WorldWideScience

Sample records for range 38-45 microns

  1. Apparatus for handling micron size range particulate material

    Science.gov (United States)

    Friichtenicht, J. F.; Roy, N. L. (Inventor)

    1968-01-01

    An apparatus for handling, transporting, or size classifying comminuted material was described in detail. Electrostatic acceleration techniques for classifying particles as to size in the particle range from 0.1 to about 100 microns diameter were employed.

  2. Short range investigation of sub-micron zirconia particles

    Energy Technology Data Exchange (ETDEWEB)

    Caracoche, M C; Martinez, J A [Departamento de Fisica, IFLP, Facultad de Ciencias Exactas, CICPBA, Universidad Nacional de La Plata (Argentina); Rivas, P C [IFLP-CONICET, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata (Argentina); Bondioli, F; Cannillo, V [Dipartimento di Ingegniria dei Materiali e dell' Ambiente, Facolta di Ingegneria, Universita di Modena e Reggio Emilia (Italy); Ferrari, A M, E-mail: cristina@fisica.unlp.edu.a [Dipartimento di Scienza a Metodi dell' Ingegneria, Universita di Modena e Reggio Emilia (Italy)

    2009-05-01

    The Perturbed Angular Correlations technique was used to determine the configurations around Zirconium ions and their thermal behavior in non-aggregated sub-micron zirconia spherical particles. Three residues containing- Zr surroundings were determined for the non-crystalline starting particles, which were identified under the assumption of a certain chemical reactions sequence during synthesis. While the one made up mainly by hydroxyl groups was common to both samples, the two involving mainly organic residues were particle size dependent. Upon crystallization, both samples stabilized in the t'- and t- tetragonal forms and the Xc-cubic form but their amounts and temperatures of appearance were different. On heating, the structure of the smaller particles became gradually monoclinic achieving total degradation upon the subsequent cooling to RT.

  3. Separating the signal from the noise: Expanding flow cytometry into the sub-micron range.

    Science.gov (United States)

    Cytometry Part A Special Section: Separating the signal from the noise: Expanding flow cytometry into the sub-micron range. The current Cytometry Part A Special Section presents three studies that utilize cytometers to study sub-micron particles. The three studies involve the 1...

  4. A large dynamic range radiation-tolerant analog memory in a quarter- micron CMOS technology

    CERN Document Server

    Anelli, G; Rivetti, A

    2001-01-01

    An analog memory prototype containing 8*128 cells has been designed in a commercial quarter-micron CMOS process. The aim of this work is to investigate the possibility of designing large dynamic range mixed-mode switched capacitor circuits for high-energy physics (HEP) applications in deep submicron CMOS technologies. Special layout techniques have been used to make the circuit radiation tolerant. The memory cells employ gate-oxide capacitors for storage, permitting a very high density. A voltage write-voltage read architecture has been chosen to minimize the sensitivity to absolute capacitor values. The measured input voltage range is 2.3 V (the power supply voltage V/sub DD/ is equal to 2.5 V), with a linearity of almost 8 bits over 2 V. The dynamic range is more than 11 bits. The pedestal variation is +or-0.5 mV peak-to-peak. The noise measured, which is dominated by the noise of the measurement setup, is around 0.8 mV rms. The characteristics of the memory have been measured before irradiation and after 1...

  5. Blocked impurity band detectors applied to tunable diode laser spectroscopy in the 8- to 28-micron range

    Science.gov (United States)

    Sirota, J. M.; Reuter, Dennis C.; Mumma, Michael J.

    1993-01-01

    A novel tunable diode laser spectrometer operating at 8-28 microns is described. A blocked impurity band Si:As chip is employed as detector. This device operates in this wavelength range with high detectivity and adequate frequency response for the high-sensitivity techniques used. A combination of sweep averaging and second-harmonic detection at 22 kHz yielded signal-to-noise ratios of 1200 at wavelengths above 20 microns. The sensitivity and spectral resolution achieved are an order of magnitude better than those of Fourier instruments in this range, with an improvement in instrument time response of about 3000. Several molecular bands of CO2 and N2O are observed for what is, to our knowledge, the first time with this instrument. Examples of spectral line measurements are presented.

  6. A simple and wide-range refractive index measuring approach by using a sub-micron grating

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chun-Wei; Wu, Chun-Che; Lin, Shih-Chieh [Department of Power Mechanical Engineering, National Tsing Hua University, 101 Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China)

    2015-04-13

    This paper presents the design and simulation results of a high-precision low-cost refractometer that demonstrates the main advantage of a wide measurement range (1 ≤ n ≤ 2). The proposed design is based on the diffractive properties of sub-micron gratings and Snell's Law. The precision and uncertainty factors of the proposed system were tested and analyzed, revealing that the proposed refractometer demonstrates a wide measurement range with sensitivity of 10{sup −4}.

  7. Room-temperature operation of MOCVD-grown GaInAs/InP strained-layer multiquantum well lasers in 1.8 micron range

    Science.gov (United States)

    Forouhar, S.; Larsson, A.; Ksendzov, A.; Lang, R. J.; Tothill, N.; Scott, M. D.

    1992-01-01

    The first successful room-temperature pulsed operation is reported of InGaAs strained layer multiquantum well injection lasers grown by MOVPE on InP substrates in the 1.8 micron range. The threshold current density and the external differential quantum efficiency of the 10 micron wide ridge waveguide lasers were 2.5 kA/sq cm (cavity length = 1 mm) and 5 percent (cavity length = 400 microns), respectively. Broad-area lasers, 100 microns wide and 1 mm long, had a reverse leakage current of less than 10 microamps at -1 V indicating high quality of the epitaxial layers.

  8. A large dynamic range radiation tolerant analog memory in a quarter micron CMOS technology

    CERN Document Server

    Anelli, G; Rivetti, A

    2000-01-01

    A 8*128 cell analog memory prototype has been designed in a commercial 0.25 jam CMOS process. The aim of this work was to investigate the possibility of designing large dynamic range mixed- mode switched capacitor circuits for High-Energy Physics (HEP) applications in deep submicron CMOS technologies. Special layout techniques have been used to make the circuit radiation tolerant left bracket 1 right bracket . The memory cells employ gate-oxide capacitors for storage, allowing for a very high density. A voltage write - voltage read architecture has been chosen to minimize the sensitivity to absolute capacitor values. The measured input voltage range is 2.3 V (V//D//D = 2.5 V), with a linearity of at least 7.5 bits over 2 V. The dynamic range is more than 11 bits. The pedestal variation is plus or minus 0.5 mV peak-to-peak. The noise measured, which is dominated by the noise of the measurement setup, is around 0.8 mV rms. The characteristics of the memory have been measured before irradiation and after lOMrd (...

  9. Tm,Ho:YAG laser with tunable range of 2.08-2.12 microns and its applications to spectroscopy

    Science.gov (United States)

    Asai, Kazuhiro; Itabe, Toshikazu

    1992-01-01

    In recent advanced lasers, 2 micron solid-state lasers such as Tm:YAG and Ho:YAG lasers are very attractive for laser radar remote sensing technologies because of eye safety, realizations of all solid-state laser pumped by diode laser and smaller dimension, tunability of lasing wavelength, possibility of coherent detection, etc. Featuring these advantages, 2 micron lasers have been candidated as laser transmitters for use in water vapor Differential Absorption Lidar (DIAL), laser altimeter, Doppler wind sensor, Mie lidar, etc. Characterization of a tunable Cr, Tm, Ho:YAG laser and its applications to spectroscopy concerning absorption and reflectance are reported.

  10. Superheated Water Atomization: Some New Aspects of Control and Determining Disperse Characteristics of Atomization Plume in Micron and Submicron Ranges of Droplet Size*

    Science.gov (United States)

    Zalkind, V. I.; Zeigarnik, Yu. A.; Nizovskiy, V. L.; Nizovskiy, L. V.; Schigel, S. S.

    2017-11-01

    New experimental data on superheated water atomization is presented. It is shown that in contrast to the case of short cylindrical nozzles, which provide bimodal water-droplet sprays, the application of divergent nozzles makes it possible to obtain one-modal water atomization with droplets of about micron diameter being obtained. This fact is due to changes in the mechanism of superheated water jet fragmentation and it is very important for engineering applications. A modified experimental technique for processing integral monochromatic scattering indicatrix was developed and tested. In addition, a new calculation code was worked out for calculating atomized water drop-size distribution (on the basis of Mi theory) in micron and submicron ranges.

  11. 76 FR 18812 - Submission for Review: We Need the Social Security Number of the Person Named Below, RI 38-45

    Science.gov (United States)

    2011-04-05

    ... MANAGEMENT Submission for Review: We Need the Social Security Number of the Person Named Below, RI 38-45... the Social Security Number of the Person Named Below, RI 38-45. As required by the Paperwork Reduction... Number of the Person Named Below, RI 38-45, is used by the Civil Service Retirement System and the...

  12. Image-Guided Ultrasound Characterization of Volatile Sub-Micron Phase-Shift Droplets in the 20-40 MHz Frequency Range.

    Science.gov (United States)

    Sheeran, Paul S; Daghighi, Yasaman; Yoo, Kimoon; Williams, Ross; Cherin, Emmanuel; Foster, F Stuart; Burns, Peter N

    2016-03-01

    Phase-shift perfluorocarbon droplets are designed to convert from the liquid to the gas state by the external application of acoustic or optical energy. Although droplet vaporization has been investigated extensively at ultrasonic frequencies between 1 and 10 MHz, few studies have characterized performance at the higher frequencies commonly used in small animal imaging. In this study, we use standard B-mode imaging sequences on a pre-clinical ultrasound platform to both image and activate sub-micron decafluorobutane droplet populations in vitro and in vivo at center frequencies in the range of 20-40 MHz. Results show that droplets remain stable against vaporization at low imaging pressures but are vaporized at peak negative pressures near 3.5 MPa at the three frequencies tested. This study also found that a small number of size outliers present in the distribution can greatly influence droplet performance. Removal of these outliers results in a more accurate assessment of the vaporization threshold and produces free-flowing microbubbles upon vaporization in the mouse kidney. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  13. Measurement of Thermal Conductivity of Porcine Liver in the Temperature Range of Cryotherapy and Hyperthermia (250~315k) by A Thermal Sensor Made of A Micron-Scale Enameled Copper Wire.

    Science.gov (United States)

    Jiang, Z D; Zhao, G; Lu, G R

      BACKGROUND: Cryotherapy and hyperthermia are effective treatments for several diseases, especially for liver cancers. Thermal conductivity is a significant thermal property for the prediction and guidance of surgical procedure. However, the thermal conductivities of organs and tissues, especially over the temperature range of both cryotherapy and hyperthermia are scarce. To provide comprehensive thermal conductivity of liver for both cryotherapy and hyperthermia. A hot probe made of stain steel needle and micron-sized copper wire is used for measurement. To verify data processing, both the least square method and the Monte Carlo inversion method are used to determine the hot probe constants, respectively, with reference materials of water and 29.9 % Ca2Cl aqueous solution. Then the thermal conductivities of Hanks solution and pork liver bathed in Hanks solution are measured. The effective length for two methods is nearly the same, but the heat capacity of probe calibrated by the Monte Carlo inversion is temperature dependent. Fairly comprehensive thermal conductivity of porcine liver measured with these two methods in the target temperature range is verified to be similar. We provide an integrated thermal conductivity of liver for cryotherapy and hyperthermia in two methods, and make more accurate predictions possible for surgery. The least square method and the Monte Carlo inversion method have their advantages and disadvantages. The least square method is available for measurement of liquids that not prone to convection or solids in a wide temperature range, while the Monte Carlo inversion method is available for accurate and rapid measurement.

  14. Measuring past a micron...

    CERN Multimedia

    Anaïs Schaeffer

    2011-01-01

    Infinity: That is the name of the new ultra-precision machine used by CERN's Metrology Service to measure the copper components for the CLIC accelerating structures. This project is the result of a collaboration between CLIC and the EN Department. Curious to find out more? Read on because there’ll be an opportunity for you to get a very close look at Infinity!    Infinity, the new, ultra-precise, measuring machine, is currently in operation at the CERN Metrology Service. The CLIC (Compact LInear Collider) radiofrequency structures will operate under very high electric fields (100 MV/m). They should be manufactured within minimal mechanical tolerances. To validate the quality of these components, they have to be measured with a precision that far exceeds the machining tolerances, i.e. 0.3 microns. No “ordinary” measuring machine can achieve this precision, but Infinity, the newly developed high-precision three-dimensional measuring machine i...

  15. Prescribed 3-D Direct Writing of Suspended Micron/Sub-micron Scale Fiber Structures via a Robotic Dispensing System.

    Science.gov (United States)

    Yuan, Hanwen; Cambron, Scott D; Keynton, Robert S

    2015-06-12

    A 3-axis dispensing system is utilized to control the initiating and terminating fiber positions and trajectory via the dispensing software. The polymer fiber length and orientation is defined by the spatial positioning of the dispensing system 3-axis stages. The fiber diameter is defined by the prescribed dispense time of the dispensing system valve, the feed rate (the speed at which the stage traverses from an initiating to a terminating position), the gauge diameter of the dispensing tip, the viscosity and surface tension of the polymer solution, and the programmed drawing length. The stage feed rate affects the polymer solution's evaporation rate and capillary breakup of the filaments. The dispensing system consists of a pneumatic valve controller, a droplet-dispensing valve and a dispensing tip. Characterization of the direct write process to determine the optimum combination of factors leads to repeatedly acquiring the desired range of fiber diameters. The advantage of this robotic dispensing system is the ease of obtaining a precise range of micron/sub-micron fibers onto a desired, programmed location via automated process control. Here, the discussed self-assembled micron/sub-micron scale 3D structures have been employed to fabricate suspended structures to create micron/sub-micron fluidic devices and bioengineered scaffolds.

  16. Venus - The 17- to 38-micron spectrum. [atmospheric thermal emission spectrum

    Science.gov (United States)

    Reed, R. A.; Forrest, W. J.; Houck, J. R.; Pollack, J. B.

    1978-01-01

    A far-IR emission spectrum of Venus covering the wavelength range from 17 to 38 microns is examined which was obtained on five nights at an altitude of 14 km with the 30-cm telescope of the NASA Lear Jet. The spectrum is found to be characterized by an overall continuum level with noticeable absorption shortward of 20 microns and longward of 30 microns as compared with a 245-K blackbody. The continuum level is taken as implying a continuous source of opacity in the Venusian atmosphere over the entire range from 17 to 38 microns with increased opacity shortward of 20 microns and longward of 30 microns. It is shown that a haze of sulfuric acid droplets can provide the necessary opacity and explain the observed depressions. A pressure level of roughly 200 mb is deduced for this spectrum.

  17. Micron-sized polymer particles from tanzanian cashew nut shell ...

    African Journals Online (AJOL)

    Micron-sized polymer particles (MSPP) were prepared by formaldehyde condensation polymerization of cashew nut shell liquid (CNSL) previously emulsified with sodium lauryl sulphate. The sizes of the MSPP were found to range from 0.1 to 4.4 mm. Increasing the emulsifier concentration had the effect of increasing the ...

  18. Micron-sized polymer particles from Tanzanian cashew nut shell

    African Journals Online (AJOL)

    a

    ABSTRACT. Micron-sized polymer particles (MSPP) were prepared by formaldehyde condensation polymerization of cashew nut shell liquid (CNSL) previously emulsified with sodium lauryl sulphate. The sizes of the MSPP were found to range from 0.1 to 4.4 μm. Increasing the emulsifier concentration had the effect of ...

  19. MATHEMATICAL MODEL OF GRAIN MICRONIZATION

    Directory of Open Access Journals (Sweden)

    V. A. Afanas’ev

    2014-01-01

    Full Text Available Summary. During micronisation grain moisture evaporates mainly in decreasing drying rate period. Grain layer located on the surface of the conveyor micronisers will be regarded as horizontal plate. Due to the fact that the micronisation process the surface of the grain evaporates little moisture (within 2-7 % is assumed constant plate thickness. Because in the process of micronization grain structure is changing, in order to achieve an exact solution of the equations necessary to take into account changes thermophysical, optical and others. Equation of heat transfer is necessary to add a term that is responsible for the infrared heating. Because of the small thickness of the grain, neglecting the processes occurring at the edge of the grain, that is actually consider the problem of an infinite plate. To check the adequacy of the mathematical model of the process of micronisation of wheat grain moisture content must be comparable to the function of time, obtained by solving the system of equations with the measured experimental data of experience. Numerical solution of a system of equations for the period of decreasing drying rate is feasible with the help of the Maple 14, substituting the values of the constants in the system. Calculation of the average relative error does not exceed 7- 10 %, and shows a good agreement between the calculated data and the experimental values.

  20. One Micron Laser Technology Advancements at GSFC

    Science.gov (United States)

    Heaps, William S.

    2010-01-01

    This slide presentation reviews the advancements made in one micron laser technology at Goddard Space Flight Center. It includes information about risk factors that are being addressed by GSFC, and overviews of the various programs that GSFC is currently managing that are using 1 micron laser technology.

  1. MICRON-SIZED POLYMER PARTICLES FROM TANZANIAN ...

    African Journals Online (AJOL)

    Micron sized polymeric particles were prepared from cashew nut shell liquid and subsequently functionalized to produce micron-sized carboxylated cation exchange resin (MCCER). By titrimetry and analytical procedures employing atomic absorption spectrometry, an assessment of the cation exchange capability of the ...

  2. Development program for 1.93-micron lasers

    Science.gov (United States)

    Longeway, P.; Zamerowski, T.; Martinelli, R.; Stolzenberger, R.; Digiuseppe, N.

    1988-01-01

    For the first time lasers operating at 1.93 microns were demonstrated. The lasers were fabricated by Vapor Phase Epitaxial (VPE) growth techniques currently used for the fabrication of high power lasers at 1.3 microns. The structure of these laser diodes consisted of compositionally graded, sulfur-doped InAsP, grown on an InP substrate; a constant-composition n+InAs(0.27)P(0.73) layer, which is the first cladding layer; an In(0.66)Ga(0.34)As layer, which is the active region, and a second InAs(0.27)P(0.73) layer. The devices were oxide-stripe DH lasers (gain-guided only). The best devices had 80 K lasing thresholds in the range of from 80 to 150 mA, and T sub o (below 220 K) in the range of 60 to 90 K. The highest observed temperature of oscillation was 15.5 C. The highest observed power output at 80 K was in the range of 3 to 5 mW. The calculated delta I/delta T was 4.4 A/K. As a part of the materials development, PIN homojunction detectors having the band edge near 1.93 were also fabricated. The best devices (100 micron diameter, mesa structure) exhibited room temperature dark currents in the range of from 20 to 50 nA and had QE at 1.93 microns in the range of 35 to 40 percent. In addition to the device results, the InGaAs-InAsP materials system was extensively investigated and low defect density layers can now be grown allowing for significant device performance improvement.

  3. 60 micron luminosity evolution of rich clusters of galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, D.M.; Rieke, G.H. (Steward Observatory, Tucson, AZ (USA))

    1990-10-01

    The average 60-micron flux has been determined for a collection of optically selected galaxy clusters at redshifts ranging from 0.30 to 0.92. The result, 26 mJy per cluster, represents the faintest flux determination known of using the IRAS data base. The flux from this set of clusters has been compared to the 60-micron flux from a sample of nearby galaxy clusters. It is found that the far-infrared luminosity evolution in cluster galaxies can be no more than a factor of 1.7 from z = 0.4 to the present epoch. This upper limit is close to the evolution predicted for simple aging of the stellar populations. Additional processes such as mergers, cannibalism, or enhanced rates of starbursts appear to occur at a low enough level that they have little influence on the far-infrared emission from clusters over this redshift range. 38 refs.

  4. Tunable Narrow Linewidth, Low Noise 2.05 Micron Single Frequency Seeder Laser Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose an all-fiber based 2.05-micron single frequency, narrow linewidth seeder laser with 10 nm tuning range and 5GHz frequency modulation for next generation...

  5. Compact 2 Micron Seed Laser Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is for the development of innovative compact, high power and extremely reliable 2 micron seed laser using newly developed Tm3+ doped germanate glass...

  6. Compact 2 Micron Seed Laser Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is for the development of new compact, high power and extremely reliable 2 micron seed laser using newly developed Tm3+ doped germanate glass fibers,...

  7. β-Tricalcium Phosphate Micron Particles Enhance Calcification of Human Mesenchymal Stem Cells In Vitro

    Directory of Open Access Journals (Sweden)

    Yusuke Nakagawa

    2013-01-01

    Full Text Available β-Tricalcium phosphate (β-TCP micron particles whose diameters range from 1 μm to 10 μm have been recently developed, however, their biological effects remain unknown. We investigated the biological effects of β-TCP micron particles on proliferation, cytotoxicity, and calcification of human synovial mesenchymal stem cells (MSCs. MSCs were cultured without dexamethasone, β-glycerophosphate, or ascorbic acid. 1.0 mg/mL β-TCP micron particles inhibited proliferation of MSCs significantly and increased dead cells. In the contact condition, 0.1 mg/mL β-TCP micron particles promoted calcification of MSCs evaluated by alizarin red staining and enhanced mRNA expressions of runx2, osteopontin, and type I collagen. In the noncontact condition, these effects were not observed. 0.1 mg/mL β-TCP micron particles increased calcium concentration in the medium in the contact condition, while 1.0 mg/mL β-TCP micron particles decreased calcium and phosphorus concentrations in the medium in the noncontact condition. By transmission electron microscopy, β-TCP micron particles were localized in the phagosome of MSCs and were dissolved. In conclusion, β-TCP micron particles promoted calcification of MSCs and enhanced osteogenesis-related gene expressions in vitro.

  8. Non-uniform plastic deformation of micron scale objects

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Hutchinson, J. W.

    2003-01-01

    Significant increases in apparent flow strength are observed when non-uniform plastic deformation of metals occurs at the scale ranging from roughly one to ten microns. Several basic plane strain problems are analyzed numerically in this paper based on a new formulation of strain gradient...... plasticity. The problems are the tangential and normal loading of a finite rectangular block of material bonded to rigid platens and having traction-free ends, and the normal loading of a half-space by a flat, rigid punch. The solutions illustrate fundamental features of plasticity at the micron scale...... that are not captured by conventional plasticity theory. These include the role of material length parameters in establishing the size dependence of strength and the elevation of resistance to plastic flow resulting from constraint on plastic flow at boundaries. Details of the finite element method employed...

  9. Efficient ultrasonic grinding: a new technology for micron-sized coal. Final report, September 15, 1979-December 14, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Tarpley, W.B. Jr.; Howard, P.L.; Moulder, G.R.

    1981-01-01

    To burn coal most efficiently and cleanly, much smaller particle sizes are needed than can now be ground economically. This project was performed to demonstrate the technical feasibility of using ultrasonics to enhance grinding below the standard plant grind of 75 microns, and to extrapolate from this laboratory work the ultrasonic energy requirements for production use. Successively improved laboratory arrays demonstrated a repeatable production of particulates from 2000-micron coal to the desired size ranges (approximately 35% below 7 microns, 95% below 44 microns) with selective liberation of ash and pyrite inclusions to facilitate removal, with equipment translatable to production use, and the possibility of only 37 kwh/ton energy input requirement.

  10. Efavirenz Dissolution Enhancement I: Co-Micronization

    Directory of Open Access Journals (Sweden)

    Helvécio Vinícius Antunes Rocha

    2012-12-01

    Full Text Available AIDS constitutes one of the most serious infectious diseases, representing a major public health priority. Efavirenz (EFV, one of the most widely used drugs for this pathology, belongs to the Class II of the Biopharmaceutics Classification System for drugs with very poor water solubility. To improve EFV’s dissolution profile, changes can be made to the physical properties of the drug that do not lead to any accompanying molecular modifications. Therefore, the study objective was to develop and characterize systems with efavirenz able to improve its dissolution, which were co-processed with sodium lauryl sulfate (SLS and polyvinylpyrrolidone (PVP. The technique used was co-micronization. Three different drug:excipient ratios were tested for each of the two carriers. The drug dispersion dissolution results showed significant improvement for all the co-processed samples in comparison to non-processed material and corresponding physical mixtures. The dissolution profiles obtained for dispersion with co-micronized SLS samples proved superior to those of co-micronized PVP, with the proportion (1:0.25 proving the optimal mixture. The improvements may be explained by the hypothesis that formation of a hydrophilic layer on the surface of the micronized drug increases the wettability of the system formed, corroborated by characterization results indicating no loss of crystallinity and an absence of interaction at the molecular level.

  11. Mid-IR fiber optic light source around 6 micron through parametric wavelength translation

    CERN Document Server

    Barh, A; Varshney, R K; Pal, B P; Sanghera, J; Shaw, L B; Aggarwal, I D

    2014-01-01

    We report numerically designed highly nonlinear all glass chalcogenide microstructured optical fiber for efficient generation of light around 6 micron through degenerate four wave mixing by considering continuous wave CO laser of 5 to 10 Watts power emitting at 5.6 micron as the pump. By tuning the pump wavelength, pump power, fiber dispersion and nonlinear properties, narrow and broad band mid-IR all-fiber light source could be realized. Parametric amplification of more than 20 decibel is achievable for the narrow band source at 6.46 micron with a maximum power conversion efficiency of 33 percent while amplification of 22 decibel is achievable for a B-band source over the wavelength range of 5 to 6.3 micron with a conversion efficiency of 40 percent.

  12. Griseofulvin micronization and dissolution rate improvement by supercritical assisted atomization.

    Science.gov (United States)

    Reverchon, E; Della Porta, G; Spada, A; Antonacci, A

    2004-11-01

    Supercritical assisted atomization (SAA) was used to micronize griseofulvin (GF), selected as a model compound, to verify the performance of this innovative process. SAA is based on the solubilization of supercritical carbon dioxide in a liquid solution containing the drug. The ternary mixture is then sprayed through a nozzle and microparticles are formed as a consequence of the enhanced atomization. Precipitation temperature and drug concentration in the liquid solution were studied to evaluate their influence on morphology and size of precipitated particles. A good particle size control was obtained and GF spherical particles with mean diameters ranging from 0.5 to 2.5 microm were produced with a narrow particle size distribution. Processed GF was characterized by high-performance liquid chromatography-UV/vis, headspace-gas chromatography-flame ionization detection, differential scanning calorimetry, BET and X-ray analyses. No drug degradation was observed and a solvent residue (acetone) less than 800 ppm was measured. GF microparticles showed good stability and surface areas ranging from about 4 to 6 m(2) g(-1); moreover, the micronized drug retained the crystalline habit. GF capsules were formulated with starch and used to compare the dissolution rate of SAA-processed and conventional jet-milled drug. A faster dissolution and a better reproducibility of the dissolution profile were observed for SAA-processed GF.

  13. Technology for an Experimental Test of Micron Length Scale Interactions on Ultracold Neutrons in Gravitational Eigenstates

    Science.gov (United States)

    Dees, Eric; Young, Albert; Riehn, Robert; Abele, Hartmut; Jenke, Tobias

    2014-09-01

    We have manufactured a new technology for studies of short range interactions on ultracold neutrons in eigenstates of earth's gravitational potential. By using a separated oscillatory fields apparatus in combination with our device (in collaboration with the QBOUNCE experiment at ILL), we hope to probe new sensitivity levels of micron length scale forces by looking for a shift in the resonant frequency of the gravitational states induced by attractor materials with different densities. This technology should permit a direct exploration of ranges near micron scales and produce improved limits on certain Beyond Standard Model interactions, such as from chameleon fields or dimensional compactification.

  14. Room-temperature InGaAs detector arrays for 1.0 - 1.7 microns spectroscopy

    Science.gov (United States)

    Olsen, G. H.; Joshi, A. M.; Mykietyn, E.; Colosi, J.; Woodruff, K. M.

    1989-01-01

    Linear arrays of 256 element InGaAs detectors with 100 x 30 micron pixels were mounted in multiplexer packages and tested in an optical multichannel analyzer (OMA). Typical performance characteristics include dark current (-5V) of 400 picoamps and responsivities of 0.75 A/W (1.3 microns) and 0.14 A/W (0.85 microns). The 256 element exhibited a mean room-temperature dark current of under 400 picoamps when mounted in the OMA and a dynamic range over 11 bits (2000:1). Future applications, including room-temperature detector arrays for 2.5 microns and avalanche photodiode arrays for 1.0-1.7 microns, are discussed.

  15. Micron: an Actively Stabilized Handheld Tool for Microsurgery.

    Science.gov (United States)

    Maclachlan, Robert A; Becker, Brian C; Tabarés, Jaime Cuevas; Podnar, Gregg W; Lobes, Louis A; Riviere, Cameron N

    2012-02-01

    We describe the design and performance of a hand-held actively stabilized tool to increase accuracy in micro-surgery or other precision manipulation. It removes involuntary motion such as tremor by actuating the tip to counteract the effect of the undesired handle motion. The key components are a three-degree-of-freedom piezoelectric manipulator that has 400 μm range of motion, 1 N force capability, and bandwidth over 100 Hz, and an optical position measurement subsystem that acquires the tool pose with 4 μm resolution at 2000 samples/s. A control system using these components attenuates hand motion by at least 15 dB (a fivefold reduction). By considering the effect of the frequency response of Micron on the human visual feedback loop, we have developed a filter that reduces unintentional motion, yet preserves intuitive eye-hand coordination. We evaluated the effectiveness of Micron by measuring the accuracy of the human/machine system in three simple manipulation tasks. Handheld testing by three eye surgeons and three non-surgeons showed a reduction in position error of between 32% and 52%, depending on the error metric.

  16. Discovering sub-micron ice particles across Dione' surface

    Science.gov (United States)

    Scipioni, Francesca; Schenk, Pual; Tosi, Federico; Clark, Roger; Dalle Ore, Cristina; Combe, Jean-Philippe

    2015-11-01

    Water ice is the most abundant component of Saturn’s mid-sized moons. However, these moons show an albedo asymmetry - their leading sides are bright while their trailing side exhibits dark terrains. Such differences arise from two surface alteration processes: (i) the bombardment of charged particles from the interplanetary medium and driven by Saturn’s magnetosphere on the trailing side, and (ii) the impact of E-ring water ice particles on the satellites’ leading side. As a result, the trailing hemisphere appears to be darker than the leading side. This effect is particularly evident on Dione's surface. A consequence of these surface alteration processes is the formation or the implantation of sub-micron sized ice particles.The presence of such particles influences and modifies the surfaces' spectrum because of Rayleigh scattering by the particles. In the near infrared range of the spectrum, the main sub-micron ice grains spectral indicators are: (i) asymmetry and (ii) long ward minimum shift of the absorption band at 2.02 μm (iii) a decrease in the ratio between the band depths at 1.50 and 2.02 μm (iv) a decrease in the height of the spectral peak at 2.6 μm (v) the suppression of the Fresnel reflection peak at 3.1 μm and (vi) the decrease of the reflection peak at 5 μm relative to those at 3.6 μm.We present results from our ongoing work mapping the variation of sub-micron ice grains spectral indicators across Dione' surface using Cassini-VIMS cubes acquired in the IR range (0.8-5.1 μm). To characterize the global variations of spectral indicators across Dione' surface, we divided it into a 1°x1° grid and then averaged the band depths and peak values inside each square cell.We will investigate if there exist a correspondence with water ice abundance variations by producing water ice' absorption band depths at 1.25, 1.52 and 2.02 μm, and with surface morphology by comparing the results with ISS color maps in the ultraviolet, visible and infrared

  17. Chemigation with micronized sulfur rapidly reduces soil pH in northern highbush blueberry

    Science.gov (United States)

    Northern highbush blueberry is adapted to low soil pH in the range of 4.5–5.5. When pH is higher, soil is usually acidified by incorporating elemental sulfur (S) prior to planting. A study was conducted to determine the potential of applying micronized S by chemigation through the drip system to red...

  18. Measuring charge carrier mobility in photovoltaic devices with micron-scale resolution

    Energy Technology Data Exchange (ETDEWEB)

    Ashraf, A. [Sustainable Energy Technologies Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794 (United States); Dissanayake, D. M. N. M. [Sustainable Energy Technologies Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Eisaman, M. D., E-mail: meisaman@bnl.gov [Sustainable Energy Technologies Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794 (United States); Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, New York 11794 (United States)

    2015-03-16

    We present a charge-extraction technique, micron-scale charge extraction by linearly increasing voltage, which enables simultaneous spatially resolved measurements of charge carrier mobility and photocurrent in thin-film photovoltaic devices with micron-scale resolution. An intensity-modulated laser with beam diameter near the optical diffraction limit is scanned over the device, while a linear voltage ramp in reverse bias is applied at each position of illumination. We calculate the majority carrier mobility, photocurrent, and number of photogenerated charge carriers from the resulting current transient. We demonstrate this technique on an organic photovoltaic device, but it is applicable to a wide range of photovoltaic materials.

  19. Deciphering sub-micron ice particles on Enceladus surface

    Science.gov (United States)

    Scipioni, F.; Schenk, P.; Tosi, F.; D'Aversa, E.; Clark, R.; Combe, J.-Ph.; Ore, C. M. Dalle

    2017-07-01

    The surface of Saturn's moon Enceladus is composed primarily by pure water ice. The Cassini spacecraft has observed present-day geologic activity at the moon's South Polar Region, related with the formation and feeding of Saturn's E-ring. Plumes of micron-sized particles, composed of water ice and other non-ice contaminants (e.g., CO2, NH3, CH4), erupt from four terrain's fractures named Tiger Stripes. Some of this material falls back on Enceladus' surface to form deposits that extend to the North at ∼40°W and ∼220°W, with the highest concentration found at the South Pole. In this work we analyzed VIMS-IR data to identify plumes deposits across Enceladus' surface through the variation in band depth of the main water ice spectral features. To characterize the global variation of water ice band depths across Enceladus, the entire surface was sampled with an angular resolution of 1° in both latitude and longitude, and for each angular bin we averaged the value of all spectral indices as retrieved by VIMS. The position of the plumes' deposits predicted by theoretical models display a good match with water ice band depths' maps on the trailing hemisphere, whereas they diverge significantly on the leading side. Space weathering processes acting on Enceladus' surface ionize and break up water ice molecules, resulting in the formation of particles smaller than one micron. We also mapped the spectral indices for sub-micron particles and we compared the results with the plumes deposits models. Again, a satisfactory match is observed on the trailing hemisphere only. Finally, we investigated the variation of the depth of the water ice absorption bands as a function of the phase angle. In the visible range, some terrains surrounding the Tiger Stripes show a decrease in albedo when the phase angle is smaller than 10°. This unusual effect cannot be confirmed by near infrared data, since observations with a phase angle lower than 10° are not available. For phase angle

  20. Shock-wave micron-size diamond synthesis from fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Epanchintsev, O.G.; Zubchenko, A.S.; Kobelev, N.N. [Federal Scientific Center, Moscow (Russian Federation)] [and others

    1995-12-31

    Shock-wave synthesis of micron-size diamond is performed from fullerenes C{sub 60} -- C {sub 150} powders using the explosive compaction technique with plane shock-wave loading at different pressures in the range of 24-40 GPa. The compacts of different initial compositions consisted of diamond, fcc fullerite C{sub 60}, graphite and amorphous carbon. The most coarse diamond grains sized up to 6 {mu}n were formed at the shock pressure of 24 and 40 GPa in the compacts of initial powder mixture copper-5 mass.% fullerite and at shock pressure of 40 GPa in the compact of initial powder mixture copper - 10 mass.% fullerite. Shock-wave synthesis of diamond is performed without forming intermediate diamond-like phases, such as n-diamond and lonsdaleite (hexagonal diamond) in the final products.

  1. Two Micron Laser Technology Advancements at NASA Langley Research Center

    Science.gov (United States)

    Singh, Upendra N.

    2010-01-01

    An Independent Laser Review Panel set up to examine NASA s space-based lidar missions and the technology readiness of lasers appropriate for space-based lidars indicated a critical need for an integrated research and development strategy to move laser transmitter technology from low technical readiness levels to the higher levels required for space missions. Based on the review, a multiyear Laser Risk Reduction Program (LRRP) was initiated by NASA in 2002 to develop technologies that ensure the successful development of the broad range of lidar missions envisioned by NASA. This presentation will provide an overview of the development of pulsed 2-micron solid-state laser technologies at NASA Langley Research Center for enabling space-based measurement of wind and carbon dioxide.

  2. Deformation Behavior of Sub-micron and Micron Sized Alumina Particles in Compression.

    Energy Technology Data Exchange (ETDEWEB)

    Sarobol, Pylin; Chandross, Michael E.; Carroll, Jay; Mook, William; Boyce, Brad; Kotula, Paul Gabriel; McKenzie, Bonnie Beth; Bufford, Daniel Charles; Hall, Aaron Christopher.

    2014-09-01

    The ability to integrate ceramics with other materials has been limited due to high temperature (>800degC) ceramic processing. Recently, researchers demonstrated a novel process , aerosol deposition (AD), to fabricate ceramic films at room temperature (RT). In this process, sub - micro n sized ceramic particles are accelerated by pressurized gas, impacted on the substrate, plastically deformed, and form a dense film under vacuum. This AD process eliminates high temperature processing thereby enabling new coatings and device integration, in which ceramics can be deposited on metals, plastics, and glass. However, k nowledge in fundamental mechanisms for ceramic particle s to deform and form a dense ceramic film is still needed and is essential in advancing this novel RT technology. In this wo rk, a combination of experimentation and atomistic simulation was used to determine the deformation behavior of sub - micron sized ceramic particle s ; this is the first fundamental step needed to explain coating formation in the AD process . High purity, singl e crystal, alpha alumina particles with nominal size s of 0.3 um and 3.0 um were examined. Particle characterization, using transmission electron microscopy (TEM ), showed that the 0.3 u m particles were relatively defect - free single crystals whereas 3.0 u m p articles were highly defective single crystals or particles contained low angle grain boundaries. Sub - micron sized Al 2 O 3 particles exhibited ductile failure in compression. In situ compression experiments showed 0.3um particles deformed plastically, fractured, and became polycrystalline. Moreover, dislocation activit y was observed within the se particles during compression . These sub - micron sized Al 2 O 3 particles exhibited large accum ulated strain (2 - 3 times those of micron - sized particles) before first fracture. I n agreement with the findings from experimentation , a tomistic simulation s of nano - Al 2 O 3 particles showed dislocation slip and

  3. The surface characterisation and comparison of two potential sub-micron, sugar bulking excipients for use in low-dose, suspension formulations in metered dose inhalers.

    Science.gov (United States)

    James, Jeff; Crean, Barry; Davies, Martyn; Toon, Richard; Jinks, Phil; Roberts, Clive J

    2008-09-01

    analysis (SCA). The Young's modulus for each sub-micron excipient and parent material was also determined using AFM. Finally, the adhesive interactions were determined between each sub-micron bulking excipient and five APIs (formoterol fumarate, salmeterol xinafoate, salbutamol sulphate, mometasone furoate and salmon calcitonin). Both sub-micron sucrose and anhydrous sub-micron alpha-lactose exhibited a lower surface free energy than their respective parent materials/intermediates. In addition, both AFM and CA surface energy measurements also showed that sub-micron sucrose has a higher surface energy than anhydrous sub-micron alpha-lactose. Theoretical work of adhesion values between anhydrous sub-micron alpha-lactose and each API are considerably lower than those observed between micronised alpha-lactose monohydrate and each API. Corresponding theoretical work of adhesion values between sub-micron sucrose and each API were almost identical to those observed between silk grade sucrose and each API. Young's modulus determination revealed that sub-micron sucrose has a greater crystal hardness/elasticity ratio than anhydrous sub-micron alpha-lactose. With the exception of salmon calcitonin, sub-micron sucrose showed larger adhesive interactions to the selected APIs than anhydrous sub-micron alpha-lactose. Anhydrous sub-micron alpha-lactose has been found to have lower adhesive interactions with a range of chosen, low-dose APIs compared to sub-micron sucrose. This could be related to the lower surface energy for anhydrous sub-micron alpha-lactose. Knowledge of the surface free energy and mechanical properties of potential sub-micron bulking excipients and API materials could provide useful information regarding the selection of suitable API-submicron bulking excipient combinations during the development and optimisation stages of suspension pMDI formulations.

  4. Viewing Seasonality in 8 Megacities at 4 Microns

    Science.gov (United States)

    Tomaszewska, M. A.; Kovalskyy, V.; Small, C.; Henebry, G. M.

    2013-12-01

    The middle infrared (MIR) spectral region, between 3 and 5 microns, offers a different perspective on cities. The MIR is the mixing zone of both emitted terrestrial radiation and reflected solar radiation. The relatively long wavelengths enable views of surfaces often obscured by anthropogenic haze. Green vegetation appears very dark in the MIR due to high absorption by leaf water. In contrast, building, roofing, and paving materials reflect much MIR and exposed soils and dried vegetation reflect even more. Thus, physics dictates a strong expression of seasonality in the MIR. But is there sufficient signal in the MIR to merit it as a complementary approach for characterizing urbanized areas and monitoring their dynamics? We have explored this question in a research effort that links two NASA Interdisciplinary Science projects on the effect of cities on the environment. We focused on 8 global megacities: Beijing, Cairo, Istanbul, Mexico, Moscow, Nairobi, New Delhi, and São Paulo. We used Level 1B calibrated radiance data from band 23 (~4 microns) of the Aqua MODIS during ascending passes in 2010. These 1 km data were processed to reduce cloud cover using monthly maximum value compositing into four sensor view zenith angle (VZA) classes: 0urban, agriculture, and 'natural' which included forest, savanna, or desert depending on the city. The seasonal patterns of MIR radiance varied, as expected, by latitude, with very strong seasonality effects at higher latitudes (Beijing, Cairo, Istanbul, Moscow), and lesser to minimal seasonal signals evident in the tropics (Mexico City, Nairobi, São Paulo). The monsoon imposed strong MIR seasonality in New Delhi. The strength of the seasonality was modulated by the VZA with smaller VZAs (30°). SNR was higher in the summer months and quite low in the winter months at high latitudes, as was expected due to the seasonal cycle of irradiance. The urban land cover showed higher seasonal dynamic range than most other cover types, with

  5. Grism Performance for Mid-IR (5-40 microns) Spectroscopy

    Science.gov (United States)

    Ennico, K. A.; Mar, D. J.; Jaffe, D. T.; Marsh, J. P.; Keller, L. D.; Herter, T. L.; Greene, T. P.; Adams, J. D.

    2006-01-01

    Grisms provide a straightforward method to transform an imager into a spectrometer with little change to the original imaging optics. This paper addresses the performance of a suite of grisms as part of an Astrobiology Science and Instrument Development (ASTID) Program to implement a moderate resolution spectroscopic capability to the mid/far-IR facility instrument FORCAST for the Stratospheric Observatory For Infrared Astronomy (SOFIA) [see accompanying abstract by Adams et al.]. A moderate resolution mid-IR spectrometer on SOFIA will offer advantages not available to either ground or space-based instruments after the Spitzer Space Telescope ceases operation in approx. 2007. SOFIA will begin operations in 2007 and will have an operational lifetime of approx. 20 years. From aircraft altitudes, it will be possible to cover a range of wavelengths, particularly in the critical 5-9 micron band, where detection of astrobiologically interesting molecules have key spectral signatures, that are not accessible from the ground. This grism suite consists of six grisms: four monolithic Si grisms [see accompanying abstract by Mar et al.] and two KRS-5 grisms. These devices will allow long slit low-resolution and short slit, cross-dispersed high-resolution spectroscopic modes selectable by simply moving the camera filter wheels. This configuration will enable observing programs to gather images and spectra in a single SOFIA flight. The four silicon grisms, whose performance is highlighted in this paper, will operate in the following wavelength ranges: 5-8, 17-28, and 28-37 microns. In the 5-8 micron range, R=1200 is achievable for a 2 arcsecond slit using the grism as a cross-disperser. For the 17-28 and 28-37 micron ranges, the resolving powers are R approx. 130, 250 when used in low orders with a slit of 3 arcseconds. The silicon grisms demonstrate a new family of dispersive elements with good optical performance for spectroscopy from 1.2-8 micron and beyond 18 microns

  6. DISPERSION POLYMERIZATION OF STYRENE IN SUPERCRITICAL CARBON DIOXIDE UTILIZING RANDOM COPOLYMERS INCLUDING FLUORINATED ACRYLATE FOR PREPARING MICRON-SIZE POLYSTYRENE PARTICLES. (R826115)

    Science.gov (United States)

    The dispersion polymerization of styrene in supercritical CO2 utilizing CO2-philic random copolymers was investigated. The resulting high yield of polystyrene particles in the micron-size range was formed using various random copolymers as stabilizers. The p...

  7. Single Frequency Narrow Linewidth 2 Micron Laser Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA needs narrow linewidth lasers in the 1.5 or 2 micron wavelength regime for coherent Lidar applications. The laser should be tunable by several nm and frequency...

  8. RIVKIN THREE MICRON ASTEROID DATA V3.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set is a collection of 3-micron spectra of 33 asteroids and Phobos and Deimos obtained by Andy Rivkin and collaborators. Nearly all these data have been...

  9. 1.55 Micron High Peak Power Fiber Amplifier Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposal, we propose to demonstrate and build a 1.55 micron single frequency high energy and high peak power fiber amplifier by developing an innovative...

  10. Micron size GMR magnetic sensor with needle structure

    Science.gov (United States)

    Yamada, S.; Haraszczuk, R.; Kakikawa, M.; Hoang, H.

    2012-05-01

    The work presents inimitable shaped needle type probe with spin valve giant magnetoresistance (SV-GMR) elements. Sensitive elements with 75 μm width are connected in the Wheatstone bridge structure. The length of the needle is 20-30 mm and its cross section is square. The magnetic sensor probe has the advantage of micron order spatial resolution. The needle type probe works as a gradient meter which concurrently suppresses the influence of externally applied field and detects magnetic fields emanating from nano or micro order size sources. Sensing elements present high sensitivity 260 μV/μT and are capable of detecting the magnetic fields in order of few nT. SV-GMR elements present flat amplitude and phase characteristics in wide frequency range. The novel characteristicsof the probe allow it to be utilized in detection of the in-phase and out of phase signal components. An additional merit of this design is extremely small liftoff height between sensing element and the source of magnetic field. The SV-GMR elements are isolated only by very thin protection layer (a few μm), that gives opportunity to apply the probe in biological (in vivo) experiments, and in non destructive evaluation of current detection. The needle shape allows the sensing element toapproach the examined materials in a distance of few ten μm.

  11. Penetration and Effectiveness of Micronized Copper in Refractory Wood Species.

    Directory of Open Access Journals (Sweden)

    Chiara Civardi

    Full Text Available The North American wood decking market mostly relies on easily treatable Southern yellow pine (SYP, which is being impregnated with micronized copper (MC wood preservatives since 2006. These formulations are composed of copper (Cu carbonate particles (CuCO3·Cu(OH2, with sizes ranging from 1 nm to 250 μm, according to manufacturers. MC-treated SYP wood is protected against decay by solubilized Cu2+ ions and unreacted CuCO3·Cu(OH2 particles that successively release Cu2+ ions (reservoir effect. The wood species used for the European wood decking market differ from the North American SYP. One of the most common species is Norway spruce wood, which is poorly treatable i.e. refractory due to the anatomical properties, like pore size and structure, and chemical composition, like pit membrane components or presence of wood extractives. Therefore, MC formulations may not suitable for refractory wood species common in the European market, despite their good performance in SYP. We evaluated the penetration effectiveness of MC azole (MCA in easily treatable Scots pine and in refractory Norway spruce wood. We assessed the effectiveness against the Cu-tolerant wood-destroying fungus Rhodonia placenta. Our findings show that MCA cannot easily penetrate refractory wood species and could not confirm the presence of a reservoir effect.

  12. Selection of quasi-monodisperse super-micron aerosol particles

    Science.gov (United States)

    Rösch, Michael; Pfeifer, Sascha; Wiedensohler, Alfred; Stratmann, Frank

    2014-05-01

    Size-segregated quasi monodisperse particles are essential for e.g. fundamental research concerning cloud microphysical processes. Commonly a DMA (Differential Mobility Analyzer) is used to produce quasi-monodisperse submicron particles. Thereto first, polydisperse aerosol particles are bipolarly charged by a neutralizer, and then selected according to their electrical mobility with the DMA [Knutson et al. 1975]. Selecting a certain electrical mobility with a DMA results in a particle size distribution, which contains singly charged particles as well as undesired multiply charged larger particles. Often these larger particles need to either be removed from the generated aerosol or their signals have to be corrected for in the data inversion and interpretation process. This problem becomes even more serious when considering super-micron particles. Here we will present two different techniques for generating quasi-monodisperse super-micron aerosol particles with no or only an insignificant number of larger sized particles being present. First, we use a combination of a cyclone with adjustable aerodynamic cut-off diameter and our custom-built Maxi-DMA [Raddatz et al. 2013]. The cyclone removes particles larger than the desired ones prior to mobility selection with the DMA. This results in a reduction of the number of multiply charged particles of up to 99.8%. Second, we utilize a new combination of cyclone and PCVI (Pumped Counterflow Virtual Impactor), which is based on purely inertial separation and avoids particle charging. The PCVI instrument was previously described by Boulter et al. (2006) and Kulkarni et al. (2011). With our two setups we are able to produce quasi-monodisperse aerosol particles in the diameter range from 0.5 to 4.4 µm without a significant number of larger undesired particles being present. Acknowledgements: This work was done within the framework of the DFG funded Ice Nucleation research UnIT (INUIT, FOR 1525) under WE 4722/1-1. References

  13. Micronized Organic Magnesium Salts Enhance Opioid Analgesia in Rats.

    Directory of Open Access Journals (Sweden)

    Magdalena Bujalska-Zadrożny

    Full Text Available As previously reported, magnesium sulphate administered parenterally significantly increased an opioid antinociception in different kinds of pain. Since the typical form of magnesium salts are poorly and slowly absorbed from the gastrointestinal tract we examined whether their micronized form could increase opioids induced antinociception.In behavioural studies on rats morphine, tramadol and oxycodone together with magnesium (lactate dihydrate, hydroaspartate, chloride in micronized (particles of size D90 < 50 μm and conventional forms were used. Changes in pain thresholds were determined using mechanical stimuli. The intestinal absorption of two forms of magnesium lactate dihydrate (at the doses of 7.5 or 15 mg ions in the porcine gut sac model were also compared.Micronized form of magnesium lactate dihydrate or hydroaspartate but not chloride (15 mg of magnesium ions kg-1 enhanced the analgesic activity of orally administered opioids, significantly faster and more effective in comparison to the conventional form of magnesium salts (about 40% for oxycodone administered together with a micronized form of magnesium hydroaspartate. Moreover, in vitro studies of transport across porcine intestines of magnesium ions showed that magnesium salts administered in micronized form were absorbed from the intestines to a greater extent than the normal form of magnesium salts.The co-administration of micronized magnesium organic salts with opioids increased their synergetic analgesic effect. This may suggest an innovative approach to the treatment of pain in clinical practice.

  14. Improved properties of micronized genetically modified flax fibers.

    Science.gov (United States)

    Dymińska, Lucyna; Szatkowski, Michał; Wróbel-Kwiatkowska, Magdalena; Zuk, Magdalena; Kurzawa, Adam; Syska, Wojciech; Gągor, Anna; Zawadzki, Mirosław; Ptak, Maciej; Mączka, Mirosław; Hanuza, Jerzy; Szopa, Jan

    2012-12-15

    The aim of this study was to investigate the effect of micronization on the compound content, crystalline structure and physicochemical properties of fiber from genetically modified (GM) flax. The GM flax was transformed with three bacterial (Ralstonia eutropha) genes coding for enzymes of polyhydroxybutyrate (PHB) synthesis and under the control of the vascular bundle promoter. The modification resulted in fibers containing the 3-hydroxybutyrate polymer bound to cellulose via hydrogen and ester bonds and antioxidant compounds (phenolic acids, vanillin, vitexin, etc.). The fibers appeared to have a significantly decreased particle size after 20h of ball-milling treatment. Micronized fibers showed reduced phenolic contents and antioxidant capacity compared to the results for untreated fibers. An increased level of PHB was also detected. Micronization introduces structural changes in fiber constituents (cellulose, hemicellulose, pectin, lignin, PHB) and micronized fibers exhibit more functional groups (hydroxyl, carboxyl) derived from those constituents. It is thus concluded that micronization treatments improve the functional properties of the fiber components. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Airborne 2-Micron Double-Pulsed Integrated Path Differential Absorption Lidar for Column CO2 Measurement

    Science.gov (United States)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer F.; Remus, Ruben G.; Fay, James J.; Reithmaier, Karl

    2014-01-01

    Double-pulse 2-micron lasers have been demonstrated with energy as high as 600 millijouls and up to 10 Hz repetition rate. The two laser pulses are separated by 200 microseconds and can be tuned and locked separately. Applying double-pulse laser in DIAL system enhances the CO2 measurement capability by increasing the overlap of the sampled volume between the on-line and off-line. To avoid detection complicity, integrated path differential absorption (IPDA) lidar provides higher signal-to-noise ratio measurement compared to conventional range-resolved DIAL. Rather than weak atmospheric scattering returns, IPDA rely on the much stronger hard target returns that is best suited for airborne platforms. In addition, the IPDA technique measures the total integrated column content from the instrument to the hard target but with weighting that can be tuned by the transmitter. Therefore, the transmitter could be tuned to weight the column measurement to the surface for optimum CO2 interaction studies or up to the free troposphere for optimum transport studies. Currently, NASA LaRC is developing and integrating a double-Pulsed 2-micron direct detection IPDA lidar for CO2 column measurement from an airborne platform. The presentation will describe the development of the 2-micron IPDA lidar system and present the airborne measurement of column CO2 and will compare to in-situ measurement for various ground target of different reflectivity.

  16. High Power Laser Diode Arrays for 2-Micron Solid State Coherent Lidars Applications

    Science.gov (United States)

    Amzajerdian, Farzin; Meadows, Byron; Kavaya, Michael J.; Singh, Upendra; Sudesh, Vikas; Baker, Nathaniel

    2003-01-01

    Laser diode arrays are critical components of any diode-pumped solid state laser systems, constraining their performance and reliability. Laser diode arrays (LDAs) are used as the pump source for energizing the solid state lasing media to generate an intense coherent laser beam with a high spatial and spectral quality. The solid state laser design and the characteristics of its lasing materials define the operating wavelength, pulse duration, and power of the laser diodes. The pump requirements for high pulse energy 2-micron solid state lasers are substantially different from those of more widely used 1-micron lasers and in many aspects more challenging [1]. Furthermore, the reliability and lifetime demanded by many coherent lidar applications, such as global wind profiling from space and long-range clear air turbulence detection from aircraft, are beyond the capability of currently available LDAs. In addition to the need for more reliable LDAs with longer lifetime, further improvement in the operational parameters of high power quasi-cw LDAs, such as electrical efficiency, brightness, and duty cycle, are also necessary for developing cost-effective 2-micron coherent lidar systems for applications that impose stringent size, heat dissipation, and power constraints. Global wind sounding from space is one of such applications, which is the main driver for this work as part of NASA s Laser Risk Reduction Program. This paper discusses the current state of the 792 nm LDA technology and the technology areas being pursued toward improving their performance. The design and development of a unique characterization facility for addressing the specific issues associated with the LDAs for pumping 2-micron coherent lidar transmitters and identifying areas of technological improvement will be described. Finally, the results of measurements to date on various standard laser diode packages, as well as custom-designed packages with potentially longer lifetime, will be reported.

  17. INFLUENCE OF GRAIN DEBRIS ON THE MICRONIZATION PROCESS

    Directory of Open Access Journals (Sweden)

    D. S. Kochanov

    2014-01-01

    Full Text Available Summary. Effect of weed, mineral and metallomagnetic impurities in the grain feedstock to micronization process was investigated. In laboratory and production conditions conducted a study on the influence of the impurity content in the treated grain, different size, density and metallomagnetic properties on the process of micronization. Trash content in feed grains of barley, wheat and corn according to current standards for grain must match the basic approach, and do not exceed 5 % , including mineral impurities - 1.0%. No restrictions on metallomagnetic and organic impurities. Dependence of the clearing of mineral impurities in various capacities device for separating stones was installed. Most effectively, 95-98 % grain (especially barley where these studies were carried out allocated pebbles, i.e. mineral impurity density which is almost twice the density of barley. Lumps of earth, the density of which is virtually identical to the density of barley allocated a maximum of 70%. Setting in the shop micronization grain separator and magnetic separator device for separating stones led to increase the reliability of the process equipment and process stability micronization. Year and a half after the reconstruction of the workshop there were no failure nodes of device for flattening. A particularly important consideration is to increase the duration of exploitation of the working surfaces of the rolls crusher to guaranteed by period (not less than 1 year.

  18. Active Laser and Raman Materials for 1.3-5 Micron Spectral Range

    Science.gov (United States)

    2006-03-01

    nitric acid, ammonium hydroxide and other reagent analytical grade were used. The electron micrograph of yttria powder is presented on Fig. 2.1.3. To...Addition of 1, 3, 5 mol % of bismuth oxide to yttria by co-precipitated process was made in experiments 48-50. It is known that Bi2O3 forms solid solution

  19. Variability of Jupiter's Five-Micron Hot Spot Inventory

    Science.gov (United States)

    Yanamandra-Fisher, Padma A.; Orton, G. S.; Wakefield, L.; Rogers, J. H.; Simon-Miller, A. A.; Boydstun, K.

    2012-01-01

    Global upheavals on Jupiter involve changes in the albedo of entire axisymmetric regions, lasting several years, with the last two occurring in 1989 and 2006. Against this backdrop of planetary-scale changes, discrete features such as the Great Red Spot (GRS), and other vortices exhibit changes on shorter spatial- and time-scales. We track the variability of the discrete equatorial 5-micron hot spots, semi-evenly spaced in longitude and confined to a narrow latitude band centered at 6.5degN (southern edge of the North Equatorial Belt, NEB), abundant in Voyager images. Tantalizingly similar patterns were observed in the visible (bright plumes and blue-gray regions), where reflectivity in the red is anti-correlated with 5-microns thermal radiance. Ortiz et al. (1998, GRL, 103) characterized the latitude and drift rates of the hot spots, including the descent of the Galileo probe at the southern edge of a 5-micron hot spot, as the superposition of equatorial Rossby waves, with phase speeds between 99 - 103m/s, relative to System III. We note that the high 5-micron radiances correlate well but not perfectly with high 8.57-micron radiances. Because the latter are modulated primarily by changes in the upper ammonia (NH3) ice cloud opacity, this correlation implies that changes in the ammonia ice cloud field may be responsible for the variability seen in the 5-m maps. During the NEB fade (2011 - early 2012), however, these otherwise ubiquitous features were absent, an atmospheric state not seen in decades. The ongoing NEB revival indicates nascent 5-m hot spots as early as April 2012, with corresponding visible dark spots. Their continuing growth through July 2012 indicates the possit.le re-establishment of Rossby waves. The South Equatorial Belt (SEB) and NEB revivals began similarly with an instability that developed into a major outbreak, and many similarities in the observed propagation of clear regions.

  20. View factor modeling of sputter-deposition on micron-scale-architectured surfaces exposed to plasma

    Energy Technology Data Exchange (ETDEWEB)

    Huerta, C. E., E-mail: cesar@seas.ucla.edu; Matlock, T. S.; Wirz, R. E. [University of California, Los Angeles, California 90095 (United States)

    2016-03-21

    The sputter-deposition on surfaces exposed to plasma plays an important role in the erosion behavior and overall performance of a wide range of plasma devices. Plasma models in the low density, low energy plasma regime typically neglect micron-scale surface feature effects on the net sputter yield and erosion rate. The model discussed in this paper captures such surface architecture effects via a computationally efficient view factor model. The model compares well with experimental measurements of argon ion sputter yield from a nickel surface with a triangle wave geometry with peak heights in the hundreds of microns range. Further analysis with the model shows that increasing the surface pitch angle beyond about 45° can lead to significant decreases in the normalized net sputter yield for all simulated ion incident energies (i.e., 75, 100, 200, and 400 eV) for both smooth and roughened surfaces. At higher incident energies, smooth triangular surfaces exhibit a nonmonotonic trend in the normalized net sputter yield with surface pitch angle with a maximum yield above unity over a range of intermediate angles. The resulting increased erosion rate occurs because increased sputter yield due to the local ion incidence angle outweighs increased deposition due to the sputterant angular distribution. The model also compares well with experimentally observed radial expansion of protuberances (measuring tens of microns) in a nano-rod field exposed to an argon beam. The model captures the coalescence of sputterants at the protuberance sites and accurately illustrates the structure's expansion due to deposition from surrounding sputtering surfaces; these capabilities will be used for future studies into more complex surface architectures.

  1. LED pumped micron-scale all-silicon Raman amplifier

    Science.gov (United States)

    Datta, Tanmoy; Sen, Mrinal

    2017-10-01

    A micron-scale all-silicon Raman amplifier has been proposed in this paper, exploiting the giant Raman gain of silicon nanocrystal material along with the extreme optical confinement of slotted photonic crystal waveguide. Light Emitting Diode (LED) has been considered here for low-cost optical pumping and the possibility of on-chip integration. At the same time, LED pumping eradicates the temporal impairment of output pulses which is otherwise unavoidable in case of continuous wave laser pumping. An overall gain of 3.22 dB has been achieved for a 400 Gbps input pulse train with a waveguide length of the amplifier which is as small as 4 μm. Moreover, the strong electroluminescence of silicon nanocrystal opens up the possibility of integrating the pump source on the same platform and, hence, expedites the future scope of realizing micron-scale silicon Raman laser without external pump source.

  2. Prospects for use of micronized coal in power industry

    Energy Technology Data Exchange (ETDEWEB)

    Burdukov, A.P.; Konovalov, V.V.; Yusupov, T.S. [Inst. of Thermophysics SB RAS, Novosibirsk (Russian Federation)

    2002-07-01

    Heat-and-power engineering is the basis for industrial development of developed countries and the main energy fuel for plants is coal. The main directions in improvement of coal energy technologies are related to better ignition of fuel and to gas and mazut substitution with pulverized coal. This paper considerers the prospects of energy coal enrichment and the method for production of ultrafine coal with the average size of particles about 10-20 microns, and the existing machines for ultrafine coal production. This method increases substantially the velocity of ignition and combustion of pulverized coal flame. The changes of physical and chemical properties of coal after grinding were considered, and the processes of ignition, combustion of micronized coal, spaying and stabilization of flame combustion were analyzed in this paper. The problem of ultrafine coal ignition were considered also. 20 refs., 3 figs., 1 tab.

  3. Prospects for use of micronized coal in power industry

    Directory of Open Access Journals (Sweden)

    Burdukov Anatolii P.

    2002-01-01

    Full Text Available Heat-and-power engineering is the basis for industrial development of developed countries and the main energy fuel for plants is coal. The main directions in improvement of coal energy technologies are related with better ignition of powered fuel and with gas and mazut substitution with coal powder. This paper considered the prospects of energy coal enrichment and the method for production of ultrafine coal with the average size of particles about 10-20 microns, and the existing machines for ultrafine coal production. This method increases substantially the velocity of ignition and combustion of pulverized coal flame. The changes of physical and chemical properties of coal after grinding were considered, the processes of ignition, combustion of micronized coal, spaying and stabilization of flame combustion were analyzed in this paper. The problem of ultrafine coal ignition were considered also.

  4. micron-sized polymeric particles from cashew nut shell liquid

    African Journals Online (AJOL)

    Micron-sized polymeric particles from cashew nut shell liquid … 38 to 0.21 µm. When the concentration of. NaOH was increased further to 1.2 g/dm3 while keeping constant the values of the other variables, the extent of coagulation in the latex was found to have intensified; this gave rise to the increase in particle size to.

  5. Characterization of Micron-Scale Nanotublar Super Dielectric Materials

    Science.gov (United States)

    2015-09-01

    unit of electrical resistance) r  relative permittivity of a dielectric material   permittivity of free space (or vacuum) m micron (or...reliance on fossil fuels and overall energy consumption [14]. The Navy set an energy goal to improve energy efficiency and reduce afloat fuel ...transient demands, a so-called “rolling reserve” that continuously burns fuel at a minimum load waiting for planned or unexpected needs [15]. In an

  6. Scanning SQUID susceptometers with sub-micron spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Kirtley, John R., E-mail: jkirtley@stanford.edu; Rosenberg, Aaron J.; Palmstrom, Johanna C.; Holland, Connor M.; Moler, Kathryn A. [Department of Applied Physics, Stanford University, Stanford, California 94305-4045 (United States); Paulius, Lisa [Department of Physics, Western Michigan University, Kalamazoo, Michigan 49008-5252 (United States); Spanton, Eric M. [Department of Physics, Stanford University, Stanford, California 94305-4045 (United States); Schiessl, Daniel [Attocube Systems AG, Königinstraße 11A, 80539 Munich (Germany); Jermain, Colin L.; Gibbons, Jonathan [Department of Physics, Cornell University, Cornell, Ithaca, New York 14853 (United States); Fung, Y.-K.K.; Gibson, Gerald W. [IBM Research Division, T. J. Watson Research Center, Yorktown Heights, New York 10598 (United States); Huber, Martin E. [Department of Physics, University of Colorado Denver, Denver, Colorado 80217-3364 (United States); Ralph, Daniel C. [Department of Physics, Cornell University, Cornell, Ithaca, New York 14853 (United States); Kavli Institute at Cornell, Ithaca, New York 14853 (United States); Ketchen, Mark B. [OcteVue, Hadley, Massachusetts 01035 (United States)

    2016-09-15

    Superconducting QUantum Interference Device (SQUID) microscopy has excellent magnetic field sensitivity, but suffers from modest spatial resolution when compared with other scanning probes. This spatial resolution is determined by both the size of the field sensitive area and the spacing between this area and the sample surface. In this paper we describe scanning SQUID susceptometers that achieve sub-micron spatial resolution while retaining a white noise floor flux sensitivity of ≈2μΦ{sub 0}/Hz{sup 1/2}. This high spatial resolution is accomplished by deep sub-micron feature sizes, well shielded pickup loops fabricated using a planarized process, and a deep etch step that minimizes the spacing between the sample surface and the SQUID pickup loop. We describe the design, modeling, fabrication, and testing of these sensors. Although sub-micron spatial resolution has been achieved previously in scanning SQUID sensors, our sensors not only achieve high spatial resolution but also have integrated modulation coils for flux feedback, integrated field coils for susceptibility measurements, and batch processing. They are therefore a generally applicable tool for imaging sample magnetization, currents, and susceptibilities with higher spatial resolution than previous susceptometers.

  7. Soft tissue engineering with micronized-gingival connective tissues.

    Science.gov (United States)

    Noda, Sawako; Sumita, Yoshinori; Ohba, Seigo; Yamamoto, Hideyuki; Asahina, Izumi

    2018-01-01

    The free gingival graft (FGG) and connective tissue graft (CTG) are currently considered to be the gold standards for keratinized gingival tissue reconstruction and augmentation. However, these procedures have some disadvantages in harvesting large grafts, such as donor-site morbidity as well as insufficient gingival width and thickness at the recipient site post-treatment. To solve these problems, we focused on an alternative strategy using micronized tissue transplantation (micro-graft). In this study, we first investigated whether transplantation of micronized gingival connective tissues (MGCTs) promotes skin wound healing. MGCTs (≤100 µm) were obtained by mincing a small piece (8 mm 3 ) of porcine keratinized gingiva using the RIGENERA system. The MGCTs were then transplanted to a full skin defect (5 mm in diameter) on the dorsal surface of immunodeficient mice after seeding to an atelocollagen matrix. Transplantations of atelocollagen matrixes with and without micronized dermis were employed as experimental controls. The results indicated that MGCTs markedly promote the vascularization and epithelialization of the defect area 14 days after transplantation compared to the experimental controls. After 21 days, complete wound closure with low contraction was obtained only in the MGCT grafts. Tracking analysis of transplanted MGCTs revealed that some mesenchymal cells derived from MGCTs can survive during healing and may function to assist in wound healing. We propose here that micro-grafting with MGCTs represents an alternative strategy for keratinized tissue reconstruction that is characterized by low morbidity and ready availability. © 2017 Wiley Periodicals, Inc.

  8. Demonstration of an optical enhancement cavity with 10 micron wavelength

    Science.gov (United States)

    Sakaue, K.; Washio, M.; Endo, A.

