than 200 μm and less than 50 μm are almost pure aluminum powder. The rate of conversion of ingot aluminum into particles less than 1 μm containing nanometer and submicron sizes is 1.777 wt.% in this work. The aluminum powder of different sizes has different shape and surface morphology, quasi-spherical in shape with rough surface for aluminum particles of micron scale, irregular in shape for aluminum particles of submicron scale, and quite close to a globular or an excellent globular in shape for aluminum particles of nanometer size. On the other hand, the surface of ceramic particle was coated by aluminum particles with maximum thickness less than 10 μm containing nanometer and submicron sizes as a single layer. It is suggested that the surface of ceramic particles can provide more nucleation sites for solidification of liquid aluminum and the nucleation of liquid aluminum can take place readily, grow and adhere on the surface of ceramic particles, although it is poorly wetted by the liquid aluminum and the semi-solid slurry can

  17. Micronized Copper Wood Preservatives: Efficacy of Ion, Nano, and Bulk Copper against the Brown Rot Fungus Rhodonia placenta.

    Science.gov (United States)

    Civardi, Chiara; Schubert, Mark; Fey, Angelika; Wick, Peter; Schwarze, Francis W M R

    2015-01-01

    Recently introduced micronized copper (MC) formulations, consisting of a nanosized fraction of basic copper (Cu) carbonate (CuCO3·Cu(OH)2) nanoparticles (NPs), were introduced to the market for wood protection. Cu NPs may presumably be more effective against wood-destroying fungi than bulk or ionic Cu compounds. In particular, Cu- tolerant wood-destroying fungi may not recognize NPs, which may penetrate into fungal cell walls and membranes and exert their impact. The objective of this study was to assess if MC wood preservative formulations have a superior efficacy against Cu-tolerant wood-destroying fungi due to nano effects than conventional Cu biocides. After screening a range of wood-destroying fungi for their resistance to Cu, we investigated fungal growth of the Cu-tolerant fungus Rhodonia placenta in solid and liquid media and on wood treated with MC azole (MCA). In liquid cultures we evaluated the fungal response to ion, nano and bulk Cu distinguishing the ionic and particle effects by means of the Cu2+ chelator ammonium tetrathiomolybdate (TTM) and measuring fungal biomass, oxalic acid production and laccase activity of R. placenta. Our results do not support the presence of particular nano effects of MCA against R. placenta that would account for an increased antifungal efficacy, but provide evidence that attribute the main effectiveness of MCA to azoles.

  18. Parametric study of plasma-mediated thermoluminescence produced by Al2O3 sub-micron powders

    Science.gov (United States)

    Morávek, T.; Ambrico, P. F.; Ambrico, M.; Schiavulli, L.; Ráheľ, J.

    2017-10-01

    Sub-micron Al2O3 powders with a surface activated by dielectric barrier discharge exhibit improved performance in wet deposition of ceramic layers. In addressing the possible mechanisms responsible for the observed improvement, a comprehensive thermoluminescence (TL) study of plasma-activated powders was performed. TL offers the unique possibility of exploring the population of intrinsic electrons/holes in the charge trapping states. This study covers a wide range of experimental conditions affecting the TL of powders: treatment time, plasma working gas composition, change of discharge configuration, step-annealing of powder, exposure to laser irradiation and aging time. Deconvoluted TL spectra were followed for the changes in their relative contributions. The TL spectra of all tested gases (air, Ar, N2 and 5% He in N2) consist of the well-known main dosimetric peak at 450 K and a peak of similar magnitude at higher temperatures, centered between 700 and 800 K depending on the working gas used. N2 plasma treatment gave rise to a new specific TL peak at 510 K, which exhibited several peculiarities. Initial thermal annealing of Al2O3 powders led to its significant amplification (unlike the other peaks); the peak was insensitive to optical bleaching, and it exhibited slow gradual growth during the long-term aging test. Besides its relevance to the ceramic processing studies, a comprehensive set of data is presented that provides a useful and unconventional view on plasma-mediated material changes.

  19. Neutral-helium-atom diffraction from a micron-scale periodic structure: Photonic-crystal-membrane characterization

    Science.gov (United States)

    Nesse, Torstein; Eder, Sabrina D.; Kaltenbacher, Thomas; Grepstad, Jon Olav; Simonsen, Ingve; Holst, Bodil

    2017-06-01

    Surface scattering of neutral helium beams created by supersonic expansion is an established technique for measuring structural and dynamical properties of surfaces on the atomic scale. Helium beams have also been used in Fraunhofer and Fresnel diffraction experiments. Due to the short wavelength of the atom beams of typically 0.1 nm or less, Fraunhofer diffraction experiments in transmission have so far been limited to grating structures with a period (pitch) of up to 200 nm. However, larger periods are of interest for several applications, for example, for the characterization of photonic-crystal-membrane structures, where the period is typically in the micron to high submicron range. Here we present helium atom diffraction measurements of a photonic-crystal-membrane structure with a two-dimensional square lattice of 100 ×100 circular holes. The nominal period and the hole radius were 490 and 100 nm, respectively. To our knowledge this is the largest period that has been measured with helium diffraction. The helium diffraction measurements are interpreted using a model based on the helium beam characteristics. It is demonstrated how to successfully extract values from the experimental data for the average period of the grating, the hole diameter, and the width of the virtual source used to model the helium beam.

  20. High-Contrast 3.8 Micron Imaging of the Brown Dwarf/Planet-Mass Companion to GJ 758

    Science.gov (United States)

    Currie, Thayne M.; Bailey, Vanessa; Fabrycky, Daniel; Murray-Clay, Ruth; Rodigas, Timothy; Hinz, Phil

    2011-01-01

    We present L' band (3.8 Micron) MMT/Clio high-contrast imaging data for the nearby star GJ 758, which was recently reported by Thalmann et al. (2009) to have one - possibly two - faint comoving companions (GJ 7588 and "C", respectively). GJ 758B is detected in two distinct datasets. Additionally, we report a \\textit{possible} detection of the object identified by Thalmann et al as "GJ 758C" in our more sensitive dataset, though it is likely a residual speckle. However, if it is the same object as that reported by Thalmann et al. it cannot be a companion in a bound orbit. GJ 7588 has a H-L' color redder than nearly all known L-T8 dwarfs. 8ased on comparisons with the COND evolutionary models, GJ 7588 has Te approx. 560 K (+150 K, -90 K) and a mass ranging from approx.10-20 Mj if it is approx.1 Gyr old to approx. 25-40 Mj if it is 8.7 Gyr old. GJ 7588 is likely in a highly eccentric orbit, e approx. 0.73 (+0.12,-0.21), with a semimajor axis of approx. 44 AU (+32 AU, -14 AU). Though GJ 7588 is sometimes discussed within the context of exoplanet direct imaging, its mass is likely greater than the deuterium-burning limit and its formation may resemble that of binary stars rather than that of jovian-mass planets.

  1. Infrared images of reflection nebulae and Orion's bar: Fluorescent molecular hydrogen and the 3.3 micron feature

    International Nuclear Information System (INIS)

    Burton, M.G.; Moorhouse, A.; Brand, P.W.J.L.; Roche, P.F.; Geballe, T.R.

    1989-01-01

    Images were obtained of the (fluorescent) molecular hydrogen 1-0 S(1) line, and of the 3.3 micron emission feature, in Orion's Bar and three reflection nebulae. The emission from these species appears to come from the same spatial locations in all sources observed. This suggests that the 3.3 micron feature is excited by the same energetic UV-photons which cause the molecular hydrogen to fluoresce

  2. Spitzer IRS (8-30 micron) Spectra of Basaltic Asteroids 1459 Magnya and 956 Elisa: Mineralogy and Thermal Properties

    Science.gov (United States)

    Lim, Lucy F.; Emery, J. P.; Moskovitz, N. A.

    2009-01-01

    We report preliminary results from Spitzer IRS (Infrared Spectrograph) spectroscopy of 956 Elisa, 1459 Magnya, and other small basaltic asteroids with the Spitzer IRS. Program targets include members of the dynamical family of the unique large differentiated asteroid 4 Vesta ("Vestoids"), several outer-main-belt basaltic asteroids whose orbits exclude them from originating on 4 Vesta, and the basaltic near-Earth asteroid 4055 Magellan. The preliminary thermal model (STM) fit to the 5--35 micron spectrum of 956 Elisa gives a radius of 5.4 +/- 0.3 km and a subsolar- point temperature of 282.2 +/- 0.5 K. This temperature corresponds to eta approximately equals 1.06 +/- 0.02, which is substantially higher than the eta approximately equals 0.756 characteristic of large main-belt asteroids. Unlike 4 Vesta and other large asteroids, therefore, 956 Elisa has significant thermal inertia in its surface layer. The wavelength of the Christiansen feature (emissivity maximum near 9 micron), the positions and shapes of the narrow maxima (10 micron, 11 micron) within the broad 9--14 micron silicate band, and the 19--20 micron minimum are consistent with features found in the laboratory spectra of diogenites and of low-Ca pyroxenes of similar composition (Wo<5, En50-En75).

  3. Intense beams at the micron level for the Next Linear Collider

    International Nuclear Information System (INIS)

    Seeman, J.T.

    1991-08-01

    High brightness beams with sub-micron dimensions are needed to produce a high luminosity for electron-positron collisions in the Next Linear Collider (NLC). To generate these small beam sizes, a large number of issues dealing with intense beams have to be resolved. Over the past few years many have been successfully addressed but most need experimental verification. Some of these issues are beam dynamics, emittance control, instrumentation, collimation, and beam-beam interactions. Recently, the Stanford Linear Collider (SLC) has proven the viability of linear collider technology and is an excellent test facility for future linear collider studies

  4. Self-navigation of a scanning tunneling microscope tip toward a micron-sized graphene sample.

    Science.gov (United States)

    Li, Guohong; Luican, Adina; Andrei, Eva Y

    2011-07-01

    We demonstrate a simple capacitance-based method to quickly and efficiently locate micron-sized conductive samples, such as graphene flakes, on insulating substrates in a scanning tunneling microscope (STM). By using edge recognition, the method is designed to locate and to identify small features when the STM tip is far above the surface, allowing for crash-free search and navigation. The method can be implemented in any STM environment, even at low temperatures and in strong magnetic field, with minimal or no hardware modifications.

  5. Process optimization and particle engineering of micronized drug powders via milling.

    Science.gov (United States)

    Brunaugh, A; Smyth, H D C

    2017-11-13

    Process control and optimization is a critical aspect of process analytical technology (PAT), quality by design (QbD), and the implementation of continuous manufacturing procedures. While process control and optimization techniques have been utilized in other manufacturing industries for decades, the pharmaceutical industry has only recently begun to adopt these procedures. Micronization, particularly milling, is a generally low-yield, high-energy consumption process that is well suited for a process optimization mindset. This review discusses optimization of the pharmaceutical milling process through design space development, theoretical and empirical modeling, and monitoring of critical quality attributes.

  6. Improving Lifetime of Quasi-CW Laser Diode Arrays for Pumping 2-Micron Solid State Lasers

    Science.gov (United States)

    Amzajerdian, Farzin; Meadows, Byron L.; Baker, Nathaniel R.; Barnes, Bruce W.; Singh, Upendra N.; Kavaya, Michael J.

    2007-01-01

    Operating high power laser diode arrays in long pulse regime of about 1 msec, which is required for pumping 2-micron thulium and holmium-based lasers, greatly limits their useful lifetime. This paper describes performance of laser diode arrays operating in long pulse mode and presents experimental data on the active region temperature and pulse-to-pulse thermal cycling that are the primary cause of their premature failure and rapid degradation. This paper will then offer a viable approach for determining the optimum design and operational parameters leading to the maximum attainable lifetime.

  7. Spectroscopy of the 3.3 ad 3.4 micron dust emission features

    International Nuclear Information System (INIS)

    Geballe, T.R.

    1984-01-01

    Various unidentified infrared features which have been observed in the interstellar grain medium are thought to be emitted or absorbed by molecules within dust grains. In order to correctly identify these molecules accurate high spectral resolution measurements of the features must be obtained. In order to obtain more accurate profiles, the 3.3 and 3.4 micron features have been observed in the planetary nebula NGC 7027 and in the HII region S106, during June and July 1983, using UKIRT and its 7-channel cooled grating spectrometer. (author)

  8. Water vapor measurements in the 0.94 micron absorption band - Calibration, measurements and data applications

    Science.gov (United States)

    Reagan, J. A.; Thome, K.; Herman, B.; Gall, R.

    1987-01-01

    This paper describes methods and presents results for sensing the columnar content of atmospheric water vapor via differential solar transmission measurements in and adjacent to the 0.94-micron water-vapor absorption band. Calibration and measurement techniques are presented for obtaining the water vapor transmission from the radiometer measurements. Models are also presented for retrieving the columnar water vapor amount from the estimated transmission. Example retrievals are presented for radiometer measurements made during the 1986 Arizona Monsoon Season to track temporal variations in columnar water vapor amount.

  9. Investigation of ultra wideband multi-channel dichroic beamsplitters from 0.3 to 52 microns

    Science.gov (United States)

    Zhang, K. Q.; Hunneman, R.; Seeley, J. S.; Hawkins, G. J.

    1990-01-01

    The development of a set of multi-channel dichroics which includes a 6 channel dichroic operating over the wavelength region from 0.3 to 52 microns is described. In order to achieve the optimum performance, the optical constraints of PbTe, Ge, and CdTe coatings in the strongly absorptive region have been determined by use of a new iterative method using normal incidence reflectance measurement of the multilayer together with initial values of energy gap and infinite refractive index for the semiconductor model. The design and manufacture of the dichroics is discussed and the final results are presented.

  10. Experimental study on combustion of biomass micron fuel (BMF) in cyclone furnace

    International Nuclear Information System (INIS)

    Luo Siyi; Xiao Bo; Hu Zhiquan; Liu Shiming; He Maoyun

    2010-01-01

    Based on biomass micron fuel (BMF) with particle size less than 250 μm, a cyclone combustion concept was presented and a lab-scale cyclone furnace was designed to evaluate the feasibility. The influences of equivalence ration (ER) and particle size of BMF on combustion performance were studied, as well as temperature distribution in the combustion chamber. The results show that BMF combustion in the cyclone furnace is reliable, with rational temperature distribution inside furnace hearth, lower CO emission, soot concentration and C content in ashes. As ER being 1.2, the temperature in the chamber is maximized up to 1200 deg. C. Smaller particles results in better combustion performances.

  11. Voltage-Induced Nonlinear Conduction Properties of Epoxy Resin/Micron-Silver Particles Composites

    Science.gov (United States)

    Qu, Zhaoming; Lu, Pin; Yuan, Yang; Wang, Qingguo

    2018-01-01

    The nonlinear conduction properties of epoxy resin (ER)/micron-silver particles (MP) composites were investigated. Under sufficient high intensity applied constant voltage, the obvious nonlinear conduction properties of the samples with volume fraction 25% were found. With increments in the voltage, the conductive switching effect was observed. The nonlinear conduction mechanism of the ER/MP composites under high applied voltages could be attributed to the electrical current conducted via discrete paths of conductive particles induced by the electric field. The test results show that the ER/MP composites with nonlinear conduction properties are of great potential application in electromagnetic protection of electron devices and systems.

  12. Computer Simulation of Global Profiles of Carbon Dioxide Using a Pulsed, 2-Micron, Coherent-Detection, Column-Content DIAL System

    Science.gov (United States)

    Kavaya, Michael J.; Singh, Upendra N.; Koch, Grady J.; Yu, Jirong; Frehlich, Rod G.

    2009-01-01

    We present preliminary results of computer simulations of the error in measuring carbon dioxide mixing ratio profiles from earth orbit. The simulated sensor is a pulsed, 2-micron, coherent-detection lidar alternately operating on at least two wavelengths. The simulated geometry is a nadir viewing lidar measuring the column content signal. Atmospheric absorption is modeled using FASCODE3P software with the HITRAN 2004 absorption line data base. Lidar shot accumulation is employed up to the horizontal resolution limit. Horizontal resolutions of 50, 100, and 200 km are shown. Assuming a 400 km spacecraft orbit, the horizontal resolutions correspond to measurement times of about 7, 14, and 28 s. We simulate laser pulse-pair repetition frequencies from 1 Hz to 100 kHz. The range of shot accumulation is 7 to 2.8 million pulse-pairs. The resultant error is shown as a function of horizontal resolution, laser pulse-pair repetition frequency, and laser pulse energy. The effect of different on and off pulse energies is explored. The results are compared to simulation results of others and to demonstrated 2-micron operating points at NASA Langley.

  13. EXPLORING THE ROLE OF SUB-MICRON-SIZED DUST GRAINS IN THE ATMOSPHERES OF RED L0–L6 DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Hiranaka, Kay; Cruz, Kelle L.; Baldassare, Vivienne F. [Hunter College, Department of Physics and Astronomy, City University of New York, 695 Park Ave, New York, NY 10065 (United States); Douglas, Stephanie T. [American Museum of Natural History, Department of Astrophysics, Central Park West at 79th Street, New York, NY 10024 (United States); Marley, Mark S., E-mail: khiranak@hunter.cuny.edu [NASA Ames Research Center, MS-245-3, Moffett Field, CA 94035 (United States)

    2016-10-20

    We examine the hypothesis that the red near-infrared colors of some L dwarfs could be explained by a “dust haze” of small particles in their upper atmospheres. This dust haze would exist in conjunction with the clouds found in dwarfs with more typical colors. We developed a model that uses Mie theory and the Hansen particle size distributions to reproduce the extinction due to the proposed dust haze. We apply our method to 23 young L dwarfs and 23 red field L dwarfs. We constrain the properties of the dust haze including particle size distribution and column density using Markov Chain Monte Carlo methods. We find that sub-micron-range silicate grains reproduce the observed reddening. Current brown dwarf atmosphere models include large-grain (1–100 μ m) dust clouds but not sub-micron dust grains. Our results provide a strong proof of concept and motivate a combination of large and small dust grains in brown dwarf atmosphere models.

  14. Polarimetric and diffractive evaluation of 3.74 micron pixel-size LCoS in the telecommunications C-band

    Science.gov (United States)

    Wang, Mi; Martínez, Francisco J.; Márquez, Andrés.; Ye, Yabin; Zong, Liangjia; Pascual, Inmaculada; Beléndez, Augusto

    2017-08-01

    Liquid-crystal on Silicon (LCoS) microdisplays are one of the competing technologies to implement wavelength selective switches (WSS) for optical telecommunications. Last generation LCoS, with more than 4 megapixels, have decreased pixel size to values smaller than 4 microns, what increases interpixel cross-talk effects such as fringing-field. We proceed with an experimental evaluation of a 3.74 micron pixel size parallel-aligned LCoS (PA-LCoS) device. At 1550 nm, for the first time we use time-average Stokes polarimetry to measure the retardance and its flicker magnitude as a function of voltage. We also verify the effect of the antireflection coating when we try to characterize the PA-LCoS out of the designed interval for the AR coating. Some preliminary results for the performance for binary gratings are also given, where the decrease of modulation range with the increase in spatial frequency is shown, together with some residual polarization effects.

  15. Imaging of vaporised sub-micron phase change contrast agents with high frame rate ultrasound and optics

    Science.gov (United States)

    Lin, Shengtao; Zhang, Ge; Jamburidze, Akaki; Chee, Melisse; Hau Leow, Chee; Garbin, Valeria; Tang, Meng-Xing

    2018-03-01

    Phase-change ultrasound contrast agent (PCCA), or nanodroplet, shows promise as an alternative to the conventional microbubble agent over a wide range of diagnostic applications. Meanwhile, high-frame-rate (HFR) ultrasound imaging with microbubbles enables unprecedented temporal resolution compared to traditional contrast-enhanced ultrasound imaging. The combination of HFR ultrasound imaging and PCCAs can offer the opportunity to observe and better understand PCCA behaviour after vaporisation captures the fast phenomenon at a high temporal resolution. In this study, we utilised HFR ultrasound at frame rates in the kilohertz range (5-20 kHz) to image native and size-selected PCCA populations immediately after vaporisation in vitro within clinical acoustic parameters. The size-selected PCCAs through filtration are shown to preserve a sub-micron-sized (mean diameter  1 µm) that originate from native PCCA emulsion. The results demonstrate imaging signals with different amplitudes and temporal features compared to that of microbubbles. Compared with the microbubbles, both the B-mode and pulse-inversion (PI) signals from the vaporised PCCA populations were reduced significantly in the first tens of milliseconds, while only the B-mode signals from the PCCAs were recovered during the next 400 ms, suggesting significant changes to the size distribution of the PCCAs after vaporisation. It is also shown that such recovery in signal over time is not evident when using size-selective PCCAs. Furthermore, it was found that signals from the vaporised PCCA populations are affected by the amplitude and frame rate of the HFR ultrasound imaging. Using high-speed optical camera observation (30 kHz), we observed a change in particle size in the vaporised PCCA populations exposed to the HFR ultrasound imaging pulses. These findings can further the understanding of PCCA behaviour under HFR ultrasound imaging.

  16. Investigation of air gasification of micronized coal, mechanically activated using the plasma control of the process

    Directory of Open Access Journals (Sweden)

    Butakov Evgenii

    2017-01-01

    Full Text Available Combination of the processes of coal combustion and gasification into a single technology of mechano-chemical and plasma-chemical activation is of a considerable scientific and technological interest. Enhancement of coal reactivity at their grinding with mechanical activation is associated with an increase in the reaction rate of carbon material, and at plasma-chemical effect, the main is an increase in reactivity of the oxidizing agent caused by the high plasma temperatures of atomic oxygen. The process of gasification was studied on the 1-MW setup with tangential scroll supply of pulverized coal-air mixture and cylindrical reaction chamber. Coal ground by the standard boiler mill is fed to the disintegrator, then, it is sent to the scroll inlet of the burner-reactor with the transport air. Pulverized coal is ignited by the plasmatron of 10-kW power. In experiments on air gasification of micronized coal, carried out at the temperature in the reaction chamber of 1000-1200°C and air excess α = 0.3-1, the data on CO concentration of 11% and H2 concentration of up to 6% were obtained. Air and air-steam gasification of mechanically-activated micronized coals with plasma control was calculated using SigmaFlow software package.

  17. Investigation of air gasification of micronized coal, mechanically activated using the plasma control of the process

    Science.gov (United States)

    Butakov, Evgenii; Burdukov, Anatoly; Chernetskiy, Mikhail; Kuznetsov, Victor

    2017-10-01

    Combination of the processes of coal combustion and gasification into a single technology of mechano-chemical and plasma-chemical activation is of a considerable scientific and technological interest. Enhancement of coal reactivity at their grinding with mechanical activation is associated with an increase in the reaction rate of carbon material, and at plasma-chemical effect, the main is an increase in reactivity of the oxidizing agent caused by the high plasma temperatures of atomic oxygen. The process of gasification was studied on the 1-MW setup with tangential scroll supply of pulverized coal-air mixture and cylindrical reaction chamber. Coal ground by the standard boiler mill is fed to the disintegrator, then, it is sent to the scroll inlet of the burner-reactor with the transport air. Pulverized coal is ignited by the plasmatron of 10-kW power. In experiments on air gasification of micronized coal, carried out at the temperature in the reaction chamber of 1000-1200°C and air excess α = 0.3-1, the data on CO concentration of 11% and H2 concentration of up to 6% were obtained. Air and air-steam gasification of mechanically-activated micronized coals with plasma control was calculated using SigmaFlow software package.

  18. Bactericidal micron-thin sol-gel films prevent pin tract and periprosthetic infection.

    Science.gov (United States)

    Qu, Haibo; Knabe, Christine; Burke, Megan; Radin, Shula; Garino, Jonathan; Schaer, Thomas; Ducheyne, Paul

    2014-08-01

    Orthopedic injuries constitute the majority of wounds sustained by U.S. soldiers in recent conflicts. The risk of infection is considerable with fracture fixation devices. In this pilot study, we examined the use of unique bactericidal micron-thin sol-gel films on fracture fixation devices and their ability to prevent and eradicate infections. External fixation was studied with micron-thin sol-gel coated percutaneous pins releasing triclosan and inserted medially into rabbit tibiae. A total of 11 rabbits received percutaneous pins that were either uncoated or sol-gel/triclosan coated. Internal fracture fixation was also studied using sol-gel coated intramedullary (IM) nails releasing vancomycin in the intramedullary tibiae. Six sheep received IM nails that were coated with a sol-gel film that either contained vancomycin or did not contain vancomycin. All animals were challenged with Staphylococcus aureus around the implant. Animals were euthanized at 1 month postoperative. Rabbits receiving triclosan/sol-gel coated percutaneous pins did not show signs of infection. Uncoated percutaneous pins had a significantly higher infection rate. In the sheep study, there were no radiographic signs of osteomyelitis with vancomycin/sol-gel coated IM nails, in contrast to the observations in the control cohort. Hence, the nanostructured sol-gel controlled release technology offers the promise of a reliable and continuous delivery system of bactericidals from orthopedic devices to prevent and treat infection. Reprint & Copyright © 2014 Association of Military Surgeons of the U.S.

  19. Phobos - Spectrophotometry between 0.3 and 0.6 micron and IR-radiometry

    Science.gov (United States)

    Ksanfomality, L.; Murchie, S.; Britt, D.; Fisher, P.; Duxbury, T.

    1991-01-01

    A 0.3 - 0.6 micron UV-visible spectrophotometer and a 5 - 50 micron radiometer in the KRFM experiment on Phobos 2 measured two groundtracks in the equatorial region of Phobos. Preliminary results indicate that three surface units can be recognized on the basis of differing UV-visible spectral reflectance properties. One of the units is most comparable spectrally to optically darkened mafic material, and a second is comparable either to anhydrous carbonaceous chondrite or to blackened mafic material. Spectral properties of the third unit do not resemble those of known meteorite types. Brightness temperatures measured by the radiometer are consistent with a typical surface thermal inertia of 1 - 3 x 10 to the -3 cal/(sq cm deg s exp 1/2), as suggested by previous investigations, implying a lunar-like regolith texture. At least one area of possibly higher thermal inertia has been tentatively identified, where a large degraded crater is crossed by several grooves. These results indicate significant lateral heterogeneity in the optical and textural properties of Phobos' surface.

  20. Modelling of passive heating for replication of sub-micron patterns in optical disk substrates

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Youngmin; Bae, Jaecheol; Kim, Hongmin; Kang, Shinill [School of Mechanical Engineering, Yonsei University, 134 Shinchon-dong, Seodaemoon-ku, Seoul (Korea, Republic of)

    2004-05-07

    The transcribability of pit or land groove structures in replicating an optical disk substrate greatly affects the performance of a high-density optical disk. However, a solidified layer generated during the polymer filling worsens transcribability because the solidified layer prevents the polymer melt from filling the sub-micron patterns. Therefore, the development of the solidified layer during the filling stage of injection moulding must be delayed. For this delay, passive heating through an insulation layer has been used. In the present study, to examine the development of the solidified layer, delayed by passive heating, the flow of the polymer melt with passive heating was analysed. Passive heating delayed markedly the development of the solidified layer, reduced the viscosity of the polymer melt, and increased the fluidity of the polymer melt in the vicinity of the stamper surface with the sub-micron patterns. As a result, we predict that passive heating can improve the transcribability of an optical disk substrate. To verify our prediction, we fabricated an optical disk substrate by using passive heating of a mould and measured the transcribability of an optical disk substrate.

  1. Modelling of passive heating for replication of sub-micron patterns in optical disk substrates

    International Nuclear Information System (INIS)

    Kim, Youngmin; Bae, Jaecheol; Kim, Hongmin; Kang, Shinill

    2004-01-01

    The transcribability of pit or land groove structures in replicating an optical disk substrate greatly affects the performance of a high-density optical disk. However, a solidified layer generated during the polymer filling worsens transcribability because the solidified layer prevents the polymer melt from filling the sub-micron patterns. Therefore, the development of the solidified layer during the filling stage of injection moulding must be delayed. For this delay, passive heating through an insulation layer has been used. In the present study, to examine the development of the solidified layer, delayed by passive heating, the flow of the polymer melt with passive heating was analysed. Passive heating delayed markedly the development of the solidified layer, reduced the viscosity of the polymer melt, and increased the fluidity of the polymer melt in the vicinity of the stamper surface with the sub-micron patterns. As a result, we predict that passive heating can improve the transcribability of an optical disk substrate. To verify our prediction, we fabricated an optical disk substrate by using passive heating of a mould and measured the transcribability of an optical disk substrate

  2. Polymer Drilling Fluid with Micron-Grade Cenosphere for Deep Coal Seam

    Directory of Open Access Journals (Sweden)

    Peng Xu

    2015-01-01

    Full Text Available Traditional shallow coal seam uses clean water, solid-free system, and foam system as drilling fluid, while they are not suitable for deep coal seam drilling due to mismatching density, insufficient bearing capacity, and poor reservoir protection effect. According to the existing problems of drilling fluid, micron-grade cenosphere with high bearing capacity and ultralow true density is selected as density regulator; it, together with polymer “XC + CMC” and some other auxiliary agents, is jointly used to build micron-grade polymer drilling fluid with cenosphere which is suitable for deep coal seam. Basic performance test shows that the drilling fluid has good rheological property, low filtration loss, good density adjustability, shear thinning, and thixotropy; besides, drilling fluid flow is in line with the power law rheological model. Compared with traditional drilling fluid, dispersion stability basically does not change within 26 h; settlement stability evaluated with two methods only shows a small amount of change; permeability recovery rate evaluated with Qinshui Basin deep coal seam core exceeds 80%. Polymer drilling fluid with cenosphere provides a new thought to solve the problem of drilling fluid density and pressure for deep coal seam drilling and also effectively improves the performance of reservoir protection ability.

  3. Large area sub-micron chemical imaging of magnesium in sea urchin teeth.

    Science.gov (United States)

    Masic, Admir; Weaver, James C

    2015-03-01

    The heterogeneous and site-specific incorporation of inorganic ions can profoundly influence the local mechanical properties of damage tolerant biological composites. Using the sea urchin tooth as a research model, we describe a multi-technique approach to spatially map the distribution of magnesium in this complex multiphase system. Through the combined use of 16-bit backscattered scanning electron microscopy, multi-channel energy dispersive spectroscopy elemental mapping, and diffraction-limited confocal Raman spectroscopy, we demonstrate a new set of high throughput, multi-spectral, high resolution methods for the large scale characterization of mineralized biological materials. In addition, instrument hardware and data collection protocols can be modified such that several of these measurements can be performed on irregularly shaped samples with complex surface geometries and without the need for extensive sample preparation. Using these approaches, in conjunction with whole animal micro-computed tomography studies, we have been able to spatially resolve micron and sub-micron structural features across macroscopic length scales on entire urchin tooth cross-sections and correlate these complex morphological features with local variability in elemental composition. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Infrared spectroscopy of four carbon stars with 9.8 micron emission from silicate grains

    International Nuclear Information System (INIS)

    Lambert, D.L.; Smith, V.V.; Hinkle, K.H.

    1990-01-01

    High-resolution K band and low resolution 4 micron spectra were obtained for four carbon stars showing IR emission by silicate grains. The results of the analysis of the K band spectra show that they are J-type stars. These results, together with published spectral classifications, show that all known carbon stars with a silicate emission feature are J-type stars. The 4 micron spectra are very similar to the spectra of classical J-type carbon stars, and do not show SiO bands that might come from a M giant companion. A binary model with a luminous M giant companion as a source of the silicate grain is rejected. It is proposed that the silicate grains formed from gas ejecta at or before the He-core flash, and that the flash initiates severe mixing, leading to the star's conversion to a J-type carbon star. The ejecta are stored in an accretion disk around a low mass unevolved companion. If it can be shown that the hypothesized accretion disk is stable and may be heated adequately, this binary model appears to account for these peculiar carbon stars. 41 refs

  5. Tonopah Test Range - Index

    Science.gov (United States)

    Capabilities Test Operations Center Test Director Range Control Track Control Communications Tracking Radars Photos Header Facebook Twitter YouTube Flickr RSS Tonopah Test Range Top TTR_TOC Tonopah is the testing range of choice for all national security missions. Tonopah Test Range (TTR) provides research and

  6. Comparison of directly compressed vitamin B12 tablets prepared from micronized rotary-spun microfibers and cast films.

    Science.gov (United States)

    Sebe, István; Bodai, Zsolt; Eke, Zsuzsanna; Kállai-Szabó, Barnabás; Szabó, Péter; Zelkó, Romána

    2015-01-01

    Fiber-based dosage forms are potential alternatives of conventional dosage forms from the point of the improved extent and rate of drug dissolution. Rotary-spun polymer fibers and cast films were prepared and micronized in order to direct compress after homogenization with tabletting excipients. Particle size distribution of powder mixtures of micronized fibers and films homogenized with tabletting excipients were determined by laser scattering particle size distribution analyzer. Powder rheological behavior of the mixtures containing micronized fibers and cast films was also compared. Positron annihilation lifetime spectroscopy was applied for the microstructural characterization of micronized fibers and films. The water-soluble vitamin B12 release from the compressed tablets was determined. It was confirmed that the rotary spinning method resulted in homogeneous supramolecularly ordered powder mixture, which was successfully compressed after homogenization with conventional tabletting excipients. The obtained directly compressed tablets showed uniform drug release of low variations. The results highlight the novel application of micronized rotary-spun fibers as intermediate for further processing reserving the original favorable powder characteristics of fibrous systems.

  7. Dry coating of micronized API powders for improved dissolution of directly compacted tablets with high drug loading.

    Science.gov (United States)

    Han, Xi; Ghoroi, Chinmay; Davé, Rajesh

    2013-02-14

    Motivated by our recent study showing improved flow and dissolution rate of the active pharmaceutical ingredient (API) powders (20 μm) produced via simultaneous micronization and surface modification through continuous fluid energy milling (FEM) process, the performance of blends and direct compacted tablets with high drug loading is examined. Performance of 50 μm API powders dry coated without micronization is also considered for comparison. Blends of micronized, non-micronized, dry coated or uncoated API powders at 30, 60 and 70% drug loading, are examined. The results show that the blends containing dry coated API powders, even micronized ones, have excellent flowability and high bulk density compared to the blends containing uncoated API, which are required for direct compaction. As the drug loading increases, the difference between dry coated and uncoated blends is more pronounced, as seen in the proposed bulk density-FFC phase map. Dry coating led to improved tablet compactibility profiles, corresponding with the improvements in blend compressibility. The most significant advantage is in tablet dissolution where for all drug loadings, the t(80) for the tablets with dry coated APIs was well under 5 min, indicating that this approach can produce nearly instant release direct compacted tablets at high drug loadings. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Standing spin-wave mode structure and linewidth in partially disordered hexagonal arrays of perpendicularly magnetized sub-micron Permalloy discs

    International Nuclear Information System (INIS)

    Ross, N.; Kostylev, M.; Stamps, R. L.

    2014-01-01

    Standing spin wave mode frequencies and linewidths in partially disordered perpendicular magnetized arrays of sub-micron Permalloy discs are measured using broadband ferromagnetic resonance and compared to analytical results from a single, isolated disc. The measured mode structure qualitatively reproduces the structure expected from the theory. Fitted demagnetizing parameters decrease with increasing array disorder. The frequency difference between the first and second radial modes is found to be higher in the measured array systems than predicted by theory for an isolated disc. The relative frequencies between successive spin wave modes are unaffected by reduction of the long-range ordering of discs in the array. An increase in standing spin wave resonance linewidth at low applied magnetic fields is observed and grows more severe with increased array disorder.

  9. Radical polymerization of capillary bridges between micron-sized particles in liquid bulk phase as a low temperature route to produce porous solid materials.

    Science.gov (United States)

    Hauf, Katharina; Riazi, Kamran; Willenbacher, Norbert; Koos, Erin

    2017-10-01

    We present a generic and versatile low temperature route to produce macro-porous bodies with porosity and pore size distribution that are adjustable in a wide range. Capillary suspensions, where the minor fluid is a monomer, are used as pre-cursors. The monomer is preferentially located between the particles, creating capillary bridges, resulting in a strong, percolating network. Thermally induced polymerization of these bridges at temperatures below 100 °C for less than 5 hours and subsequent removal of the bulk fluid yields macroscopic, self-supporting solid bodies with high porosity. This process is demonstrated using methylmethacrylate and hydroxyethylmethacrlyate with glass particles as a model system. The produced PMMA had a molecular weight of about 500.000 g/mol and dispersity about three. Application specific porous bodies, including PMMA particles connected by PMMA bridges, micron-sized capsules containing phase change material with high inner surface, and porous graphite membranes with high electrical conductivity, are also shown.

  10. Atmospheric Error Correction of the Laser Beam Ranging

    Directory of Open Access Journals (Sweden)

    J. Saydi

    2014-01-01

    Full Text Available Atmospheric models based on surface measurements of pressure, temperature, and relative humidity have been used to increase the laser ranging accuracy by ray tracing. Atmospheric refraction can cause significant errors in laser ranging systems. Through the present research, the atmospheric effects on the laser beam were investigated by using the principles of laser ranging. Atmospheric correction was calculated for 0.532, 1.3, and 10.6 micron wavelengths through the weather conditions of Tehran, Isfahan, and Bushehr in Iran since March 2012 to March 2013. Through the present research the atmospheric correction was computed for meteorological data in base of monthly mean. Of course, the meteorological data were received from meteorological stations in Tehran, Isfahan, and Bushehr. Atmospheric correction was calculated for 11, 100, and 200 kilometers laser beam propagations under 30°, 60°, and 90° rising angles for each propagation. The results of the study showed that in the same months and beam emission angles, the atmospheric correction was most accurate for 10.6 micron wavelength. The laser ranging error was decreased by increasing the laser emission angle. The atmospheric correction with two Marini-Murray and Mendes-Pavlis models for 0.532 nm was compared.

  11. Variations in the Peak Position of the 6.2 micron Interstellar Emission Feature: A Tracer of N in the Interstellar Polycyclic Aromatic Hydrocarbon Population

    Science.gov (United States)

    Hudgins, Douglas M.; Bauschlicher, Charles W.; Allamandola, L. J.

    2005-01-01

    more nitrogen atoms within the interior of the carbon skeleton of a PAH cation induces a significant blueshift in the position of the dominant CC stretching feature of these compounds that is suf6cient to account for the position of the interstellar bands. Subsequent studies of the effects of substitution by other heteroatoms (O and Si), metal ion complexation (Fe(+), Mg(+), and Mg(2+)), and molecular symmetry variation-all of which fail to reproduce the blueshift observed in the PANH cations-indicate that N appears to be unique in its ability to accommodate the position of the interstellar 6.2 micron bands while simultaneously satisfying the other constraints of the astrophysical problem. This result implies that the peak position of the interstellar feature near 6.2 micron traces the degree of nitrogen substitution in the population, that most of the PAHs responsible for the interstellar IR emission features incorporate nitrogen within their aromatic networks, and that a lower limit of 1%-2% of the cosmic nitrogen is sequestered within the interstellar PAH population. Finally, in view of the ubiquity and abundance of interstellar PAHs and the permanent dipoles and distinctive electronic structures of these nitrogen-substituted variants, this work impacts a wide range of observational phenomena outside of the infrared region of the spectrum including the forest of unidentified molecular rotational features and the anomalous Galactic foreground emission in the microwave, and the diffuse interstellar bands (DIBs) and other structure in the interstellar extinction curve in the ulhviolet/visible. These astrophysical ramifications are discussed, and the dipole moments and rotational constants are tabulated to facilitate further investigations of the astrophysical role of nitrogen-substituted aromatic compounds.

  12. Contact angle goniometry on single micron-scale fibers for composites

    DEFF Research Database (Denmark)

    Hansen, Daniel; Bomholt, Niels; Jeppesen, Jonas Camillus

    2017-01-01

    Probing the wetting properties of microfibers by polymer resins is of significant interest for the rational design of composite materials. Here, we demonstrate the measurement of contact angles on wetted micron scale fibers by imaging the fluid meniscus with telecentric optics at a spatial...... resolution of 4 um followed by automated image analysis. The meniscus is described as a catenary in the zero gravity approximation and by fitting this to the measured profile, the contact angle is obtained at the intersection between the fluid and the fiber surface. The method is validated by measuring...... agreement between con-tact angles for the PMMA/H2O system for fibers with diameters 20–800 um and for sessile drops. The ability of the method to discriminate contact angles for a series of commercial glass fibers against epoxy resin is successfully demonstrated. AFM imaging shows that the surface...

  13. Evaluating Nighttime CALIOP 0.532 micron Aerosol Optical Depth and Extinction Coefficient Retrievals

    Science.gov (United States)

    Campbell, J. R.; Tackett, J. L.; Reid, J. S.; Zhang, J.; Curtis, C. A.; Hyer, E. J.; Sessions, W. R.; Westphal, D. L.; Prospero, J. M.; Welton, E. J.; hide

    2012-01-01

    NASA Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) Version 3.01 5-km nighttime 0.532 micron aerosol optical depth (AOD) datasets from 2007 are screened, averaged and evaluated at 1 deg X 1 deg resolution versus corresponding/co-incident 0.550 micron AOD derived using the US Navy Aerosol Analysis and Prediction System (NAAPS), featuring two-dimensional variational assimilation of quality-assured NASA Moderate Resolution Imaging Spectroradiometer (MODIS) and Multi-angle Imaging Spectroradiometer (MISR) AOD. In the absence of sunlight, since passive radiometric AOD retrievals rely overwhelmingly on scattered radiances, the model represents one of the few practical global estimates available from which to attempt such a validation. Daytime comparisons, though, provide useful context. Regional-mean CALIOP vertical profiles of night/day 0.532 micron extinction coefficient are compared with 0.523/0.532 micron ground-based lidar measurements to investigate representativeness and diurnal variability. In this analysis, mean nighttime CALIOP AOD are mostly lower than daytime (0.121 vs. 0.126 for all aggregated data points, and 0.099 vs. 0.102 when averaged globally per normalised 1 deg. X 1 deg. bin), though the relationship is reversed over land and coastal regions when the data are averaged per normalised bin (0.134/0.108 vs. 0140/0.112, respectively). Offsets assessed within single bins alone approach +/- 20 %. CALIOP AOD, both day and night, are higher than NAAPS over land (0.137 vs. 0.124) and equal over water (0.082 vs. 0.083) when averaged globally per normalised bin. However, for all data points inclusive, NAAPS exceeds CALIOP over land, coast and ocean, both day and night. Again, differences assessed within single bins approach 50% in extreme cases. Correlation between CALIOP and NAAPS AOD is comparable during both day and night. Higher correlation is found nearest the equator, both as a function of sample size and relative signal magnitudes inherent at

  14. Modified Dirac Hamiltonian for efficient quantum mechanical simulations of micron sized devices

    Energy Technology Data Exchange (ETDEWEB)

    Habib, K. M. Masum, E-mail: masum.habib@virginia.edu; Ghosh, Avik W. [Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States); Sajjad, Redwan N. [Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2016-03-14

    Representing massless Dirac fermions on a spatial lattice poses a potential challenge known as the Fermion Doubling problem. Addition of a quadratic term to the Dirac Hamiltonian provides a possible way to circumvent this problem. We show that the modified Hamiltonian with the additional term results in a very small Hamiltonian matrix when discretized on a real space square lattice. The resulting Hamiltonian matrix is considerably more efficient for numerical simulations without sacrificing on accuracy and is several orders of magnitude faster than the atomistic tight binding model. Using this Hamiltonian and the non-equilibrium Green's function formalism, we show several transport phenomena in graphene, such as magnetic focusing, chiral tunneling in the ballistic limit, and conductivity in the diffusive limit in micron sized graphene devices. The modified Hamiltonian can be used for any system with massless Dirac fermions such as Topological Insulators, opening up a simulation domain that is not readily accessible otherwise.

