Analysis of triso packing fraction and fissile material to DB-MHR using LWR reprocessed fuel
Silva, Clarysson A.M. da; Pereira, Claubia; Costa, Antonella L.; Veloso, Maria Auxiliadora F.; Gual, Maritza R., E-mail: clarysson@nuclear.ufmg.br, E-mail: claubia@nuclear.ufmg.br, E-mail: antonella@nuclear.ufmg.br, E-mail: dora@nuclear.ufmg.br, E-mail: maritzargual@gmail.com [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Nuclear
2013-07-01
Gas-cooled and graphite-moderated reactor is being considered the next generation of nuclear power plants because of its characteristic to operate with reprocessed fuel. The typical fuel element consists of a hexagonal block with coolant and fuel channels. The fuel pin is manufactured into compacted ceramic-coated particles (TRISO) which are used to achieve both a high burnup and a high degree of passive safety. This work uses the MCNPX 2.6.0 to simulate the active core of Deep Burn Modular Helium Reactor (DB-MHR) employing PWR (Pressurized Water Reactor) reprocessed fuel. However, before a complete study of DB-MHR fuel cycle and recharge, it is necessary to evaluate the neutronic parameters to some values of TRISO Packing Fractions (PF) and Fissile Material (FM). Each PF and FM combination would generate the best behaviour of neutronic parameters. Therefore, this study configures several PF and FM combinations considering the heterogeneity of TRISO layers and lattice. The results present the best combination of PF and FM values according with the more appropriated behaviour of the neutronic parameters during the burnup. In this way, the optimized combination can be used to future works of MHR fuel cycle and recharge. (author)
Random packing of colloids and granular matter
Wouterse, A.
2008-01-01
This thesis deals with the random packing of colloids and granular matter. A random packing is a stable disordered collection of touching particles, without long-range positional and orientational order. Experimental random packings of particles with the same shape but made of different materials sh
Random packing of spheres in Menger sponge.
Cieśla, Michał; Barbasz, Jakub
2013-06-07
Random packing of spheres inside fractal collectors of dimension 2 algorithm. The paper focuses mainly on the measurement of random packing saturation limit. Additionally, scaling properties of density autocorrelations in the obtained packing are analyzed. The RSA kinetics coefficients are also measured. Obtained results allow to test phenomenological relation between random packing saturation density and collector dimension. Additionally, performed simulations together with previously obtained results confirm that, in general, the known dimensional relations are obeyed by systems having non-integer dimension, at least for d < 3.
Random close packing of polydisperse jammed emulsions
Brujic, Jasna
2010-03-01
Packing problems are everywhere, ranging from oil extraction through porous rocks to grain storage in silos and the compaction of pharmaceutical powders into tablets. At a given density, particulate systems pack into a mechanically stable and amorphous jammed state. Theoretical frameworks have proposed a connection between this jammed state and the glass transition, a thermodynamics of jamming, as well as geometric modeling of random packings. Nevertheless, a simple underlying mechanism for the random assembly of athermal particles, analogous to crystalline ordering, remains unknown. Here we use 3D measurements of polydisperse packings of emulsion droplets to build a simple statistical model in which the complexity of the global packing is distilled into a local stochastic process. From the perspective of a single particle the packing problem is reduced to the random formation of nearest neighbors, followed by a choice of contacts among them. The two key parameters in the model, the available space around a particle and the ratio of contacts to neighbors, are directly obtained from experiments. Remarkably, we demonstrate that this ``granocentric'' view captures the properties of the polydisperse emulsion packing, ranging from the microscopic distributions of nearest neighbors and contacts to local density fluctuations and all the way to the global packing density. Further applications to monodisperse and bidisperse systems quantitatively agree with previously measured trends in global density. This model therefore reveals a general principle of organization for random packing and lays the foundations for a theory of jammed matter.
On contact numbers in random rod packings
Wouterse, A.; Luding, Stefan; Philipse, A.P.
2009-01-01
Random packings of non-spherical granular particles are simulated by combining mechanical contraction and molecular dynamics, to determine contact numbers as a function of density. Particle shapes are varied from spheres to thin rods. The observed contact numbers (and packing densities) agree well
Random close packing revisited: ways to pack frictionless disks.
Xu, Ning; Blawzdziewicz, Jerzy; O'Hern, Corey S
2005-06-01
We create collectively jammed (CJ) packings of 50-50 bidisperse mixtures of smooth disks in two dimensions (2D) using an algorithm in which we successively compress or expand soft particles and minimize the total energy at each step until the particles are just at contact. We focus on small systems in 2D and thus are able to find nearly all of the collectively jammed states at each system size. We decompose the probability P(phi) for obtaining a collectively jammed state at a particular packing fraction phi into two composite functions: (1) the density of CJ packing fractions rho(phi), which only depends on geometry, and (2) the frequency distribution beta(phi), which depends on the particular algorithm used to create them. We find that the function rho(phi) is sharply peaked and that beta(phi) depends exponentially on phi. We predict that in the infinite-system-size limit the behavior of P(phi) in these systems is controlled by the density of CJ packing fractions--not the frequency distribution. These results suggest that the location of the peak in P(phi) when N --> infinity can be used as a protocol-independent definition of random close packing.
Particle-size distribution and packing fraction of geometric random packings
Brouwers, H.J.H.
2006-01-01
This paper addresses the geometric random packing and void fraction of polydisperse particles. It is demonstrated that the bimodal packing can be transformed into a continuous particle-size distribution of the power law type. It follows that a maximum packing fraction of particles is obtained when t
Numerical Simulation of Random Close Packing with Tetrahedra
LI Shui-Xiang; ZHAO Jian; ZHOU Xuan
2008-01-01
The densest packing of tetrahedra is still an unsolved problem.Numerical simulations of random close packing of tetrahedra are carried out with a sphere assembly model and improved relaxation algorithm. The packing density and average contact number obtained for random close packing of regular tetrahedra is 0.6817 and 7.21respectively,while the values of spheres are 0.6435 and 5.95.The simulation demonstrates that tetrahedra can be randomly packed denser than spheres.Random close packings of tetrahedra with a range of height are simulated as well.We find that the regular tetrahedron might be the optimal shape which gives the highest packing density of tetrahedra.
3D thermal modeling of TRISO fuel coupled with neutronic simulation
Hu, Jianwei [Los Alamos National Laboratory; Uddin, Rizwan [UNIV OF ILLINIOS
2010-01-01
The Very High Temperature Gas Reactor (VHTR) is widely considered as one of the top candidates identified in the Next Generation Nuclear Power-plant (NGNP) Technology Roadmap under the U.S . Depanment of Energy's Generation IV program. TRlSO particle is a common element among different VHTR designs and its performance is critical to the safety and reliability of the whole reactor. A TRISO particle experiences complex thermo-mechanical changes during reactor operation in high temperature and high burnup conditions. TRISO fuel performance analysis requires evaluation of these changes on micro scale. Since most of these changes are temperature dependent, 3D thermal modeling of TRISO fuel is a crucial step of the whole analysis package. In this paper, a 3D numerical thermal model was developed to calculate temperature distribution inside TRISO and pebble under different scenarios. 3D simulation is required because pebbles or TRISOs are always subjected to asymmetric thermal conditions since they are randomly packed together. The numerical model was developed using finite difference method and it was benchmarked against ID analytical results and also results reported from literature. Monte-Carlo models were set up to calculate radial power density profile. Complex convective boundary condition was applied on the pebble outer surface. Three reactors were simulated using this model to calculate temperature distribution under different power levels. Two asymmetric boundary conditions were applied to the pebble to test the 3D capabilities. A gas bubble was hypothesized inside the TRISO kernel and 3D simulation was also carried out under this scenario. Intuition-coherent results were obtained and reported in this paper.
Distinctive features arising in maximally random jammed packings of superballs.
Jiao, Y; Stillinger, F H; Torquato, S
2010-04-01
Dense random packings of hard particles are useful models of granular media and are closely related to the structure of nonequilibrium low-temperature amorphous phases of matter. Most work has been done for random jammed packings of spheres and it is only recently that corresponding packings of nonspherical particles (e.g., ellipsoids) have received attention. Here we report a study of the maximally random jammed (MRJ) packings of binary superdisks and monodispersed superballs whose shapes are defined by |x1|2p+...+|xd|2por=0.5) particles with square symmetry (d=2), or octahedral and cubic symmetry (d=3). In particular, for p=1 the particle is a perfect sphere (circular disk) and for p-->infinity the particle is a perfect cube (square). We find that the MRJ densities of such packings increase dramatically and nonanalytically as one moves away from the circular-disk and sphere point (p=1). Moreover, the disordered packings are hypostatic, i.e., the average number of contacting neighbors is less than twice the total number of degrees of freedom per particle, and yet the packings are mechanically stable. As a result, the local arrangements of particles are necessarily nontrivially correlated to achieve jamming. We term such correlated structures "nongeneric." The degree of "nongenericity" of the packings is quantitatively characterized by determining the fraction of local coordination structures in which the central particles have fewer contacting neighbors than average. We also show that such seemingly "special" packing configurations are counterintuitively not rare. As the anisotropy of the particles increases, the fraction of rattlers decreases while the minimal orientational order as measured by the tetratic and cubatic order parameters increases. These characteristics result from the unique manner in which superballs break their rotational symmetry, which also makes the superdisk and superball packings distinctly different from other known nonspherical hard
Cieśla, Michał
2016-11-01
The properties of the number of iterations in random sequential adsorption protocol needed to generate finite saturated random packing of spherically symmetric shapes were studied. Numerical results obtained for one, two, and three dimensional packings were supported by analytical calculations valid for any dimension d. It has been shown that the number of iterations needed to generate finite saturated packing is subject to Pareto distribution with exponent -1-1/d and the median of this distribution scales with packing size according to the power-law characterized by exponent d. Obtained results can be used in designing effective random sequential adsorption simulations.
The exact packing measure for a random re-ordering of the Cantor set
胡晓予
1996-01-01
The packing measure for a random re-ordering of the Cantor set, the packing dimension for the random set belonging to a sequence satisfying the Hausdorff and packing measures and packing measures for random subsets of R belonging to a regular sequence have been obtained.
Demagnetization factor for a powder of randomly packed spherical particles
Bjørk, Rasmus; Bahl, Christian R.H.
2013-01-01
The demagnetization factors for randomly packed spherical particle powders with different porosities, sample aspect ratios, and monodisperse, normal, and log-normal particle size distributions have been calculated using a numerical model. For a relative permeability of 2, comparable to room...... permeability. © 2013 AIP Publishing LLC...
A Geometric-Structure Theory for Maximally Random Jammed Packings
Tian, Jianxiang; Xu, Yaopengxiao; Jiao, Yang; Torquato, Salvatore
2015-11-01
Maximally random jammed (MRJ) particle packings can be viewed as prototypical glasses in that they are maximally disordered while simultaneously being mechanically rigid. The prediction of the MRJ packing density ϕMRJ, among other packing properties of frictionless particles, still poses many theoretical challenges, even for congruent spheres or disks. Using the geometric-structure approach, we derive for the first time a highly accurate formula for MRJ densities for a very wide class of two-dimensional frictionless packings, namely, binary convex superdisks, with shapes that continuously interpolate between circles and squares. By incorporating specific attributes of MRJ states and a novel organizing principle, our formula yields predictions of ϕMRJ that are in excellent agreement with corresponding computer-simulation estimates in almost the entire α-x plane with semi-axis ratio α and small-particle relative number concentration x. Importantly, in the monodisperse circle limit, the predicted ϕMRJ = 0.834 agrees very well with the very recently numerically discovered MRJ density of 0.827, which distinguishes it from high-density “random-close packing” polycrystalline states and hence provides a stringent test on the theory. Similarly, for non-circular monodisperse superdisks, we predict MRJ states with densities that are appreciably smaller than is conventionally thought to be achievable by standard packing protocols.
Random perfect lattices and the sphere packing problem.
Andreanov, A; Scardicchio, A
2012-10-01
Motivated by the search for best lattice sphere packings in Euclidean spaces of large dimensions we study randomly generated perfect lattices in moderately large dimensions (up to d=19 included). Perfect lattices are relevant in the solution of the problem of lattice sphere packing, because the best lattice packing is a perfect lattice and because they can be generated easily. Their number, however, grows superexponentially with the dimension, so to get an idea of their properties we propose to study a randomized version of the generating algorithm and to define a random ensemble with an effective temperature in a way reminiscent of a Monte Carlo simulation. We therefore study the distribution of packing fractions and kissing numbers of these ensembles and show how as the temperature is decreased the best known packers are easily recovered. We find that, even at infinite temperature, the typical perfect lattices are considerably denser than known families (like A(d) and D(d)), and we propose two hypotheses between which we cannot distinguish in this paper: one in which they improve the Minkowsky bound φ~2(-(0.84±0.06)d), and a competitor in which their packing fraction decreases superexponentially, namely, φ~d(-ad) but with a very small coefficient a=0.06±0.04. We also find properties of the random walk which are suggestive of a glassy system already for moderately small dimensions. We also analyze local structure of network of perfect lattices conjecturing that this is a scale-free network in all dimensions with constant scaling exponent 2.6±0.1.
Characterization of maximally random jammed sphere packings: Voronoi correlation functions.
Klatt, Michael A; Torquato, Salvatore
2014-11-01
We characterize the structure of maximally random jammed (MRJ) sphere packings by computing the Minkowski functionals (volume, surface area, and integrated mean curvature) of their associated Voronoi cells. The probability distribution functions of these functionals of Voronoi cells in MRJ sphere packings are qualitatively similar to those of an equilibrium hard-sphere liquid and partly even to the uncorrelated Poisson point process, implying that such local statistics are relatively structurally insensitive. This is not surprising because the Minkowski functionals of a single Voronoi cell incorporate only local information and are insensitive to global structural information. To improve upon this, we introduce descriptors that incorporate nonlocal information via the correlation functions of the Minkowski functionals of two cells at a given distance as well as certain cell-cell probability density functions. We evaluate these higher-order functions for our MRJ packings as well as equilibrium hard spheres and the Poisson point process. It is shown that these Minkowski correlation and density functions contain visibly more information than the corresponding standard pair-correlation functions. We find strong anticorrelations in the Voronoi volumes for the hyperuniform MRJ packings, consistent with previous findings for other pair correlations [A. Donev et al., Phys. Rev. Lett. 95, 090604 (2005)PRLTAO0031-900710.1103/PhysRevLett.95.090604], indicating that large-scale volume fluctuations are suppressed by accompanying large Voronoi cells with small cells, and vice versa. In contrast to the aforementioned local Voronoi statistics, the correlation functions of the Voronoi cells qualitatively distinguish the structure of MRJ sphere packings (prototypical glasses) from that of not only the Poisson point process but also the correlated equilibrium hard-sphere liquids. Moreover, while we did not find any perfect icosahedra (the locally densest possible structure in which a
He II heat transfer through random packed spheres: Pressure drop
Vanderlaan, M. H.; Van Sciver, S. W.
2014-09-01
Heat flow induced pressure drop through superfluid helium (He II) contained in porous media is examined. In this experiment, heat was applied to one side of a He II column containing a random pack of uniform size polyethylene spheres. Measured results include steady state pressure drops across the random packs of spheres (nominally 35 μm, 49 μm, and 98 μm diameter) for different heat inputs. Laminar, turbulent, and transition fluid flow regimes are examined. The laminar permeability and equivalent channel shape factor are compared to our past studies of the temperature drop through He II in the same porous media of packed spheres. Results from the pressure drop experiments are more accurate than temperature drop experiments due to reduced measurement errors achieved with the pressure transducer. Turbulent results are fitted to models with empirically derived friction factors. A turbulent model considering only dynamic pressure losses in the normal fluid yields the most consistent friction factors. The addition of the laminar and turbulent heat flow equations into a unifying prediction fits all regimes to within 10%.
Diffusive Wave Spectroscopy of a random close packing of spheres
Crassous, J.
2007-06-01
We are interested in the propagation of light in a random packing of dielectric spheres within the geometrical optics approximation. Numerical simulations are performed using a ray tracing algorithm. The effective refractive indexes and the transport mean free path are computed for different refractive indexes of spheres and intersticial media. The variations of the optical path length under small deformations of the spheres assembly are also computed and compared to the results of Diffusive Wave Spectroscopy experiments. Finally, we propose a measure of the transport mean free path and a Diffusive Wave Spectroscopy experiment on a packing of glass spheres. The results of those experiments agree with the predictions of this ray tracing approach.
Diffusive wave spectroscopy of a random close packing of spheres.
Crassous, J
2007-06-01
We are interested in the propagation of light in a random packing of dielectric spheres within the geometrical optics approximation. Numerical simulations are performed using a ray tracing algorithm. The effective refractive indexes and the transport mean free path are computed for different refractive indexes of spheres and intersticial media. The variations of the optical path length under small deformations of the spheres assembly are also computed and compared to the results of Diffusive Wave Spectroscopy experiments. Finally, we propose a measure of the transport mean free path and a Diffusive Wave Spectroscopy experiment on a packing of glass spheres. The results of those experiments agree with the predictions of this ray tracing approach.
Pushing the glass transition towards random close packing using self-propelled hard
Ni, R.; Cohen Stuart, M.A.; Dijkstra, M.
2013-01-01
Although the concept of random close packing with an almost universal packing fraction of approximately 0.64 for hard spheres was introduced more than half a century ago, there are still ongoing debates. The main difficulty in searching the densest packing is that states with packing fractions beyon
Best-fit bin-packing with random order
Kenyon, C. [CNRS, Lyon (France)
1996-12-31
Best-fit is the best known algorithm for on-line bin-packing, in the sense that no algorithm is known to behave better both in the worst case (when Best-fit has performance ratio 1.7) and in the average uniform case, with items drawn uniformly in the interval (then Best-fit has expected wasted space O(n{sup 1/2}(log n){sup 3/4})). In practical applications, Best-fit appears to perform within a few percent of optimal. In this paper, in the spirit of previous work in computational geometry, we study the expected performance ratio, taking the worst-case multiset of items L, and assuming that the elements of L are inserted in random order, with all permutations equally likely. We show a lower bound of 1.08 ... and an upper bound of 1.5 on the random order performance ratio of Best-fit. The upper bound contrasts with the result that in the worst case, any (deterministic or randomized) on-line bin-packing algorithm has performance ratio at least 1.54.
Random packing of regular polygons and star polygons on a flat two-dimensional surface.
Cieśla, Michał; Barbasz, Jakub
2014-08-01
Random packing of unoriented regular polygons and star polygons on a two-dimensional flat continuous surface is studied numerically using random sequential adsorption algorithm. Obtained results are analyzed to determine the saturated random packing ratio as well as its density autocorrelation function. Additionally, the kinetics of packing growth and available surface function are measured. In general, stars give lower packing ratios than polygons, but when the number of vertexes is large enough, both shapes approach disks and, therefore, properties of their packing reproduce already known results for disks.
He II heat transfer through random packed spheres
Vanderlaan, Mark
Superfluid helium (He II) contained in porous media is examined. In particular, heat transfer experiments were performed on He II contained in random packs of uniform size polyethylene spheres. Measured results include the steady state temperature and pressure drops across packs of spheres (35 micron, 49 micron, and 98 micron diameter) and the associated steady, step, and pulse heat inputs. Bath temperatures range from 1.6 K to 2.1 K to help grasp the superfluid effects. Laminar, turbulent, and transitional fluid flow regimes are examined. Turbulent results are fitted to an empirically derived turbulent He II heat flow in a channel equation with an added tortuosity (extra length traveled) term that accounts for the porous media. An average tortuosity of 1.33 +/- 0.07 was obtained, which is in good agreement with the values of 1.36 - 1.41 concluded from published work on classical fluid pressure drop across random packed spheres. Laminar permeability and shape factor results are compared to past studies of He II in porous media and in channel flows. The average critical heat flux, which describes the onset of turbulence, is predicted to be 0.19 W cm-2. The onset of turbulence is determined through a critical heat flux from which a critical Reynolds number is formulated, but does not describe He II turbulence in the normal fluid component. Other proposed He II "Reynolds numbers" are examined. The addition of the laminar and turbulent heat flow equations into a unifying prediction fits the transition regime data within 25 %. Transient temperatures compare favorably to a one-dimensional numerical solution that considers a variable Gorter-Mellink exponent and a piece-wise determination of the heat flux. Turbulent pressure drop results are fitted with empirically derived friction factors. The laminar permeability and equivalent channel shape factor derived from the pressure drop are compared the permeability and shape factor obtained from the temperature drop. Results
Effect of particle shape on the random packing density of amorphous solids
Kyrylyuk, A.V.; Philipse, A.P.
2011-01-01
The packing density of a particulate solid strongly depends on the shape of the particles that are jammed at random close packing (RCP). To investigate the effect of particle shape on the RCP density of an amorphous solid, we studied jammed packings of binary mixtures of a-thermal or granular sphero
Shape effects on the random-packing density of tetrahedral particles.
Zhao, Jian; Li, Shuixiang; Jin, Weiwei; Zhou, Xuan
2012-09-01
Regular tetrahedra have been demonstrated recently giving high packing density in random configurations. However, it is unknown whether the random-packing density of tetrahedral particles with other shapes can reach an even higher value. A numerical investigation on the random packing of regular and irregular tetrahedral particles is carried out. Shape effects of rounded corner, eccentricity, and height on the packing density of tetrahedral particles are studied. Results show that altering the shape of tetrahedral particles by rounding corners and edges, by altering the height of one vertex, or by lateral displacement of one vertex above its opposite face, all individually have the effect of reducing the random-packing density. In general, the random-packing densities of irregular tetrahedral particles are lower than that of regular tetrahedra. The ideal regular tetrahedron should be the shape which has the highest random-packing density in the family of tetrahedra, or even among convex bodies. An empirical formula is proposed to describe the rounded corner effect on the packing density, and well explains the density deviation of tetrahedral particles with different roundness ratios. The particles in the simulations are verified to be randomly packed by studying the pair correlation functions, which are consistent with previous results. The spherotetrahedral particle model with the relaxation algorithm is effectively applied in the simulations.
Existence of isostatic, maximally random jammed monodisperse hard-disk packings.
Atkinson, Steven; Stillinger, Frank H; Torquato, Salvatore
2014-12-30
We generate jammed packings of monodisperse circular hard-disks in two dimensions using the Torquato-Jiao sequential linear programming algorithm. The packings display a wide diversity of packing fractions, average coordination numbers, and order as measured by standard scalar order metrics. This geometric-structure approach enables us to show the existence of relatively large maximally random jammed (MRJ) packings with exactly isostatic jammed backbones and a packing fraction (including rattlers) of [Formula: see text]. By contrast, the concept of random close packing (RCP) that identifies the most probable packings as the most disordered misleadingly identifies highly ordered disk packings as RCP in 2D. Fundamental structural descriptors such as the pair correlation function, structure factor, and Voronoi statistics show a strong contrast between the MRJ state and the typical hyperstatic, polycrystalline packings with [Formula: see text] that are more commonly obtained using standard packing protocols. Establishing that the MRJ state for monodisperse hard disks is isostatic and qualitatively distinct from commonly observed polycrystalline packings contradicts conventional wisdom that such a disordered, isostatic packing does not exist due to a lack of geometrical frustration and sheds light on the nature of disorder. This prompts the question of whether an algorithm may be designed that is strongly biased toward generating the monodisperse disk MRJ state.
Khirevich, Siarhei; Höltzel, Alexandra; Daneyko, Anton; Seidel-Morgenstern, Andreas; Tallarek, Ulrich
2011-09-16
The mass transport properties of bulk random sphere packings depend primarily on the bed (external) porosity ε, but also on the packing microstructure. We investigate the influence of the packing microstructure on the diffusive tortuosity τ=D(m)/D(eff), which relates the bulk diffusion coefficient (D(m)) to the effective (asymptotic) diffusion coefficient in a porous medium (D(eff)), by numerical simulations of diffusion in a set of computer-generated, monodisperse, hard-sphere packings. Variation of packing generation algorithm and protocol yielded four Jodrey-Tory and two Monte Carlo packing types with systematically varied degrees of microstructural heterogeneity in the range between the random-close and the random-loose packing limit (ε=0.366-0.46). The distinctive tortuosity-porosity scaling of the packing types is influenced by the extent to which the structural environment of individual pores varies in a packing, and to quantify this influence we propose a measure based on Delaunay tessellation. We demonstrate that the ratio of the minimum to the maximum void face area of a Delaunay tetrahedron around a pore between four adjacent spheres, (A(min)/A(max))(D), is a measure for the structural heterogeneity in the direct environment of this pore, and that the standard deviation σ of the (A(min)/A(max))(D)-distribution considering all pores in a packing mimics the tortuosity-porosity scaling of the generated packing types. Thus, σ(A(min)/A(max))(D) provides a structure-transport correlation for diffusion in bulk, monodisperse, random sphere packings. Copyright © 2011 Elsevier B.V. All rights reserved.
Generation of Random Particle Packings for Discrete Element Models
Abe, S.; Weatherley, D.; Ayton, T.
2012-04-01
An important step in the setup process of Discrete Element Model (DEM) simulations is the generation of a suitable particle packing. There are quite a number of properties such a granular material specimen should ideally have, such as high coordination number, isotropy, the ability to fill arbitrary bounding volumes and the absence of locked-in stresses. An algorithm which is able to produce specimens fulfilling these requirements is the insertion based sphere packing algorithm originally proposed by Place and Mora, 2001 [2] and extended in this work. The algorithm works in two stages. First a number of "seed" spheres are inserted into the bounding volume. In the second stage the gaps between the "seed" spheres are filled by inserting new spheres in a way so they have D+1 (i.e. 3 in 2D, 4 in 3D) touching contacts with either other spheres or the boundaries of the enclosing volume. Here we present an implementation of the algorithm and a systematic statistical analysis of the generated sphere packings. The analysis of the particle radius distribution shows that they follow a power-law with an exponent ≈ D (i.e. ≈3 for a 3D packing and ≈2 for 2D). Although the algorithm intrinsically guarantees coordination numbers of at least 4 in 3D and 3 in 2D, the coordination numbers realized in the generated packings can be significantly higher, reaching beyond 50 if the range of particle radii is sufficiently large. Even for relatively small ranges of particle sizes (e.g. Rmin = 0.5Rmax) the maximum coordination number may exceed 10. The degree of isotropy of the generated sphere packing is also analysed in both 2D and 3D, by measuring the distribution of orientations of vectors joining the centres of adjacent particles. If the range of particle sizes is small, the packing algorithm yields moderate anisotropy approaching that expected for a face-centred cubic packing of equal-sized particles. However, once Rmin 2D and 3D. The analysis demonstrates that this space
A computational investigation on random packings of sphere-spherocylinder mixtures
无
2010-01-01
Random packings of binary mixtures of spheres and spherocylinders with the same volume and the same diameter were simulated by a sphere assembly model and relaxation algorithm. Simulation results show that, independently of the component volume fraction, the mixture packing density increases and then decreases with the growth of the aspect ratio of spherocylinders, and the packing density reaches its maximum at the aspect ratio of 0.35. With the same volume particles, results show that the dependence of the mixture packing density on the volume fraction of spherocylinders is approximately linear. With the same diameter particles, the relationship between the mixture packing density and component volume fraction is also roughly linear for short spherocylinders, but when the aspect ratio of spherocylinders is greater than 1.6, the curves turn convex which means the packing of the mixture can be denser than either the sphere or spherocylinder packing alone. To validate the sphere assembly model and relaxation algorithm, binary mixtures of spheres and random packings of spherocylinders were also simulated. Simulation results show the packing densities of sphere mixtures agree with previous prediction models and the results of spherocylinders correspond with the simulation results in literature.
DEM simulation of dendritic grain random packing: application to metal alloy solidification
Olmedilla, Antonio; Založnik, Miha; Combeau, Hervé
2017-06-01
The random packing of equiaxed dendritic grains in metal-alloy solidification is numerically simulated and validated via an experimental model. This phenomenon is characterized by a driving force which is induced by the solid-liquid density difference. Thereby, the solid dendritic grains, nucleated in the melt, sediment and pack with a relatively low inertia-to-dissipation ratio, which is the so-called Stokes number. The characteristics of the particle packed porous structure such as solid packing fraction affect the final solidified product. A multi-sphere clumping Discrete Element Method (DEM) approach is employed to predict the solid packing fraction as function of the grain geometry under the solidification conditions. Five different monodisperse noncohesive frictionless particle collections are numerically packed by means of a vertical acceleration: a) three dendritic morphologies; b) spheres and c) one ellipsoidal geometry. In order to validate our numerical results with solidification conditions, the sedimentation and packing of two monodisperse collections (spherical and dendritic) is experimentally carried out in a viscous quiescent medium. The hydrodynamic similarity is respected between the actual phenomenon and the experimental model, that is a low Stokes number, o(10-3). In this way, the experimental average solid packing fraction is employed to validate the numerical model. Eventually, the average packing fraction is found to highly depend on the equiaxed dendritic grain sphericity, with looser packings for lower sphericity.
Numerical Simulation of Random Close Packings in Particle Deformation from Spheres to Cubes
ZHAO Jian; LI Shui-Xiang
2008-01-01
Variation of packing density in particle deforming from spheres to cubes is studied. A new model is presented to describe particle deformation between different particle shapes. Deformation is simulated by relative motion of component spheres in the sphere assembly model of a particle. Random close packings of particles in deformation form spheres to cubes are simulated with an improved relaxation algorithm. Packings in both 2D and 3D cases are simulated. With the simulations, we find that the packing density increases while the particle sphericity decreases in the deformation. Spheres and cubes give the minimum (0.6404) and maximum (0.7755) of packing density in the deformation respectively. In each deforming step, packings starting from a random configuration and from the final packing of last deforming step are both simulated. The packing density in the latter case is larger than the former in two dimensions, but is smaller in three dimensions. The deformation model can be applied to other particle shapes as well.
Bending and elongation effects on the random packing of curved spherocylinders.
Meng, Lingyi; Li, Shuixiang; Lu, Peng; Li, Teng; Jin, Weiwei
2012-12-01
Studies on the macroscopic and microscopic packing properties of nonconvex particles are scarce. As a common concave form, the curved spherocylinder is used in the simulations, and its bending and elongation effects on the random packings are investigated numerically with sphere assembly models and a relaxation algorithm. The aspect ratio is demonstrated to be the main factor regarding the packing density. However, at certain aspect ratios of low densities around 0.3-0.4, the density of curved spherocylinders may increase by 15% more than that of the straight ones, indicating that bending is also a contributor to the packing density. The excluded volume of the curved spherocylinder decreases with the increase of the bending angle, indicating that the excluded volume is applicable in explaining the bending effect on the packing density variation of nonconvex particles. The packings are verified to be randomly distributed in orientation with no significant layering or in-plane order. The local arrangements are further analyzed from the radial distribution function and contact results. The results show that the random packings of nonconvex particles have significant differences and richer characteristics on both the macroscopic and microscopic properties compared with convex objects.
Effects of hydrodynamic interaction on random adhesive loose packings of micron-sized particles
Liu Wenwei
2017-01-01
Full Text Available Random loose packings of monodisperse spherical micron-sized particles under a uniform flow field are investigated via an adhesive discrete-element method with the two-way coupling between the particles and the fluid. Characterized by a dimensionless adhesion parameter, the packing fraction follows the similar law to that without fluid, but results in larger values due to the hydrodynamic compression. The total pressure drop through the packed bed shows a critical behaviour at the packing fraction of ϕ ≈ 0.22 in the present study. The normalized permeability of the packed bed for different parameters increases with the increase of porosities and is also in consistent with the Kozeny-Carman equation.
Effects of hydrodynamic interaction on random adhesive loose packings of micron-sized particles
Liu, Wenwei; Tao, Ran; Chen, Sheng; Zhang, Huang; Li, Shuiqing
2017-06-01
Random loose packings of monodisperse spherical micron-sized particles under a uniform flow field are investigated via an adhesive discrete-element method with the two-way coupling between the particles and the fluid. Characterized by a dimensionless adhesion parameter, the packing fraction follows the similar law to that without fluid, but results in larger values due to the hydrodynamic compression. The total pressure drop through the packed bed shows a critical behaviour at the packing fraction of ϕ ≈ 0.22 in the present study. The normalized permeability of the packed bed for different parameters increases with the increase of porosities and is also in consistent with the Kozeny-Carman equation.
Influence of particle size distribution on random close packing of spheres.
Desmond, Kenneth W; Weeks, Eric R
2014-08-01
The densest amorphous packing of rigid particles is known as random close packing. It has long been appreciated that higher densities are achieved by using collections of particles with a variety of sizes. For spheres, the variety of sizes is often quantified by the polydispersity of the particle size distribution: the standard deviation of the radius divided by the mean radius. Several prior studies quantified the increase of the packing density as a function of polydispersity. A particle size distribution is also characterized by its skewness, kurtosis, and higher moments, but the influence of these parameters has not been carefully quantified before. In this work, we numerically generate many sphere packings with different particle radii distributions, varying polydispersity and skewness independently of one another. We find that the packing density can increase significantly with increasing skewness and in some cases skewness can have a larger effect than polydispersity. However, the packing fraction is relatively insensitive to the higher moment value of the kurtosis. We present a simple empirical formula for the value of the random close packing density as a function of polydispersity and skewness.
Merocel versus Nasopore for nasal packing: a meta-analysis of randomized controlled trials.
Jianzhang Wang
Full Text Available OBJECTIVE: To compare the clinical outcomes, including efficacy and complications, of Merocel versus Nasopore as a nasal packing material after nasal surgery. METHODS: Relevant randomized controlled trials were identified from electronic databases (The Cochrane Library, PubMed, EMBASE, China National Knowledge Infrastructure and Chinese Biomedical Database. Conference proceedings and references from identified trials and review articles were also searched. Outcome measures were pain during nasal packing, pain and bleeding upon packing removal, pressure sensation, nasal blockage, formation of synechiae, mucosal healing, and patients' general satisfaction. RESULTS: Seven randomized controlled trials met criteria for analysis. Compared with Merocel, Nasopore significantly reduced patients' subjective symptoms including in situ pain (pain experienced while packing is in place, nasal pressure, pain and bleeding during packing removal, and increased patients' general satisfaction with nasal packing. There were no significant differences in nasal obstruction, adhesion and mucosal healing between the Merocel and Nasopore groups. CONCLUSIONS: Preliminary evidence suggests that Nasopore may be superior to Merocel as a nasal packing material with regard to in situ pain, pain and bleeding upon removal, pressure, and general satisfaction and does not differ from Merocel in terms of nasal obstruction, tissue adhesion, and long-term mucosal healing.
X-ray tomography study of the random packing structure of ellipsoids.
Xia, Chengjie; Zhu, Kuan; Cao, Yixin; Sun, Haohua; Kou, Binquan; Wang, Yujie
2014-02-21
We present an X-ray tomography study for the random packing of ellipsoids. The local structure displays short-range correlations. In addition to the contact number Z, we introduce ρshell, the average contact radius of curvature for contacting neighbors, as an additional parameter to characterize the local orientational geometry. In general, the local free volume w is affected by both Z and ρshell. We believe that the particle asphericity induces a polydispersity effect to influence the packing properties. A model is introduced which explicitly maps the ellipsoid packing onto a polydispersed sphere one, and it reproduces most of the experimental observations.
A granocentric model captures the statistical properties of monodisperse random packings
Newhall, Katherine A; Vanden-Eijnden, Eric; Brujic, Jasna
2012-01-01
We present a generalization of the granocentric model proposed in [Clusel et al., Nature, 2009, 460, 611615] that is capable of describing the local fluctuations inside not only polydisperse but also monodisperse packings of spheres. This minimal model does not take into account the relative particle positions, yet it captures positional disorder through local stochastic processes sampled by efficient Monte Carlo methods. The disorder is characterized by the distributions of local parameters, such as the number of neighbors and contacts, filled solid angle around a central particle and the cell volumes. The model predictions are in good agreement with our experimental data on monodisperse random close packings of PMMA particles. Moreover, the model can be used to predict the distributions of local fluctuations in any packing, as long as the average number of neighbors, contacts and the packing fraction are known. These distributions give a microscopic foundation to the statistical mechanics framework for jamm...
Random-close packing limits for monodisperse and polydisperse hard spheres.
Baranau, Vasili; Tallarek, Ulrich
2014-06-07
We investigate how the densities of inherent structures, which we refer to as the closest jammed configurations, are distributed for packings of 10(4) frictionless hard spheres. A computational algorithm is introduced to generate closest jammed configurations and determine corresponding densities. Closest jamming densities for monodisperse packings generated with high compression rates using Lubachevsky-Stillinger and force-biased algorithms are distributed in a narrow density range from φ = 0.634-0.636 to φ≈ 0.64; closest jamming densities for monodisperse packings generated with low compression rates converge to φ≈ 0.65 and grow rapidly when crystallization starts with very low compression rates. We interpret φ≈ 0.64 as the random-close packing (RCP) limit and φ≈ 0.65 as a lower bound of the glass close packing (GCP) limit, whereas φ = 0.634-0.636 is attributed to another characteristic (lowest typical, LT) density φLT. The three characteristic densities φLT, φRCP, and φGCP are determined for polydisperse packings with log-normal sphere radii distributions.
Characterisation of TRISO fuel particles
Lopez H, E. [IPN, Centro de Investigacion y de Estudios Avanzados, Unidad Saltillo, Carretera Saltillo-Monterrey Km 13.5, 25900 Ramos Arizpe, Coahuila (Mexico); Yang, D., E-mail: eddie.lopez@cinvestav.edu.mx [The Academy of Armoured Forces Engineering, Science and Technology on Remanufacturing Laboratory, 100072 Beijing (China)
2012-10-15
The TRISO (tri structural isotropic) coated fuel particle is a key component contributing to the inherent safety of the High Temperature Reactor. A uranium kernel is coated with three layers of pyrolytic carbon and one of silicon carbide. The purpose of these coatings is to work as a miniature fission product containment vessel capable of enclosing all important radio nuclei under normal and off-normal reactor operating conditions. Due to the importance of these coatings, is of great interest to establish characterisation techniques capable of providing a detailed description of their microstructure and physical properties. Here we describe the use of Raman spectroscopy and two modulator generalised ellipsometry to study the anisotropy and thermal conductivity of pyrolytic carbon coatings, as well as the stoichiometry of the silicon carbide coatings and fibres. (Author)
Klatt, Michael A.; Torquato, Salvatore
2016-08-01
In the first paper of this series, we introduced Voronoi correlation functions to characterize the structure of maximally random jammed (MRJ) sphere packings across length scales. In the present paper, we determine a variety of different correlation functions that arise in rigorous expressions for the effective physical properties of MRJ sphere packings and compare them to the corresponding statistical descriptors for overlapping spheres and equilibrium hard-sphere systems. Such structural descriptors arise in rigorous bounds and formulas for effective transport properties, diffusion and reactions constants, elastic moduli, and electromagnetic characteristics. First, we calculate the two-point, surface-void, and surface-surface correlation functions, for which we derive explicit analytical formulas for finite hard-sphere packings. We show analytically how the contact Dirac delta function contribution to the pair correlation function g2(r ) for MRJ packings translates into distinct functional behaviors of these two-point correlation functions that do not arise in the other two models examined here. Then we show how the spectral density distinguishes the MRJ packings from the other disordered systems in that the spectral density vanishes in the limit of infinite wavelengths; i.e., these packings are hyperuniform, which means that density fluctuations on large length scales are anomalously suppressed. Moreover, for all model systems, we study and compute exclusion probabilities and pore size distributions, as well as local density fluctuations. We conjecture that for general disordered hard-sphere packings, a central limit theorem holds for the number of points within an spherical observation window. Our analysis links problems of interest in material science, chemistry, physics, and mathematics. In the third paper of this series, we will evaluate bounds and estimates of a host of different physical properties of the MRJ sphere packings that are based on the
Advances in random matrix theory, zeta functions, and sphere packing.
Hales, T C; Sarnak, P; Pugh, M C
2000-11-21
Over four hundred years ago, Sir Walter Raleigh asked his mathematical assistant to find formulas for the number of cannonballs in regularly stacked piles. These investigations aroused the curiosity of the astronomer Johannes Kepler and led to a problem that has gone centuries without a solution: why is the familiar cannonball stack the most efficient arrangement possible? Here we discuss the solution that Hales found in 1998. Almost every part of the 282-page proof relies on long computer verifications. Random matrix theory was developed by physicists to describe the spectra of complex nuclei. In particular, the statistical fluctuations of the eigenvalues ("the energy levels") follow certain universal laws based on symmetry types. We describe these and then discuss the remarkable appearance of these laws for zeros of the Riemann zeta function (which is the generating function for prime numbers and is the last special function from the last century that is not understood today.) Explaining this phenomenon is a central problem. These topics are distinct, so we present them separately with their own introductory remarks.
Structure and rigidity in maximally random jammed packings of hard particles
Atkinson, Steven Donald
Packings of hard particles have served as a powerful, yet simple model for a wide variety of physical systems. One particularly interesting subset of these packings are so-called maximally random jammed (MRJ) packings, which constitute the most disordered packings that exist subject to the constraint of jamming (mechanical stability). In this dissertation, we first investigate the consequences of recently-discovered sequential linear programming (SLP) techniques to present previously-unknown possibilities for MRJ packings of two- and three-dimensional hard disks and spheres, respectively. We then turn our focus away from the limit of jamming and identify some structural signatures accompanying various compression processes towards jammed states that are indicative of an incipient rigid structure. In Chapter 2, we utilize the Torquato-Jiao SLP algorithm to construct MRJ packings of equal-sized spheres in three dimensions that possess substantial qualitative differences from previous putative MRJ states. We turn towards two dimensions in Chapter 3 and establish the existence of highly disordered, jammed packings of equal-sized disks that were previously thought not to exist. We discuss the implications that these findings have for our understanding of disorder in packing problems. In Chapter 4, we utilize a novel SLP algorithm we call the "pop test" to scrutinize the conjectured link between jamming and hyperuniformity. We uncover deficiencies in standard protocols' abilities to construct truly-jammed states accompanied by a correlated deficiency in exact hyperuniform behavior, suggesting that precise jamming is a particularly subtle matter in probing this connection. In Chapter 5, we consider the direct correlation function as a means of identifying various static signatures of jamming as we compress packings towards both ordered and disordered jammed states with particular attention paid to the growing suppression of long-ranged density fluctuations
Generating Functionals of Random Packing Point Processes: From Hard-Core to Carrier Sensing
Viet, Nguyen Tien
2012-01-01
In this paper we study the generating functionals of several models of random packing processes: the classical Mat\\'ern hard-core model; its extensions, the $k$-Mat\\'ern models and the $\\infty$-Mat\\'ern model, which is an example of random sequential packing process. The main new results are: 1) a sufficient condition for the $\\infty$-Mat\\'ern model to be well-defined (unlike the other two, the $\\infty$-Mat\\'ern model may not be well-defined on unbounded spaces); 2) the generating functional of the resulting point process which is given for each of the three models as the solution of a differential equation; 3) series representations and bounds on the generating functional of the packing models; 4) moment measures and other useful properties of the considered packing models which are derived from their generating functionals. These results are applied to various stochastic geometry problems and in particular to the modeling and the analysis of a wireless Carrier Sensing Multiple Access network.
The Challenges Associated with High Burnup and High Temperature for UO2 TRISO-Coated Particle Fuel
David Petti; John Maki
2005-02-01
The fuel service conditions for the DOE Next Generation Nuclear Plant (NGNP) will be challenging. All major fuel related design parameters (burnup, temperature, fast neutron fluence, power density, particle packing fraction) exceed the values that were qualified in the successful German UO2 TRISO-coated particle fuel development program in the 1980s. While TRISO-coated particle fuel has been irradiated at NGNP relevant levels for two or three of the design parameters, no data exist for TRISO-coated particle fuel for all five parameters simultaneously. Of particular concern are the high burnup and high temperatures expected in the NGNP. In this paper, where possible, we evaluate the challenges associated with high burnup and high temperature quantitatively by examining the performance of the fuel in terms of different known failure mechanisms. Potential design solutions to ameliorate the negative effects of high burnup and high temperature are also discussed.
Modeling Deep Burn TRISO particle nuclear fuel
Besmann, T.M., E-mail: besmanntm@ornl.gov [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Stoller, R.E., E-mail: stollerre@ornl.gov [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Samolyuk, G., E-mail: samolyukgd@ornl.gov [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Schuck, P.C., E-mail: schuckpc@ornl.gov [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Golubov, S.I., E-mail: golubovsi@ornl.gov [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Rudin, S.P., E-mail: srudin@lanl.gov [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Wills, J.M., E-mail: jxw@lanl.gov [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Coe, J.D., E-mail: jcoe@lanl.gov [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Wirth, B.D., E-mail: bdwirth@utk.edu [University of Tennessee, Knoxville, TN 37996-0750 (United States); Kim, S., E-mail: sungtae@cae.wisc.edu [University of Wisconsin, 1509 University Ave., Madison, WI 53706 (United States); Morgan, D.D., E-mail: ddmorgan@engr.wisc.edu [University of Wisconsin, 1509 University Ave., Madison, WI 53706 (United States); Szlufarska, I., E-mail: izabela@engr.wisc.edu [University of Wisconsin, 1509 University Ave., Madison, WI 53706 (United States)
2012-11-15
Under the DOE Deep Burn program TRISO fuel is being investigated as a fuel form for consuming plutonium and minor actinides, and for greater efficiency in uranium utilization. The result will thus be to drive TRISO particulate fuel to very high burn-ups. In the current effort the various phenomena in the TRISO particle are being modeled using a variety of techniques. The chemical behavior is being treated utilizing thermochemical analysis to identify phase formation/transformation and chemical activities in the particle, including kernel migration. Density functional theory is being used to understand fission product diffusion within the plutonia oxide kernel, the fission product's attack on the SiC coating layer, as well as fission product diffusion through an alternative coating layer, ZrC. Finally, a multiscale approach is being used to understand thermal transport, including the effect of radiation damage induced defects, in a model SiC material.
Fully packed loops on random surfaces and the 1/N expansion of tensor models
Bonzom, Valentin
2013-01-01
Starting with the observation that some fully packed loop models on random surfaces can be mapped to random edge-colored graphs, we show that the expansion in the number of loops is organized like the 1/N expansion of rank-three tensor models. In particular, configurations which maximize the number of loops are precisely the melonic graphs of tensor models and a scaling limit which projects onto the melonic sector is found. This also shows that some three-dimensional topologies can be obtained from discrete surfaces decorated with loops. We generalize this approach to higher-rank tensor models, for random tensors of size $N^{d-1} \\times \\tau N^{\\beta}$ with beta between 0 and 1. They generate loops with fugacity $\\tau N^\\beta$ on triangulations in dimension d-1 and we show that the 1/N expansion is beta-dependent.
Zhao, Jian; Li, Shui-Xiang
2008-11-01
Variation of packing density in particle deforming from spheres to cubes is studied. A new model is presented to describe particle deformation between different particle shapes. Deformation is simulated by relative motion of component spheres in the sphere assembly model of a particle. Random close packings of particles in deformation form spheres to cubes are simulated with an improved relaxation algorithm. Packings in both 2D and 3D cases are simulated. With the simulations, we find that the packing density increases while the particle sphericity decreases in the deformation. Spheres and cubes give the minimum (0.6404) and maximum (0.7755) of packing density in the deformation respectively. In each deforming step, packings starting from a random configuration and from the final packing of last deforming step are both simulated. The packing density in the latter case is larger than the former in two dimensions, but is smaller in three dimensions. The deformation model can be applied to other particle shapes as well.
张秀莉; 张泽廷; 张卫东; 郝欣
2004-01-01
Based on the membrane-based absorption experiment of CO2 into water, shell-side flow distribution and mass transfer in a randomly packed hollow fiber module have been analyzed using subchannel model and unsteady penetration mass transfer theory. The cross section of module is subdivided into many small cells which contains only one hollow-fiber. The cross sectional area distribution of these cells is presented by the normal probability density distribution function. It has been obtained that there was a most serious non-ideal flow in shell side at moderate mean packing density, and the large amount of fluid flowed and transferred mass through a small number of large voids. Thus mass transfer process is dominated by the fluid through the larger void area. The mass transfer process in each cell is described by the unsteady penetration theory. The overall mass transfer coefficient equals to the probability addition of the mean mass transfer coefficient in each cell. The comparisons of the values calculated by the model established with the empirical correlations and the experimental data of this work have been done.The predicted overall mass transfer coefficients are in good agreement with experimental data.
Knight Chris
2017-01-01
Full Text Available Polydisperse granular materials are ubiquitous in nature and industry. Despite this, knowledge of the momentum coupling between the fluid and solid phases in dense saturated grain packings comes almost exclusively from empirical correlations [2–4, 8] with monosized media. The Immersed Boundary Method (IBM is a Computational Fluid Dynamics (CFD modelling technique capable of resolving pore scale fluid flow and fluid-particle interaction forces in polydisperse media at the grain scale. Validation of the IBM in the low Reynolds number, high concentration limit was performed by comparing simulations of flow through ordered arrays of spheres with the boundary integral results of Zick and Homsy [10]. Random grain packings were studied with linearly graded particle size distributions with a range of coefficient of uniformity values (Cu = 1.01, 1.50, and 2.00 at a range of concentrations (ϕ ∈ [0.396; 0.681] in order to investigate the influence of polydispersity on drag and permeability. The sensitivity of the IBM results to the choice of radius retraction parameter [1] was investigated and a comparison was made between the predicted forces and the widely used Ergun correlation [3].
Modeling Deep Burn TRISO Particle Nuclear Fuel
Besmann, Theodore M [ORNL; Stoller, Roger E [ORNL; Samolyuk, German D [ORNL; Schuck, Paul C [ORNL; Rudin, Sven [Los Alamos National Laboratory (LANL); Wills, John [Los Alamos National Laboratory (LANL); Wirth, Brian D. [University of California, Berkeley; Kim, Sungtae [University of Wisconsin, Madison; Morgan, Dane [University of Wisconsin, Madison; Szlufarska, Izabela [University of Wisconsin, Madison
2012-01-01
Under the DOE Deep Burn program TRISO fuel is being investigated as a fuel form for consuming plutonium and minor actinides, and for greater efficiency in uranium utilization. The result will thus be to drive TRISO particulate fuel to very high burn-ups. In the current effort the various phenomena in the TRISO particle are being modeled using a variety of techniques. The chemical behavior is being treated utilizing thermochemical analysis to identify phase formation/transformation and chemical activities in the particle, including kernel migration. First principles calculations are being used to investigate the critical issue of fission product palladium attack on the SiC coating layer. Density functional theory is being used to understand fission product diffusion within the plutonia oxide kernel. Kinetic Monte Carlo techniques are shedding light on transport of fission products, most notably silver, through the carbon and SiC coating layers. The diffusion of fission products through an alternative coating layer, ZrC, is being assessed via DFT methods. Finally, a multiscale approach is being used to understand thermal transport, including the effect of radiation damage induced defects, in a model SiC material.
The Statistical Mechanics of Random Set Packing and a Generalization of the Karp-Sipser Algorithm
C. Lucibello
2014-01-01
Full Text Available We analyse the asymptotic behaviour of random instances of the maximum set packing (MSP optimization problem, also known as maximum matching or maximum strong independent set on hypergraphs. We give an analytic prediction of the MSPs size using the 1RSB cavity method from statistical mechanics of disordered systems. We also propose a heuristic algorithm, a generalization of the celebrated Karp-Sipser one, which allows us to rigorously prove that the replica symmetric cavity method prediction is exact for certain problem ensembles and breaks down when a core survives the leaf removal process. The e-phenomena threshold discovered by Karp and Sipser, marking the onset of core emergence and of replica symmetry breaking, is elegantly generalized to Cs=e/(d-1 for one of the ensembles considered, where d is the size of the sets.
Cloutier, Francis; Khoury, Naim; Ghostine, Jimmy; Farzin, Behzad; Kotowski, Marc; Weill, Alain; Roy, Daniel; Raymond, Jean
2017-02-01
Background and purpose Endovascular coil embolization of cerebral aneurysms is associated with suboptimal angiographic results in up to 20-30% of patients. Coil packing density has been used as an index of the success of the initial procedure. The trial sought to study the effects of using 15-caliber coils, as compared with 10-caliber coils, on packing density. Methods Does Embolization with Larger coils lead to better Treatment of Aneurysms (DELTA) is an investigator-initiated multicenter prospective, randomized, controlled clinical trial. Patients are randomized 1:1 to embolization with either 10-caliber coils exclusively (control group) or the highest safely achievable proportion of 15-caliber coils and 10-caliber coils if necessary (intervention group) in 4-12-mm aneurysms. The endpoint of the pilot phase of the trial was the capacity to increase packing density of the initial procedure, calculated using a mathematical transformation of the dimensions entered into the case report forms. Secondary outcomes included the total number of coils used per aneurysm, total fluoroscopy time, initial angiographic outcomes and any adverse or undesirable event. Results Seventy patients were recruited between June 2014 and November 2015. Compared with 10-caliber coils, the 15-caliber coil group had a higher median packing density (44% vs 24%, p = 0.017). Results of other outcome measures were similar for the two groups. Conclusion Coiling of small and medium aneurysms randomized to 15-caliber coils achieved higher packing densities compared with coiling using 10-caliber coils.
Operating Room Time Savings with the Use of Splint Packs: A Randomized Controlled Trial
Tyler Gonzalez
2016-01-01
Full Text Available Background: The most expensive variable in the operating room (OR is time. Lean Process Management is being used in the medical field to improve efficiency in the OR. Streamlining individual processes within the OR is crucial to a comprehensive time saving and cost-cutting health care strategy. At our institution, one hour of OR time costs approximately $500, exclusive of supply and personnel costs. Commercially prepared splint packs (SP contain all components necessary for plaster-of-Paris short-leg splint application and have the potential to decrease splint application time and overall costs by making it a more lean process. We conducted a randomized controlled trial comparing OR time savings between SP use and bulk supply (BS splint application. Methods: Fifty consecutive adult operative patients on whom post-operative short-leg splint immobilization was indicated were randomized to either a control group using BS or an experimental group using SP. One orthopaedic surgeon (EMB prepared and applied all of the splints in a standardized fashion. Retrieval time, preparation time, splint application time, and total splinting time for both groups were measured and statistically analyzed. Results: The retrieval time, preparation time and total splinting time were significantly less (p
From random sphere packings to regular pillar arrays: analysis of transverse dispersion.