    2015-05-01

    We have been developing a pulsed-laser optical enhancement cavity for laser-Compton scattering (LCS). LCS can produce high brightness X-ray through the collision between relativistic electrons generated from the accelerator and high power laser photons with a compact facility. In order to increase the number of collisions/sec, high repetition rate accelerator and laser are required. For the laser system, an optical enhancement cavity is the most powerful tool for LCS, thus we have been developing the cavity for storing 1 micron laser pulse. On the other hand, the resulting X-ray energy can be changed by the collision laser wavelength. If we have another optical cavity with different wavelength, the multicolor, quasi-monochromatic, high brightness and compact X-ray source can be realized. Therefore, we started to develop an optical cavity at 10 micron wavelength with CO2 laser. At this wavelength region, the absorption loss is dominant compared with scattering loss. Thus we carefully chose the optical mirrors for enhancement cavity. We demonstrated a more than 200 enhancement factor with 795 finesse optical cavity at 10 micron CO2 laser. Moreover, 2.3 kW storage in the optical cavity was successfully demonstrated. The design of optical cavity, first experimental results and future prospects will be presented at the conference.

  9. Solar-Powered, Micron-Gap Thermophotovoltaics for MEO Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is an InGaAs-based, radiation-tolerant, micron-gap thermophotovoltaic (MTPV) technology. The use of a micron wide gap between the radiation...

  10. Effective Use of Focused Ion Beam (FIB) in Investigating Fundamental Mechanical Properties of Metals at the Sub-Micron Scale

    OpenAIRE

    Greer, Julia R.

    2006-01-01

    Recent advances in the 2-beam focused ion beams technology (FIB) have enabled researchers to not only perform high-precision nanolithography and micro-machining, but also to apply these novel fabrication techniques to investigating a broad range of materials' properties at the submicron and nano-scales. In our work, the FIB is utilized in manufacturing of sub-micron cylinders, or nano-pillars, as well as of TEM cross-sections to directly investigate plasticity of metals at thes...

  11. 2-Micron Laser Transmitter for Coherent CO2 DIAL Measurement

    Science.gov (United States)

    Singh, Upendra N.; Bai, Yingxin; Yu, Jirong

    2009-01-01

    Carbon dioxide (CO2) has been recognized as one of the most important greenhouse gases. It is essential for the study of global warming to accurately measure the CO2 concentration in the atmosphere and continuously record its variation. A high repetition rate, highly efficient, Q-switched 2-micron laser system as the transmitter of a coherent differential absorption lidar for CO2 measurement has been developed in NASA Langley Research Center. This laser system is capable of making a vertical profiling of CO2 from ground and column measurement of CO2 from air and space-borne platform. The transmitter is a master-slave laser system. The master laser operates in a single frequency, either on-line or off-line of a selected CO2 absorption line. The slave laser is a Q-switched ring-cavity Ho:YLF laser which is pumped by a Tm:fiber laser. The repetition rate can be adjusted from a few hundred Hz to 10 kHz. The injection seeding success rate is from 99.4% to 99.95%. For 1 kHz operation, the output pulse energy is 5.5mJ with the pulse length of 50 ns. The optical-to-optical efficiency is 39% when the pump power is 14.5W. A Ho:YLF laser operating in the range of 2.05 micrometers can be tuned over several characteristic lines of CO2 absorption. Experimentally, a diode pumped Ho:Tm:YLF laser has been successfully used as the transmitter of coherent differential absorption lidar for the measurement of CO2 with a repetition rate of 5 Hz and pulse energy of 75 mJ. For coherent detection, high repetition rate is required for speckle averaging to obtain highly precise measurements. However, a diode pumped Ho:Tm:YLF laser can not operate in high repetition rate due to the large heat loading and up-conversion. A Tm:fiber laser pumped Ho:YLF laser with low heat loading can operate in high repetition rate. A theoretical model has been established to simulate the performance of Tm:fiber laser pumped Ho:YLF lasers. For continuous wave (CW) operation, high pump intensity with small beam

  12. UV/X-Ray Diffraction Radiation for non-intercepting Micron-Scale Beam Size Measurement

    CERN Document Server

    -; Lefevre, T; Karataev, P; Billing, M

    2012-01-01

    Diffraction radiation (DR) is produced when a relativistic charged particle moves in the vicinity of a medium. The electric field of the charged particle polarizes the target atoms which then oscillate, emitting radiation with a very broad spectrum. The spatial-spectral properties of DR are sensitive to a range of electron beam parameters. Furthermore, the energy loss due to DR is so small that the electron beam parameters are unchanged. Therefore DR can be used to develop non-invasive diagnostic tools. The aim of this project is to measure the transverse (vertical) beam size using incoherent DR. To achieve the micron-scale resolution required by CLIC, DR in UV and X-ray spectral-range must be investigated. During the next few years, experimental validation of such a scheme will be conducted on the CesrTA at Cornell University, USA. Here we present the current status of the experiment preparation.

  13. Micron-scale lens array having diffracting structures

    Science.gov (United States)

    Goldberg, Kenneth A

    2013-10-29

    A novel micron-scale lens, a microlens, is engineered to concentrate light efficiently onto an area of interest, such as a small, light-sensitive detector element in an integrated electronic device. Existing microlens designs imitate the form of large-scale lenses and are less effective at small sizes. The microlenses described herein have been designed to accommodate diffraction effects, which dominate the behavior of light at small length scales. Thus a new class of light-concentrating optical elements with much higher relative performance has been created. Furthermore, the new designs are much easier to fabricate than previous designs.

  14. Tracking capabilities of SPADs for laser ranging

    Science.gov (United States)

    Zappa, F.; Ripamonti, Giancarlo; Lacaita, A.; Cova, Sergio; Samori, C.

    1993-01-01

    The spatial sensitivity of Single-Photon Avalanche Diodes (SPADs) can be exploited in laser ranging measurements to finely tune the laser spot in the center of the detector sensitive area. We report the performance of a SPAD with l00 micron diameter. It features a time resolution better than 80 ps rms when operated 4V above V(b) at minus 30 C, and a spatial sensitivity better than 20 microns to radial displacements of the laser spot. New SPAD structures with auxiliary delay detectors are proposed. These improved devices could allow a two dimensional sensitivity, that could be employed for the design of pointing servos.

  15. Microwave and micronization treatments affect dehulling characteristics and bioactive contents of dry beans (Phaseolus vulgaris L.).

    Science.gov (United States)

    Oomah, B Dave; Kotzeva, Lily; Allen, Meghan; Bassinello, Priscila Zaczuk

    2014-05-01

    Heat pretreatment is considered the first step in grain milling. This study therefore evaluated microwave and micronization heat treatments in improving the dehulling characteristics, phenolic composition and antioxidant and α-amylase activities of bean cultivars from three market classes. Heat treatments improved dehulling characteristics (hull yield, rate coefficient and reduced abrasive hardness index) depending on bean cultivar, whereas treatment effects increased with dehulling time. Micronization increased minor phenolic components (tartaric esters, flavonols and anthocyanins) of all beans but had variable effects on total phenolic content depending on market class. Microwave treatment increased α-amylase inhibitor concentration, activity and potency, which were strongly correlated (r²  = 0.71, P < 0.0001) with the flavonol content of beans. Heat treatment had variable effects on the phenolic composition of bean hulls obtained by abrasive dehulling without significantly altering the antioxidant activity of black and pinto bean hulls. Principal component analysis on 22 constituents analyzed in this study demonstrated the differences in dehulling characteristics and phenolic components of beans and hulls as major factors in segregating the beneficial heat treatment effects. Heat treatment may be useful in developing novel dietary fibers from beans with variable composition and bioactivity with a considerable range of applications as functional food ingredients. © 2013 Society of Chemical Industry.

  16. Luminosity functions for K giant stars derived from the two-micron sky survey.

    Science.gov (United States)

    Hughes, E. E., Jr.

    1973-01-01

    Description of a method for determining either the space density or the luminosity function from star counts covering large areas of sky. Space density is assumed to vary only in the direction perpendicular to the galactic plane. The method extends that derived for use with the star counts in the Selected Areas by allowing for an integration over a wide and continuous range of galactic latitudes, and is therefore applicable to surveys where the number of stars per square degree is small but the area surveyed is an appreciable fraction of the sky. The catalog (IRC) produced from the 2-micron sky survey at Caltech is such a survey. Application of the method to a selection of IRC stars dominated by K giants shows that if these stars obey Oort's determination of their normalized space density perpendicular to the galactic plane than the dispersion of their 2.2-micron luminosity distribution must be large - i.e., on the order of plus or minus 1.0 min within a single spectral subtype. This result is in accord with conclusions recently set forth by Jung (1970).

  17. Ammonia in Jupiter’s troposphere from high-resolution 5-micron spectroscopy

    Science.gov (United States)

    Giles, Rohini; Fletcher, Leigh; Irwin, Patrick; Orton, Glenn S.; Sinclair, James Andrew

    2017-10-01

    Jupiter's tropospheric ammonia (NH3) abundance is studied using spatially-resolved 5-micron observations from CRIRES, a high-resolution spectrometer at the Very Large Telescope in 2012. The high resolving power (R=96,000) allows the line shapes of three NH3 absorption features to be resolved. These three absorption features have different line strengths and probe slightly different pressure levels, and they can therefore be used to constrain the vertical profile of NH3 in the 1-4 bar pressure range. The instrument slit was aligned north-south along Jupiter's central meridian, allowing us to search for latitudinal variability. The CRIRES observations do not provide evidence for belt-zone variability in NH3, as any spectral differences can be accounted for by the large differences in cloud opacity between the cloudy zones and the cloud-free belts. However, we do find evidence for localised small-scale variability in NH3. Specifically, we detect a strong enhancement in NH3 on the southern edge of the North Equatorial Belt (4-6°N). This is consistent with the ‘ammonia plumes’ observed by Fletcher et al. (2016, doi:10.1016/j.icarus.2016.06.008) at the 500-mbar level using 10-micron observations from TEXES/IRTF, as well as with measurements by Juno’s Microwave Radiometer (Li et al. 2017, doi:10.1002/2017GL073159).

  18. Oxidation mechanism of micron-sized aluminum particles in Al-CO2 gradually heating system

    Science.gov (United States)

    Liu, Y.; Ren, H.; Jiao, Q. J.

    2017-10-01

    Micron-sized aluminum powders were heated in carbon dioxide atmosphere through differential scanning calorimetry (DSC) method in this work. Aluminum powders were oxidized into four distinct stages from room temperature to 1500°C. Stage I, amorphous alumina shell turns to γ-Al2O3 phase from room temperature to 620°C. Stage II, accompany with the aluminum core melting, alumina shell becomes thicker and fragile at the temperature around 667°C which is the melting point of aluminum. Stage III, in the temperature range of 690-1150°C, alumina shell was broken partially because of the inside pressure. Liquid aluminum spurts out through the weak point which becomes cracks on the surface just like volcano eruption and then oxidized by CO2 while the temperature increased from 700°C to 900°C. Stage IV, alumina changes to stable α-Al2O3. From what was presented above, a mechanism of micron-sized aluminum particle oxidation in CO2 under gradually increasing temperature condition was proposed as “eruption model”.

  19. Sub-micron resolution high-speed spectral domain optical coherence tomography in quality inspection for printed electronics

    Science.gov (United States)

    Czajkowski, J.; Lauri, J.; Sliz, R.; Fält, P.; Fabritius, T.; Myllylä, R.; Cense, B.

    2012-04-01

    We present the use of sub-micron resolution optical coherence tomography (OCT) in quality inspection for printed electronics. The device used in the study is based on a supercontinuum light source, Michelson interferometer and high-speed spectrometer. The spectrometer in the presented spectral-domain optical coherence tomography setup (SD-OCT) is centered at 600 nm and covers a 400 nm wide spectral region ranging from 400 nm to 800 nm. Spectra were acquired at a continuous rate of 140,000 per second. The full width at half maximum of the point spread function obtained from a Parylene C sample was 0:98 m. In addition to Parylene C layers, the applicability of sub-micron SD-OCT in printed electronics was studied using PET and epoxy covered solar cell, a printed RFID antenna and a screen-printed battery electrode. A commercial SD-OCT system was used for reference measurements.

  20. Compact, High Energy 2-micron Coherent Doppler Wind Lidar Development for NASA's Future 3-D Winds Measurement from Space

    Science.gov (United States)

    Singh, Upendra N.; Koch, Grady; Yu, Jirong; Petros, Mulugeta; Beyon, Jeffrey; Kavaya, Michael J.; Trieu, Bo; Chen, Songsheng; Bai, Yingxin; Petzar, paul; hide

    2010-01-01

    This paper presents an overview of 2-micron laser transmitter development at NASA Langley Research Center for coherent-detection lidar profiling of winds. The novel high-energy, 2-micron, Ho:Tm:LuLiF laser technology developed at NASA Langley was employed to study laser technology currently envisioned by NASA for future global coherent Doppler lidar winds measurement. The 250 mJ, 10 Hz laser was designed as an integral part of a compact lidar transceiver developed for future aircraft flight. Ground-based wind profiles made with this transceiver will be presented. NASA Langley is currently funded to build complete Doppler lidar systems using this transceiver for the DC-8 aircraft in autonomous operation. Recently, LaRC 2-micron coherent Doppler wind lidar system was selected to contribute to the NASA Science Mission Directorate (SMD) Earth Science Division (ESD) hurricane field experiment in 2010 titled Genesis and Rapid Intensification Processes (GRIP). The Doppler lidar system will measure vertical profiles of horizontal vector winds from the DC-8 aircraft using NASA Langley s existing 2-micron, pulsed, coherent detection, Doppler wind lidar system that is ready for DC-8 integration. The measurements will typically extend from the DC-8 to the earth s surface. They will be highly accurate in both wind magnitude and direction. Displays of the data will be provided in real time on the DC-8. The pulsed Doppler wind lidar of NASA Langley Research Center is much more powerful than past Doppler lidars. The operating range, accuracy, range resolution, and time resolution will be unprecedented. We expect the data to play a key role, combined with the other sensors, in improving understanding and predictive algorithms for hurricane strength and track. 1

  1. The 2-micron plasmid as a nonselectable, stable, high copy number yeast vector

    Science.gov (United States)

    Ludwig, D. L.; Bruschi, C. V.

    1991-01-01

    The endogenous 2-microns plasmid of Saccharomyces cerevisiae has been used extensively for the construction of yeast cloning and expression plasmids because it is a native yeast plasmid that is able to be maintained stably in cells at high copy number. Almost invariably, these plasmid constructs, containing some or all 2-microns sequences, exhibit copy number levels lower than 2-microns and are maintained stably only under selective conditions. We were interested in determining if there was a means by which 2-microns could be utilized for vector construction, without forfeiting either copy number or nonselective stability. We identified sites in the 2-microns plasmid that could be used for the insertion of genetic sequences without disrupting 2-microns coding elements and then assessed subsequent plasmid constructs for stability and copy number in vivo. We demonstrate the utility of a previously described 2-microns recombination chimera, pBH-2L, for the manipulation and transformation of 2-microns as a pure yeast plasmid vector. We show that the HpaI site near the STB element in the 2-microns plasmid can be utilized to clone yeast DNA of at least 3.9 kb with no loss of plasmid stability. Additionally, the copy number of these constructs is as high as levels reported for the endogenous 2-microns.

  2. Dielectric properties and electrical conductivity of flat micronic graphite/polyurethane composites

    Science.gov (United States)

    Plyushch, Artyom; Macutkevic, Jan; Kuzhir, Polina P.; Banys, Juras; Fierro, Vanessa; Celzard, Alain

    2016-03-01

    Results of broadband dielectric spectroscopy of flat micronic graphite (FMG)/polyurethane (PU) resin composites are presented in a wide temperature range (25-450 K). The electrical percolation threshold was found to lie between 1 and 2 vol. % of FMG. Above the percolation threshold, the composites demonstrated a huge hysteresis of properties on heating and cooling from room temperature up to 450 K, along with extremely high values of dielectric permittivity and electrical conductivity. Annealing proved to be a very simple but powerful tool for significantly improving the electrical properties of FMG-based composites. In order to explain this effect, the distributions of relaxation times were calculated by the complex impedance formalism. Below room temperature, both dielectric permittivity and electrical conductivity exhibited a very low temperature dependence, mainly caused by the different thermal properties of FMG and pure PU matrix.

  3. Micron size superconducting quantum interference devices of lead (Pb)

    Science.gov (United States)

    Paul, Sagar; Biswas, Sourav; Gupta, Anjan K.

    2017-02-01

    Micron size superconducting quantum interference devices (μ-SQUID) of lead (Pb), for probing nano-magnetism, were fabricated and characterized. In order to get continuous Pb films with small grain size, Pb was thermally evaporated on a liquid nitrogen cooled Si substrate. Pb was sandwiched between two thin Cr layers for improved adhesion and protection. The SQUID pattern was made by e-beam lithography with Pb lift-off after deposition. The current-voltage characteristics of these devices show a critical current, which exhibits the expected SQUID oscillations with magnetic field, and two re-trapping currents. As a result these devices have hysteresis at low temperatures, which disappears just below the critical temperature.

  4. Mars Atmospheric Characterization Using Advanced 2-Micron Orbiting Lidar

    Science.gov (United States)

    Singh, U.; Engelund, W.; Refaat, T.; Kavaya, M.; Yu, J.; Petros, M.

    2015-01-01

    Mars atmospheric characterization is critical for exploring the planet. Future Mars missions require landing massive payloads to the surface with high accuracy. The accuracy of entry, descent and landing (EDL) of a payload is a major technical challenge for future Mars missions. Mars EDL depends on atmospheric conditions such as density, wind and dust as well as surface topography. A Mars orbiting 2-micron lidar system is presented in this paper. This advanced lidar is capable of measuring atmospheric pressure and temperature profiles using the most abundant atmospheric carbon dioxide (CO2) on Mars. In addition Martian winds and surface altimetry can be mapped, independent of background radiation or geographical location. This orbiting lidar is a valuable tool for developing EDL models for future Mars missions.

  5. Predicting fracture in micron-scale polycrystalline silicon MEMS structures.

    Energy Technology Data Exchange (ETDEWEB)

    Hazra, Siddharth S. (Carnegie Mellon University, Pittsburgh, PA); de Boer, Maarten Pieter (Carnegie Mellon University, Pittsburgh, PA); Boyce, Brad Lee; Ohlhausen, James Anthony; Foulk, James W., III; Reedy, Earl David, Jr.

    2010-09-01

    Designing reliable MEMS structures presents numerous challenges. Polycrystalline silicon fractures in a brittle manner with considerable variability in measured strength. Furthermore, it is not clear how to use a measured tensile strength distribution to predict the strength of a complex MEMS structure. To address such issues, two recently developed high throughput MEMS tensile test techniques have been used to measure strength distribution tails. The measured tensile strength distributions enable the definition of a threshold strength as well as an inferred maximum flaw size. The nature of strength-controlling flaws has been identified and sources of the observed variation in strength investigated. A double edge-notched specimen geometry was also tested to study the effect of a severe, micron-scale stress concentration on the measured strength distribution. Strength-based, Weibull-based, and fracture mechanics-based failure analyses were performed and compared with the experimental results.

  6. Tunneling of micron-sized droplets through soap films.

    Science.gov (United States)

    Kim, Ildoo; Wu, X L

    2010-08-01

    When a micron-sized water droplet impacts on a freely suspended soap film with speed v(i), there exists a critical impact velocity of penetration v(C). Droplets with v(i)film after impacts, whereas droplets with v(i)>v(C) tunnel through it. In all cases, the film remains intact despite the fact that the droplet radius (R_{0}=26 μm) is much greater than the film thickness (0film is required for penetration. Quantitatively, we found that this deformation energy corresponds to the creation of ∼14 times of the cross-sectional area of the droplet (14πR(0)(2)) or a critical Weber number We(C)}(≡2ρ(w) v(C0)(2) R(0)/σ)≃44 , where ρ(w) and σ are, respectively, the density and the surface tension of water.

  7. Dynamical Nuclear Magnetic Resonance Imaging of Micron-scale Liquids

    Science.gov (United States)

    Sixta, Aimee; Choate, Alexandra; Maeker, Jake; Bogat, Sophia; Tennant, Daniel; Mozaffari, Shirin; Markert, John

    We report our efforts in the development of Nuclear Magnetic Resonance Force Microscopy (NMRFM) for dynamical imaging of liquid media at the micron scale. Our probe contains microfluidic samples sealed in thin-walled (µm) quartz tubes, with a micro-oscillator sensor nearby in vacuum to maintain its high mechanical resonance quality factor. Using 10 µm spherical permalloy magnets at the oscillator tips, a 3D T1-resolved image of spin density can be obtained by reconstruction from our magnetostatics-modelled resonance slices; as part of this effort, we are exploring single-shot T1 measurements for faster dynamical imaging. We aim to further enhance imaging by using a 2 ω technique to eliminate artifact signals during the cyclic inversion of nuclear spins. The ultimate intent of these efforts is to perform magnetic resonance imaging of individual biological cells.

  8. EUV mask reflectivity measurements with micron-scale spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Kenneth A.; Rekawa, S.B.; Kemp, C.D.; Barty, A.; Anderson, E.H.; Kearney, Patrick; Han, Hakseung

    2008-05-26

    The effort to produce defect-free mask blanks for EUV lithography relies on increasing the detection sensitivity of advanced mask inspection tools, operating at several wavelengths. We describe the unique measurement capabilities of a prototype actinic (EUV wavelength) microscope that is capable of detecting small defects and reflectivity changes that occur on the scale of microns to nanometers. Types of defects: (a) Buried Substrate Defects: particles & pits (causes amplitude and/or phase variations); (b) Surface Contamination (reduces reflectivity and (possibly) contrast); (c) Damage from Inspection and Use (reduces the reflectivity of the multilayer coating). This paper presents an overview of several topics where scanning actinic inspection makes a unique contribution to EUVL research. We describe the role of actinic scanning inspection in four cases: defect repair studies; observations of laser damage; after scanning electron microscopy; and native and programmed defects.

  9. Acoustically enhanced combustion of micronized coal water slurry fuel

    Energy Technology Data Exchange (ETDEWEB)

    Koopmann, G. M.; Scaroni, A. W.; Yavuzkurt, S.; Reethof, G.; Ramachandran, P.; Ha, M. Y.

    1989-05-01

    A multi-faceted investigation has been carried out to demonstrate analytically and experimentally, that a high intensity acoustic field can be substantially enhance the convective transfer processes occurring during MCWSF (micronized coal water slurry fuel) combustion. The initial stage of the investigation dealt with elucidating the transient as well as time-averaged efforts of high intensity acoustic fields on the heat and mass transfer between a single spherical particle and its environment. A two-dimensional unsteady computer code was developed, which employs the unsteady conservation of mass, momentum, and energy equations for laminar flow in spherical coordinates. One objective of the present project was the modeling of MCWSF combustion in a laboratory scale combustor with and without the application of a sonic field. The influence of various operating parameters (sound frequency and level, etc.) on sonic enhancement could thus be studied. The combustion of pulverized coal (PC) was also modeled for the sake of comparison. The first of the two coal combustion experiments was performed using a flat flame methane-air burner. Micronized coal was injected in the same direction as, and burned together with the methane. The final investigation was carried out in a 300,000 Btu/h sonic combustor. For the runs conducted, SPLs of 156 dB and 145 dB, respectively, were measured below the fuel injection point and before the exit to the combustor. Frequency was held at 1400 Hz. Finally, an attempt was made to model the runs performed in the down-fired unit, using the PCGC-2 code. 61 refs., 60 figs., 8 tabs.

  10. Single closed contact for 0.18-micron photolithography process

    Science.gov (United States)

    Cheung, Cristina; Phan, Khoi A.; Chiu, Robert J.

    2000-06-01

    With the rapid advances of deep submicron semiconductor technology, identifying defects is converted into a challenge for different modules in the fabrication of chips. Yield engineers often do bitmap on a memory circuit array (SRAM) to identify the failure bits. This is followed by a wafer stripback to look for visual defects at each deprocessed layer for feedback to the Fab. However, to identify the root cause of a problem, Fab engineers must be able to detect similar defects either on the product wafers in process or some short loop test wafers. In the photolithography process, we recognize that the detection of defects is becoming as important as satisfying the critical dimension (CD) of the device. For a multi-level metallization chemically mechanical polish backend process, it is very difficult to detect missing contacts or via at the masking steps due to metal grain roughness, film color variation and/or previous layer defects. Often, photolithography engineer must depend on Photo Cell Monitor (PCM) and short loop experiments for controlling baseline defects and improvement. In this paper, we discuss the findings on the Poly mask PCM and the Contact mask PCM. We present the comparison between the Poly mask and the Contact mask of the I-line Phase Shifted Via mask and DUV mask process for a 0.18 micron process technology. The correlation and the different type of defects between the Contact PCM and the Poly Mask are discussed. The Contact PCM was found to be more sensitive and correlated to contact failure at sort yield better. We also dedicate to study the root cause of a single closed contact hole in the Contact mask short loop experiment for a 0.18 micron process technology. A single closed contact defect was often caused by the developer process, such as bubbles in the line, resist residue left behind, and the rinse mechanism. We also found surfactant solution helps to improve the surface tension of the wafer for the developer process and this prevents

  11. Micronized Coal Reburning Demonstration for NOx Control: A DOE Assessment

    Energy Technology Data Exchange (ETDEWEB)

    National Energy Technology Laboratory

    2001-08-15

    The goal of the U.S. Department of Energy's (DOE) Clean Coal Technology (CCT) program is to furnish the energy marketplace with a number of advanced, more efficient, and environmentally responsible coal utilization technologies through demonstration projects. These projects seek to establish the commercial feasibility of the most promising advanced coal technologies that have developed beyond the proof-of-concept stage. This document serves as a DOE post-project assessment of a project selected in CCT Round IV, the Micronized Coal Reburning (MCR) Demonstration for NO{sub x} Control, as described in a report to Congress (U.S. Department of Energy 1999). The need to meet strict emissions requirements at a minimum cost prompted the Tennessee Valley Authority (TVA), in conjunction with Fuller Company, Energy and Environmental Research Corporation (EER), and Fluor Daniel, to submit the proposal for this project to be sited at TVA's Shawnee Fossil Plant. In July 1992, TVA entered into a cooperative agreement with DOE to conduct the study. However, because of operational and environmental compliance strategy changes, the Shawnee site became unavailable.

  12. Carotenoids microencapsulation by spray drying method and supercritical micronization.

    Science.gov (United States)

    Janiszewska-Turak, Emilia

    2017-09-01

    Carotenoids are used as natural food colourants in the food industry. As unstable natural pigments they need protection. This protection can involve the microencapsulation process. There are numerous techniques that can be used for carotenoid protection, but two of them -spray drying and supercritical micronization - are currently the most commonly used. The objective of this paper is to describe these two techniques for carotenoid microencapsulation. In this review information from articles from the last five years was taken into consideration. Pigments described in the review are all carotenoids. Short summary of carotenoids sources was presented. For the spray drying technique, a review of carrier material and process conditions was made. Moreover, a short description of some of the most suitable processes involving supercritical fluids for carotenoids (astaxanthin, β-carotene, lutein and lycopene) encapsulation was given. These include the Supercritical Antisolvent process (SAS), Particles from Gas-Saturated Solutions (PGSS), Supercritical Fluid Extraction From an Emulsion (SFEE) and Solution Enhanced Dispersion by Supercritical fluids (SEDS). In most cases the studies, independently of the described method, were conducted on the laboratory scale. In some a scale-up was also tested. In the review a critical assessment of the used methods was made. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Marketing activities in the area of micronization services

    Directory of Open Access Journals (Sweden)

    Sołtysik Barbara

    2016-12-01

    Full Text Available Under conditions of constantly growing competition, what is becoming a key problem is keeping the previously acquired clients. Their trust in the provider and regularly repeated purchases are an expression of the efficiency of marketing activities conducted by companies. What is becoming a measure of success is the satisfaction and loyalty of buyers. Companies spend a lot of money to attract clients and the competition keeps trying to take away their clients. A lost client means not just the loss of a future order – this is the loss of revenues equal to the value of all products which a particular buyer could purchase in his entire life. On top of that comes the cost of acquiring new client to replace the old one. TARP research shows that the cost of acquiring a new client is five times higher than the cost of pleasing an existing client (Kotler, 2006. In the publication the significance of the relations with the client are discussed with regard to efficient marketing strategy. Moreover, the results of client satisfaction surveys and market analysis taking into consideration the revenues from sale of services in the area of micronization are presented.

  14. Timing Challenges for Very Deep Sub-Micron (VDSM IC

    Directory of Open Access Journals (Sweden)

    Ichiang Lin

    2002-01-01

    Full Text Available Many IC design houses failed to be market leaders because they miss the market window due to timing closure problems. Compared to half-micron designs, the amount of time spent on timing verification has greatly increased. Cell delays can be accurately estimated during logic synthesis. However, interconnect delays are unknown until the wire geometry is defined in physical design. Logic synthesis using the cell library models for interconnect delay estimates may be statistically accurate, but can not predict the delay of individual nets accurately. Delay estimates for individual nets (global nets, long wires, large fan-outs, buses, which matter most for the critical paths can be inaccurate and cause a design failure. Inaccurate timing verification causes silicon failure in shipped products that results in the loss of millions of dollars spent designing a high-performance product and potentially larger costs due to lost market share. Full-chip, sign-off verification with silicon-accuracy will allow these problems to be discovered and fixed before tape-out.

  15. Mapping coalescence of micron-sized drops and bubbles.

    Science.gov (United States)

    Berry, Joseph D; Dagastine, Raymond R

    2017-02-01

    Emulsion formulation, solvent extraction and multiphase microfluidics are all examples of processes that require precise control of drop or bubble collision stability. We use a previously validated numerical model to map the exact conditions under which micron-sized drops or bubbles undergo coalescence in the presence of colloidal forces and hydrodynamic effects relevant to Brownian motion and low Reynolds number flows. We demonstrate that detailed understanding of how the equilibrium surface forces vary with film thickness can be applied to make accurate predictions of the outcome of a drop or bubble collision when hydrodynamic effects are negligible. In addition, we illuminate the parameter space (i.e. interaction velocity, drop deformation, interfacial tension, etc.) at which hydrodynamic effects can stabilise collisions that are unstable at equilibrium. Further, we determine conditions for which drop or bubble collisions become unstable upon separation, caused by negative hydrodynamic pressure in the film. Lastly, we show that scaling analyses are not applicable for constant force collisions where the approach timescale is comparable to the coalescence timescale, and demonstrate that initial conditions under these circumstances cannot be ignored. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Discovering Motifs in Biological Sequences Using the Micron Automata Processor.

    Science.gov (United States)

    Roy, Indranil; Aluru, Srinivas

    2016-01-01

    Finding approximately conserved sequences, called motifs, across multiple DNA or protein sequences is an important problem in computational biology. In this paper, we consider the (l, d) motif search problem of identifying one or more motifs of length l present in at least q of the n given sequences, with each occurrence differing from the motif in at most d substitutions. The problem is known to be NP-complete, and the largest solved instance reported to date is (26,11). We propose a novel algorithm for the (l,d) motif search problem using streaming execution over a large set of non-deterministic finite automata (NFA). This solution is designed to take advantage of the micron automata processor, a new technology close to deployment that can simultaneously execute multiple NFA in parallel. We demonstrate the capability for solving much larger instances of the (l, d) motif search problem using the resources available within a single automata processor board, by estimating run-times for problem instances (39,18) and (40,17). The paper serves as a useful guide to solving problems using this new accelerator technology.

  17. Micron-gap ThermoPhotoVoltaics (MTPV)

    Science.gov (United States)

    DiMatteo, R.; Greiff, P.; Seltzer, D.; Meulenberg, D.; Brown, E.; Carlen, E.; Kaiser, K.; Finberg, S.; Nguyen, H.; Azarkevich, J.; Baldasaro, P.; Beausang, J.; Danielson, L.; Dashiell, M.; DePoy, D.; Ehsani, H.; Topper, W.; Rahner, K.; Siergiej, R.

    2004-11-01

    This paper discusses advances made in the field of Micron-gap ThermoPhotoVoltaics (MTPV). Initial modeling has shown that MTPV may enable significant performance improvements relative to conventional far field TPV. These performance improvements include up to a 10× increase in power density, 30% to 35% fractional increase in conversion efficiency, or alternatively, reduced radiator temperature requirements to as low as 550°C. Recent experimental efforts aimed at supporting these predictions have successfully demonstrated that early current and voltage enhancements could be done repeatedly and at higher temperatures. More importantly, these efforts indicated that no unknown energy transfer process occurs reducing the potential utility of MTPV. Progress has been made by running tests with at least one of the following characteristics relative to the MTPV results reported in 2001: • Tests at over twice the temperature (900°C). • Tests at 50% smaller gaps (0.12 μm) • Tests with emitter areas from 4 to 100 times larger (16 mm2 to 4 cm2). • Tests with over 20× reduction in parasitic spacer heat flow. Remaining fundamental challenges to realizing these improvements relative to the recent breakthroughs in conventional far field TPV include reengineering the photovoltaic (PV) diode, filter, and emitter system for MTPV and engineering devices and systems that can achieve submicron vacuum gaps between surfaces with large temperature differences.

  18. Micron-gap ThermoPhotoVoltaics (MTPV)

    Energy Technology Data Exchange (ETDEWEB)

    R DiMatteo; P Greiff; D Seltzer; D Meaulenberg; E Brown; E Carlen; K Kaiser; S Finberg; H Ngyyen; J Azarkevich; P Baldasaro; J Beausang; L Danielson; M Dashiell; D DePoy; H Ehsani; W Topper; K Rahner; R Siergiej

    2004-08-24

    This paper discusses advances made in the field of Micron-gap ThermoPhotoVoltaics (MTPV). Initial modeling has shown that MTPV may enable significant performance improvements relative to conventional far field TPV. These performance improvements include up to a 10x increase in power density, 30% to 35% fractional increase in conversion efficiency, or alternatively, reduced radiator temperature requirements to as low as 550 C. Recent experimental efforts aimed at supporting these predictions have successfully demonstrated that early current and voltage enhancements could be done repeatedly and at higher temperatures. More importantly, these efforts indicated that no unknown energy transfer process occurs reducing the potential utility of MTPV. Progress has been made by running tests with at least one of the following characteristics relative to the MTPV results reported in 2001: Tests at over twice the temperature (900 C); Tests at 50% smaller gaps (0.12 {micro}m); Tests with emitter areas from 4 to 100 times larger (16 mm{sup 2} to 4 cm{sup 2}); and Tests with over 20x reduction in parasitic spacer heat flow. Remaining fundamental challenges to realizing these improvements relative to the recent breakthroughs in conventional far field TPV include reengineering the photovoltaic (PV) diode, filter, and emitter system for MTPV and engineering devices and systems that can achieve submicron vacuum gaps between surfaces with large temperature differences.

  19. Method of producing carbon coated nano- and micron-scale particles

    Science.gov (United States)

    Perry, W. Lee; Weigle, John C; Phillips, Jonathan

    2013-12-17

    A method of making carbon-coated nano- or micron-scale particles comprising entraining particles in an aerosol gas, providing a carbon-containing gas, providing a plasma gas, mixing the aerosol gas, the carbon-containing gas, and the plasma gas proximate a torch, bombarding the mixed gases with microwaves, and collecting resulting carbon-coated nano- or micron-scale particles.

  20. Note: Adhesive stamp electrodes using spider silk masks for electronic transport measurements of supra-micron sized samples

    Science.gov (United States)

    Steven, E.; Jobiliong, E.; Eugenio, P. M.; Brooks, J. S.

    2012-04-01

    A procedure for fabricating adhesive stamp electrodes based on gold coated adhesive tape used to measure electronic transport properties of supra-micron samples in the lateral range 10-100 μm and thickness >1 μm is described. The electrodes can be patterned with a ˜4 μm separation by metal deposition through a mask using Nephila clavipes spider dragline silk fibers. Ohmic contact is made by adhesive lamination of a sample onto the patterned electrodes. The performance of the electrodes with temperature and magnetic field is demonstrated for the quasi-one-dimensional organic conductor (TMTSF)2PF6 and single crystal graphite, respectively.

  1. A Nordic project on high speed low power design in sub-micron CMOS technology for mobile phones

    DEFF Research Database (Denmark)

    Olesen, Ole

    This paper is a survey paper presenting the Nordic CONFRONT project and reporting some results from the group at CIE/DTU, Denmark. The objective of the project is to demonstrate the feasibility of sub-micron CMOS for the realisation of RF front-end circuits operating at frequencies in the 1.......8-2.0 GHz range. The ultimate goal is a single-chip transceiver, requiring only an external band-pass filter between the chip and the antenna. DECT has been chosen as a comparative standard to compare the new approaches developed in the work as well as to facilitate good knowledge transfer to industry. All...

  2. Water ice and sub-micron ice particles on Tethys and Mimas

    Science.gov (United States)

    Scipioni, Francesca; Nordheim, Tom; Clark, Roger Nelson; D'Aversa, Emiliano; Cruikshank, Dale P.; Tosi, Federico; Schenk, Paul M.; Combe, Jean-Philippe; Dalle Ore, Cristina M.

    2017-10-01

    IntroductionWe present our ongoing work, mapping the variation of the main water ice absorption bands, and the distribution of the sub-micron particles, across Mimas and Tethys’ surfaces using Cassini-VIMS cubes acquired in the IR range (0.8-5.1 μm). We present our results in the form of maps of variation of selected spectral indicators (depth of absorption bands, reflectance peak height, spectral slopes).Data analysisVIMS acquires hyperspectral data in the 0.3-5.1 μm spectral range. We selected VIMS cubes of Tethys and Mimas in the IR range (0.8-5.1 μm). For all pixels in the selected cubes, we measured the band depths for water-ice absorptions at 1.25, 1.5 and 2.02 μm and the height of the 3.6 μm reflection peak. Moreover, we considered the spectral indictors for particles smaller than 1 µm [1]: (i) the 2 µm absorption band is asymmetric and (ii) it has the minimum shifted to longer λ (iii) the band depth ratio 1.5/2.0 µm decreases; (iv) the reflection peak at 2.6 µm decreases; (v) the Fresnel reflection peak is suppressed; (vi) the 5 µm reflectance is decreased relative to the 3.6 µm peak. To characterize the global variation of water-ice band depths, and of sub-micron particles spectral indicators, across Mimas and Tethys, we sampled the two satellites’ surfacees with a 1°x1° fixed-resolution grid and then averaged the band depths and peak values inside each square cell.3. ResultsFor both moons we find that large geologic features, such as the Odysseus and Herschel impact basins, do not correlate with water ice’s abundance variation. For Tethys, we found a quite uniform surface on both hemispheres. The only deviation from this pattern shows up on the trailing hemisphere, where we notice two north-oriented, dark areas around 225° and 315°. For Mimas, the leading and trailing hemispheres appear to be quite similar in water ice abundance, the trailing portion having water ice absorption bands lightly more suppressed than the leading side

  3. The formation of photoresist film with thicknesses from 0.7 microns to 100 microns on surfaces with considerable relief by spray coating on the heated substrate

    Science.gov (United States)

    Romashkin, Alexey V.; Levin, Denis D.; Rozanov, Roman Yu.; Nevolin, Vladimir K.

    2016-12-01

    The principle of the formation of thin and thick photoresist films on surfaces with considerable relief by the aerosol deposition using ultra low flow was investigated. It was shown that the change in the photoresist blend composition of solution is required with decreasing film thickness less than 1 micron to achieve a roughness of less than 150 nm. And the film at least 0.7 microns thickness can be formed and have the uniform film thickness as on the walls and on horizontal surfaces on the substrate with grooves obtained by etching liquid. It is shown that even with a film thickness of 10 microns vertical walls may be partially cover the of the photoresist and unfilled plasma-chemical etching grooves with vertical walls, whose width not exceeding 10 microns. To determine the uniformity of film thickness atomic force microscopy was used. And it was shown that up to 2 microns of film thickness spectroscopic methods with the analysis of the fluorescent signal intensity for positive photoresists is possible to use too.

  4. Room-temperature InGaAs detector arrays for 2.5 microns

    Science.gov (United States)

    Olsen, G. H.; Joshi, A. M.; Mason, S. M.; Woodruff, K. M.; Mykietyn, E.

    1989-01-01

    This paper describes new alloy heterojunction detectors of In(.8)Ga(.2)As/InAs(.6)P(.4) which can detect light between 1.7 and 2.6 microns with 50 percent quantum efficiency and 5 mA/sq cm dark current (-1 V) density at room temperature. Wafer probe data showed that over 50 good contiguous 100 micron diameter devices (spaced 400 microns) could be made on a 25 x 30 mm wafer with overall yield above 93 percent. The ability to operate under -1 V reverse bias makes these devices ideally compatible with existing commercial multiplexer readouts.

  5. Effect of micronization on the solubility, viscosity and structural properties of tapioca starch

    Science.gov (United States)

    Xia, Wen; Li, Ji-Hua; Wei, Xiao-Yi; Wang, Fei; Lin, Yan-Yun

    2017-09-01

    Tapioca starch (TS) was treated by vibrating superfine mill with different micronization time (15, 30, 45, and 60 mins) and the solubility, viscosity and structural were also studied. The solubilities of treated samples were dramatically increased after micronization treatment. The Fourier Transform Infrared Spectroscopy (FTIR) spectrum of samples did not display any new peaks compared to native TS but had different intensity in some peaks. Rapid visco analyzer (RVA) determination suggested that micronization process altered pasting features, resulting in a decrease in viscosity and pasting temperature.

  6. Emission and extinction of ground and vapor-condensed silicates from 4 to 14 microns and the 10 micron silicate feature

    Science.gov (United States)

    Stephens, J. R.; Rusell, R. W.

    1979-01-01

    Emission and absorption spectra from 4 to 14 microns of ground and laser-vaporized olivine and enstatite silicates are compared with the 10-micron emission feature of the Orion Trapezium. The agreement in band center and shape between the amorphous laser-vaporized olivine sample and the Trapezium feature suggests that amorphous silicate grains of approximately olivine composition may be a major constituent of interstellar dust. Differences between the emission and absorption spectral profiles (absorption plus scattering) show characteristics that could be used as a sensitive probe of the morphology of interstellar grain systems when high signal-to-noise ratio (30-100) observational spectra become available.

  7. Silicon Germanium Alloy Photovoltaics for 1.06 Micron Wireless Power Transmission Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Phase I SBIR effort, Structured Materials Industries, Inc. (SMI)will design, fabricate, and test more efficient photovoltaics for 1.06 micron wavelength...

  8. Nimbus-5/THIR Level 1 Brightness Temperature at 6.7 microns V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The Nimbus-5 Temperature-Humidity Infrared Radiometer (THIR) Level 1 Brightness Temperature at 6.7 microns data product contains radiances expressed in units of...

  9. Nimbus-5/THIR Level 1 Brightness Temperature at 11.5 microns V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The Nimbus-5 Temperature-Humidity Infrared Radiometer (THIR) Level 1 Brightness Temperature at 11.5 microns data product contains radiances expressed in units of...

  10. Single-Frequency Semiconductor Lasers Operating at 1.5 and 2.0 microns Project

    Data.gov (United States)

    National Aeronautics and Space Administration — While conventional injection seeding sources (such as DFB diode lasers and rare-earth doped solid-state microchip lasers) are available at 1.5 microns, these sources...

  11. High Power Narrow Linewidth 1.26 Micron Ho-Doped Fiber Amplifier Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is for the development of an innovative, high power, and extremely reliable 1.26-micron Ho-doped fluoride fiber amplifier. The proposed fiber amplifier...

  12. Bench-scale testing of a micronized magnetite, fine-coal cleaning process

    Energy Technology Data Exchange (ETDEWEB)

    Suardini, P.J. [Custom Coals, International, Pittsburgh, PA (United States)

    1995-11-01

    Custom Coals, International has installed and is presently testing a 500 lb/hr. micronized-magnetite, fine-coal cleaning circuit at PETC`s Process Research Facility (PRF). The cost-shared project was awarded as part of the Coal Preparation Program`s, High Efficiency Preparation Subprogram. The project includes design, construction, testing, and decommissioning of a fully-integrated, bench-scale circuit, complete with feed coal classification to remove the minus 30 micron slimes, dense medium cycloning of the 300 by 30 micron feed coal using a nominal minus 10 micron size magnetite medium, and medium recovery using drain and rinse screens and various stages and types of magnetic separators. This paper describes the project circuit and goals, including a description of the current project status and the sources of coal and magnetite which are being tested.

  13. Nimbus-6/THIR Level 1 Brightness Temperature at 11.5 microns V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The Nimbus-6 Temperature-Humidity Infrared Radiometer (THIR) Level 1 Brightness Temperature at 11.5 microns data product contains radiances expressed in units of...

  14. HIRDLS/Aura Level 3 Extinction at 12.1 Microns Zonal Fourier Coefficients V007

    Data.gov (United States)

    National Aeronautics and Space Administration — The "HIRDLS/Aura Level 3 Extinction at 12.1 Microns Zonal Fourier Coefficients" version 7 data product (H3ZFC12MEXT) contains the entire mission (~3 years) of HIRDLS...

  15. HIRDLS/Aura Level 3 Extinction at 8.3 Microns Zonal Fourier Coefficients V007

    Data.gov (United States)

    National Aeronautics and Space Administration — The "HIRDLS/Aura Level 3 Extinction at 8.3 Microns Zonal Fourier Coefficients" version 7 data product (H3ZFC8MEXT) contains the entire mission (~3 years) of HIRDLS...

  16. Tunable Single Frequency 2.05 Micron Fiber Laser Using New Ho-Doped Fiber Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposal, we propose to demonstrate and build a widely tunable, narrow linewidth, single frequency fiber laser near 2.05 micron by developing an innovative...

  17. Tunable Single Frequency 2.054 Micron Fiber Laser Using New Ho-Doped Fiber Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposal, we propose to demonstrate and build a near 2 micron widely tunable, narrow linewidth, single frequency fiber laser by developing an innovative...

  18. Frequency-Locked Single-Frequency Fiber Laser at 2 Micron Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Frequency-locked single-frequency 2 micron fiber laser is proposed to be used for airborne/spaceborne coherent lidar measurements, i.e., Active Sensing of CO2...

  19. Efficient High Power 2 micron Tm3+-Doped Fiber Laser Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is for the development of new Tm3+ doped germanate glass fibers for efficient high power 2-micron fiber lasers capable of generating an output power of...

  20. Efficient high power 2 micron Tm3+-Doped Fiber Laser Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is for the development of new Tm3+ doped germanate glass fibers for efficient high power 2 micron fiber lasers capable of generating an output power of...

  1. 2-Micron Pulsed Direct Detection IPDA Lidar for Atmospheric CO2 Measurement

    Science.gov (United States)

    Yu, Jirong; Petros, Mulugeta; Refaat, Tamer; Reithmaier, Karl; Remus, Ruben; Singh, Upendra; Johnson, Will; Boyer, Charlie; Fay, James; Johnston, Susan; hide

    2014-01-01

    A 2-micron high energy, pulsed Integrated Path Differential Absorption (IPDA) lidar has been developed for atmospheric CO2 measurements. Development of this lidar heavily leverages the 2-micron laser technologies developed in LaRC over the last decade. The high pulse energy, direct detection lidar operating at CO2 2-micron absorption band provides an alternate approach to measure CO2 concentrations. This new 2-micron pulsed IPDA lidar has been flown in spring of this year for total ten flights with 27 flight hours. It is able to make measurements of the total amount of atmospheric CO2 from the aircraft to the ground or cloud. It is expected to provide high-precision measurement capability by unambiguously eliminating contamination from aerosols and clouds that can bias the IPDA measurement.

  2. Nimbus-6/THIR Level 1 Brightness Temperature at 6.7 microns V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The Nimbus-6 Temperature-Humidity Infrared Radiometer (THIR) Level 1 Brightness Temperature at 6.7 microns data product contains radiances expressed in units of...

  3. Silicon Germanium Alloy Photovoltaics for 1.06 Micron Wireless Power Transmission Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Structured Materials Industries, Inc. proposes to develop SiGe photovoltaic technology that matches the Nd:YAG wavelength of 1.06 micron for insertion in future...

  4. Development of Double-Pulsed Two-Micron Laser for Atmospheric Carbon Dioxide Measurements

    Science.gov (United States)

    Petros, Mulugeta; Singh, Upendra N.; Yu, Jirong; Refaat, Tamer F.

    2017-01-01

    A CO2 lidar double-pulse two-micron high-energy transmitter, tuned to on- and off-line absorption wavelengths, has been developed. Transmitter operation and performance has been verified on ground and airborne platform.

  5. In Vitro Permeation of Micronized and Nanonized Alaptide from Semisolid Formulations

    Directory of Open Access Journals (Sweden)

    Radka Opatrilova

    2013-01-01

    Full Text Available This study is focused on in vitro permeation of the original Czech compound, a skin/mucosa tissue regeneration promoter, known under the international nonproprietary name “alaptide,” in micronized and nanonized forms. Alaptide showed a great potential for local applications for treatment and/or regeneration of the injured skin. The above mentioned technological modifications influence the permeation of alaptide through artificial or biological membranes, such as PAMPA or skin. The permeation of micronized and nanonized form of alaptide formulated to various semisolid pharmaceutical compositions through full-thickness pig ear skin using a Franz cell has been investigated in detail. In general, it can be concluded that the nanonized alaptide permeated through the skin less than the micronized form; different observations were made for permeation through the PAMPA system, where the micronized form showed lower permeation than the nanonized alaptide.

  6. Experimental study on air-stream gasification of biomass micron fuel (BMF) in a cyclone gasifier.

    Science.gov (United States)

    Guo, X J; Xiao, B; Zhang, X L; Luo, S Y; He, M Y

    2009-01-01

    Based on biomass micron fuel (BMF) with particle size of less than 250 microm, a cyclone gasifier concept has been considered in our laboratory for biomass gasification. The concept combines and integrates partial oxidation, fast pyrolysis, gasification, and tar cracking, as well as a shift reaction, with the purpose of producing a high quality of gas. In this paper, experiments of BMF air-stream gasification were carried out by the gasifier, with energy for BMF gasification produced by partial combustion of BMF within the gasifier using a hypostoichiometric amount of air. The effects of ER (0.22-0.37) and S/B (0.15-0.59) and biomass particle size on the performances of BMF gasification and the gasification temperature were studied. Under the experimental conditions, the temperature, gas yields, LHV of the gas fuel, carbon conversion efficiency, stream decomposition and gasification efficiency varied in the range of 586-845 degrees C, 1.42-2.21 N m(3)/kg biomass, 3806-4921 kJ/m(3), 54.44%-85.45%, 37.98%-70.72%, and 36.35%-56.55%, respectively. The experimental results showed that the gasification performance was best with ER being 3.7 and S/B being 0.31 and smaller particle, as well as H(2)-content. And the BMF gasification by air and low temperature stream in the cyclone gasifier with the energy self-sufficiency is reliable.

  7. A laboratory exposure system to study the effects of aging on super-micron aerosol particles

    Energy Technology Data Exchange (ETDEWEB)

    Santarpia, Joshua; Sanchez, Andres L.; Lucero, Gabriel Anthony; Servantes, Brandon Lee; Hubbard, Joshua Allen

    2014-02-01

    A laboratory system was constructed that allows the super-micron particles to be aged for long periods of time under conditions that can simulate a range of natural environments and conditions, including relative humidity, oxidizing chemicals, organics and simulated solar radiation. Two proof-of-concept experiments using a non-biological simulant for biological particles and a biological simulant demonstrate the utility of these types of aging experiments. Green Visolite®, which is often used as a tracer material for model validation experiments, does not degrade with exposure to simulated solar radiation, the actual biological material does. This would indicate that Visolite® should be a good tracer compound for mapping the extent of a biological release using fluorescence as an indicator, but that it should not be used to simulate the decay of a biological particle when exposed to sunlight. The decay in the fluorescence measured for B. thurengiensis is similar to what has been previously observed in outdoor environments.

  8. Lithium fluoride crystal as a novel high dynamic neutron imaging detector with microns scale spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Faenov, Anatoly; Pikuz, Tatiana [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Kyoto 619-0215 (Japan); High Temperatures, Russian Academy of Sciences, Izhorskaja Street 13/19, Moscow (Russian Federation); Matsubayashi, Masahito; Yasuda, Ryo; Iikura, Hiroshi; Nojima, Takehiro; Sakai, Takuro [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Fukuda, Yuji; Kando, Masaki [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Kyoto 619-0215 (Japan); Shiozawa, Masahiro [Nippon SOKEN, Inc., Iwaya 14, Shimohasumi, Nishio, Aichi 445-0012 (Japan); Kato, Yoshiaki [The Graduate School for the Creation of New Photonics Industries, Hamamatsu, Shizuoka 431-1202 (Japan)

    2012-12-15

    Recently, a new field of application of optically stimulated luminescence of color centers (CCs) in lithium fluoride (LiF) crystals was proposed - using them for high-performance neutron imaging - and promising results were obtained (Matsubayashi et al., Nucl. Instrum. Methods A 622, 637 (2010) and Matsubayashi et al., Nucl. Instrum. Methods A 651, 90 (2011)). Here we present the overview of main findings, which clearly demonstrated that the LiF crystal performs efficiently as neutron imaging detector in areas, where a high spatial resolution with a high image gradation resolution is needed. It was shown that the obtained neutron images are almost free from granular noises, have spatial resolution of {proportional_to} 6 {mu}m, and have practically linear response with the dynamic range of at least 10{sup 3}. It was also found that the LiF crystal detector offers a fairly good sensitivity. Moreover, detailed evaluation using a standard sensitivity indicator for neutron radiography showed that two holes with less than 2% transmittance differences could be distinguished. Additionally, we recently demonstrated that the high resolution neutron imaging with LiF crystals could be useful for quantitative characterizations of neutron sources and electric devices, comprising of low-Z elements, for example, such as fuel cells. All of this gives new opportunity for microns scale spatial resolution imaging by neutrons (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Ultrathin oxides for the SCM analysis of sub-micron doping profiles

    Energy Technology Data Exchange (ETDEWEB)

    Ciampolini, Lorenzo; Bertin, F.; Hartmann, J.M.; Rochat, N.; Holliger, Ph.; Laugier, F.; Chabli, A

    2003-09-15

    Attenuated total reflection (ATR) spectroscopy and spectroscopic ellipsometry (SE) have been used to characterize oxides used for the scanning capacitance microscopy (SCM) technique. SCM has been used to study boron and phosphorous doped Si test structures epitaxially grown on (100) Si substrates. SCM samples have one-dimensional (1D) doping profiles with sub-micron features, with staircase-like steps in the unipolar sample and a smoother profile in the bipolar sample, as obtained by secondary ion mass spectrometry (SIMS) profiling. Cross-sectional SCM results obtained on samples oxidized by the standard low-temperature UV-ozone method are presented, discussed and compared to results obtained on cleaved samples oxidized by a simple exposure to air. The results show that the native oxide covering a (110) cleaved section may yield SCM images of sufficient quality, with no contrast reversal on a wide range of doping levels, as well as observed on sections prepared with the UV-ozone technique. However, the long-term stability of the SCM signal on native oxides is poor, and UV-ozone oxidation can be used to recover a valid SCM signal. Realistic ultrathin oxide thickness data obtained by SE on (110) substrates are presented together with ATR results, which confirm the superior quality of UV-ozone oxides with respect to other kinds of oxides.

  10. Measuring molecular abundance profiles from 5 microns ground-based spectroscopy in support of JUNO investigations

    Science.gov (United States)

    Blain, Doriann; Fouchet, Thierry; Encrenaz, Thérèse; Drossart, Pierre; Greathouse, Thomas; Orton, Glenn; Fletcher, Leigh

    2017-04-01

    We report on early results of an observational campaign to support the Juno mission. At the beginning of 2015, using TEXES (Texas Echelon cross-dispersed Echelle Spectrograph), mounted on the NASA Infrared Telescope Facility (IRTF), we obtained data cubes of Jupiter in several spectral ranges between 2100 and 2200 cm-1 (4.5 - 4.7 μm) which probes the atmosphere in the 1-4 bar region, with a spectral resolution of R ≈ 7000 and an angular resolution of ≈ 1.5''. This dataset is analyzed by a code which combines a line-by-line radiative transfer model with a non-linear optimal estimation inversion method. The inversion takes into account the abundance profiles of AsH_3, CO, GeH4 and H_2O, as well as clouds contribution, in addtion to the abundance profiles of NH3 and PH_3. We will present the inverted abundance profiles, the spatial distribution of the molecular abundances, their significance for the understanding of Jupiter's atmospheric dynamics, and how this will be useful for the determination of water abundance up to 200 bars, which is one of the main objectives of the instrument MWR (MicroWave Radiometer) mounted on the Juno spacecraft. This work will also be useful to prepare the analysis of the JIRAM (Jovian InfraRed Auroral Mapper) 5-microns data aboard Juno.

  11. Airborne 2-micron double-pulsed integrated path differential absorption lidar for column CO2 measurement

    Science.gov (United States)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer F.; Remus, Ruben G.; Fay, James J.; Reithmaier, Karl

    2014-10-01

    Double-pulse 2-micron lasers have been demonstrated with energy as high as 600 mJ and up to 10 Hz repetition rate. The two laser pulses are separated by 200 µs and can be tuned and locked separately. Applying double-pulse laser in DIAL system enhances the CO2 measurement capability by increasing the overlap of the sampled volume between the on-line and off-line. To avoid detection complicity, integrated path differential absorption (IPDA) lidar provides higher signal-to-noise ratio measurement compared to conventional range-resolved DIAL. Rather than weak atmospheric scattering returns, IPDA rely on the much stronger hard target returns that is best suited for airborne platforms. In addition, the IPDA technique measures the total integrated column content from the instrument to the hard target but with weighting that can be tuned by the transmitter. Therefore, the transmitter could be tuned to weight the column measurement to the surface for optimum CO2 interaction studies or up to the free troposphere for optimum transport studies. Currently, NASA LaRC is developing and integrating a double-Pulsed 2-µm direct detection IPDA lidar for CO2 column measurement from an airborne platform. The presentation will describe the development of the 2-μm IPDA lidar system and present the airborne measurement of column CO2 and will compare to in-situ measurement for various ground target of different reflectivity.

  12. The 12- to 20-micron spectrum of Venus - Implications for temperature and cloud structure

    Science.gov (United States)

    Aumann, H. H.; Orton, G. S.

    1979-01-01

    The spectrum of Venus was measured between approximately 500 and 800 kaysers (12 to 20 microns) at a resolution of 3.12 kaysers from the NASA C141 G. P. Kuiper Airborne Observatory on 22 and 24 February 1977. The spectrum clearly shows the detailed structure of CO2 absorption in the vicinity of the nu-2 fundamental band at 667 kaysers. In addition, details of model fitting demonstrate the possibility for a cold and thin haze of sulfuric acid droplets along with an optically opaque cloud top near 250 K. Such clouds represent major differences from other H2SO4 main cloud deck models in the recent literature and may be indicative of changes in the vertical distribution of aerosols on a global scale. The temperatures retrieved for pressures at or below 10 mbar are largely independent of the cloud model assumed and they are some 16 to 20 K warmer than the 1972 NASA model. All retrieved temperatures lie within the range of Mariner 5 and Mariner 10 radio occultation inversion results.

  13. Preparation and Characterization of Micronized Artemisinin via a Rapid Expansion of Supercritical Solutions (RESS Method

    Directory of Open Access Journals (Sweden)

    Xiaonan Zhang

    2012-04-01

    Full Text Available The particle sizes of pharmaceutical substances are important for their bioavailability. Bioavailability can be improved by reducing the particle size of the drug. In this study, artemisinin was micronized by the rapid expansion of supercritical solutions (RESS. The particle size of the unprocessed white needle-like artemisinin particles was 30 to 1200 µm. The optimum micronization conditions are determined as follows: extraction temperature of 62 °C, extraction pressure of 25 MPa, precipitation temperature 45 °C and nozzle diameter of 1000 μm. Under the optimum conditions, micronized artemisinin with a (mean particle size MPS of 550 nm is obtained. By analysis of variance (ANOVA, extraction temperature and pressure have significant effects on the MPS of the micronized artemisinin. The particle size of micronized artemisinin decreased with increasing extraction temperature and pressure. Moreover, the SEM, LC-MS, FTIR, DSC and XRD allowed the comparison between the crystalline initial state and the micronization particles obtained after the RESS process. The results showed that RESS process has not induced degradation of artemisinin and that processed artemisinin particles have lower crystallinity and melting point. The bulk density of artemisinin was determined before and after RESS process and the obtained results showed that it passes from an initial density of 0.554 to 0.128 g·cm−3 after the processing. The decrease in bulk density of the micronized powder can increase the liquidity of drug particles when they are applied for medicinal preparations. These results suggest micronized powder of artemisinin can be of great potential in drug delivery systems.

  14. Solid methane on Triton and Pluto - 3- to 4-micron spectrophotometry

    Science.gov (United States)

    Spencer, John R.; Buie, Marc W.; Bjoraker, Gordon L.

    1990-01-01

    Methane has been identified in the Pluto/Charon system on the basis of absorption features in the reflectance spectrum at 1.5 and 2.3 microns; attention is presently given to observations of a 3.25 micron-centered deep absorption feature in Triton and Pluto/Charon system reflectance spectra. This absorption may indicate the presence of solid methane, constituting either the dominant surface species or a mixture with a highly transparent substance, such as N2 frost.

  15. Advanced 2-micron Solid-state Laser for Wind and CO2 Lidar Applications

    Science.gov (United States)

    Yu, Jirong; Trieu, Bo C.; Petros, Mulugeta; Bai, Yingxin; Petzar, Paul J.; Koch, Grady J.; Singh, Upendra N.; Kavaya, Michael J.

    2006-01-01

    Significant advancements in the 2-micron laser development have been made recently. Solid-state 2-micron laser is a key subsystem for a coherent Doppler lidar that measures the horizontal and vertical wind velocities with high precision and resolution. The same laser, after a few modifications, can also be used in a Differential Absorption Lidar (DIAL) system for measuring atmospheric CO2 concentration profiles. The world record 2-micron laser energy is demonstrated with an oscillator and two amplifiers system. It generates more than one joule per pulse energy with excellent beam quality. Based on the successful demonstration of a fully conductive cooled oscillator by using heat pipe technology, an improved fully conductively cooled 2-micron amplifier was designed, manufactured and integrated. It virtually eliminates the running coolant to increase the overall system efficiency and reliability. In addition to technology development and demonstration, a compact and engineering hardened 2-micron laser is under development. It is capable of producing 250 mJ at 10 Hz by an oscillator and one amplifier. This compact laser is expected to be integrated to a lidar system and take field measurements. The recent achievements push forward the readiness of such a laser system for space lidar applications. This paper will review the developments of the state-of-the-art solid-state 2-micron laser.

  16. The Carnegie Hubble Program: The Leavitt Law at 3.6 microns and 4.5 microns in the Large Magellanic Cloud

    Science.gov (United States)

    Scowcroft, Victoria; Freedman, Wendy L.; Madore, Barry F.; Monson, Andrew J.; Persson, S. E.; Seibert, Mark; Rigby, Jane R.; Sturch, Laura

    2011-01-01

    The Carnegie Hubble Program (CHP) is designed to improve the extragalactic distance scale using data from the post-cryogenic era of Spitzer. The ultimate goal is a determination of the Hubble constant to an accuracy of 2%. This paper is the first in a series on the Cepheid population of the Large Magellanic Cloud, and focuses on the period-luminosity relations (Leavitt laws) that will be used, in conjunction with observations of Milky Way Cepheids, to set the slope and zero-point of the Cepheid distance scale in the mid-infrared. To this end, we have obtained uniformly-sampled light curves for 85 LMC Cepheids, having periods between 6 and 140 days. Period- luminosity and period-color relations are presented in the 3.6 micron and 4.5 micron bands. We demonstrate that the 3.6 micron band is a superb distance indicator. The cyclical variation of the [3.6]-[4.5] color has been measured for the first time. We attribute the amplitude and phase of the color curves to the dissociation and recombination of CO molecules in the Cepheid s atmosphere. The CO affects only the 4.5 micron flux making it a potential metallicity indicator.

  17. Feasibility Study of Space-based CO2 Remote Sensing Using Pulsed 2-micron Integrated Path Differential Absorption Lidar

    Science.gov (United States)

    Singh, U. N.; Refaat, T. F.; Ismail, S.; Davis, K. J.; Kawa, S. R.; Menzies, R. T.; Petros, M.; Yu, J.

    2016-12-01

    Carbon dioxide (CO2) is recognized as the most important anthropogenic greenhouse gas. While CO2 concentration is rapidly increasing, understanding of the global carbon cycle remains a primary scientific challenge. This is mainly due to the lack of full characterization of CO2 sources and sinks. Quantifying the current global distribution of CO2 sources and sinks with sufficient accuracy and spatial resolution is a critical requirement for improving models of carbon-climate interactions and for attributing them to specific biogeochemical processes. This requires sustained atmospheric CO2 observations with high precision, and low bias for high accuracy, and spatial and temporal dense representation that cannot be fully realized with current CO2 observing systems, including existing satellite CO2 passive remote sensors. Progress in 2-micron instrument technologies, airborne testing, and system performance simulations indicates that the necessary lower tropospheric weighted CO2 measurements can be achieved from space using new high pulse energy 2-micron direct detection active remote sensing. Advantages of the CO2 active remote sensing include low bias measurements that are independent of sun light or Earth's radiation and day/night coverage over all latitudes and seasons. In addition, the direct detection system provides precise ranging with simultaneous measurement of aerosol and cloud distributions. The 2-micron active remote sensing offers strong CO2 absorption lines with optimum low tropospheric and near surface weighting. A feasibility study, including system optimization and sensitivity analysis of a space-based 2-micron pulsed IPDA lidar for CO2 measurement, is presented. This is based on the successful demonstration of the CO2 double-pulse IPDA lidar and the technology maturation of the triple-pulse IPDA lidar, currently under development at NASA Langley Research Center. Preliminary simulations indicate CO2 random measurement errors of 0.71, 0.35 and 0.13 ppm

  18. Diffraction Radiation test at CesrTA for Non-Intercepting Micron-scale Beam Size Measurement

    CERN Document Server

    Bobb, L; Lefevre, T; Mazzoni, S; Aumeyr, T; Karataev, P; Billing, M; Conway, J

    2013-01-01

    Diffraction radiation (DR) is produced when a relativistic charged particle moves in the vicinity of a medium. The electric field of the charged particle polarises the target atoms which then oscillate, emitting radiation with a very broad spectrum. The spatial-spectral properties of DR are sensitive to a range of electron beam parameters. Furthermore, the energy loss due to DR is so small that the electron beam parameters are unchanged. DR can therefore be used to develop non-invasive diagnostic tools. To achieve the micron-scale resolution required to measure the transverse (vertical) beam size using incoherent DR in CLIC, DR in UV and X-ray spectral-range must be investigated. Experimental validation of such a scheme is ongoing at CesrTA at Cornell University, USA. Here we report on the test using 0.5 mm and 1 mm target apertures on a 2.1 GeV electron beam and 400 nm wavelength.

  19. Development of the III-V Barrier PhotoDetector Heterostructures for Spectral Range Above 10 microns

    Science.gov (United States)

    2016-02-14

    efficiency of photodetectors with Ga-free absorbers doped with Be to free hole concentration levels of mid 1016 cm-3. 9. The graded GaInSb metamorphic...pursued. The developed GaInSb and AlInSb graded buffers served as a platform for growth of strain-free low-dislocation-density bulk InAsSb layers. The...materials using metamorphic buffers on GaSb substrates was pursued. The developed GaInSb and AlInSb graded buffers served as a platform for growth of

  20. High Precision Ranging and Range-Rate Measurements over Free-Space-Laser Communication Link

    Science.gov (United States)

    Yang, Guangning; Lu, Wei; Krainak, Michael; Sun, Xiaoli

    2016-01-01

    We present a high-precision ranging and range-rate measurement system via an optical-ranging or combined ranging-communication link. A complete bench-top optical communication system was built. It included a ground terminal and a space terminal. Ranging and range rate tests were conducted in two configurations. In the communication configuration with 622 data rate, we achieved a two-way range-rate error of 2 microns/s, or a modified Allan deviation of 9 x 10 (exp -15) with 10 second averaging time. Ranging and range-rate as a function of Bit Error Rate of the communication link is reported. They are not sensitive to the link error rate. In the single-frequency amplitude modulation mode, we report a two-way range rate error of 0.8 microns/s, or a modified Allan deviation of 2.6 x 10 (exp -15) with 10 second averaging time. We identified the major noise sources in the current system as the transmitter modulation injected noise and receiver electronics generated noise. A new improved system will be constructed to further improve the system performance for both operating modes.