  15. Intradermal vaccination using the novel microneedle device MicronJet600: Past, present, and future.

    Science.gov (United States)

    Levin, Yotam; Kochba, Efrat; Hung, Ivan; Kenney, Richard

    2015-01-01

    Intradermal immunization has become a forefront of vaccine improvement, both scientifically and commercially. Newer technologies are being developed to address the need to reduce the dose required for vaccination and to improve the reliability and ease of injection, which have been major hurdles in expanding the number of approved vaccines using this route of administration. In this review, 7 y of clinical experience with a novel intradermal delivery device, the MicronJet600, which is a registered hollow microneedle that simplifies the delivery of liquid vaccines, are summarized. This device has demonstrated both significant dose-sparing and superior immunogenicity in various vaccine categories, as well as in diverse subject populations and age groups. These studies have shown that intradermal delivery using this device is safe, effective, and preferred by the subjects. Comparison with other intradermal devices and potential new applications for intradermal delivery that could be pursued in the future are also discussed.

  16. Effects of hydrodynamic interaction on random adhesive loose packings of micron-sized particles

    Directory of Open Access Journals (Sweden)

    Liu Wenwei

    2017-01-01

    Full Text Available Random loose packings of monodisperse spherical micron-sized particles under a uniform flow field are investigated via an adhesive discrete-element method with the two-way coupling between the particles and the fluid. Characterized by a dimensionless adhesion parameter, the packing fraction follows the similar law to that without fluid, but results in larger values due to the hydrodynamic compression. The total pressure drop through the packed bed shows a critical behaviour at the packing fraction of ϕ ≈ 0.22 in the present study. The normalized permeability of the packed bed for different parameters increases with the increase of porosities and is also in consistent with the Kozeny-Carman equation.

  17. Low-phonon-frequency chalcogenide crystalline hosts for rare earth lasers operating beyond three microns

    Science.gov (United States)

    Payne, Stephen A.; Page, Ralph H.; Schaffers, Kathleen I.; Nostrand, Michael C.; Krupke, William F.; Schunemann, Peter G.

    2000-01-01

    The invention comprises a RE-doped MA.sub.2 X.sub.4 crystalline gain medium, where M includes a divalent ion such as Mg, Ca, Sr, Ba, Pb, Eu, or Yb; A is selected from trivalent ions including Al, Ga, and In; X is one of the chalcogenide ions S, Se, and Te; and RE represents the trivalent rare earth ions. The MA.sub.2 X.sub.4 gain medium can be employed in a laser oscillator or a laser amplifier. Possible pump sources include diode lasers, as well as other laser pump sources. The laser wavelengths generated are greater than 3 microns, as becomes possible because of the low phonon frequency of this host medium. The invention may be used to seed optical devices such as optical parametric oscillators and other lasers.

  18. Fabrication of sub-micron whole waffer SIS tunnel junctions for millimeter wave mixers

    International Nuclear Information System (INIS)

    Huq, S.E.; Blamire, M.G.; Evetts, J.E.; Hasko, D.G.; Ahmed, H.

    1991-01-01

    As a part of a programme for the development of a space-qualified sub-mm-wave mixer operating in the region of one terahertz we have been developing the processes required for the fabrication of submicron whole wafer tunnel junctions. Using the self-aligned whole-wafer process (SAWW) with electron beam lithography we have been able to reliably fabricate high quality (V m > 20 mV) submicron tunnel junctions from whole wafer Nb/AlO x /Nb structures. In particular we show that the junction quality is independent of size down to 0.3 μm 2 junction area. The problems of film stress, anodization, registration for electron beam lithography and lift-off, which limit the yield of good quality sub-micron scale junctions are addressed in this paper

  19. Electromechanical characterization of individual micron-sized metal coated polymer particles

    Energy Technology Data Exchange (ETDEWEB)

    Bazilchuk, Molly; Kristiansen, Helge [Department of Structural Engineering, Norwegian University of Science and Technology, Trondheim 7491 (Norway); Conpart AS, Skjetten 2013 (Norway); Pettersen, Sigurd Rolland; Zhang, Zhiliang; He, Jianying, E-mail: jianying.he@ntnu.no [Department of Structural Engineering, Norwegian University of Science and Technology, Trondheim 7491 (Norway)

    2016-06-28

    Micron-sized polymer particles with nanoscale metal coatings are essential in conductive adhesives for electronics assembly. The particles function in a compressed state in the adhesives. The link between mechanical properties and electrical conductivity is thus of the utmost importance in the formation of good electrical contact. A custom flat punch set-up based on nanoindentation has been developed to simultaneously deform and electrically probe individual particles. The set-up has a sufficiently low internal resistance to allow the measurement of sub-Ohm contact resistances. Additionally, the set-up can capture mechanical failure of the particles. Combining this data yields a fundamental understanding of contact behavior. We demonstrate that this method can clearly distinguish between particles of different sizes, with different thicknesses of metal coating, and different metallization schemes. The technique provides good repeatability and physical insight into the behavior of these particles that can guide adhesive design and the optimization of bonding processes.

  20. Electromechanical characterization of individual micron-sized metal coated polymer particles

    International Nuclear Information System (INIS)

    Bazilchuk, Molly; Kristiansen, Helge; Pettersen, Sigurd Rolland; Zhang, Zhiliang; He, Jianying

    2016-01-01

    Micron-sized polymer particles with nanoscale metal coatings are essential in conductive adhesives for electronics assembly. The particles function in a compressed state in the adhesives. The link between mechanical properties and electrical conductivity is thus of the utmost importance in the formation of good electrical contact. A custom flat punch set-up based on nanoindentation has been developed to simultaneously deform and electrically probe individual particles. The set-up has a sufficiently low internal resistance to allow the measurement of sub-Ohm contact resistances. Additionally, the set-up can capture mechanical failure of the particles. Combining this data yields a fundamental understanding of contact behavior. We demonstrate that this method can clearly distinguish between particles of different sizes, with different thicknesses of metal coating, and different metallization schemes. The technique provides good repeatability and physical insight into the behavior of these particles that can guide adhesive design and the optimization of bonding processes.

  1. Laboratory Measurements of Optical Properties of Micron Size Individual Dust Grains

    Science.gov (United States)

    Abbas, M. M.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; Witherow, W. K.; Camata, R.; Gerakines, P.

    2003-01-01

    A laboratory program is being developed at NASA Marshall Space Flight Center for experimental determination of the optical and physical properties individual dust grains in simulated astrophysical environments. The experimental setup is based on an electrodynamic balance that permits levitation of single 0.1 - 10 micron radii dust grains in a cavity evacuated to pressures of approx. 10(exp -6) torr. The experimental apparatus is equipped with observational ports for measurements in the UV, visible, and infrared spectral regions. A cryogenic facility for cooling the particles to temperature of approx. 10-50K is being installed. The current and the planned measurements include: dust charging processes, photoelectric emissions and yields with UV irradiation, radiation pressure measurements, infrared absorption and scattering properties, and condensation processes, involving the analogs of cosmic dust grains. Selected results based on photoemissions, radiation pressure, and other laboratory measurements will be presented.

  2. Chemical composition and effects of micronized corn bran on iron bioavailability in rats

    Directory of Open Access Journals (Sweden)

    Gilson Irineu de Oliveira Junior

    2014-09-01

    Full Text Available The degermination of corn grains by dry milling generates 5% of a fibrous residue. After segregation and micronization, corn bran becomes a potential source of dietary fiber consumption. However, its effect on iron bioavailability has not been reported in the literature. The objective of the present study was to determine the nutritional composition of corn bran and its effects on iron bioavailability using the hemoglobin depletion-repletion method in rats. The animals were divided into two groups: cellulose (control and corn bran (experimental. The bran had high content of total dietary fiber, especially the insoluble fraction, and low phytate content. Hemoglobin uptake did not differ between groups at the end of repletion period, and the iron relative bioavailability value of the corn bran diet was 104% in comparison to that of the control group. The product evaluated proved to be a potential source of dietary fiber and it showed no negative effects on iron bioavailability.

  3. Experimental study of micron size droplets in a two phase flow in a converging - diverging nozzle

    International Nuclear Information System (INIS)

    Jurski, Kristine

    1997-01-01

    The fluid present in a pressurized vessel in normal operation is generally a mono-phase one. In accidental regime (a breach for example), a two-phase (ring and/or dispersed) flow appears and the flow is submitted to large accelerations when passing through the breach, and is then dispersed in the atmosphere. This research thesis reports an experimental simulation of an accident by generating, through a discharge of an upstream vessel into a downstream vessel, a strongly accelerated gaseous-liquid two-phase flow, with an essentially dispersed configuration in a convergent-divergent nozzle. In order to characterize the speed and diameter evolution of the dispersed liquid phase, the author reports a comparative study of two different liquid aerosols: micron-size droplets of di-octyl phthalate (DOP) of known concentration and diameter, and water droplets obtained by heterogeneous spontaneous condensation [fr

  4. Sub-micron silicon nitride waveguide fabrication using conventional optical lithography.

    Science.gov (United States)

    Huang, Yuewang; Zhao, Qiancheng; Kamyab, Lobna; Rostami, Ali; Capolino, Filippo; Boyraz, Ozdal

    2015-03-09

    We demonstrate a novel technique to fabricate sub-micron silicon nitride waveguides using conventional contact lithography with MEMS-grade photomasks. Potassium hydroxide anisotropic etching of silicon facilitates line reduction and roughness smoothing and is key to the technique. The fabricated waveguides is measured to have a propagation loss of 0.8dB/cm and nonlinear coefficient of γ = 0.3/W/m. A low anomalous dispersion of <100ps/nm/km is also predicted. This type of waveguide is highly suitable for nonlinear optics. The channels naturally formed on top of the waveguide also make it promising for plasmonics and quantum efficiency enhancement in sensing applications.

  5. Modified Dirac Hamiltonian for efficient quantum mechanical simulations of micron sized devices

    International Nuclear Information System (INIS)

    Habib, K. M. Masum; Ghosh, Avik W.; Sajjad, Redwan N.

    2016-01-01

    Representing massless Dirac fermions on a spatial lattice poses a potential challenge known as the Fermion Doubling problem. Addition of a quadratic term to the Dirac Hamiltonian provides a possible way to circumvent this problem. We show that the modified Hamiltonian with the additional term results in a very small Hamiltonian matrix when discretized on a real space square lattice. The resulting Hamiltonian matrix is considerably more efficient for numerical simulations without sacrificing on accuracy and is several orders of magnitude faster than the atomistic tight binding model. Using this Hamiltonian and the non-equilibrium Green's function formalism, we show several transport phenomena in graphene, such as magnetic focusing, chiral tunneling in the ballistic limit, and conductivity in the diffusive limit in micron sized graphene devices. The modified Hamiltonian can be used for any system with massless Dirac fermions such as Topological Insulators, opening up a simulation domain that is not readily accessible otherwise.

  6. Design consideration for dc SQUIDs fabricated in deep sub-micron technology

    International Nuclear Information System (INIS)

    Ketchen, M.B.

    1991-01-01

    Design rules for scaling dc SQUID junctions to optimize SQUID performance have been well known for over a decade, and verified down to the sub-micron regime. Practical SQUIDs having well coupled input coils of usable inductance have generally been fabricated at the 2-5 μm level of lithography. Other technologies, silicon in particular, are now routinely practiced at the 0.5 μm level of lithography with impressive demonstrations at the 0.1-0.25 μm level not uncommon. In this paper the implications of applying such fabrication capability to advance dc SQUID technology are explored. In particular the issues of scaling practical dc SQUIDs down to the 0.1-0.25 μm regime are examined, using as a prototype design the basic washer SQUID with a spiral input coil

  7. Water vapor absorption coefficients in the 8-13-micron spectral region - A critical review

    Science.gov (United States)

    Grant, William B.

    1990-01-01

    Measurements of water vapor absorption coefficients in the thermal IR atmospheric window (8-13 microns) during the past 20 years obtained by a variety of techniques are reviewed for consistency and compared with computed values based on the AFGL spectral data tapes. The methods of data collection considered were atmospheric long path absorption with a CO2 laser or a broadband source and filters, a White cell and a CO2 laser or a broadband source and a spectrometer, and a spectrophone with a CO2 laser. Advantages and disadvantages of each measurement approach are given as a guide to further research. Continuum absorption has apparently been measured accurately to about the 5-10 percent level in five of the measurements reported.

  8. Optoacoustic measurements of water vapor absorption at selected CO laser wavelengths in the 5-micron region

    Science.gov (United States)

    Menzies, R. T.; Shumate, M. S.

    1976-01-01

    Measurements of water vapor absorption were taken with a resonant optoacoustical detector (cylindrical pyrex detector, two BaF2 windows fitted into end plates at slight tilt to suppress Fabry-Perot resonances), for lack of confidence in existing spectral tabular data for the 5-7 micron region, as line shapes in the wing regions of water vapor lines are difficult to characterize. The measurements are required for air pollution studies using a CO laser, to find the differential absorption at the wavelengths in question due to atmospheric constituents other than water vapor. The design and performance of the optoacoustical detector are presented. Effects of absorption by ambient NO are considered, and the fixed-frequency discretely tunable CO laser is found suitable for monitoring urban NO concentrations in a fairly dry climate, using the water vapor absorption data obtained in the study.

  9. Toxic effects and bioaccumulation of nano-, micron- and ionic-Ag in the polychaete, Nereis diversicolor

    DEFF Research Database (Denmark)

    cong, Yi; Banta, Gary Thomas; Selck, Henriette

    There is increasing concern about the toxicities and potential risks, both still poorly understood, of silver nanoparticles for the aquatic environment after their eventual release. In this study, the toxicities of nano (AgNO3)-Ag on the sediment......-dwelling polychaete, Nereis diversicolor, were compared after 10 d of sediment exposure, using growth, DNA damage (comet assay) and bioaccumulation as endpoints. The nominal concentrations used in all exposure scenarios were 0, 1, 5, 10, 25, 50 µg Ag/g dry weight (dw) sediment. Our results show that Ag is able...... to cause DNA damage in Nereis coelomocytes and that this effect is both concentration- and Ag form-related. There were significantly greater genotoxity (higher tail moment and tail DNA intensities) at 25 and 50 µg/g dw in nano- and micron-Ag treated groups and at 50 µg/g dw in ionic-Ag treated group...

  10. Toxic effects and bioaccumulation of nano-, micron-, and ionic-Ag on the polychaete, Nereis diversicolor

    DEFF Research Database (Denmark)

    Cong, Yi; Banta, Gary Thomas; Selck, Henriette

    2011-01-01

    There is increasing concern about the toxicities and potential risks, both still poorly understood, of silver nanoparticles for the aquatic environment after their eventual release via wastewater discharges. In this study, the toxicities of sediment associated nano (...)- and ionic (AgNO3)- Ag on the sediment-dwelling polychaete, Nereis diversicolor, were compared after 10 days of sediment exposure, using survival, DNA damage (comet assay) and bioaccumulation as endpoints. The nominal concentrations used in all exposure scenarios were 0, 1, 5, 10, 25, and 50 g Ag/g dry...... weight (dw) sediment. Our results showed that Ag was able to cause DNA damage in Nereis coelomocytes, and that this effect was both concentration- and Ag form-related. There was significantly greater genotoxicity (higher tail moment and tail DNA intensities) at 25 and 50 g/g dw in nano- and micron-Ag...

  11. Radiation-induced mucositis: a randomized clinical trial of micronized sucralfate versus salt & soda mouthwashes.

    Science.gov (United States)

    Dodd, Marylin J; Miaskowski, Christine; Greenspan, Deborah; MacPhail, Laurie; Shih, Ai-Shan; Shiba, Gayle; Facione, Noreen; Paul, Steven M

    2003-01-01

    Oral mucositis is one of the major toxicities caused by radiation therapy (RT) treatments to the head and neck. The clinical efficacy of sucralfate (Carafate R) mouthwash for head and neck cancer patients (HNC) is not consistent across studies. In this study, it was hypothesized that if the particles in the original sucralfate suspension were micronized (i.e., < or = 25 microns) then the coating action of the mouthwash in the oral cavity would be enhanced. The purpose of this pilot study was to compare the efficacy of micronized sucralfate (Carafate R) mouthwash and salt & soda mouthwash in terms of the severity of the mucositis, the severity of mucositis-related pain, and the time required to heal RT-induced mucositis in patients with HNC. Severe mucositis and related pain can interfere with the ingestion of food and fluids, so patients' body weights were measured as well. All patients in this randomized clinical trial carried out a systematic oral hygiene protocol called the PRO-SELF: Mouth Aware (PSMA) Program. Patients who developed RT-induced mucositis anytime during their course of RT were randomized to one of the two mouthwashes and followed to the completion of RT and at one month following RT. Two referral sites were used for the study. Repeated measures occurred with the following instruments/variables: MacDibbs Mouth Assessment and weight. Demographic, disease, and cancer treatment information was also obtained. Thirty patients successfully completed the study. The typical participant was male (70%), married/partnered (70%), White (63%), not working or retired (73%), and had an average of 14.5 years of education (SD = 3.7). T-tests and Chi-square analyses with an alpha set at 0.05 were used to compare differences between the two mouthwashes. No significant differences were found in the number of days to onset of mucositis (i.e., 16 +/- 8.4 days). When patients had their worst MacDibbs score, (i.e., the most severe mucositis), there were no significant

  12. The influence of different levels of micronized insoluble fiber on broiler performance and litter moisture.

    Science.gov (United States)

    Rezaei, M; Karimi Torshizi, M A; Rouzbehan, Y

    2011-09-01

    The effects of different levels of micronized insoluble fiber (MIF) on broiler performance and litter moisture were assessed in 320 one-day-old male broilers (Ross 308). Feed was supplemented with 0, 0.3, 0.4, or 0.5% MIF during both the starter (1 to 14 d) and grower (15 to 42 d) periods. Supplementation of MIF was associated with dose dependent increases in daily BW gain and feed conversion ratio throughout the experimental period (P 0.05). Supplementation of MIF resulted in dose dependent increases in the ileal villus height:crypt depth ratio and number of goblet cells (P litter moisture beginning during the third week (P broiler performance, intestinal morphology, and litter moisture.

  13. Steady-state numerical modeling of size effects in micron scale wire drawing

    DEFF Research Database (Denmark)

    Juul, Kristian Jørgensen; Nielsen, Kim Lau; Niordson, Christian Frithiof

    2017-01-01

    Wire drawing processes at the micron scale have received increased interest as micro wires are increasingly required in electrical components. It is well-established that size effects due to large strain gradient effects play an important role at this scale and the present study aims to quantify...... these effects for the wire drawing process. Focus will be on investigating the impact of size effects on the most favourable tool geometry (in terms of minimizing the drawing force) for various conditions between the wire/tool interface. The numerical analysis is based on a steady-state framework that enables...... convergence without dealing with the transient regime, but still fully accounts for the history dependence as-well as the elastic unloading. Thus, it forms the basis for a comprehensive parameter study. During the deformation process in wire drawing, large plastic strain gradients evolve in the contact region...

  14. Electrical four-point probing of spherical metallic thin films coated onto micron sized polymer particles

    Energy Technology Data Exchange (ETDEWEB)

    Pettersen, Sigurd R., E-mail: sigurd.r.pettersen@ntnu.no, E-mail: jianying.he@ntnu.no; Stokkeland, August Emil; Zhang, Zhiliang; He, Jianying, E-mail: sigurd.r.pettersen@ntnu.no, E-mail: jianying.he@ntnu.no [NTNU Nanomechanical Lab, Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim (Norway); Kristiansen, Helge [NTNU Nanomechanical Lab, Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim (Norway); Conpart AS, Dragonveien 54, NO-2013 Skjetten (Norway); Njagi, John; Goia, Dan V. [Center for Advanced Materials Processing, Clarkson University, Potsdam, New York 13699-5814 (United States); Redford, Keith [Conpart AS, Dragonveien 54, NO-2013 Skjetten (Norway)

    2016-07-25

    Micron-sized metal-coated polymer spheres are frequently used as filler particles in conductive composites for electronic interconnects. However, the intrinsic electrical resistivity of the spherical thin films has not been attainable due to deficiency in methods that eliminate the effect of contact resistance. In this work, a four-point probing method using vacuum compatible piezo-actuated micro robots was developed to directly investigate the electric properties of individual silver-coated spheres under real-time observation in a scanning electron microscope. Poly(methyl methacrylate) spheres with a diameter of 30 μm and four different film thicknesses (270 nm, 150 nm, 100 nm, and 60 nm) were investigated. By multiplying the experimental results with geometrical correction factors obtained using finite element models, the resistivities of the thin films were estimated for the four thicknesses. These were higher than the resistivity of bulk silver.

  15. 10 micron Spectroscopy with OSCIR: Silicate Minerology and The Origins of Disks & Protoplanetesimals

    Science.gov (United States)

    Woodward, Chick; Wooden, Diane; Harker, David; Rodgers, Bernadette; Butner, Harold

    1999-02-01

    The analysis of the silicate mineralogy of pre-main sequence Herbig Ae/Be (HeAeBe) stars to main sequence (beta)-Pic systems, probes the chemical and physical conditions in these potentially planet-forming environments, the condensation of dust from the gas-disk, and the aggregation and accretion of these solids into planetesimals and comets. We propose to obtain 10 micron OSCIR spectra of a selected list of HeAeBe and (beta)-Pic like systems. Use of our ground-based data, combined with the ISO SWS database, and our extensive analytical modeling efforts will permit us to develop a fundamental understanding of connections between silicate mineralogy and the origins and evolution of disks and protoplanetesimals. This program will provide a framework to extend our understanding of planetary formation processes and the mineralogy of dust in differing circumstellar environs and comets to be studied with the NASA STARDUST and SIRTF missions.

  16. Experimental Study Of Polyformaldehyde Propellants Seeded With Micron-Scale Aluminum Powder For Laser Propulsion

    International Nuclear Information System (INIS)

    Li Long; Peng Jie; Hu Xiaojun; Zheng Hang; Tang Zhiping

    2010-01-01

    The propulsion performance of polyoxymethylene (POM) seeded with micron-scale aluminum (μAl) powder has been studied experimentally with CO 2 lasers. The results show that the momentum coupling coefficient (C m ) and specific impulse (I sp ) of POM seeded with μAl powder is almost the same as pure POM at lower power density ( 6 W/cm 2 ). At higher power density (>1·7xl0 6 W/cm 2 ), C m of POM seeded with μAl powder decreases significantly while I sp increases significantly. When this material is put into a cylindrical nozzle, the measured maximum C m and I sp can raise to 40.1 dyne/W and 1361 s, respectively. The energy usage ratio is over 100%, which indicates that the aluminum powder may react chemically with the air under the constraint condition. This conclusion was verified experimentally both in atmosphere and vacuum conditions.

  17. Occurrence of weak, sub-micron, tropospheric aerosol events at high Arctic latitudes

    Science.gov (United States)

    O'Neill, N. T.; Pancrati, O.; Baibakov, K.; Eloranta, E.; Batchelor, R. L.; Freemantle, J.; McArthur, L. J. B.; Strong, K.; Lindenmaier, R.

    2008-07-01

    Numerous fine mode (sub-micron) aerosol optical events were observed during the summer of 2007 at the High Arctic atmospheric observatory (PEARL) located at Eureka, Nunavut, Canada. Half of these events could be traced to forest fires in southern and eastern Russia and the Northwest Territories of Canada. The most notable findings were that (a) a combination of ground-based measurements (passive sunphotometry, high spectral resolution lidar) could be employed to determine that weak (near sub-visual) fine mode events had occurred, and (b) this data combined with remote sensing imagery products (MODIS, OMI-AI, FLAMBE fire sources), Fourier transform spectroscopy and back trajectories could be employed to identify the smoke events.

  18. Laboratory Synthesized Calcium Oxide and Calcium Hydroxide Grains: A Candidate to Explain the 6.8 Micron Band

    Science.gov (United States)

    Kimura, Yuki; Nuth, Joseph A., III

    2005-01-01

    We will demonstrate that CaO and Ca(OH)2 are excellent candidates to explain the 6.8 microns feature, which is one of the most obscure features in young stellar objects. We discuss the condensation of CaO grains and the potential formation of a Ca(OH)2 surface layer. The infrared spectra of these grains are compared with the spectra of fifteen young stellar objects. We note that CaO-rich grains are seen in all meteoritic CAIs (calcium-aluminum-rich inclusions) and the 6.8 micron feature has only been observed in young stellar objects. Therefore, we consider CaO grains to be a plausible candidate to explain the 6.8 microns feature and hypothesize that they are produced in the hot interiors of young stellar environments.

  19. Airborne spectrophotometry of Eta Carinae from 4.5 to 7.5 microns and a model for source morphology

    Science.gov (United States)

    Russell, Ray W.; Lynch, David K.; Hackwell, John A.; Rudy, Richard J.; Rossano, George S.; Castelaz, M. W.

    1987-01-01

    Spectrophotometric observations of Eta Car between 4.5 and 7.5 microns show a featureless thermal-like spectrum with no fine-structure lines or broad emission or absorption features. The color temperature of the spectrum is approximately 375 K. High spatial resolution maps at 3.5, 4.8, and 10 microns obtained from the ground are used to discuss the dust distribution and temperature structure, and to present a model for general source morphology. The upper limit to the brightness of the forbidden Ar II fine-structure emission line at 6.98 microns is less than 7 x 10 to the -16th W/sq cm, which still allows for a significant overabundance of argon and is consistent with the evolved nature of the source.

  20. Hot carrier degradation and a new lifetime prediction model in ultra-deep sub-micron pMOSFET

    International Nuclear Information System (INIS)

    Lei Xiao-Yi; Liu Hong-Xia; Zhang Kai; Zhang Yue; Zheng Xue-Feng; Ma Xiao-Hua; Hao Yue

    2013-01-01

    The hot carrier effect (HCE) of an ultra-deep sub-micron p-channel metal—oxide semiconductor field-effect transistor (pMOSFET) is investigated in this paper. Experiments indicate that the generation of positively charged interface states is the predominant mechanism in the case of the ultra-deep sub-micron pMOSFET. The relation of the pMOSFET hot carrier degradation to stress time (t), channel width (W), channel length (L), and stress voltage (V d ) is then discussed. Based on the relation, a lifetime prediction model is proposed, which can predict the lifetime of the ultra-deep sub-micron pMOSFET accurately and reflect the influence of the factors on hot carrier degradation directly. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  1. A scanning tunneling microscope capable of imaging specified micron-scale small samples.

    Science.gov (United States)

    Tao, Wei; Cao, Yufei; Wang, Huafeng; Wang, Kaiyou; Lu, Qingyou

    2012-12-01

    We present a home-built scanning tunneling microscope (STM) which allows us to precisely position the tip on any specified small sample or sample feature of micron scale. The core structure is a stand-alone soft junction mechanical loop (SJML), in which a small piezoelectric tube scanner is mounted on a sliding piece and a "U"-like soft spring strip has its one end fixed to the sliding piece and its opposite end holding the tip pointing to the sample on the scanner. Here, the tip can be precisely aligned to a specified small sample of micron scale by adjusting the position of the spring-clamped sample on the scanner in the field of view of an optical microscope. The aligned SJML can be transferred to a piezoelectric inertial motor for coarse approach, during which the U-spring is pushed towards the sample, causing the tip to approach the pre-aligned small sample. We have successfully approached a hand cut tip that was made from 0.1 mm thin Pt∕Ir wire to an isolated individual 32.5 × 32.5 μm(2) graphite flake. Good atomic resolution images and high quality tunneling current spectra for that specified tiny flake are obtained in ambient conditions with high repeatability within one month showing high and long term stability of the new STM structure. In addition, frequency spectra of the tunneling current signals do not show outstanding tip mount related resonant frequency (low frequency), which further confirms the stability of the STM structure.

  2. A scanning tunneling microscope capable of imaging specified micron-scale small samples

    Science.gov (United States)

    Tao, Wei; Cao, Yufei; Wang, Huafeng; Wang, Kaiyou; Lu, Qingyou

    2012-12-01

    We present a home-built scanning tunneling microscope (STM) which allows us to precisely position the tip on any specified small sample or sample feature of micron scale. The core structure is a stand-alone soft junction mechanical loop (SJML), in which a small piezoelectric tube scanner is mounted on a sliding piece and a "U"-like soft spring strip has its one end fixed to the sliding piece and its opposite end holding the tip pointing to the sample on the scanner. Here, the tip can be precisely aligned to a specified small sample of micron scale by adjusting the position of the spring-clamped sample on the scanner in the field of view of an optical microscope. The aligned SJML can be transferred to a piezoelectric inertial motor for coarse approach, during which the U-spring is pushed towards the sample, causing the tip to approach the pre-aligned small sample. We have successfully approached a hand cut tip that was made from 0.1 mm thin Pt/Ir wire to an isolated individual 32.5 × 32.5 μm2 graphite flake. Good atomic resolution images and high quality tunneling current spectra for that specified tiny flake are obtained in ambient conditions with high repeatability within one month showing high and long term stability of the new STM structure. In addition, frequency spectra of the tunneling current signals do not show outstanding tip mount related resonant frequency (low frequency), which further confirms the stability of the STM structure.

  3. Emission features in the spectrum of NGC 7027 near 3.3 microns at very high resolution

    International Nuclear Information System (INIS)

    Lowe, R.P.; Moorhead, J.M.; Wehlau, W.H.; Maillard, J.P.

    1991-01-01

    A very high resolution spectrum is presented of the planetary nebula NGC 7027 over a 200/cm interval centered at 2950/cm, and the features found are described: (1) nebular continuum, (2) atomic recombination lines of H and He II, and (3) three broader emission features of uncertain origin. For the latter the first evidence is presented that the 3.46 micron feature and possibly the 3.40 micron feature are resolvable into a sequence of narrower features. The interpretation of the broader features is discussed in terms of the hypothesis of identification with emission by polycyclic aromatic hydrocarbons. 18 refs

  4. Solar magnetic field studies using the 12 micron emission lines. II - Stokes profiles and vector field samples in sunspots

    Science.gov (United States)

    Hewagama, Tilak; Deming, Drake; Jennings, Donald E.; Osherovich, Vladimir; Wiedemann, Gunter; Zipoy, David; Mickey, Donald L.; Garcia, Howard

    1993-01-01

    Polarimetric observations at 12 microns of two sunpots are reported. The horizontal distribution of parameters such as magnetic field strength, inclination, azimuth, and magnetic field filling factors are presented along with information about the height dependence of the magnetic field strength. Comparisons with contemporary magnetostatic sunspot models are made. The magnetic data are used to estimate the height of 12 micron line formation. From the data, it is concluded that within a stable sunspot there are no regions that are magnetically filamentary, in the sense of containing both strong-field and field-free regions.

  5. Long Wavelength Electromagnetic Light Bullets Generated by a 10.6 micron CO2 Ultrashort Pulsed Source

    Science.gov (United States)

    2016-11-29

    AFRL-AFOSR-VA-TR-2016-0365 Long Wavelength Electromagnetic Light Bullets Generated by a 10.6 micron CO2 Ultrashort Pulsed Source Jerome Moloney...SUBTITLE "Long Wavelength Electromagnetic Light Bullets Generated by a 10.6 micron CO2 Ultrashort Pulsed Source 5a. CONTRACT NUMBER FA9550-15-1-0272 5b...Wavelength Electromagnetic Light Bullets Generated by a 10 µm CO2 Ultrashort Pulsed Source Grant/Contract Number AFOSR assigned control number. It must

  6. Compressive laser ranging.

    Science.gov (United States)

    Babbitt, Wm Randall; Barber, Zeb W; Renner, Christoffer

    2011-12-15

    Compressive sampling has been previously proposed as a technique for sampling radar returns and determining sparse range profiles with a reduced number of measurements compared to conventional techniques. By employing modulation on both transmission and reception, compressive sensing in ranging is extended to the direct measurement of range profiles without intermediate measurement of the return waveform. This compressive ranging approach enables the use of pseudorandom binary transmit waveforms and return modulation, along with low-bandwidth optical detectors to yield high-resolution ranging information. A proof-of-concept experiment is presented. With currently available compact, off-the-shelf electronics and photonics, such as high data rate binary pattern generators and high-bandwidth digital optical modulators, compressive laser ranging can readily achieve subcentimeter resolution in a compact, lightweight package.

  7. Dryden Aeronautical Test Range

    Data.gov (United States)

    Federal Laboratory Consortium — Recently redesignated to honor Dr. Hugh L. Dryden, NASA's Dryden Aeronautical Test Range (DATR) supports aerospace flight research and technology integration, space...

  8. Compact Antenna Range

    Data.gov (United States)

    Federal Laboratory Consortium — Facility consists of a folded compact antenna range including a computer controlled three axis position table, parabolic reflector and RF sources for the measurement...

  9. Facile Synthesis of Micron-Sized Hollow Silver Spheres as Substrates for Surface-Enhanced Raman Scattering

    Directory of Open Access Journals (Sweden)

    Lixin Xia

    2014-01-01

    Full Text Available A well-designed type of micron-sized hollow silver sphere was successfully synthesized by a simple hard-template method to be used as substrates for surface-enhanced Raman scattering. 4 Å molecular sieves were employed as a removable solid template. [Ag(NH32]+ was absorbed as the precursor on the surface of the molecular sieve. Formaldehyde was selected as a reducing agent to reduce [Ag(NH32]+, resulting in the formation of a micron-sized silver shell on the surface of the 4 Å molecular sieves. The micron-sized hollow silver spheres were obtained by removing the molecular sieve template. SEM and XRD were used to characterize the structure of the micron-sized hollow silver spheres. The as-prepared micro-silver spheres exhibited robust SERS activity in the presence of adsorbed 4-mercaptobenzoic acid (4-MBA with excitation at 632.8 nm, and the enhancement factor reached ~1.5 × 106. This synthetic process represents a promising method for preparing various hollow metal nanoparticles.

  10. Application of V2O5 thin films deposited by laser ablation in micron batteries of solid state

    International Nuclear Information System (INIS)

    Escobar A, L.; Camps, E.; Haro P, E.; Camacho L, M.A.; Julien, C.

    2001-01-01

    The obtained results from synthesizing V 2 O 5 thin films by laser ablation are presented. Depending on the deposit conditions V 2 O 5 thin films have been grown as amorphous as a crystalline ones with preferential orientation. The results of the electrochemical characterization of one of the synthesized layers are presented when being manufactured joint with it a micron battery. (Author)

  11. Column CO2 Measurement From an Airborne Solid-State Double-Pulsed 2-Micron Integrated Path Differential Absorption Lidar

    Science.gov (United States)

    Singh, U. N.; Yu, J.; Petros, M.; Refaat, T. F.; Remus, R.; Fay, J.; Reithmaier, K.

    2014-01-01

    NASA LaRC is developing and integrating a double-Pulsed 2-micron direct detection IPDA lidar for CO2 column measurement from an airborne platform. The presentation will describe the development of the 2-micrometers IPDA lidar system and present the airborne measurement of column CO2 and will compare to in-situ measurement for various ground target of different reflectivity.

  12. Wear behaviour of A356 aluminium alloy reinforced with micron and nano size SiC particles

    CSIR Research Space (South Africa)

    Camagu, ST

    2013-07-01

    Full Text Available A method for producing metal matrix composites MMC was successfully implemented for mixing nano and low micron (“Hybrid”) sized SiC reinforcing particles in an aluminium alloy matrix. Due to the improved specific modulus and strength, MMC...

  13. Micron-scale copper wires printed using femtosecond laser-induced forward transfer with automated donor replenishment

    NARCIS (Netherlands)

    Grant-Jacob, J.A.; Mills, B.; Feinaeugle, M.; Sones, C.L.; Oosterhuis, G.; Hoppenbrouwers, M.B.; Eason, R.W.

    2013-01-01

    We demonstrate the use of laser-induced forward transfer (LIFT) in combination with a novel donor replenishment scheme to print continuous copper wires. Wires of mm length, a few microns wide and submicron in height have been printed using a 800 nm, 1 kHz repetition rate, 150 fs pulsed laser. A 120

  14. Spatial heterodyne interferometry of VY Canis Majoris, alpha Orionis, alpha Scorpii, and R Leonis at 11 microns

    International Nuclear Information System (INIS)

    Sutton, E.C.; Storey, J.W.V.; Betz, A.L.; Townes, C.H.; Spears, D.L.

    1977-01-01

    Using the technique of heterodyne interferometry, measurements were made of the spatial distribution of 11 micron radiation from four late type stars. The circumstellar shells surrounding VY Canis Majoris, alpha Orionis, and alpha Scorpii were resolved, whereas that of R Leonis was only partially resolved at a fringe spacing of 0.4 sec

  15. Spatial heterodyne interferometry of VY Canis Major's, alpha Orionis, alpha Scorpii, and R leonis at 11 microns

    Science.gov (United States)

    Sutton, E. C.; Storey, J. W. V.; Betz, A. L.; Townes, C. H.; Spears, D. L.

    1977-01-01

    Using the technique of heterodyne interferometry, measurements were made of the spatial distribution of 11 micron radiation from four late type stars. The circumstellar shells surrounding VY Canis Majoris, alpha Orionis, and alpha Scorpii were resolved, whereas that of R Leonis was only partially resolved at a fringe spacing of 0.4 sec.

  16. Application of RADSAFE to Model Single Event Upset Response of a 0.25 micron CMOS SRAM

    Science.gov (United States)

    Warren, Kevin M.; Weller, Robert A.; Sierawski, Brian; Reed, Robert A.; Mendenhall, Marcus H.; Schrimpf, Ronald D.; Massengill, Lloyd; Porter, Mark; Wilkerson, Jeff; LaBel, Kenneth A.; hide

    2006-01-01

    The RADSAFE simulation framework is described and applied to model Single Event Upsets (SEU) in a 0.25 micron CMOS 4Mbit Static Random Access Memory (SRAM). For this circuit, the RADSAFE approach produces trends similar to those expected from classical models, but more closely represents the physical mechanisms responsible for SEU in the SRAM circuit.

  17. Progress on High-Energy 2-micron Solid State Laser for NASA Space-Based Wind and Carbon Dioxide Measurements

    Science.gov (United States)

    Singh, Upendra N.

    2011-01-01

    Sustained research efforts at NASA Langley Research Center during last fifteen years have resulted in significant advancement of a 2-micron diode-pumped, solid-state laser transmitter for wind and carbon dioxide measurements from ground, air and space-borne platforms. Solid-state 2-micron laser is a key subsystem for a coherent Doppler lidar that measures the horizontal and vertical wind velocities with high precision and resolution. The same laser, after a few modifications, can also be used in a Differential Absorption Lidar system for measuring atmospheric CO2 concentration profiles. Researchers at NASA Langley Research Center have developed a compact, flight capable, high energy, injection seeded, 2-micron laser transmitter for ground and airborne wind and carbon dioxide measurements. It is capable of producing 250 mJ at 10 Hz by an oscillator and one amplifier. This compact laser transmitter was integrated into a mobile trailer based coherent Doppler wind and CO2 DIAL system and was deployed during field measurement campaigns. This paper will give an overview of 2-micron solid-state laser technology development and discuss results from recent ground-based field measurements.

  18. Very high-cycle fatigue failure in micron-scale polycrystalline silicon films : Effects of environment and surface oxide thickness

    NARCIS (Netherlands)

    Alsem, D. H.; Boyce, B. L.; Stach, E. A.; De Hosson, J. Th. M.; Ritchie, R. O.

    2007-01-01

    Fatigue failure in micron-scale polycrystalline silicon structural films, a phenomenon that is not observed in bulk silicon, can severely impact the durability and reliability of microelectromechanical system devices. Despite several studies on the very high-cycle fatigue behavior of these films (up

  19. Femtosecond Planar Electron Beam Source for Micron-Scale Dielectric Wake Field Accelerator. Final report

    International Nuclear Information System (INIS)

    Hirshfield, Jay L.

    2006-01-01

    A new accelerator LACARA is under construction at ATF, Brookhaven National Laboratory. LACARA is to be powered by a 1 TW CO2 laser, and will utilize a 6-T 2-m long solenoidal magnetic field. For a 50 MeV injected electron bunch, LACARA is expected to produce a 100 MeV 1 ps gyrating beam with ∼ 3% energy spread. Beam electrons advance in phase at the laser frequency, executing one cycle each 35 fs. A beam stop with a small off-axis channel will transmit a short beam pulse every optical cycle, thereby producing a train of about 30, 3.5 fs, 1-3 pC microbunches for each laser pulse. One application for this train of microbunches obtained from a LACARA-type device involves focusing a portion of the beam using a magnetic quadrupole into a rectangular cross-section having a narrow dimension of a few microns and a height of a few hundred microns. These microbunches may be injected into a planar dielectric-lined waveguide where cumulative buildup of wake fields can lead to an accelerating gradient > 1 GV/m. This proposed vacuum-based wake field structure is mechanically rigid and capable of accurate microfabrication, factors important in staging a large number of accelerator modules. Furthermore, the accelerating gradients it promises are comparable with those for plasma accelerators. A LACARA unit for preparing suitable bunches at 500 MeV is described. Physics issues are discussed including bunch spreading and transport, bunch shaping, aperture radiation, dielectric breakdown, and bunch stability in the rectangular wake field structure. In appendices to this report, three supporting documents are attached. These include a set of drawings that show the layout of the beam line and optical line for LACARA at ATF-BNL; and two reprints of recent articles published in PRST-AB. The first article describes measurements of the coherent superposition of wake fields that arise from a periodic train of bunches, with supporting analysis. The second article presents theory that

  20. Na I spectra in the 1.4–14 micron range: transitions and oscillator strengths involving f-, g-, and h-states

    Czech Academy of Sciences Publication Activity Database

    Civiš, Svatopluk; Ferus, Martin; Kubelík, Petr; Jelínek, Petr; Chernov, V. E.; Zanozina, E. M.

    2012-01-01

    Roč. 542, June 2012 (2012), A35 ISSN 0004-6361 R&D Projects: GA AV ČR IAA400400705 Grant - others:GA MF(CZ) ECPF:049/4V Institutional support: RVO:61388955 Keywords : atomic data * line: identification * techniques: spectroscopic Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.084, year: 2012

  1. Li I spectra in the 4.65–8.33 micron range: high-L states and oscillator strengths

    Czech Academy of Sciences Publication Activity Database

    Civiš, Svatopluk; Ferus, Martin; Kubelík, Petr; Chernov, Vladislav E.; Zanozina, Ekaterina M.

    2012-01-01

    Roč. 545, September (2012), A61 ISSN 0004-6361 R&D Projects: GA AV ČR IAAX00100903 Grant - others:GA MF(CZ) ECPF:049/4V Institutional support: RVO:61388955 Keywords : atomic data * identification - methods * spectroscopy Subject RIV: CF - Physical ; The oretical Chemistry Impact factor: 5.084, year: 2012

  2. A Short-Range Distance Sensor with Exceptional Linearity

    Science.gov (United States)

    Simmons, Steven; Youngquist, Robert

    2013-01-01

    A sensor has been demonstrated that can measure distance over a total range of about 300 microns to an accuracy of about 0.1 nm (resolution of about 0.01 nm). This represents an exceptionally large dynamic range of operation - over 1,000,000. The sensor is optical in nature, and requires the attachment of a mirror to the object whose distance is being measured. This work resulted from actively developing a white light interferometric system to be used to measure the depths of defects in the Space Shuttle Orbiter windows. The concept was then applied to measuring distance. The concept later expanded to include spectrometer calibration. In summary, broadband (i.e., white) light is launched into a Michelson interferometer, one mirror of which is fixed and one of which is attached to the object whose distance is to be measured. The light emerging from the interferometer has traveled one of two distances: either the distance to the fixed mirror and back, or the distance to the moving mirror and back. These two light beams mix and produce an interference pattern where some wavelengths interfere constructively and some destructively. Sending this light into a spectrometer allows this interference pattern to be analyzed, yielding the net distance difference between the two paths. The unique feature of this distance sensor is its ability to measure accurately distance over a dynamic range of more than one million, the ratio of its range (about 300 microns) to its accuracy (about 0.1 nanometer). Such a large linear operating range is rare and arises here because both amplitude and phase-matching algorithms contribute to the performance. The sensor is limited by the need to attach a mirror of some kind to the object being tracked, and by the fairly small total range, but the exceptional dynamic range should make it of interest.

  3. Carbohydrate-lipid profile and use of metformin with micronized fenofibrate in reducing metabolic consequences of craniopharyngioma treatment in children: single institution experience.