Daneyko, Anton; Hlushkou, Dzmitry; Khirevich, Siarhei; Tallarek, Ulrich
2012-09-28
We study the impact of microscopic order on transverse dispersion in the interstitial void space of bulk (unconfined) chromatographic beds by numerical simulations of incompressible fluid flow and mass transport of a passive tracer. Our study includes polydisperse random sphere packings (computer-generated with particle size distributions of modern core-shell and sub-2 μm particles), the macropore space morphology of a physically reconstructed silica monolith, and computer-generated regular pillar arrays. These bed morphologies are analyzed by their velocity probability density distributions, transient dispersion behavior, and the dependence of asymptotic transverse dispersion coefficients on the mobile phase velocity. In our work, the spherical particles, the monolith skeleton, and the cylindrical pillars are all treated as impermeable solid phase (nonporous) and the tracer is unretained, to focus on the impact of microscopic order on flow and (particularly transverse) hydrodynamic dispersion in the interstitial void space. The microscopic order of the pillar arrays causes their velocity probability density distributions to start and end abruptly, their transient dispersion coefficients to oscillate, and the asymptotic transverse dispersion coefficients to plateau out of initial power law behavior. The microscopically disordered beds, by contrast, follow power law behavior over the whole investigated velocity range, for which we present refined equations (i.e., Eq.(13) and the data in Table 2 for the polydisperse sphere packings; Eq.(17) for the silica monolith). The bulk bed morphologies and their intrinsic differences addressed in this work determine how efficient a bed can relax the transverse concentration gradients caused by wall effects, which exist in all confined separation media used in chromatographic practice. Whereas the effect of diffusion on transverse dispersion decreases and ultimately disappears at increasing velocity with the microscopically
Sieres, Jaime; Fernandez-Seara, Jose [Area de Maquinas y Motores Termicos, E.T.S. de Ingenieros Industriales, University of Vigo, Campus Lagoas-Marcosende No 9, 36310 Vigo (Spain)
2007-07-15
In ammonia water absorption refrigeration systems (AARS) a high efficiency purification process to remove the water content from the generated vapour is of great importance. One type of equipment to carry out this process is a packed column. Any type of detailed analysis of a packed column requires the calculation of mass transfer coefficients. Therefore, the correlations to obtain these coefficients become an essential tool for an accurate analysis and design of these devices. An experimental facility has been designed and built to analyze the ammonia-water rectification process in packed columns. In this paper a brief description of the experimental facility is given and the variables required to analyze the column performance are explained. An analytical method to determine mass transfer coefficients from the experimental data is developed. Results of mass transfer coefficients for 15 mm glass Raschig rings, (1)/(2){sup ''} ceramic Berl saddles and (1)/(2)'' ceramic Novalox saddles random packings are reported. The experimental results are compared with different mass transfer correlations proposed in the literature. In the paper corrected correlations are proposed for the packings considered. These correlations could be used to analyze and design a packed column for AARS. (author)
Sergi, Danilo; Scocchi, Giulio; Ortona, Alberto
2011-01-01
Packing is a complex phenomenon of prominence in many natural and industrial processes (liquid crystals, granular materials, infiltration, melting, flow, sintering, segregation, sedimentation, compaction, etc.). A variety of computational methods is available in particular for spheroid particles. Our aim is to develop strategies devised to fill free space in 3D by random hard blocks of varying size and orientation in order to reproduce the observed arrangement of graphitic assemblies into polymeric matrices. Random packing is improved by applying an external pressure implemented with a drifted diffusive motion of the fillers. Attention is also paid to the emergence of structural and orientational order. Interestingly, mixtures of fillers of irregular shapes can be dealt with efficiently using the proposed algorithm.
Zieliński, Tomasz G.
2014-07-01
Acoustics of stiff porous media with open porosity can be very effectively modelled using the so-called Johnson-Champoux-Allard-Pride-Lafarge model for sound absorbing porous media with rigid frame. It is an advanced semi-phenomenological model with eight parameters, namely, the total porosity, the viscous permeability and its thermal analogue, the tortuosity, two characteristic lengths (one specific for viscous forces, the other for thermal effects), and finally, viscous and thermal tortuosities at the frequency limit of 0 Hz. Most of these parameters can be measured directly, however, to this end specific equipment is required different for various parameters. Moreover, some parameters are difficult to determine. This is one of several reasons for the so-called multiscale approach, where the parameters are computed from specific finite-element analyses based on some realistic geometric representations of the actual microstructure of porous material. Such approach is presented and validated for layers made up of loosely packed small identical rigid spheres. The sound absorption of such layers was measured experimentally in the impedance tube using the so-called two-microphone transfer function method. The layers are characterised by open porosity and semi-regular microstructure: the identical spheres are loosely packed by random pouring and mixing under the gravity force inside the impedance tubes of various size. Therefore, the regular sphere packings were used to generate Representative Volume Elements suitable for calculations at the micro-scale level. These packings involve only one, two, or four spheres so that the three-dimensional finite-element calculations specific for viscous, thermal, and tortuous effects are feasible. In the proposed geometric packings, the spheres were slightly shifted in order to achieve the correct value of total porosity which was precisely estimated for the layers tested experimentally. Finally, in this paper some results based on
Bonfim Amaro Júnior
2017-01-01
Full Text Available The irregular strip packing problem (ISPP is a class of cutting and packing problem (C&P in which a set of items with arbitrary formats must be placed in a container with a variable length. The aim of this work is to minimize the area needed to accommodate the given demand. ISPP is present in various types of industries from manufacturers to exporters (e.g., shipbuilding, clothes, and glass. In this paper, we propose a parallel Biased Random-Key Genetic Algorithm (µ-BRKGA with multiple populations for the ISPP by applying a collision-free region (CFR concept as the positioning method, in order to obtain an efficient and fast layout solution. The layout problem for the proposed algorithm is represented by the placement order into the container and the corresponding orientation. In order to evaluate the proposed (µ-BRKGA algorithm, computational tests using benchmark problems were applied, analyzed, and compared with different approaches.
A RELATION FOR THE VOID FRACTION OF RANDOMLY PACKED PARTICLE BEDS
HOFFMANN, AC; FINKERS, HJ
1995-01-01
The void fractions of loosely packed and tapped beds of particles of continuous size distributions are correlated by means of a proposed new semi-empirical relation. In this relation four parameters describing the following particle properties are included: (i) mean particle size, (ii) spread of the
Methodological analysis of gamma tomography system for large random packed columns
Vasquez, Pablo A.S.; De Mesquita, Carlos H. [Instituto de Pesquisas Energeticas e Nucleares-IPEN/CNEN-SP, Prof. Lineu Prestes, 2242-Cidade Universitaria, 05508-900, Sao Paulo (Brazil); LeRoux, Galo A.C. [Departamento de Engenharia Quimica, Escola Politecnica da Universidade de Sao Paulo, Prof. Luciano Gualberto, Trav. 3, 380-Cidade Universitaria, 05508-900, Sao Paulo (Brazil); Hamada, Margarida M. [Instituto de Pesquisas Energeticas e Nucleares-IPEN/CNEN-SP, Prof. Lineu Prestes, 2242-Cidade Universitaria, 05508-900, Sao Paulo (Brazil)], E-mail: mmhamada@ipen.br
2010-04-15
Gamma ray tomography experiments have been carried out to detect spatial patterns in the porosity in a 0.27 m diameter column packed with steel Rashig rings of different sizes: 12.6, 37.9, and 76 mm. using a first generation CT system. A fast Fourier transform tomographic reconstruction algorithm has been used to calculate the spatial variation over the column cross section. Cross-sectional gas porosity and solid holdup distribution were determinate. The values of cross-sectional average gas porosity were {epsilon}=0.849, 0.938 and 0.966 for the 12.6, 37.9, and 76 mm rings, respectively. Radial holdup variation within the packed bed has been determined. The variation of the circumferentially averaged gas holdup in the radial direction indicates that the porosity in the column wall region is a somewhat higher than that in the bulk region, due to the effect of the column wall.
Random three-dimensional jammed packings of elastic shells acting as force sensors.
Jose, Jissy; van Blaaderen, Alfons; Imhof, Arnout
2016-06-01
In a jammed solid of granular particles, the applied stress is in-homogeneously distributed within the packing. A full experimental characterization requires measurement of all the interparticle forces, but so far such measurements are limited to a few systems in two and even fewer in three dimensions. Particles with the topology of (elastic) shells are good local force sensors as relatively large deformations of the shells result from relatively small forces. We recently introduced such fluorescent shells as a model granular system in which force distributions can be determined in three dimensions using confocal microscopy and quantitative image analysis. An interesting aspect about these shells that differentiates them from other soft deformable particles is their buckling behavior at higher compression. This leads to deformations that do not conserve the inner volume of the particle. Here we use this system to accurately measure the contact forces in a three-dimensional packing of shells subjected to a static anisotropic compression and to shear. At small deformations forces are linear, however, for a buckled contact, the restoring force is related to the amount of deformation by a square root law, as follows from the theory of elasticity of shells. Near the unjamming-jamming transition (point J), we found the probability distribution of the interparticle forces P(f) to decay nearly exponentially at large forces, with little evidence of long-range force chains in the packings. As the packing density is increased, the tail of the distribution was found to crossover to a Gaussian, in line with other experimental and simulation studies. Under a small shear strain, up to 0.216, applied at an extremely low shear rate, we observed a shear-induced anisotropy in both the pair correlation function and contact force network; however, no appreciable change was seen in the number of contacts per particle.
Random three-dimensional jammed packings of elastic shells acting as force sensors
Jose, Jissy; van Blaaderen, Alfons; Imhof, Arnout
2016-06-01
In a jammed solid of granular particles, the applied stress is in-homogeneously distributed within the packing. A full experimental characterization requires measurement of all the interparticle forces, but so far such measurements are limited to a few systems in two and even fewer in three dimensions. Particles with the topology of (elastic) shells are good local force sensors as relatively large deformations of the shells result from relatively small forces. We recently introduced such fluorescent shells as a model granular system in which force distributions can be determined in three dimensions using confocal microscopy and quantitative image analysis. An interesting aspect about these shells that differentiates them from other soft deformable particles is their buckling behavior at higher compression. This leads to deformations that do not conserve the inner volume of the particle. Here we use this system to accurately measure the contact forces in a three-dimensional packing of shells subjected to a static anisotropic compression and to shear. At small deformations forces are linear, however, for a buckled contact, the restoring force is related to the amount of deformation by a square root law, as follows from the theory of elasticity of shells. Near the unjamming-jamming transition (point J ), we found the probability distribution of the interparticle forces P (f ) to decay nearly exponentially at large forces, with little evidence of long-range force chains in the packings. As the packing density is increased, the tail of the distribution was found to crossover to a Gaussian, in line with other experimental and simulation studies. Under a small shear strain, up to 0.216, applied at an extremely low shear rate, we observed a shear-induced anisotropy in both the pair correlation function and contact force network; however, no appreciable change was seen in the number of contacts per particle.
Deposition and Characterization of TRISO Coating Layers
Kim, D. K.; Choi, D. J.; Lee, H. K.; Kim, J. K.; Kim, J. H.; Chun, J. H. [KAIST, Daejeon (Korea, Republic of)
2007-03-15
Zirconium carbide has been chosen and studied as an advanced material of silicon carbide. In order to collect data on the basic properties and characteristics of Zirconium carbide, studies have been conducted using various methods. As a result of chemically vapor deposed subliming zirconium tetrachloride(ZrCl4) and using methane(CH4) as a source in hydrogen atmosphere, graphite film is deposited.. Zirconium carbide was deposited on the sample where silicon carbide was deposited on a graphite substrate using Zirconium sponge as a Zirconium source. In terms of physical characteristics, the deposited Zirconium carbide showed higher strength, but slightly lower elastic modulus than silicon carbide. In order to evaluate the mechanical properties of a coating layer in pre-irradiation step, internal pressure induced method and direct strength measurement method is carried out. In the internal pressure induced method, in order to produce the requirement pressure, pressure media is used. In the direct strength measurement method, the indentation experiment that indent on a hemisphere shell with plate indenter is conducted. For this method, the finite element analysis is used and the analysis is verified by indentation experiments. To measure the strength of TRISO particle SiC coating, SiC hemisphere shell is performed through grinding and heat treatment. Through the finite element analysis, strength evaluation equation is suggested. Using suggested equation, Strength evaluation is performed and the strength value shows 1025MPa as a result of statistical analysis.
Biased random walks, lyapunov functions, and stochastic analysis of best fit bin packing
Kenyon, C. [CNRS, Lyon (France); Rabani, Y. [Technion, Haifa (Israel); Sinclair, A. [Univ. of California, Berkeley, CA (United States)
1996-12-31
We study the average case performance of the Best Fit algorithm for on-line bin packing under the distribution U(j,k), in which the item sizes are uniformly distributed in the discrete range (1/k, 2/k,..., j/k). Our main result is that, in the case j = k - 2, the expected waste for an infinite stream of items remains bounded. This settles an open problem posed recently by Coffman et al. It is also the first result which involves a detailed analysis of the infinite multi-dimensional Markov chain underlying the algorithm.
González-Teresa, R.
2010-06-01
Full Text Available In this work, and in order to bring together the atomistic and colloidal viewpoints, we will present a Monte Carlo computational scheme which reproduces the colloidal packing of nano-spherical crystalline tobermorite-like particles. Different Low Density (LD CS- H and High Density (HD C-S-H structures will be developed just by varying the computational packing parameters. Finally, the structures resulting from our computational experiments will be analyzed in terms of their densities, surface areas and their mechanical properties.
En este trabajo y con el objetivo de conjugar el punto de vista atomístico y coloidal, presentamos un método computacional Monte Carlo que reproduce el empaquetamiento coloidal de nano-partículas esféricas cristalinas de tipo Tobermorita. Variando los parámetros computacionales de empaquetamiento diferentes estructuras tipo Low Density (LD C-S-H y High Density (HD C-S-H han sido creadas. Posteriormente, las estructuras resultantes de nuestros experimentos computacionales han sido analizadas en términos de sus densidades, áreas específicas y propiedades mecánicas.
Studies on a New Random Packing-Plum Flower Mini Ring
费维扬; 孙兰义; 等
2002-01-01
The hydrodynamics and mass transfer of Plum Flower Mini Ring(PFMR),Pall Ring and Intalox Saddle were studied in a 600mm diameter column with air-oxygen-water system over a wide range of liquid loasds.It was shown from the experiments that PFMR had much lower resistance,larger throughput and higher mass transfer efficiency than Pall Ring and Intalox Saddle.It was clear from the comparison that existing equations could not predict the performance of packings very well at high liquied loads.Therefore,new semi-empirical equations of pressure drop,flooding gas velocity and height of transfer unit(HTU)were proposed based on the experimental data.
van Rooyen, I. J.; Lillo, T. M.; Wen, H. M.; Hill, C. M.; Holesinger, T. G.; Wu, Y. Q.; Aguiara, J. A.
2016-11-01
precipitates were randomly distributed along the perimeter of the IPyC-SiC interlayer but only weakly associated with kernel protrusion and buffer fractures. There has been no evidence that the general release of silver is related to cracks or significant degradation of the microstructure. The results presented in this paper provide new insights to Ag transport mechanism(s) in intact SiC layer of TRISO coated particles.
Aerobic desulfurization of biogas by acidic biotrickling filtration in a randomly packed reactor
Montebello, Andrea M.; Mora, Mabel; López, Luis R.; Bezerra, Tercia [Department of Chemical Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona (Spain); Gamisans, Xavier [Department of Mining Engineering and Natural Resources, Universitat Politècnica de Catalunya, Bases de Manresa 61-73, 08240 Manresa (Spain); Lafuente, Javier [Department of Chemical Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona (Spain); Baeza, Mireia [Department of Chemistry, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona (Spain); Gabriel, David, E-mail: david.gabriel@uab.cat [Department of Chemical Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona (Spain)
2014-09-15
Highlights: • Desulfurization of high loads of H{sub 2}S is feasible by acidic biotrickling filtration. • Robustness of the process is demonstrated in the long-term (550 d). • Biosulfur to sulfate oxidation under H{sub 2}S starvation was successfully performed. • Lower sulfate production found at acidic pH compared to that at neutral pH. • Plastic material is recommended for long-term acidic biotrickling filtration. - Abstract: Biotrickling filters for biogas desulfurization still must prove their stability and robustness in the long run under extreme conditions. Long-term desulfurization of high loads of H{sub 2}S under acidic pH was studied in a lab-scale aerobic biotrickling filter packed with metallic Pall rings. Reference operating conditions at steady-state corresponded to an empty bed residence time (EBRT) of 130 s, H{sub 2}S loading rate of 52 g S–H{sub 2}S m{sup −3} h{sup −1} and pH 2.50–2.75. The EBRT reduction showed that the critical EBRT was 75 s and the maximum EC 100 g S–H{sub 2}S m{sup −3} h{sup −1}. Stepwise increases of the inlet H{sub 2}S concentration up to 10,000 ppm{sub v} lead to a maximum EC of 220 g S–H{sub 2}S m{sup −3} h{sup −1}. The H{sub 2}S removal profile along the filter bed indicated that the first third of the filter bed was responsible for 70–80% of the total H{sub 2}S removal. The oxidation rate of solid sulfur accumulated inside the bioreactor during periodical H{sub 2}S starvation episodes was verified under acidic operating conditions. The performance under acidic pH was comparable to that under neutral pH in terms of H{sub 2}S removal capacity. However, bioleaching of the metallic packing used as support and chemical precipitation of sulfide/sulfur salts occurred.
Thermal Analysis of KAERI TRISO Fuel Irradiation at HANARO
Cho, Moon-Sung; Kim, B. G.; Yang, S. W. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2015-10-15
The TRISO(Tri-structural Isotropic)-coated fuel particle for a VHTR has a diameter of around 1 mm, and is composed of a nuclear fuel kernel and four different outer coating layers. These coating layers consist of a buffer PyC (pyrolytic carbon) layer, an inner PyC layer, a SiC layer, and an outer PyC layer. The fuel kernel is a source of a heat generation by the nuclear fission of fissile uranium. The role of each of the four coating layers is different in view of retaining the generated fission products and other interactions during in-reactor service. KAERI has been developing a TRISO-coated particle fuel technology as a part of the Korean VHTR (Very High Temperature modular gas cooled Reactor) project, which started in 2004, and completed its first irradiation test of TRISO fuels in its research reactor, HANARO for an evaluation and prediction of the irradiation behavior of the fuel. The test was started in August 4, 2013 and finished in March 31, 2014 completing its 5 cycle irradiation of 132.2 EFPD. In this paper, thermal performance of TRISO fuels was evaluated for its five cycle irradiation at HANARO which had been carried out in the absence of the fuel temperature monitoring. A COMSOL based FE (finite element) model was utilized in this analysis. Thermal performance of TRISO fuels was evaluated for its five cycle irradiation at HANARO which had been carried out in the absence of the fuel temperature monitoring. A maximum peak temperature of 1,083 .deg. C was obtained in the rod 1 at 25.06 EFPD and the temperatures decreased as the cycle progresses.
Improved Prediction of the Doppler Effect in TRISO Fuel
J. Ortensi; A.M. Ougouag
2009-05-01
The Doppler feedback mechanism is a major contributor to the passive safety of gas-cooled, graphite-moderated High Temperature Reactors that use fuel based on TRISO particles. It follows that the correct prediction of the magnitude and time-dependence of this feedback effect is essential to the conduct of safety analyses for these reactors. Since the effect is directly dependent on the actual temperature reached by the fuel during transients, the underlying phenomena of heat transfer and temperature rise must be correctly predicted. This paper presents an improved model for the TRISO particle and its thermal behavior during transients. The improved approach incorporates an explicit TRISO heat conduction model to better quantify the time dependence of the temperature in the various layers of the TRISO particle, including its fuel central zone. There follows a better treatment of the Doppler Effect within said fuel zone. The new model is based on a 1-D analytic solution for composite media using the Green’s function technique. The modeling improvement takes advantage of some of the physical behavior of TRISO fuel under irradiation and includes a distinctive look at the physics of the neutronic Doppler Effect. The new methodology has been implemented within the coupled R-Z nodal diffusion code CYNOD-THERMIX. The new model has been applied to the analysis of earthquakes (presented in a companion paper). In this paper, the model is applied to the control rod ejection event, as specified in the OECD PBMR-400 benchmark, but with temperature dependent thermal properties. The results obtained for this transient using the enhanced code are a considerable improvement over the predictions of the original code. The incorporation of the enhanced model shows that the Doppler Effect plays a more significant role than predicted by the original unenhanced model based on the THERMIX homogenized fuel region model. The new model shows that the overall energy generation during the rod
Bishop, Joseph E.
2008-09-01
Under extreme loading conditions most often the extent of material and structural fracture is pervasive in the sense that a multitude of cracks are nucleating, propagating in arbitrary directions, coalescing, and branching. Pervasive fracture is a highly nonlinear process involving complex material constitutive behavior, material softening, localization, surface generation, and ubiquitous contact. Two primary applications in which pervasive fracture is encountered are (1) weapons effects on structures and (2) geomechanics of highly jointed and faulted reservoirs. A pure Lagrangian computational method based on randomly close-packed Voronoi tessellations is proposed as a rational approach for simulating the pervasive fracture of materials and structures. Each Voronoi cell is formulated as a finite element using the reproducing kernel method. Fracture surfaces are allowed to nucleate only at the intercell faces. The randomly seeded Voronoi cells provide an unbiased network for representing cracks. In this initial study two approaches for allowing the new surfaces to initiate are studied: (1) dynamic mesh connectivity and the instantaneous insertion of a cohesive traction when localization is detected, and (2) a discontinuous Galerkin approach in which the interelement tractions are an integral part of the variational formulation, but only become active once localization is detected. Pervasive fracture problems are extremely sensitive to initial conditions and system parameters. Dynamic problems exhibit a form of transient chaos. The primary numerical challenge for this class of problems is the demonstration of model objectivity and, in particular, the identification and demonstration of a measure of convergence for engineering quantities of interest.
Random greedy triangle-packing beyond the 7/4 barrier
Bohman, Tom; Lubetzky, Eyal
2011-01-01
The random greedy algorithm for constructing a large partial Steiner-Triple-System is defined as follows. Begin with a complete graph on $n$ vertices and proceed to remove the edges of triangles one at a time, where each triangle removed is chosen uniformly at random out of all remaining triangles. This stochastic process terminates once it arrives at a triangle-free graph, and a longstanding open problem is to estimate the final number of edges, or equivalently the time it takes the process to conclude. The intuition that the edge distribution is roughly uniform at all times led to a folklore conjecture that the final number of edges is $n^{3/2+o(1)}$ with high probability, whereas the best known upper bound is $n^{7/4+o(1)}$. It is no coincidence that various methods break precisely at the exponent 7/4 as it corresponds to the inherent barrier where co-degrees become comparable to the variations in their values that arose earlier in the process. In this work we significantly improve upon the previous bounds...
Powers, Jeffrey James [Univ. of California, Berkeley, CA (United States)
2011-11-30
This study focused on creating a new tristructural isotropic (TRISO) coated particle fuel performance model and demonstrating the integration of this model into an existing system of neutronics and heat transfer codes, creating a user-friendly option for including fuel performance analysis within system design optimization and system-level trade-off studies. The end product enables both a deeper understanding and better overall system performance of nuclear energy systems limited or greatly impacted by TRISO fuel performance. A thorium-fueled hybrid fusion-fission Laser Inertial Fusion Energy (LIFE) blanket design was used for illustrating the application of this new capability and demonstrated both the importance of integrating fuel performance calculations into mainstream design studies and the impact that this new integrated analysis had on system-level design decisions. A new TRISO fuel performance model named TRIUNE was developed and verified and validated during this work with a novel methodology established for simulating the actual lifetime of a TRISO particle during repeated passes through a pebble bed. In addition, integrated self-consistent calculations were performed for neutronics depletion analysis, heat transfer calculations, and then fuel performance modeling for a full parametric study that encompassed over 80 different design options that went through all three phases of analysis. Lastly, side studies were performed that included a comparison of thorium and depleted uranium (DU) LIFE blankets as well as some uncertainty quantification work to help guide future experimental work by assessing what material properties in TRISO fuel performance modeling are most in need of improvement. A recommended thorium-fueled hybrid LIFE engine design was identified with an initial fuel load of 20MT of thorium, 15% TRISO packing within the graphite fuel pebbles, and a 20cm neutron multiplier layer with beryllium pebbles in flibe molten salt coolant. It operated
Influence of SiC grain boundary character on fission product transport in irradiated TRISO fuel
Lillo, T. M.; van Rooyen, I. J.
2016-05-01
In this study, the fission product precipitates at silicon carbide grain boundaries from an irradiated TRISO particle were identified and correlated with the associated grain boundary characteristics. Precession electron diffraction in the transmission electron microscope provided the crystallographic information needed to identify grain boundary misorientation and boundary type (i.e., low angle, random high angle or coincident site lattice (CSL)-related). The silicon carbide layer was found to be composed mainly of twin boundaries and small fractions of random high angle and low angle grain boundaries. Most fission products were found at random, high-angle grain boundaries, with small fractions at low-angle and CSL-related grain boundaries. Palladium (Pd) was found at all types of grain boundaries while Pd-uranium and Pd-silver precipitates were only associated with CSL-related and random, high-angle grain boundaries. Precipitates containing only Ag were found only at random, high-angle grain boundaries, but not at low angle or CSL-related grain boundaries.
High-quality thorium TRISO fuel performance in HTGRs
Verfondern, Karl [Forschungszentrum Juelich GmbH (Germany); Allelein, Hans-Josef [Forschungszentrum Juelich GmbH (Germany); Technische Hochschule Aachen (Germany); Nabielek, Heinz; Kania, Michael J.
2013-11-01
Thorium as a nuclear fuel has received renewed interest, because of its widespread availability and the good irradiation performance of Th and mixed (Th,U) oxide compounds as fuels in nuclear power systems. Early HTGR development employed thorium together with high-enriched uranium (HEU). After 1980, HTGR fuel systems switched to low-enriched uranium (LEU). After completing fuel development for the AVR and the THTR with BISO coated particles, the German program expanded its efforts utilizing thorium and HEU TRISO coated particles in advanced HTGR concepts for process heat applications (PNP) and direct-cycle electricity production (HHT). The combination of a low-temperature isotropic (LTI) inner and outer pyrocarbon layers surrounding a strong, stable SiC layer greatly improved manufacturing conditions and the subsequent contamination and defective particle fractions in production fuel elements. In addition, this combination provided improved mechanical strength and a higher degree of solid fission product retention, not known previously with high-temperature isotropic (HTI) BISO coatings. The improved performance of the HEU (Th, U)O{sub 2} TRISO fuel system was successfully demonstrated in three primary areas of development: manufacturing, irradiation testing under normal operating conditions, and accident simulation testing. In terms of demonstrating performance for advanced HTGR applications, the experimental failure statistic from manufacture and irradiation testing are significantly below the coated particle requirements specified for PNP and HHT designs at the time. Covering a range to 1300 C in normal operations and 1600 C in accidents, with burnups to 13% FIMA and fast fluences to 8 x 10{sup 25} n/m{sup 2} (E> 16 fJ), the performance results exceed the design limits on manufacturing and operational requirements for the German HTR-Modul concept, which are 6.5 x 10{sup -5} for manufacturing, 2 x 10{sup -4} for normal operating conditions, and 5 x 10{sup -4
Bağdatlı, Ali Osman; Donmez, Arif; Eröksüz, Rıza; Bahadır, Güler; Turan, Mustafa; Erdoğan, Nergis
2015-12-01
The aim of this randomized controlled single-blind study is to explore whether addition of mud-pack and hot pool treatments to patient education make a significant difference in short and mild term outcomes of the patients with fibromyalgia. Seventy women with fibromyalgia syndrome were randomly assigned to either balneotherapy with mud-pack and hot pool treatments (35) or control (35) groups. After randomization, five patients from balneotherapy group and five patients from control group were dropped out from the study with different excuses. All patients had 6-h patient education programme about fibromyalgia syndrome and were given a home exercise programme. The patients in balneotherapy group had heated pool treatment at 38 °C for 20 min a day, and mud-pack treatment afterwards on back region at 45 °C. Balneotherapy was applied on weekdays for 2 weeks. All patients continued to take their medical treatment. An investigator who was blinded to the intervention assessed all the patients before and after the treatment, at the first and the third months of follow-up. Outcome measures were FIQ, BDI and both patient's and physician's global assessments. Balneotherapy group was significantly better than control group at after the treatment and at the end of the first month follow-up assessments in terms of patient's and physician's global assessment, total FIQ score, and pain intensity, fatigue, non-refreshed awaking, stiffness, anxiety and depression subscales of FIQ. No significant difference was found between the groups in terms of BDI scores. It is concluded that patient education combined with 2 weeks balneotherapy application has more beneficial effects in patients with fibromyalgia syndrome as compared to patient education alone.
An Estimation of Gas Pressure in a TRISO of 350 MWth Block-Type HTR
Kim, Young Min; Jo, C. K.; Cho, M. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2015-10-15
An estimation of gas pressure in a TRISO with a UCO kernel has been performed under the normal operation conditions of a HTR. The following conclusions are drawn through the analysis. - The major gas species is xenon below 1000 .deg. C, and cesium starts to significantly build up between 1000 and 1100 .deg. C. - The lower the PF is, the earlier cesium gas begins to form and the higher the total gas pressure is. - The total gas pressure in a TRISO is about 28 MPa at temperature of 1300 .deg. C, PF of 25%, and EFPD of 1500. - The low PF is desirable on fuel economy. The analyses of stress and failure of TRISOs will be used to determine whether the pressures are tolerable or not. The HTR will be operated for an extended fuel burnup of more than 150 GWd/MTU. Its fuel should survives the long irradiation. The block-type HTR fuel is a cylindrical graphite compact in which a large number of tri-isotropic coated fuel particles (TRISOs) are embedded. A TRISO consists of a kernel at its central region and four coating layers surrounding the kernel: buffer, IPyC (inner pyrocarbon), SiC (silicon carbide), and OPyC (outer pyrocarbon), from the inside. In a usual UO{sub 2} TRISO, a very high gas pressure builds up due to the extended operation of a HTR. Nuclear fissions in a kernel produces free oxygen.
Microstructural analysis of TRISO particles using multi-scale X-ray computed tomography
Lowe, T.; Bradley, R. S.; Yue, S.; Barii, K.; Gelb, J.; Rohbeck, N.; Turner, J.; Withers, P. J.
2015-06-01
TRISO particles, a composite nuclear fuel built up by ceramic and graphitic layers, have outstanding high temperature resistance. TRISO fuel is the key technology for High Temperature Reactors (HTRs) and the Generation IV Very High Temperature Reactor (VHTR) variant. TRISO offers unparalleled containment of fission products and is extremely robust during accident conditions. An understanding of the thermal performance and mechanical properties of TRISO fuel requires a detailed knowledge of pore sizes, their distribution and interconnectivity. Here 50 nm, nano-, and 1 μm resolution, micro-computed tomography (CT), have been used to quantify non-destructively porosity of a surrogate TRISO particle at the 0.3-10 μm and 3-100 μm scales respectively. This indicates that pore distributions can reliably be measured down to a size approximately 3 times the pixel size which is consistent with the segmentation process. Direct comparison with Scanning Electron Microscopy (SEM) sections indicates that destructive sectioning can introduce significant levels of coarse damage, especially in the pyrolytic carbon layers. Further comparative work is required to identify means of minimizing such damage for SEM studies. Finally since it is non-destructive, multi-scale time-lapse X-ray CT opens the possibility of intermittently tracking the degradation of TRISO structure under thermal cycles or radiation conditions in order to validate models of degradation such as kernel movement. X-ray CT in-situ experimentation of TRISO particles under load and temperature could also be used to understand the internal changes that occur in the particles under accident conditions.
Microstructural analysis of TRISO particles using multi-scale X-ray computed tomography
Lowe, T., E-mail: tristan.lowe@manchester.ac.uk [Manchester X-ray Imaging Facility, School of Materials, University of Manchester, M13 9PL (United Kingdom); Bradley, R.S. [Manchester X-ray Imaging Facility, School of Materials, University of Manchester, M13 9PL (United Kingdom); Yue, S. [Manchester X-ray Imaging Facility, School of Materials, University of Manchester, M13 9PL (United Kingdom); The Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0FA (United Kingdom); Barii, K. [School of Mechanical Engineering, University of Manchester, M13 9PL (United Kingdom); Gelb, J. [Zeiss Xradia Inc., Pleasanton, CA (United States); Rohbeck, N. [Manchester X-ray Imaging Facility, School of Materials, University of Manchester, M13 9PL (United Kingdom); Turner, J. [School of Mechanical Engineering, University of Manchester, M13 9PL (United Kingdom); Withers, P.J. [Manchester X-ray Imaging Facility, School of Materials, University of Manchester, M13 9PL (United Kingdom); The Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0FA (United Kingdom)
2015-06-15
TRISO particles, a composite nuclear fuel built up by ceramic and graphitic layers, have outstanding high temperature resistance. TRISO fuel is the key technology for High Temperature Reactors (HTRs) and the Generation IV Very High Temperature Reactor (VHTR) variant. TRISO offers unparalleled containment of fission products and is extremely robust during accident conditions. An understanding of the thermal performance and mechanical properties of TRISO fuel requires a detailed knowledge of pore sizes, their distribution and interconnectivity. Here 50 nm, nano-, and 1 μm resolution, micro-computed tomography (CT), have been used to quantify non-destructively porosity of a surrogate TRISO particle at the 0.3–10 μm and 3–100 μm scales respectively. This indicates that pore distributions can reliably be measured down to a size approximately 3 times the pixel size which is consistent with the segmentation process. Direct comparison with Scanning Electron Microscopy (SEM) sections indicates that destructive sectioning can introduce significant levels of coarse damage, especially in the pyrolytic carbon layers. Further comparative work is required to identify means of minimizing such damage for SEM studies. Finally since it is non-destructive, multi-scale time-lapse X-ray CT opens the possibility of intermittently tracking the degradation of TRISO structure under thermal cycles or radiation conditions in order to validate models of degradation such as kernel movement. X-ray CT in-situ experimentation of TRISO particles under load and temperature could also be used to understand the internal changes that occur in the particles under accident conditions.
Aznar, Rosa; Chenoll, Empar
2006-10-01
The intraspecific diversity of Leuconostoc mesenteroides, Lactobacillus curvatus, Lactobacillus sakei, and Lactobacillus plantarum was analyzed by randomly amplified polymorphic DNA (RAPD) PCR with universal primers M13 and T3. The study included 100 reference strains and 210 isolates recovered from two vacuum-packed Spanish meat products, fiambre de magro adobado and morcilla, previously identified by rDNA-restriction fragment length polymorphism profiles. The RAPD-M13 profiles identified isolates at species level in L. plantarum and L. mesenteroides, while RAPD-T3 provided profiles in L. sakei. The combination of RAPD-M13 and RAPD-T3 fingerprints revealed a total of 17 profiles in L. mesenteroides, 6 in L. sakei, 12 in L. plantarum, and 6 in L. curvatus. Of these, six profiles corresponding to L. mesenteroides and one corresponding to L. sakei were found in both products. The Shannon-Weaver diversity index (H'), calculated according to RAPD-M13 and RAPD-T3 profiles during storage, revealed that most profiles appeared only in single samplings in both products, indicating a high strain substitution rate during chilled storage of vacuum-packed meat products. When bloating appeared, only one profile corresponding to L. mesenteroides subsp. dextranicum was present throughout the storage period.
Modeling and Analysis of FCM UN TRISO Fuel Using the PARFUME Code
Blaise Collin
2013-09-01
The PARFUME (PARticle Fuel ModEl) modeling code was used to assess the overall fuel performance of uranium nitride (UN) tri-structural isotropic (TRISO) ceramic fuel in the frame of the design and development of Fully Ceramic Matrix (FCM) fuel. A specific modeling of a TRISO particle with UN kernel was developed with PARFUME, and its behavior was assessed in irradiation conditions typical of a Light Water Reactor (LWR). The calculations were used to access the dimensional changes of the fuel particle layers and kernel, including the formation of an internal gap. The survivability of the UN TRISO particle was estimated depending on the strain behavior of the constituent materials at high fast fluence and burn-up. For nominal cases, internal gas pressure and representative thermal profiles across the kernel and layers were determined along with stress levels in the pyrolytic carbon (PyC) and silicon carbide (SiC) layers. These parameters were then used to evaluate fuel particle failure probabilities. Results of the study show that the survivability of UN TRISO fuel under LWR irradiation conditions might only be guaranteed if the kernel and PyC swelling rates are limited at high fast fluence and burn-up. These material properties are unknown at the irradiation levels expected to be reached by UN TRISO fuel in LWRs. Therefore, more effort is needed to determine them and positively conclude on the applicability of FCM fuel to LWRs.
TRISO coated fuel particles with enhanced SiC properties
Lopez-Honorato, E.; Tan, J.; Meadows, P.J. [Materials Science Centre, School of Materials, University of Manchester, Grosvenor St., Manchester M1 7HS (United Kingdom); Marsh, G. [Nexia Solutions Ltd., Spingfields, PR4 0XJ (United Kingdom); Xiao, P., E-mail: ping.xiao@manchester.ac.u [Materials Science Centre, School of Materials, University of Manchester, Grosvenor St., Manchester M1 7HS (United Kingdom)
2009-07-15
The silicon carbide (SiC) layer used for the formation of TRISO coated fuel particles is normally produced at 1500-1650 deg. C via fluidized bed chemical vapor deposition from methyltrichlorosilane in a hydrogen environment. In this work, we show the deposition of SiC coatings with uniform grain size throughout the coating thickness, as opposed to standard coatings which have larger grain sizes in the outer sections of the coating. Furthermore, the use of argon as the fluidizing gas and propylene as a carbon precursor, in addition to hydrogen and methyltrichlorosilane, allowed the deposition of stoichiometric SiC coatings with refined microstructure at 1400 and 1300 deg. C. The deposition of SiC at lower deposition temperatures was also advantageous since the reduced heat treatment was not detrimental to the properties of the inner pyrolytic carbon which generally occurs when SiC is deposited at 1500 deg. C. The use of a chemical vapor deposition coater with four spouts allowed the deposition of uniform and spherical coatings.
John D. Bess; Leland M. Montierth
2013-03-01
In its deployment as a pebble bed reactor (PBR) critical facility from 1992 to 1996, the PROTEUS facility was designated as HTR-PROTEUS. This experimental program was performed as part of an International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) on the Validation of Safety Related Physics Calculations for Low Enriched HTGRs. Within this project, critical experiments were conducted for graphite moderated LEU systems to determine core reactivity, flux and power profiles, reaction-rate ratios, the worth of control rods, both in-core and reflector based, the worth of burnable poisons, kinetic parameters, and the effects of moisture ingress on these parameters. One benchmark experiment was evaluated in this report: Core 4. Core 4 represents the only configuration with random pebble packing in the HTR-PROTEUS series of experiments, and has a moderator-to-fuel pebble ratio of 1:1. Three random configurations were performed. The initial configuration, Core 4.1, was rejected because the method for pebble loading, separate delivery tubes for the moderator and fuel pebbles, may not have been completely random; this core loading was rejected by the experimenters. Cores 4.2 and 4.3 were loaded using a single delivery tube, eliminating the possibility for systematic ordering effects. The second and third cores differed slightly in the quantity of pebbles loaded (40 each of moderator and fuel pebbles), stacked height of the pebbles in the core cavity (0.02 m), withdrawn distance of the stainless steel control rods (20 mm), and withdrawn distance of the autorod (30 mm). The 34 coolant channels in the upper axial reflector and the 33 coolant channels in the lower axial reflector were open. Additionally, the axial graphite fillers used in all other HTR-PROTEUS configurations to create a 12-sided core cavity were not used in the randomly packed cores. Instead, graphite fillers were placed on the cavity floor, creating a funnel-like base, to discourage ordering
Bess, John D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Montierth, Leland M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sterbentz, James W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Briggs, J. Blair [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gougar, Hans D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Snoj, Luka [Jozef Stefan Inst. (IJS), Ljubljana (Slovenia); Lengar, Igor [Jozef Stefan Inst. (IJS), Ljubljana (Slovenia); Koberl, Oliver [Paul Scherrer Inst. (PSI), Villigen (Switzerland)
2014-03-01
In its deployment as a pebble bed reactor (PBR) critical facility from 1992 to 1996, the PROTEUS facility was designated as HTR-PROTEUS. This experimental program was performed as part of an International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) on the Validation of Safety Related Physics Calculations for Low Enriched HTGRs. Within this project, critical experiments were conducted for graphite moderated LEU systems to determine core reactivity, flux and power profiles, reaction-rate ratios, the worth of control rods, both in-core and reflector based, the worth of burnable poisons, kinetic parameters, and the effects of moisture ingress on these parameters. One benchmark experiment was evaluated in this report: Core 4. Core 4 represents the only configuration with random pebble packing in the HTR-PROTEUS series of experiments, and has a moderator-to-fuel pebble ratio of 1:1. Three random configurations were performed. The initial configuration, Core 4.1, was rejected because the method for pebble loading, separate delivery tubes for the moderator and fuel pebbles, may not have been completely random; this core loading was rejected by the experimenters. Cores 4.2 and 4.3 were loaded using a single delivery tube, eliminating the possibility for systematic ordering effects. The second and third cores differed slightly in the quantity of pebbles loaded (40 each of moderator and fuel pebbles), stacked height of the pebbles in the core cavity (0.02 m), withdrawn distance of the stainless steel control rods (20 mm), and withdrawn distance of the autorod (30 mm). The 34 coolant channels in the upper axial reflector and the 33 coolant channels in the lower axial reflector were open. Additionally, the axial graphite fillers used in all other HTR-PROTEUS configurations to create a 12-sided core cavity were not used in the randomly packed cores. Instead, graphite fillers were placed on the cavity floor, creating a funnel-like base, to discourage ordering
Diffusivities of Ag, Cs, Sr, and Kr in TRISO fuel particles and graphite
Collin, Blaise Paul [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2016-09-01
Tri-structural isotropic (TRISO) coated particles have been developed and studied since the late 1950s when the concept of coated particles was invented by Roy Huddle of the United Kingdom Atomic Energy Authority. Several decades of work by half a dozen countries on fission product transport in TRISO fuel through numerous irradiation and heating experiments have led to several recommendations of transport data and to the adoption of various sets of diffusion coefficients. In 1997, the International Atomic Energy Agency (IAEA) gathered all these historical results and issued a technical document (TECDOC-978 [IAEA]) that summarizes these sets of recommended diffusion coefficients. Table 1 shows the reference literature articles for the diffusivities that have historically been recommended by the American and German TRISO fuel development programs and that are summarized in the IAEA report (see section 7 for full references of these articles).
Progress in Solving the Elusive Ag Transport Mechanism in TRISO Coated Particles: What is new?
Isabella Van Rooyen
2014-10-01
The TRISO particle for HTRs has been developed to an advanced state where the coating withstands internal gas pressures and retains fission products during irradiation and under postulated accidents. However, one exception is Ag that has been found to be released from high quality TRISO coated particles when irradiated and can also during high temperature accident heating tests. Although out- of- pile laboratory tests have never hither to been able to demonstrate a diffusion process of Ag in SiC, effective diffusion coefficients have been derived to successfully reproduce measured Ag-110m releases from irradiated HTR fuel elements, compacts and TRISO particles It was found that silver transport through SiC does not proceed via bulk volume diffusion. Presently grain boundary diffusion that may be irradiation enhanced either by neutron bombardment or by the presence of fission products such as Pd, are being investigated. Recent studies of irradiated AGR-1 TRISO fuel using scanning transmission electron microscopy (STEM), transmission kukuchi diffraction (TKD) patterns and high resolution transmission electron microscopy (HRTEM) have been used to further the understanding of Ag transport through TRISO particles. No silver was observed in SiC grains, but Ag was identified at triple-points and grain boundaries of the SiC layer in the TRISO particle. Cadmium was also found in some of the very same triple junctions, but this could be related to silver behavior as Ag-110m decays to Cd-110. Palladium was identified as the main constituent of micron-sized precipitates present at the SiC grain boundaries and in most SiC grain boundaries and the potential role of Pd in the transport of Ag will be discussed.
Readiness Review of BWXT for Fabrication of AGR-5/6/7 TRISO Particles
Marshall, Douglas William [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sharp, Michelle Tracy [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2016-02-01
INL readiness review assessment of BWXT readiness to commence fabrication of low-enriched TRISO coated fuel particles for the AGR-5/6/7 irradiation experiments. BWXT self-identified equipment issues preventing operation. INL identified two findings. The first was that disposition codes had not been assigned and documented on BWXT forms to ensure that off-specification materials could not be used in the fabrication of TRISO particles. The second was that chemical purity specifications were not reliably passed on to chemical suppliers, which resulted in the receipt of one acetylene cylinder with suspect impurity levels.
2011-08-22
In this podcast for kids, the Kidtastics talk about packing a lunch that's not boring and is full of the power and energy kids need to make it through the day. Created: 8/22/2011 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID). Date Released: 8/22/2011.
2011-08-16
In this podcast for kids, the Kidtastics talk about how to pack a lunch safely, to help keep you from getting sick. Created: 8/16/2011 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID). Date Released: 8/16/2011.
Amin Salem
2016-03-01
Full Text Available The present investigation provides a detailed relationship between the powder composition and reliability of random ceramic beds. This evaluation is important due to standing in the liquid-gas contactors as well as predicting lifetime. It is still unclear whether the normal distribution is the most suitable function for estimation of failure. By developing the application of ceramic beds in the chemical plants, a special attention has been paid in screening strength distributions. To achieve this goal, an experimental-theoretical study was presented on compressive strength distribution. The powder compositions were prepared according to the statistical response surface methodology and then were formed by a single screw extrusion as Raschig rings. The compressive strength of specimens was measured to evaluate the strength data sets by normal and Weibull distributions. The results were analyzed by the Akaike information criterion and the Anderson-Darling test. The accuracy of distributions in prediction fracture was discussed.
Pattern formations and optimal packing.
Mityushev, Vladimir
2016-04-01
Patterns of different symmetries may arise after solution to reaction-diffusion equations. Hexagonal arrays, layers and their perturbations are observed in different models after numerical solution to the corresponding initial-boundary value problems. We demonstrate an intimate connection between pattern formations and optimal random packing on the plane. The main study is based on the following two points. First, the diffusive flux in reaction-diffusion systems is approximated by piecewise linear functions in the framework of structural approximations. This leads to a discrete network approximation of the considered continuous problem. Second, the discrete energy minimization yields optimal random packing of the domains (disks) in the representative cell. Therefore, the general problem of pattern formations based on the reaction-diffusion equations is reduced to the geometric problem of random packing. It is demonstrated that all random packings can be divided onto classes associated with classes of isomorphic graphs obtained from the Delaunay triangulation. The unique optimal solution is constructed in each class of the random packings. If the number of disks per representative cell is finite, the number of classes of isomorphic graphs, hence, the number of optimal packings is also finite.
Fabrication and Characterization of Surrogate TRISO Particles Using 800μm ZrO_{2} Kernels
Jolly, Brian C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Helmreich, Grant [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cooley, Kevin M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dyer, John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2016-07-01
In support of fully ceramic microencapsulated (FCM) fuel development, coating development work is ongoing at Oak Ridge National Laboratory (ORNL) to produce tri-structural isotropic (TRISO) coated fuel particles with both UN kernels and surrogate (uranium-free) kernels. The nitride kernels are used to increase fissile density in these SiC-matrix fuel pellets with details described elsewhere. The surrogate TRISO particles are necessary for separate effects testing and for utilization in the consolidation process development. This report focuses on the fabrication and characterization of surrogate TRISO particles which use 800μm in diameter ZrO_{2} microspheres as the kernel.
Lillo, T. M.; Rooyen, I. J.; Aguiar, J. A.
2016-11-01
Precession electron diffraction in the transmission electron microscope was used to map grain orientation and ultimately determine grain boundary misorientation angle distributions, relative fractions of grain boundary types (random high angle, low angle or coincident site lattice (CSL)-related boundaries) and the distributions of CSL-related grain boundaries in the SiC layer of irradiated TRISO-coated fuel particles. Two particles from the AGR-1 experiment exhibiting high Ag-110m retention (>80%) were compared to a particle exhibiting low Ag-110m retention (<19%). Irradiated particles with high Ag-110m retention exhibited a lower fraction of random, high angle grain boundaries compared to the low Ag-110m retention particle. An inverse relationship between the random, high angle grain boundary fraction and Ag-110m retention is found and is consistent with grain boundary percolation theory. Also, comparison of the grain boundary distributions with previously reported unirradiated grain boundary distributions, based on SEM-based EBSD for similarly fabricated particles, showed only small differences, i.e. a greater low angle grain boundary fraction in unirradiated SiC. It was, thus, concluded that SiC layers with grain boundary distributions susceptible to Ag-110m release were present prior to irradiation. Finally, irradiation parameters were found to have little effect on the association of fission product precipitates with specific grain boundary types.
Folsom, Charles [Utah State Univ., Logan, UT (United States). Mechanical and Aerospace Engineering Dept.; Xing, Changhu [Utah State Univ., Logan, UT (United States). Mechanical and Aerospace Engineering Dept.; Jensen, Colby [Utah State Univ., Logan, UT (United States). Mechanical and Aerospace Engineering Dept.; Ban, Heng [Utah State Univ., Logan, UT (United States). Mechanical and Aerospace Engineering Dept.; Marshall, Douglas W. [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2015-03-01
Accurate modeling capability of thermal conductivity of tristructural-isotropic (TRISO) fuel compacts is important to fuel performance modeling and safety of Generation IV reactors. To date, the effective thermal conductivity (ETC) of tristructural-isotropic (TRISO) fuel compacts has not been measured directly. The composite fuel is a complicated structure comprised of layered particles in a graphite matrix. In this work, finite element modeling is used to validate an analytic ETC model for application to the composite fuel material for particle-volume fractions up to 40%. The effect of each individual layer of a TRISO particle is analyzed showing that the overall ETC of the compact is most sensitive to the outer layer constituent. In conjunction with the modeling results, the thermal conductivity of matrix-graphite compacts and the ETC of surrogate TRISO fuel compacts have been successfully measured using a previously developed measurement system. The ETC of the surrogate fuel compacts varies between 50 and 30 W m^{-1} K^{-1} over a temperature range of 50-600°C. As a result of the numerical modeling and experimental measurements of the fuel compacts, a new model and approach for analyzing the effect of compact constituent materials on ETC is proposed that can estimate the fuel compact ETC with approximately 15-20% more accuracy than the old method. Using the ETC model with measured thermal conductivity of the graphite matrix-only material indicate that, in the composite form, the matrix material has a much greater thermal conductivity, which is attributed to the high anisotropy of graphite thermal conductivity. Therefore, simpler measurements of individual TRISO compact constituents combined with an analytic ETC model, will not provide accurate predictions of overall ETC of the compacts emphasizing the need for measurements of composite, surrogate compacts.
1992-01-01
"S Glass" yarn was originally developed by NASA for high temperature space and aeronautical applications. When John Crane, Inc. required material that would withstand temperatures higher than 1,200 degrees Fahrenheit, they contacted Owens-Corning, which had developed a number of applications for the material. John Crane combines the yarn with other components to make Style 287-I packing. The product can be used in chemical processing operations, nuclear power stations, petroleum products, etc. Advantages include increased service life and reduced maintenance costs.
TRISO-Fuel Element Performance Modeling for the Hybrid LIFE Engine with Pu Fuel Blanket
DeMange, P; Marian, J; Caro, M; Caro, A
2010-02-18
A TRISO-coated fuel thermo-mechanical performance study is performed for the hybrid LIFE engine to test the viability of TRISO particles to achieve ultra-high burnup of a weapons-grade Pu blanket. Our methodology includes full elastic anisotropy, time and temperature varying material properties for all TRISO layers, and a procedure to remap the elastic solutions in order to achieve fast fluences up to 30 x 10{sup 25} n {center_dot} m{sup -2} (E > 0.18 MeV). In order to model fast fluences in the range of {approx} 7 {approx} 30 x 10{sup 25} n {center_dot} m{sup -2}, for which no data exist, careful scalings and extrapolations of the known TRISO material properties are carried out under a number of potential scenarios. A number of findings can be extracted from our study. First, failure of the internal pyrolytic carbon (PyC) layer occurs within the first two months of operation. Then, the particles behave as BISO-coated particles, with the internal pressure being withstood directly by the SiC layer. Later, after 1.6 years, the remaining PyC crumbles due to void swelling and the fuel particle becomes a single-SiC-layer particle. Unrestrained by the PyC layers, and at the temperatures and fluences in the LIFE engine, the SiC layer maintains reasonably-low tensile stresses until the end-of-life. Second, the PyC creep constant, K, has a striking influence on the fuel performance of TRISO-coated particles, whose stresses scale almost inversely proportional to K. Obtaining more reliable measurements, especially at higher fluences, is an imperative for the fidelity of our models. Finally, varying the geometry of the TRISO-coated fuel particles results in little differences in the scope of fuel performance. The mechanical integrity of 2-cm graphite pebbles that act as fuel matrix has also been studied and it is concluded that they can reliable serve the entire LIFE burnup cycle without failure.
Aznar, Rosa; Chenoll, Empar
2006-01-01
...) PCR with universal primers M13 and T3. The study included 100 reference strains and 210 isolates recovered from two vacuum-packed Spanish meat products, fiambre de magro adobado and morcilla, previously identified by rDNA-restriction...
Cancino T, F.; Lopez H, E., E-mail: Felix.cancino@cinvestav.edu.mx [IPN, Centro de Investigacion y de Estudios Avanzados, Unidad Saltillo, Av. Industria Metalurgica No. 1062, Col. Ramos Arizpe, 25900 Saltillo, Coahuila (Mexico)
2013-10-15
The silver diffusion through silicon carbide is a challenge that has persisted in the development of microencapsulated fuels TRISO (Tri structural Isotropic) for more than four decades. The silver is known as a strong emitter of gamma radiation, for what is able to diffuse through the ceramic coatings of pyrolytic coal and silicon carbide and to be deposited in the heat exchangers. In this work we carry out a recount about the art state in the topic of the diffusion of Ag through silicon carbide in microencapsulated fuels and we propose the role that the complexities in the grain limit can have this problem. (Author)
Adhesive loose packings of small dry particles
Liu, Wenwei; Li, Shuiqing; Baule, Adrian; Makse, Hernán A.
We explore adhesive loose packings of dry small spherical particles of micrometer size using 3D discrete-element simulations with adhesive contact mechanics. A dimensionless adhesion parameter ($Ad$) successfully combines the effects of particle velocities, sizes and the work of adhesion, identifying a universal regime of adhesive packings for $Ad>1$. The structural properties of the packings in this regime are well described by an ensemble approach based on a coarse-grained volume function that includes correlations between bulk and contact spheres. Our theoretical and numerical results predict: (i) An equation of state for adhesive loose packings that appears as a continuation from the frictionless random close packing (RCP) point in the jamming phase diagram; (ii) The existence of a maximal loose packing point at the coordination number $Z=2$ and packing fraction $\\phi=1/2^{3}$. Our results highlight that adhesion leads to a universal packing regime at packing fractions much smaller than the random loose packing, which can be described within a statistical mechanical framework. We present a general phase diagram of jammed matter comprising frictionless, frictional, adhesive as well as non-spherical particles, providing a classification of packings in terms of their continuation from the spherical frictionless RCP.
Fission Product Monitoring of TRISO Coated Fuel For The Advanced Gas Reactor -1 Experiment
Dawn M. Scates; John (Jack) K Hartwell; John B. Walter
2008-09-01
The US Department of Energy has embarked on a series of tests of TRISO-coated particle reactor fuel intended for use in the Very High Temperature Reactor (VHTR) as part of the Advanced Gas Reactor (AGR) program. The AGR-1 TRISO fuel experiment, currently underway, is the first in a series of eight fuel tests planned for irradiation in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The AGR-1 experiment reached a peak compact averaged burn up of 9% FIMA with no known TRISO fuel particle failures in March 2008. The burnup goal for the majority of the fuel compacts is to have a compact averaged burnup greater than 18% FIMA and a minimum compact averaged burnup of 14% FIMA. At the INL the TRISO fuel in the AGR-1 experiment is closely monitored while it is being irradiated in the ATR. The effluent monitoring system used for the AGR-1 fuel is the Fission Product Monitoring System (FPMS). The FPMS is a valuable tool that provides near real-time data indicative of the AGR-1 test fuel performance and incorporates both high-purity germanium (HPGe) gamma-ray spectrometers and sodium iodide [NaI(Tl)] scintillation detector-based gross radiation monitors. To quantify the fuel performance, release-to-birth ratios (R/B’s) of radioactive fission gases are computed. The gamma-ray spectra acquired by the AGR-1 FPMS are analyzed and used to determine the released activities of specific fission gases, while a dedicated detector provides near-real time count rate information. Isotopic build up and depletion calculations provide the associated isotopic birth rates. This paper highlights the features of the FPMS, encompassing the equipment, methods and measures that enable the calculation of the release-to-birth ratios. Some preliminary results from the AGR-1 experiment are also presented.