  1. Priority substances list assessment report: respirable particulate matter less than or equal to 10 microns

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    Potential impacts of ambient exposure to respirable particulate matter on the environment and on human health have recently been evaluated by the federal-Provincial Working Group on Air Quality Objectives and Guidelines. This assessment report summarizes the critical information from that evaluation in the context of the Priority Substances List (PSL) program. Only the risk posed by ambient particulate matter to human health as defined by the Canadian Environmental Protection Act 1999 are addressed in this Assessment Report, since these were identified as the critical effects in the National Ambient Air Quality Objectives (NAAQO) Science Assessment Document. Available data indicate that source contributions to primary particulate matter emissions and precursor gases in Canada vary by province/territory and by region. Industrial activities are the primary sources of particulate matter in most provinces, followed by non-industrial fuel combustion and the transportation sector. Forest fires are the largest sources in some provinces and in the territories. Long-range transport from industrial regions of the United States also make a major contribution to concentrations of particulate matter in some regions of Canada. Observed concentrations of particulate matter also vary by time of day, day of the week, season and year. Measured concentration during the mid-1980s to the mid-1990s ranged from 11 to 42 micrograms/cu.m. at urban sites and from 11 to 17 micrograms/cu.m. at rural sites. On a national scale, average particulate matter concentrations decreased approximately two to three per cent between 1984 and 1995. The accumulated data supports the existence of a causal relationship between current ambient particulate matter levels and adverse health effects. In particular, particulate matter equal to 2.5 microns is considered toxic as defined in Section 64 of the Canadian Environmental Protection Act 1999. 219 refs., 19 tabs., 3 figs.

  2. Transport dynamics calculated under the full Mie scattering theory for micron and submicron lunar ejecta in selenocentric, cislunar, and geocentric space

    Science.gov (United States)

    Hyde, T. W.; Alexander, W. M.

    1989-01-01

    In 1967, Lunar Explorer 35 was launched from the earth and placed into a stable orbit around the moon. The data from the dust particle experiment on this spacecraft were essentially continuous over a 5-yr period from the time of insertion in lunar orbit. Analysis of this data has been interpreted to show that micron-sized lunar ejecta leave the moon and traverse through selenocentric and cislunar space and obtain either interplanetary/heliocentric orbits or intercept the earth's magnetosphere and move into geocentric orbits. Extensive studies of the orbital trajectories of lunar particles in this size range have now been conducted that include a calculation of the solar radiation force using the full Mie scattering theory. A significant flux of particles with radii less than 0.1 micron are found to intercept the earth's magnetopause surface. This flux is shown to be strongly dependent upon both the particle's density and its index of refraction.

  3. Development of megapixel HgCdTe detector arrays with 15 micron cutoff

    Science.gov (United States)

    Forrest, William J.; McMurtry, Craig W.; Dorn, Meghan; Pipher, Judith; Cabrera, Mario S.

    2016-10-01

    I. HistoryHgCdTe is a versatile II-VI semiconductor with a direct-bandgap tunable via the Hg:Cd ratio. Hg:Cd ratio = 53:47 (2.5 micron cutoff) was used on the NICMOS instrument on HST and the 2MASS. Increasing Hg:Cd ratio to 70:30 leads to a 5.4 micron cutoff, utilized in NEOWISE and many JWST instruments. Bailey, Wu et al. (1998) motivated extending this technology to 10 microns and beyond. Bacon, McMurtry et al. (2003, 2004) indicated significant progress toward this longwave (LW) goal.Warm-Spitzer has pioneered passive cooling to below 30 K in space, enabling the JWST mission.II. CurrentNASA's proposed NEOcam mission selected HgCdTe with a 10.6 micron cutoff because it promises natural Zodiacal background limited sensitivity with modest cooling (40 K). Teledyne Imaging Systems (TIS) is producing megapixel arrays with excellent performance (McMurtry, Lee, Dorn et al. (2013)) for this mission.III. FutureModest cooling requirements (circa 30 K) coupled with megapixel arrays and LW sensitivity in the thermal IR make HgCdTe attractive for many infrared instruments. For instance, the spectral signature of a terrestrial planet orbiting in the habitable zone of a nearby star will be the deep and wide absorption by CO_2 centered at 15 microns (Seager and Deming, 2010). LW instruments can enhance Solar System missions, such as exploration of the Enceladus geysers (Spencer, Buratti et al. 2006). Passive cooling will be adequate for these missions. Modern ground-based observatories will benefit from infrared capability out to the N band (7.5-13.6 microns). The required detector temperatures (30-40 K) are easily achievable using commercially available mechanical cryo-coolers (refrigerators).IV. Progress to dateTIS is developing megapixel HgCdTe arrays sensitive out to 15 microns under the direction of the University of Rochester. As a first step, we have produced arrays with a 13 micron cutoff. The initial measurements indicate very promising performance. We will present the

  4. Penetration of sub-micron particles into dentinal tubules using ultrasonic cavitation.

    Science.gov (United States)

    Vyas, N; Sammons, R L; Pikramenou, Z; Palin, W M; Dehghani, H; Walmsley, A D

    2017-01-01

    Functionalised silica sub-micron particles are being investigated as a method of delivering antimicrobials and remineralisation agents into dentinal tubules. However, their methods of application are not optimised, resulting in shallow penetration and aggregation. The aim of this study is to investigate the impact of cavitation occurring around ultrasonic scalers for enhancing particle penetration into dentinal tubules. Dentine slices were prepared from premolar teeth. Silica sub-micron particles were prepared in water or acetone. Cavitation from an ultrasonic scaler (Satelec P5 Newtron, Acteon, France) was applied to dentine slices immersed inside the sub-micron particle solutions. Samples were imaged with scanning electron microscopy (SEM) to assess tubule occlusion and particle penetration. Qualitative observations of SEM images showed some tubule occlusion. The particles could penetrate inside the tubules up to 60μm when there was no cavitation and up to ∼180μm when there was cavitation. The cavitation bubbles produced from an ultrasonic scaler may be used to deliver sub-micron particles into dentine. This method has the potential to deliver such particles deeper into the dentinal tubules. Cavitation from a clinical ultrasonic scaler may enhance penetration of sub-micron particles into dentinal tubules. This can aid in the development of novel methods for delivering therapeutic clinical materials for hypersensitivity relief and treatment of dentinal caries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. 2-Micron Coherent Doppler Lidar Instrument Advancements for Tropospheric Wind Measurement

    Science.gov (United States)

    Petros, Mulugeta; Singh, U. N.; Yu, J.; Kavaya, M. J.; Koch, G.

    2014-01-01

    Knowledge derived from global tropospheric wind measurement is an important constituent of our overall understanding of climate behavior [1]. Accurate weather prediction saves lives and protects properties from destructions. High-energy 2-micron laser is the transmitter of choice for coherent Doppler wind detection. In addition to the eye-safety, the wavelength of the transmitter suitably matches the aerosol size in the lower troposphere. Although the technology of the 2-micron laser has been maturing steadily, lidar derived wind data is still a void in the global weather database. In the last decade, researchers at NASA Langley Research Center (LaRC) have been engaged in this endeavor, contributing to the scientific database of 2-micron lidar transmitters. As part of this effort, an in depth analysis of the physics involved in the workings of the Ho: Tm laser systems have been published. In the last few years, we have demonstrated lidar transmitter with over1Joule output energy. In addition, a large body of work has been done in characterizing new laser materials and unique crystal configurations to enhance the efficiency and output energy of the 2-micron laser systems. At present 2-micron lidar systems are measuring wind from both ground and airborne platforms. This paper will provide an overview of the advancements made in recent years and the technology maturity levels attained.

  6. 2-micron coherent Doppler lidar instrument advancements for tropospheric wind measurement

    Science.gov (United States)

    Petros, Mulugeta; Singh, U. N.; Yu, J.; Kavaya, M. J.; Koch, G.

    2014-10-01

    Knowledge derived from global tropospheric wind measurement is an important constituent of our overall understanding of climate behavior [1]. Accurate weather prediction saves lives and protects properties from destructions. High-energy 2-micron laser is the transmitter of choice for coherent Doppler wind detection. In addition to the eye-safety, the wavelength of the transmitter suitably matches the aerosol size in the lower troposphere. Although the technology of the 2-micron laser has been maturing steadily, lidar derived wind data is still a void in the global weather database. In the last decade, researchers at NASA Langley Research Center (LaRC) have been engaged in this endeavor, contributing to the scientific database of 2-micron lidar transmitters. As part of this effort, an in depth analysis of the physics involved in the workings of the Ho: Tm laser systems have been published. In the last few years, we have demonstrated lidar transmitter with over1Joule output energy. In addition, a large body of work has been done in characterizing new laser materials and unique crystal configurations to enhance the efficiency and output energy of the 2-micron laser systems. At present 2-micron lidar systems are measuring wind from both ground and airborne platforms. This paper will provide an overview of the advancements made in recent years and the technology maturity levels attained.

  7. Dynamics of vortex matter in YBCO sub-micron bridges

    Science.gov (United States)

    Papari, G.; Carillo, F.; Stornaiuolo, D.; Massarotti, D.; Longobardi, L.; Beltram, F.; Tafuri, F.

    2014-11-01

    We have developed a fabrication process that allows us to realize pure YBCO nanowires displaying robust superconductivity at widths w as low as 160 nm. We can modify the process in order to maintain a Au protective layer. This allows us to scale our nanowires even further to widths as low as 50 nm. We have studied how the presence of vortices and the occurrence of phase slips affect the transport properties of nanowires in the width range ξ entry barrier is found to scale with the width. Our findings confirm that for widths ξ < w < λ nanowires are better protected against phase slips and vortex flow.

  8. A Nordic Project Project on High Speed Low Power Design in Sub-micron CMOS Technology for Mobile

    DEFF Research Database (Denmark)

    Olesen, Ole

    1997-01-01

    This paper is a survey paper presenting the Nordic CONFRONT project and reporting some results from the group at CIE/DTU, Denmark. The objective of the project is to demonstrate the feasibility of sub-micron CMOS for the realisation of RF front-end circuits operating at frequencies in the 1.......8-2.0 GHz range. The ultimate goal is a single-chip transceiver, requiring only an external band-pass filter between the chip and the antenna. DECT has been chosen as a comparative standard to compare the new approaches developed in the work as well as to facilitate good knowledge transfer to industry. All...... of including good off-chip components in the design by use of innovative, inexpensive package technology.To achieve a higher level of integration, the project will use a novel codesign approach to the design strategy. Rather than making specifications based on a purely architectural approach, the work uses...

  9. Improving blend content uniformity via dry particle coating of micronized drug powders.

    Science.gov (United States)

    Huang, Zhonghui; Xiong, Wannan; Kunnath, Kuriakose; Bhaumik, Sayani; Davé, Rajesh N

    2017-06-15

    Content uniformity of low dose blends with fine active pharmaceutical ingredients (API) is adversely impacted due to API agglomeration caused by high powder cohesion. Dry coating using high-intensity vibratory mixing is employed to reduce API cohesion and granular Bond number as well as agglomeration as predicted by contact models, hence improve blend content uniformity (CU). Micronized acetaminophen (mAPAP) (~10μm), a model API, was dry coated with nano-silica R972P (20nm), and mixed with Avicel 102. The amount of silica was varied from 0 to 2.74wt%, corresponding to theoretical surface area coverage (SAC) from 0 to 100% respectively. Bulk density, unconfined yield strength, and dispersive surface energy results indicated dry coating with 0.27 to 1.0wt% silica was adequate for API property enhancement; further corroborated by improved CU for 5wt% API blends. Excellent CU was achieved for 3, 5 and 10wt% API loaded blends, where 30min of mixing was found to be acceptable for all three. The CU with dry coated mAPAP was significantly lower and within the acceptable range as compared to control blends without silica, as well as those with silica added during blending. Sieving of mAPAP illustrated the reduction in mAPAP agglomeration, necessary for improved CU after dry coating, corroborating model based predictions. Compared to theoretical predictions, actual CU was higher unless API agglomerate size distribution obtained via sieving was taken into account. Overall, cohesion reduction by dry coating is shown as a promising approach for improving content uniformity of cohesive API blends. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. The use of mechanically activated micronized coal in thermal power engineering

    Directory of Open Access Journals (Sweden)

    Burdukov Anatoliy P.

    2016-01-01

    Full Text Available Coal is one of the main energy resources and development of new promising technologies on its basis is certainly topical. This article discusses the use of new technology of gas and fuel oil replacement by mechanically activated micronized coal in power engineering: ignition and stabilization of pulverized coal flame combustion, as well as gasification of micronized coal in the flow. The new technology coal combustion with two stages of grinding is suggested. Optimization of the scheme of two-stage combustion is calculated. The first experimental data on the combustion process are obtained. The first demonstration tests on gas and heavy oil replacement by micronized coal during boiler ignition were carried out in the real power boiler with the capacity of 320 tons of steam per hour.

  11. Urban–Rural Contrasts in Central-Eastern European Cities Using a MODIS 4 Micron Time Series

    Directory of Open Access Journals (Sweden)

    Monika Tomaszewska

    2016-11-01

    Full Text Available A primary impact of urbanization on the local climate is evident in the phenomenon recognized as the Urban Heat Island (UHI effect. This urban thermal anomaly can increase the health risks of vulnerable populations to heat waves. The surface UHI results from emittance in the longer wavelengths of the thermal infrared; however, there are also urban anomalies that are detectable from radiance in the shorter wavelengths (3–5 micron of the Middle Infrared (MIR. Radiance in the MIR can penetrate urban haze which frequently obscures urban areas by scattering visible and near infrared radiation. We analyzed seasonal and spatial variations in MIR for three Central European cities from 2003 through 2012 using Moderate Resolution Imaging Spectrometer (MODIS band 23 (~4 micron to evaluate whether MIR radiance could be used to characterize heat anomalies associated with urban areas. We examined the seasonality of MIR radiance over urban areas and nearby croplands and found that the urban MIR anomalies varied due to time of year: cropland MIR could be larger than urban MIR when there was more exposed soil at planting and harvest times. Further, we compared monthly mean MIR with the Normalized Difference Vegetation Index (NDVI to analyze contrasts between urban and rural areas. We found that the seasonal dynamic range of the MIR could exceed that of the NDVI. We explored the linkage between meteorological data and MIR radiance and found a range of responses from strong to weak dependence of MIR radiance on maximum temperature and accumulated precipitation. Our results extend the understanding of the anomalous characteristics of urban areas within a rural matrix.

  12. Hidden Broad Line Seyfert 2 Galaxies in the CfA and 12micron Samples

    OpenAIRE

    Tran, Hien D.

    2001-01-01

    We report the results of a spectropolarimetric survey of the CfA and 12micron samples of Seyfert 2 galaxies (S2s). Polarized (hidden) broad line regions (HBLRs) are confirmed in a number of galaxies, and several new cases (F02581-1136, MCG -3-58-7, NGC 5995, NGC 6552, NGC 7682) are reported. The 12micron S2 sample shows a significantly higher incidence of HBLR (50%) than its CfA counterpart (30%), suggesting that the latter may be incomplete in hidden AGNs. Compared to the non-HBLR S2s, the H...

  13. InGaAs/InGaAsP/InP strained-layer quantum well lasers at about 2 microns

    Science.gov (United States)

    Forouhar, S.; Ksendzov, A.; Larsson, A.; Temkin, H.

    1992-01-01

    The first successful operation of InGaAs strained layer quantum well (Sl-QW) injection lasers at about 2 microns is reported. The threshold current density and the external differential quantum efficiency of 5 microns wide and 800 microns long ridge waveguide lasers were 2.5 kA/sq cm and 6 percent, respectively. The devices had a reverse leakage current of less than 20 micro-A at -1 V indicating epitaxial layers with low defect density.

  14. Comparison of NIRS0S Ks -band and S4G 3.6 micron data: Fourier amplitudes, force profiles and color maps

    Science.gov (United States)

    Salo, Heikki; Laurikainen, Eija

    2015-03-01

    Near-IR observations are considered to give an extinction-free view of the old stellar population in galaxies, thus ideal for the analysis of gravitational torques associated with bar and spiral structures. In the past, H or Ks band data have often been employed (Buta et al. 2010, Salo et al. 2010). S4G (Spitzer Survey of Stellar Structure in Galaxies, Sheth et al. 2010) provides new deep homogenious 3.6 and 4.5 micron data for over 2000 nearby galaxies, allowing to probe the bar and spiral properties over a wide range of morphological types and environments. Here we compare the Fourier-amplitude profiles derived from S4G data for about 50 early-type disk galaxies (SO and S0/a), with those from NIRSOS Ks data (Near-IR S0 Survey, Laurikainen et al. 2011). We also make detailed Ks -3.6 micron color maps. Interestingly, nuclear ring features stand up very clearly in these maps, indicating significantly different contributions of recent star formation in the Ks and 3.6 micron bands. However, the effect of these detailed differences on the overall force profiles is fairly small: this confirms that the S4G data can be confidently used for estimation of bar torques.

  15. Cross-calibration of Fuji TR image plate and RAR 2492 x-ray film to determine the response of a DITABIS Super Micron image plate scanner

    Science.gov (United States)

    Dunham, G.; Harding, E. C.; Loisel, G. P.; Lake, P. W.; Nielsen-Weber, L. B.

    2016-11-01

    Fuji TR image plate is frequently used as a replacement detector medium for x-ray imaging and spectroscopy diagnostics at NIF, Omega, and Z facilities. However, the familiar Fuji BAS line of image plate scanners is no longer supported by the industry, and so a replacement scanning system is needed. While the General Electric Typhoon line of scanners could replace the Fuji systems, the shift away from photo stimulated luminescence units to 16-bit grayscale Tag Image File Format (TIFF) leaves a discontinuity when comparing data collected from both systems. For the purposes of quantitative spectroscopy, a known unit of intensity applied to the grayscale values of the TIFF is needed. The DITABIS Super Micron image plate scanning system was tested and shown to potentially rival the resolution and dynamic range of Kodak RAR 2492 x-ray film. However, the absolute sensitivity of the scanner is unknown. In this work, a methodology to cross calibrate Fuji TR image plate and the absolutely calibrated Kodak RAR 2492 x-ray film is presented. Details of the experimental configurations used are included. An energy dependent scale factor to convert Fuji TR IP scanned on a DITABIS Super Micron scanner from 16-bit grayscale TIFF to intensity units (i.e., photons per square micron) is discussed.

  16. Reduction of NO[sub x] emissions for a 175-MWe boiler by micronized coal reburning

    Energy Technology Data Exchange (ETDEWEB)

    Daugherty, E.D.; Bradshaw, D.T.; Butler, T.F.; Kazemersky, P.M. (Tennessee Valley Authority, Chattanooga, TN (United States))

    1993-01-01

    The Tennessee Valley Authority (TVA) has been selected for the Department of Energy's (DOE's) Clean Coal Technology IV program to demonstrate Micronized Coal Reburn technology for control of nitrogen oxide (NO[sub x]) emissions on a 175 MWe wall-fired steam generator at its Shawnee Fossil Plant. TVA has selected MicroFuel Division of Fuller Power Corporation as the prime contractor for the project and partner in the commercialization of this technology. The project will demonstrate the technology with which Microfuel can produce micro fine coal. This retrofit demonstration is expected to decrease NO[sub x] emissions by 50 to 60 percent. Up to 30 percent of the total fuel fired in the furnace will be micronized coal injected in the upper furnace creating a fuel-rich reburn zone. Overfire will be injected above the reburn zone at high velocity for good furnace gas mixing above the reburn zone to ensure complete combustion. TVA Shawnee Steam Plant, comprised of 10 units of 175-MW[sub e] each, is indicative of a large portion of boilers in TVA's and the nation's utility operating base. Micronized coal Reburn technology compares favourably with other NO[sub x] control technologies and yet offers additional performance benefits. This paper focuses on Micronized Coal Reburn technology and the schedule and activities for implementing a full-scale demonstration at Shawnee. 6 figs.

  17. Analysis and Design of Monolithic Inductors in Sub-micron CMOS

    DEFF Research Database (Denmark)

    Fallesen, Carsten; Jørgensen, Allan

    1997-01-01

    In the last few years the CMOS processes have gone into deep sub-micron channel lengths. This means that it is now possible to make GHz applications in CMOS. In analog GHz applications it is often necessary to have access to inductors. This report describes the development of a physical model of ...

  18. Bragg diffraction from sub-micron particles isolated by optical tweezers

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Yuan, E-mail: ygao0709@anl.gov; Harder, Ross; Southworth, Stephen; Guest, Jeffrey; Ocola, Leonidas; Young, Linda [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Scherer, Norbert; Yan, Zijie [Department of Chemistry, University of Chicago, Chicago, IL 60637 (United States); Pelton, Matthew [Department of Physics, University of Maryland, Baltimore County, MD 21250 (United States)

    2016-07-27

    We describe an apparatus using dynamic holographic optical tweezers which is capable of trapping and aligning a single micron scale anisotropic ZnO particle for x-ray Bragg diffraction experiments. The optical tweezers demonstrate enough stability to perform coherent x-ray diffraction imaging.

  19. Observation of Shapiro-steps in AFM-plought micron-size YBCO planar construction

    CSIR Research Space (South Africa)

    Elkaseh, AAO

    2009-01-01

    Full Text Available Using an Atomic Force Microscope (AFM), micron size planar constriction type junctions was successfully ploughed on YBa2Cu3O7-x thin films. The 100 nanometer (nm) thin films are deposited on MgO substrates by an Inverted Cylindrical Magnetron (ICM...

  20. High spatial resolution observations of NGC 7027 with a 10 micron array camera

    Science.gov (United States)

    Arens, J. F.; Lamb, G. M.; Peck, M. C.; Moseley, H.; Hoffmann, W. F.; Tresch-Fienberg, R.; Fazio, G. G.

    1984-01-01

    First observations of a planetary nebula with an infrared charge injection device (CID) array camera are reported. The 10 micron images of NGC 7027 have spatial resolution comparable to that of the highest resolution (less than 2 arcsec) radio aperture-synthesis maps of this source. A much closer correspondence between the mid-infrared and radio appearance of NGC 7027 was found than was known previously, confirming that warm dust is coextensive and well mixed with the gas in the ionized zone. Using maps at three wavelengths, the spatial dependence of the shape of the 8-13 micron spectrum within the nebula is examined. The dip at 9.60 microns is shallowest in regions of enhanced optical extinction (as determined from new images near 4000 and 9000 A obtained with an optical charge coupled device). The 9.60 micron emission is strongest in these same positions. It is shown that the results may be explained not by silicate absorption, but by a combination of emission from two distinct grain populations, one of which is also partly responsible for the variation in extinction across the nebula.

  1. PROXIMATE COMPOSITION AND TECHNOLOGICAL CHARACTERISTICS OF DRY PASTA INCORPORATED WITH MICRONIZED CORN PERICARP

    Directory of Open Access Journals (Sweden)

    JOÃO RENATO DE JESUS JUNQUEIRA

    2017-01-01

    Full Text Available Pastas are generally accepted all over the world, mainly because they are versatile, cheap and easy - to - prepare. They are not nutritionally balanced, since they provide mainly carbohydrates. As a result of this, it is important to use ingredients which could improve the nutritional deficiencies, without affecting the technological and sensorial characteristics. This study evaluated the effect of using wheat semolina and micronized corn pericarp (MCP, on the proximate composition, cooking quality and color of spaghetti type pasta. Spaghetti pasta was produced using wheat semolina with the incorporation of micronized corn pericarp, at levels of 0, 10, 20 and 30%. There were no significant differences (p > 0.05 between the formulated samples with regards to the contents of moisture and lipid, cooking time, weight gain and volume increase. As observed, supplementation with micronized corn pericarp presented significant difference on the contents of proteins, minerals, dietary fiber and solid soluble loss of the spaghetti pasta (p < 0.05. With increase in micronized corn pericarp concentration, the color difference became accentuated. The use of MCP appears to be viable, providing a nutritionally enriched product without further impairment on pasta quality.

  2. New silicon photonics integration platform enabled by novel micron-scale bends

    CERN Document Server

    Cherchi, Matteo; Harjanne, Mikko; Kapulainen, Markku; Aalto, Timo

    2013-01-01

    Even though submicron silicon waveguides have been proposed for dense integration of photonic devices, to date the lightwave circuits on the market mainly rely on waveguides with micron-scale core dimensions. These larger waveguides feature easier fabrication, higher reliability and better interfacing to optical fibres. Single-mode operation with large core dimensions is obtained with low lateral refractive index contrast. Hence, the main limitation in increasing the level of integration and in reducing the cost of micron-scale waveguide circuits is their mm- to cm-scale minimum bending radius. Fortunately, single-mode rib waveguides with a micron-scale silicon core can be locally transformed into multi-mode strip waveguides that have very high lateral index contrast. Here we show how Euler spiral bends realized with these waveguides can have bending radii below 10 {\\mu}m and losses below 0.02 dB/90{\\deg} for the fundamental mode, paving way for a novel densely integrated platform based on micron-scale wavegu...

  3. Physics of semiconductors and dielectrics optical properties and radiation stability of coatings based on BaTiO3 powders modified by ZrO2 micron size powders of different concentrations

    Science.gov (United States)

    Mikhailov, M. M.; Utebekov, T. A.; Yur'ev, S. A.

    2013-10-01

    Diffuse reflection spectra in the wavelength range 350-2100 nm and radiation stability of coatings based on BaTiO3 powders modified by ZrO2 micron size powders of different concentrations are investigated. The presence of two wavelength ranges characterized by significant influence of modification on defects of the anion sublattice and its weak influence on defects of the cation sublattice of barium titanate is experimentally established.

  4. Advances in High Energy Solid-State Pulsed 2-Micron Lidar Development for Ground and Airborne Wind, Water Vapor and CO2 Measurements

    Science.gov (United States)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer; Kavaya, Michael J.; Remus, Ruben

    2015-01-01

    NASA Langley Research Center has a long history of developing 2-micron lasers. From fundamental spectroscopy research, theoretical prediction of new materials, laser demonstration and engineering of lidar systems, it has been a very successful program spanning around two decades. Successful development of 2-micron lasers has led to development of a state-of-the-art compact lidar transceiver for a pulsed coherent Doppler lidar system for wind measurement with an unprecedented laser pulse energy of 250 millijoules in a rugged package. This high pulse energy is produced by a Ho:Tm:LuLiF laser with an optical amplifier. While the lidar is meant for use as an airborne instrument, ground-based tests were carried out to characterize performance of the lidar. Atmospheric measurements will be presented, showing the lidar's capability for wind measurement in the atmospheric boundary layer and free troposphere. Lidar wind measurements are compared to a balloon sonde, showing good agreement between the two sensors. Similar architecture has been used to develop a high energy, Ho:Tm:YLF double-pulsed 2-micron Integrated Differential Absorption Lidar (IPDA) instrument based on direct detection technique that provides atmospheric column CO2 measurements. This instrument has been successfully used to measure atmospheric CO2 column density initially from a ground mobile lidar trailer, and then it was integrated on B-200 plane and 20 hours of flight measurement were made from an altitude ranging 1500 meters to 8000 meters. These measurements were compared to in-situ measurements and National Oceanic and Atmospheric Administration (NOAA) airborne flask measurement to derive the dry mixing ratio of the column CO2 by reflecting the signal by various reflecting surfaces such as land, vegetation, ocean surface, snow and sand. The lidar measurements when compared showed a very agreement with in-situ and airborne flask measurement. NASA Langley Research Center is currently developing a

  5. Multiplexed 256 element InGaAs detector arrays for 0.8-1.7-micron room-temperature operation

    Science.gov (United States)

    Olsen, G. H.; Joshi, A. M.; Ban, V. S.; Woodruff, K. M.; Gasparian, G. A.

    1988-01-01

    InGaAs photodetectors have been configured into linear arrays of 30 x 30 micron photodetectors spaced 50 microns apart. The devices have typical responsivities of 0.9 A/W (86-percent QE) at 1.3 microns and exhibit room temperature dark currents below 100 pA. A 256-element array has been mounted in a Reticon multiplexer and configured into a PAR optical multichannel analyzer to extend spectral response out to 1.7 microns. Individual InGaAs detectors have been fabricated for response out to 2.2 microns with dark current below 1 microA (-1V) and 50-percent QE at room temperature.

  6. Influence of Process Control Agent on Characterization and Structure of Micron Chitosan Powders Prepared by Ball Milling Method

    Directory of Open Access Journals (Sweden)

    ZHANG Chuan-jie

    2016-12-01

    Full Text Available With ethyl alcohol or distilled water as process control agent (PCA, micron chitosan powder was prepared by ball milling method. The yield rate, particle size distribution, micro morphology, viscosity average molecular mass, chemical and crystal structures, and thermal properties of these different micron chitosan powders were measured. The results indicate that the yield rate of micron chitosan powders prepared with ethyl alcohol as PCA increases significantly, and improves to 94.7% from 25% while the amount of ethyl alcohol is 0.75mL/g. The particle size distribution of micron chitosan powder prepared with ethyl alcohol as PCA is concentrated, while the D50 and D90 in size are 824nm and 1629nm respectively. Chitosan do not react with ethyl alcohol used as PCA, but the viscosity average molecular mass of prepared micron chitosan powder decreases by 23%, the crystal structures are destroyed slightly, and its thermal stability is slightly weakened.

  7. Quantum-Dot Laser for Wavelengths of 1.8 to 2.3 micron

    Science.gov (United States)

    Qiu, Yueming

    2006-01-01

    The figure depicts a proposed semiconductor laser, based on In(As)Sb quantum dots on a (001) InP substrate, that would operate in the wavelength range between 1.8 and 2.3 m. InSb and InAsSb are the smallest-bandgap conventional III-V semiconductor materials, and the present proposal is an attempt to exploit the small bandgaps by using InSb and InAsSb nanostructures as midinfrared emitters. The most closely related prior III-V semiconductor lasers are based, variously, on strained InGaAs quantum wells and InAs quantum dots on InP substrates. The emission wavelengths of these prior devices are limited to about 2.1 m because of critical quantum-well thickness limitations for these lattice mismatched material systems. The major obstacle to realizing the proposed laser is the difficulty of fabricating InSb quantum dots in sufficient density on an InP substrate. This difficulty arises partly because of the weakness of the bond between In and Sb and partly because of the high temperature needed to crack metalorganic precursor compounds during the vapor-phase epitaxy used to grow quantum dots: The mobility of the weakly bound In at the high growth temperature is so high that In adatoms migrate easily on the growth surface, resulting in the formation of large InSb islands at a density, usually less than 5 x 10(exp 9) cm(exp -2), that is too low for laser operation. The mobility of the In adatoms could be reduced by introducing As atoms to the growth surface because the In-As bond is about 30 percent stronger than is the In-Sb bond. The fabrication of the proposed laser would include a recently demonstrated process that involves the use of alternative supplies of precursors to separate group-III and group-V species to establish local non-equilibrium process conditions, so that In(As)Sb quantum dots assemble themselves on a (001) InP substrate at a density as high as 4 x 10(exp 10) cm(exp -2). Room-temperature photoluminescence spectra of quantum dots formed by this process

  8. Sub-half-micron contact window design with 3D photolithography simulator

    Science.gov (United States)

    Brainerd, Steve K.; Bernard, Douglas A.; Rey, Juan C.; Li, Jiangwei; Granik, Yuri; Boksha, Victor V.

    1997-07-01

    In state of the art IC design and manufacturing certain lithography layers have unique requirements. Latitudes and tolerances that apply to contacts and polysilicon gates are tight for such critical layers. Industry experts are discussing the most cost effective ways to use feature- oriented equipment and materials already developed for these layers. Such requirements introduce new dimensions into the traditionally challenging task for the photolithography engineer when considering various combinations of multiple factors to optimize and control the process. In addition, he/she faces a rapidly increasing cost of experiments, limited time and scarce access to equipment to conduct them. All the reasons presented above support simulation as an ideal method to satisfy these demands. However lithography engineers may be easily dissatisfied with a simulation tool when discovering disagreement between the simulation and experimental data. The problem is that several parameters used in photolithography simulation are very process specific. Calibration, i.e. matching experimental and simulation data using a specific set of procedures allows one to effectively use the simulation tool. We present results of a simulation based approach to optimize photolithography processes for sub-0.5 micron contact windows. Our approach consists of: (1) 3D simulation to explore different lithographic options, (2) calibration to a range of process conditions with extensive use of specifically developed optimization techniques. The choice of a 3D simulator is essential because of 3D nature of the problem of contact window design. We use DEPICT 4.1. This program performs fast aerial image simulation as presented before. For 3D exposure the program uses an extension to three-dimensions of the high numerical aperture model combined with Fast Fourier Transforms for maximum performance and accuracy. We use Kim (U.C. Berkeley) model and the fast marching Level Set method respectively for the

  9. Impact-disrupted gunshot residue: A sub-micron analysis using a novel collection protocol

    Directory of Open Access Journals (Sweden)

    V. Spathis

    2017-06-01

    Full Text Available The analysis of gunshot residue (GSR has played an integral role within the legal system in relation to shooting cases. With a characteristic elemental composition of lead, antimony, barium, and a typically discriminative spheroidal morphology, the presence and distribution of GSR can aid in firearm investigations. In this experiment, three shots of low velocity rim-fire ammunition were fired over polished silicon collection substrates placed at six intervals over a 100 cm range. The samples were analysed using a Field Emission Gun Scanning Electron Microscope (FEG-SEM in conjunction with an X-flash Energy Dispersive X-ray (EDX detector, allowing for GSR particle analyses of composition and structure at the sub-micron level. The results of this experiment indicate that although classic spheroidal particles are present consistently throughout the entire range of samples their sizes vary significantly, and at certain distances from the firearm particles with an irregular morphology were discerned, forming “impact-disrupted” GSR particles, henceforth colloquially referred to as “splats”. Upon further analysis, trends with regards to the formation of these splat particles were distinguished. An increase in splat frequency was observed starting at 10 cm from the firearm, with 147 mm−2 splat density, reaching a maximal flux at 40 cm (451 mm−2, followed by a gradual decrease to the maximum range sampled. Moreover, the structural morphology of the splats changes throughout the sampling range. At the distances closest to the firearm, molten-looking particles were formed, demonstrating the metallic residues were in a liquid state when their flight path was disrupted. However, at increased distances-primarily where the discharge plume was at maximum dispersion and moving away from the firearm, the residues have had time to cool in-fight resulting in semi-congealed and solid particles that subsequently disrupted upon impact, forming more

  10. The fabrication of integrated carbon pipes with sub-micron diameters

    Science.gov (United States)

    Kim, B. M.; Murray, T.; Bau, H. H.

    2005-08-01

    A method for fabricating integrated carbon pipes (nanopipettes) of sub-micron diameters and tens of microns in length is demonstrated. The carbon pipes are formed from a template consisting of the tip of a pulled alumino-silicate glass capillary coated with carbon deposited from a vapour phase. This method renders carbon nanopipettes without the need for ex situ assembly and facilitates parallel production of multiple carbon-pipe devices. An electric-field-driven transfer of ions in a KCl solution through the integrated carbon pipes exhibits nonlinear current-voltage (I-V) curves, markedly different from the Ohmic I-V curves observed in glass pipettes under similar conditions. The filling of the nanopipette with fluorescent suspension is also demonstrated.

  11. Mini-Conference on the First Microns of the First Wall

    Energy Technology Data Exchange (ETDEWEB)

    Stotler, D. P.; Rognlien, T. D.; Krasheninnikov, S. I.

    2008-03-20

    Interactions between plasmas and their surrounding materials (plasma facing components) are of great interest to present and future magnetic fusion experiments, and ITER [ITER Physics Basis Editors, ITER Physics Exper Group Chairs, ITER Joint Central Team, and Physics Inte gration Unit, Nucl. Fusion 39, 2137 (1999)] in particular. This interest is the result of concerns with the survivability of these materials, as well as the impact of these interactions back on the plasma. These interactions begin on the surface, but can have consequences a few microns into the material.This mini-conference on these "first microns" was designed to bring to the Division of Plasma Physics Meeting experts on these topics who would otherwise not attend. At the same time, the mini-conference was intended to expose the broader fusion community to these issues. The mini-conference covered in three, half-day sessions the topics of lithium coatings and surfaces, mixed materials characteristics, and issues associated with graphite.

  12. Deposition of micron liquid droplets on wall in impinging turbulent air jet

    Science.gov (United States)

    Liu, Tianshu; Nink, Jacob; Merati, Parviz; Tian, Tian; Li, Yong; Shieh, Tom

    2010-06-01

    The fluid mechanics of the deposition of micron liquid (olive oil) droplets on a glass wall in an impinging turbulent air jet is studied experimentally. The spatial patterns of droplets deposited on a wall are measured by using luminescent oil visualization technique, and the statistical data of deposited droplets are obtained through microscopic imagery. Two distinct rings of droplets deposited on a wall are found, and the mechanisms of the formation of the inner and outer rings are investigated based on global diagnostics of velocity and skin friction fields. In particular, the intriguing effects of turbulence, including large-scale coherent vortices and small-scale random turbulence, on micron droplet deposition on a wall and coalescence in the air are explored.

  13. Simulations of micron-scale fracture using atomistic-based boundary element method

    Science.gov (United States)

    Wu, Xiaojie; Li, Xiantao

    2017-12-01

    A new formulation of a boundary element method (BEM) is proposed in this paper to simulate cracks at the micron scale. The main departure from the traditional BEMs is that the current model is derived from the underlying atomistic model, which involves the interactions of atoms at the scale of Angstroms. By using the lattice Green’s function, the new BEM formulation eliminates the excessive atomic degrees of freedom away from crack tips, and directly couples the process zones with the physical boundary conditions. We show that with such a drastic reduction, one can simulate brittle fracture process on the scale of microns, for which the entire system consists of a few billion atoms. We discuss several numerical issues to make the implementation more efficient. Examples will be presented for cracks in the bcc iron system.

  14. Compact, CO2-stabilized tuneable laser at 2.05 microns

    DEFF Research Database (Denmark)

    Westergaard, Philip G.; Thomsen, Jan W.; Henriksen, Martin Romme

    2016-01-01

    We demonstrate a compact fibre-based laser system at 2.05 microns stabilized to a CO2 transition using frequency modulation spectroscopy of a gas-filled hollow-core fibre. The laser exhibits an absolute frequency accuracy of 5 MHz, a frequency stability noise floor of better than 7 kHz or 5......×10−11 and is tunable within ±200 MHz from the molecular resonance frequency while retaining roughly this stability and accuracy....

  15. MECHANISMS UNDERLYING THE MICRON-SCALE SEGREGATION OF STEROLS AND GM1 IN LIVE MAMMALIAN SPERM

    OpenAIRE

    Selvaraj, Vimal; Asano, Atsushi; Buttke, Danielle E.; Sengupta, Prabuddha; Weiss, Robert S.; Alexander J Travis

    2009-01-01

    We demonstrate for the first time that a stable, micron-scale segregation of focal enrichments of sterols exists at physiological temperature in the plasma membrane of live murine and human sperm. These enrichments of sterols represent microheterogeneities within this membrane domain overlying the acrosome. Previously, we showed that cholera toxin subunit B (CTB), which binds the glycosphingolipid, GM1, localizes to this same domain in live sperm. Interestingly, the GM1 undergoes an unexplain...

  16. Sub-micron-sized delafossite CuCrO2 with different morphologies ...

    Indian Academy of Sciences (India)

    40, No. 1, February 2017, pp. 195–199. c Indian Academy of Sciences. DOI 10.1007/s12034-016-1340-6. Sub-micron-sized delafossite CuCrO2 with different morphologies synthesized by nitrate–citric acid sol–gel route. SATISH BOLLOJU1 and RADHAKRISHNAN SRINIVASAN1,2,∗. 1Department of Chemistry, BITS Pilani ...

  17. Charging of Individual Micron-Size Interstellar/Planetary Dust Grains by Secondary Electron Emissions

    Science.gov (United States)

    Tankosic, D.; Abbas, M. M.

    2012-01-01

    Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with UV/X-ray radiation, as well as by electron/ion impact. Knowledge of physical and optical properties of individual dust grains is required for understanding of the physical and dynamical processes in space environments and the role of dust in formation of stellar and planetary systems. In this paper, we discuss experimental results on dust charging by electron impact, where low energy electrons are scattered or stick to the dust grains, thereby charging the dust grains negatively, and at sufficiently high energies the incident electrons penetrate the grain leading to excitation and emission of electrons referred to as secondary electron emission (SEE). Currently, very limited experimental data are available for charging of individual micron-size dust grains, particularly by low energy electron impact. Available theoretical models based on the Sternglass equation (Sternglass, 1954) are applicable for neutral, planar, and bulk surfaces only. However, charging properties of individual micron-size dust grains are expected to be different from the values measured on bulk materials. Our recent experimental results on individual, positively charged, micron-size lunar dust grains levitated in an electrodynamic balance facility (at NASA-MSFC) indicate that the SEE by electron impact is a complex process. The electron impact may lead to charging or discharging of dust grains depending upon the grain size, surface potential, electron energy, electron flux, grain composition, and configuration (e.g. Abbas et al, 2010). Here we discuss the complex nature of SEE charging properties of individual micron-size lunar dust grains and silica microspheres.

  18. Comprehensive investigation of the dynamics of micron and submicron lunar ejecta in heliocentric space

    Energy Technology Data Exchange (ETDEWEB)

    Hargrave, A.D.

    1984-01-01

    The forces which act on micron and submicron dust particles in interplanetary space are studied in detail. Particular attention is given to Mie scattering theory as it applies to the calculation of the force due to radiation pressure. All of the forces are integrated into a computer model to study the heliocentric orbits of lunar ejecta. It is shown that lunar ejecta contribute to a geocentric dust cloud, as well as to a heliocentric dust belt.

  19. Solid Hydrocarbon Assisted Reduction: A New Process of Generating Micron Scale Metal Particles

    Science.gov (United States)

    2015-03-01

    these experiments. By contrast, the pyrolysis of coal in the absence of catalysts results in a two-phase decomposition and degasification process. In... coal is heat treat has a strong impact on the nature of the decomposition [28]. The highly dynamic nature of coal pyrolysis was not accounted for...wax and low-grade coal , both with and without catalysts, in a nitrogen environment at >600 oc, located immediately below beds of micron scale

  20. Luteal start vaginal micronized progesterone improves pregnancy success in women with recurrent pregnancy loss.

    Science.gov (United States)

    Stephenson, Mary D; McQueen, Dana; Winter, Michelle; Kliman, Harvey J

    2017-03-01

    To assess the effectiveness of luteal start vaginal micronized P in a recurrent pregnancy loss (RPL) cohort. Observational cohort study using prospectively collected data. Not applicable. Women seen between 2004 and 2012 with a history of two or more unexplained pregnancy losses pregnancy(ies). Women were excluded if concomitant findings, such as endometritis, maturation delay, or glandular-stromal dyssynchrony, were identified on EB. Vaginal micronized P was prescribed at a dose of 100-200 mg every 12 hours starting 3 days after LH surge (luteal start) if glandular epithelial nuclear cyclin E (nCyclinE) expression was elevated (>20%) in endometrial glands or empirically despite normal nCyclinE (≤20%). Women with normal nCyclinE (≤20%) who did not receive P were used as controls. Pregnancy success was an ongoing pregnancy >10 weeks in size. One hundred sixteen women met the inclusion criteria, of whom 51% (n = 59) had elevated nCyclinE and 49% (n = 57) had normal nCyclinE. Pregnancy success in the 59 women with elevated nCyclinE significantly improved after intervention: 6% (16/255) in prior pregnancies versus 69% (57/83) in subsequent pregnancies. Pregnancy success in subsequent pregnancies was higher in women prescribed vaginal micronized P compared with controls: 68% (86/126) versus 51% (19/37); odds ratio = 2.1 (95% confidence interval, 1.0-4.4). In this study, we found that the use of luteal start vaginal micronized P was associated with improved pregnancy success in a strictly defined cohort of women with RPL. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  1. A 2-Micron Pulsed Integrated Path Differential Absorption Lidar Development For Atmospheric CO2 Concentration Measurements

    Science.gov (United States)

    Yu, Jirong; Petros, Mulugeta; Reithmaier, Karl; Bai, Yingxin; Trieu, Bo C.; Refaat, Tamer F.; Kavaya, Michael J.; Singh, Upendra N.

    2012-01-01

    A 2-micron pulsed, Integrated Path Differential Absorption (IPDA) lidar instrument for ground and airborne atmospheric CO2 concentration measurements via direct detection method is being developed at NASA Langley Research Center. This instrument will provide an alternate approach to measure atmospheric CO2 concentrations with significant advantages. A high energy pulsed approach provides high-precision measurement capability by having high signal-to-noise level and unambiguously eliminates the contamination from aerosols and clouds that can bias the IPDA measurement.

  2. High energy 2-micron solid-state laser transmitter for NASA's airborne CO2 measurements

    Science.gov (United States)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Bai, Yingxin

    2017-11-01

    A 2-micron pulsed, Integrated Path Differential Absorption (IPDA) lidar instrument for ground and airborne atmospheric CO2 concentration measurements via direct detection method is being developed at NASA Langley Research Center. This instrument will provide an alternate approach to measure atmospheric CO2 concentrations with significant advantages. A high energy pulsed approach provides high precision measurement capability by having high signal-to-noise level and unambiguously eliminates the contamination from aerosols and clouds that can bias the IPDA measurement.

  3. Quantitative determination of micronization-induced changes in the solid state of lactose.

    Science.gov (United States)

    Della Bella, A; Müller, M; Soldati, L; Elviri, L; Bettini, R

    2016-05-30

    Lactose, in particular α-lactose monohydrate, is the most used carrier for inhalation. Its surface and solid-state properties play a key role in determining Dry Powder Inhalers (DPIs) performance. Techniques such as X-Ray Powder Diffraction (XRPD) and Differential Scanning Calorimetry (DSC), which are commonly used for the characterization of lactose, are not always capable of explaining the solid-state changes induced by processing, such as micronization. In the present work, the evaluation of the effect of the micronization process on the solid-state properties of lactose was carried out by XRPD and DSC and a satisfactory, although not unequivocal, interpretation of the thermal behaviour of lactose was obtained. Thus, a new gravimetric method correlating in a quantitative manner the weight change in specific sections of the Dynamic Vapour Sorption (DVS) profile and the amount of different forms of α-lactose (hygroscopic anhydrous, stable anhydrous and amorphous) simultaneously present in a given sample was developed and validated. The method is very simple and provides acceptable accuracy in phase quantitation (LOD=1.6, 2.4 and 2.7%, LOQ=5.4, 8.0 and 8.9% for hygroscopic anhydrous, stable anhydrous and amorphous α-lactose, respectively). The application of this method to a sample of micronized lactose led to results in agreement with those obtained by DSC and evidenced that hygroscopic anhydrous α-lactose, rather than amorphous lactose, can be generated in the micronization process. The proposed method may find a more general application for the quantification of polymorphs of compounds different than lactose, provided that the various solid phases afford different weight variations in specific regions of the DVS profile. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Directed assembly of conducting polymers on sub-micron templates by electrical fields

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Jia; Wei, Ming [National Science Foundation (NSF) Nanoscale Science and Engineering Center for High-Rate Nanomanufacturing, University of Massachusetts Lowell, Lowell, MA 01854 (United States); Busnaina, Ahmed [National Science Foundation (NSF) Nanoscale Science and Engineering Center for High-Rate Nanomanufacturing, Northeastern University, Boston, MA 02115 (United States); Barry, Carol [National Science Foundation (NSF) Nanoscale Science and Engineering Center for High-Rate Nanomanufacturing, University of Massachusetts Lowell, Lowell, MA 01854 (United States); Mead, Joey, E-mail: Joey_Mead@uml.edu [National Science Foundation (NSF) Nanoscale Science and Engineering Center for High-Rate Nanomanufacturing, University of Massachusetts Lowell, Lowell, MA 01854 (United States)

    2013-02-20

    Highlights: Black-Right-Pointing-Pointer Nanoscale patterns with dimensions of assembled PANi down to 100 nm were fabricated. Black-Right-Pointing-Pointer We use electrophoretic and dielectrophoretic assembly to deposit PANi. Black-Right-Pointing-Pointer Electrophoretic and dielectrophoretic assembly of PANi finished in less than 1 min. Black-Right-Pointing-Pointer Effect of process parameters on assembly of PANi onto nanoscale pattern was studied. Black-Right-Pointing-Pointer The assembled PANi can be transferred to other flexible substrates. - Abstract: Patterning of conducting polymer into sub-micron patterns over large areas at high rate and low cost is significant for commercial manufacturing of novel devices. Electrophoretic and dielectrophoretic assembly provide an easily scaled approach with high fabrication rates. In this work, electrophoretic and dielectrophoretic assembly were used to assemble polyaniline (PANi) into multiscale sub-micron size patterns in less than 1 min. The process was controlled by assembly time, amplitude, and frequency of the electric field. Dielectrophoretic assembly is preferable for manufacturing as it reduces damage to the templates used to control the assembly. Using this method, sub-micron patterns with dimensions of the assembled PANi down to 100 nm were fabricated over large areas in short times. The assembled PANi was further transferred to other flexible polymer substrates by a thermoforming process, providing a fast, easily controlled and promising approach for fabrication of nanoscale devices.

  5. Thermal emission spectra of Mars (5.4-10.5 microns) - Evidence for sulfates, carbonates, and hydrates

    Science.gov (United States)

    Pollack, James B.; Roush, Ted; Witteborn, Fred; Bregman, Jesse; Wooden, Diane; Stoker, Carol; Toon, Owen B.

    1990-01-01

    Spectra of the Martian thermal emission in the 5.4-10.5 micron region are reported. Emission features at 7.8 and 9.7 microns are attributed to surface silicates, and an emission feature at 6.1 micron is attributed to a molecular water component of the surface material. An absorption band at 8.7 micron and a possible one at 9.8 microns is attributed to sulfate or bisulfate anions probably located at a distorted crystalline site, and an absorption band at 6.7 microns is attributed to carbonate or bicarbonate anions located in a distorted crystalline site. Spectral simulations indicate that the sulfate- and carbonate-bearing minerals are contained in the same particles of airborne dust as the dominant silicate minerals, that the dust optical depth is about 0.6 at a reference wavelength of 0.3 micron over the area of the observed spots, and that sulfates and carbonates constitute 10-15 percent and 1-3 percent by volume of the airborne dust, respectively.

  6. An OPO-Based Lidar System for Differential Absorption Measurements of Methane in the 3 micron region

    Science.gov (United States)

    Lee, S. W.; Zenker, T.; Chyba, T. H.

    1998-01-01

    A ground-based lidar system in the wavelength region of 1.45-4 microns for the remote measurement of methane is described. The laser transmitter consists of an injection-seeded Nd:YAG laser which pumps an OPO (optical parametric oscillator). The OPO output is tunable from 1.45-4 microns, with a bandwidth less than 500 MHz, and a pulse energy of 1 to 3 mJ at 3.29 microns. The receiver is cart-mounted and consists of a 14" telescope with 1.57 and 3.29 micron detector channels. A fast oscilloscope is used for data acquisition. The system performance will be tested through measurements of sources of atmospheric methane.

  7. Traceable measurement and imaging of the complex permittivity of a multiphase mineral specimen at micron scales using a microwave microscope.

    Science.gov (United States)

    Gregory, A P; Blackburn, J F; Hodgetts, T E; Clarke, R N; Lees, K; Plint, S; Dimitrakis, G A

    2017-01-01

    This paper describes traceable measurements of the dielectric permittivity and loss tangent of a multiphase material (particulate rock set in epoxy) at micron scales using a resonant Near-Field Scanning Microwave Microscope (NSMM) at 1.2GHz. Calibration and extraction of the permittivity and loss tangent is via an image charge analysis which has been modified by the use of the complex frequency to make it applicable for high loss materials. The results presented are obtained using a spherical probe tip, 0.1mm in diameter, and also a conical probe tip with a rounded end 0.01mm in diameter, which allows imaging with higher resolution (≈10µm). The microscope is calibrated using approach-curve data over a restricted range of gaps (typically between 1% and 10% of tip diameter) as this is found to give the best measurement accuracy. For both tips the uncertainty of scanned measurements of permittivity is estimated to be±10% (at coverage factor k=2) for permittivity ⪝10. Loss tangent can be resolved to approximately 0.001. Subject to this limit, the uncertainty of loss tangent measurements is estimated to be±20% (at k=2). The reported measurements inform studies of how microwave energy interacts with multiphase materials containing microwave absorbent phases. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Micronized Copper Wood Preservatives: Efficacy of Ion, Nano, and Bulk Copper against the Brown Rot Fungus Rhodonia placenta.

    Directory of Open Access Journals (Sweden)

    Chiara Civardi

    Full Text Available Recently introduced micronized copper (MC formulations, consisting of a nanosized fraction of basic copper (Cu carbonate (CuCO3·Cu(OH2 nanoparticles (NPs, were introduced to the market for wood protection. Cu NPs may presumably be more effective against wood-destroying fungi than bulk or ionic Cu compounds. In particular, Cu- tolerant wood-destroying fungi may not recognize NPs, which may penetrate into fungal cell walls and membranes and exert their impact. The objective of this study was to assess if MC wood preservative formulations have a superior efficacy against Cu-tolerant wood-destroying fungi due to nano effects than conventional Cu biocides. After screening a range of wood-destroying fungi for their resistance to Cu, we investigated fungal growth of the Cu-tolerant fungus Rhodonia placenta in solid and liquid media and on wood treated with MC azole (MCA. In liquid cultures we evaluated the fungal response to ion, nano and bulk Cu distinguishing the ionic and particle effects by means of the Cu2+ chelator ammonium tetrathiomolybdate (TTM and measuring fungal biomass, oxalic acid production and laccase activity of R. placenta. Our results do not support the presence of particular nano effects of MCA against R. placenta that would account for an increased antifungal efficacy, but provide evidence that attribute the main effectiveness of MCA to azoles.

  9. 0.351 micron Laser Beam propagation in High-temperature Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Froula, D; Divol, L; Meezan, N; Ross, J; Berger, R L; Michel, P; Dixit, S; Rekow, V; Sorce, C; Moody, J D; Neumayer, P; Pollock, B; Wallace, R; Suter, L; Glenzer, S H

    2007-12-10

    A study of the laser-plasma interaction processes have been performed in plasmas that are created to emulate the plasma conditions in indirect drive inertial confinement fusion targets. The plasma emulator is produced in a gas-filled hohlraum; a blue 351-nm laser beam propagates along the axis of the hohlraum interacting with a high-temperature (T{sub e} = 3.5 keV), dense (n{sub e} = 5 x 10{sup 20}cm{sup -3}), long-scale length (L {approx} 2 mm) plasma. Experiments at these conditions have demonstrated that the interaction beam produces less than 1% total backscatter resulting in transmission greater than 90% for laser intensities less than I < 2 x 10{sup 15} W-cm{sup -2}. The bulk plasma conditions have been independently characterized using Thomson scattering where the peak electron temperatures are shown to scale with the hohlraum heater beam energy in the range from 2 keV to 3.5 keV. This feature has allowed us to determine the thresholds for both backscattering and filamentation instabilities; the former measured with absolutely calibrated full aperture backscatter and near backscatter diagnostics and the latter with a transmitted beam diagnostics. A plasma length scaling is also investigated extending our measurements to 4-mm long high-temperature plasmas. At intensities I < 5 x 10{sup 14} W-cm{sup -2}, greater than 80% of the energy in the laser is transmitted through a 5-mm long, high-temperature (T{sub e} > 2.5 keV) high-density (n{sub e} = 5 x 10{sup 20} w-cm{sup -3}) plasma. Comparing the experimental results with detailed gain calculations for the onset of significant laser scattering processes shows a stimulated Brillouin scattering threshold (R=10%) for a linear gain of 15; these high temperature, low density experiments produce plasma conditions comparable to those along the outer beams in ignition hohlraum designs. By increasing the gas fill density (n{sub e} = 10{sup 21} cm{sup -3}) in these targets, the inner beam ignition hohlraum conditions are

  10. Localization of mammalian orthoreovirus proteins to cytoplasmic factory-like structures via nonoverlapping regions of microNS.

    Science.gov (United States)

    Miller, Cathy L; Arnold, Michelle M; Broering, Teresa J; Hastings, Craig E; Nibert, Max L

    2010-01-01

    Virally induced structures called viral factories form throughout the cytoplasm of cells infected with mammalian orthoreoviruses (MRV). When expressed alone in cells, MRV nonstructural protein microNS forms factory-like structures very similar in appearance to viral factories, suggesting that it is involved in forming the structural matrix of these structures. microNS also associates with MRV core particles; the core proteins mu2, lambda1, lambda2, lambda3, and sigma2; and the RNA-binding nonstructural protein sigmaNS. These multiple associations result in the recruitment or retention of these viral proteins or particles at factory-like structures. In this study, we identified the regions of microNS necessary and sufficient for these associations and additionally examined the localization of viral RNA synthesis in infected cells. We found that short regions within the amino-terminal 220 residues of microNS are necessary for associations with core particles and necessary and sufficient for associations with the proteins mu2, lambda1, lambda2, sigma2, and sigmaNS. We also found that only the lambda3 protein associates with the carboxyl-terminal one-third of microNS and that viral RNA is synthesized within viral factories. These results suggest that microNS may act as a cytoplasmic scaffolding protein involved in localizing and coordinating viral replication or assembly intermediates for the efficient production of progeny core particles during MRV infection.

  11. Sub-micron Cu/SSZ-13: Synthesis and application as selective catalytic reduction (SCR) catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Prodinger, Sebastian; Derewinski, Miroslaw A.; Wang, Yilin; Washton, Nancy M.; Walter, Eric D.; Szanyi, János; Gao, Feng; Wang, Yong; Peden, Charles H. F.

    2017-02-01

    For the first time, sub-micron Cu/SSZ-13, obtained by modifying an existing synthesis procedure, was shown to be an effective and stable catalyst for selective catalytic reduction reactions, such as NO reduction. Characterization of the materials with X-ray diffraction, N2-physisorption and 27Al MAS NMR shows that hydrothermal aging, simulating SCR reaction conditions, is more destructive in respect to dealumination for smaller particles prior to Cu-exchange. However, the catalytic performance and hydrothermal stability for Cu/SSZ-13 is independent of the particle size. In particular, the stability of tetrahedral framework Al is improved in the sub-micron Cu/SSZ-13 catalysts of comparable Cu loading. This indicates that variations in the Al distribution for different SSZ-13 synthesis procedures have a more critical influence on stabilizing isolated Cu-ions during harsh hydrothermal aging than the particle size. This study is of high interest for applications in vehicular DeNOx technologies where high loadings of active species on wash coats can be achieved by using sub-micron Cu/SSZ-13. The authors would like to thank B. W. Arey and J. J. Ditto for performing electron microscope imaging. The authors gratefully acknowledge the US Department of Energy (DOE), Energy Efficiency and Renewable Energy, Vehicle Technologies Office for the support of this work. S. P and M. A. D also acknowledge support by the Materials Synthesis and Simulation Across Scales (MS3 Initiative) conducted under the Laboratory Directed Research & Development Program at PNNL. The research described in this paper was performed in the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle.

  12. Note: Aligned deposition and modal characterization of micron and submicron poly(methyl methacyrlate) fiber cantilevers.

    Science.gov (United States)

    Nain, Amrinder S; Filiz, Sinan; Ozdoganlar, O Burak; Sitti, Metin; Amon, Cristina

    2010-01-01

    Polymeric micro-/nanofibers are finding increasing use as sensors for novel applications. Here, we demonstrate the ability to deposit an array of poly(methyl methacyrlate) fibers with micron and submicron diameters in aligned configurations on customized piezoelectric shakers. Using lateral motion of an atomic force microscope tip, fibers are broken to obtain fiber cantilevers of high aspect ratio (length/diameter > 20). The resonant frequencies of fabricated microfiber cantilevers are experimentally measured using a laser Doppler vibrometer. An average Young's modulus of 3.5 GPa and quality factor of 20 were estimated from the experimentally obtained frequency responses.

  13. Process optimization and particle engineering of micronized drug powders via milling.

    Science.gov (United States)

    Brunaugh, A; Smyth, H D C

    2017-11-13

    Process control and optimization is a critical aspect of process analytical technology (PAT), quality by design (QbD), and the implementation of continuous manufacturing procedures. While process control and optimization techniques have been utilized in other manufacturing industries for decades, the pharmaceutical industry has only recently begun to adopt these procedures. Micronization, particularly milling, is a generally low-yield, high-energy consumption process that is well suited for a process optimization mindset. This review discusses optimization of the pharmaceutical milling process through design space development, theoretical and empirical modeling, and monitoring of critical quality attributes.

  14. Engineering of micron-sized electron trap in a superconducting tuning-fork resonator

    Science.gov (United States)

    Yang, Ge; Czaplewski, David; Ocola, Leonidas; Schuster, David

    2014-05-01

    Electrons on helium is a unique two-dimensional electron gas system formed at the interface of a quantum liquid (superfluid helium) and vacuum. The motional and spin states of single-electron quantum dots defined on such systems have been proposed for hybrid quantum computing. Here, We will present experiments in which an ensemble of electrons are trapped above a tuning fork superconducting resonator and describe their coupling with both the differential and common mode. Next, we will discuss the design of superconducting resonators with a micron-sized trapping area and a reduced number of trapped electrons, and the experimental progress towards a single trapped electron regime.

  15. Experimental study on combustion of biomass micron fuel (BMF) in cyclone furnace

    Energy Technology Data Exchange (ETDEWEB)

    Luo Siyi, E-mail: xiaobo1958@126.co [School of Environmental Science and Engineering, Huanzhong University of Science and Technology, Wuhan 430074 (China); Xiao Bo; Hu Zhiquan; Liu Shiming; He Maoyun [School of Environmental Science and Engineering, Huanzhong University of Science and Technology, Wuhan 430074 (China)

    2010-11-15

    Based on biomass micron fuel (BMF) with particle size less than 250 {mu}m, a cyclone combustion concept was presented and a lab-scale cyclone furnace was designed to evaluate the feasibility. The influences of equivalence ration (ER) and particle size of BMF on combustion performance were studied, as well as temperature distribution in the combustion chamber. The results show that BMF combustion in the cyclone furnace is reliable, with rational temperature distribution inside furnace hearth, lower CO emission, soot concentration and C content in ashes. As ER being 1.2, the temperature in the chamber is maximized up to 1200 deg. C. Smaller particles results in better combustion performances.

  16. Experimental study on combustion of biomass micron fuel (BMF) in cyclone furnace

    Energy Technology Data Exchange (ETDEWEB)

    Siyi Luo; Bo Xiao; Zhiquan Hu; Shiming Liu; Maoyun He [School of Environmental Science and Engineering, Huanzhong University of Science and Technology, Wuhan 430074 (China)

    2010-11-15

    Based on biomass micron fuel (BMF) with particle size less than 250 {mu}m, a cyclone combustion concept was presented and a lab-scale cyclone furnace was designed to evaluate the feasibility. The influences of equivalence ration (ER) and particle size of BMF on combustion performance were studied, as well as temperature distribution in the combustion chamber. The results show that BMF combustion in the cyclone furnace is reliable, with rational temperature distribution inside furnace hearth, lower CO emission, soot concentration and C content in ashes. As ER being 1.2, the temperature in the chamber is maximized up to 1200 C. Smaller particles results in better combustion performances. (author)

  17. Polarimetric and diffractive evaluation of 3.74 micron pixel-size LCoS in the telecommunications C-band

    Science.gov (United States)

    Wang, Mi; Martínez, Francisco J.; Márquez, Andrés.; Ye, Yabin; Zong, Liangjia; Pascual, Inmaculada; Beléndez, Augusto

    2017-08-01

    Liquid-crystal on Silicon (LCoS) microdisplays are one of the competing technologies to implement wavelength selective switches (WSS) for optical telecommunications. Last generation LCoS, with more than 4 megapixels, have decreased pixel size to values smaller than 4 microns, what increases interpixel cross-talk effects such as fringing-field. We proceed with an experimental evaluation of a 3.74 micron pixel size parallel-aligned LCoS (PA-LCoS) device. At 1550 nm, for the first time we use time-average Stokes polarimetry to measure the retardance and its flicker magnitude as a function of voltage. We also verify the effect of the antireflection coating when we try to characterize the PA-LCoS out of the designed interval for the AR coating. Some preliminary results for the performance for binary gratings are also given, where the decrease of modulation range with the increase in spatial frequency is shown, together with some residual polarization effects.

  18. Micron-sized polymer particles from tanzanian cashew nut shell liquid. Part I: Preparation, functionalization with chloroacetic acid and utilization as cation exchange resin

    Directory of Open Access Journals (Sweden)

    O.O. Ilomo

    2004-06-01

    Full Text Available Micron-sized polymer particles (MSPP were prepared by formaldehyde condensation polymerization of cashew nut shell liquid (CNSL previously emulsified with sodium lauryl sulphate. The sizes of the MSPP were found to range from 0.1 to 4.4 μm. Increasing the emulsifier concentration had the effect of increasing the average particle size as well as the rate of polymerization. On the other hand, the polymerization rate decreased as the amount of the catalyst (sodium hydroxide increased. The MSPP were also found to be insoluble and stable in many organic solvents and in some inorganic reagents. The average number of surface OH groups was found to be 2.29 x 1018 per milligram of polymer particles. Micron-sized carboxylated cation exchange resins (MCCER were obtained by treating MSPP with monochloroacetic acid in an alkaline medium. The MCCER were found to exchange up to about 86 mg of calcium ion per gram of polymer at 30 ºC while the MSPP could exchange up to only about 6 mg of calcium ion per gram of polymer, at the same temperature. Compared to MSPP, the MCCER showed more than a thirteen-fold improvement in cation exchange capacity.

  19. Dispersion of 0.5- to 2-micron aerosol in microG and hypergravity as a probe of convective inhomogeneity in the lung

    Science.gov (United States)

    Darquenne, C.; West, J. B.; Prisk, G. K.

    1999-01-01

    We used aerosol boluses to study convective gas mixing in the lung of four healthy subjects on the ground (1 G) and during short periods of microgravity (microG) and hypergravity ( approximately 1. 6 G). Boluses of 0.5-, 1-, and 2-micron-diameter particles were inhaled at different points in an inspiration from residual volume to 1 liter above functional residual capacity. The volume of air inhaled after the bolus [the penetration volume (Vp)] ranged from 150 to 1,500 ml. Aerosol concentration and flow rate were continuously measured at the mouth. The dispersion, deposition, and position of the bolus in the expired gas were calculated from these data. For each particle size, both bolus dispersion and deposition increased with Vp and were gravity dependent, with the largest dispersion and deposition occurring for the largest G level. Whereas intrinsic particle motions (diffusion, sedimentation, inertia) did not influence dispersion at shallow depths, we found that sedimentation significantly affected dispersion in the distal part of the lung (Vp >500 ml). For 0.5-micron-diameter particles for which sedimentation velocity is low, the differences between dispersion in microG and 1 G likely reflect the differences in gravitational convective inhomogeneity of ventilation between microG and 1 G.

  20. Computer Simulation of Global Profiles of Carbon Dioxide Using a Pulsed, 2-Micron, Coherent-Detection, Column-Content DIAL System

    Science.gov (United States)

    Kavaya, Michael J.; Singh, Upendra N.; Koch, Grady J.; Yu, Jirong; Frehlich, Rod G.

    2009-01-01

    We present preliminary results of computer simulations of the error in measuring carbon dioxide mixing ratio profiles from earth orbit. The simulated sensor is a pulsed, 2-micron, coherent-detection lidar alternately operating on at least two wavelengths. The simulated geometry is a nadir viewing lidar measuring the column content signal. Atmospheric absorption is modeled using FASCODE3P software with the HITRAN 2004 absorption line data base. Lidar shot accumulation is employed up to the horizontal resolution limit. Horizontal resolutions of 50, 100, and 200 km are shown. Assuming a 400 km spacecraft orbit, the horizontal resolutions correspond to measurement times of about 7, 14, and 28 s. We simulate laser pulse-pair repetition frequencies from 1 Hz to 100 kHz. The range of shot accumulation is 7 to 2.8 million pulse-pairs. The resultant error is shown as a function of horizontal resolution, laser pulse-pair repetition frequency, and laser pulse energy. The effect of different on and off pulse energies is explored. The results are compared to simulation results of others and to demonstrated 2-micron operating points at NASA Langley.