    Science.gov (United States)

    Kalina, Maria Aleksandra; Wilczek, Marta; Kalina-Faska, Barbara; Skała-Zamorowska, Eliza; Mandera, Marek; Małecka Tendera, Ewa

    2015-01-01

    To evaluate auxology and metabolic disturbances in children with craniopharyngioma, and to present observational results of treatment of metabolic sequels with metformin and micronized fenofibrate. The studied group comprised 22 children [median age at diagnosis 10.5 (0.17-16.75) years; median follow-up 5.1 years]. Assessment included height standard deviations (SDS), body mass index (BMI) SDS, concentrations of lipids, glucose and insulin (fasting or oral glucose tolerance test) and homeostatic model assessment of insulin resistance (HOMA-IR) index. Ten adolescents with hyperinsulinemia and dyslipidemia received therapy with metformin (500-1500 mg/daily) and micronized fenofibrate (160 mg/daily). At diagnosis, median hSDS was -1.66 (range: -4.08; +0.1). Nine (40.9%) children were growth hormone-treated. There was gradual increase of BMI SDS, 18 (81.8%) patients being overweight at the final assessment. Dyslipidaemia was found in 19 patients (86.4%), hyperinsulinaemia in 11 patients (50%) and elevated HOMA-IR in 15 patients (68.2%). Decrease of triglycerides [median 263.5 (171-362) mg/dL vs. 154 (102-183) mg/dL] and HOMA-IR [8.64 (5.08-12.65) vs. 4.68 (0.7-7.9)] was significant in the group treated with metformin and fenofibrate for 6 months. Significant auxologic changes and metabolic abnormalities were found in children treated for craniopharyngioma. The use of metformin and fenofibrate seemed to attenuate these disturbances in a short-term observation.

  4. Effect of micron size Ni particle addition in Sn–8Zn–3Bi lead-free solder alloy on the microstructure, thermal and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Billah, Md. Muktadir; Shorowordi, Kazi Mohammad; Sharif, Ahmed, E-mail: asharif@mme.buet.ac.bd

    2014-02-05

    Highlights: • Ni-added Sn-Zn-Bi were characterized metallographically, thermally and mechanically. • The volume fraction of α-Zn phase increased with both Bi and Ni in Sn-Zn-Bi alloys. • Micron-sized Ni particles reacted with neither Sn nor Zn to form intermetallics. • Better combination of thermal and mechanical properties can be achieved with Ni. -- Abstract: Micron-sized Ni particle-reinforced Sn–8Zn–3Bi composite solders were prepared by mechanically dispersing Ni particles into Sn–8Zn–3Bi alloy and the bulk properties of the composite solder alloy were characterized metallographically, thermally and mechanically. Different percentage of Ni particle viz. 0.25, 0.5 and 1 wt.% were added in the liquid Sn–8Zn–3Bi alloy and then cast into the metal molds. Melting behavior was studied by differential thermal analyzer (DTA). Microstructural investigation was carried out by both optical and scanning electron microscope. Tensile properties were determined using an Instron Universal Testing Machine at a strain rate 3.00 mm/min. The results indicated that the Ni addition increased the melting temperature of Sn–8Zn–3Bi alloy. The addition of Ni was also found to increase the solidification range. In the Sn–8Zn–3Bi alloy, needle-shaped α-Zn phase was found to be uniformly distributed in the β-Sn matrix. However, it was found that the small amount of Ni addition in Sn–8Zn–3Bi alloy refined the Zn needles throughout the matrix. Also an enhanced precipitation of Zn in the structure was observed with the addition of Ni. All these structural changes improved the mechanical properties like tensile strength and hardness of the newly developed quaternary alloy.

  5. Range Scheduling Aid (RSA)

    Science.gov (United States)

    Logan, J. R.; Pulvermacher, M. K.

    1991-01-01

    Range Scheduling Aid (RSA) is presented in the form of the viewgraphs. The following subject areas are covered: satellite control network; current and new approaches to range scheduling; MITRE tasking; RSA features; RSA display; constraint based analytic capability; RSA architecture; and RSA benefits.

  6. On Range of Skill

    DEFF Research Database (Denmark)

    Hansen, Thomas Dueholm; Miltersen, Peter Bro; Sørensen, Troels Bjerre

    2008-01-01

    size (and doubly exponential in its depth). We also provide techniques that yield concrete bounds for unbalanced game trees and apply these to estimate the Range of Skill of Tic-Tac-Toe and Heads-Up Limit Texas Hold'em Poker. In particular, we show that the Range of Skill of Tic-Tac-Toe is more than...

  7. Home range and travels

    Science.gov (United States)

    Stickel, L.F.; King, John A.

    1968-01-01

    The concept of home range was expressed by Seton (1909) in the term 'home region,' which Burr (1940, 1943) clarified with a definition of home range and exemplified in a definitive study of Peromyscus in the field. Burt pointed out the ever-changing characteristics of home-range area and the consequent absence of boundaries in the usual sense--a finding verified by investigators thereafter. In the studies summarized in this paper, sizes of home ranges of Peromyscus varied within two magnitudes, approximately from 0.1 acre to ten acres, in 34 studies conducted in a variety of habitats from the seaside dunes of Florida to the Alaskan forests. Variation in sizes of home ranges was correlated with both environmental and physiological factors; with habitat it was conspicuous, both in the same and different regions. Food supply also was related to size of home range, both seasonally and in relation to habitat. Home ranges generally were smallest in winter and largest in spring, at the onset of the breeding season. Activity and size also were affected by changes in weather. Activity was least when temperatures were low and nights were bright. Effects of rainfall were variable. Sizes varied according to sex and age; young mice remained in the parents' range until they approached maturity, when they began to travel more widely. Adult males commonly had larger home ranges than females, although there were a number of exceptions. An inverse relationship between population density and size of home range was shown in several studies and probably is the usual relationship. A basic need for activity and exploration also appeared to influence size of home range. Behavior within the home range was discussed in terms of travel patterns, travels in relation to home sites and refuges, territory, and stability of size of home range. Travels within the home range consisted of repeated use of well-worn trails to sites of food, shelter, and refuge, plus more random exploratory travels

  8. Autonomous Target Ranging Techniques

    DEFF Research Database (Denmark)

    Jørgensen, Peter Siegbjørn; Jørgensen, John Leif; Denver, Troelz

    2003-01-01

    of this telescope, a fast determination of the range to and the motion of the detected targets are important. This is needed in order to prepare the future observation strategy for each target, i.e. when is the closest approach where imaging will be optimal. In order to quickly obtain such a determination two...... ranging strategies are presented. One is an improved laser ranger with an effective range with non-cooperative targets of at least 10,000 km, demonstrated in ground tests. The accuracy of the laser ranging will be approximately 1 m. The laser ranger may furthermore be used for trajectory determination...... of nano-gravity probes, which will perform direct mass measurements of selected targets. The other is triangulation from two spacecraft. For this method it is important to distinguish between detection and tracking range, which will be different for Bering since different instruments are used...

  9. Soliton microcomb range measurement

    Science.gov (United States)

    Suh, Myoung-Gyun; Vahala, Kerry J.

    2018-02-01

    Laser-based range measurement systems are important in many application areas, including autonomous vehicles, robotics, manufacturing, formation flying of satellites, and basic science. Coherent laser ranging systems using dual-frequency combs provide an unprecedented combination of long range, high precision, and fast update rate. We report dual-comb distance measurement using chip-based soliton microcombs. A single pump laser was used to generate dual-frequency combs within a single microresonator as counterpropagating solitons. We demonstrated time-of-flight measurement with 200-nanometer precision at an averaging time of 500 milliseconds within a range ambiguity of 16 millimeters. Measurements at distances up to 25 meters with much lower precision were also performed. Our chip-based source is an important step toward miniature dual-comb laser ranging systems that are suitable for photonic integration.

  10. Percutaneous external fixator pins with bactericidal micron-thin sol-gel films for the prevention of pin tract infection.

    Science.gov (United States)

    Qu, Haibo; Knabe, Christine; Radin, Shula; Garino, Jonathan; Ducheyne, Paul

    2015-09-01

    Risk of infection is considerable in open fractures, especially when fracture fixation devices are used to stabilize the fractured bones. Overall deep infection rates of 16.2% have been reported. The infection rate is even greater, up to 32.2%, with external fixation of femoral fractures. The use of percutaneous implants for certain clinical applications, such as percutaneous implants for external fracture fixation, still represents a challenge today. Currently, bone infections are very difficult to treat. Very potent antibiotics are needed, which creates the risk of irreversible damage to other organs, when the antibiotics are administered systemically. As such, controlled, local release is being pursued, but no such treatments are in clinical use. Herein, the use of bactericidal micron-thin sol-gel films on metallic fracture fixation pins is reported. The data demonstrates that triclosan (2,4,4'-trichloro-2'-hydroxydiphenylether), an antimicrobial agent, can be successfully incorporated into micron-thin sol-gel films deposited on percutaneous pins. The sol-gel films continuously release triclosan in vitro for durations exceeding 8 weeks (longest measured time point). The bactericidal effect of the micron-thin sol-gel films follows from both in vitro and in vivo studies. Inserting percutaneous pins in distal rabbit tibiae, there were no signs of infection around implants coated with a micron-thin sol-gel/triclosan film. Healing had progressed normally, bone tissue growth was normal and there was no epithelial downgrowth. This result was in contrast with the results in rabbits that received control, uncoated percutaneous pins, in which abundant signs of infection and epithelial downgrowth were observed. Thus, well-adherent, micron-thin sol-gel films laden with a bactericidal molecule successfully prevented pin tract infection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Fabrication of magnetic and fluorescent chitin and dibutyrylchitin sub-micron particles by oil-in-water emulsification.

    Science.gov (United States)

    Blanco-Fernandez, Barbara; Chakravarty, Shatadru; Nkansah, Michael K; Shapiro, Erik M

    2016-11-01

    Chitin is a carbohydrate polymer with unique pharmacological and immunological properties, however, because of its unwieldy chemistry, the synthesis of discreet sized sub-micron particles has not been well reported. This work describes a facile and flexible method to fabricate biocompatible chitin and dibutyrylchitin sub-micron particles. This technique is based on an oil-in-water emulsification/evaporation method and involves the hydrophobization of chitin by the addition of labile butyryl groups onto chitin, disrupting intermolecular hydrogen bonds and enabling solubility in the organic solvent used as the oil phase during fabrication. The subsequent removal of butyryl groups post-fabrication through alkaline saponification regenerates native chitin while keeping particles morphology intact. Examples of encapsulation of hydrophobic dyes and nanocrystals are demonstrated, specifically using iron oxide nanocrystals and coumarin 6. The prepared particles had diameters between 300-400nm for dibutyrylchitin and 500-600nm for chitin and were highly cytocompatible. Moreover, they were able to encapsulate high amounts of iron oxide nanocrystals and were able to label mammalian cells. We describe a technique to prepare sub-micron particles of highly acetylated chitin (>90%) and dibutyrylchitin and demonstrate their utility as carriers for imaging. Chitin is a polysaccharide capable of stimulating the immune system, a property that depends on the acetamide groups, but its insolubility limits its use. No method for sub-micron particle preparation with highly acetylated chitins have been published. The only approach for the preparation of sub-micron particles uses low acetylation chitins. Dibutyrylchitin, a soluble chitin derivative, was used to prepare particles by oil in water emulsification. Butyryl groups were then removed, forming chitin particles. These particles could be suitable for encapsulation of hydrophobic payloads for drug delivery and cell imaging, as well as

  12. Relationship between Particulate matter less than 10 microns exposures and health effects on humans in Ahvaz, Iran

    Directory of Open Access Journals (Sweden)

    Sahar Geravandi

    2015-06-01

    Full Text Available Background & Aims of the Study: Particulate matters less than 10 microns can absorb into your lungs and reacting with the moisture and enter the circulatory system directly through the airways. The aim of this study is to assess Behavior PM 10 data in different seasons and Determination effects on human health in Ahvaz city during 2013. Materials & Methods: Data Particulate matters less than 10 microns were taken from Ahvaz Department of Environment and Meteorological Organization. Sampling was performed for 24 hours in 4 stations. Method of sampling and analysis were performed according to EPA guideline. Processing data include the instruction set correction of averaging, coding and filtering. Finally, health-effects of Particulate matters less than 10 exposures were calculated with impact of meteorological parameters and converted as input file to the Air Q model. Results: PM 10 concentration in winter season was maximum amount in the year 2013. According to the research findings, highest and the lowest Particulate matters less than 10 microns concentrations during 2013 had the Bureau of Meteorology “Havashenasi” and Head office of ADoE “Mohitzist”. Sum of total numbers of cardiovascular death and hospitals admission to respiratory diseases attributed to Particulate matters less than 10 microns were 923 and 2342 cases in 2013. Conclusions: Particulate matter emissions are highly regulated in most industrialized countries. Due to environmental concerns, most industries and dust storm phenomena are required to decrease in source produce particle mater and kind of dust collection system to control particulate emissions. Pollution prevention and control measures that reduce Particulate matters less than 10 microns can very useful for expected to reduce people’s exposures to Sulfur dioxide.

  13. Diagnostics for the laser fusion program: plasma physics on the scale of microns and picoseconds

    International Nuclear Information System (INIS)

    Attwood, D.T.

    1978-01-01

    Laser induced fusion is the forerunner of a class of inertial confinement schemes in which hydrogen isotopes are heated to thermonuclear conditions in a very short period. The process is characterized by such short time scales that fuel confinement is achieved through its' own finite mass and expansion velocity, approaching 1 μm/psec for ignition temperatures of order 10 keV (10 8 0 K). With current laser powers limited to several terrawatts one readily estimates, on the basis of energy conservation, target mass, and expansion velocity, that target size and laser pulse duration are on the order of 100 μm and 100 psec, respectively. Within these constraints, targets have been heated and confined to the point where thermonuclear conditions have been achieved. This paper describes a sampling of diagnostic techniques with requisite resolution (microns and picoseconds) to accurately describe the dynamics of a laser driven compression. As discussed in each case cited, these in turn provide insight to and quantitative measure of, the physical processes dominating the implosion. The success of the inertial confinement fusion program is strongly dependent on the continued development of such diagnostics and the understanding they provide

  14. Block copolymer stabilized nonaqueous biocompatible sub-micron emulsions for topical applications.

    Science.gov (United States)

    Atanase, Leonard Ionut; Riess, Gérard

    2013-05-20

    Polyethylene glycol (PEG) 400/Miglyol 812 non-aqueous sub-micron emulsions were developed due to the fact that they are of interest for the design of drug-loaded biocompatible topical formulations. These types of emulsions were favourably stabilized by poly (2-vinylpyridine)-b-poly (butadiene) (P2VP-b-PBut) copolymer with DPBut>DP2VP, each of these sequences being well-adapted to the solubility parameters of PEG 400 and Miglyol 812, respectively. This type of block copolymers, which might limit the Ostwald ripening, appeared to be more efficient stabilizers than low molecular weight non-ionic surfactants. The emulsion characteristics, such as particle size, stability and viscosity at different shear rates were determined as a function of the phase ratio, the copolymer concentration and storage time. It was further shown that Acyclovir, as a model drug of low water solubility, could be incorporated into the PEG 400 dispersed phase, with no significant modification of the initial emulsion characteristics. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. In vivo 3D PIXE-micron-CT imaging of Drosophila melanogaster using a contrast agent

    Energy Technology Data Exchange (ETDEWEB)

    Matsuyama, Shigeo; Hamada, Naoki; Ishii, Keizo; Nozawa, Yuichiro; Ohkura, Satoru; Terakawa, Atsuki; Hatori, Yoshinobu; Fujiki, Kota; Fujiwara, Mitsuhiro; Toyama, Sho

    2015-04-01

    In this study, we developed a three-dimensional (3D) computed tomography (CT) in vivo imaging system for imaging small insects with micrometer resolution. The 3D CT imaging system, referred to as 3D PIXE-micron-CT (PIXEμCT), uses characteristic X-rays produced by ion microbeam bombardment of a metal target. PIXEμCT was used to observe the body organs and internal structure of a living Drosophila melanogaster. Although the organs of the thorax were clearly imaged, the digestive organs in the abdominal cavity could not be clearly discerned initially, with the exception of the rectum and the Malpighian tubule. To enhance the abdominal images, a barium sulfate powder radiocontrast agent was added. For the first time, 3D images of the ventriculus of a living D. melanogaster were obtained. Our results showed that PIXEμCT can provide in vivo 3D-CT images that reflect correctly the structure of individual living organs, which is expected to be very useful in biological research.

  16. Enhanced Oil Recovery Using Micron-Size Polyacrylamide Elastic Microspheres (MPEMs): Underlying Mechanisms and Displacement Experiments

    KAUST Repository

    Yao, Chuanjin; Lei, Guanglun; Hou, Jian; Xu, Xiaohong; Wang, Dan; Steenhuis, Tammo S.

    2015-01-01

    Micron-size polyacrylamide elastic microsphere (MPEM) is a newly developed profile control and oil displacement agent for enhanced oil recovery in heterogeneous reservoirs. In this study, laboratory experiments were performed to characterize the viscoelastic properties of MPEMs in brine water. A transparent sandpack micromodel was used to observe the microscopic flow and displacement mechanisms, and parallel-sandpack models were used to investigate the profile control and oil displacement performance using MPEMs in heterogeneous reservoirs. The results indicate that MPEMs almost do not increase the viscosity of injection water and can be conveniently injected using the original water injection pipelines. The microscopic profile control and oil displacement mechanisms of MPEMs in porous media mainly behave as selective-plugging in large pores, fluid diversion after MPEMs plugging, oil drainage caused by MPEMs breakthrough, and the mechanism of oil droplets converging into oil flow. MPEMs have a high plugging strength, which can tolerate a long-term water flushing. MPEMs can selectively enter and plug the large pores and pore-throats in high permeability sandpack, but almost do not damage the low permeability sandpack. MPEMs can effectively divert the water flow from the high permeability sandpack to the low permeability sandpack and improve the sweep efficiency of low permeability sandpack and low permeability area in the high permeability sandpack. The results also confirm the dynamic process of profile control and oil displacement using MPEMs in heterogeneous reservoirs.

  17. Novel micronized woody biomass process for production of cost-effective clean fermentable sugars.

    Science.gov (United States)

    Fu, Yu; Gu, Bon-Jae; Wang, Jinwu; Gao, Johnway; Ganjyal, Girish M; Wolcott, Michael P

    2018-03-29

    Thermo-chemical pretreatments of biomass typically result in environmental impacts from water use and emission. The degradation byproducts in the resulting sugars can be inhibitory to the activities of enzymes and yeasts. The results of this study showed that combining existing commercial comminution technology can reduce total energy consumption with improved saccharification yield while eliminating chemical use. Impact mill was found to be the most efficient milling for size reduction of forest residual chips from ca. 2 mm to a specific value below 100 µm. The further micronization effectively disrupted the recalcitrance of the woody biomass and produced the highly saccharifiable substrates for downstream processing. In addition, extrusion can be integrated into a clean cellulosic sugar process for further fibrillation in place of the conventional mixing processing. The highest energy efficiency was observed on the impact-milled samples with 0.515 kg sugars kWh -1 . Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Acoustic Behavior of Subfloor Lightweight Mortars Containing Micronized Poly (Ethylene Vinyl Acetate) (EVA).

    Science.gov (United States)

    Brancher, Luiza R; Nunes, Maria Fernanda de O; Grisa, Ana Maria C; Pagnussat, Daniel T; Zeni, Mára

    2016-01-15

    This paper aims to contribute to acoustical comfort in buildings by presenting a study about the polymer waste micronized poly (ethylene vinyl acetate) (EVA) to be used in mortars for impact sound insulation in subfloor systems. The evaluation method included physical, mechanical and morphological properties of the mortar developed with three distinct thicknesses designs (3, 5, and 7 cm) with replacement percentage of the natural aggregate by 10%, 25%, and 50% EVA. Microscopy analysis showed the surface deposition of cement on EVA, with preservation of polymer porosity. The compressive creep test estimated long-term deformation, where the 10% EVA sample with a 7 cm thick mortar showed the lowest percentage deformation of its height. The impact noise test was performed with 50% EVA samples, reaching an impact sound insulation of 23 dB when the uncovered slab was compared with the 7 cm thick subfloor mortar. Polymer waste addition decreased the mortar compressive strength, and EVA displayed characteristics of an influential material to intensify other features of the composite.

  19. Stable micron-scale holes are a general feature of canonical holins.

    Science.gov (United States)

    Savva, Christos G; Dewey, Jill S; Moussa, Samir H; To, Kam H; Holzenburg, Andreas; Young, Ry

    2014-01-01

    At a programmed time in phage infection cycles, canonical holins suddenly trigger to cause lethal damage to the cytoplasmic membrane, resulting in the cessation of respiration and the non-specific release of pre-folded, fully active endolysins to the periplasm. For the paradigm holin S105 of lambda, triggering is correlated with the formation of micron-scale membrane holes, visible as interruptions in the bilayer in cryo-electron microscopic images and tomographic reconstructions. Here we report that the size distribution of the holes is stable for long periods after triggering. Moreover, early triggering caused by an early lysis allele of S105 formed approximately the same number of holes, but the lesions were significantly smaller. In contrast, early triggering prematurely induced by energy poisons resulted in many fewer visible holes, consistent with previous sizing studies. Importantly, the unrelated canonical holins P2 Y and T4 T were found to cause the formation of holes of approximately the same size and number as for lambda. In contrast, no such lesions were visible after triggering of the pinholin S(21) 68. These results generalize the hole formation phenomenon for canonical holins. A model is presented suggesting the unprecedentedly large size of these holes is related to the timing mechanism. © 2013 John Wiley & Sons Ltd.

  20. Laboratory Experiments on Rotation of Micron Size Cosmic Dust Grains with Radiation

    Science.gov (United States)

    Abbas, M. M.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; Gallagher, D. L.; West, E.; Weingartner, J.; Witherow, W. K.

    2004-01-01

    The processes and mechanisms involved in the rotation and alignment of interstellar dust grains have been of great interest in astrophysics ever since the surprising discovery of the polarization of starlight more than half a century ago. Numerous theories, detailed mathematical models and numerical studies of grain rotation and alignment along the Galactic magnetic field have been presented in the literature. In particular, the subject of grain rotation and alignment by radiative torques has been shown to be of particular interest in recent years. However, despite many investigations, a satisfactory theoretical understanding of the processes involved in grain rotation and alignment has not been achieved. As there appears to be no experimental data available on this subject, we have carried out some unique experiments to illuminate the processes involved in rotation of dust grains in the interstellar medium. In this paper we present the results of some preliminary laboratory experiments on the rotation of individual micron/submicron size nonspherical dust grains levitated in an electrodynamic balance evacuated to pressures of approx. 10(exp -3) to 10(exp -5) torr. The particles are illuminated by laser light at 5320 A, and the grain rotation rates are obtained by analyzing the low frequency (approx. 0-100 kHz) signal of the scattered light detected by a photodiode detector. The rotation rates are compared with simple theoretical models to retrieve some basic rotational parameters. The results are examined in the light of the current theories of alignment.

  1. Charging of Single Micron Sized Dust Grains by Secondary Electron Emission: A Laboratory Study

    Science.gov (United States)

    Spann, James F., Jr.; Venturini, Catherine C.; Comfort, R. H.

    1998-01-01

    We present the details of a new laboratory study whose objective is to experimentally study the interaction of micron sized particles with plasmas and electromagnetic radiation. Specifically, to investigate under what conditions and to what extent do particles of various compositions and sizes become charged, or discharged, while exposed to an electron beam and ultraviolet radiation environment The emphasis is the study of the two charging mechanisms, secondary emission of electrons and photoelectric effect. The experiment uses a technique known as electrodynamic suspension of particles. With this technique, a single charged particle is electrodynamically levitated and then exposed to a controlled environment. Its charge to mass ratio is directly measured. Viscous drag measurements and the light scattering measurements characterize its size and optical characteristics. The environment to which the particle is expose may consist of room temperature and pressure or a rarefied atmosphere where only one major gaseous constituent is present, or, as in this case, a vacuum environment under electron bombardment or UV radiation . In addition, the environment can be cycled as part of the experiment. Therefore, using this technique, a single particle can be repeatedly exposed to a controlled environment and its response measured, or a single particle can be exposed to similar environments with minor differences and its response measured as a function of only the changed environmental conditions.

  2. GaAs/Ge crystals grown on Si substrates patterned down to the micron scale

    International Nuclear Information System (INIS)

    Taboada, A. G.; Kreiliger, T.; Falub, C. V.; Känel, H. von; Meduňa, M.; Salvalaglio, M.; Miglio, L.; Isa, F.; Barthazy Meier, E.; Müller, E.; Isella, G.

    2016-01-01

    Monolithic integration of III-V compounds into high density Si integrated circuits is a key technological challenge for the next generation of optoelectronic devices. In this work, we report on the metal organic vapor phase epitaxy growth of strain-free GaAs crystals on Si substrates patterned down to the micron scale. The differences in thermal expansion coefficient and lattice parameter are adapted by a 2-μm-thick intermediate Ge layer grown by low-energy plasma enhanced chemical vapor deposition. The GaAs crystals evolve during growth towards a pyramidal shape, with lateral facets composed of (111) planes and an apex formed by (137) and (001) surfaces. The influence of the anisotropic GaAs growth kinetics on the final morphology is highlighted by means of scanning and transmission electron microscopy measurements. The effect of the Si pattern geometry, substrate orientation, and crystal aspect ratio on the GaAs structural properties was investigated by means of high resolution X-ray diffraction. The thermal strain relaxation process of GaAs crystals with different aspect ratio is discussed within the framework of linear elasticity theory by Finite Element Method simulations based on realistic geometries extracted from cross-sectional scanning electron microscopy images

  3. Sub-micron Hard X-ray Fluorescence Imaging of Synthetic Elements

    Science.gov (United States)

    Jensen, Mark P.; Aryal, Baikuntha P.; Gorman-Lewis, Drew; Paunesku, Tatjana; Lai, Barry; Vogt, Stefan; Woloschak, Gayle E.

    2013-01-01

    Synchrotron-based X-ray fluorescence microscopy (SXFM) using hard X-rays focused into sub-micron spots is a powerful technique for elemental quantification and mapping, as well as microspectroscopic measurement such as μ-XANES (X-ray absorption near edge structure). We have used SXFM to image and simultaneously quantify the transuranic element plutonium at the L3 or L2 edge as well as lighter biologically essential elements in individual rat pheochromocytoma (PC12) cells after exposure to the long-lived plutonium isotope 242Pu. Elemental maps reveal that plutonium localizes principally in the cytoplasm of the cells and avoids the cell nucleus, which is marked by the highest concentrations of phosphorus and zinc, under the conditions of our experiments. The minimum detection limit under typical acquisition conditions for an average 202 μm2 cell is 1.4 fg Pu/cell or 2.9 × 10−20 moles Pu/μm2, which is similar to the detection limit of K-edge SXFM of transition metals at 10 keV. Copper electron microscopy grids were used to avoid interference from gold X-ray emissions, but traces of strontium present in naturally occurring calcium can still interfere with plutonium detection using its Lα X-ray emission. PMID:22444530

  4. Detection of 12 micron Mg I and OH lines in stellar spectra

    Science.gov (United States)

    Jennings, D. E.; Deming, D.; Wiedemann, G. R.; Keady, J. J.

    1986-01-01

    Infrared lines of Mg I and OH have been detected in stellar spectra near 12.3 microns. The Mg I 7i-6h transition was seen in Alpha Ori and Alpha Tau, and the R2e(23.5) and R1f(24.5) transitions of OH were seen in Alpha Ori. All lines appear in absorption, in contrast to the solar spectrum where the Mg I line shows a prominent emission core. The lack of emission in these low surface gravity stars is due to a greatly reduced volume recombination rate for the high-n states of Mg I, which is not fully compensated by the increased chromospheric scale height. The OH equivalent widths are sensitive to the temperature structure of the upper photosphere of Alpha Ori, and they indicate that the photosphere near tau 5000 of about 10 to the -5th is approximately 100 K hotter than is given by flux constant models. The OH measurements agree more closely with the 1981 semiemprical model of Basri, Linsky, and Eriksson (1981), which is based on Ca II and Mg II ultraviolet features.

  5. Scalable Sub-micron Patterning of Organic Materials Toward High Density Soft Electronics.

    Science.gov (United States)

    Kim, Jaekyun; Kim, Myung-Gil; Kim, Jaehyun; Jo, Sangho; Kang, Jingu; Jo, Jeong-Wan; Lee, Woobin; Hwang, Chahwan; Moon, Juhyuk; Yang, Lin; Kim, Yun-Hi; Noh, Yong-Young; Jaung, Jae Yun; Kim, Yong-Hoon; Park, Sung Kyu

    2015-09-28

    The success of silicon based high density integrated circuits ignited explosive expansion of microelectronics. Although the inorganic semiconductors have shown superior carrier mobilities for conventional high speed switching devices, the emergence of unconventional applications, such as flexible electronics, highly sensitive photosensors, large area sensor array, and tailored optoelectronics, brought intensive research on next generation electronic materials. The rationally designed multifunctional soft electronic materials, organic and carbon-based semiconductors, are demonstrated with low-cost solution process, exceptional mechanical stability, and on-demand optoelectronic properties. Unfortunately, the industrial implementation of the soft electronic materials has been hindered due to lack of scalable fine-patterning methods. In this report, we demonstrated facile general route for high throughput sub-micron patterning of soft materials, using spatially selective deep-ultraviolet irradiation. For organic and carbon-based materials, the highly energetic photons (e.g. deep-ultraviolet rays) enable direct photo-conversion from conducting/semiconducting to insulating state through molecular dissociation and disordering with spatial resolution down to a sub-μm-scale. The successful demonstration of organic semiconductor circuitry promise our result proliferate industrial adoption of soft materials for next generation electronics.

  6. Acoustic Behavior of Subfloor Lightweight Mortars Containing Micronized Poly (Ethylene Vinyl Acetate (EVA

    Directory of Open Access Journals (Sweden)

    Luiza R. Brancher

    2016-01-01

    Full Text Available This paper aims to contribute to acoustical comfort in buildings by presenting a study about the polymer waste micronized poly (ethylene vinyl acetate (EVA to be used in mortars for impact sound insulation in subfloor systems. The evaluation method included physical, mechanical and morphological properties of the mortar developed with three distinct thicknesses designs (3, 5, and 7 cm with replacement percentage of the natural aggregate by 10%, 25%, and 50% EVA. Microscopy analysis showed the surface deposition of cement on EVA, with preservation of polymer porosity. The compressive creep test estimated long-term deformation, where the 10% EVA sample with a 7 cm thick mortar showed the lowest percentage deformation of its height. The impact noise test was performed with 50% EVA samples, reaching an impact sound insulation of 23 dB when the uncovered slab was compared with the 7 cm thick subfloor mortar. Polymer waste addition decreased the mortar compressive strength, and EVA displayed characteristics of an influential material to intensify other features of the composite.

  7. Optimization of exposure procedures for sub-quarter-micron CMOS applications

    Science.gov (United States)

    Hotta, Shoji; Onozuka, Toshihiko; Fukumoto, Keiko; Shirai, Seiichiro; Okazaki, Shinji

    1998-06-01

    We investigated various exposure procedures to minimize the Critical Dimension (CD) variation for the patterning of sub- quarter micron gates. To examine dependence of the CD variation on the pattern pitch and defocus conditions, the light intensity profiles of four different mask structures: (1) a binary mask with clear field, (2) a binary mask with dark field, (3) a phase-edge type phase-shifting mask (a phase-edge PSM) with clear field, and (4) a halftone phase- shifting mask (a halftone PSM) were compared, where exposure wavelength was 248 nm and numerical aperture (NA) of KrF stepper was 0.55. For 200-nm gate patterns, dependence of the CD variation on the pattern pitch and defocus conditions was minimized by a phase-edge PSM with clear field. By optimizing the illumination condition for a phase-edge PSM exposure, we obtained the CD variation of 10 nm at the minimum gate pitch of 0.8 micrometer and the defocus condition of plus or minus 0.4 micrometer. Applying the optimized exposure procedure to the device fabrication process, we obtained the total CD variation of plus or minus 27 nm.

  8. Geometrical analysis of woven fabric microstructure based on micron-resolution computed tomography data

    Science.gov (United States)

    Krieger, Helga; Seide, Gunnar; Gries, Thomas; Stapleton, Scott E.

    2018-04-01

    The global mechanical properties of textiles such as elasticity and strength, as well as transport properties such as permeability depend strongly on the microstructure of the textile. Textiles are heterogeneous structures with highly anisotropic material properties, including local fiber orientation and local fiber volume fraction. In this paper, an algorithm is presented to generate a virtual 3D-model of a woven fabric architecture with information about the local fiber orientation and the local fiber volume fraction. The geometric data of the woven fabric impregnated with resin was obtained by micron-resolution computed tomography (μCT). The volumetric μCT-scan was discretized into cells and the microstructure of each cell was analyzed and homogenized. Furthermore, the discretized data was used to calculate the local permeability tensors of each cell. An example application of the analyzed data is the simulation of the resin flow through a woven fabric based on the determined local permeability tensors and on Darcy's law. The presented algorithm is an automated and robust method of going from μCT-scans to structural or flow models.

  9. Enhanced Oil Recovery Using Micron-Size Polyacrylamide Elastic Microspheres (MPEMs): Underlying Mechanisms and Displacement Experiments

    KAUST Repository

    Yao, Chuanjin

    2015-10-12

    Micron-size polyacrylamide elastic microsphere (MPEM) is a newly developed profile control and oil displacement agent for enhanced oil recovery in heterogeneous reservoirs. In this study, laboratory experiments were performed to characterize the viscoelastic properties of MPEMs in brine water. A transparent sandpack micromodel was used to observe the microscopic flow and displacement mechanisms, and parallel-sandpack models were used to investigate the profile control and oil displacement performance using MPEMs in heterogeneous reservoirs. The results indicate that MPEMs almost do not increase the viscosity of injection water and can be conveniently injected using the original water injection pipelines. The microscopic profile control and oil displacement mechanisms of MPEMs in porous media mainly behave as selective-plugging in large pores, fluid diversion after MPEMs plugging, oil drainage caused by MPEMs breakthrough, and the mechanism of oil droplets converging into oil flow. MPEMs have a high plugging strength, which can tolerate a long-term water flushing. MPEMs can selectively enter and plug the large pores and pore-throats in high permeability sandpack, but almost do not damage the low permeability sandpack. MPEMs can effectively divert the water flow from the high permeability sandpack to the low permeability sandpack and improve the sweep efficiency of low permeability sandpack and low permeability area in the high permeability sandpack. The results also confirm the dynamic process of profile control and oil displacement using MPEMs in heterogeneous reservoirs.

  10. The 60 micron to 20 centimeter infrared-to-radio ratio within spiral galaxies

    Science.gov (United States)

    Bicay, M. D.; Helou, G.

    1990-01-01

    A detailed comparison is presented of the distribution of 60 micron IR and 20 cm radio continuum emission within 25 galaxies, mostly disk spirals. Local maxima in the thermal IR and nonthermal radio emission are found to be spatially coincident on scales of less than about 0.4 kpc in the nearest sample galaxies. The IR-red disk in normal spirals appears to be characterized by a shorter scale length than that of the radio continuum disk, suggesting that the IR-to-radio ratio should decrease as a function of radius. A model that successfully accounts for the observations is introduced which is based on the assumptions of steady-state star formation activity within the disk on kpc scales and a tight coupling between the origins of the dust-heating radiation and the radio-emitting cosmic-ray electrons. The underlying source is described as an exponential disk. The results also suggest that a random walk process cannot by itself describe the temporal evolution of cosmic rays.

  11. Sex difference in human fingertip recognition of micron-level randomness as unpleasant.

    Science.gov (United States)

    Nakatani, M; Kawasoe, T; Denda, M

    2011-08-01

    We investigated sex difference in evaluation, using the human fingertip, of the tactile impressions of three different micron-scale patterns laser-engraved on plastic plates. There were two ordered (periodical) patterns consisting of ripples on a scale of a few micrometres and one pseudo-random (non-periodical) pattern; these patterns were considered to mimic the surface geometry of healthy and damaged human hair, respectively. In the first experiment, 10 women and 10 men ran a fingertip over each surface and determined which of the three plates felt most unpleasant. All 10 female participants reported the random pattern, but not the ordered patterns, as unpleasant, whereas the majority of the male participants did not. In the second experiment, 9 of 10 female participants continued to report the pseudo-random pattern as unpleasant even after their fingertip had been coated with a collodion membrane. In the third experiment, participants were asked to evaluate the magnitude of the tactile impression for each pattern. The results again indicated that female participants tend to report a greater magnitude of unpleasantness than male participants. Our findings indicate that the female participants could readily detect microgeometric surface characteristics and that they evaluated the random pattern as more unpleasant. Possible physical and perceptual mechanisms involved are discussed. © 2011 The Authors. ICS © 2011 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  12. Prediction of total dose effects on sub-micron process metal oxide semiconductor devices

    International Nuclear Information System (INIS)

    Kamimura, Hiroshi; Kato, Masataka.

    1991-01-01

    A method for correcting leakage currents is described to predict the radiation-induced threshold voltage shift of sub-micron MOSFETs. A practical model for predicting the leakage current generated by irradiation is also given on the basis of experimental results on 0.8-μm process MOSFETs. The constants in the threshold voltage shift model are determined from the 'true' I-V characteristic of the MOSFET, which is obtained by correction of leakage currents due to characteristic change of a parasitic transistor. In this way, the threshold voltage shift of the n-channel MOSFET irradiated at a low dose rate of 2 Gy(Si)/h was also calculated by using data from a high dose rate irradiation experiment (100 Gy(Si)/h, 5 h). The calculated result well represented the tendency of measured data on threshold voltage shift. The radiation-induced leakage current was considered to decay approximately in two exponential modes. The constants in this leakage current model were determined from the above high dose rate experiment. The response of leakage current predicted at a low dose rate of 2 Gy(Si)/h approximately agreed with that measured during and after irradiation. (author)

  13. Characteristic Studies of Micron Zinc Particle Hydrolysis in a Fixed Bed Reactor

    Directory of Open Access Journals (Sweden)

    Lv Ming

    2015-09-01

    Full Text Available Zinc fuel is considered as a kind of promising energy sources for marine propeller. As one of the key steps for zinc marine energy power system, zinc hydrolysis process had been studied experimentally in a fixed bed reactor. In this study, we focus on the characteristics of micron zinc particle hydrolysis. The experimental results suggested that the steam inner diffusion is the controlling step of accumulative zinc particles hydrolysis reaction at a relative lower temperature and a relative higher water partial pressure. In other conditions, the chemical reaction kinetics was the controlling step. And two kinds of chemical reaction kinetics appeared in experiments: the surface reaction and the gas-gas reaction. The latter one occurs usually for larger zinc particles and high reaction temperature. Temperature seems to be one of the most important parameters for the dividing of different reaction mechanisms. Several parameters of the hydrolysis process including heating rate, water partial pressure, the particle size and temperature were also studied in this paper. Results show that the initial reaction temperature of zinc hydrolysis in fixed bed is about 410°C. And the initial reaction temperature increases as the heating rate increases and as the water partial pressure decreases. The total hydrogen yield increases as the heating rate decreases, as the water partial pressure increases, as the zinc particle size decreases, and as the reaction temperature increases. A hydrogen yield of more than 81.5% was obtained in the fixed bed experiments.

  14. Sub-cell turning to accomplish micron-level alignment of precision assemblies

    Science.gov (United States)

    Kumler, James J.; Buss, Christian

    2017-08-01

    Higher performance expectations for complex optical systems demand tighter alignment requirements for lens assembly alignment. In order to meet diffraction limited imaging performance over wide spectral bands across the UV and visible wavebands, new manufacturing approaches and tools must be developed if the optical systems will be produced consistently in volume production. This is especially applicable in the field of precision microscope objectives for life science, semiconductor inspection and laser material processing systems. We observe a rising need for the improvement in the optical imaging performance of objective lenses. The key challenge lies in the micron-level decentration and tilt of each lens element. One solution for the production of high quality lens systems is sub-cell assembly with alignment turning. This process relies on an automatic alignment chuck to align the optical axis of a mounted lens to the spindle axis of the machine. Subsequently, the mount is cut with diamond tools on a lathe with respect to the optical axis of the mount. Software controlled integrated measurement technology ensures highest precision. In addition to traditional production processes, further dimensions can be controlled in a very precise manner, e.g. the air gaps between the lenses. Using alignment turning simplifies further alignment steps and reduces the risk of errors. This paper describes new challenges in microscope objective design and manufacturing, and addresses difficulties with standard production processes. A new measurement and alignment technique is described, and strengths and limitations are outlined.

  15. Micronized Coal Reburning Demonstration for NOx Control: A DOE Assessment; FINAL

    International Nuclear Information System (INIS)

    National Energy Technology Laboratory

    2001-01-01

    The goal of the U.S. Department of Energy's (DOE) Clean Coal Technology (CCT) program is to furnish the energy marketplace with a number of advanced, more efficient, and environmentally responsible coal utilization technologies through demonstration projects. These projects seek to establish the commercial feasibility of the most promising advanced coal technologies that have developed beyond the proof-of-concept stage. This document serves as a DOE post-project assessment of a project selected in CCT Round IV, the Micronized Coal Reburning (MCR) Demonstration for NO(sub x) Control, as described in a report to Congress (U.S. Department of Energy 1999). The need to meet strict emissions requirements at a minimum cost prompted the Tennessee Valley Authority (TVA), in conjunction with Fuller Company, Energy and Environmental Research Corporation (EER), and Fluor Daniel, to submit the proposal for this project to be sited at TVA's Shawnee Fossil Plant. In July 1992, TVA entered into a cooperative agreement with DOE to conduct the study. However, because of operational and environmental compliance strategy changes, the Shawnee site became unavailable

  16. Prediction ranges. Annual review

    Energy Technology Data Exchange (ETDEWEB)

    Parker, J.C.; Tharp, W.H.; Spiro, P.S.; Keng, K.; Angastiniotis, M.; Hachey, L.T.

    1988-01-01

    Prediction ranges equip the planner with one more tool for improved assessment of the outcome of a course of action. One of their major uses is in financial evaluations, where corporate policy requires the performance of uncertainty analysis for large projects. This report gives an overview of the uses of prediction ranges, with examples; and risks and uncertainties in growth, inflation, and interest and exchange rates. Prediction ranges and standard deviations of 80% and 50% probability are given for various economic indicators in Ontario, Canada, and the USA, as well as for foreign exchange rates and Ontario Hydro interest rates. An explanatory note on probability is also included. 23 tabs.

  17. Antenna Pattern Range (APR)

    Data.gov (United States)

    Federal Laboratory Consortium — TheAntenna Pattern Range (APR)features a non-metallic arch with a trolley to move the transmit antenna from the horizon to zenith. At the center of the ground plane,...

  18. Atlantic Test Range (ATR)

    Data.gov (United States)

    Federal Laboratory Consortium — ATR controls fully-instrumented and integrated test ranges that provide full-service support for cradle-to-grave testing. Airspace and surface target areas are used...

  19. EV range sensitivity analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ostafew, C. [Azure Dynamics Corp., Toronto, ON (Canada)

    2010-07-01

    This presentation included a sensitivity analysis of electric vehicle components on overall efficiency. The presentation provided an overview of drive cycles and discussed the major contributors to range in terms of rolling resistance; aerodynamic drag; motor efficiency; and vehicle mass. Drive cycles that were presented included: New York City Cycle (NYCC); urban dynamometer drive cycle; and US06. A summary of the findings were presented for each of the major contributors. Rolling resistance was found to have a balanced effect on each drive cycle and proportional to range. In terms of aerodynamic drive, there was a large effect on US06 range. A large effect was also found on NYCC range in terms of motor efficiency and vehicle mass. figs.