Uranium nitride as LWR TRISO fuel: Thermodynamic modeling of U-C-N
Besmann, Theodore M.; Shin, Dongwon; Lindemer, Terrence B.
2012-08-01
TRISO coated particle fuel is envisioned as a next generation replacement for current urania pellet fuel in LWR applications. To obtain adequate fissile loading the kernel of the TRISO particle will likely need to be UN instead of UO2. In support of the necessary development effort for this new fuel system, an assessment of phase regions of interest in the U-C-N system was undertaken as the fuel will be prepared by the carbothermic reduction of the oxide followed by nitriding, will be in equilibrium with carbon within the TRISO particle, and will react with minor actinides and fission products. The phase equilibria and thermochemistry of the U-C-N system is reviewed, including nitrogen pressure measurements above various phase fields. Measurements were used to confirm an ideal solution model of UN and UC adequately represents the UC1-xNx phase. Agreement with the data was significantly improved by effectively adjusting the Gibbs free energy of UN by +12 kJ/mol. This also required adjustment of the value for the sesquinitride by +17 kJ/mol to obtain agreement with phase equilibria. The resultant model together with reported values for other phases in the system was used to generate isothermal sections of the U-C-N phase diagram. Nitrogen partial pressures were also computed for regions of interest.
Fission Product Release and Survivability of UN-Kernel LWR TRISO Fuel
Besmann, Theodore M [ORNL; Ferber, Mattison K [ORNL; Lin, Hua-Tay [ORNL
2014-01-01
A thermomechanical assessment of the LWR application of TRISO fuel with UN kernels was performed. Fission product release under operational and transient temperature conditions was determined by extrapolation from range calculations and limited data from irradiated UN pellets. Both fission recoil and diffusive release were considered and internal particle pressures computed for both 650 and 800 m diameter kernels as a function of buffer layer thickness. These pressures were used in conjunction with a finite element program to compute the radial and tangential stresses generated with a TRISO particle as a function of fluence. Creep and swelling of the inner and outer pyrolytic carbon layers were included in the analyses. A measure of reliability of the TRISO particle was obtained by measuring the probability of survival of the SiC barrier layer and the maximum tensile stress generated in the pyrolytic carbon layers as a function of fluence. These reliability estimates were obtained as functions of the kernel diameter, buffer layer thickness, and pyrolytic carbon layer thickness. The value of the probability of survival at the end of irradiation was inversely proportional to the maximum pressure.
Validation of the Physics Analysis used to Characterize the AGR-1 TRISO Fuel Irradiation Test
Sterbentz, James W.; Harp, Jason M.; Demkowicz, Paul A.; Hawkes, Grant L.; Chang, Gray S.
2015-05-01
The results of a detailed physics depletion calculation used to characterize the AGR-1 TRISO-coated particle fuel test irradiated in the Advanced Test Reactor (ATR) at the Idaho National Laboratory are compared to measured data for the purpose of validation. The particle fuel was irradiated for 13 ATR power cycles over three calendar years. The physics analysis predicts compact burnups ranging from 11.30-19.56% FIMA and cumulative neutron fast fluence from 2.21?4.39E+25 n/m^{2 }under simulated high-temperature gas-cooled reactor conditions in the ATR. The physics depletion calculation can provide a full characterization of all 72 irradiated TRISO-coated particle compacts during and post-irradiation, so validation of this physics calculation was a top priority. The validation of the physics analysis was done through comparisons with available measured experimental data which included: 1) high-resolution gamma scans for compact activity and burnup, 2) mass spectrometry for compact burnup, 3) flux wires for cumulative fast fluence, and 4) mass spectrometry for individual actinide and fission product concentrations. The measured data are generally in very good agreement with the calculated results, and therefore provide an adequate validation of the physics analysis and the results used to characterize the irradiated AGR-1 TRISO fuel.
The influence of annealing temperature on the strength of TRISO coated particles
van Rooyen, I. J.; Neethling, J. H.; van Rooyen, P. M.
2010-07-01
The integrity of the Pebble Bed Modular Reactor (PBMR) fuel, and specifically the SiC layer system of the Tristructural Isotropic (TRISO) coated particle (CP), namely inner pyrolytic carbon, silicon carbide and outer pyrolytic carbon (I-PyC-SiC-O-PyC), determines the containment of fission products. The PBMR fuel consists of TRISO coated particles (CPs) embedded in a graphite matrix. One of the characterization techniques investigated by PBMR is the determination of strength of CPs. It is a well known metallurgical fact that temperature, amongst many other parameters, may influence the strength of a material. A recently developed method for measuring the strength of the TRISO coated particles was used and is briefly described in this article. The advantages of this method are demonstrated by the comparison of strength measurements of five experimental PBMR CP batches as a function of annealing temperature. Significant modification of strength after annealing was measured with increased temperature within the range 1000-2100 °C. The interesting feature of decreasing standard deviation of the strength with increasing temperature will also be discussed with a possible explanation. A significant difference in coated particle strength is also demonstrated for two CP batches with layer thickness on the extremities of the SiC layer thickness specification. The effect of long duration annealing on these strength values will also be demonstrated by comparing results from 1 h to 100 h annealing periods of coated particles at a temperature of 1600 °C.
The influence of annealing temperature on the strength of TRISO coated particles
Rooyen, I.J. van, E-mail: Isabel.vanrooyen@pbmr.co.z [Pebble Bed Modular Reactor (Pty) Ltd., 1279 Mike Crawford Avenue, Centurion (South Africa); Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Neethling, J.H. [Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Rooyen, P.M. van [Pebble Bed Modular Reactor (Pty) Ltd., 1279 Mike Crawford Avenue, Centurion (South Africa)
2010-07-31
The integrity of the Pebble Bed Modular Reactor (PBMR) fuel, and specifically the SiC layer system of the Tristructural Isotropic (TRISO) coated particle (CP), namely inner pyrolytic carbon, silicon carbide and outer pyrolytic carbon (I-PyC-SiC-O-PyC), determines the containment of fission products. The PBMR fuel consists of TRISO coated particles (CPs) embedded in a graphite matrix. One of the characterization techniques investigated by PBMR is the determination of strength of CPs. It is a well known metallurgical fact that temperature, amongst many other parameters, may influence the strength of a material. A recently developed method for measuring the strength of the TRISO coated particles was used and is briefly described in this article. The advantages of this method are demonstrated by the comparison of strength measurements of five experimental PBMR CP batches as a function of annealing temperature. Significant modification of strength after annealing was measured with increased temperature within the range 1000-2100 {sup o}C. The interesting feature of decreasing standard deviation of the strength with increasing temperature will also be discussed with a possible explanation. A significant difference in coated particle strength is also demonstrated for two CP batches with layer thickness on the extremities of the SiC layer thickness specification. The effect of long duration annealing on these strength values will also be demonstrated by comparing results from 1 h to 100 h annealing periods of coated particles at a temperature of 1600 {sup o}C.
HIGH-TEMPERATURE SAFETY TESTING OF IRRADIATED AGR-1 TRISO FUEL
Stempien, John D.; Demkowicz, Paul A.; Reber, Edward L.; Chrisensen, Cad L.
2016-11-01
High-Temperature Safety Testing of Irradiated AGR-1 TRISO Fuel John D. Stempien, Paul A. Demkowicz, Edward L. Reber, and Cad L. Christensen Idaho National Laboratory, P.O. Box 1625 Idaho Falls, ID 83415, USA Corresponding Author: john.stempien@inl.gov, +1-208-526-8410 Two new safety tests of irradiated tristructural isotropic (TRISO) coated particle fuel have been completed in the Fuel Accident Condition Simulator (FACS) furnace at the Idaho National Laboratory (INL). In the first test, three fuel compacts from the first Advanced Gas Reactor irradiation experiment (AGR-1) were simultaneously heated in the FACS furnace. Prior to safety testing, each compact was irradiated in the Advanced Test Reactor to a burnup of approximately 15 % fissions per initial metal atom (FIMA), a fast fluence of 3×1025 n/m2 (E > 0.18 MeV), and a time-average volume-average (TAVA) irradiation temperature of about 1020 °C. In order to simulate a core-conduction cool-down event, a temperature-versus-time profile having a peak temperature of 1700 °C was programmed into the FACS furnace controllers. Gaseous fission products (i.e., Kr-85) were carried to the Fission Gas Monitoring System (FGMS) by a helium sweep gas and captured in cold traps featuring online gamma counting. By the end of the test, a total of 3.9% of an average particle’s inventory of Kr-85 was detected in the FGMS traps. Such a low Kr-85 activity indicates that no TRISO failures (failure of all three TRISO layers) occurred during the test. If released from the compacts, condensable fission products (e.g., Ag-110m, Cs-134, Cs-137, Eu-154, Eu-155, and Sr-90) were collected on condensation plates fitted to the end of the cold finger in the FACS furnace. These condensation plates were then analyzed for fission products. In the second test, five loose UCO fuel kernels, obtained from deconsolidated particles from an irradiated AGR-1 compact, were heated in the FACS furnace to a peak temperature of 1600 °C. This test had two
Daneyko, Anton; Hlushkou, Dzmitry; Baranau, Vasili; Khirevich, Siarhei; Seidel-Morgenstern, Andreas; Tallarek, Ulrich
2015-08-14
In recent years, chromatographic columns packed with core-shell particles have been widely used for efficient and fast separations at comparatively low operating pressure. However, the influence of the porous shell properties on the mass transfer kinetics in core-shell packings is still not fully understood. We report on results obtained with a modeling approach to simulate three-dimensional advective-diffusive transport in bulk random packings of monosized core-shell particles, covering a range of reduced mobile phase flow velocities from 0.5 up to 1000. The impact of the effective diffusivity of analyte molecules in the porous shell and the shell thickness on the resulting plate height was investigated. An extension of Giddings' theory of coupled eddy dispersion to account for retention of analyte molecules due to stagnant regions in porous shells with zero mobile phase flow velocity is presented. The plate height equation involving a modified eddy dispersion term excellently describes simulated data obtained for particle-packings with varied shell thickness and shell diffusion coefficient. It is confirmed that the model of trans-particle mass transfer resistance of core-shell particles by Kaczmarski and Guiochon [42] is applicable up to a constant factor. We analyze individual contributions to the plate height from different mass transfer mechanisms in dependence of the shell parameters. The simulations demonstrate that a reduction of plate height in packings of core-shell relative to fully porous particles arises mainly due to reduced trans-particle mass transfer resistance and transchannel eddy dispersion. Copyright © 2015 Elsevier B.V. All rights reserved.
Gongyi Yu
2017-01-01
Full Text Available A nonuniform distribution of tristructural isotropic (TRISO particles within a high-temperature gas-cooled reactor (HTGR pebble may lead to excessive thermal gradients and nonuniform thermal expansion during operation. If the particles are closely clustered, local hotspots may form, leading to excessive stresses on particle layers and an increased probability of particle failure. Although X-ray digital radiography (DR is currently used to evaluate the TRISO distributions in pebbles, X-ray DR projection images are two-dimensional in nature, which would potentially miss some details for 3D evaluation. This paper proposes a method of 3D visualization and evaluation of the TRISO distribution in HTGR pebbles using cone-beam computed tomography (CBCT: first, a pebble is scanned on our high-resolution CBCT, and 2D cross-sectional images are reconstructed; secondly, all cross-sectional images are restructured to form the 3D model of the pebble; then, volume rendering is applied to segment and display the TRISO particles in 3D for visualization and distribution evaluation. For method validation, several pebbles were scanned and the 3D distributions of the TRISO particles within the pebbles were produced. Experiment results show that the proposed method provides more 3D than DR, which will facilitate pebble fabrication research and production quality control.
Barker, Anna L; Morello, Renata T; Ayton, Darshini R; Hill, Keith D; Brand, Caroline A; Livingston, Patricia M; Botti, Mari
2017-01-01
There is limited evidence to support the effectiveness of falls prevention interventions in the acute hospital setting. The 6-PACK falls prevention program includes a fall-risk tool; 'falls alert' signs; supervision of patients in the bathroom; ensuring patients' walking aids are within reach; toileting regimes; low-low beds; and bed/chair alarms. This study explored the acceptability of the 6-PACK program from the perspective of nurses and senior staff prior to its implementation in a randomised controlled trial. A mixed-methods approach was applied involving 24 acute wards from six Australian hospitals. Participants were nurses working on participating wards and senior hospital staff including: Nurse Unit Managers; senior physicians; Directors of Nursing; and senior personnel involved in quality and safety or falls prevention. Information on program acceptability (suitability, practicality and benefits) was obtained by surveys, focus groups and interviews. Survey data were analysed descriptively, and focus group and interview data thematically. The survey response rate was 60%. Twelve focus groups (n = 96 nurses) and 24 interviews with senior staff were conducted. Falls were identified as a priority patient safety issue and nurses as key players in falls prevention. The 6-PACK program was perceived to offer practical benefits compared to current practice. Nurses agreed fall-risk tools, low-low beds and alert signs were useful for preventing falls (>70%). Views were mixed regarding positioning patients' walking aid within reach. Practical issues raised included access to equipment; and risk of staff injury with low-low bed use. Bathroom supervision was seen to be beneficial, however not always practical. Views on the program appropriateness and benefits were consistent across nurses and senior staff. Staff perceived the 6-PACK program as suitable, practical and beneficial, and were open to adopting the program. Some practical concerns were raised highlighting
Hill, Keith D.; Brand, Caroline A.; Livingston, Patricia M.; Botti, Mari
2017-01-01
There is limited evidence to support the effectiveness of falls prevention interventions in the acute hospital setting. The 6-PACK falls prevention program includes a fall-risk tool; ‘falls alert’ signs; supervision of patients in the bathroom; ensuring patients’ walking aids are within reach; toileting regimes; low-low beds; and bed/chair alarms. This study explored the acceptability of the 6-PACK program from the perspective of nurses and senior staff prior to its implementation in a randomised controlled trial. A mixed-methods approach was applied involving 24 acute wards from six Australian hospitals. Participants were nurses working on participating wards and senior hospital staff including: Nurse Unit Managers; senior physicians; Directors of Nursing; and senior personnel involved in quality and safety or falls prevention. Information on program acceptability (suitability, practicality and benefits) was obtained by surveys, focus groups and interviews. Survey data were analysed descriptively, and focus group and interview data thematically. The survey response rate was 60%. Twelve focus groups (n = 96 nurses) and 24 interviews with senior staff were conducted. Falls were identified as a priority patient safety issue and nurses as key players in falls prevention. The 6-PACK program was perceived to offer practical benefits compared to current practice. Nurses agreed fall-risk tools, low-low beds and alert signs were useful for preventing falls (>70%). Views were mixed regarding positioning patients’ walking aid within reach. Practical issues raised included access to equipment; and risk of staff injury with low-low bed use. Bathroom supervision was seen to be beneficial, however not always practical. Views on the program appropriateness and benefits were consistent across nurses and senior staff. Staff perceived the 6-PACK program as suitable, practical and beneficial, and were open to adopting the program. Some practical concerns were raised
Selection and properties of alternative forming fluids for TRISO fuel kernel production
Baker, M.P. [Colorado School of Mines, 1500 Illinois St., Golden, CO 80401 (United States); King, J.C., E-mail: kingjc@mines.edu [Colorado School of Mines, 1500 Illinois St., Golden, CO 80401 (United States); Gorman, B.P. [Colorado School of Mines, 1500 Illinois St., Golden, CO 80401 (United States); Marshall, D.W. [Idaho National Laboratory, 2525 N. Fremont Avenue, P.O. Box 1625, Idaho Falls, ID 83415 (United States)
2013-01-15
Highlights: Black-Right-Pointing-Pointer Forming fluid selection criteria developed for TRISO kernel production. Black-Right-Pointing-Pointer Ten candidates selected for further study. Black-Right-Pointing-Pointer Density, viscosity, and surface tension measured for first time. Black-Right-Pointing-Pointer Settling velocity and heat transfer rates calculated. Black-Right-Pointing-Pointer Three fluids recommended for kernel production testing. - Abstract: Current Very High Temperature Reactor (VHTR) designs incorporate TRi-structural ISOtropic (TRISO) fuel, which consists of a spherical fissile fuel kernel surrounded by layers of pyrolytic carbon and silicon carbide. An internal sol-gel process forms the fuel kernel using wet chemistry to produce uranium oxyhydroxide gel spheres by dropping a cold precursor solution into a hot column of trichloroethylene (TCE). Over time, gelation byproducts inhibit complete gelation, and the TCE must be purified or discarded. The resulting TCE waste stream contains both radioactive and hazardous materials and is thus considered a mixed hazardous waste. Changing the forming fluid to a non-hazardous alternative could greatly improve the economics of TRISO fuel kernel production. Selection criteria for a replacement forming fluid narrowed a list of {approx}10,800 chemicals to yield ten potential replacement forming fluids: 1-bromododecane, 1-bromotetradecane, 1-bromoundecane, 1-chlorooctadecane, 1-chlorotetradecane, 1-iododecane, 1-iodododecane, 1-iodohexadecane, 1-iodooctadecane, and squalane. The density, viscosity, and surface tension for each potential replacement forming fluid were measured as a function of temperature between 25 Degree-Sign C and 80 Degree-Sign C. Calculated settling velocities and heat transfer rates give an overall column height approximation. 1-bromotetradecane, 1-chlorooctadecane, and 1-iodododecane show the greatest promise as replacements, and future tests will verify their ability to form satisfactory
UN TRISO Compaction in SiC for FCM Fuel Irradiations
Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Trammell, Michael P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kiggans, James O. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jolly, Brian C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Skitt, Darren J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2016-11-01
The U.S. Department of Energy Office of Nuclear Energy (DOE-NE) Advanced Fuels Campaign (AFC) is conducting research and development to elevate the technology readiness level of Fully Ceramic Microencapsulated (FCM) fuels, a candidate nuclear fuel with potentially enhanced accident tolerance due to very high fission product retention. One of the early activities in FY17 was to demonstrate production of FCM pellets with uranium nitride TRISO particles. This was carried out in preparation of the larger pellet production campaign in support of the upcoming irradiation testing of this fuel form at INL’s Advanced Test Reactor.
Deterministic indexing for packed strings
Bille, Philip; Gørtz, Inge Li; Skjoldjensen, Frederik Rye
2017-01-01
Given a string S of length n, the classic string indexing problem is to preprocess S into a compact data structure that supports efficient subsequent pattern queries. In the deterministic variant the goal is to solve the string indexing problem without any randomization (at preprocessing time...... or query time). In the packed variant the strings are stored with several character in a single word, giving us the opportunity to read multiple characters simultaneously. Our main result is a new string index in the deterministic and packed setting. Given a packed string S of length n over an alphabet σ......, we show how to preprocess S in O(n) (deterministic) time and space O(n) such that given a packed pattern string of length m we can support queries in (deterministic) time O (m/α + log m + log log σ), where α = w/log σ is the number of characters packed in a word of size w = θ(log n). Our query time...
Bakir Gizem
2016-01-01
Full Text Available Nuclear spent fuel management is one of the top major subjects in the utilization of nuclear energy. Hence, solutions to this problem have been increasingly researched in recent years. The basic aim of this work is to examine the fissile breeding and transuranic fuel transmutation potentials of a gas cooled accelerator-driven system. In line with this purpose, firstly, the conceptually designed system is optimized by using several target materials and fuel mixtures, from the point of neutronic. Secondly, three different material compositions, namely, pure lead bismuth eutectic (LBE, LBE+natural UO2, and LBE+15 % enrichment UO2, are considered as target material. The target zone is separated to two sub-zones but as one within the other. The outer sub-zone is pure LBE target, and the inner sub-zone is either UO2 or pure LBE target. The UO2 target sub-zone is cooled with helium gas. Finally, the thorium dioxide mixed with transuranic dioxides, discharged from PWR-MOX spent fuel, in pebbles composed of graphite and TRISO-coated spherical fuel particles, is used for breeding fissile fuel and transmuting transuranic fuels. Three different thorium-transuranic mixtures, (Th, PuO2, (Th, CmO2, (Th, Pu, MAO2, are examined with various mixture fractions. The packing fractions of the fuel pebbles in the transmutation core and the tristructural-isotropic coated fuel particles in a pebble are assumed as 60 % and 29 %, respectively. The transmutation core is also cooled with a high-temperature helium coolant. In order to produce high-flux neutrons that penetrate through the transmutation core, the target is exposed to the continuous beams of 1 GeV protons. The computations have been carried out with the high-energy Monte Carlo code MCNPX using the LA150 library. The numerical outcomes show that the examined accelerator-driven system has rather high neutronic data in terms of the energy production and fissile fuel breeding.
Studies on a New Random Packing-Plum Flower Mini Ring%新一代的乱堆填料——梅花扁环
费维扬; 孙兰义; 郭庆丰
2002-01-01
The hydrodynamics and mass transfer of Plum Flower Mini Ring (PFMR), Pall Ring and Intalox Saddle were studied in a 600 mm diameter column with air-oxygen-water system over a wide range of liquid loads. It was shown fiom the experiments that PFMR had much lower resistance, larger throughput and higher mass transfer efficiency than Pall Ring and Intalox Saddle. It was clear from the comparison that existing equations could not predict the performance of packings very well at high liquid loads. Therefore, new semi-empirical equations of pressure drop, flooding gas velocity and height of transfer unit (HTU) were proposed based on the experimental data.
Selection and properties of alternative forming fluids for TRISO fuel kernel production
Baker, M. P. [Colorado School of Mines, Golden, CO (United States); King, J. C. [Colorado School of Mines, Golden, CO (United States); Gorman, B. P. [Colorado School of Mines, Golden, CO (United States); Marshall, Doug W. [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2013-01-01
Current Very High Temperature Reactor (VHTR) designs incorporate TRi-structural ISOtropic (TRISO) fuel, which consists of a spherical fissile fuel kernel surrounded by layers of pyrolytic carbon and silicon carbide. An internal sol-gel process forms the fuel kernel using wet chemistry to produce uranium oxyhydroxide gel spheres by dropping a cold precursor solution into a hot column of trichloroethylene (TCE). Over time, gelation byproducts inhibit complete gelation, and the TCE must be purified or discarded. The resulting TCE waste stream contains both radioactive and hazardous materials and is thus considered a mixed hazardous waste. Changing the forming fluid to a non-hazardous alternative could greatly improve the economics of TRISO fuel kernel production. Selection criteria for a replacement forming fluid narrowed a list of ~10,800 chemicals to yield ten potential replacement forming fluids: 1-bromododecane, 1- bromotetradecane, 1-bromoundecane, 1-chlorooctadecane, 1-chlorotetradecane, 1-iododecane, 1-iodododecane, 1-iodohexadecane, 1-iodooctadecane, and squalane. The density, viscosity, and surface tension for each potential replacement forming fluid were measured as a function of temperature between 25 °C and 80 °C. Calculated settling velocities and heat transfer rates give an overall column height approximation. 1-bromotetradecane, 1-chlorooctadecane, and 1-iodododecane show the greatest promise as replacements, and future tests will verify their ability to form satisfactory fuel kernels.
Selection and properties of alternative forming fluids for TRISO fuel kernel production
Baker, M. P.; King, J. C.; Gorman, B. P.; Marshall, D. W.
2013-01-01
Current Very High Temperature Reactor (VHTR) designs incorporate TRi-structural ISOtropic (TRISO) fuel, which consists of a spherical fissile fuel kernel surrounded by layers of pyrolytic carbon and silicon carbide. An internal sol-gel process forms the fuel kernel using wet chemistry to produce uranium oxyhydroxide gel spheres by dropping a cold precursor solution into a hot column of trichloroethylene (TCE). Over time, gelation byproducts inhibit complete gelation, and the TCE must be purified or discarded. The resulting TCE waste stream contains both radioactive and hazardous materials and is thus considered a mixed hazardous waste. Changing the forming fluid to a non-hazardous alternative could greatly improve the economics of TRISO fuel kernel production. Selection criteria for a replacement forming fluid narrowed a list of ˜10,800 chemicals to yield ten potential replacement forming fluids: 1-bromododecane, 1-bromotetradecane, 1-bromoundecane, 1-chlorooctadecane, 1-chlorotetradecane, 1-iododecane, 1-iodododecane, 1-iodohexadecane, 1-iodooctadecane, and squalane. The density, viscosity, and surface tension for each potential replacement forming fluid were measured as a function of temperature between 25 °C and 80 °C. Calculated settling velocities and heat transfer rates give an overall column height approximation. 1-bromotetradecane, 1-chlorooctadecane, and 1-iodododecane show the greatest promise as replacements, and future tests will verify their ability to form satisfactory fuel kernels.
Shear Properties at the PyC/SiC Interface of TRISO-Coating
Nozawa, Takashi [ORNL; Snead, Lance Lewis [ORNL; Katoh, Yutai [ORNL; Miller, James Henry [ORNL
2007-01-01
The fracture behavior of TRISO-coated fuel particles depends significantly on the shear strength at the interface between the inner pyrolytic carbon (PyC) and silicon carbide (SiC) coatings. In this study, a micro-indentation fiber push-out test was applied to evaluate the interfacial shear properties of a model TRISO-coated tube. Specifically, a non-linear shear-lag model for a transversely isotropic composite material was developed because the existing isotropic models often overestimate the results. In the model, the effects of thermal residual stresses and the roughness-induced clamping stress were considered because of a particular importance. The rigorous model proposed in this study provides more reasonable data on two important interfacial shear parameters: an interfacial debond shear strength and an interfacial friction stress. The modified model gives the interfacial debond shear strength of 180 40 MPa. Such an unusually high interfacial strength, even though the value was comparably lower than that obtained by the existing isotropic model (~280 MPa), could allow significant loads to be transferred between the inner PyC and SiC in application, potentially leading to failure of the SiC layer. On the other hand, the interfacial friction stress of 120 30 MPa was measured. The considerably high friction stress is attributed primarily to the roughness at the cracked interface rather than the thermal effect. PACS: 68.35.Ct; 68.35.Gy; 81.05.Je; 81.70.Bt
Silver (Ag) Transport Mechanisms in TRISO coated particles: A Critical Review
I J van Rooyen; J H Neethling; J A A Engelbrecht; P M van Rooyen; G Strydom
2012-10-01
Transport of 110mAg in the intact SiC layer of TRISO coated particles has been studied for approximately 30 years without arriving at a satisfactory explanation of the transport mechanism. In this paper the possible mechanisms postulated in previous experimental studies, both in-reactor and out-of reactor research environment studies are critically reviewed and of particular interest are relevance to very high temperature gas reactor operating and accident conditions. Among the factors thought to influence Ag transport are grain boundary stoichiometry, SiC grain size and shape, the presence of free silicon, nano-cracks, thermal decomposition, palladium attack, transmutation products, layer thinning and coated particle shape. Additionally new insight to nature and location of fission products has been gained via recent post irradiation electron microscopy examination of TRISO coated particles from the DOE’s fuel development program. The combined effect of critical review and new analyses indicates a direction for investigating possible the Ag transport mechanism including the confidence level with which these mechanisms may be experimentally verified.
Ceramography of Irradiated tristructural isotropic (TRISO) Fuel from the AGR-2 Experiment
Rice, Francine Joyce [Idaho National Lab. (INL), Idaho Falls, ID (United States); Stempien, John Dennis [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2016-09-01
Ceramography was performed on cross sections from four tristructural isotropic (TRISO) coated particle fuel compacts taken from the AGR-2 experiment, which was irradiated between June 2010 and October 2013 in the Advanced Test Reactor (ATR). The fuel compacts examined in this study contained TRISO-coated particles with either uranium oxide (UO2) kernels or uranium oxide/uranium carbide (UCO) kernels that were irradiated to final burnup values between 9.0 and 11.1% FIMA. These examinations are intended to explore kernel and coating morphology evolution during irradiation. This includes kernel porosity, swelling, and migration, and irradiation-induced coating fracture and separation. Variations in behavior within a specific cross section, which could be related to temperature or burnup gradients within the fuel compact, are also explored. The criteria for categorizing post-irradiation particle morphologies developed for AGR-1 ceramographic exams, was applied to the particles in the AGR-2 compacts particles examined. Results are compared with similar investigations performed as part of the earlier AGR-1 irradiation experiment. This paper presents the results of the AGR-2 examinations and discusses the key implications for fuel irradiation performance.
Skerjanc, William F.; Maki, John T.; Collin, Blaise P.; Petti, David A.
2016-02-01
The success of modular high temperature gas-cooled reactors is highly dependent on the performance of the tristructural-isotopic (TRISO) coated fuel particle and the quality to which it can be manufactured. During irradiation, TRISO-coated fuel particles act as a pressure vessel to contain fission gas and mitigate the diffusion of fission products to the coolant boundary. The fuel specifications place limits on key attributes to minimize fuel particle failure under irradiation and postulated accident conditions. PARFUME (an integrated mechanistic coated particle fuel performance code developed at the Idaho National Laboratory) was used to calculate fuel particle failure probabilities. By systematically varying key TRISO-coated particle attributes, failure probability functions were developed to understand how each attribute contributes to fuel particle failure. Critical manufacturing limits were calculated for the key attributes of a low enriched TRISO-coated nuclear fuel particle with a kernel diameter of 425 μm. These critical manufacturing limits identify ranges beyond where an increase in fuel particle failure probability is expected to occur.
Liu, Rongzheng; Liu, Malin; Chang, Jiaxing; Shao, Youlin; Liu, Bing
2015-12-01
Tristructural-isotropic (TRISO) particle has been successful in high temperature gas cooled reactor (HTGR), but an improved design is required for future development. In this paper, the coating layers are reconsidered, and an improved design of TRISO particle with porous SiC inner layer is proposed. Three methods of preparing the porous SiC layer, called high methyltrichlorosilane (MTS) concentration method, high Ar concentration method and hexamethyldisilane (HMDS) method, are experimentally studied. It is indicated that porous SiC layer can be successfully prepared and the density of SiC layer can be adjusted by tuning the preparation parameters. Microstructure and characterization of the improved TRISO coated particle are given based on scanning electron microscope (SEM), X-ray diffraction (XRD), Raman scattering and energy dispersive X-ray (EDX) analysis. It can be found that the improved TRISO coated particle with porous SiC layer can be mass produced successfully. The formation mechanisms of porous SiC layer are also discussed based on the fluidized bed-chemical vapor deposition principle.
Jason M. Harp; Paul A. Demkowicz
2014-10-01
In the High Temperature Gas-Cooled Reactor (HTGR) the TRISO particle fuel serves as the primary fission product containment. However the large number of TRISO particles present in proposed HTGRs dictates that there will be a small fraction (~10^{-4} to 10^{-5}) of as manufactured and in-pile particle failures that will lead to some fission product release. The matrix material surrounding the TRISO particles in fuel compacts and the structural graphite holding the TRISO particles in place can also serve as sinks for containing any released fission products. However data on the migration of solid fission products through these materials is lacking. One of the primary goals of the AGR-3/4 experiment is to study fission product migration from failed TRISO particles in prototypic HTGR components such as structural graphite and compact matrix material. In this work, the potential for a Gamma Emission Computed Tomography (GECT) technique to non-destructively examine the fission product distribution in AGR-3/4 components and other irradiation experiments is explored. Specifically, the feasibility of using the Idaho National Laboratory (INL) Hot Fuels Examination Facility (HFEF) Precision Gamma Scanner (PGS) system for this GECT application is considered. To test the feasibility, the response of the PGS system to idealized fission product distributions has been simulated using Monte Carlo radiation transport simulations. Previous work that applied similar techniques during the AGR-1 experiment will also be discussed as well as planned uses for the GECT technique during the post irradiation examination of the AGR-2 experiment. The GECT technique has also been applied to other irradiated nuclear fuel systems that were currently available in the HFEF hot cell including oxide fuel pins, metallic fuel pins, and monolithic plate fuel.
张秀莉; 张泽廷; 张卫东; 郝欣
2004-01-01
Based on the membrane-based absorption experiment of C02 into water, shell-side flow distribution and mass transfer in a randomly packed hollow fiber module have been analyzed using subchannel model and unsteady penetration mass transfer theory. The cross section of module is subdivided into many small cells which contains only one hollow-fiber. The cross sectional area distribution of these cells is presented by the normal probability density distribution function. It has been obtained that there was a most serious non-ideal flow in shell side at moderate mean packing density, and the large amount of fluid flowed and transferred mass through a small number of large voids. Thus mass transfer process is dominated by the fluid through the larger void area. The mass transfer process in each cell is described by the unsteady penetration theory. The overall mass transfer coefficient equals to the probability addition of the mean mass transfer coefficient in each cell. The comparisons of the values calculated by the model established with the empirical correlations and the experimental data of this work have been done.The predicted overall mass transfer coefficients are in good agreement with experimental data.
Cluster and constraint analysis in tetrahedron packings.
Jin, Weiwei; Lu, Peng; Liu, Lufeng; Li, Shuixiang
2015-04-01
The disordered packings of tetrahedra often show no obvious macroscopic orientational or positional order for a wide range of packing densities, and it has been found that the local order in particle clusters is the main order form of tetrahedron packings. Therefore, a cluster analysis is carried out to investigate the local structures and properties of tetrahedron packings in this work. We obtain a cluster distribution of differently sized clusters, and peaks are observed at two special clusters, i.e., dimer and wagon wheel. We then calculate the amounts of dimers and wagon wheels, which are observed to have linear or approximate linear correlations with packing density. Following our previous work, the amount of particles participating in dimers is used as an order metric to evaluate the order degree of the hierarchical packing structure of tetrahedra, and an order map is consequently depicted. Furthermore, a constraint analysis is performed to determine the isostatic or hyperstatic region in the order map. We employ a Monte Carlo algorithm to test jamming and then suggest a new maximally random jammed packing of hard tetrahedra from the order map with a packing density of 0.6337.
Packed bed reactor for photochemical .sup.196 Hg isotope separation
Grossman, Mark W.; Speer, Richard
1992-01-01
Straight tubes and randomly oriented pieces of tubing having been employed in a photochemical mercury enrichment reactor and have been found to improve the enrichment factor (E) and utilization (U) compared to a non-packed reactor. One preferred embodiment of this system uses a moving bed (via gravity) for random packing.
Production of Low Enriched Uranium Nitride Kernels for TRISO Particle Irradiation Testing
McMurray, J. W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Silva, C. M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Helmreich, G. W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gerczak, T. J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dyer, J. A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Collins, J. L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hunt, R. D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lindemer, T. B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, K. A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2016-06-01
A large batch of UN microspheres to be used as kernels for TRISO particle fuel was produced using carbothermic reduction and nitriding of a sol-gel feedstock bearing tailored amounts of low-enriched uranium (LEU) oxide and carbon. The process parameters, established in a previous study, produced phasepure NaCl structure UN with dissolved C on the N sublattice. The composition, calculated by refinement of the lattice parameter from X-ray diffraction, was determined to be UC_{0.27}N_{0.73}. The final accepted product weighed 197.4 g. The microspheres had an average diameter of 797±1.35 μm and a composite mean theoretical density of 89.9±0.5% for a solid solution of UC and UN with the same atomic ratio; both values are reported with their corresponding calculated standard error.
Development of an Integrated Performance Model for TRISO-Coated Gas Reactor Particle Fuel
Petti, David Andrew; Miller, Gregory Kent; Martin, David George; Maki, John Thomas
2005-05-01
The success of gas reactors depends upon the safety and quality of the coated particle fuel. The understanding and evaluation of this fuel requires development of an integrated mechanistic fuel performance model that fully describes the mechanical and physico-chemical behavior of the fuel particle under irradiation. Such a model, called PARFUME (PARticle Fuel ModEl), is being developed at the Idaho National Engineering and Environmental Laboratory. PARFUME is based on multi-dimensional finite element modeling of TRISO-coated gas reactor fuel. The goal is to represent all potential failure mechanisms and to incorporate the statistical nature of the fuel. The model is currently focused on carbide, oxide nd oxycarbide uranium fuel kernels, while the coating layers are the classical IPyC/SiC/OPyC. This paper reviews the current status of the mechanical aspects of the model and presents results of calculations for irradiations from the New Production Modular High Temperature Gas Reactor program.
Design and fabrication of an advanced TRISO fuel with ZrC coating
Porter, Ian E., E-mail: porteri@email.sc.edu [University of South Carolina, Mechanical Engineering Department, 300 Main Street, Columbia, SC 29208, United Sates (United States); Knight, Travis W., E-mail: knighttw@cec.sc.edu [University of South Carolina, Mechanical Engineering Department, 300 Main Street, Columbia, SC 29208, United Sates (United States); Dulude, Michael C., E-mail: dulude@email.sc.edu [University of South Carolina, Mechanical Engineering Department, 300 Main Street, Columbia, SC 29208, United Sates (United States); Roberts, Elwyn, E-mail: robertse@cec.sc.edu [University of South Carolina, Mechanical Engineering Department, 300 Main Street, Columbia, SC 29208, United Sates (United States); Hobbs, Jim, E-mail: JSHobbs@nuclearfuelservices.com [Nuclear Fuel Services, Inc., 1205 Banner Hill Road, Erwin, TN 37650 (United States)
2013-06-15
Highlights: • Zirconium carbide was deposited on surrogate zirconia and UO{sub 2} kernels. • Deposition rates were found to be dependent on temperature and gas concentration. • Calcining and sintering parameters were optimized to reduce cracking in UO{sub 2} kernel production. -- Abstract: Very high temperature reactors (VHTRs) are expected to achieve coolant outlet temperatures up to 1000 °C, allowing for increased plant efficiency as well as the ability to use the process heat for hydrogen production and various uses in the process chemical industry. The feasibility of using VHTRs as part of the next generation of nuclear reactors greatly depends on the reliability of tri-structural isotropic (TRISO) fuel particles to retain both gaseous and metallic fission products created in irradiated uranium dioxide (UO{sub 2}). This work sought the deposition parameters necessary to produce an additional zirconium carbide (ZrC) layer used in advanced coated particle fuels. The additional ZrC layer will act as an oxygen getter to prevent typical TRISO failure mechanisms including over pressurization of the particle and kernel migration of the kernel within the particle, also known as the amoeba effect. In this study, ZrC coatings were applied to surrogate zirconia kernels as well as UO{sub 2} kernels using a chemical vapor deposition (CVD) fluidized bed reactor, and the deposition characteristics were analyzed via scanning electron microscopy (SEM) techniques. The ZrC layer was confirmed through X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The calcining and sintering of urania kernels for use in these coating experiments is also discussed.
Improved Prediction of the Temperature Feedback in TRISO-Fueled Reactors
Javier Ortensi; Abderrafi M. Ougouag
2009-08-01
The Doppler feedback mechanism is a major contributor to the passive safety of gas-cooled, graphite-moderated high temperature reactors that use fuel based on Tristructural-Isotropic coated particles. It follows that the correct prediction of the magnitude and time-dependence of this feedback effect is essential to the conduct of safety analyses for these reactors. We present a fuel conduction model for obtaining better estimates of the temperature feedback during moderate and fast transients. The fuel model has been incorporated in the CYNOD-THERMIX-KONVEK suite of coupled codes as a single TRISO particle within each calculation cell. The heat generation rate is scaled down from the neutronic solution and a Dirichlet boundary condition is imposed as the bulk graphite temperature from the thermal-hydraulic solution. This simplified approach yields similar results to those obtained with more complex methods, requiring multi-TRISO calculations within one control volume, but with much less computational effort. An analysis of the hypothetical total control ejection in the PBMR-400 design verifies the performance of the code during fast transients. In addition, the analysis of the earthquake-initiated event in the PBMR-400 design verifies the performance of the code during slow transients. These events clearly depict the improvement in the predictions of the fuel temperature, and consequently, of the power escalations. In addition, a brief study of the potential effects of particle layer de-bonding on the transient behavior of high temperature reactors is included. Although the formation of a gap occurs under special conditions its consequences on the dynamic behavior of the reactor should be analyzed. The presence of a gap in the fuel can cause some unusual reactor behavior during fast transients, but still the reactor shuts down due to the strong feedback effects.
Confined disordered strictly jammed binary sphere packings
Chen, D.; Torquato, S.
2015-12-01
Disordered jammed packings under confinement have received considerably less attention than their bulk counterparts and yet arise in a variety of practical situations. In this work, we study binary sphere packings that are confined between two parallel hard planes and generalize the Torquato-Jiao (TJ) sequential linear programming algorithm [Phys. Rev. E 82, 061302 (2010), 10.1103/PhysRevE.82.061302] to obtain putative maximally random jammed (MRJ) packings that are exactly isostatic with high fidelity over a large range of plane separation distances H , small to large sphere radius ratio α , and small sphere relative concentration x . We find that packing characteristics can be substantially different from their bulk analogs, which is due to what we term "confinement frustration." Rattlers in confined packings are generally more prevalent than those in their bulk counterparts. We observe that packing fraction, rattler fraction, and degree of disorder of MRJ packings generally increase with H , though exceptions exist. Discontinuities in the packing characteristics as H varies in the vicinity of certain values of H are due to associated discontinuous transitions between different jammed states. When the plane separation distance is on the order of two large-sphere diameters or less, the packings exhibit salient two-dimensional features; when the plane separation distance exceeds about 30 large-sphere diameters, the packings approach three-dimensional bulk packings. As the size contrast increases (as α decreases), the rattler fraction dramatically increases due to what we call "size-disparity" frustration. We find that at intermediate α and when x is about 0.5 (50-50 mixture), the disorder of packings is maximized, as measured by an order metric ψ that is based on the number density fluctuations in the direction perpendicular to the hard walls. We also apply the local volume-fraction variance στ2(R ) to characterize confined packings and find that these
Diffusion in Jammed Particle Packs.
Bolintineanu, Dan S; Grest, Gary S; Lechman, Jeremy B; Silbert, Leonardo E
2015-08-21
Using random walk simulations we explore diffusive transport through monodisperse sphere packings over a range of packing fractions ϕ in the vicinity of the jamming transition at ϕ(c). Various diffusion properties are computed over several orders of magnitude in both time and packing pressure. Two well-separated regimes of normal "Fickian" diffusion, where the mean squared displacement is linear in time, are observed. The first corresponds to diffusion inside individual spheres, while the latter is the long-time bulk diffusion. The intermediate anomalous diffusion regime and the long-time value of the diffusion coefficient are both shown to be controlled by particle contacts, which in turn depend on proximity to ϕ(c). The time required to recover normal diffusion t* scales as (ϕ-ϕ(c))(-0.5) and the long-time diffusivity D(∞)∼(ϕ-ϕ(c))0.5, or D(∞)∼1/t*. It is shown that the distribution of mean first passage times associated with the escape of random walkers between neighboring particles controls both t* and D(∞) in the limit ϕ→ϕ(c).
Electronically configured battery pack
Kemper, D.
1997-03-01
Battery packs for portable equipment must sometimes accommodate conflicting requirements to meet application needs. An electronically configurable battery pack was developed to support two highly different operating modes, one requiring very low power consumption at a low voltage and the other requiring high power consumption at a higher voltage. The configurable battery pack optimizes the lifetime and performance of the system by making the best use of all available energy thus enabling the system to meet its goals of operation, volume, and lifetime. This paper describes the cell chemistry chosen, the battery pack electronics, and tradeoffs made during the evolution of its design.
Jolly, Brian C [ORNL; Lindemer, Terrence [Harbach Engineering and Solutions; Terrani, Kurt A [ORNL
2015-02-01
In support of fully ceramic matrix (FCM) fuel development, coating development work has begun at the Oak Ridge National Laboratory (ORNL) to produce tri-isotropic (TRISO) coated fuel particles with UN kernels. The nitride kernels are used to increase heavy metal density in these SiC-matrix fuel pellets with details described elsewhere. The advanced gas reactor (AGR) program at ORNL used fluidized bed chemical vapor deposition (FBCVD) techniques for TRISO coating of UCO (two phase mixture of UO_{2} and UC_{x}) kernels. Similar techniques were employed for coating of the UN kernels, however significant changes in processing conditions were required to maintain acceptable coating properties due to physical property and dimensional differences between the UCO and UN kernels.
Leng, B.; van Rooyen, I. J.; Wu, Y. Q.; Szlufarska, I.; Sridharan, K.
2016-07-01
Historic and recent post-irradiation-examination from the German AVR and Advanced Gas Reactor Fuel Development and Qualification Project have shown that 110 m Ag is released from intact tristructural isotropic (TRISO) fuel. Although TRISO fuel particle research has been performed over the last few decades, little is known about how metallic fission products are transported through the SiC layer, and it was not until March 2013 that Ag was first identified in the SiC layer of a neutron-irradiated TRISO fuel particle. The existence of Pd- and Ag-rich grain boundary precipitates, triple junction precipitates, and Pd nano-sized intragranular precipitates in neutron-irradiated TRISO particle coatings was investigated using Scanning Transmission Electron Microscopy and Energy Dispersive Spectroscopy analysis to obtain more information on the chemical composition of the fission product precipitates. A U-rich fission product honeycomb shape precipitate network was found near a micron-sized precipitate in a SiC grain about ∼5 μm from the SiC-inner pyrolytic carbon interlayer, indicating a possible intragranular transport path for uranium. A single Ag-Pd nano-sized precipitate was found inside a SiC grain, and this is the first research showing such finding in irradiated SiC. This finding may possibly suggest a possible Pd-assisted intragranular transport mechanism for Ag and may be related to void or dislocation networks inside SiC grains. Preliminary semi-quantitative analysis indicated the micron-sized precipitates to be Pd2Si2U with carbon existing inside these precipitates. However, the results of such analysis for nano-sized precipitates may be influenced by the SiC matrix. The results reported in this paper confirm the co-existence of Cd with Ag in triple points reported previously.
Oberhofer, Margret; Colpaert, Jozef
2015-01-01
TLC Pack stands for Teaching Languages to Caregivers and is a course designed to support migrants working or hoping to work in the caregiving sector. The TLC Pack resources range from A2 to B2 level of the Common European Framework of Reference for Languages (CEFR), and will be made available online in the six project languages: Dutch, English,…
SPATIAL STATISTICS FOR SIMULATED PACKINGS OF SPHERES
Alexander Bezrukov
2011-05-01
Full Text Available This paper reports on spatial-statistical analyses for simulated random packings of spheres with random diameters. The simulation methods are the force-biased algorithm and the Jodrey-Tory sedimentation algorithm. The sphere diameters are taken as constant or following a bimodal or lognormal distribution. Standard characteristics of spatial statistics are used to describe these packings statistically, namely volume fraction, pair correlation function of the system of sphere centres and spherical contact distribution function of the set-theoretic union of all spheres. Furthermore, the coordination numbers are analysed.
Zhu, Liyang; Duan, Wuhua; Xu, Jingming; Zhu, Yongjun
2012-11-30
High-temperature gas-cooled reactors (HTGRs) are advanced nuclear systems that will receive heavy use in the future. It is important to develop spent nuclear fuel reprocessing technologies for HTGR. A new method for recovering uranium from tristructural-isotropic (TRISO-) coated fuel particles with supercritical CO(2) containing tri-n-butyl phosphate (TBP) as a complexing agent was investigated. TRISO-coated fuel particles from HTGR fuel elements were first crushed to expose UO(2) pellet fuel kernels. The crushed TRISO-coated fuel particles were then treated under O(2) stream at 750°C, resulting in a mixture of U(3)O(8) powder and SiC shells. The conversion of U(3)O(8) into solid uranyl nitrate by its reaction with liquid N(2)O(4) in the presence of a small amount of water was carried out. Complete conversion was achieved after 60 min of reaction at 80°C, whereas the SiC shells were not converted by N(2)O(4). Uranyl nitrate in the converted mixture was extracted with supercritical CO(2) containing TBP. The cumulative extraction efficiency was above 98% after 20 min of online extraction at 50°C and 25 MPa, whereas the SiC shells were not extracted by TBP. The results suggest an attractive strategy for reprocessing spent nuclear fuel from HTGR to minimize the generation of secondary radioactive waste.
Geometrical families of mechanically stable granular packings
Gao, Guo-Jie; Blawzdziewicz, Jerzy; O'Hern, Corey S.
2009-12-01
We enumerate and classify nearly all of the possible mechanically stable (MS) packings of bidipserse mixtures of frictionless disks in small sheared systems. We find that MS packings form continuous geometrical families, where each family is defined by its particular network of particle contacts. We also monitor the dynamics of MS packings along geometrical families by applying quasistatic simple shear strain at zero pressure. For small numbers of particles (N16 , we observe an increase in the period and random splittings of the trajectories caused by bifurcations in configuration space. We argue that the ratio of the splitting and contraction rates in large systems will determine the distribution of MS-packing geometrical families visited in steady state. This work is part of our long-term research program to develop a master-equation formalism to describe macroscopic slowly driven granular systems in terms of collections of small subsystems.
Close packing density of polydisperse hard spheres.
Farr, Robert S; Groot, Robert D
2009-12-28
The most efficient way to pack equally sized spheres isotropically in three dimensions is known as the random close packed state, which provides a starting point for many approximations in physics and engineering. However, the particle size distribution of a real granular material is never monodisperse. Here we present a simple but accurate approximation for the random close packing density of hard spheres of any size distribution based upon a mapping onto a one-dimensional problem. To test this theory we performed extensive simulations for mixtures of elastic spheres with hydrodynamic friction. The simulations show a general (but weak) dependence of the final (essentially hard sphere) packing density on fluid viscosity and on particle size but this can be eliminated by choosing a specific relation between mass and particle size, making the random close packed volume fraction well defined. Our theory agrees well with the simulations for bidisperse, tridisperse, and log-normal distributions and correctly reproduces the exact limits for large size ratios.
Leng, B. [University of Wisconsin-Madison, Madison, WI 53706 (United States); Thorium Molten Salts Reactor Center, Shanghai Institute of Applied Physics, Shanghai, 201800 (China); Rooyen, I.J. van, E-mail: Isabella.vanrooyen@inl.gov [Fuel Design and Development Department, Idaho National Laboratory, Idaho Falls, ID 83415-6188 (United States); Wu, Y.Q. [Department of Materials Science and Engineering, Boise State University, Boise, ID 83725-2090 (United States); Center for Advanced Energy Studies, Idaho Falls, ID 83401 (United States); Szlufarska, I.; Sridharan, K. [University of Wisconsin-Madison, Madison, WI 53706 (United States)
2016-07-15
Historic and recent post-irradiation-examination from the German AVR and Advanced Gas Reactor Fuel Development and Qualification Project have shown that 110 m Ag is released from intact tristructural isotropic (TRISO) fuel. Although TRISO fuel particle research has been performed over the last few decades, little is known about how metallic fission products are transported through the SiC layer, and it was not until March 2013 that Ag was first identified in the SiC layer of a neutron-irradiated TRISO fuel particle. The existence of Pd- and Ag-rich grain boundary precipitates, triple junction precipitates, and Pd nano-sized intragranular precipitates in neutron-irradiated TRISO particle coatings was investigated using Scanning Transmission Electron Microscopy and Energy Dispersive Spectroscopy analysis to obtain more information on the chemical composition of the fission product precipitates. A U-rich fission product honeycomb shape precipitate network was found near a micron-sized precipitate in a SiC grain about ∼5 μm from the SiC-inner pyrolytic carbon interlayer, indicating a possible intragranular transport path for uranium. A single Ag-Pd nano-sized precipitate was found inside a SiC grain, and this is the first research showing such finding in irradiated SiC. This finding may possibly suggest a possible Pd-assisted intragranular transport mechanism for Ag and may be related to void or dislocation networks inside SiC grains. Preliminary semi-quantitative analysis indicated the micron-sized precipitates to be Pd{sub 2}Si{sub 2}U with carbon existing inside these precipitates. However, the results of such analysis for nano-sized precipitates may be influenced by the SiC matrix. The results reported in this paper confirm the co-existence of Cd with Ag in triple points reported previously. - Highlights: • First research data in neutron irradiated TRISO coated particles showing a Ag-Pd nano-sized precipitate inside a SiC grain. • Intragranular Ag Pd
Ortensi, Javier
This investigation is divided into two general topics: (1) a new method for analyzing the safe shutdown earthquake event in a pebble bed reactor core, and (2) the development of an explicit tristructural-isotropic fuel model for high temperature reactors. The safe shutdown earthquake event is one of the design basis accidents for the pebble bed reactor. The new method captures the dynamic geometric compaction of the pebble bed core. The neutronic and thermal-fluids grids are dynamically re-meshed to simulate the re-arrangement of the pebbles in the reactor during the earthquake. Results are shown for the PBMR-400 assuming it is subjected to the Idaho National Laboratory's design basis earthquake. The study concludes that the PBMR-400 can safely withstand the reactivity insertions induced by the slumping of the core and the resulting relative withdrawal of the control rods. This characteristic stems from the large negative Doppler feedback of the fuel. This Doppler feedback mechanism is a major contributor to the passive safety of gas-cooled, graphite-moderated, high-temperature reactors that use fuel based on TRISO particles. The correct prediction of the magnitude and time-dependence of this feedback effect is essential to the conduct of safety analyses for these reactors. An explicit TRISO fuel temperature model named THETRIS has been developed in this work and incorporated in the CYNOD-THERMIX-KONVEK suite of coupled codes. The new model yields similar results to those obtained with more complex methods, requiring multi-TRISO calculations within one control volume. The performance of the code during fast and moderately-slow transients is verified. These analyses show how explicit TRISO models improve the predictions of the fuel temperature, and consequently, of the power escalation. In addition, a brief study of the potential effects on the transient behavior of high-temperature reactors due to the presence of a gap inside the TRISO particles is included
KEY RESULTS FROM IRRADIATION AND POST-IRRADIATION EXAMINATION OF AGR-1 UCO TRISO FUEL
Demkowicz, Paul A.; Hunn, John D.; Petti, David A.; Morris, Robert N.
2016-11-01
The AGR-1 irradiation experiment was performed as the first test of tristructural isotropic (TRISO) fuel in the US Advanced Gas Reactor Fuel Development and Qualification Program. The experiment consisted of 72 right cylinder fuel compacts containing approximately 3×105 coated fuel particles with uranium oxide/uranium carbide (UCO) fuel kernels. The fuel was irradiated in the Advanced Test Reactor for a total of 620 effective full power days. Fuel burnup ranged from 11.3 to 19.6% fissions per initial metal atom and time average, volume average irradiation temperatures of the individual compacts ranged from 955 to 1136°C. This paper focuses on key results from the irradiation and post-irradiation examination, which revealed a robust fuel with excellent performance characteristics under the conditions tested and have significantly improved the understanding of UCO coated particle fuel irradiation behavior within the US program. The fuel exhibited a very low incidence of TRISO coating failure during irradiation and post-irradiation safety testing at temperatures up to 1800°C. Advanced PIE methods have allowed particles with SiC coating failure to be isolated and meticulously examined, which has elucidated the specific causes of SiC failure in these specimens. The level of fission product release from the fuel during irradiation and post-irradiation safety testing has been studied in detail. Results indicated very low release of krypton and cesium through intact SiC and modest release of europium and strontium, while also confirming the potential for significant silver release through the coatings depending on irradiation conditions. Focused study of fission products within the coating layers of irradiated particles down to nanometer length scales has provided new insights into fission product transport through the coating layers and the role various fission products may have on coating integrity. The broader implications of these results and the application of
X-ray Analysis of Defects and Anomalies in AGR-5/6/7 TRISO Particles
Helmreich, Grant W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hunn, John D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Skitt, Darren J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dyer, John A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Schumacher, Austin T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2017-06-01
Coated particle fuel batches J52O-16-93164, 93165, 93166, 93168, 93169, 93170, and 93172 were produced by Babcock and Wilcox Technologies (BWXT) for possible selection as fuel for the Advanced Gas Reactor Fuel Development and Qualification (AGR) Program’s AGR-5/6/7 irradiation test in the Idaho National Laboratory (INL) Advanced Test Reactor (ATR), or may be used for other tests. Each batch was coated in a 150-mm-diameter production-scale fluidized-bed chemical vapor deposition (CVD) furnace. Tristructural isotropic (TRISO) coatings were deposited on 425-μm-nominal-diameter spherical kernels from BWXT lot J52R-16-69317 containing a mixture of 15.4%-enriched uranium carbide and uranium oxide (UCO), with the exception of Batch 93164, which used similar kernels from BWXT lot J52L-16-69316. The TRISO-coatings consisted of a ~50% dense carbon buffer layer with 100-μmnominal thickness, a dense inner pyrolytic carbon (IPyC) layer with 40-μm-nominal thickness, a silicon carbide (SiC) layer with 35-μm-nominal thickness, and a dense outer pyrolytic carbon (OPyC) layer with 40-μm-nominal thickness. Each coated particle batch was sieved to upgrade the particles by removing over-sized and under-sized material, and the upgraded batch was designated by appending the letter A to the end of the batch number (e.g., 93164A). Secondary upgrading by sieving was performed on the upgraded batches to remove specific anomalies identified during analysis for Defective IPyC, and the upgraded batches were designated by appending the letter B to the end of the batch number (e.g., 93165B). Following this secondary upgrading, coated particle composite J52R-16-98005 was produced by BWXT as fuel for the AGR Program’s AGR-5/6/7 irradiation test in the INL ATR. This composite was comprised of coated particle fuel batches J52O-16-93165B, 93168B, 93169B, and 93170B.