  1. Imaging of vaporised sub-micron phase change contrast agents with high frame rate ultrasound and optics.

    Science.gov (United States)

    Lin, Shengtao; Zhang, Ge; Jamburidze, Akaki; Chee, Melisse; Leow, Chee Hau; Garbin, Valeria; Tang, Meng-Xing

    2018-01-31

    Phase-change ultrasound contrast agent (PCCA), or nanodroplet shows promises as an alternative to conventional microbubble agent over a wide range of diagnostic applications. In the meantime, high-frame-rate (HFR) ultrasound imaging with microbubbles enables unprecedentedly temporal resolution compared to traditional contrast-enhanced ultrasound imaging. The combination of HFR ultrasound imaging and PCCAs can offer opportunities to observe and better understand PCCA behaviour after vaporisation capturing the fast phenomenon at a high temporal resolution. In this study, we utilised HFR ultrasound at frame rates in the kilohertz range (5-20 kHz) to image the native and size-selected PCCA populations immediately after vaporisation in vitro with clinical acoustic parameters. The size-selected PCCAs through filtration are shown to preserve submicron-sized (mean diameter < 200 nm) population without micron-sized outliers (> 1 µm) that are originally from the native PCCA emulsion. The results demonstrate imaging signals with different amplitude and temporal features compared to that of microbubbles. Compared with microbubbles, both B-mode and Pulse-Inversion (PI) signals from vaporised PCCA populations were reduced significantly in the first tens of milliseconds, while only B-mode signals from the PCCAs recovered during the next 400 ms, suggesting significant changes to the size distribution of PCCAs after vaporisation. It is also shown that such recovery in signal over time is not evident when using size-selective PCCAs. Furthermore, it was found that signals from the vaporised PCCA populations are affected by the amplitude and frame rate of the HFR ultrasound imaging. Using high-speed optical camera observation (30 kHz), we observed the particle size change in the vaporised PCCA populations exposed to the HFR ultrasound imaging pulses. These findings can benefit the understandings of PCCA behaviour under HFR ultrasound imaging. © 2018 Institute of Physics and

  2. Micron-Scale Deformation: A Coupled In Situ Study of Strain Bursts and Acoustic Emission.

    Science.gov (United States)

    Hegyi, Ádám István; Ispánovity, Péter Dusán; Knapek, Michal; Tüzes, Dániel; Máthis, Kristián; Chmelík, František; Dankházi, Zoltán; Varga, Gábor; Groma, István

    2017-10-17

    Plastic deformation of micron-scale crystalline materials differs considerably from bulk samples as it is characterized by stochastic strain bursts. To obtain a detailed picture of the intermittent deformation phenomena, numerous micron-sized specimens must be fabricated and tested. An improved focused ion beam fabrication method is proposed to prepare non-tapered micropillars with excellent control over their shape. Moreover, the fabrication time is less compared with other methods. The in situ compression device developed in our laboratory allows high-accuracy sample positioning and force/displacement measurements with high data sampling rates. The collective avalanche-like motion of the dislocations is observed as stress decreases on the stress-strain curves. An acoustic emission (AE) technique was employed for the first time to study the deformation behavior of micropillars. The AE technique provides important additional in situ information about the underlying processes during plastic deformation and is especially sensitive to the collective avalanche-like motion of the dislocations observed as the stress decreases on the deformation curves.

  3. Bactericidal micron-thin sol-gel films prevent pin tract and periprosthetic infection.

    Science.gov (United States)

    Qu, Haibo; Knabe, Christine; Burke, Megan; Radin, Shula; Garino, Jonathan; Schaer, Thomas; Ducheyne, Paul

    2014-08-01

    Orthopedic injuries constitute the majority of wounds sustained by U.S. soldiers in recent conflicts. The risk of infection is considerable with fracture fixation devices. In this pilot study, we examined the use of unique bactericidal micron-thin sol-gel films on fracture fixation devices and their ability to prevent and eradicate infections. External fixation was studied with micron-thin sol-gel coated percutaneous pins releasing triclosan and inserted medially into rabbit tibiae. A total of 11 rabbits received percutaneous pins that were either uncoated or sol-gel/triclosan coated. Internal fracture fixation was also studied using sol-gel coated intramedullary (IM) nails releasing vancomycin in the intramedullary tibiae. Six sheep received IM nails that were coated with a sol-gel film that either contained vancomycin or did not contain vancomycin. All animals were challenged with Staphylococcus aureus around the implant. Animals were euthanized at 1 month postoperative. Rabbits receiving triclosan/sol-gel coated percutaneous pins did not show signs of infection. Uncoated percutaneous pins had a significantly higher infection rate. In the sheep study, there were no radiographic signs of osteomyelitis with vancomycin/sol-gel coated IM nails, in contrast to the observations in the control cohort. Hence, the nanostructured sol-gel controlled release technology offers the promise of a reliable and continuous delivery system of bactericidals from orthopedic devices to prevent and treat infection. Reprint & Copyright © 2014 Association of Military Surgeons of the U.S.

  4. Large area sub-micron chemical imaging of magnesium in sea urchin teeth.

    Science.gov (United States)

    Masic, Admir; Weaver, James C

    2015-03-01

    The heterogeneous and site-specific incorporation of inorganic ions can profoundly influence the local mechanical properties of damage tolerant biological composites. Using the sea urchin tooth as a research model, we describe a multi-technique approach to spatially map the distribution of magnesium in this complex multiphase system. Through the combined use of 16-bit backscattered scanning electron microscopy, multi-channel energy dispersive spectroscopy elemental mapping, and diffraction-limited confocal Raman spectroscopy, we demonstrate a new set of high throughput, multi-spectral, high resolution methods for the large scale characterization of mineralized biological materials. In addition, instrument hardware and data collection protocols can be modified such that several of these measurements can be performed on irregularly shaped samples with complex surface geometries and without the need for extensive sample preparation. Using these approaches, in conjunction with whole animal micro-computed tomography studies, we have been able to spatially resolve micron and sub-micron structural features across macroscopic length scales on entire urchin tooth cross-sections and correlate these complex morphological features with local variability in elemental composition. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Laser smoothing of sub-micron grooves in hydroxyl-rich fused silica

    Energy Technology Data Exchange (ETDEWEB)

    Shen Nan [Lawrence Livermore National Laboratory, 7000 East Avenue, L-491, Livermore, CA 94550-9234 (United States); Matthews, Manyalibo J., E-mail: ibo@llnl.gov [Lawrence Livermore National Laboratory, 7000 East Avenue, L-491, Livermore, CA 94550-9234 (United States); Fair, James E.; Britten, Jerald A.; Nguyen, Hoang T.; Cooke, Diane; Elhadj, Selim; Yang, Steven T. [Lawrence Livermore National Laboratory, 7000 East Avenue, L-491, Livermore, CA 94550-9234 (United States)

    2010-04-01

    Nano- to micrometer-sized surface defects on UV-grade fused silica surfaces are known to be effectively smoothed through the use of high-temperature localized CO{sub 2} laser heating, thereby enhancing optical properties. However, the details of the mass transport and the effect of hydroxyl content on the laser smoothing of defective silica at sub-micron length scales are still not completely understood. In this study, we examine the morphological evolution of sub-micron, dry-etched periodic surface structures on type II and type III SiO{sub 2} substrates under 10.6 {mu}m CO{sub 2} laser irradiation using atomic force microscopy (AFM). In situ thermal imaging was used to map the transient temperature field across the heated region, allowing assessment of the T-dependent mass transport mechanisms under different laser-heating conditions. Computational fluid dynamics simulations correlated well with experimental results, and showed that for large effective capillary numbers (N{sub c} > 2), surface diffusion is negligible and smoothing is dictated by capillary action, despite the relatively small spatial scales studied here. Extracted viscosity values over 1700-2000 K were higher than the predicted bulk values, but were consistent with the surface depletion of OH groups, which was confirmed using confocal Raman microscopy.

  6. Assessment of the Bioaccessibility of Micronized Copper Wood on Simulated Stomach Fluid

    Science.gov (United States)

    The widespread use of copper-treated lumber has increased the potential for human exposure. Moreover, there is a lack of information on the fate and behavior of copper-treated wood particles following oral ingestion. In this study, the in vitro bioaccessibility of copper from copper-treated wood dust in simulated stomach fluid and DI water was determined. Three copper-treated wood products, liquid alkali copper quaternary and two micronized copper quarternary from different manufacturers, were incubated in the extraction media then fractionated by centrifugation and filtration through 0.45 ?m and 10 kDa filters. The copper concentrations from isolated fractions were measured using Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES). Total amounts of copper from each wood product were also determined using microwave-assisted acid digestion of dried wood samples and quantification using ICP-OES. The percent in vitro bioaccessible copper was between 83 and 90 % for all treated wood types. However, the percent of copper released in DI water was between 14 and 25 % for all wood products. This data suggests that copper is highly bioaccessible at low pH and may pose a potential human exposure risk upon ingestion. This dataset is associated with the following publication:Santiago-Rodrigues, L., J.L. Griggs, K. Bradham , C. Nelson , T. Luxton , W. Platten , and K. Rogers. Assessment of the bioaccessibility of micronized copper wood in synthetic stomach flu

  7. Phobos - Spectrophotometry between 0.3 and 0.6 micron and IR-radiometry

    Science.gov (United States)

    Ksanfomality, L.; Murchie, S.; Britt, D.; Fisher, P.; Duxbury, T.

    1991-01-01

    A 0.3 - 0.6 micron UV-visible spectrophotometer and a 5 - 50 micron radiometer in the KRFM experiment on Phobos 2 measured two groundtracks in the equatorial region of Phobos. Preliminary results indicate that three surface units can be recognized on the basis of differing UV-visible spectral reflectance properties. One of the units is most comparable spectrally to optically darkened mafic material, and a second is comparable either to anhydrous carbonaceous chondrite or to blackened mafic material. Spectral properties of the third unit do not resemble those of known meteorite types. Brightness temperatures measured by the radiometer are consistent with a typical surface thermal inertia of 1 - 3 x 10 to the -3 cal/(sq cm deg s exp 1/2), as suggested by previous investigations, implying a lunar-like regolith texture. At least one area of possibly higher thermal inertia has been tentatively identified, where a large degraded crater is crossed by several grooves. These results indicate significant lateral heterogeneity in the optical and textural properties of Phobos' surface.

  8. Investigation of air gasification of micronized coal, mechanically activated using the plasma control of the process

    Science.gov (United States)

    Butakov, Evgenii; Burdukov, Anatoly; Chernetskiy, Mikhail; Kuznetsov, Victor

    2017-10-01

    Combination of the processes of coal combustion and gasification into a single technology of mechano-chemical and plasma-chemical activation is of a considerable scientific and technological interest. Enhancement of coal reactivity at their grinding with mechanical activation is associated with an increase in the reaction rate of carbon material, and at plasma-chemical effect, the main is an increase in reactivity of the oxidizing agent caused by the high plasma temperatures of atomic oxygen. The process of gasification was studied on the 1-MW setup with tangential scroll supply of pulverized coal-air mixture and cylindrical reaction chamber. Coal ground by the standard boiler mill is fed to the disintegrator, then, it is sent to the scroll inlet of the burner-reactor with the transport air. Pulverized coal is ignited by the plasmatron of 10-kW power. In experiments on air gasification of micronized coal, carried out at the temperature in the reaction chamber of 1000-1200°C and air excess α = 0.3-1, the data on CO concentration of 11% and H2 concentration of up to 6% were obtained. Air and air-steam gasification of mechanically-activated micronized coals with plasma control was calculated using SigmaFlow software package.

  9. Force-Detected Magnetic Resonance Imaging in Micron-Scale Liquids

    Science.gov (United States)

    Sixta, Aimee; Bogat, Sophia; Wright, Diego; Mozaffari, Shirin; Tennant, Daniel; Paster, Jeremy; Markert, John

    We report our efforts in the development of Nuclear Magnetic Resonance Force Microscopy (NMRFM) for the study of biological materials in liquid media at the micron scale. Our probe contains microfluidic samples sealed in thin-walled (few µm) quartz tubes, with a micro-oscillator sensor nearby in vacuum to maintain its high mechanical resonance quality factor. An initial demonstration utilizes a permalloy magnet on the oscillator tip, which provides a resonant slice of thickness 0.5 µm and an area of diameter 10µm these first measurements aim to demonstrate a single-shot measurement of the longitudinal relaxation time T1 in aqueous solutions of Cu2SO4. We also aim to implement a sawtooth 2? cyclic inversion of the nuclear spins, a detection scheme that effectively eliminates common measurement artifacts. At the micron scale, both spin diffusion and physical diffusion in liquids tend to blur images in conventional magnetic resonance imaging (MRI); we aim to exploit the local nature of the NMRFM probe to obtain higher resolution dynamical images, with the ultimate goal of imaging within individual biological cells.

  10. Contact angle goniometry on single micron-scale fibers for composites

    Science.gov (United States)

    Hansen, Daniel; Bomholt, Niels; Jeppesen, Jonas Camillus; Simonsen, Adam Cohen

    2017-01-01

    Probing the wetting properties of microfibers by polymer resins is of significant interest for the rational design of composite materials. Here, we demonstrate the measurement of contact angles on wetted micron scale fibers by imaging the fluid meniscus with telecentric optics at a spatial resolution of 4 μm followed by automated image analysis. The meniscus is described as a catenary in the zero gravity approximation and by fitting this to the measured profile, the contact angle is obtained at the intersection between the fluid and the fiber surface. The method is validated by measuring agreement between contact angles for the PMMA/H2O system for fibers with diameters 20-800 μm and for sessile drops. The ability of the method to discriminate contact angles for a series of commercial glass fibers against epoxy resin is successfully demonstrated. AFM imaging shows that the surface topography of the fibers does not have a simple relationship with the variation in contact angles. Contact angle goniometry by imaging of micron scale fibers appears as a viable alternative to Wilhelmy type measurements and the measurement principle could readily be extended to dynamic wetting experiments.

  11. Dry coating of micronized API powders for improved dissolution of directly compacted tablets with high drug loading.

    Science.gov (United States)

    Han, Xi; Ghoroi, Chinmay; Davé, Rajesh

    2013-02-14

    Motivated by our recent study showing improved flow and dissolution rate of the active pharmaceutical ingredient (API) powders (20 μm) produced via simultaneous micronization and surface modification through continuous fluid energy milling (FEM) process, the performance of blends and direct compacted tablets with high drug loading is examined. Performance of 50 μm API powders dry coated without micronization is also considered for comparison. Blends of micronized, non-micronized, dry coated or uncoated API powders at 30, 60 and 70% drug loading, are examined. The results show that the blends containing dry coated API powders, even micronized ones, have excellent flowability and high bulk density compared to the blends containing uncoated API, which are required for direct compaction. As the drug loading increases, the difference between dry coated and uncoated blends is more pronounced, as seen in the proposed bulk density-FFC phase map. Dry coating led to improved tablet compactibility profiles, corresponding with the improvements in blend compressibility. The most significant advantage is in tablet dissolution where for all drug loadings, the t(80) for the tablets with dry coated APIs was well under 5 min, indicating that this approach can produce nearly instant release direct compacted tablets at high drug loadings. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Acoustic Emission Patterns and the Transition to Ductility in Sub-Micron Scale Laboratory Earthquakes

    Science.gov (United States)

    Ghaffari, H.; Xia, K.; Young, R.

    2013-12-01

    We report observation of a transition from the brittle to ductile regime in precursor events from different rock materials (Granite, Sandstone, Basalt, and Gypsum) and Polymers (PMMA, PTFE and CR-39). Acoustic emission patterns associated with sub-micron scale laboratory earthquakes are mapped into network parameter spaces (functional damage networks). The sub-classes hold nearly constant timescales, indicating dependency of the sub-phases on the mechanism governing the previous evolutionary phase, i.e., deformation and failure of asperities. Based on our findings, we propose that the signature of the non-linear elastic zone around a crack tip is mapped into the details of the evolutionary phases, supporting the formation of a strongly weak zone in the vicinity of crack tips. Moreover, we recognize sub-micron to micron ruptures with signatures of 'stiffening' in the deformation phase of acoustic-waveforms. We propose that the latter rupture fronts carry critical rupture extensions, including possible dislocations faster than the shear wave speed. Using 'template super-shear waveforms' and their network characteristics, we show that the acoustic emission signals are possible super-shear or intersonic events. Ref. [1] Ghaffari, H. O., and R. P. Young. "Acoustic-Friction Networks and the Evolution of Precursor Rupture Fronts in Laboratory Earthquakes." Nature Scientific reports 3 (2013). [2] Xia, Kaiwen, Ares J. Rosakis, and Hiroo Kanamori. "Laboratory earthquakes: The sub-Rayleigh-to-supershear rupture transition." Science 303.5665 (2004): 1859-1861. [3] Mello, M., et al. "Identifying the unique ground motion signatures of supershear earthquakes: Theory and experiments." Tectonophysics 493.3 (2010): 297-326. [4] Gumbsch, Peter, and Huajian Gao. "Dislocations faster than the speed of sound." Science 283.5404 (1999): 965-968. [5] Livne, Ariel, et al. "The near-tip fields of fast cracks." Science 327.5971 (2010): 1359-1363. [6] Rycroft, Chris H., and Eran Bouchbinder

  13. Proposal to Simultaneously Profile Wind and CO2 on Earth and Mars With 2-micron Pulsed Lidar Technologies

    Science.gov (United States)

    Singh, Upendra N.; Koch, Grady J.; Kavaya, Michael J.; Amzajerdian, Farzin; Ismail, Syed; Emmitt, David

    2005-01-01

    2-micron lidar technology has been in use and under continued improvement for many years toward wind measurements. But the 2-micron wavelength region is also rich in absorption lines of CO2 (and H2O to a lesser extent) that can be exploited with the differential absorption lidar (DIAL) technique to make species concentration measurements. A coherent detection receiver offers the possibility of making combined wind and DIAL measurements with wind derived from frequency shift of the backscatter spectrum and species concentration derived from power of the backscatter spectrum. A combined wind and CO2 measurement capability is of interest for applications on both Earth and Mars. CO2 measurements in the Earth atmosphere are of importance to studies of the global carbon cycle. Data on vertically-resolved CO2 profiles over large geographical observations areas are of particular interest that could potentially be made by deploying a lidar on an aircraft or satellite. By combining CO2 concentration with wind measurements an even more useful data product could be obtained in the calculation of CO2 flux. A challenge to lidar in this application is that CO2 concentration measurements must be made with a high level of precision and accuracy to better than 1%. The Martian atmosphere also presents wind and CO2 measurement problems that could be met with a combined DIAL/Doppler lidar. CO2 concentration in this scenario would be used to calculate atmospheric density since the Martian atmosphere is composed of 95% CO2. The lack of measurements of Mars atmospheric density in the 30-60 km range, dust storm formation and movements, and horizontal wind patterns in the 0-20 km range pose significant risks to aerocapture, and entry, descent, and landing of future robotic and human Mars missions. Systematic measurement of the Mars atmospheric density and winds will be required over several Mars years, supplemented with day-of-entry operational measurements. To date, there have been 5

  14. Growth and wetting of water droplet condensed between micron-sized particles and substrate.

    Science.gov (United States)

    Quang, Tran Si Bui; Leong, Fong Yew; An, Hongjie; Tan, Beng Hau; Ohl, Claus-Dieter

    2016-08-04

    We study heterogeneous condensation growth of water droplets on micron-sized particles resting on a level substrate. Through numerical simulations on equilibrium droplet profiles, we find multiple wetting states towards complete wetting of the particle. Specifically, a partially wetting droplet could undergo a spontaneous transition to complete wetting during condensation growth, for contact angles above a threshold minimum. In addition, we find a competitive wetting behavior between the particle and the substrate, and interestingly, a reversal of the wetting dependence on contact angles during late stages of droplet growth. Using quasi-steady assumption, we simulate a growing droplet under a constant condensation flux, and the results are in good agreement with our experimental observations. As a geometric approximation for particle clusters, we propose and validate a pancake model, and with it, show that a particle cluster has greater wetting tendency compared to a single particle. Together, our results indicate a strong interplay between contact angle, capillarity and geometry during condensation growth.

  15. Chemical composition and effects of micronized corn bran on iron bioavailability in rats

    Directory of Open Access Journals (Sweden)

    Gilson Irineu de Oliveira Junior

    2014-09-01

    Full Text Available The degermination of corn grains by dry milling generates 5% of a fibrous residue. After segregation and micronization, corn bran becomes a potential source of dietary fiber consumption. However, its effect on iron bioavailability has not been reported in the literature. The objective of the present study was to determine the nutritional composition of corn bran and its effects on iron bioavailability using the hemoglobin depletion-repletion method in rats. The animals were divided into two groups: cellulose (control and corn bran (experimental. The bran had high content of total dietary fiber, especially the insoluble fraction, and low phytate content. Hemoglobin uptake did not differ between groups at the end of repletion period, and the iron relative bioavailability value of the corn bran diet was 104% in comparison to that of the control group. The product evaluated proved to be a potential source of dietary fiber and it showed no negative effects on iron bioavailability.

  16. Optical manipulation for studies of collisional dynamics of micron-sized droplets under gravity.

    Science.gov (United States)

    Ivanov, Maksym; Chang, Kelken; Galinskiy, Ivan; Mehlig, Bernhard; Hanstorp, Dag

    2017-01-23

    A new experimental technique for creating and imaging collisions of micron-sized droplets settling under gravity is presented. A pair of glycerol droplets is suspended in air by means of two optical traps. The droplet relative velocities are determined by the droplet sizes. The impact parameter is precisely controlled by positioning the droplets using the two optical traps. The droplets are released by turning off the trapping light using electro-optical modulators. The motion of the sedimenting droplets is then captured by two synchronized high-speed cameras, at a frame rate of up to 63 kHz. The method allows the direct imaging of the collision of droplets without the influence of the optical confinement imposed by the trapping force. The method will facilitate efficient studies of the microphysics of neutral, as well as charged, liquid droplets and their interactions with light, electric field and thermodynamic environment, such as temperature or vapor concentration.

  17. Contact angle goniometry on single micron-scale fibers for composites

    DEFF Research Database (Denmark)

    Hansen, Daniel; Bomholt, Niels; Jeppesen, Jonas Camillus

    2017-01-01

    Probing the wetting properties of microfibers by polymer resins is of significant interest for the rational design of composite materials. Here, we demonstrate the measurement of contact angles on wetted micron scale fibers by imaging the fluid meniscus with telecentric optics at a spatial...... resolution of 4 um followed by automated image analysis. The meniscus is described as a catenary in the zero gravity approximation and by fitting this to the measured profile, the contact angle is obtained at the intersection between the fluid and the fiber surface. The method is validated by measuring...... agreement between con-tact angles for the PMMA/H2O system for fibers with diameters 20–800 um and for sessile drops. The ability of the method to discriminate contact angles for a series of commercial glass fibers against epoxy resin is successfully demonstrated. AFM imaging shows that the surface...

  18. Evaluating Nighttime CALIOP 0.532 micron Aerosol Optical Depth and Extinction Coefficient Retrievals

    Science.gov (United States)

    Campbell, J. R.; Tackett, J. L.; Reid, J. S.; Zhang, J.; Curtis, C. A.; Hyer, E. J.; Sessions, W. R.; Westphal, D. L.; Prospero, J. M.; Welton, E. J.; hide

    2012-01-01

    NASA Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) Version 3.01 5-km nighttime 0.532 micron aerosol optical depth (AOD) datasets from 2007 are screened, averaged and evaluated at 1 deg X 1 deg resolution versus corresponding/co-incident 0.550 micron AOD derived using the US Navy Aerosol Analysis and Prediction System (NAAPS), featuring two-dimensional variational assimilation of quality-assured NASA Moderate Resolution Imaging Spectroradiometer (MODIS) and Multi-angle Imaging Spectroradiometer (MISR) AOD. In the absence of sunlight, since passive radiometric AOD retrievals rely overwhelmingly on scattered radiances, the model represents one of the few practical global estimates available from which to attempt such a validation. Daytime comparisons, though, provide useful context. Regional-mean CALIOP vertical profiles of night/day 0.532 micron extinction coefficient are compared with 0.523/0.532 micron ground-based lidar measurements to investigate representativeness and diurnal variability. In this analysis, mean nighttime CALIOP AOD are mostly lower than daytime (0.121 vs. 0.126 for all aggregated data points, and 0.099 vs. 0.102 when averaged globally per normalised 1 deg. X 1 deg. bin), though the relationship is reversed over land and coastal regions when the data are averaged per normalised bin (0.134/0.108 vs. 0140/0.112, respectively). Offsets assessed within single bins alone approach +/- 20 %. CALIOP AOD, both day and night, are higher than NAAPS over land (0.137 vs. 0.124) and equal over water (0.082 vs. 0.083) when averaged globally per normalised bin. However, for all data points inclusive, NAAPS exceeds CALIOP over land, coast and ocean, both day and night. Again, differences assessed within single bins approach 50% in extreme cases. Correlation between CALIOP and NAAPS AOD is comparable during both day and night. Higher correlation is found nearest the equator, both as a function of sample size and relative signal magnitudes inherent at

  19. SAGE I and SAM II measurements of 1 micron aerosol extinction in the free troposphere

    Science.gov (United States)

    Kent, G. S.; Farrukh, U. O.; Wang, P. H.; Deepak, A.

    1988-01-01

    The SAGE-I and SAM-II satellite sensors were designed to measure, with global coverage, the 1 micron extinction produced by the stratospheric aerosol. In the absence of high altitude clouds, similar measurements may be made for the free tropospheric aerosol. Median extinction values at middle and high latitudes in the Northern Hemisphere, for altitudes between 5 and 10 km, are found to be one-half to one order of magnitude greater than values at corresponding latitudes in the Southern Hemisphere. In addition, a seasonal increase by a factor of 1.5-2 was observed in both hemispheres, in 1979-80, in local spring and summer. Following major volcanic eruptions, a long-lived enhancement of the aerosol extinction is observed for altitudes above 5 km.

  20. SAGE 1 and SAM 2 measurements of 1 micron aerosol extinction in the free troposphere

    Science.gov (United States)

    Kent, G. S.; Farrukh, U. O.; Wang, P. H.; Deepak, A.

    1988-01-01

    The SAGE 1 and SAM 2 satellite sensors were designed to measure, with global coverage, the 1 micron extinction produced by the stratospheric aerosol. In the absence of high altitude cloud, similar measurements may be made for the free tropospheric aerosol. Median extinction values in the Northern Hemisphere, for altitudes between 5 and 10 km, are found to be one-half to one order of magnitude greater than values at corresponding latitudes in the Southern Hemisphere. In addition, a seasonal increase by a factor of 1.5 yields 2 is observed in both hemispheres in local spring and summer. Following major volcanic eruptions, a long-lived enhancement of the aerosol extinction is observed for altitudes above 5 km.

  1. Effects of hydrodynamic interaction on random adhesive loose packings of micron-sized particles

    Science.gov (United States)

    Liu, Wenwei; Tao, Ran; Chen, Sheng; Zhang, Huang; Li, Shuiqing

    2017-06-01

    Random loose packings of monodisperse spherical micron-sized particles under a uniform flow field are investigated via an adhesive discrete-element method with the two-way coupling between the particles and the fluid. Characterized by a dimensionless adhesion parameter, the packing fraction follows the similar law to that without fluid, but results in larger values due to the hydrodynamic compression. The total pressure drop through the packed bed shows a critical behaviour at the packing fraction of ϕ ≈ 0.22 in the present study. The normalized permeability of the packed bed for different parameters increases with the increase of porosities and is also in consistent with the Kozeny-Carman equation.

  2. Anomalous plasticity in the cyclic torsion of micron scale metallic wires.

    Science.gov (United States)

    Liu, Dabiao; He, Yuming; Dunstan, D J; Zhang, Bo; Gan, Zhipeng; Hu, Peng; Ding, Huaming

    2013-06-14

    The plasticity of micron scale Cu and Au wires under cyclic torsion is investigated for the first time by using a torsion balance technique. In addition to a size effect, a distinct Bauschinger effect and an anomalous plastic recovery, wherein reverse plasticity even occurs upon unloading, are unambiguously revealed. The Bauschinger effect and plastic recovery have been observed in molecular dynamics and discrete dislocation dynamics simulations of ideal single-crystal wires; the results here are an excellent confirmation that these effects also occur in experiment in nonideal polycrystalline wires. A physical model consistent with the simulations is described in which the geometrically necessary dislocations induced by the nonuniform deformation in torsion play the key role in these anomalous plastic behaviors.

  3. Allothermal gasification of biomass using micron size biomass as external heat source.

    Science.gov (United States)

    Cheng, Gong; Li, Qian; Qi, Fangjie; Xiao, Bo; Liu, Shiming; Hu, Zhiquan; He, Piwen

    2012-03-01

    An allothermal biomass gasification system using biomass micron fuel (BMF) as external heat source was developed. In this system, heat supplied to gasifier was generated from combustion of BMF. Biomass feedstock was gasified with steam and then tar in the produced gas was decomposed in a catalytic bed with NiO/γ-Al(2)O(3) catalyst. Finally the production gas was employed as a substitute for civil fuel gas. An overall energy analysis of the system was also investigated. The results showed that the lower heating value of the product gas reached more than 12 MJ/Nm(3). The combusted BMF accounted for 26.8% of the total energy input. Allothermal gasification based on the substituted BMF for conventional energy was an efficient and economical technology to obtain bioenergy. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. A 58 x 62 pixel Si:Ga array camera for 5 - 14 micron astronomical imaging

    Science.gov (United States)

    Gezari, D. Y.; Folz, W. C.; Woods, L. A.; Wooldridge, J. B.

    1989-01-01

    A new infrared array camera system has been successfully applied to high background 5 - 14 micron astronomical imaging photometry observations, using a hybrid 58 x 62 pixel Si:Ga array detector. The off-axis reflective optical design incorporating a parabolic camera mirror, circular variable filter wheel, and cold aperture stop produces diffraction-limited images with negligible spatial distortion and minimum thermal background loading. The camera electronic system architecture is divided into three subsystems: (1) high-speed analog front end, including 2-channel preamp module, array address timing generator, bias power suppies, (2) two 16 bit, 3 microsec per conversion A/D converters interfaced to an arithmetic array processor, and (3) an LSI 11/73 camera control and data analysis computer. The background-limited observational noise performance of the camera at the NASA/IRTF telescope is NEFD (1 sigma) = 0.05 Jy/pixel min exp 1/2.

  5. Electrical four-point probing of spherical metallic thin films coated onto micron sized polymer particles

    Energy Technology Data Exchange (ETDEWEB)

    Pettersen, Sigurd R., E-mail: sigurd.r.pettersen@ntnu.no, E-mail: jianying.he@ntnu.no; Stokkeland, August Emil; Zhang, Zhiliang; He, Jianying, E-mail: sigurd.r.pettersen@ntnu.no, E-mail: jianying.he@ntnu.no [NTNU Nanomechanical Lab, Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim (Norway); Kristiansen, Helge [NTNU Nanomechanical Lab, Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim (Norway); Conpart AS, Dragonveien 54, NO-2013 Skjetten (Norway); Njagi, John; Goia, Dan V. [Center for Advanced Materials Processing, Clarkson University, Potsdam, New York 13699-5814 (United States); Redford, Keith [Conpart AS, Dragonveien 54, NO-2013 Skjetten (Norway)

    2016-07-25

    Micron-sized metal-coated polymer spheres are frequently used as filler particles in conductive composites for electronic interconnects. However, the intrinsic electrical resistivity of the spherical thin films has not been attainable due to deficiency in methods that eliminate the effect of contact resistance. In this work, a four-point probing method using vacuum compatible piezo-actuated micro robots was developed to directly investigate the electric properties of individual silver-coated spheres under real-time observation in a scanning electron microscope. Poly(methyl methacrylate) spheres with a diameter of 30 μm and four different film thicknesses (270 nm, 150 nm, 100 nm, and 60 nm) were investigated. By multiplying the experimental results with geometrical correction factors obtained using finite element models, the resistivities of the thin films were estimated for the four thicknesses. These were higher than the resistivity of bulk silver.

  6. Accurate frequency of the 119 micron methanol laser from tunable far-infrared absorption spectroscopy

    Science.gov (United States)

    Inguscio, M.; Zink, L. R.; Evenson, K. M.; Jennings, D. A.

    1990-01-01

    High-accuracy absorption spectroscopy of CH3OH in the far infrared is discussed. In addition to 22 transitions in the ground state, the frequency of the (n, tau, J, K), (0, 1, 16, 8) to (0, 2, 15, 7) transition in the nu5 excited vibrational level, which is responsible for the laser emission at 119 microns, was measured. The measured frequency is 2,522,782.57(10) MHz at zero pressure, with a pressure shift of 6.1(32) kHz/Pa (0.805/420/ MHz/torr). An accurate remeasurement of the laser emission frequency has also been performed, and the results are in good agreement.

  7. Micronized-coal-water slurry sprays from a diesel engine positive displacement fuel injection system

    Energy Technology Data Exchange (ETDEWEB)

    Caton, J.A.; Kihm, K.D.; Seshadri, A.K.; Zicterman, G. [Texas A and M Univ., College Station, TX (United States). Dept. of Mechanical Engineering

    1991-12-31

    Experiments have been conducted to characterize the sprays from a modified positive displacement fuel injection system for a diesel engine. Diesel fuel water and three concentrations of micronized-coal-water slurry were used in these experiments. The injection system includes an injection jerk pump driven by an electric motor, a specially designed diaphragm to separate the abrasive coal slurry fuel from the pump, and a single-hole fuel nozzle. The sprays were injected into a pressurized chamber equipped with windows. High speed movies and still photographs of the sprays were obtained. In addition, instaneous fuel line pressures and needle lifts were obtained. Data were acquired as a function of fluid, nozzle orifice diameter, rack setting and chamber conditions. The high speed movies were used to determine spray penetration and spray growth.

  8. Development of a Pulsed 2-Micron Integrated Path Differential Absorption Lidar for CO2 Measurement

    Science.gov (United States)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer; Refaat, Tamer

    2013-01-01

    Atmospheric carbon dioxide (CO2) is an important greenhouse gas that significantly contributes to the carbon cycle and global radiation budget on Earth. Active remote sensing of CO2 is important to address several limitations that contend with passive sensors. A 2-micron double-pulsed, Integrated Path Differential Absorption (IPDA) lidar instrument for ground and airborne atmospheric CO2 concentration measurements via direct detection method is being developed at NASA Langley Research Center. This active remote sensing instrument will provide an alternate approach of measuring atmospheric CO2 concentrations with significant advantages. A high energy pulsed approach provides high-precision measurement capability by having high signal-to-noise ratio level and unambiguously eliminates the contamination from aerosols and clouds that can bias the IPDA measurement. Commercial, on the shelf, components are implemented for the detection system. Instrument integration will be presented in this paper as well as a background for CO2 measurement at NASA Langley research Center

  9. Novel 15. 9-micron source. [/sup 15/ND/sub 3/ laser

    Energy Technology Data Exchange (ETDEWEB)

    Buchwald, M.I.; Jones, C.R.; Nelson, L.Y.

    1983-01-01

    Laser emission has been generated in /sup 15/ND/sub 3/ by pumping at 860.4 cm/sup -1/. Strong laser action has been observed at 123 cm/sup -1/, 109 cm/sup -1/ and, with up to 10 millijoules extracted, at 628.1 cm/sup -1/. Spectroscopic analysis indicates that the pumping arises from, and the 628.1-cm/sup -1/ emission terminates on, the same rotational state. Analysis of the time histories of the three laser emissions as well as studies of laser output energies indicates that 15.9-micron output arises from a 4-wave type process. This system, in addition, clarifies the interpretation of earlier studies of CO/sub 2/-laser-pumped ammonia lasers.

  10. Micron-Sized Pored Membranes Based on Polyvinylidene Difluoride Hexafluoropropylene Prepared by Phase Inversion Techniques

    Directory of Open Access Journals (Sweden)

    Andreas Hofmann

    2017-10-01

    Full Text Available In this study, micron-sized pored membranes, based on the co-polymer polyvinylidene difluoride hexafluoropropylene (PVdF-HFP were prepared via phase inversion techniques. The aim of the approach was to find less harmful and less toxic solvents to fabricate such films. Therefore, the Hansen solubility approach was used to identify safer and less toxic organic solvents for the phase inversion process, relative to present solvent mixtures, based on acetone, dimethyl formamide, dimethyl acetamide or methanol. With this approach, it was possible to identify cyclopentanone, ethylene glycol and benzyl alcohol as suitable solvents for the membrane preparation process. Physicochemical and mechanical properties were analyzed and compared, which revealed a uniform membrane structure through the cross section. Differences were observed at the top surface, in dependence of both preparation approaches, which are described in detail.

  11. Range management visual impacts

    Science.gov (United States)

    Bruce R. Brown; David Kissel

    1979-01-01

    Historical overgrazing of western public rangelands has resulted in the passage of the Public Rangeland Improvement Act of 1978. The main purpose of this Act is to improve unsatisfactory range conditions. A contributing factor to unfavorable range conditions is adverse visual impacts. These visual impacts can be identified in three categories of range management: range...

  12. A 128 x 128 InGaAs detector array for 1.0 - 1.7 microns

    Science.gov (United States)

    Olsen, G.; Joshi, A.; Lange, M.; Woodruff, K.; Mykietyn, E.; Gay, D.; Ackley, D.; Erickson, G.; Ban, V.; Staller, C.

    1990-01-01

    A two-dimensional 128 x 128 detector array for the 1.0 - 1.7 micron spectral region has been demonstrated with indium gallium arsenide. The 30 micron square pixels had 60 micron spacing in both directions and were designed to be compatible with a 2D Reticon multiplexer. Dark currents below 100 pA, capacitance near 0.1 pF, and quantum efficiencies above 80 percent were measured. Probe maps of dark current and quantum efficiency are presented along with pixel dropout data and wafer yield which was as high as 99.89 percent (7 dropouts) in an area of 6528 pixels and 99.37 percent (103 dropouts) over an entire 128 x 128 pixel region.

  13. Perturbation of a radially oscillating single-bubble by a micron-sized object.

    Science.gov (United States)

    Montes-Quiroz, W; Baillon, F; Louisnard, O; Boyer, B; Espitalier, F

    2017-03-01

    A single bubble oscillating in a levitation cell is acoustically monitored by a piezo-ceramics microphone glued on the cell external wall. The correlation of the filtered signal recorded over distant cycles on one hand, and its harmonic content on the other hand, are shown to carry rich information on the bubble stability and existence. For example, the harmonic content of the signal is shown to increase drastically once air is fully dissociated in the bubble, and the resulting pure argon bubble enters into the upper branch of the sonoluminescence regime. As a consequence, the bubble disappearance can be unambiguously detected by a net drop in the harmonic content. On the other hand, we perturb a stable sonoluminescing bubble by approaching a micron-sized fiber. The bubble remains unperturbed until the fiber tip is approached within a critical distance, below which the bubble becomes unstable and disappears. This distance can be easily measured by image treatment, and is shown to scale roughly with 3-4 times the bubble maximal radius. The bubble disappearance is well detected by the drop of the microphone harmonic content, but several thousands of periods after the bubble actually disappeared. The delay is attributed to the slow extinction of higher modes of the levitation cell, excited by the bubble oscillation. The acoustic detection method should however allow the early detection and imaging of non-predictable perturbations of the bubble by foreign micron-sized objects, such as crystals or droplets. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Preparation and characterization of micronized ellagic acid using antisolvent precipitation for oral delivery.

    Science.gov (United States)

    Li, Yong; Zhao, Xiuhua; Zu, Yuangang; Zhang, Yin; Ge, Yunlong; Zhong, Chen; Wu, Weiwei

    2015-01-01

    In this work, poorly water soluble phytochemical ellagic acid (EA) was micronized to increase its solubility and thereby the bioavailability during antisolvent precipitation process using N-methyl pyrrolidone (NMP) as solvent and deionized water as antisolvent. The micronized EA (m-EA) freeze-dried powder was prepared by the subsequent lyophilization process. The effects of various experimental parameters on the mean particle size (MPS) of m-EA suspension (m-EAS) in the antisolvent precipitation process were investigated. MPS and production efficiency were taken into account comprehensively to obtain the optimum conditions of antisolvent precipitation. Under the optimum conditions, m-EA freeze-dried powder with a MPS of 429.2 ± 7.6 nm was obtained. The physico-chemical properties of m-EA freeze-dried powder were detected by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), liquid chromatography-tandem mass spectrometry (LC-MS/MS), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The results indicated m-EA kept the same chemical structure with raw EA, but the crystallinity was greatly reduced. Furthermore, a comparison of the 50% inhibition concentration (IC50) values revealed that m-EA was more effective than raw EA in scavenging 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical. Meanwhile, m-EA also showed higher reducing power. Moreover, the residual amount of NMP was lower than the International Conference on Harmonization limit (530 ppm) for solvents. The dissolution rate of m-EA was approximately 2 times of raw EA. Moreover, the solubility of m-EA was about 6.5 times of raw EA. Meanwhile, the bioavailability of m-EA increased about 2 times compared with raw EA via oral administration. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Trends and sources of ozone and sub-micron aerosols at the Mt. Bachelor Observatory (MBO) during 2004-2015

    Science.gov (United States)

    Zhang, Lei; Jaffe, Daniel A.

    2017-09-01

    In this paper, we report the climatology of tropospheric ozone (O3) and sub-micron aerosol scattering at the Mt. Bachelor Observatory (MBO, 2.8 km asl) in central Oregon, USA, during 2004-2015. The seasonal cycle for O3 showed a bimodal pattern with peaks in April and July, while aerosol scattering (σsp) was lognormally distributed with a very high peak in August and a smaller peak in May. The mean O3 concentrations showed positive and significant trends in all seasons except winter, with a slope of 0.6-0.8 ppbv yr-1. Monthly criteria for isolating free tropospheric (FT) and boundary layer influenced (BLI) air masses at MBO were obtained based on comparison of MBO water vapor (WV) distributions to those of Salem (SLE) and Medford (MFR), Oregon, at equivalent pressure level. In all seasons, FT O3 was, on average, higher than BLI O3, but the seasonal patterns were rather similar. For σsp the FT mean in spring was higher, but the BLI mean in summer was significantly higher, indicating the importance of regional wildfire smoke. To better understand the causes for the seasonal and interannual trends at MBO, we identified four major categories of air masses that impact O3, carbon monoxide (CO) and aerosols: upper troposphere and lower stratosphere (UTLS) O3 intrusion, Asian long-range transport (ALRT), Arctic air pollution (AAP) and plumes from the Pacific Northwest region (PNW). ALRT and PNW plumes can be further divided into wildfires (WF), industrial pollution (IP) and mineral dust (MD). Over the 12 years of observations, 177 individual plume events have been identified. Enhancement ratios (ERs) and Ångström exponents (AEs) of aerosols were calculated for all events. The lowest slope of Δσsp/ΔO3 is a unique feature of UTLS events. PNW-WF events have the highest averages for Δσsp/ΔCO, Δσsp/ΔO3 and Δσsp/ΔNOy compared to other events. These ERs decrease during long-range transport due to the shorter residence time of aerosols compared to the other

  16. Atmospheric Error Correction of the Laser Beam Ranging

    Directory of Open Access Journals (Sweden)

    J. Saydi

    2014-01-01

    Full Text Available Atmospheric models based on surface measurements of pressure, temperature, and relative humidity have been used to increase the laser ranging accuracy by ray tracing. Atmospheric refraction can cause significant errors in laser ranging systems. Through the present research, the atmospheric effects on the laser beam were investigated by using the principles of laser ranging. Atmospheric correction was calculated for 0.532, 1.3, and 10.6 micron wavelengths through the weather conditions of Tehran, Isfahan, and Bushehr in Iran since March 2012 to March 2013. Through the present research the atmospheric correction was computed for meteorological data in base of monthly mean. Of course, the meteorological data were received from meteorological stations in Tehran, Isfahan, and Bushehr. Atmospheric correction was calculated for 11, 100, and 200 kilometers laser beam propagations under 30°, 60°, and 90° rising angles for each propagation. The results of the study showed that in the same months and beam emission angles, the atmospheric correction was most accurate for 10.6 micron wavelength. The laser ranging error was decreased by increasing the laser emission angle. The atmospheric correction with two Marini-Murray and Mendes-Pavlis models for 0.532 nm was compared.

  17. In vitro dissolution enhancement of micronized l-nimodipine by antisolvent re-crystallization from its crystal form H.

    Science.gov (United States)

    Zu, Yuangang; Li, Na; Zhao, Xiuhua; Li, Yong; Ge, Yulong; Wang, Weiguo; Wang, Kunlun; Liu, Ying

    2014-04-10

    In order to enhance solubility and dissolution rate in water, micronized l-nimodipine (NMD) has been successfully prepared by antisolvent re-crystallization process using acetone as solvent and deionized water as antisolvent. The effects of five experimental parameters on the mean particle size (MPS) of NMD nanosuspension were investigated. It was found that the MPS of NMD nanosuspension decreased significantly when the concentration of NMD-acetone solution increased from 50 to 150 mg/mL along with the increase of volume ratio of antisolvent to solvent from 1 to 3, and then increased slightly with the following increase of them. By contrast, the MPS decreased with the increased feed rate of NMD-acetone solution and the amount of surfactant, from 1 to 3 mL/min and 0.025% to 0.2%, respectively. Thereafter, the MPS did not show any obvious change. The precipitation temperature had no significant effects on MPS. The optimum micronization conditions were determined as follows: NMD-acetone solution concentration of 150 mg/mL, the volume ratio of antisolvent to solvent of 3, the flow rate of NMD-acetone solution of 9 mL/min, the preparation temperature of 15°C and the amount of the surfactant of 0.2%. Under optimum conditions, micronized NMD with a MPS of 708.3 nm was obtained. The micronized product was characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), high performance liquid chromatography-mass spectrometry (LC-MS), X-ray diffraction (XRD), differential scanning calorimetry (DSC), and thermo gravimetric (TG), to verify the influences of micronization process on the final product. The results showed that the chemical structure of micronized NMD was not changed, but the crystalline structure had undergone transition during precipitation, which changed from form H into L. The dissolution test showed that micronized NMD exhibited enhanced dissolution rate and solubility of 5.22 folds compared to raw H-NMD. These results

  18. Radiation damage in a micron-sized protein crystal studied via reciprocal space mapping and Bragg coherent diffractive imaging

    Directory of Open Access Journals (Sweden)

    H. D. Coughlan

    2015-07-01

    Full Text Available For laboratory and synchrotron based X-ray sources, radiation damage has posed a significant barrier to obtaining high-resolution structural data from biological macromolecules. The problem is particularly acute for micron-sized crystals where the weaker signal often necessitates the use of higher intensity beams to obtain the relevant data. Here, we employ a combination of techniques, including Bragg coherent diffractive imaging to characterise the radiation induced damage in a micron-sized protein crystal over time. The approach we adopt here could help screen for potential protein crystal candidates for measurement at X-ray free election laser sources.

  19. Development and Integration of a Pulsed 2-micron Direct Detection Integrated Path Differential Absorption (IPDA) Lidar for CO2 Column Measurement from Airborne platform Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop, integrate and demonstrate a 2-micron pulsed Integrated Path Differential Absorption Lidar (IPDA) instrument CO2 Column Measurement from Airborne platform...

  20. Minnesota Pheasant Range

    Data.gov (United States)

    Minnesota Department of Natural Resources — This dataset delineates the spatial range of wild pheasant populations in Minnesota as of 2002 by dividing the MN state boundary into 2 units: pheasant range and...

  1. Substring Range Reporting

    DEFF Research Database (Denmark)

    Bille, Philip; Gørtz, Inge Li

    2014-01-01

    We revisit various string indexing problems with range reporting features, namely, position-restricted substring searching, indexing substrings with gaps, and indexing substrings with intervals. We obtain the following main results. We give efficient reductions for each of the above problems...... to a new problem, which we call substring range reporting. Hence, we unify the previous work by showing that we may restrict our attention to a single problem rather than studying each of the above problems individually. We show how to solve substring range reporting with optimal query time and little...... for substring range reporting generalize to substring range counting and substring range emptiness variants. We also obtain non-trivial time-space trade-offs for these problems. Our bounds for substring range reporting are based on a novel combination of suffix trees and range reporting data structures...

  2. Opposition Surges on Icy Moons: Observations by Cassini VIMS and ISS between 0.2 and five microns

    Science.gov (United States)

    Buratti, Bonnie; Dalba, Paul; Brown, Robert; Clark, Roger; Hillier, John; Mosher, Joel; Baines, Kevin; Nicholson, Phillip

    2013-04-01

    The opposition effect is the surge in brightness that most airless bodies exhibit as they become fully illuminated to an observer. Important information about the physical nature of the surface, including the constituent particle sizes and their size distribution, the compaction state of the upper regolith, and composition are embedded in the effect. Models that describe the surge in terms of physical parameters have been developed during recent decades. The acquisition of "true opposition" is rare and fleeting (and for objects in inclined orbits, nearly unattainable), so testing and application of the models has been hampered. During the 9 years of the Cassini-Huygens mission, a wealth of data at and near opposition has been collected for the 6 main icy satellites of Saturn: Mimas, Enceladus, Tethys, Dione, Rhea, and Iapetus, including some recently obtained key data for Enceladus and Mimas. Furthermore, the combined spectral range of the Imaging Science Subsystem (ISS) and Visible Infrared Mapping Spectrometer (VIMS) cameras spans 0.20-5.1 microns, which includes many spectral regions not observable from the ground. This extraordinary coverage in solar phase angle and in spectral range provides in essence a laboratory in which to test models of the opposition effect. Although these moons are bright in the visible region, where multiple scattering complicates the modeling, they are dark in many regions of the infrared, enabling a more robust analysis. Some satellites have data for both leading and trailing sides, allowing an investigation of alteration effects such as meteoritic and magnetospheric bombardment and accretion of E-ring particles. Small particles accreted onto their surfaces from the E-ring appear to become "invisible" at the longer wavelengths. All of the moons exhibit a very steep curve at solar phase angles less than one degree, suggesting that coherent backscatter is present. However, this "supersurge" is present even at wavelengths where there is

  3. Can the Lateral Proximity Effect Be Used to Create the Superconducting Transition of a Micron-Sized TES?

    Science.gov (United States)

    Barrentine, E. M.; Brandl, D. E.; Brown, A. D.; Denis, K. L.; Fionkbeiner, F. M.; Hsieh, W. T.; Nagler, P. C.; Stevenson, T. R.; Timble, P. T.; U-Yen, K.

    2012-01-01

    Recent measurements of micron-sized Mo/Au bilayer Transition Edge Sensors (TESs) have demonstrated that the TES can behave like an S-S'-S weak link due to the lateral proximity effect from superconducting leads. In this regime the Tc is a function of bias current, and the effective Tc shifts from the bilayer Tc towards the lead Tc. We explore the idea that a micron-sized S-N-S weak link could provide a new method to engineer the TES Tc. This method would be particularly useful when small size requirements for a bilayer TES (such as for a hot-electron microbolometer) lead to undesirable shifts in the bilayer Te. We present measurements of a variety of micron-sized normal Au 'TES' devices with Nb leads. We find no evidence of a superconducting transition in the Au film of these devices, in dramatic contrast to the strong lateral proximity effect seen in micron-sized Mo/Au bilayer devices. The absence of a transition in these devices is also in disagreement with theoretical predictions for S-N-S weak links. We hypothesize that a finite contact resistance between the Nb and Au may be weakening the effect. We conclude that the use of the lateral proximity effect to create a superconducting transition will be difficult given current fabrication procedures.

  4. Very high-cycle fatigue failure in micron-scale polycrystalline silicon films : Effects of environment and surface oxide thickness

    NARCIS (Netherlands)

    Alsem, D. H.; Boyce, B. L.; Stach, E. A.; De Hosson, J. Th. M.; Ritchie, R. O.

    2007-01-01

    Fatigue failure in micron-scale polycrystalline silicon structural films, a phenomenon that is not observed in bulk silicon, can severely impact the durability and reliability of microelectromechanical system devices. Despite several studies on the very high-cycle fatigue behavior of these films (up

  5. Magnetic characterization of radio frequency heat affected micron size Fe3O4 powders: a bio-application perspective

    CSIR Research Space (South Africa)

    Roul, BK

    2009-05-01

    Full Text Available Micron size Fe3O4 powders were chemically prepared and processed by radio frequency (13.56 MHz) oxygen plasma irradiation technique at different elevated temperatures using low radio frequency (RF) power level. Low magnetic field RF superconducting...

  6. Thermal Coupling and Damage Mechanisms of 1.06 Micron Laser Radiation and Laser-Produced Plasma on Selected Materials

    Science.gov (United States)

    1982-12-01

    CinffejdIn Office) 15. SECURITY CLASS. ( hos rpa rfp ISO . OECLASSIVICATION/lDOWNGRAONG SCIOULE I$. 0e5?RI5SjfION ST,%rtME0 T (of this Repot) Approved -.or...Polished 2024 Aluminum before Irradiation, SEM 50001 . II Figure 19. 1 Micron Silicon Coating over Polished 2024 Aluminum after Irradiation with 9.8 MW/cm

  7. Column CO2 Measurement From an Airborne Solid-State Double-Pulsed 2-Micron Integrated Path Differential Absorption Lidar

    Science.gov (United States)

    Singh, U. N.; Yu, J.; Petros, M.; Refaat, T. F.; Remus, R.; Fay, J.; Reithmaier, K.

    2014-01-01

    NASA LaRC is developing and integrating a double-Pulsed 2-micron direct detection IPDA lidar for CO2 column measurement from an airborne platform. The presentation will describe the development of the 2-micrometers IPDA lidar system and present the airborne measurement of column CO2 and will compare to in-situ measurement for various ground target of different reflectivity.

  8. A Nordic project on high speed low power design in sub-micron CMOS technology for mobile phones

    DEFF Research Database (Denmark)

    Olesen, Ole

    This paper is a survey paper presenting the Nordic CONFRONT project and reporting some results from the group at CIE/DTU, Denmark. The objective of the project is to demonstrate the feasibility of sub-micron CMOS for the realisation of RF front-end circuits operating at frequencies in the 1...

  9. Facile Synthesis of Micron-Sized Hollow Silver Spheres as Substrates for Surface-Enhanced Raman Scattering

    Directory of Open Access Journals (Sweden)

    Lixin Xia

    2014-01-01

    Full Text Available A well-designed type of micron-sized hollow silver sphere was successfully synthesized by a simple hard-template method to be used as substrates for surface-enhanced Raman scattering. 4 Å molecular sieves were employed as a removable solid template. [Ag(NH32]+ was absorbed as the precursor on the surface of the molecular sieve. Formaldehyde was selected as a reducing agent to reduce [Ag(NH32]+, resulting in the formation of a micron-sized silver shell on the surface of the 4 Å molecular sieves. The micron-sized hollow silver spheres were obtained by removing the molecular sieve template. SEM and XRD were used to characterize the structure of the micron-sized hollow silver spheres. The as-prepared micro-silver spheres exhibited robust SERS activity in the presence of adsorbed 4-mercaptobenzoic acid (4-MBA with excitation at 632.8 nm, and the enhancement factor reached ~1.5 × 106. This synthetic process represents a promising method for preparing various hollow metal nanoparticles.

  10. Performance of a Beetle 1.2 chip reading out a Micron PR03 R measuring sensor

    CERN Document Server

    Buytaert, J; Eckstein, D; Palacios, J P

    2004-01-01

    The performance of a Beetle 1.2 chip bonded to a Micron PR03 measuring prototype VELO sensor has been studied using test beam data collected by the VELO group. Results concerning the peak signal, signal to noise ratio, signal remainder 25 ns after peaking time, and a scan of the undershoot region for different bias settings of the Beetle are presented.

  11. Wear behaviour of A356 aluminium alloy reinforced with micron and nano size SiC particles

    CSIR Research Space (South Africa)

    Camagu, ST

    2013-07-01

    Full Text Available A method for producing metal matrix composites MMC was successfully implemented for mixing nano and low micron (“Hybrid”) sized SiC reinforcing particles in an aluminium alloy matrix. Due to the improved specific modulus and strength, MMC...

  12. Progress on High-Energy 2-micron Solid State Laser for NASA Space-Based Wind and Carbon Dioxide Measurements

    Science.gov (United States)

    Singh, Upendra N.

    2011-01-01

    Sustained research efforts at NASA Langley Research Center during last fifteen years have resulted in significant advancement of a 2-micron diode-pumped, solid-state laser transmitter for wind and carbon dioxide measurements from ground, air and space-borne platforms. Solid-state 2-micron laser is a key subsystem for a coherent Doppler lidar that measures the horizontal and vertical wind velocities with high precision and resolution. The same laser, after a few modifications, can also be used in a Differential Absorption Lidar system for measuring atmospheric CO2 concentration profiles. Researchers at NASA Langley Research Center have developed a compact, flight capable, high energy, injection seeded, 2-micron laser transmitter for ground and airborne wind and carbon dioxide measurements. It is capable of producing 250 mJ at 10 Hz by an oscillator and one amplifier. This compact laser transmitter was integrated into a mobile trailer based coherent Doppler wind and CO2 DIAL system and was deployed during field measurement campaigns. This paper will give an overview of 2-micron solid-state laser technology development and discuss results from recent ground-based field measurements.

  13. 2-micron Double Pulsed IPDA Lidar for Atmospheric CO2 Measurement

    Science.gov (United States)

    Yu, Jirong; Petros, Mulugeta; Refaat, Tamer; Reithmaier, Karl; Remus, Ruben; Singh, Upendra; Johnson, Will; Boyer, Charlie; Fay, James; Johnston, Susan; Murchison, Luke; Scola, Tory

    2015-04-01

    We have developed a high energy pulsed 2-micron IPDA lidar instrument to measure the atmospheric CO2 column density. The IPDA lidar is operated on the long wavelength wing of R(30) CO2 line at 2050.967 nm (4875.749 cm-1) in the side-line operation mode. The R(30) line is an excellent absorption line for the measurements of CO2 in 2µm wavelength region with regard to the strength of the absorption lines, low susceptibility to atmospheric temperature variability, and freedom from problematic interference with other absorption lines. The Ho:Tm:YLF laser transmitter is designed to be operated in a unique double pulse format that can produce two-pulse pair in 10 Hz operation. Typically, the output energies of the laser transmitter are 100mJ and 45mJ for the first pulse and the second pulse, respectively. We injection seed the first pulse with on-line frequency and the second pulse with off-line frequency. The IPDA lidar instrument size, weight and power consumption were restricted to small research aircraft payload requirements. The airborne IPDA lidar instrument measures the total integrated column content of CO2 from the instrument to the ground but with weighting that can be tuned by controlling the transmitted wavelengths. Therefore, the transmitter could be tuned to weight the column measurement to the surface for optimum CO2 interaction studies or up to the free troposphere for optimum transport studies. The 2-μm CO2 IPDA lidar airborne demonstration was conducted during March 20, 2014 through April 10, 2014. IPDA lidar airborne flights included various operating and environmental conditions. Environmental conditions included different flight altitude up to 8.3 km, different ground target conditions such as vegetation, soil, ocean, snow and sand and different cloud conditions. Besides, some flights targeted power plant incinerators for investigating the IPDA sensitivity to CO2 plums. The lidar instrument is robust during all of the flights. This paper describes

  14. Recommendations for the medical management of chronic venous disease: The role of Micronized Purified Flavanoid Fraction (MPFF).

    Science.gov (United States)

    Bush, Ronald; Comerota, Anthony; Meissner, Mark; Raffetto, Joseph D; Hahn, Steven R; Freeman, Katherine

    2017-04-01

    Scope A systematic review of the clinical literature concerning medical management of chronic venous disease with the venoactive therapy Micronized Purified Flavonoid Fraction was conducted in addition to an investigation of the hemodynamics and mechanism of chronic venous disease. Methods The systematic review of the literature focused on the use of Micronized Purified Flavonoid Fraction (diosmin) which has recently become available in the US, in the management of chronic venous disease. The primary goal was to assess the level of evidence of the role of Micronized Purified Flavonoid Fraction in the healing of ulcers, and secondarily on the improvement of the symptoms of chronic venous disease such as edema. An initial search of Medline, Cochrane Database for Systematic Reviews and Google Scholar databases was conducted. The references of articles obtained in the primary search, including a Cochrane review of phlebotonics for venous insufficiency, were reviewed for additional studies. Studies were included if patients had a diagnosis of chronic venous disease documented with Doppler and Impedance Plethysmography. Studies excluded were those that had patients with arterial insufficiency (Ankle Brachial Index < .6), comorbidity of diabetes, obesity, rheumatological diseases, or if other causes of edema were present (congestive heart failure, renal, hepatic or lymphatic cause), or if the patient population had recent surgery or deep vein thrombosis, or had been using diuretics (in studies of edema). Other elements of the study design were to note specifically the type of compression therapy used in conjunction with Micronized Purified Flavonoid Fraction. Results The literature review yielded 250 abstracts, 65 of which met criteria for further review and 10 papers were selected for consideration in the systematic review. Conclusion In summary, the general level of evidence supports the recommendation that the use of medical therapy with Micronized Purified

  15. Effect of micron size Ni particle addition in Sn–8Zn–3Bi lead-free solder alloy on the microstructure, thermal and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Billah, Md. Muktadir; Shorowordi, Kazi Mohammad; Sharif, Ahmed, E-mail: asharif@mme.buet.ac.bd

    2014-02-05

    Highlights: • Ni-added Sn-Zn-Bi were characterized metallographically, thermally and mechanically. • The volume fraction of α-Zn phase increased with both Bi and Ni in Sn-Zn-Bi alloys. • Micron-sized Ni particles reacted with neither Sn nor Zn to form intermetallics. • Better combination of thermal and mechanical properties can be achieved with Ni. -- Abstract: Micron-sized Ni particle-reinforced Sn–8Zn–3Bi composite solders were prepared by mechanically dispersing Ni particles into Sn–8Zn–3Bi alloy and the bulk properties of the composite solder alloy were characterized metallographically, thermally and mechanically. Different percentage of Ni particle viz. 0.25, 0.5 and 1 wt.% were added in the liquid Sn–8Zn–3Bi alloy and then cast into the metal molds. Melting behavior was studied by differential thermal analyzer (DTA). Microstructural investigation was carried out by both optical and scanning electron microscope. Tensile properties were determined using an Instron Universal Testing Machine at a strain rate 3.00 mm/min. The results indicated that the Ni addition increased the melting temperature of Sn–8Zn–3Bi alloy. The addition of Ni was also found to increase the solidification range. In the Sn–8Zn–3Bi alloy, needle-shaped α-Zn phase was found to be uniformly distributed in the β-Sn matrix. However, it was found that the small amount of Ni addition in Sn–8Zn–3Bi alloy refined the Zn needles throughout the matrix. Also an enhanced precipitation of Zn in the structure was observed with the addition of Ni. All these structural changes improved the mechanical properties like tensile strength and hardness of the newly developed quaternary alloy.

  16. Relationship between Particulate matter less than 10 microns exposures and health effects on humans in Ahvaz, Iran

    Directory of Open Access Journals (Sweden)

    Sahar Geravandi

    2015-06-01

    Full Text Available Background & Aims of the Study: Particulate matters less than 10 microns can absorb into your lungs and reacting with the moisture and enter the circulatory system directly through the airways. The aim of this study is to assess Behavior PM 10 data in different seasons and Determination effects on human health in Ahvaz city during 2013. Materials & Methods: Data Particulate matters less than 10 microns were taken from Ahvaz Department of Environment and Meteorological Organization. Sampling was performed for 24 hours in 4 stations. Method of sampling and analysis were performed according to EPA guideline. Processing data include the instruction set correction of averaging, coding and filtering. Finally, health-effects of Particulate matters less than 10 exposures were calculated with impact of meteorological parameters and converted as input file to the Air Q model. Results: PM 10 concentration in winter season was maximum amount in the year 2013. According to the research findings, highest and the lowest Particulate matters less than 10 microns concentrations during 2013 had the Bureau of Meteorology “Havashenasi” and Head office of ADoE “Mohitzist”. Sum of total numbers of cardiovascular death and hospitals admission to respiratory diseases attributed to Particulate matters less than 10 microns were 923 and 2342 cases in 2013. Conclusions: Particulate matter emissions are highly regulated in most industrialized countries. Due to environmental concerns, most industries and dust storm phenomena are required to decrease in source produce particle mater and kind of dust collection system to control particulate emissions. Pollution prevention and control measures that reduce Particulate matters less than 10 microns can very useful for expected to reduce people’s exposures to Sulfur dioxide.

  17. Substring Range Reporting

    DEFF Research Database (Denmark)

    Bille, Philip; Gørtz, Inge Li

    2011-01-01

    We revisit various string indexing problems with range reporting features, namely, position-restricted substring searching, indexing substrings with gaps, and indexing substrings with intervals. We obtain the following main results. – We give efficient reductions for each of the above problems...... to a new problem, which we call substring range reporting. Hence, we unify the previous work by showing that we may restrict our attention to a single problem rather than studying each of the above problems individually. – We show how to solve substring range reporting with optimal query time and little...... range reporting are based on a novel combination of suffix trees and range reporting data structures. The reductions are simple and general and may apply to other combinations of string indexing with range reporting....

  18. Compact Antenna Range

    Data.gov (United States)

    Federal Laboratory Consortium — Facility consists of a folded compact antenna range including a computer controlled three axis position table, parabolic reflector and RF sources for the measurement...

  19. Dryden Aeronautical Test Range

    Data.gov (United States)

    Federal Laboratory Consortium — Recently redesignated to honor Dr. Hugh L. Dryden, NASA's Dryden Aeronautical Test Range (DATR) supports aerospace flight research and technology integration, space...

  20. Safety and efficacy of micronized tretinoin gel (0.05%) in treating adolescent acne.

    Science.gov (United States)

    Torok, Helen M; Pillai, Radhakrishan

    2011-06-01

    Tretinoin is widely used in the treatment of acne. Despite significant advances in formulation development, irritation and dryness can be particularly bothersome, especially during the first 3-4 weeks, impacting adherence. Dose titration and adjunct use of moisturizers have been commonly employed. Co-prescribing with benzoyl peroxide (BPO) or a BPO/antibiotic combination is also common practice. The tretinoin molecule is unstable and can be degraded by BPO, further complicating treatment regimens. Lately, formulation technology has focused on providing more efficient penetration of the tretinoin into the skin layers so that lower concentrations of tretinoin might afford better tolerability, but maintain good efficacy; incorporating moisturizing excipients to minimize irritation; and providing greater stability to the tretinoin molecule. This approach would be particularly relevant in a pediatric acne population where efficacy/tolerability balance is important and treatment regimens must take into account lifestyles, but little data exist on the use of tretinoin in this patient population. A micronized formulation of tretinoin (0.05%) gel has been developed that provides a more efficient delivery of tretinoin, because of its optimal particle size, no degradation by BPO and better cutaneous tolerability than tretinoin microsphere (0.1%) gel without compromising efficacy in a pediatric population.

  1. Chemical Mapping of Proterozoic Organic Matter at Sub-Micron Spatial Resolution

    Science.gov (United States)

    Oehler, Dorothy Z.; Robert, Francois; Mostefaoui, Smail; Meibom, Anders; Selo, Madeleine; McKay, David S.

    2006-01-01

    We have used a NanoSIMS ion microprobe to map sub-micron-scale distributions of carbon, nitrogen, sulfur, silicon, and oxygen in organic microfossils and laminae from the approximately 0.85 Ga Bitter Springs Formation of Australia. The data provide clues about the original chemistry of the microfossils, the silicification process, and biosignatures of specific microorganisms and microbial communities. Chemical maps of fossil unicells and filaments reveal distinct wall-and sheath-like structures enriched in C, N and S, consistent with their accepted biological origin. Surprisingly, organic laminae, previously considered to be amorphous, also exhibit filamentous and apparently compressed spheroidal structures defined by strong enrichments in C, N and S. By analogy to data from the well-preserved microfossils, these structures are interpreted as being of biological origin, most likely representing densely packed remnants of microbial mats. Because the preponderance of organic matter in Precambrian sediments is similarly "amorphous," our findings open a large body of generally neglected material to in situ structural, chemical, and isotopic study. Our results also offer new criteria for assessing biogenicity of problematic kerogenous materials and thus can be applied to assessments of poorly preserved or fragmentary organic residues in early Archean sediments and any that might occur in meteorites or other extraterrestrial samples.