  20. Comet C2012 S1 (ISON)s Carbon-rich and Micron-size-dominated Coma Dust

    Science.gov (United States)

    Wooden, D.; De Buizer, J.; Kelley, M.; Sitko, M.; Woodward, C.; Harker, D.; Reach, W.; Russell, R.; Kim, D.; Yanamadra-Fisher, P.; hide

    2014-01-01

    Comet C/2012 S1 (ISON) was unique in that it was a dynamically new comet derived from the Nearly Isotropic Oort cloud reservoir of comets with a sun-grazing orbit. We present thermal models for comet ISON (rh approx.1.15 AU, 2013-Oct-25 11:30 UT) that reveal comet ISON's dust was carbon-rich and dominated by a narrow size distribution dominated by approx. micron-sized grains. We constrained the models by our SOFIA FORCAST photometry at 11.1, 19.7 and 31.5 microns and by a silicate feature strength of approx.1.1 and an 8-13microns continuum greybody color temperature of approx. 275-280 K (using Tbb ? r-0.5 h and Tbb approx. 260-265 K from Subaru COMICS, 2013-Oct-19 UT)[1,2]. N-band spectra of comet ISON with the BASS instrument on the NASA IRTF (2013-Nov-11-12 UT) show a silicate feature strength of approx. 1.1 and an 11.2microns forsterite peak.[3] Our thermal models yield constraints the dust composition as well as grain size distribution parameters: slope, peak grain size, porosity. Specifically, ISON's dust has a low silicate-to- amorphous carbon ratio (approx. 1:9), and the coma size distribution has a steep slope (N4.5) such that the coma is dominated by micron-sized, moderately porous, carbon-rich dust grains. The N-band continuum color temperature implies submicronto micron-size grains and the steep fall off of the SOFIA far-IR photometry requires the size distribution to have fewer relative numbers of larger and cooler grains compared to smaller and hotter grains. A proxy for the dust production rate is f? approx.1500 cm, akin to Af?. ISON has a moderate-to-low dust-to-gas ratio. Comet ISON's dust grain size distribution does not appear similar to the few well-studied long-period Nearly Isotropic Comets (NICs), namely C/1995 O1 (Hale-Bopp) and C/2001 Q4 (NEAT) that had smaller and/or more highly porous grains and larger sizes, or C/2007 N4 (Lulin) and C/2006 P1 (McNaught) that had large and/or compact grains. Radial transport to comet-forming disk distances

  1. Range Selection and Median

    DEFF Research Database (Denmark)

    Jørgensen, Allan Grønlund; Larsen, Kasper Green

    2011-01-01

    and several natural special cases thereof. The rst special case is known as range median, which arises when k is xed to b(j 􀀀 i + 1)=2c. The second case, denoted prex selection, arises when i is xed to 0. Finally, we also consider the bounded rank prex selection problem and the xed rank range......Range selection is the problem of preprocessing an input array A of n unique integers, such that given a query (i; j; k), one can report the k'th smallest integer in the subarray A[i];A[i+1]; : : : ;A[j]. In this paper we consider static data structures in the word-RAM for range selection...... selection problem. In the former, data structures must support prex selection queries under the assumption that k for some value n given at construction time, while in the latter, data structures must support range selection queries where k is xed beforehand for all queries. We prove cell probe lower bounds...

  2. Operational comparison of two types of tractor sprayers (microner and boom-type against wheat crop weeds

    Directory of Open Access Journals (Sweden)

    M Hamid

    2015-09-01

    Full Text Available Introduction: Nowadays, the tractor mounted boom sprayer is used in many agricultural fields. These sprayers have many advantages compared to other sprayers, but in Iran, their field efficiency is much lower than that of the developed countries, because the tank volume and consumption of pesticides per hectare is often so highthat spraying per hectare takesa long time for handling the solutions and transporting the sprayers. Also spray droplet size is ordinarily high and its distribution is unknot uniform. So, often spraying and dropping top parts of plants on the earth is inevitable. According to studies carried out in the country during the years 2005-2008 in the agricultural research centers in several provinces such as Khuzestan, four types of sprayers including tractor mounted sprayer, atomizer, microner, and electrostatic atomizer were studied and some of the results obtained include the following. From the point of view of percentage of crash crop, tractor mounted sprayer has the highest percentage, but microner sprayer had the lowest. From the point of view of the solution of consumption amount and spraying cost per hectare, the operation of the tractor mounted sprayer and electrostatic sprayer had the highest and the lowest ranks, respectively. Atomizer sprayer had the highest effect on the percentage amount of weed control, but it requires a high amount of water consumption, high drift and low operation (Safari and Lovaimi, 2010. Materials and Methods: The experiment was carried out during 2012-2013 in the field of agricultural research located in the Mollasani city located 20 km near Ahvaz. In this study, tractor mounted spinning disk sprayer (mounted microner sprayer was evaluated in comparison with conventional boom sprayer on weeds control. The treatments included medium (3500 rpm and low (2000 rpm speed rotation disk sprayer and two types of nozzle in conventional boom sprayer. One of them was an Italian tee jet nozzle and the

  3. Relative bioavailability of micronized, dispersible ferric pyrophosphate added to an apple juice drink.

    Science.gov (United States)

    Roe, Mark A; Collings, Rachel; Hoogewerff, Jurian; Fairweather-Tait, Susan J

    2009-03-01

    Food iron fortification is a sustainable and relatively simple strategy to reduce/prevent iron deficiency but is a challenge for the food industry because of possible adverse organoleptic changes caused by the added iron. A micronized dispersible ferric pyrophosphate, trademarked as SunActive Fe, has recently been developed. SunActive Fe has a small particle size, is water soluble and may be suitable for fortifying liquid products. To determine the relative bioavailability of SunActive Fe and its suitability for addition to pure apple juice. Iron absorption from SunActive Fe added to pure apple juice (Minute Maid) was compared with absorption from ferrous sulphate, a highly bioavailable form of iron, in 15 women with relatively low iron stores. Both forms of iron were enriched with an iron stable isotope and iron absorption from the apple juice drinks was calculated from the isotopic enrichment of red blood cells 14 days after the last test meal. Although mean absorption of iron from SunActive Fe was significantly lower than from ferrous sulphate (5.5% compared with 9.1%), the mean bioavailability of SunActive Fe iron relative to ferrous sulphate was 0.6, indicating that it is a good source of bioavailable iron. Iron Absorption from SunActive Fe was positively correlated (r = 0.97, P = 0.01) with absorption from ferrous sulphate, and negatively correlated with serum ferritin concentration (ferrous sulphate r = -0.81, P apple juice and is a potentially useful fortificant for liquid food products.

  4. Color from hierarchy: Diverse optical properties of micron-sized spherical colloidal assemblies.

    Science.gov (United States)

    Vogel, Nicolas; Utech, Stefanie; England, Grant T; Shirman, Tanya; Phillips, Katherine R; Koay, Natalie; Burgess, Ian B; Kolle, Mathias; Weitz, David A; Aizenberg, Joanna

    2015-09-01

    Materials in nature are characterized by structural order over multiple length scales have evolved for maximum performance and multifunctionality, and are often produced by self-assembly processes. A striking example of this design principle is structural coloration, where interference, diffraction, and absorption effects result in vivid colors. Mimicking this emergence of complex effects from simple building blocks is a key challenge for man-made materials. Here, we show that a simple confined self-assembly process leads to a complex hierarchical geometry that displays a variety of optical effects. Colloidal crystallization in an emulsion droplet creates micron-sized superstructures, termed photonic balls. The curvature imposed by the emulsion droplet leads to frustrated crystallization. We observe spherical colloidal crystals with ordered, crystalline layers and a disordered core. This geometry produces multiple optical effects. The ordered layers give rise to structural color from Bragg diffraction with limited angular dependence and unusual transmission due to the curved nature of the individual crystals. The disordered core contributes nonresonant scattering that induces a macroscopically whitish appearance, which we mitigate by incorporating absorbing gold nanoparticles that suppress scattering and macroscopically purify the color. With increasing size of the constituent colloidal particles, grating diffraction effects dominate, which result from order along the crystal's curved surface and induce a vivid polychromatic appearance. The control of multiple optical effects induced by the hierarchical morphology in photonic balls paves the way to use them as building blocks for complex optical assemblies--potentially as more efficient mimics of structural color as it occurs in nature.

  5. Sub-micron opto-chemical probes for studying living neurons

    Science.gov (United States)

    Hossein-Zadeh, M.; Delgado, J.; Schweizer, F.; Lieberman, R.

    2017-02-01

    We have fabricated sub-micron opto-chemical probes for pH, oxygen and calcium monitoring and demonstrated their application in intracellular and extracellular monitoring of neurons (cortical neuronal cultures and acute hippocampal slices). Using these probes, we have measured extracellular pH in the stratum radiatum of the CA1 region of mouse hippocampus upon stimulation of presynaptic Schaffer collateral axons. Synaptic transmission was monitored using standard electrophysiological techniques. We find that the local pH transiently changes in response to synaptic stimulation. In addition, the geometry of the functionalized region on the probe combined with high sensitivity imaging enables simultaneous monitoring of spatially adjacent but distinct compartments. As proof of concept we impaled cultured neurons with the probe measured calcium and pH inside as well as directly outside of neurons as we changed the pH and calcium concentration in the physiological solution in the perfusion chamber. As such these probes can be used to study the impact of the environment on both cellular and extra-cellular space. Additionally as the chemical properties of the surrounding medium can be controlled and monitored with high precision, these probes enable differential measurement of the target parameter referenced to a stable bath. This approach eliminates the uncertainties associated with non-chemical fluctuations in the fluorescent emission and result in a self-calibrated opto-chemical probe. We have also demonstrated multifunctional probes that are capable of measuring up to three parameters in the extracellular space in brain slices.

  6. An examination of the shrinking-core model of sub-micron aluminum combustion

    Science.gov (United States)

    Buckmaster, John; Jackson, Thomas L.

    2013-04-01

    We revisit the shrinking-core model of sub-micron aluminum combustion with particular attention to the mass flux balance at the reaction front which necessarily leads to a displacement velocity of the alumina shell surrounding the liquid aluminum. For the planar problem this displacement simply leads to an equal displacement of the entire alumina layer, and therefore a straightforward mathematical framework can be constructed. In this way we are able to construct a single curve which defines the burn time for arbitrary values of the diffusion coefficient of O atoms, the reaction rate, the characteristic length of the combustion field, and the O atom mass concentration within the alumina provided that it is much smaller than the aluminum density. This demonstrates a transition between a 'd 2-t' law for fast chemistry and a 'd-t' law for slow chemistry. For the spherical geometry, the one of physical interest, the outward displacement velocity creates not a simple displacement, but a stress field which, when examined within the framework of linear elasticity, strongly suggests the creation of internal cracking. We note that if the molten aluminum is pushed into these cracks by the high internal pressure characteristic of the stress field, its surface, where reaction occurs, could be fractal in nature and affect the fundamental nature of the burning law. Indeed, if this ingredient is added to the planar model, a single curve for the burn time can again be derived, and this describes a transition from a 'd 2-t' law to a 'd ν-t' law, where 0<ν<1.

  7. Color from hierarchy: Diverse optical properties of micron-sized spherical colloidal assemblies

    Science.gov (United States)

    Vogel, Nicolas; Utech, Stefanie; England, Grant T.; Shirman, Tanya; Phillips, Katherine R.; Koay, Natalie; Burgess, Ian B.; Kolle, Mathias; Weitz, David A.; Aizenberg, Joanna

    2015-01-01

    Materials in nature are characterized by structural order over multiple length scales have evolved for maximum performance and multifunctionality, and are often produced by self-assembly processes. A striking example of this design principle is structural coloration, where interference, diffraction, and absorption effects result in vivid colors. Mimicking this emergence of complex effects from simple building blocks is a key challenge for man-made materials. Here, we show that a simple confined self-assembly process leads to a complex hierarchical geometry that displays a variety of optical effects. Colloidal crystallization in an emulsion droplet creates micron-sized superstructures, termed photonic balls. The curvature imposed by the emulsion droplet leads to frustrated crystallization. We observe spherical colloidal crystals with ordered, crystalline layers and a disordered core. This geometry produces multiple optical effects. The ordered layers give rise to structural color from Bragg diffraction with limited angular dependence and unusual transmission due to the curved nature of the individual crystals. The disordered core contributes nonresonant scattering that induces a macroscopically whitish appearance, which we mitigate by incorporating absorbing gold nanoparticles that suppress scattering and macroscopically purify the color. With increasing size of the constituent colloidal particles, grating diffraction effects dominate, which result from order along the crystal’s curved surface and induce a vivid polychromatic appearance. The control of multiple optical effects induced by the hierarchical morphology in photonic balls paves the way to use them as building blocks for complex optical assemblies—potentially as more efficient mimics of structural color as it occurs in nature. PMID:26290583

  8. Highly nonlinear sub-micron silicon nitride trench waveguide coated with gold nanoparticles

    Science.gov (United States)

    Huang, Yuewang; Zhao, Qiancheng; Sharac, Nicholas; Ragan, Regina; Boyraz, Ozdal

    2015-05-01

    We demonstrate the fabrication of a highly nonlinear sub-micron silicon nitride trench waveguide coated with gold nanoparticles for plasmonic enhancement. The average enhancement effect is evaluated by measuring the spectral broadening effect caused by self-phase-modulation. The nonlinear refractive index n2 was measured to be 7.0917×10-19 m2/W for a waveguide whose Wopen is 5 μm. Several waveguides at different locations on one wafer were measured in order to take the randomness of the nanoparticle distribution into consideration. The largest enhancement is measured to be as high as 10 times. Fabrication of this waveguide started with a MEMS grade photomask. By using conventional optical lithography, the wide linewidth was transferred to a wafer. Then the wafer was etched anisotropically by potassium hydroxide (KOH) to engrave trapezoidal trenches with an angle of 54.7º. Side wall roughness was mitigated by KOH etching and thermal oxidation that was used to generate a buffer layer for silicon nitride waveguide. The guiding material silicon nitride was then deposited by low pressure chemical vapor deposition. The waveguide was then patterned with a chemical template, with 20 nm gold particles being chemically attached to the functionalized poly(methyl methacrylate) domains. Since the particles attached only to the PMMA domains, they were confined to localized regions, therefore forcing the nanoparticles into clusters of various numbers and geometries. Experiments reveal that the waveguide has negligible nonlinear absorption loss, and its nonlinear refractive index can be greatly enhanced by gold nano clusters. The silicon nitride trench waveguide has large nonlinear refractive index, rendering itself promising for nonlinear applications.

  9. Study on the submicron and micron morphology and the properties of poor bituminous coal burnout

    Energy Technology Data Exchange (ETDEWEB)

    Pei-Fang Fu; Huai-Chun Zhou; Qing-Yan Fang; Hai Yao; Jianrong Qiu; Minghou Xu [Huazhong University of Science and Technology, Wuhan (China). State Key Laboratory of Coal Combustion

    2007-05-15

    Carbon burnout and its reaction mechanism have been widely focused on in the past decades. The properties of burnout, submicron and micron morphology and the reaction mechanism of poor bituminous coal/char (PBC) in a W-shaped power plant boiler was studied and was compared with those in DTF and in TGA, which showed that the degree of PBC burnout in TGA at 1450{sup o}C was greater than or approximately equal to that in a W-shaped boiler, and that the complexity of the reactions among residual char, oxygen and SiO{sub 2} did not seem to result in mass loss in TGA, although the weight percentage of the residual char in ash decreased from 33% ad (air dry basis) at 900{sup o}C to 9% and at 1450{sup o}C. According to the distribution of pores and the properties of the char burnout, the char can be simply categorized into three classes: char burnout easy, char burnout difficult and char burnout very difficult. The differences of the reaction mechanism must be considered while predicting the burning rate and degree of char burnout in a full-scale boiler by making use of experimental results from TGA and DTF. A different char particle contains markedly different amount of carbons, but for a special char particle, the ratio of carbon to ash is generally constant, and an ash shell does not exist on the char surface. The fusion mineral matter composing of C-O-Si-Al is amorphous, not in the form of Al{sub 2}O{sub 3} and SiO{sub 2} above 1450{sup o}C.

  10. Femtosecond planar electron beam source for micron-scale dielectric wake field accelerator

    Directory of Open Access Journals (Sweden)

    T. C. Marshall

    2001-12-01

    Full Text Available A new accelerator, LACARA (laser-driven cyclotron autoresonance accelerator, under construction at the Accelerator Test Facility at Brookhaven National Laboratory, is to be powered by a 1 TW CO_{2} laser beam and a 50 MeV injected electron pulse. LACARA will produce inside a 2 m, 6 T solenoid a 100 MeV gyrating electron bunch, with ∼3% energy spread, approximately 1 psec in length with particles advancing in phase at the laser frequency, executing one cycle each 35 fsec. A beamstop with a small off axis channel will transmit a short beam pulse every optical cycle, thereby producing a train of about 30, 3.5 fsec long, 1–3 pC microbunches for each laser pulse. We describe here a novel accelerator, a micron-scale dielectric wake field accelerator driven by a 500 MeV LACARA-type injector that takes the output train of microbunches and transforms them into a near-rectangular cross section having a narrow dimension of ∼10 μm and height of ∼150 μm using a magnetic quadrupole; these bunches may be injected into a planar dielectric-lined waveguide (slightly larger than the bunch where cumulative buildup of wake fields can lead to an accelerating gradient >1 GV/m. This proposed vacuum-based wake field structure is physically rigid and capable of microfabrication accuracy, factors important in staging a large number of accelerator modules. Furthermore, the accelerating gradients it promises are comparable with those for plasma accelerators. A LACARA unit for preparing suitable bunches at 500 MeV is described. Physics issues are discussed, including bunch spreading and transport, bunch shaping, coherent diffraction radiation from the aperture, dielectric breakdown, and bunch stability in the rectangular wake field structure.

  11. Nano rough micron patterned titanium for directing osteoblast morphology and adhesion

    Directory of Open Access Journals (Sweden)

    Sabrina Puckett

    2008-06-01

    Full Text Available Sabrina Puckett, Rajesh Pareta, Thomas J WebsterDivision of Engineering, Brown University, Providence, RI, USAAbstract: Previous studies have demonstrated greater functions of osteoblasts (bone-forming cells on nanophase compared with conventional metals. Nanophase metals possess a biologically inspired nanostructured surface that mimics the dimensions of constituent components in bone, including collagen and hydroxyapatite. Not only do these components possess dimensions on the nanoscale, they are aligned in a parallel manner creating a defined orientation in bone. To date, research has yet to evaluate the effect that organized nanosurface features can have on the interaction of osteoblasts with material surfaces. Therefore, to determine if surface orientation of features can mediate osteoblast adhesion and morphology, this study investigated osteoblast function on patterned titanium substrates containing alternating regions of micron rough and nano rough surfaces prepared by novel electron beam evaporation techniques. This study was also interested in determining whether or not the size of the patterned regions had an effect on osteoblast behavior and alignment. Results indicated early controlled osteoblast alignment on these patterned materials as well as greater osteoblast adhesion on the nano rough regions of these patterned substrates. Interestingly, decreasing the width of the nano rough regions (from 80 µm to 22 µm on these patterned substrates resulted in a decreased number of osteoblasts adhering to these areas. Changes in the width of the nano rough regions also resulted in changes in osteoblast morphology, thus, suggesting there is an optimal pattern dimension that osteoblasts prefer. In summary, results of this study provided evidence that aligned nanophase metal features on the surface of titanium improved early osteoblast functions (morphology and adhesion promising for their long term functions, criteria necessary to improve

  12. Development of a Micronized Meniscus Extracellular Matrix Scaffold for Potential Augmentation of Meniscal Repair and Regeneration.

    Science.gov (United States)

    Monibi, Farrah A; Bozynski, Chantelle C; Kuroki, Keiichi; Stoker, Aaron M; Pfeiffer, Ferris M; Sherman, Seth L; Cook, James L

    2016-12-01

    Decellularized scaffolds composed of extracellular matrix (ECM) hold promise for repair and regeneration of the meniscus, given the potential for ECM-based biomaterials to aid in stem cell recruitment, infiltration, and differentiation. The objectives of this study were to decellularize canine menisci to fabricate a micronized, ECM-derived scaffold and to determine the cytocompatibility and repair potential of the scaffold ex vivo. Menisci were decellularized with a combination of physical agitation and chemical treatments. For scaffold fabrication, decellularized menisci were cryoground into a powder and the size and morphology of the ECM particles were evaluated using scanning electron microscopy. Histologic and biochemical analyses of the scaffold confirmed effective decellularization with loss of proteoglycan from the tissue but no significant reduction in collagen content. When washed effectively, the decellularized scaffold was cytocompatible to meniscal fibrochondrocytes, synoviocytes, and whole meniscal tissue based on the resazurin reduction assay and histologic evaluation. In an ex vivo model for meniscal repair, radial tears were augmented with the scaffold delivered with platelet-rich plasma as a carrier, and compared to nonaugmented (standard-of-care) suture techniques. Histologically, there was no evidence of cellular migration or proliferation noted in any of the untreated or standard-of-care treatment groups after 40 days of culture. Conversely, cellular infiltration and proliferation were noted in scaffold-augmented repairs. These data suggest the potential for the scaffold to promote cellular survival, migration, and proliferation ex vivo. Further investigations are necessary to examine the potential for the scaffold to induce cellular differentiation and functional meniscal fibrochondrogenesis.

  13. Online Sorted Range Reporting

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Fagerberg, Rolf; Greve, Mark

    2009-01-01

    is motivated by (and is a generalization of) a problem with applications in search engines: On a tree where leaves have associated rank values, report the highest ranked leaves in a given subtree. Finally, the problem studied generalizes the classic range minimum query (RMQ) problem on arrays....

  14. Substring Range Reporting

    DEFF Research Database (Denmark)

    Bille, Philip; Gørtz, Inge Li

    2014-01-01

    We revisit various string indexing problems with range reporting features, namely, position-restricted substring searching, indexing substrings with gaps, and indexing substrings with intervals. We obtain the following main results. We give efficient reductions for each of the above problems...

  15. Substring Range Reporting

    DEFF Research Database (Denmark)

    Bille, Philip; Gørtz, Inge Li

    2011-01-01

    We revisit various string indexing problems with range reporting features, namely, position-restricted substring searching, indexing substrings with gaps, and indexing substrings with intervals. We obtain the following main results. – We give efficient reductions for each of the above problems...

  16. Range-clustering queries

    NARCIS (Netherlands)

    Abrahamsen, M.; de Berg, M.T.; Buchin, K.A.; Mehr, M.; Mehrabi, A.D.

    2017-01-01

    In a geometric k -clustering problem the goal is to partition a set of points in R d into k subsets such that a certain cost function of the clustering is minimized. We present data structures for orthogonal range-clustering queries on a point set S : given a query box Q and an integer k>2 , compute

  17. Progress towards sub-micron hard x-ray imaging using elliptically bent mirrors and its applications

    International Nuclear Information System (INIS)

    MacDowell, A.A.; Lamble, G.M.; Celestre, R.S.; Padmore, H.A.; Chang, C.H.; Patel, J.R.

    1998-06-01

    The authors have developed an x-ray micro-probe facility utilizing mirror bending techniques that allow white light x-rays (4--12keV) from the Advanced light Source Synchrotron to be focused down to spot sizes of micron spatial dimensions. They have installed a 4 crystal monochromator prior to the micro-focusing mirrors. The monochromator is designed such that it can move out of the way of the input beam, and allows the same micron sized sample to be illuminated with either white or monochromatic radiation. Illumination of the sample with white light allows for elemental mapping and Laue x-ray diffraction, while illumination of the sample with monochromatic light allows for elemental mapping (with reduced background), micro-X-ray absorption spectroscopy and micro-diffraction. The performance of the system will be described as will some of the initial experiments that cover the various disciplines of Earth, Material and Life Sciences

  18. Progress on Development of an Airborne Two-Micron IPDA Lidar for Water Vapor and Carbon Dioxide Column Measurements

    Science.gov (United States)

    Singh, Upendra N.; Petros, Mulugeta; Refaat, Tamer F.; Yu, Jirong; Antill, Charles W.; Taylor, Bryant D.; Bowen, Stephen C.; Welters, Angela M.; Remus, Ruben G.; Wong, Teh-Hwa; hide

    2014-01-01

    An airborne 2 micron triple-pulse integrated path differential absorption (IPDA) lidar is currently under development at NASA Langley Research Center (LaRC). This lidar targets both atmospheric carbon dioxide (CO2) and water vapor (H2O) column measurements, simultaneously. Advancements in the development of this IPDA lidar are presented in this paper. Updates on advanced two-micron triple-pulse high-energy laser transmitter will be given including packaging and lidar integration status. In addition, receiver development updates will also be presented. This includes a state-of-the-art detection system integrated at NASA Goddard Space Flight Center. This detection system is based on a newly developed HgCdTe (MCT) electron-initiated avalanche photodiode (e-APD) array. Future plan for IPDA lidar system for ground integration, testing and flight validation will be discussed.

  19. Infrared spectroscopy (2.3-20 microns) for the geological interpretation of remotely-sensed multispectral thermal infrared data

    Science.gov (United States)

    Bartholomew, Mary Jane; Kahle, Anne B.; Hoover, Gordon

    1989-01-01

    The spectral radiance and spectral reflectance of natural weathered surfaces of common sedimentary and igneous rocks is determined from in situ and in the laboratory measurements. In situ spectral radiance measurements (5-14 microns) were made with a portable spectral radiometer and were used to derive the spectral emissivity of the rocks. The spectral reflectance measurements (2.3-20 microns) were made in a laboratory with a Fourier transform IR spectrometer with a diffuse reflectance accessory. Good agreement is found between the two techniques. The field portable spectrometer has a larger field of view and the in situ data provide more accurate measurements of the intensity of spectral features related to temperature and atmospheric effects.

  20. Synthesis and characterization of hollow α-Fe2O3 sub-micron spheres prepared by sol–gel

    International Nuclear Information System (INIS)

    León, Lizbet; Bustamante, Angel; Osorio, Ana; Olarte, G. S.; Santos Valladares, Luis De Los; Barnes, Crispin H. W.; Majima, Yutaka

    2011-01-01

    In this work we report the preparation of magnetic hematite hollow sub-micron spheres (α-Fe 2 O 3 ) by colloidal suspensions of ferric nitrate nine-hydrate (Fe(NO 3 ) 3 ·9H 2 O) particles in citric acid solution by following the sol–gel method. After the gel formation, the samples were annealed at different temperatures in an oxidizing atmosphere. Annealing at 180°C resulted in an amorphous phase, without iron oxide formation. Annealing at 250°C resulted in coexisting phases of hematite, maghemite and magnetite, whereas at 400°C, only hematite and maghemite were found. Pure hematite hollow sub-micron spheres with porous shells were formed after annealing at 600°C. The characterization was performed by X-ray diffraction (XRD), Mössbauer spectroscopy (MS) and scanning electron microscopy (SEM).

  1. Detection of metal stress in boreal forest species using the 0.67-micron chlorophyll absorption band

    Science.gov (United States)

    Singhroy, Vernon H.; Kruse, Fred A.

    1991-01-01

    Several recent studies have shown that a shift of the red-edge inflection near 0.70 micron in vegetation reflectance spectra is an indicator of metal stress, partially attributable to changes in chlorophyll concentration. This 'red-edge shift', however, is difficult to detect and has been reported both toward longer (red) and shorter (blue) wavelengths. Our work demonstrates that direct measurement of the depth and width of the chlorophyll absorption band at 0.67 micron using digital feature extraction and absorption band characterization procedures developed for the analysis of mineral spectra is a more consistent indicator of metal stress. Additionally, the magnitude of these parameters is generally greater than that of the red edge shift and thus should be more amenable to detection and mapping using field and aircraft spectrometers.

  2. Progress towards sub-micron hard x-ray imaging using elliptically bent mirrors and its applications

    Energy Technology Data Exchange (ETDEWEB)

    MacDowell, A.A.; Lamble, G.M.; Celestre, R.S.; Padmore, H.A. [Lawrence Berkeley National Lab., CA (United States); Chang, C.H.; Patel, J.R. [Lawrence Berkeley National Lab., CA (United States). Advanced Light Source Div.]|[Stanford Univ., CA (United States)

    1998-06-01

    The authors have developed an x-ray micro-probe facility utilizing mirror bending techniques that allow white light x-rays (4--12keV) from the Advanced light Source Synchrotron to be focused down to spot sizes of micron spatial dimensions. They have installed a 4 crystal monochromator prior to the micro-focusing mirrors. The monochromator is designed such that it can move out of the way of the input beam, and allows the same micron sized sample to be illuminated with either white or monochromatic radiation. Illumination of the sample with white light allows for elemental mapping and Laue x-ray diffraction, while illumination of the sample with monochromatic light allows for elemental mapping (with reduced background), micro-X-ray absorption spectroscopy and micro-diffraction. The performance of the system will be described as will some of the initial experiments that cover the various disciplines of Earth, Material and Life Sciences.

  3. Enhancing Low-Temperature and Pressureless Sintering of Micron Silver Paste Based on an Ether-Type Solvent

    Science.gov (United States)

    Zhang, Hao; Li, Wanli; Gao, Yue; Zhang, Hao; Jiu, Jinting; Suganuma, Katsuaki

    2017-08-01

    Micron silver paste enables a low-temperature and pressureless sintering process by using an ether-type solvent CELTOL-IA (C x H y O z , x > 10, boiling point of approximately 200°C) for the die attachment of high-powered devices. The conductive patterns formed by the silver paste had a low electrical resistivity of 8.45 μΩ cm at 180°C. The paste also achieved a high bonding strength above 30 MPa at 180°C without the assistance of pressures. These superior performance indicators result from the favorable removal of the solvent, its thermal behavior, and its good wetting on the silver layer. The results suggest that the micron silver paste with a suitable solvent can promote the further spreading of next-generation power devices owing to its marked cost advantage and excellent performance.

  4. Characterization of in-situ annealed sub-micron thick Cu(In,Ga)Se{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Byoung-Soo; Sung, Shi-Joon; Hwang, Dae-Kue, E-mail: dkhwang@dgist.ac.kr

    2015-09-01

    Sub-micron thick Cu(In,Ga)Se{sub 2} (CIGS) thin films were deposited on Mo-coated soda-lime glass substrates under various conditions by single-stage co-evaporation. Generally, the short circuit current (J{sub sc}) decreased with the decreasing thickness of the absorber layer. However, in this study, J{sub sc} was nearly unchanged with decreasing thickness, while the open circuit voltage (V{sub oc}) and fill factor (FF) decreased by 31.9 and 31.1%, respectively. We believe that the remarkable change of V{sub oc} and FF can be attributed to the difference in the total amount of injected thermal energy. Using scanning electron microscopy, we confirmed that the surface morphology becomes smooth and the grain size increased after the annealing process. In the X-ray diffraction patterns, the CIGS thin film also showed an improved crystal quality. We observed that the electric properties were improved by the in-situ annealing of CIGS thin films. The reverse saturation current density of the annealed CIGS solar cell was 100 times smaller than that of reference solar cell. Thus, sub-micron CIGS thin films annealed under a constant Se rate showed a 64.7% improvement in efficiency. - Highlights: • The effects of in-situ annealing the sub-micron CIGS film have been investigated. • The surface morphology and the grain size were improved by in-situ annealing. • The V{sub oc} and FF of the films were increased by about 30% after in-situ annealing. • In-situ annealing of sub-micron thick CIGS films can be improved an efficiency.

  5. Broadband Laser Ranging for Position Measurements in Shock Physics Experiments

    Science.gov (United States)

    Rhodes, Michelle; Bennett, Corey; Daykin, Edward; Younk, Patrick; Lalone, Brandon; Kostinski, Natalie

    2017-06-01

    Broadband laser ranging (BLR) is a recently developed measurement system that provides an attractive option for determining the position of shock-driven surfaces. This system uses broadband, picosecond (or femtosecond) laser pulses and a fiber interferometer to measure relative travel time to a target and to a reference mirror. The difference in travel time produces a delay difference between pulse replicas that creates a spectral beat frequency. The spectral beating is recorded in real time using a dispersive Fourier transform and an oscilloscope. BLR systems have been designed that measure position at 12.5-40 MHz with better than 100 micron accuracy over ranges greater than 10 cm. We will give an overview of the basic operating principles of these systems. Prepared by LLNL under Contract DE-AC52-07NA27344, by LANL under Contract DE-AC52-06NA25396, and by NSTec Contract DE-AC52-06NA25946.

  6. The US Geological Survey, digital spectral reflectance library: version 1: 0.2 to 3.0 microns

    Science.gov (United States)

    Clark, Roger N.; Swayze, Gregg A.; King, Trude V. V.; Gallagher, Andrea J.; Calvin, Wendy M.

    1993-01-01

    We have developed a digital reflectance spectral library, with management and spectral analysis software. The library includes 500 spectra of 447 samples (some samples include a series of grain sizes) measured from approximately 0.2 to 3.0 microns. The spectral resolution (Full Width Half Maximum) of the reflectance data is less than or equal to 4 nm in the visible (0.2-0.8 microns) and less than or equal 10 nm in the NIR (0.8-2.35 microns). All spectra were corrected to absolute reflectance using an NBS Halon standard. Library management software lets users search on parameters (e.g. chemical formulae, chemical analyses, purity of samples, mineral groups, etc.) as well as spectral features. Minerals from sulfide, oxide, hydroxide, halide, carbonate, nitrate, borate, phosphate, and silicate groups are represented. X-ray and chemical analyses are tabulated for many of the entries, and all samples have been evaluated for spectral purity. The library also contains end and intermediate members for the olivine, garnet, scapolite, montmorillonite, muscovite, jarosite, and alunite solid-solution series. We have included representative spectra of H2O ice, kerogen, ammonium-bearing minerals, rare-earth oxides, desert varnish coatings, kaolinite crystallinity series, kaolinite-smectite series, zeolite series, and an extensive evaporite series. Because of the importance of vegetation to climate-change studies we have include 17 spectra of tree leaves, bushes, and grasses.

  7. High-resolution 8-13 micron imaging of the planetary nebulae BD + 30 deg 3639 and NGC 6572

    International Nuclear Information System (INIS)

    Hora, J.L.; Hoffmann, W.F.; Deutsch, L.K.; Fazio, G.G.

    1990-01-01

    High-resolution midinfrared images of the planetary nebulae BD + 30 deg 3639 and NGC 6572 are presented at 8.3, 8.7, 9.8, 11.2, and 12.4 microns. Analysis of the maps of BD + 30 deg 3639 supports a model in which the infrared emission originates from two spatially distinct components, one which is responsible for the continuum radiation at 8-12 microns and the other which produces the emission-line features. The NGC 6572 images provides evidence for a previously undetected 11.2 micron UIR emission feature. Comparison with radio continuum maps indicates that the distribution of dust is similar to the distribution of ionized gas in each nebula. Various models of source morphology are also investigated. The planetary nebulae DB + 30 deg 3639 and NGC 6572 can be modeled by an optically thin cylinder or a prolate ellipsoid with enhanced equatorial emission. These models reproduce well the general features of the nebula, such as the bipolar lobes of emission and the ring structure. 67 refs

  8. Laser clad Ni-base alloy added nano- and micron-size CeO 2 composites

    Science.gov (United States)

    Zhang, Shi Hong; Li, Ming Xi; Cho, Tong Yul; Yoon, Jae Hong; Lee, Chan Gyu; He, Yi Zhu

    2008-07-01

    Micron-size Ni-base alloy (NBA) powders are mixed with both 1.5 wt% (%) micron-CeO 2 (m-CeO 2) and also 1.0-3.0% nano-CeO 2 (n-CeO 2) powders. These mixtures are coated on low carbon steel (Q235) by 2.0 kW CO 2 laser cladding. The effects on microstructures, microhardness and wear resistance of the coating by the addition of m- and n-CeO 2 powders to NBA (m- and n-CeO 2/NBA) have been investigated. Addition to the primary phases of γ-Ni, Cr 23C 6 and Ni 3B of NBA coating, CeNi 3 shows up both in m- and n-CeO 2/NBA coatings and CeNi 5 appears only in n-CeO 2/NBA coating. Directional dendrite and coarse equiaxed dendrite are grown in m-CeO 2/NBA coating from interface to central zone, whereas multi-oriented dendrite and fine equiaxed dendrite growth by addition of n-CeO 2. The microhardness and wear resistance of coatings are greatly improved by CeO 2 powder addition, and compared to the addition of 1.0% and 3.0%, 1.5% n-CeO 2/NBA is the best. Hardness and wear resistance of the coating improves with decreasing CeO 2 size from micron to nano.

  9. Laboratory Measurements on Charging of Individual Micron-Size Apollo-11 Dust Grains by Secondary Electron Emissions

    Science.gov (United States)

    Tankosic, D.; Abbas, M. M.

    2012-01-01

    Observations made during Apollo missions, as well as theoretical models indicate that the lunar surface and dust grains are electrostatically charged, levitated and transported. Lunar dust grains are charged by UV photoelectric emissions on the lunar dayside and by the impact of the solar wind electrons on the nightside. The knowledge of charging properties of individual lunar dust grains is important for developing appropriate theoretical models and mitigating strategies. Currently, very limited experimental data are available for charging of individual micron-size size lunar dust grains in particular by low energy electron impact. However, experimental results based on extensive laboratory measurements on the charging of individual 0.2-13 micron size lunar dust grains by the secondary electron emissions (SEE) have been presented in a recent publication. The SEE process of charging of micron-size dust grains, however, is found to be very complex phenomena with strong particle size dependence. In this paper we present some examples of the complex nature of the SEE properties of positively charged individual lunar dust grains levitated in an electrodynamic balance (EDB), and show that they remain unaffected by the variation of the AC field employed in the above mentioned measurements.

  10. Gene transfer device utilizing micron-spiked electrodes produced by the self-organization phenomenon of Fe-alloy.

    Science.gov (United States)

    Miyano, Naoki; Inoue, Yuuki; Teramura, Yuji; Fujii, Keisuke; Tsumori, Fujio; Iwata, Hiroo; Kotera, Hidetoshi

    2008-07-01

    In the diffusional phase transformation of two-phase alloys, the new phase precipitates form the matrix phase at specific temperatures, followed by the formation of a mixed microstructure comprising the precipitate and the matrix. It has been found that by specific chemical-etching treatment, the precipitate in Fe-25Cr-6Ni alloy projects substantially and clusters at the surface. The configuration of the precipitate has an extremely high aspect ratio: it is several microns in width and several tens of microns in length (known as micron-spiked). This study targets the development of a gene transfer device with a micro-spike produced based on the self-organization phenomenon of the Fe-25Cr-6Ni alloy. With this spike-projected device, we tried to efficiently transfer plasmid DNA into adherent cells by electric pulse-triggered gene transfer using a plasmid-loaded electrode (electroporation-based reverse transfection). The spiked structure was applied to a substrate of the device to allow efficient gene transfer into adherent cells, although the general substrate was flat and had a smooth surface. The results suggest that this unique spike-projected device has potential applications in gene transfer devices for the analysis of the human genome in the post-genome period.

  11. Rupturing Giant Plasma Membrane Vesicles to Form Micron-sized Supported Cell Plasma Membranes with Native Transmembrane Proteins.

    Science.gov (United States)

    Chiang, Po-Chieh; Tanady, Kevin; Huang, Ling-Ting; Chao, Ling

    2017-11-09

    Being able to directly obtain micron-sized cell blebs, giant plasma membrane vesicles (GPMVs), with native membrane proteins and deposit them on a planar support to form supported plasma membranes could allow the membrane proteins to be studied by various surface analytical tools in native-like bilayer environments. However, GPMVs do not easily rupture on conventional supports because of their high protein and cholesterol contents. Here, we demonstrate the possibility of using compression generated by the air-water interface to efficiently rupture GPMVs to form micron-sized supported membranes with native plasma membrane proteins. We demonstrated that not only lipid but also a native transmembrane protein in HeLa cells, Aquaporin 3 (AQP3), is mobile in the supported membrane platform. This convenient method for generating micron-sized supported membrane patches with mobile native transmembrane proteins could not only facilitate the study of membrane proteins by surface analytical tools, but could also enable us to use native membrane proteins for bio-sensing applications.

  12. Extended Range Intercept Technology

    Science.gov (United States)

    1991-09-01

    1988). Desert bighorn ewes with lambs show a stronger response than do groups of only rams, only ewes, or mixed groups of adults (Miller and Smith...1985). While all startle events may affect desert bighorns, those occurring during the lambing period (February-April) would represent the highest...35807 U.S. Army Pueblo Depot Activity SDSTE-PU-EE Pueblo, CO 81001-5000 U.S. Army White Sands Missile Range STEWS -EL-N White Sands, NM 88002-5076

  13. ORANGE: RANGE OF BENEFITS

    OpenAIRE

    Parle Milind; Chaturvedi Dev

    2012-01-01

    No wonder that oranges are one of the most popular fruits in the world. Orange (citrus sinensis) is well known for its nutritional and medicinal properties throughout the world. From times immemorial, whole Orange plant including ripe and unripe fruits, juice, orange peels, leaves and flowers are used as a traditional medicine. Citrus sinensis belongs to the family Rutaceae. The fruit is a fleshy, indehiscent, berry that ranges widely in size from 4 cm to 12 cm. The major medicinal proper...

  14. Range Flight Safety Requirements

    Science.gov (United States)

    Loftin, Charles E.; Hudson, Sandra M.

    2018-01-01

    The purpose of this NASA Technical Standard is to provide the technical requirements for the NPR 8715.5, Range Flight Safety Program, in regards to protection of the public, the NASA workforce, and property as it pertains to risk analysis, Flight Safety Systems (FSS), and range flight operations. This standard is approved for use by NASA Headquarters and NASA Centers, including Component Facilities and Technical and Service Support Centers, and may be cited in contract, program, and other Agency documents as a technical requirement. This standard may also apply to the Jet Propulsion Laboratory or to other contractors, grant recipients, or parties to agreements to the extent specified or referenced in their contracts, grants, or agreements, when these organizations conduct or participate in missions that involve range flight operations as defined by NPR 8715.5.1.2.2 In this standard, all mandatory actions (i.e., requirements) are denoted by statements containing the term “shall.”1.3 TailoringTailoring of this standard for application to a specific program or project shall be formally documented as part of program or project requirements and approved by the responsible Technical Authority in accordance with NPR 8715.3, NASA General Safety Program Requirements.

  15. Micron to Mine: Synchrotron Science for Mineral Exploration, Production, and Remediation

    Science.gov (United States)

    Banerjee, N.; Van Loon, L.; Flynn, T.