Gaines, J. C.; Clark, A. H.; Regan, L.; O'Hern, C. S.
2017-07-01
Proteins are biological polymers that underlie all cellular functions. The first high-resolution protein structures were determined by x-ray crystallography in the 1960s. Since then, there has been continued interest in understanding and predicting protein structure and stability. It is well-established that a large contribution to protein stability originates from the sequestration from solvent of hydrophobic residues in the protein core. How are such hydrophobic residues arranged in the core; how can one best model the packing of these residues, and are residues loosely packed with multiple allowed side chain conformations or densely packed with a single allowed side chain conformation? Here we show that to properly model the packing of residues in protein cores it is essential that amino acids are represented by appropriately calibrated atom sizes, and that hydrogen atoms are explicitly included. We show that protein cores possess a packing fraction of φ ≈ 0.56 , which is significantly less than the typically quoted value of 0.74 obtained using the extended atom representation. We also compare the results for the packing of amino acids in protein cores to results obtained for jammed packings from discrete element simulations of spheres, elongated particles, and composite particles with bumpy surfaces. We show that amino acids in protein cores pack as densely as disordered jammed packings of particles with similar values for the aspect ratio and bumpiness as found for amino acids. Knowing the structural properties of protein cores is of both fundamental and practical importance. Practically, it enables the assessment of changes in the structure and stability of proteins arising from amino acid mutations (such as those identified as a result of the massive human genome sequencing efforts) and the design of new folded, stable proteins and protein-protein interactions with tunable specificity and affinity.
Graphitic packing removal tool
Meyers, K.E.; Kolsun, G.J.
1996-12-31
Graphitic packing removal tools are described for removal of the seal rings in one piece from valves and pumps. The packing removal tool has a cylindrical base ring the same size as the packing ring with a surface finish, perforations, knurling or threads for adhesion to the seal ring. Elongated leg shanks are mounted axially along the circumferential center. A slit or slits permit insertion around shafts. A removal tool follower stabilizes the upper portion of the legs to allow a spanner wrench to be used for insertion and removal.
Optimal Packed String Matching
Ben-Kiki, Oren; Bille, Philip; Breslauer, Dany
2011-01-01
In the packed string matching problem, each machine word accommodates – characters, thus an n-character text occupies n/– memory words. We extend the Crochemore-Perrin constantspace O(n)-time string matching algorithm to run in optimal O(n/–) time and even in real-time, achieving a factor – speedup...... over traditional algorithms that examine each character individually. Our solution can be efficiently implemented, unlike prior theoretical packed string matching work. We adapt the standard RAM model and only use its AC0 instructions (i.e., no multiplication) plus two specialized AC0 packed string...
Statistical characterization of microstructure of packings of polydisperse hard cubes
Malmir, Hessam; Sahimi, Muhammad; Rahimi Tabar, M. Reza
2017-05-01
Polydisperse packings of cubic particles arise in several important problems. Examples include zeolite microcubes that represent catalytic materials, fluidization of such microcubes in catalytic reactors, fabrication of new classes of porous materials with precise control of their morphology, and several others. We present the results of detailed and extensive simulation and microstructural characterization of packings of nonoverlapping polydisperse cubic particles. The packings are generated via a modified random sequential-addition algorithm. Two probability density functions (PDFs) for the particle-size distribution, the Schulz and log-normal PDFs, are used. The packings are analyzed, and their random close-packing density is computed as a function of the parameters of the two PDFs. The maximum packing fraction for the highest degree of polydispersivity is estimated to be about 0.81, much higher than 0.57 for the monodisperse packings. In addition, a variety of microstructural descriptors have been calculated and analyzed. In particular, we show that (i) an approximate analytical expression for the structure factor of Percus-Yevick fluids of polydisperse hard spheres with the Schulz PDF also predicts all the qualitative features of the structure factor of the packings that we study; (ii) as the packings become more polydisperse, their behavior resembles increasingly that of an ideal system—"ideal gas"—with little or no correlations; and (iii) the mean survival time and mean relaxation time of a diffusing species in the packings increase with increasing degrees of polydispersivity.
Optimized packings with applications
Pintér, János
2015-01-01
This volume presents a selection of case studies that address a substantial range of optimized object packings (OOP) and their applications. The contributing authors are well-recognized researchers and practitioners. The mathematical modelling and numerical solution aspects of each application case study are presented in sufficient detail. A broad range of OOP problems are discussed: these include various specific and non-standard container loading and object packing problems, as well as the stowing of hazardous and other materials on container ships, data centre resource management, automotive engineering design, space station logistic support, cutting and packing problems with placement constraints, the optimal design of LED street lighting, robust sensor deployment strategies, spatial scheduling problems, and graph coloring models and metaheuristics for packing applications. Novel points of view related to model development and to computational nonlinear, global, mixed integer optimization and heuristic st...
Weber, Rainer K.
2009-01-01
Full Text Available Nasal packs are indispensable in ENT practice. This study reviews current indications, effectiveness and risks of nasal packs and stents. In endoscopic surgery, nasal packs should always have smooth surfaces to minimize mucosal damage, improve wound healing and increase patient comfort. Functional endoscopic endonasal sinus surgery allows the use of modern nasal packs, since pressure is no longer required. So called hemostatic/resorbable materials are a first step in this direction. However, they may lead to adhesions and foreign body reactions in mucosal membranes. Simple occlusion is an effective method for creating a moist milieu for improved wound healing and avoiding dryness. Stenting of the frontal sinus is recommended if surgery fails to produce a wide, physiologically shaped drainage path that is sufficiently covered by intact tissue.
David Dennis
2005-01-01
Full Text Available Given a bounded sequence of integers {d0,d1,d2,…}, 6≤dn≤M, there is an associated abstract triangulation created by building up layers of vertices so that vertices on the nth layer have degree dn. This triangulation can be realized via a circle packing which fills either the Euclidean or the hyperbolic plane. We give necessary and sufficient conditions to determine the type of the packing given the defining sequence {dn}.
Pharyngeal Packing during Rhinoplasty: Advantages and Disadvantages
Majid Razavi
2015-11-01
Full Text Available Introduction: Controversy remains as to the advantages and disadvantages of pharyngeal packing during septorhinoplasty. Our study investigated the effect of pharyngeal packing on postoperative nausea and vomiting and sore throat following this type of surgery or septorhinoplasty. Materials and Methods: This clinical trial was performed on 90 American Society of Anesthesiologists (ASA I or II patients who were candidates for septorhinoplasty. They were randomly divided into two groups. Patients in the study group had received pharyngeal packing while those in the control group had not. The incidence of nausea and vomiting and sore throat based on the visual analog scale (VAS was evaluated postoperatively in the recovery room as well as at 2, 6 and 24 hours. Results: The incidence of postoperative nausea and vomiting (PONV was 12.3%, with no significant difference between the study and control groups. Sore throat was reported in 50.5% of cases overall (56.8% on pack group and 44.4% on control. Although the severity of pain was higher in the study group at all times, the incidence in the two groups did not differ significantly. Conclusion: The use of pharyngeal packing has no effect in reducing the incidence of nausea and vomiting and sore throat after surgery. Given that induced hypotension is used as the routine method of anesthesia in septorhinoplasty surgery, with a low incidence of hemorrhage and a high risk of unintended retention of pharyngeal packing, its routine use is not recommended for this procedure.
Patchy particle packing under electric fields.
Song, Pengcheng; Wang, Yufeng; Wang, Yu; Hollingsworth, Andrew D; Weck, Marcus; Pine, David J; Ward, Michael D
2015-03-01
Colloidal particles equipped with two, three, or four negatively charged patches, which endow the particles with 2-fold, 3-fold, or tetrahedral symmetries, form 1D chains, 2D layers, and 3D packings when polarized by an AC electric field. Two-patch particles, with two patches on opposite sides of the particle (2-fold symmetry) pack into the cmm plane group and 3D packings with I4mm space group symmetry, in contrast to uncharged spherical or ellipsoidal colloids that typically crystallize into a face-centered ABC layer packing. Three-patch particles (3-fold symmetry) form chains having a 21 screw axis symmetry, but these chains pair in a manner such that each individual chain has one-fold symmetry but the pair has 21 screw axis symmetry, in an arrangement that aligns the patches that would favor Coulombic interactions along the chain. Surprisingly, some chain pairs form unanticipated double-helix regions that result from mutual twisting of the chains about each other, illustrating a kind of polymorphism that may be associated with nucleation from short chain pairs. Larger 2D domains of the three-patch particles crystallize in the p6m plane group with alignment (with respect to the field) and packing densities that suggest random disorder in the domains, whereas four-patch particles form 2D domains in which close-packed rows are aligned with the field.
Formation and liquid permeability of dense colloidal cube packings
Castillo, Sonja I R; Thies-Weesie, Dominique M E; Philipse, Albert P.
2015-01-01
The liquid permeability of dense random packings of cubic colloids with rounded corners is studied for solid hematite cubes and hollow microporous silica cubes. The permeabilities of these two types of packings are similar, confirming that the micropores in the silica shell of the hollow cubes do
Bari, Klaudio, E-mail: klaudiobari@icloud.com [School of Mechanical, Aerospace and Civil Engineering (MACE), University of Manchester, Pariser Building, Manchester M60 1QD (United Kingdom); Osarinmwian, Charles [School of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); López-Honorato, Eddie [Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav), Unidad Saltillo, Av. Industria Metalúrgica 1062, Ramos Arizpe, Coahuila 25900 (Mexico); Abram, Timothy J. [School of Mechanical, Aerospace and Civil Engineering (MACE), University of Manchester, Pariser Building, Manchester M60 1QD (United Kingdom)
2013-12-15
Highlights: • Identification of the porosity in 3D using Image Based Modelling (IBM). • The porosity volume fractions are varied 15.2–25.9 vol% in TRISO particles. • Comparison of IBM results with mercury intrusion and helium pycnometry. • The porosity in TRISO reduces the thermal diffusivity by factor 79–88%. • Open and closed pores can be identified using IBM. - Abstract: A heat transfer model for a Tri-structural Isotropic (TRISO) coated fuel particle was developed using Image Based Modelling (IBM). Computed X-ray tomography at a resolution of 0.7 μm was used to quantify the porosity of each layer. In order to study the thermal diffusivity of these coatings, an internal heat pulse was simulated in the kernel and the temperature, as a function of time, was measured from the surface of the Outer Pyrolitic Carbon (OPyC). Consequently, the half rise time of the temperature increase was found. The novel idea behind this technique is that once a heat pulse propagates through the particle layers, the half rise time of the temperature can be obtained from different spots on the OPyC surface. The article presents a correlation between the pore size distribution (measured by X-ray tomography) and the relative thermal diffusivity. The average porosities in OPyC (relative to the volume of the ceramic coating) measured using helium pycnometry, mercury intrusion porosimetry and X-ray tomography were 12.3 vol%, 9.0 vol% and 11.1 vol%, respectively.
Pesaran, Ahmad
2016-06-14
This presentation describes the thermal design of battery packs at the National Renewable Energy Laboratory. A battery thermal management system essential for xEVs for both normal operation during daily driving (achieving life and performance) and off-normal operation during abuse conditions (achieving safety). The battery thermal management system needs to be optimized with the right tools for the lowest cost. Experimental tools such as NREL's isothermal battery calorimeter, thermal imaging, and heat transfer setups are needed. Thermal models and computer-aided engineering tools are useful for robust designs. During abuse conditions, designs should prevent cell-to-cell propagation in a module/pack (i.e., keep the fire small and manageable). NREL's battery ISC device can be used for evaluating the robustness of a module/pack to cell-to-cell propagation.
Srivastava, V.C.; Wollan, J.J.
1990-07-24
This patent describes a superconducting switch pack at least one switch element. The switch element including a length of superconductive wire having a switching portion and two lead portions, the switching portion being between the lead portions; means for supporting the switching portion in a plane in a common mold; hardened resin means encapsulating the switching portion in the plane in a solid body; wherein the solid body has an exterior surface which is planar and substantially parallel with and spaced apart from the plane in which the switching portion is positioned. The exterior surface being exposed to the exterior of the switch pack and the resin means filling the space between the exterior surface and the plane of the switching portion so as to provide uninterrupted thermal communication between the plane of the switching portion and the exterior of the switch pack; and a heater element in thermal contact with the switching portion.
The effect of nanoparticle packing on capacitive electrode performance.
Lee, Younghee; Noh, Seonmyeong; Kim, Min-Sik; Kong, Hye Jeong; Im, Kyungun; Kwon, Oh Seok; Kim, Sungmin; Yoon, Hyeonseok
2016-06-09
Nanoparticles pack together to form macro-scale electrodes in various types of devices, and thus, optimization of the nanoparticle packing is a prerequisite for the realization of a desirable device performance. In this work, we provide in-depth insight into the effect of nanoparticle packing on the performance of nanoparticle-based electrodes by combining experimental and computational findings. As a model system, polypyrrole nanospheres of three different diameters were used to construct pseudocapacitive electrodes, and the performance of the electrodes was examined at various nanosphere diameter ratios and mixed weight fractions. Two numerical algorithms are proposed to simulate the random packing of the nanospheres on the electrode. The binary nanospheres exhibited diverse, complicated packing behaviors compared with the monophasic packing of each nanosphere species. The packing of the two nanosphere species with lower diameter ratios at an optimized composition could lead to more dense packing of the nanospheres, which in turn could contribute to better device performance. The dense packing of the nanospheres would provide more efficient transport pathways for ions because of the reduced inter-nanosphere pore size and enlarged surface area for charge storage. Ultimately, it is anticipated that our approach can be widely used to define the concept of "the best nanoparticle packing" for desirable device performance.
An efficient block-discriminant identification of packed malware
Smita Naval; Vijay Laxmi; Manoj Singh Gaur; P Vinod
2015-08-01
Advanced persistent attacks, incorporated by sophisticated malware, are on the rise against hosts, user applications and utility software. Modern malware hide their malicious payload by applying packing mechanism. Packing tools instigate code encryption to protect the original malicious payload. Packing is employed in tandem with code obfuscation/encryption/compression to create malware variants. Despite being just a variant of known malware, the packed malware invalidates the traditional signature based malware detection as packing tools create an envelope of packer code around the original base malware. Therefore, unpacking becomes a mandatory phase prior to anti-virus scanning for identifying the known malware hidden behind packing layers. Existing techniques of unpacking solutions increase execution overhead of AV scanners in terms of time. This paper illustrates an easy to use approach which works in two phases to reduce this overhead. The first phase (ESCAPE) discriminates the packed code from the native code (non-packed) by using random block entropy. The second phase (PEAL) validates inferences of ESCAPE by employing bi-classification (packed vs native) model using relevant hex byte features extracted blockwise. The proposed approach is able to shrink the overall execution time of AV scanners by filtering out native samples and avoiding excessive unpacking overhead. Our method has been evaluated against a set consisting of real packed instances of malware and benign programs.
Lee, Bum Han; Lee, Sung Keun
2013-07-01
Despite the importance of understanding and quantifying the microstructure of porous networks in diverse geologic settings, the effects of the specific surface area and porosity on the key structural parameters of the networks have not been fully understood. We performed cube-counting fractal dimension (Dcc) and lacunarity analyses of 3D porous networks of model sands and configurational entropy analysis of 2D cross sections of model sands using random packing simulations and nuclear magnetic resonance (NMR) micro-imaging. We established relationships among porosity, specific surface area, structural parameters (Dcc and lacunarity), and the corresponding macroscopic properties (configurational entropy and permeability). The Dcc of the 3D porous networks increases with increasing specific surface area at a constant porosity and with increasing porosity at a constant specific surface area. Predictive relationships correlating Dcc, specific surface area, and porosity were also obtained. The lacunarity at the minimum box size decreases with increasing porosity, and that at the intermediate box size (∼0.469 mm in the current model sands) was reproduced well with specific surface area. The maximum configurational entropy increases with increasing porosity, and the entropy length of the pores decreases with increasing specific surface area and was used to calculate the average connectivity among the pores. The correlation among porosity, specific surface area, and permeability is consistent with the prediction from the Kozeny-Carman equation. From the relationship between the permeability and the Dcc of pores, the permeability can be expressed as a function of the Dcc of pores and porosity. The current methods and these newly identified correlations among structural parameters and properties provide improved insights into the nature of porous media and have useful geophysical and hydrological implications for elasticity and shear viscosity of complex composites of rock
The exact packing measure of L\\'evy trees
Duquesne, Thomas
2010-01-01
We study fine properties of L\\'evy trees that are random compact metric spaces introduced by Le Gall and Le Jan in 1998 as the genealogy of continuous state branching processes. L\\'evy trees are the scaling limits of Galton-Watson trees and they generalize Aldous's continuum random tree which corresponds to the Brownian case. In this paper we prove that L\\'evy trees have always an exact packing measure: We explicitely compute the packing gauge function and we prove that the corresponding packing measure coincides with the mass measure up to a multiplicative constant.
Graham, Alan; Graham, Louise
2003-01-01
Describes a very successful attempt to teach fractions to year 5 pupils based on pupils making their own fraction pack. Children decided for themselves how to make the fractional slices used in the activity using colored cardboard sheets and templates of a paper circle consisting of 24 equal slices. (Author/NB)
Baker, M.P. [Nuclear Science and Engineering Program, Metallurgical and Materials Engineering Department, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401 (United States); King, J.C., E-mail: kingjc@mines.edu [Nuclear Science and Engineering Program, Metallurgical and Materials Engineering Department, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401 (United States); Gorman, B.P. [Metallurgical and Materials Engineering Department, Colorado Center for Advanced Ceramics, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401 (United States); Braley, J.C. [Nuclear Science and Engineering Program, Chemistry and Geochemistry Department, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401 (United States)
2015-03-15
Highlights: • YSZ TRISO kernels formed in three alternative, non-hazardous forming fluids. • Kernels characterized for size, shape, pore/grain size, density, and composition. • Bromotetradecane is suitable for further investigation with uranium-based precursor. - Abstract: Current methods of TRISO fuel kernel production in the United States use a sol–gel process with trichloroethylene (TCE) as the forming fluid. After contact with radioactive materials, the spent TCE becomes a mixed hazardous waste, and high costs are associated with its recycling or disposal. Reducing or eliminating this mixed waste stream would not only benefit the environment, but would also enhance the economics of kernel production. Previous research yielded three candidates for testing as alternatives to TCE: 1-bromotetradecane, 1-chlorooctadecane, and 1-iodododecane. This study considers the production of yttria-stabilized zirconia (YSZ) kernels in silicone oil and the three chosen alternative formation fluids, with subsequent characterization of the produced kernels and used forming fluid. Kernels formed in silicone oil and bromotetradecane were comparable to those produced by previous kernel production efforts, while those produced in chlorooctadecane and iodododecane experienced gelation issues leading to poor kernel formation and geometry.
Javier Ortensi; Abderrafi M Ougouag
2009-07-01
The Doppler feedback mechanism is a major contributor to the passive safety of gas-cooled, graphite-moderated high temperature reactors that use fuel based on Tristructural-Isotropic coated particles. It follows that the correct prediction of the magnitude and time-dependence of this feedback effect is essential to the conduct of safety analyses for these reactors. We present a fuel conduction model for obtaining better estimates of the temperature feedback during moderate and fast transients. The fuel model has been incorporated in the CYNOD-THERMIX-KONVEK suite of coupled codes as a single TRISO particle within each calculation cell. The heat generation rate is scaled down from the neutronic solution and a Dirichlet boundary condition is imposed as the bulk graphite temperature from the thermal-hydraulic solution. This simplified approach yields similar results to those obtained with more complex methods, requiring multi-TRISO calculations within one control volume, but with much less computational effort. We provide an analysis of the hypothetical total control ejection event in the PBMR-400 design that clearly depicts the improvement in the predictions of the fuel temperature.
Biswas, Pratim; Al-Dahhan, Muthanna
2012-11-01
Tri-isotropic (TRISO) fuel particle coating is critical for the future use of nuclear energy produced byadvanced gas reactors (AGRs). The fuel kernels are coated using chemical vapor deposition in a spouted fluidized bed. The challenges encountered in operating TRISO fuel coaters are due to the fact that in modern AGRs, such as High Temperature Gas Reactors (HTGRs), the acceptable level of defective/failed coated particles is essentially zero. This specification requires processes that produce coated spherical particles with even coatings having extremely low defect fractions. Unfortunately, the scale-up and design of the current processes and coaters have been based on empirical approaches and are operated as black boxes. Hence, a voluminous amount of experimental development and trial and error work has been conducted. It has been clearly demonstrated that the quality of the coating applied to the fuel kernels is impacted by the hydrodynamics, solids flow field, and flow regime characteristics of the spouted bed coaters, which themselves are influenced by design parameters and operating variables. Further complicating the outlook for future fuel-coating technology and nuclear energy production is the fact that a variety of new concepts will involve fuel kernels of different sizes and with compositions of different densities. Therefore, without a fundamental understanding the underlying phenomena of the spouted bed TRISO coater, a significant amount of effort is required for production of each type of particle with a significant risk of not meeting the specifications. This difficulty will significantly and negatively impact the applications of AGRs for power generation and cause further challenges to them as an alternative source of commercial energy production. Accordingly, the proposed work seeks to overcome such hurdles and advance the scale-up, design, and performance of TRISO fuel particle spouted bed coaters. The overall objectives of the proposed work are
Biswas, Pratim; Al-Dahhan, Muthanna
2012-11-01
Tri-isotropic (TRISO) fuel particle coating is critical for the future use of nuclear energy produced byadvanced gas reactors (AGRs). The fuel kernels are coated using chemical vapor deposition in a spouted fluidized bed. The challenges encountered in operating TRISO fuel coaters are due to the fact that in modern AGRs, such as High Temperature Gas Reactors (HTGRs), the acceptable level of defective/failed coated particles is essentially zero. This specification requires processes that produce coated spherical particles with even coatings having extremely low defect fractions. Unfortunately, the scale-up and design of the current processes and coaters have been based on empirical approaches and are operated as black boxes. Hence, a voluminous amount of experimental development and trial and error work has been conducted. It has been clearly demonstrated that the quality of the coating applied to the fuel kernels is impacted by the hydrodynamics, solids flow field, and flow regime characteristics of the spouted bed coaters, which themselves are influenced by design parameters and operating variables. Further complicating the outlook for future fuel-coating technology and nuclear energy production is the fact that a variety of new concepts will involve fuel kernels of different sizes and with compositions of different densities. Therefore, without a fundamental understanding the underlying phenomena of the spouted bed TRISO coater, a significant amount of effort is required for production of each type of particle with a significant risk of not meeting the specifications. This difficulty will significantly and negatively impact the applications of AGRs for power generation and cause further challenges to them as an alternative source of commercial energy production. Accordingly, the proposed work seeks to overcome such hurdles and advance the scale-up, design, and performance of TRISO fuel particle spouted bed coaters. The overall objectives of the proposed work are
Mokoduwe, SM
2010-10-01
Full Text Available -Isotropic (TRISO) Coated Particles (CPs) in a graphite matrix with the SiC layer being the main barrier to fission and transmutation products. The integrity of the CP three layer system namely, Inner Pyrolytic Carbon- Silicon carbide- Outer Pyrolytic Carbon (IPy...
Abunaemeh, Malek; Seif, Mohamed; Elsamadicy, Abdalla; Ila, Daryush
2012-08-01
Tristructural isotropic (TRISO) fuel is considered as the fuel design of choice for the next generation of nuclear reactors (Generation IV). Its design consists of a fuel kernel of UO x coated with several layers having different functions. One of these functions is a containment shell/diffusion barrier for the fission fragments. Normally, the material of choice for this shell is pyrolytic carbon (PyC). The material does not offer a perfect barrier, due to its inherent crystalline structure, which is planar (like graphite) and therefore impossible to mold in one continuous sheet around the spherical fuel bead. Plane boundaries allow fragment diffusion at a much higher rate than through the plane. In this study, we investigate the possibility of replacing PyC with a different form of carbon, glassy polymeric carbon (GPC). We prepared samples of GPC and studied the evolution of their physical properties and structure as a function of the radiation environment that they were exposed to. The temperature at which the samples were held during irradiation was very similar to the Generation IV nuclear reactor (∼1000°C). During the fission of U235, the fission fragment mass distribution has two maxima around 98 and 137 amu, which would best correspond to elements Rb and Cs, respectively. However, both ions are hard to produce from our SNICS ion source at the Center for Irradiation of Materials; therefore, we used 107Ag and 197Au as best replacements. The irradiation sessions consisted in various fluences of 5 MeV Ag, and 5 MeV Au. For elemental sample analysis, we used transmission electron microscopy. For mechanical analysis, we used nano-indentation. It is of prime importance to measure the penetration of the implanted 107Ag.and 197Au and the evolution of mechanical properties of GPC irradiated with these ions. A procedure for manufacturing GPC with analysis is presented. This will show how the GPC structure differs as the temperature that it is prepared at increases
Andersen, Henrik; Ritter, Thomas
Ever seen a growth strategies fail because it was not connect ed to the firm’s customer base? Or a customer relationship strategy falters just because it was the wrong thing to do with that given customer? This article presents the six pack model, a tool that makes growth profitable and predictable....... Not all customers can and should grow – thus a firm needs to classify its customers in order to implement the right customer strategy....
尹晔东; 王运东; 费维扬
2001-01-01
@@ INTRODUCTION Random packing is widely used in many unit operations[1].Flow field inside a random packed bed affects the hydrodynamic and mass transfer efficiency.Study on the flow field of random packing is essential for improving hydrodynamic and mass transfer performance,while flow field investigation of single SMR packing is a foundation for random packed bed.Computational fluid dynamics (CFD)[2] may best serve for this purpose.
Barrier properties of k-mer packings
Lebovka, N.; Khrapatiy, S.; Vygornitskyi; Pivovarova, N.
2014-08-01
This work discusses numerical studies of the barrier properties of k-mer packings by the Monte Carlo method. The studied variants of regular and non-regular arrangements on a square lattice included models of random sequential adsorption (RSA) and random deposition (RD). The discrete problem of diffusion through the bonds of a square lattice was considered. The k-mers were perfectly oriented perpendicular to the diffusion direction and blocked certain fraction of bonds fb against diffusion. The barrier efficiency was estimated by calculation of the ratio D/Do where D is diffusion coefficient in direction perpendicular to the orientation of k-mers and Do is the same value for diffusion on the square lattice without blocked bonds, i.e., at fb=0. The value of k varied from 1 to 512 and different lattice sizes up to L=8192 lattice units were used. For dense packings (p=1), the obtained D/Do versus fb dependences deviated from the theoretical prediction of effective medium (EM) theory and deviation was the most obvious for the regular non-staggered arrangement. For loose RSA and RD packings, the percolation like-behavior of D/Do with threshold at fb=p∞ was observed and the data evidenced that their barrier properties at large values of k may be more effective than those of some dense packings. Such anomalous behavior can reflect the details of k-mer spatial organization (aggregation) and structure of pores in RD and RSA packings. The contradictions between simulation data and predictions of EM theory were also discussed.
Heuristics for Multidimensional Packing Problems
Egeblad, Jens
In this thesis we consider solution methods for packing problems. Packing problems occur in many different situations both directly in the industry and as sub-problems of other problems. High-quality solutions for problems in the industrial sector may be able to reduce transportation and production...... costs significantly. For packing problems in general are given a set of items and one of more containers. The items must be placed within the container such that some objective is optimized and the items do not overlap. Items and container may be rectangular or irregular (e.g. polygons and polyhedra...... methods. Two important problem variants are the knapsack packing problem and the strip-packing problem. In the knapsack packing problem, each item is given a profit value, and the problem asks for the subset with maximal profit that can be placed within one container. The strip-packing problem asks...
New bounds for multi-dimensional packing
Seiden, S.; Stee, van, Rob
2001-01-01
New upper and lower bounds are presented for a multi-dimensional generalization of bin packing called box packing. Several variants of this problem, including bounded space box packing, square packing, variable sized box packing and resource augmented box packing are also studied. The main results, stated for d=2, are as follows: A new upper bound of 2.66013 for online box packing, a new $14/9 + varepsilon$ polynomial time offline approximation algorithm for square packing, a new upper bound ...
Dumitrescu, Adrian
2011-01-01
Let $S$ be a set of $n$ points in the unit square $[0,1]^2$, one of which is the origin. We construct $n$ pairwise interior-disjoint axis-aligned empty rectangles such that the lower left corner of each rectangle is a point in $S$, and the rectangles jointly cover at least a positive constant area (about 0.09). This is a first step towards the solution of a longstanding conjecture that the rectangles in such a packing can jointly cover an area of at least 1/2.
Packing ellipsoids with overlap
Uhler, Caroline
2012-01-01
The problem of packing ellipsoids of different sizes and shapes into an ellipsoidal container so as to minimize a measure of overlap between ellipsoids is considered. A bilevel optimization formulation is given, together with an algorithm for the general case and a simpler algorithm for the special case in which all ellipsoids are in fact spheres. Convergence results are proved and computational experience is described and illustrated. The motivating application - chromosome organization in the human cell nucleus - is discussed briefly, and some illustrative results are presented.
New bounds for multi-dimensional packing
S. Seiden; R. van Stee (Rob)
2001-01-01
textabstractNew upper and lower bounds are presented for a multi-dimensional generalization of bin packing called box packing. Several variants of this problem, including bounded space box packing, square packing, variable sized box packing and resource augmented box packing are also studied. The
New bounds for multi-dimensional packing
Seiden, S.; Stee, R. van
2001-01-01
New upper and lower bounds are presented for a multi-dimensional generalization of bin packing called box packing. Several variants of this problem, including bounded space box packing, square packing, variable sized box packing and resource augmented box packing are also studied. The main results,
UNIFORM PACKING DIMENSION RESULTS FOR MULTIPARAMETER STABLE PROCESSES
无
2007-01-01
In this article, authors discuss the problem of uniform packing dimension of the image set of multiparameter stochastic processes without random uniform H(o)lder condition, and obtain the uniform packing dimension of multiparameter stable processes.If Z is a stable (N, d, α)-process and αN ≤ d, then the following holds with probability 1 Dim Z(E) = α DimE for any Borel setE ∈ B(R+N),where Z(E) = {x: (E) t ∈ E, Z(t) = x}. Dim(E) denotes the packing dimension of E.
Simulated fission product-SiC interaction in Triso-coated LEU or MEU HTGR fuel particles
Pearson, R.L.; Lindemer, T.B.; Beahm, E.C.
1980-11-01
Proliferation issues relating to the use of highly enriched uranium (HEU) have led to an evaluation of the fission product-SiC interaction problems that might arise if low enriched uranium (LEU) or medium enriched uranium (MEU) were used as fissile fuel in HTGR systems. Simulated Triso-coated UO/sub 2/, UC/sub 2/, and UO/sub 2//UC/sub 2/ particles mixed with varying amounts of Mo, Ru, Rh, Pd, Ag, and Cd were prepared. These fission products were chosen because, after full burnup, their concentrations are higher in LEU and MEU fuels than in HEU fuel. After the particles were heat treated in the laboratory, their behavior was examined by use of metallography, scanning electron microscopy, and electron microprobe x-ray analysis.
Baker, M. P.; King, J. C.; Gorman, B. P.; Braley, J. C.
2015-03-01
Current methods of TRISO fuel kernel production in the United States use a sol-gel process with trichloroethylene (TCE) as the forming fluid. After contact with radioactive materials, the spent TCE becomes a mixed hazardous waste, and high costs are associated with its recycling or disposal. Reducing or eliminating this mixed waste stream would not only benefit the environment, but would also enhance the economics of kernel production. Previous research yielded three candidates for testing as alternatives to TCE: 1-bromotetradecane, 1-chlorooctadecane, and 1-iodododecane. This study considers the production of yttria-stabilized zirconia (YSZ) kernels in silicone oil and the three chosen alternative formation fluids, with subsequent characterization of the produced kernels and used forming fluid. Kernels formed in silicone oil and bromotetradecane were comparable to those produced by previous kernel production efforts, while those produced in chlorooctadecane and iodododecane experienced gelation issues leading to poor kernel formation and geometry.
Van Rooyen, Isabella Johanna [Idaho National Lab. (INL), Idaho Falls, ID (United States); Demkowicz, Paul Andrew [Idaho National Lab. (INL), Idaho Falls, ID (United States); Riesterer, Jessica Lori [Idaho National Lab. (INL), Idaho Falls, ID (United States); Miller, Brandon Douglas [Idaho National Lab. (INL), Idaho Falls, ID (United States); Janney, Dawn Elizabeth [Idaho National Lab. (INL), Idaho Falls, ID (United States); Harp, Jason Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ploger, Scott Arden [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2012-12-01
The electron microscopic examination of selected irradiated TRISO coated particles of the AGR-1 experiment of fuel compact 6-3-2 are presented in this report. Compact 6-3-2 refers to the compact in Capsule 6 at level 3 of Stack 2. The fuel used in capsule 6 compacts, are called the “baseline” fuel as it is fabricated with refined coating process conditions used to fabricate historic German fuel, because of its excellent irradiation performance with UO2 kernels. The AGR-1 fuel is however made of low-enriched uranium oxycarbide (UCO). Kernel diameters are approximately 350 µm with a U-235 enrichment of approximately 19.7%. Compact 6-3-2 has been irradiated to 11.3% FIMA compact average burn-up with a time average, volume average temperature of 1070.2°C and with a compact average fast fluence of 2.38E21 n/cm
Malmir, Hessam; Sahimi, Muhammad; Tabar, M Reza Rahimi
2016-12-01
Packing of cubic particles arises in a variety of problems, ranging from biological materials to colloids and the fabrication of new types of porous materials with controlled morphology. The properties of such packings may also be relevant to problems involving suspensions of cubic zeolites, precipitation of salt crystals during CO_{2} sequestration in rock, and intrusion of fresh water in aquifers by saline water. Not much is known, however, about the structure and statistical descriptors of such packings. We present a detailed simulation and microstructural characterization of packings of nonoverlapping monodisperse cubic particles, following up on our preliminary results [H. Malmir et al., Sci. Rep. 6, 35024 (2016)2045-232210.1038/srep35024]. A modification of the random sequential addition (RSA) algorithm has been developed to generate such packings, and a variety of microstructural descriptors, including the radial distribution function, the face-normal correlation function, two-point probability and cluster functions, the lineal-path function, the pore-size distribution function, and surface-surface and surface-void correlation functions, have been computed, along with the specific surface and mean chord length of the packings. The results indicate the existence of both spatial and orientational long-range order as the the packing density increases. The maximum packing fraction achievable with the RSA method is about 0.57, which represents the limit for a structure similar to liquid crystals.
Malmir, Hessam; Sahimi, Muhammad; Tabar, M. Reza Rahimi
2016-12-01
Packing of cubic particles arises in a variety of problems, ranging from biological materials to colloids and the fabrication of new types of porous materials with controlled morphology. The properties of such packings may also be relevant to problems involving suspensions of cubic zeolites, precipitation of salt crystals during CO2 sequestration in rock, and intrusion of fresh water in aquifers by saline water. Not much is known, however, about the structure and statistical descriptors of such packings. We present a detailed simulation and microstructural characterization of packings of nonoverlapping monodisperse cubic particles, following up on our preliminary results [H. Malmir et al., Sci. Rep. 6, 35024 (2016), 10.1038/srep35024]. A modification of the random sequential addition (RSA) algorithm has been developed to generate such packings, and a variety of microstructural descriptors, including the radial distribution function, the face-normal correlation function, two-point probability and cluster functions, the lineal-path function, the pore-size distribution function, and surface-surface and surface-void correlation functions, have been computed, along with the specific surface and mean chord length of the packings. The results indicate the existence of both spatial and orientational long-range order as the the packing density increases. The maximum packing fraction achievable with the RSA method is about 0.57, which represents the limit for a structure similar to liquid crystals.
Davenport, Michael; Petti, D. A.; Palmer, Joe
2016-11-01
The United States Department of Energy’s Advanced Reactor Technologies (ART) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is irradiating up to seven low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The experiments will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of several independent capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and was completed in November 2009. The second experiment (AGR-2) started irradiation in June 2010 and completed in October 2013. The third and fourth experiments have been combined into a single experiment designated (AGR-3/4), which started its irradiation in December 2011 and completed in April 2014. Since the purpose of this experiment was to provide data on fission product migration and retention in the NGNP reactor, the design of this experiment was significantly different from the first two experiments, though the control
Pottmann, Helmut
2015-03-03
This paper is an overview of architectural structures which are either composed of polyhedral cells or closely related to them. We introduce the concept of a support structure of such a polyhedral cell packing. It is formed by planar quads and obtained by connecting corresponding vertices in two combinatorially equivalent meshes whose corresponding edges are coplanar and thus determine planar quads. Since corresponding triangle meshes only yield trivial structures, we focus on support structures associated with quad meshes or hex-dominant meshes. For the quadrilateral case, we provide a short survey of recent research which reveals beautiful relations to discrete differential geometry. Those are essential for successfully initializing numerical optimization schemes for the computation of quad-based support structures. Hex-dominant structures may be designed via Voronoi tessellations, power diagrams, sphere packings and various extensions of these concepts. Apart from the obvious application as load-bearing structures, we illustrate here a new application to shading and indirect lighting. On a higher level, our work emphasizes the interplay between geometry, optimization, statics, and manufacturing, with the overall aim of combining form, function and fabrication into novel integrated design tools.
Singleton, Jr., Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Israel, Daniel M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Doebling, Scott William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Woods, Charles Nathan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kaul, Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Walter, Jr., John William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rogers, Michael Lloyd [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-05-09
For code verification, one compares the code output against known exact solutions. There are many standard test problems used in this capacity, such as the Noh and Sedov problems. ExactPack is a utility that integrates many of these exact solution codes into a common API (application program interface), and can be used as a stand-alone code or as a python package. ExactPack consists of python driver scripts that access a library of exact solutions written in Fortran or Python. The spatial profiles of the relevant physical quantities, such as the density, fluid velocity, sound speed, or internal energy, are returned at a time specified by the user. The solution profiles can be viewed and examined by a command line interface or a graphical user interface, and a number of analysis tools and unit tests are also provided. We have documented the physics of each problem in the solution library, and provided complete documentation on how to extend the library to include additional exact solutions. ExactPack’s code architecture makes it easy to extend the solution-code library to include additional exact solutions in a robust, reliable, and maintainable manner.
Haphazard Packing of Unequal Spheres
叶大年; 张金民
1991-01-01
Haphazard packing of equal and unequal spheres can be performed for the spheres of molecular sieve material with a density of 1.80.The packing of such spheres in air is equivalent to that of nat-ural grains in water.Packing concentrations of equal spheres have been obtained for different pac-king intensities.Unequal spheres can be regarded as equal ones in a wide range of diameter ratios,so far as the packing concentration is concerned.A threshold of diameter ratio exists at 0.70,be-low which the packing concentration is expected to increase.The variation curves of concentration vs.diameter ratio were established in the experiment.The result will help us to understand the process of sedimentation and the concentration of voids in sedimentary rocks.
Method for dense packing discovery.
Kallus, Yoav; Elser, Veit; Gravel, Simon
2010-11-01
The problem of packing a system of particles as densely as possible is foundational in the field of discrete geometry and is a powerful model in the material and biological sciences. As packing problems retreat from the reach of solution by analytic constructions, the importance of an efficient numerical method for conducting de novo (from-scratch) searches for dense packings becomes crucial. In this paper, we use the divide and concur framework to develop a general search method for the solution of periodic constraint problems, and we apply it to the discovery of dense periodic packings. An important feature of the method is the integration of the unit-cell parameters with the other packing variables in the definition of the configuration space. The method we present led to previously reported improvements in the densest-known tetrahedron packing. Here, we use the method to reproduce the densest-known lattice sphere packings and the best-known lattice kissing arrangements in up to 14 and 11 dimensions, respectively, providing numerical evidence for their optimality. For nonspherical particles, we report a dense packing of regular four-dimensional simplices with density ϕ=128/219≈0.5845 and with a similar structure to the densest-known tetrahedron packing.
Ng, Albert H; Snow, Christopher D
2011-05-01
To incorporate protein polarization effects within a protein combinatorial optimization framework, we decompose the polarizable force field AMOEBA into low order terms. Including terms up to the third-order provides a fair approximation to the full energy while maintaining tractability. We represent the polarizable packing problem for protein G as a hypergraph and solve for optimal rotamers with the FASTER combinatorial optimization algorithm. These approximate energy models can be improved to high accuracy [root mean square deviation (rmsd) < 1 kJ mol(-1)] via ridge regression. The resulting trained approximations are used to efficiently identify new, low-energy solutions. The approach is general and should allow combinatorial optimization of other many-body problems. Copyright © 2011 Wiley Periodicals, Inc.
Ng, Albert H.
2011-01-24
To incorporate protein polarization effects within a protein combinatorial optimization framework, we decompose the polarizable force field AMOEBA into low order terms. Including terms up to the third-order provides a fair approximation to the full energy while maintaining tractability. We represent the polarizable packing problem for protein G as a hypergraph and solve for optimal rotamers with the FASTER combinatorial optimization algorithm. These approximate energy models can be improved to high accuracy [root mean square deviation (rmsd) < 1 kJ mol -1] via ridge regression. The resulting trained approximations are used to efficiently identify new, low-energy solutions. The approach is general and should allow combinatorial optimization of other many-body problems. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011 Copyright © 2011 Wiley Periodicals, Inc.
Discrete element modelling of pebble packing in pebble bed reactors
Suikkanen, Heikki, E-mail: heikki.suikkanen@lut.fi; Ritvanen, Jouni, E-mail: jouni.ritvanen@lut.fi; Jalali, Payman, E-mail: payman.jalali@lut.fi; Kyrki-Rajamäki, Riitta, E-mail: riitta.kyrki-rajamaki@lut.fi
2014-07-01
Highlights: • A discrete element method code is developed for pebble bed reactor analyses. • Methods are established to extract packing information at various spatial scales. • Packing simulations inside annular core geometry are done varying input parameters. • The restitution coefficient has the strongest effect on the resulting packing density. • Detailed analyses reveal local densification especially near the walls. - Abstract: It is important to understand the packing characteristics and behaviour of the randomly packed pebble bed to further analyse the reactor physical and thermal-hydraulic behaviour and to design a safe and economically feasible pebble bed reactor. The objective of this work was to establish methods to model and analyse the pebble packing in detail to provide useful tools and data for further analyses. Discrete element method (DEM) is a well acknowledged method for analysing granular materials, such as the fuel pebbles in a pebble bed reactor. In this work, a DEM computer code was written specifically for pebble bed analyses. Analysis methods were established to extract data at various spatial scales from the pebble beds resulting from the DEM simulations. A comparison with available experimental data was performed to validate the DEM implementation. To test the code implementation in full-scale reactor calculations, DEM packing simulations were done in annular geometry with 450,000 pebbles. Effects of the initial packing configuration, friction and restitution coefficients and pebble size distribution to the resulting pebble bed were investigated. The packing simulations revealed that from the investigated parameters the restitution coefficient had the largest effect on the resulting average packing density while other parameters had smaller effects. Detailed local packing density analysis of pebble beds with different average densities revealed local variations especially strong in the regions near the walls. The implemented DEM
Packing Products: Polystyrene vs. Cornstarch
Starr, Suzanne
2009-01-01
Packing materials such as polystyrene take thousands of years to decompose, whereas packing peanuts made from cornstarch, which some companies are now using, can serve the same purpose, but dissolve in water. The author illustrates this point to her class one rainy day using the sculptures students made from polystyrene and with the cornstarch…
Gerczak, Tyler J.; Hunn, John D.; Lowden, Richard A.; Allen, Todd R.
2016-11-01
Tristructural isotropic (TRISO) coated particle fuel is a promising fuel form for advanced reactor concepts such as high temperature gas-cooled reactors (HTGR) and is being developed domestically under the US Department of Energy's Nuclear Reactor Technologies Initiative in support of Advanced Reactor Technologies. The fuel development and qualification plan includes a series of fuel irradiations to demonstrate fuel performance from the laboratory to commercial scale. The first irradiation campaign, AGR-1, included four separate TRISO fuel variants composed of multiple, laboratory-scale coater batches. The second irradiation campaign, AGR-2, included TRISO fuel particles fabricated by BWX Technologies with a larger coater representative of an industrial-scale system. The SiC layers of as-fabricated particles from the AGR-1 and AGR-2 irradiation campaigns have been investigated by electron backscatter diffraction (EBSD) to provide key information about the microstructural features relevant to fuel performance. The results of a comprehensive study of multiple particles from all constituent batches are reported. The observations indicate that there were microstructural differences between variants and among constituent batches in a single variant. Insights on the influence of microstructure on the effective diffusivity of key fission products in the SiC layer are also discussed.
Helmreich, Grant W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hunn, John D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Skitt, Darren J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dyer, John A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Schumacher, Austin T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2017-03-01
Coated particle fuel batches J52O-16-93165, 93166, 93168, 93169, 93170, and 93172 were produced by Babcock and Wilcox Technologies (BWXT) for possible selection as fuel for the Advanced Gas Reactor Fuel Development and Qualification (AGR) Program’s AGR-5/6/7 irradiation test in the Idaho National Laboratory (INL) Advanced Test Reactor (ATR). Some of these batches may alternately be used as demonstration coated particle fuel for other experiments. Each batch was coated in a 150-mm-diameter production-scale fluidized-bed chemical vapor deposition (CVD) furnace. Tristructural isotropic (TRISO) coatings were deposited on 425-μm-nominal-diameter spherical kernels from BWXT lot J52R-16-69317 containing a mixture of 15.5%-enriched uranium carbide and uranium oxide (UCO). The TRISO coatings consisted of four consecutive CVD layers: a ~50% dense carbon buffer layer with 100-μm-nominal thickness, a dense inner pyrolytic carbon (IPyC) layer with 40-μm-nominal thickness, a silicon carbide (SiC) layer with 35-μm-nominal thickness, and a dense outer pyrolytic carbon (OPyC) layer with 40-μmnominal thickness. The TRISO-coated particle batches were sieved to upgrade the particles by removing over-sized and under-sized material, and the upgraded batches were designated by appending the letter A to the end of the batch number (e.g., 93165A).
Heuristics for Multidimensional Packing Problems
Egeblad, Jens
for a minimum height container required for the items. The main contributions of the thesis are three new heuristics for strip-packing and knapsack packing problems where items are both rectangular and irregular. In the two first papers we describe a heuristic for the multidimensional strip-packing problem...... for a three-dimensional knapsack packing problem involving furniture is presented in the fourth paper. The heuristic is based on a variety of techniques including tree-search, wall-building, and sequential placement. The solution process includes considerations regarding stability and load bearing strength...... paper. Ensuring that a loaded consignment of items are balanced throughout a container can reduce fuel consumption and prolong the life-span of vehicles. The heuristic can be used as a post-processing tool to reorganize an existing solution to a packing problem. A method for optimizing the placement...
Valderi D. Leite
2013-01-01
Full Text Available About 245 thousand tones of municipal solid w aste are collected daily in Brazil. Nearly 32 thousand tones of the collected amount are treated in sanitary landfill, which generates biogas and leachate as byproduct. The leachate resulting from sanitary landfill contains high concentration of carbonaceous and nitrogenized material. The crucial question is that the biodegradation of the carbonaceous material is difficult as long as the nitrogenized material is presen t in the form of ammoniacal nitrogen (NH 4 + , which compromises performance of biological tr eatment process. Therefore, a physical and chemical treatment of the leachate should be done before its biological treatment, especially for reduction of ammoniacal nitr ogen concentration and for propitiating the realization of application of biological treatment. The treatment of leachate requires specific consideration, which is not needed fo r other types of waste. In the specific case in this study, where ammoniacal nitrogen concentration was about 2,200 mgN L -1 and the BOD 5 /COD ratio was 0.3, the study of ammonia stripping process was performed. Ammonia stripping process was studied in pack ed towers of 35 L capacity each and the parameters investigated were pH, ratio of contact area/leach volume and the aeration time. One of the parameters that influenced most in efficiency of ammonia stripping process was pH of the leachate since it contributes in conversion of ammoniacal nitrogen from NH 4 + to NH 3 .
The benefits of hypopharyngeal packing in nasal surgery: a pilot study.
Fennessy, B G
2012-02-01
BACKGROUND: Hypopharyngeal packs are used in nasal surgery to reduce the risk of aspiration and postoperative nausea and vomiting. Side effects associated with their use range from throat pain to retained packs postoperatively. AIM: To evaluate, as a pilot study, postoperative nausea\\/vomiting and throat pain scores for patients undergoing nasal surgery in whom a wet or dry hypopharyngeal pack was placed compared with patients who received no packing. METHODS: A randomized, double-blind prospective trial in a general ENT unit. RESULTS: The study failed to show a statistically significant difference between the three groups in terms of their postoperative nausea\\/vomiting and throat pain scores at 2 and 6 h postoperatively. This is the first study in which dry packs have been compared with wet and absent packs. CONCLUSION: Based on our findings, the authors recommend against placing hypopharyngeal packs for the purpose of preventing postoperative nausea and vomiting.
Pride, Steven R.; Berryman, James G.
2009-01-05
An analysis is presented to show how it is possible for unconsolidated granular packings to obey overall non-Hertzian pressure dependence due to the imperfect and random spatial arrangements of the grains in these packs. With imperfect arrangement, some gaps that remain between grains can be closed by strains applied to the grain packing. As these gaps are closed, former rattler grains become jammed and new stress-bearing contacts are created that increase the elastic stiffness of the packing. By allowing for such a mechanism, detailed analytical expressions are obtained for increases in bulk modulus of a random packing of grains with increasing stress and strain. Only isotropic stress and strain are considered in this analysis. The model is shown to give a favorable fit to laboratory data on variations in bulk modulus due to variations in applied pressure for bead packs.
Bulk stress distributions in the pore space of sphere-packed beds under Darcy flow conditions
Pham, Ngoc H.; Voronov, Roman S.; Tummala, Naga Rajesh; Papavassiliou, Dimitrios V.
2014-03-01
In this paper, bulk stress distributions in the pore space of columns packed with spheres are numerically computed with lattice Boltzmann simulations. Three different ideally packed and one randomly packed configuration of the columns are considered under Darcy flow conditions. The stress distributions change when the packing type changes. In the Darcy regime, the normalized stress distribution for a particular packing type is independent of the pressure difference that drives the flow and presents a common pattern. The three parameter (3P) log-normal distribution is found to describe the stress distributions in the randomly packed beds within statistical accuracy. In addition, the 3P log-normal distribution is still valid when highly porous scaffold geometries rather than sphere beds are examined. It is also shown that the 3P log-normal distribution can describe the bulk stress distribution in consolidated reservoir rocks like Berea sandstone.
Bulk stress distributions in the pore space of sphere-packed beds under Darcy flow conditions.
Pham, Ngoc H; Voronov, Roman S; Tummala, Naga Rajesh; Papavassiliou, Dimitrios V
2014-03-01
In this paper, bulk stress distributions in the pore space of columns packed with spheres are numerically computed with lattice Boltzmann simulations. Three different ideally packed and one randomly packed configuration of the columns are considered under Darcy flow conditions. The stress distributions change when the packing type changes. In the Darcy regime, the normalized stress distribution for a particular packing type is independent of the pressure difference that drives the flow and presents a common pattern. The three parameter (3P) log-normal distribution is found to describe the stress distributions in the randomly packed beds within statistical accuracy. In addition, the 3P log-normal distribution is still valid when highly porous scaffold geometries rather than sphere beds are examined. It is also shown that the 3P log-normal distribution can describe the bulk stress distribution in consolidated reservoir rocks like Berea sandstone.
Valve stem and packing assembly
Wordin, J.J.
1990-12-31
A valve stem and packing assembly is provided in which a rotatable valve stem includes a first tractrix surface for sliding contact with a stem packing and also includes a second tractrix surface for sliding contact with a bonnet. Force is applied by means of a spring, gland flange, and gland on the stem packing so the stem packing seals to the valve stem and bonnet. This configuration serves to create and maintain a reliable seal between the stem packing and the valve stem. The bonnet includes a second complementary tractrix surface for contacting the second sliding tractrix surface, the combination serving as a journal bearing for the entire valve stem and packing assembly. The journal bearing so configured is known as a Schiele`s pivot. The Schiele`s pivot also serves to maintain proper alignment of the valve stem with respect to the bonnet. Vertical wear between the surfaces of the Schiele`s pivot is uniform at all points of contact between the second sliding tractrix surface and the second complementary tractrix surface of a bonnet. The valve stem is connected to a valve plug by means of a slip joint. The valve is opened and closed by rotating the valve stem. The slip joint compensates for wear on the Schiele`s pivot and on the valve plug. A ledge is provided on the valve bonnet for the retaining nut to bear against. The ledge prevents overtightening of the retaining nut and the resulting excessive friction between stem and stem packing.
Compactness Theorems for Geometric Packings
Martin, Greg
2000-01-01
Moser asked whether the collection of rectangles of dimensions 1 x 1/2, 1/2 x 1/3, 1/3 x 1/4, ..., whose total area equals 1, can be packed into the unit square without overlap, and whether the collection of squares of side lengths 1/2, 1/3, 1/4, ... can be packed without overlap into a rectangle of area pi^2/6-1. Computational investigations have been made into packing these collections into squares of side length 1+epsilon and rectangles of area pi^2/6-1+epsilon, respectively, and one can c...
Aspiration of Nasopore nasal packing.
Smith, Jonathan; Reddy, Ekambar
2017-10-04
We present a case of postoperative Nasopore aspiration in an otherwise fit and well 11-year-old. An endoscopic adenoidectomy had been performed without incident and Nasopore packing placed into each nasal cavity. Immediately after extubation, there was marked hypoxia, tachypnoea and high clinical suspicion of pack aspiration. The patient returned to theatre for emergency rigid bronchoscopy and retrieval of nasal packing. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Domain Discretization and Circle Packings
Dias, Kealey
A circle packing is a configuration of circles which are tangent with one another in a prescribed pattern determined by a combinatorial triangulation, where the configuration fills a planar domain or a two-dimensional surface. The vertices in the triangulation correspond to centers of circles......, and edges correspond to two circles (having centers corresponding to the endpoints of the edge) being tangent to each other. This circle packing creates a rigid structure having an underlying geometric triangulation, where the centers of circles again correspond to vertices in the triangulation......, and the edges are geodesic segments (Euclidean, hyperbolic, or spherical) connecting centers of circles that are tangent to each other. Three circles that are mutually tangent form a face of the triangulation. Since circle packing is closely related to triangulation, circle packing methods can be applied...