  2. Sub-micron Hard X-ray Fluorescence Imaging of Synthetic Elements

    Science.gov (United States)

    Jensen, Mark P.; Aryal, Baikuntha P.; Gorman-Lewis, Drew; Paunesku, Tatjana; Lai, Barry; Vogt, Stefan; Woloschak, Gayle E.

    2013-01-01

    Synchrotron-based X-ray fluorescence microscopy (SXFM) using hard X-rays focused into sub-micron spots is a powerful technique for elemental quantification and mapping, as well as microspectroscopic measurement such as μ-XANES (X-ray absorption near edge structure). We have used SXFM to image and simultaneously quantify the transuranic element plutonium at the L3 or L2 edge as well as lighter biologically essential elements in individual rat pheochromocytoma (PC12) cells after exposure to the long-lived plutonium isotope 242Pu. Elemental maps reveal that plutonium localizes principally in the cytoplasm of the cells and avoids the cell nucleus, which is marked by the highest concentrations of phosphorus and zinc, under the conditions of our experiments. The minimum detection limit under typical acquisition conditions for an average 202 μm2 cell is 1.4 fg Pu/cell or 2.9 × 10−20 moles Pu/μm2, which is similar to the detection limit of K-edge SXFM of transition metals at 10 keV. Copper electron microscopy grids were used to avoid interference from gold X-ray emissions, but traces of strontium present in naturally occurring calcium can still interfere with plutonium detection using its Lα X-ray emission. PMID:22444530

  3. Precipitation Reaction of SDS and Potassium Salts in Flocculation of a Micronized Megestrol Acetate Suspension.

    Science.gov (United States)

    Hejazi, Seyed Mahdi; Erfan, Mohammad; Mortazavi, Seyed Alireza

    2013-01-01

    In this work attempts were made to evaluate K+-SDS and hydrocolloid polymer-SDS interactions in flocculation of megestrol acetate dispersions to enhance their stability as a part of suspension formulation. Different dispersions of micronized megestrol acetate and SDS were prepared. KCl and KH2PO4 and their corresponding sodium salts were added to the dispersions and the preparations were evaluated using general physicochemical and stability tests including appearance, sedimentation volume, sedimentation rate and redispersibility. Addition of polyols and hydrocolloid polymers to the SDS containing dispersions was also investigated for possible instabilities. SDS deflocculated the initial megestrol acetate dispersions. The use of potassium salts unlike the sodium salts flocculated the dispersion particles due to precipitation reaction of potassium ions and the adsorbed SDS. Additionally the uncharged hydrocolloid polymers MC and HPMC in contrast to the ionic polymers xanthan gum and NaCMC showed incompatibility due to their interaction with SDS. K(+)- SDS interactions have proved useful in protein and DNA analysis studies and we found this precipitation reaction to be applicable in flocculation of pharmaceutical suspensions containing SDS.

  4. Release of copper-amended particles from micronized copper-pressure-treated wood during mechanical abrasion.

    Science.gov (United States)

    Civardi, Chiara; Schlagenhauf, Lukas; Kaiser, Jean-Pierre; Hirsch, Cordula; Mucchino, Claudio; Wichser, Adrian; Wick, Peter; Schwarze, Francis W M R

    2016-11-28

    We investigated the particles released due to abrasion of wood surfaces pressure-treated with micronized copper azole (MCA) wood preservative and we gathered preliminary data on its in vitro cytotoxicity for lung cells. The data were compared with particles released after abrasion of untreated, water (0% MCA)-pressure-treated, chromated copper (CC)-pressure-treated wood, and varnished wood. Size, morphology, and composition of the released particles were analyzed. Our results indicate that the abrasion of MCA-pressure-treated wood does not cause an additional release of nanoparticles from the unreacted copper (Cu) carbonate nanoparticles from of the MCA formulation. However, a small amount of released Cu was detected in the nanosized fraction of wood dust, which could penetrate the deep lungs. The acute cytotoxicity studies were performed on a human lung epithelial cell line and human macrophages derived from a monocytic cell line. These cell types are likely to encounter the released wood particles after inhalation. Our findings indicate that under the experimental conditions chosen, MCA does not pose a specific additional nano-risk, i.e. there is no additional release of nanoparticles and no specific nano-toxicity for lung epithelial cells and macrophages.

  5. Compact, Engineered, 2-Micron Coherent Doppler Wind Lidar Prototype: A New NASA Instrument Incubator Program Project

    Science.gov (United States)

    Kavaya, Michael J.; Koch, Grady J.; Yu, Jirong; Singh, Upendra N.; Amzajerdian, Farzin; Wang, Jinxue; Petros, Mulugeta

    2005-01-01

    A new project, selected in 2005 by NASA s Science Mission Directorate (SMD) under the Instrument Incubator Program (IIP), will be described. The 3-year effort is intended to design, fabricate, and demonstrate a packaged, rugged, compact, space-qualifiable coherent Doppler wind lidar (DWL) transceiver capable of future validation in an aircraft and/or Unmanned Aerial Vehicle (UAV). The packaged DWL will utilize the numerous advances in pulsed, solid-state, 2-micron laser technology at NASA s Langley Research Center (LaRC) in such areas as crystal composition, architecture, efficiency, cooling techniques, pulse energy, and beam quality. The extensive experience of Raytheon Space and Airborne Systems (RSAS) in coherent lidar systems, in spacebased sensors, and in packaging rugged lidar systems will be applied to this project. The packaged transceiver will be as close to an envisioned space-based DWL system as the resources and technology readiness allow. We will attempt to facilitate a future upgrade to a coherent lidar system capable of simultaneous wind and CO2 concentration profile measurements. Since aerosol and dust concentration is also available from the lidar signal, the potential for a triple measurement lidar system is attractive for both Earth and Mars remote sensing. A key follow on step after the IIP will be to add a telescope, scanner, and software for aircraft validation. This IIP should also put us in a position to begin a parallel formulation study in the 2006-2007 timeframe for a space-based DWL demonstration mission early next decade.

  6. Scalable Sub-micron Patterning of Organic Materials Toward High Density Soft Electronics.

    Science.gov (United States)

    Kim, Jaekyun; Kim, Myung-Gil; Kim, Jaehyun; Jo, Sangho; Kang, Jingu; Jo, Jeong-Wan; Lee, Woobin; Hwang, Chahwan; Moon, Juhyuk; Yang, Lin; Kim, Yun-Hi; Noh, Yong-Young; Jaung, Jae Yun; Kim, Yong-Hoon; Park, Sung Kyu

    2015-09-28

    The success of silicon based high density integrated circuits ignited explosive expansion of microelectronics. Although the inorganic semiconductors have shown superior carrier mobilities for conventional high speed switching devices, the emergence of unconventional applications, such as flexible electronics, highly sensitive photosensors, large area sensor array, and tailored optoelectronics, brought intensive research on next generation electronic materials. The rationally designed multifunctional soft electronic materials, organic and carbon-based semiconductors, are demonstrated with low-cost solution process, exceptional mechanical stability, and on-demand optoelectronic properties. Unfortunately, the industrial implementation of the soft electronic materials has been hindered due to lack of scalable fine-patterning methods. In this report, we demonstrated facile general route for high throughput sub-micron patterning of soft materials, using spatially selective deep-ultraviolet irradiation. For organic and carbon-based materials, the highly energetic photons (e.g. deep-ultraviolet rays) enable direct photo-conversion from conducting/semiconducting to insulating state through molecular dissociation and disordering with spatial resolution down to a sub-μm-scale. The successful demonstration of organic semiconductor circuitry promise our result proliferate industrial adoption of soft materials for next generation electronics.

  7. An organometallic route to micron-sized whiskers of zinc sulfide

    Science.gov (United States)

    Czekaj, C. L.; Rau, M. S.; Geoffroy, G. L.; Guiton, T. A.; Pantano, C. G.

    1988-06-01

    A number of technologies require the development of high performance optical materials that also meet stringent specifications of optical transparency and thermal, chemical, and mechanical properties. For example, an infrared transmitting window material should have low thermal expansion, high melting and decomposition temperatures, chemical inertness to hydrolysis and oxidation, and high fracture toughness. One of the most attractive materials for many infrared optical applications is Zinc sulfide, but this material, as presently fabricated, does not process the required mechanical properties. One approach to improving the mechanical properties of a material is to form a self-similar composite, in this case, ZnS whiskers in polycrystalline ZnS matrix. To fabricate IR transmitting ZnS/ZnS composites, it would be necessary to use micron-sized whiskers of ZnS that have length to width ratios (aspect ratios) greater than 10. No present methodology exists for the convenient, large-scale preparation of such whiskers, although larger single crystals and whiskers of ZnS have been made by a variety of high temperature (less than 900 C), generally vapor-phase, routes.

  8. Continuous generation of homogeneous micron-size bubbles. A new gas diffuser.

    Science.gov (United States)

    Gañán-Calvo, Alfonso M.; Marandat, Virginie

    1998-11-01

    In this work, we show that micron-sized gas jets surrounded by a liquid stream can be produced by micro-suction in a similar way to the production of liquid micro-jets surrouded by gas streams (Gañán-Calvo 1998, Phys. Rev. Lett. 80, p. 285). However, the ``microfluidics'' of the new gas micro-jets surrounded by liquid presents an unexpected wealth of phenomena involving the unsteady compressible gas flow through a deformable ``nozzle'' formed by the surrounding liquid (an unsteady free surface in many cases) and surface tension forces. This kind of new captivating flows present such a wealth of geometrical and physical parameters that go beyond imagination. One may create continuous streams of perfectly homogeneous bubbles, hollow droplets, liquid jets filled with pearl-like chains of gas, one may ``tune'' some resonances appearing at the attached bubble (from which the gas micro-jet issues) to the gas jet dynamics, and much more. Some of these cases are presented and analyzed. In particular, this flow is applied to a new high performance gas diffuser.

  9. GaAs/Ge crystals grown on Si substrates patterned down to the micron scale

    Energy Technology Data Exchange (ETDEWEB)

    Taboada, A. G., E-mail: gonzalez@phys.ethz.ch; Kreiliger, T.; Falub, C. V.; Känel, H. von [Laboratory for Solid State Physics, ETH Zürich, Otto-Stern-Weg. 1, CH-8093 Zürich (Switzerland); Meduňa, M. [Department of Condensed Matter Physics, Masaryk University, Kotlářská 2, CZ-61137 Brno (Czech Republic); CEITEC, Masaryk University Kamenice 5, CZ-60177 Brno (Czech Republic); Salvalaglio, M.; Miglio, L. [L-NESS, Department of Materials Science, Università di Milano-Bicocca, Via R. Cozzi 55, I-20125 Milano (Italy); Isa, F. [Laboratory for Solid State Physics, ETH Zürich, Otto-Stern-Weg. 1, CH-8093 Zürich (Switzerland); L-NESS and Department of Physics, Politecnico di Milano, via Anzani 42, I-22100 Como (Italy); Barthazy Meier, E.; Müller, E. [Scientific Center for Optical and Electron Microscopy (ScopeM), ETH Zürich, Auguste-Piccard-Hof 1, CH-8093 Zürich (Switzerland); Isella, G. [L-NESS and Department of Physics, Politecnico di Milano, via Anzani 42, I-22100 Como (Italy)

    2016-02-07

    Monolithic integration of III-V compounds into high density Si integrated circuits is a key technological challenge for the next generation of optoelectronic devices. In this work, we report on the metal organic vapor phase epitaxy growth of strain-free GaAs crystals on Si substrates patterned down to the micron scale. The differences in thermal expansion coefficient and lattice parameter are adapted by a 2-μm-thick intermediate Ge layer grown by low-energy plasma enhanced chemical vapor deposition. The GaAs crystals evolve during growth towards a pyramidal shape, with lateral facets composed of (111) planes and an apex formed by (137) and (001) surfaces. The influence of the anisotropic GaAs growth kinetics on the final morphology is highlighted by means of scanning and transmission electron microscopy measurements. The effect of the Si pattern geometry, substrate orientation, and crystal aspect ratio on the GaAs structural properties was investigated by means of high resolution X-ray diffraction. The thermal strain relaxation process of GaAs crystals with different aspect ratio is discussed within the framework of linear elasticity theory by Finite Element Method simulations based on realistic geometries extracted from cross-sectional scanning electron microscopy images.

  10. Fabrication of micron and submicron gratings by using plasma treatment on the curved polydimethylsiloxane surfaces

    Science.gov (United States)

    Yang, Jiangtao; Tang, Jun; Guo, Hao; Liu, Wenyao; Shen, Chong; Liu, Jun; Qin, Li

    2017-10-01

    Here, a simple and low-cost fabrication strategy to efficiently construct well-ordered micron and submicron gratings on polymeric substrates by oxygen plasma treatment is reported. The Polydimethylsiloxane (PDMS) substrate is prepared on the polyethylene (PET) by spin-coating method, then the curved PDMS-PET substrates are processed in oxygen plasma. After appropriate surface treatment time in plasma the curved substrates are flattened, and well-ordered wrinkling shape gratings are obtained, due to the mechanical buckling instability. It is also demonstrated that changing the curvature radius of PDMS-PET substrates and the time of plasma treatment, the period of the wrinkling patterns and the amplitude of grating also change accordingly. It is found the period of the wrinkling patterns increased with the radius of curvature; while the amplitude decreased with that. It also shows good optical performance in transmittance diffraction testing experiments. Thus the well-ordered grating approach may further develop portable and economical applications and offer a valuable method to fabricate other optical micro strain gauges devices.

  11. Laser smoothing of sub-micron grooves in hydroxyl-rich fused silica

    Energy Technology Data Exchange (ETDEWEB)

    Shen, N; Matthews, M J; Fair, J E; Britten, J A; Nguyen, H T; Cooke, D; Elhadj, S; Yang, S T

    2009-10-30

    Nano- to micrometer-sized surface defects on UV-grade fused silica surfaces are known to be effectively smoothed through the use of high-temperature localized CO{sub 2} laser heating, thereby enhancing optical properties. However, the details of the mass transport and the effect of hydroxyl content on the laser smoothing of defective silica at submicron length scales is still not completely understood. In this study, we examine the morphological evolution of sub-micron, dry-etched periodic surface structures on type II and type III SiO{sub 2} substrates under 10.6 {micro}m CO{sub 2} laser irradiation using atomic force microscopy (AFM). In-situ thermal imaging was used to map the transient temperature field across the heated region, allowing assessment of the T-dependent mass transport mechanisms under different laser-heating conditions. Computational fluid dynamics simulations correlated well with experimental results, and showed that for large effective capillary numbers (N{sub c} > 2), surface diffusion is negligible and smoothing is dictated by capillary action, despite the relatively small spatial scales studied here. Extracted viscosity values over 1700-2000K were higher than the predicted bulk values, but were consistent with the surface depletion of OH groups, which was confirmed using confocal Raman microscopy.

  12. Acoustic Behavior of Subfloor Lightweight Mortars Containing Micronized Poly (Ethylene Vinyl Acetate (EVA

    Directory of Open Access Journals (Sweden)

    Luiza R. Brancher

    2016-01-01

    Full Text Available This paper aims to contribute to acoustical comfort in buildings by presenting a study about the polymer waste micronized poly (ethylene vinyl acetate (EVA to be used in mortars for impact sound insulation in subfloor systems. The evaluation method included physical, mechanical and morphological properties of the mortar developed with three distinct thicknesses designs (3, 5, and 7 cm with replacement percentage of the natural aggregate by 10%, 25%, and 50% EVA. Microscopy analysis showed the surface deposition of cement on EVA, with preservation of polymer porosity. The compressive creep test estimated long-term deformation, where the 10% EVA sample with a 7 cm thick mortar showed the lowest percentage deformation of its height. The impact noise test was performed with 50% EVA samples, reaching an impact sound insulation of 23 dB when the uncovered slab was compared with the 7 cm thick subfloor mortar. Polymer waste addition decreased the mortar compressive strength, and EVA displayed characteristics of an influential material to intensify other features of the composite.

  13. The adhesion force of micronized Salmeterol Xinafoate particles to pharmaceutically relevant surface materials

    Science.gov (United States)

    Podczeck, F.; Newton, J. M.; James, M. B.

    1996-07-01

    The adhesion of micronized Salmeterol Xinafoate to various surface materials has been investigated by the centrifuge technique. The adhesion of the drug to these materials used for manufacture and storage of interactive mixtures of the drug and milled lactose monohydrate depends on different properties of the surfaces. A longer contact with polyvinylchloride, polyethylene or aluminium surfaces, or a contact with these surfaces under mechanical pressure should be avoided because the adhesion force between the drug and these surfaces is much higher than between the drug and excipient particles. Hence detachment and a consequent loss of drug in the formulation could occur. Such a problem does not appear to exist for the contact with polyhydroxymethylene surfaces. Characteristics of the surface materials such as the surface free energy (acid - base concept), surface roughness and Young's modulus were determined and related to the experimental results. The work of adhesion appeared to have a very important influence on the adhesion forces measured. About 20% of the work of adhesion was due to acid - base interactions. The larger the work of adhesion, the stronger was the adhesion between the particles and the surfaces in contact. Surface roughness reduced the adhesion force, and stiffer materials (having a high Young's modulus) were found to have a lower adhesion force to the drug particles.

  14. Characteristic Studies of Micron Zinc Particle Hydrolysis in a Fixed Bed Reactor

    Directory of Open Access Journals (Sweden)

    Lv Ming

    2015-09-01

    Full Text Available Zinc fuel is considered as a kind of promising energy sources for marine propeller. As one of the key steps for zinc marine energy power system, zinc hydrolysis process had been studied experimentally in a fixed bed reactor. In this study, we focus on the characteristics of micron zinc particle hydrolysis. The experimental results suggested that the steam inner diffusion is the controlling step of accumulative zinc particles hydrolysis reaction at a relative lower temperature and a relative higher water partial pressure. In other conditions, the chemical reaction kinetics was the controlling step. And two kinds of chemical reaction kinetics appeared in experiments: the surface reaction and the gas-gas reaction. The latter one occurs usually for larger zinc particles and high reaction temperature. Temperature seems to be one of the most important parameters for the dividing of different reaction mechanisms. Several parameters of the hydrolysis process including heating rate, water partial pressure, the particle size and temperature were also studied in this paper. Results show that the initial reaction temperature of zinc hydrolysis in fixed bed is about 410°C. And the initial reaction temperature increases as the heating rate increases and as the water partial pressure decreases. The total hydrogen yield increases as the heating rate decreases, as the water partial pressure increases, as the zinc particle size decreases, and as the reaction temperature increases. A hydrogen yield of more than 81.5% was obtained in the fixed bed experiments.

  15. In vivo 3D PIXE-micron-CT imaging of Drosophila melanogaster using a contrast agent

    Science.gov (United States)

    Matsuyama, Shigeo; Hamada, Naoki; Ishii, Keizo; Nozawa, Yuichiro; Ohkura, Satoru; Terakawa, Atsuki; Hatori, Yoshinobu; Fujiki, Kota; Fujiwara, Mitsuhiro; Toyama, Sho

    2015-04-01

    In this study, we developed a three-dimensional (3D) computed tomography (CT) in vivo imaging system for imaging small insects with micrometer resolution. The 3D CT imaging system, referred to as 3D PIXE-micron-CT (PIXEμCT), uses characteristic X-rays produced by ion microbeam bombardment of a metal target. PIXEμCT was used to observe the body organs and internal structure of a living Drosophila melanogaster. Although the organs of the thorax were clearly imaged, the digestive organs in the abdominal cavity could not be clearly discerned initially, with the exception of the rectum and the Malpighian tubule. To enhance the abdominal images, a barium sulfate powder radiocontrast agent was added. For the first time, 3D images of the ventriculus of a living D. melanogaster were obtained. Our results showed that PIXEμCT can provide in vivo 3D-CT images that reflect correctly the structure of individual living organs, which is expected to be very useful in biological research.

  16. Acoustic Behavior of Subfloor Lightweight Mortars Containing Micronized Poly (Ethylene Vinyl Acetate) (EVA).

    Science.gov (United States)

    Brancher, Luiza R; Nunes, Maria Fernanda de O; Grisa, Ana Maria C; Pagnussat, Daniel T; Zeni, Mára

    2016-01-15

    This paper aims to contribute to acoustical comfort in buildings by presenting a study about the polymer waste micronized poly (ethylene vinyl acetate) (EVA) to be used in mortars for impact sound insulation in subfloor systems. The evaluation method included physical, mechanical and morphological properties of the mortar developed with three distinct thicknesses designs (3, 5, and 7 cm) with replacement percentage of the natural aggregate by 10%, 25%, and 50% EVA. Microscopy analysis showed the surface deposition of cement on EVA, with preservation of polymer porosity. The compressive creep test estimated long-term deformation, where the 10% EVA sample with a 7 cm thick mortar showed the lowest percentage deformation of its height. The impact noise test was performed with 50% EVA samples, reaching an impact sound insulation of 23 dB when the uncovered slab was compared with the 7 cm thick subfloor mortar. Polymer waste addition decreased the mortar compressive strength, and EVA displayed characteristics of an influential material to intensify other features of the composite.

  17. High Repetition Rate Pulsed 2-Micron Laser Transmitter for Coherent CO2 DIAL Measurement

    Science.gov (United States)

    Singh, Uprendra N.; Bai, Yingxin; Yu, Jirong; Petros, Mulugeta; Petzar, Paul J.; Trieu, Bo C.; Lee, Hyung

    2009-01-01

    A high repetition rate, highly efficient, Q-switched 2-micron laser system as the transmitter of a coherent differential absorption lidar for CO2 measurement has been developed at NASA Langley Research Center. Such a laser transmitter is a master-slave laser system. The master laser operates in a single frequency, either on-line or off-line of a selected CO2 absorption line. The slave laser is a Q-switched ring-cavity Ho:YLF laser which is pumped by a Tm:fiber laser. The repetition rate can be adjusted from a few hundred Hz to 10 kHz. The injection seeding success rate is from 99.4% to 99.95%. For 1 kHz operation, the output pulse energy is 5.5mJ with the pulse length of approximately 50 ns. The optical-to-optical efficiency is 39% when the pump power is 14.5W. The measured standard deviation of the laser frequency jitter is about 3 MHz.

  18. An experimental study on air gasification of biomass micron fuel (BMF) in a cyclone gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Xianjun [School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Rd., Wuhan 430074 (China)]|[School of Environment and Materials Engineering, Yantai University, 32 Qingquan Rd., Yantai 264005 (China); Xiao, Bo; Liu, Shiming; Hu, Zhiquan; Luo, Siyi; He, Maoyun [School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Rd., Wuhan 430074 (China)

    2009-02-15

    Biomass micron fuel (BMF) produced from feedstock (energy crops, agricultural wastes, forestry residues and so on) through an efficient crushing process is a kind of powdery biomass fuel with particle size of less than 250 {mu}m. Based on the properties of BMF, a cyclone gasifier concept has been considered in our laboratory for biomass gasification. The concept combines and integrates partial oxidation, fast pyrolysis, gasification, and tar cracking, as well as a shift reaction, with the purpose of producing a high quality of gas. In this paper, characteristics of BMF air gasification were studied in the gasifier. Without outer heat energy input, the whole process is supplied with energy produced by partial combustion of BMF in the gasifier using a hypostoichiometric amount of air. The effects of equivalence ratio (ER) and biomass particle size on gasification temperature, gas composition, gas yield, low-heating value (LHV), carbon conversion and gasification efficiency were studied. The results showed that higher ER led to higher gasification temperature and contributed to high H{sub 2}-content, but too high ER lowered fuel gas content and degraded fuel gas quality. A smaller particle was more favorable for higher gas yield, LHV, carbon conversion and gasification efficiency. And the BMF air gasification in the cyclone gasifier with the energy self-sufficiency is reliable. (author)

  19. Recent astronomical results obtained with the AFGL ten micron array spectrometer

    Science.gov (United States)

    Levan, Paul D.; Tandy, Peter C.

    1988-08-01

    The detector array used is the 58x62 Si:Ga with the switched-MOSFET readout. Support electronics include the clocked address circuitry, 12 bit AD conversion boards for each of the two output lines, and 20 bit RAM coaddition blocks for both telescope chop positions. In operation, the data are coadded over several chops, differences are taken between the two chop positions, and these differences are subsequently output to a PDP 11/34 minicomputer. The mosaic array was characterized for high speed operation (5 msec frame periodicity) and linearity in a test bed dewar, and found for proper bias voltages to be sufficiently fast to permit the signal electron rate from sky and telescope backgrounds. The optics are a NaCl prism slit spectrometer for operation in the 8 to 14 micron region. The ratio of collimator and camera focal lengths is 3.6, resulting in arcsec pixel sizes for the Wyoming Infrared Observatory (WIRO) 2.3 meter telescope. We report here on the recent observing run at WIRO, the second for the Array Spectrometer. The latest observing run resulted successfully in measurements of IRC + 10216 with the mosaic array in full scanning operation. Results include spectral and spatial scans for IRC + 10216 and evaluations of instrumental performance.

  20. Enhanced Oil Recovery Using Micron-Size Polyacrylamide Elastic Microspheres (MPEMs): Underlying Mechanisms and Displacement Experiments

    KAUST Repository

    Yao, Chuanjin

    2015-10-12

    Micron-size polyacrylamide elastic microsphere (MPEM) is a newly developed profile control and oil displacement agent for enhanced oil recovery in heterogeneous reservoirs. In this study, laboratory experiments were performed to characterize the viscoelastic properties of MPEMs in brine water. A transparent sandpack micromodel was used to observe the microscopic flow and displacement mechanisms, and parallel-sandpack models were used to investigate the profile control and oil displacement performance using MPEMs in heterogeneous reservoirs. The results indicate that MPEMs almost do not increase the viscosity of injection water and can be conveniently injected using the original water injection pipelines. The microscopic profile control and oil displacement mechanisms of MPEMs in porous media mainly behave as selective-plugging in large pores, fluid diversion after MPEMs plugging, oil drainage caused by MPEMs breakthrough, and the mechanism of oil droplets converging into oil flow. MPEMs have a high plugging strength, which can tolerate a long-term water flushing. MPEMs can selectively enter and plug the large pores and pore-throats in high permeability sandpack, but almost do not damage the low permeability sandpack. MPEMs can effectively divert the water flow from the high permeability sandpack to the low permeability sandpack and improve the sweep efficiency of low permeability sandpack and low permeability area in the high permeability sandpack. The results also confirm the dynamic process of profile control and oil displacement using MPEMs in heterogeneous reservoirs.

  1. On Range of Skill

    DEFF Research Database (Denmark)

    Hansen, Thomas Dueholm; Miltersen, Peter Bro; Sørensen, Troels Bjerre

    2008-01-01

    size (and doubly exponential in its depth). We also provide techniques that yield concrete bounds for unbalanced game trees and apply these to estimate the Range of Skill of Tic-Tac-Toe and Heads-Up Limit Texas Hold'em Poker. In particular, we show that the Range of Skill of Tic-Tac-Toe is more than...

  2. Range Scheduling Aid (RSA)

    Science.gov (United States)

    Logan, J. R.; Pulvermacher, M. K.

    1991-01-01

    Range Scheduling Aid (RSA) is presented in the form of the viewgraphs. The following subject areas are covered: satellite control network; current and new approaches to range scheduling; MITRE tasking; RSA features; RSA display; constraint based analytic capability; RSA architecture; and RSA benefits.

  3. Home range and travels

    Science.gov (United States)

    Stickel, L.F.; King, John A.

    1968-01-01

    The concept of home range was expressed by Seton (1909) in the term 'home region,' which Burr (1940, 1943) clarified with a definition of home range and exemplified in a definitive study of Peromyscus in the field. Burt pointed out the ever-changing characteristics of home-range area and the consequent absence of boundaries in the usual sense--a finding verified by investigators thereafter. In the studies summarized in this paper, sizes of home ranges of Peromyscus varied within two magnitudes, approximately from 0.1 acre to ten acres, in 34 studies conducted in a variety of habitats from the seaside dunes of Florida to the Alaskan forests. Variation in sizes of home ranges was correlated with both environmental and physiological factors; with habitat it was conspicuous, both in the same and different regions. Food supply also was related to size of home range, both seasonally and in relation to habitat. Home ranges generally were smallest in winter and largest in spring, at the onset of the breeding season. Activity and size also were affected by changes in weather. Activity was least when temperatures were low and nights were bright. Effects of rainfall were variable. Sizes varied according to sex and age; young mice remained in the parents' range until they approached maturity, when they began to travel more widely. Adult males commonly had larger home ranges than females, although there were a number of exceptions. An inverse relationship between population density and size of home range was shown in several studies and probably is the usual relationship. A basic need for activity and exploration also appeared to influence size of home range. Behavior within the home range was discussed in terms of travel patterns, travels in relation to home sites and refuges, territory, and stability of size of home range. Travels within the home range consisted of repeated use of well-worn trails to sites of food, shelter, and refuge, plus more random exploratory travels

  4. Trends and sources of ozone and sub-micron aerosols at the Mt. Bachelor Observatory during 2004-2015

    Science.gov (United States)

    Zhang, L.; Jaffe, D. A.; Hee, J.

    2016-12-01

    Tropospheric ozone (O3) and airborne particles have significant impacts on human health and the environment. The Mt. Bachelor Observatory (MBO, 2.8 km a.s.l.) in Central Oregon, USA, now has one of the longest continuous free tropospheric records of O3, CO and aerosols in North America. In this study, we report on sources and trends of O3 and sub-micron aerosol scattering at MBO for 2004-2015. For O3, the seasonal cycle shows a bimodal pattern with peaks in April and July, while aerosol scattering (σsp) is lognormally distributed with a very high average in August and a smaller maximum in May. Mean O3 concentrations show a positive and significant trend in all seasons except winter, with an increase of approximately 0.6 ppb/year. This trend appears to be driven by Asian pollution in spring and regional wildfires in summer. For aerosol scattering, we see a significant increase only in summer, driven by recent increases in wildfire activity in the western US. Monthly criteria for isolating free troposphere (FT) and boundary layer (BL) air masses at MBO were obtained based on comparison of MBO water vapor (WV) distributions to those of Salem (SLE) and Medford (MFR), Oregon at equivalent pressure level. In all seasons, FT O3 is, on average, higher than BL O3, but the seasonal patterns are rather similar. For σsp the mean in summer is significantly higher than the FT, indicating the importance of regional wildfire smoke. We have identified four types of air masses that impact O3, CO and aerosols: Asian long range transport (ALRT), regional wildfires, regional industrial pollution, and upper troposphere and lower stratosphere (UTLS) intrusions. Over the 12 years of observations, we have identified 204 individual plume events based on the criteria of 8 consecutive polluted hours with elevated σsp, O3 or CO. Multi-pollutant correlations and backward trajectories were used to differentiate background source categories. A series of enhancement ratios (ERs) including

  5. Size distributions of nano/micron dicarboxylic acids and inorganic ions in suburban PM episode and non-episodic aerosol

    Science.gov (United States)

    Hsieh, Li-Ying; Kuo, Su-Ching; Chen, Chien-Lung; Tsai, Ying I.

    The distribution of nano/micron dicarboxylic acids and inorganic ions in size-segregated suburban aerosol of southern Taiwan was studied for a PM episode and a non-episodic pollution period, revealing for the first time the distribution of these nanoscale particles in suburban aerosols. Inorganic species, especially nitrate, were present in higher concentrations during the PM episode. A combination of gas-to-nuclei conversion of nitrate particles and accumulation of secondary photochemical products originating from traffic-related emissions was likely a crucial cause of the PM episode. Sulfate, ammonium, and oxalic acid were the dominant anion, cation, and dicarboxylic acid, respectively, accounting for a minimum of 49% of the total anion, cation or dicarboxylic acid mass. Peak concentrations of these species occurred at 0.54 μm in the droplet mode during both non-episodic and PM episode periods, indicating an association with cloud-processed particles. On average, sulfate concentration was 16-17 times that of oxalic acid. Oxalic acid was nevertheless the most abundant dicarboxylic acid during both periods, followed by succinic, malonic, maleic, malic and tartaric acid. The mass median aerodynamic diameter (MMAD) of oxalic acid was 0.77 μm with a bi-modal presence at 0.54 μm and 18 nm during non-episodic pollution and an MMAD of 0.67 μm with mono-modal presence at 0.54 μm in PM episode aerosol. The concomitant formation of malonic acid and oxalic acid was attributed to in-cloud processes. During the PM episode in the 5-100 nm nanoscale range, an oxalic acid/sulfate mass ratio of 40.2-82.3% suggested a stronger formation potential for oxalic acid than for sulfate in the nuclei mode. For total cations (TC), total inorganic anions (TIA) and total dicarboxylic acids (TDA), major contributing particles were in the droplet mode, with least in the nuclei mode. The ratio of TDA to TIA in the nuclei mode increased greatly from 8.40% during the non-episodic pollution

  6. Sensory and Physicochemical Studies of Thermally Micronized Chickpea (Cicer arietinum) and Green Lentil (Lens culinaris) Flours as Binders in Low-Fat Beef Burgers.

    Science.gov (United States)

    Shariati-Ievari, Shiva; Ryland, Donna; Edel, Andrea; Nicholson, Tiffany; Suh, Miyoung; Aliani, Michel

    2016-05-01

    Pulses are known to be nutritious foods but are susceptible to oxidation due to the reaction of lipoxygenase (LOX) with linolenic and linoleic acids which can lead to off flavors caused by the formation of volatile organic compounds (VOCs). Infrared micronization at 130 and 150 °C was investigated as a heat treatment to determine its effect on LOX activity and VOCs of chickpea and green lentil flour. The pulse flours were added to low-fat beef burgers at 6% and measured for consumer acceptability and physicochemical properties. Micronization at 130 °C significantly decreased LOX activity for both flours. The lentil flour micronized at 150 °C showed a further significant decrease in LOX activity similar to that of the chickpea flour at 150 °C. The lowering of VOCs was accomplished more successfully with micronization at 130 °C for chickpea flour while micronization at 150 °C for the green lentil flour was more effective. Micronization minimally affected the characteristic fatty acid content in each flour but significantly increased omega-3 and n-6 fatty acids at 150 °C in burgers with lentil and chickpea flours, respectively. Burgers with green lentil flour micronized at 130 and 150 °C, and chickpea flour micronized at 150 °C were positively associated with acceptability. Micronization did not affect the shear force and cooking losses of the burgers made with both flours. Formulation of low-fat beef burgers containing 6% micronized gluten-free binder made from lentil and chickpea flour is possible based on favorable results for physicochemical properties and consumer acceptability. © 2016 Institute of Food Technologists®

  7. Long range image enhancement

    CSIR Research Space (South Africa)

    Duvenhage, B

    2015-11-01

    Full Text Available and Vision Computing, Auckland, New Zealand, 23-24 November 2015 Long Range Image Enhancement Bernardt Duvenhage Council for Scientific and Industrial Research South Africa Email: bduvenhage@csir.co.za Abstract Turbulent pockets of air...

  8. SNOWY RANGE WILDERNESS, WYOMING.

    Science.gov (United States)

    Houston, Robert S.; Bigsby, Philip R.

    1984-01-01

    A mineral survey of the Snowy Range Wilderness in Wyoming was undertaken and was followed up with more detailed geologic and geochemical surveys, culminating in diamond drilling of one hole in the Snowy Range Wilderness. No mineral deposits were identified in the Snowy Range Wilderness, but inasmuch as low-grade uranium and associated gold resources were identified in rocks similar to those of the northern Snowy Range Wilderness in an area about 5 mi northeast of the wilderness boundary, the authors conclude that the northern half of the wilderness has a probable-resource potential for uranium and gold. Closely spaced drilling would be required to completely evaluate this mineral potential. The geologic terrane precludes the occurrence of fossil fuels.

  9. Atlantic Test Range (ATR)

    Data.gov (United States)

    Federal Laboratory Consortium — ATR controls fully-instrumented and integrated test ranges that provide full-service support for cradle-to-grave testing. Airspace and surface target areas are used...

  10. Light Detection And Ranging

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — LiDAR (Light Detection and Ranging) discrete-return point cloud data are available in the American Society for Photogrammetry and Remote Sensing (ASPRS) LAS format....

  11. Chemical Analysis of Aerosols for Characterization of Long-Range Transport at Mt. Lassen, CA

    Science.gov (United States)

    Harada, Y.; Waddell, J. A.; Cliff, S. S.; Perry, K. D.; Kelly, P. B.

    2004-12-01

    Effective regional air pollution regulation requires an understanding of long-range aerosol transport and natural aerosol chemistry. Sample collection was performed at the Interagency Monitoring of Protected Visual Environments (IMPROVE) sampling site on Mt. Lassen in the Sierra Nevada range at 1755 m elevation. The site is in Northern California at Longitude 121° 34' 40", Latitude 40° 32' 25". Size segregated and time resolved aerosol samples were collected with an 8 DRUM sampler from April 15th to May 24th 2002 as part of the NOAA Intercontinental Transport and Chemical Transformation Experiment (ITCT). The samples were analyzed with Synchrotron X-Ray Fluorescence (S-XRF) and Time of Flight mass spectroscopy (TOFMS). The total aerosol concentration exhibits a clear daily cycling of total mass, due to a nighttime down-slope air circulation from the free troposphere. The sulfate peaked in concentration during the night. Elemental data is suggestive of dust transport from continental Asia. The micron size ranges were dominated by nitrate, while the sub-micron size ranges had high levels of sulfate. Chemical analysis shows oceanic influence through strong correlations between methyl sulfonic acid (MSA), iodine, and oxalate. The appearance of the oceanic biogenic tracers in the sub-micron fraction is most likely a result of vertical mixing over the Pacific Ocean. MSA follows a diurnal pattern similar to sulfate, however the differences suggest both an oceanic and continental source for sulfate. The carbon particulate signal did not show any diurnal pattern during the measurement period.

  12. 1.56 Micron Spectropolarimetry of Umbral Dots and Their Evolution Associated with a Major Flare

    Science.gov (United States)

    Deng, Na; Liu, Chang; Xu, Yan; Ahn, Kwangsu; Jing, Ju; Cao, Wenda; Wang, Haimin

    2017-08-01

    We present unprecedented high-resolution and high magnetic sensitivity spectropolarimetric characterization of umbral dots (UDs), the prevailing fine scale brightness structure manifesting magneto-convection inside sunspot umbrae where the magnetic fields are strongest and nearly vertical. This is made available by recent development of the Near InfraRed Imaging Spectropolarimeter (NIRIS) using the 1.56 micron FeI line at the 1.6 meter New Solar Telescope of Big Bear Solar Observatory. Vector magnetograms are obtained after Milne-Eddington Stokes inversions, 180-degree azimuthal ambiguity resolution, and correction of projection effects. A βγδ spot in NOAA AR 12371 was observed for six hours on June 22, 2015 with a cadence of 87 s, which covered an M6.6 flare. The overall umbra is separated into several smaller umbrae by light bridges. The umbrae are close to the flaring polarity inversion line and show an average inclination of about 17° and field strength of about 2100 Gauss. The UDs are resolvable in NIRIS vector magnetograms, especially for peripheral UDs. The measured field strength is about 3% lower in UDs comparing to umbral cores (UCs) where the continuum intensity is below the threshold of UDs. The field is more inclined in UDs by 5% ( ≈ 1°) than that in UCs. One of the umbrae showed rapid evolution associated with the flare. Its overall intensity and the number of UDs decrease by at least 7% within two hours after being swept by the flare ribbon. NIRIS vector magnetograms indicate that the average field strength of that umbra has a rapid stepwise increase for about 100 Gauss while the inclination almost has no change. The decreases of the umbral brightness and the number of UDs are thus attributed to the increase of the field strength. The results suggest that the field strength plays the most important role in constraining convective heat transport in umbra.

  13. Amorphous selenium direct detection CMOS digital x-ray imager with 25 micron pixel pitch

    Science.gov (United States)

    Scott, Christopher C.; Abbaszadeh, Shiva; Ghanbarzadeh, Sina; Allan, Gary; Farrier, Michael; Cunningham, Ian A.; Karim, Karim S.

    2014-03-01

    We have developed a high resolution amorphous selenium (a-Se) direct detection imager using a large-area compatible back-end fabrication process on top of a CMOS active pixel sensor having 25 micron pixel pitch. Integration of a-Se with CMOS technology requires overcoming CMOS/a-Se interfacial strain, which initiates nucleation of crystalline selenium and results in high detector dark currents. A CMOS-compatible polyimide buffer layer was used to planarize the backplane and provide a low stress and thermally stable surface for a-Se. The buffer layer inhibits crystallization and provides detector stability that is not only a performance factor but also critical for favorable long term cost-benefit considerations in the application of CMOS digital x-ray imagers in medical practice. The detector structure is comprised of a polyimide (PI) buffer layer, the a-Se layer, and a gold (Au) top electrode. The PI layer is applied by spin-coating and is patterned using dry etching to open the backplane bond pads for wire bonding. Thermal evaporation is used to deposit the a-Se and Au layers, and the detector is operated in hole collection mode (i.e. a positive bias on the Au top electrode). High resolution a-Se diagnostic systems typically use 70 to 100 μm pixel pitch and have a pre-sampling modulation transfer function (MTF) that is significantly limited by the pixel aperture. Our results confirm that, for a densely integrated 25 μm pixel pitch CMOS array, the MTF approaches the fundamental material limit, i.e. where the MTF begins to be limited by the a-Se material properties and not the pixel aperture. Preliminary images demonstrating high spatial resolution have been obtained from a frst prototype imager.

  14. Sub-micron opto-chemical probes for studying living neurons

    Science.gov (United States)

    Hossein-Zadeh, M.; Delgado, J.; Schweizer, F.; Lieberman, R.

    2017-02-01

    We have fabricated sub-micron opto-chemical probes for pH, oxygen and calcium monitoring and demonstrated their application in intracellular and extracellular monitoring of neurons (cortical neuronal cultures and acute hippocampal slices). Using these probes, we have measured extracellular pH in the stratum radiatum of the CA1 region of mouse hippocampus upon stimulation of presynaptic Schaffer collateral axons. Synaptic transmission was monitored using standard electrophysiological techniques. We find that the local pH transiently changes in response to synaptic stimulation. In addition, the geometry of the functionalized region on the probe combined with high sensitivity imaging enables simultaneous monitoring of spatially adjacent but distinct compartments. As proof of concept we impaled cultured neurons with the probe measured calcium and pH inside as well as directly outside of neurons as we changed the pH and calcium concentration in the physiological solution in the perfusion chamber. As such these probes can be used to study the impact of the environment on both cellular and extra-cellular space. Additionally as the chemical properties of the surrounding medium can be controlled and monitored with high precision, these probes enable differential measurement of the target parameter referenced to a stable bath. This approach eliminates the uncertainties associated with non-chemical fluctuations in the fluorescent emission and result in a self-calibrated opto-chemical probe. We have also demonstrated multifunctional probes that are capable of measuring up to three parameters in the extracellular space in brain slices.

  15. On Range of Skill

    DEFF Research Database (Denmark)

    Hansen, Thomas Dueholm; Miltersen, Peter Bro; Sørensen, Troels Bjerre

    2008-01-01

    is a small number, but only gave heuristic arguments for this. In this paper, we provide the first methods for rigorously estimating the Range of Skill of a given game. We provide some general, asymptotic bounds that imply that the Range of Skill of a perfectly balanced game tree is almost exponential in its......At AAAI'07, Zinkevich, Bowling and Burch introduced the Range of Skill measure of a two-player game and used it as a parameter in the analysis of the running time of an algorithm for finding approximate solutions to such games. They suggested that the Range of Skill of a typical natural game...... size (and doubly exponential in its depth). We also provide techniques that yield concrete bounds for unbalanced game trees and apply these to estimate the Range of Skill of Tic-Tac-Toe and Heads-Up Limit Texas Hold'em Poker. In particular, we show that the Range of Skill of Tic-Tac-Toe is more than...

  16. Enhancing Low-Temperature and Pressureless Sintering of Micron Silver Paste Based on an Ether-Type Solvent

    Science.gov (United States)

    Zhang, Hao; Li, Wanli; Gao, Yue; Zhang, Hao; Jiu, Jinting; Suganuma, Katsuaki

    2017-08-01

    Micron silver paste enables a low-temperature and pressureless sintering process by using an ether-type solvent CELTOL-IA (C x H y O z , x > 10, boiling point of approximately 200°C) for the die attachment of high-powered devices. The conductive patterns formed by the silver paste had a low electrical resistivity of 8.45 μΩ cm at 180°C. The paste also achieved a high bonding strength above 30 MPa at 180°C without the assistance of pressures. These superior performance indicators result from the favorable removal of the solvent, its thermal behavior, and its good wetting on the silver layer. The results suggest that the micron silver paste with a suitable solvent can promote the further spreading of next-generation power devices owing to its marked cost advantage and excellent performance.

  17. Proximity effect correction on MEBES for 1x mask fabrication: lithography issues and tradeoffs at 0.25 micron

    Science.gov (United States)

    Muray, Andrew J.; Dean, Robert L.

    1991-03-01

    Proximity effect correction is necessary to fabricate masks with 0.25 micron design rules using electron beam lithography. The GHOST technique of proximity correction has the advantage of no pattern preprocessing and is easily implemented on a raster scan system such as MEBES. Recent results show proximity corrected features at 0.3 micron. To minimize constraints on the resist characteristics, such as the Srg ratio, global sizing of patterns has been investigated and found to provide an additional degree of freedom to control sensitivities and process latitude. Simulation and experimental results will be presented to demonstrate the use of GHOST and sizing for 1X mask making, including discussion of some of the relevant issues and tradeoffs.

  18. On the relation of 6.7-micron water vapour features to isentropic distributions of potential vorticity

    Science.gov (United States)

    Manney, Gloria L.; Stanford, John L.

    1987-01-01

    Currently available isentropic maps of potential vorticity (IPV maps) are of low resolution. In this note, the possibility of using 6.7-micron satellite-derived water vapor measurements to obtain higher resolution information about IPV distributions is examined. While attempts to related the two data sets analytically have so far proved unsuccessful, a qualitative comparison shows very similar features in both. The results obtained here suggest that, over limited areas, it may be possible to use 6.7-micron brightness temperatures to obtain approximate contours for water vapor mixing ratio on a particular isentropic surface in the upper troposphere. For areas free of high clouds, these contours are expected to parallel the IPV contours on this surface. In a case study, the resulting map exhibits dramatically increased horizontal resolution compared with present IPV maps, detailing an intriguing upper-tropospheric feature at subsynoptic scales.

  19. Micronized coal-fired retrofit system for SO{sub x} reduction - Krakow Clean Fossil Fuels and Energy Efficiency Program.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-30

    the project proposes to install a new TCS micronized coal-fired heating plant for the Produkcja I Hodowla Roslin Ogrodniczych (PHRO) Greenhouse Complex, Krzeszowice, Poland (about 20 miles west of Krakow). PHRO currently utilizes 14 heavy oil-fired boilers to produce heat for its greenhouse facilities and also home heating to several adjacent apartment housing complexes. The boilers currently burn a high-sulfur content heavy crude oil, called Mazute. The micronized coal fired boiler would (1) provide a significant portion of the heat for PHRO and a portion of the adjacent apartment housing complexes, (2) dramatically reduce sulfur dioxide air pollution emission, while satisfying new Polish air regulations, and (3) provide attractive savings to PHRO, based on the quantity of displaced oil.

  20. Transmittance and reflectance of crystalline quartz and highand low-water content fused silica from 2 microns to 1 mm

    Science.gov (United States)

    Heaney, J. B.; Stewart, K. P.; Hass, G.

    1983-01-01

    The transmittances and reflectances of cultured crystalline quartz, Suprasil, Suprasil W, and Infrasil were compared over the wavelength region from 2 to 1000 microns. The high-water content of Suprasil and the low-water content of cultured crystalline quartz, Suprasil W, and Infrasil were determined by their transmittances measured at 2.73 microns where water content causes high absorption in optical materials. The fact that the fused silicas, both with high- and low-water content, had identical far-IR transmittances and that their transmittances were greatly inferior to that of crystalline quartz led to the conclusion that their inferior transmittance is due to their amorphous structure and not to their water content.

  1. Micron Size Laser-Wire System at the ATF Extraction Line, Recent Results and ATF-II Upgrade

    CERN Document Server

    Blair, G A; Boorman, G; Bosco, A; Deacon, L; Karataev, P; Howell, D; Nevay, L J; Corner, L; Delerue, N; Foster, B; Gannaway, F; Newman, M; Senanayake, R; Walczak, R; Hayano, H; Aryshev, A; Terunuma, N; Urakawa, J

    2010-01-01

    The KEK Accelerator test facility (ATF) extraction line laser-wire system has been upgraded last year allowing the measurement of micron scale transverse size electron beams. The most recent measurements using the upgraded system are presented. The ATF-II extraction line design call for the major upgrade of the existing laser-wire system. We report on the hardware upgrades, including the major hardware upgrades to the laser transport, the laser beam diagnostics line, and the mechanical control systems.

  2. Model Calculations of Solar Spectral Irradiance in the 3.7 Micron Band for Earth Remote Sensing Applications

    Science.gov (United States)

    Platnick, Steven; Fontenla, Juan M.

    2006-01-01

    Since the launch of the first Advanced Very High Resolution Radiometer (AVHRR) instrument aboard TIROS-N, measurements in the 3.7 micron atmospheric window have been exploited for use in cloud detection and screening, cloud thermodynamic phase and surface snow/ice discrimination, and quantitative cloud particle size retrievals. The utility of the band has led to the incorporation of similar channels on a number of existing satellite imagers and future operational imagers. Daytime observations in the band include both reflected solar and thermal emission energy. Since 3.7 micron channels are calibrated to a radiance scale (via onboard blackbodies), knowledge of the top-of-atmosphere solar irradiance in the spectral region is required to infer reflectance. Despite the ubiquity of 3.7 micron channels, absolute solar spectral irradiance data comes from either a single measurement campaign (Thekaekara et al. 1969) or synthetic spectra. In this study, we compare historical 3.7 micron band spectral irradiance data sets with the recent semi-empirical solar model of the quiet-Sun by Fontenla et al. (2006). The model has expected uncertainties of about 2 % in the 3.7 pm spectral region. We find that channel-averaged spectral irradiances using the observations reported by Thekaekara et al. are 3.2-4.1% greater than those derived from the Fontenla et al. model for MODIS and AVHRR instrument bandpasses; the Kurucz spectrum (1995) as included in the MODTRAN4 distribution, gives channel-averaged irradiances 1.2-1.5 % smaller than the Fontenla model. For the MODIS instrument, these solar irradiance uncertainties result in cloud microphysical retrievals uncertainties comparable with other fundamental reflectance error sources.

  3. Micron MT29F128G08AJAAA 128GB Asynchronous Flash Memory Total Ionizing Dose Characterization Test Report

    Science.gov (United States)

    Campola, Michael; Wyrwas, Edward

    2017-01-01

    The purpose of this test was to characterize the Micron MT29F128G08AJAAAs parameter degradation for total dose response and to evaluate and compare lot date codes for sensitivity. In the test, the device was exposed to both low dose and high dose rate (HDR) irradiations using gamma radiation. Device parameters such as leakage currents, quantity of upset bits and overall chip and die health were investigated to determine which lot is more robust.

  4. Health risks attributed to particulate matter of 2.5 microns or less in Tehran air 2005-2014

    OpenAIRE

    Majid Kermani; Mohsen Dowlati; Ahmad Jonidi Jafari; Roshanak Rezaei Kalantari

    2016-01-01

    Introduction: Air pollution, especially particulate matter, is one of the main causes of mortality in humans. Therefore, the present study aimed to estimate health risks attributed to particulate matters of 2.5 microns or less (PM2.5) in Tehran air in the last ten years (2005-2014). Methods: In this descriptive–analytical study, hourly data of pollutants were obtained from Tehran’s Environmental Protection Agency and Air Quality Control Company and validated according to the WHO guidelines...

  5. Tunable diode laser Stark modulation spectroscopy for rotational assignment of the HNO3 7.5-micron band

    Science.gov (United States)

    Webster, C. R.; May, R. D.; Gunson, M. R.

    1985-01-01

    The technique of Stark modulation spectroscopy for unraveling and assigning rotationally resolved dense molecular spectra has been employed using a tunable diode laser (TDL) source. Doppler-limited absorption and Stark modulation spectra of the HNO3 7.5-micron band near the 1326/cm band origin are presented with preliminary values of the excited-state rovibrational constants derived from both TDL and Bomem Fourier transform IR spectra.

  6. Rupturing Giant Plasma Membrane Vesicles to Form Micron-sized Supported Cell Plasma Membranes with Native Transmembrane Proteins.

    Science.gov (United States)

    Chiang, Po-Chieh; Tanady, Kevin; Huang, Ling-Ting; Chao, Ling

    2017-11-09

    Being able to directly obtain micron-sized cell blebs, giant plasma membrane vesicles (GPMVs), with native membrane proteins and deposit them on a planar support to form supported plasma membranes could allow the membrane proteins to be studied by various surface analytical tools in native-like bilayer environments. However, GPMVs do not easily rupture on conventional supports because of their high protein and cholesterol contents. Here, we demonstrate the possibility of using compression generated by the air-water interface to efficiently rupture GPMVs to form micron-sized supported membranes with native plasma membrane proteins. We demonstrated that not only lipid but also a native transmembrane protein in HeLa cells, Aquaporin 3 (AQP3), is mobile in the supported membrane platform. This convenient method for generating micron-sized supported membrane patches with mobile native transmembrane proteins could not only facilitate the study of membrane proteins by surface analytical tools, but could also enable us to use native membrane proteins for bio-sensing applications.

  7. Novel Synthesis Method of Micronized Ti-Zeolite Na-A and Cytotoxic Activity of Its Silver Exchanged Form

    Science.gov (United States)

    Youssef, H. F.; Hegazy, W. H.; Abo-almaged, H. H.; El-Bassyouni, G. T.

    2015-01-01

    The core-shell method is used as a novel synthetic process of micronized Ti-Zeolite Na-A which involves calcination at 700°C of coated Egyptian Kaolin with titanium tetrachloride in acidic medium as the first step. The produced Ti-coated metakaolinite is subjected to microwave irradiation at low temperature of 80°C for 2 h. The prepared micronized Ti-containing Zeolites-A (Ti-Z-A) is characterized by FTIR, XRF, XRD, SEM, and EDS elemental analysis. Ag-exchanged form of Ti-Z-Ag is also prepared and characterized. The Wt% of silver exchanged onto the Ti-Zeolite structure was determined by atomic absorption spectra. The in vitro cytotoxic activity of Ti-Z-Ag against human hepatocellular carcinoma cell line (HePG2), colon cell line carcinoma (HCT116), lung carcinoma cell line (A549), and human Caucasian breast adenocarcinoma (MCF7) is reported. The results were promising and revealed that the exchanged Ag form of micronized Ti-Zeolite-A can be used as novel antitumor drug. PMID:25705142

  8. Mesostructural investigation of micron-sized glass particles during shear deformation – An experimental approach vs. DEM simulation

    Directory of Open Access Journals (Sweden)

    Torbahn Lutz

    2017-01-01

    Full Text Available The interdependency of structure and mechanical features of a cohesive powder packing is on current scientific focus and far from being well understood. Although the Discrete Element Method provides a well applicable and widely used tool to model powder behavior, non-trivial contact mechanics of micron-sized particles demand a sophisticated contact model. Here, a direct comparison between experiment and simulation on a particle level offers a proper approach for model validation. However, the simulation of a full scale shear-tester experiment with micron-sized particles, and hence, validating this simulation remains a challenge. We address this task by down scaling the experimental setup: A fully functional micro shear-tester was developed and implemented into an X-ray tomography device in order to visualize the sample on a bulk and particle level within small bulk volumes of the order of a few micro liter under well-defined consolidation. Using spherical micron-sized particles (30 μm, shear tests with a particle number accessible for simulations can be performed. Moreover, particle level analysis allows for a direct comparison of experimental and numerical results, e.g., regarding structural evolution. In this talk, we focus on density inhomogeneity and shear induced heterogeneity during compaction and shear deformation.

  9. The US Geological Survey, digital spectral reflectance library: version 1: 0.2 to 3.0 microns

    Science.gov (United States)

    Clark, Roger N.; Swayze, Gregg A.; King, Trude V. V.; Gallagher, Andrea J.; Calvin, Wendy M.

    1993-01-01

    We have developed a digital reflectance spectral library, with management and spectral analysis software. The library includes 500 spectra of 447 samples (some samples include a series of grain sizes) measured from approximately 0.2 to 3.0 microns. The spectral resolution (Full Width Half Maximum) of the reflectance data is less than or equal to 4 nm in the visible (0.2-0.8 microns) and less than or equal 10 nm in the NIR (0.8-2.35 microns). All spectra were corrected to absolute reflectance using an NBS Halon standard. Library management software lets users search on parameters (e.g. chemical formulae, chemical analyses, purity of samples, mineral groups, etc.) as well as spectral features. Minerals from sulfide, oxide, hydroxide, halide, carbonate, nitrate, borate, phosphate, and silicate groups are represented. X-ray and chemical analyses are tabulated for many of the entries, and all samples have been evaluated for spectral purity. The library also contains end and intermediate members for the olivine, garnet, scapolite, montmorillonite, muscovite, jarosite, and alunite solid-solution series. We have included representative spectra of H2O ice, kerogen, ammonium-bearing minerals, rare-earth oxides, desert varnish coatings, kaolinite crystallinity series, kaolinite-smectite series, zeolite series, and an extensive evaporite series. Because of the importance of vegetation to climate-change studies we have include 17 spectra of tree leaves, bushes, and grasses.

  10. Nuclear envelope composition determines the ability of neutrophil-type cells to passage through micron-scale constrictions.

    Science.gov (United States)

    Rowat, Amy C; Jaalouk, Diana E; Zwerger, Monika; Ung, W Lloyd; Eydelnant, Irwin A; Olins, Don E; Olins, Ada L; Herrmann, Harald; Weitz, David A; Lammerding, Jan

    2013-03-22

    Neutrophils are characterized by their distinct nuclear shape, which is thought to facilitate the transit of these cells through pore spaces less than one-fifth of their diameter. We used human promyelocytic leukemia (HL-60) cells as a model system to investigate the effect of nuclear shape in whole cell deformability. We probed neutrophil-differentiated HL-60 cells lacking expression of lamin B receptor, which fail to develop lobulated nuclei during granulopoiesis and present an in vitro model for Pelger-Huët anomaly; despite the circular morphology of their nuclei, the cells passed through micron-scale constrictions on similar timescales as scrambled controls. We then investigated the unique nuclear envelope composition of neutrophil-differentiated HL-60 cells, which may also impact their deformability; although lamin A is typically down-regulated during granulopoiesis, we genetically modified HL-60 cells to generate a subpopulation of cells with well defined levels of ectopic lamin A. The lamin A-overexpressing neutrophil-type cells showed similar functional characteristics as the mock controls, but they had an impaired ability to pass through micron-scale constrictions. Our results suggest that levels of lamin A have a marked effect on the ability of neutrophils to passage through micron-scale constrictions, whereas the unusual multilobed shape of the neutrophil nucleus is less essential.

  11. Nuclear Envelope Composition Determines the Ability of Neutrophil-type Cells to Passage through Micron-scale Constrictions*

    Science.gov (United States)

    Rowat, Amy C.; Jaalouk, Diana E.; Zwerger, Monika; Ung, W. Lloyd; Eydelnant, Irwin A.; Olins, Don E.; Olins, Ada L.; Herrmann, Harald; Weitz, David A.; Lammerding, Jan

    2013-01-01

    Neutrophils are characterized by their distinct nuclear shape, which is thought to facilitate the transit of these cells through pore spaces less than one-fifth of their diameter. We used human promyelocytic leukemia (HL-60) cells as a model system to investigate the effect of nuclear shape in whole cell deformability. We probed neutrophil-differentiated HL-60 cells lacking expression of lamin B receptor, which fail to develop lobulated nuclei during granulopoiesis and present an in vitro model for Pelger-Huët anomaly; despite the circular morphology of their nuclei, the cells passed through micron-scale constrictions on similar timescales as scrambled controls. We then investigated the unique nuclear envelope composition of neutrophil-differentiated HL-60 cells, which may also impact their deformability; although lamin A is typically down-regulated during granulopoiesis, we genetically modified HL-60 cells to generate a subpopulation of cells with well defined levels of ectopic lamin A. The lamin A-overexpressing neutrophil-type cells showed similar functional characteristics as the mock controls, but they had an impaired ability to pass through micron-scale constrictions. Our results suggest that levels of lamin A have a marked effect on the ability of neutrophils to passage through micron-scale constrictions, whereas the unusual multilobed shape of the neutrophil nucleus is less essential. PMID:23355469

  12. Range Selection and Median

    DEFF Research Database (Denmark)

    Jørgensen, Allan Grønlund; Larsen, Kasper Green

    2011-01-01

    that supports queries in constant time, needs n1+ (1) space. For data structures that uses n logO(1) n space this matches the best known upper bound. Additionally, we present a linear space data structure that supports range selection queries in O(log k= log log n + log log n) time. Finally, we prove that any...

  13. Electric vehicles: Driving range

    Science.gov (United States)

    Kempton, Willett

    2016-09-01

    For uptake of electric vehicles to increase, consumers' driving-range needs must be fulfilled. Analysis of the driving patterns of personal vehicles in the US now shows that today's electric vehicles can meet all travel needs on almost 90% of days from a single overnight charge.

  14. Automated assay for screening the enzymatic release of reducing sugars from micronized biomass

    Directory of Open Access Journals (Sweden)

    Asther Marcel

    2010-07-01

    Full Text Available Abstract Background To reduce the production cost of bioethanol obtained from fermentation of the sugars provided by degradation of lignocellulosic biomass (i.e., second generation bioethanol, it is necessary to screen for new enzymes endowed with more efficient biomass degrading properties. This demands the set-up of high-throughput screening methods. Several methods have been devised all using microplates in the industrial SBS format. Although this size reduction and standardization has greatly improved the screening process, the published methods comprise one or more manual steps that seriously decrease throughput. Therefore, we worked to devise a screening method devoid of any manual steps. Results We describe a fully automated assay for measuring the amount of reducing sugars released by biomass-degrading enzymes from wheat-straw and spruce. The method comprises two independent and automated steps. The first step is the making of "substrate plates". It consists of filling 96-well microplates with slurry suspensions of micronized substrate which are then stored frozen until use. The second step is an enzymatic activity assay. After thawing, the substrate plates are supplemented by the robot with cell-wall degrading enzymes where necessary, and the whole process from addition of enzymes to quantification of released sugars is autonomously performed by the robot. We describe how critical parameters (amount of substrate, amount of enzyme, incubation duration and temperature were selected to fit with our specific use. The ability of this automated small-scale assay to discriminate among different enzymatic activities was validated using a set of commercial enzymes. Conclusions Using an automatic microplate sealer solved three main problems generally encountered during the set-up of methods for measuring the sugar-releasing activity of plant cell wall-degrading enzymes: throughput, automation, and evaporation losses. In its present set-up, the

  15. Anisotropic modulus stabilisation. Strings at LHC scales with micron-sized extra dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Cicoli, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Burgess, C.P. [McMaster Univ., Hamilton (Canada). Dept. of Physics and Astronomy; Perimeter Institute for Theoretical Physics, Waterloo (Canada); Quevedo, F. [Cambridge Univ. (United Kingdom). DAMTP/CMS; Abdus Salam International Centre for Theoretical Physics, Trieste (Italy)

    2011-04-15

    We construct flux-stabilised Type IIB string compactifications whose extra dimensions have very different sizes, and use these to describe several types of vacua with a TeV string scale. Because we can access regimes where two dimensions are hierarchically larger than the other four, we find examples where two dimensions are micron-sized while the other four are at the weak scale in addition to more standard examples with all six extra dimensions equally large. Besides providing ultraviolet completeness, the phenomenology of these models is richer than vanilla large-dimensional models in several generic ways: (i) they are supersymmetric, with supersymmetry broken at sub-eV scales in the bulk but only nonlinearly realised in the Standard Model sector, leading to no MSSM superpartners for ordinary particles and many more bulk missing-energy channels, as in supersymmetric large extra dimensions (SLED); (ii) small cycles in the more complicated extra-dimensional geometry allow some KK states to reside at TeV scales even if all six extra dimensions are nominally much larger; (iii) a rich spectrum of string and KK states at TeV scales; and (iv) an equally rich spectrum of very light moduli exist having unusually small (but technically natural) masses, with potentially interesting implications for cosmology and astrophysics that nonetheless evade new-force constraints. The hierarchy problem is solved in these models because the extra-dimensional volume is naturally stabilised at exponentially large values: the extra dimensions are Calabi-Yau geometries with a 4D K3-fibration over a 2D base, with moduli stabilised within the well-established LARGE-Volume scenario. The new technical step is the use of poly-instanton corrections to the superpotential (which, unlike for simpler models, are present on K3-fibered Calabi-Yau compactifications) to obtain a large hierarchy between the sizes of different dimensions. For several scenarios we identify the low-energy spectrum and

  16. Sub-micron particle number size distribution characteristics at two urban locations in Leicester

    Science.gov (United States)

    Hama, Sarkawt M. L.; Cordell, Rebecca L.; Kos, Gerard P. A.; Weijers, E. P.; Monks, Paul S.

    2017-09-01

    The particle number size distribution (PNSD) of atmospheric particles not only provides information about sources and atmospheric processing of particles, but also plays an important role in determining regional lung dose. Owing to the importance of PNSD in understanding particulate pollution two short-term campaigns (March-June 2014) measurements of sub-micron PNSD were conducted at two urban background locations in Leicester, UK. At the first site, Leicester Automatic Urban Rural Network (AURN), the mean number concentrations of nucleation, Aitken, accumulation modes, the total particles, equivalent black carbon (eBC) mass concentrations were 2002, 3258, 1576, 6837 # cm-3, 1.7 μg m-3, respectively, and at the second site, Brookfield (BF), were 1455, 2407, 874, 4737 # cm-3, 0.77 μg m-3, respectively. The total particle number was dominated by the nucleation and Aitken modes, with both consisting of 77%, and 81% of total number concentrations at AURN and BF sites, respectively. This behaviour could be attributed to primary emissions (traffic) of ultrafine particles and the temporal evolution of mixing layer. The size distribution at the AURN site shows bimodal distribution at 22 nm with a minor peak at 70 nm. The size distribution at BF site, however, exhibits unimodal distribution at 35 nm. This study has for the first time investigated the effect of Easter holiday on PNSD in UK. The temporal variation of PNSD demonstrated a good degree of correlation with traffic-related pollutants (NOX, and eBC at both sites). The meteorological conditions, also had an impact on the PNSD and eBC at both sites. During the measurement period, the frequency of NPF events was calculated to be 13.3%, and 22.2% at AURN and BF sites, respectively. The average value of formation and growth rates of nucleation mode particles were 1.3, and 1.17 cm-3 s-1 and 7.42, and 5.3 nm h-1 at AURN, and BF sites, respectively. It can suggested that aerosol particles in Leicester originate mainly

  17. Systematic Sub-Micron Na/Ca Banding in Orbulina universa and bilobata

    Science.gov (United States)

    Bonnin, E. A.; Zhu, Z.; Spero, H. J.; Hoenisch, B.; Russell, A. D.; Fehrenbacher, J. S.; Gagnon, A. C.

    2016-02-01

    Mg/Ca ratios in planktic foraminifera are used widely as a proxy for past sea-surface temperatures. However, over the last decade, it has become clear that these ratios are not constant throughout the shell. Instead these ratios vary systematically by several fold between day and night independent of temperature, a phenomenon that has yet to be explained mechanistically. Determining whether elements other than Mg also exhibit sub-micron banding is essential to properly interpret Me/Ca-based paleoproxies and could help constrain the mechanisms causing Me/Ca variability. Using time-of-flight secondary ion mass spectrometry (ToF-SIMS), an isotope mapping technique with a spatial resolution of roughly 200 nm, we discovered systematic Na/Ca banding in individuals of the symbiont-bearing planktic foraminifer Orbulina universa that had been cultured at constant temperature. Using stable-isotope time stamps, we show that this Na/Ca banding varies inversely with Mg/Ca, with high Na/Ca during the day and low Na/Ca at night for most individuals. Using a combination of analytical models and complementary instrumental techniques, we test whether these patterns can be explained by various ion transport processes. In addition to this Na/Ca banding pattern, there is a distinct region of both high Mg/Ca and high Na/Ca at the location of the primary organic membrane. This POM signature may be a useful way to map organic layers in foraminifera, a method we tested in bilobata, a rare morphotype of O. universa that develops a secondary sphere. Mapping Na/Ca and Mg/Ca in bilobata, we show that an additional organic layer is required during secondary sphere growth and that mineralization occurs over both spheres when this additional quasi-chamber forms. Applying ToF-SIMS and our new understanding of Na/Ca heterogeneity to bilobata is a first step towards connecting the extensive geochemical knowledge developed in O. universa to the multi-chambered species used in paleoceanography.