    2017-12-01

    Synchrotron science for mineral exploration, production, and remediation studies is a powerful tool that provides industry with relevant micron to macro geochemical information. Synchrotron micro X-ray fluorescence (SR-µXRF) offers a direct, high-resolution, rapid, and cost-effective chemical analysis while preserving the context of the sample by mapping ore minerals with ppm detection limits. Speciation of trace and deleterious elements can then be probed using X-ray absorption near-edge structure (XANES) spectroscopy. Large-scale (tens of cm) µXRF mapping and XANES analysis of samples collected at various mine locations have been undertaken to address questions regarding mineralization history to develop novel trace element exploration vectors. This information provides integral insights into trace element associations with ore minerals, local redox conditions responsible for mineralization, and mineralizing mechanisms. Gold is commonly intimately associated with sulfide mineralization (e.g., pyrite, arsenopyrite, etc.) and is present both as inclusions and filling fractures in sulfide grains. Gold may also occur as nanoparticles and/or in the sulfide mineral crystal lattice, known as "invisible gold". Understanding the nature and distribution of invisible gold in ore is integral to processing efficiency. The high flux and energy of a synchrotron light source allows for the detection of invisible gold by µXRF, and can probe its nature (metallic Au0 vs. lattice bound Au1+) using XANES spectroscopy. The long-term containment and management of arsenic is necessary to protect the health of both humans and the environment. Understanding the relationship of arsenic mineralization to gold deposits can lead to more sophisticated planning for mineral processing and the eventual storage of gangue materials. µXANES spectroscopy is an excellent tool for determining arsenic speciation within the context of the sample. Mineral phases such as arsenopyrite, scorodite, and

  16. Lights All Askew: Systematics in Galaxy Images from Megaparsecs to Microns

    Science.gov (United States)

    Bradshaw, Andrew Kenneth

    The stars and galaxies are not where they seem. In the process of imaging and measurement, the light from distant objects is distorted, blurred, and skewed by several physical effects on scales from megaparsecs to microns. Charge-coupled devices (CCDs) provide sensitive detection of this light, but introduce their own problems in the form of systematic biases. Images of these stars and galaxies are formed in CCDs when incoming light generates photoelectrons which are then collected in a pixel's potential well and measured as signal. However, these signal electrons can be diverted from purely parallel paths toward the pixel wells by transverse fields sourced by structural elements of the CCD, accidental imperfections in fabrication, or dynamic electric fields induced by other collected charges. These charge transport anomalies lead to measurable systematic errors in the images which bias cosmological inferences based on them. The physics of imaging therefore deserves thorough investigation, which is performed in the laboratory using a unique optical beam simulator and in computer simulations of charge transport. On top of detector systematics, there are often biases in the mathematical analysis of pixelized images; in particular, the location, shape, and orientation of stars and galaxies. Using elliptical Gaussians as a toy model for galaxies, it is demonstrated how small biases in the computed image moments lead to observable orientation patterns in modern survey data. Also presented are examples of the reduction of data and fitting of optical aberrations of images in the lab and on the sky which are modeled by physically or mathematically-motivated methods. Finally, end-to-end analysis of the weak gravitational lensing signal is presented using deep sky data as well as in N-body simulations. It is demonstrated how measured weak lens shear can be transformed by signal matched filters which aid in the detection of mass overdensities and separate signal from noise. A

  17. Area- and energy-efficient CORDIC accelerators in deep sub-micron CMOS technologies

    Science.gov (United States)

    Vishnoi, U.; Noll, T. G.

    2012-09-01

    The COordinate Rotate DIgital Computer (CORDIC) algorithm is a well known versatile approach and is widely applied in today's SoCs for especially but not restricted to digital communications. Dedicated CORDIC blocks can be implemented in deep sub-micron CMOS technologies at very low area and energy costs and are attractive to be used as hardware accelerators for Application Specific Instruction Processors (ASIPs). Thereby, overcoming the well known energy vs. flexibility conflict. Optimizing Global Navigation Satellite System (GNSS) receivers to reduce the hardware complexity is an important research topic at present. In such receivers CORDIC accelerators can be used for digital baseband processing (fixed-point) and in Position-Velocity-Time estimation (floating-point). A micro architecture well suited to such applications is presented. This architecture is parameterized according to the wordlengths as well as the number of iterations and can be easily extended for floating point data format. Moreover, area can be traded for throughput by partially or even fully unrolling the iterations, whereby the degree of pipelining is organized with one CORDIC iteration per cycle. From the architectural description, the macro layout can be generated fully automatically using an in-house datapath generator tool. Since the adders and shifters play an important role in optimizing the CORDIC block, they must be carefully optimized for high area and energy efficiency in the underlying technology. So, for this purpose carry-select adders and logarithmic shifters have been chosen. Device dimensioning was automatically optimized with respect to dynamic and static power, area and performance using the in-house tool. The fully sequential CORDIC block for fixed-point digital baseband processing features a wordlength of 16 bits, requires 5232 transistors, which is implemented in a 40-nm CMOS technology and occupies a silicon area of 1560 μm2 only. Maximum clock frequency from circuit

  18. Dense plasma focus x-ray source for sub-micron lithography

    International Nuclear Information System (INIS)

    Prasad, R.R.; Krishnan, M.; Mangano, J.; Greene, P.; Qi, Niansheng

    1993-01-01

    A discharge driven, dense plasma focus in neon is under development at SRL for use as a point x-ray source for sub-micron lithography. This source is presently capable of delivering ∼ 13j/pulse of neon K-shell x-rays (8--14 angstrom) into 4π steradians with 2 kj of electrical energy stored in the capacitor bank charged to 9 kV at a pulse repetition rate of 2 Hz. The discharge is produced by a ≤4 kj, ≤12 kV, capacitor bank circuit, which has a fixed inductance of 12 nH and drives ≤450 kA currents into the DPF load, with ∼1.1 μs rise-times. X-rays are produced when a dense pinch of neon is formed along the axis of the DPF electrodes. A new rail-gap switched capacitor bank and DPF have been built, designed for continuous operation at 2 Hz and burst mode operation at 20 Hz. This paper will present measurements of the x-ray output at a repetition rate of 2 Hz using the new capacitor bank. It will also describe measurements of the spot size (0.3--0.8 mm) and the spectrum (8--14 angstrom) of the DPF source. The dependence of these parameters on the DPF head geometry, bank energy and operating pressure will be discussed. The x-ray output has been measured using filtered pin diodes, x-ray diodes, and absolutely calibrated x-ray crystal spectra. Results from the source operating at 2 Hz will be presented. A novel concept of a windowless beamline has also been developed. The results of preliminary experiments to test the concept will be discussed. At a pulse repetition rate of 20 Hz, this source should produce 200--400 W of x-ray power in the 8-14 angstrom wavelength band, with an input power of 40--60 kW

  19. Locally Targeted Delivery of a Micron-Size Radiation Therapy Source Using Temperature-Sensitive Hydrogel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yusung, E-mail: yusung-kim@uiowa.edu [Department of Radiation Oncology, The University of Iowa, Iowa City, Iowa (United States); Seol, Dong Rim [Department of Orthopaedic Surgery, The University of Iowa, Iowa City, Iowa (United States); Mohapatra, Sucheta [Department of Biomedical Engineering, The University of Iowa, Iowa City, Iowa (United States); Sunderland, John J. [Department of Radiology, The University of Iowa, Iowa City, Iowa (United States); Schultz, Michael K. [Department of Radiation Oncology, The University of Iowa, Iowa City, Iowa (United States); Department of Radiology, The University of Iowa, Iowa City, Iowa (United States); Domann, Frederick E. [Department of Radiation Oncology, The University of Iowa, Iowa City, Iowa (United States); Department of Surgery, The University of Iowa, Iowa City, Iowa (United States); Lim, Tae-Hong [Department of Biomedical Engineering, The University of Iowa, Iowa City, Iowa (United States)

    2014-04-01

    Purpose: To propose a novel radiation therapy (RT) delivery modality: locally targeted delivery of micron-size RT sources by using temperature-sensitive hydrogel (RT-GEL) as an injectable vehicle. Methods and Materials: Hydrogel is a water-like liquid at room temperature but gels at body temperature. Two US Food and Drug Administration-approved polymers were synthesized. Indium-111 (In-111) was used as the radioactive RT-GEL source. The release characteristics of In-111 from polymerized RT-GEL were evaluated. The injectability and efficacy of RT-GEL delivery to human breast tumor were tested using animal models with control datasets of RT-saline injection. As proof-of-concept studies, a total of 6 nude mice were tested by injecting 4 million tumor cells into their upper backs after a week of acclimatization. Three mice were injected with RT-GEL and 3 with RT-saline. Single-photon emission computed tomography (SPECT) and CT scans were performed on each mouse at 0, 24, and 48 h after injection. The efficacy of RT-GEL was determined by comparison with that of the control datasets by measuring kidney In-111 accumulation (mean nCi/cc), representing the distant diffusion of In-111. Results: RT-GEL was successfully injected into the tumor by using a 30-gauge needle. No difficulties due to polymerization of hydrogel during injection and intratumoral pressure were observed during RT-GEL injection. No back flow occurred for either RT-GEL or RT-saline. The residual tumor activities of In-111 were 49% at 24 h (44% at 48 h, respectively) for RT-GEL and 29% (22%, respectively) for RT-saline. Fused SPECT-CT images of RT-saline showed considerable kidney accumulation of In-111 (2886%, 261%, and 262% of RT-GEL at 0, 24, and 48 h, respectively). Conclusions: RT-GEL was successfully injected and showed much higher residual tumor activity: 170% (200%, respectively), than that of RT-saline at 24 h (48 h, respectively) after injection with a minimal accumulation of In-111 to the

  20. Anisotropic modulus stabilisation. Strings at LHC scales with micron-sized extra dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Cicoli, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Burgess, C.P. [McMaster Univ., Hamilton (Canada). Dept. of Physics and Astronomy; Perimeter Institute for Theoretical Physics, Waterloo (Canada); Quevedo, F. [Cambridge Univ. (United Kingdom). DAMTP/CMS; Abdus Salam International Centre for Theoretical Physics, Trieste (Italy)

    2011-04-15

    We construct flux-stabilised Type IIB string compactifications whose extra dimensions have very different sizes, and use these to describe several types of vacua with a TeV string scale. Because we can access regimes where two dimensions are hierarchically larger than the other four, we find examples where two dimensions are micron-sized while the other four are at the weak scale in addition to more standard examples with all six extra dimensions equally large. Besides providing ultraviolet completeness, the phenomenology of these models is richer than vanilla large-dimensional models in several generic ways: (i) they are supersymmetric, with supersymmetry broken at sub-eV scales in the bulk but only nonlinearly realised in the Standard Model sector, leading to no MSSM superpartners for ordinary particles and many more bulk missing-energy channels, as in supersymmetric large extra dimensions (SLED); (ii) small cycles in the more complicated extra-dimensional geometry allow some KK states to reside at TeV scales even if all six extra dimensions are nominally much larger; (iii) a rich spectrum of string and KK states at TeV scales; and (iv) an equally rich spectrum of very light moduli exist having unusually small (but technically natural) masses, with potentially interesting implications for cosmology and astrophysics that nonetheless evade new-force constraints. The hierarchy problem is solved in these models because the extra-dimensional volume is naturally stabilised at exponentially large values: the extra dimensions are Calabi-Yau geometries with a 4D K3-fibration over a 2D base, with moduli stabilised within the well-established LARGE-Volume scenario. The new technical step is the use of poly-instanton corrections to the superpotential (which, unlike for simpler models, are present on K3-fibered Calabi-Yau compactifications) to obtain a large hierarchy between the sizes of different dimensions. For several scenarios we identify the low-energy spectrum and

  1. Anisotropic modulus stabilisation. Strings at LHC scales with micron-sized extra dimensions

    International Nuclear Information System (INIS)

    Cicoli, M.; Burgess, C.P.; Quevedo, F.

    2011-04-01

    We construct flux-stabilised Type IIB string compactifications whose extra dimensions have very different sizes, and use these to describe several types of vacua with a TeV string scale. Because we can access regimes where two dimensions are hierarchically larger than the other four, we find examples where two dimensions are micron-sized while the other four are at the weak scale in addition to more standard examples with all six extra dimensions equally large. Besides providing ultraviolet completeness, the phenomenology of these models is richer than vanilla large-dimensional models in several generic ways: (i) they are supersymmetric, with supersymmetry broken at sub-eV scales in the bulk but only nonlinearly realised in the Standard Model sector, leading to no MSSM superpartners for ordinary particles and many more bulk missing-energy channels, as in supersymmetric large extra dimensions (SLED); (ii) small cycles in the more complicated extra-dimensional geometry allow some KK states to reside at TeV scales even if all six extra dimensions are nominally much larger; (iii) a rich spectrum of string and KK states at TeV scales; and (iv) an equally rich spectrum of very light moduli exist having unusually small (but technically natural) masses, with potentially interesting implications for cosmology and astrophysics that nonetheless evade new-force constraints. The hierarchy problem is solved in these models because the extra-dimensional volume is naturally stabilised at exponentially large values: the extra dimensions are Calabi-Yau geometries with a 4D K3-fibration over a 2D base, with moduli stabilised within the well-established LARGE-Volume scenario. The new technical step is the use of poly-instanton corrections to the superpotential (which, unlike for simpler models, are present on K3-fibered Calabi-Yau compactifications) to obtain a large hierarchy between the sizes of different dimensions. For several scenarios we identify the low-energy spectrum and

  2. Sub-micron particle number size distribution characteristics at two urban locations in Leicester

    Science.gov (United States)

    Hama, Sarkawt M. L.; Cordell, Rebecca L.; Kos, Gerard P. A.; Weijers, E. P.; Monks, Paul S.

    2017-09-01

    The particle number size distribution (PNSD) of atmospheric particles not only provides information about sources and atmospheric processing of particles, but also plays an important role in determining regional lung dose. Owing to the importance of PNSD in understanding particulate pollution two short-term campaigns (March-June 2014) measurements of sub-micron PNSD were conducted at two urban background locations in Leicester, UK. At the first site, Leicester Automatic Urban Rural Network (AURN), the mean number concentrations of nucleation, Aitken, accumulation modes, the total particles, equivalent black carbon (eBC) mass concentrations were 2002, 3258, 1576, 6837 # cm-3, 1.7 μg m-3, respectively, and at the second site, Brookfield (BF), were 1455, 2407, 874, 4737 # cm-3, 0.77 μg m-3, respectively. The total particle number was dominated by the nucleation and Aitken modes, with both consisting of 77%, and 81% of total number concentrations at AURN and BF sites, respectively. This behaviour could be attributed to primary emissions (traffic) of ultrafine particles and the temporal evolution of mixing layer. The size distribution at the AURN site shows bimodal distribution at 22 nm with a minor peak at 70 nm. The size distribution at BF site, however, exhibits unimodal distribution at 35 nm. This study has for the first time investigated the effect of Easter holiday on PNSD in UK. The temporal variation of PNSD demonstrated a good degree of correlation with traffic-related pollutants (NOX, and eBC at both sites). The meteorological conditions, also had an impact on the PNSD and eBC at both sites. During the measurement period, the frequency of NPF events was calculated to be 13.3%, and 22.2% at AURN and BF sites, respectively. The average value of formation and growth rates of nucleation mode particles were 1.3, and 1.17 cm-3 s-1 and 7.42, and 5.3 nm h-1 at AURN, and BF sites, respectively. It can suggested that aerosol particles in Leicester originate mainly

  3. Automated assay for screening the enzymatic release of reducing sugars from micronized biomass

    Directory of Open Access Journals (Sweden)

    Asther Marcel

    2010-07-01

    Full Text Available Abstract Background To reduce the production cost of bioethanol obtained from fermentation of the sugars provided by degradation of lignocellulosic biomass (i.e., second generation bioethanol, it is necessary to screen for new enzymes endowed with more efficient biomass degrading properties. This demands the set-up of high-throughput screening methods. Several methods have been devised all using microplates in the industrial SBS format. Although this size reduction and standardization has greatly improved the screening process, the published methods comprise one or more manual steps that seriously decrease throughput. Therefore, we worked to devise a screening method devoid of any manual steps. Results We describe a fully automated assay for measuring the amount of reducing sugars released by biomass-degrading enzymes from wheat-straw and spruce. The method comprises two independent and automated steps. The first step is the making of "substrate plates". It consists of filling 96-well microplates with slurry suspensions of micronized substrate which are then stored frozen until use. The second step is an enzymatic activity assay. After thawing, the substrate plates are supplemented by the robot with cell-wall degrading enzymes where necessary, and the whole process from addition of enzymes to quantification of released sugars is autonomously performed by the robot. We describe how critical parameters (amount of substrate, amount of enzyme, incubation duration and temperature were selected to fit with our specific use. The ability of this automated small-scale assay to discriminate among different enzymatic activities was validated using a set of commercial enzymes. Conclusions Using an automatic microplate sealer solved three main problems generally encountered during the set-up of methods for measuring the sugar-releasing activity of plant cell wall-degrading enzymes: throughput, automation, and evaporation losses. In its present set-up, the

  4. Long-range antigravity

    Energy Technology Data Exchange (ETDEWEB)

    Macrae, K.I.; Riegert, R.J. (Maryland Univ., College Park (USA). Center for Theoretical Physics)

    1984-10-01

    We consider a theory in which fermionic matter interacts via long-range scalar, vector and tensor fields. In order not to be in conflict with experiment, the scalar and vector couplings for a given fermion must be equal, as is natural in a dimensionally reduced model. Assuming that the Sun is not approximately neutral with respect to these new scalar-vector charges, and if the couplings saturate the experimental bounds, then their strength can be comparable to that of gravity. Scalar-vector fields of this strength can compensate for a solar quadrupole moment contribution to Mercury's anomalous perihelion precession.

  5. Long-range antigravity

    International Nuclear Information System (INIS)

    Macrae, K.I.; Riegert, R.J.

    1984-01-01

    We consider a theory in which fermionic matter interacts via long-range scalar, vector and tensor fields. In order not to be in conflict with experiment, the scalar and vector couplings for a given fermion must be equal, as is natural in a dimensionally reduced model. Assuming that the Sun is not approximately neutral with respect to these new scalar-vector charges, and if the couplings saturate the experimental bounds, then their strength can be comparable to that of gravity. Scalar-vector fields of this strength can compensate for a solar quadrupole moment contribution to Mercury's anomalous perihelion precession. (orig.)

  6. Range Process Simulation Tool

    Science.gov (United States)

    Phillips, Dave; Haas, William; Barth, Tim; Benjamin, Perakath; Graul, Michael; Bagatourova, Olga

    2005-01-01

    Range Process Simulation Tool (RPST) is a computer program that assists managers in rapidly predicting and quantitatively assessing the operational effects of proposed technological additions to, and/or upgrades of, complex facilities and engineering systems such as the Eastern Test Range. Originally designed for application to space transportation systems, RPST is also suitable for assessing effects of proposed changes in industrial facilities and large organizations. RPST follows a model-based approach that includes finite-capacity schedule analysis and discrete-event process simulation. A component-based, scalable, open architecture makes RPST easily and rapidly tailorable for diverse applications. Specific RPST functions include: (1) definition of analysis objectives and performance metrics; (2) selection of process templates from a processtemplate library; (3) configuration of process models for detailed simulation and schedule analysis; (4) design of operations- analysis experiments; (5) schedule and simulation-based process analysis; and (6) optimization of performance by use of genetic algorithms and simulated annealing. The main benefits afforded by RPST are provision of information that can be used to reduce costs of operation and maintenance, and the capability for affordable, accurate, and reliable prediction and exploration of the consequences of many alternative proposed decisions.

  7. INVESTIGATION OF THE PHARMACO-TECHNOLOGICAL PROPERTIES OF SOLID DISPERSIONS OF THIOCTIC ACID, OBTAINED BY MICRONIZATION

    Directory of Open Access Journals (Sweden)

    Kovalevska, I. V.

    2018-04-01

    Full Text Available Introduction. Thioctic acid is used in the treatment of diseases that are characterized by lack of mitochondrial activity, which is responsible for the formation of free radicals. Widespread use of thioctic acid is due to the chemical structure. The thioctic acid exhibits biological activity in both hydrophilic and hydrophobic environments. Thioctic acid is an enzyme cofactor and a powerful antioxidant, it regulates the transcription of numerous genes, participates in regulation of glucose and lipid metabolism, increases insulin sensitivity, and forms complexes with heavy metals. Thioctic acid has a high pharmacological potential, which is confirmed by the evidence base of clinical trials. An analysis of the literature on the oral use of thioctic acid indicates that solid dosage forms can be used for long-term therapy. This route of administration is limited by factors such as reduced solubility in acidic environments and enzymatic degradation. For this reason, the search for various compositions of auxiliary substances and methods of obtaining drugs is an urgent task of pharmaceutical technology. Material & methods. Objects of study were solid dispersions of thioctic acid (SDTA on the basis of cellulose derivatives: microcrystalline (MCC, HPMC (hydroxypropyl methylcellulose and polyvinylpyrrolidone (PVP as compared to thioctic acid (TA. The samples were made by solid phase method using micronization in a laboratory shredder at a ratio of 1: 1. Pharmacological and technological parameters were determined according to generally accepted methods. Results & discussion. In appearance the resulting mixtures had lemon color, without inclusions and the formation of conglomerates, with homogeneous sized particles According to the pharmaco-technological studies, the samples do not have a satisfactory flowability. The values of the Carr index and the ratio of Hausner make it possible to conclude that there is a large force of cohesion between the

  8. Calculation of projected ranges

    International Nuclear Information System (INIS)

    Biersack, J.P.

    1980-09-01

    The concept of multiple scattering is reconsidered for obtaining the directional spreading of ion motion as a function of energy loss. From this the mean projection of each pathlength element of the ion trajectory is derived which - upon summation or integration - leads to the desired mean projected range. In special cases, the calculation can be carried out analytically, otherwise a simple general algorithm is derived which is suitable even for the smallest programmable calculators. Necessary input for the present treatment consists only of generally accessable stopping power and straggling formulas. The procedure does not rely on scattering cross sections, e.g. power potential or f(t 1 sup(/) 2 ) approximations. The present approach lends itself easily to include electronic straggling or to treat composed target materials, or even to account for the so-called time integral. (orig.)

  9. Saturable Absorbing Quantum Wells at 1.08 and 1.55 Micron Wavelengths for Mode Locking of Solid State Lasers

    National Research Council Canada - National Science Library

    Wicks, Gary

    1998-01-01

    Multiple quantum well designs were fabricated and tested at 1.55 microns. A series of 17 MBE fabrications were completed with deposits of various AlInAs/GaInAs alloys deposited on Indium Phosphide substrates...

  10. Prevention of preterm delivery in twin gestations (PREDICT): a multicenter, randomized, placebo-controlled trial on the effect of vaginal micronized progesterone

    DEFF Research Database (Denmark)

    Rode, L; Klein, K; Nicolaides, K H

    2011-01-01

    Studies on high-risk singleton gestations have shown a preventive effect of progesterone treatment on preterm delivery. This study was conducted to investigate the preventive effect of vaginal micronized progesterone in a large population of twin gestations....

  11. In the photograph, one can see the interconnection from one readout chip to the flexible cable realized with ultrasonic wire bonds (25 microns).

    CERN Multimedia

    Saba, A

    2006-01-01

    2 ladders are connected via a multi layer aluminium polyimide flexible cable with a multi chip module containing several custom designed ASICs. The production of the flexible cable was developed and carrier out at CERN. It provides signal and data lines as well as power to the individual readout chipswith a total thickness of only 220 microns. In the photograph, one can see the interconnection from one readout chip to the flexible cable realized with ultrasonic wire bonds (25 microns).

  12. Detection of the 3.4 micron emission feature in Comets P/Brorsen-Metcalf and Okazaki-Levy-Rudenko (1989r) and an observational summary

    International Nuclear Information System (INIS)

    Brooke, T.Y.; Tokunaga, A.T.; Knacke, R.F.

    1991-01-01

    The 3.4 micron emission feature due to cometary organics was detected in Comets P/Brorsen-Metcalf and Okazaki-Levy-Rudenko (1989r). Features-to-continuum ratios in these two comets were higher than those expected from the trend seen in other comets to date. Three micron spectra of eight comets are reviewed. The 3.4 micron band flux is better correlated with the water production rate than with the dust production rate in this sample of comets. High feature-to-continuum ratios in P/Brorsen-Metcalf and Okazaki-Levy-Rudenko can be explained by the low dust-to-gas ratios of these two comets. The observations to date are consistent with cometary organics being present in all comets (even those for which no 3.4 micron feature was evident) at comparable abundances with respect to water. The emission mechanism and absolute abundance of the organics are not well determined; either gas-phase fluorescence or thermal emission from hot grains is consistent with the heliocentric distance dependence of the 3.4 micron band flux. There is an overall similarity in the spectral profiles of the 3.4 micron feature in comets; however, there are some potentially significant differences in the details of the spectra. 30 refs

  13. Design and fabrication of a micro fluidic circuit for the separation of micron sized particles

    CSIR Research Space (South Africa)

    Khumalo, F

    2009-07-01

    Full Text Available The development of a micro fluidic circuit for the separation of micro particles is being investigated. There are a wide range of available separation techniques such as acoustic, laminar flow, split flow, optical trapping and centrifugal forces...

  14. 3-D optical profilometry at micron scale with multi-frequency fringe projection using modified fibre optic Lloyd's mirror technique

    Science.gov (United States)

    Inanç, Arda; Kösoğlu, Gülşen; Yüksel, Heba; Naci Inci, Mehmet

    2018-06-01

    A new fibre optic Lloyd's mirror method is developed for extracting 3-D height distribution of various objects at the micron scale with a resolution of 4 μm. The fibre optic assembly is elegantly integrated to an optical microscope and a CCD camera. It is demonstrated that the proposed technique is quite suitable and practical to produce an interference pattern with an adjustable frequency. By increasing the distance between the fibre and the mirror with a micrometre stage in the Lloyd's mirror assembly, the separation between the two bright fringes is lowered down to the micron scale without using any additional elements as part of the optical projection unit. A fibre optic cable, whose polymer jacket is partially stripped, and a microfluidic channel are used as test objects to extract their surface topographies. Point by point sensitivity of the method is found to be around 8 μm, changing a couple of microns depending on the fringe frequency and the measured height. A straightforward calibration procedure for the phase to height conversion is also introduced by making use of the vertical moving stage of the optical microscope. The phase analysis of the acquired image is carried out by One Dimensional Continuous Wavelet Transform for which the chosen wavelet is the Morlet wavelet and the carrier removal of the projected fringe patterns is achieved by reference subtraction. Furthermore, flexible multi-frequency property of the proposed method allows measuring discontinuous heights where there are phase ambiguities like 2π by lowering the fringe frequency and eliminating the phase ambiguity.

  15. A laboratory analog for the carrier of the 3 micron emission of the protoplanetary nebula IRAS 05341+0852.

    Science.gov (United States)

    Beegle, L W; Wdowiak, T J; Arnoult, K M

    1997-09-10

    A mixture of the polycyclic aromatic hydrocarbons (PAHs), acenaphthylene and acenaphthene, when subjected to the energetic environment of a hydrogen plasma, is transformed into a material that exhibits an infrared absorption profile in the 3 micron region that is an excellent match of the protoplanetary nebula IRAS 05341+0852 emission profile in the same wavelength region. Acenaphthylene and acenaphthene were chosen as precursors in the experiment because these molecules have a structure that can be described as a keystone in a process in which carbon atoms in a stellar wind condense into PAH species. The spectral match between experiment and observations appears to validate that scenario.

  16. Life cycle assessment ultra-clean micronized coal-water-oil fuel preparation and its usage in diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Fu, X.; Wang, Z.; Novelli, G.; Benedetti, B. [China University of Mining and Technology, Beijing (China)

    2005-08-15

    The study described the preparation of ultra-clean micronized coal-water-oil fuel (UCMWOF) and its usage in diesel engine. The production and usage of UCMCWOF and diesel oil, on a Life Cycle Assessment (LCA) basis, were evaluated. A comparison between the two systems shows that beside reducing of photochemical ozone creation potential and rest indicators in UCMCWOF increase. This predicates that the system of UCMCWOF is characterized by high global environmental impact, but its local impacts are lower if compared with the use of diesel and traditional coal. 3 refs., 3 figs., 3 tabs.

  17. Mass loading of the Earth's magnetosphere by micron size lunar ejecta. 1: Ejecta production and orbital dynamics in cislunar space

    Science.gov (United States)

    Alexander, W. M.; Tanner, W. G.; Anz, P. D.; Chen, A. L.

    1986-01-01

    Particulate matter possessing lunar escape velocity sufficient to enhance the cislunar meteroid flux was investigated. While the interplanetary flux was extensively studied, lunar ejecta created by the impact of this material on the lunar surface is only now being studied. Two recently reported flux models are employed to calculate the total mass impacting the lunar surface due to sporadic meteor flux. There is ample evidence to support the contention that the sporadic interplanetary meteoroid flux enhances the meteroid flux of cislunar space through the creation of micron and submicron lunar ejecta with lunar escape velocity.

  18. High spectral resolution observations of the H2 2.12 micron line in Herbig-Haro objects

    International Nuclear Information System (INIS)

    Zinnecker, H.; Mundt, R.; Geballe, T.R.; Zealey, W.J.

    1989-01-01

    High-spectral-resolution Fabry-Perot observations of the H 2 2.12-micron line emissions of several Herbig-Haro (HH) objects are discussed. It is shown that H 2 emission by the shock heating of external molecular gas in the wings of the bow shock associated with the working surface of a high-velocity jet may occur for HH objects associated with the jet's end. The shock heating of external molecular gas entrained in the flow by internal shocks occurring in the jet itself and/or in its boundary layer may be the H 2 emission mechanism for HH objects observed along the flow axis. 59 refs

  19. Long range trajectories

    Energy Technology Data Exchange (ETDEWEB)

    Allen, P. W.; Jessup, E. A.; White, R. E. [Air Resources Field Research Office, Las Vegas, Nevada (United States)

    1967-07-01

    A single air molecule can have a trajectory that can be described with a line, but most meteorologists use single lines to represent the trajectories of air parcels. A single line trajectory has the disadvantage that it is a categorical description of position. Like categorized forecasts it provides no qualification, and no provision for dispersion in case the parcel contains two or more molecules which may take vastly different paths. Diffusion technology has amply demonstrated that an initial aerosol cloud or volume of gas in the atmosphere not only grows larger, but sometimes divides into puffs, each having a different path or swath. Yet, the average meteorologist, faced with the problem of predicting the future motion of a cloud, usually falls back on the line trajectory approach with the explanation that he had no better tool for long range application. In his more rational moments, he may use some arbitrary device to spread his cloud with distance. One such technique has been to separate the trajectory into two or more trajectories, spaced about the endpoint of the original trajectory after a short period of travel, repeating this every so often like a chain reaction. This has the obvious disadvantage of involving a large amount of labor without much assurance of improved accuracy. Another approach is to draw a circle about the trajectory endpoint, to represent either diffusion or error. The problem then is to know what radius to give the circle and also whether to call it diffusion or error. Meteorologists at the Nevada Test Site (NTS) are asked frequently to provide advice which involves trajectory technology, such as prediction of an aerosol cloud path, reconstruction of the motion of a volume of air, indication of the dilution, and the possible trajectory prediction error over great distances. Therefore, we set out, nearly three years ago, to provide some statistical knowledge about the status of our trajectory technology. This report contains some of the

  20. Atmospheric CO2 Column Measurements with an Airborne Intensity-Modulated Continuous-Wave 1.57-micron Fiber Laser Lidar

    Science.gov (United States)

    Dobler, Jeremy T.; Harrison, F. Wallace; Browell, Edward V.; Lin, Bing; McGregor, Doug; Kooi, Susan; Choi, Yonghoon; Ismail, Syed

    2013-01-01

    The 2007 National Research Council (NRC) Decadal Survey on Earth Science and Applications from Space recommended Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) as a mid-term, Tier II, NASA space mission. ITT Exelis, formerly ITT Corp., and NASA Langley Research Center have been working together since 2004 to develop and demonstrate a prototype Laser Absorption Spectrometer for making high-precision, column CO2 mixing ratio measurements needed for the ASCENDS mission. This instrument, called the Multifunctional Fiber Laser Lidar (MFLL), operates in an intensity-modulated, continuous-wave mode in the 1.57- micron CO2 absorption band. Flight experiments have been conducted with the MFLL on a Lear-25, UC-12, and DC-8 aircraft over a variety of different surfaces and under a wide range of atmospheric conditions. Very high-precision CO2 column measurements resulting from high signal-to-noise (great than 1300) column optical depth measurements for a 10-s (approximately 1 km) averaging interval have been achieved. In situ measurements of atmospheric CO2 profiles were used to derive the expected CO2 column values, and when compared to the MFLL measurements over desert and vegetated surfaces, the MFLL measurements were found to agree with the in situ-derived CO2 columns to within an average of 0.17% or approximately 0.65 ppmv with a standard deviation of 0.44% or approximately 1.7 ppmv. Initial results demonstrating ranging capability using a swept modulation technique are also presented.

  1. Scalable preparation of porous micron-SnO2/C composites as high performance anode material for lithium ion battery

    Science.gov (United States)

    Wang, Ming-Shan; Lei, Ming; Wang, Zhi-Qiang; Zhao, Xing; Xu, Jun; Yang, Wei; Huang, Yun; Li, Xing

    2016-03-01

    Nano tin dioxide-carbon (SnO2/C) composites prepared by various carbon materials, such as carbon nanotubes, porous carbon, and graphene, have attracted extensive attention in wide fields. However, undesirable concerns of nanoparticles, including in higher surface area, low tap density, and self-agglomeration, greatly restricted their large-scale practical applications. In this study, novel porous micron-SnO2/C (p-SnO2/C) composites are scalable prepared by a simple hydrothermal approach using glucose as a carbon source and Pluronic F127 as a pore forming agent/soft template. The SnO2 nanoparticles were homogeneously dispersed in micron carbon spheres by assembly with F127/glucose. The continuous three-dimensional porous carbon networks have effectively provided strain relaxation for SnO2 volume expansion/shrinkage during lithium insertion/extraction. In addition, the carbon matrix could largely minimize the direct exposure of SnO2 to the electrolyte, thus ensure formation of stable solid electrolyte interface films. Moreover, the porous structure could also create efficient channels for the fast transport of lithium ions. As a consequence, the p-SnO2/C composites exhibit stable cycle performance, such as a high capacity retention of over 96% for 100 cycles at a current density of 200 mA g-1 and a long cycle life up to 800 times at a higher current density of 1000 mA g-1.

  2. X-ray imaging with sub-micron resolution using large-area photon counting detectors Timepix

    Science.gov (United States)

    Dudak, J.; Karch, J.; Holcova, K.; Zemlicka, J.

    2017-12-01

    As X-ray micro-CT became a popular tool for scientific purposes a number of commercially available CT systems have emerged on the market. Micro-CT systems have, therefore, become widely accessible and the number of research laboratories using them constantly increases. However, even when CT scans with spatial resolution of several micrometers can be performed routinely, data acquisition with sub-micron precision remains a complicated task. Issues come mostly from prolongation of the scan time inevitably connected with the use of nano-focus X-ray sources. Long exposure time increases the noise level in the CT projections. Furthermore, considering the sub-micron resolution even effects like source-spot drift, rotation stage wobble or thermal expansion become significant and can negatively affect the data. The use of dark-current free photon counting detectors as X-ray cameras for such applications can limit the issue of increased image noise in the data, however the mechanical stability of the whole system still remains a problem and has to be considered. In this work we evaluate the performance of a micro-CT system equipped with nano-focus X-ray tube and a large area photon counting detector Timepix for scans with effective pixel size bellow one micrometer.

  3. Characterization on the coatings of Ni-base alloy with nano- and micron-size Sm2O3 addition prepared by laser deposition

    International Nuclear Information System (INIS)

    Zhang Shihong; Li Mingxi; Yoon, Jae Hong; Cho, Tong Yul

    2008-01-01

    The coating materials are the powder mixture of micron-size Ni-base alloy powders with both 1.5 wt.% micron-size and nano-size Sm 2 O 3 powders, which are prepared on Q235 steel plate by 2.0 kW CO 2 laser deposition. The results indicate that with rare earth oxide Sm 2 O 3 addition, the width of planar crystallization is smaller than that of the Ni-base alloy coatings. Micron- and nano-Sm 2 O 3 /Ni-base alloy coatings have similar microstructure showing the primary phase of γ-Ni dendrite and eutectic containing γ-Ni and Cr 23 C 6 phases. However, compared to micron-Sm 2 O 3 /Ni-base alloy, preferred orientation of γ-Ni dendrite of nano-Sm 2 O 3 /Ni-base alloy is weakened. Planar crystal of several-μm thickness is first grown and then dendrite growth is observed at 1.5% micron-Sm 2 O 3 /Ni-base alloy coating whereas equiaxed dendrite is grown at 1.5% nano-Sm 2 O 3 /Ni-base alloy coating. Hardness and wear resistance of the coating improves with decreasing Sm 2 O 3 size from micron to nano. The improvement on tribological property of nano-Sm 2 O 3 /Ni-base alloy over micron-Sm 2 O 3 /Ni-base alloy coatings can be attributed to the better resistance of equiaxed dendrite to adhesion interactions during the wear process. In 6 M HNO 3 solution, the corrosion resistance is greatly improved with nano-Sm 2 O 3 addition since the decrease of corrosion ratio along grain-boundary in nano-Sm 2 O 3 /Ni-base alloy coating contributes to harmonization of corrosion potential

  4. Sub-micron-scale femtosecond laser ablation using a digital micromirror device

    International Nuclear Information System (INIS)

    Mills, B; Feinaeugle, M; Sones, C L; Eason, R W; Rizvi, N

    2013-01-01

    Commercial digital multimirror devices offer a cheap and effective alternative to more expensive spatial light modulators for ablation via beam shaping. Here we present femtosecond laser ablation using the digital multimirror device from an Acer C20 Pico Digital Light Projector and show ablation of complex features with feature sizes ranging from sub-wavelength (400 nm) up to ∼30 µm. Simulations are presented that have been used to optimize and understand the experimentally observed resolution. (paper)

  5. Laser-assisted skin closure at 1.32 microns: the use of a software-driven medical laser system

    Science.gov (United States)

    Dew, Douglas K.; Hsu, Tung M.; Hsu, Long S.; Halpern, Steven J.; Michaels, Charles E.

    1991-06-01

    This study investigated the use of a computerized 1 .3 micron Nd:YAG laser to seal approximated wound edges in pig skin. The medical laser system used was the DLS Type 1 , 1 .32 micron Nd:YAG laser (Laser Surgery Software, Inc.). The purpose of this study was to evaluate the effectiveness of laser assisted skin closure using the DLS YAG laser in a large animal model. Effectiveness was judged on the basis of wound dehiscence, infection, unusual healing result and consistency of results. Comparative cosmetic result was also evaluated. In this study, the DLS YAG laser was used to close scalpel-induced, full-thickness wounds. The pig model was chosen for its many integumentary similarities to man. Controls included scalpel-induced wounds closed using suture, staple and some with norepair. After adequate anesthesia was achieved, the dorsum of Yucutan pigs (approximately 75- 100 pounds) each was clipped with animal hair clippers from the shoulder area to the hind legs. The area was then shaved with a razor blade, avoiding any inadvertent cuts or abrasions of the skin. The dorsum was divided into four rows of four parallel incisions made by a #15 scalpel blade. Full-thickness incisions, 9 cm long, were placed over the dorsum of the pigs and then closed either with one loosely approximating Prolene" suture (the "no repair' group), multiple interrupted 6-0 nylon sutures, staples or laser. The experimental tissue sealing group consisted of 1 69 laser assisted closures on 1 3 pigs. Sutured control wounds were closed with 6-0 nylon, full thickness, simple, interrupted sutures. Eight sutures were placed 1 cm apart along the 9 cm incision. Stapled control wounds were approximated using two evenly spaced 3-0 VicryP' sub-dermal sutures and the dermis closed using Proximate' skin staples. Eight staples were placed 1 cm apart along the 9 cm incision. The no-repair incisions were grossly approximated using a single 2-0 Prolene full thickness, simple, interrupted suture located at the

  6. The nature of C-class asteroids from 3-micron spectrophotometry

    Science.gov (United States)

    Feierberg, M. A.; Lebofsky, L. A.; Tholen, D. J.

    1985-01-01

    Narrowband spectrophotometry between 2.3 and 3.5 micrometers is presented for 14 main-belt C asteroids greater than 100 km in diameter. Absorption features at 3 micrometers due to water of hydration are present in the spectra of nine of the asteroids, with intensities ranging from 6 to 23 percent. The other five asteroids have no such absorption greater than 2 percent in intensity. The present C-asteroid population may be fragments of larger parent bodies with anhydrous C3-like cores and hydrated C1I- or C2M-like mantles.

  7. Self-Assembling Biological Springs Force Transducers on the Micron Nanoscale

    Energy Technology Data Exchange (ETDEWEB)

    Benedek, George [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Casparay, Alfred H. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2016-08-19

    In this project, we are developing a new system for measuring forces within and between nanoscale biological molecules based on mesoscopic springs made of cholesterol helical ribbons. These ribbons self-assemble in a wide variety of complex fluids containing sterol, a mixture of surfactants and water [1] and have spring constants in the range from 0.5 to 500 pN/nm [2-4]. By the end of this project, we have demonstrated that the cholesterol helical ribbons can be used for measuring forces between biological objects and for mapping the strain fields in hydrogels.

  8. Decontamination of Explosives-Contaminated Range Scrap Using A Transportable Hot Gas Decontamination (HGD) System: Cost & Performance Report

    Science.gov (United States)

    2007-01-01

    nonirritating, and a 9-micron diameter fiber nonrespirable, making handling safe and easy. • Basalt Mat, manufactured by BGF Industries (bgf.com). High...temperature mineral wool ( basalt fiber wool) mat blanket good to 1,500oF. Product is still under development as of 2002 but shows promise. 6.3...hazard to range technicians. • The Cerablanket® (manufactured by Thermal Ceramics) contains refractory ceramic fibers , which can potentially cause

  9. Turbulence and Mountain Wave Conditions Observed with an Airborne 2-Micron Lidar

    Science.gov (United States)

    Teets, Edward H., Jr.; Ehernberger, Jack; Bogue, Rodney; Ashburn, Chris

    2007-01-01

    Joint efforts by the National Aeronautics and Space Administration (NASA), the Department of Defense, and industry partners are enhancing the capability of airborne wind and turbulence detection. The Airborne Coherent Lidar for Advanced In-Flight Measurements (ACLAIM) was flown on three series of flights to assess its capability over a range of altitudes, air mass conditions, and gust phenomena. This paper describes the observation of mountain waves and turbulence induced by mountain waves over the Tehachapi and Sierra Nevada mountain ranges in southern California by lidar onboard the NASA Airborne Science DC-8 airplane. The examples in this paper compare lidar-predicted mountain waves and wave-induced turbulence to subsequent aircraft-measured true airspeed. Airplane acceleration data is presented describing the effects of the wave-induced turbulence on the DC-8 airplane. Highlights of the lidar-predicted airspeed from the two flights show increases of 12 m/s at the mountain wave interface and peak-to-peak airspeed changes of 10 m/s and 15 m/s in a span of 12 s in moderate turbulence.

  10. Assessment of Sub-Micron Particles by Exploiting Charge Differences with Dielectrophoresis

    Directory of Open Access Journals (Sweden)

    Maria F. Romero-Creel

    2017-08-01

    Full Text Available The analysis, separation, and enrichment of submicron particles are critical steps in many applications, ranging from bio-sensing to disease diagnostics. Microfluidic electrokinetic techniques, such as dielectrophoresis (DEP have proved to be excellent platforms for assessment of submicron particles. DEP is the motion of polarizable particles under the presence of a non-uniform electric field. In this work, the polarization and dielectrophoretic behavior of polystyrene particles with diameters ranging for 100 nm to 1 μm were studied employing microchannels for insulator based DEP (iDEP and low frequency (<1000 Hz AC and DC electric potentials. In particular, the effects of particle surface charge, in terms of magnitude and type of functionalization, were examined. It was found that the magnitude of particle surface charge has a significant impact on the polarization and dielectrophoretic response of the particles, allowing for successful particle assessment. Traditionally, charge differences are exploited employing electrophoretic techniques and particle separation is achieved by differential migration. The present study demonstrates that differences in the particle’s surface charge can also be exploited by means of iDEP; and that distinct types of nanoparticles can be identified by their polarization and dielectrophoretic behavior. These findings open the possibility for iDEP to be employed as a technique for the analysis of submicron biological particles, where subtle differences in surface charge could allow for rapid particle identification and separation.

  11. Super-ranging. A new ranging strategy in European badgers.

    Directory of Open Access Journals (Sweden)

    Aoibheann Gaughran

    Full Text Available We monitored the ranging of a wild European badger (Meles meles population over 7 years using GPS tracking collars. Badger range sizes varied seasonally and reached their maximum in June, July and August. We analysed the summer ranging behaviour, using 83 home range estimates from 48 individuals over 6974 collar-nights. We found that while most adult badgers (males and females remained within their own traditional social group boundaries, several male badgers (on average 22% regularly ranged beyond these traditional boundaries. These adult males frequently ranged throughout two (or more social group's traditional territories and had extremely large home ranges. We therefore refer to them as super-rangers. While ranging across traditional boundaries has been recorded over short periods of time for extraterritorial mating and foraging forays, or for pre-dispersal exploration, the animals in this study maintained their super-ranges from 2 to 36 months. This study represents the first time such long-term extra-territorial ranging has been described for European badgers. Holding a super-range may confer an advantage in access to breeding females, but could also affect local interaction networks. In Ireland & the UK, badgers act as a wildlife reservoir for bovine tuberculosis (TB. Super-ranging may facilitate the spread of disease by increasing both direct interactions between conspecifics, particularly across social groups, and indirect interactions with cattle in their shared environment. Understanding super-ranging behaviour may both improve our understanding of tuberculosis epidemiology and inform future control strategies.