The pursuit of perfect packing
Weaire, Denis
2008-01-01
Coauthored by one of the creators of the most efficient space packing solution, the Weaire-Phelan structure, The Pursuit of Perfect Packing, Second Edition explores a problem of importance in physics, mathematics, chemistry, biology, and engineering: the packing of structures. Maintaining its mathematical core, this edition continues and revises some of the stories from its predecessor while adding several new examples and applications. The book focuses on both scientific and everyday problems ranging from atoms to honeycombs. It describes packing models, such as the Kepler conjecture, Voronoï decomposition, and Delaunay decomposition, as well as actual structure models, such as the Kelvin cell and the Weaire-Phelan structure. The authors discuss numerous historical aspects and provide biographical details on influential contributors to the field, including emails from Thomas Hales and Ken Brakke. With examples from physics, crystallography, engineering, and biology, this accessible and whimsical bo...
Microstructure evolution of a ZrC coating layer in TRISO particles during high-temperature annealing
Kim, Daejong; Chun, Young Bum; Ko, Myeong Jin; Lee, Hyeon-Geun; Cho, Moon-Sung; Park, Ji Yeon; Kim, Weon-Ju
2016-10-01
The influence of high-temperature annealing on the microstructure of zirconium carbide (ZrC) was investigated in relation to its application as a coating layer of a nuclear fuel in a very high temperature gas cooled reactor. ZrC was deposited as a constituent coating layer of TRISO coated particles by a fluidized bed chemical vapor deposition method using a ZrCl4-CH4-Ar-H2 system. The grain growth of ZrC during high-temperature annealing was strongly influenced by the co-deposition of free carbon. Sub-stoichiometric ZrC coatings have experienced a significant grain growth during high-temperature annealing at 1800 °C and 1900 °C for 1 h. On the other hand, a dual phase of stoichiometric ZrC and free carbon experienced little grain growth. It was revealed that the free carbon of the as-deposited ZrC was primarily distributed within the ZrC grains but was redistributed to the grain boundaries after annealing. Consequently, carbon at the grain boundary retarded the grain growth of ZrC. Electron backscatter diffraction (EBSD) results showed that as-deposited ZrC had (001) a preferred orientation that kept its favored direction after significant grain growth during annealing. The hardness slightly decreased as the grain growth progressed.
Vlastarakos, Petros V; Iacovou, Emily; Fetta, Melina; Tapis, Marios; Nikolopoulos, Thomas P
2016-12-01
The present study aimed to assess the clinical effectiveness of absorbable packing alone, non-absorbable packing alone, and absorbable versus non-absorbable packing in the postoperative care of FESS patients, regarding bleeding control, adhesion formation, wound healing, and overall patient comfort. Systematic literature review in Medline and other database sources until July 2013, and critical analysis of pooled data were conducted. Blinded prospective randomized control trials, prospective, and retrospective comparative studies were included in study selection. The total number of analyzed studies was 19. Placing packs in the middle meatus after endoscopic procedures does not seem to be harmful for postoperative patient care. Regarding the postoperative bleeding rate, absorbable packing is not superior to no postoperative packing (strength of recommendation A). Comparing absorbable to non-absorbable packing, the former one seems slightly more effective than the latter in the aforementioned domain (strength of recommendation C). Absorbable packing was also found more effective than non-absorbable packing as a means of reducing the postoperative adhesion rate (strength of recommendation B), and more effective in comparison with not placing any packing material at all (strength of recommendation C). Non-absorbable packing also proves more effective than no postoperative packing in preventing the appearance of such adhesions (strength of recommendation A). Absorbable packing is also more comfortable compared to non-absorbable materials (strength of recommendation A), or no postoperative packing in FESS patients (strength of recommendation B). The comparative analysis between the different packing modalities performed in the present study may help surgeons design a more individualized postoperative patient care.
Brouwers, H.J.H.
2008-01-01
In a previous paper analytical equations were derived for the packing fraction of crystalline structures consisting of bimodal randomly placed hard spheres H. J. H. Brouwers, Phys. Rev. E 76, 041304 2007. The bimodal packing fraction was derived for the three crystalline cubic systems: viz., face-ce
Brouwers, H.J.H.
2007-01-01
The geometrical stability of the three lattices of the cubic crystal system, viz. face-centered cubic (fcc), body-centered cubic (bcc), and simple cubic (sc), consisting of bimodal discrete hard spheres, and the transition to amorphous packing is studied. First, the random close packing (rcp) fracti
Brouwers, Jos
2007-01-01
The geometrical stability of the three lattices of the cubic crystal system, viz. face-centered cubic (fcc), body-centered cubic (bcc), and simple cubic (sc), consisting of bimodal discrete hard spheres, and the transition to amorphous packing is studied. First, the random close packing (rcp)
Consideration of grain packing in granular iron treatability studies.
Firdous, R; Devlin, J F
2014-08-01
Commercial granular iron (GI) is light steel that is used in Permeable Reactive Barriers (PRBs). Investigations into the reactivity of GI have focused on its chemical nature and relatively little direct work has been done to account for the effects of grain shape and packing. Both of these factors are expected to influence available grain surface area, which is known to correlate to reactivity. Commercial granular iron grains are platy and therefore pack in preferential orientations that could affect solution access to the surface. Three packing variations were investigated using Connelly Iron and trichloroethylene (TCE). Experimental kinetic data showed reaction rates 2-4 times higher when grains were packed with long axes preferentially parallel to flow (VP) compared to packings with long axes preferentially perpendicular to flow (HP) or randomly arranged (RP). The variations were found to be explainable by variations in reactive sorption capacities, i.e., sorption to sites where chemical transformations took place. The possibility that the different reactive sorption capacities were related to physical pore-scale differences was assessed by conducting an image analysis of the pore structure of sectioned columns. The analyses suggested that pore-scale factors - in particular the grain surface availability, reflected in the sorption capacity terms of the kinetic model used - could only account for a fraction of the observed reactivity differences between packing types. It is concluded that packing does affect observable reaction rates but that micro-scale features on the grain surfaces, rather than the pore scale characteristics, account for most of the apparent reactivity differences. This result suggests that treatability tests should consider the packing of columns carefully if they are to mimic field performance of PRBs to the greatest extent possible.
Consideration of grain packing in granular iron treatability studies
Firdous, R.; Devlin, J. F.
2014-08-01
Commercial granular iron (GI) is light steel that is used in Permeable Reactive Barriers (PRBs). Investigations into the reactivity of GI have focused on its chemical nature and relatively little direct work has been done to account for the effects of grain shape and packing. Both of these factors are expected to influence available grain surface area, which is known to correlate to reactivity. Commercial granular iron grains are platy and therefore pack in preferential orientations that could affect solution access to the surface. Three packing variations were investigated using Connelly Iron and trichloroethylene (TCE). Experimental kinetic data showed reaction rates 2-4 times higher when grains were packed with long axes preferentially parallel to flow (VP) compared to packings with long axes preferentially perpendicular to flow (HP) or randomly arranged (RP). The variations were found to be explainable by variations in reactive sorption capacities, i.e., sorption to sites where chemical transformations took place. The possibility that the different reactive sorption capacities were related to physical pore-scale differences was assessed by conducting an image analysis of the pore structure of sectioned columns. The analyses suggested that pore-scale factors - in particular the grain surface availability, reflected in the sorption capacity terms of the kinetic model used - could only account for a fraction of the observed reactivity differences between packing types. It is concluded that packing does affect observable reaction rates but that micro-scale features on the grain surfaces, rather than the pore scale characteristics, account for most of the apparent reactivity differences. This result suggests that treatability tests should consider the packing of columns carefully if they are to mimic field performance of PRBs to the greatest extent possible.
Valve stem and packing assembly
Wordin, J.J.
1991-09-03
A valve stem and packing assembly is provided in which a rotatable valve stem includes a first tractrix surface for sliding contact with a stem packing and also includes a second tractrix surface for sliding contact with a bonnet. Force is applied by means of a spring, gland flange, and gland on the stem packing so the stem packing seals to the valve stem and bonnet. This configuration serves to create and maintain a reliable seal between the stem packing and the valve stem. The bonnet includes a second complementary tractrix surface for contacting the second sliding tractrix surface, the combination serving as a journal bearing for the entire valve stem and packing assembly. The journal bearing so configured is known as a Schiele's pivot. The Schiele's pivot also serves to maintain proper alignment of the valve stem with respect to the bonnet. Vertical wear between the surfaces of the Schiele's pivot is uniform at all points of contact between the second sliding tractrix surface and the second complementary tractrix surface of a bonnet. The valve stem is connected to a valve plug by means of a slip joint. The valve is opened and closed by rotating the valve stem. The slip joint compensates for wear on the Schiele's pivot and on the valve plug. A ledge is provided on the valve bonnet for the retaining nut to bear against. The ledge prevents over tightening of the retaining nut and the resulting excessive friction between stem and stem packing. 2 figures.
Valve stem and packing assembly
Wordin, John J. (Bingham County, ID)
1991-01-01
A valve stem and packing assembly is provided in which a rotatable valve stem includes a first tractrix surface for sliding contact with a stem packing and also includes a second tractrix surface for sliding contact with a bonnet. Force is applied by means of a spring, gland flange, and gland on the stem packing so the stem packing seals to the valve stem and bonnet. This configuration serves to create and maintain a reliable seal between the stem packing and the valve stem. The bonnet includes a second complementary tractrix surface for contacting the second sliding tractrix surface, the combination serving as a journal bearing for the entire valve stem and packing assembly. The journal bearing so configured is known as a Schiele's pivot. The Schiele's pivot also serves to maintain proper alignment of the valve stem with respect to the bonnet. Vertical wear between the surfaces of the Schiele's pivot is uniform at all points of contact between the second sliding tractrix surface and the second complementary tractrix surface of a bonnet. The valve stem is connected to a valve plug by means of a slip joint. The valve is opened and closed by rotating the valve stem. The slip joint compensates for wear on the Schiele's pivot and on the valve plug. A ledge is provided on the valve bonnet for the retaining nut to bear against. The ledge prevents overtightening of the retaining nut and the resulting excessive friction between stem and stem packing.
Valve stem and packing assembly
Wordin, J.J.
1990-01-01
A valve stem and packing assembly is provided in which a rotatable valve stem includes a first tractrix surface for sliding contact with a stem packing and also includes a second tractrix surface for sliding contact with a bonnet. Force is applied by means of a spring, gland flange, and gland on the stem packing so the stem packing seals to the valve stem and bonnet. This configuration serves to create and maintain a reliable seal between the stem packing and the valve stem. The bonnet includes a second complementary tractrix surface for contacting the second sliding tractrix surface, the combination serving as a journal bearing for the entire valve stem and packing assembly. The journal bearing so configured is known as a Schiele's pivot. The Schiele's pivot also serves to maintain proper alignment of the valve stem with respect to the bonnet. Vertical wear between the surfaces of the Schiele's pivot is uniform at all points of contact between the second sliding tractrix surface and the second complementary tractrix surface of a bonnet. The valve stem is connected to a valve plug by means of a slip joint. The valve is opened and closed by rotating the valve stem. The slip joint compensates for wear on the Schiele's pivot and on the valve plug. A ledge is provided on the valve bonnet for the retaining nut to bear against. The ledge prevents overtightening of the retaining nut and the resulting excessive friction between stem and stem packing.
7 CFR 51.310 - Packing requirements.
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Packing requirements. 51.310 Section 51.310... STANDARDS) United States Standards for Grades of Apples Packing Requirements § 51.310 Packing requirements... the contents. (e) Tolerances: In order to allow for variations incident to proper packing, not...
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Packing. 51.1270 Section 51.1270 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Standards for Summer and Fall Pears 1 Standard Pack § 51.1270 Packing. (a) Each package shall be packed...
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Packing. 51.1311 Section 51.1311 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Standards for Winter Pears 1 Standard Pack § 51.1311 Packing. (a) Each package shall be packed so that...
Disordered strictly jammed binary sphere packings attain an anomalously large range of densities.
Hopkins, Adam B; Stillinger, Frank H; Torquato, Salvatore
2013-08-01
Previous attempts to simulate disordered binary sphere packings have been limited in producing mechanically stable, isostatic packings across a broad spectrum of packing fractions. Here we report that disordered strictly jammed binary packings (packings that remain mechanically stable under general shear deformations and compressions) can be produced with an anomalously large range of average packing fractions 0.634≤φ≤0.829 for small to large sphere radius ratios α restricted to α≥0.100. Surprisingly, this range of average packing fractions is obtained for packings containing a subset of spheres (called the backbone) that are exactly strictly jammed, exactly isostatic, and also generated from random initial conditions. Additionally, the average packing fractions of these packings at certain α and small sphere relative number concentrations x approach those of the corresponding densest known ordered packings. These findings suggest for entropic reasons that these high-density disordered packings should be good glass formers and that they may be easy to prepare experimentally. We also identify an unusual feature of the packing fraction of jammed backbones (packings with rattlers excluded). The backbone packing fraction is about 0.624 over the majority of the α-x plane, even when large numbers of small spheres are present in the backbone. Over the (relatively small) area of the α-x plane where the backbone is not roughly constant, we find that backbone packing fractions range from about 0.606 to 0.829, with the volume of rattler spheres comprising between 1.6% and 26.9% of total sphere volume. To generate isostatic strictly jammed packings, we use an implementation of the Torquato-Jiao sequential linear programming algorithm [Phys. Rev. E 82, 061302 (2010)], which is an efficient producer of inherent structures (mechanically stable configurations at the local maxima in the density landscape). The identification and explicit construction of binary packings
Nature of packs used in propellant modeling.
Maggi, F; Stafford, S; Jackson, T L; Buckmaster, J
2008-04-01
In recent years we have constructed closely packed spheres using the Lubachevsky-Stillinger algorithm to generate morphological models of heterogeneous solid propellants. Improvements to the algorithm now allow us to create large polydisperse packs on a laptop computer, and to create monodisperse packs with packing fractions greater than 70% which display significant crystal order. The use of these models in the physical context motivates efforts to examine in some detail the nature of the packs, including certain statistical properties. We compare packing fractions for binary packs with long-known experimental data. Also, we discuss the near-neighbor number and the radial distribution function (RDF) for monodisperse packs and make comparisons with experimental data. We also briefly discuss the RDF for bidisperse packs. We also consider bounded monodisperse packs, and pay particular attention to the near-wall structure where we identify significant order.
Barrachin, M., E-mail: marc.barrachin@irsn.fr [Institut de Radioprotection et de Surete Nucleaire (IRSN), BP3, 13115 Saint Paul Lez Durance (France); Dubourg, R. [Institut de Radioprotection et de Surete Nucleaire (IRSN), BP3, 13115 Saint Paul Lez Durance (France); Groot, S. de [Nuclear Research and Consultancy Group (NRG), P.O. Box 25, 1755 ZG Petten (Netherlands); Kissane, M.P. [Institut de Radioprotection et de Surete Nucleaire (IRSN), BP3, 13115 Saint Paul Lez Durance (France); Bakker, K. [Nuclear Research and Consultancy Group (NRG), P.O. Box 25, 1755 ZG Petten (Netherlands)
2011-08-01
Highlights: > The microstructure and FPs in UO{sub 2} TRISO particles (10% FIMA, 1573 K) were studied. > Very large porosities (>10 {mu}m) were observed in the high temperature particles. > Significant Xe and Cs releases from the kernel were observed. > Mo and Ru are mainly present in the metallic precipitates in the kernel. - Abstract: It is important to understand fission-product (FP) and kernel micro-structure evolution in TRISO-coated fuel particles. FP behaviour, while central to severe-accident evaluation, impacts: evolution of the kernel oxygen potential governing in turn carbon oxidation (amoeba effect and pressurization); particle pressurization through fission-gas release from the kernel; and coating mechanical resistance via reaction with some FPs (Pd, Cs, Sr). The HFR-Eu1bis experiment irradiated five HTR fuel pebbles containing TRISO-coated UO{sub 2} particles and went beyond current HTR specifications (e.g., central temperature of 1523 K). This study presents ceramographic and EPMA examinations of irradiated urania kernels and coatings. Significant evolutions of the kernel (grain structure, porosity, metallic-inclusion size, intergranular bubbles) as a function of temperature are shown. Results concerning FP migration are presented, e.g., significant xenon, caesium and palladium release from the kernel, molybdenum and ruthenium mainly present in metallic precipitates. The observed FP and micro-structural evolutions are interpreted and explanations proposed. The effect of high flux rate and high temperature on fission-gas behaviour, grain-size evolution and kernel swelling is discussed. Furthermore, Cs, Mo and Zr behaviour is interpreted in connection with oxygen-potential. This paper shows that combining state-of-the-art post-irradiation examination and state-of-the-art modelling fundamentally improves understanding of HTR fuel behaviour.
Gizem Bakır
2016-01-01
Full Text Available This study presents the power flattening and time-dependent neutronic analysis of a conceptual helium gas cooled Accelerator Driven System (ADS loaded with TRISO (tristructural-isotropic fuel particles. Target material is lead-bismuth eutectic (LBE. ThO2, UO2, PuO2, and CmO2 TRISO particles are used as fuel. PuO2 and CmO2 fuels are extracted from PWR-MOX spent fuel. Subcritical core is radially divided into 10 equidistant subzones in order to flatten the power produced in the core. Tens of thousands of these TRISO fuel particles are embedded in the carbon matrix fuel pebbles as five different cases. The high-energy Monte Carlo code MCNPX 2.7 with the LA150 library is used for the neutronic calculations. Time-dependent burnup calculations are carried out for thermal fission power (Pth of 1000 MW using the BURN card. The energy gain of the ADS is in the range of 99.98–148.64 at the beginning of a cycle. Furthermore, the peak-to-average fission power density ratio is obtained between 1.021 and 1.029 at the beginning of the cycle. These ratios show a good quasi-uniform power density for each case. Furthermore, up to 155.1 g 233U and 103.6 g 239Pu per day can be produced. The considered system has a high neutronic capability in terms of energy multiplication, fissile breeding, and spent fuel transmutation with thorium utilization.
Hard sphere packings within cylinders.
Fu, Lin; Steinhardt, William; Zhao, Hao; Socolar, Joshua E S; Charbonneau, Patrick
2016-03-07
Arrangements of identical hard spheres confined to a cylinder with hard walls have been used to model experimental systems, such as fullerenes in nanotubes and colloidal wire assembly. Finding the densest configurations, called close packings, of hard spheres of diameter σ in a cylinder of diameter D is a purely geometric problem that grows increasingly complex as D/σ increases, and little is thus known about the regime for D > 2.873σ. In this work, we extend the identification of close packings up to D = 4.00σ by adapting Torquato-Jiao's adaptive-shrinking-cell formulation and sequential-linear-programming (SLP) technique. We identify 17 new structures, almost all of them chiral. Beyond D ≈ 2.85σ, most of the structures consist of an outer shell and an inner core that compete for being close packed. In some cases, the shell adopts its own maximum density configuration, and the stacking of core spheres within it is quasiperiodic. In other cases, an interplay between the two components is observed, which may result in simple periodic structures. In yet other cases, the very distinction between the core and shell vanishes, resulting in more exotic packing geometries, including some that are three-dimensional extensions of structures obtained from packing hard disks in a circle.
Byun, Thak Sang [ORNL; Kim, Jin Weon [ORNL; Miller, James Henry [ORNL; Snead, Lance Lewis [ORNL; Hunn, John D [ORNL
2010-01-01
Fracture stress data for the chemical vapor deposition (CVD) SiC coatings of tri-isotropic (TRISO) carbon/silicon carbide coated fuel particles were obtained using a newly developed testing and evaluation method, and their relationship with microstructure investigated. A crush testing technique using a blanket foil at load-transferring contact has been developed for hemispherical shell SiC specimens based on finite element (FE) analysis results. Mean fracture stress varied with test material in the range of 330 650 MPa, and was connected to the combined characteristics of inner surface roughness and porosity.
An, Xi-Zhong
2007-08-01
Micro structures of equal sphere packing (ranging from loose to dense packing) generated numerically by discrete element method under different vibration conditions are characterized using Voronoi/Delaunay tessellation, which is applied on a wide range of packing densities. The analysis on micro properties such as the total perimeter, surface area, and the face number distribution of each Voronoi polyhedron, and the pore size distribution in each Voronoi/Delaunay subunit is systematically carried out. The results show that with the increasing density of sphere packing, the Voronoi/Delaunay pore size distribution is narrowed. That indicates large pores to be gradually substituted by small uniformed ones during densification. Meanwhile, the distributions of face number, total perimeter, and surface area of Voronoi polyhedra at high packing densities tend to be narrower and higher, which is in good agreement with those in random loose packing.
AN Xi-Zhong
2007-01-01
@@ Micro structures of equal sphere packing (ranging from loose to dense packing) generated numerically by discrete element method under different vibration conditions are characterized using Voronoi/Delaunay tessellation, which is applied on a wide range of packing densities. The analysis on micro properties such as the total perimeter,surface area, and the face number distribution of each Voronoi polyhedron, and the pore size distribution in each Voronoi/Delaunay subunit is systematically carried out. The results show that with the increasing density of sphere packing, the Voronoi/Delaunay pore size distribution is narrowed. That indicates large pores to be gradually substituted by small uniformed ones during densification. Meanwhile, the distributions of face number,total perimeter, and surface area of Voronoi polyhedra at high packing densities tend to be narrower and higher,which is in good agreement with those in random loose packing.
The pursuit of perfect packing
Weaire, Denis
2000-01-01
In 1998 Thomas Hales dramatically announced the solution of a problem that has long teased eminent mathematicians: what is the densest possible arrangement of identical spheres? The Pursuit of Perfect Packing recounts the story of this problem and many others that have to do with packing things together. The examples are taken from mathematics, physics, biology, and engineering, including the arrangement of soap bubbles in foam, atoms in a crystal, the architecture of the bee''s honeycomb, and the structure of the Giant''s Causeway. Using an informal style and with key references, the book also includes brief accounts of the lives of many of the scientists who devoted themselves to problems of packing over many centuries, together with wry comments on their efforts. It is an entertaining introduction to the field for both specialists and the more general public.
Dealing with Nonregular Shapes Packing
Bonfim Amaro Júnior
2014-01-01
Full Text Available This paper addresses the irregular strip packing problem, a particular two-dimensional cutting and packing problem in which convex/nonconvex shapes (polygons have to be packed onto a single rectangular object. We propose an approach that prescribes the integration of a metaheuristic engine (i.e., genetic algorithm and a placement rule (i.e., greedy bottom-left. Moreover, a shrinking algorithm is encapsulated into the metaheuristic engine to improve good quality solutions. To accomplish this task, we propose a no-fit polygon based heuristic that shifts polygons closer to each other. Computational experiments performed on standard benchmark problems, as well as practical case studies developed in the ambit of a large textile industry, are also reported and discussed here in order to testify the potentialities of proposed approach.
Planet Packing in Circumbinary Systems
Kratter, Kaitlin M
2013-01-01
The recent discovery of planets orbiting main sequence binaries will provide crucial constraints for theories of binary and planet formation. The formation pathway for these planets is complicated by uncertainties in the formation mechanism of the host stars. In this paper, we compare the dynamical states of single and binary star planetary systems. Specifically, we pose two questions: (1) What does it mean for a circumbinary system to be dynamically packed? (2) How many systems are required to differentiate between a population of packed or sparse planets? We determine when circumbinary systems become dynamically unstable as a function of the separation between the host-stars and the inner planet, and the first and second planets. We show that these represent unique stability constraints compared to single-star systems. We find that although the existing Kepler data is insufficient to distinguish between a population of packed or sparse circumbinary systems, a more thorough study of circumbinary TTVs combine...
Heuristics for Multidimensional Packing Problems
Egeblad, Jens
In this thesis we consider solution methods for packing problems. Packing problems occur in many different situations both directly in the industry and as sub-problems of other problems. High-quality solutions for problems in the industrial sector may be able to reduce transportation and production...... costs significantly. For packing problems in general are given a set of items and one of more containers. The items must be placed within the container such that some objective is optimized and the items do not overlap. Items and container may be rectangular or irregular (e.g. polygons and polyhedra......) and may be defined in any number of dimensions. Solution methods are based on theory from both computational geometry and operations research. The scientific contributions of this thesis are presented in the form of six papers and a section which introduces the many problem types and recent solution...
I J van Rooyen; D E Janney; B D Miller; J L Riesterer; P A Demkowicz
2012-10-01
ABSTRACT Post-irradiation examination of coated particle fuel from the AGR-1 experiment is in progress at Idaho National Laboratory and Oak Ridge National Laboratory. In this presentation a brief summary of results from characterization of microstructures in the coating layers of selected irradiated fuel particles with burnup of 11.3% and 19.3% FIMA will be given. The main objective of the characterization were to study irradiation effects, fuel kernel porosity, layer debonding, layer degradation or corrosion, fission-product precipitation, grain sizes, and transport of fission products from the kernels across the TRISO layers. Characterization techniques such as scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, and wavelength dispersive spectroscopy were used. A new approach to microscopic quantification of fission-product precipitates is also briefly demonstrated. The characterization emphasized fission-product precipitates in the SiC-IPyC interface, SiC layer and the fuel-buffer interlayer, and provided significant new insights into mechanisms of fission-product transport. Although Pd-rich precipitates were identified at the SiC-IPyC interlayer, no significant SiC-layer thinning was observed for the particles investigated. Characterization of these precipitates highlighted the difficulty of measuring low concentration Ag in precipitates with significantly higher concentrations of contain Pd and U. Different approaches to resolving this problem are discussed. Possible microstructural differences between particles with high and low releases of Ag particles are also briefly discussed, and an initial hypothesis is provided to explain fission-product precipitate compositions and locations. No SiC phase transformations or debonding of the SiC-IPyC interlayer as a result of irradiation were observed. Lessons learned from the post-irradiation examination are described and future actions are recommended.
Nutritional contents of lunch packs of primary school children in nnewi, Nigeria.
Ugochukwu, Ef; Onubogu, Cu; Edokwe, Es; Okeke, Kn
2014-07-01
Lunch packs play a significant role in the nutritional status and academic performance of school children. Available data show a high prevalence of malnutrition among school-age children. The aim of this study is to document the nutritional contents of lunch packs of primary school children in Nnewi, Anambra state, Nigeria. A cross-sectional study was conducted among 1018 primary 1-6 pupils selected by stratified systematic random sampling from six primary schools, two each of private, - mission, - and government (public) - owned schools in Nnewi metropolis with the aid of the semi-structured questionnaire. Lunch packs of the pupils were examined. Majority of the pupils (77.8% [792/1018]) had lunch packs although about half of pupils in public schools had no lunch pack. Only 12.4% (98/792) and 19.2% (152/792) of pupils with lunch packs had balanced meals and fruits/vegetables in their lunch packs, respectively. The odds of not coming to school with packed lunch was about 13 and 12 times higher for mothers with no formal education or only primary education, respectively, compared with those with tertiary education. Type of school had a strong influence on possession and contents of lunch pack (χ(2) = 2.88, P nutritional contents of lunch packs.
Packing tight Hamilton cycles in 3-uniform hypergraphs
Frieze, Alan; Loh, Po-Shen
2010-01-01
Let H be a 3-uniform hypergraph with N vertices. A tight Hamilton cycle C \\subset H is a collection of N edges for which there is an ordering of the vertices v_1, ..., v_N such that every triple of consecutive vertices {v_i, v_{i+1}, v_{i+2}} is an edge of C (indices are considered modulo N). We develop new techniques which enable us to prove that under certain natural pseudo-random conditions, almost all edges of H can be covered by edge-disjoint tight Hamilton cycles, for N divisible by 4. Consequently, we derive the corollary that random 3-uniform hypergraphs can be almost completely packed with tight Hamilton cycles w.h.p., for N divisible by 4 and P not too small. Along the way, we develop a similar result for packing Hamilton cycles in pseudo-random digraphs with even numbers of vertices.
Cylinder valve packing nut studies
Blue, S.C. [Martin Marietta Energy Systems, Inc., Paducah, KY (United States)
1991-12-31
The design, manufacture, and use of cylinder valve packing nuts have been studied to improve their resistance to failure from stress corrosion cracking. Stress frozen photoelastic models have been analyzed to measure the stress concentrations at observed points of failure. The load effects induced by assembly torque and thermal expansion of stem packing were observed by strain gaging nuts. The effects of finishing operations and heat treatment were studied by the strain gage hole boring and X-ray methods. Modifications of manufacturing and operation practices are reducing the frequency of stress corrosion failures.
Pack cementation coatings for alloys
He, Yi-Rong; Zheng, Minhui; Rapp, R.A. [Ohio State Univ., Columbus, OH (United States)
1996-08-01
The halide-activated pack cementation process was modified to produce a Ge-doped silicide diffusion coating on a Cr-Cr{sub 2}Nb alloy in a single processing step. The morphology and composition of the coating depended both on the composition of the pack and on the composition and microstructure of the substrate. Higher Ge content in the pack suppressed the formation of CrSi{sub 2} and reduced the growth kinetics of the coating. Ge was not homogeneously distributed in the coatings. In cyclic and isothermal oxidation in air at 700 and 1050{degrees}C, the Ge-doped silicide coating protected the Cr-Nb alloys from significant oxidation by the formation of a Ge-doped silica film. The codeposition and diffusion of aluminum and chromium into low alloy steel have been achieved using elemental Al and Cr powders and a two-step pack cementation process. Sequential process treatments at 925{degrees}C and 1150{degrees}C yield dense and uniform ferrite coatings, whose compositions are close to either Fe{sub 3}Al or else FeAl plus a lower Cr content, when processed under different conditions. The higher content of Al in the coatings was predicted by thermodynamic calculations of equilibrium in the gas phase. The effect of the particle size of the metal powders on the surface composition of the coating has been studied for various combinations of Al and Cr powders.
Wire and Packing Tape Sandwiches
Rabinowitz, Sandy
2009-01-01
In this article, the author describes how students can combine craft wire with clear packing tape to create a two-dimensional design that can be bent and twisted to create a three-dimensional form. Students sandwich wire designs between two layers of tape. (Contains 1 online resource.)
Coking technology using packed coal mixtures
Kuznichenko, V.M.; Shteinberg, Eh.A.; Tolstoi, A.P. (Khar' kovskii Nauchno-Issledovatel' skii Uglekhimicheskii Institut, Kharkov (Ukrainian SSR))
1991-08-01
Discusses coking of packed coal charges in the FRG, USSR, France, India, Poland and Czechoslovakia. The following aspects are evaluated: types of weakly caking coals that are used as components of packed mixtures, energy consumption of packing, effects of coal mixture packing on coke oven design, number of coke ovens in a battery, heating temperature, coking time, coke properties, investment and operating cost. Statistical data that characterize the Saarberg packing process used in the FRG are analyzed. Packing coal mixtures for coking improves coke quality and reduces environmental pollution. 4 refs.
The Maximum Resource Bin Packing Problem
Boyar, J.; Epstein, L.; Favrholdt, L.M.
2006-01-01
Usually, for bin packing problems, we try to minimize the number of bins used or in the case of the dual bin packing problem, maximize the number or total size of accepted items. This paper presents results for the opposite problems, where we would like to maximize the number of bins used...... algorithms, First-Fit-Increasing and First-Fit-Decreasing for the maximum resource variant of classical bin packing. For the on-line variant, we define maximum resource variants of classical and dual bin packing. For dual bin packing, no on-line algorithm is competitive. For classical bin packing, we find...
Petti, David Andrew; Maki, John Thomas; Buongiorno, Jacopo; Hobbins, Richard Redfield
2002-06-01
High temperature gas reactor technology is achieving a renaissance around the world. This technology relies on high quality production and performance of coated particle fuel. Historically, the irradiation performance of TRISO-coated gas reactor particle fuel in Germany has been superior to that in the United States. German fuel generally displayed in-pile gas release values that were three orders of magnitude lower than U.S. fuel. Thus, we have critically examined the TRISO-coated fuel fabrication processes in the U.S. and Germany and the associated irradiation database with a goal of understanding why the German fuel behaves acceptably, why the U.S. fuel has not faired as well, and what process/ production parameters impart the reliable performance to this fuel form. The postirradiation examination results are also reviewed to identify failure mechanisms that may be the cause of the poorer U.S. irradiation performance. This comparison will help determine the roles that particle fuel process/product attributes and irradiation conditions (burnup, fast neutron fluence, temperature, and degree of acceleration) have on the behavior of the fuel during irradiation and provide a more quantitative linkage between acceptable processing parameters, as-fabricated fuel properties and subsequent in-reactor performance.
Thermochemical assessment of oxygen gettering by SiC or ZrC in PuO 2-x TRISO fuel
Besmann, Theodore M.
2010-02-01
Particulate nuclear fuel in a modular helium-cooled reactor is being considered for the consumption of excess plutonium and related transuranics. In this work a thermochemical analysis was performed to predict oxygen potential behavior in plutonia TRISO fuel to burnups of 88% FIMA of the Pu 239 content with and without the presence of oxygen gettering SiC and ZrC. The gettering phases are designed to prevent kernel migration, a serious issue in TRISO fuel, and this has been demonstrated with both SiC and ZrC. The phases reduce CO pressure, thus also reducing the peak pressure within the particles by at least 50%, decreasing the likelihood of pressure-induced particle failure. A model for kernel migration based on vapor transport by CO was used to semi-quantitatively assess the effect of controlling oxygen potential with SiC or ZrC and demonstrate the potential dramatic effect of the addition of these phases on carbon transport.
Petti, David Andrew; Maki, John Thomas; Buongiorno, Jacopo; Hobbins, Richard Redfield
2002-06-01
High temperature gas reactor technology is achieving a renaissance around the world. This technology relies on high quality production and performance of coated particle fuel. Historically, the irradiation performance of TRISO-coated gas reactor particle fuel in Germany has been superior to that in the United States. German fuel generally displayed in-pile gas release values that were three orders of magnitude lower than U.S. fuel. Thus, we have critically examined the TRISO-coated fuel fabrication processes in the U.S. and Germany and the associated irradiation database with a goal of understanding why the German fuel behaves acceptably, why the U.S. fuel has not faired as well, and what process/ production parameters impart the reliable performance to this fuel form. The postirradiation examination results are also reviewed to identify failure mechanisms that may be the cause of the poorer U.S. irradiation performance. This comparison will help determine the roles that particle fuel process/product attributes and irradiation conditions (burnup, fast neutron fluence, temperature, and degree of acceleration) have on the behavior of the fuel during irradiation and provide a more quantitative linkage between acceptable processing parameters, as-fabricated fuel properties and subsequent in-reactor performance.
Packing of charged chains on toroidal geometries
Yao, Zhenwei; de la Cruz, Monica Olvera
2013-01-01
We study a strongly adsorbed flexible polyelectrolyte chain on tori. In this generalized Thomson problem, the patterns of the adsorbed chain are analyzed in the space of the toroidal coordinates and in terms of the orientation of each chain segment. Various patterns are found, including double spirals, disclination-like structures, Janus tori, and uniform wrappings, arising from the long-range electrostatic interaction and the toroidal geometry. Their broken mirror symmetry is quantitatively characterized by introducing an order parameter, an integral of the torsion. The uniform packing, which breaks the mirror symmetry the least, has the lowest value of the order parameter. In addition, it is found that the electrostatic energy of confined chains on tori conforms to a power law regardless of the screening effect in some typical cases studied. Furthermore, we study random walks on tori that generate chain configurations in the large screening limit or at large thermal fluctuation; some features associated with the toroidal geometry are discussed.
Packing fraction of particles with a Weibull size distribution
Brouwers, H. J. H.
2016-07-01
This paper addresses the void fraction of polydisperse particles with a Weibull (or Rosin-Rammler) size distribution. It is demonstrated that the governing parameters of this distribution can be uniquely related to those of the lognormal distribution. Hence, an existing closed-form expression that predicts the void fraction of particles with a lognormal size distribution can be transformed into an expression for Weibull distributions. Both expressions contain the contraction coefficient β. Likewise the monosized void fraction φ1, it is a physical parameter which depends on the particles' shape and their state of compaction only. Based on a consideration of the scaled binary void contraction, a linear relation for (1 - φ1)β as function of φ1 is proposed, with proportionality constant B, depending on the state of compaction only. This is validated using computational and experimental packing data concerning random close and random loose packing arrangements. Finally, using this β, the closed-form analytical expression governing the void fraction of Weibull distributions is thoroughly compared with empirical data reported in the literature, and good agreement is found. Furthermore, the present analysis yields an algebraic equation relating the void fraction of monosized particles at different compaction states. This expression appears to be in good agreement with a broad collection of random close and random loose packing data.
无
2010-01-01
Packing of spherical particles in a three-dimensional cylindrical container is simulated by using Discrete Element Method.The packed bed of spheres is also subjected to vertical compression which results in a dense compact.Microstructures of the packing during compaction are examined in detail in terms of the contact number,deviator fabric,and radial distribution function.Furthermore,contact force distributions are measured at different locations in the pack,i.e.the centre,the side wall,and the base(or bottom wall) of the container.The simulations show that random close packing(RCP) tends to exist in the centre of the pack,while ordered packing structures exist near the container’s walls.The uniaxial compression doesn’t seem to alter the packing structure in the pack centre remarkably,but to reduce the structural anisotropy of the packing close to the container’s base.The simulated results have also helped to establish the correlations between packing structures and contact force distributions.Further,it is shown that small contact force distributions are sensitive to local packing structures.The simulated results are shown to be consistent with the recent experimental and simulation findings.
Brouwers, H J H
2007-10-01
The geometrical stability of the three lattices of the cubic crystal system, viz. face-centered cubic (fcc), body-centered cubic (bcc), and simple cubic (sc), consisting of bimodal discrete hard spheres, and the transition to amorphous packing is studied. First, the random close packing (rcp) fraction of binary mixtures of amorphously packed spheres is recapitulated. Next, the packing of a binary mixture of hard spheres in randomly disordered cubic structures is analyzed, resulting in original analytical expressions for the unit cell volume and the packing fraction, and which are also valid for the other five crystal systems. The bimodal fcc lattice parameter appears to be in close agreement with empirical hard sphere data from literature, and this parameter could be used to distinguish the size mismatch effect from all other effects in distorted binary lattices of materials. Here, as a first model application, bimodal amorphous and crystalline fcc/bcc packing fractions are combined, yielding the optimum packing configuration, which depends on mixture composition and diameter ratio only. Maps of the closest packing mode are established and applied to colloidal mixtures of polydisperse spheres and to binary alloys of bcc, fcc, and hcp metals. The extensive comparison between the analytical expressions derived here and the published numerical and empirical data yields good agreement. Hence, it is seen that basic space-filling theories on "simple" noninteracting hard spheres are a valuable tool for the study of crystalline materials.
Brouwers, H. J. H.
2007-10-01
The geometrical stability of the three lattices of the cubic crystal system, viz. face-centered cubic (fcc), body-centered cubic (bcc), and simple cubic (sc), consisting of bimodal discrete hard spheres, and the transition to amorphous packing is studied. First, the random close packing (rcp) fraction of binary mixtures of amorphously packed spheres is recapitulated. Next, the packing of a binary mixture of hard spheres in randomly disordered cubic structures is analyzed, resulting in original analytical expressions for the unit cell volume and the packing fraction, and which are also valid for the other five crystal systems. The bimodal fcc lattice parameter appears to be in close agreement with empirical hard sphere data from literature, and this parameter could be used to distinguish the size mismatch effect from all other effects in distorted binary lattices of materials. Here, as a first model application, bimodal amorphous and crystalline fcc/bcc packing fractions are combined, yielding the optimum packing configuration, which depends on mixture composition and diameter ratio only. Maps of the closest packing mode are established and applied to colloidal mixtures of polydisperse spheres and to binary alloys of bcc, fcc, and hcp metals. The extensive comparison between the analytical expressions derived here and the published numerical and empirical data yields good agreement. Hence, it is seen that basic space-filling theories on “simple” noninteracting hard spheres are a valuable tool for the study of crystalline materials.
Fast Searching in Packed Strings
Bille, Philip
2009-01-01
Given strings P and Q the (exact) string matching problem is to find all positions of substrings in Q matching P. The classical Knuth-Morris-Pratt algorithm [SIAM J. Comput., 1977] solves the string matching problem in linear time which is optimal if we can only read one character at the time....... However, most strings are stored in a computer in a packed representation with several characters in a single word, giving us the opportunity to read multiple characters simultaneously. In this paper we study the worst-case complexity of string matching on strings given in packed representation. Let m...... algorithm using time O(n/log(sigma) n + m + occ) Here occ is the number of occurrences of P in Q. For m = o(n) this improves the O(n) bound...
Characteristics of fluidized-packed beds
Gabor, J. D.; Mecham, W. J.
1968-01-01
Study of fluidized-packed bed includes investigation of heat transfer, solids-gas mixing, and elutriation characteristics. A fluidized-packed bed is a system involving the fluidization of small particles in the voids of a packed bed of larger nonfluidized particles.
Packing Superballs from Codes and Algebraic Curves
Li LIU; Chao Ping XING
2008-01-01
In the present paper, we make use of codes with good parameters and algebraic curves over finite fields with many rational points to construct dense packings of superballs. It turns out that our packing density is quite reasonable. In particular, we improve some values for the best-known lower bounds on packing density.
Complications of balloon packing in epistaxis
Vermeeren, Lenka; Derks, Wynia; Fokkens, Wytske; Menger, Dirk Jan
2015-01-01
Although balloon packing appears to be efficient to control epistaxis, severe local complications can occur. We describe four patients with local lesions after balloon packing. Prolonged balloon packing can cause damage to nasal mucosa, septum and alar skin (nasal mucosa, the cartilaginous skeleton
7 CFR 51.1527 - Standard pack.
2010-01-01
... package. The number of plums or prunes in California peach boxes or lug boxes shall not vary more than 4... Standards for Grades of Fresh Plums and Prunes Standard Pack § 51.1527 Standard pack. (a) Packing. (1) All... plums or prunes in the top layer of any package shall be reasonably representative in quality and...
Packing defects into ordered structures
Bechstein, R.; Kristoffersen, Henrik Høgh; Vilhelmsen, L.B.
2012-01-01
We have studied vicinal TiO2(110) surfaces by high-resolution scanning tunneling microscopy and density functional theory calculations. On TiO2 surfaces characterized by a high density of ⟨11̅ 1⟩ steps, scanning tunneling microscopy reveals a high density of oxygen-deficient strandlike adstructur...... because building material is available at step sites. The strands on TiO2(110) represent point defects that are densely packed into ordered adstructures....
Vibrational Collapse of Hexapod Packings
Zhao, Yuchen; Ding, Jingqiu; Barés, Jonathan; Dierichs, Karola; Behringer, Robert
2016-11-01
Columns made of convex noncohesive grains like sand collapse after being released from a confining container. However, structures built from concave grains can be stable without external support. Previous research show that the stability of the columns depends on column diameter and height, by observing column stability after carefully lifting their confinement tubes. Thinner and taller columns collapse with higher probability. While the column stability weakly depends on packing density, it strongly depends on inter-particle friction. Experiments that cause the column to collapse also reveal similar trends, as more effort (such as heavier loading or shearing) is required to destabilize columns that are intrinsically more stable. In the current experiments, we invesitage the effect of vibration on destructing a column. Short columns collapse following the relaxation dynamics of disorder systems, which coincides with similar experiments on staple packings. However, tall columns collapse faster at the beginning, in addition to the relaxation process coming after. Using high-speed imaging, we analyze column collapse data from different column geometries. Ongoing work is focusing on characterizing the stability of hexapod packings to vibration. We thanks NSF-DMR-1206351 and the William M. Keck Foundation.
Towards optimal packed string matching
Ben-Kiki, Oren; Bille, Philip; Breslauer, Dany
2014-01-01
In the packed string matching problem, it is assumed that each machine word can accommodate up to α characters, thus an n-character string occupies n/α memory words.(a) We extend the Crochemore–Perrin constant-space O(n)-time string-matching algorithm to run in optimal O(n/α) time and even in real......-time, achieving a factor α speedup over traditional algorithms that examine each character individually. Our macro-level algorithm only uses the standard AC0 instructions of the word-RAM model (i.e. no integer multiplication) plus two specialized micro-level AC0 word-size packed-string instructions. The main word...... matching work.(b) We also consider the complexity of the packed string matching problem in the classical word-RAM model in the absence of the specialized micro-level instructions wssm and wslm. We propose micro-level algorithms for the theoretically efficient emulation using parallel algorithms techniques...
Packing hyperspheres in high-dimensional Euclidean spaces.
Skoge, Monica; Donev, Aleksandar; Stillinger, Frank H; Torquato, Salvatore
2006-10-01
We present a study of disordered jammed hard-sphere packings in four-, five-, and six-dimensional Euclidean spaces. Using a collision-driven packing generation algorithm, we obtain the first estimates for the packing fractions of the maximally random jammed (MRJ) states for space dimensions d=4, 5, and 6 to be phi(MRJ) approximately 0.46, 0.31, and 0.20, respectively. To a good approximation, the MRJ density obeys the scaling form phi(MRJ)=c1/2(d)+(c2d)/2d, where c1=-2.72 and c2=2.56, which appears to be consistent with the high-dimensional asymptotic limit, albeit with different coefficients. Calculations of the pair correlation function g2(r) and structure factor S(k) for these states show that short-range ordering appreciably decreases with increasing dimension, consistent with a recently proposed "decorrelation principle," which, among other things, states that unconstrained correlations diminish as the dimension increases and vanish entirely in the limit d-->infinity. As in three dimensions (where phi(MRJ) approximately 0.64), the packings show no signs of crystallization, are isostatic, and have a power-law divergence in g2(r) at contact with power-law exponent approximately 0.4. Across dimensions, the cumulative number of neighbors equals the kissing number of the conjectured densest packing close to where g2(r) has its first minimum. Additionally, we obtain estimates for the freezing and melting packing fractions for the equilibrium hard-sphere fluid-solid transition, phi(F) approximately 0.32 and phi(M) approximately 0.39, respectively, for d=4, and phi(F) approximately 0.20 and phi(M) approximately 0.25, respectively, for d=5. Although our results indicate the stable phase at high density is a crystalline solid, nucleation appears to be strongly suppressed with increasing dimension.
Improved Online Square-into-Square Packing
Brubach, Brian
2014-01-01
In this paper, we show an improved bound and new algorithm for the online square-into-square packing problem. This two-dimensional packing problem involves packing an online sequence of squares into a unit square container without any two squares overlapping. The goal is to find the largest area $\\alpha$ such that any set of squares with total area $\\alpha$ can be packed. We show an algorithm that can pack any set of squares with total area $\\alpha \\leq 3/8$ into a unit square in an online se...
Effect Of Consumption Of Commercially Packed Cow′s Milk On Thyroid Hormone Homeostasis
Chudhuri R N
1999-01-01
Full Text Available Research question: Whether consumption of commercially packed cowâ€s milk containing thiocyanate as a preservative, has any effect on thyroid function? Objective: To assess the effect of ingestion of thiocyanate through commercially packed cowâ€s milk on thyroid hormone homeostasis. Study Design: Cross sectional. Setting: Urban slum community of Calcutta. Participants: Randomly selected 30 teenage girls consuming commercially packed cowâ€s milk since childhood and ideally matched 30 control subjects consuming non-pack cowâ€s milk since childhood from an urban slum community of Calcutta. Results: Consumption of commercially packed cowâ€s milk was found to inhibit thyroxin synthesis.
Yang, Jian, E-mail: yangjian81@mail.xjtu.edu.cn [Key Laboratory of Thermo-Fluid Science and Engineering, Ministry of Education, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Wu, Jiangquan [CSR Research of Electrical Technology and Material Engineering, Zhuzhou, Hunan 412001 (China); Zhou, Lang; Wang, Qiuwang [Key Laboratory of Thermo-Fluid Science and Engineering, Ministry of Education, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China)
2016-04-15
Highlights: • Flow and heat transfer in composite packed beds with low d{sub t}/d{sub pe} are investigated. • The wall effect would be restrained with radially layered composite packing (RLM). • Heat flux and overall heat transfer efficiency can be improved with RLM packing. - Abstract: The effect of the tube wall on the fluid flow and heat transfer would be important in the packed bed with low tube to particle diameter ratio, which may lead to flow and temperature maldistributions inside, and the heat transfer performance may be lowered. In the present paper, the flow and heat transfer performances in both the composite and uniform packed beds of spheres with low tube to particle diameter were numerically investigated, where the composite packing means randomly packing with non-uniform spheres and the uniform packing means randomly packing with uniform spheres, including radially layered composite packing (RLM), axially layered composite packing (ALM), randomly composite packing (RCM) and randomly uniform packing (RPM). Both the composite and uniform packings were generated with discrete element method (DEM), and the influence of the wall effect on the flow and heat transfer in the packed beds were carefully studied and compared with each other. Firstly, it is found that, the wall effect on the velocity and temperature distributions in the randomly packed bed of uniform spheres (RPM) with low tube to particle diameter ratio were obvious. The average velocity of the near-tube-wall region is higher than that of the inner-tube region in the bed. When the tube wall is adiabatic, the average temperature of the near-tube-wall region is lower. With radially layered composite packing method (RLM), smaller pores would be formed close to the tube wall and big flow channels would be formed in the inner-tube region of the bed, which would be benefit to restrain the wall effect and improve heat transfer in the bed with low tube to particle diameter ratio. Furthermore, it
Percolation of disordered jammed sphere packings
Ziff, Robert M.; Torquato, Salvatore
2017-02-01
We determine the site and bond percolation thresholds for a system of disordered jammed sphere packings in the maximally random jammed state, generated by the Torquato–Jiao algorithm. For the site threshold, which gives the fraction of conducting versus non-conducting spheres necessary for percolation, we find {{p}\\text{c}}=0.3116(3) , consistent with the 1979 value of Powell 0.310(5) and identical within errors to the threshold for the simple-cubic lattice, 0.311 608, which shares the same average coordination number of 6. In terms of the volume fraction ϕ, the threshold corresponds to a critical value {φ\\text{c}}=0.199 . For the bond threshold, which apparently was not measured before, we find {{p}\\text{c}}=0.2424(3) . To find these thresholds, we considered two shape-dependent universal ratios involving the size of the largest cluster, fluctuations in that size, and the second moment of the size distribution; we confirmed the ratios’ universality by also studying the simple-cubic lattice with a similar cubic boundary. The results are applicable to many problems including conductivity in random mixtures, glass formation, and drug loading in pharmaceutical tablets.
Realistic packed bed generation using small numbers of spheres
Pavlidis, D., E-mail: dimitrios.pavlidis04@imperial.ac.uk; Lathouwers, D.
2013-10-15
Highlights: • A method for generating 3D, periodic, closely packed beds of small numbers (<50) of spheres is presented. • The method is able to reproduce characteristics for the entirety (including nearwall area) of a randomly stacked bed. • Results are in good agreement with reference numerical data. -- Abstract: A method for stochastically generating three-dimensional, periodic, closely packed beds of small numbers (less than 50) of spheres is presented. This is an essential and integral part of realistic modelling of fluid flow and heat transfer through packed beds. In order to be able to reproduce the entirety of these complex geometries (in the radial direction) using small numbers of spheres, they are divided into two regions: the near-wall region (up to 4–5 sphere diameters from the solid wall in the wall-normal direction) and the core region. Near-wall stackings are doubly periodic and include a solid wall, while core stackings are triply periodic. A computational method for generating such geometries is presented for each region. Both are based on overlap removal methods. Results are compared against reference numerical data. Diagnostics used to evaluate the models include average packing fractions and coordination numbers, porosity profiles and distributions of the angle between two spheres which touch a common neighbour. Results are in good qualitative and quantitative agreement with the available reference data.
Optimizing packing fraction in granular media composed of overlapping spheres.
Roth, Leah K; Jaeger, Heinrich M
2016-01-28
What particle shape will generate the highest packing fraction when randomly poured into a container? In order to explore and navigate the enormous search space efficiently, we pair molecular dynamics simulations with artificial evolution. Arbitrary particle shape is represented by a set of overlapping spheres of varying diameter, enabling us to approximate smooth surfaces with a resolution proportional to the number of spheres included. We discover a family of planar triangular particles, whose packing fraction of ϕ ∼ 0.73 is among the highest experimental results for disordered packings of frictionless particles. We investigate how ϕ depends on the arrangement of spheres comprising an individual particle and on the smoothness of the surface. We validate the simulations with experiments using 3D-printed copies of the simplest member of the family, a planar particle consisting of three overlapping spheres with identical radius. Direct experimental comparison with 3D-printed aspherical ellipsoids demonstrates that the triangular particles pack exceedingly well not only in the limit of large system size but also when confined to small containers.
Brouwers, H J H
2008-07-01
In a previous paper analytical equations were derived for the packing fraction of crystalline structures consisting of bimodal randomly placed hard spheres [H. J. H. Brouwers, Phys. Rev. E 76, 041304 (2007)]. The bimodal packing fraction was derived for the three crystalline cubic systems: viz., face-centered cubic, body-centered cubic, and simple cubic. These three equations appeared also to be applicable to all 14 Bravais lattices. Here it is demonstrated, accounting for the number of distorted bonds in the building blocks and using graph theory, that one general packing equation can be derived, valid again for all lattices. This expression is validated and applied to the process of amorphization.
CAO Jian-Zhu; FANG Chao; SUN Li-Feng
2011-01-01
T wo kinds of approaches are built to solve the fission products diffusion models (Fick's equation) based on sphere fuel particles and sphere fuel elements exactly. Two models for homogenous TRISO-coated fuel particles and fuel elements used in pebble-bed high temperature gas-cooled reactors are presented, respectively. The analytica,solution of Fick's equation for fission products diffusion in fuel particles is derived by variables separation.In the fuel element system, a modification of the diffusion coefficient from D to D/r is made to characterize the difference of diffusion rates in distinct areas and it is shown that the Laplace and Hankel transformations are effective as the diffusion coefficient in Fick's equation is dependant on the radius of the fuel element. Both the solutions are useful for the prediction of the fission product behaviors and could be programmed in the corresponding engineering calculations.%@@ Two kinds of approaches are built to solve the fission products diffusion models(Fick's equation) based on sphere fuel particles and sphere fuel elements exactly.Two models for homogenous TRISO-coated fuel particles and fuel elements used in pebble-bed high temperature gas-cooled reactors are presented,respectively.The analytical solution of Fick's equation for fission products diffusion in fuel particles is derived by variables separation.In the fuel element system,a modification of the diffusion coefficient from D to D/r is made to characterize the difference of diffusion rates in distinct areas and it is shown that the Laplace and Hankel transformations are effective as the diffusion coefficient in Fick's equation is dependant on the radius of the fuel element.Both the solutions are useful for the prediction of the fission product behaviors and could be programmed in the corresponding engineering calculations.