  18. Design and Fabrication of a Breadboard, Fully Conductively Cooled, 2-Micron, Pulsed Laser for the 3-D Winds Decadal Survey Mission Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Design and fabricate a space-qualifiable, fully conductively cooled, 2-micron pulsed laser breadboard meeting the projected 3-D Winds mission requirements. Utilize...

  19. THIR/Nimbus-5 Level 1 Meteorological Radiation Data at 6.7 microns V001 (THIRN5L1CH67) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — THIRN5L1CH67 is the Nimbus-5 Temperature-Humidity Infrared Radiometer (THIR) Level 1 Meteorological Radiation Data at 6.7 microns product and contains radiances...

  20. THIR/Nimbus-4 Level 1 Meteorological Radiation Data at 11.5 microns V001 (THIRN4L1CH115) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — THIRN4L1CH115 is the Nimbus-4 Temperature-Humidity Infrared Radiometer (THIR) Level 1 Meteorological Radiation Data at 11.5 microns product and contains radiances...

  1. THIR/Nimbus-6 Level 1 Meteorological Radiation Data at 11.5 microns V001 (THIRN6L1CH115) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — THIRN6L1CH115 is the Nimbus-6 Temperature-Humidity Infrared Radiometer (THIR) Level 1 Meteorological Radiation Data at 11.5 microns product and contains radiances...

  2. THIR/Nimbus-4 Level 1 Meteorological Radiation Data at 6.7 microns V001 (THIRN4L1CH67) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — THIRN4L1CH67 is the Nimbus-4 Temperature-Humidity Infrared Radiometer (THIR) Level 1 Meteorological Radiation Data at 6.7 microns product contains radiances...

  3. THIR/Nimbus-6 Level 1 Meteorological Radiation Data at 6.7 microns V001 (THIRN6L1CH67) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — THIRN6L1CH67 is the Nimbus-6 Temperature-Humidity Infrared Radiometer (THIR) Level 1 Meteorological Radiation Data at 6.7 microns product and contains radiances...

  4. THIR/Nimbus-5 Level 1 Meteorological Radiation Data at 11.5 microns V001 (THIRN5L1CH115) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — THIRN5L1CH115 is the Nimbus-5 Temperature-Humidity Infrared Radiometer (THIR) Level 1 Meteorological Radiation Data at 11.5 microns product and contains radiances...

  5. HIRDLS/Aura Level 3 Extinction at 8.3 Microns 1deg Lat Zonal Fourier Coefficients V007 (H3ZFC8MEXT) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The "HIRDLS/Aura Level 3 Extinction at 8.3 Microns Zonal Fourier Coefficients" version 7 data product (H3ZFC8MEXT) contains the entire mission (~3 years) of HIRDLS...

  6. HIRDLS/Aura Level 3 Extinction at 12.1 Microns 1deg Lat Zonal Fourier Coefficients V007 (H3ZFC12MEXT) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The "HIRDLS/Aura Level 3 Extinction at 12.1 Microns Zonal Fourier Coefficients" version 7 data product (H3ZFC12MEXT) contains the entire mission (~3 years) of HIRDLS...

  7. A Fast, Versatile Nanoprobe for Complex Materials: The Sub-micron Resolution X-ray Spectroscopy Beamline at NSLS-II (491st Brookhaven Lecture)

    Energy Technology Data Exchange (ETDEWEB)

    Thieme, Juergen [BNL Photon Sciences Directorate

    2014-02-06

    Time is money and for scientists who need to collect data at research facilities like Brookhaven Lab’s National Synchrotron Light Source (NSLS), “beamtime” can be a precious commodity. While scanning a complex material with a specific technique and standard equipment today would take days to complete, researchers preparing to use brighter x-rays and the new sub-micron-resolution x-ray spectroscopy (SRX) beamline at the National Synchrotron Light Source II (NSLS-II) could scan the same sample in greater detail with just a few hours of beamtime. Talk about savings and new opportunities for researchers! Users will rely on these tools for locating trace elements in contaminated soils, developing processes for nanoparticles to deliver medical treatments, and much more. Dr. Thieme explains benefits for next-generation research with spectroscopy and more intense x-rays at NSLS-II. He discusses the instrumentation, features, and uses for the new SRX beamline, highlighting its speed, adjustability, and versatility for probing samples ranging in size from millimeters down to the nanoscale. He will talk about complementary beamlines being developed for additional capabilities at NSLS-II as well.

  8. Long-range antigravity

    Energy Technology Data Exchange (ETDEWEB)

    Macrae, K.I.; Riegert, R.J. (Maryland Univ., College Park (USA). Center for Theoretical Physics)

    1984-10-01

    We consider a theory in which fermionic matter interacts via long-range scalar, vector and tensor fields. In order not to be in conflict with experiment, the scalar and vector couplings for a given fermion must be equal, as is natural in a dimensionally reduced model. Assuming that the Sun is not approximately neutral with respect to these new scalar-vector charges, and if the couplings saturate the experimental bounds, then their strength can be comparable to that of gravity. Scalar-vector fields of this strength can compensate for a solar quadrupole moment contribution to Mercury's anomalous perihelion precession.

  9. In the photograph, one can see the interconnection from one readout chip to the flexible cable realized with ultrasonic wire bonds (25 microns).

    CERN Multimedia

    Saba, A

    2006-01-01

    2 ladders are connected via a multi layer aluminium polyimide flexible cable with a multi chip module containing several custom designed ASICs. The production of the flexible cable was developed and carrier out at CERN. It provides signal and data lines as well as power to the individual readout chipswith a total thickness of only 220 microns. In the photograph, one can see the interconnection from one readout chip to the flexible cable realized with ultrasonic wire bonds (25 microns).

  10. Cathepsin K-targeted sub-micron particles for regenerative repair of vascular elastic matrix.

    Science.gov (United States)

    Jennewine, Brenton; Fox, Jonathan; Ramamurthi, Anand

    2017-04-01

    regenerative elastic matrix repair in the AAA wall. Proactive screening of high risk elderly patients now enables early detection of Abdominal Aortic Aneurysms (AAAs). Current management of small, growing AAAs is limited to passive, imaging based growth monitoring. There are also no established drug-based therapeutic alternatives to surgery for AAAs, which is unsuitable for many elderly patients, and none which can achieve restore disrupted and lost elastic matrix in the AAA wall, which is essential to achieve growth arrest or regression. We seek to test the feasibility of a regenerative therapy based on localized, one time delivery of drug-releasing Sub-Micron-sized drug delivery polymer Particles (SMPs) that are also uniquely chemically functionalized on their surface to also provide them pro-elastin-regenerative & anti-matrix degradative properties, and also conjugated with antibodies targeting cathepsin K, an elastolytic enzyme that is highly overexpressed in AAA tissues; the latter serves as a modality to enable targeted binding of the SMPs to the AAA wall following intravenous infusion, or intraoartal, catheter-based delivery. Such SMPs can potentially stimulate structural repair in the AAA wall following one time infusion to delay or prevent AAA growth to rupture. The therapy can provide a non-surgical treatment option for high risk AAA patients. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. Online Sorted Range Reporting

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Fagerberg, Rolf; Greve, Mark

    2009-01-01

    We study the following one-dimensional range reporting problem: On an arrayA of n elements, support queries that given two indices i ≤ j and an integerk report the k smallest elements in the subarray A[i..j] in sorted order. We present a data structure in the RAM model supporting such queries...... in optimal O(k) time. The structure uses O(n) words of space and can be constructed in O(n logn) time. The data structure can be extended to solve the online version of the problem, where the elements in A[i..j] are reported one-by-one in sorted order, in O(1) worst-case time per element. The problem...... is motivated by (and is a generalization of) a problem with applications in search engines: On a tree where leaves have associated rank values, report the highest ranked leaves in a given subtree. Finally, the problem studied generalizes the classic range minimum query (RMQ) problem on arrays....

  12. Design and fabrication of a micro fluidic circuit for the separation of micron sized particles

    CSIR Research Space (South Africa)

    Khumalo, F

    2009-07-01

    Full Text Available The development of a micro fluidic circuit for the separation of micro particles is being investigated. There are a wide range of available separation techniques such as acoustic, laminar flow, split flow, optical trapping and centrifugal forces...

  13. Water frost and ice - The near-infrared spectral reflectance 0.65-2.5 microns. [observed on natural satellites and other solar system objects

    Science.gov (United States)

    Clark, R. N.

    1981-01-01

    The spectral reflectance of water frost and frost on ice as a function of temperature and grain size is presented with 1-1/2% spectral resolution in the 0.65- to 2.5-micron wavelength region. The well-known 2.0-, 1.65-, and 1.5-micron solid water absorption bands are precisely defined along with the little studied 1.25-micron band and the previously unidentified (in reflectance) 1.04-, 0.90-, and 0.81-micron absorption bands. The 1.5-microns band complex is quantitatively analyzed using a nonlinear least squares algorithm to resolve the band into four Gaussian components as a function of grain size and temperature. It is found that the 1.65-micron component, which was thought to be a good temperature sensor, is highly grain-size dependent and poorly suited to temperature sensing. Another Gaussian component appears to show a dependence of width on grain size while being independent of temperature. The relative apparent band depths are different for frost layers on ice than for thick layers of frost and may explain the apparent band depths seen in many planetary reflectance spectra.

  14. Lightning detection and ranging

    Science.gov (United States)

    Lennon, C. L.; Poehler, H. A.

    1982-01-01

    A lightning detector and ranging (LDAR) system developed at the Kennedy Space Center and recently transferred to Wallops Island is described. The system detects pulsed VHF signals due to electrical discharges occurring in a thunderstorm by means of 56-75 MHz receivers located at the hub and at the tips of 8 km radial lines. Incoming signals are transmitted by wideband links to a central computing facility which processes the times of arrival, using two independent calculations to determine position in order to guard against false data. The results are plotted on a CRT display, and an example of a thunderstorm lightning strike detection near Kennedy Space Center is outlined. The LDAR correctly identified potential ground strike zones and additionally provided a high correlation between updrafts and ground strikes.

  15. Rapid growth of micron-sized graphene flakes using in-liquid plasma employing iron phthalocyanine-added ethanol

    Science.gov (United States)

    Amano, Tomoki; Kondo, Hiroki; Ishikawa, Kenji; Tsutsumi, Takayoshi; Takeda, Keigo; Hiramatsu, Mineo; Sekine, Makoto; Hori, Masaru

    2018-01-01

    Giant graphene flakes on the micron scale were synthesized and grown in plasmas in liquid-phase pure ethanol with added iron phthalocyanine (FePc) in a solvent. At atmospheric pressure, plasmas were generated in the gas phase filled with Ar and in the liquid phases comprising bubbles and liquid solutions. In the mixture of FePc in ethanol, nanographene sheets aggregated to form giant graphene flakes, as confirmed by the D, G, and 2D bands in the corresponding Raman spectra. Therefore, a bottom-up approach of graphite synthesis from pure ethanol with additives and a catalyst was realized by in-liquid plasma processing.

  16. Optically and acoustically triggerable sub-micron phase-change contrast agents for enhanced photoacoustic and ultrasound imaging

    Directory of Open Access Journals (Sweden)

    Shengtao Lin

    2017-06-01

    Full Text Available We demonstrate a versatile phase-change sub-micron contrast agent providing three modes of contrast enhancement: 1 photoacoustic imaging contrast, 2 ultrasound contrast with optical activation, and 3 ultrasound contrast with acoustic activation. This agent, which we name ‘Cy-droplet’, has the following novel features. It comprises a highly volatile perfluorocarbon for easy versatile activation, and a near-infrared optically absorbing dye chosen to absorb light at a wavelength with good tissue penetration. It is manufactured via a ‘microbubble condensation’ method. The phase-transition of Cy-droplets can be optically triggered by pulsed-laser illumination, inducing photoacoustic signal and forming stable gas bubbles that are visible with echo-ultrasound in situ. Alternatively, Cy-droplets can be converted to microbubble contrast agents upon acoustic activation with clinical ultrasound. Potentially all modes offer extravascular contrast enhancement because of the sub-micron initial size. Such versatility of acoustic and optical ‘triggerability’ can potentially improve multi-modality imaging, molecularly targeted imaging and controlled drug release.

  17. Robot-assisted retinal vein cannulation with force-based puncture detection: Micron vs. the steady-hand eye robot.

    Science.gov (United States)

    Gonenc, Berk; Tran, Nhat; Gehlbach, Peter; Taylor, Russell H; Iordachita, Iulian

    2016-08-01

    Retinal vein cannulation is a demanding procedure where therapeutic agents are injected into occluded retina veins. The feasibility of this treatment is limited due to challenges in identifying the moment of venous puncture, achieving cannulation and maintaining it throughout the drug delivery period. In this study, we integrate a force-sensing microneedle with two distinct robotic systems: the handheld micromanipulator Micron, and the cooperatively controlled Steady-Hand Eye Robot (SHER). The sensed tool-to-tissue interaction forces are used to detect venous puncture and extend the robots' standard control schemes with a new position holding mode (PHM) that assists the operator hold the needle position fixed and maintain cannulation for a longer time with less trauma on the vasculature. We evaluate the resulting systems comparatively in a dry phantom, stretched vinyl membranes. Results have shown that modulating the admittance control gain of SHER alone is not a very effective solution for preventing the undesired tool motion after puncture. However, after using puncture detection and PHM the deviation from the puncture point is significantly reduced, by 65% with Micron, and by 95% with SHER representing a potential advantage over freehand for both.

  18. Fate of Multimeric Oligomers, Submicron, and Micron Size Aggregates of Monoclonal Antibodies Upon Subcutaneous Injection in Mice.

    Science.gov (United States)

    Kijanka, Grzegorz; Bee, Jared S; Bishop, Steven M; Que, Ivo; Löwik, Clemens; Jiskoot, Wim

    2016-05-01

    The aim of this study was to examine the fate of differently sized protein aggregates upon subcutaneous injection in mice. A murine and a human monoclonal immunoglobulin G 1 (IgG1) antibody were labeled with a fluorescent dye and subjected to stress conditions to create aggregates. Aggregates fractionated by centrifugation or gel permeation chromatography were administered subcutaneously into SKH1 mice. The biodistribution was measured by in vivo fluorescence imaging for up to 1 week post injection. At several time points, mice were sacrificed and selected organs and tissues were collected for ex vivo analysis. Part of injected aggregated IgGs persisted much longer at the injection site than unstressed controls. Aggregate fractions containing submicron (0.1-1 μm) or micron (1-100 μm) particles were retained to a similar extent. Highly fluorescent "hot-spots" were detected 24 h post injection in spleens of mice injected with submicron aggregates of murine IgG. Submicron aggregates of human IgG showed higher accumulation in draining lymph nodes 1 h post injection than unstressed controls or micron size aggregates. For both tested proteins, aggregated fractions seemed to be eliminated from circulation more rapidly than monomeric fractions. The biodistribution of monomers isolated from solutions subjected to stress conditions was similar to that of unstressed control. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  19. Bioavailability of micronized griseofulvin from corn oil-in-water emulsion, aqueous suspension, and commercial tablet dosage forms in humans.

    Science.gov (United States)

    Bates, T R; Sequeria, J A

    1975-05-01

    The purposes of this investigation were to determine and to compare the oral absorption characteristics of micronized griseofulvin (500 mg) after its administration to humans in the form of a corn oil-in-water emulsion containing dispersed drug, an aqueous suspension, and two different commercial tablets (A and B). The four dosage forms were administered in a random crossover fashion to five fasting subjects, and drug absorption was assessed from urinary excretion data for the major metabolite of the antibiotic (6-desmethylgriseofulvin). The drug was most rapidly, uniformly, and completely absorbed from the corn oil-in-water emulsion. As compared to either the aqueous suspension, Tablet A, or Tablet B, three- to fourfold increases in the maximum body levels and a twofold enhancement in the bioavailability of the antibiotic were observed after administration of the emulsion dosage form. A mechanism based on the ability of the linoleic and oleic acids liberated during the digestion of corn oil to inhibit GI motility and stimulate gallbladder evacuation may explain the marked enhancing effect of emulsified corn oil on griseofulvin absorption in humans. This new lipid-in-water emulsion dosage form of micronized griseofulvin appears to offer several clinical advantages in the treatment of fungal infections.

  20. Optically and acoustically triggerable sub-micron phase-change contrast agents for enhanced photoacoustic and ultrasound imaging.

    Science.gov (United States)

    Lin, Shengtao; Shah, Anant; Hernández-Gil, Javier; Stanziola, Antonio; Harriss, Bethany I; Matsunaga, Terry O; Long, Nicholas; Bamber, Jeffrey; Tang, Meng-Xing

    2017-06-01

    We demonstrate a versatile phase-change sub-micron contrast agent providing three modes of contrast enhancement: 1) photoacoustic imaging contrast, 2) ultrasound contrast with optical activation, and 3) ultrasound contrast with acoustic activation. This agent, which we name 'Cy-droplet', has the following novel features. It comprises a highly volatile perfluorocarbon for easy versatile activation, and a near-infrared optically absorbing dye chosen to absorb light at a wavelength with good tissue penetration. It is manufactured via a 'microbubble condensation' method. The phase-transition of Cy-droplets can be optically triggered by pulsed-laser illumination, inducing photoacoustic signal and forming stable gas bubbles that are visible with echo-ultrasound in situ . Alternatively, Cy-droplets can be converted to microbubble contrast agents upon acoustic activation with clinical ultrasound. Potentially all modes offer extravascular contrast enhancement because of the sub-micron initial size. Such versatility of acoustic and optical 'triggerability' can potentially improve multi-modality imaging, molecularly targeted imaging and controlled drug release.

  1. X-ray imaging with sub-micron resolution using large-area photon counting detectors Timepix

    Science.gov (United States)

    Dudak, J.; Karch, J.; Holcova, K.; Zemlicka, J.

    2017-12-01

    As X-ray micro-CT became a popular tool for scientific purposes a number of commercially available CT systems have emerged on the market. Micro-CT systems have, therefore, become widely accessible and the number of research laboratories using them constantly increases. However, even when CT scans with spatial resolution of several micrometers can be performed routinely, data acquisition with sub-micron precision remains a complicated task. Issues come mostly from prolongation of the scan time inevitably connected with the use of nano-focus X-ray sources. Long exposure time increases the noise level in the CT projections. Furthermore, considering the sub-micron resolution even effects like source-spot drift, rotation stage wobble or thermal expansion become significant and can negatively affect the data. The use of dark-current free photon counting detectors as X-ray cameras for such applications can limit the issue of increased image noise in the data, however the mechanical stability of the whole system still remains a problem and has to be considered. In this work we evaluate the performance of a micro-CT system equipped with nano-focus X-ray tube and a large area photon counting detector Timepix for scans with effective pixel size bellow one micrometer.

  2. Penetration of sub-micron aerosol droplets in composite cylindrical filtration elements

    NARCIS (Netherlands)

    Geurts, Bernardus J.; Pratte, Pascal; Stolz, S.; Stabbert, Regina; Poux, Valerie; Nordlund, Markus; Winkelmann, Christoph

    Advection–diffusion transport of aerosol droplets in composite cylindrical filtration elements is analyzed and compared to experimental data. The penetration, characterizing the fraction of droplets that passes through the pores of a filtration element, is quantified for a range of flow rates. The

  3. Micronization, characterization and in-vitro dissolution of shellac from PGSS supercritical CO2 technique

    CSIR Research Space (South Africa)

    Labuschagne, Philip W

    2016-02-01

    Full Text Available and temperature. In addition, it was possible to produce shellac microparticles ranging in average diameter from 180 to 300µm. It was also shown that processing shellac in sc-CO2 resulted in accelerated esterification reactions, potentially limiting the extent...

  4. Deviation from threshold model in ultrafast laser ablation of graphene at sub-micron scale

    Energy Technology Data Exchange (ETDEWEB)

    Gil-Villalba, A.; Xie, C.; Salut, R.; Furfaro, L.; Giust, R.; Jacquot, M.; Lacourt, P. A.; Dudley, J. M.; Courvoisier, F., E-mail: francois.courvoisier@femto-st.fr [Institut FEMTO-ST, UMR 6174 CNRS, Universite de Bourgogne Franche-Comte, 25030 Besançon Cedex (France)

    2015-08-10

    We investigate a method to measure ultrafast laser ablation threshold with respect to spot size. We use structured complex beams to generate a pattern of craters in CVD graphene with a single laser pulse. A direct comparison between beam profile and SEM characterization allows us to determine the dependence of ablation probability on spot-size, for crater diameters ranging between 700 nm and 2.5 μm. We report a drastic decrease of ablation probability when the crater diameter is below 1 μm which we interpret in terms of free-carrier diffusion.

  5. Self-Assembling Biological Springs Force Transducers on the Micron Nanoscale

    Energy Technology Data Exchange (ETDEWEB)

    Benedek, George [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Casparay, Alfred H. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2016-08-19

    In this project, we are developing a new system for measuring forces within and between nanoscale biological molecules based on mesoscopic springs made of cholesterol helical ribbons. These ribbons self-assemble in a wide variety of complex fluids containing sterol, a mixture of surfactants and water [1] and have spring constants in the range from 0.5 to 500 pN/nm [2-4]. By the end of this project, we have demonstrated that the cholesterol helical ribbons can be used for measuring forces between biological objects and for mapping the strain fields in hydrogels.

  6. Determining the dynamic range of MCPs based on pore size and strip current

    Science.gov (United States)

    Hunt, C.; Adrian, M. L.; Herrero, F.; James, P.; Jones, H. H.; Rodriguez, M.; Roman, P.; Shappirio, M.

    2010-12-01

    Micro-Channel Plates (MCPs) are used as detectors for almost all detectors measuring particles (both ions, electrons and neutrals) below 30 keV. Recent advances in the manufacturing technology of the MCPs have increased the number of options one has when selecting plates for an instrument. But it is not clear how many of these options affect the performance of the MCPs. In particular the dynamic range is not a clear cut calculation to make from the strip current. There is also some evidence that pore size and coating play a role. We measured the dynamic range and pulse height distribution of MCPs detector chevron stacks with a wide variety of strip currents from the low “normal” range in the EDR range. We also looked at the effects of varying the pore size from 25 microns to 10 microns, partial plating of the MCP surface and coating one surface on each MCP with gold rather than the standard zinc chromium. We will show how the dynamic range and pulse height distributions vary vs. strip current, pore size, and surface plating configurations.

  7. Assessment of Sub-Micron Particles by Exploiting Charge Differences with Dielectrophoresis

    Directory of Open Access Journals (Sweden)

    Maria F. Romero-Creel

    2017-08-01

    Full Text Available The analysis, separation, and enrichment of submicron particles are critical steps in many applications, ranging from bio-sensing to disease diagnostics. Microfluidic electrokinetic techniques, such as dielectrophoresis (DEP have proved to be excellent platforms for assessment of submicron particles. DEP is the motion of polarizable particles under the presence of a non-uniform electric field. In this work, the polarization and dielectrophoretic behavior of polystyrene particles with diameters ranging for 100 nm to 1 μm were studied employing microchannels for insulator based DEP (iDEP and low frequency (<1000 Hz AC and DC electric potentials. In particular, the effects of particle surface charge, in terms of magnitude and type of functionalization, were examined. It was found that the magnitude of particle surface charge has a significant impact on the polarization and dielectrophoretic response of the particles, allowing for successful particle assessment. Traditionally, charge differences are exploited employing electrophoretic techniques and particle separation is achieved by differential migration. The present study demonstrates that differences in the particle’s surface charge can also be exploited by means of iDEP; and that distinct types of nanoparticles can be identified by their polarization and dielectrophoretic behavior. These findings open the possibility for iDEP to be employed as a technique for the analysis of submicron biological particles, where subtle differences in surface charge could allow for rapid particle identification and separation.

  8. Osteoblast viability on hydroxyapatite with well-adjusted submicron and micron surface roughness as monitored by the proliferation reagent WST-1.

    Science.gov (United States)

    Holthaus, Marzellus Große; Treccani, Laura; Rezwan, Kurosch

    2013-03-01

    The impact of the cell surface roughness on titanium alloys used for biomedical implants has been extensively studied, whereas the dependency of human osteoblast viability on hydroxyapatite (HA) submicron and micron surface roughness has hitherto not yet been investigated in detail. Therefore, we investigate in this study the effect of HA substrates with different well-adjusted surface roughness on human osteoblast proliferation using the standard colorimetric reagent WST-1. By grinding, we obtained HA surfaces with six levels of well-defined surface roughness ranging from Sa = 3.36 µm down to 0.13 µm, resulting in hydrophilic contact angles from 11° to 27°. Energy dispersive X-ray spectroscopy, X-ray diffraction, and X-ray fluorescence measurements confirmed that neither grinding paper residues nor changes of the crystal structure were introduced to the HA substrates by the grinding process. By applying this simple surface treatment, we were able to isolate other effects from surface chemistry, crystal structure, and relative density. The changes of the osteoblast proliferation (WST-1 assay) on these different roughened HA surfaces after 7 days were found to be insignificant (p > 0.05), evaluated by one-way analysis of variance and Tuckey's Multiple Comparison Method. The results of this study show that all roughened HA surfaces, regardless of the microtopography, are biocompatible and allow osteoblast attachment, proliferation, and collagen type I production. The comparison with surface roughness used for standard Ti-based implants yielded that for HA no finishing process is necessary to ensure a sound human osteoblast cell proliferation in vitro.

  9. Quantum Mechanical Enhancement of the Random Dopant Induced Threshold Voltage Fluctuations and Lowering in Sub 0.1 Micron MOSFETs

    Science.gov (United States)

    Asenov, Asen; Slavcheva, G.; Brown, A. R.; Davies, J. H.; Saini, Subhash

    1999-01-01

    A detailed study of the influence of quantum effects in the inversion layer on the random dopant induced threshold voltage fluctuations and lowering in sub 0.1 micron MOSFETs has been performed. This has been achieved using a full 3D implementation of the density gradient (DG) formalism incorporated in our previously published 3D 'atomistic' simulation approach. This results in a consistent, fully 3D, quantum mechanical picture which implies not only the vertical inversion layer quantisation but also the lateral confinement effects manifested by current filamentation in the 'valleys' of the random potential fluctuations. We have shown that the net result of including quantum mechanical effects, while considering statistical fluctuations, is an increase in both threshold voltage fluctuations and lowering.

  10. Far-infrared spectroscopy of galaxies - The 158 micron C(+) line and the energy balance of molecular clouds

    Science.gov (United States)

    Crawford, M. K.; Genzel, R.; Townes, C. H.; Watson, D. M.

    1985-01-01

    Observations of the 158 microns fine-structure line of C(+) toward the nuclei of six gas-rich galaxies are presented. The observations are compared with observations of the CO J = 1-0 and H I 21 cm lines, observations of far-IR continuum emission, and observations of forbidden C II emission with the Galaxy. The forbidden C II line comes from dense, warm gas in UV-illuminated photodissociation regions at the surfaces of molecular clouds. This line is probably optically thin in all but the brightest of galactic sources. The variation of forbidden C II brightness from source to source and its ratio to the integrated infrared continuum intensity agree well with the theoretical prediction that UV absorption by dust controls the C(+) column density. The forbidden C II line is a tracer of molecular clouds, especially those near intense sources of UV radiation.

  11. Super-micron-scale atomistic simulation for electronic transport with atomic vibration: Unified approach from quantum to classical transport

    Science.gov (United States)

    Ishizeki, Keisuke; Sasaoka, Kenji; Konabe, Satoru; Souma, Satofumi; Yamamoto, Takahiro

    2017-07-01

    We develop a powerful simulation method that can treat electronic transport in a super-micron-scale open system with atomic vibration at finite temperature. As an application of the developed method to realistic materials, we simulate electronic transport in metallic single-walled carbon nanotubes from nanometer scale to micrometer scale at room temperature. Based on the simulation results, we successfully identify two different crossovers, namely, ballistic to diffusive crossover and coherent to incoherent crossover, simultaneously and with equal footing, from which the mean free path and the phase coherence length can be extracted clearly. Moreover, we clarify the scaling behavior of the electrical resistance and the electronic current in the crossover regime.

  12. Progress on development of an airborne two-micron IPDA lidar for water vapor and carbon dioxide column measurements

    Science.gov (United States)

    Singh, Upendra N.; Petros, Mulugeta; Refaat, Tamer F.; Yu, Jirong; Antill, Charles W.; Taylor, Bryant D.; Bowen, Stephen C.; Welters, Angela M.; Remus, Ruben G.; Wong, Teh-Hwa; Reithmaier, Karl; Lee, Jane; Ismail, Syed

    2017-09-01

    An airborne 2-μm triple-pulse integrated path differential absorption (IPDA) lidar is currently under development at NASA Langley Research Center (LaRC). This lidar targets both atmospheric carbon dioxide (CO2) and water vapor (H2O) column measurements, simultaneously. Advancements in the development of this IPDA lidar are presented in this paper. Updates on advanced two-micron triple-pulse high-energy laser transmitter will be given including packaging and lidar integration status. In addition, receiver development updates will also be presented. This includes a state-of-the-art detection system integrated at NASA Goddard Space Flight Center. This detection system is based on a newly developed HgCdTe (MCT) electron-initiated avalanche photodiode (e-APD) array. Future plan for IPDA lidar system for ground integration, testing and flight validation will be discussed.

  13. Toxic effects and bioaccumulation of nano-, micron- and aqueous-Ag in the estuarine polychaete, Nereis (Hediste) diversicolor

    DEFF Research Database (Denmark)

    cong, Yi

    Rapidly expanding growth in the field of nanotechnology has led to the development of numerous applications of nanomaterials in industrial and consumer products. Nanosilver is one of the most commonly used nanomaterials due to its effective antibacterial properties. However, there is increasing...... concern about the fate and potential risks of nanosilver for the aquatic environment after its eventual release via wastewater discharges. In this thesis, dispersion and stability tests of commercially available nano (media (deionized water vs...... diameter and zeta potential was only carried out on nano-Ag in stock suspension (deionized water). However, we observed a clear difference of particle sizes between the manufacturer’s information and what we measured for both nano- and micron-Ag samples. In toxicity experiment I, toxic effects of sediment...

  14. Towards self-similar propagation in a dispersion tailored and highly nonlinear segmented bandgap fiber at 2.8 micron

    CERN Document Server

    Biswas, Piyali; Biswas, Abhijit; Pal, Bishnu P

    2016-01-01

    We numerically demonstrate self-similar propagation of parabolic optical pulses through a highly nonlinear and passive specialty photonic bandgap fiber at 2.8 micron. In this context, we have proposed a scheme endowed with a rapidly varying, but of nearly-mean-zero longitudinal dispersion and modulated nonlinear profile in order to achieve self-similarity of the formed parabolic pulse propagating over longer distances. To implement the proposed scheme, we have designed a segmented bandgap fiber with suitably tapered counterparts to realize such customized dispersion with chalchogenide glass materials. A self-similar parabolic pulse with full-width-at-half-maxima of 4.12 ps and energy of ~ 39 pJ as been achieved at the output. Along with a linear chirp spanning over the entire pulse duration, 3dB spectral broadening of about 38 nm at the output has been reported.

  15. [Therapeutic potential of micronized purified flavonoid fraction (MPFF) of diosmin and hesperidin in treatment chronic venous disorder].

    Science.gov (United States)

    Hnátek, Lukáš

    2015-09-01

    Chronic venous disorder (CVD) is a common illness with high incidence existing especially in Europe and North America. The main goal of micronized purified flavonoid fraction (MPFF) of diosmin and hesperidin is to eliminate the symptoms of CVD (venous pain, fatigue, etc). But MPFF of diosmin and hesperidin has good effectiveness for treatment of venous oedema and venous ulcer too. There are many papers that prove its effectiveness in the experiment and in the microcirculation too. The other indications for MPFF of diosmin hesperidin is hemorrhoidal disease and the accessory treatment of lymphedema. It is proved that this substance could be used as an effective supplementary treatment of symptoms after venous intervention. Only MPFF diosmin and hesperidin received the best recommendation - 1B in the last guidelines for VAD therapy.

  16. Micronization processes by supercritical fluid technologies: a short review on process design (2008-2012 - doi: 10.4025/actascitechnol.v35i4.18819

    Directory of Open Access Journals (Sweden)

    Jose Vladimir de Oliveira

    2013-10-01

    Full Text Available Several micronization processes based on supercritical fluids have been developed. These processes can be classified according to the role of the supercritical fluid in the process: solvent, solute or co-solvent, and anti-solvent. Application of supercritical fluids as alternative to traditional micronization methods and the growing demand of the industrial sector for new technologies motivated this review. In this context, the objective of this work was to present the operating principles of the micronization process by means of supercritical fluids and the effects of the main process variables on particles characteristics. The review continues with an update of current experimental data presented in the literature in the period from 2008 to 2012.   

  17. 2-Micron Triple-Pulse Integrated Path Differential Absorption Lidar Development for Simultaneous Airborne Column Measurements of Carbon Dioxide and Water Vapor in the Atmosphere

    Science.gov (United States)

    Singh, Upendra N.; Petros, Mulugeta; Refaat, Tamer F.; Yu, Jirong

    2016-01-01

    For more than 15 years, NASA Langley Research Center (LaRC) has contributed in developing several 2-micron carbon dioxide active remote sensors using the DIAL technique. Currently, an airborne 2-micron triple-pulse integrated path differential absorption (IPDA) lidar is under development at NASA LaRC. This paper focuses on the advancement of the 2-micron triple-pulse IPDA lidar development. Updates on the state-of-the-art triple-pulse laser transmitter will be presented including the status of wavelength control, packaging and lidar integration. In addition, receiver development updates will also be presented, including telescope integration, detection systems and data acquisition electronics. Future plan for IPDA lidar system for ground integration, testing and flight validation will be presented.

  18. Droplet aerodynamics, cellular uptake, and efficacy of a nebulizable corticosteroid nanosuspension are superior to a micronized dosage form.

    Science.gov (United States)

    Britland, Stephen; Finter, Wayne; Chrystyn, Henry; Eagland, Donald; Abdelrahim, Mohamed E

    2012-01-01

    Inhaled corticosteroids are considered to be an effective prophylactic against the morbid symptoms of several lung diseases, but scope remains for improvement in drug delivery technology to benefit bioavailability and treatment compliance. To ascertain whether dosage form might influence bioavailability, the emission characteristics and efficacy of a nanoparticulate budesonide formulation (Nanagel®) were compared with those of a proprietary micronized suspension (Pulmicort®) when delivered as a nebulized aerosol to human airway epithelial cells in a culture model. Having the visual appearance of a clear solution, Nanagel® was delivered by both jet and vibrating mesh nebulizers as an increased fine particle fraction and with a smaller mass median aerodynamic diameter (MMAD) compared to the micronized suspension. Quantitative high performance liquid chromatography (HPLC) analysis of cultured epithelia one hour after treatment with Nanagel® revealed a significantly greater cellular accumulation of budesonide when compared with Pulmicort® for an equivalent dose, a differential which persisted 24 and 48 h later. A quantitative in vitro assay measuring the activity of enzymes involved in superoxide production revealed that stressed HaCaT cells (a long-lived, spontaneously immortalized human keratinocyte line) treated with Nanagel® continued to show significantly greater attenuation of inflammatory response compared with Pulmicort®-treated cells 24 h after the application of an equivalent budesonide dose. The present in vitro findings suggest that formulation of inhalable drugs such as budesonide as aerosolized nanoparticulate, rather than microparticulate, suspensions can enhance bioavailability with concomitant improvements in efficacy. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  19. Simulation of monolithic active pixels in deep sub-micron technologies

    CERN Document Server

    Manolopoulos, S; Turchetta, R

    2002-01-01

    The use of monolithic active pixels (MAPS) has quickly spread in a number of scientific fields ranging from imaging to high-energy particle physics applications. The success of MAPS is due to a number of reasons, for example their low power consumption, fast readout, high spatial resolution and low cost. The latter reflects the use of standard CMOS processes for fabrication. In this paper, the performance of MAPS designed in 0.25 mu m technology will be modelled by means of TCAD device simulation software. The dependence of the device performance on parameters that affect the detection of minimum ionising particles (MIP) will be studied aiming at the optimisation of the detector performance. More specifically, the simulations will focus on the influence of the epitaxial layer thickness on the amount of collected charge, that defines the signal and the cluster size, that affects the spatial resolution.

  20. Density dependence of the 5 micron infrared spectrum of NH3

    Science.gov (United States)

    Chapados, Camille; Bjoraker, Gordon L.; Birnbaum, George

    1990-01-01

    Measurements of dilute mixtures of NH3 in H2 were made in the window region 1900-2100/cm of the NH3 spectrum to determine is behavior with increasing pressure of H2. The spectra of pure H2, pure NH3, and mixtures of the two, in the total pressure range from 2.38 to 8.17 atm at 309 K, were obtained with a 975-cm white-cell. Synthetic spectra were calculated using precise line strengths, line positions, and a Lorentz profile. The experimental and calculated spectra are in reasonably good agreement, except that the former is super-imposed on a rather flat background not given by the calculation. A possible mechanism for this background is suggested.

  1. Estimating a wind shear detection range for different altitude levels in the troposphere

    Directory of Open Access Journals (Sweden)

    V. A. Gorodnichev

    2014-01-01

    Full Text Available A so-called wind shear (a vector difference of wind speeds in two points of the space referred to the distance between them is of essential practical interest to air force. The wind shear is a hidden and cliffhanging phenomenon. The growth of aircraft incidents at their taking off and landing have drawn attention to this phenomenon.Laser methods are one of the advanced remote techniques to measure a speed and detect a wind shear. Remote laser methods of wind speed measurement are divided into Doppler and correlation ones. More simple (and, respectively, demanding less expensive equipment are correlation methods and near to them non-Doppler techniques.Today almost all existing wind correlation lidars run in the visible range. However, in terms of safety for an eye, other ranges: near infrared (IK and ultra-violet (UF ones are also of interest.The work assesses a sounding range of the aircraft lidar in UF, visible, and near IK spectral ranges to solve a problem of wind shear detection for different altitude levels in the troposphere.Results of calculations show that the sounding ranges decrease with increasing flight altitude (at lidar parameters used in calculations to be in range from ~ 2.7-3.3 km (the lowest atmospheric layer height ~ 0 to ~ 200 - 300 m (a flight altitude of 10 km. And the main reduction of the sounding range vs height is within the range of heights of 5-10 km. Such dependence is caused by the strong reduction of aerosol extinction and atmosphere scattering with the altitude increase in this altitude range.In a ground layer of the terrestrial atmosphere (height ~ 0 the greatest sounding range is realized for a wave length of 0.532 microns. With increasing flight altitude a difference in sounding ranges for the wave lengths of 0.355; 9.532 and 1.54 microns decreases, and at big heights the greatest range of sounding is realized for a wave length of 1.54 microns.

  2. Low threshold continuous operation of InGaAs/InGaAsP quantum well lasers at about 2.0 microns

    Science.gov (United States)

    Forouhar, S.; Keo, S.; Larsson, A.; Ksendzov, A.; Temkin, H.

    1993-01-01

    The first low threshold continuous operation of InGaAs strained layer quantum well lasers at about 2.0 microns is reported. The threshold current density of 5-micron wide and 1.5 mm long ridge waveguide lasers was less than 380 A/sq cm. The external differential quantum efficiency of 1 mm long lasers was as high as 15 percent and laser operation was observed at temperatures as high as 50 C. The lasers are characterized by T(0) = 54 C which is the highest characteristic temperature ever achieved at this wavelength in any material system.

  3. Micronized copper wood preservatives: an efficiency and potential health risk assessment for copper-based nanoparticles.

    Science.gov (United States)

    Civardi, Chiara; Schwarze, Francis W M R; Wick, Peter

    2015-05-01

    Copper (Cu) is an essential biocide for wood protection, but fails to protect wood against Cu-tolerant wood-destroying fungi. Recently Cu particles (size range: 1 nm-25 μm) were introduced to the wood preservation market. The new generation of preservatives with Cu-based nanoparticles (Cu-based NPs) is reputedly more efficient against wood-destroying fungi than conventional formulations. Therefore, it has the potential to become one of the largest end uses for wood products worldwide. However, during decomposition of treated wood Cu-based NPs and/or their derivate may accumulate in the mycelium of Cu-tolerant fungi and end up in their spores that are dispersed into the environment. Inhaled Cu-loaded spores can cause harm and could become a potential risk for human health. We collected evidence and discuss the implications of the release of Cu-based NPs by wood-destroying fungi and highlight the exposure pathways and subsequent magnitude of health impact. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Trapping ultracold atoms in a sub-micron-period triangular magnetic lattice

    Science.gov (United States)

    Wang, Y.; Tran, T.; Surendran, P.; Herrera, I.; Balcytis, A.; Nissen, D.; Albrecht, M.; Sidorov, A.; Hannaford, P.

    2017-07-01

    We report the trapping of ultracold 87Rb atoms in a 0.7-μ m-period two-dimensional triangular magnetic lattice on an atom chip. The magnetic lattice is created by a lithographically patterned magnetic Co/Pd multilayer film plus bias fields. Rubidium atoms in the |F =1 , mF=-1 > low-field seeking state are trapped at estimated distances down to about 100 nm from the chip surface and with calculated mean trapping frequencies up to about 800 kHz . The measured lifetimes of the atoms trapped in the magnetic lattice are in the range 0.4-1.7 ms , depending on distance from the chip surface. Model calculations suggest the trap lifetimes are currently limited mainly by losses due to one-dimensional thermal evaporation following loading of the atoms from the Z -wire trap into the very tight magnetic lattice traps, rather than by fundamental loss processes such as surface interactions, three-body recombination, or spin flips due to Johnson magnetic noise. The trapping of atoms in a 0.7 -μ m -period magnetic lattice represents a significant step toward using magnetic lattices for quantum tunneling experiments and to simulate condensed matter and many-body phenomena in nontrivial lattice geometries.

  5. Study of micron-thick MgB{sub 2} films on niobium substrates

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang Chenggang; Yao Dan; Li Fen; Zhang Kaicheng; Feng Qingrong; Gan Zizhao [School of Physics and State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Peking University, Beijing 100871 (China)

    2007-03-15

    1 {mu}m thick polycrystalline MgB{sub 2} films have been grown on commercial niobium sheets using the hybrid physical-chemical vapour deposition technique (HPCVD). Their zero-resistance transition temperature T{sub c}{sup 0} ranges from 38 to 39 K and the transition temperature width {delta}T{sub c} is about 0.1-0.2 K. The films are composed of regular plate-shaped MgB{sub 2} crystallites and have lattice constants about the bulk values. Some diffusion regions were observed at the interface between the film and the substrate by a line scanning spectra of energy-dispersive x-ray spectroscopy (EDX) on the cross section, which might enhance the adhesion of the coated layer to the substrate. The critical current densities, J{sub c}, of these films, calculated by the Bean model, are greater than 5 x 10{sup 6} A cm{sup -2} at 10 K in zero field. Although tiny cracks in the film were created by bending the sample on a curved surface with a radius of 1.4 mm, however, T{sub c}{sup 0} of the bent film was not affected and remained about 39 K, which indicates that the sample has a certain ductibility.

  6. White light generation using photonic crystal fiber with sub-micron circular lattice

    Science.gov (United States)

    Saghaei, Hamed; Ghanbari, Ashkan

    2017-08-01

    In this paper, we study a photonic crystal fiber (PCF) with circular lattice and engineer linear and nonlinear parameters by varying the diameter of air-holes. It helps us obtain low and high zero dispersion wavelengths in the visible and nearinfrared regions. We numerically demonstrate that by launching 100 fs input pulses of 1, 2, and 5 kW peak powers with center wavelength of 532 nm from an unamplified Ti:sapphire laser into a 100 mm length of the engineered PCF, supercontinua as wide as 290, 440 and 830 nm can be obtained, respectively. The spectral broadening is due to the combined action of self-phase modulation, stimulated Raman scattering and parametric four-wave-mixing generation of the pump pulses. The third and the widest spectrum covers the entire visible range and a part of near infrared region making it a suitable source for both white light applications and optical coherence tomography to measure retinal oxygen metabolic response to systemic oxygenation.

  7. Dancing the night away: Improving the persistence of locomotion on the micron scale

    Science.gov (United States)

    Gehrels, Emily W.; Rogers, W. Benjamin; Zeravcic, Zorana; Manoharan, Vinothan N.

    In recent years a range of nano and microscale walkers (motors that are able to move along a preformed track) have been developed. Many of these walkers bind to their tracks using a single binding site at each station along the track. A disadvantage of these systems is that any failure involving a single site becoming unbound leads to the walker falling off of the track and locomotion being prematurely terminated. For this reason, it has been difficult to develop a motor that can reliably take more than a few sequential steps. We present an experimental system of DNA-functionalized colloidal particles which exhibit directed motion along patterned substrates in response to temperature cycling. Many DNA bridges form between each pair of interacting particles, adding redundancy to the binding at each station to realize a system that should be able to consistently take many steps. We take advantage of toehold exchange in the design of the DNA sequences that mediate the colloidal interactions to produce broadened, flat, or even re-entrant binding and unbinding transitions between the particles and substrate. Using this new freedom of design, we devise systems where, by thermal ratcheting, we can externally control the direction of motion and sequence of steps of the colloidal motor.

  8. Regional and Global Atmospheric CO2 Measurements Using 1.57 Micron IM-CW Lidar

    Science.gov (United States)

    Lin, Bing; Obland, Michael; Nehrir, Amin; Browell, Edward; Harrison, F. Wallace; Dobler, Jeremy; Campbell, Joel; Kooi, Susan; Meadows, Byron; Fan, Tai-Fang; hide

    2015-01-01

    Atmospheric CO2 is a critical forcing for the Earth's climate, and knowledge of its distribution and variations influences predictions of the Earth's future climate. Accurate observations of atmospheric CO2 are also crucial to improving our understanding of CO2 sources, sinks and transports. To meet these science needs, NASA is developing technologies for the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission, which is aimed at global CO2 observations. Meanwhile an airborne investigation of atmospheric CO2 distributions as part of the NASA Suborbital Atmospheric Carbon and Transport â€" America (ACT-America) mission will be conducted with lidar and in situ instrumentation over the central and eastern United States during all four seasons and under a wide range of meteorological conditions. In preparing for the ASCENDS mission, NASA Langley Research Center and Exelis Inc./Harris Corp. have jointly developed and demonstrated the capability of atmospheric CO2 column measurements with an intensity-modulated continuous-wave (IM-CW) lidar. Since 2005, a total of 14 flight campaigns have been conducted. A measurement precision of approx.0.3 ppmv for a 10-s average over desert and vegetated surfaces has been achieved, and the lidar CO2 measurements also agree well with in-situ observations. Significant atmospheric CO2 variations on various spatiotemporal scales have been observed during these campaigns. For example, around 10-ppm CO2 changes were found within free troposphere in a region of about 200A-300 sq km over Iowa during a summer 2014 flight. Results from recent flight campaigns are presented in this paper. The ability to achieve the science objectives of the ASCENDS mission with an IM-CW lidar is also discussed in this paper, along with the plans for the ACT-America aircraft investigation that begins in the winter of 2016.

  9. OpenStage: a low-cost motorized microscope stage with sub-micron positioning accuracy.

    Directory of Open Access Journals (Sweden)

    Robert A A Campbell

    Full Text Available Recent progress in intracellular calcium sensors and other fluorophores has promoted the widespread adoption of functional optical imaging in the life sciences. Home-built multiphoton microscopes are easy to build, highly customizable, and cost effective. For many imaging applications a 3-axis motorized stage is critical, but commercially available motorization hardware (motorized translators, controller boxes, etc are often very expensive. Furthermore, the firmware on commercial motor controllers cannot easily be altered and is not usually designed with a microscope stage in mind. Here we describe an open-source motorization solution that is simple to construct, yet far cheaper and more customizable than commercial offerings. The cost of the controller and motorization hardware are under $1000. Hardware costs are kept low by replacing linear actuators with high quality stepper motors. Electronics are assembled from commonly available hobby components, which are easy to work with. Here we describe assembly of the system and quantify the positioning accuracy of all three axes. We obtain positioning repeatability of the order of 1 μm in X/Y and 0.1 μm in Z. A hand-held control-pad allows the user to direct stage motion precisely over a wide range of speeds (10(-1 to 10(2 μm·s(-1, rapidly store and return to different locations, and execute "jumps" of a fixed size. In addition, the system can be controlled from a PC serial port. Our "OpenStage" controller is sufficiently flexible that it could be used to drive other devices, such as micro-manipulators, with minimal modifications.

  10. OpenStage: a low-cost motorized microscope stage with sub-micron positioning accuracy.

    Science.gov (United States)

    Campbell, Robert A A; Eifert, Robert W; Turner, Glenn C

    2014-01-01

    Recent progress in intracellular calcium sensors and other fluorophores has promoted the widespread adoption of functional optical imaging in the life sciences. Home-built multiphoton microscopes are easy to build, highly customizable, and cost effective. For many imaging applications a 3-axis motorized stage is critical, but commercially available motorization hardware (motorized translators, controller boxes, etc) are often very expensive. Furthermore, the firmware on commercial motor controllers cannot easily be altered and is not usually designed with a microscope stage in mind. Here we describe an open-source motorization solution that is simple to construct, yet far cheaper and more customizable than commercial offerings. The cost of the controller and motorization hardware are under $1000. Hardware costs are kept low by replacing linear actuators with high quality stepper motors. Electronics are assembled from commonly available hobby components, which are easy to work with. Here we describe assembly of the system and quantify the positioning accuracy of all three axes. We obtain positioning repeatability of the order of 1 μm in X/Y and 0.1 μm in Z. A hand-held control-pad allows the user to direct stage motion precisely over a wide range of speeds (10(-1) to 10(2) μm·s(-1)), rapidly store and return to different locations, and execute "jumps" of a fixed size. In addition, the system can be controlled from a PC serial port. Our "OpenStage" controller is sufficiently flexible that it could be used to drive other devices, such as micro-manipulators, with minimal modifications.

  11. Frecuencia espontánea e inducida de micronúcleos transplacentarios en ratones Balb/c

    Directory of Open Access Journals (Sweden)

    Daniel Francisco Arencibia Arrebola

    2011-01-01

    Full Text Available Introducción: El ensayo de micronúcleos transplacentario, ha sido desarrollado con el objetivo de evaluar el potencial genotóxico en la descendencia y demostrar la capacidad de un agente de causar daños cromosómicos durante el período prenatal. Éste realiza el registro de aberraciones cromosómicas, demostrando si una sustancia determinada puede ser clastogénica o aneugénica en el feto, a través de la exposición materna. Objetivo: Por lo cual en el presente trabajo se tuvo como objetivo determinar la frecuencia espontánea e inducida de micronúcleos transplacentarios en ratones de la línea Balb/c. Pretendiendo vincular de esta forma el efecto genotóxico y reproductivo de una droga a evaluar por esta metodología. Materiales y métodos: Se formaron 4 grupos experimentales, el primero un control negativo (simulacro, el segundo control solvente NaCl (0,9%, en el tercero se utilizo la ciclofosfamida en dosis de 50 mg/kg, y el cuarto se utilizó la bleomicina en dosis de 20 mg/kg. Todos los grupos se administraron por vía intraperitoneal los días 14, 15 y 16 de la gestación y 24 h después de la última inoculación se procedió al sacrificio de las gestantes por dislocación cervical. Obteniéndose las muestras de médula ósea materna e hígado fetal. Resultados: Se obtuvo como resultado los valores espontáneos e inducidos de los índices de citotoxicidad y de genotoxicidad, así como el total de micronúcleos divididos según niveles de daños.Discusión y conclusiones: Se observo mayor inducción de daño en células hepáticas fetales que en médula ósea materna. Además se demostró que la ciclofosfamida es capaz de inducir mayor citotoxicidad y genotoxicidad que la bleomicina tanto en células de la médula ósea materna como en células hepáticas fetales. Por tanto se demostró el poder clastogénico transplacentario de ambos mutágenos vinculando este ensayo de genotoxicidad a la reproducción. Además estos resultados se

  12. Micronúcleos y otras anormalidades nucleares en el epitelio oral de mujeres expuestas ocupacionalmente a plaguicidas

    Directory of Open Access Journals (Sweden)

    Rocío Castro

    2004-09-01

    Full Text Available Para determinar si la exposición laboral a plaguicidas produce daño al material genético se utilizó como biomarcador de efecto la presencia de micronúcleos en células del epitelio oral de trabajadoras de Guápiles y Siquirres, Costa Rica. También se analizaron otras anormalidades nucleares que pueden ser indicio de genotoxicidad o de citotoxicidad. El grupo de mujeres expuestas a plaguicidastrabajaban en plantas empacadoras de diferentes fincas bananeras independientes. El grupo de mujeres no expuestas nunca habían trabajado en labores agrícolas, no vivían dentro de una finca bananera, así como tampoco sus esposos o compañeros. Se obtuvo información acerca del estilo de vida, historia médica y familiar de las participantes mediante una entrevista. No se encontró un aumento significativo en la frecuencia de micronúcleos en el grupo de expuestas con respecto a las no expuestas. Las otras anormalidades nucleares mostraron indicios de citotoxicidad y genotoxicidad en el grupo de no expuestas, asociados a ingesta de café y a radiografías dentales. Estos resultados no descartan a los plaguicidas como agentes capaces de causar daño genético, sino que más bien los micronúcleos de la mucosa oral no parecen ser el biomarcador más adecuado para medirlo.Micronuclei and other nuclear abnormalities in the oral epithelium of female workers exposed to pesticides. In order to study if banana fields labour exposure to pesticides produces some kind of DNA damage, we determine the presence of micronuclei in epithelial oral cells in working women in Guapiles and Siquirres, Costa Rica, as an effect biomarker. We also analyzed other abnormalities in the nucleus of those cells such as broken-egg, karyolysis or kariorrhexis, to see if there was some kind of genotoxicity or citotoxicity. The women group exposed to pesticides worked in packing bananas plant from different independent farms. The control group of women had never done any farming tasks

  13. A prospective randomized multicentre study comparing vaginal progesterone gel and vaginal micronized progesterone tablets for luteal support after in vitro fertilization/intracytoplasmic sperm injection

    DEFF Research Database (Denmark)

    Bergh, Christina; Lindenberg, Svend; Al Humaidan, Peter Samir Heskjær

    2012-01-01

    SUMMARY QUESTION: Is vaginal progesterone gel equivalent to vaginal micronized progesterone tablets concerning ongoing pregnancy rate and superior concerning patient convenience when used for luteal support after IVF/ICSI? SUMMARY ANSWER: Equivalence of treatments in terms of ongoing live intraut...

  14. Dual fortification of salt with iodine and iron: a randomized, double-blind, controlled trial of micronized ferric pyrophosphate and encapsulated ferrous fumarate in southern India

    NARCIS (Netherlands)

    Andersson, M.; Thankachan, P.; Muthayya, S.; Goud, R.B.; Kurpad, A.V.; Hurrell, R.F.

    2008-01-01

    Background:Dual fortification of salt with iodine and iron could be a sustainable approach to combating iodine and iron deficiencies. Objective:We compared the efficacy of dual-fortified salt (DFS) made by using 2 proposed contrasting formulas-one fortifying with iron as micronized ground ferric

  15. "Bottom-up" meets "top-down" : self-assembly to direct manipulation of nanostructures on length scales from atoms to microns.

    Energy Technology Data Exchange (ETDEWEB)

    Swartzentruber, Brian Shoemaker

    2009-04-01

    This document is the final SAND Report for the LDRD Project 102660 - 'Bottomup' meets 'top-down': Self-assembly to direct manipulation of nanostructures on length scales from atoms to microns - funded through the Strategic Partnerships investment area as part of the National Institute for Nano-Engineering (NINE) project.

  16. The Use of Micronized Dehydrated Human Amnion/Chorion Membrane Allograft for the Treatment of Diabetic Foot Ulcers: A Case Series.

    Science.gov (United States)

    Hawkins, Brandon

    2016-05-01

    Diabetic foot ulcers (DFUs) are a common problem in patients with diabetes and are associated with significant morbidity and mortality. Dehydrated human amnion/chorion membrane (dHACM) allografts have been shown to be effective in the treatment of DFUs. A micronization process produces a dHACM powder that can be sprinkled onto irregular wound surfaces or reconstituted with normal saline for injection into tunneling wounds or wound margins. The author presents a case review of 3 patients with chronic plantar surface DFUs treated with micronized dHACM over a 1-month period. Wound duration was at least 8 months, and 2 out of 3 wounds had failed to heal with cryopreserved human fibroblast-derived dermal substitute before treatment with dHACM. Micronized dHACM (40 mg) in powder form was sprinkled onto the plantar ulcers weekly after sharp debridement, followed by standard topical dressings. Weekly dressing change and wound assessment was conducted to determine the rate of closure. Off-loading shoes were provided. Within 4 weeks of the first dHACM application, all 3 wounds had healed: the first after 2 applications, the second after 3 applications, and the last after 4 applications. No adverse events were observed, and the wounds remained healed after 6 months. In the author's practice, the micronized dHACM allograft was easily applied, clinically effective, and well tolerated as a treatment for plantar ulcers in patients with diabetes.

  17. Influence of Poly (Ethylene Glycol) and Oleylamine on the Formation of Nano to Micron Size Spherical SiO2 Particles

    Science.gov (United States)

    We report an eco-friendly synthesis of well–controlled, nano-to-micron-size, spherical SiO2 particles using non-hazardous solvent and a byproducts-producing system. It was found that the morphology and size of spherical SiO2 particles are controlled by adjusting the concentration...

  18. Is the 21-micron Feature Observed in Some Post-AGB Stars Caused by the Interaction Between Ti Atoms and Fullerenes?

    Science.gov (United States)

    Kimura, Yuki; Nuth, Joseph A. III; Ferguson, Frank T.

    2005-01-01

    Recent measurements of fullerenes and Ti atoms recorded in our laboratory have demonstrated the presence of an infrared feature near 21 pm. The feature observed has nearly the same shape and position as is observed for one of the most enigmatic features in post-asymptotic giant blanch (AGB) stars. In our experimental system large cage carbon particles, such as large fullerenes, were produced from CO gas by the Boudouard reaction. Large-cage carbon particles intermixed with Ti atoms were produced by the evaporation of a Ti metal wrapped carbon electrode in CO gas. The infrared spectra of large fullerenes interacting with Ti atoms show a characteristic feature at 20.3 micron that closely corresponds to the 20.1 micron feature observed in post-AGB stars. Both the lab- oratory and stellar spectra also show a small but significant peak at 19.0 micron, which is attributed to fullerenes. Here, we propose that the interaction between fullerenes and Ti atoms may be a plausible explanation for the 21-micron feature seen in some post-AGB stars.

  19. Sustained delivery of chondroitinase ABC by poly(propylene carbonate)-chitosan micron fibers promotes axon regeneration and functional recovery after spinal cord hemisection.

    Science.gov (United States)

    Ni, Shilei; Xia, Tongliang; Li, Xingang; Zhu, Xiaodong; Qi, Hongxu; Huang, Shanying; Wang, Jiangang

    2015-10-22

    We describe the sustained delivery of chondroitinase ABC (ChABC) in the hemisected spinal cord using polypropylene carbonate (PPC) electrospun fibers with chitosan (CS) microspheres as a vehicle. PPC and ChABC-loaded CS microspheres were mixed with acetonitrile, and micron fibers were generated by electrospinning. ChABC release was assessed in vitro with high-performance liquid chromatography (HPLC) and revealed stabilized and prolonged release. Moreover, the released ChABC showed sustained activity. PPC-CS micron fibers with or without ChABC were then implanted into a hemisected thoracic spinal cord. In the following 4 weeks, we examined functional recovery and performed immunohistochemical analyses. We found that sustained delivery of ChABC promoted axon sprouting and functional recovery and reduced glial scarring; PPC-CS micron fibers without ChABC did not show these effects. The present findings suggest that PPC-CS micron fibers containing ChABC are a feasible option for spinal cord injury treatment. Furthermore, the system described here may be useful for local delivery of other therapeutic agents. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Nimbus-7/THIR Level 1 Calibrated Located Radiation Data (CLDT) at 6.7 and 11.5 microns V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The Nimbus-7/THIR Level 1 Calibrated Located Radiation Data (CLDT) at 6.7 and 11.5 microns data product contains radiances expressed in units of W/m2/sr measured in...

  1. Advances in high-energy solid-state 2-micron laser transmitter development for ground and airborne wind and CO2 measurements

    Science.gov (United States)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Chen, Songsheng; Kavaya, Michael J.; Trieu, Bo; Bai, Yingxin; Petzar, Paul; Modlin, Edward A.; Koch, Grady; Beyon, Jeffrey

    2010-10-01

    Sustained research efforts at NASA Langley Research Center (LaRC) during last fifteen years have resulted in a significant advancement in 2-micron diode-pumped, solid-state laser transmitter for wind and carbon dioxide measurement from ground, air and space-borne platform. Solid-state 2-micron laser is a key subsystem for a coherent Doppler lidar that measures the horizontal and vertical wind velocities with high precision and resolution. The same laser, after a few modifications, can also be used in a Differential Absorption Lidar (DIAL) system for measuring atmospheric CO2 concentration profiles. Researchers at NASA Langley Research Center have developed a compact, flight capable, high energy, injection seeded, 2-micron laser transmitter for ground and airborne wind and carbon dioxide measurements. It is capable of producing 250 mJ at 10 Hz by an oscillator and one amplifier. This compact laser transmitter was integrated into a mobile trailer based coherent Doppler wind and CO2 DIAL system and was deployed during field measurement campaigns. This paper will give an overview of 2- micron solid-state laser technology development and discuss results from recent ground-based field measurements.

  2. Advances in High Energy Solid-State 2-micron Laser Transmitter Development for Ground and Airborne Wind and CO2 Measurements

    Science.gov (United States)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Chen, Songsheng; Kavaya, Michael J.; Trieu, Bo; Bai, Yingxin; Petzar, Paul; Modlin, Edward A.; Koch, Grady; hide

    2010-01-01

    Sustained research efforts at NASA Langley Research Center (LaRC) during last fifteen years have resulted in a significant advancement in 2-micron diode-pumped, solid-state laser transmitter for wind and carbon dioxide measurement from ground, air and space-borne platform. Solid-state 2-micron laser is a key subsystem for a coherent Doppler lidar that measures the horizontal and vertical wind velocities with high precision and resolution. The same laser, after a few modifications, can also be used in a Differential Absorption Lidar (DIAL) system for measuring atmospheric CO2 concentration profiles. Researchers at NASA Langley Research Center have developed a compact, flight capable, high energy, injection seeded, 2-micron laser transmitter for ground and airborne wind and carbon dioxide measurements. It is capable of producing 250 mJ at 10 Hz by an oscillator and one amplifier. This compact laser transmitter was integrated into a mobile trailer based coherent Doppler wind and CO2 DIAL system and was deployed during field measurement campaigns. This paper will give an overview of 2-micron solid-state laser technology development and discuss results from recent ground-based field measurements.

  3. The Carnegie Chicago Hubble Program: The Mid-Infrared Colours of Cepheids and the Effect of Metallicity on the CO Band-Head at 4.6 Micron

    Science.gov (United States)

    Scowcroft, Victoria; Seibert, Mark; Freedman, Wendy L.; Beaton, Rachael L.; Madore, Barry F.; Monson, Andrew J.; Rich, Jeffery A.; Rigby, Jane R.

    2016-01-01

    We compare mid-infrared (IR) 3.6 and 4.5 micron Warm Spitzer observations for Cepheids in the Milky Way and the Large and Small Magellanic Clouds. Using models, we explore in detail the effect of the CO rotation-vibration band-head at 4.6 micron on the mid-IR photometry. We confirm the temperature sensitivity of the CO band-head at 4.6 micron and find no evidence for an effect at 3.6 micron. We compare the ([3.6]-[4.5]) period-colour relations in the MW, LMC and SMC. The slopes of the period-colour relations for the three galaxies are in good agreement, but there is a trend in zero-point with metallicity, with the lowest metallicity Cepheids having redder mid-IR colours. Finally, we present a colour-[Fe/H] relation based on published spectroscopic metallicities. This empirical relation, calibrated to the metallicity system of Genovali et al., demonstrates that the ([3.6]-[4.5]) colour provides a reliable metallicity indicator for Cepheids, with a precision comparable to current spectroscopic determinations.

  4. High Proportions of Sub-micron Particulate Matter in Icelandic Dust Storms in 2015

    Science.gov (United States)

    Dagsson Waldhauserova, Pavla; Arnalds, Olafur; Olafsson, Haraldur; Magnusdottir, Agnes

    2017-04-01

    in situ measurements at the dust source in 2013 revealed extremely high number concentrations of submicron particles, specifically in the size range 0.3-0.337 μm. The PM2.5/PM10 ratios of mass concentrations seem to be lower at the dust sources that in some distance from the sources as measured in 2015. Common dust storms in Iceland are of several hundred thousand tons of magnitude from relatively well defined main dust sources. Numerical simulations were used calculate the total dust flux from the sources as 180,000 - 280,000 tons in this study. The mean PM1 (PM10) concentrations inside of the dust plumes varied from 97 to 241 µg m-3 (PM10 = 158 to 583 µg m-3). The extent of moderate dust events was calculated as 2.450 km2 to 4.220 km2 of the land area suggesting the regional scale of the events. Dust plumes reported here passed the most densely inhabited areas of Iceland, health risk warnings for the general public were, however, not issued. The data provided stresses the need for such warning system and is an important step towards its development.

  5. A Quantitative and Standardized Method for the Evaluation of Choroidal Neovascularization Using MICRON III Fluorescein Angiograms in Rats.

    Directory of Open Access Journals (Sweden)

    Jonathan P Wigg

    Full Text Available In-vivo imaging of choroidal neovascularization (CNV has been increasingly recognized as a valuable tool in the investigation of age-related macular degeneration (AMD in both clinical and basic research applications. Arguably the most widely utilised model replicating AMD is laser generated CNV by rupture of Bruch's membrane in rodents. Heretofore CNV evaluation via in-vivo imaging techniques has been hamstrung by a lack of appropriate rodent fundus camera and a non-standardised analysis method. The aim of this study was to establish a simple, quantifiable method of fluorescein fundus angiogram (FFA image analysis for CNV lesions.Laser was applied to 32 Brown Norway Rats; FFA images were taken using a rodent specific fundus camera (Micron III, Phoenix Laboratories over 3 weeks and compared to conventional ex-vivo CNV assessment. FFA images acquired with fluorescein administered by intraperitoneal injection and intravenous injection were compared and shown to greatly influence lesion properties. Utilising commonly used software packages, FFA images were assessed for CNV and chorioretinal burns lesion area by manually outlining the maximum border of each lesion and normalising against the optic nerve head. Net fluorescence above background and derived value of area corrected lesion intensity were calculated.CNV lesions of rats treated with anti-VEGF antibody were significantly smaller in normalised lesion area (p < 0.001 and fluorescent intensity (p < 0.001 than the PBS treated control two weeks post laser. The calculated area corrected lesion intensity was significantly smaller (p < 0.001 in anti-VEGF treated animals at 2 and 3 weeks post laser. The results obtained using FFA correlated with, and were confirmed by conventional lesion area measurements from isolectin stained choroidal flatmounts, where lesions of anti-VEGF treated rats were significantly smaller at 2 weeks (p = 0.049 and 3 weeks (p < 0.001 post laser.The presented method of in

  6. Development of a 2-micron Pulsed Differential Absorption Lidar for Atmospheric CO2 Concentration Measurement by Direct Detection Technique

    Science.gov (United States)

    Yu, J.; Singh, U. N.; Petros, M.; Bai, Y.