  12. African Journal of Range and Forage Science - Vol 12, No 1 (1995)

    African Journals Online (AJOL)

    The distribution of sweetveld and sourveld in South Africa's grassland biome in relation to environmental factors · EMAIL FULL TEXT EMAIL FULL TEXT DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. WN Ellery, RJ Scholes, MC Scholes, 38-45. http://dx.doi.org/10.1080/10220119.1995.9647860 ...

  13. Analysis of functional failure mode of commercial deep sub-micron SRAM induced by total dose irradiation

    International Nuclear Information System (INIS)

    Zheng Qi-Wen; Cui Jiang-Wei; Zhou Hang; Yu De-Zhao; Yu Xue-Feng; Lu Wu; Guo Qi; Ren Di-Yuan

    2015-01-01

    Functional failure mode of commercial deep sub-micron static random access memory (SRAM) induced by total dose irradiation is experimentally analyzed and verified by circuit simulation. We extensively characterize the functional failure mode of the device by testing its electrical parameters and function with test patterns covering different functional failure modes. Experimental results reveal that the functional failure mode of the device is a temporary function interruption caused by peripheral circuits being sensitive to the standby current rising. By including radiation-induced threshold shift and off-state leakage current in memory cell transistors, we simulate the influence of radiation on the functionality of the memory cell. Simulation results reveal that the memory cell is tolerant to irradiation due to its high stability, which agrees with our experimental result. (paper)

  14. 2.07-micron CW diode-laser-pumped Tm,Ho:YLiF4 room-temperature

    Science.gov (United States)

    Hemmati, Hamid

    1989-01-01

    Continuous-wave action is obtained at 2.07 microns from a 2-mm-long Tm-sensitized Ho:YLiF4 crystal at room temperature when longitudinally pumped by a pair of diode-laser arrays. Laser output power at 300 K is 26 mW, with a 30-percent slope efficiency and a lasing threshold of 108 mW. A maximum output power of 187 mW is obtained from a 4-mm-long crystal at 77 K, with a 67 percent slope efficiency. A preliminary demonstration of cavity Q switching produced 165 microJ of pulse energy at a repetition rate of 100 Hz.

  15. Quantum Mechanical Enhancement of the Random Dopant Induced Threshold Voltage Fluctuations and Lowering in Sub 0.1 Micron MOSFETs

    Science.gov (United States)

    Asenov, Asen; Slavcheva, G.; Brown, A. R.; Davies, J. H.; Saini, Subhash

    1999-01-01

    A detailed study of the influence of quantum effects in the inversion layer on the random dopant induced threshold voltage fluctuations and lowering in sub 0.1 micron MOSFETs has been performed. This has been achieved using a full 3D implementation of the density gradient (DG) formalism incorporated in our previously published 3D 'atomistic' simulation approach. This results in a consistent, fully 3D, quantum mechanical picture which implies not only the vertical inversion layer quantisation but also the lateral confinement effects manifested by current filamentation in the 'valleys' of the random potential fluctuations. We have shown that the net result of including quantum mechanical effects, while considering statistical fluctuations, is an increase in both threshold voltage fluctuations and lowering.

  16. Laser drilling of superdeep micron holes in various materials with a programmable control of laser radiation parameters

    International Nuclear Information System (INIS)

    Basiev, Tasoltan T; Osiko, Vyacheslav V; Gavrilov, A V; Smetanin, S N; Fedin, A V

    2007-01-01

    The possibilities of enhancing the efficiency of laser drilling of micron holes, increasing their depth, and eliminating their conic shape are studied by using a single-mode loop Nd:YAG laser with self-phase conjugation on the gain gratings and passive Q-switching by a scanned gradiently coloured F 2 - :LiF crystal. Holes of diameters 15-150 μm and depth up to 20 mm with the aspect ratio (ratio of the hole depth to its diameter) of 50-155 are drilled in various metals and alloys. It is shown that passive Q-switch scanning during drilling provides the increase in the depth and speed of the laser drilling of superdeep holes by a factor of 1.5-2. (laser technologies)

  17. Study of dipole interaction in micron-width NiFe/Cu/NiFe/NiO wire using exchange anisotropy

    International Nuclear Information System (INIS)

    Kimura, Takashi; Itagaki, Yoshio; Wakaya, Fujio; Gamo, Kenji

    2001-01-01

    The dipole interaction between a NiFe layer pinned by a NiO and a free NiFe layer in a micron-wide NiFe/Cu/NiFe/NiO wire was studied by changing the direction of the exchange bias from the NiO layer. The effect of the dipole interaction when the exchange bias was perpendicular to the wire axis was larger than that when the exchange bias was parallel to the wire axis, and was consistently explained by the stray field caused by the magnetic charges of the pinned layer. It was demonstrated that this method, using exchange anisotropy, is useful for investigating the dipole interaction between ferromagnetic materials separated by a nonmagnetic material in small-scale magnetic multilayers. [copyright] 2001 American Institute of Physics

  18. Glass capillary optics for making x-ray beams of 0.1 to 50 microns diameter

    International Nuclear Information System (INIS)

    Bilderback, Donald H.; Fontes, Ernest

    1997-01-01

    We have fabricated a unique computerized glass puller that can make parabolic or elliptically tapered glass capillaries for microbeam x-ray experiments from hollow glass tubing. We have produced optics that work in a single-bounce imaging mode or in a multi-bounce condensing mode. The imaging-mode capillaries have been used to create 20 to 50 micron diameter x-ray beams at 12 keV that are quite useful for imaging diffraction patterns from tiny bundles of carbon and Kevlar fibers. The condensing-mode capillaries are useful for creating submicron diameter beams and show great promise in x-ray fluorescence applications with femtogram sensitivity for patterned Er and Ti dopants diffused into an optically-active lithium niobate wafer

  19. Experimental study on reactor neutron induced effect of deep sub-micron CMOS static random access memory

    International Nuclear Information System (INIS)

    Yang Shanchao; Guo Xiaoqiang; Lin Dongsheng; Chen Wei; Li Ruibin; Bai Xiaoyan; Wang Guizhen

    2010-01-01

    This paper investigates neutron irradiation effects of two kinds of commercial CMOS SRAM (static random access memory), of which one is 4M memory with the feature size of 0.25 μm and the other is 16M memory with the feature size of 0.13 μm. We designed a memory testing system of irradiation effects and performed the neutron irradiation experiment using the Xi'an Pulse Reactor. The upset of two kinds of memory cells did not present a threshold versus the increase of neutron fluence. The results showed that deep sub-micron SRAM behaved single-event upset (SEU) effect in neutron irradiation environment. The SEU effect of SRAM with smaller size and higher integrated level tends to upset is considered to be related to the reduction of the device feature size, and fewer charges for upsets of the memory cell also lead to the SEU effect. (authors)

  20. THE PPMXL CATALOG OF POSITIONS AND PROPER MOTIONS ON THE ICRS. COMBINING USNO-B1.0 AND THE TWO MICRON ALL SKY SURVEY (2MASS)

    International Nuclear Information System (INIS)

    Roeser, S.; Demleitner, M.; Schilbach, E.

    2010-01-01

    USNO-B1.0 and the Two Micron All Sky Survey (2MASS) are the most widely used all-sky surveys. However, 2MASS has no proper motions at all, and USNO-B1.0 published only relative, not absolute (i.e., on the International Celestial Reference Frame (ICRS), proper motions. We performed a new determination of mean positions and proper motions on the ICRS system by combining USNO-B1.0 and 2MASS astrometry. This catalog is called PPMXL (VO access to the catalog is possible via http://vo.uni-hd.de/ppmxl), and it aims to be completed from the brightest stars down to about V ∼ 20 all sky. PPMXL contains about 900 million objects, some 410 million with 2MASS photometry, and is the largest collection of ICRS proper motions at present. As representative for the ICRS, we chose PPMX. The recently released UCAC3 could not be used because we found plate-dependent distortions in its proper motion system north of -20 0 declination. UCAC3 served as an intermediate system for δ ≤ -20 0 . The resulting typical individual mean errors of the proper motions range from 4 mas yr -1 to more than 10 mas yr -1 depending on observational history. The mean errors of positions at epoch 2000.0 are 80-120 mas, if 2MASS astrometry could be used, 150-300 mas else. We also give correction tables to convert USNO-B1.0 observations of, e.g., minor planets to the ICRS system.

  1. Effect of micronized pea seeds (Pisum sativum L.) as a substitute of soybean meal on tissue fatty acid composition and quality of broiler chicken meat.

    Science.gov (United States)

    Kiczorowska, Bożena; Samolińska, Wioletta; Andrejko, Dariusz

    2016-11-01

    This study aimed to evaluate the effect of micronized pea seeds introduced into feed mixes for broilers on the slaughter yield, blood lipid parameters, content of fatty acids in selected tissues, and meat quality. The studies involved 150 1-day-old Ross 308 chicks split into three groups (for 42 days). The feed rations differed in terms of the source of proteins: in the control group (C), it was post-extraction soybean meal (SBM) 100%; in group I, SBM 50% and micronized peas 50%; and in group II, micronized peas only, 100%. Irradiated pea seeds added to the feed ration for chicks reduced the fattening grade of carcasses (P seeds in feed mixes decreased the share of saturated fatty acids in the muscles and abdominal fat and had a positive effect on the n-6/n-3 ratio, hypocholesterolemic / hypercholesterolemic ratio, as well as the atherogenic and thrombogenic indices (P < 0.05). © 2016 Japanese Society of Animal Science.

  2. 2-Micron Triple-Pulse Integrated Path Differential Absorption Lidar Development for Simultaneous Airborne Column Measurements of Carbon Dioxide and Water Vapor in the Atmosphere

    Science.gov (United States)

    Singh, Upendra N.; Petros, Mulugeta; Refaat, Tamer F.; Yu, Jirong

    2016-01-01

    For more than 15 years, NASA Langley Research Center (LaRC) has contributed in developing several 2-micron carbon dioxide active remote sensors using the DIAL technique. Currently, an airborne 2-micron triple-pulse integrated path differential absorption (IPDA) lidar is under development at NASA LaRC. This paper focuses on the advancement of the 2-micron triple-pulse IPDA lidar development. Updates on the state-of-the-art triple-pulse laser transmitter will be presented including the status of wavelength control, packaging and lidar integration. In addition, receiver development updates will also be presented, including telescope integration, detection systems and data acquisition electronics. Future plan for IPDA lidar system for ground integration, testing and flight validation will be presented.

  3. Rock glaciers, Zailiysiky Range, Kungei Ranges, Tienshan, Kazakhstan, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Zailiyskiy Alatau is the northernmost parallel latitudinal ranges of the Northern Tien Shan. The highest point of this range is the Talgar peak (4973 m a.s.l.)....

  4. Rapid growth of amorphous carbon films on the inner surface of micron-thick and hollow-core fibers

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Longfei [Fujian Key Laboratory for Plasma and Magnetic Resonance, Department of Electric Science, School of Physics and Mechanical and Electrical Engineering, Xiamen University, Xiamen, Fujian 361005 (China); School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); School of Science, Changchun University of Science and Technology, Changchun, Jilin 130022 (China); Liu, Dongping, E-mail: Dongping.liu@dlnu.edu.cn [Fujian Key Laboratory for Plasma and Magnetic Resonance, Department of Electric Science, School of Physics and Mechanical and Electrical Engineering, Xiamen University, Xiamen, Fujian 361005 (China); School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); School of Science, Changchun University of Science and Technology, Changchun, Jilin 130022 (China); Zhou, Xinwei [Department of Mechanical Engineering, Zhejiang University, Zhejiang 310007 (China); Song, Ying [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116023 (China); Ni, Weiyuan [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); School of Science, Changchun University of Science and Technology, Changchun, Jilin 130022 (China); Niu, Jinhai; Fan, Hongyu [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China)

    2013-10-01

    Ultrathick (> 25 μm) carbon films were obtained on the inner surface of hollow and micron-thick quartz fibers by confining CH{sub 4}/He or C{sub 2}H{sub 2}/He microplasmas in their hollow cores. The resulting carbon films were studied by using scanning electron microscopy and energy-dispersive X-ray spectroscopy. The microplasma-enhanced chemical vapor deposition (CVD) technique resulted in the uniform growth of amorphous carbon films on the inner surface of very long (> 1 m) hollow-core fibers. Film deposition is performed by using microplasmas at atmospheric pressure and at 50 Pa. The carbon films obtained with the latter show the smooth inner surfaces and the well continuity across the film/optical fiber. Low-pressure CH{sub 4}/He and C{sub 2}H{sub 2}/He microplasmas can lead to a rapid growth (∼ 2.00 μm/min) of carbon films with their thickness of > 25 μm. The optical emission measurements show that various hydrocarbon species were formed in these depositing microplasmas due to the collisions between CH{sub 4}/C{sub 2}H{sub 2} molecules and energetic species. The microplasma-enhanced CVD technique running without the complicated fabrication processes shows its potentials for rapidly depositing the overlong carbon tubes with their inner diameters of tens of microns. - Highlights: • The microplasma device is applied for coating deposition inside hollow-core fibers. • The microplasma device results in > 25 μm-thick carbon films. • The microplasma device is simple for deposition of ultralong carbon tubes.

  5. Microchip Non-Aqueous Capillary Electrophoresis (MicronNACE) Method to Analyze Long-Chain Primary Amines

    Science.gov (United States)

    Willis, Peter A.; Mora, Maria; Cable, Morgan L.; Stockton, Amanda M.

    2012-01-01

    A protocol was developed as a first step in analyzing the complex organic aerosols present on Saturn's moon Titan, as well as the analogues of these aerosols (tholins) made on Earth. Labeling of primary amines using Pacific Blue succinimidyl ester is effected in ethanol with 25 mM triethylamine to maintain basic conditions. This reaction is allowed to equilibrate for at least one hour. Separation of the labeled primary amines is performed in ethanol with 1.05 M acetic acid, and 50 mM ammonium acetate in a commercial two-layer glass device with a standard crossmicrochannel measuring 50 microns wide by 20 microns deep. Injection potentials are optimized at 2 kV from the sample (negative) to the waste well (positive), with slight bias applied to the other two wells ( 0.4 and 0.8 V) to pinch the injection plug for the 30-s injection. Separation is performed at a potential of 5 kV along the channel, which has an effective separation distance of 7 cm. The use of ethanol in this method means that long-chain primary amines can be dissolved. Due to the low pH of the separation buffer, electro-osmotic flow (EOF) is minimized to allow for separation of both short-chain and longchain amines. As the freezing point of ethanol is much lower than water, this protocol can perform separations at temperatures lower than 0 C, which would not be possible in aqueous phase. This is of particular importance when considering in situ sampling of Titan aerosols, where unnecessary heating of the sample (even to room temperature) would lead to decomposition or unpredictable side reactions, which would make it difficult to characterize the sample appropriately.

  6. Sensitivity of MODIS 2.1 micron Channel for Off-Nadir View Angles for Use in Remote Sensing of Aerosol

    Science.gov (United States)

    Gatebe, C. K.; King, M. D.; Tsay, S.-C.; Ji, Q.

    2000-01-01

    Remote sensing of aerosol over land, from MODIS will be based on dark targets using mid-IR channels 2.1 and 3.9 micron. This approach was developed by Kaufman et al (1997), who suggested that dark surface reflectance in the red (0.66 micron -- rho(sub 0.66)) channel is half of that at 2.2 micron (rho(sub 2.2)), and the reflectance in the blue (0.49 micron - rho(sub 0.49)) channel is a quarter of that at 2.2 micron. Using this relationship, the surface reflectance in the visible channels can be predicted within Delta.rho(sub 0.49) approximately Delat.rho(sub 0.66) approximately 0.006 from rho(sub 2.2) for rho(sub 2.2) view angle - the nadir (theta = 0 deg). Considering the importance of the results in remote sensing of aerosols over land surfaces from space, we are validating the relationships for off-nadir view angles using Cloud Absorption Radiometer (CAR) data. The CAR data are available for channels between 0.3 and 2.3 micron and for different surface types and conditions: forest, tundra, ocean, sea-ice, swamp, grassland and over areas covered with smoke. In this study we analyzed data collected during the Smoke, Clouds, and Radiation - Brazil (SCAR-B) experiment to validate Kaufman et al.'s (1997) results for non-nadir view angles. We will show the correlation between rho(sub 0.472), rho(sub 0.675), and rho(sub 2.2) for view angles between nadir (0 deg) and 55 deg off-nadir, and for different viewing directions in the backscatter and forward scatter directions.

  7. Sensitivity of MODIS 2.1 micron Channel for Off-Nadir View Angles for Use in Remote Sensing of Aerosol

    Science.gov (United States)

    Gatebe, C. K.; King, M. D.; Tsay, S.-C.; Ji, Q.

    2000-01-01

    Remote sensing of aerosol over land, from MODIS will be based on dark targets using mid-IR channels 2.1 and 3.9 micron. This approach was developed by Kaufman et al (1997), who suggested that dark surface reflectance in the red (0.66 micron -- rho(sub 0.66)) channel is half of that at 2.2 micron (rho(sub 2.2)), and the reflectance in the blue (0.49 micron - rho(sub 0.49)) channel is a quarter of that at 2.2 micron. Using this relationship, the surface reflectance in the visible channels can be predicted within Delta.rho(sub 0.49) approximately Delat.rho(sub 0.66) approximately 0.006 from rho(sub 2.2) for rho(sub 2.2) remote sensing of aerosols over land surfaces from space, we are validating the relationships for off-nadir view angles using Cloud Absorption Radiometer (CAR) data. The CAR data are available for channels between 0.3 and 2.3 micron and for different surface types and conditions: forest, tundra, ocean, sea-ice, swamp, grassland and over areas covered with smoke. In this study we analyzed data collected during the Smoke, Clouds, and Radiation - Brazil (SCAR-B) experiment to validate Kaufman et al.'s (1997) results for non-nadir view angles. We will show the correlation between rho(sub 0.472), rho(sub 0.675), and rho(sub 2.2) for view angles between nadir (0 deg) and 55 deg off-nadir, and for different viewing directions in the backscatter and forward scatter directions.

  8. NASA Ames Arc Jets and Range, Capabilities for Planetary Entry

    Science.gov (United States)

    Fretter, Ernest F.

    2005-01-01

    NASA is pursuing innovative technologies and concepts as part of America's Vision for Space Exploration. The rapidly emerging field of nanotechnology has led to new concepts for multipurpose shields to prevent catastrophic loss of vehicles and crew against the triple threats of aeroheating during atmospheric entry, radiation (Solar and galactic cosmic rays) and Micrometorid/Orbital Debris (MMOD) strikes. One proposed concept is the Thermal Radiation Impact Protection System (TRIPS) using carbon nanotubes, hydrogenated carbon nanotubes, and ceramic coatings as a multi-use TPS. The Thermophysics Facilities Branch of the Space Technology Division at NASA Ames Research Center provides testing services for the development and validation of the present and future concepts being developed by NASA and national and International research firms. The Branch operates two key facilities - the Range Complex and the Arc Jets. The Ranges include both the Ames Vertical Gun Range (AVGR) and the Hypervelocity Free Flight (HFF) gas guns best suited for MMOD investigations. Test coupons can be installed in the AVGR or HFF and subjected to particle impacts from glass or metal particles from micron to _ inch (6.35-mm) diameters and at velocities from 5 to 8 kilometers per second. The facility can record high-speed data on film and provide damage assessment for analysis by the Principle Investigator or Ames personnel. Damaged articles can be installed in the Arc Jet facility for further testing to quantify the effects of damage on the heat shield s performance upon entry into atmospheric environments.

  9. Mg I absorption features in the solar spectrum near 9 and 12 microns

    Science.gov (United States)

    Glenar, David A.; Reuter, Dennis C.; Deming, Drake; Chang, Edward S.

    1988-01-01

    High-resolution FTS observations from the Kitt Peak National Solar Observatory and the Spacelab 3 ATMOS experiment have revealed additional infrared transitions due to Mg I in the spectra of both quiet sun and sunspot penumbra. In contrast to previous observations, these transitions are seen in absorption, not emission. Absorption intensities range from 1 to 7 percent of the continuum in the quiet sun. In the penumbra, the same features appear to show Zeeman splitting. Modeling of the line profiles in the photospheric spectrum shows evidence for a factor of three overabundance in the n = 5 or more levels of Mg I in the upper photosphere, but with no deviations from a Planck source function. It is concluded that whatever the process that produces the emission (including the Lemke and Holweger mechanism), it must occur well above the tau(5000) = 0.01 level.

  10. Micronized copper wood preservatives: An efficiency and potential health risk assessment for copper-based nanoparticles

    International Nuclear Information System (INIS)

    Civardi, Chiara; Schwarze, Francis W.M.R.; Wick, Peter

    2015-01-01

    Copper (Cu) is an essential biocide for wood protection, but fails to protect wood against Cu-tolerant wood-destroying fungi. Recently Cu particles (size range: 1 nm–25 μm) were introduced to the wood preservation market. The new generation of preservatives with Cu-based nanoparticles (Cu-based NPs) is reputedly more efficient against wood-destroying fungi than conventional formulations. Therefore, it has the potential to become one of the largest end uses for wood products worldwide. However, during decomposition of treated wood Cu-based NPs and/or their derivate may accumulate in the mycelium of Cu-tolerant fungi and end up in their spores that are dispersed into the environment. Inhaled Cu-loaded spores can cause harm and could become a potential risk for human health. We collected evidence and discuss the implications of the release of Cu-based NPs by wood-destroying fungi and highlight the exposure pathways and subsequent magnitude of health impact. - Highlights: • We compared copper particulate wood preservatives with conventional ones. • We assessed the fungicidal activity of particulate copper wood preservatives. • We reviewed the Cu-tolerance mechanisms of some wood-destroying fungi. • Fungi colonizing wood treated with particulate copper may release Cu-loaded spores. - We assess the fungicidal activity of particulate copper wood preservatives and their possible release in the air by Cu-tolerant wood-destroying fungi

  11. Graphene-based bimorphs for micron-sized, autonomous origami machines.

    Science.gov (United States)

    Miskin, Marc Z; Dorsey, Kyle J; Bircan, Baris; Han, Yimo; Muller, David A; McEuen, Paul L; Cohen, Itai

    2018-01-16

    Origami-inspired fabrication presents an attractive platform for miniaturizing machines: thinner layers of folding material lead to smaller devices, provided that key functional aspects, such as conductivity, stiffness, and flexibility, are persevered. Here, we show origami fabrication at its ultimate limit by using 2D atomic membranes as a folding material. As a prototype, we bond graphene sheets to nanometer-thick layers of glass to make ultrathin bimorph actuators that bend to micrometer radii of curvature in response to small strain differentials. These strains are two orders of magnitude lower than the fracture threshold for the device, thus maintaining conductivity across the structure. By patterning 2-[Formula: see text]m-thick rigid panels on top of bimorphs, we localize bending to the unpatterned regions to produce folds. Although the graphene bimorphs are only nanometers thick, they can lift these panels, the weight equivalent of a 500-nm-thick silicon chip. Using panels and bimorphs, we can scale down existing origami patterns to produce a wide range of machines. These machines change shape in fractions of a second when crossing a tunable pH threshold, showing that they sense their environments, respond, and perform useful functions on time and length scales comparable with microscale biological organisms. With the incorporation of electronic, photonic, and chemical payloads, these basic elements will become a powerful platform for robotics at the micrometer scale.

  12. Penetration of sub-micron aerosol droplets in composite cylindrical filtration elements

    International Nuclear Information System (INIS)

    Geurts, Bernard J.; Pratte, Pascal; Stolz, Steffen; Stabbert, Regina; Poux, Valerie; Nordlund, Markus; Winkelmann, Christoph

    2011-01-01

    Advection-diffusion transport of aerosol droplets in composite cylindrical filtration elements is analyzed and compared to experimental data. The penetration, characterizing the fraction of droplets that passes through the pores of a filtration element, is quantified for a range of flow rates. The advection-diffusion transport in a laminar Poiseuille flow is treated numerically for slender pores using a finite difference approach in cylindrical coordinates. The algebraic dependence of the penetration on the Peclet number as predicted theoretically, is confirmed by experimental findings at a variety of aspect ratios of the cylindrical pores. The effective penetration associated with a composite filtration element consisting of a set of parallel cylindrical pores is derived. The overall penetration of heterogeneous composite filtration elements shows an algebraic dependence to the fourth power on the radii of the individual pores that are contained. This gives rise to strong variations in the overall penetration in cases with uneven distributions of pore sizes, highly favoring filtration by the larger pores. The overall penetration is computed for a number of basic geometries, providing a point of reference for filtration design and experimental verification.

  13. The magnetic structure and palaeomagnetic recording fidelity of sub-micron greigite (Fe3S4)

    Science.gov (United States)

    Valdez-Grijalva, Miguel A.; Nagy, Lesleis; Muxworthy, Adrian R.; Williams, Wyn; Fabian, Karl

    2018-02-01

    We present the results of a finite-element micromagnetic model of 30nm to 300nm greigite (Fe3S4) grains with a variety of equant morphologies. This grain size range covers the magnetic single-domain (SD) to pseudo single-domain (PSD) transition, and possibly also the PSD to multi-domain (MD) transition. The SD-PSD threshold d0 is determined to be 50nm ≤d0 ≤ 56nm depending on grain shape. The nudged elastic-band method was used to determine the room temperature energy barriers between stable states and thus the blocking volumes. It is found that, in the absence of interparticle magnetostatic interactions, the magnetisation of equant SD greigite is not stable on a geological scale and only PSD grains ≥ 70nm can be expected to carry a stable magnetisation over billion-year timescales, i.e., all non-interacting SD particles are essentially superparamagnetic. We further identify a mechanism for the PSD to multi-domain (MD) transition, which is of a continuous nature from PSD nucleation up to 300nm, when structures typical of MD behaviour like closure domains begin to form.

  14. Micronized copper wood preservatives: an efficiency and potential health risk assessment for copper-based nanoparticles.

    Science.gov (United States)

    Civardi, Chiara; Schwarze, Francis W M R; Wick, Peter

    2015-05-01

    Copper (Cu) is an essential biocide for wood protection, but fails to protect wood against Cu-tolerant wood-destroying fungi. Recently Cu particles (size range: 1 nm-25 μm) were introduced to the wood preservation market. The new generation of preservatives with Cu-based nanoparticles (Cu-based NPs) is reputedly more efficient against wood-destroying fungi than conventional formulations. Therefore, it has the potential to become one of the largest end uses for wood products worldwide. However, during decomposition of treated wood Cu-based NPs and/or their derivate may accumulate in the mycelium of Cu-tolerant fungi and end up in their spores that are dispersed into the environment. Inhaled Cu-loaded spores can cause harm and could become a potential risk for human health. We collected evidence and discuss the implications of the release of Cu-based NPs by wood-destroying fungi and highlight the exposure pathways and subsequent magnitude of health impact. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Micronization, characterization and in-vitro dissolution of shellac from PGSS supercritical CO2 technique.

    Science.gov (United States)

    Labuschagne, Philip W; Naicker, Brendon; Kalombo, Lonji

    2016-02-29

    The purpose of this investigation was to determine whether shellac, a naturally occurring material with enteric properties, could be processed in supercritical CO2 (sc-CO2) using the particles from gas saturated solution (PGSS) process and how process parameters affect the physico-chemical properties of shellac. In-situ attenuated total reflection fourier transform infra-red (ATR-FTIR) spectroscopy showed that CO2 dissolves in shellac with solubility reaching a maximum of 13% (w/w) at 300 bar pressure and 40 °C and maximum swelling of 28%. The solubility of sc-CO2 in shellac allowed for the formation of porous shellac structures of which the average pore diameter and pore density could be controlled by adjustment of operating pressure and temperature. In addition, it was possible to produce shellac microparticles ranging in average diameter from 180 to 300 μm. It was also shown that processing shellac in sc-CO2 resulted in accelerated esterification reactions, potentially limiting the extent of post-processing "ageing" and thus greater stability. Due to additional hydrolysis reactions enhanced by the presence of sc-CO2, the solubility of shellac at pH 7.5 was increased by between 4 and 7 times, while dissolution rates were also increased. It was also shown that the in-vitro dissolution profiles of shellac could be modified by slight adjustment in operating temperatures. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. 2-micron lasing in Tm:Lu2O3 ceramic: initial operation

    Science.gov (United States)

    Vetrovec, John; Filgas, David M.; Smith, Carey A.; Copeland, Drew A.; Litt, Amardeep S.; Briscoe, Eldridge; Schirmer, Ernestina

    2018-03-01

    We report on initial lasing of Tm:Lu2O3 ceramic laser with tunable output in the vicinity of 2 μm. Tm:Lu2O3 ceramic gain materials offer a much lower saturation fluence than the traditionally used Tm:YLF and Tm:YAG materials. The gain element is pumped by 796 nm diodes via a "2-for-1" crossrelaxation energy transfer mechanism, which enables high efficiency. The high thermal conductivity of the Lu2O3 host ( 18% higher than YAG) in combination with low quantum defect of 20% supports operation at high-average power. Konoshima's ceramic fabrication process overcomes the scalability limits of single crystal sesquioxides. Tm:Lu2O3 offers wide-bandwidth amplification of ultrashort pulses in a chirped-pulse amplification (CPA) system. A laser oscillator was continuously tuned over a 230 nm range from 1890 to 2120 nm while delivering up to 43W QCW output with up to 37% efficiency. This device is intended for initial testing and later seeding of a multi-pass edge-pumped disk amplifier now being developed by Aqwest which uses composite Tm:Lu2O3 disk gain elements.

  17. Micron-pore-sized metallic filter tube membranes for filtration of particulates and water purification.

    Science.gov (United States)

    Phelps, T J; Palumbo, A V; Bischoff, B L; Miller, C J; Fagan, L A; McNeilly, M S; Judkins, R R

    2008-07-01

    Robust filtering techniques capable of efficiently removing particulates and biological agents from water or air suffer from plugging, poor rejuvenation, low permeance, and high backpressure. Operational characteristics of pressure-driven separations are in part controlled by the membrane pore size, charge of particulates, transmembrane pressure and the requirement for sufficient water flux to overcome fouling. With long term use filters decline in permeance due to filter-cake plugging of pores, fouling, or filter deterioration. Though metallic filter tube development at ORNL has focused almost exclusively on gas separations, a small study examined the applicability of these membranes for tangential filtering of aqueous suspensions of bacterial-sized particles. A mixture of fluorescent polystyrene microspheres ranging in size from 0.5 to 6 microm in diameter simulated microorganisms in filtration studies. Compared to a commercial filter, the ORNL 0.6 microm filter averaged approximately 10-fold greater filtration efficiency of the small particles, several-fold greater permeance after considerable use and it returned to approximately 85% of the initial flow upon backflushing versus 30% for the commercial filter. After filtering several liters of the particle-containing suspension, the ORNL composite filter still exhibited greater than 50% of its initial permeance while the commercial filter had decreased to less than 20%. When considering a greater filtration efficiency, greater permeance per unit mass, greater percentage of rejuvenation upon backflushing (up to 3-fold), and likely greater performance with extended use, the ORNL 0.6 microm filters can potentially outperform the commercial filter by factors of 100-1,000 fold.

  18. Estimate of the influence of muzzle smoke on function range of infrared system

    Science.gov (United States)

    Luo, Yan-ling; Wang, Jun; Wu, Jiang-hui; Wu, Jun; Gao, Meng; Gao, Fei; Zhao, Yu-jie; Zhang, Lei

    2013-09-01

    Muzzle smoke produced by weapons shooting has important influence on infrared (IR) system while detecting targets. Based on the theoretical model of detecting spot targets and surface targets of IR system while there is muzzle smoke, the function range for detecting spot targets and surface targets are deduced separately according to the definition of noise equivalent temperature difference(NETD) and minimum resolution temperature difference(MRTD). Also parameters of muzzle smoke affecting function range of IR system are analyzed. Base on measured data of muzzle smoke for single shot, the function range of an IR system for detecting typical targets are calculated separately while there is muzzle smoke and there is no muzzle smoke at 8-12 micron waveband. For our IR system function range has reduced by over 10% for detecting tank if muzzle smoke exists. The results will provide evidence for evaluating the influence of muzzle smoke on IR system and will help researchers to improve ammo craftwork.

  19. Resolved 24.5 micron emission from massive young stellar objects

    Science.gov (United States)

    de Wit, W. J.; Hoare, M. G.; Fujiyoshi, T.; Oudmaijer, R. D.; Honda, M.; Kataza, H.; Miyata, T.; Okamoto, Y. K.; Onaka, T.; Sako, S.; Yamashita, T.

    2009-01-01

    Context: Massive young stellar objects (MYSO) are surrounded by massive dusty envelopes, whose physical structure and geometry are determined by the star formation process. Aims: Our principal aim is to establish the density structure of MYSO envelopes on scales of ~1000 AU. This constitutes an increase of a factor ~10 in angular resolution compared to similar studies performed in the (sub)mm. Methods: We have obtained diffraction-limited (0.6´´) 24.5 μm images (field of view of 40 arcsec×30 arcsec) of 14 well-known massive star formation regions with the COMICS instrument mounted on the 8.2 m Subaru telescope. We construct azimuthally averaged intensity profiles of the resolved MYSO envelopes and build spectral energy distributions (SEDs) from archival data and the COMICS 24.5 μm flux density. The SEDs range from near-infrared to millimeter wavelengths. Self-consistent 1-D radiative transfer models described by a density dependence of the form n(r) ∝ r-p are used to simultaneously compare the intensity profiles and SEDs to model predictions. Results: The images reveal the presence of discrete MYSO sources which are resolved on arcsecond scales, and, to first-order, the observed emission is circular on the sky. For many sources, the spherical models are capable of satisfactorily reproducing the 24.5 μm intensity profile, the 24.5 μm flux density, the 9.7 μm silicate absorption feature, and the submm emission. They are described by density distributions with p =1.0±0.25. Such distributions are shallower than those found on larger scales probed with single-dish (sub)mm studies. Other sources have density laws that are shallower/steeper than p=1.0 and there is evidence that these are viewed near edge-on or near face-on respectively. In these cases spherical models fail to provide good fits to the data. The images also reveal a diffuse component tracing somewhat larger scale structures, particularly visible in the regions S 140, AFGL 2136, IRAS 20126

  20. The Correlated Dynamics of Micron-Scale Cantilevers in a Viscous Fluid

    Science.gov (United States)

    Robbins, Brian A.

    A number of microcantilever systems of fundamental importance are explored using theoretical and numerical methods to quantify and provide physical insights into the dynamics of experimentally accessible systems that include a variety of configurations and viscous fluids. It is first shown that the correlated dynamics of both a laterally and vertically offset cantilever pair can be accurately predicted by numerical simulations. This is verified by comparing the correlated dynamics yielded by numerical simulations with experimental measurement. It is also demonstrated that in order to obtain these accurate predictions, geometric details of the cantilever must be included in the numerical simulation to directly reflect the experimental cantilever. A microrheology technique that utilizes the fluctuation-dissipation theorem is proposed. It is shown that by including the frequency dependence of the fluid damping, improvements in accuracy of the predictions of the rheological properties of the surrounding fluid are observed over current techniques. The amplitude spectrum of a 2-D cantilever in a power-law fluid is studied. The resulting amplitude spectrum yielded a curve similar to an overdamped system. It is observed that the amplitude and noise spectrum yield the same qualitative response for a 2-D cantilever in a shear-thinning, power-law fluid. The correlated dynamics of a tethered vertically offset cantilever pair is investigated. It is shown that for a range of stiffness ratios, which is the ratio of the spring constant of the tethering relative to the cantilever spring constant, the change in the correlated dynamics of a Hookean spring tethered cantilever pair can be seen in the presence of fluid coupling. The dynamics of a spring-mass tethered, vertically offset cantilever pair is qualitatively studied by simplifying the model to an array of springs and masses. The resulting study found that the correlated dynamics of the displacement of mass of the tethered

  1. Surface Plasmon Polariton-Assisted Long-Range Exciton Transport in Monolayer Semiconductor Lateral Heterostructure

    Science.gov (United States)

    Shi, Jinwei; Lin, Meng-Hsien; Chen, Yi-Tong; Estakhri, Nasim Mohammadi; Tseng, Guo-Wei; Wang, Yanrong; Chen, Hung-Ying; Chen, Chun-An; Shih, Chih-Kang; Alã¹, Andrea; Li, Xiaoqin; Lee, Yi-Hsien; Gwo, Shangjr

    Recently, two-dimensional (2D) semiconductor heterostructures, i.e., atomically thin lateral heterostructures (LHSs) based on transition metal dichalcogenides (TMDs) have been demonstrated. In an optically excited LHS, exciton transport is typically limited to a rather short spatial range ( 1 micron). Furthermore, additional losses may occur at the lateral interfacial regions. Here, to overcome these challenges, we experimentally implement a planar metal-oxide-semiconductor (MOS) structure by placing a monolayer of WS2/MoS2 LHS on top of an Al2O3 capped Ag single-crystalline plate. We found that the exciton transport range can be extended to tens of microns. The process of long-range exciton transport in the MOS structure is confirmed to be mediated by an exciton-surface plasmon polariton-exciton conversion mechanism, which allows a cascaded energy transfer process. Thus, the planar MOS structure provides a platform seamlessly combining 2D light-emitting materials with plasmonic planar waveguides, offering great potential for developing integrated photonic/plasmonic functionalities.

  2. Frecuencia espontánea e inducida de micronúcleos transplacentarios en ratones Balb/c

    Directory of Open Access Journals (Sweden)

    Daniel Francisco Arencibia Arrebola

    2011-01-01

    Full Text Available Introducción: El ensayo de micronúcleos transplacentario, ha sido desarrollado con el objetivo de evaluar el potencial genotóxico en la descendencia y demostrar la capacidad de un agente de causar daños cromosómicos durante el período prenatal. Éste realiza el registro de aberraciones cromosómicas, demostrando si una sustancia determinada puede ser clastogénica o aneugénica en el feto, a través de la exposición materna. Objetivo: Por lo cual en el presente trabajo se tuvo como objetivo determinar la frecuencia espontánea e inducida de micronúcleos transplacentarios en ratones de la línea Balb/c. Pretendiendo vincular de esta forma el efecto genotóxico y reproductivo de una droga a evaluar por esta metodología. Materiales y métodos: Se formaron 4 grupos experimentales, el primero un control negativo (simulacro, el segundo control solvente NaCl (0,9%, en el tercero se utilizo la ciclofosfamida en dosis de 50 mg/kg, y el cuarto se utilizó la bleomicina en dosis de 20 mg/kg. Todos los grupos se administraron por vía intraperitoneal los días 14, 15 y 16 de la gestación y 24 h después de la última inoculación se procedió al sacrificio de las gestantes por dislocación cervical. Obteniéndose las muestras de médula ósea materna e hígado fetal. Resultados: Se obtuvo como resultado los valores espontáneos e inducidos de los índices de citotoxicidad y de genotoxicidad, así como el total de micronúcleos divididos según niveles de daños.Discusión y conclusiones: Se observo mayor inducción de daño en células hepáticas fetales que en médula ósea materna. Además se demostró que la ciclofosfamida es capaz de inducir mayor citotoxicidad y genotoxicidad que la bleomicina tanto en células de la médula ósea materna como en células hepáticas fetales. Por tanto se demostró el poder clastogénico transplacentario de ambos mutágenos vinculando este ensayo de genotoxicidad a la reproducción. Además estos resultados se

  3. Influence of Poly (Ethylene Glycol) and Oleylamine on the Formation of Nano to Micron Size Spherical SiO2 Particles

    Science.gov (United States)

    We report an eco-friendly synthesis of well–controlled, nano-to-micron-size, spherical SiO2 particles using non-hazardous solvent and a byproducts-producing system. It was found that the morphology and size of spherical SiO2 particles are controlled by adjusting the concentration...

  4. INFRARED STUDIES OF HUMAN SALIVA. IDENTIFICATION OF A FACTOR IN HUMAN SALIVA PRODUCING AN INFRARED ABSORBANCE MAXIMUM AT 4.9 MICRONS

    Science.gov (United States)

    An absorption maximum was observed at 4.9 microns in infrared spectra of human parotid saliva. The factor causing this absorbance was found to be a...nitrate, and heat stability. Thiocyanate was then determined in 16 parotid saliva samples by a spectrophotometric method, which involved formation of

  5. Dual fortification of salt with iodine and iron: a randomized, double-blind, controlled trial of micronized ferric pyrophosphate and encapsulated ferrous fumarate in southern India

    NARCIS (Netherlands)

    Andersson, M.; Thankachan, P.; Muthayya, S.; Goud, R.B.; Kurpad, A.V.; Hurrell, R.F.

    2008-01-01

    Background:Dual fortification of salt with iodine and iron could be a sustainable approach to combating iodine and iron deficiencies. Objective:We compared the efficacy of dual-fortified salt (DFS) made by using 2 proposed contrasting formulas-one fortifying with iron as micronized ground ferric

  6. The Carnegie Chicago Hubble Program: The Mid-Infrared Colours of Cepheids and the Effect of Metallicity on the CO Band-Head at 4.6 Micron

    Science.gov (United States)

    Scowcroft, Victoria; Seibert, Mark; Freedman, Wendy L.; Beaton, Rachael L.; Madore, Barry F.; Monson, Andrew J.; Rich, Jeffery A.; Rigby, Jane R.

    2016-01-01

    We compare mid-infrared (IR) 3.6 and 4.5 micron Warm Spitzer observations for Cepheids in the Milky Way and the Large and Small Magellanic Clouds. Using models, we explore in detail the effect of the CO rotation-vibration band-head at 4.6 micron on the mid-IR photometry. We confirm the temperature sensitivity of the CO band-head at 4.6 micron and find no evidence for an effect at 3.6 micron. We compare the ([3.6]-[4.5]) period-colour relations in the MW, LMC and SMC. The slopes of the period-colour relations for the three galaxies are in good agreement, but there is a trend in zero-point with metallicity, with the lowest metallicity Cepheids having redder mid-IR colours. Finally, we present a colour-[Fe/H] relation based on published spectroscopic metallicities. This empirical relation, calibrated to the metallicity system of Genovali et al., demonstrates that the ([3.6]-[4.5]) colour provides a reliable metallicity indicator for Cepheids, with a precision comparable to current spectroscopic determinations.

  7. Dwarfs Cooler Than M: The Definition of Spectral Type L Using Discoveries from the 2-Micron All-Sky Survey (2MASS)

    Science.gov (United States)

    Kirkpatrick, J.; Reid, I.; Liebert, J.; Cutri, R.; Nelson, B.; Beichman, C.; Dahn, C.; Monet, D.; Gizis, J.; Skrutskie, M.

    1998-01-01

    Before the 2-Micron All-Sky Survey (2MASS) began, only six objects were known with spectral types later than M9.5 V. In the first 371 sq. deg. of actual 2MASS survey data, we have identified another twenty such objects spectroscopically confirmed using the Low Resolution Imaging Spectrograph (LRIS) at the W.M. Keck Observatory.