An experimental comparison of some heuristics for cardinality constrained bin packing problem
Maja Remic
2012-01-01
Full Text Available Background: Bin packing is an NPhard optimization problem of packing items of given sizes into minimum number of capacitylimited bins. Besides the basic problem, numerous other variants of bin packing exist. The cardinality constrained bin packing adds an additional constraint that the number of items in a bin must not exceed a given limit Nmax. Objectives: Goal of the paper is to present a preliminary experimental study which demostrates adaptations of the new algorithms to the general cardinality constrained bin packing problem. Methods/Approach: Straightforward modifications of First Fit Decreasing (FFD, Refined First Fit (RFF and the algorithm by Zhang et al. for the bin packing problem are compared to four cardinality constrained bin packing problem specific algorithms on random lists of items with 0%, 10%, 30% and 50% of large items. The behaviour of all algorithms when cardinality constraint Nmax increases is also studied. Results: Results show that all specific algorithms outperform the general algorithms on lists with low percentage of big items. Conclusions: One of the specific algorithms performs better or equally well even on lists with high percentage of big items and is therefore of significant interest. The behaviour when Nmax increases shows that specific algorithms can be used for solving the general bin packing problem as well.
Final Report on Utilization of TRU TRISO Fuel as Applied to HTR Systems Part I: Pebble Bed Reactors
Brian Boer; Abderrafi M. Ougouag
2011-03-01
The Deep-Burn (DB) concept [ ] focuses on the destruction of transuranic nuclides from used light water reactor (LWR) fuel. These transuranic nuclides are incorporated into tri-isotopic (TRISO) coated fuel particles and used in gas-cooled reactors with the aim of a fractional fuel burnup of 60 to 70% in fissions per initial metal atom (FIMA). This high performance is expected through the use of multiple recirculation passes of the fuel in pebble form without any physical or chemical changes between passes. In particular, the concept does not call for reprocessing of the fuel between passes. In principle, the DB pebble bed concept employs the same reactor designs as the presently envisioned low-enriched uranium core designs, such as the 400 MWth Pebble Bed Modular Reactor (PBMR-400) [ ]. Although it has been shown in the previous Fiscal Year (FY) (2009) that a PuO2 fueled pebble bed reactor concept is viable, achieving a high fuel burnup while remaining within safety-imposed prescribed operational limits for fuel temperature, power peaking, and temperature reactivity feedback coefficients for the entire temperature range, is challenging. The presence of the isotopes 239Pu, 240Pu, and 241Pu that have resonances in the thermal energy range significantly modifies the neutron thermal energy spectrum as compared to a standard, UO2-fueled core. Therefore, the DB pebble bed core exhibits a relatively hard neutron energy spectrum. However, regions within the pebble bed that are near the graphite reflectors experience a locally softer spectrum. This can lead to power and temperature peaking in these regions. Furthermore, a shift of the thermal energy spectrum with increasing temperature can lead to increased absorption in the resonances of the fissile Pu isotopes. This can lead to a positive temperature reactivity coefficient for the graphite moderator under certain operating conditions. Regarding the coated particle performance, the FY 2009 investigations showed that no
CERN Bulletin
2011-01-01
The Particle Zoo is a colourful set of hand-made soft toys representing the particles in the Standard Model and beyond. It includes a “theoreticals” pack where you can find yet undiscovered particles: the best-selling Higgs boson, the graviton, the tachyon, and dark matter. Supersymmetric particle soft toys are also available on demand. But what would happen to the zoo if Nature had prepared some unexpected surprises? Julie Peasley, the zookeeper, is ready to sew new smiling faces… The "Theoreticals" pack in the Particle Zoo. There is only one place in the world where you can buy a smiling Higgs boson and it’s not at CERN, although this is where scientists hope to observe it. The blue star-shaped particle is the best seller of Julie Peasley’s Particle Zoo – a collection of tens of soft toys representing all sorts of particles, including composite and decaying particles. Over the years Julie’s zoo ...
Fast searching in packed strings
Bille, Philip
2011-01-01
Given strings P and Q the (exact) string matching problem is to find all positions of substrings in Q matching P. The classical Knuth–Morris–Pratt algorithm [SIAM J. Comput. 6 (2) (1977) 323–350] solves the string matching problem in linear time which is optimal if we can only read one character...... at the time. However, most strings are stored in a computer in a packed representation with several characters in a single word, giving us the opportunity to read multiple characters simultaneously. In this paper we study the worst-case complexity of string matching on strings given in packed representation....... Let m⩽n be the lengths P and Q, respectively, and let σ denote the size of the alphabet. On a standard unit-cost word-RAM with logarithmic word size we present an algorithm using timeO(nlogσn+m+occ). Here occ is the number of occurrences of P in Q. For m=o(n) this improves the O(n) bound of the Knuth...
The Maximum Resource Bin Packing Problem
Boyar, J.; Epstein, L.; Favrholdt, L.M.
2006-01-01
algorithms, First-Fit-Increasing and First-Fit-Decreasing for the maximum resource variant of classical bin packing. For the on-line variant, we define maximum resource variants of classical and dual bin packing. For dual bin packing, no on-line algorithm is competitive. For classical bin packing, we find......Usually, for bin packing problems, we try to minimize the number of bins used or in the case of the dual bin packing problem, maximize the number or total size of accepted items. This paper presents results for the opposite problems, where we would like to maximize the number of bins used...... the competitive ratio of various natural algorithms. We study the general versions of the problems as well as the parameterized versions where there is an upper bound of on the item sizes, for some integer k....
Protein packing quality using Delaunay complexes
Fonseca, Rasmus; Winter, Pawel; Karplus, Kevin
2011-01-01
A new method for estimating the packing quality of protein structures is presented. Atoms in high quality protein crystal structures are very uniformly distributed which is difficult to reproduce using structure prediction methods. Packing quality measures can therefore be used to assess structures...... of low quality and even to refine them. Previous methods mainly use the Voronoi cells of atoms to assess packing quality. The presented method uses only the lengths of edges in the Delaunay complex which is faster to compute since volumes of Voronoi cells are not evaluated explicitly. This is a novel...... application of the Delaunay complex that can improve the speed of packing quality computations. Doing so is an important step for, e.g., integrating packing measures into structure refinement methods. High- and low-resolution X-ray crystal structures were chosen to represent well- and poorly-packed structures...
L1-norm packings from function fields
LI Hongli
2005-01-01
In this paper, we study some packings in a cube, namely, how to pack n points in a cube so as to maximize the minimal distance. The distance is induced by the L1-norm which is analogous to the Hamming distance in coding theory. Two constructions with reasonable parameters are obtained, by using some results from a function field including divisor class group, narrow ray class group, and so on. We also present some asymptotic results of the two packings.
Circle Packing for Origami Design Is Hard
Demaine, Erik D; Lang, Robert J
2010-01-01
We show that deciding whether a given set of circles can be packed into a rectangle, an equilateral triangle, or a unit square are NP-hard problems, settling the complexity of these natural packing problems. On the positive side, we show that any set of circles of total area 1 can be packed into a square of size 8/pi=2.546... These results are motivated by problems arising in the context of origami design.
SPECTRUM OF DIRECTED KIRKMAN PACKING DESIGNS
ZhangYan; DuBeiliang
2003-01-01
The problem studied in this article is the directed Kirkman packing, the resolvable directed packing which requires all blocks to be of size three except that ,each resolution class should contain either one block of size two(when v=2(mod 3)) or one block of size four (when v=l (mod 3)). A directed Kirkman packing design DKPD(v) is a resolvable directed packing of a v-set by the maximum possible number of resolution classes of this type. This article investigates the spectrum of DKPD(v) and it is found that it contains all positive integers v≥3 and v≠5,6.
Minimally packed phases in holography
Donos, Aristomenis
2015-01-01
We numerically construct asymptotically AdS black brane solutions of $D=4$ Einstein-Maxwell theory coupled to a pseudoscalar. The solutions are holographically dual to $d=3$ CFTs held at constant chemical potential and magnetic field that spontaneously break translation invariance leading to the spontaneous formation of abelian and momentum magnetisation currents flowing around the plaquettes of a periodic Bravais lattice. We analyse the three-dimensional moduli space of lattice solutions, which are generically oblique, and show that the free energy is minimised by the triangular lattice, associated with minimal packing of circles in the plane. The triangular structure persists at low temperatures indicating the existence of novel crystalline ground states.
Prolonged storage of packed red blood cells for blood transfusion.
Martí-Carvajal, Arturo J; Simancas-Racines, Daniel; Peña-González, Barbra S
2015-07-14
A blood transfusion is an acute intervention, used to address life- and health-threatening conditions on a short-term basis. Packed red blood cells are most often used for blood transfusion. Sometimes blood is transfused after prolonged storage but there is continuing debate as to whether transfusion of 'older' blood is as beneficial as transfusion of 'fresher' blood. To assess the clinical benefits and harms of prolonged storage of packed red blood cells, in comparison with fresh, on recipients of blood transfusion. We ran the search on 1st May 2014. We searched the Cochrane Injuries Group Specialized Register, Cochrane Central Register of Controlled Trials (CENTRAL, The Cochrane Library), MEDLINE (OvidSP), Embase (OvidSP), CINAHL (EBSCO Host) and two other databases. We also searched clinical trials registers and screened reference lists of the retrieved publications and reviews. We updated this search in June 2015 but these results have not yet been incorporated. Randomised clinical trials including participants assessed as requiring red blood cell transfusion were eligible for inclusion. Prolonged storage was defined as red blood cells stored for ≥ 21 days in a blood bank. We did not apply limits regarding the duration of follow-up, or country where the study took place. We excluded trials where patients received a combination of short- and long-stored blood products, and also trials without a clear definition of prolonged storage. We independently performed study selection, risk of bias assessment and data extraction by at least two review authors. The major outcomes were death from any cause, transfusion-related acute lung injury, and adverse events. We estimated relative risk for dichotomous outcomes. We measured statistical heterogeneity using I(2). We used a random-effects model to synthesise the findings. We identified three randomised clinical trials, involving a total of 120 participants, comparing packed red blood cells with ≥ 21 days storage
Development of an effective valve packing program
Hart, K.A.
1996-12-01
Current data now shows that graphite valve packing installed within the guidance of a controlled program produces not only reliable stem sealing but predictable running loads. By utilizing recent technological developments in valve performance monitoring for both MOV`s and AOV`s, valve packing performance can be enhanced while reducing maintenance costs. Once known, values are established for acceptable valve packing loads, the measurement of actual valve running loads via the current MOV/AOV diagnostic techniques can provide indication of future valve stem sealing problems, improper valve packing installation or identify the opportunity for valve packing program improvements. At times the full benefit of these advances in material and predictive technology remain under utilized due to simple past misconceptions associated with valve packing. This paper will explore the basis for these misconceptions, provide general insight into the current understanding of valve packing and demonstrate how with this new understanding and current valve diagnostic equipment the key aspects required to develop an effective, quality valve packing program fit together. The cost and operational benefits provided by this approach can be significant impact by the: elimination of periodic valve repacking, reduction of maintenance costs, benefits of leak-free valve operation, justification for reduced Post Maintenance Test Requirements, reduced radiation exposure, improved plant appearance.
de Boer, Jan; van Smaalen, Sander; Petricek, Vaclav; Dusek, Michal P.; Verheijen, Marcel A.; Meijer, G.
1994-01-01
C60 crystals were grown from purified powder material with a multiple sublimation technique. In addition to crystals wit a cubic close-packed (ccp) arrangement, crystals were found with a hexagonal close-packed (hcp) structure. Detailed crystallographic evidence is given, including complete refineme
On maximum cycle packings in polyhedral graphs
Peter Recht
2014-04-01
Full Text Available This paper addresses upper and lower bounds for the cardinality of a maximum vertex-/edge-disjoint cycle packing in a polyhedral graph G. Bounds on the cardinality of such packings are provided, that depend on the size, the order or the number of faces of G, respectively. Polyhedral graphs are constructed, that attain these bounds.
BIPP (BISMUTH IODINE PARAFFINE PASTE PACK REVISITED
Balasubramanian Thiagarajan
2011-09-01
Full Text Available This review article takes a new look at the use of BIPP pack following nasal and ear surgeries. It lists the advantages and pitfalls of using this packing material. Pubmed search revealed very little material on this topic hence I compiled existing data to bring out an article.
Meromorphic Vector Fields and Circle Packings
Dias, Kealey
to structurally stable vector fields, there is an underlying dynamically defined triangulation of the plane. Circle packings are a means to realize such a given combinatorial structure. About 20 years ago, W. Thurston suggested applying circle packings to obtain approximations to Riemann mappings. This gave rise...
Improved lower bound for online strip packing
Harren, Rolf; Kern, Walter
2012-01-01
In the two-dimensional strip packing problem a number of rectangles have to be packed without rotation or overlap into a strip such that the height of the strip used is minimal. The width of the rectangles is bounded by 1 and the strip has width 1 and infinite height. We study the online version of
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Packing. 29.1048 Section 29.1048 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 92) § 29.1048 Packing. A lot of tobacco consisting of a number of packages submitted as...
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Packing. 29.6031 Section 29.6031 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... INSPECTION Standards Definitions § 29.6031 Packing. A lot of tobacco consisting of a number of...
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Packing. 29.3538 Section 29.3538 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 95) § 29.3538 Packing. A lot of tobacco consisting of a number of packages submitted as...
Difference packing arrays and systematic authentication codes
无
2004-01-01
In this paper, a type of combinatorial design (called difference packing array)is proposed and used to give a construction of systematic authentication codes. Taking advantage of this construction, some new series of systematic authentication codes are obtainable in terms of existing difference packing arrays.
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Packing. 29.2541 Section 29.2541 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2541 Packing. A lot of tobacco consisting...
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Packing. 29.3048 Section 29.3048 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Packing. A lot of tobacco consisting of a number of packages submitted as one definite unit for...
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Packing. 29.2289 Section 29.2289 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Packing. A lot of tobacco consisting of a number of packages submitted as one definite unit for...
Does Post Septoplasty Nasal Packing Reduce Complications?
Bijan Naghibzadeh
2011-01-01
Full Text Available The main issues in nasal surgery are to stabilize the nose in the good position after surgery and preserve the cartilages and bones in the favorable situation and reduce the risk of deviation recurrence. Also it is necessary to avoid the synechia formation, nasal valve narrowing, hematoma and bleeding. Due to the above mentioned problems and in order to solve and minimize them nasal packing, nasal splint and nasal mold have been advised. Patients for whom the nasal packing used may faced to some problems like naso-pulmonary reflex, intractable pain, sleep disorder, post operation infection and very dangerous complication like toxic shock syndrome. We have two groups of patients and three surgeons (one of the surgeons used post operative nasal packing in his patients and the two others surgeons did not.Complications and morbidities were compared in these two groups. Comparing the two groups showed that the rate of complication and morbidities between these two groups were same and the differences were not valuable, except the pain and discomfort post operatively and at the time of its removal. Nasal packing has several risks for the patients while its effects are not studied. Septoplasty can be safely performed without postoperative nasal packing. Nasal packing had no main findings that compensated its usage. Septal suture is one of the procedures that can be used as alternative method to nasal packing. Therefore the nasal packing after septoplasty should be reserved for the patients with increased risk of bleeding.
Pack formation in cycling and orienteering.
Ackland, G J; Butler, D
2001-09-13
In cycling and orienteering competitions, competitors can become bunched into packs, which may mask an individual's true ability. Here we model this process with a view to determining when competitors' times are determined more by others than by their own ability. Our results may prove useful in helping to stage events so that pack formation can be avoided.
Monitoring three-dimensional packings in microgravity.
Yu, Peidong; Frank-Richter, Stefan; Börngen, Alexander; Sperl, Matthias
2014-01-01
We present results from experiments with granular packings in three dimensions in microgravity as realized on parabolic flights. Two different techniques are employed to monitor the inside of the packings during compaction: (1) X-ray radiography is used to measure in transmission the integrated fluc
7 CFR 51.1217 - Standard pack.
2010-01-01
... be ring faced and tightly packed with sufficient bulge to prevent any appreciable movement of the... the box. (d) Peaches packed in other type boxes such as wire-bound boxes and fiber-board boxes may be... than 10 percent of the packages in any lot may not meet these requirements. (i) “Well filled”...
7 CFR 51.2840 - Export packing requirements.
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Export packing requirements. 51.2840 Section 51.2840...) Export Packing Requirements § 51.2840 Export packing requirements. Onions specified as meeting Export Packing Requirements shall be packed in containers having a net capacity of 25 kilograms (approximately...
Transeptal suturing - a cost-efficient alternative for nasal packing in septal surgery.
Plasencia, Daniel Pérez; Falcón, Juan Carlos; Barreiro, Silvia Borkoski; Bocanegra-Pérez, María Sacramento; Barrero, Mario Vicente; Macías, Ángel Ramos
2016-01-01
Nasal packing is routinely used in septal surgery to prevent postoperative bleeding. To demonstrate the possibility of transeptal suture as a safe and effective way to avoid nasal packing and to improve efficiency. This is a prospective, descriptive, inferential cost study comprising 92 patients. Two randomized groups of patients were analyzed, one with nasal packing and the other with transeptal suture. In the group of transeptal suture no patient experienced postoperative bleeding, and a statistically significant reduction of pain and headache was demonstrated. At the same time, we improved efficiency by saving on material costs. Transeptal suture is an effective and safe alternative to classic nasal packing in septal surgery. Moreover, it improves the efficiency of the intervention by saving costs. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.
Transeptal suturing - a cost-efficient alternative for nasal packing in septal surgery
Daniel Pérez Plasencia
Full Text Available ABSTRACT INTRODUCTION: Nasal packing is routinely used in septal surgery to prevent postoperative bleeding. OBJECTIVE: To demonstrate the possibility of transeptal suture as a safe and effective way to avoid nasal packing and to improve efficiency. METHODS: This is a prospective, descriptive, inferential cost study comprising 92 patients. Two randomized groups of patients were analyzed, one with nasal packing and the other with transeptal suture. RESULTS: In the group of transeptal suture no patient experienced postoperative bleeding, and a statistically significant reduction of pain and headache was demonstrated. At the same time, we improved efficiency by saving on material costs. CONCLUSIONS: Transeptal suture is an effective and safe alternative to classic nasal packing in septal surgery. Moreover, it improves the efficiency of the intervention by saving costs.
Hawking Colloquium Packed CERN Auditoriums
2006-01-01
Stephen Hawking's week long visit to CERN included an 'exceptional CERN colloquium' which filled six auditoriums. Stephen Hawking during his visit to the ATLAS experiment. Stephen Hawking, Lucasian Professor of Cambridge University, visited the Theory Unit of the Physics Department from 24 September to 1 October 2006. As part of his visit, he gave two lectures in the main auditorium - a theoretical seminar on 'The Semi-Classical Birth of The Universe', attended by about 120 specialists; and a colloquium titled 'The Origin of The Universe'. As a key public figure in theoretical physics, his presence was eagerly awaited on both occasions. Those who wanted to attend the colloquium had to arrive early and be equipped with plenty of patience. An hour before it was due to begin, the 400 capacity of the main auditorium was already full. The lecture, simultaneously broadcast to five other fully packed CERN auditoriums, was attended by an estimated total of 850. Stephen Hawking attracted a large CERN crowd, filling ...
The structure of tropical forests and sphere packings.
Taubert, Franziska; Jahn, Markus Wilhelm; Dobner, Hans-Jürgen; Wiegand, Thorsten; Huth, Andreas
2015-12-01
The search for simple principles underlying the complex architecture of ecological communities such as forests still challenges ecological theorists. We use tree diameter distributions--fundamental for deriving other forest attributes--to describe the structure of tropical forests. Here we argue that tree diameter distributions of natural tropical forests can be explained by stochastic packing of tree crowns representing a forest crown packing system: a method usually used in physics or chemistry. We demonstrate that tree diameter distributions emerge accurately from a surprisingly simple set of principles that include site-specific tree allometries, random placement of trees, competition for space, and mortality. The simple static model also successfully predicted the canopy structure, revealing that most trees in our two studied forests grow up to 30-50 m in height and that the highest packing density of about 60% is reached between the 25- and 40-m height layer. Our approach is an important step toward identifying a minimal set of processes responsible for generating the spatial structure of tropical forests.
Efficacy of fresh packed red blood transfusion in organophosphate poisoning
Bao, Hang-xing; Tong, Pei-jian; Li, Cai-xia; Du, Jing; Chen, Bing-yu; Huang, Zhi-hui; Wang, Ying
2017-01-01
Abstract The mortality rate caused by organophosphate (OP) poisoning is still high, even the standard treatment such as atropine and oxime improves a lot. To search for alternative therapies, this study was aimed to investigate the effects of packed red blood cell (RBC) transfusion in acute OP poisoning, and compare the therapeutic effects of RBCs at different storage times. Patients diagnosed with OP poisoning were included in this prospective study. Fresh RBCs (packed RBCs stored less than 10 days) and longer-storage RBCs (stored more than 10 days but less than 35 days) were randomly transfused or not into OP poisoning patients. Cholinesterase (ChE) levels in blood, atropine usage and durations, pralidoxime durations were measured. We found that both fresh and longer-storage RBCs (200–400 mL) significantly increased blood ChE levels 6 hours after transfusion, shortened the duration for ChE recovery and length of hospital stay, and reduced the usage of atropine and pralidoxime. In addition, fresh RBCs demonstrated stronger therapeutic effects than longer-storage RBCs. Packed RBCs might be an alternative approach in patients with OP poisoning, especially during early stages. PMID:28296779
Formation and liquid permeability of dense colloidal cube packings
Castillo, Sonja I. R.; Thies-Weesie, Dominique M. E.; Philipse, Albert P.
2015-02-01
The liquid permeability of dense random packings of cubic colloids with rounded corners is studied for solid hematite cubes and hollow microporous silica cubes. The permeabilities of these two types of packings are similar, confirming that the micropores in the silica shell of the hollow cubes do not contribute to the permeability. From the Brinkman screening length √{k } of ˜16 nm, we infer that the relevant pores are indeed intercube pores. Furthermore, we relate the permeability to the volume fraction and specific solid volume of the cubes using the Kozeny-Carman relation. The Kozeny-Carman relation contains a constant that accounts for the topology and size distribution of the pores in the medium. The constant obtained from our study with aspherical particles is of the same order of magnitude as those from studies with spherical and ellipsoidal particles, which supports the notion that the Kozeny-Carman relation is applicable for any dense particle packing with (statistically) isotropic microstructures, irrespective of the particle shape.
A method for dense packing discovery
Kallus, Yoav; Gravel, Simon
2010-01-01
The problem of packing a system of particles as densely as possible is foundational in the field of discrete geometry and is a powerful model in the material and biological sciences. As packing problems retreat from the reach of solution by analytic constructions, the importance of an efficient numerical method for conducting de novo (from-scratch) searches for dense packings becomes crucial. In this paper, we use the divide and concur framework to develop a general search method for the solution of periodic constraint problems, and we apply it to the discovery of dense periodic packings. An important feature of the method is the integration of the unit cell parameters with the other packing variables in the definition of the configuration space. The method we present led to improvements in the densest-known tetrahedron packing which are reported in [arXiv:0910.5226]. Here, we use the method to reproduce the densest known lattice sphere packings and the best known lattice kissing arrangements in up to 14 and ...
Integral packing of trees and branchings
Trubin, V.A.
1995-09-01
This article continues the discussion of the author`s results on strictly polynomial algorithms for network strength problems (it is assumed that the reader is familiar with the previous publications). It considers the problem of optimal integral packing of spanning trees in a graph and proposes a strictly polynomial algorithm for the solution of this problem. The spanning tree packing and network covering algorithms described produce noninteger solutions. However, the Tutte-Nash-Williams theorem provides a good characterization for the solution of the corresponding problems for trees with integral cardinalities. Interger solutions can be obtained by Cunningham`s general algorithm, which produces an integer solution for the problem of packing of bases of a polymatroid polyhedron. This algorithm, however, is characterized by high time complexity. Moreover, the number of packed bases (in our case, spanning trees) in Seriver`s modification is double the theoretical minimum. In this paper, we apply the results to propose on O(n{sup 2} mp) algorithm for the problem of integral packing of spanning trees, where n and m respectively are the number of vertices and edges in the graph G and p is the time complexity of the maximum flow problem on G. The algorithm constructs a basis solution, so that the optimal solution contains a minimum number of spanning trees of nonzero cardinalities. In other words, the number of nonzero components forming the optimal packing does not exceed n. The proposed algorithm is easily modified for the solution of problems of minimum integral packing and covering described elswhere, and its elaboration for the present case is left to the reader. The spanning tree packing problem is transformed into a similar problem for digraphs, specifically, the problem of packing branchings into a given digraph with a distinguished root. A good characterization of this problem is provided by the Edmonds theorem.
Modular vaccine packaging increases packing efficiency.
Norman, Bryan A; Rajgopal, Jayant; Lim, Jung; Gorham, Katrin; Haidari, Leila; Brown, Shawn T; Lee, Bruce Y
2015-06-17
Within a typical vaccine supply chain, vaccines are packaged into individual cylindrical vials (each containing one or more doses) that are bundled together in rectangular "inner packs" for transport via even larger groupings such as cold boxes and vaccine carriers. The variability of vaccine inner pack and vial size may hinder efficient vaccine distribution because it constrains packing of cold boxes and vaccine carriers to quantities that are often inappropriate or suboptimal in the context of country-specific vaccination guidelines. We developed in Microsoft Excel (Microsoft Corp., Redmond, WA) a spreadsheet model that evaluated the impact of different packing schemes for the Benin routine regimen plus the introduction of the Rotarix vaccine. Specifically, we used the model to compare the current packing scheme to that of a proposed modular packing scheme. Conventional packing of a Dometic RCW25 that aims to maximize fully-immunized children (FICs) results in 123 FICs and a packing efficiency of 81.93% compared to a maximum of 155 FICs and 94.1% efficiency for an alternative modular packaging system. Our analysis suggests that modular packaging systems could offer significant advantages over conventional vaccine packaging systems with respect to space efficiency and potential FICs, when they are stored in standard vaccine carrying devices. This allows for more vaccines to be stored within the same volume while also simplifying the procedures used by field workers to pack storage devices. Ultimately, modular packaging systems could be a simple way to help increase vaccine coverage worldwide. Copyright © 2015. Published by Elsevier Ltd.
Shape-induced chiral ordering in two-dimensional packing of snowmanlike dimeric particles.
Han, Youngkyu; Lee, Juncheol; Choi, Siyoung Q; Choi, Myung Chul; Kim, Mahn Won
2013-10-01
Understanding the distinctive phase behaviors in random packing due to particle shapes is an important issue in condensed matter physics. In this paper, we investigate the random packing structure of two-dimensional (2D) snowmen via wax-snowman packing experiments and Brownian dynamics simulations. Both experiments and simulations reveal that neighboring snowmen have a strong short-range orientational correlation and consequently locally form particular conformations. A chiral conformation is dominant for high area fractions near the jamming condition (φ>0.8), and the proportion of the chiral conformation increases with γ. We also found that the attractive interaction does not have a significant impact on the results. The geometry of chirally ordered snowmen causes a mismatch with 2D crystalline symmetries and thus inhibits the development of long-range spatial order, despite the strong orientational correlation between neighbors.
Davis, Brian C.; Ward, Logan; Butt, Darryl P.; Fillery, Brent; Reimanis, Ivar
2016-08-01
Diametrical compression testing is an important technique to evaluate fracture properties of the SiC layer in TRISO-coated nuclear fuel particles. This study was conducted to expand the understanding and improve the methodology of the test. An analytic solution and multiple FEA models are used to determine the development of the principal stress fields in the SiC shell during a crush test. An ideal fracture condition where the diametrical compression test best mimics in-service internal pressurization conditions was discovered. For a small set of empirical data points, results from different analysis methodologies were input to an iterative Weibull equation set to determine characteristic strength (332.9 MPa) and Weibull modulus (3.80). These results correlate well with published research. It is shown that SiC shell asphericity is currently the limiting factor of greatest concern to obtaining repeatable results. Improvements to the FEA are the only apparent method for incorporating asphericity and improving accuracy.
I.J.van Rooyen; J.L. Dunzik Gougar; T. Trowbridge; Philip M van Rooyen
2012-10-01
The mechanical properties of the silicon carbide (SiC) layer of the TRi-ISOtropic (TRISO) coated particle (CP) for high temperature gas reactors (HTGR) are performance parameters that have not yet been standardized by the international HTR community. Presented in this paper are the results of characterizing coated particles to reveal the effect of annealing temperature (1000 to 2100°C) on the strength and grain size of unirradiated coated particles. This work was further expanded to include possible relationships between the grain size and strength values. The comparative results of two strength measurement techniques and grain size measured by the Lineal intercept method are included. Preliminary grain boundary characterization results determined by electron backscatter diffraction (EBSD) are included. These results are also important for future fission product transport studies, as grain boundary diffusion is identified as a possible mechanism by which 110mAg, one of the fission activation products, might be released through intact SiC layers. Temperature is a parameter known to influence the grain size of SiC and therefore it is important to investigate the effect of high temperature annealing on the SiC grain size. Recommendations and future work will also be briefly discussed.
Packing circles and spheres on surfaces
Schiftner, Alexander
2009-12-01
Inspired by freeform designs in architecture which involve circles and spheres, we introduce a new kind of triangle mesh whose faces\\' incircles form a packing. As it turns out, such meshes have a rich geometry and allow us to cover surfaces with circle patterns, sphere packings, approximate circle packings, hexagonal meshes which carry a torsion-free support structure, hybrid tri-hex meshes, and others. We show how triangle meshes can be optimized so as to have the incircle packing property. We explain their relation to conformal geometry and implications on solvability of optimization. The examples we give confirm that this kind of meshes is a rich source of geometric structures relevant to architectural geometry.
Crystal packing effects on protein loops.
Rapp, Chaya S; Pollack, Rena M
2005-07-01
The effects of crystal packing on protein loop structures are examined by (1) a comparison of loops in proteins that have been crystallized in alternate packing arrangements, and (2) theoretical prediction of loops both with and without the inclusion of the crystal environment. Results show that in a minority of cases, loop geometries are dependent on crystal packing effects. Explicit representation of the crystal environment in a loop prediction algorithm can be used to model these effects and to reconstruct the structures, and relative energies, of a loop in alternative packing environments. By comparing prediction results with and without the inclusion of the crystal environment, the loop prediction algorithm can further be used to identify cases in which a crystal structure does not represent the most stable state of a loop in solution. We anticipate that this capability has implications for structural biology.
Packing of ganglioside-phospholipid monolayers
Majewski, J.; Kuhl, T.L.; Kjær, K.
2001-01-01
DPPE monolayer and does not distort the hexagonal in-plane unit cell or out-of-plane two-dimensional (2-D) packing compared with a pure DPPE monolayer. The oligosaccharide headgroups were found to extend normally from the monolayer surface, and the incorporation of these glycolipids into DPPE...... monolayers did not affect hydrocarbon tail packing (fluidization or condensation of the hydrocarbon region). This is in contrast to previous investigations of lipopolymer-lipid mixtures, where the packing structure of phospholipid monolayers was greatly altered by the inclusion of lipids bearing hydrophilic...... polymer groups. Indeed, the lack of packing disruptions by the oligosaccharide groups indicates that protein-GM, interactions, including binding, insertion, chain fluidization, and domain formation (lipid rafts), can be studied in 2-D monolayers using scattering techniques....
Electroosmotic Driving Liquid Using Nanosilica Packed Column
Ling Xin CHEN; Guo An LUO; Tao WEN
2005-01-01
The electroosmotic pump (EOP) using nanosilica particles packed-bed column was experimentally studied. The relationship between flowrate, pressure and applied voltage of the pump, and pressure-flowrate (P-Q) characteristic were investigated.
Packing circles and spheres on surfaces
Schiftner, Alexander
2009-01-01
Inspired by freeform designs in architecture which involve circles and spheres, we introduce a new kind of triangle mesh whose faces\\' incircles form a packing. As it turns out, such meshes have a rich geometry and allow us to cover surfaces with circle patterns, sphere packings, approximate circle packings, hexagonal meshes which carry a torsion-free support structure, hybrid tri-hex meshes, and others. We show how triangle meshes can be optimized so as to have the incircle packing property. We explain their relation to conformal geometry and implications on solvability of optimization. The examples we give confirm that this kind of meshes is a rich source of geometric structures relevant to architectural geometry. © 2009 ACM.
Software For Nearly Optimal Packing Of Cargo
Fennel, Theron R.; Daughtrey, Rodney S.; Schwaab, Doug G.
1994-01-01
PACKMAN computer program used to find nearly optimal arrangements of cargo items in storage containers, subject to such multiple packing objectives as utilization of volumes of containers, utilization of containers up to limits on weights, and other considerations. Automatic packing algorithm employed attempts to find best positioning of cargo items in container, such that volume and weight capacity of container both utilized to maximum extent possible. Written in Common LISP.
Phyllotaxis, disk packing, and Fibonacci numbers
Mughal, A.; Weaire, D.
2017-02-01
We consider the evolution of the packing of disks (representing the position of buds) that are introduced at the top of a surface which has the form of a growing stem. They migrate downwards, while conforming to three principles, applied locally: dense packing, homogeneity, and continuity. We show that spiral structures characterized by the widely observed Fibonacci sequence (1, 1, 2, 3, 5, 8, 13, ...), as well as related structures, occur naturally under such rules. Typical results are presented in an animation.
Packing of elastic wires in flexible shells
Vetter, R.; Wittel, F. K.; Herrmann, H. J.
2015-11-01
The packing problem of long thin filaments that are injected into confined spaces is of fundamental interest for physicists and biologists alike. How linear threads pack and coil is well known only for the ideal case of rigid containers, though. Here, we force long elastic rods into flexible spatial confinement borne by an elastic shell to examine under which conditions recently acquired knowledge on wire packing in rigid spheres breaks down. We find that unlike in rigid cavities, friction plays a key role by giving rise to the emergence of two distinct packing patterns. At low friction, the wire densely coils into an ordered toroidal bundle with semi-ellipsoidal cross-section, while at high friction, it packs into a highly disordered, hierarchic structure. These two morphologies are shown to be separated by a continuous phase transition. Our findings demonstrate the dramatic impact of friction and confinement elasticity on filamentous packing and might drive future research on such systems in physics, biology and even medical technology toward including these mutually interacting effects.
Voronoia: analyzing packing in protein structures.
Rother, Kristian; Hildebrand, Peter Werner; Goede, Andrean; Gruening, Bjoern; Preissner, Robert
2009-01-01
The packing of protein atoms is an indicator for their stability and functionality, and applied in determining thermostability, in protein design, ligand binding and to identify flexible regions in proteins. Here, we present Voronoia, a database of atomic-scale packing data for protein 3D structures. It is based on an improved Voronoi Cell algorithm using hyperboloid interfaces to construct atomic volumes, and to resolve solvent-accessible and -inaccessible regions of atoms. The database contains atomic volumes, local packing densities and interior cavities calculated for 61 318 biological units from the PDB. A report for each structure summarizes the packing by residue and atom types, and lists the environment of interior cavities. The packing data are compared to a nonredundant set of structures from SCOP superfamilies. Both packing densities and cavities can be visualized in the 3D structures by the Jmol plugin. Additionally, PDB files can be submitted to the Voronoia server for calculation. This service performs calculations for most full-atomic protein structures within a few minutes. For batch jobs, a standalone version of the program with an optional PyMOL plugin is available for download. The database can be freely accessed at: http://bioinformatics.charite.de/voronoia.
Broda, D M; Boerema, J A; Bell, R G
2003-01-01
To develop a practical molecular procedure that directly, without isolation, and specifically detects the presence of clostridia which cause 'blown pack' spoilage of vacuum-packed meat. Primer sets and PCR amplification procedures were developed that detect the presence of 16S rDNA gene and/or 16S-23S rDNA internal transcribed spacer fragments of 'blown pack' causing clostridia in meat. The specificity of the developed procedures was evaluated with DNA obtained from close phylogenetic neighbours of 'blown pack' causing clostridia, food clostridia and common meat spoilage microorganisms. The sensitivity of detection was assessed in non-enriched and low-temperature-enriched beef mince inoculated with serially diluted pure cultures of Clostridium estertheticum DSMZ 8809T and Cl. gasigenes DB1AT. The efficacy of detection procedures was evaluated for naturally contaminated vacuum-packed meat samples. Three primer sets, 16SE, 16SDB and EISR, produced amplicons of the expected size with DNA templates from target clostridia, but failed to yield PCR products with DNAs from any other microorganisms tested. With 16SE and 16SDB primers, minimum levels of detection were 104 CFU g(-1) for non-enriched, and 102 CFU g(-1) for enriched meat samples. Based on the established specificity of these primers, as well as DNA sequencing of amplicons, Cl. gasigenes was confirmed as the causative agent of 'blown pack' spoilage in two packs, and Cl. estertheticum as the causative agent in the third. The developed method can be used for rapid detection of 'blown pack' causing clostridia in commercial blown packs, or following low temperature enrichment, for detection of these microorganisms in meat containing as few as 100 clostridial cells per gram. The paper reports practical procedures that can be used for rapid confirmation of the causative agents of clostridial 'blown pack' spoilage in commercial spoiled packs, or for detection of psychrophilic clostridia in epidemiological trace back of
Torquato, S; Jiao, Y
2010-12-01
We have formulated the problem of generating dense packings of nonoverlapping, nontiling nonspherical particles within an adaptive fundamental cell subject to periodic boundary conditions as an optimization problem called the adaptive-shrinking cell (ASC) formulation [S. Torquato and Y. Jiao, Phys. Rev. E 80, 041104 (2009)]. Because the objective function and impenetrability constraints can be exactly linearized for sphere packings with a size distribution in d-dimensional Euclidean space R(d), it is most suitable and natural to solve the corresponding ASC optimization problem using sequential-linear-programming (SLP) techniques. We implement an SLP solution to produce robustly a wide spectrum of jammed sphere packings in R(d) for d=2, 3, 4, 5, and 6 with a diversity of disorder and densities up to the respective maximal densities. A novel feature of this deterministic algorithm is that it can produce a broad range of inherent structures (locally maximally dense and mechanically stable packings), besides the usual disordered ones (such as the maximally random jammed state), with very small computational cost compared to that of the best known packing algorithms by tuning the radius of the influence sphere. For example, in three dimensions, we show that it can produce with high probability a variety of strictly jammed packings with a packing density anywhere in the wide range [0.6, 0.7408...], where π/√18 = 0.7408... corresponds to the density of the densest packing. We also apply the algorithm to generate various disordered packings as well as the maximally dense packings for d=2, 4, 5, and 6. Our jammed sphere packings are characterized and compared to the corresponding packings generated by the well-known Lubachevsky-Stillinger (LS) molecular-dynamics packing algorithm. Compared to the LS procedure, our SLP protocol is able to ensure that the final packings are truly jammed, produces disordered jammed packings with anomalously low densities, and is appreciably
Chicken Meat Submitted to Gamma Radiation and Packed with or without Oxygen
K Pelicia
2015-06-01
Full Text Available The objective of this study was to evaluate the effects on gamma radiation levels on the physical and microbiological characteristics of chicken breast meat. A completely randomized experimental design in a 4x2x3 factorial arrangement was adopted. Treatments consisted of four radiation concentrations (0, 2, 4, or 8kGy, two package sealing methods (with or without vacuum, and three storage times (01, 07, or 14 days, with ten replicates each, totaling 240 chicken breast fillets. Packaging and radiation had no influence (p>0.05 on chicken breast meat pH, water retention capacity, or presence of Salmonella spp. Breast fillets not submitted to radiation and vacuum packed presented higher water retention capacity (p<0.05 than those radiated at 4kGy and vacuum packed. Drip loss in fillets radiated at 8kGy and not vacuum packed was higher (p<0.05 than in non-radiated and non-vacuum packed fillets; however, both were not different from the other treatments. Coliform presence increased with storage time in non-radiated samples; however, when these were vacuum-packed, their development was slower. The results of the present experiment suggest that the use of a low radiation dose (2kGy, combined with vacuum packing, may minimize the harmful effects of storage on chicken breast fillets.
Pavlenko, V.F.; Gurov, O.I.; Chekhov, O.S.; Dolinskii, V.M.; Dronvaeva, T.I.
1987-03-01
The contact pressures generated in the packing systems of sectional heat exchangers determine their efficiency and also the extent of the loads acting on the supporting members. The dimensions of the packing systems are of a random nature; this condition is responsible for the stochastic nature of the relationships on which the leaktightness and efficiency of the exchanger as well as the load capacity of the supporting members depend. The authors of this paper carry out a statistical analysis of the parameters of packing systems and their configurations and determine the characteristics of their random functions. This enables them to refine these dependencies and evaluate the influence of the manufacturing precision on the sealing capacity of the packing systems and on the overall efficiency of the exchanger.
27 CFR 24.308 - Bottled or packed wine record.
2010-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Bottled or packed wine... BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Records and Reports § 24.308 Bottled or packed wine record. A proprietor who bottles, packs, or receives bottled or packed beverage wine in bond shall...
A Harmonic Algorithm for the 3D Strip Packing Problem
N. Bansal (Nikhil); X. Han; K. Iwama; M. Sviridenko; G. Zhang (Guochuan)
2013-01-01
htmlabstractIn the three-dimensional (3D) strip packing problem, we are given a set of 3D rectangular items and a 3D box $B$. The goal is to pack all the items in $B$ such that the height of the packing is minimized. We consider the most basic version of the problem, where the items must be packed
48 CFR 1846.672-6 - Packing list instructions.
2010-10-01
... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Packing list instructions... ADMINISTRATION CONTRACT MANAGEMENT QUALITY ASSURANCE Material Inspection and Receiving Reports 1846.672-6 Packing list instructions. Copies of the MIRR may be used as a packing list. The packing list copies shall...
46 CFR 160.043-6 - Marking and packing.
2010-10-01
... 46 Shipping 6 2010-10-01 2010-10-01 false Marking and packing. 160.043-6 Section 160.043-6... Marking and packing. (a) General. Jackknives specified by this subpart shall be stamped or otherwise... opener. (c) Packing. Each jackknife, complete with lanyard attached, shall be packed in a heat-sealed...
Packing parameters effect on injection molding of polypropylene nanostructured surfaces
Calaon, Matteo; Tosello, Guido; Hansen, Hans Nørgaard
2012-01-01
having a diameter of 500 nm was employed. The tool insert surface was produced using chemical-based-batch techniques such aluminum anodization and nickel electroplating. During the injection molding process, polypropylene (PP) was employed as material and packing phase parameters (packing time, packing...... to the polymer part was mainly influenced by packing pressure level and distance from the gate....
Yang, Young-Ki; Allen, Todd R.
2016-03-01
The tri-structural isotropic (TRISO) coated particle fuel has been developed and used for high temperature gas-cooled reactors (HTGRs). It provides a unique robustness of the first barrier for the fission products. The TRISO fuel particle has typically consisted of a UO2 or UCO kernel, surrounded by successive layers of porous carbon, dense inner pyrocarbon, silicon carbide, and dense outer pyrocarbon. During operation, however, the SiC layer has been known to release radioactive silver 110mAg which makes maintenance more difficult and thus costly. Zirconium carbide has been considered as a promising alternative to the SiC fission product barrier. ZrC exhibits high temperature stability and possibly possesses superior Pd resistance, while the retention properties especially for silver have not been adequately studied. To help elucidate the diffusive behavior of silver in the ZrC coating of the TRISO-coated particle, a new diffusion experimental technique, called the encapsulating source method, has been developed by constructing a constant source diffusion couple between ZrC and Ag gas originated from Zr-Ag solid solution. Scanning electron microscopy (SEM), wavelength-dispersive X-ray spectroscopy (WDS), electron backscatter diffraction (EBSD) and optical methods were used to analyze the diffusion couple annealed at 1500 °C. The resultant diffusion coefficient of Ag in single-crystalline ZrC0.84 at 1500 °C was experimentally determined to be about 2.8 (±1.2) × 10-17 m2/s.
Yang, Young-Ki, E-mail: deltag@naver.com; Allen, Todd R., E-mail: allen@engr.wisc.edu
2016-03-15
The tri-structural isotropic (TRISO) coated particle fuel has been developed and used for high temperature gas-cooled reactors (HTGRs). It provides a unique robustness of the first barrier for the fission products. The TRISO fuel particle has typically consisted of a UO{sub 2} or UCO kernel, surrounded by successive layers of porous carbon, dense inner pyrocarbon, silicon carbide, and dense outer pyrocarbon. During operation, however, the SiC layer has been known to release radioactive silver {sup 110m}Ag which makes maintenance more difficult and thus costly. Zirconium carbide has been considered as a promising alternative to the SiC fission product barrier. ZrC exhibits high temperature stability and possibly possesses superior Pd resistance, while the retention properties especially for silver have not been adequately studied. To help elucidate the diffusive behavior of silver in the ZrC coating of the TRISO-coated particle, a new diffusion experimental technique, called the encapsulating source method, has been developed by constructing a constant source diffusion couple between ZrC and Ag gas originated from Zr–Ag solid solution. Scanning electron microscopy (SEM), wavelength-dispersive X-ray spectroscopy (WDS), electron backscatter diffraction (EBSD) and optical methods were used to analyze the diffusion couple annealed at 1500 °C. The resultant diffusion coefficient of Ag in single-crystalline ZrC{sub 0.84} at 1500 °C was experimentally determined to be about 2.8 (±1.2) × 10{sup −17} m{sup 2}/s. - Highlights: • Developed new diffusion experimental method in lieu of problematic existing method. • Measured concentration profiles of Ag in ZrC after diffusion annealing. • Firstly determined diffusion coefficient of Ag in ZrC at 1500 °C.
Quasistatic packings of droplets in flat microfluidic channels
Kadivar, Erfan
2016-02-01
As observed in recent experiments, monodisperse droplets self-assemble spontaneously in different ordered packings. In this work, we present a numerical study of the droplet packings in the flat rectangular microfluidic channels. Employing the boundary element method, we numerically solve the Stokes equation in two-dimension and investigate the appearance of droplet packing and transition between one and two-row packings of monodisperse emulsion droplets. By calculating packing force applied on the droplet interface, we investigate the effect of flow rate, droplet size, and surface tension on the packing configurations of droplets and transition between different topological packings.
Direct contact condensation in packed beds
Li, Yi; Klausner, James F.; Mei, Renwei; Knight, Jessica [Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611 (United States)
2006-12-15
A diffusion driven desalination process was recently described where a very effective direct contact condenser with a packed bed is used to condense water vapor out of an air/vapor mixture. A laboratory scale direct contact condenser has been fabricated as a twin tower structure with two stages, co-current and countercurrent. Experiments have been operated in each stage with respective saturated air inlet temperatures of 36, 40 and 43{sup o}C. The temperature and humidity data have been collected at the inlet and exit of the packed bed for different water to air mass flow ratios that vary between 0 and 2.5. A one-dimensional model based on conservation principles has been developed, which predicts the variation of temperature, humidity, and condensation rate through the condenser stages. Agreement between the model and experiments is very good. It is observed that the countercurrent flow stage condensation effectiveness is significantly higher than that for the co-current stage. The condensation heat and mass transfer rates were found to decrease when water blockages occur within the packed bed. Using high-speed digital cinematography, it was observed that this problem can occur at any operating condition, and is dependent on the packing surface wetting characteristics. This observation is used to explain the requirement for two different empirical constants, depending on packing diameter, suggested by Onda for the air side mass transfer coefficient correlation. (author)
Perfect arborescence packing in preflow mincut graphs
Gabow, H.N. [Univ. of Colorado, Boulder, CO (United States)
1996-12-31
In a digraph with distinguished vertex a, for any vertex v {ne} a let {lambda}(v) equal the value of a maximum flow from a to v. A perfect packing of a-arborescences contains each vertex in {lambda}(v) arborescences and contains some fixed vertex in every arborescence. Determining if an arbitrary graph has a perfect packing is NP-complete. We present the most general known condition that guarantees the existence of a perfect packing: each vertex v {ne} a is separated from a by a set that has in-degree {lambda}(v) and out-degree no greater. This result is based on other useful properties of such graphs, e.g., they always have a pair of edges that can be {open_quotes}split off{close_quotes} preserving, values. We show a perfect packing can be found in O(nm{sup 2}) time, where n (m) is the number of vertices (edges). If the graph has a capacity function the time is the same as computing O(n{sup 2}) maximum network flows. We also show a preflow mincut graph has a fractional perfect packing using only m + n - 2 distinct arborescences.
Coalescence preference in dense packing of bubbles
Kim, Yeseul; Gim, Bopil; Gim, Bopil; Weon, Byung Mook
2015-11-01
Coalescence preference is the tendency that a merged bubble from the contact of two original bubbles (parent) tends to be near to the bigger parent. Here, we show that the coalescence preference can be blocked by densely packing of neighbor bubbles. We use high-speed high-resolution X-ray microscopy to clearly visualize individual coalescence phenomenon which occurs in micro scale seconds and inside dense packing of microbubbles with a local packing fraction of ~40%. Previous theory and experimental evidence predict a power of -5 between the relative coalescence position and the parent size. However, our new observation for coalescence preference in densely packed microbubbles shows a different power of -2. We believe that this result may be important to understand coalescence dynamics in dense packing of soft matter. This work (NRF-2013R1A22A04008115) was supported by Mid-career Researcher Program through NRF grant funded by the MEST and also was supported by Ministry of Science, ICT and Future Planning (2009-0082580) and by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry and Education, Science and Technology (NRF-2012R1A6A3A04039257).
Lebrero, Raquel; Estrada, José M; Muñoz, Raúl; Quijano, Guillermo
2014-05-01
The abiotic deterioration of three conventional organic packing materials used in biofiltration (compost, wood bark and Macadamia nutshells) caused by their interaction with toluene (used as a model volatile organic compound) was here studied. The deterioration of the materials was evaluated in terms of structural damage, release of co-substrates and increase of the packing biodegradability. After 21 days of exposure to toluene, all packing materials released co-substrates able to support microbial growth, which were not released by the control materials not exposed to toluene. Likewise, the exposure to toluene increased the packing material biodegradability by 26% in wood bark, 20% in compost and 17% in Macadamia nutshells. Finally, scanning electron microscopy analysis confirmed the deterioration in the structure of the packing materials evaluated due to the exposure to toluene, Macadamia nutshells being the material with the highest resistance to volatile organic compound attack.
Collins, J.L.
2004-12-02
The main objective of the Depleted UO{sub 2} Kernels Production Task at Oak Ridge National Laboratory (ORNL) was to conduct two small-scale production campaigns to produce 2 kg of UO{sub 2} kernels with diameters of 500 {+-} 20 {micro}m and 3.5 kg of UO{sub 2} kernels with diameters of 350 {+-} 10 {micro}m for the U.S. Department of Energy Advanced Fuel Cycle Initiative Program. The final acceptance requirements for the UO{sub 2} kernels are provided in the first section of this report. The kernels were prepared for use by the ORNL Metals and Ceramics Division in a development study to perfect the triisotropic (TRISO) coating process. It was important that the kernels be strong and near theoretical density, with excellent sphericity, minimal surface roughness, and no cracking. This report gives a detailed description of the production efforts and results as well as an in-depth description of the internal gelation process and its chemistry. It describes the laboratory-scale gel-forming apparatus, optimum broth formulation and operating conditions, preparation of the acid-deficient uranyl nitrate stock solution, the system used to provide uniform broth droplet formation and control, and the process of calcining and sintering UO{sub 3} {center_dot} 2H{sub 2}O microspheres to form dense UO{sub 2} kernels. The report also describes improvements and best past practices for uranium kernel formation via the internal gelation process, which utilizes hexamethylenetetramine and urea. Improvements were made in broth formulation and broth droplet formation and control that made it possible in many of the runs in the campaign to produce the desired 350 {+-} 10-{micro}m-diameter kernels, and to obtain very high yields.
Safety considerations for fabricating lithium battery packs
Ciesla, J. J.
1986-09-01
Lithium cell safety is a major issue with both manufacturers and end users. Most manufacturers have taken great strides to develop the safest cells possible while still maintaining performance characteristics. The combining of lithium cells for higher voltages, currents, and capacities requires the fabricator of lithium battery packs to be knowledgable about the specific electrochemical system being used. Relatively high rate, spirally wound (large surface area) sulfur oxychloride cells systems, such as Li/Thionyl or Sulfuryl chloride are considered. Prior to the start of a design of a battery pack, a review of the characterization studies for the cells should be conducted. The approach for fabricating a battery pack might vary with cell size.
Generalized network improvement and packing problems
Holzhauser, Michael
2016-01-01
Michael Holzhauser discusses generalizations of well-known network flow and packing problems by additional or modified side constraints. By exploiting the inherent connection between the two problem classes, the author investigates the complexity and approximability of several novel network flow and packing problems and presents combinatorial solution and approximation algorithms. Contents Fractional Packing and Parametric Search Frameworks Budget-Constrained Minimum Cost Flows: The Continuous Case Budget-Constrained Minimum Cost Flows: The Discrete Case Generalized Processing Networks Convex Generalized Flows Target Groups Researchers and students in the fields of mathematics, computer science, and economics Practitioners in operations research and logistics The Author Dr. Michael Holzhauser studied computer science at the University of Kaiserslautern and is now a research fellow in the Optimization Research Group at the Department of Mathematics of the University of Kaiserslautern.
Wolf Pack Algorithm for Unconstrained Global Optimization
Hu-Sheng Wu
2014-01-01
Full Text Available The wolf pack unites and cooperates closely to hunt for the prey in the Tibetan Plateau, which shows wonderful skills and amazing strategies. Inspired by their prey hunting behaviors and distribution mode, we abstracted three intelligent behaviors, scouting, calling, and besieging, and two intelligent rules, winner-take-all generation rule of lead wolf and stronger-survive renewing rule of wolf pack. Then we proposed a new heuristic swarm intelligent method, named wolf pack algorithm (WPA. Experiments are conducted on a suit of benchmark functions with different characteristics, unimodal/multimodal, separable/nonseparable, and the impact of several distance measurements and parameters on WPA is discussed. What is more, the compared simulation experiments with other five typical intelligent algorithms, genetic algorithm, particle swarm optimization algorithm, artificial fish swarm algorithm, artificial bee colony algorithm, and firefly algorithm, show that WPA has better convergence and robustness, especially for high-dimensional functions.
Imaging of drug smuggling by body packing.
Sica, Giacomo; Guida, Franco; Bocchini, Giorgio; Iaselli, Francesco; Iadevito, Isabella; Scaglione, Mariano
2015-02-01
Body packing, pushing, and stuffing are hazardous practices with complex medicolegal and social implications. A radiologist plays both a social and a medicolegal role in their assessment, and it should not be limited only to the identification of the packages but must also provide accurate information about their number and their exact location so as to prevent any package remains in the body packer. Radiologists must also be able to recognize the complications associated with these risky practices. Imaging assessment of body packing is performed essentially through plain abdominal X-ray and computed tomography scans. Ultrasound and magnetic resonance imaging, although with some advantages, actually have a limited use.
Packing Transitions in Nanosized Li Clusters
Sung, M W; Weare, J H; Sung, Ming Wen; Kawai, Ryoichi; Weare, John H.
1994-01-01
Packing transitions in the lowest energy structures of Li clusters as a function of size have been identified via simulated annealing. For N>21, the large $p$ character of Li leads to unexpected ionic structures. At N~25, a packing pattern based on interpenetrating 13-atom icosahedra and similar to that of Na and K appears. This pattern persists until at N=55, where another transition to a structure based on a Mackay icosahedron occurs. For clusters of size 55 and 147, the optimized FCC structure representative of the bulk is still slightly higher in energy than the optimal MIC. (RK-94-03)
Lattice approaches to packed column simulations
无
2008-01-01
This work presents a review of the findings into the ability of a digitally based particle packing algorithm, called DigiPac, to predict bed structure in a variety of packed columns, for a range of generic pellet shapes frequently used in the chemical and process engineering industries.Resulting macroscopic properties are compared with experimental data derived from both invasive and non-destructive measurement techniques.Additionally, fluid velocity distributions, through samples of the resulting bed structures, are analysed using lattice Boltzmann method (LBM) simulations and are compared against experimental data from the literature.