    2011-12-01

    Researchers at NASA Langley Research Center are developing a 2-micron Pulsed Differential Absorption Lidar instrument for ground and airborne measurements via direct detection method. This instrument will provide an alternate approach to measure atmospheric CO2 concentrations with significant advantages. A high energy pulsed approach provides high-precision measurement capbility by having high signal-to-noise level and unambiguously eliminates the contamination from aerosols and clouds that can bias the IPDA measurement. A key component of the CO2 DIAL system, transceiver, is an existing, airborne ready, robust hardware which can provide 250mJ at 10Hz with double pulse format specifically designed for DIAL instrument. The exact wavelengths of the transceiver are controlled by well defined CW seed laser source to provide the required injection source for generating on-and-off line wavelength pulses sequentially. The compact, rugged, highly reliable transceiver is based on the unique Ho:Tm:YLF high-energy 2-micron pulsed laser technology. All the optical mounts are custom designed and have space heritage. They are designed to be adjustable and lockable and hardened to withstand vibrations that can occur in airborne operation. For the direct detection lidar application, a large primary mirror size is preferred. A 14 inch diameter telescope will be developed for this program. The CO2 DIAL/IPDA system requires many electronic functions to operate. These include diode, RF, seed laser, and PZT drivers; injection seeding detection and control; detector power supplies; and analog inputs to sample various sensors. Under NASA Laser Risk Reduction Program (LRRP), a control unit Compact Laser Electronics (CLE), is developed for the controlling the coherent wind lidar transceiver. Significant modifications and additions are needed to update it for CO2 lidar controls. The data acquisition system was built for ground CO2 measurement demonstration. The software will be updated for

  7. High-Power Single-Mode 2.65-micron InGaAsSb/AlInGaAsSb Diode Lasers

    Science.gov (United States)

    Frez, Clifford F.; Briggs, Ryan M.; Forouhar, Siamak; Borgentun, Carl E.; Gupta, James

    2013-01-01

    Central to the advancement of both satellite and in-situ science are improvements in continuous-wave and pulsed infrared laser systems coupled with integrated miniaturized optics and electronics, allowing for the use of powerful, single-mode light sources aboard both satellite and unmanned aerial vehicle platforms. There is a technological gap in supplying adequate laser sources to address the mid-infrared spectral window for spectroscopic characterization of important atmospheric gases. For high-power applications between 2 to 3 micron, commercial laser technologies are unsuitable because of limitations in output power. For instance, existing InP-based laser systems developed for fiber-based telecommunications cannot be extended to wavelengths longer than 2 micron. For emission wavelengths shorter than 3 micron, intersubband devices, such as infrared quantum cascade lasers, become inefficient due to band-offset limitations. To date, successfully demonstrated singlemode GaSb-based laser diodes emitting between 2 and 3 micron have employed lossy metal Bragg gratings for distributed- feedback coupling, which limits output power due to optical absorption. By optimizing both the quantum well design and the grating fabrication process, index-coupled distributed-feedback 2.65-micron lasers capable of emitting in excess of 25 mW at room temperature have been demonstrated. Specifically, lasers at 3,777/cm (2.65 micron) have been realized to interact with strong absorption lines of HDO and other isotopologues of H2O. With minor modifications of the optical cavity and quantum well designs, lasers can be fabricated at any wavelength within the 2-to-3-micron spectral window with similar performance. At the time of this reporting, lasers with this output power and wavelength accuracy are not commercially available. Monolithic ridge-waveguide GaSb lasers were fabricated that utilize secondorder lateral Bragg gratings to generate single-mode emission from InGaAsSb/ Al

  8. Optimizing Preparation of Micron SiO2-based Phase Change and Humidity Controlling Composites with Uniform Particle Size Distribution Based on RBF Neural Network

    Directory of Open Access Journals (Sweden)

    ZHANG Hao

    2017-08-01

    Full Text Available With SiO2 as the carrier, decanoic acid-palmitic acid as a phase change material,the micron SiO2-based phase change and humidity controlling composite materials were prepared by sol-gel method. The scheme was optimized by uniform design in a combination with RBF neural network to optimizing preparation of micron SiO2-based phase change and humidity controlling composite materials. The performance of micron SiO2-based phase change and humidity controlling composite materials with optimal uniform particle size distribution were tested and characterized. The results show that RBF neural network has the best approximation effect, when spread is 0.5; optimization technology parameters are solution pH value 4.27, amount of deionized water (mole ratio between deionized water and tetraethyl orthosilicate is 8.58, amount of absolute alcohol (mole ratio between absolute alcohol and tetraethyl orthosilicate is 4.83 and ultrasonic wave power is 316W; micron SiO2-based phase change and humidity controlling composite materials with optimal uniform particle size distribution' d10 is 383.51nm, d50 is 511.63nm and d90 is 658.76nm, measured value of d90-d10 is 275.25nm, the measured value and the predicted value are in good agreement (relative error is -2.64%; micron SiO2-based phase change and humidity controlling composite materials with optimal uniform particle size distribution' equilibrium moisture content in the relative humidity of 40%-60% is 0.0925-0.1493g/g, phase transition temperature is 20.02-23.45℃ and phase change enthalpy is 54.06-60.78J/g.

  9. Beam diameter thresholds as applying light depolarization for effective submicron and micron root mean square roughness evaluation.

    Science.gov (United States)

    Liu, Linsheng; Nonaka, Kazuhiro

    2017-09-01

    To further study the microscopic mechanism and beam diameter effect during light depolarization (LDP), we developed a compact laser instrument (λ=632.8  nm) with an adjustable beam diameter of ≥18  μm (approximately 28λ). Six nickel plate samples with rms roughness, Rq, of 42 nm to 2.3 μm (i.e., 0.067-3.7λ) fabricated by the fine-honing method are examined. To analyze the beam diameter effect as applying LDP for submicron and micron Rq evaluation, the cross-sectional beam-spot size (BSS) is adjusted from 20 μm to 650 μm during off-specular inspections. The results of BSS ≤40  μm (i.e., 60λ) have a 10-nm-level Rq sensitivity, while those of BSS ≥140  μm (220λ) have about a 100 times weaker sensitivity. It means that BSS of 60λ and 220λ should have instructional significance as applying LDP for precision levels of 10 nm and 1 μm surface roughness analyses, respectively. In addition, since the instrument is simple, portable, stable, and low-cost, it has great potential for both LDP analyses and practical online roughness testing.

  10. Cooling and crystallization of rhyolite-obsidian lava: Insights from micron-scale projections on plagioclase microlites

    Science.gov (United States)

    Sano, Kyohei; Toramaru, Atsushi

    2017-07-01

    To reveal the cooling process of a rhyolite-obsidian flow, we studied the morphology of plagioclase microlites in the Tokachi-Ishizawa lava of Shirataki, northern Hokkaido, Japan, where the structure of the lava can be observed from obsidian at the base of the flow to the innermost rhyolite. Needle-like micron-scale textures, known as ;projections;, occur on the short side surfaces of the plagioclase microlites. Using FE-SEM we discovered a positive correlation between the lengths and spacings of these projections. On the basis of the instability theory of an interface between melt and crystal, and to understand the length and spacing data, we developed a model that explains the positive correlation and allows us to simultaneously estimate growth rates and growth times. Applying the model to our morphological data and the estimated growth rates and growth times, we suggest that the characteristics of the projections reflect the degree of undercooling, which in turn correlates with lava structure (the obsidian at the margin of the flow experienced a higher degree of undercooling than the interior rhyolite). The newly developed method provides insights into the degree of undercooling during the final stages of crystallization of a rhyolitic lava flow.

  11. Impact of nano/micron vegetable carbon black on mechanical, barrier and anti-photooxidation properties of fish gelatin film.

    Science.gov (United States)

    Ding, Junsheng; Wu, Xiaomeng; Qi, Xiaona; Guo, Heng; Liu, Anjun; Wang, Wenhang

    2017-10-26

    In this paper, two kinds of commonly used vegetable carbon black (VCB, 3000 mesh; nano) at 50 g kg -1 concentration (based on dried gelatin) were added to 48 g kg -1 of fish gelatin (GEL) solutions and their effects on mechanical, barrier and anti-photooxidation properties of GEL films were investigated. From the SEM images, it was shown that compared with 3000 mesh VCB (1-2 μm), nano VCB (100-200 nm) made the microstructure of GEL film more compact and more gelatin chains were cross-linked by nano VCB. The addition of nano VCB significantly increased gelatin film strength with the greatest tensile strength of 52.589 MPa and stiffness with the highest Young's modulus of 968.874 MPa, but led to the reduction of film elongation. Also, the VCB presence significantly improved water vapour and oxygen barrier properties of GEL film. Importantly, nano VCB increased GEL film with better UV barrier property due to its stronger UV absorption nature when compared with micron VCB. This property could help in the preservation of oil samples in the photooxidation accelerated test. With improved properties, the nano VCB-reinforced GEL film may have great potential for application in the edible packaging field, especially for the anti-photooxidation property. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  12. Time-specific measurements of energy deposition from radiation fields in simulated sub-micron tissue volumes

    Energy Technology Data Exchange (ETDEWEB)

    Famiano, M.A.

    1997-07-07

    A tissue-equivalent spherical proportional counter is used with a modified amplifier system to measure specific energy deposited from a uniform radiation field for short periods of time ({approximately}1 {micro}s to seconds) in order to extrapolate to dose in sub-micron tissue volumes. The energy deposited during these time intervals is compared to biological repair processes occurring within the same intervals after the initial energy deposition. The signal is integrated over a variable collection time which is adjusted with a square-wave pulse. Charge from particle passages is collected on the anode during the period in which the integrator is triggered, and the signal decays quickly to zero after the integrator feedback switch resets; the process repeats for every triggering pulse. Measurements of energy deposited from x rays, {sup 137}Cs gamma rays, and electrons from a {sup 90}Sr/{sup 90}Y source for various time intervals are taken. Spectral characteristics as a function of charge collection time are observed and frequency plots of specific energy and collection time-interval are presented. In addition, a threshold energy flux is selected for each radiation type at which the formation of radicals (based on current measurements) in mammalian cells equals the rate at which radicals are repaired.

  13. A galaxy model from two micron all sky survey star counts in the whole sky, including the plane

    Energy Technology Data Exchange (ETDEWEB)

    Polido, P.; Jablonski, F. [Divisão de Astrofísica, Instituto Nacional de Pesquisas Espaciais, Avenida dos Astronautas 1758, 12227-010 São José dos Campos SP (Brazil); Lépine, J. R. D., E-mail: pripolido@gmail.com [Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, Rua do Matão 1226, 05508-900 São Paulo SP (Brazil)

    2013-11-20

    We use the star count model of Ortiz and Lépine to perform an unprecedented exploration of the most important Galactic parameters comparing the predicted counts with the Two Micron All Sky Survey observed star counts in the J, H, and K{sub S} bands for a grid of positions covering the whole sky. The comparison is made using a grid of lines of sight given by the HEALPix pixelization scheme. The resulting best-fit values for the parameters are: 2120 ± 200 pc for the radial scale length and 205 ± 40 pc for the scale height of the thin disk, with a central hole of 2070{sub −800}{sup +2000} pc for the same disk, 3050 ± 500 pc for the radial scale length and 640 ± 70 pc for the scale height of the thick disk, 400 ± 100 pc for the central dimension of the spheroid, 0.0082 ± 0.0030 for the spheroid to disk density ratio, and 0.57 ± 0.05 for the oblate spheroid parameter.

  14. Kinetic Requirements for the Measurement of Mesospheric Water Vapor at 6.8 (microns) under Non-LTE Conditions

    Science.gov (United States)

    Zhou, Daniel K.; Mlynczak, Martin G.; Lopez-Puertas, Manuel; Russell, James M., III

    1999-01-01

    We present accuracy requirements for specific kinetic parameters used to calculate the populations and vibrational temperatures of the H2O(010) and H2O(020) states in the terrestrial mesosphere. The requirements are based on rigorous simulations of the retrieval of mesospheric water vapor profiles from measurements of water vapor infrared emission made by limb scanning instruments on orbiting satellites. Major improvements in the rate constants that describe vibration-to- vibration exchange between the H2O(010) and 02(1) states are required in addition to improved specification of the rate of quenching Of O2(1) by atomic oxygen (0). It is also necessary to more accurately determine the yield of vibrationally excited O2(l) resulting from ozone photolysis. A contemporary measurement of the rate of quenching of H2O(010) by N2 and O2 is also desirable. These rates are either highly uncertain or have never before been measured at atmospheric temperatures. The suggested improvements are necessary for the interpretation of water vapor emission measurements at 6.8 microns to be made from a new spaceflight experiment in less than 2 years. The approach to retrieving water vapor under non-LTE conditions is also presented.

  15. Influence of tribomechanical micronization and hydrocolloids addition on enthalpy and apparent specific heat of whey protein model solutions

    Directory of Open Access Journals (Sweden)

    Zoran Herceg

    2002-01-01

    Full Text Available Knowledge of thermophysical properties, especially the phase transitions temperature, specific heat and enthalpy, are essential in defining the freezing process parameters as well as storage conditions of frozen food. In this work thermophysical properties of 10% model solutions prepared with 60% whey protein concentrate (WPC with various hydrocolloids addition (HVEP, YO-EH, YO-L i YO-M were investigated. Powdered whey protein concentrate was treated in equipment for tribomechanical micronization and activation at 40000 rpm (Patent: PCT/1B99/00757 just before model solutions preparation. Particle size analysis was performed using Frich –laser particle sizer “analysette 22”. The phase transition temperatures were determined by differential thermal analysis (DTA, while specific heat and enthalpy were calculated according to several mathematical equations. The results have shown that, due to tribomechanical treatment, certain changes in thermophysical and energetic properties of materials occurred. Tribomechanical treatment affects changes in granulometrical composition of WPC which result in higher abilities of reactions with hydrocolloids in model solutions and significant changes in thermophysical properties of the mentioned models.

  16. Co-micronized Palmitoylethanolamide/Polydatin Treatment Causes Endometriotic Lesion Regression in a Rodent Model of Surgically Induced Endometriosis

    Science.gov (United States)

    Di Paola, Rosanna; Fusco, Roberta; Gugliandolo, Enrico; Crupi, Rosalia; Evangelista, Maurizio; Granese, Roberta; Cuzzocrea, Salvatore

    2016-01-01

    Endometriosis is a chronic, painful disease characterized by the presence of endometrial glands and stroma outside the uterine cavity. Palmitoylethanolamide (PEA), an endogenous fatty acid amide, has anti-inflammatory and neuroprotective effects. PEA lacks free radical scavenging activity, unlike polydatin (PLD), a natural precursor of resveratrol. The aim of this study was to investigate the effect of orally administered co-micronized PEA/polydatin [m(PEA/PLD)] in an autologous rat model of surgically induced endometriosis. Endometriosis was induced in female Wistar albino rats by auto-transplantation of uterine squares (implants) into the intestinal mesentery and peritoneal cavity. Rats were distributed into one control group and one treatment group (10 animals each): m(PEA/PLD) 10 mg/kg/day. At 28 days after surgery the relative volume of the endometrioma was determined. Endometrial-like tissue was confirmed by histology: Masson trichrome and toluidine blue were used to detect fibrosis and mast cells, respectively. The treated group displayed a smaller cyst diameter, with improved fibrosis score and mast cell number decrease. m(PEA/PLD) administration decreased angiogenesis (vascular endothelial growth factor), nerve growth factor, intercellular adhesion molecule, matrix metalloproteinase 9 expression, and lymphocyte accumulation. m(PEA/PLD) treatment also reduced peroxynitrite formation, (poly-ADP)ribose polymerase activation, IkBα phosphorylation and nuclear facor-kB traslocation in the nucleus. Our results suggested that m(PEA/PLD) may be of use to inhibit development of endometriotic lesions in rats. PMID:27790149

  17. Rapid, enhanced detection of Salmonella Typhimurium on fresh spinach leaves using micron-scale, phage-coated magnetoelastic biosensors

    Science.gov (United States)

    Horikawa, Shin; Vaglenov, Kiril A.; Gerken, Dana M.; Chai, Yating; Park, Mi-Kyung; Li, Suiqiong; Petrenko, Valery A.; Chin, Bryan A.

    2012-05-01

    In order to cost-effectively and rapidly detect bacterial food contamination in the field, the potential usefulness of phage-coated magnetoelastic (ME) biosensors has been recently reported. These biosensors are freestanding, mass-sensitive biosensors that can be easily batch-fabricated, thereby reducing the fabrication cost per sensor to a fraction of a cent. In addition, the biosensors can be directly placed on fresh produce surfaces and used to rapidly monitor possible bacterial food contamination without any preceding sample preparation. Previous investigations showed that the limit of detection (LOD) with millimeter-scale ME biosensors was fairly low for fresh produce with smooth surfaces (e.g., tomatoes and shell eggs). However, the LOD is anticipated to be dependent on the size of the biosensors as well as the topography of produce surfaces of interest. This paper presents an investigation into the use of micron-scale, phage-coated ME biosensors for the enhanced detection of Salmonella Typhimurium on fresh spinach leaves.

  18. Effects of venotonic drugs on the microcirculation: Comparison between Ruscus extract and micronized diosmine1.

    Science.gov (United States)

    de Almeida Cyrino, Fatima Zely Garcia; Balthazar, Daniela Signorelli; Sicuro, Fernando Lencastre; Bouskela, Eliete

    2017-10-07

    Chronic venous disease of the lower limbs is a common public health problem worldwide with negative impact on quality of life and results with drugs used to treat it are sparse, probably due to lack of good experimental models. In this investigation we have tested the effects of two commonly used venotonic substances, Ruscus extract and micronized diosmine, on the microcirculation in vivo. These substances were given orally, by gavage, during two weeks, twice daily and observations were made using the hamster cheek pouch preparation. The drugs elicited a dose-dependent inhibition of (1) macromolecular permeability increase induced by histamine or ischemia followed by reperfusion, being the Ruscus extract more active on both and (2) leukocyte-endothelium interaction, again being the Ruscus extract more effective in the inhibition of the number of adherent and rolling leukocytes. About the duration of the effect after the end of the treatment, both drugs had similar effects but Ruscus extract showed greater permanence of its effect on all observed parameters. Our results suggest that both drugs have antioxidant and anti-inflammatory properties being Ruscus extract more active. It should be added that only Ruscus extract showed a significant venular constriction.

  19. Co-micronized palmitoylethanolamide/polydatin treatment causes endometriotic lesion regression in a rodent model of surgically-induced endometriosis

    Directory of Open Access Journals (Sweden)

    Rosanna Di Paola

    2016-10-01

    Full Text Available Endometriosis is a chronic, painful disease characterized by the presence of endometrial glands and stroma outside the uterine cavity. Palmitoylethanolamide (PEA, an endogenous fatty acid amide, has anti-inflammatory and neuroprotective effects. PEA lacks free radical scavenging activity, unlike polydatin (PLD, a natural precursor of resveratrol. The aim of this study was to investigate the effect of orally administered co-micronized PEA/polydatin (m(PEA/PLD in an autologous rat model of surgically-induced endometriosis. Endometriosis was induced in female Wistar albino rats by auto-transplantation of uterine squares (implants into the intestinal mesentery and peritoneal cavity. Rats were distributed into one control group and one treatment group (10 animals each: m(PEA/PLD 10 mg/kg/day. At 28 days after surgery the relative volume of the endometrioma was determined. Endometrial-like tissue was confirmed by histology: Masson trichrome and toluidine blue were used to detect fibrosis and mast cells, respectively. The treated group displayed a smaller cyst diameter, with improved fibrosis score and mast cell number decrease. m(PEA/PLD administration decreased angiogenesis (vascular endothelial growth factor, nerve growth factor, intercellular adhesion molecule, matrix metalloproteinase 9 expression and lymphocyte accumulation. m(PEA/PLD treatment also reduced peroxynitrite formation, (poly-ADPribose polymerase activation, IkBα phosphorylation and nuclear facor-kB traslocation in the nucleus. Our results suggested that m(PEA/PLD may be of use to inhibit development of endometriotic lesions in rats.

  20. Data Acquisition and Processing System for Airborne Wind Profiling with a Pulsed, 2-Micron, Coherent-Detection, Doppler Lidar System

    Science.gov (United States)

    Beyon, J. Y.; Koch, G. J.; Kavaya, M. J.

    2010-01-01

    A data acquisition and signal processing system is being developed for a 2-micron airborne wind profiling coherent Doppler lidar system. This lidar, called the Doppler Aerosol Wind Lidar (DAWN), is based on a Ho:Tm:LuLiF laser transmitter and 15-cm diameter telescope. It is being packaged for flights onboard the NASA DC-8, with the first flights in the summer of 2010 in support of the NASA Genesis and Rapid Intensification Processes (GRIP) campaign for the study of hurricanes. The data acquisition and processing system is housed in a compact PCI chassis and consists of four components such as a digitizer, a digital signal processing (DSP) module, a video controller, and a serial port controller. The data acquisition and processing software (DAPS) is also being developed to control the system including real-time data analysis and display. The system detects an external 10 Hz trigger pulse and initiates the data acquisition and processing process, and displays selected wind profile parameters such as Doppler shift, power distribution, wind directions and velocities. Doppler shift created by aircraft motion is measured by an inertial navigation/GPS sensor and fed to the signal processing system for real-time removal of aircraft effects from wind measurements. A general overview of the system and the DAPS as well as the coherent Doppler lidar system is presented in this paper.

  1. Some effects of 8-12 micron radiant energy transfer on the mass and heat budgets of cloud droplets

    Science.gov (United States)

    Barkstrom, B. R.

    1978-01-01

    In standard treatments of the mass and energy budget of cloud droplets, radiant energy transfer is neglected on the grounds that the temperature difference between the droplet and its surroundings is small. This paper includes the effect of radiant heating and cooling of droplets by using the Eddington approximation for the solution of the radiative transfer equation. Although the calculation assumes that the cloud is isothermal and has a constant size spectrum with altitude, the heating or cooling of droplets by radiation changes the growth rate of the droplets very significantly. At the top of a cloud with a base at 2500 m and a top at 3000 m, a droplet will grow from 9.5 to 10.5 microns in about 4 min, assuming a supersaturation ratio of 1.0013. Such a growth rate is more than 20 times the growth rate for condensation alone, and may be expected to have a significant impact on estimates of precipitation formation as well as on droplet spectrum calculations.

  2. Potential impact of particulate matter less than 10 micron (PM10) to ambient air quality of Jakarta and Palembang

    Science.gov (United States)

    Agustine, I.; Yulinawati, H.; Gunawan, D.; Suswantoro, E.

    2018-01-01

    Particulate is a main urban air pollutant affects the environment and human wellbeing. The purpose of this study is to analyze the impact of particulate matter less than 10 micron (PM10) to ambient air quality of Jakarta and Palembang. The analysis is done with calendarPlot Function of openair model, which is based on the calculation of Pollutant Standards Index (PSI) or better known as Air Quality Index (AQI). The AQI category of “moderate” dominates Jakarta’s calendar from 2015 to 2016, which indicates the impact of PM10 is the visibility reduction. There was one day with category “unhealthy” that indicates the impact of dust exposure everywhere in Jakarta during 2015. Similar to Jakarta, the AQI category “moderate” also dominates Palembang’s calendar during 2015. However, the AQI category “hazardous” happened for few days in September and October 2015 during forest fires, which indicates the more harmful impacts of PM10, such as reduced visibility, dust exposure everywhere, increased sensitivity in patients with asthma and bronchitis to respiratory illness in all exposed populations. During 2016, AQI category of Jakarta mostly “moderate”, while in Palembang was “good”. Dominant AQI category from 2015 to 2016 shows higher PM10 concentration occurred in Jakarta compared to Palembang.

  3. Ranging Behaviour of Commercial Free-Range Laying Hens

    Directory of Open Access Journals (Sweden)

    Leonard Ikenna Chielo

    2016-04-01

    Full Text Available In this study, the range use and behaviour of laying hens in commercial free-range flocks was explored. Six flocks were each visited on four separate days and data collected from their outdoor area (divided into zones based on distance from shed and available resources. These were: apron (0–10 m from shed normally without cover or other enrichments; enriched belt (10–50 m from shed where resources such as manmade cover, saplings and dust baths were provided; and outer range (beyond 50 m from shed with no cover and mainly grass pasture. Data collection consisted of counting the number of hens in each zone and recording behaviour, feather condition and nearest neighbour distance (NND of 20 birds per zone on each visit day. In addition, we used techniques derived from ecological surveys to establish four transects perpendicular to the shed, running through the apron, enriched belt and outer range. Number of hens in each 10 m × 10 m quadrat was recorded four times per day as was the temperature and relative humidity of the outer range. On average, 12.5% of hens were found outside. Of these, 5.4% were found in the apron; 4.3% in the enriched zone; and 2.8% were in the outer range. This pattern was supported by data from quadrats, where the density of hens sharply dropped with increasing distance from shed. Consequently, NND was greatest in the outer range, least in the apron and intermediate in the enriched belt. Hens sampled in outer range and enriched belts had better feather condition than those from the apron. Standing, ground pecking, walking and foraging were the most commonly recorded activities with standing and pecking most likely to occur in the apron, and walking and foraging more common in the outer range. Use of the outer range declined with lower temperatures and increasing relative humidity, though use of apron and enriched belt was not affected by variation in these measures. These data support previous findings that outer range

  4. Ranging Behaviour of Commercial Free-Range Laying Hens.

    Science.gov (United States)

    Chielo, Leonard Ikenna; Pike, Tom; Cooper, Jonathan

    2016-04-26

    In this study, the range use and behaviour of laying hens in commercial free-range flocks was explored. Six flocks were each visited on four separate days and data collected from their outdoor area (divided into zones based on distance from shed and available resources). These were: apron (0-10 m from shed normally without cover or other enrichments); enriched belt (10-50 m from shed where resources such as manmade cover, saplings and dust baths were provided); and outer range (beyond 50 m from shed with no cover and mainly grass pasture). Data collection consisted of counting the number of hens in each zone and recording behaviour, feather condition and nearest neighbour distance (NND) of 20 birds per zone on each visit day. In addition, we used techniques derived from ecological surveys to establish four transects perpendicular to the shed, running through the apron, enriched belt and outer range. Number of hens in each 10 m × 10 m quadrat was recorded four times per day as was the temperature and relative humidity of the outer range. On average, 12.5% of hens were found outside. Of these, 5.4% were found in the apron; 4.3% in the enriched zone; and 2.8% were in the outer range. This pattern was supported by data from quadrats, where the density of hens sharply dropped with increasing distance from shed. Consequently, NND was greatest in the outer range, least in the apron and intermediate in the enriched belt. Hens sampled in outer range and enriched belts had better feather condition than those from the apron. Standing, ground pecking, walking and foraging were the most commonly recorded activities with standing and pecking most likely to occur in the apron, and walking and foraging more common in the outer range. Use of the outer range declined with lower temperatures and increasing relative humidity, though use of apron and enriched belt was not affected by variation in these measures. These data support previous findings that outer range areas tend to be

  5. Osprey Range - CWHR [ds601

    Data.gov (United States)

    California Department of Resources — Vector datasets of CWHR range maps are one component of California Wildlife Habitat Relationships (CWHR), a comprehensive information system and predictive model for...

  6. Short-range fundamental forces

    CERN Document Server

    Antoniadis, I; Buchner, M; Fedorov, V V; Hoedl, S; Lambrecht, A; Nesvizhevsky, V V; Pignol, G; Protasov, K V; Reynaud, S; Sobolev, Yu

    2011-01-01

    We consider theoretical motivations to search for extra short-range fundamental forces as well as experiments constraining their parameters. The forces could be of two types: 1) spin-independent forces, 2) spin-dependent axion-like forces. Differe nt experimental techniques are sensitive in respective ranges of characteristic distances. The techniques include measurements of gravity at short distances, searches for extra interactions on top of the Casimir force, precision atomic and neutron experim ents. We focus on neutron constraints, thus the range of characteristic distances considered here corresponds to the range accessible for neutron experiments.

  7. Cascade Mountain Range in Oregon

    Science.gov (United States)

    Sherrod, David R.

    2016-01-01

    The Cascade mountain system extends from northern California to central British Columbia. In Oregon, it comprises the Cascade Range, which is 260 miles long and, at greatest breadth, 90 miles wide (fig. 1). Oregon’s Cascade Range covers roughly 17,000 square miles, or about 17 percent of the state, an area larger than each of the smallest nine of the fifty United States. The range is bounded on the east by U.S. Highways 97 and 197. On the west it reaches nearly to Interstate 5, forming the eastern margin of the Willamette Valley and, farther south, abutting the Coast Ranges

  8. Ranging Behaviour of Commercial Free-Range Laying Hens

    Science.gov (United States)

    Chielo, Leonard Ikenna; Pike, Tom; Cooper, Jonathan

    2016-01-01

    Simple Summary Commercial free-range production has become a significant sector of the fresh egg market due to legislation banning conventional cages and consumer preference for products perceived as welfare friendly, as access to outdoor range can lead to welfare benefits such as greater freedom of movement and enhanced behavioural opportunities. This study investigated dispersal patterns, feather condition and activity of laying hens in three distinct zones of the range area; the apron area near shed; enriched zone 10–50 m from shed; and outer range beyond 50 m, in six flocks of laying hens under commercial free-range conditions varying in size between 4000 and 24,000 hens. Each flock was visited for four days to record number of hens in each zone, their behaviour, feather condition and nearest neighbour distances (NND), as well as record temperature and relative humidity during the visit. Temperature and relative humidity varied across the study period in line with seasonal variations and influenced the use of range with fewer hens out of shed as temperature fell or relative humidity rose. On average, 12.5% of the hens were observed on the range and most of these hens were recorded in the apron zone as hen density decreased rapidly with increasing distance from the shed. Larger flocks appeared to have a lower proportion of hens on range. The hens used the range more in the early morning followed by a progressive decrease through to early afternoon. The NND was greatest in the outer range and decreased towards the shed. Feather condition was generally good and hens observed in the outer range had the best overall feather condition. Standing, pecking, walking and foraging were the most commonly recorded behaviours and of these, standing occurred most in the apron whereas walking and foraging behaviours were recorded most in the outer range. This study supported the findings of previous studies that reported few hens in the range and greater use of areas closer

  9. Desert Experimental Range: Annotated bibliography

    Science.gov (United States)

    E. Durant McArthur; Stanley G. Kitchen

    2013-01-01

    Entries qualify for inclusion if they were conducted in whole or part at the Desert Experimental Range (DER, also known as the Desert Range Experiment Station) or were based on DER research in whole or part. They do not qualify merely by the author having worked at the DER when the research was performed or prepared. Entries were drawn from the original abstracts or...

  10. Foraging optimally for home ranges

    Science.gov (United States)

    Mitchell, Michael S.; Powell, Roger A.

    2012-01-01

    Economic models predict behavior of animals based on the presumption that natural selection has shaped behaviors important to an animal's fitness to maximize benefits over costs. Economic analyses have shown that territories of animals are structured by trade-offs between benefits gained from resources and costs of defending them. Intuitively, home ranges should be similarly structured, but trade-offs are difficult to assess because there are no costs of defense, thus economic models of home-range behavior are rare. We present economic models that predict how home ranges can be efficient with respect to spatially distributed resources, discounted for travel costs, under 2 strategies of optimization, resource maximization and area minimization. We show how constraints such as competitors can influence structure of homes ranges through resource depression, ultimately structuring density of animals within a population and their distribution on a landscape. We present simulations based on these models to show how they can be generally predictive of home-range behavior and the mechanisms that structure the spatial distribution of animals. We also show how contiguous home ranges estimated statistically from location data can be misleading for animals that optimize home ranges on landscapes with patchily distributed resources. We conclude with a summary of how we applied our models to nonterritorial black bears (Ursus americanus) living in the mountains of North Carolina, where we found their home ranges were best predicted by an area-minimization strategy constrained by intraspecific competition within a social hierarchy. Economic models can provide strong inference about home-range behavior and the resources that structure home ranges by offering falsifiable, a priori hypotheses that can be tested with field observations.

  11. Experimental Investigations of the Physical and Optical Properties of Individual Micron/Submicron-Size Dust Grains in Astrophysical Environments

    Science.gov (United States)

    Abbas, M. M.; Tankosic, D.; LeClair, A.

    2014-01-01

    Dust grains constitute a significant component of matter in the universe, and play an important and crucial role in the formation and evolution of the stellar/planetary systems in interstellar dust clouds. Knowledge of physical and optical properties of dust grains is required for understanding of a variety of processes in astrophysical and planetary environments. The currently available and generally employed data on the properties of dust grains is based on bulk materials, with analytical models employed to deduce the corresponding values for individual small micron/submicron-size dust grains. However, it has been well-recognized over a long period, that the properties of individual smallsize dust grains may be very different from those deduced from bulk materials. This has been validated by a series of experimental investigations carried out over the last few years, on a laboratory facility based on an Electrodynamic Balance at NASA, which permits levitation of single small-size dust grains of desired composition and size, in vacuum, in simulated space environments. In this paper, we present a brief review of the results of a series of selected investigations carried out on the analogs of interstellar and planetary dust grains, as well as dust grains obtained by Apollo-l1-17 lunar missions. The selected investigations, with analytical results and discussions, include: (a) Direct measurements of radiation on individual dust grains (b) Rotation and alignments of dust grains by radiative torque (c) Charging properties of dust grains by: (i) UV Photo-electric emissions (ii) Electron Impact. The results from these experiments are examined in the light of the current theories of the processes involved.

  12. Lipid Bilayer Membrane in a Silicon Based Micron Sized Cavity Accessed by Atomic Force Microscopy and Electrochemical Impedance Spectroscopy.

    Science.gov (United States)

    Khan, Muhammad Shuja; Dosoky, Noura Sayed; Patel, Darayas; Weimer, Jeffrey; Williams, John Dalton

    2017-07-05

    Supported lipid bilayers (SLBs) are widely used in biophysical research to probe the functionality of biological membranes and to provide diagnoses in high throughput drug screening. Formation of SLBs at below phase transition temperature (Tm) has applications in nano-medicine research where low temperature profiles are required. Herein, we report the successful production of SLBs at above-as well as below-the Tm of the lipids in an anisotropically etched, silicon-based micro-cavity. The Si-based cavity walls exhibit controlled temperature which assist in the quick and stable formation of lipid bilayer membranes. Fusion of large unilamellar vesicles was monitored in real time in an aqueous environment inside the Si cavity using atomic force microscopy (AFM), and the lateral organization of the lipid molecules was characterized until the formation of the SLBs. The stability of SLBs produced was also characterized by recording the electrical resistance and the capacitance using electrochemical impedance spectroscopy (EIS). Analysis was done in the frequency regime of 10(-2)-10⁵ Hz at a signal voltage of 100 mV and giga-ohm sealed impedance was obtained continuously over four days. Finally, the cantilever tip in AFM was utilized to estimate the bilayer thickness and to calculate the rupture force at the interface of the tip and the SLB. We anticipate that a silicon-based, micron-sized cavity has the potential to produce highly-stable SLBs below their Tm. The membranes inside the Si cavity could last for several days and allow robust characterization using AFM or EIS. This could be an excellent platform for nanomedicine experiments that require low operating temperatures.

  13. Influence of Micron-Ti and Nano-Cu Additions on the Microstructure and Mechanical Properties of Pure Magnesium

    Directory of Open Access Journals (Sweden)

    Abdelmagid S. Hamouda

    2012-08-01

    Full Text Available In this study, metallic elements that have limited/negligible solubility in pure magnesium (Mg were incorporated in Mg using the disintegrated melt deposition technique. The metallic elements added include: (i micron sized titanium (Ti particulates with negligible solubility; (ii nano sized copper (Cu particulates with limited solubility; and (iii the combination of micro-Ti and nano-Cu. The combined metallic addition (Ti + Cu was carried out with and without preprocessing by ball-milling. The microstructure and mechanical properties of the developed Mg-materials were investigated. Microstructure observation revealed grain refinement due to the individual and combined presence of hard metallic particulates. The mechanical properties evaluation revealed a significant improvement in microhardness, tensile and compressive strengths. Individual additions of Ti and Cu resulted in Mg-Ti composite and Mg-Cu alloy respectively, and their mechanical properties were influenced by the inherent properties of the particulates and the resulting second phases, if any. In the case of combined addition, the significant improvement in properties were observed in Mg-(Ti + CuBM composite containing ball milled (Ti + Cu particulates, when compared to direct addition of Ti and Cu particulates. The change in particle morphology, formation of Ti3Cu intermetallic and good interfacial bonding with the matrix achieved due to preprocessing, contributed to its superior strength and ductility, in case of Mg-(Ti + CuBM composite. The best combination of hardness, tensile and compressive behavior was exhibited by Mg-(Ti + CuBM composite formulation.

  14. Health risks attributed to particulate matter of 2.5 microns or less in Tehran air 2005-2014

    Directory of Open Access Journals (Sweden)

    Majid Kermani

    2016-12-01

    Full Text Available Introduction: Air pollution, especially particulate matter, is one of the main causes of mortality in humans. Therefore, the present study aimed to estimate health risks attributed to particulate matters of 2.5 microns or less (PM2.5 in Tehran air in the last ten years (2005-2014. Methods: In this descriptive–analytical study, hourly data of pollutants were obtained from Tehran’s Environmental Protection Agency and Air Quality Control Company and validated according to the WHO guidelines. Required statistical parameters were calculated for quantifying the health impacts and finally the processed data were converted to the format required by AirQ software in Excel® and the health impacts were quantified. Results: The results showed that the ratio of annual mean concentration of PM2.5 in Tehran to standard values of Iran and WHO was 3.49, 3.02, 3.3, 4.14, 3.83, 4.7, 4.73, 4.07, 4.32 and 3.61 respectively from 2005 to 2014. In addition, total death toll caused by exposure to PM2.5 was 20015 people in the last decade. Conclusion: The results showed that, like any other pollutants, particulate matter especially PM2.5 adversely impacts human health. During the last decade, the amount of particulate matter in Tehran’s air and its related health risks extremely increased. An appropriate plan is therefore needed to control air pollution, especially particulate matter.

  15. Novel nanocrystal formulation of megestrol acetate has improved bioavailability compared with the conventional micronized formulation in the fasting state.

    Science.gov (United States)

    Jang, Kyungho; Yoon, Seonghae; Kim, Sung-Eun; Cho, Joo-Youn; Yoon, Seo Hyun; Lim, Kyoung Soo; Yu, Kyung-Sang; Jang, In-Jin; Lee, Howard

    2014-01-01

    Megestrol acetate is an effective treatment for improving appetite and increasing body weight in patients with cancer-associated anorexia. However, Megace oral suspension (OS), a micronized formulation of megestrol acetate, has low bioavailability in the fasting state. To overcome this limitation, a nanocrystal formulation has been developed. This study was performed to evaluate the pharmacokinetics and tolerability of the nanocrystal formulation and to compare them with those of Megace OS in the fed and fasting states. A randomized, open-label, two-treatment, two-period, two-sequence, crossover study was performed in three parts in 93 healthy subjects. A single 625 mg/5 mL oral dose of a nanocrystal formulation was administered in the fasting and fed states (part I). In parts II and III, a single 625 mg/5 mL oral dose of the nanocrystal formulation or Megace OS 800 mg/20 mL was given in the fed and fasting states, respectively. Blood samples were collected for up to 120 hours post dose for pharmacokinetic analysis. Tolerability was evaluated throughout the entire study period. The nanocrystal formulation of megestrol acetate was rapidly absorbed in both the fed and fasting states. In the fed state, systemic exposure was comparable between the nanocrystal formulation of megestrol acetate and Megace OS. In the fasting state, however, the peak plasma concentration and area under the plasma concentration-time curve to the last measurable concentration of megestrol acetate was 6.7-fold and 1.9-fold higher, respectively, for the nanocrystal formulation than for Megace OS. No serious adverse events were reported. Systemic exposure to megestrol acetate is less affected by lack of concomitant food intake when it is administered using the nanocrystal formulation. The nanocrystal formulation of megestrol acetate could be more effective in treating patients with cachexia or anorexia.

  16. Testing of a Two-Micron Double-Pulse IPDA Lidar Instrument for Airborne Atmospheric Carbon Dioxide Measurement

    Science.gov (United States)

    Yu, J.; Petros, M.; Refaat, T. F.; Remus, R.; Singh, U. N.

    2015-12-01

    Utilizing a tunable two-micron double-pulse laser transmitter, an airborne IPDA lidar system has been developed at NASA Langley Research Center for atmospheric carbon dioxide column measurements. The instrument comprises a receiver with 0.4 m telescope and InGaAs pin detectors coupled to 12-bit, 200 MS/s waveform digitizers. For on-site ground testing, the 2-μm CO2 IPDA lidar was installed inside a trailer located where meteorological data and CO2 mixing ratio profiles were obtained from CAPABLE and LiCoR in-suite sampling, respectively. IPDA horizontal ground testing with 860 m target distance indicated CO2 sensitivity of 2.24 ppm with -0.43 ppm offset, while operating at 3 GHz on-line position from the R30 line center. Then, the IPDA lidar was integrated inside the NASA B-200 aircraft, with supporting instrumentation, for airborne testing and validation. Supporting instruments included in-situ LiCoR sensor, GPS and video recorder for target identification. Besides, aircraft built-in sensors provided altitude, pressure, temperature and relative humidity sampling during flights. The 2-mm CO2 IPDA lidar airborne testing was conducted through ten daytime flights (27 hours flight time). Airborne testing included different operating and environmental conditions for flight altitude up to 7 km, different ground target conditions such as vegetation, soil, ocean, snow and sand and different cloud conditions. Some flights targeted power plant incinerators for investigating IPDA sensitivity to CO2 plums. Relying on independent CO2 in-situ sampling, conducted through NOAA, airborne IPDA CO2 sensitivity of 4.15 ppm with 1.14 ppm offset were observed at 6 km altitude and 4 GHz on-line offset frequency. This validates the 2-μm double-pulse IPDA lidar for atmospheric CO2 measurement.

  17. Reference Ranges & What They Mean

    Science.gov (United States)

    ... Chains Sex Hormone Binding Globulin (SHBG) Shiga toxin-producing Escherichia coli Sickle Cell Tests Sirolimus Smooth Muscle ... If you're trying to follow a healthy lifestyle, take test results that are within range as ...

  18. Kenai National Moose Range Alaska

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This book presents a summary of the history, wildlife, recreational opportunities, economic uses, and future plans for Kenai National Moose Range.

  19. Fabrication of a high-aspect-ratio sub-micron tool using a cathode coated with stretched-out insulating layers

    Science.gov (United States)

    Zeng, Yongbin; Wang, Yufeng; Qu, Ningsong; Zhu, Di

    2013-09-01

    This paper describes a method for preparing a high-aspect-ratio sub-micron tool using a cathode coated with stretched-out insulating layers and a straight reciprocating motion applied at the anode via the liquid membrane electrochemical machining (ECM). Simulation results indicate that the application of a cathode coated with stretched-out insulating layers is beneficial for the localization of ECM. Moreover, a mathematical model was derived to estimate the final average diameter of the fabricated tools. Experiments were conducted to verify the versatility and feasibility of the proposed method and its mathematical model. It was observed that the calculated and the experimental results are in good agreement with each other. A sub-micron tool with an average diameter 140.8 nm and an aspect ratio up to 50 was fabricated using the proposed method.

  20. Venus Monitoring Camera (VMC/VEx) 1 micron emissivity and Magellan microwave properties of crater-related radar-dark parabolas and other terrains

    Science.gov (United States)

    Basilevsky, A. T.; Shalygina, O. S.; Bondarenko, N. V.; Shalygin, E. V.; Markiewicz, W. J.

    2017-09-01

    The aim of this work is a comparative study of several typical radar-dark parabolas, the neighboring plains and some other geologic units seen in the study areas which include craters Adivar, Bassi, Bathsheba, du Chatelet and Sitwell, at two depths scales: the upper several meters of the study object available through the Magellan-based microwave (at 12.6 cm wavelength) properties (microwave emissivity, Fresnel reflectivity, large-scale surface roughness, and radar cross-section), and the upper hundreds microns of the object characterized by the 1 micron emissivity resulted from the analysis of the near infra-red (NIR) irradiation of the night-side of the Venusian surface measured by the Venus Monitoring Camera (VMC) on-board of Venus Express (VEx).

  1. Evaluation of the Potential Use of Laminar Extrudates on Stabilizing Micronized Coumarin Particles by Supercritical Fluids (RESS)-Study of Different RESS Processing Variables and Mode of Operation.

    Science.gov (United States)

    Oliveira, Gonçalo E; Pinto, João F

    2017-10-01

    The study evaluates the ability of extrudates to deliver coumarin particles micronized by the rapid expansion of supercritical solutions (RESS). The RESS parameters were drug load (2-50 g), pressure (15-42 MPa) and temperature (40-60°C) in the extraction and pressure in the expansion (0.1-5 MPa) chambers in batch or continuous and CO 2 flow rate in the continuous mode of operation. Particles were characterized for size (laser diffractometry, optical and electronic microscopies-19-61 μm), surface area (BET-0.282-0.423 m 2 /g), density (pycnometry-1.273-1.358 g/cm 3 ) and yield (2-70%). Extrudates were characterized for the force of extrusion (4 kN), release of coumarin (100%/24 h) and mechanical properties (bending strength and stiffness increased, whereas elasticity decreased in storage) and X-ray diffractometry (micronized particles and extrudates have shown identical patterns) and calorimetry (DSC, enthalpies increased on storage). In the discontinuous mode of operation, increased loads in the extraction or increased pressure in the expansion chambers led to larger particles, whereas increased temperature and pressure in the extraction chamber led to smaller particles. In the continuous mode of operation, a decrease on the expansion pressure, load and CO 2 flow rate led to increased yields. An increase on the flow rate led to a decrease on the particles' diameter, but an increase on coumarin load in the extraction chamber led to an increase in diameter. The study has identified the key parameters in RESS continuous and discontinuous modes of operation affecting the properties of the micronized coumarin particles and has proved the ability of extrudates with a laminar shape on delivering micronized particles.

  2. Radiation Hard Wide Temperature Range Mixed-Signal Components Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Low temperature survivability, high performance and radiation tolerance of electronics in combination is required for NASA's surface missions. Modern sub-micron CMOS...

  3. Growth performance and carcass characteristics of guinea fowl broilers fed micronized-dehulled pea (Pisum sativum L.) as a substitute for soybean meal.

    Science.gov (United States)

    Laudadio, V; Nahashon, S N; Tufarelli, V

    2012-11-01

    This study was conducted to evaluate the effect of substitution of soybean meal (SBM) with dehulled-micronized peas (Pisum sativum) in diets of guinea fowl broilers on their growth performance, carcass yields, and fatty acid composition of meat. One hundred forty 1-d-old guinea fowl keets were randomly assigned to 2 dietary treatments, which were fed from hatch to 12 wk. The birds were fed 2 wheat middling-based diets comprising a control diet, which contained SBM (78 g/kg) and a test diet containing dehulled-micronized peas (180 g/kg) as the main protein source. The substitution of SBM with peas had no adverse effect on growth performance, dressing percentage, or breast and thigh muscle relative weights of the guinea broilers. However, a reduction of abdominal fat content (P pea diet compared with the control. Breast and thigh meat of birds fed the pea diet had higher lightness scores (P pea diet had less cholesterol (P peas increased polyunsaturated fatty acid concentration in breast and thigh muscles, and decreased the saturated fatty acid concentration. Feeding the pea diet also lowered the n-6/n-3 polyunsaturated fatty acid ratio of the guinea broiler muscles. Our results suggest that replacing the conventional SBM as the protein source with dehulled-micronized pea meal in diets of guinea fowls broilers can improve carcass quality and favorable lipid profile without adversely affecting growth performance traits.

  4. SiO2/ZnO Composite Hollow Sub-Micron Fibers: Fabrication from Facile Single Capillary Electrospinning and Their Photoluminescence Properties.

    Science.gov (United States)

    Song, Guanying; Li, Zhenjiang; Li, Kaihua; Zhang, Lina; Meng, Alan

    2017-02-24

    In this work, SiO2/ZnO composite hollow sub-micron fibers were fabricated by a facile single capillary electrospinning technique followed by calcination, using tetraethyl orthosilicate (TEOS), polyvinylpyrrolidone (PVP) and ZnO nanoparticles as raw materials. The characterization results of the scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) spectra indicated that the asprepared composite hollow fibers consisted of amorphous SiO2 and hexagonal wurtzite ZnO. The products revealed uniform tubular structure with outer diameters of 400-500 nm and wall thickness of 50-60 nm. The gases generated and the directional escaped mechanism was proposed to illustrate the formation of SiO2/ZnO composite hollow sub-micron fibers. Furthermore, a broad blue emission band was observed in the photoluminescence (PL) of SiO2/ZnO composite hollow sub-micron fibers, exhibiting great potential applications as blue light-emitting candidate materials.

  5. SiO2/ZnO Composite Hollow Sub-Micron Fibers: Fabrication from Facile Single Capillary Electrospinning and Their Photoluminescence Properties

    Directory of Open Access Journals (Sweden)

    Guanying Song

    2017-02-01

    Full Text Available In this work, SiO2/ZnO composite hollow sub-micron fibers were fabricated by a facile single capillary electrospinning technique followed by calcination, using tetraethyl orthosilicate (TEOS, polyvinylpyrrolidone (PVP and ZnO nanoparticles as raw materials. The characterization results of the scanning electron microscopy (SEM, transmission electron microscopy (TEM, X-ray diffraction (XRD and Fourier transform infrared spectroscopy (FT-IR spectra indicated that the asprepared composite hollow fibers consisted of amorphous SiO2 and hexagonal wurtzite ZnO. The products revealed uniform tubular structure with outer diameters of 400–500 nm and wall thickness of 50–60 nm. The gases generated and the directional escaped mechanism was proposed to illustrate the formation of SiO2/ZnO composite hollow sub-micron fibers. Furthermore, a broad blue emission band was observed in the photoluminescence (PL of SiO2/ZnO composite hollow sub-micron fibers, exhibiting great potential applications as blue light-emitting candidate materials.

  6. Effect of micronized pea seeds (Pisum sativum L.) as a substitute of soybean meal on tissue fatty acid composition and quality of broiler chicken meat.

    Science.gov (United States)

    Kiczorowska, Bożena; Samolińska, Wioletta; Andrejko, Dariusz

    2016-11-01

    This study aimed to evaluate the effect of micronized pea seeds introduced into feed mixes for broilers on the slaughter yield, blood lipid parameters, content of fatty acids in selected tissues, and meat quality. The studies involved 150 1-day-old Ross 308 chicks split into three groups (for 42 days). The feed rations differed in terms of the source of proteins: in the control group (C), it was post-extraction soybean meal (SBM) 100%; in group I, SBM 50% and micronized peas 50%; and in group II, micronized peas only, 100%. Irradiated pea seeds added to the feed ration for chicks reduced the fattening grade of carcasses (P < 0.05). Additionally, significant improvement of blood lipid indices was recorded. The share of the irradiated pea seeds in feed mixes decreased the share of saturated fatty acids in the muscles and abdominal fat and had a positive effect on the n-6/n-3 ratio, hypocholesterolemic / hypercholesterolemic ratio, as well as the atherogenic and thrombogenic indices (P < 0.05). © 2016 Japanese Society of Animal Science.

  7. Self-Calibration and Laser Energy Monitor Validations for a Double-Pulsed 2-Micron CO2 Integrated Path Differential Absorption Lidar Application

    Science.gov (United States)

    Refaat, Tamer F.; Singh, Upendra N.; Petros, Mulugeta; Remus, Ruben; Yu, Jirong

    2015-01-01

    Double-pulsed 2-micron integrated path differential absorption (IPDA) lidar is well suited for atmospheric CO2 remote sensing. The IPDA lidar technique relies on wavelength differentiation between strong and weak absorbing features of the gas normalized to the transmitted energy. In the double-pulse case, each shot of the transmitter produces two successive laser pulses separated by a short interval. Calibration of the transmitted pulse energies is required for accurate CO2 measurement. Design and calibration of a 2-micron double-pulse laser energy monitor is presented. The design is based on an InGaAs pin quantum detector. A high-speed photo-electromagnetic quantum detector was used for laser-pulse profile verification. Both quantum detectors were calibrated using a reference pyroelectric thermal detector. Calibration included comparing the three detection technologies in the single-pulsed mode, then comparing the quantum detectors in the double-pulsed mode. In addition, a self-calibration feature of the 2-micron IPDA lidar is presented. This feature allows one to monitor the transmitted laser energy, through residual scattering, with a single detection channel. This reduces the CO2 measurement uncertainty. IPDA lidar ground validation for CO2 measurement is presented for both calibrated energy monitor and self-calibration options. The calibrated energy monitor resulted in a lower CO2 measurement bias, while self-calibration resulted in a better CO2 temporal profiling when compared to the in situ sensor.

  8. Effect of surface coating with magnesium stearate via mechanical dry powder coating approach on the aerosol performance of micronized drug powders from dry powder inhalers.

    Science.gov (United States)

    Zhou, Qi Tony; Qu, Li; Gengenbach, Thomas; Larson, Ian; Stewart, Peter J; Morton, David A V

    2013-03-01

    The objective of this study was to investigate the effect of particle surface coating with magnesium stearate on the aerosolization of dry powder inhaler formulations. Micronized salbutamol sulphate as a model drug was dry coated with magnesium stearate using a mechanofusion technique. The coating quality was characterized by X-ray photoelectron spectroscopy. Powder bulk and flow properties were assessed by bulk densities and shear cell measurements. The aerosol performance was studied by laser diffraction and supported by a twin-stage impinger. High degrees of coating coverage were achieved after mechanofusion, as measured by X-ray photoelectron spectroscopy. Concomitant significant increases occurred in powder bulk densities and in aerosol performance after coating. The apparent optimum performance corresponded with using 2% w/w magnesium stearate. In contrast, traditional blending resulted in no significant changes in either bulk or aerosolization behaviour compared to the untreated sample. It is believed that conventional low-shear blending provides insufficient energy levels to expose host micronized particle surfaces from agglomerates and to distribute guest coating material effectively for coating. A simple ultra-high-shear mechanical dry powder coating step was shown as highly effective in producing ultra-thin coatings on micronized powders and to substantially improve the powder aerosolization efficiency.

  9. Wide Operational Range Thermal Sensor

    Science.gov (United States)

    Goebel, John H. (Inventor); McMurray, Robert E., Jr. (Inventor)

    2005-01-01

    Bolometer system and method for detecting, at BLIP levels, presence of radiation over a broad range of wavelengths in an infrared spectrum and in a temperature range from 20 K to as high as room temperature. The radiation is received by a Si crystal having a region that is doped with one or more of In, Ga, S, Se, Te, B, Al, P, As and Sb in a concentration ratio in a range such as 5 x 10(exp -11) to 5 x 10(exp -6). Change in electrical resistance delta R due to receipt of the radiation is measured through a change in voltage difference or current within the crystal, and the quantity delta R is converted to an estimate of the amount of radiation received. Optionally, incident radiation having an energy high enough to promote photoconductivity is removed before detection.

  10. Dating sub-20 micron zircons in granulite-facies mafic dikes from SW Montana: a new approach using automated mineralogy and SIMS U-Pb geochronology

    Science.gov (United States)

    Ault, A. K.; Mahan, K. H.; Flowers, R. M.; Chamberlain, K.; Appleby, S. K.; Schmitt, A. K.

    2010-12-01

    Geochronological data is fundamental to all tectonic studies, but a major limitation for many lithologies is a paucity of sizeable zircons suitable for conventional U-Pb techniques. In particular, mafic dike swarms provide important time markers for tectonometamorphic activity in Precambrian terranes, but commonly yield little or no zircon or baddeleyite sufficient for TIMS or standard ion-probe analysis of crystal separates. We apply a new approach involving in-situ automated mineralogy and high spatial resolution Secondary Ion Mass Spectrometry (SIMS) geochronology to a mafic dike swarm exposed in the Northern Madison Range of SW Montana. The dikes cross-cut early fabrics but are also variably deformed and metamorphosed to P-T conditions as high as 1.2 GPa and 850 C. The swarm emplacement age is inferred to be ca. 2.1 Ga based on similarities to dated dikes in the adjacent Tobacco Root Mountains. Resolving the timing of dike emplacement and high-grade metamorphism in the study area is important for understanding the extent of post-Archean modification to the northwest margin of the Wyoming craton. Identification and textural characterization of zircons were facilitated by in-situ automated mineralogical analysis, in contrast to a standard elemental X-ray mapping approach. Our technique uses an SEM-based platform coupling calibrated BSE data with X-ray data collected by multiple energy dispersive spectrometers to rapidly identify target accessory phases at high spatial resolution. Whole thin section search maps were generated in ~30 minutes at 4 µm pixel resolution. Our dike thin sections commonly contained >300 zircons in a variety of textural settings, with 80% having a short dimension dated in-situ by adjusting the field aperture of the CAMECA ims1270 to preferentially collect secondary ions emitted from within the inner few microns of the ~15 µm diameter analysis pit. This allows us to analyze zircon grains with a minimum dimension as small as 8 μm at

  11. GEA CRDA Range Data Analysis

    Science.gov (United States)

    1999-07-28

    E1, July-August 1998 18 3.3. Example 3: SatMex, Solidaridad 2, May-June 1998 27 3.4. Example 4: PanAmSat, Galaxy IV, May-June 1998 33 3.5...17 Millstone measurements residuals for Telstar 401 on Days 181-263. 26 3-18 Millstone measurement residuals for Solidaridad 1 on Days 141-153...with 29 SatMex range data. 3-19 Hermosillo B-- Solidaridad 1 range residuals through Days 135-144 with bias 30 removed. 3-20 Iztapalapa D

  12. Radio pill antenna range test

    Science.gov (United States)

    Cummins, W. F.; Kane, R. J.

    1992-05-01

    In order to investigate the potential of a proposed 'radio pill' beacon transmitter, a range test experiment was devised and carried out in the VHF frequency range. Calculations and previous work indicated that optimum sensitivity and, thus, distance would be obtained in this frequency range provided body radio-frequency (RF) absorption was not too great. A ferrite-core loop antenna is compatible with a pill geometry and has better radiation efficiency than an air core loop. The ferrite core may be a hollow cylinder with the electronics and batteries placed inside. However, this range test was only concerned with experimentally developing test range data on the ferrite core antenna itself. A one turn strap loop was placed around a 9.5 mm diameter by 18.3 mm long stack of ferrite cores. This was coupled to a 50 Omega transmission line by 76 mm of twisted pair line and a capacitive matching section. This assembly was excited by a signal generator at output levels of -10 to +10 dBm. Signals were received on a VHF receiver and tape recorder coupled to a 14 element, circularly polarized Yagi antenna at a height of 2.5 m. Field strength measurements taken at ranges of 440, 1100, and 1714 m. Maximum field strengths referenced to 0 dBm transmitter level were -107 to -110 dB at 440 m, -124 to -127 dBm at 1100 m, and -116 to -119 dBm at 1714 m when the antenna cylinder was horizontal. Field strengths with a vertical antenna were about 6 dB below these values. The latter transmit site was elevated and had a clear line-of-site path to the receiving site. The performance of this test antenna was better than that expected from method-of-moment field calculations. When this performance data is scaled to a narrow bandwidth receiving system, ground level receiving ranges of a few to 10 km can be expected. Clear line-of-sight ranges where either or both the transmitter and receiver are elevated could vary from several km to 100 km.

  13. Improved Range Searching Lower Bounds

    DEFF Research Database (Denmark)

    Larsen, Kasper Green; Nguyen, Huy L.

    2012-01-01

    by constructing a hard input set and query set, and then invoking Chazelle and Rosenberg's [CGTA'96] general theorem on the complexity of navigation in the pointer machine. For the group model, we show that input sets and query sets that are hard for range reporting in the pointer machine (i.e. by Chazelle...

  14. Anatomy of a Mountain Range.

    Science.gov (United States)

    Chew, Berkeley

    1993-01-01

    Provides written tour of Colorado Rockies along San Juan Skyway in which the geological features and formation of the mountain range is explored. Discusses evidence of geologic forces and products such as plate tectonic movement and the Ancestral Rockies; subduction and the Laramide Orogeny; volcanism and calderas; erosion, faulting, land…

  15. Mobile Lunar Laser Ranging Station

    Science.gov (United States)

    Intellect, 1977

    1977-01-01

    Harlan Smith, chairman of the University of Texas's Astronomy Department, discusses a mobile lunar laser ranging station which could help determine the exact rates of movement between continents and help geophysicists understand earthquakes. He also discusses its application for studying fundamental concepts of cosmology and physics. (Editor/RK)

  16. Range Compressed Holographic Aperture Ladar

    Science.gov (United States)

    2017-06-01

    step 1. This image can be obtained through any digital holography processing technique and contains no range information. Since the penny has a... digital holography, laser, active imaging , remote sensing, laser imaging 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT: SAR 8...30 15. Digital Hologram Image

  17. Mandibular movement range in children.

    Science.gov (United States)

    Machado, Barbara Cristina Zanandréa; Medeiros, Ana Paula Magalhães; Felício, Cláudia Maria de

    2009-01-01

    identification of the mandibular movement range is an important procedure in the evaluation of the stomatognathic system. However, there are few studies in children that focus on normal parameters or abnormalities. to determine the average range of mandibular movements in Brazilian children aged 6 to 12 years; to verify the difference between genders, in each age group, and between the different age groups: 6-8 years; 8.1-10 years; and 10.1-12 years. participants of the study were 240 healthy children selected among regular students from local schools of São Paulo State. The maximum mandibular opening, lateral excursion and protrusive movements, and deviation of the medium line, if present, were measured using a digital caliper. Student T test, Analysis of variance and Tukey test were considered significant for p mandibular opening; 7.71mm for lateral excursion to the right; 7.92mm for lateral excursion to the left; 7.45mm for protrusive movements. No statistical difference was observed between genders. There was a gradual increase in the range of mandibular movements, with significant differences mainly between the ages of 6-8 years and 10.1-12 years. during childhood the range of mandibular movements increases. Age should be considered in this analysis for a greater precision in the diagnosis.

  18. Short-range communication system

    Science.gov (United States)

    Alhorn, Dean C. (Inventor); Howard, David E. (Inventor); Smith, Dennis A. (Inventor)

    2012-01-01

    A short-range communication system includes an antenna, a transmitter, and a receiver. The antenna is an electrical conductor formed as a planar coil with rings thereof being uniformly spaced. The transmitter is spaced apart from the plane of the coil by a gap. An amplitude-modulated and asynchronous signal indicative of a data stream of known peak amplitude is transmitted into the gap. The receiver detects the coil's resonance and decodes same to recover the data stream.

  19. Countering short range ballistic missiles

    OpenAIRE

    Conner, George W.; Ehiers, Mark A.; Marshall, Kneale T.

    1993-01-01

    Approved for public release; distribution is unlimited. Concepts commonly found in ASW search are used to model the flow and detection of mobile launchers for short range ballistic missiles. Emphasis is on detection and destruction of the launcher before launch. The benefit of pre-hostility intelligence and pre-missile-launch prosecution, the backbone of successful ASW, is revealed through the analysis of a circulation model which reflects the standard operations of a third world mobile mi...

  20. THIR/Nimbus-7 Level 1 Calibrated Located Radiation Data at 6.7 and 11.5 microns V001 (THIRN7L1CLDT) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — THIRN7L1CLDT is the Nimbus-7 Temperature-Humidity Infrared Radiometer (THIR) Level 1 Calibrated Located Radiation Data (CLDT) at 6.7 and 11.5 microns product and...

  1. Medium Range Forecasts Representation (and Long Range Forecasts?)

    Science.gov (United States)

    Vincendon, J.-C.

    2009-09-01

    The progress of the numerical forecasts urges us to interest us in more and more distant ranges. We thus supply more and more forecasts with term of some days. Nevertheless, precautions of use are necessary to give the most reliable and the most relevant possible information. Available in a TV bulletin or on quite other support (Internet, mobile phone), the interpretation and the representation of a medium range forecast (5 - 15 days) must be different from those of a short range forecast. Indeed, the "foresee-ability” of a meteorological phenomenon decreases gradually in the course of the ranges, it decreases all the more quickly that the phenomenon is of small scale. So, at the end of some days, the probability character of a forecast becomes very widely dominating. That is why in Meteo-France the forecasts of D+4 to D+7 are accompanied with a confidence index since around ten years. It is a figure between 1 and 5: the more we approach 5, the more the confidence in the supplied forecast is good. In the practice, an indication is supplied for period D+4 / D+5, the other one for period D+6 / D+7, every day being able to benefit from a different forecast, that is be represented in a independent way. We thus supply a global tendency over 24 hours with less and less precise symbols as the range goes away. Concrete examples will be presented. From now on two years, we also publish forecasts to D+8 / J+9, accompanied with a sign of confidence (" good reliability " or " to confirm "). These two days are grouped together on a single map because for us, the described tendency to this term is relevant on a duration about 48 hours with a spatial scale slightly superior to the synoptic scale. So, we avoid producing more than two zones of types of weather over France and we content with giving an evolution for the temperatures (still, in increase or in decline). Newspapers began to publish this information, it should soon be the case of televisions. It is particularly

  2. On the sub-micron aerosol size distribution in a coastal-rural site at El Arenosillo Station (SW – Spain

    Directory of Open Access Journals (Sweden)

    M. Sorribas

    2011-11-01

    Full Text Available This study focuses on the analysis of the sub-micron aerosol characteristics at El Arenosillo Station, a rural and coastal environment in South-western Spain between 1 August 2004 and 31 July 2006 (594 days. The mean total concentration (NT was 8660 cm−3 and the mean concentrations in the nucleation (NNUC, Aitken (NAIT and accumulation (NACC particle size ranges were 2830 cm−3, 4110 cm−3 and 1720 cm−3, respectively. Median size distribution was characterised by a single-modal fit, with a geometric diameter, median number concentration and geometric standard deviation of 60 nm, 5390 cm−3 and 2.31, respectively. Characterisation of primary emissions, secondary particle formation, changes to meteorology and long-term transport has been necessary to understand the seasonal and annual variability of the total and modal particle concentration. Number concentrations exhibited a diurnal pattern with maximum concentrations around noon. This was governed by the concentrations of the nucleation and Aitken modes during the warm seasons and only by the nucleation mode during the cold seasons. Similar monthly mean total concentrations were observed throughout the year due to a clear inverse variation between the monthly mean NNUC and NACC. It was related to the impact of desert dust and continental air masses on the monthly mean particle levels. These air masses were associated with high values of NACC which suppressed the new particle formation (decreasing NNUC. Each day was classified according to a land breeze flow or a synoptic pattern influence. The median size distribution for desert dust and continental aerosol was dominated by the Aitken and accumulation modes, and marine air masses were dominated by the nucleation and Aitken modes. Particles

  3. Professional- Amateur Astronomer Partnerships in Scientific Research: The Re-emergence of Jupiter's 5-Micron Hot Spots

    Science.gov (United States)

    Yanamandra-Fisher, P. A.

    2012-12-01

    absent, an atmospheric state not seen in decades. The ongoing NEB revival indicates nascent 5-μm hot spots as early as April 2012, with corresponding visible dark spots. The South Equatorial Belt (SEB) and NEB revivals began similarly with an instability that developed into a major outbreak, and many similarities in the observed propagation of clear regions. With the active inclusion and use of emerging social media (Facebook, Twitter, etc.), the near daily communication and updates (via email, Skype, Facebook) between the professional and amateur astronomers is becoming a powerful tool for ground-based remote sensing. The archival of amateur data via global repositories such as Planetary Virtual Observatory and Laboratory (PVOL), The Association of Lunar and Planetary Observers (ALPO) and British Astronomical Association (BAA); and development of data reduction software, independent of professional astronomer community, provides an additional resource and dimension to scientific research. We shall present preliminary results that are the outcomes of the "Pro-Am" collaboration in the case of the re-emergence of Jupiter's 5-micron hot spots and highlight several members of our global amateur astronomer network.

  4. Truthful approximations to range voting

    DEFF Research Database (Denmark)

    Filos-Ratsika, Aris; Miltersen, Peter Bro

    We consider the fundamental mechanism design problem of approximate social welfare maximization under general cardinal preferences on a finite number of alternatives and without money. The well-known range voting scheme can be thought of as a non-truthful mechanism for exact social welfare......-unilateral has an approximation ratio between 0.610 and 0.611, the best ordinal mechanism has an approximation ratio between 0.616 and 0.641, while the best mixed-unilateral mechanism has an approximation ratio bigger than 0.660. In particular, the best mixed-unilateral non-ordinal (i.e., cardinal) mechanism...