  8. Advances in High Energy Solid-State 2-micron Laser Transmitter Development for Ground and Airborne Wind and CO2 Measurements

    Science.gov (United States)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Chen, Songsheng; Kavaya, Michael J.; Trieu, Bo; Bai, Yingxin; Petzar, Paul; Modlin, Edward A.; Koch, Grady; hide

    2010-01-01

    Sustained research efforts at NASA Langley Research Center (LaRC) during last fifteen years have resulted in a significant advancement in 2-micron diode-pumped, solid-state laser transmitter for wind and carbon dioxide measurement from ground, air and space-borne platform. Solid-state 2-micron laser is a key subsystem for a coherent Doppler lidar that measures the horizontal and vertical wind velocities with high precision and resolution. The same laser, after a few modifications, can also be used in a Differential Absorption Lidar (DIAL) system for measuring atmospheric CO2 concentration profiles. Researchers at NASA Langley Research Center have developed a compact, flight capable, high energy, injection seeded, 2-micron laser transmitter for ground and airborne wind and carbon dioxide measurements. It is capable of producing 250 mJ at 10 Hz by an oscillator and one amplifier. This compact laser transmitter was integrated into a mobile trailer based coherent Doppler wind and CO2 DIAL system and was deployed during field measurement campaigns. This paper will give an overview of 2-micron solid-state laser technology development and discuss results from recent ground-based field measurements.

  9. High Proportions of Sub-micron Particulate Matter in Icelandic Dust Storms in 2015

    Science.gov (United States)

    Dagsson Waldhauserova, Pavla; Arnalds, Olafur; Olafsson, Haraldur; Magnusdottir, Agnes

    2017-04-01

    in situ measurements at the dust source in 2013 revealed extremely high number concentrations of submicron particles, specifically in the size range 0.3-0.337 μm. The PM2.5/PM10 ratios of mass concentrations seem to be lower at the dust sources that in some distance from the sources as measured in 2015. Common dust storms in Iceland are of several hundred thousand tons of magnitude from relatively well defined main dust sources. Numerical simulations were used calculate the total dust flux from the sources as 180,000 - 280,000 tons in this study. The mean PM1 (PM10) concentrations inside of the dust plumes varied from 97 to 241 µg m-3 (PM10 = 158 to 583 µg m-3). The extent of moderate dust events was calculated as 2.450 km2 to 4.220 km2 of the land area suggesting the regional scale of the events. Dust plumes reported here passed the most densely inhabited areas of Iceland, health risk warnings for the general public were, however, not issued. The data provided stresses the need for such warning system and is an important step towards its development.

  10. Ranging Behaviour of Commercial Free-Range Laying Hens.

    Science.gov (United States)

    Chielo, Leonard Ikenna; Pike, Tom; Cooper, Jonathan

    2016-04-26

    In this study, the range use and behaviour of laying hens in commercial free-range flocks was explored. Six flocks were each visited on four separate days and data collected from their outdoor area (divided into zones based on distance from shed and available resources). These were: apron (0-10 m from shed normally without cover or other enrichments); enriched belt (10-50 m from shed where resources such as manmade cover, saplings and dust baths were provided); and outer range (beyond 50 m from shed with no cover and mainly grass pasture). Data collection consisted of counting the number of hens in each zone and recording behaviour, feather condition and nearest neighbour distance (NND) of 20 birds per zone on each visit day. In addition, we used techniques derived from ecological surveys to establish four transects perpendicular to the shed, running through the apron, enriched belt and outer range. Number of hens in each 10 m × 10 m quadrat was recorded four times per day as was the temperature and relative humidity of the outer range. On average, 12.5% of hens were found outside. Of these, 5.4% were found in the apron; 4.3% in the enriched zone; and 2.8% were in the outer range. This pattern was supported by data from quadrats, where the density of hens sharply dropped with increasing distance from shed. Consequently, NND was greatest in the outer range, least in the apron and intermediate in the enriched belt. Hens sampled in outer range and enriched belts had better feather condition than those from the apron. Standing, ground pecking, walking and foraging were the most commonly recorded activities with standing and pecking most likely to occur in the apron, and walking and foraging more common in the outer range. Use of the outer range declined with lower temperatures and increasing relative humidity, though use of apron and enriched belt was not affected by variation in these measures. These data support previous findings that outer range areas tend to be

  11. Ranging Behaviour of Commercial Free-Range Laying Hens

    Directory of Open Access Journals (Sweden)

    Leonard Ikenna Chielo

    2016-04-01

    Full Text Available In this study, the range use and behaviour of laying hens in commercial free-range flocks was explored. Six flocks were each visited on four separate days and data collected from their outdoor area (divided into zones based on distance from shed and available resources. These were: apron (0–10 m from shed normally without cover or other enrichments; enriched belt (10–50 m from shed where resources such as manmade cover, saplings and dust baths were provided; and outer range (beyond 50 m from shed with no cover and mainly grass pasture. Data collection consisted of counting the number of hens in each zone and recording behaviour, feather condition and nearest neighbour distance (NND of 20 birds per zone on each visit day. In addition, we used techniques derived from ecological surveys to establish four transects perpendicular to the shed, running through the apron, enriched belt and outer range. Number of hens in each 10 m × 10 m quadrat was recorded four times per day as was the temperature and relative humidity of the outer range. On average, 12.5% of hens were found outside. Of these, 5.4% were found in the apron; 4.3% in the enriched zone; and 2.8% were in the outer range. This pattern was supported by data from quadrats, where the density of hens sharply dropped with increasing distance from shed. Consequently, NND was greatest in the outer range, least in the apron and intermediate in the enriched belt. Hens sampled in outer range and enriched belts had better feather condition than those from the apron. Standing, ground pecking, walking and foraging were the most commonly recorded activities with standing and pecking most likely to occur in the apron, and walking and foraging more common in the outer range. Use of the outer range declined with lower temperatures and increasing relative humidity, though use of apron and enriched belt was not affected by variation in these measures. These data support previous findings that outer range

  12. Characterization on the coatings of Ni-base alloy with nano- and micron-size Sm{sub 2}O{sub 3} addition prepared by laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Shihong [School of Materials Science and Engineering, Anhui University of Technology, Maanshan City, Anhui Province 243002 (China); School of Nano and Advanced Materials Engineering, Changwon National University, 9, Sarim-Dong, Changwon, Gyeongnam 641-773 (Korea, Republic of)], E-mail: zsh10110903@hotmail.com; Li Mingxi [School of Materials Science and Engineering, Anhui University of Technology, Maanshan City, Anhui Province 243002 (China); Yoon, Jae Hong; Cho, Tong Yul [School of Nano and Advanced Materials Engineering, Changwon National University, 9, Sarim-Dong, Changwon, Gyeongnam 641-773 (Korea, Republic of)

    2008-12-01

    The coating materials are the powder mixture of micron-size Ni-base alloy powders with both 1.5 wt.% micron-size and nano-size Sm{sub 2}O{sub 3} powders, which are prepared on Q235 steel plate by 2.0 kW CO{sub 2} laser deposition. The results indicate that with rare earth oxide Sm{sub 2}O{sub 3} addition, the width of planar crystallization is smaller than that of the Ni-base alloy coatings. Micron- and nano-Sm{sub 2}O{sub 3}/Ni-base alloy coatings have similar microstructure showing the primary phase of {gamma}-Ni dendrite and eutectic containing {gamma}-Ni and Cr{sub 23}C{sub 6} phases. However, compared to micron-Sm{sub 2}O{sub 3}/Ni-base alloy, preferred orientation of {gamma}-Ni dendrite of nano-Sm{sub 2}O{sub 3}/Ni-base alloy is weakened. Planar crystal of several-{mu}m thickness is first grown and then dendrite growth is observed at 1.5% micron-Sm{sub 2}O{sub 3}/Ni-base alloy coating whereas equiaxed dendrite is grown at 1.5% nano-Sm{sub 2}O{sub 3}/Ni-base alloy coating. Hardness and wear resistance of the coating improves with decreasing Sm{sub 2}O{sub 3} size from micron to nano. The improvement on tribological property of nano-Sm{sub 2}O{sub 3}/Ni-base alloy over micron-Sm{sub 2}O{sub 3}/Ni-base alloy coatings can be attributed to the better resistance of equiaxed dendrite to adhesion interactions during the wear process. In 6 M HNO{sub 3} solution, the corrosion resistance is greatly improved with nano-Sm{sub 2}O{sub 3} addition since the decrease of corrosion ratio along grain-boundary in nano-Sm{sub 2}O{sub 3}/Ni-base alloy coating contributes to harmonization of corrosion potential.

  13. High-Power Single-Mode 2.65-micron InGaAsSb/AlInGaAsSb Diode Lasers

    Science.gov (United States)

    Frez, Clifford F.; Briggs, Ryan M.; Forouhar, Siamak; Borgentun, Carl E.; Gupta, James

    2013-01-01

    Central to the advancement of both satellite and in-situ science are improvements in continuous-wave and pulsed infrared laser systems coupled with integrated miniaturized optics and electronics, allowing for the use of powerful, single-mode light sources aboard both satellite and unmanned aerial vehicle platforms. There is a technological gap in supplying adequate laser sources to address the mid-infrared spectral window for spectroscopic characterization of important atmospheric gases. For high-power applications between 2 to 3 micron, commercial laser technologies are unsuitable because of limitations in output power. For instance, existing InP-based laser systems developed for fiber-based telecommunications cannot be extended to wavelengths longer than 2 micron. For emission wavelengths shorter than 3 micron, intersubband devices, such as infrared quantum cascade lasers, become inefficient due to band-offset limitations. To date, successfully demonstrated singlemode GaSb-based laser diodes emitting between 2 and 3 micron have employed lossy metal Bragg gratings for distributed- feedback coupling, which limits output power due to optical absorption. By optimizing both the quantum well design and the grating fabrication process, index-coupled distributed-feedback 2.65-micron lasers capable of emitting in excess of 25 mW at room temperature have been demonstrated. Specifically, lasers at 3,777/cm (2.65 micron) have been realized to interact with strong absorption lines of HDO and other isotopologues of H2O. With minor modifications of the optical cavity and quantum well designs, lasers can be fabricated at any wavelength within the 2-to-3-micron spectral window with similar performance. At the time of this reporting, lasers with this output power and wavelength accuracy are not commercially available. Monolithic ridge-waveguide GaSb lasers were fabricated that utilize secondorder lateral Bragg gratings to generate single-mode emission from InGaAsSb/ Al

  14. TWO MICRON ALL SKY SURVEY PHOTOMETRIC REDSHIFT CATALOG: A COMPREHENSIVE THREE-DIMENSIONAL CENSUS OF THE WHOLE SKY

    International Nuclear Information System (INIS)

    Bilicki, Maciej; Jarrett, Thomas H.; Cluver, Michelle E.; Steward, Louise; Peacock, John A.

    2014-01-01

    Key cosmological applications require the three-dimensional (3D) galaxy distribution on the entire celestial sphere. These include measuring the gravitational pull on the Local Group, estimating the large-scale bulk flow, and testing the Copernican principle. However, the largest all-sky redshift surveys—the 2MASS Redshift Survey and IRAS Point Source Catalog Redshift Survey—have median redshifts of only z = 0.03 and sample the very local universe. All-sky galaxy catalogs exist that reach much deeper—SuperCOSMOS in the optical, the Two Micron All Sky Survey (2MASS) in the near-IR, and WISE in the mid-IR—but these lack complete redshift information. At present, the only rapid way toward larger 3D catalogs covering the whole sky is through photometric redshift techniques. In this paper we present the 2MASS Photometric Redshift catalog (2MPZ) containing one million galaxies, constructed by cross-matching Two Micron All Sky Survey Extended Source Catalog (2MASS XSC), WISE, and SuperCOSMOS all-sky samples and employing the artificial neural network approach (the ANNz algorithm), trained on such redshift surveys as the Sloan Digital Sky Survey, 6dFGS, and 2dFGRS. The derived photometric redshifts have errors nearly independent of distance, with an all-sky accuracy of σ z = 0.015 and a very small percentage of outliers. In this way, we obtain redshift estimates with a typical precision of 12% for all the 2MASS XSC galaxies that lack spectroscopy. In addition, we have made an early effort toward probing the entire 3D sky beyond 2MASS, by pairing up WISE with SuperCOSMOS and training the ANNz on GAMA redshift data currently reaching to z med ∼ 0.2. This has yielded photo-z accuracies comparable to those in the 2MPZ. These all-sky photo-z catalogs, with a median z ∼ 0.1 for the 2MPZ, and significantly deeper for future WISE-based samples, will be the largest and most complete of their kind for the foreseeable future

  15. A Quantitative and Standardized Method for the Evaluation of Choroidal Neovascularization Using MICRON III Fluorescein Angiograms in Rats.

    Directory of Open Access Journals (Sweden)

    Jonathan P Wigg

    Full Text Available In-vivo imaging of choroidal neovascularization (CNV has been increasingly recognized as a valuable tool in the investigation of age-related macular degeneration (AMD in both clinical and basic research applications. Arguably the most widely utilised model replicating AMD is laser generated CNV by rupture of Bruch's membrane in rodents. Heretofore CNV evaluation via in-vivo imaging techniques has been hamstrung by a lack of appropriate rodent fundus camera and a non-standardised analysis method. The aim of this study was to establish a simple, quantifiable method of fluorescein fundus angiogram (FFA image analysis for CNV lesions.Laser was applied to 32 Brown Norway Rats; FFA images were taken using a rodent specific fundus camera (Micron III, Phoenix Laboratories over 3 weeks and compared to conventional ex-vivo CNV assessment. FFA images acquired with fluorescein administered by intraperitoneal injection and intravenous injection were compared and shown to greatly influence lesion properties. Utilising commonly used software packages, FFA images were assessed for CNV and chorioretinal burns lesion area by manually outlining the maximum border of each lesion and normalising against the optic nerve head. Net fluorescence above background and derived value of area corrected lesion intensity were calculated.CNV lesions of rats treated with anti-VEGF antibody were significantly smaller in normalised lesion area (p < 0.001 and fluorescent intensity (p < 0.001 than the PBS treated control two weeks post laser. The calculated area corrected lesion intensity was significantly smaller (p < 0.001 in anti-VEGF treated animals at 2 and 3 weeks post laser. The results obtained using FFA correlated with, and were confirmed by conventional lesion area measurements from isolectin stained choroidal flatmounts, where lesions of anti-VEGF treated rats were significantly smaller at 2 weeks (p = 0.049 and 3 weeks (p < 0.001 post laser.The presented method of in

  16. The influence of size on the toxicity of an encapsulated pesticide: a comparison of micron- and nano-sized capsules.

    Science.gov (United States)

    Meredith, Alicea N; Harper, Bryan; Harper, Stacey L

    2016-01-01

    Encapsulation technology involves entrapping a chemical active ingredient (a.i.) inside a hollow polymeric shell and has been applied to commercial pesticide manufacturing for years to produce capsule suspension (CS) formulations with average particle sizes in the micron-scale. The few literature sources that investigate the environmental fate and toxicity to non-target organisms of encapsulated commercially available pesticide products with regard to capsule size report on average sizes between 20 and 50 μm. Here, we have identified a CS formulation with an average capsule size of approximately 2 μm with some capsules extending into the nanometer scale (~200 nm). Determining how carrier size influences toxicity is important to understanding if current pesticide risk assessments are sufficient to protect against products that incorporate encapsulation technology. Here, a commercial pyrethroid CS pesticide with lambda-cyhalothrin (λ-Cy) as the a.i. was separated into two suspensions, a fraction consisting of nano-sized capsules (~250 nm) and a fraction of micron-sized capsules (~2200 nm) in order to investigate the influence of capsule size on toxicity to embryonic zebrafish, Danio rerio. Toxicity was evaluated 24h after exposure to equivalent amounts of a.i. by the presence and severity of pyrethroid-specific tremors, 14 sublethal developmental impacts and mortality. Fish exposed to greater than 20 μg a.i. L(-1) technical λ-Cy or formulated product experienced curvature of the body axis, pericardial edema, craniofacial malformations, and mortality. Exposure to the unfractionated formulation, micro fraction, nano fraction and technical a.i. resulted in no significant differences in the occurrence of sublethal impacts or mortality; however, the technical a.i. exposure resulted in significantly less fish experiencing tremors and shorter tremors compared to any of the formulated product exposures. This suggests that the capsule size does not influence the toxic

  17. Improved Range Searching Lower Bounds

    DEFF Research Database (Denmark)

    Larsen, Kasper Green; Nguyen, Huy L.

    2012-01-01

    by constructing a hard input set and query set, and then invoking Chazelle and Rosenberg's [CGTA'96] general theorem on the complexity of navigation in the pointer machine. For the group model, we show that input sets and query sets that are hard for range reporting in the pointer machine (i.e. by Chazelle...... and Rosenberg's theorem), are also hard for dynamic range searching in the group model. This theorem allows us to reuse decades of research on range reporting lower bounds to immediately obtain a range of new group model lower bounds. Amongst others, this includes an improved lower bound for the fundamental...

  18. Short-range fundamental forces

    International Nuclear Information System (INIS)

    Antoniadis, I.; Baessler, S.; Buchner, M.; Fedorov, V.V.; Hoedl, S.; Nesvizhevsky, V.V.; Pignol, G.; Protasov, K.V.; Lambrecht, A.; Reynaud, S.; Sobolev, Y.

    2010-01-01

    We consider theoretical motivations to search for extra short-range fundamental forces as well as experiments constraining their parameters. The forces could be of two types: 1) spin-independent forces; 2) spin-dependent axion-like forces. Different experimental techniques are sensitive in respective ranges of characteristic distances. The techniques include measurements of gravity at short distances, searches for extra interactions on top of the Casimir force, precision atomic and neutron experiments. We focus on neutron constraints, thus the range of characteristic distances considered here corresponds to the range accessible for neutron experiments

  19. Asian Dust Observed During the KORUS Air Quality Mission Creates Significant Super-Micron NO3-, NH4+, and SO42- Aerosols.

    Science.gov (United States)

    Heim, E. W.; Dibb, J. E.; Scheuer, E. M.

    2017-12-01

    The KORUS mission was a collaborative effort between the Korean Institute of Environmental Research and NASA. KORUS provided a comprehensive assessment of air quality in Korea during early 2016. The intensive sampling campaign was timed to assess local photochemistry during increasing solar insolation and biogenic emissions; after the April peak in outflow of pollution and dust from central China. Chinese outflow is well characterized by Silica-Calcium rich dust. Despite the effort to avoid the period with strongest dust outflow, Ca2+ was well represented in all bulk (particle diameters up to 4.5 micron) aerosol filter samples filter measurements and submicron measurements of NH4+, SO42, and NO3- made by AMS indicates substantial super-micron fractions of these anthropogenic ions at times during KORUS-AQ. During the dustiest samples (Ca2+ > 1.5ug/m3) we see marked increases in super-micron concentration of NH4+, SO42-, and NO3-, m = 1.113 ug/m3 , 2.621 ug/m3 , 4.413 ug/m3, with the super-micron contribution to total concentration averaging 47%, 45%, and 81% respectively. In contrast, low dust days (Ca2+ < 0.2ug/m3) the super-micron concentrations averaged 0.262 ug/m3, 0.510 ug/m3, -0.029 ug/m3, respectively and accounted for just 20%, 14%, and 8% of total mass. During the dust events, samples that have trajectories passing over industrial centers in eastern China approached equivalence balance between Ca2++ NH4+ and SO42-+NO3-. In contrast dusty samples that did not pass over these industrial centers during transport to the West Sea and Korea maintained excess cations, dominantly Ca2+. This suggests that dust can act as an important carrier of Chinese pollution to Korea when this saturated dust reaches the peninsula.

  20. Dynamic range majority data structures

    DEFF Research Database (Denmark)

    Elmasry, Amr Ahmed Abd Elmoneim; He, Meng; Munro, J. Ian

    2011-01-01

    Given a set P of n coloured points on the real line, we study the problem of answering range α-majority (or "heavy hitter") queries on P. More specifically, for a query range Q, we want to return each colour that is assigned to more than an α-fraction of the points contained in Q. We present a ne...

  1. Range Compressed Holographic Aperture Ladar

    Science.gov (United States)

    2017-06-01

    entropy saturation behavior of the estimator is analytically described. Simultaneous range-compression and aperture synthesis is experimentally...4 2.1 Circular and Inverse -Circular HAL...2.3 Single Aperture, Multi-λ Imaging ...................................................................................... 14 2.4 Simultaneous Range

  2. Cooling and crystallization of rhyolite-obsidian lava: Insights from micron-scale projections on plagioclase microlites

    Science.gov (United States)

    Sano, Kyohei; Toramaru, Atsushi

    2017-07-01

    To reveal the cooling process of a rhyolite-obsidian flow, we studied the morphology of plagioclase microlites in the Tokachi-Ishizawa lava of Shirataki, northern Hokkaido, Japan, where the structure of the lava can be observed from obsidian at the base of the flow to the innermost rhyolite. Needle-like micron-scale textures, known as "projections", occur on the short side surfaces of the plagioclase microlites. Using FE-SEM we discovered a positive correlation between the lengths and spacings of these projections. On the basis of the instability theory of an interface between melt and crystal, and to understand the length and spacing data, we developed a model that explains the positive correlation and allows us to simultaneously estimate growth rates and growth times. Applying the model to our morphological data and the estimated growth rates and growth times, we suggest that the characteristics of the projections reflect the degree of undercooling, which in turn correlates with lava structure (the obsidian at the margin of the flow experienced a higher degree of undercooling than the interior rhyolite). The newly developed method provides insights into the degree of undercooling during the final stages of crystallization of a rhyolitic lava flow.

  3. Kinetic Requirements for the Measurement of Mesospheric Water Vapor at 6.8 (microns) under Non-LTE Conditions

    Science.gov (United States)

    Zhou, Daniel K.; Mlynczak, Martin G.; Lopez-Puertas, Manuel; Russell, James M., III

    1999-01-01

    We present accuracy requirements for specific kinetic parameters used to calculate the populations and vibrational temperatures of the H2O(010) and H2O(020) states in the terrestrial mesosphere. The requirements are based on rigorous simulations of the retrieval of mesospheric water vapor profiles from measurements of water vapor infrared emission made by limb scanning instruments on orbiting satellites. Major improvements in the rate constants that describe vibration-to- vibration exchange between the H2O(010) and 02(1) states are required in addition to improved specification of the rate of quenching Of O2(1) by atomic oxygen (0). It is also necessary to more accurately determine the yield of vibrationally excited O2(l) resulting from ozone photolysis. A contemporary measurement of the rate of quenching of H2O(010) by N2 and O2 is also desirable. These rates are either highly uncertain or have never before been measured at atmospheric temperatures. The suggested improvements are necessary for the interpretation of water vapor emission measurements at 6.8 microns to be made from a new spaceflight experiment in less than 2 years. The approach to retrieving water vapor under non-LTE conditions is also presented.

  4. C II forbidden-line 158 micron mapping in Sagittarius A Rotation curve and mass distribution in the galactic center

    Science.gov (United States)

    Lugten, J. B.; Genzel, R.; Crawford, M. K.; Townes, C. H.

    1986-01-01

    Based on data obtained with the NASA Kuiper Airborne Observatory 91.4 cm telescope, the 158-micron fine structure line emission of C(+) is mapped near the galactic center. The strongest emission comes from a 10-pc FWHM diameter disk centered on Sgr A West whose dominant motion is rotation. Extended C(+) emission is also found from the +50 km/s galactic center molecular cloud, and a second cloud at v(LSR) of about -35 km/s. The rotation curve and mass distribution within 10 pc of the galactic center are derived, and the C(+) profiles show a drop-off of rotation velocity between 2 and 10 pc. A mass model is suggested with 2-4 million solar masses in a central point mass, and a M/L ratio of the central stellar cluster of 0.5 solar masses/solar luminosities, suggesting a large abundance of giants and relatively recent star formation in the center.

  5. Prospects for sub-micron solid state nuclear magnetic resonance imaging with low-temperature dynamic nuclear polarization.

    Science.gov (United States)

    Thurber, Kent R; Tycko, Robert

    2010-06-14

    We evaluate the feasibility of (1)H nuclear magnetic resonance (NMR) imaging with sub-micron voxel dimensions using a combination of low temperatures and dynamic nuclear polarization (DNP). Experiments are performed on nitroxide-doped glycerol-water at 9.4 T and temperatures below 40 K, using a 30 mW tunable microwave source for DNP. With DNP at 7 K, a 0.5 microL sample yields a (1)H NMR signal-to-noise ratio of 770 in two scans with pulsed spin-lock detection and after 80 db signal attenuation. With reasonable extrapolations, we infer that (1)H NMR signals from 1 microm(3) voxel volumes should be readily detectable, and voxels as small as 0.03 microm(3) may eventually be detectable. Through homonuclear decoupling with a frequency-switched Lee-Goldburg spin echo technique, we obtain 830 Hz (1)H NMR linewidths at low temperatures, implying that pulsed field gradients equal to 0.4 G/d or less would be required during spatial encoding dimensions of an imaging sequence, where d is the resolution in each dimension.

  6. Impact of nano/micron vegetable carbon black on mechanical, barrier and anti-photooxidation properties of fish gelatin film.

    Science.gov (United States)

    Ding, Junsheng; Wu, Xiaomeng; Qi, Xiaona; Guo, Heng; Liu, Anjun; Wang, Wenhang

    2018-05-01

    In this paper, two kinds of commonly used vegetable carbon black (VCB, 3000 mesh; nano) at 50 g kg -1 concentration (based on dried gelatin) were added to 48 g kg -1 of fish gelatin (GEL) solutions and their effects on mechanical, barrier and anti-photooxidation properties of GEL films were investigated. From the SEM images, it was shown that compared with 3000 mesh VCB (1-2 μm), nano VCB (100-200 nm) made the microstructure of GEL film more compact and more gelatin chains were cross-linked by nano VCB. The addition of nano VCB significantly increased gelatin film strength with the greatest tensile strength of 52.589 MPa and stiffness with the highest Young's modulus of 968.874 MPa, but led to the reduction of film elongation. Also, the VCB presence significantly improved water vapour and oxygen barrier properties of GEL film. Importantly, nano VCB increased GEL film with better UV barrier property due to its stronger UV absorption nature when compared with micron VCB. This property could help in the preservation of oil samples in the photooxidation accelerated test. With improved properties, the nano VCB-reinforced GEL film may have great potential for application in the edible packaging field, especially for the anti-photooxidation property. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  7. Solar magnetic field studies using the 12 micron emission lines. I - Quiet sun time series and sunspot slices

    Science.gov (United States)

    Deming, Drake; Boyle, Robert J.; Jennings, Donald E.; Wiedemann, Gunter

    1988-01-01

    The use of the extremely Zeeman-sensitive IR emission line Mg I, at 12.32 microns, to study solar magnetic fields. Time series observations of the line in the quiet sun were obtained in order to determine the response time of the line to the five-minute oscillations. Based upon the velocity amplitude and average period measured in the line, it is concluded that it is formed in the temperature minimum region. The magnetic structure of sunspots is investigated by stepping a small field of view in linear 'slices' through the spots. The region of penumbral line formation does not show the Evershed outflow common in photospheric lines. The line intensity is a factor of two greater in sunspot penumbrae than in the photosphere, and at the limb the penumbral emission begins to depart from optical thinness, the line source function increasing with height. For a spot near disk center, the radial decrease in absolute magnetic field strength is steeper than the generally accepted dependence.

  8. Design and characterization of radiation resistant integrated circuits for the LHC particle detectors using deep sub-micron CMOS technologies

    International Nuclear Information System (INIS)

    Anelli, Giovanni Maria

    2000-01-01

    The electronic circuits associated with the particle detectors of the CERN Large Hadron Collider (LHC) have to work in a highly radioactive environment. This work proposes a methodology allowing the design of radiation resistant integrated circuits using the commercial sub-micron CMOS technology. This method uses the intrinsic radiation resistance of ultra-thin grid oxides, the technology of enclosed layout transistors (ELT), and the protection rings to avoid the radio-induced creation of leakage currents. In order to check the radiation tolerance level, several test structures have been designed and tested with different radiation sources. These tests have permitted to study the physical phenomena responsible for the damages induced by the radiations and the possible remedies. Then, the particular characteristics of ELT transistors and their influence on the design of complex integrated circuits has been explored. The modeling of the W/L ratio, the asymmetries (for instance in the output conductance) and the performance of ELT couplings have never been studied yet. The noise performance of the 0.25 μ CMOS technology, used in the design of several integrated circuits of the LHC detectors, has been characterized before and after irradiation. Finally, two integrated circuits designed using the proposed method are presented. The first one is an analogic memory and the other is a circuit used for the reading of the signals of one of the LHC detectors. Both circuits were irradiated and have endured very high doses practically without any sign of performance degradation. (J.S.)

  9. Influence of tribomechanical micronization and hydrocolloids addition on enthalpy and apparent specific heat of whey protein model solutions

    Directory of Open Access Journals (Sweden)

    Zoran Herceg

    2002-01-01

    Full Text Available Knowledge of thermophysical properties, especially the phase transitions temperature, specific heat and enthalpy, are essential in defining the freezing process parameters as well as storage conditions of frozen food. In this work thermophysical properties of 10% model solutions prepared with 60% whey protein concentrate (WPC with various hydrocolloids addition (HVEP, YO-EH, YO-L i YO-M were investigated. Powdered whey protein concentrate was treated in equipment for tribomechanical micronization and activation at 40000 rpm (Patent: PCT/1B99/00757 just before model solutions preparation. Particle size analysis was performed using Frich –laser particle sizer “analysette 22”. The phase transition temperatures were determined by differential thermal analysis (DTA, while specific heat and enthalpy were calculated according to several mathematical equations. The results have shown that, due to tribomechanical treatment, certain changes in thermophysical and energetic properties of materials occurred. Tribomechanical treatment affects changes in granulometrical composition of WPC which result in higher abilities of reactions with hydrocolloids in model solutions and significant changes in thermophysical properties of the mentioned models.

  10. Time-specific measurements of energy deposition from radiation fields in simulated sub-micron tissue volumes

    International Nuclear Information System (INIS)

    Famiano, M.A.

    1997-01-01

    A tissue-equivalent spherical proportional counter is used with a modified amplifier system to measure specific energy deposited from a uniform radiation field for short periods of time (∼1 micros to seconds) in order to extrapolate to dose in sub-micron tissue volumes. The energy deposited during these time intervals is compared to biological repair processes occurring within the same intervals after the initial energy deposition. The signal is integrated over a variable collection time which is adjusted with a square-wave pulse. Charge from particle passages is collected on the anode during the period in which the integrator is triggered, and the signal decays quickly to zero after the integrator feedback switch resets; the process repeats for every triggering pulse. Measurements of energy deposited from x rays, 137 Cs gamma rays, and electrons from a 90 Sr/ 90 Y source for various time intervals are taken. Spectral characteristics as a function of charge collection time are observed and frequency plots of specific energy and collection time-interval are presented. In addition, a threshold energy flux is selected for each radiation type at which the formation of radicals (based on current measurements) in mammalian cells equals the rate at which radicals are repaired

  11. Potential impact of particulate matter less than 10 micron (PM10) to ambient air quality of Jakarta and Palembang

    Science.gov (United States)

    Agustine, I.; Yulinawati, H.; Gunawan, D.; Suswantoro, E.

    2018-01-01

    Particulate is a main urban air pollutant affects the environment and human wellbeing. The purpose of this study is to analyze the impact of particulate matter less than 10 micron (PM10) to ambient air quality of Jakarta and Palembang. The analysis is done with calendarPlot Function of openair model, which is based on the calculation of Pollutant Standards Index (PSI) or better known as Air Quality Index (AQI). The AQI category of “moderate” dominates Jakarta’s calendar from 2015 to 2016, which indicates the impact of PM10 is the visibility reduction. There was one day with category “unhealthy” that indicates the impact of dust exposure everywhere in Jakarta during 2015. Similar to Jakarta, the AQI category “moderate” also dominates Palembang’s calendar during 2015. However, the AQI category “hazardous” happened for few days in September and October 2015 during forest fires, which indicates the more harmful impacts of PM10, such as reduced visibility, dust exposure everywhere, increased sensitivity in patients with asthma and bronchitis to respiratory illness in all exposed populations. During 2016, AQI category of Jakarta mostly “moderate”, while in Palembang was “good”. Dominant AQI category from 2015 to 2016 shows higher PM10 concentration occurred in Jakarta compared to Palembang.

  12. Rapid, enhanced detection of Salmonella Typhimurium on fresh spinach leaves using micron-scale, phage-coated magnetoelastic biosensors

    Science.gov (United States)

    Horikawa, Shin; Vaglenov, Kiril A.; Gerken, Dana M.; Chai, Yating; Park, Mi-Kyung; Li, Suiqiong; Petrenko, Valery A.; Chin, Bryan A.

    2012-05-01

    In order to cost-effectively and rapidly detect bacterial food contamination in the field, the potential usefulness of phage-coated magnetoelastic (ME) biosensors has been recently reported. These biosensors are freestanding, mass-sensitive biosensors that can be easily batch-fabricated, thereby reducing the fabrication cost per sensor to a fraction of a cent. In addition, the biosensors can be directly placed on fresh produce surfaces and used to rapidly monitor possible bacterial food contamination without any preceding sample preparation. Previous investigations showed that the limit of detection (LOD) with millimeter-scale ME biosensors was fairly low for fresh produce with smooth surfaces (e.g., tomatoes and shell eggs). However, the LOD is anticipated to be dependent on the size of the biosensors as well as the topography of produce surfaces of interest. This paper presents an investigation into the use of micron-scale, phage-coated ME biosensors for the enhanced detection of Salmonella Typhimurium on fresh spinach leaves.

  13. Co-micronized palmitoylethanolamide/polydatin treatment causes endometriotic lesion regression in a rodent model of surgically-induced endometriosis

    Directory of Open Access Journals (Sweden)

    Rosanna Di Paola

    2016-10-01

    Full Text Available Endometriosis is a chronic, painful disease characterized by the presence of endometrial glands and stroma outside the uterine cavity. Palmitoylethanolamide (PEA, an endogenous fatty acid amide, has anti-inflammatory and neuroprotective effects. PEA lacks free radical scavenging activity, unlike polydatin (PLD, a natural precursor of resveratrol. The aim of this study was to investigate the effect of orally administered co-micronized PEA/polydatin (m(PEA/PLD in an autologous rat model of surgically-induced endometriosis. Endometriosis was induced in female Wistar albino rats by auto-transplantation of uterine squares (implants into the intestinal mesentery and peritoneal cavity. Rats were distributed into one control group and one treatment group (10 animals each: m(PEA/PLD 10 mg/kg/day. At 28 days after surgery the relative volume of the endometrioma was determined. Endometrial-like tissue was confirmed by histology: Masson trichrome and toluidine blue were used to detect fibrosis and mast cells, respectively. The treated group displayed a smaller cyst diameter, with improved fibrosis score and mast cell number decrease. m(PEA/PLD administration decreased angiogenesis (vascular endothelial growth factor, nerve growth factor, intercellular adhesion molecule, matrix metalloproteinase 9 expression and lymphocyte accumulation. m(PEA/PLD treatment also reduced peroxynitrite formation, (poly-ADPribose polymerase activation, IkBα phosphorylation and nuclear facor-kB traslocation in the nucleus. Our results suggested that m(PEA/PLD may be of use to inhibit development of endometriotic lesions in rats.

  14. The Search for New Luminous Blue Variable Stars: Near-Infrared Spectroscopy of Stars With 24 micron Shells

    Science.gov (United States)

    Stringfellow, Guy; Gvaramadze, Vasilii

    2010-02-01

    Luminous Blue Variable (LBV) stars represent an extremely rare class of very luminous and massive stars. Only about a dozen confirmed Galactic LBV stars are known to date, which precludes us from determining a solid evolutionary connection between LBV and other intermediate (e.g. Ofpe/WN9, WNL) phases in the life of very massive stars. The known LBV stars each have their own unique properties, so new discoveries add insight into the properties and evolutionary status of LBVs and massive stars; even one new discovery of objects of this type could provide break-through results in the understanding of the intermediate stages of massive star evolution. We have culled a prime sample of possible LBV candidates from the Spitzer 24 (micron) archival data. All have circumstellar nebulae, rings, and shells (typical of LBVs and related stars) surrounding reddened central stars. Spectroscopic followup of about two dozen optically visible central stars associated with the shells from this sample showed that they are either candidate LBVs, late WN-type Wolf-Rayet stars or blue supergiants. We propose infrared spectroscopic observations of the central stars for a large fraction (23 stars) of our northern sample to determine their nature and discover additional LBV candidates. These stars have no plausible optical counterparts, so infrared spectra are needed. This program requires two nights of Hale time using TripleSpec.

  15. Exploitation of sub-micron cavitation nuclei to enhance ultrasound-mediated transdermal transport and penetration of vaccines.

    Science.gov (United States)

    Bhatnagar, Sunali; Kwan, James J; Shah, Apurva R; Coussios, Constantin-C; Carlisle, Robert C

    2016-09-28

    Inertial cavitation mediated by ultrasound has been previously shown to enable skin permeabilisation for transdermal drug and vaccine delivery, by sequentially applying the ultrasound then the therapeutic in liquid form on the skin surface. Using a novel hydrogel dosage form, we demonstrate that the use of sub-micron gas-stabilising polymeric nanoparticles (nanocups) to sustain and promote cavitation activity during simultaneous application of both drug and vaccine results in a significant enhancement of both the dose and penetration of a model vaccine, Ovalbumin (OVA), to depths of 500μm into porcine skin. The nanocups themselves exceeded the penetration depth of the vaccine (up to 700μm) due to their small size and capacity to 'self-propel'. In vivo murine studies indicated that nanocup-assisted ultrasound transdermal vaccination achieved significantly (pultrasound-assisted vaccine delivery in the presence of nanocups demonstrated substantially higher specific anti-OVA IgG antibody levels compared to other transdermal methods. Further optimisation can lead to a viable, safe and non-invasive delivery platform for vaccines with potential use in a primary care setting or personalized self-vaccination at home. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Next generation DIRCM for 2.1-2.3 micron wavelength based on direct-diode GaSb technology

    Science.gov (United States)

    Dvinelis, Edgaras; Naujokaitė, Greta; Greibus, Mindaugas; Trinkūnas, Augustinas; Vizbaras, Kristijonas; Vizbaras, Augustinas

    2018-02-01

    Continuous advances in low-cost MANPAD heat-seeking missile technology over the past 50 years remains the number one hostile threat to airborne platforms globally responsible for over 60 % of casualties. Laser based directional countermeasure (DIRCM) technology have been deployed to counter the threat. Ideally, a laser based DIRCM system must involve a number of lasers emitting at different spectral bands mimicking the spectral signature of the airborne platform. Up to now, near and mid infrared spectral bands have been covered with semiconductor laser technology and only SWIR band remained with bulky fiber laser technology. Recent technology developments on direct-diode GaSb laser technology at Brolis Semiconductors offer a replacement for the fiber laser source leading to significant improvements by few orders of magnitude in weight, footprint, efficiency and cost. We demonstrate that with careful engineering, several multimode emitters can be combined to provide a directional laser beam with radiant intensity from 10 kW/sr to 60 kW/sr in an ultra-compact hermetic package with weight < 30 g and overall efficiency of 15 % in the 2.1- 2.3 micron spectral band offering 150 times improvement in efficiency and reduction in footprint. We will discuss present results, challenges and future developments for such next-generation integrated direct diode DIRCM modules for SWIR band.

  17. Precise Range Determination Using Laser Ranging Data of LAGEOS

    Directory of Open Access Journals (Sweden)

    Kwang-Ryul Kim

    1993-12-01

    Full Text Available Satellite laser ranging observation of LAGEOS ¥± has been performed using the SLR System at Sheshan Laser Ranging Station, Shanghai Observatory. And we obtained 1,838 observational points The observed range data is corrected by means of system delay correction using ground target observation, atmospheric refraction delay correction, offset correction, general relativistic correction and tide correction including solid tide, polar tide and ocean tide. As a result, the determined range delay mean value is 19.12m and the mean internal accuracy by means of polynomial fitting and least square method is ¡¾7cm. Corrected observational points are 1,340 and noise ratio to total observational points is 27.1%

  18. Foraging optimally for home ranges

    Science.gov (United States)

    Mitchell, Michael S.; Powell, Roger A.

    2012-01-01

    Economic models predict behavior of animals based on the presumption that natural selection has shaped behaviors important to an animal's fitness to maximize benefits over costs. Economic analyses have shown that territories of animals are structured by trade-offs between benefits gained from resources and costs of defending them. Intuitively, home ranges should be similarly structured, but trade-offs are difficult to assess because there are no costs of defense, thus economic models of home-range behavior are rare. We present economic models that predict how home ranges can be efficient with respect to spatially distributed resources, discounted for travel costs, under 2 strategies of optimization, resource maximization and area minimization. We show how constraints such as competitors can influence structure of homes ranges through resource depression, ultimately structuring density of animals within a population and their distribution on a landscape. We present simulations based on these models to show how they can be generally predictive of home-range behavior and the mechanisms that structure the spatial distribution of animals. We also show how contiguous home ranges estimated statistically from location data can be misleading for animals that optimize home ranges on landscapes with patchily distributed resources. We conclude with a summary of how we applied our models to nonterritorial black bears (Ursus americanus) living in the mountains of North Carolina, where we found their home ranges were best predicted by an area-minimization strategy constrained by intraspecific competition within a social hierarchy. Economic models can provide strong inference about home-range behavior and the resources that structure home ranges by offering falsifiable, a priori hypotheses that can be tested with field observations.

  19. On inertial range scaling laws

    International Nuclear Information System (INIS)

    Bowman, J.C.

    1994-12-01

    Inertial-range scaling laws for two- and three-dimensional turbulence are re-examined within a unified framework. A new correction to Kolmogorov's k -5/3 scaling is derived for the energy inertial range. A related modification is found to Kraichnan's logarithmically corrected two-dimensional enstrophy cascade law that removes its unexpected divergence at the injection wavenumber. The significance of these corrections is illustrated with steady-state energy spectra from recent high-resolution closure computations. The results also underscore the asymptotic nature of inertial-range scaling laws. Implications for conventional numerical simulations are discussed

  20. GPS test range mission planning

    Science.gov (United States)

    Roberts, Iris P.; Hancock, Thomas P.

    The principal features of the Test Range User Mission Planner (TRUMP), a PC-resident tool designed to aid in deploying and utilizing GPS-based test range assets, are reviewed. TRUMP features time history plots of time-space-position information (TSPI); performance based on a dynamic GPS/inertial system simulation; time history plots of TSPI data link connectivity; digital terrain elevation data maps with user-defined cultural features; and two-dimensional coverage plots of ground-based test range assets. Some functions to be added during the next development phase are discussed.

  1. Genus Ranges of Chord Diagrams.

    Science.gov (United States)

    Burns, Jonathan; Jonoska, Nataša; Saito, Masahico

    2015-04-01

    A chord diagram consists of a circle, called the backbone, with line segments, called chords, whose endpoints are attached to distinct points on the circle. The genus of a chord diagram is the genus of the orientable surface obtained by thickening the backbone to an annulus and attaching bands to the inner boundary circle at the ends of each chord. Variations of this construction are considered here, where bands are possibly attached to the outer boundary circle of the annulus. The genus range of a chord diagram is the genus values over all such variations of surfaces thus obtained from a given chord diagram. Genus ranges of chord diagrams for a fixed number of chords are studied. Integer intervals that can be, and those that cannot be, realized as genus ranges are investigated. Computer calculations are presented, and play a key role in discovering and proving the properties of genus ranges.