Non-Crystallographic Symmetry in Packing Spaces
Valery G. Rau
2013-01-01
Full Text Available In the following, isomorphism of an arbitrary finite group of symmetry, non-crystallographic symmetry (quaternion groups, Pauli matrices groups, and other abstract subgroups, in addition to the permutation group, are considered. Application of finite groups of permutations to the packing space determines space tilings by policubes (polyominoes and forms a structure. Such an approach establishes the computer design of abstract groups of symmetry. Every finite discrete model of the real structure is an element of symmetry groups, including non-crystallographic ones. The set packing spaces of the same order N characterizes discrete deformation transformations of the structure.
Computational Modelling of Particle Packing in Concrete
He, H.
2010-01-01
Physical particle packing is becoming a hot topic in concrete technology as more and more types of granular materials are used in concrete either for ecological or for engineering purposes. Although various analytical methods have been developed for optimum mixture design, comprehensive information
Improved Lower Bound for Online Strip Packing
Harren, Rolf; Kern, Walter
We study the online strip packing problem and derive an improved lower bound of Ͽ ≥ 2.589... for the competitive ratio of this problem. The construction is based on modified “Brown-Baker-Katseff sequences‿ (Brown et al. in Acta Inform. 18:207–225, 1982) using only two types of rectangles. In
Indexing Volumetric Shapes with Matching and Packing.
Koes, David Ryan; Camacho, Carlos J
2015-04-01
We describe a novel algorithm for bulk-loading an index with high-dimensional data and apply it to the problem of volumetric shape matching. Our matching and packing algorithm is a general approach for packing data according to a similarity metric. First an approximate k-nearest neighbor graph is constructed using vantage-point initialization, an improvement to previous work that decreases construction time while improving the quality of approximation. Then graph matching is iteratively performed to pack related items closely together. The end result is a dense index with good performance. We define a new query specification for shape matching that uses minimum and maximum shape constraints to explicitly specify the spatial requirements of the desired shape. This specification provides a natural language for performing volumetric shape matching and is readily supported by the geometry-based similarity search (GSS) tree, an indexing structure that maintains explicit representations of volumetric shape. We describe our implementation of a GSS tree for volumetric shape matching and provide a comprehensive evaluation of parameter sensitivity, performance, and scalability. Compared to previous bulk-loading algorithms, we find that matching and packing can construct a GSS-tree index in the same amount of time that is denser, flatter, and better performing, with an observed average performance improvement of 2X.
An approximation algorithm for square packing
R. van Stee (Rob)
2004-01-01
textabstractWe consider the problem of packing squares into bins which are unit squares, where the goal is to minimize the number of bins used. We present an algorithm for this problem with an absolute worst-case ratio of 2, which is optimal provided P != NP.
Optimal online bounded space multidimensional packing
L. Epstein (Lea); R. van Stee (Rob)
2003-01-01
textabstractWe solve an open problem in the literature by providing an online algorithm for multidimensional bin packing that uses only bounded space. We show that it is optimal among bounded space algorithms for any dimension $d>1$. Its asymptotic performance ratio is $(Pi_{infty})^d$, where
Computational Modelling of Particle Packing in Concrete
He, H.
2010-01-01
Physical particle packing is becoming a hot topic in concrete technology as more and more types of granular materials are used in concrete either for ecological or for engineering purposes. Although various analytical methods have been developed for optimum mixture design, comprehensive information
Bacteriological Survey of AFD (Meat Packing Plant
T. N. Rawal
1974-04-01
Full Text Available The paper describes the manufacturing process of freeze dried mutton from slaughtering to packing and makes an assessment of microbial build-up on equipment, hands of workers and environment in which the mutton comes in contact during processing.
Bin Packing via Discrepancy of Permutations
Eisenbrand, Friedrich; Rothvoß, Thomas
2010-01-01
A well studied special case of bin packing is the 3-partition problem, where n items of size >1/4 have to be packed in a minimum number of bins of capacity one. The famous Karmarkar-Karp algorithm transforms a fractional solution of a suitable LP relaxation for this problem into an integral solution that requires at most O(log n) additional bins. The three-permutations-conjecture of Beck is the following. Given any 3 permutations on n symbols, one can color the symbols red and blue, such that in any interval of any of those permutations, the number of red and blue symbols differs only by a constant. Beck's conjecture is well known in the field of discrepancy theory. We establish a surprising connection between bin packing and Beck's conjecture: If the latter holds true, then the additive integrality gap of the 3-partition linear programming relaxation is bounded by a constant. This result indicates that improving approximability results for bin packing requires a better understanding of discrepancy theory.
Simple Cloud Chambers Using Gel Ice Packs
Kamata, Masahiro; Kubota, Miki
2012-01-01
Although cloud chambers are highly regarded as teaching aids for radiation education, school teachers have difficulty in using cloud chambers because they have to prepare dry ice or liquid nitrogen before the experiment. We developed a very simple and inexpensive cloud chamber that uses the contents of gel ice packs which can substitute for dry…
2010-01-01
... 7 Agriculture 8 2010-01-01 2010-01-01 false Pack. 920.13 Section 920.13 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE KIWIFRUIT GROWN IN CALIFORNIA...
Hardness of approximation for strip packing
Adamaszek, Anna Maria; Kociumaka, Tomasz; Pilipczuk, Marcin
2017-01-01
[SODA 2016] have recently proposed a (1.4 + ϵ)-approximation algorithm for this variant, thus showing that strip packing with polynomially bounded data can be approximated better than when exponentially large values are allowed in the input. Their result has subsequently been improved to a (4/3 + ϵ...
Unlimited niche packing in a Lotka-Volterra competition game.
Cressman, Ross; Halloway, Abdel; McNickle, Gordon G; Apaloo, Joe; Brown, Joel S; Vincent, Thomas L
2017-08-01
A central question in the study of ecology and evolution is: "Why are there so many species?" It has been shown that certain forms of the Lotka-Volterra (L-V) competition equations lead to an unlimited number of species. Furthermore, these authors note how any change in the nature of competition (the competition kernel) leads to a finite or small number of coexisting species. Here we build upon these works by further investigating the L-V model of unlimited niche packing as a reference model and evolutionary game for understanding the environmental factors restricting biodiversity. We also examine the combined eco-evolutionary dynamics leading up to the species diversity and traits of the ESS community in both unlimited and finite niche-packing versions of the model. As an L-V game with symmetric competition, we let the strategies of individuals determine the strength of the competitive interaction (like competes most with like) and also the carrying capacity of the population. We use a mixture of analytic proofs (for one and two species systems) and numerical simulations. For the model of unlimited niche packing, we show that a finite number of species will evolve to specific convergent stable minima of the adaptive landscape (also known as species archetypes). Starting with a single species, faunal buildup can proceed either through species doubling as each diversity-specific set of minima are reached, or through the addition of species one-by-one by randomly assigning a speciation event to one of the species. Either way it is possible for an unlimited number or species to evolve and coexist. We examine two simple and biologically likely ways for breaking the unlimited niche-packing: (1) some minimum level of competition among species, and (2) constrain the fundamental niche of the trait space to a finite interval. When examined under both ecological and evolutionary dynamics, both modifications result in convergent stable ESSs with a finite number of species
Perfect Omniscience, Perfect Secrecy and Steiner Tree Packing
Nitinawarat, Sirin
2010-01-01
We consider perfect secret key generation for a ``pairwise independent network'' model in which every pair of terminals share a random binary string, with the strings shared by distinct terminal pairs being mutually independent. The terminals are then allowed to communicate interactively over a public noiseless channel of unlimited capacity. All the terminals as well as an eavesdropper observe this communication. The objective is to generate a perfect secret key shared by a given set of terminals at the largest rate possible, and concealed from the eavesdropper. First, we show how the notion of perfect omniscience plays a central role in characterizing perfect secret key capacity. Second, a multigraph representation of the underlying secrecy model leads us to an efficient algorithm for perfect secret key generation based on maximal Steiner tree packing. This algorithm attains capacity when all the terminals seek to share a key, and, in general, attains at least half the capacity. Third, when a single ``helper...
Constellation choosing based on multi-dimensional sphere packing technique
Jinghe, Li; Guijun, Hu; Kashero, Enock; Zhaoxi, Li
2016-09-01
In this paper we address the sphere packing lattice points selection problem being used as constellation points in high-dimensional modulation. We propose a new type of points selection method based on threshold theory. Theoretically, this method improves the transmission performance of high-dimensional signal modulation systems. We find that the BER of a 4D modulation signal using the threshold value points selection method reduces. We also compared random and distant points selection methods in a BER of 10-3 and obtained a reduced SNR of about 2 db. At a 10-3 BER, a 8D modulation signal with points selected using the threshold selection methods obtained a reduced SNR of about 3 db. At a 10-3 BER, a 16D modulation signal with points selected using the threshold selection methods obtained a reduced SNR of about 3.5 db.
Zhang, Kai; Smith, W. Wendell; Wang, Minglei; Liu, Yanhui; Schroers, Jan; Shattuck, Mark D.; O'Hern, Corey S.
2014-09-01
We perform molecular dynamics simulations to compress binary hard spheres into jammed packings as a function of the compression rate R, size ratio α, and number fraction xS of small particles to determine the connection between the glass-forming ability (GFA) and packing efficiency in bulk metallic glasses (BMGs). We define the GFA by measuring the critical compression rate Rc, below which jammed hard-sphere packings begin to form "random crystal" structures with defects. We find that for systems with α ≳0.8 that do not demix, Rc decreases strongly with ΔϕJ, as Rc˜exp(-1/ΔϕJ2), where ΔϕJ is the difference between the average packing fraction of the amorphous packings and random crystal structures at Rc. Systems with α ≲0.8 partially demix, which promotes crystallization, but we still find a strong correlation between Rc and ΔϕJ. We show that known metal-metal BMGs occur in the regions of the α and xS parameter space with the lowest values of Rc for binary hard spheres. Our results emphasize that maximizing GFA in binary systems involves two competing effects: minimizing α to increase packing efficiency, while maximizing α to prevent demixing.
Zhang, Kai; Smith, W Wendell; Wang, Minglei; Liu, Yanhui; Schroers, Jan; Shattuck, Mark D; O'Hern, Corey S
2014-09-01
We perform molecular dynamics simulations to compress binary hard spheres into jammed packings as a function of the compression rate R, size ratio α, and number fraction x(S) of small particles to determine the connection between the glass-forming ability (GFA) and packing efficiency in bulk metallic glasses (BMGs). We define the GFA by measuring the critical compression rate R(c), below which jammed hard-sphere packings begin to form "random crystal" structures with defects. We find that for systems with α≳0.8 that do not demix, R(c) decreases strongly with Δϕ(J), as R(c)∼exp(-1/Δϕ(J)(2)), where Δϕ(J) is the difference between the average packing fraction of the amorphous packings and random crystal structures at R(c). Systems with α≲0.8 partially demix, which promotes crystallization, but we still find a strong correlation between R(c) and Δϕ(J). We show that known metal-metal BMGs occur in the regions of the α and x(S) parameter space with the lowest values of R(c) for binary hard spheres. Our results emphasize that maximizing GFA in binary systems involves two competing effects: minimizing α to increase packing efficiency, while maximizing α to prevent demixing.
Modified strip packing heuristics for the rectangular variable-sized bin packing problem
FG Ortmann
2010-06-01
Full Text Available Two packing problems are considered in this paper, namely the well-known strip packing problem (SPP and the variable-sized bin packing problem (VSBPP. A total of 252 strip packing heuristics (and variations thereof from the literature, as well as novel heuristics proposed by the authors, are compared statistically by means of 1170 SPP benchmark instances in order to identify the best heuristics in various classes. A combination of new heuristics with a new sorting method yields the best results. These heuristics are combined with a previous heuristic for the VSBPP by the authors to find good feasible solutions to 1357 VSBPP benchmark instances. This is the largest statistical comparison of algorithms for the SPP and the VSBPP to the best knowledge of the authors.
Hudson, Toby S; Harrowell, Peter
2011-05-18
Algorithms to search for crystal structures that optimize some extensive property (energy, volume, etc) typically make use of random particle reorganizations in the context of one or more numerical techniques such as simulated annealing, genetic algorithms or biased random walks, applied to the coordinates of every particle in the unit cell, together with the cell angles and lengths. In this paper we describe the restriction of such searches to predefined isopointal sets, breaking the problem into countable sub-problems which exploit crystal symmetries to reduce the dimensionality of the search space. Applying this method to the search for maximally packed mixtures of hard spheres of two sizes, we demonstrate that the densest packed structures can be identified by searches within a couple of isopointal sets. For the A(2)B system, the densest known packings over the entire tested range 0.2 < r(A)/r(B) < 2.5, including some improvements on previous optima, can all be identified by searches within a single isopointal set. In the case of the AB composition, searches of two isopointal sets generate the densest packed structures over the radius ratio range 0.2 < r(A)/r(B) < 5.0.
Mass transfer characteristics in a rotating packed bed with split packing
Youzhi Liu; Deyin Gu; Chengcheng Xu; Guisheng Qi; Weizhou Jiao
2015-01-01
The rotating packed bed (RPB) with split packing is a novel gas–liquid contactor, which intensifies the mass transfer processes controlled by gas-side resistance. To assess its efficacy, the mass transfer characteristics with adjacent rings in counter-rotation and co-rotation modes in a split packing RPB were studied experimentally. The physical absorption system NH3–H2O was used for characterizing the gas volumetric mass transfer coeffi-cient (kyae) and the effective interfacial area (ae) was determined by chemical absorption in the CO2–NaOH sys-tem. The variation in kyae and ae with the operating conditions is also investigated. The experimental results indicated that kyae and ae for counter-rotation of the adjacent packing rings in the split packing RPB were higher than those for co-rotation, and both counter-rotation and co-rotation of the split packing RPB were superior over conventional RPBs under the similar operating conditions.
2010-07-01
... 29 Labor 3 2010-07-01 2010-07-01 false âPacking.â 784.135 Section 784.135 Labor Regulations... First Processing, Canning, Or Packing of Marine Products Under Section 13(a)(5) § 784.135 “Packing.” The packing of the various named marine products at sea as an incident to, or in conjunction with, the...
Li, Jianbo
2017-05-08
Solution coating of organohalide lead perovskites offers great potential for achieving low-cost manufacturing of large-area flexible optoelectronics. However, the rapid coating speed needed for industrial-scale production poses challenges to the control of crystal packing. Herein, this study reports using solution shearing to confine crystal nucleation and growth in large-area printed MAPbI3 thin films. Near single-crystalline perovskite microarrays are demonstrated with a high degree of controlled macroscopic alignment and crystal orientation, which exhibit significant improvements in optical and optoelectronic properties comparing with their random counterparts, spherulitic, and nanograined films. In particular, photodetectors based on the confined films showing intense anisotropy in charge transport are fabricated, and the device exhibits significantly improved performance in all aspects by one more orders of magnitude relative to their random counterparts. It is anticipated that perovskite films with controlled crystal packing may find applications in high-performance, large-area printed optoelectronics, and solar cells.
Body Packing: From Seizures to Laparotomy
Joanna M. Janczak
2015-01-01
Full Text Available Body packing is a common method for illegal drug trafficking. Complications associated with body packing can be severe and even lead to rapid death. Thus, a timely diagnosis is warranted. As most body packers initially do not show any symptoms, making a correct diagnosis can be rather challenging. We describe a case of a 41-year-old male, who was admitted with an epileptic seizure and who turned out to be a cocaine intoxicated body packer. Due to neurological and cardiovascular deterioration an emergency surgery was performed. Four bags of cocaine could be removed. We discuss the current management regimen in symptomatic and asymptomatic body packers and highlight pearls and pitfalls with diagnosis and treatment.
On Approximating Four Covering and Packing Problems
Ashley, Mary; Berman, Piotr; Chaovalitwongse, Wanpracha; DasGupta, Bhaskar; Kao, Ming-Yang; 10.1016/j.jcss.2009.01.002
2011-01-01
In this paper, we consider approximability issues of the following four problems: triangle packing, full sibling reconstruction, maximum profit coverage and 2-coverage. All of them are generalized or specialized versions of set-cover and have applications in biology ranging from full-sibling reconstructions in wild populations to biomolecular clusterings; however, as this paper shows, their approximability properties differ considerably. Our inapproximability constant for the triangle packing problem improves upon the previous results; this is done by directly transforming the inapproximability gap of Haastad for the problem of maximizing the number of satisfied equations for a set of equations over GF(2) and is interesting in its own right. Our approximability results on the full siblings reconstruction problems answers questions originally posed by Berger-Wolf et al. and our results on the maximum profit coverage problem provides almost matching upper and lower bounds on the approximation ratio, answering a...
Is incest common in gray wolf packs?
Smith, D.; Meier, T.; Geffen, E.; Mech, L.D.; Burch, J.W.; Adams, L.G.; Wayne, R.K.
1997-01-01
Wolf packs generally consist of a breeding pair and their maturing offspring that help provision and protect pack young. Because the reproductive tenure in wolves often is short, reproductively mature offspring might replace their parents, resulting in sibling or parent-offspring matings. To determine the extent of incestuous pairings, we measure relatedness based on variability in 20 microsatellite loci of mated pairs, parent-offspring pairs and siblings in two populations of gray wolves. Our 16 sampled mated pairs had values of relatedness not overlapping those of known parent-offspring or sibling dyads, which is consistent with their being unrelated or distantly related. These results suggest that full siblings or a parent and their offspring rarely mate and that incest avoidance is an important constraint on gray wolf behavioral ecology.
Pattern Generation by Bubble Packing Method
Goel V.K.
2013-06-01
Full Text Available This paper presents a new computational method forornamental Pattern design. The work is a concerted effort ofevaluation of various methods and the comparatively betterprocess is used for designing keeping in mind the accuracyrequirement for such Indian traditional ethnic designs. The firststep in the process to apply the CAD tools to design the patterns.Small semantics (profile are made using the mathematicalmodelling to make different pattern. Geometric constraints suchas scaling, rotation, transformation etc. are applied to make andmodify the profiles. To create patterns, obtains node locationsthrough a physically based particle simulation, which we call'bubble packing. Bubbles are closely packed on the corners,edges and on the surface domain, and nodes are placed at thecenters of the bubbles. Experimental results show that ourmethod can create high quality ornamental patterns. Thefabrication of the ornaments is on rapid prototype machine.
Helix-packing motifs in membrane proteins.
Walters, R F S; DeGrado, W F
2006-09-12
The fold of a helical membrane protein is largely determined by interactions between membrane-imbedded helices. To elucidate recurring helix-helix interaction motifs, we dissected the crystallographic structures of membrane proteins into a library of interacting helical pairs. The pairs were clustered according to their three-dimensional similarity (rmsd universe of common transmembrane helix-pairing motifs is relatively simple. The largest cluster, which comprises 29% of the library members, consists of an antiparallel motif with left-handed packing angles, and it is frequently stabilized by packing of small side chains occurring every seven residues in the sequence. Right-handed parallel and antiparallel structures show a similar tendency to segregate small residues to the helix-helix interface but spaced at four-residue intervals. Position-specific sequence propensities were derived for the most populated motifs. These structural and sequential motifs should be quite useful for the design and structural prediction of membrane proteins.
Packing and Disorder in Substituted Fullerenes
Tummala, Naga Rajesh
2016-07-15
Fullerenes are ubiquitous as electron-acceptor and electron-transport materials in organic solar cells. Recent synthetic strategies to improve the solubility and electronic characteristics of these molecules have translated into a tremendous increase in the variety of derivatives employed in these applications. Here, we use molecular dynamics (MD) simulations to examine the impact of going from mono-adducts to bis- and tris-adducts on the structural, cohesive, and packing characteristics of [6,6]-phenyl-C60-butyric acid methyl ester (PCBM) and indene-C60. The packing configurations obtained at the MD level then serve as input for density functional theory calculations that examine the solid-state energetic disorder (distribution of site energies) as a function of chemical substitution. The variations in structural and site-energy disorders reflect the fundamental materials differences among the derivatives and impact the performance of these materials in thin-film electronic devices.
27 CFR 24.255 - Bottling or packing wine.
2010-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Bottling or packing wine..., DEPARTMENT OF THE TREASURY LIQUORS WINE Storage, Treatment and Finishing of Wine Bottling, Packing, and Labeling of Wine § 24.255 Bottling or packing wine. (a) General. Proprietors of a bonded wine premises and...
48 CFR 552.211-87 - Export packing.
2010-10-01
... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Export packing. 552.211-87... FORMS SOLICITATION PROVISIONS AND CONTRACT CLAUSES Text of Provisions and Clauses 552.211-87 Export packing. As prescribed in 511.204(b)(7), insert the following clause: Export Packing (JAN 2010) (a...
48 CFR 552.211-75 - Preservation, Packaging and Packing.
2010-10-01
... and Packing. 552.211-75 Section 552.211-75 Federal Acquisition Regulations System GENERAL SERVICES....211-75 Preservation, Packaging and Packing. As prescribed in 511.204(b)(2), insert the following clause: Preservation, Packaging, and Packing (FEB 1996) Unless otherwise specified, all items shall...
7 CFR 319.37-9 - Approved packing material.
2010-01-01
... 7 Agriculture 5 2010-01-01 2010-01-01 false Approved packing material. 319.37-9 Section 319.37-9..., and Other Plant Products 1,2 § 319.37-9 Approved packing material. Any restricted article at the time of importation or offer for importation into the United States shall not be packed in a...
48 CFR 211.272 - Alternate preservation, packaging, and packing.
2010-10-01
..., packaging, and packing. 211.272 Section 211.272 Federal Acquisition Regulations System DEFENSE ACQUISITION... Requirements Documents 211.272 Alternate preservation, packaging, and packing. Use the provision at 252.211-7004, Alternate Preservation, Packaging, and Packing, in solicitations which include...
75 FR 31283 - Clarification of Parachute Packing Authorization
2010-06-03
... Federal Aviation Administration 14 CFR Part 65 RIN 2120-AJ08 Clarification of Parachute Packing...) was expressly limited to packing a main parachute of a dual-parachute system for personal use...'' situations, parachute packing must be accomplished by or overseen by an appropriate current...
48 CFR 452.247-73 - Packing for Overseas Shipment.
2010-10-01
... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Packing for Overseas Shipment. 452.247-73 Section 452.247-73 Federal Acquisition Regulations System DEPARTMENT OF AGRICULTURE... Packing for Overseas Shipment. As prescribed in 447.305-10(c), insert the following clause: Packing...
48 CFR 452.247-72 - Packing for Domestic Shipment.
2010-10-01
... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Packing for Domestic Shipment. 452.247-72 Section 452.247-72 Federal Acquisition Regulations System DEPARTMENT OF AGRICULTURE... Packing for Domestic Shipment. As prescribed in 447.305-10(b), insert the following clause: Packing...
7 CFR 51.2927 - Marking and packing requirements.
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Marking and packing requirements. 51.2927 Section 51... STANDARDS) United States Standards for Grades of Apricots Marking and Packing Requirements § 51.2927 Marking and packing requirements. The minimum size or numerical count of the apricots in any package shall...
48 CFR 852.214-73 - Alternate packaging and packing.
2010-10-01
... packing. 852.214-73 Section 852.214-73 Federal Acquisition Regulations System DEPARTMENT OF VETERANS....214-73 Alternate packaging and packing. As prescribed in 814.201-6(b)(3), insert the following provision: Alternate Packaging and Packing (JAN 2008) The bidder's offer must clearly indicate the...
48 CFR 552.211-77 - Packing List.
2010-10-01
... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Packing List. 552.211-77... FORMS SOLICITATION PROVISIONS AND CONTRACT CLAUSES Text of Provisions and Clauses 552.211-77 Packing List. As prescribed in 511.204(c), insert the following clause: Packing List (FEB 1996) (a) A...
36 CFR 1002.16 - Horses and pack animals.
2010-07-01
... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Horses and pack animals. 1002... AND RECREATION § 1002.16 Horses and pack animals. The following are prohibited: (a) The use of animals other than those designated as “pack animals” for purposes of transporting equipment. (b) The use...
36 CFR 34.10 - Saddle and pack animals.
2010-07-01
... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Saddle and pack animals. 34... INTERIOR EL PORTAL ADMINISTRATIVE SITE REGULATIONS § 34.10 Saddle and pack animals. The use of saddle and pack animals is prohibited without a permit from the Superintendent....
36 CFR 2.16 - Horses and pack animals.
2010-07-01
... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Horses and pack animals. 2.16... RESOURCE PROTECTION, PUBLIC USE AND RECREATION § 2.16 Horses and pack animals. The following are prohibited: (a) The use of animals other than those designated as “pack animals” for purposes of...
CoolPack – Simulation tools for refrigeration systems
Jakobsen, Arne; Rasmussen, Bjarne D.; Andersen, Simon Engedal
1999-01-01
CoolPack is a collection of programs used for energy analysis and optimisation of refrigeration systems. CoolPack is developed at the Department of Energy Engineering at the Technical University of Denmark. The Danish Energy Agency finances the project. CoolPack is freeware and can be downloaded...
Partitioning And Packing Equations For Parallel Processing
Arpasi, Dale J.; Milner, Edward J.
1989-01-01
Algorithm developed to identify parallelism in set of coupled ordinary differential equations that describe physical system and to divide set into parallel computational paths, along with parts of solution proceeds independently of others during at least part of time. Path-identifying algorithm creates number of paths consisting of equations that must be computed serially and table that gives dependent and independent arguments and "can start," "can end," and "must end" times of each equation. "Must end" time used subsequently by packing algorithm.
Kane
2003-01-01
Flaming Pear是个一直给我留下深刻印象的软件开发公司。我以前评论过很多这个公司的插件，每一次都是不错的经历。同样的优良传统同样体现在Flaming Pear的新品Creative Pack1.0
Sensory Analysis of Stored Tray Pack Foods
1989-12-01
Milk chocolate brown. ODOR: Sweet, typical of heat processed milk cocoa . FLAVOR: Sweet, full milk cocoa flavor. TEXTURE: Smooth, medium thick...7B DEGREES 100 DEGREES 6. DESSERTS Chocolate Pudding There was no significant finding with this Tray Pack item. Marble Cake At 70°F, the effect...and 6 months. The main effect of temperature on acceptability of this item was not significant. Chocolate Cake At 70°F, there was a significant
Effects of Nasopore Packing on Dacryocystorhinostomy
Jang, Sun Young; Lee, Kyou Ho; Lee, Sang Yeul; Yoon, Jin Sook
2013-01-01
Purpose To investigate the effects of placement of the absorbable packing material Nasopore at the anastomosis site of newly formed mucosal flaps on postoperative re-bleeding, discomfort, and on the success rate of dacryocystorhinostomy (DCR). Methods A review of the medical records of patients with primary acquired nasolacrimal duct obstruction that underwent external or endonasal DCR by a single surgeon was performed. The degree of re-bleeding, discomfort, and postoperative results, includi...
A Controlled New Process of Pack Aluminization
HUANG Zhi-rong; MA Liu-bao; LI Pei-ning; XU Hong
2004-01-01
Aluminum diffusion coatings are often prepared by a pack aluminization technique, which is a specific variety of chemical vapor deposition (CVD) method. The coating process takes place in a bed containing a mixed powder that serves as a source of the coatings forming element. The phase composition of the diffusion layer obtained depends on the activity of the Al during the pack aluminization processing. In this work, the proportion of Al to special additive powder in the pack and the treatment temperature are adjusted to achieve the desired surface composition of aluminized layer. The aluminized 20 plain carbon steel and HK40 austenitic steel were investigated by optical microscopy (OM) , X-ray diffraction (XRD)and microsclerometer. The results showed that the desired FeAl, Fe3Al and NiAl were respectively formed on the 20 plain carbon steel and HK40 austenitic steel, and the aluminides FeAl3, Fe2Al5 or Ni2Al3, NiAl3 could be inhibited.
A Controlled New Process of Pack Aluminization
HUANGZhi-rong; MALiu-bao; LIPei-ning; XUHong
2004-01-01
Aluminum diffusion coatings are often prepared by a pack aluminization technique, which is a specific variety of chemical vapor deposition (CVD) method. The coating process takes place in a bed containing a mixed powder that serves as a source of the coatings forming element. The phase composition of the diffusion layer obtained depends on the activity of the Al during the pack aluminization processing. In this work, the proportion of Al to special additive powder in the pack and the treatment temperature are adjusted to achieve the desired surface composition of aluminized layer. The aluminized 20 plain carbon steel and HK40 austenitic steel were investigated by optical microscopy (OM) , X-ray diffraction (XRD) and microsclerometer. The results showed that the desired FeAl, Fe3Al and NiAl were respectively formed on the 20 plain carbon steel and HK40 austenitic steel, and the aluminides FeAl3, Fe2Al5 or Ni2Al3, NiAl3 could be inhibited.
The mechanical behaviour of packed particulates
Dutton, R
1998-01-01
Within the Canadian Nuclear Fuel Waste Management program, the central concept is to package used fuel in containers that would be deposited in an underground vault in a plutonic rock formation. To provide internal mechanical support for the container, the reference design specifies it to be filled with a matrix of compacted particulate material (called 'packed particulate'), such as quartz sand granules. The focus of this report is on the mechanical properties of the packed-particulate material, based on information drawn from the extant literature. We first consider the packing density of particulate matrices to minimize the remnant porosity and maximize mechanical stability under conditions of external pressure. Practical methods, involving vibratory packing, are reviewed and recommendations made to select techniques to achieve optimum packing density. The behaviour of particulates under compressive loading has been of interest to the powder metallurgy industry (i.e., the manufacture of products from pressed/sintered metal and ceramic powders) since the early decades of this century. We review the evidence showing that in short timescales, stress induced compaction occurs by particle shuffling and rearrangement, elastic distortion, plastic yielding and microfracturing. Analytical expressions are available to describe these processes in a semiquantitative fashion. Time-dependent compaction, mainly via creep mechanisms, is more complex. Much of the theoretical and experimental information is confined to higher temperatures (> 500 degrees C), where deformation rates are more rapid. Thus, for the relatively low ambient temperatures of the waste container ({approx}100 degrees C), we require analytical techniques to extrapolate the collective particulate creep behaviour. This is largely accomplished by employing current theories of creep deformation, particularly in the form of Deformation Mechanism Maps, which allow estimation of creep rates over a wide
Ma, L. X.; Tan, J. Y.; Zhao, J. M.; Wang, F. Q.; Wang, C. A.
2017-01-01
The radiative transfer equation (RTE) has been widely used to deal with multiple scattering of light by sparsely and randomly distributed discrete particles. However, for densely packed particles, the RTE becomes questionable due to strong dependent scattering effects. This paper examines the accuracy of RTE by comparing with the exact electromagnetic theory. For an imaginary spherical volume filled with randomly distributed, densely packed spheres, the RTE is solved by the Monte Carlo method combined with the Percus-Yevick hard model to consider the dependent scattering effect, while the electromagnetic calculation is based on the multi-sphere superposition T-matrix method. The Mueller matrix elements of the system with different size parameters and volume fractions of spheres are obtained using both methods. The results verify that the RTE fails to deal with the systems with a high-volume fraction due to the dependent scattering effects. Apart from the effects of forward interference scattering and coherent backscattering, the Percus-Yevick hard sphere model shows good accuracy in accounting for the far-field interference effects for medium or smaller size parameters (up to 6.964 in this study). For densely packed discrete spheres with large size parameters (equals 13.928 in this study), the improvement of dependent scattering correction tends to deteriorate. The observations indicate that caution must be taken when using RTE in dealing with the radiative transfer in dense discrete random media even though the dependent scattering correction is applied.
Treadway, James W; Wyndham, Kevin D; Jorgenson, James W
2015-11-27
Highly efficient capillary columns packed with superficially porous particles were created for use in ultrahigh pressure liquid chromatography. Superficially porous particles around 1.5μm in diameter were packed into fused silica capillary columns with 30, 50, and 75μm internal diameters. To create the columns, several capillary columns were serially packed from the same slurry, with packing progress plots being generated to follow the packing of each column. Characterization of these columns using hydroquinone yielded calculated minimum reduced plate heights as low as 1.24 for the most efficient 30μm internal diameter column, corresponding to over 500,000plates/m. At least one highly efficient column (minimum reduced plate height less than 2) was created for all three of the investigated column inner diameters, with the smallest diameter columns having the highest efficiency. This study proves that highly efficient capillary columns can be created using superficially porous particles and shows the efficiency potential of these particles.
A HARMONIC ALGORITHM FOR THE 3D STRIP PACKING PROBLEM
Bansal, Nikhil; Han, X.; Iwama, K.; Sviridenko, M.; Zhang, Guochuan
2013-01-01
htmlabstractIn the three-dimensional (3D) strip packing problem, we are given a set of 3D rectangular items and a 3D box $B$. The goal is to pack all the items in $B$ such that the height of the packing is minimized. We consider the most basic version of the problem, where the items must be packed with their edges parallel to the edges of $B$ and cannot be rotated. Building upon Caprara's work for the two-dimensional (2D) bin packing problem, we obtain an algorithm that, given any $\\epsilon>0...
The Knot Spectrum of Confined Random Equilateral Polygons
Diao Y.
2014-01-01
Full Text Available It is well known that genomic materials (long DNA chains of living organisms are often packed compactly under extreme confining conditions using macromolecular self-assembly processes but the general DNA packing mechanism remains an unsolved problem. It has been proposed that the topology of the packed DNA may be used to study the DNA packing mechanism. For example, in the case of (mutant bacteriophage P4, DNA molecules packed inside the bacteriophage head are considered to be circular since the two sticky ends of the DNA are close to each other. The DNAs extracted from the capsid without separating the two ends can thus preserve the topology of the (circular DNAs. It turns out that the circular DNAs extracted from bacteriophage P4 are non-trivially knotted with very high probability and with a bias toward chiral knots. In order to study this problem using a systematic approach based on mathematical modeling, one needs to introduce a DNA packing model under extreme volume confinement condition and test whether such a model can produce the kind of knot spectrum observed in the experiments. In this paper we introduce and study a model of equilateral random polygons con_ned in a sphere. This model is not meant to generate polygons that model DNA packed in a virus head directly. Instead, the average topological characteristics of this model may serve as benchmark data for totally randomly packed circular DNAs. The difference between the biologically observed topological characteristics and our benchmark data might reveal the bias of DNA packed in the viral capsids and possibly lead to a better understanding of the DNA packing mechanism, at least for the bacteriophage DNA. The purpose of this paper is to provide information about the knot spectrum of equilateral random polygons under such a spherical confinement with length and confinement ratios in a range comparable to circular DNAs packed inside bacteriophage heads.
Banerjee Rahul
2011-05-01
Full Text Available Abstract Background Mapping protein primary sequences to their three dimensional folds referred to as the 'second genetic code' remains an unsolved scientific problem. A crucial part of the problem concerns the geometrical specificity in side chain association leading to densely packed protein cores, a hallmark of correctly folded native structures. Thus, any model of packing within proteins should constitute an indispensable component of protein folding and design. Results In this study an attempt has been made to find, characterize and classify recurring patterns in the packing of side chain atoms within a protein which sustains its native fold. The interaction of side chain atoms within the protein core has been represented as a contact network based on the surface complementarity and overlap between associating side chain surfaces. Some network topologies definitely appear to be preferred and they have been termed 'packing motifs', analogous to super secondary structures in proteins. Study of the distribution of these motifs reveals the ubiquitous presence of typical smaller graphs, which appear to get linked or coalesce to give larger graphs, reminiscent of the nucleation-condensation model in protein folding. One such frequently occurring motif, also envisaged as the unit of clustering, the three residue clique was invariably found in regions of dense packing. Finally, topological measures based on surface contact networks appeared to be effective in discriminating sequences native to a specific fold amongst a set of decoys. Conclusions Out of innumerable topological possibilities, only a finite number of specific packing motifs are actually realized in proteins. This small number of motifs could serve as a basis set in the construction of larger networks. Of these, the triplet clique exhibits distinct preference both in terms of composition and geometry.
Basu, Sankar; Bhattacharyya, Dhananjay; Banerjee, Rahul
2011-05-24
Mapping protein primary sequences to their three dimensional folds referred to as the 'second genetic code' remains an unsolved scientific problem. A crucial part of the problem concerns the geometrical specificity in side chain association leading to densely packed protein cores, a hallmark of correctly folded native structures. Thus, any model of packing within proteins should constitute an indispensable component of protein folding and design. In this study an attempt has been made to find, characterize and classify recurring patterns in the packing of side chain atoms within a protein which sustains its native fold. The interaction of side chain atoms within the protein core has been represented as a contact network based on the surface complementarity and overlap between associating side chain surfaces. Some network topologies definitely appear to be preferred and they have been termed 'packing motifs', analogous to super secondary structures in proteins. Study of the distribution of these motifs reveals the ubiquitous presence of typical smaller graphs, which appear to get linked or coalesce to give larger graphs, reminiscent of the nucleation-condensation model in protein folding. One such frequently occurring motif, also envisaged as the unit of clustering, the three residue clique was invariably found in regions of dense packing. Finally, topological measures based on surface contact networks appeared to be effective in discriminating sequences native to a specific fold amongst a set of decoys. Out of innumerable topological possibilities, only a finite number of specific packing motifs are actually realized in proteins. This small number of motifs could serve as a basis set in the construction of larger networks. Of these, the triplet clique exhibits distinct preference both in terms of composition and geometry.
Farzad Lali
2016-01-01
Full Text Available This work presents a one-dimensional reactor model for a tubular reactor packed with a catalytically active foam packing with a pore density of 30 PPI in cocurrent upward flow in the example of hydrogenation reaction of α-methylstyrene to cumene. This model includes material, enthalpy, and momentum balances as well as continuity equations. The model was solved within the parameter space applied for experimental studies under assumption of a bubbly flow. The method of orthogonal collocation on finite elements was applied. For isothermal and polytropic processes and steady state conditions, axial profiles for concentration, temperature, fluid velocities, pressure, and liquid holdup were computed and the conversions for various gas and liquid flow rates were validated with experimental results. The obtained results were also compared in terms of space time yield and catalytic activity with experimental results and stirred tank and also with random packed bed reactor. The comparison shows that the application of solid foams as reactor packing is advantageous compared to the monolithic honeycombs and random packed beds.
Khalkhali, HamidReza; Tanha, Zahra Ebrahimi Rigi; Feizi, Aram; Ardabili, Shahyad Salehi
2014-01-01
Background: Coughing and deep breathing after sternotomy causes severe pain. This study was conducted to assess the effect of cold therapy on the pain in patients undergoing open heart surgery. Materials and Methods: In a randomized controlled trial (RCT) with crossover design, 50 eligible and consenting patients were recruited and randomly allocated to gel pack and non-gel pack groups on the first postoperative day. All patients performed four episodes of deep breathing and coughing (DB and C) every 2 h. Pain intesity was measured and compared at rest and after DB and C in both groups. At the end of the study, all patients were asked about their preferences for the cold gel pack application prior to DB and C. The study hypotheses were analyzed using repeated measures analysis of variance (RM-ANOVA). Results: Data analysis showed significant reduction in pain scores (P < 0.001) after cold gel application. Forty-five (90%) patients were inclined to reapply the gel pack in the future. Conclusion: Cold gel pack can reduce the pain associated with DB and C in cardiac surgery patients. PMID:25558248
Packed fluidized bed blanket for fusion reactor
Chi, John W. H.
1984-01-01
A packed fluidized bed blanket for a fusion reactor providing for efficient radiation absorption for energy recovery, efficient neutron absorption for nuclear transformations, ease of blanket removal, processing and replacement, and on-line fueling/refueling. The blanket of the reactor contains a bed of stationary particles during reactor operation, cooled by a radial flow of coolant. During fueling/refueling, an axial flow is introduced into the bed in stages at various axial locations to fluidize the bed. When desired, the fluidization flow can be used to remove particles from the blanket.
Comparing Online Algorithms for Bin Packing Problems
Epstein, Leah; Favrholdt, Lene Monrad; Kohrt, Jens Svalgaard
2012-01-01
-order ratio to online algorithms for several common variants of the bin packing problem. We mainly consider pairs of algorithms that are not distinguished by the competitive ratio and show that the relative worst-order ratio prefers the intuitively better algorithm of each pair.......The relative worst-order ratio is a measure of the quality of online algorithms. In contrast to the competitive ratio, this measure compares two online algorithms directly instead of using an intermediate comparison with an optimal offline algorithm. In this paper, we apply the relative worst...
Comparing Online Algorithms for Bin Packing Problems
Epstein, Leah; Favrholdt, Lene Monrad; Kohrt, Jens Svalgaard
2012-01-01
The relative worst-order ratio is a measure of the quality of online algorithms. In contrast to the competitive ratio, this measure compares two online algorithms directly instead of using an intermediate comparison with an optimal offline algorithm. In this paper, we apply the relative worst-ord......-order ratio to online algorithms for several common variants of the bin packing problem. We mainly consider pairs of algorithms that are not distinguished by the competitive ratio and show that the relative worst-order ratio prefers the intuitively better algorithm of each pair....
Molecular Packing in Network-Forming Collagens
Carlo Knupp
2003-01-01
Full Text Available Collagen is the most abundant protein among vertebrates and occurs in virtually all multicellular animals. Collagen molecules are classified into 21 different types and differ in their sequence, weight, structure, and function, but they can be broadly subdivided into families. Type IV, VI, VIII, X, and dogfish egg case collagens belong to the network-forming family. Here, we summarise what is known about the way these collagen molecules pack to form networks. In addition the main structural characteristics of the network-forming collagens are compared and discussed.
Radiative transfer in closely packed realistic regoliths
S. Vahidinia
2011-09-01
Full Text Available We have developed a regolith radiative transfer model (RRT based on a first-principles approach to regolith modeling that is essential for near-to-far infrared observations of grainy surfaces, and is readily configured to answer fundamental questions about popular models with which all remote observations of all airless solar system bodies with granular surfaces are currently interpreted. Our model accounts for wavelength-size regolith particles which are closely packed and can be heterogeneous in composition and arbitrarily shaped. Here we present preliminary results showing the role of porosity on layer reflectivity.
Importance of packing in spiral defect chaos
Kapilanjan Krishna
2008-04-01
We develop two measures to characterize the geometry of patterns exhibited by the state of spiral defect chaos, a weakly turbulent regime of Rayleigh-Bénard convection. These describe the packing of contiguous stripes within the pattern by quantifying their length and nearest-neighbor distributions. The distributions evolve towards unique distribution with increasing Rayleigh number that suggests power-law scaling for the dynamics in the limit of infinite system size. The techniques are generally applicable to patterns that are reducible to a binary representation.
Sugar exported: sugar packed in containers
José Alberto Yemal
2010-04-01
Full Text Available This paper presents a study in the port sector specialized in handling of bagged sugar. Sugar has always been exported in bags of 50 kg, placed directly in the holds of ships for general cargo. It appears that this form of transport has become obsolete now, the market for the direct form of transport of sugar packed in containers. Companies involved in this type of port handling need understand the reasons that are influencing this new mode of transportation as a way to fit and remain active and competitive in the industry.
Effective Thermal Conductivity of Adsorbent Packed Beds
Mori, Hideo; Hamamoto, Yoshinori; Yoshida, Suguru
The effective thermal conductivity of adsorbent packed beds of granular zeolite 13X and granular silica gel A in the presence of stagnant steam or air was measured under different conditions of the adsorbent bed temperature, particle size and filler-gas pressure. The measured effective thermal conductivity showed to become smaller with decreasing particle size or decreasing pressure, but it was nearly independent of the bed temperature. When steam was the filler-gas, the rise in the thermal conductivity of the adsorbent particles due to steam adsorption led to the increase in the effective thermal conductivity of the bed, and this effect was not negligible at high steam pressure for the bed of large particle size. It was found that both the predictions of the effective thermal conductivity by the Hayashi et al.'s model and the Bauer-Schlünder model generally agreed well with the measurements, by considering the particle thermal conductivity rise due to steam adsorption. The thermal conductivity of a consolidated bed of granular zeolite 13X was also measured, and it was found to be much larger than that of the packed bed especially at lower pressure. The above prediction models underestimated the effective thermal conductivity of the consolidated bed.
Protein packing defects "heat up" interfacial water.
Sierra, María Belén; Accordino, Sebastián R; Rodriguez-Fris, J Ariel; Morini, Marcela A; Appignanesi, Gustavo A; Fernández Stigliano, Ariel
2013-06-01
Ligands must displace water molecules from their corresponding protein surface binding site during association. Thus, protein binding sites are expected to be surrounded by non-tightly-bound, easily removable water molecules. In turn, the existence of packing defects at protein binding sites has been also established. At such structural motifs, named dehydrons, the protein backbone is exposed to the solvent since the intramolecular interactions are incompletely wrapped by non-polar groups. Hence, dehydrons are sticky since they depend on additional intermolecular wrapping in order to properly protect the structure from water attack. Thus, a picture of protein binding is emerging wherein binding sites should be both dehydrons rich and surrounded by easily removable water. In this work we shall indeed confirm such a link between structure and dynamics by showing the existence of a firm correlation between the degree of underwrapping of the protein chain and the mobility of the corresponding hydration water molecules. In other words, we shall show that protein packing defects promote their local dehydration, thus producing a region of "hot" interfacial water which might be easily removed by a ligand upon association.
Structural characterization of submerged granular packings
Jakšić, Z. M.; Šćepanović, J. R.; Lončarević, I.; Budinski-Petković, Lj.; Vrhovac, S. B.; Belić, A.
2014-12-01
We consider the impact of the effective gravitational acceleration on microstructural properties of granular packings through experimental studies of spherical granular materials saturated within fluids of varying density. We characterize the local organization of spheres in terms of contact connectivity, distribution of the Delaunay free volumes, and the shape factor (parameter of nonsphericity) of the Voronoï polygons. The shape factor gives a clear physical picture of the competition between less and more ordered domains of particles in experimentally obtained packings. As the effective gravity increases, the probability distribution of the shape factor becomes narrower and more localized around the lowest values of the shape factor corresponding to regular hexagon. It is found that curves of the pore distributions are asymmetric with a long tail on the right-hand side, which progressively reduces while the effective gravity gets stronger for lower densities of interstitial fluid. We show that the distribution of local areas (Voronoï cells) broadens with decreasing value of the effective gravity due to the formation of lose structures such as large pores and chainlike structures (arches or bridges). Our results should be particularly helpful in testing the newly developed simulation techniques involving liquid-related forces associated with immersed granular particles.
Structured packing in revamping a topping
Spekuljak, Zvonko; Monella, Horacio [SIT Ingenieria S.R.L., Santa Fe (Argentina); Carosio, Eduardo [REPSOL Yacimientos Petroliferos Fiscales S.A. (Argentina); Lara, Cesar Javier
2000-07-01
The Topping column had conventional gas-liquid plates, and live steam was no possible to inject, because of the substantial black colour in the distillates. The target was to increase the distillates ratio, in order to reduce the light components in the bottom stream and the asphalt content in the middle distillates. Revamping involves the Flash, the Slop-wash and the Bottom zones. In the Flash zone was arranged a flow distributor to segregate liquid-vapor phases and predistributed the vapor phase. In the Slop-wash bed a combination of Structured Packing and inertial drop capture proprietary Structured Geometry was installed. The column Bottom was filled with a proprietary Structured Grid. A chimneys tray is the actual liquid distributor on the grid bed. The main results of the revamping are: The light hydrocarbon in bottom stream reduction was 40%. The expected value in the project was 20%. Incrementation of medium distillates was 126 m{sup 3}. The expected value was 100 m{sup 3}. Colour reduction in G.O.V. from >8 to <3 ASTM 1500. Temperature reduction in Transfer Line 10 deg C. Structured packings and the appropriate auxiliaries devices allow to obtain significant improvements in Topping columns. The repayment time of the revamp is very satisfactory. (author)
THE PERFORMANCE ANALYSIS OF A PACKED COLUMN : CALIBRATION OF AN ORIFICE
Aynur ŞENOL
2003-01-01
Full Text Available Investigations to develop data for this study were made using a pilot scale glass column of 9 cm inside diameter randomly filled to a depth of 1.90 cm with a Raschig type ring at a slightly modified geometry. The geometrical characteristics of packing are: the total area of a single particle ad = 2.3 cm2; specific area ap = 10.37 cm2/cm3; voidage ? = 0.545 m3/m3. The efficiency tests were run using trichloroethylene/n-heptane system under total reflux conditions. Using the modified versions of the Eckert flooding model and the Bravo effective area (ae approach, as well as the Onda wetted area (aw and individual mass transfer coefficient models, it has been attempted to estimate the packing efficiency theoretically. This article also deals with the design strategies attributed to a randomly packed column. Emphasis is mainly placed on the way to formulate an algorithm of designing a pilot scale column through the models being attributed to the film theory. Using the column dry pressure drop properties based on the air flowing it has been achieved a generalized flow rate approach for calibrating of an orifice through which the air passes.
Simulation of abuse tolerance of lithium-ion battery packs
Spotnitz, Robert M.; Weaver, James; Yeduvaka, Gowri; Doughty, D. H.; Roth, E. P.
A simple approach for using accelerating rate calorimetry data to simulate the thermal abuse resistance of battery packs is described. The thermal abuse tolerance of battery packs is estimated based on the exothermic behavior of a single cell and an energy balance than accounts for radiative, conductive, and convective heat transfer modes of the pack. For the specific example of a notebook computer pack containing eight 18650-size cells, the effects of cell position, heat of reaction, and heat-transfer coefficient are explored. Thermal runaway of the pack is more likely to be induced by thermal runaway of a single cell when that cell is in good contact with other cells and is close to the pack wall.
Cavity approach to sphere packing in Hamming space.
Ramezanpour, A; Zecchina, R
2012-02-01
In this paper we study the hard sphere packing problem in the Hamming space by the cavity method. We show that both the replica symmetric and the replica symmetry breaking approximations give maximum rates of packing that are asymptotically the same as the lower bound of Gilbert and Varshamov. Consistently with known numerical results, the replica symmetric equations also suggest a crystalline solution, where for even diameters the spheres are more likely to be found in one of the subspaces (even or odd) of the Hamming space. These crystalline packings can be generated by a recursive algorithm which finds maximum packings in an ultrametric space. Finally, we design a message passing algorithm based on the cavity equations to find dense packings of hard spheres. Known maximum packings are reproduced efficiently in nontrivial ranges of dimensions and number of spheres. © 2012 American Physical Society
Comfort care packs: a little bit of hospice in hospital?
Oliver, Mark A; Hillock, Sharon; Moore, Carol; Goble, Hannah; Asbury, Nicky
2010-10-01
The Comfort Care Pack initiative is an innovation designed to enhance the inpatient experience of end-of-life patients and their carers. The carer is given a pleasantly decorated box containing a variety of items for use by the patient or the carer themselves: snacks, toiletries and items to promote comfort. This project set out to evaluate the impact of these packs by reviewing the returns of the feedback questionnaires included with the packs. From the first 220 packs, 58 questionnaires were returned, giving quantitative and qualitative data. The response to the packs was overwhelmingly positive and they were much valued by the carers. This was the case despite the fact that relatively few of the items were actually used by the recipients. It is suggested that the value of the packs to recipients lies in the gesture of being thought about during what is a difficult time for them. The implications of this are discussed.
An amino acid code for β-sheet packing structure.
Joo, Hyun; Tsai, Jerry
2014-09-01
To understand the relationship between protein sequence and structure, this work extends the knob-socket model in an investigation of β-sheet packing. Over a comprehensive set of β-sheet folds, the contacts between residues were used to identify packing cliques: sets of residues that all contact each other. These packing cliques were then classified based on size and contact order. From this analysis, the two types of four-residue packing cliques necessary to describe β-sheet packing were characterized. Both occur between two adjacent hydrogen bonded β-strands. First, defining the secondary structure packing within β-sheets, the combined socket or XY:HG pocket consists of four residues i, i+2 on one strand and j, j+2 on the other. Second, characterizing the tertiary packing between β-sheets, the knob-socket XY:H+B consists of a three-residue XY:H socket (i, i+2 on one strand and j on the other) packed against a knob B residue (residue k distant in sequence). Depending on the packing depth of the knob B residue, two types of knob-sockets are found: side-chain and main-chain sockets. The amino acid composition of the pockets and knob-sockets reveal the sequence specificity of β-sheet packing. For β-sheet formation, the XY:HG pocket clearly shows sequence specificity of amino acids. For tertiary packing, the XY:H+B side-chain and main-chain sockets exhibit distinct amino acid preferences at each position. These relationships define an amino acid code for β-sheet structure and provide an intuitive topological mapping of β-sheet packing.
Tray Pack Improved Durability Packaging Rough Handling Test Results
1985-03-01
extra vacuum void volume space makes these underfilled Tray Packs much more susceptible to damage. It is the vacuum that causes the damage not the under...filled to 6 lb. 10 oz. The result of underfilling is that the vacuum level in the peas is much higher making it more susceptible to paneling damage...impact. (3) That the vacuum induced by underfilling and vacuum pack- ing Tray Packs filled with peas makes them highly suscep- tible to damage. (4) That
Serial Symmetrical Relocation Algorithm for the Equal Sphere Packing Problem
Huang, WenQi
2012-01-01
For dealing with the equal sphere packing problem, we propose a serial symmetrical relocation algorithm, which is effective in terms of the quality of the numerical results. We have densely packed up to 200 equal spheres in spherical container and up to 150 equal spheres in cube container. All results are rigorous because of a fake sphere trick. It was conjectured impossible to pack 68 equal spheres of radius 1 into a sphere of radius 5. The serial symmetrical relocation algorithm has proven wrong this conjecture by finding one such packing.
Bottom-Left Placement Theorem for Rectangle Packing
Huang, Wenqi; Chen, Duanbing
2011-01-01
This paper proves a bottom-left placement theorem for the rectangle packing problem, stating that if it is possible to orthogonally place n arbitrarily given rectangles into a rectangular container without overlapping, then we can achieve a feasible packing by successively placing a rectangle onto a bottom-left corner in the container. This theorem shows that even for the real-parameter rectangle packing problem, we can solve it after finite times of bottom-left placement actions. Based on this theorem, we might develop efficient heuristic algorithms for solving the rectangle packing problem.
Packed bed carburization of tantalum and tantalum alloy
Lopez, Peter C.; Rodriguez, Patrick J.; Pereyra, Ramiro A.
1999-01-01
Packed bed carburization of a tantalum or tantalum alloy object. A method for producing corrosion-resistant tantalum or tantalum alloy objects is described. The method includes the steps of placing the object in contact with a carburizing pack, heating the packed object in vacuum furnace to a temperature whereby carbon from the pack diffuses into the object forming grains with tantalum carbide along the grain boundaries, and etching the surface of the carburized object. This latter step removes tantalum carbides from the surface of the carburized tantalum object while leaving the tantalum carbide along the grain boundaries.
Shaebani, M Reza; Kertesz, Janos
2008-01-01
The contact dynamics method (CD) is an efficient simulation technique of dense granular media where unilateral and frictional contact problems for a large number of rigid bodies have to be solved. In this paper we present a modified version of the contact dynamics to generate homogeneous random packings of rigid grains. CD is coupled to an external pressure bath, which allows the variation of the size of a periodically repeated cell. We follow the concept of the Andersen dynamics and show how it can be applied within the framework of the contact dynamics method. The main challenge here is to handle the interparticle interactions properly, which are based on constraint forces in CD. We implement the proposed algorithm, perform test simulations and investigate the properties of the final packings.