  5. Nonlinear dynamic range compression deconvolution

    Science.gov (United States)

    Haji-Saeed, Bahareh; Sengupta, Sandip K.; Goodhue, William; Khoury, Jed; Woods, Charles L.; Kierstead, John

    2006-07-01

    We introduce a dynamic range image compression technique for nonlinear deconvolution; the impulse response of the distortion function and the noisy distorted image are jointly transformed to pump a clean reference beam in a two-beam coupling arrangement. The Fourier transform of the pumped reference beam contains the deconvolved image and its conjugate. In contrast to standard deconvolution approaches, for which noise can be a limiting factor in the performance, this approach allows the retrieval of distorted signals embedded in a very high-noise environment.

  6. Effect of a new formulation of micronized and ultramicronized N-palmitoylethanolamine in a tibia fracture mouse model of complex regional pain syndrome.

    Directory of Open Access Journals (Sweden)

    Roberta Fusco

    Full Text Available Complex regional pain syndrome type 1 (CRPS-I is a disabling and frequently chronic condition. It involves the extremities and is a frequent consequence of distal tibia and radius fractures. The inflamed appearance of the affected CRPS-I limb suggests that local production of inflammatory mediators may be implicated in the ensuing etiology. A rodent tibia fracture model, characterized by inflammation, chronic unilateral hindlimb warmth, edema, protein extravasation, allodynia and hyperalgesia resembles the clinical features of patients with acute CRPS-I. N-palmitoylethanolamine (PEA, a member of the family of naturally-occurring N-acylethanolamines, is well-known for its ability to modulate inflammatory processes and regulate pain sensitivity. However, the large particle size and lipidic nature of PEA may limit its bioavailability and solubility when given orally. Micronized formulations are frequently used to enhance the dissolution rate of drug and reduce its variability of absorption when orally administered. The aim of this study was to assess the effects of a formulation of micronized and ultramicronized PEA (PEA-MPS, given orally in a mouse model of CRPS-I. CD-1 male mice were subjected to distal tibia fracture and divided into two groups: control and treated with PEA-MPS (PEA micronized 300 mg/kg and ultramicronized 600 mg/kg. Sensibility to pain was monitored in all mice throughout the course of the experiment. Twenty-eight days after tibia fracture induction animals were sacrificed and biochemical parameters evaluated. The PEA-MPS-treated group showed an improved healing process, fracture recovery and fibrosis score. PEA-MPS administration decreased mast cell density, nerve growth factor, matrix metalloproteinase 9 and cytokine expression. This treatment also reduced (poly-ADPribose polymerase activation, peroxynitrite formation and apoptosis. Our results suggest that PEA-MPS may be a new therapeutic strategy in the treatment of CRPS-I.

  7. Dietary micronized-dehulled white lupin (Lupinus albus L.) in meat-type guinea fowls and its influence on growth performance, carcass traits and meat lipid profile.

    Science.gov (United States)

    Tufarelli, V; Demauro, R; Laudadio, V

    2015-10-01

    The present study aimed to evaluate the effects of dietary substitution of soybean meal (SBM) with micronized-dehulled white lupin (Lupinus albus L. cv. Multitalia) in guinea fowl broilers on their growth performance, carcass traits, and meat fatty acids composition. A total of 120 one-day-old guinea fowl females were randomly assigned to 2 treatments which were fed from hatch to 12 wk of age. Birds were fed 2 wheat middlings-based diets comprising of a control treatment which contained SBM (195 g/kg) and a test diet containing micronized-dehulled lupin (240 g/kg) as the main protein source. Replacing SBM with treated lupin had no adverse effect on growth traits, dressing percentage, or breast and thigh muscles relative to the weight of guinea fowls. A decrease (P < 0.05) of abdominal fat was found in guinea fowls fed lupin-diet. Breast muscle from birds fed lupin had higher lightness (L*) (P < 0.01) and redness (a*) (P < 0.05) scores and water-holding capacity (P < 0.05) than the SBM-control diet. Meat from guinea fowls fed lupin had less total lipids (P < 0.05) and cholesterol (P < 0.01), and higher concentrations of phospholipids (P < 0.01). Feeding treated lupin increased polyunsaturated fatty acid (PUFA) levels in breast meat and decreased saturated fatty acid (SFA) concentrations. Our findings suggest that replacing SBM as protein source with micronized-dehulled lupin in meat-type guinea fowl diet can improve carcass qualitative characteristics, enhancing also meat lipid profile with no effect on growth traits. © 2015 Poultry Science Association Inc.

  8. Comparación entre dos biomodelos murinos (ratones Balb/c y ratas Sprague Dawley en el ensayo de micronúcleos transplacentarios

    Directory of Open Access Journals (Sweden)

    Daniel Francisco Arencibia Arrebola

    2012-03-01

    Full Text Available Objetivo: comparar fetos de ratones Balb/c y ratas Sprague Dawley como biomodelos en el ensayo de micronúcleos transplacentarios, determinando la frecuencia espontánea e inducida, y vincular el efecto genotóxico y reproductivo. Métodos: se formaron tres grupos experimentales/especie: control negativo (simulacro, control solvente NaCl (0,9 % y ciclofosfamida 50 mg/kg. Todos los grupos se administraron por vía intraperitoneal los días 14, 15 y 16 de la gestación, y 24 h después de la última inoculación en ratones y 48 h en ratas se procedió a realizar la eutanasia de las gestantes, para obtener las muestras de hígado fetal. Resultados: los fetos de ratas Sprague Dawley demostraron tener menores índices de citotoxicidad y de genotoxicidad, y se obtuvieron los resultados más bajos de micronúcleos endógenos. Los mejores resultados de inducción de citotoxicidad y genotoxicidad por la alta formación de micronúcleos con ciclofosfamida fueron en fetos de ratas Sprague Dawley, los que resultaron más susceptibles al daño genotóxico de este mutágeno. Se corroboró el poder clastogénico transplacentario de la ciclofosfamida, vinculando este ensayo de genotoxicidad a toxicología de la reproducción. Conclusiones: los resultados sugieren el mejor uso de fetos de ratas Sprague Dawley como biomodelo en este ensayo cuando es utilizada la ciclofosfamida como control positivo por la vía y dosis estudiada; además, se pudieran utilizar en la evaluación de nuevas drogas con carácter antigenotóxico por vía transplacentaria.

  9. Spectroscopic and magnetic properties of neodymium doped in GdPO{sub 4} sub-micron-stars prepared by solvothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, G.A., E-mail: ajith@gakumar.net [Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX, 78249 (United States); Balli, Nicolas R. [Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX, 78249 (United States); Kailasnath, M. [International School of Photonics, Cochin University of Science and Technology, Kochi, 682022 (India); Mimun, L. Christopher [Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX, 78249 (United States); Dannangoda, Chamath; Martirosyan, Karen S. [University of Texas at Rio Grande Valley, Brownsville, TX, 78520 (United States); Santhosh, C. [Department of Atomic and Molecular Spectroscopy, Manipal University, Manipal, 576104 (India); Sardar, Dhiraj K. [Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX, 78249 (United States)

    2016-07-05

    Neodymium-doped gadolinium orthophosphate (GdPO{sub 4}:Nd{sup 3+}) luminomagnetic sub-micron-stars were prepared by solvothermal method using metal nitrates and phosphoric acid. Monoclinic star shaped in six lobed sub-micron-stars with 600 nm length is obtained with uniform particle size distribution. After heat-treatment at 800 °C for 1 h in air, the stars separate into isolated petal shaped particles and show characteristic emission bands of Nd{sup 3+} with the strongest emission at 1064 nm. The emission intensities and fluorescence decay times are dependent on the Nd{sup 3+} concentration with the highest emission intensity and longest fluorescence decay time of 311 μs at 1064 nm with 0.5 mol% Nd{sup 3+}. Under 808 nm excitation with 12 W/cm{sup 2} power density a quantum yield of 9% was obtained for the 1.0 mol% Nd{sup 3+}. The presence of paramagnetic Gd{sup 3+} gives magnetic properties to the phosphor with a calculated magnetic moment of 1510 and 107,965 Bohr magneton at 300 and 5 K, respectively. - Highlights: • Star shaped Nd doped GdPO{sub 4} sub-micron phosphor particles are prepared for the first time. • Particles show both optical and magnetic properties. • Under 808 nm excitation near infrared emission was observed at 1064 nm with 9% quantum yield. • Magnetic moment of the particle was 1510 and 107,965 Bohr magneton at 300 and 5 K, respectively.

  10. Influence of source and micronization of soya bean meal on growth performance, nutrient digestibility and ileal mucosal morphology of Iberian piglets.

    Science.gov (United States)

    Berrocoso, J D; Cámara, L; Rebollar, P G; Guzmán, P; Mateos, G G

    2014-04-01

    The effects of inclusion in the diet of different sources of soya bean meal (SBM) on growth performance, total tract apparent digestibility (TTAD) and apparent ileal digestibility (AID) of major dietary components and mucosal ileum morphology were studied in Iberian pigs weaned at 30 days of age. From 30 to 51 days of age (phase I), there was a control diet based on regular soya bean meal (R-SBM; 44% CP) of Argentina (ARG) origin and five extra diets in which a high-protein soya bean meal (HP-SBM; 49% CP) of the USA or ARG origin, either ground (990 μm) or micronized (60 μm), or a soya protein concentrate (SPC; 65% CP) substituted the R-SBM. From 51 to 61 days of age (phase II), all pigs were fed a common commercial diet in mash form. The following pre-planned orthogonal contrasts were conducted: (1) R-SBM v. all the other diets, (2) SPC v. all the HP-SBM diets, (3) micronized HP-SBM v. ground HP-SBM, (4) HP-SBM of ARG origin v. HP-SBM of US origin and (5) interaction between source and the degree of grinding of the HP-SBM. Dietary treatment did not affect growth performance of the pigs at any age but from 30 to 51 days of age, post weaning diarrhoea (PWD) was higher (Pdigestibility and ileal morphology as compared with feeding the R-SBM, but had no effect on pig performance. The inclusion in the diet of added value soya products (micronized SBM or SPC) in substitution of the R-SBM increased the TTAD of all nutrients and reduced PWD but had no advantage in terms of growth performance over the use of ground HP-SBM.

  11. Er3+-doped transparent glass ceramics containing micron-sized SrF2 crystals for 2.7 μm emissions

    Science.gov (United States)

    Jiang, Yiguang; Fan, Jintai; Jiang, Benxue; Mao, Xiaojian; Tang, Junzhou; Xu, Yinsheng; Dai, Shixun; Zhang, Long

    2016-07-01

    Er3+-doped transparent glass ceramics containing micron-sized SrF2 crystals were obtained by direct liquid-phase sintering of a mixture of SrF2 powders and precursor glass powders at 820 °C for 15 min. The appearance and microstructural evolution of the SrF2 crystals in the resulting glass ceramics were investigated using X-ray diffraction, field-emission scanning electron microscopy and transmission microscopy. The SrF2 crystals are ~15 μm in size and are uniformly distributed throughout the fluorophosphate glass matrix. The glass ceramics achieve an average transmittance of 75% in the visible region and more than 85% in the near-IR region. The high transmittance of the glass ceramics results from matching the refractive index of the SrF2 with that of the precursor glass. Energy dispersive spectroscopy, photoluminescence spectra, and photoluminescence lifetimes verified the incorporation of Er3+ into the micron-sized SrF2 crystals. Intense 2.7 μm emissions due to the 4I11/2 → 4I13/2 transition were observed upon excitation at 980 nm using a laser diode. The maximum value of the emission cross section of Er3+ around 2.7 μm is more than 1.2 × 10-20 cm2, which indicates the potential of using transparent glass ceramics containing micron-sized SrF2 crystals for efficient 2.7 μm lasers and amplifiers.

  12. Live Fire Range Environmental Assessment

    Energy Technology Data Exchange (ETDEWEB)

    None

    1993-08-01

    The Central Training Academy (CTA) is a DOE Headquarters Organization located in Albuquerque, New Mexico, with the mission to effectively and efficiently educate and train personnel involved in the protection of vital national security interests of DOE. The CTA Live Fire Range (LFR), where most of the firearms and tactical training occurs, is a complex separate from the main campus. The purpose of the proposed action is to expand the LFR to allow more options of implementing required training. The Department of Energy has prepared this Environmental Assessment (EA) for the proposed construction and operation of an expanded Live Fire Range Facility at the Central Training Academy in Albuquerque, New Mexico. Based on the analysis in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement is not required and DOE is issuing this Finding of No Significant Impact (FONSI).

  13. Triple-Pulsed Two-Micron Integrated Path Differential Absorption Lidar: A New Active Remote Sensing Capability with Path to Space

    Directory of Open Access Journals (Sweden)

    Singh Upendra N.

    2016-01-01

    Full Text Available The two-micron wavelength is suitable for monitoring atmospheric water vapor and carbon dioxide, the two most dominant greenhouse gases. Recent advances in 2-μm laser technology paved the way for constructing state-of-the-art lidar transmitters for active remote sensing applications. In this paper, a new triple-pulsed 2-μm integrated path differential absorption lidar is presented. This lidar is capable of measuring either two species or single specie with two different weighting functions, simultaneously and independently. Development of this instrument is conducted at NASA Langley Research Center. Instrument scaling for projected future space missions will be discussed.

  14. Dynamic range majority data structures

    DEFF Research Database (Denmark)

    Elmasry, Amr Ahmed Abd Elmoneim; He, Meng; Munro, J. Ian

    2011-01-01

    data structure for answering range α-majority queries on a dynamic set of points, where α ε (0,1). Our data structure uses O(n) space, supports queries in O((lg n)/α) time, and updates in O((lg n)/α) amortized time. If the coordinates of the points are integers, then the query time can be improved to O......((lg n/(α lglg n)). For constant values of α, this improved query time matches an existing lower bound, for any data structure with polylogarithmic update time. We also generalize our data structure to handle sets of points in d-dimensions, for d ≥ 2, as well as dynamic arrays, in which each entry...

  15. Theory of CW lidar aerosol backscatter measurements and development of a 2.1 microns solid-state pulsed laser radar for aerosol backscatter profiling

    Science.gov (United States)

    Kavaya, Michael J.; Henderson, Sammy W.; Frehlich, R. G.

    1991-01-01

    The performance and calibration of a focused, continuous wave, coherent detection CO2 lidar operated for the measurement of atmospheric backscatter coefficient, B(m), was examined. This instrument functions by transmitting infrared (10 micron) light into the atmosphere and collecting the light which is scattered in the rearward direction. Two distinct modes of operation were considered. In volume mode, the scattered light energy from many aerosols is detected simultaneously, whereas in the single particle mode (SPM), the scattered light energy from a single aerosol is detected. The analysis considered possible sources of error for each of these two cases, and also considered the conditions where each technique would have superior performance. The analysis showed that, within reasonable assumptions, the value of B(m) could be accurately measured by either the VM or the SPM method. The understanding of the theory developed during the analysis was also applied to a pulsed CO2 lidar. Preliminary results of field testing of a solid state 2 micron lidar using a CW oscillator is included.

  16. Proposal to negotiate an amendment to an existing blanket contract for the supply of foundry services in quarter-micron CMOS technology for the LHC experiments

    CERN Document Server

    2003-01-01

    This document concerns the proposal to negotiate an amendment to an existing blanket contract for the supply of foundry services in quarter-micron CMOS technology for the LHC experiments. For the reasons explained in this document, the Finance Committee is invited to agree to the negotiation of an amendment to the blanket contract for the supply of foundry services in quarter-micron CMOS technology with the company IBM TECHNOLOGY GROUP (CH), formerly IBM ITALIA (IT), for an extension of the period of validity from five to eight years and for an amount exceeding the previously authorised amount of 8 500 000 US dollars by up to 6 500 000 US dollars, not subject to revision, bringing the total contract amount to a maximum amount of 15 000 000 US dollars, not subject to revision. At the present rate of exchange, the total amended amount of the blanket contract is equivalent to approximately 19 800 000 Swiss francs. This requirement will be financed by the collaborating institutes of the LHC experiments and by CER...

  17. Direct reading of charge multipliers with a self-triggering CMOS analog chip with 105k pixels at 50 micron pitch

    CERN Document Server

    Bellazzini, R; Minuti, M; Baldini, L; Brez, A; Cavalca, F; Latronico, L; Omodei, N; Massai, M M; Sgro, C; Costa, E; Krummenacher, P S F; De Oliveira, R

    2006-01-01

    We report on a large active area (15x15mm2), high channel density (470 pixels/mm2), self-triggering CMOS analog chip that we have developed as pixelized charge collecting electrode of a Micropattern Gas Detector. This device, which represents a big step forward both in terms of size and performance, is the last version of three generations of custom ASICs of increasing complexity. The CMOS pixel array has the top metal layer patterned in a matrix of 105600 hexagonal pixels at 50 micron pitch. Each pixel is directly connected to the underneath full electronics chain which has been realized in the remaining five metal and two poly-silicon layers of a 0.18 micron VLSI technology. The chip has customizable self-triggering capability and includes a signal pre-processing function for the automatic localization of the event coordinates. In this way it is possible to reduce significantly the readout time and the data volume by limiting the signal output only to those pixels belonging to the region of interest. The ve...

  18. Sub-micron and nanoscale feature depth modulates alignment of stromal fibroblasts and corneal epithelial cells in serum-rich and serum-free media.

    Science.gov (United States)

    Fraser, Sarah A; Ting, Yuk-Hong; Mallon, Kelly S; Wendt, Amy E; Murphy, Christopher J; Nealey, Paul F

    2008-09-01

    Topographic features are generally accepted as being capable of modulating cell alignment. Of particular interest is the potential that topographic feature geometry induces cell alignment indirectly through impacting adsorbed proteins from the cell culture medium on the surface of the substrate. However, it has also been reported that micron-scale feature depth significantly impacts the level of alignment of cellular populations on topography, despite being orders of magnitude larger than the average adsorbed protein layer (nm). In order to better determine the impact of biomimetic length scale topography and adsorbed protein interaction on cellular morphology we have systematically investigated the effect of combinations of sub-micron to nanoscale feature depth and lateral pitch on corneal epithelial cell alignment. In addition we have used the unique properties of a serum-free media alternative in direct comparison to serum-rich medium to investigate the role of culture medium protein composition on cellular alignment to topographically patterned surfaces. Our observation that increasing groove depth elicited larger populations of corneal epithelial cells to align regardless of culture medium composition and of cell orientation with respect to the topography, suggests that these cells can sense changes in topographic feature depths independent of adsorbed proteins localized along ridge edges and tops. However, our data also suggests a strong combinatory effect of topography with culture medium composition, and also a cell type dependency in determining the level of cell elongation and alignment to nanoscale topographic features.

  19. Hydrothermal Synthesis Au-Bi2Te3 Nanocomposite Thermoelectric Film with a Hierarchical Sub-Micron Antireflection Quasi-Periodic Structure

    Directory of Open Access Journals (Sweden)

    Junlong Tian

    2015-06-01

    Full Text Available In this work, Au-Bi2Te3 nanocomposite thermoelectric film with a hierarchical sub-micron antireflection quasi-periodic structure was synthesized via a low-temperature chemical route using Troides helena (Linnaeus forewing (T_FW as the biomimetic template. This method combines chemosynthesis with biomimetic techniques, without the requirement of expensive equipment and energy intensive processes. The microstructure and the morphology of the Au-Bi2Te3 nanocomposite thermoelectric film was analyzed by X-ray diffraction (XRD, field-emission scanning-electron microscopy (FESEM, and transmission electron microscopy (TEM. Coupled the plasmon resonances of the Au nanoparticles with the hierarchical sub-micron antireflection quasi-periodic structure, the Au-Bi2Te3 nanocomposite thermoelectric film possesses an effective infrared absorption and infrared photothermal conversion performance. Based on the finite difference time domain method and the Joule effect, the heat generation and the heat source density distribution of the Au-Bi2Te3 nanocomposite thermoelectric film were studied. The heterogeneity of heat source density distribution of the Au-Bi2Te3 nanocomposite thermoelectric film opens up a novel promising technique for generating thermoelectric power under illumination.

  20. Sub-micron resolution surface plasmon resonance imaging enabled by nanohole arrays with surrounding Bragg mirrors for enhanced sensitivity and isolation.

    Science.gov (United States)

    Lindquist, Nathan C; Lesuffleur, Antoine; Im, Hyungsoon; Oh, Sang-Hyun

    2009-02-07

    We present nanohole arrays in thin gold films as sub-micron resolution surface plasmon resonance (SPR) imaging pixels in a microarray format. With SPR imaging, the resolution is not limited by diffraction, but by the propagation of surface plasmon waves to adjacent sensing areas, or nanohole arrays, causing unwanted interference. For ultimate scalability, several issues need to be addressed, including: (1) as several nanohole arrays are brought close to each other, surface plasmon interference introduces large sources of error; and (2) as the size of the nanohole array is reduced, i.e. fewer holes, detection sensitivity suffers. To address these scalability issues, we surround each biosensing pixel (a 3-by-3 nanohole array) with plasmonic Bragg mirrors, blocking interference between adjacent SPR sensing pixels for high-density packing, while maintaining the sensitivity of a 50 x larger footprint pixel (a 16-by-16 nanohole array). We measure real-time, label-free streptavidin-biotin binding kinetics with a microarray of 600 sub-micron biosensing pixels at a packing density of more than 10(7) per cm(2).

  1. Sub-micron and nanoscale feature depth modulates alignment of stromal fibroblasts and corneal epithelial cells in serum-rich and serum-free media

    Science.gov (United States)

    Fraser, Sarah A.; Ting, Yuk-Hong; Mallon, Kelly S.; Wendt, Amy E.; Murphy, Christopher J.; Nealey, Paul F.

    2011-01-01

    Topographic features are generally accepted as being capable of modulating cell alignment. Of particular interest is the potential that topographic feature geometry induces cell alignment indirectly through impacting adsorbed proteins from the cell culture medium on the surface of the substrate. However, it has also been reported that micron-scale feature depth significantly impacts the level of alignment of cellular populations on topography, despite being orders of magnitude larger than the average adsorbed protein layer (nm). In order to better determine the impact of biomimetic length scale topography and adsorbed protein interaction on cellular morphology we have systematically investigated the effect of combinations of sub-micron to nanoscale feature depth and lateral pitch on corneal epithelial cell alignment. In addition we have used the unique properties of a serum-free media alternative in direct comparison to serum-rich medium to investigate the role of culture medium protein composition on cellular alignment to topographically patterned surfaces. Our observation that increasing groove depth elicited larger populations of corneal epithelial cells to align regardless of culture medium composition and of cell orientation with respect to the topography, suggests that these cells can sense changes in topographic feature depths independent of adsorbed proteins localized along ridge edges and tops. However, our data also suggests a strong combinatory effect of topography with culture medium composition, and also a cell type dependency in determining the level of cell elongation and alignment to nanoscale topographic features. PMID:18041718

  2. Enhanced computational performance of the lattice Boltzmann model for simulating micron- and submicron-size particle flows and non-Newtonian fluid flows

    Science.gov (United States)

    Başağaoğlu, Hakan; Harwell, John R.; Nguyen, Hoa; Succi, Sauro

    2017-04-01

    Significant improvements in the computational performance of the lattice-Boltzmann (LB) model, coded in FORTRAN90, were achieved through application of enhancement techniques. Applied techniques include optimization of array memory layouts, data structure simplification, random number generation outside the simulation thread(s), code parallelization via OpenMP, and intra- and inter-timestep task pipelining. Effectiveness of these optimization techniques was measured on three benchmark problems: (i) transient flow of multiple particles in a Newtonian fluid in a heterogeneous fractured porous domain, (ii) thermal fluctuation of the fluid at the sub-micron scale and the resultant Brownian motion of a particle, and (iii) non-Newtonian fluid flow in a smooth-walled channel. Application of the aforementioned optimization techniques resulted in an average 21 × performance improvement, which could significantly enhance practical uses of the LB models in diverse applications, focusing on the fate and transport of nano-size or micron-size particles in non-Newtonian fluids.

  3. A Novel Step-Doping Fully-Depleted Silicon-on-Insulator Metal-Oxide-Semiconductor Field-Effect Transistor for Reliable Deep Sub-micron Devices

    Science.gov (United States)

    Elahipanah, Hossein; Orouji, Ali A.

    2009-11-01

    For first time, we report a novel deep sub-micron fully-depleted silicon-on-insulator metal-oxide-semiconductor field-effect-transistor (FD SOI MOSFET) where the channel layer consists of two sections with a step doping (SD) region in order to increase performance and reliability of the device. This new structure that called SD FD SOI structure (SDFD-SOI MOSFET), were used for reaching suitable threshold voltage upon device scaling and reliability improvement. We demonstrate that the electric field was modified in the channel and common peak near the source junction have been reduced in the SDFD-SOI structure. The device demonstrates large enhancements in performance areas such as current drive capability, output resistance, hot-carrier reliability and threshold voltage roll-off. It was found that the device performance is very much dependent upon the SD region parameters. Simulation results show that the proposed structure improved on/off current ratio, and saturated output characteristics compared with conventional SOI structure (C-SOI MOSFET). Also, it was shown that substrate current of SDFD-SOI MOSFET is much lower than the C-SOI MOSFET which presented the lower hot-carrier degradation in proposed MOSFET. Results show that the most short-channel problems in very large scale integrated circuits (VLSI) could be solved and the proposed SDFD-SOI MOSFETs can work very well in deep sub-micron and nanoscale regime.

  4. Comparative Mineralogy, Microstructure and Compositional Trends in the Sub-Micron Size Fractions of Mare and Highland Lunar Soils

    Science.gov (United States)

    Thompson, M. S.; Christoffersen, R.; Noble, S. K.; Keller, L. P.

    2012-01-01

    The morphology, mineralogy, chemical composition and optical properties of lunar soils show distinct correlations as a function of grain size and origin [1,2,3]. In the mineralogy type, microstructure and major element compositions of grains in this important size range in lunar soils.

  5. High performance imaging of relativistic soft X-ray harmonics by sub-micron resolution LiF film detectors

    Energy Technology Data Exchange (ETDEWEB)

    Pikuz, Tatiana; Faenov, Anatoly [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Kizugawa, Kyoto 619-0215 (Japan); Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow 125412 (Russian Federation); Pirozhkov, Alexander; Esirkepov, Timur; Koga, James; Nakamura, Tatsufumi; Bulanov, Sergei; Fukuda, Yuji; Hayashi, Yukio; Kotaki, Hideyuki; Kando, Masaki [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Kizugawa, Kyoto 619-0215 (Japan); Astapov, Artem; Pikuz, Sergey Jr. [Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow 125412 (Russian Federation); Klushin, Georgy [Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow 125412 (Russian Federation); International Laser Center of M.V. Lomonosov Moscow State University, Moscow (Russian Federation); Nagorskiy, Nikolai; Magnitskiy, Sergei [International Laser Center of M.V. Lomonosov Moscow State University, Moscow (Russian Federation); Kato, Yoshiaki [The Graduate School for the Creation of New Photonics Industries, Hamamatsu, Shizuoka (Japan)

    2012-12-15

    The spectrum variation and the coherent properties of the high-order harmonics (HOH) generated by an oscillating electron spikes formed at the joint of the boundaries of a cavity and a bow wave, which are created by a relativistically self-focusing laser in underdense gas jet plasma, are investigated. This new mechanism for HOH generation efficiently produces emission from ultraviolet up to the XUV ''water window'' spectral range. To characterize such source in the wide spectral range a diffraction imaging technique is applied. High spatial resolution EUV and soft X-ray LiF film detector have been used for precise measurements of diffraction patterns. The measurements under observation angle of 8 to the axis of laser beam propagation have been performed. The diffraction patterns were observed on the detector clearly, when the square mesh was placed at the distance of 500 mm from the output of plasma and at the distance of 27.2 mm in front of the detector. It is shown that observed experimental patterns are well consistent with modeled ones for theoretical HOH spectrum, provided by particle-in-cell simulations of a relativistic-irradiance laser pulse interaction with underdense plasma (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Measurements of micron-scale meteoroids and orbital debris with the Space Dust (SPADUS) instrument on the upcoming ARGOS P91-1 mission

    Science.gov (United States)

    McKibben, R. B.; Simpson, J. A.; Tuzzolino, A. J.

    1997-01-01

    The space dust (SPADUS) experiment, to be launched into a sun-synchronous polar orbit at an altitude of 833 km onboard the USAF ARGOS P91-1 mission, will provide time-resolved measurements of the intensity, size spectrum and geocentric trajectories of dust particles encountered during the nominal three year mission. The experiment uses polyvinylidene fluoride dust sensors with a total detector area of 576 sq cm. The SPADUS will measure particle sizes between 2 and 200 microns, particle velocities between 1 and 10 km/s to better than 4 percent, and the direction of incidence with a mean error of 7 percent. These data will identify the particles as being debris or of natural origin.

  7. Near-infrared colorimetry of J6 Himalia and S9 Phoebe - A summary of 0.3- to 2.2-micron reflectances

    Science.gov (United States)

    Degewij, J.; Cruikshank, D. P.; Hartmann, W. K.

    1980-01-01

    VJHK measurements of J6 Himalia and S9 Phoebe, using the new NASA IRTF telescope, show that these objects have carbonaceous chondritic type colors in the 0.5- to 2.2-micron region. For Phoebe, this is in contrast to the JHK colors published by Cruikshank (1980), which indicated that the satellite's surface was unlike the material found on asteroids and on the dark side of Iapetus. J6 is known to have a low albedo from thermal infrared studies (Cruikshank, 1977), and the new VJHK observations of S9 imply that it also has a low albedo. The H and K reflectances of S9 are slightly lower than those of J6, suggesting some slight difference in surface composition or a contamination by foreign material. The conjectured low albedo of S9 can be tested with measurements in the thermal infrared.

  8. Physicochemical and functional properties of micronized jincheng orange by-products (Citrus sinensis Osbeck) dietary fiber and its application as a fat replacer in yogurt.

    Science.gov (United States)

    Yi, Tian; Huang, Xingjian; Pan, Siyi; Wang, Lufeng

    2014-08-01

    Orange by-products from juice extraction are generally discarded or used in animal feed due to their low market value. However, orange by-products show potential as dietary fiber (DF) and fat replacers in products such as yogurt. This study assessed the benefits of using orange by-products in DF-enriched materials such as DF powders (OP) and micronized DF with ball-milling (MDF). The study also investigated the effects of adding different levels of OP and MDF on the quality of low-fat yogurt. Results show that MDF showed better physicochemical and functional properties than OP, and that 2% MDF as a fat replacer in yogurt retained most of the textural and sensory properties of full-fat yogurt. Therefore, this study showed that MDF is a promising alternative as a fat replacer in low-fat yogurt, without sacrificing good taste and other qualities of full-fat yogurt.

  9. Solid-state 2-micron laser transmitter advancement for wind and carbon dioxide measurements from ground, airborne, and space-based lidar systems

    Science.gov (United States)

    Singh, Upendra N.; Kavaya, Michael; Koch, Grady; Yu, Jirong; Ismail, Syed

    2008-10-01

    NASA Langley Research Center has been developing 2-micron lidar technologies over a decade for wind measurements, utilizing coherent Doppler wind lidar technique and carbon dioxide measurements, utilizing Differential Absorption Lidar (DIAL) technique. Significant advancements have been made towards developing state-of-the-art technologies towards laser transmitters, detectors, and receiver systems. These efforts have led to the development of solid-state lasers with high pulse energy, tunablility, wavelength-stability, and double-pulsed operation. This paper will present a review of these technological developments along with examples of high resolution wind and high precision CO2 measurements in the atmosphere. Plans for the development of compact high power lasers for applications in airborne and future space platforms for wind and regional to global scale measurement of atmospheric CO2 will also be discussed.

  10. Solid-State 2-Micron Laser Transmitter Advancement for Wind and Carbon Dioxide Measurements From Ground, Airborne, and Space-Based Lidar Systems

    Science.gov (United States)

    Singh, Upendra N.; Kavaya, Michael J.; Koch, Grady; Yu, Jirong; Ismail, Syed

    2008-01-01

    NASA Langley Research Center has been developing 2-micron lidar technologies over a decade for wind measurements, utilizing coherent Doppler wind lidar technique and carbon dioxide measurements, utilizing Differential Absorption Lidar (DIAL) technique. Significant advancements have been made towards developing state-of-the-art technologies towards laser transmitters, detectors, and receiver systems. These efforts have led to the development of solid-state lasers with high pulse energy, tunablility, wavelength-stability, and double-pulsed operation. This paper will present a review of these technological developments along with examples of high resolution wind and high precision CO2 DIAL measurements in the atmosphere. Plans for the development of compact high power lasers for applications in airborne and future space platforms for wind and regional to global scale measurement of atmospheric CO2 will also be discussed.

  11. The investigations of nanoclusters and micron-sized periodic structures created at the surface of the crystal and amorphous silica by resonant CO2 laser irradiation

    Directory of Open Access Journals (Sweden)

    Mukhamedgalieva A.F.

    2017-01-01

    Full Text Available The creation of nanoclasters and micrometer sized periodical structures at the surface of silica (crystal quartz and fused quartz by action of pulsed CO2 laser radiation (pulse energy of 1 J, pulse time of 70 ns have been investigated. The laser action on the surface of samples lead to appearance of two kind of structures – periodical micron-sized structures with the period length close to wave length of CO2 laser irradiation and nanoclusters with size close to 50-100 nanometers. This creation connects with the intensive ablation of matter at the maxima of standing waves which are a results of the interference of falling and surfaces waves. This connects with the resonant absorption of infrared laser radiation by silicate minerals.

  12. Medición del daño genético inducido por el basuco en linfocitos humanos empleando la prueba de micronúcleos con Citocalasina B

    Directory of Open Access Journals (Sweden)

    Ocampo AP.

    2001-06-01

    Full Text Available El bazuco es una mezcla compleja que se deriva del proceso de extracción de la cocaína. El frecuente consumo de bazuco constituye un problema de salud pública. La prueba de micronúcleos en linfocitos humanos de sangre periférica por bloqueo de la citocinesis con Citocalasina B, es más sensible y precisa para evaluar daño  cromosómico porque permite registrar micronúcleos originados de fragmentos de cromosomas o cromosomas enteros en células que se han dividido una sola vez. El objetivo del presente estudio fue evaluar el daño genético, inducido por el bazuco en linfocitos humanos in vitro empleando la prueba de micronúcleos con Citocalasina B.

  13. The relationship of the lunar regolith less than 10-microns fraction and agglutinates. II - Chemical composition of agglutinate glass as a test of the 'fusion of the finest fraction' /F3/ model

    Science.gov (United States)

    Walker, R. J.; Papike, J. J.

    1982-01-01

    Agglutinate glasses from nine Apollo soils have been studied using an automated electron microprobe technique in order to test the fusion of the finest fraction model proposed by Papike (1981). The nine average agglutinate glass compositions are compared with the calculated fused-soil-free compositions, the bulk compositions and the 90-20 micron fraction compositions of the soils in which they are found. It is found that the agglutinate glass data are consistent with the composition of most of the fractions finer than 10 microns, allowing for the volatile loss of K2O and Na2O; some inconsistencies that do arise may result from the degree of soil maturity and the amount of material finer than 10 microns. It is concluded that the fusion of the finest fraction model is a good first approximation of mechanisms affecting the formation of agglutinate glass.

  14. The 3.3 micron emission feature: Map of the galactic disk, 10 deg less than 1 less than 35 deg, - 6 deg less than b less than 6 deg

    Science.gov (United States)

    Giard, Martin; Pajot, F.; Caux, Emanuel; Lamarre, J. M.; Serra, G.

    1989-01-01

    The 3.3 micron aromatic feature has been detected in the diffuse galactic emission with the AROME balloon-borne instrument. The results are presented in the form of an map of the 3.3 micron feature's intensity. The AROME instrument consists in a Cassegrain telescope with wobbling secondary mirrors and a liquid/solid nitrogen cooled photometer. The instrumental output is modified by the impulse response of the system. So the galactic surface brightness was restored in Fourier space by an inverse optimal filtering. The map of the feature's intensity is presented for a region of galactic coordinates. All the known H II giant molecular cloud complexes are visible in the 3.3 micron feature emission showing a good correlation with the infrared dust emission.

  15. Experimental Hypervelocity Dust Impact in Olivine: FIB/TEM Characterization of Micron-Scale Craters with Comparison to Natural and Laser-Simulated Small-Scale Impact Effects

    Science.gov (United States)

    Christoffersen, R.; Loeffler, M. J.; Rahman, Z.; Dukes, C.; IMPACT Team

    2017-01-01

    The space weathering of regoliths on airless bodies and the formation of their exospheres is driven to a large extent by hypervelocity impacts from the high relative flux of micron to sub-micron meteoroids that comprise approximately 90 percent of the solar system meteoroid population. Laboratory hypervelocity impact experiments are crucial for quantifying how these small impact events drive space weathering through target shock, melting and vaporization. Simulating these small scale impacts experimentally is challenging because the natural impactors are both very small and many have velocities above the approximately 8 kilometers-per-second limit attainable by conventional chemical/light gas accelerator technology. Electrostatic "dust" accelerators, such as the one recently developed at the Colorado Center for Lunar Dust and Atmospheric Studies (CCLDAS), allow the experimental velocity regime to be extended up to tens of kilometers-per-second. Even at these velocities the region of latent target damage created by each impact, in the form of microcraters or pits, is still only about 0.1 to 10 micrometers in size. Both field-emission analytical scanning electron microscopy (FE-SEM) and advanced field-emission scanning transmission electron microscopy (FE-STEM) are uniquely suited for characterizing the individual dust impact sites in these experiments. In this study, we have used both techniques, along with focused ion beam (FIB) sample preparation, to characterize the micrometer to nanometer scale effects created by accelerated dust impacts into olivine single crystals. To our knowledge this work presents the first TEM-scale characterization of dust impacts into a key solar system silicate mineral using the CCLDAS facility. Our overarching goal for this work is to establish a basis to compare with our previous results on natural dust-impacted lunar olivine and laser-irradiated olivine.

  16. Micron thick Gd{sub 2}O{sub 3} films for GaN/AlGaN metal–oxide–semiconductor heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Grave, Daniel A. [Materials Science and Engineering Department, Pennsylvania State University, State College, PA 16802 (United States); The Applied Research Laboratory, Pennsylvania State University, State College, PA 16802 (United States); Robinson, Joshua A. [Materials Science and Engineering Department, Pennsylvania State University, State College, PA 16802 (United States); Wolfe, Douglas E. [Materials Science and Engineering Department, Pennsylvania State University, State College, PA 16802 (United States); The Applied Research Laboratory, Pennsylvania State University, State College, PA 16802 (United States); Engineering Science and Mechanics Department, Pennsylvania State University, State College, PA 16802 (United States)

    2015-08-31

    One micron thick Gd{sub 2}O{sub 3} films were grown on GaN/AlGaN heterostructures by reactive electron beam physical vapor deposition. The films were of cubic bixbyite phase with strong (222) out-of-plane and in-plane textures. The films showed a columnar microstructure with feather-like growth. Transmission electron microscopy analysis and selected area diffraction showed highly oriented single crystal like growth near the film interface which degraded as the film thickness increased. Capacitance–voltage (C–V) characteristics show that the Gd{sub 2}O{sub 3} device results in a negative threshold shift of approximately 1.9 V. Hysteresis of 0.9 V was extracted from the C–V curve corresponding to a trapped charge density of 6.9 × 10{sup 10} cm{sup −2}. The conduction mechanisms were found to be dominated by Poole–Frenkel conduction between 50 and 100 °C and Schottky emission between 125 and 200 °C. The trap height for Poole–Frenkel conduction was 0.46 eV and the Schottky barrier height was 0.79 eV. - Highlights: • One micron thick Gd{sub 2}O{sub 3} films were deposited on GaN/AlGaN heterostructures. • Gd{sub 2}O{sub 3} films were cubic phase with strong (222) biaxial orientation. • Films were governed by Poole–Frenkel conduction and Schottky conduction.

  17. Study of the Effects of the Electric Field on Charging Measurements on Individual Micron-size Dust Grains by Secondary Electron Emissions

    Science.gov (United States)

    Tankosic, D.; Abbas, M. M.

    2013-01-01

    The dust charging by electron impact is an important dust charging process in Astrophysical, Planetary, and the Lunar environments. Low energy electrons are reflected or stick to the grains charging the dust grains negatively. At sufficiently high energies electrons penetrate the grain leading to excitation and emission of electrons referred to as secondary electron emission (SEE). Available theoretical models for the calculation of SEE yield applicable for neutral, planar or bulk surfaces are generally based on Sternglass Equation. However, viable models for charging of individual dust grains do not exist at the present time. Therefore, the SEE yields have to be obtained by some experimental methods at the present time. We have conducted experimental studies on charging of individual micron size dust grains in simulated space environments using an electrodynamic balance (EDB) facility at NASA-MSFC. The results of our extensive laboratory study of charging of individual micron-size dust grains by low energy electron impact indicate that the SEE by electron impact is a very complex process expected to be substantially different from the bulk materials. It was found that the incident electrons may lead to positive or negative charging of dust grains depending upon the grain size, surface potential, electron energy, electron flux, grain composition, and configuration. In this paper we give a more elaborate discussion about the possible effects of the AC field in the EDB on dust charging measurements by comparing the secondary electron emission time-period (tau (sub em) (s/e)) with the time-period (tau (sub ac) (ms)) of the AC field cycle in the EDB that we have briefly addressed in our previous publication.

  18. Feeding of Dehulled-micronized Faba Bean ( var. minor as Substitute for Soybean Meal in Guinea Fowl Broilers: Effect on Productive Performance and Meat Quality

    Directory of Open Access Journals (Sweden)

    Vincenzo Tufarelli

    2015-10-01

    Full Text Available The present study aimed to assess the effect of dietary substitution of soybean meal (SBM with dehulled-micronized faba bean (Vicia faba var. minor in guinea fowl broilers on their growth traits, carcass quality, and meat fatty acids composition. In this trial, 120 day-old guinea fowl keets were randomly assigned to two treatments which were fed from hatch to 12 weeks of age. Birds were fed two wheat middlings-based diets comprising of a control treatment which contained SBM (78.3 g/kg and a test diet containing dehulled-micronized faba bean (130 g/kg as the main protein source. Substituting SBM with faba bean had no adverse effect on growth traits, dressing percentage, or breast and thigh muscles relative weight of the guinea fowls. Conversely, a decrease (p<0.05 of abdominal fat was found in guinea fowls fed the faba bean-diet. Breast muscle of birds fed faba bean had higher L* score (p<0.05 and water-holding capacity (p<0.05 than the SBM control diet. Meat from guinea fowls fed faba bean had less total lipids (p<0.05 and cholesterol (p<0.01, and higher concentrations of phospholipids (p<0.01. Feeding faba bean increased polyunsaturated fatty acid concentrations in breast meat and decreased the saturated fatty acid levels. Moreover, dietary faba bean improved the atherogenic and thrombogenic indexes in guinea fowl breast meat. Results indicated that substitution of SBM with faba bean meal in guinea fowl diet can improve carcass qualitative traits, enhancing also meat lipid profile without negatively affecting growth performance.

  19. Morphological and atomic analytical changes after CO2 laser irradiation emitted at 9.3 microns on human dental hard tissues.

    Science.gov (United States)

    Takahashi, K; Kimura, Y; Matsumoto, K

    1998-06-01

    The purposes of this study were to examine the effects of CO2 laser emitted at 9.3 microns on human sound and carious dental hard tissue ablation with a stereoscope, scanning electron microscope (SEM), and energy dispersive X-ray spectrometer (SEM-EDX) and to identify possible applications of this laser in clinical treatment. There has been no report of morphological changes or atomic analytical studies on carious hard tissues after laser irradiation with 9.3 microns CO2 laser. Sixty extracted human teeth with no caries and sixty teeth with enamel or dentin caries were used for this study. All teeth were horizontally sectioned into slices (approximately 3 mm in thickness) and the samples were irradiated with CO2 laser using the following two parameters: a fluence of 78 J/cm2 and 5 pps for 2 sec. After laser irradiation, half of the samples were observed by stereoscopy and SEM and the other half were analyzed by SEM-EDX. The lased sound enamel and dentin surfaces showed crater-like structures which had been produced by the high laser energy. On the other hand, some portions of carious hard tissues were evaported by the laser. A slight amount of carbonization was observed by stereoscopy. Calcium (Ca) and phosphorus (P) content of sound or carious hard tissues was increased significantly (p laser irradiation, but the ratio of Ca to P after laser irradiation was significantly increased (p CO2 laser may be useful for the prevention or removal of caries in clinical situations.

  20. Characterization and analysis of micro channels and sub-micron surface roughness of injection moulded microfluidic systems using optical metrology

    DEFF Research Database (Denmark)

    Tosello, Guido; Marinello, Francesco; Hansen, Hans Nørgaard

    2012-01-01

    Precision injection moulding of miniaturized products with micro features such as channels for microfluidic applications poses the greatest challenges in terms of tooling technology and process optimization. The injection moulding process window of polypropylene was validated using a metrological...... approach for the production of a microfluidic substrate. Dimensional accuracy of micro channels 48 µm wide and 110 µm deep, as well as quality surface topography replication (surface roughness from 30 nm to 360 nm) were investigated using non-contact measuring instruments such as an optical coordinate...... measuring machine and a white light interferometer respectively. The effect of the dimensional scale range on the micro/nano features replication was evaluated and it was found to be the dominant parameter if compared with the effect of the other process-related parameters investigated (melt and mould...

  1. Characterization and analysis of micro channels and sub-micron surface roughness of injection moulded microfluidic systems using optical metrology

    DEFF Research Database (Denmark)

    Tosello, Guido; Marinello, Francesco; Hansen, Hans Nørgaard

    2009-01-01

    Precision injection moulding of miniaturized products with micro features such as channels for microfluidic applications poses the greatest challenges in terms of tooling technology and process optimization. The injection moulding process window of polypropylene was validated using a metrological...... approach for the production of a microfluidic substrate. Dimensional accuracy of micro channels 48 µm wide and 110 µm deep, as well as quality surface topography replication (surface roughness from 30 nm to 360 nm) were investigated using non-contact measuring instruments such as an optical coordinate...... measuring machine and a white light interferometer respectively. The effect of the dimensional scale range on the micro/nano features replication was evaluated and it was found to be the dominant parameter if compared with the effect of the other process-related parameters investigated (melt and mould...

  2. Pesquisa de micronúcleos na mucosa esofágica e sua relação com fatores de risco ao câncer de esôfago

    Directory of Open Access Journals (Sweden)

    Dietz J.

    2000-01-01

    Full Text Available Micronúcleos são fragmentos de DNA não incorporados ao núcleo na divisão celular e que apresentam relação com agentes genotóxicos (mutagênicos ou clastogênicos. Os micronúcleos podem ser detectados nas células esfoliadas dos tecidos. OBJETIVO: Determinar a freqüência de micronúcleos na mucosa esofágica, relacionando com determinados hábitos. PACIENTES E MÉTODOS: Em pacientes submetidos à endoscopia digestiva alta e sem evidências de anormalidades esofágicas, foram colhidos materiais através de escovado do esôfago médio, para pesquisa de micronúcleos. Após à endoscopia, os pacientes foram questionados sobre seus hábitos. RESULTADOS: A freqüência de micronúcleos não mostrou diferenças significativas (p > 0,05 em relação ao sexo, local de residência (rural ou urbana, tipo de atendimento (ambulatorial ou hospitalizado, ingestão de álcool. Nas variáveis fumo e mate houve diferenças significativas entre as categorias expostos e ex-expostos em relação à categoria nunca expostos. CONCLUSÃO: A freqüência de micronúcleos na mucosa esofágica foi maior nos pacientes fumantes e bebedores de mate.

  3. Evaluación genotóxica, mediante la prueba de micronúcleos, de la exposición a drogas psicoactivas en individuos del suroccidente colombiano

    Directory of Open Access Journals (Sweden)

    LS. Hoyos

    2001-07-01

    genotóxico de estas drogas mediante la prueba de Micronúcleos (Mn, que identifica fragmentos cromosómicos o cromosomas enteros excluidos del núcleo celular y que es un biomarcador temprano de exposición e indicador de riesgo incrementado de cáncer. El objetivo de este estudio fue: evaluar el daño genético inducido por el consumo de drogas psicoactivas mediante cuantificación de micronúcleos en linfocitos binucleados de sangre periférica de individuos consumidores y no c onsumidores.

  4. Parallel pumping for magnon spintronics: Amplification and manipulation of magnon spin currents on the micron-scale

    Science.gov (United States)

    Brächer, T.; Pirro, P.; Hillebrands, B.

    2017-06-01

    Magnonics and magnon spintronics aim at the utilization of spin waves and magnons, their quanta, for the construction of wave-based logic networks via the generation of pure all-magnon spin currents and their interfacing with electric charge transport. The promise of efficient parallel data processing and low power consumption renders this field one of the most promising research areas in spintronics. In this context, the process of parallel parametric amplification, i.e., the conversion of microwave photons into magnons at one half of the microwave frequency, has proven to be a versatile tool to excite and to manipulate spin waves. Its beneficial and unique properties such as frequency and mode-selectivity, the possibility to excite spin waves in a wide wavevector range and the creation of phase-correlated wave pairs, have enabled the achievement of important milestones like the magnon Bose-Einstein condensation and the cloning and trapping of spin-wave packets. Parallel parametric amplification, which allows for the selective amplification of magnons while conserving their phase is, thus, one of the key methods of spin-wave generation and amplification. The application of parallel parametric amplification to CMOS-compatible micro- and nano-structures is an important step towards the realization of magnonic networks. This is motivated not only by the fact that amplifiers are an important tool for the construction of any extended logic network but also by the unique properties of parallel parametric amplification. In particular, the creation of phase-correlated wave pairs allows for rewarding alternative logic operations such as a phase-dependent amplification of the incident waves. Recently, the successful application of parallel parametric amplification to metallic microstructures has been reported which constitutes an important milestone for the application of magnonics in practical devices. It has been demonstrated that parametric amplification provides an

  5. DNA driven self-assembly of micron-sized rods using DNA-grafted bacteriophage fd virions.

    Science.gov (United States)

    Unwin, R R; Cabanas, R A; Yanagishima, T; Blower, T R; Takahashi, H; Salmond, G P C; Edwardson, J M; Fraden, S; Eiser, E

    2015-03-28

    We have functionalized the sides of fd bacteriophage virions with oligonucleotides to induce DNA hybridization driven self-assembly of high aspect ratio filamentous particles. Potential impacts of this new structure range from an entirely new building block in DNA origami structures, inclusion of virions in DNA nanostructures and nanomachines, to a new means of adding thermotropic control to lyotropic liquid crystal systems. A protocol for producing the virions in bulk is reviewed. Thiolated oligonucleotides are attached to the viral capsid using a heterobifunctional chemical linker. A commonly used system is utilized, where a sticky, single-stranded DNA strand is connected to an inert double-stranded spacer to increase inter-particle connectivity. Solutions of fd virions carrying complementary strands are mixed, annealed, and their aggregation is studied using dynamic light scattering (DLS), fluorescence microscopy, and atomic force microscopy (AFM). Aggregation is clearly observed on cooling, with some degree of local order, and is reversible when temperature is cycled through the DNA hybridization transition.

  6. Radar range measurements in the atmosphere.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter

    2013-02-01

    The earths atmosphere affects the velocity of propagation of microwave signals. This imparts a range error to radar range measurements that assume the typical simplistic model for propagation velocity. This range error is a function of atmospheric constituents, such as water vapor, as well as the geometry of the radar data collection, notably altitude and range. Models are presented for calculating atmospheric effects on radar range measurements, and compared against more elaborate atmospheric models.

  7. Measuring NH3 and other molecular abundance profiles from 5 microns ground-based spectroscopy in support of JUNO investigations

    Science.gov (United States)

    Blain, Doriann; Fouchet, Thierry; Greathouse, Thomas K.; Bézard, Bruno; Encrenaz, Therese; Lacy, John H.; Drossart, Pierre

    2017-10-01

    We report on results of an observational campaign to support the Juno mission. At the beginning of 2016, using TEXES (Texas Echelon cross-dispersed Echelle Spectrograph), mounted on the NASA Infrared Telescope Facility (IRTF), we obtained data cubes of Jupiter in the 1930--1943 cm-1 and 2135--2153 cm-1 spectral ranges (around 5 μm), which probe the atmosphere in the 1--4 bar region, with a spectral resolution of ≈0.3 cm-1 (R≈7000) and an angular resolution of ≈1.5''.This dataset is analyzed by a code that combines a line-by-line radiative transfer model with a non-linear optimal estimation inversion method. The inversion retrieves the abundance profiles of NH3 and PH3, which are the main conbtributors at these wavelengths, as well as the cloud transmittance. This retrieval is performed over more than one thousand pixels of our data cubes, producing effective maps of the disk, where all the major belts are visible (NEB, SEB, NTB, STB, NNTB and SSTB).We will present notably our retrieved NH3 abundance maps which can be compared with the unexpected latitudinal distribution observed by Juno's MWR (Bolton et al., 2017 and Li et al. 2017), as well as our other species retrieved abundance maps and discuss on their significance for the understanding of Jupiter's atmospheric dynamics.References:Bolton, S., et al. (2017), Jupiter’s interior and deep atmosphere: The first close polar pass with the Juno spacecraft, Science, doi:10.1126/science.aal2108, in press.Li, C., A. P. Ingersoll, S. Ewald, F. Oyafuso, and M. Janssen (2017), Jupiter’s global ammonia distribution from inversion of Juno Microwave Radiometer observations, Geophys. Res. Lett., doi:10.1002/2017GL073159, in press.

  8. Beamline 12.3.2 at the Advanced Light Source: direct strain measurements and micron-scale phase maps

    Science.gov (United States)

    Stan, C. V.; Tamura, N.; Wenk, H. R.; Jackson, M. D.

    2016-12-01

    Analytical techniques implemented at the microdiffraction beamline 12.3.2 of the Advanced Light Source (ALS) provide valuable and innovative support for mineral investigations in the geoscience community. We have developed angular (ADXRD) and energy (Laue) dispersive diffraction techniques coupled with elemental identification using parallel x-ray fluorescence (XRF) compositional analysis. Here, we present two recent applications specific to the fields of mineralogy and petrology. The first application is the characterization of residual strain state in boudins collected from Bastogne, Belgium, demonstrating the use of Laue diffraction ( 1 μm x-ray beam spot diameter) as a measure of rock deformation. Measurement of the residual lattice strain in layer-perpendicular quartz crystals (30-800 μm grain size) indicates that elastic shortening occurs perpendicular to the vein walls irrespective of the quartz grain size or orientation. This cohesive signal shows that boudins formed through layer-parallel shortening, a finding that would not have been possible using standard diffraction equipment. In the second application, ADXRD (2 x 5 μm x-ray beam spot size) is coupled with XRF to create point-to-point mineral maps with μm-scale spacing of cementitious microstructures in both 2000-year-old Roman harbor concrete (Baianus Sinus breakwater, Bay of Pozzuoli, Italy) and Campi Flegrei pumice clasts. We find that Al-tobermorite, a rare layered Ca-Si hydrate mineral, crystallized through pozzolanic processes in association with ettringite and hydrocalumite in relict lime clasts, and through post-pozzolanic, diagenetic processes in association with phillipsite in adjacent pumice clasts. The results provide new insights into developing environmentally-friendly concretes using seawater and into the formation of natural volcanic rock aggregates. The techniques available at beamline 12.3.2 have the potential to address a wide range of research topics within the geoscience

  9. Colored Range Searching in Linear Space

    DEFF Research Database (Denmark)

    Grossi, Roberto; Vind, Søren Juhl

    2014-01-01

    In colored range searching, we are given a set of n colored points in d ≥ 2 dimensions to store, and want to support orthogonal range queries taking colors into account. In the colored range counting problem, a query must report the number of distinct colors found in the query range, while...... an answer to the colored range reporting problem must report the distinct colors in the query range. We give the first linear space data structure for both problems in two dimensions (d = 2) with o(n) worst case query time. We also give the first data structure obtaining almost-linear space usage and o...

  10. Sub-micron indent induced plastic deformation in copper and irradiated steel; Deformation plastique induite par l'essai d'indentation submicronique, dans le cuivre et l'acier 316L irradie

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Ch

    1999-07-01

    In this work we aim to study the indent induced plastic deformation. For this purpose, we have developed a new approach, whereby the indentation curves provides the mechanical behaviour, while the deformation mechanisms are observed thanks to Transmission Electron Microscopy (TEM). In order to better understand how an indent induced dislocation microstructure forms, numerical modeling of the indentation process at the scale of discrete dislocations has been worked out as well. Validation of this modeling has been performed through direct comparison of the computed microstructures with TEM micrographs of actual indents in pure Cu (001]. Irradiation induced modifications of mechanical behaviour of ion irradiated 316L have been investigated, thanks to the mentioned approach. An important hardening effect was reported from indentation data (about 50%), on helium irradiated 316L steel. TEM observations of the damage zone clearly show that this behaviour is associated with the presence of He bubbles. TEM observations of the indent induced plastic zone also showed that the extent of the plastic zone is strongly correlated with hardness, that is to say: harder materials gets a smaller plastic zone. These results thus clearly established that the selected procedure can reveal any irradiation induced hardening in sub-micron thick ion irradiated layers. The behaviour of krypton irradiated 316L steel is somewhat more puzzling. In one hand indeed, a strong correlation between the defect cluster size and densities on the irradiation temperature is observed in the 350 deg. C - 600 deg. C range, thanks to TEM observations of the damage zone. On the other hand, irradiation induced hardening reported from indentation data is relatively small (about 10%) and shows no dependence upon the irradiation temperature (within the mentioned range). In addition, it has been shown that the reported hardening vanishes following appropriate post-irradiation annealing, although most of the TEM

  11. WPC's Short Range Forecast Coded Bulletin

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Short Range Forecast Coded Bulletin. The Short Range Forecast Coded Bulletin describes the expected locations of high and low pressure centers, surface frontal...

  12. Range-Based Auto-Focus Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Maracel Systems and Software Technologies, LLC proposes a revolutionary Range-Based Auto Focus (RBAF) system that will combine externally input range, such as might...

  13. Dual-donor (Zni and VO) mediated ferromagnetism in copper-doped ZnO micron-scale polycrystalline films: a thermally driven defect modulation process

    Science.gov (United States)

    Hu, Liang; Huang, Jun; He, Haiping; Zhu, Liping; Liu, Shijiang; Jin, Yizheng; Sun, Luwei; Ye, Zhizhen

    2013-04-01

    The paper reports robust ferromagnetic Cu-doped ZnO micron-scale polycrystalline films via spin-coating using high-quality doped nanocrystals. A reliable magnetic response is observed in the 900 °C vacuum annealed film without any ferromagnetic contribution from other sources. Post-annealing treatment in terms of atmosphere and temperature can control the proportion of oxygen vacancies (VO) and zinc interstitials (Zni) defects and further help to precisely regulate defect-related ferromagnetic behavior. Complex charge transfer processes derived from dual-donor (Zni and VO) to Cu acceptor are revealed by photoluminescence (PL) and electron paramagnetic resonance (EPR) spectra. Based on the above, specific charge transfer (CT)-type Stoner splitting and indirect double-exchange mechanisms are proposed to understand the ferromagnetic origin. The improvable FM performance and annealing-specific modulation further indicate that a thermal driven process can delicately tailor the magnetic property of the transition metal ion-doped ZnO system.The paper reports robust ferromagnetic Cu-doped ZnO micron-scale polycrystalline films via spin-coating using high-quality doped nanocrystals. A reliable magnetic response is observed in the 900 °C vacuum annealed film without any ferromagnetic contribution from other sources. Post-annealing treatment in terms of atmosphere and temperature can control the proportion of oxygen vacancies (VO) and zinc interstitials (Zni) defects and further help to precisely regulate defect-related ferromagnetic behavior. Complex charge transfer processes derived from dual-donor (Zni and VO) to Cu acceptor are revealed by photoluminescence (PL) and electron paramagnetic resonance (EPR) spectra. Based on the above, specific charge transfer (CT)-type Stoner splitting and indirect double-exchange mechanisms are proposed to understand the ferromagnetic origin. The improvable FM performance and annealing-specific modulation further indicate that a thermal

  14. Source apportionment of fine PM and sub-micron particle number concentrations at a regional background site in the western Mediterranean: a 2.5 year study

    Directory of Open Access Journals (Sweden)

    M. Cusack

    2013-05-01

    Full Text Available The chemical composition and sources of ambient fine particulate matter (PM1 over a period of 2.5 years for a regional background site in the western Mediterranean are presented in this work. Furthermore, sub-micron particle number concentrations and the sources of these particles are also presented. The mean PM1 concentration for the measurement period was 8.9 μg m−3, with organic matter (OM and sulphate comprising most of the mass (3.2 and 1.5 μg m−3 respectively. Six sources were identified in PM1 by Positive Matrix Factorisation (PMF: secondary organic aerosol, secondary nitrate, industrial, traffic + biomass burning, fuel oil combustion and secondary sulphate. Typically anthropogenic sources displayed elevated concentrations during the week with reductions at weekends. Nitrate levels were elevated in winter and negligible in summer, whereas secondary sulphate levels underwent a contrasting seasonal evolution with highest concentrations in summer, similar to the fuel oil combustion source. The SOA source was influenced by episodes of sustained pollution as a result of anticyclonic conditions occurring during winter, giving rise to thermal inversions and the accumulation of pollutants in the mixing layer. Increased levels in summer were owing to higher biogenic emissions and regional recirculation of air masses. The industrial source decreased in August due to decreased emissions during the vacation period. Increases in the traffic + biomass burning source were recorded in January, April and October, which were attributed to the occurrence of the aforementioned pollution episodes and local biomass burning emission sources, which include agriculture and domestic heating systems. Average particle number concentrations (N9-825 nm from 5/11/2010 to 01/06/2011 and from 15/10/2011 to 18/12/2011 reached 3097 cm−3. Five emission sources of particle of sub-micron particles were determined by Principal Component Analysis (PCA; industrial

  15. Report to Congress on Sustainable Ranges, 2008

    Science.gov (United States)

    2008-01-01

    Air Facility Quantico in FY2008. RAICUZ studies at Townsend Range, Chocolate Mountain Aerial Gunnery Range, and Barry M Goldwater Range-West are on...representatives from Arizona, California, Nevada, New Mexico and Utah and other interested stakeholders. Part of the working group’s tactical

  16. Compressed Data Structures for Range Searching

    DEFF Research Database (Denmark)

    Bille, Philip; Gørtz, Inge Li; Vind, Søren Juhl

    2015-01-01

    matrices and web graphs. Our contribution is twofold. First, we show how to compress geometric repetitions that may appear in standard range searching data structures (such as K-D trees, Quad trees, Range trees, R-trees, Priority R-trees, and K-D-B trees), and how to implement subsequent range queries......We study the orthogonal range searching problem on points that have a significant number of geometric repetitions, that is, subsets of points that are identical under translation. Such repetitions occur in scenarios such as image compression, GIS applications and in compactly representing sparse...... that supports range searching....

  17. Towards High Capacity Li-ion Batteries Based on Silicon-Graphene Composite Anodes and Sub-micron V-doped LiFePO4 Cathodes

    Science.gov (United States)

    Loveridge, M. J.; Lain, M. J.; Johnson, I. D.; Roberts, A.; Beattie, S. D.; Dashwood, R.; Darr, J. A.; Bhagat, R.

    2016-11-01

    Lithium iron phosphate, LiFePO4 (LFP) has demonstrated promising performance as a cathode material in lithium ion batteries (LIBs), by overcoming the rate performance issues from limited electronic conductivity. Nano-sized vanadium-doped LFP (V-LFP) was synthesized using a continuous hydrothermal process using supercritical water as a reagent. The atomic % of dopant determined the particle shape. 5 at. % gave mixed plate and rod-like morphology, showing optimal electrochemical performance and good rate properties vs. Li. Specific capacities of >160 mAh g-1 were achieved. In order to increase the capacity of a full cell, V-LFP was cycled against an inexpensive micron-sized metallurgical grade Si-containing anode. This electrode was capable of reversible capacities of approximately 2000 mAh g-1 for over 150 cycles vs. Li, with improved performance resulting from the incorporation of few layer graphene (FLG) to enhance conductivity, tensile behaviour and thus, the composite stability. The cathode material synthesis and electrode formulation are scalable, inexpensive and are suitable for the fabrication of larger format cells suited to grid and transport applications.

  18. The characterization of neural tissue ablation rate and corresponding heat affected zone of a 2 micron Tm3+ doped fiber laser(Conference Presentation)

    Science.gov (United States)

    Marques, Andrew J.; Jivraj, Jamil; Reyes, Robnier; Ramjist, Joel; Gu, Xijia J.; Yang, Victor X. D.

    2017-02-01

    Tissue removal using electrocautery is standard practice in neurosurgery since tissue can be cut and cauterized simultaneously. Thermally mediated tissue ablation using lasers can potentially possess the same benefits but with increased precision. However, given the critical nature of the spine, brain, and nerves, the effects of direct photo-thermal interaction on neural tissue needs to be known, yielding not only high precision of tissue removal but also increased control of peripheral heat damage. The proposed use of lasers as a neurosurgical tool requires that a common ground is found between ablation rates and resulting peripheral heat damage. Most surgical laser systems rely on the conversion of light energy into heat resulting in both desirable and undesirable thermal damage to the targeted tissue. Classifying the distribution of thermal energy in neural tissue, and thus characterizing the extent of undesirable thermal damage, can prove to be exceptionally challenging considering its highly inhomogenous composition when compared to other tissues such as muscle and bone. Here we present the characterization of neural tissue ablation rate and heat affected zone of a 1.94 micron thulium doped fiber laser for neural tissue ablation. In-Vivo ablation of porcine cerebral cortex is performed. Ablation volumes are studied in association with laser parameters. Histological samples are taken and examined to characterize the extent of peripheral heat damage.

  19. Characterization of size, morphology and elemental composition of nano-, submicron, and micron particles of street dust separated using field-flow fractionation in a rotating coiled column.

    Science.gov (United States)

    Fedotov, Petr S; Ermolin, Mikhail S; Karandashev, Vasily K; Ladonin, Dmitry V

    2014-12-01

    For the first time, nano- and submicron particles of street dust have been separated, weighted, and analyzed. A novel technique, sedimentation field-flow fractionation in a rotating coiled column, was applied to the fractionation of dust samples with water being used as a carrier fluid. The size and morphology of particles in the separated fractions were characterized by electronic microscopy before digestion and the determination of the concentration of elements by ICP-AES and ICP-MS. The elements that may be of anthropogenic origin (Zn, Cr, Ni, Cu, Cd, Sn, Pb) were found to concentrate mainly in particles present only about 0.1 mass% of the sample they are of special concern due to their increased mobility and ability to penetrate into the deepest alveolar area of the lungs. For rare earth elements (La, Ce, Pr, Nd, Sm) that are evidently of natural source and may be found in soil minerals, in contrary, higher concentrations were observed in large particles (10-100 μm). Sc was an exception that needs further studies. The proposed approach to the fractionation and analysis of nano-, submicron, and micron particles can be a powerful tool for risk assessment related to toxic elements in dust, ash, and other particulate environmental samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. A Novel Method for Incorporation of Micron-Sized SiC Particles into Molten Pure Aluminum Utilizing a Co Coating

    Science.gov (United States)

    Mohammadpour, M.; Khosroshahi, R. Azari; Mousavian, R. Taherzadeh; Brabazon, D.

    2015-02-01

    Ceramic particles typically do not have sufficiently high wettability by molten metal for effective bonding during metal matrix composite fabrication. In this study, a novel method has been used to overcome this drawback. Micron-sized SiC particles were coated by a cobalt metallic layer using an electroless deposition method. A layer of cobalt on the SiC particles was produced prior to incorporation in molten pure aluminum in order to improve the injected particle bonding with the matrix. For comparison, magnesium was added to the melt in separate experiments as a wetting agent to assess which method was more effective for particle incorporation. It was found that both of these methods were more effective as regard ceramic particulate incorporation compared with samples produced with as-received SiC particles injected into the pure aluminum matrix. SEM images indicated that cobalt coating of the particles was more effective than magnesium for incorporation of fine SiC particles (below 30 µm), while totally the incorporation percentage of the particles was higher for a sample in which Mg was added as a wetting agent. In addition, microhardness tests revealed that the cobalt coating leads to the fabrication of a harder composite due to increased amount of ceramic incorporation, ceramic-matrix bonding, and possibly also to formation of Al-Co intermetallic phases.