  2. Intentionally Short Range Communications (ISRC)

    Science.gov (United States)

    1993-05-01

    molecular oxygen in the atmosphere at 60 GHz (figure 9 LIppolito, 1981]). The MMW range is similar to that of the UV links. 3.3.1 Variable Range Similar to...option also requires that the signal be strong enough to overcome the noise from the solar and background sources, although the molecular oxygen and... emisions . Lasing will occur only within the cavity when the alignment is correct and not lasing othem ise. Such a cavity is dcteclable only when an observer

  3. The effect of micronized corn fiber on body weight, glycemia, and lipid metabolism in rats fed cafeteria diet

    Directory of Open Access Journals (Sweden)

    Vanessa Barbosa de Moraes THOMPSON

    2018-05-01

    Full Text Available Abstract During corn industrial dry milling, a residue rich in dietary fibers is generated. This study aimed to evaluate the effects of micronized corn fiber (MCF as part of a cafeteria diet in the macronutrient metabolism and body weight. Wistar male rats, with initial body weight of 249 ± 14 g (n = 13, received AIN-93M diet (Group 1 or cafeteria diet (Groups 2, 3 and 4, composed of commercial ration, cookies, fried potato sticks, milk chocolate, bacon and chicken liver pâté. Groups 3 and 4 received MCF to replace 100 and 50% of the cellulose from the AIN-93M diet, respectively. After 35 days, blood, tissues and feces were collected. Data were analyzed by ANOVA followed by Tukey test (p < 0.10. The weight gain of the animals increased by 25.9%, 20.8% and 22.0%, when fed cafeteria diet or 100 and 50% of MCF respectively, compared to the control group, although food consumption did not differ between them. Body weight and food efficiency ratio did not differ between the groups fed cafeteria diet with or without MCF. The addition of MCF to the cafeteria diet did not alter the animal lipid profile and glycemia, however, the accumulation of lipids in their livers was similar to the control group. The intake of 100% MCF resulted in higher fecal weight and fecal excretion of lipids, and lower fecal nitrogen, lipid absorption and lipid deposition in the liver than the cafeteria diet. In conclusion, MCF has a potential to improve intestinal transit and lipid excretion, but showed no benefit on blood lipid and glucose levels.

  4. Experimental Investigations of the Physical and Optical Properties of Individual Micron/Submicron-Size Dust Grains in Astrophysical Environments

    Science.gov (United States)

    Abbas, M. M.; Tankosic, D.; LeClair, A.

    2014-01-01

    Dust grains constitute a significant component of matter in the universe, and play an important and crucial role in the formation and evolution of the stellar/planetary systems in interstellar dust clouds. Knowledge of physical and optical properties of dust grains is required for understanding of a variety of processes in astrophysical and planetary environments. The currently available and generally employed data on the properties of dust grains is based on bulk materials, with analytical models employed to deduce the corresponding values for individual small micron/submicron-size dust grains. However, it has been well-recognized over a long period, that the properties of individual smallsize dust grains may be very different from those deduced from bulk materials. This has been validated by a series of experimental investigations carried out over the last few years, on a laboratory facility based on an Electrodynamic Balance at NASA, which permits levitation of single small-size dust grains of desired composition and size, in vacuum, in simulated space environments. In this paper, we present a brief review of the results of a series of selected investigations carried out on the analogs of interstellar and planetary dust grains, as well as dust grains obtained by Apollo-l1-17 lunar missions. The selected investigations, with analytical results and discussions, include: (a) Direct measurements of radiation on individual dust grains (b) Rotation and alignments of dust grains by radiative torque (c) Charging properties of dust grains by: (i) UV Photo-electric emissions (ii) Electron Impact. The results from these experiments are examined in the light of the current theories of the processes involved.

  5. Micron-scale intra-ring analyses of δ13C in early Eocene Arctic wood from Ellesmere Island

    Science.gov (United States)

    Schubert, B.; Jahren, H.; Eberle, J.; Sternberg, L.

    2009-12-01

    Early Eocene (ca. 53 Ma) fossil assemblages on Ellesmere Island (75 oN paleolatitude), provide rich information about the plant and animal life of the lush polar ecosystems of the time. Fossil wood recovered from Ellesmere Island is abundant and not permineralized; however, morphological features such as growth rings and resin canals have been obliterated by compression. We report on exceptionally high-resolution intra-ring analyses of δ13C within fossil wood, sampled at ~30 micron intervals across several centimeters of wood sample. Clear patterns in systematic seasonal increases and decreases in wood δ13C allowed us to identify at least 5 annual cycles in the wood. The patterns of increase and decrease in δ13C were consistent with patterns observed for evergreen wood, and distinct from the deciduous patterns we have observed for Metasequoia fossil wood from the middle Eocene (ca. 45 Ma) Arctic site on Axel Heiberg Island. We believe that the high point in the δ13C value of wood seen in each cycle corresponds to the highest environmental temperatures during the annual cycle, as has been seen for modern evergreens (e.g., Barbour et al., 2002). Modern studies have also noted that high temperature periods are correlated with the highest vapor-pressure and soil-water deficits of the annual cycle; these environmental factors would cause the plant to change its discrimination during photosynthesis. We will discuss the relatively low amplitude of δ13C fluctuations (0.5-1.0 ‰) clearly defined by Ellesmere fossil wood, in comparison to observations on modern common evergreens (2.0-4.0 ‰), and speculate that this difference implies greatly dampened seasonal temperature fluctuations in Eocene polar environments, relative to today. Barbour M.M., Walcroft A.S., Farquhar G.D., 2002, Seasonal variation in δ13C and δ18O of cellulose from growth rings of Pinus radiata. Plant, Cell and Environment: v. 25, p. 1483-1499.

  6. Does ascorbic acid supplementation affect iron bioavailability in rats fed micronized dispersible ferric pyrophosphate fortified fruit juice?

    Science.gov (United States)

    Haro-Vicente, Juan Francisco; Pérez-Conesa, Darío; Rincón, Francisco; Ros, Gaspar; Martínez-Graciá, Carmen; Vidal, Maria Luisa

    2008-12-01

    Food iron (Fe) fortification is an adequate approach for preventing Fe-deficiency anemia. Poorly water-soluble Fe compounds have good sensory attributes but low bioavailability. The reduction of the particle size of Fe fortificants and the addition of ascorbic acid might increase the bioavailability of low-soluble compounds. The present work aims to compare the Fe absorption and bioavailability of micronized dispersible ferric pyrophosphate (MDFP) (poorly soluble) to ferrous sufate (FS) (highly soluble) added to a fruit juice in presence or absence of ascorbic acid (AA) by using the hemoglobin repletion assay in rats. After a hemoglobin depletion period, four fruit juices comprised of (1) FS, (2) MDFP, (3) FS + AA, (4) MDFP + AA were produced and administered to a different group of rats (n = 18) over 21 days. During the repletion period, Fe balance, hemoglobin regeneration efficiency (HRE), relative bioavailability (RBV) and Fe tissue content were determined in the short, medium and long term. Fe absorption and bioavailability showed no significant differences between fortifying the fruit juice with FS or MDFP. The addition of AA to the juice enhanced Fe absorption during the long-term balance study within the same Fe source. HRE and Fe utilization increased after AA addition in both FS and MDFP groups in every period. Fe absorption and bioavailability from MDFP were comparable to FS added to a fruit juice in rats. Further, the addition of AA enhanced Fe absorption in the long term, as well as Fe bioavailability throughout the repletion period regardless of the Fe source employed.

  7. INFRARED SPECTRA AND PHOTOMETRY OF COMPLETE SAMPLES OF PALOMAR-GREEN AND TWO MICRON ALL SKY SURVEY QUASARS

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yong [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Rieke, G. H.; Su, K. Y. L. [Department of Astronomy And Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Ogle, P. M. [Infrared Processing and Analysis Center, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Balog, Z., E-mail: yshipku@gmail.com [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany)

    2014-10-01

    As a step toward a comprehensive overview of the infrared (IR) diagnostics of the central engines and host galaxies of quasars at low redshift, we present Spitzer Space Telescope spectroscopic (5-40 μm) and photometric (24, 70, and 160 μm) measurements of all Palomar-Green (PG) quasars at z < 0.5 and Two Micron All Sky Survey (2MASS) quasars at z < 0.3. We supplement these data with Herschel measurements at 160 μm. The sample is composed of 87 optically selected PG quasars and 52 near-IR-selected 2MASS quasars. Here we present the data, measure the prominent spectral features, and separate emission due to star formation from that emitted by the dusty circumnuclear torus. We find that the mid-IR (5-30 μm) spectral shape for the torus is largely independent of quasar IR luminosity with scatter in the spectral energy distribution (SED) shape of ≲0.2 dex. Except for the silicate features, no large difference is observed between PG (unobscured—silicate emission) and 2MASS (obscured—silicate absorption) quasars. Only mild silicate features are observed in both cases. When in emission, the peak wavelength of the silicate feature tends to be longer than 9.7 μm, possibly indicating effects on grain properties near the active galactic nucleus. The IR color is shown to correlate with the equivalent width of the aromatic features, indicating that the slope of the quasar mid- to far-IR SED is to first order driven by the fraction of radiation from star formation in the IR bands.

  8. Synthesis and characterization of monodisperse, mesoporous, and magnetic sub-micron particles doped with a near-infrared fluorescent dye

    International Nuclear Information System (INIS)

    Le Guevel, Xavier; Nooney, Robert; McDonagh, Colette; MacCraith, Brian D.

    2011-01-01

    Recently, multifunctional silica nanoparticles have been investigated extensively for their potential use in biomedical applications. We have prepared sub-micron monodisperse and stable multifunctional mesoporous silica particles with a high level of magnetization and fluorescence in the near infrared region using an one-pot synthesis technique. Commercial magnetite nanocrystals and a conjugated-NIR-dye were incorporated inside the particles during the silica condensation reaction. The particles were then coated with polyethyleneglycol to stop aggregation. X-ray diffraction, N 2 adsorption analysis, TEM, fluorescence and absorbance measurements were used to structurally characterize the particles. These mesoporous silica spheres have a large surface area (1978 m 2 /g) with 3.40 nm pore diameter and a high fluorescence in the near infrared region at λ=700 nm. To explore the potential of these particles for drug delivery applications, the pore accessibility to hydrophobic drugs was simulated by successfully trapping a hydrophobic ruthenium dye complex inside the particle with an estimated concentration of 3 wt%. Fluorescence imaging confirmed the presence of both NIR dye and the post-grafted ruthenium dye complex inside the particles. These particles moved at approximately 150 μm/s under the influence of a magnetic field, hence demonstrating the multifunctionality and potential for biomedical applications in targeting and imaging. - Graphical Abstract: Hydrophobic fluorescent Ruthenium complex has been loaded into the mesopores as a surrogate drug to simulate drug delivery and to enhance the multifunctionality of the magnetic NIR emitting particles. Highlights: → Monodisperse magnetic mesoporous silica particles emitting in the near infrared region are obtained in one-pot synthesis. → We prove the capacity of such particles to uptake hydrophobic dye to mimic drug loading. → Loaded fluorescent particles can be moved under a magnetic field in a microfluidic

  9. Lipid Bilayer Membrane in a Silicon Based Micron Sized Cavity Accessed by Atomic Force Microscopy and Electrochemical Impedance Spectroscopy.

    Science.gov (United States)

    Khan, Muhammad Shuja; Dosoky, Noura Sayed; Patel, Darayas; Weimer, Jeffrey; Williams, John Dalton

    2017-07-05

    Supported lipid bilayers (SLBs) are widely used in biophysical research to probe the functionality of biological membranes and to provide diagnoses in high throughput drug screening. Formation of SLBs at below phase transition temperature ( Tm ) has applications in nano-medicine research where low temperature profiles are required. Herein, we report the successful production of SLBs at above-as well as below-the Tm of the lipids in an anisotropically etched, silicon-based micro-cavity. The Si-based cavity walls exhibit controlled temperature which assist in the quick and stable formation of lipid bilayer membranes. Fusion of large unilamellar vesicles was monitored in real time in an aqueous environment inside the Si cavity using atomic force microscopy (AFM), and the lateral organization of the lipid molecules was characterized until the formation of the SLBs. The stability of SLBs produced was also characterized by recording the electrical resistance and the capacitance using electrochemical impedance spectroscopy (EIS). Analysis was done in the frequency regime of 10 -2 -10⁵ Hz at a signal voltage of 100 mV and giga-ohm sealed impedance was obtained continuously over four days. Finally, the cantilever tip in AFM was utilized to estimate the bilayer thickness and to calculate the rupture force at the interface of the tip and the SLB. We anticipate that a silicon-based, micron-sized cavity has the potential to produce highly-stable SLBs below their Tm . The membranes inside the Si cavity could last for several days and allow robust characterization using AFM or EIS. This could be an excellent platform for nanomedicine experiments that require low operating temperatures.

  10. Eye safe laser range finders

    International Nuclear Information System (INIS)

    Snir, M.; Margaliot, M.; Amitzi, A.

    2004-01-01

    During the 1970's, Ruby (Q switched) laser based range finders with a wavelength of 694nm were first used. These lasers operated in a pulse mode within the visible light range and produced a risk for the eye retina. The laser beam striking the macula could damage the eye and might cause blindness. Over the years, Nd:YAG (Q switched) lasers were developed (operating at 1064nm) for range finding and designation uses. The wavelength of these lasers, operating in the near Infra-Red range (invisible), is also focused tightly on the retina. The human eye does not respond to the invisible light so there is no natural protection (eye blink reflex) as in the visible light. The operation of these lasers worldwide, especially when the laser beam is exposed, causes occasional eye accidents. Another risk is stemming from the use of observation systems with a high optical gain, in the laser operation areas, which enlarge the range of risk quite significantly. Therefore, research and development efforts were invested in order to introduce eye safe lasers. One of the solutions for this problem is presented in following document

  11. Venus Monitoring Camera (VMC/VEx) 1 micron emissivity and Magellan microwave properties of crater-related radar-dark parabolas and other terrains

    Science.gov (United States)

    Basilevsky, A. T.; Shalygina, O. S.; Bondarenko, N. V.; Shalygin, E. V.; Markiewicz, W. J.

    2017-09-01

    The aim of this work is a comparative study of several typical radar-dark parabolas, the neighboring plains and some other geologic units seen in the study areas which include craters Adivar, Bassi, Bathsheba, du Chatelet and Sitwell, at two depths scales: the upper several meters of the study object available through the Magellan-based microwave (at 12.6 cm wavelength) properties (microwave emissivity, Fresnel reflectivity, large-scale surface roughness, and radar cross-section), and the upper hundreds microns of the object characterized by the 1 micron emissivity resulted from the analysis of the near infra-red (NIR) irradiation of the night-side of the Venusian surface measured by the Venus Monitoring Camera (VMC) on-board of Venus Express (VEx).

  12. Micron-scale resolution radiography of laser-accelerated and laser-exploded foils using an yttrium x-ray laser

    International Nuclear Information System (INIS)

    Cauble, R.; Da Silva, L.B.; Barbee, T.W. Jr.; Celliers, P.; Moreno, J.C.; Mrowka, S.; Perry, T.S.; Wan, A.S.

    1994-09-01

    The authors have imaged laser-accelerated foils and exploding foils on the few-micron scale using an yttrium x-ray laser (155 angstrom, 80 eV, ∼200 ps duration) and a multilayer mirror imaging system. At the maximum magnification of 30, resolution was of order one micron. The images were side-on radiographs of the foils. Accelerated foils showed significant filamentation on the rear-side (away from the driving laser) of the foil, although the laser beam was smoothed. In addition to the narrow rear-side filamentation, some shots revealed larger-scale plume-like structures on the front (driven) side of the Al foil. These plumes seem to be little-affected by beam smoothing and are likely a consequence of Rayleigh-Taylor instability. The experiments were carried out at the Nova two-beam facility

  13. Synthesis and characterization of hollow {alpha}-Fe{sub 2}O{sub 3} sub-micron spheres prepared by sol-gel

    Energy Technology Data Exchange (ETDEWEB)

    Leon, Lizbet, E-mail: lizbetlf@gmail.com; Bustamante, Angel; Osorio, Ana; Olarte, G. S. [Universidad Nacional Mayor de San Marcos (Peru); Santos Valladares, Luis De Los, E-mail: ld301@cam.ac.uk; Barnes, Crispin H. W. [University of Cambridge, Cavendish Laboratory (United Kingdom); Majima, Yutaka [Tokyo Institute of Technology, Materials and Structures Laboratory (Japan)

    2011-11-15

    In this work we report the preparation of magnetic hematite hollow sub-micron spheres ({alpha}-Fe{sub 2}O{sub 3}) by colloidal suspensions of ferric nitrate nine-hydrate (Fe(NO{sub 3}){sub 3}{center_dot}9H{sub 2}O) particles in citric acid solution by following the sol-gel method. After the gel formation, the samples were annealed at different temperatures in an oxidizing atmosphere. Annealing at 180 Degree-Sign C resulted in an amorphous phase, without iron oxide formation. Annealing at 250 Degree-Sign C resulted in coexisting phases of hematite, maghemite and magnetite, whereas at 400 Degree-Sign C, only hematite and maghemite were found. Pure hematite hollow sub-micron spheres with porous shells were formed after annealing at 600 Degree-Sign C. The characterization was performed by X-ray diffraction (XRD), Moessbauer spectroscopy (MS) and scanning electron microscopy (SEM).

  14. A prospective randomized multicentre study comparing vaginal progesterone gel and vaginal micronized progesterone tablets for luteal support after in vitro fertilization/intracytoplasmic sperm injection

    DEFF Research Database (Denmark)

    Bergh, Christina; Lindenberg, Svend; Al Humaidan, Peter Samir Heskjær

    2012-01-01

    fertility centres in Denmark and Sweden between March 2006 and January 2010. A web-based randomization program was used with concealed allocation of patients. Patients were randomized to one of two groups: vaginal progesterone gel or vaginal micronized progesterone tablets. There was no blinding of patients....... PARTICIPANTS AND SETTING: A total of 2057 women ≤ 40 years of age were included and down-regulated, using the long agonist protocol and rFSH for stimulation. Luteal support was given for 19 days after embryo transfer or until a negative pregnancy test Day 14 after embryo transfer. Patient convenience...... (pregnancy) is robust, blinding would have been unlikely to affect the results. Unfortunately, owing to an error in the randomization, the intended age distribution allocated older women to the micronized progesterone tablet group. In the analysis of results, adjustments were made for age and number...

  15. Effect of long-range repulsive Coulomb interactions on packing structure of adhesive particles.

    Science.gov (United States)

    Chen, Sheng; Li, Shuiqing; Liu, Wenwei; Makse, Hernán A

    2016-02-14

    The packing of charged micron-sized particles is investigated using discrete element simulations based on adhesive contact dynamic model. The formation process and the final obtained structures of ballistic packings are studied to show the effect of interparticle Coulomb force. It is found that increasing the charge on particles causes a remarkable decrease of the packing volume fraction ϕ and the average coordination number 〈Z〉, indicating a looser and chainlike structure. Force-scaling analysis shows that the long-range Coulomb interaction changes packing structures through its influence on particle inertia before they are bonded into the force networks. Once contact networks are formed, the expansion effect caused by repulsive Coulomb forces are dominated by short-range adhesion. Based on abundant results from simulations, a dimensionless adhesion parameter Ad*, which combines the effects of the particle inertia, the short-range adhesion and the long-range Coulomb interaction, is proposed and successfully scales the packing results for micron-sized particles within the latest derived adhesive loose packing (ALP) regime. The structural properties of our packings follow well the recent theoretical prediction which is described by an ensemble approach based on a coarse-grained volume function, indicating some kind of universality in the low packing density regime of the phase diagram regardless of adhesion or particle charge. Based on the comprehensive consideration of the complicated inter-particle interactions, our findings provide insight into the roles of short-range adhesion and repulsive Coulomb force during packing formation and should be useful for further design of packings.

  16. GEA CRDA Range Data Analysis

    Science.gov (United States)

    1999-07-28

    E1, July-August 1998 18 3.3. Example 3: SatMex, Solidaridad 2, May-June 1998 27 3.4. Example 4: PanAmSat, Galaxy IV, May-June 1998 33 3.5...17 Millstone measurements residuals for Telstar 401 on Days 181-263. 26 3-18 Millstone measurement residuals for Solidaridad 1 on Days 141-153...with 29 SatMex range data. 3-19 Hermosillo B-- Solidaridad 1 range residuals through Days 135-144 with bias 30 removed. 3-20 Iztapalapa D

  17. Study of the inner part of the β pictoris dust disk: deconvolution of 10 microns images and modelization of the dust emission

    International Nuclear Information System (INIS)

    Pantin, Eric

    1996-01-01

    In 1984, the observations of the infrared satellite IRAS showed that numerous main-sequence stars are surrounded by a relatively tenuous dust disk. The most studied example is the disk of the star Beta Pictoris. The corono-graphic observations are limited to the most outer regions of the disk. In infrared, it is not the case. We have used an infrared camera to obtain 10 microns images of the central regions. In order to be able to deduce the dust density, one has to fulfil some requirements. First, we had to de-convolute these images degraded by a combination of diffraction and seeing. We initially used standard methods (Richardson-Lucy, Maximum Entropy etc..), then we have developed a new method of astronomical images deconvolution and filtering based on a regularization by Multi-Scales Maximum Entropy. Then we have built a model of thermal emission of the dust to calculate the temperature of the grains. The resulting density shows a region between the star and 50-60 Astronomical Units, depleted of dust. The density is compatible with models simulating the gravitational interactions between such a disk and a planet having a mass the half of Saturn's mass. We have refined the models of the particles' emission: mixture of several materials, porous particles or not, coated with ice or not, to build a global model of the disk taking into account all the observables: IRAS infrared fluxes, 10 and 20 microns fluxes, 10 microns spectrum, scattered fluxes in the visible. In our best model, the particles are porous silicate grains (mixture of olivine and pyroxene) coated with a refractory organics mantle, which becomes 'frozen' (coated with ice) beyond a distance of 90 Astronomical Units from the star. This model allows us to predict an infrared spectrum showing the characteristic emission of the ice around 45-50 microns, that will be compared to the observations of the infrared satellite ISO. (author) [fr

  18. A comparison of telescopic and Phobos-2 ISM spectra of Mars in the short-wave near-infrared (0.76-1.02 microns)

    Science.gov (United States)

    Bell, James F., III; Mustard, John F.

    1993-01-01

    Recent analyses of near-IR (0.76-3.16 microns) Mars surface reflectance spectra obtained by the Phobos-2 ISM instrument during early 1989 have revealed the presence of substantial variability in surface spectral properties. Strong absorption features seen in the 0.85-1.05 micron region are up to 10-15 percent deep relative to the local continuum and have been interpreted as evidence of Fe(2+) and Fe(3+) bearing minerals (pyroxenes and iron oxides, respectively). Though these observed band depths are comparable to those seen in laboratory reflectance spectra, they are up to three times larger than most previously reported band depths for Mars spectra at these wavelengths. Six regions of variable albedo and geologic setting were identified where ISM and 1988 opposition telescopic coverage either overlapped physically or sampled the same surface geologic unit. The areal sizes and positions of the regions measured telescopically were compiled by Bell et al. ISM pixels falling within these spots were averaged to produce a spatially convolved spectrum that simulates what would have been seen telescopically. To facilitate comparisons of absorption band positions and relative strengths, the convolved ISM data and the 1988 telescopic spectra were scaled to unity at 0.81 microns and are presented. The data have also been convolved to equivalent band pass normalized reflectances in the region of spectral overlap. A scatter diagram of telescopic vs. ISM reflectances is shown. The results from the investigation are discussed.

  19. SiO2/ZnO Composite Hollow Sub-Micron Fibers: Fabrication from Facile Single Capillary Electrospinning and Their Photoluminescence Properties

    Directory of Open Access Journals (Sweden)

    Guanying Song

    2017-02-01

    Full Text Available In this work, SiO2/ZnO composite hollow sub-micron fibers were fabricated by a facile single capillary electrospinning technique followed by calcination, using tetraethyl orthosilicate (TEOS, polyvinylpyrrolidone (PVP and ZnO nanoparticles as raw materials. The characterization results of the scanning electron microscopy (SEM, transmission electron microscopy (TEM, X-ray diffraction (XRD and Fourier transform infrared spectroscopy (FT-IR spectra indicated that the asprepared composite hollow fibers consisted of amorphous SiO2 and hexagonal wurtzite ZnO. The products revealed uniform tubular structure with outer diameters of 400–500 nm and wall thickness of 50–60 nm. The gases generated and the directional escaped mechanism was proposed to illustrate the formation of SiO2/ZnO composite hollow sub-micron fibers. Furthermore, a broad blue emission band was observed in the photoluminescence (PL of SiO2/ZnO composite hollow sub-micron fibers, exhibiting great potential applications as blue light-emitting candidate materials.

  20. Effect of surface coating with magnesium stearate via mechanical dry powder coating approach on the aerosol performance of micronized drug powders from dry powder inhalers.

    Science.gov (United States)

    Zhou, Qi Tony; Qu, Li; Gengenbach, Thomas; Larson, Ian; Stewart, Peter J; Morton, David A V

    2013-03-01

    The objective of this study was to investigate the effect of particle surface coating with magnesium stearate on the aerosolization of dry powder inhaler formulations. Micronized salbutamol sulphate as a model drug was dry coated with magnesium stearate using a mechanofusion technique. The coating quality was characterized by X-ray photoelectron spectroscopy. Powder bulk and flow properties were assessed by bulk densities and shear cell measurements. The aerosol performance was studied by laser diffraction and supported by a twin-stage impinger. High degrees of coating coverage were achieved after mechanofusion, as measured by X-ray photoelectron spectroscopy. Concomitant significant increases occurred in powder bulk densities and in aerosol performance after coating. The apparent optimum performance corresponded with using 2% w/w magnesium stearate. In contrast, traditional blending resulted in no significant changes in either bulk or aerosolization behaviour compared to the untreated sample. It is believed that conventional low-shear blending provides insufficient energy levels to expose host micronized particle surfaces from agglomerates and to distribute guest coating material effectively for coating. A simple ultra-high-shear mechanical dry powder coating step was shown as highly effective in producing ultra-thin coatings on micronized powders and to substantially improve the powder aerosolization efficiency.

  1. Wide range neutron monitoring device

    International Nuclear Information System (INIS)

    Okido, Fumiyasu; Arita, Setsuo; Ishii, Kazuhiko; Matsumiya, Shoichi; Furusato, Ken-ichiro; Nishida, Akira.

    1994-01-01

    The present invention has a function of reliably switching measuring values between a pulse method and a Cambel method even if noise level and saturated level are fluctuated. That is, a proportional range judging means always monitors neutron flux measuring values in a start-up region and neutron flux measuring values in an intermediate power region, so that the proportional range is detected depending on whether the difference or a variation coefficient of both of the measured values is constant or not. A switching value determining means determines a switching value by the result of judgement of the proportional range judging means. A selection/output means selects and outputs measuring signals at a neutron flux level in the start-up region or the intermediate power region by the output of the switching value determining means. With such procedures, since the measuring value is switched after confirming that arrival at the proportional range where the difference or a variation coefficient of the measured value between the pulse processing method and the measured value by the Cambel method is constant, an accurate neutron flux level containing neither noise level nor saturated level can be outputted. (I.S.)

  2. Truthful approximations to range voting

    DEFF Research Database (Denmark)

    Filos-Ratsika, Aris; Miltersen, Peter Bro

    We consider the fundamental mechanism design problem of approximate social welfare maximization under general cardinal preferences on a finite number of alternatives and without money. The well-known range voting scheme can be thought of as a non-truthful mechanism for exact social welfare...

  3. Heteronuclear Long-Range Correlation

    DEFF Research Database (Denmark)

    Sørensen, Ole W.

    The lecture will cover heteronuclear long-range correlation techniques like HMBC, H2BC, and HAT HMBC with the emphasis on determining the number of covalent bonds between two spins being correlated. H2BC and HMBC spectra are quite complementary as a peak can be strong in one of the two spectra...

  4. Toward selective electrochemical 'E-tongue': Potentiometric DO sensor based on sub-micron ZnO-RuO{sub 2} sensing electrode

    Energy Technology Data Exchange (ETDEWEB)

    Zhuiykov, Serge, E-mail: serge.zhuiykov@csiro.au [CSIRO, Materials Science and Engineering Division, 37 Graham Road, Highett, VIC 3190 (Australia); Kats, Eugene [CSIRO, Materials Science and Engineering Division, 37 Graham Road, Highett, VIC 3190 (Australia); Plashnitsa, Vladimir [Research and Education Centre of Carbon Resources, Kyushu University, Kasuga-shi, Fukuoka 816-8580 (Japan); Miura, Norio [KASTEC, Kyushu University, Kasuga-shi, Fukuoka 816-8580 (Japan)

    2011-06-01

    Highlights: > We examine ZnO-doped RuO{sub 2} sensing electrode of DO sensor. > Study of ZnO-RuO{sub 2} confirmed the development of high surface-to-volume ratio. > Developed sensing electrode is insensitive to the presence of various dissolved salts. > 20 mol% ZnO-doped RuO{sub 2} sensing electrode enables maximum DO sensitivity. > We conclude that DO sensor based on ZnO-RuO{sub 2} electrode can work at 11-30 deg. C. - Abstract: Planar dissolved oxygen (DO) sensors based on thick-film ZnO-RuO{sub 2} sensing electrodes (SEs) with different mol% of ZnO were prepared on the alumina substrates using a screen-printing method and their structural and electrochemical properties were closely studied by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDX), electrochemical impedance spectroscopy (EIS) and energy-dispersive spectroscopy (EDS) techniques. Structural and electrochemical properties of ZnO-RuO{sub 2}-SEs have been investigated. Interference testing ascertained that the DO sensor based on sub-micron ZnO-RuO{sub 2}-SE is insensitive to the presence of various dissolved ions including Cl{sup -}, Li{sup +}, SO{sub 4}{sup 2-}, NO{sup 3-}, Ca{sup 2+}, PO{sub 4}{sup 3-}, Mg{sup 2+}, Na{sup +} and K{sup +} within a concentration range of 10{sup -7} to 10{sup -1} mol/L for DO measurement from 0.5 to 8.0 ppm in the test solution at a temperature range of 11-30 deg. C. These dissolved salts had practically no effect on the sensor's output potential difference response, whereas Br{sup -} ions had some effects at concentration more than 10{sup -3} mol/L. The relationship between DO and the sensor's potential difference was found to be relatively linear with the maximum sensitivity of -50.6 mV per decade was achieved at 20 mol% ZnO at 7.35 pH. The response and recovery time to pH changes for the planar device based on 20 mol% ZnO-RuO{sub 2}-SE was found to be 10 and 25 s

  5. Carbon Chemistry in Transitional Clouds from the GOT C+ Survey of CII 158 micron Emission in the Galactic Plane

    Science.gov (United States)

    Langer, W. D.; Velusamy, T.; Pineda, J.; Willacy, K.; Goldsmith, P. F.

    2011-05-01

    In understanding the lifecycle and chemistry of the interstellar gas, the transition from diffuse atomic to molecular gas clouds is a very important stage. The evolution of carbon from C+ to C0 and CO is a fundamental part of this transition, and C+ along with its carbon chemistry is a key diagnostic. Until now our knowledge of interstellar gas has been limited primarily to the diffuse atomic phase traced by HI and the dense molecular H2 phase traced by CO. However, we have generally been missing an important layer in diffuse and transition clouds, which is denoted by the warm "dark gas'', that is mostly H2 and little HI and CO, and is best traced with C+. Here, we discuss the chemistry in the transition from C+ to C0 and CO in these clouds as understood by a survey of the CII 1.9 THz (158 micron) line from a sparse survey of the inner galaxy over about 40 degrees in longitude as part of the Galactic Observations of Terahertz C+ (GOT C+) program, a Herschel Space Observatory Open Time Key Program to study interstellar clouds by sampling ionized carbon. Using the first results from GOT C+ along 11 LOSs, in a sample of 53 transition clouds, Velusamy, Langer et al. (A&A 521, L18, 2010) detected an excess of CII intensities indicative of a thick H2 layer (a significant warm H2, "dark gas'' component) around the 12CO core. Here we present a much larger, statistically significant sample of a few hundred diffuse and transition clouds traced by CII, along with auxiliary HI and CO data in the inner Galaxy between l=-30° and +30°. Our new and more extensive sample of transition clouds is used to elucidate the time dependent physical and carbon chemical evolution of diffuse to transition clouds, and transition layers. We consider the C+ to CO conversion pathways such as H++ O and C+ + H2 chemistry for CO production to constrain the physical parameters such as the FUV intensity and cosmic ray ionization rate that drive the CO chemistry in the diffuse transition clouds.

  6. Characterisation of sub-micron particle number concentrations and formation events in the western Bushveld Igneous Complex, South Africa

    Directory of Open Access Journals (Sweden)

    A. Hirsikko

    2012-05-01

    Full Text Available South Africa holds significant mineral resources, with a substantial fraction of these reserves occurring and being processed in a large geological structure termed the Bushveld Igneous Complex (BIC. The area is also highly populated by informal, semi-formal and formal residential developments. However, knowledge of air quality and research related to the atmosphere is still very limited in the area. In order to investigate the characteristics and processes affecting sub-micron particle number concentrations and formation events, air ion and aerosol particle size distributions and number concentrations, together with meteorological parameters, trace gases and particulate matter (PM were measured for over two years at Marikana in the heart of the western BIC. The observations showed that trace gas (i.e. SO2, NOx, CO and black carbon concentrations were relatively high, but in general within the limits of local air quality standards. The area was characterised by very high condensation sink due to background aerosol particles, PM10 and O3 concentration. The results indicated that high amounts of Aitken and accumulation mode particles originated from domestic burning for heating and cooking in the morning and evening, while during daytime SO2-based nucleation followed by the growth by condensation of vapours from industrial, residential and natural sources was the most probable source for large number concentrations of nucleation and Aitken mode particles. Nucleation event day frequency was extremely high, i.e. 86% of the analysed days, which to the knowledge of the authors is the highest frequency ever reported. The air mass back trajectory and wind direction analyses showed that the secondary particle formation was influenced both by local and regional pollution and vapour sources. Therefore, our observation of the annual cycle and magnitude of the particle formation and growth rates during

  7. Wide range neutron flux monitor

    International Nuclear Information System (INIS)

    Endo, Yorimasa; Fukushima, Toshiki.

    1983-01-01

    Purpose: To provide a wide range neutron-flux monitor adapted such that the flux monitoring function and alarming function can automatically by shifted from pulse counting system to cambel method system. Constitution: A wide range neutron-flux monitor comprises (la) pulse counting system and (lb) cambel-method system for inputting detection signals from neutron detectors and separating them into signals for the pulse measuring system and the cambel measuring system, (2) overlap detection and calculation circuit for detecting the existence of the overlap of two output signals from the (la) and (lb) systems, and (3) trip circuit for judging the abnormal state of neutron detectors upon input of the detection signals. (Seki, T.)

  8. Short-range communication system

    Science.gov (United States)

    Alhorn, Dean C. (Inventor); Howard, David E. (Inventor); Smith, Dennis A. (Inventor)

    2012-01-01

    A short-range communication system includes an antenna, a transmitter, and a receiver. The antenna is an electrical conductor formed as a planar coil with rings thereof being uniformly spaced. The transmitter is spaced apart from the plane of the coil by a gap. An amplitude-modulated and asynchronous signal indicative of a data stream of known peak amplitude is transmitted into the gap. The receiver detects the coil's resonance and decodes same to recover the data stream.

  9. Wide range neutron detection system

    International Nuclear Information System (INIS)

    Todt, W.H. Sr.

    1978-01-01

    A neutron detection system for reactor control is described which is operable over a wide range of neutron flux levels. The system includes a fission type ionization chamber neutron detector, means for gamma and alpha signal compensation, and means for operating the neutron detector in the pulse counting mode for low neutron flux levels, and in the direct current mode for high neutron flux levels

  10. Long Range Aircraft Trajectory Prediction

    OpenAIRE

    Magister, Tone

    2009-01-01

    The subject of the paper is the improvement of the aircraft future trajectory prediction accuracy for long-range airborne separation assurance. The strategic planning of safe aircraft flights and effective conflict avoidance tactics demand timely and accurate conflict detection based upon future four–dimensional airborne traffic situation prediction which is as accurate as each aircraft flight trajectory prediction. The improved kinematics model of aircraft relative flight considering flight ...

  11. Long range supergravity coupling strengths

    International Nuclear Information System (INIS)

    Kenyon, I.R.

    1991-01-01

    A limit of 2x10 -13 has recently been deduced for the fractional difference between the gravitational masses of the K 0 and anti K 0 mesons. This limit is applied here to put stringent limits on the strengths of the long range vector-scalar gravitational couplings envisaged in supergravity theories. A weaker limit is inferred from the general relativistic fit to the precession of the orbit of the pulsar PSR1913+16. (orig.)

  12. Range expansion of heterogeneous populations.

    Science.gov (United States)

    Reiter, Matthias; Rulands, Steffen; Frey, Erwin

    2014-04-11

    Risk spreading in bacterial populations is generally regarded as a strategy to maximize survival. Here, we study its role during range expansion of a genetically diverse population where growth and motility are two alternative traits. We find that during the initial expansion phase fast-growing cells do have a selective advantage. By contrast, asymptotically, generalists balancing motility and reproduction are evolutionarily most successful. These findings are rationalized by a set of coupled Fisher equations complemented by stochastic simulations.

  13. Medium Range Forecasts Representation (and Long Range Forecasts?)

    Science.gov (United States)

    Vincendon, J.-C.

    2009-09-01

    The progress of the numerical forecasts urges us to interest us in more and more distant ranges. We thus supply more and more forecasts with term of some days. Nevertheless, precautions of use are necessary to give the most reliable and the most relevant possible information. Available in a TV bulletin or on quite other support (Internet, mobile phone), the interpretation and the representation of a medium range forecast (5 - 15 days) must be different from those of a short range forecast. Indeed, the "foresee-ability” of a meteorological phenomenon decreases gradually in the course of the ranges, it decreases all the more quickly that the phenomenon is of small scale. So, at the end of some days, the probability character of a forecast becomes very widely dominating. That is why in Meteo-France the forecasts of D+4 to D+7 are accompanied with a confidence index since around ten years. It is a figure between 1 and 5: the more we approach 5, the more the confidence in the supplied forecast is good. In the practice, an indication is supplied for period D+4 / D+5, the other one for period D+6 / D+7, every day being able to benefit from a different forecast, that is be represented in a independent way. We thus supply a global tendency over 24 hours with less and less precise symbols as the range goes away. Concrete examples will be presented. From now on two years, we also publish forecasts to D+8 / J+9, accompanied with a sign of confidence (" good reliability " or " to confirm "). These two days are grouped together on a single map because for us, the described tendency to this term is relevant on a duration about 48 hours with a spatial scale slightly superior to the synoptic scale. So, we avoid producing more than two zones of types of weather over France and we content with giving an evolution for the temperatures (still, in increase or in decline). Newspapers began to publish this information, it should soon be the case of televisions. It is particularly

  14. Wide range radiation monitoring apparatus

    International Nuclear Information System (INIS)

    Goldstein, N.P.

    1983-01-01

    There is described a simple and rugged detector capable of measuring radiation fields over the range of 0.02 R/hr up to 10/8 R/hr or higher. The device consists of an emitter element of high atomic number material which is connected to the center conductor of a signal cable. This emitter element is positioned in a spaced-apart relationship between collector element of a low atomic number material with a gap region between the emitter element and the adjacent collector elements

  15. BENTON RANGE ROADLESS AREA, CALIFORNIA.

    Science.gov (United States)

    McKee, Edwin H.; Rains, Richard L.

    1984-01-01

    On the basis of a mineral survey, two parts of the Benton Range Roadless Area, California are considered to have mineral-resource potential. The central and southern part of the roadless area, near several nonoperating mines, has a probable potential for tungsten and gold-silver mineralization in tactite zones. The central part of the area has a substantiated resource potential for gold and silver in quartz veins. Detailed mapping and geochemical sampling for tungsten, gold, and silver in the central and southern part of the roadless area might indicate targets for shallow drilling exploration.

  16. Live Fire Range Environmental Assessment

    Energy Technology Data Exchange (ETDEWEB)

    None

    1993-08-01

    The Central Training Academy (CTA) is a DOE Headquarters Organization located in Albuquerque, New Mexico, with the mission to effectively and efficiently educate and train personnel involved in the protection of vital national security interests of DOE. The CTA Live Fire Range (LFR), where most of the firearms and tactical training occurs, is a complex separate from the main campus. The purpose of the proposed action is to expand the LFR to allow more options of implementing required training. The Department of Energy has prepared this Environmental Assessment (EA) for the proposed construction and operation of an expanded Live Fire Range Facility at the Central Training Academy in Albuquerque, New Mexico. Based on the analysis in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement is not required and DOE is issuing this Finding of No Significant Impact (FONSI).

  17. The Ames Vertical Gun Range

    Science.gov (United States)

    Karcz, J. S.; Bowling, D.; Cornelison, C.; Parrish, A.; Perez, A.; Raiche, G.; Wiens, J.-P.

    2016-01-01

    The Ames Vertical Gun Range (AVGR) is a national facility for conducting laboratory- scale investigations of high-speed impact processes. It provides a set of light-gas, powder, and compressed gas guns capable of accelerating projectiles to speeds up to 7 km s(exp -1). The AVGR has a unique capability to vary the angle between the projectile-launch and gravity vectors between 0 and 90 deg. The target resides in a large chamber (diameter approximately 2.5 m) that can be held at vacuum or filled with an experiment-specific atmosphere. The chamber provides a number of viewing ports and feed-throughs for data, power, and fluids. Impacts are observed via high-speed digital cameras along with investigation-specific instrumentation, such as spectrometers. Use of the range is available via grant proposals through any Planetary Science Research Program element of the NASA Research Opportunities in Space and Earth Sciences (ROSES) calls. Exploratory experiments (one to two days) are additionally possible in order to develop a new proposal.

  18. Dynamic Planar Range Maxima Queries

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Tsakalidis, Konstantinos

    2011-01-01

    We consider the dynamic two-dimensional maxima query problem. Let P be a set of n points in the plane. A point is maximal if it is not dominated by any other point in P. We describe two data structures that support the reporting of the t maximal points that dominate a given query point, and allow...... for insertions and deletions of points in P. In the pointer machine model we present a linear space data structure with O(logn + t) worst case query time and O(logn) worst case update time. This is the first dynamic data structure for the planar maxima dominance query problem that achieves these bounds...... are integers in the range U = {0, …,2 w  − 1 }. We present a linear space data structure that supports 3-sided range maxima queries in O(logn/loglogn+t) worst case time and updates in O(logn/loglogn) worst case time. These are the first sublogarithmic worst case bounds for all operations in the RAM model....

  19. Range-Measuring Video Sensors

    Science.gov (United States)

    Howard, Richard T.; Briscoe, Jeri M.; Corder, Eric L.; Broderick, David

    2006-01-01

    Optoelectronic sensors of a proposed type would perform the functions of both electronic cameras and triangulation- type laser range finders. That is to say, these sensors would both (1) generate ordinary video or snapshot digital images and (2) measure the distances to selected spots in the images. These sensors would be well suited to use on robots that are required to measure distances to targets in their work spaces. In addition, these sensors could be used for all the purposes for which electronic cameras have been used heretofore. The simplest sensor of this type, illustrated schematically in the upper part of the figure, would include a laser, an electronic camera (either video or snapshot), a frame-grabber/image-capturing circuit, an image-data-storage memory circuit, and an image-data processor. There would be no moving parts. The laser would be positioned at a lateral distance d to one side of the camera and would be aimed parallel to the optical axis of the camera. When the range of a target in the field of view of the camera was required, the laser would be turned on and an image of the target would be stored and preprocessed to locate the angle (a) between the optical axis and the line of sight to the centroid of the laser spot.

  20. Long-range correlated percolation

    International Nuclear Information System (INIS)

    Weinrib, A.

    1984-01-01

    This paper is a study of the percolation problem with long-range correlations in the site or bond occupations. An extension of the Harris criterion for the relevance of the correlations is derived for the case that the correlations decay as x/sup -a/ for large distances x. For a d the correlations are relevant if dν-2<0. Applying this criterion to the behavior that results when the correlations are relevant, we argue that the new behavior will have ν/sub long/ = 2/a. It is shown that the correlated bond percolation problem is equivalent to a q-state Potts model with quenched disorder in the limit q→1. With the use of this result, a renormalization-group study of the problem is presented, expanding in epsilon = 6-d and in delta = 4-a. In addition to the normal percolation fixed point, we find a new long-range fixed point. The crossover to this new fixed point follows the extended Harris criterion, and the fixed point has exponents ν/sub long/ = 2/a (as predicted) and eta/sub long/ = (1/11)(delta-epsilon). Finally, several results on the percolation properties of the Ising model at its critical point are shown to be in agreement with the predictions of this paper