Estimation of hydraulic anisotropy of unconsolidated granular packs using finite element methods
L Akanji
2016-09-01
Full Text Available The effect of particle shape and heterogeneity on hydraulic anisotropy of unconsolidated granular packs is hereby investigated. Direct simulation was carried out on synthetically generated spherical, aspherical, ellipsoidal (aspect ratio of 2 and 3 and lenticular samples. Single phase Stokes equation was solved on models discretised on finite element geometries and hydraulic permeability computed in the horizontal and vertical directions to estimate the degree of anisotropy. The spherical and aspherical packs with varying degrees of particle shapes and heterogeneities are virtually isotropic. Ellipses with aspect ratios 2 and 3 have higher anisotropy ratios compared to the spherical and aspherical geometries while the lenticular geometry is the most anisotropic. This is attributable to the preferential alignment of the grains in the horizontal flow direction during random dynamic settling under gravity.
Fundamental Studies on Two-Phase Gas-Liquid Flows Through Packed Beds in Microgravity
Balakotaiah, Vemuri; McCready, Mark J.; Motil, Brian J.
2002-01-01
In the typical operation of a packed-bed reactor, gas and liquid flow simultaneously through a fixed bed of solid particles. Depending on the application, the particles can be of various shapes and sizes and provide for intimate contact and high rates of transport between the phases needed to sustain chemical or biological reactions. The packing may also serve as either a catalyst or as a support for growing biological material. NASA has flown two of these packed-bed systems in a microgravity environment with limited or no success. The goal of this research is to develop models (with scale-up capability) needed for the design of the physicochemical equipment to carry out these unit operations in microgravity. New insight will also lead to improvements in normal gravity operations. Our initial experiment was flown using an existing KC-135 two-phase flow rig with a modified test section. The test section is a clear polycarbonate rectangular column with a depth of 2.54 cm, a width of 5.08 cm, and 60 cm long. The column was randomly packed with spherical glass beads by slowly dropping the beads into the bed. Even though care was taken in handling the column after it was filled with packing, the alternating high and low gravity cycles with each parabola created a slightly tighter packed bed than is typically reported for this type. By the usual method of comparing the weight difference of a completely dry column versus a column filled with water, the void fraction was found to be .345 for both sizes of beads used. Five flush mounted differential pressure transducers are spaced at even intervals with the first location 4 cm from the inlet port and the subsequent pressure transducers spaced at 13 cm intervals along the column. Differential pressure data was acquired at 1000 Hz to adequately observe pulse formation and characteristics. Visual images of the flow were recorded using a high-speed SVHS system at 500 frames per second. Over 250 different test conditions were
Hyperstaticity and loops in frictional granular packings
Tordesillas, Antoinette; Lam, Edward; Metzger, Philip T.
2009-06-01
The hyperstatic nature of granular packings of perfectly rigid disks is analyzed algebraically and through numerical simulation. The elementary loops of grains emerge as a fundamental element in addressing hyperstaticity. Loops consisting of an odd number of grains behave differently than those with an even number. For odd loops, the latent stresses are exterior and are characterized by the sum of frictional forces around each loop. For even loops, the latent stresses are interior and are characterized by the alternating sum of frictional forces around each loop. The statistics of these two types of loop sums are found to be Gibbsian with a "temperature" that is linear with the friction coefficient μ when μ<1.
School meal sociality or lunch pack individualism?
Andersen, Sidse Schoubye; Holm, Lotte; Baarts, Charlotte
2015-01-01
The present article specifies and broadens our understanding of the concept of commensality by investigating what it means to ‘share a meal’. The study utilizes a school meal intervention carried out in Denmark in 2011/2012. It shows how different types of school meal arrangement influence...... to school. The study discusses commensality by examining and comparing lunchtime interactions within the same group of children in the two contrasting meal situations. The results fail to confirm the conventional view that shared meals have greater social impacts and benefits than eating individualized...... foods. The article argues that the social entrepreneurship involved in sharing individual lunch packs might even outweigh some of the benefits of shared meals where everyone is served the same food....
Compaction dynamics of wet granular packings
Vandewalle, Nicolas; Ludewig, Francois; Fiscina, Jorge E.; Lumay, Geoffroy
2013-03-01
The extremely slow compaction dynamics of wet granular assemblies has been studied experimentally. The cohesion, due to capillary bridges between neighboring grains, has been tuned using different liquids having specific surface tension values. The characteristic relaxation time for compaction τ grows strongly with cohesion. A kinetic model, based on a free volume kinetic equations and the presence of a capillary energy barrier (due to liquid bridges), is able to reproduce quantitatively the experimental curves. This model allows one to describe the cohesion in wet granular packing. The influence of relative humidity (RH) on the extremely slow compaction dynamics of a granular assembly has also been investigated in the range 20 % - 80 % . Triboelectric and capillary condensation effects have been introduced in the kinetic model. Results confirm the existence of an optimal condition at RH ~ 45 % for minimizing cohesive interactions between glass beads.
NONE
2000-08-01
The objectives of the european directive 94/62/CE of the 20 december 1994, relative to the packing and the packing wastes, are the harmonization between the States members, the environment protection and a management of the internal market in agreement with the Treaty. This text recalls the regulations in the french domain. Industrial and municipal packings wastes are concerned. (A.L.B.)
Edgington, Eugene
2007-01-01
Statistical Tests That Do Not Require Random Sampling Randomization Tests Numerical Examples Randomization Tests and Nonrandom Samples The Prevalence of Nonrandom Samples in Experiments The Irrelevance of Random Samples for the Typical Experiment Generalizing from Nonrandom Samples Intelligibility Respect for the Validity of Randomization Tests Versatility Practicality Precursors of Randomization Tests Other Applications of Permutation Tests Questions and Exercises Notes References Randomized Experiments Unique Benefits of Experiments Experimentation without Mani
SAR imagery of the Grand Banks (Newfoundland) pack ice pack and its relationship to surface features
Argus, S. D.; Carsey, F. D.
1988-01-01
Synthetic Aperture Radar (SAR) data and aerial photographs were obtained over pack ice off the East Coast of Canada in March 1987 as part of the Labrador Ice Margin Experiment (LIMEX) pilot project. Examination of this data shows that although the pack ice off the Canadian East Coast appears essentially homogeneous to visible light imagery, two clearly defined zones of ice are apparent on C-band SAR imagery. To identify factors that create the zones seen on the radar image, aerial photographs were compared to the SAR imagery. Floe size data from the aerial photographs was compared to digital number values taken from SAR imagery of the same ice. The SAR data of the inner zone acquired three days apart over the melt period was also examined. The studies indicate that the radar response is governed by floe size and meltwater distribution.
Yamaguchi, Kohei; Inasawa, Susumu; Yamaguchi, Yukio
2013-02-28
We investigated the origin of birefringence in colloidal films of spherical silica particles. Although each particle is optically isotropic in shape, colloidal films formed by drop drying demonstrated birefringence. While periodic particle structures were observed in silica colloidal films, no regular pattern was found in blended films of silica and latex particles. However, since both films showed birefringence, regular film structure patterns were not required to exhibit birefringence. Instead, we propose that nanometer-scale film structure anisotropy causes birefringence. Due to capillary flow from the center to the edge of a cast suspension, particles are more tightly packed in the radial direction. Directional packing results in nanometer-scale anisotropy. The difference in the interparticle distance between radial and circumferential axes was estimated to be 10 nm at most. Nanometer-scale anisotropy in colloidal films and the subsequent optical properties are discussed.
Fermentative hydrogen production in packed-bed and packing-free upflow reactors.
Li, C; Zhang, T; Fang, H H P
2006-01-01
Fermentative hydrogen production from a synthetic wastewater containing 10 g/L of sucrose was studied in two upflow reactors at 26 degrees C for 400 days. One reactor was filled with packing rings (RP) and the other was packing free (RF). The effect of hydraulic retention time (HRT) from 2 h to 24 h was investigated. Results showed that, under steady state, the hydrogen production rate significantly increased from 0.63 L/L/d to 5.35 L/L/d in the RF when HRT decreased from 24 h to 2 h; the corresponding rates were 0.56 L/L/d to 6.17 L/L/d for the RP. In the RF, the hydrogen yield increased from 0.96 mol/mol-sucrose at 24 h of HRT to the maximum of 1.10 mol/mol-sucrose at 8 h of HRT, and then decreased to 0.68 mol/mol-sucrose at 2 h. In the RP, the yield increased from 0.86 mol/mol-sucrose at 24 h of HRT to the maximum of 1.22 mol/mol-sucrose at 14 h of HRT, and then decreased to 0.78 mol/mol-sucrose at 2 h. Overall, the reactor with packing was more effective than the one free of packing. In both reactors, sludge agglutinated into granules. The microbial community of granular sludge in RP was investigated using 16S rDNA based techniques. The distribution of bacterial cells and extracellular polysaccharides in hydrogen-producing granules was investigated by fluorescence-based techniques. Results indicated that most of the N-acetyl-galactosamine/galactose-containing extracellular polysaccharides were distributed on the outer layer of the granules with a filamentous structure.
New series of paper pack vending machines; Paper pack jido hanbaiki no shin series
Ohashi, M. [Fuji Denki Reiki Co. Ltd., Tokyo (Japan); Umino, S. [Fuji Electric Co. Ltd., Tokyo (Japan)
1996-07-10
This paper presents series of paper pack vending machines. These machines may be broadly classified into those of cold drinks and of hot and cold drinks depending on the storage temperature of products. The former is the machine for cooling dairy products at 10{degree}C with a combined stacking by direct-stacked racks and chain-multiracks. The latter is provided with divided storing chambers with each chamber selectively cooled or heated. Products in the hot chamber are canned coffee and the like set at 55{degree}C. The temperature control is performed by a microcomputer. The chain-multiracks are provided with advantages such as capability of handling various kinds of container shapes, storing drinks and foods vertically, replacing products by the change of a shelf attachment with one operation, and storing one liter packs by setting pair columns. The direct-stacked racks are provided with advantages such as versatility of handling various kinds of containers and miniaturization of the mechanism other than the storage part. The installation space was reduced by devising the opening and closing of the door. The control part is capable of setting temperatures differently for cans and paper packs. 7 figs., 1 tab.
O. L. Hadley
2010-04-01
Full Text Available Modeling studies show that the darkening of snow and ice by black carbon (BC deposition is a major factor for the rapid disappearance of arctic sea ice, mountain glaciers and snow packs. This study provides one of the first direct measurements for the efficient removal of black carbon from the atmosphere by snow and its subsequent deposition on the snow packs of California. The early melting of the snow packs in the Sierras is one of the contributing factors to the severe water problems in California. BC concentrations in falling snow were measured at two mountain locations and in rain at a coastal site. All three stations reveal large BC concentrations in precipitation, ranging from 1.7 ng/g to 12.9 ng/g. The BC concentrations in the air after the snow fall were negligible suggesting an extremely efficient removal of BC by snow. The data suggest that below cloud scavenging, rather than ice nuclei, was the dominant source of BC in the snow. A five-year comparison of BC, dust, and total fine aerosol mass concentrations at multiple sites reveals that the measurements made at the sampling sites were representative of large scale deposition in the Sierra Nevada. The relative concentration of iron and calcium in the mountain aerosol indicates that one-quarter to one-third of the BC may have been transported from Asia.
O. L. Hadley
2010-08-01
Full Text Available Modeling studies show that the darkening of snow and ice by black carbon deposition is a major factor for the rapid disappearance of arctic sea ice, mountain glaciers and snow packs. This study provides one of the first direct measurements for the efficient removal of black carbon from the atmosphere by snow and its subsequent deposition to the snow packs of California. The early melting of the snow packs in the Sierras is one of the contributing factors to the severe water problems in California. BC concentrations in falling snow were measured at two mountain locations and in rain at a coastal site. All three stations reveal large BC concentrations in precipitation, ranging from 1.7 ng/g to 12.9 ng/g. The BC concentrations in the air after the snow fall were negligible suggesting an extremely efficient removal of BC by snow. The data suggest that below cloud scavenging, rather than ice nuclei, was the dominant source of BC in the snow. A five-year comparison of BC, dust, and total fine aerosol mass concentrations at multiple sites reveals that the measurements made at the sampling sites were representative of large scale deposition in the Sierra Nevada. The relative concentration of iron and calcium in the mountain aerosol indicates that one-quarter to one-third of the BC may have been transported from Asia.
Wang, C S; Lozano-Pérez, T; Tidor, B
1998-07-01
The determination of structures of multimers presents interesting new challenges. The structure(s) of the individual monomers must be found and the transformations to produce the packing interfaces must be described. A substantial difficulty results from ambiguities in assigning intermolecular distance measurements (from nuclear magnetic resonance, for example) to particular intermolecular interfaces in the structure. Here we present a rapid and efficient method to solve the packing and the assignment problems simultaneously given rigid monomer structures and (potentially ambiguous) intermolecular distance measurements. A promising application of this algorithm is to couple it with a monomer searching protocol such that each monomer structure consistent with intramolecular constraints can be subsequently input to the current algorithm to check whether it is consistent with (potentially ambiguous) intermolecular constraints. The algorithm AmbiPack uses a hierarchical division of the search space and the branch-and-bound algorithm to eliminate infeasible regions of the space. Local search methods are then focused on the remaining space. The algorithm generally runs faster as more constraints are included because more regions of the search space can be eliminated. This is not the case for other methods, for which additional constraints increase the complexity of the search space. The algorithm presented is guaranteed to find all solutions to a predetermined resolution. This resolution can be chosen arbitrarily to produce outputs at various level of detail. Illustrative applications are presented for the P22 tailspike protein (a trimer) and portions of beta-amyloid (an ordered aggregate).
Estrada, Nicolas
2016-12-01
Using discrete element methods, the effects of the grain size distribution on the density and the shear strength of frictionless disk packings are analyzed. Specifically, two recent findings on the relationship between the system's grain size distribution and its rheology are revisited, and their validity is tested across a broader range of distributions than what has been used in previous studies. First, the effects of the distribution on the solid fraction are explored. It is found that the distribution that produces the densest packing is not the uniform distribution by volume fractions as suggested in a recent publication. In fact, the maximal packing fraction is obtained when the grading curve follows a power law with an exponent close to 0.5 as suggested by Fuller and Thompson in 1907 and 1919 [Trans Am. Soc. Civ. Eng. 59, 1 (1907) and A Treatise on Concrete, Plain and Reinforced (1919), respectively] while studying mixtures of cement and stone aggregates. Second, the effects of the distribution on the shear strength are analyzed. It is confirmed that these systems exhibit a small shear strength, even if composed of frictionless particles as has been shown recently in several works. It is also found that this shear strength is independent of the grain size distribution. This counterintuitive result has previously been shown for the uniform distribution by volume fractions. In this paper, it is shown that this observation keeps true for different shapes of the grain size distribution.
Hadley, O.L.; Corrigan, C.E.; Kirchstetter, T.W.; Cliff, S.S.; Ramanathan, V.
2010-01-12
Modeling studies show that the darkening of snow and ice by black carbon deposition is a major factor for the rapid disappearance of arctic sea ice, mountain glaciers and snow packs. This study provides one of the first direct measurements for the efficient removal of black carbon from the atmosphere by snow and its subsequent deposition to the snow packs of California. The early melting of the snow packs in the Sierras is one of the contributing factors to the severe water problems in California. BC concentrations in falling snow were measured at two mountain locations and in rain at a coastal site. All three stations reveal large BC concentrations in precipitation, ranging from 1.7 ng/g to 12.9 ng/g. The BC concentrations in the air after the snow fall were negligible suggesting an extremely efficient removal of BC by snow. The data suggest that below cloud scavenging, rather than ice nuclei, was the dominant source of BC in the snow. A five-year comparison of BC, dust, and total fine aerosol mass concentrations at multiple sites reveals that the measurements made at the sampling sites were representative of large scale deposition in the Sierra Nevada. The relative concentration of iron and calcium in the mountain aerosol indicates that one-quarter to one-third of the BC may have been transported from Asia.
A heterogeneous model for heat transfer in packed beds
Wijngaarden, R.J.; Westerterp, K.R.
1993-01-01
If transient heat transfer occurs in a packed bed or a reaction is carried out on the pellets, the heterogeneity of the bed is essential because of the heat flow between pellets and gas. Global heat parameters for the packed bed, such as λeff and αw, are usually derived from homogeneous models. Ther
Colonic perforation: a lethal consequence of cannabis body packing.
Cawich, Shamir O; Downes, Ross; Martin, Allie C; Evans, Necia R; Mitchell, Derek I G; Williams, Eric
2010-07-01
Body packing is one method of smuggling cannabis across international borders. The practice is prevalent in Jamaica. There has been one reported death from this practice in medical literature. We report a second fatal case of cannabis body packing, reinforcing the dangerous nature of this practice.
The sintering behavior of close-packed spheres
Bjørk, Rasmus; Tikare, V.; Frandsen, Henrik Lund
2012-01-01
The sintering behavior of close-packed spheres is investigated using a numerical model. The investigated systems are the body-centered cubic (bcc), face-centered cubic (fcc) and hexagonal close-packed spheres (hcp). The sintering behavior is found to be ideal, with no grain growth until full dens...
Predicting the Liquid Phase Mass Transfer Resistance of Structured Packings
Olujic, Z.; Seibert, A.F.
2014-01-01
Published correlations for estimating the liquid phase mass transfer coefficients of structured packings are compared using experimental evidence on the efficiency of Montz-Pak B1–250MN and B1–500MN structured packings as measured in total reflux distillation tests using the chlorobenzene/ethylbenze
Bedded pack barns for dairy cattle in the Netherlands
Galama, P.J.; Boer, de H.C.; Dooren, van H.J.C.; Ouweltjes, W.; Poelarends, J.J.; Driehuis, F.
2014-01-01
The bedded pack barn offers good perspective on animal welfare, animal health and public perception, but has disadvantages in terms of mineral management (nitrogen losses and fertilising value) and the presence of TAS (Thermophilic Aerobic Spore formers). Bedded packs with compost have a too high am
Hydrodynamics of multi-phase packed bed micro-reactors
Márquez Luzardo, N.M.
2010-01-01
Why to use packed bed micro-reactors for catalyst testing? Miniaturized packed bed reactors have a large surface-to-volume ratio at the reactor and particle level that favors the heat- and mass-transfer processes at all scales (intra-particle, inter-phase and inter-particle or reactor level). If the
14 CFR 1214.605 - Preflight packing and storing.
2010-01-01
... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Preflight packing and storing. 1214.605 Section 1214.605 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Mementos Aboard Space Shuttle Flights § 1214.605 Preflight packing and storing. (a) Items intended for...
Online Variable-Sized Bin Packing with Conflicts
Epstein, Leah; Favrholdt, Lene Monrad; Levin, Asaf
2011-01-01
We study a new kind of on-line bin packing with conflicts, motivated by a problem arising when scheduling jobs on the Grid. In this bin packing problem, the set of items is given at the beginning, together with a set of conflicts on pairs of items. A conflict on a pair of items implies...
A relationship between maximum packing of particles and particle size
Fedors, R. F.
1979-01-01
Experimental data indicate that the volume fraction of particles in a packed bed (i.e. maximum packing) depends on particle size. One explanation for this is based on the idea that particle adhesion is the primary factor. In this paper, however, it is shown that entrainment and immobilization of liquid by the particles can also account for the facts.
A selection-quotient process for packed word Hopf algebra
Duchamp, G H E; Tanasa, A
2013-01-01
In this paper, we define a Hopf algebra structure on the vector space spanned by packed words using a selection-quotient coproduct. We show that this algebra is free on its irreducible packed words. Finally, we give some brief explanations on the Maple codes we have used.
The performance of structured packings in trickle-bed reactors.
Frank, M.J.W.; Frank, M.J.W.; Kuipers, J.A.M.; Versteeg, Geert; van Swaaij, Willibrordus Petrus Maria
1999-01-01
An experimental study was carried out to investigate whether the use of structured packings might improve the mass transfer characteristics and the catalyst effectiveness of a trickle-bed reactor. Therefore, the performances of a structured packing, consisting of KATAPAK elements, and a dumped
The performance of structured packings in trickle-bed reactors.
Frank, M.J.W.; Kuipers, J.A.M.; Versteeg, G.F.; Swaaij, van W.P.M.
1999-01-01
An experimental study was carried out to investigate whether the use of structured packings might improve the mass transfer characteristics and the catalyst effectiveness of a trickle-bed reactor. Therefore, the performances of a structured packing, consisting of KATAPAK elements, and a dumped packi
The Performance of Structured Packings in Trickle-Bed Reactors
Frank, M.J.W.; Kuipers, J.A.M.; Versteeg, G.F.; Swaaij, W.P.M. van
1999-01-01
An experimental study was carried out to investigate whether the use of structured packings might improve the mass transfer characteristics and the catalyst effectiveness of a trickle-bed reactor. Therefore, the performances of a structured packing, consisting of KATAPAK elements, and a dumped packi
Hydrodynamics of multi-phase packed bed micro-reactors
Márquez Luzardo, N.M.
2010-01-01
Why to use packed bed micro-reactors for catalyst testing? Miniaturized packed bed reactors have a large surface-to-volume ratio at the reactor and particle level that favors the heat- and mass-transfer processes at all scales (intra-particle, inter-phase and inter-particle or reactor level). If the
Does the fluid elasticity influence the dispersion in packed beds?
Westerterp, K. Roel; Wijngaarden, Ruud J.; Nijhuis, Niek B.G.
1996-01-01
Reasons are given why the axial dispersion in a gas flowing through a packed bed may be influenced by the elasticity - or compressibility - of the fluid. To support this hypothesis, experiments have been done in a packed column at pressures from 0.13 to 2.0 MPa. The elasticity E of a gas is proporti
Modified algorithm for generating high volume fraction sphere packings
Valera, Roberto Roselló; Morales, Irvin Pérez; Vanmaercke, Simon; Morfa, Carlos Recarey; Cortés, Lucía Argüelles; Casañas, Harold Díaz-Guzmán
2015-06-01
Advancing front packing algorithms have proven to be very efficient in 2D for obtaining high density sets of particles, especially disks. However, the extension of these algorithms to 3D is not a trivial task. In the present paper, an advancing front algorithm for obtaining highly dense sphere packings is presented. It is simpler than other advancing front packing methods in 3D and can also be used with other types of particles. Comparison with respect to other packing methods have been carried out and a significant improvement in the volume fraction (VF) has been observed. Moreover, the quality of packings was evaluated with indicators other than VF. As additional advantage, the number of generated particles with the algorithm is linear with respect to time.
Packing fraction of particles with lognormal size distribution.
Brouwers, H J H
2014-05-01
This paper addresses the packing and void fraction of polydisperse particles with a lognormal size distribution. It is demonstrated that a binomial particle size distribution can be transformed into a continuous particle-size distribution of the lognormal type. Furthermore, an original and exact expression is derived that predicts the packing fraction of mixtures of particles with a lognormal distribution, which is governed by the standard deviation, mode of packing, and particle shape only. For a number of particle shapes and their packing modes (close, loose) the applicable values are given. This closed-form analytical expression governing the packing fraction is thoroughly compared with empirical and computational data reported in the literature, and good agreement is found.
Multilayer DNA Origami Packed on Hexagonal and Hybrid Lattices
Ke, Yonggang; Voigt, Niels V.; Gothelf, Kurt V.; Shih, William M.
2012-01-01
“Scaffolded DNA origami” has been proven to be a powerful and efficient approach to construct two-dimensional or three-dimensional objects with great complexity. Multilayer DNA origami has been demonstrated with helices packing along either honeycomb-lattice geometry or square-lattice geometry. Here we report successful folding of multilayer DNA origami with helices arranged on a close-packed hexagonal lattice. This arrangement yields a higher density of helical packing and therefore higher resolution of spatial addressing than has been shown previously. We also demonstrate hybrid multilayer DNA origami with honeycomb-lattice, square-lattice, and hexagonal lattice packing of helices all in one design. The availability of hexagonal close packing of helices extends our ability to build complex structures using DNA nanotechnology. PMID:22187940
Packing fraction of particles with lognormal size distribution
Brouwers, H. J. H.
2014-05-01
This paper addresses the packing and void fraction of polydisperse particles with a lognormal size distribution. It is demonstrated that a binomial particle size distribution can be transformed into a continuous particle-size distribution of the lognormal type. Furthermore, an original and exact expression is derived that predicts the packing fraction of mixtures of particles with a lognormal distribution, which is governed by the standard deviation, mode of packing, and particle shape only. For a number of particle shapes and their packing modes (close, loose) the applicable values are given. This closed-form analytical expression governing the packing fraction is thoroughly compared with empirical and computational data reported in the literature, and good agreement is found.
An Amino Acid Code for Irregular and Mixed Protein Packing
Joo, Hyun; Chavan, Archana; Fraga, Keith; Tsai, Jerry
2015-01-01
To advance our understanding of protein tertiary structure, the development of the knob-socket model is completed in an analysis of the packing in irregular coil and turn secondary structure packing as well as between mixed secondary structure. The knob-socket model simplifies packing based on repeated patterns of 2 motifs: a 3 residue socket for packing within 2° structure and a 4 residue knob-socket for 3° packing. For coil and turn secondary structure, knob-sockets allow identification of a correlation between amino acid composition and tertiary arrangements in space. Coil contributes almost as much as α-helices to tertiary packing. Irregular secondary structure involves 3 residue cliques of consecutive contacting residues or XYZ sockets. In irregular sockets, Gly, Pro, Asp and Ser are favored, while Cys, His, Met and Trp are not. For irregular knobs, the preference order is Arg, Asp, Pro, Asn, Thr, Leu, and Gly, while Cys, His, Met and Trp are not. In mixed packing, the knob amino acid preferences are a function of the socket that they are packing into, whereas the amino acid composition of the sockets does not depend on the secondary structure of the knob. A unique motif of a coil knob with an XYZ β-sheet socket may potentially function to inhibit β-sheet extension. In addition, analysis of the preferred crossing angles for strands within a β-sheet and mixed α-helices/β-sheets identifies canonical packing patterns useful in protein design. Lastly, the knob-socket model abstracts the complexity of protein tertiary structure into an intuitive packing surface topology map. PMID:26370334
SEPTOPLASTY WITH AND WITHOUT NASAL PACKING: A COMPARATIVE STUDY
Mitta
2016-05-01
Full Text Available Septoplasty is one of the most commonly performed surgeries in rhinology to relieve nasal obstruction of patients with distortion in the midline cartilage or septum of the nose to relieve nasal obstruction of patient and findings consistent with nasal endoscopy. The anterior nasal packing routinely done following septoplasty is usually conventional and not evidence based. The purpose of nasal packing is to obtain haemostasis, enhance opposition of septal flaps, avoid septal haematoma formation, close the dead space, avoid synechiae formation, provide support to septal cartilage and prevent its displacement. OBJECTIVE This study intends to evaluate the effects of nasal packing on surgical success and related complications in septoplasty. MATERIALS AND METHODS The present clinical prospective and randomised study was carried out on patients attending Otorhinolaryngology Department of Santhiram Medical College & General Hospital between March 2012 and March 2015. Patients undergoing septoplasty were randomised either to receive anterior nasal packing or to not receive nasal packing postoperatively. RESULTS Levels of pain experienced by patients with nasal packing postoperatively during the initial 24 hours postoperatively and during the removal of the pack were significantly more. Post-operative headache, epiphora, swallowing discomfort and sleep disturbance were more in patients with nasal packing and statistically (p.05. Septal haematoma, adhesions and local infections in both groups were statistically insignificant (p>.05. CONCLUSION Septoplasty enhances the standard of living of patients with septal deviation and nasal obstruction. Our study results suggest that nasal packing after septoplasty is not obligatory. Nasal packing causes considerably more pain and complications, and it should be reserved only for those who have bleeding predisposition.
Huang, H Y; Maguire, M G; Miller, E R; Appel, L J
2000-10-15
The impact of pill organizers on pill taking was determined in the Trial of Antioxidant Vitamins C and E (TRACE) Study, a factorial trial of vitamin C and vitamin E supplementation in 184 individuals. Participants were recruited in 1996-1997 and randomized to one of two groups (pill organizer or no organizer) and to one of four supplement groups for 2 months. The pill count (observed/expected X 100%) distribution was similar in the organizer and no organizer group for both vitamins. Mean differences in changes in serum vitamin levels between active and placebo groups did not differ by pill organizer use. The impact of pill organizers and blister packs was compared in another trial, the Vitamins, Teachers, and Longevity (VITAL) Study, in 297 individuals randomized in 1993-1994 to receive study pills either in blister packs or in pill organizers and to take one of two supplements. Among those with lower adherence, the pill count distribution in the blister-pack group exceeded that in the organizer group. Mean differences in serum vitamin E levels between active and placebo groups did not differ by types of pill packaging. In summary, use of blister packs, but not pill organizers, improved adherence as measured by pill counts among those with lower adherence. Neither pill delivery system improved adherence as measured by serum vitamin levels.
Compost bedded pack dairy barn management, performance, and producer satisfaction.
Black, R A; Taraba, J L; Day, G B; Damasceno, F A; Bewley, J M
2013-01-01
The objective of the research was to characterize herd performance, producer satisfaction and recommendations, and management practices used by compost bedded pack (CBP) managers in Kentucky (42 farms and 47 CBP facilities). Farms were visited between October 2010 and March 2011. A random selection of cows housed solely in the CBP were scored for locomotion and hygiene. Changes in monthly Dairy Herd Improvement Association performance records, including milk production, SCC, reproductive performance, and daily bulk-tank somatic cell count after moving into the CBP were analyzed using the MIXED procedure of SAS (SAS 9.3; SAS Institute Inc., Cary, NC). The GLM procedure of SAS (SAS 9.3) was used to develop models to describe CBP moisture, CBP temperature at 20.3 cm, and mean herd hygiene. Producers provided 9.0 ± 2.2 m2 of pack space per cow (n = 44). Barns constructed with an attached feed alley cost $1,051 ± 407 per cow (n = 40). Barns constructed without an attached feed alley cost $493 ± 196 per cow (n = 13). Kiln-dried shavings required 0.05 ± 0.04 m3 of bedding per cow per day (n = 15). Green shavings required 0.07 ± 0.06 m3 of bedding per cow per day (n = 12). The most-frequently cited benefits of the CBP included cow comfort (n = 28), cow cleanliness (n = 14), and the low-maintenance nature of the system (n = 10). Increased stirring frequency, stirring depth, and ambient temperature increased pack temperature, measured at 20.3 cm below the CBP surface. Increased stirring depth, pasture-adjusted space per cow, and drying rate decreased CBP moisture. Mean herd locomotion and hygiene scores were 1.5 ± 0.3 (n = 34) and 2.2 ± 0.4 (n = 34), respectively. Increased 20.3-cm depth CBP temperature and ambient temperatures improved mean herd hygiene. Bulk-tank somatic cell count decreased from the year before to the year after moving into the CBP barn (323,692 ± 7,301 vs. 252,859 ± 7,112 cells/mL, respectively) for farms using the CBP barn as the primary
Too packed to change: side-chain packing and site-specific substitution rates in protein evolution
María Laura Marcos
2015-04-01
Full Text Available In protein evolution, due to functional and biophysical constraints, the rates of amino acid substitution differ from site to site. Among the best predictors of site-specific rates are solvent accessibility and packing density. The packing density measure that best correlates with rates is the weighted contact number (WCN, the sum of inverse square distances between a site’s Cα and the Cα of the other sites. According to a mechanistic stress model proposed recently, rates are determined by packing because mutating packed sites stresses and destabilizes the protein’s active conformation. While WCN is a measure of Cα packing, mutations replace side chains. Here, we consider whether a site’s evolutionary divergence is constrained by main-chain packing or side-chain packing. To address this issue, we extended the stress theory to model side chains explicitly. The theory predicts that rates should depend solely on side-chain contact density. We tested this prediction on a data set of structurally and functionally diverse monomeric enzymes. We compared side-chain contact density with main-chain contact density measures and with relative solvent accessibility (RSA. We found that side-chain contact density is the best predictor of rate variation among sites (it explains 39.2% of the variation. Moreover, the independent contribution of main-chain contact density measures and RSA are negligible. Thus, as predicted by the stress theory, site-specific evolutionary rates are determined by side-chain packing.
Hem, Caroline Piper; Makovicky, Emil; Balic Zunic, Tonci
2010-01-01
Sizes of cavities and their packing schemes in selected zeolites and clathrasils were studied by means of least squares fitting of circumscribed spheres to them. Resulting packing of spheres of different diameters was analyzed by the coordinates of their centers, their volumes and sphericity...
Too packed to change: side-chain packing and site-specific substitution rates in protein evolution.
Marcos, María Laura; Echave, Julian
2015-01-01
In protein evolution, due to functional and biophysical constraints, the rates of amino acid substitution differ from site to site. Among the best predictors of site-specific rates are solvent accessibility and packing density. The packing density measure that best correlates with rates is the weighted contact number (WCN), the sum of inverse square distances between a site's C α and the C α of the other sites. According to a mechanistic stress model proposed recently, rates are determined by packing because mutating packed sites stresses and destabilizes the protein's active conformation. While WCN is a measure of C α packing, mutations replace side chains. Here, we consider whether a site's evolutionary divergence is constrained by main-chain packing or side-chain packing. To address this issue, we extended the stress theory to model side chains explicitly. The theory predicts that rates should depend solely on side-chain contact density. We tested this prediction on a data set of structurally and functionally diverse monomeric enzymes. We compared side-chain contact density with main-chain contact density measures and with relative solvent accessibility (RSA). We found that side-chain contact density is the best predictor of rate variation among sites (it explains 39.2% of the variation). Moreover, the independent contribution of main-chain contact density measures and RSA are negligible. Thus, as predicted by the stress theory, site-specific evolutionary rates are determined by side-chain packing.
Hem, Caroline Piper; Makovicky, Emil; Balic Zunic, Tonci
2010-01-01
Sizes of cavities and their packing schemes in selected zeolites and clathrasils were studied by means of least squares fitting of circumscribed spheres to them. Resulting packing of spheres of different diameters was analyzed by the coordinates of their centers, their volumes and sphericity, and...
WITHDRAWN: Commercial hospital discharge packs for breastfeeding women.
Donnelly, A; Snowden, H M; Renfrew, M J; Woolridge, M W
2007-07-18
Exclusive breastfeeding until around six months of age, followed by the introduction of solids with continued breastfeeding, is considered to be the optimal nutritional start for newborn infants. To determine whether the exclusivity and duration of breastfeeding is affected by giving mothers commercial discharge packs in hospital which contain artificial formula or promotional material for artificial formula. These packs are those which are commonly given to mothers on leaving hospital after giving birth (thus discharge packs). Comprehensive electronic search of the register of clinical trials maintained and updated by the Cochrane Pregnancy and Childbirth Group and CINAHL and MEDLINE. All randomised controlled trials with or without blinding to examine the effects of commercial discharge packs on breastfeeding. Consenting postpartum women who initiate breastfeeding while in hospital or immediately upon discharge. Commercial discharge packs which contain free samples of infant formula or promotional material versus non commercial discharge packs (specifically those from which free samples of infant formula have been removed or have been replaced with e.g. breast pads) or no pack. The proportion of women breastfeeding at six weeks and 3 months (13 weeks) postpartum.Other outcomes: Rates of breastfeeding at other fixed time points between 0 and 6 months postpartum. Data were extracted by one reviewer and checked by a second reviewer. Nine randomised controlled trials involving a total of 3730 women were analysed. The studies only included women from North America. The meta-analysis showed that when comparing commercial discharge packs with any of the controls (no intervention, non-commercial pack and combinations of these), exclusive breastfeeding was reduced at all time points in the presence of commercial hospital discharge packs. There was no evidence to support the conjecture that use of hospital discharge packs causes the early termination of non
Rama Sarala
2016-03-01
Full Text Available AIM This case study focuses on the efficacy of iron sucrose in moderate-to-severe anaemia in pregnancy and to compare the efficacy of iron sucrose with packed cell transfusion and based on the study to establish whether iron sucrose could be an alternative to packed cells transfusion for the management of moderate-to-severe anaemia complicating pregnancy remote from the term gestation. MATERIALS AND METHODS It is a case control study for a period of 2 years. Women were randomly selected where for the study group 50 patients intravenous iron sucrose was given and for control group 50 patients packed cells transfusion was given. RESULTS The study group and the control group had 50 subjects each. On an average 80% were in the age group of 15-24 yrs. in both groups. In both groups, on an average 85% were with moderate anaemia (6-8 g/dL and 15% were with severe anaemia (<6 g/dL. Mean requirement of iron sucrose for moderate anaemia was 1100 mg and for severe anaemia it was 1300 mg. Mean requirement of packed cells for moderate anaemia was 3 units and for severe anaemia 4-5 units. In iron sucrose group, mean haemoglobin% at baseline 7.1±0.8 g/dL, after 1 week 7.9±0.6, after 4 weeks 11±0.5 g/dL and at delivery 11.7±0.6 g/dL. In packed cells group, mean haemoglobin% at baseline 7.0±0.7 g/dL, after 1 week 10.2±0.5 g/dL, after 4 weeks 10.3±0.5 g/dL and at delivery 10.4±0.4 g/dL. The mean haematocrit values in iron sucrose group at baseline 20.9±2.5%, after 1 week 25.3±2.2% and after 4 weeks 33.6±2.0%. The mean haematocrit values in packed cells group at baseline 20.8±2.3%, after 1 week 30.0±1.9% and after 4 weeks 30.2±2.0%. Mean rise of haematocrit from baseline to 1 week in iron sucrose and packed cells group were 4.4±1.3% and 9.1±2.0% respectively. Mean rise of haematocrit from baseline to 4 weeks in iron sucrose and packed cell group were 12.7±2.1% and 9.3±2.3 respectively. The mean ferritin values in iron sucrose group at baseline
Compressed Subsequence Matching and Packed Tree Coloring
Bille, Philip; Cording, Patrick Hagge; Gørtz, Inge Li
2017-01-01
We present a new algorithm for subsequence matching in grammar compressed strings. Given a grammar of size n compressing a string of size N and a pattern string of size m over an alphabet of size \\(\\sigma \\), our algorithm uses \\(O(n+\\frac{n\\sigma }{w})\\) space and \\(O(n+\\frac{n\\sigma }{w}+m\\log N......\\log w\\cdot occ)\\) or \\(O(n+\\frac{n\\sigma }{w}\\log w+m\\log N\\cdot occ)\\) time. Here w is the word size and occ is the number of minimal occurrences of the pattern. Our algorithm uses less space than previous algorithms and is also faster for \\(occ=o(\\frac{n}{\\log N})\\) occurrences. The algorithm uses...... a new data structure that allows us to efficiently find the next occurrence of a given character after a given position in a compressed string. This data structure in turn is based on a new data structure for the tree color problem, where the node colors are packed in bit strings....
Preperitoneal pelvic packing: Technique and outcomes.
Filiberto, Dina M; Fox, Adam D
2016-09-01
Significant pelvic ring fractures are usually secondary to high-energy trauma, and when associated with other life-threatening injuries and hemodynamic instability, result in high mortality rates ranging from 40 to 60%. The major cause of death during the first 24 h after pelvic trauma is attributed to acute blood loss, with later mortality secondary to multisystem organ failure. In a majority of patients, the source of pelvic bleeding is from disruption of the presacral venous plexus and bony fracture sites, while arterial injury is present in only 10-15%. The optimal management algorithm for hemodynamically unstable patients with pelvic fractures remains controversial. The principles of care center on resuscitation, external stabilization of the pelvis, and hemorrhage control with angiography and embolization (AE) and/or preperitoneal pelvic packing (PPP). AE is effective in controlling arterial bleeding and its role in the management of hemodynamically unstable patients with pelvic fractures is supported by the EAST guidelines. However, since most patients suffer from venous bleeding, PPP can be an alternate life saving technique to control hemorrhage, especially if AE is not immediately available. Copyright © 2016 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.
Identifying counterfeit cigarette packs using ultraviolet irradiation and light microscopy.
Kurti, Marin; He, Yi; von Lampe, Klaus; Li, Yanlei
2017-01-01
Develop a method that yields high rates of sensitivity and specificity for determination of counterfeit cigarette packs for three popular brands: Newport, Marlboro ('Red') and Marlboro Gold. Using systematic keyword searches, we identified industry documents from the University of California, San Francisco's Legacy Tobacco Documents Library that describe the use of ultraviolet (UV) irradiation and close examination of printing quality to distinguish between counterfeit and genuine cigarette packs. Guided by these documents, we identified six markers for counterfeit cigarettes across three popular brands using counterfeit cigarette packs (N=68) seized by law enforcement agencies in the USA. We assessed the diagnostic test accuracy of these markers and tested it against genuine packs (N=22) using receiver operating characteristic curves analysis. We find that counterfeit cigarette packs fluoresce to long-wave UV irradiation and display poor printing quality. The optimal cut-off value varies among the three brands. For example, counterfeit Newport and Marlboro packaging can be reliably classified with two of six characteristics, while Marlboro Gold requires four. Researchers who conduct littered pack and pack swap studies are urged to include this method to assess the share of counterfeit cigarettes, and compare the result against tobacco industry figures. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Kayahan, B; Ozer, S; Suslu, A E; Ogretmenoglu, O; Onerci, M
2017-03-01
Septoplasty is one of the most common operations performed in otolaryngology and anterior nasal packing is done routinely to prevent postoperative bleeding, septal hematoma or nasal synechia. Currently, transseptal sutures have gained a broader application area, not only for preventing the complications such as septal hematoma and bleeding but also closing any accidental tears of septal mucosa and providing additional support for the cartilage pieces retained in septoplasty. We evaluated the quality of life of the patients in early postoperative period (in the first postoperative week), intranasal edema with endoscopic examination and the intranasal changes with acoustic rhinometry. We performed a prospective and randomized study with patients undergoing septoplasty without inferior turbinectomy. As packing material, there were two groups: in group A, gauze in a glove finger and in group B, Doyle splint were used, and in the additional group C, only transseptal suture with 4/0 vicryl among the cartilaginous septum was performed. The patients were invited to control examinations on the postoperative 2nd, 4th and 7th days to evaluate the scores from 1 to 5 on the questionnaire for the pain, nasal fullness, sneezing, epiphora, difficulty in swallowing and sleep disturbances. The patients were also administered an endoscopic nasal examination for the purpose of detecting the intranasal edema, and acoustic rhinometry was performed during the control examinations to detect the intranasal changes. Total occluding packing was found to cause much more frequent and higher scores of epiphora, sneezing, difficulty in swallowing, but mainly, the pain compared to in silicone packing with airway and transseptal suture only. Although the silicone packing with airway was found to be much more comfortable, it also led to sneezing and epiphora. The patients without nasal packing had more comfortable period especially in the early postoperative days (the first 4 days). However, 1
2010-01-13
... ADMINISTRATION General Services Administration Regulation; Submission for OMB Review; Packing List Clause AGENCY... approved information collection requirement regarding the packing list clause. A request for public..., Packing List Clause, in all correspondence. FOR FURTHER INFORMATION CONTACT: Michael O....
2012-11-05
... ADMINISTRATION General Services Administration Regulation; Information Collection; Packing List Clause AGENCY... packing list clause. Public comments are particularly invited on: Whether this collection of information..., Packing List Clause, by any of the following methods: Regulations.gov :...
Optimization of heterogeneous Bin packing using adaptive genetic algorithm
Sridhar, R.; Chandrasekaran, M.; Sriramya, C.; Page, Tom
2017-03-01
This research is concentrates on a very interesting work, the bin packing using hybrid genetic approach. The optimal and feasible packing of goods for transportation and distribution to various locations by satisfying the practical constraints are the key points in this project work. As the number of boxes for packing can not be predicted in advance and the boxes may not be of same category always. It also involves many practical constraints that are why the optimal packing makes much importance to the industries. This work presents a combinational of heuristic Genetic Algorithm (HGA) for solving Three Dimensional (3D) Single container arbitrary sized rectangular prismatic bin packing optimization problem by considering most of the practical constraints facing in logistic industries. This goal was achieved in this research by optimizing the empty volume inside the container using genetic approach. Feasible packing pattern was achieved by satisfying various practical constraints like box orientation, stack priority, container stability, weight constraint, overlapping constraint, shipment placement constraint. 3D bin packing problem consists of ‘n’ number of boxes being to be packed in to a container of standard dimension in such a way to maximize the volume utilization and in-turn profit. Furthermore, Boxes to be packed may be of arbitrary sizes. The user input data are the number of bins, its size, shape, weight, and constraints if any along with standard container dimension. This user input were stored in the database and encoded to string (chromosomes) format which were normally acceptable by GA. GA operators were allowed to act over these encoded strings for finding the best solution.
Survey of descriptors on cigarette packs: still misleading consumers?
Peace, Jo; Wilson, Nick; Hoek, Janet; Edwards, Richard; Thomson, George
2009-09-25
In September 2008, the New Zealand (NZ) Commerce Commission issued a warning to the major tobacco companies to remove "light" and "mild" descriptors from cigarette packaging. Despite published evidence that suggested tobacco companies had started colour-coding their packs in anticipation of the Commission's decision, the investigation did not consider more general misleading packaging. This study explored changes in tobacco packaging that had been introduced to the New Zealand market, by surveying descriptors used on cigarette packs after the Commerce Commission's warning. A convenience sample of discarded cigarette packs were collected in four cities and six towns/rural areas between November 2008 and January 2009. The majority of packs (93%) were collected in the capital city (Wellington). Information on the descriptors and pack colours was analysed. Four percent of the 1208 packs collected still included the terms "light" and "mild". Almost half the packs (42%) used a colour word (e.g. red, blue, gold) as a descriptor to indicate mildness or strength. A further 18% used other words that suggested mildness/strength (e.g. "subtle", "mellow"). A quarter of packs used a descriptor that did not connote either mildness or strength; however, the majority of these packs still appeared to be colour-coded. Although the words "light" and "mild" have been largely removed from tobacco packaging in the New Zealand market, these words have been replaced with associated colours or other words that may continue to communicate "reduced harm" messages to consumers. Further research to test how smokers interpret the new words and colours, and how these influence their behaviour, is desirable. However, government-mandated generic (plain) packaging would remove the opportunity to communicate misleading claims and so would afford the highest level of consumer protection.
Enabling Microliquid Chromatography by Microbead Packing of Microchannels
Balvin, Manuel; Zheng, Yun
2014-01-01
The microbead packing is the critical element required in the success of on-chip microfabrication of critical microfluidic components for in-situ analysis and detection of chiral amino acids. In order for microliquid chromatography to occur, there must be a stationary phase medium within the microchannel that interacts with the analytes present within flowing fluid. The stationary phase media are the microbeads packed by the process discussed in this work. The purpose of the microliquid chromatography is to provide a lightweight, low-volume, and low-power element to separate amino acids and their chiral partners efficiently to understand better the origin of life. In order to densely pack microbeads into the microchannels, a liquid slurry of microbeads was created. Microbeads were extracted from a commercially available high-performance liquid chromatography column. The silica beads extracted were 5 microns in diameter, and had surface coating of phenyl-hexyl. These microbeads were mixed with a 200- proof ethanol solution to create a microbead slurry with the right viscosity for packing. A microfilter is placed at the outlet via of the microchannel and the slurry is injected, then withdrawn across a filter using modified syringes. After each injection, the channel is flushed with ethanol to enhance packing. This cycle is repeated numerous times to allow for a tightly packed channel of microbeads. Typical microbead packing occurs in the macroscale into tubes or channels by using highly pressurized systems. Moreover, these channels are typically long and straight without any turns or curves. On the other hand, this method of microbead packing is completed within a microchannel 75 micrometers in diameter. Moreover, the microbead packing is completed into a serpentine type microchannel, such that it maximizes microchannel length within a microchip. Doing so enhances the interactions of the analytes with the microbeads to separate efficiently amino acids and amino acid
Scaling, crumpled wires, and genome packing in virions
de Holanda, V. H.; Gomes, M. A. F.
2016-12-01
The packing of a genome in virions is a topic of intense current interest in biology and biological physics. The area is dominated by allometric scaling relations that connect, e.g., the length of the encapsulated genome and the size of the corresponding virion capsid. Here we report scaling laws obtained from extensive experiments of packing of a macroscopic wire within rigid three-dimensional spherical and nonspherical cavities that can shed light on the details of the genome packing in virions. We show that these results obtained with crumpled wires are comparable to those from a large compilation of biological data from several classes of virions.
Multi-dimensional Bin Packing Problems with Guillotine Constraints
Amossen, Rasmus Resen; Pisinger, David
2010-01-01
parallel straight cuts that can recursively cut the bin into pieces so that each piece contains a box and no box has been intersected by a cut. The unrestricted problem is known to be NP-hard. In this paper we present a generalization of a constructive algorithm for the multi-dimensional bin packing......The problem addressed in this paper is the decision problem of determining if a set of multi-dimensional rectangular boxes can be orthogonally packed into a rectangular bin while satisfying the requirement that the packing should be guillotine cuttable. That is, there should exist a series of face...
Multi-dimensional Bin Packing Problems with Guillotine Constraints
Amossen, Rasmus Resen; Pisinger, David
2010-01-01
The problem addressed in this paper is the decision problem of determining if a set of multi-dimensional rectangular boxes can be orthogonally packed into a rectangular bin while satisfying the requirement that the packing should be guillotine cuttable. That is, there should exist a series of face...... parallel straight cuts that can recursively cut the bin into pieces so that each piece contains a box and no box has been intersected by a cut. The unrestricted problem is known to be NP-hard. In this paper we present a generalization of a constructive algorithm for the multi-dimensional bin packing...
Theory of amorphous packings of binary mixtures of hard spheres.
Biazzo, Indaco; Caltagirone, Francesco; Parisi, Giorgio; Zamponi, Francesco
2009-05-15
We extend our theory of amorphous packings of hard spheres to binary mixtures and more generally to multicomponent systems. The theory is based on the assumption that amorphous packings produced by typical experimental or numerical protocols can be identified with the infinite pressure limit of long-lived metastable glassy states. We test this assumption against numerical and experimental data and show that the theory correctly reproduces the variation with mixture composition of structural observables, such as the total packing fraction and the partial coordination numbers.
Mechanical stability of ordered droplet packings in microfluidic channels
Fleury, Jean-Baptiste; Claussen, Ohle; Herminghaus, Stephan; Brinkmann, Martin; Seemann, Ralf
2011-12-01
The mechanical response and stability of one and two-row packing of monodisperse emulsion droplets are studied in quasi 2d microchannels under longitudinal compression. Depending on the choice of parameter, a considered droplet arrangement is either transformed continuously into another packing under longitudinal compression or becomes mechanically unstable and segregates into domains of higher and lower packing fraction. Our experimental results are compared to analytical calculations for 2d-droplet arrangements with good quantitative agreement. This study also predicts important consequences for the stability of droplet arrangements in flowing systems.
QUALITY ASSESSMENT OF EGGS PACKED UNDER MODIFIED ATMOSPHERE
Aline Giampietro-Ganeco
2015-02-01
Full Text Available Eggs are perishable foods and lose quality quickly if not stored properly. From the moment of posture to the marketing of egg, quality loss occurs through gas exchange and water through the pores of the shell with the external environment and thus, studies involving modified atmosphere packaging are extremely important. The aim of the present study is to assess the internal quality of eggs packed under modified atmosphere and stored at room temperature. Six hundred and twelve fresh commercial eggs from 38-week old Hisex White laying hens were used. The present study was conducted in a completely randomized experimental design in a 4 x 4 + 1 factorial arrangement [vacuum, vacuum with oxygen gas (O2 absorbent, vacuum with oxygen gas (O2 and carbon dioxide (CO2 absorbents, vacuum with oxygen gas (O2 absorbent and carbon dioxide (CO2 gas generator; storage times (7, 14, 21 and 28 days, control group (fresh eggs], with three repetitions (12 eggs each. The following factors were assessed: weight maintenance during storage; Haugh unit; color and yolk index. The modified atmosphere packaging maintained the weight of the eggs during a period of 28 days. Vacuum packaging with O2 absorbent and CO2 gas generator was more efficient in maintenance of egg quality, based on the values of Haugh unit and yolk index. The luminosity of the yolk was preserved during the 28 storage days in all of the packaging types used. The vacuum packaging with O2 gas absorbent and CO2 gas generator provide an increase in internal egg quality.
Random Projection Trees Revisited
Dhesi, Aman
2010-01-01
The Random Projection Tree structures proposed in [Freund-Dasgupta STOC08] are space partitioning data structures that automatically adapt to various notions of intrinsic dimensionality of data. We prove new results for both the RPTreeMax and the RPTreeMean data structures. Our result for RPTreeMax gives a near-optimal bound on the number of levels required by this data structure to reduce the size of its cells by a factor $s \\geq 2$. We also prove a packing lemma for this data structure. Our final result shows that low-dimensional manifolds have bounded Local Covariance Dimension. As a consequence we show that RPTreeMean adapts to manifold dimension as well.
Ali Karbasfrushan
2014-10-01
Full Text Available Introduction: Nausea and vomiting after ear, nose and throat (ENT surgery is one of the most common and notable problems facing anesthesiologists in this area. This study was conducted to determine the effect of a pharyngeal pack on the severity of nausea, vomiting, and sore throat among patients after ear, pharynx, and throat surgeries. Materials and Methods: This randomized clinical study was performed in 140 patients (61 men and 79 women; age range, 20–40 years who had undergone nasal surgery in 2010. Patients were divided into two groups: the first group were treated using a pharyngeal pack (case group and the second group were managed without a pharyngeal pack (control group. Statistical analysis was performed using the Chi-square test and the Mann-Whitney U test. SPSS software was used for data analysis. Results: The mean severity of nausea and vomiting in the two groups was 2.057, 1.371 and 1.100, respectively, with no significant differences between groups. However, the mean severity of sore throat was 1.714 in the group with the pharyngeal pack and 1.385 in the group without pharyngeal pack (P=0.010. Conclusion: Not only does a pharyngeal pack in ENT surgery not reduce the extent and severity of nausea and vomiting, but it also increases the severity of sore throat in patients when leaving the recovery room and discharging hospital.
THE DIMENSIONS OF THE RANGE OF RANDOM WALKS IN TIME-RANDOM ENVIRONMENTS
无
2006-01-01
Suppose {Xn} is a random walk in time-random environment with state space Zd, |Xn| approaches infinity, then under some reasonable conditions of stability, the upper bound of the discrete Packing dimension of the range of {Xn} is any stability index α.Moreover, if the environment is stationary, a similar result for the lower bound of the discrete Hausdorff dimension is derived. Thus, the range is a fractal set for almost every environment.
Packing and viscosity of concentrated polydisperse coal-water slurries
Veytsman, B.; Morrison, J.; Scaroni, A.; Painter, P. [Pennsylvania State University, University Park, PA (United States). Energy Inst.
1998-09-01
The viscosity of polydisperse slurries close to the packing limit is discussed. It is shown that the divergence of the viscosity at the close packing limit causes the dependence of the slurry viscosity on loading to be universal. Ways of increasing the maximal loading of polydisperse slurries are described. A new theory of packing of powders based on a generalization of the Furnas telescopic tube method is proposed. Unlike the original Furnas model, this theory allows the calculation of the maximal packing for powders with an arbitrary size distribution of particles. The application of the theory to the problem of reducing the viscosity of coal-water slurries is discussed. 15 refs., 8 figs.
Most Americans Favor Larger Health Warnings on Cigarette Packs
... page: https://medlineplus.gov/news/fullstory_164398.html Most Americans Favor Larger Health Warnings on Cigarette Packs ... According to the study's first author, Sarah Kowitt, "Most adults, including smokers, have favorable attitudes towards larger ...
An effective evolutionary algorithm for the multiple container packing problem
Sang-Moon Soak; Sang-Wook Lee; Gi-Tae Yeo; Moon-Gu Jeon
2008-01-01
This paper focuses on a new optimization problem, which is called "The Multiple Container Packing Problem (MCPP)" and proposes a new evolutionary approach for it. The proposed evolutionary approach uses "Adaptive Link Adjustment Evolutionary Algorithm (ALA-EA)" as a basic framework and it incorporates a heuristic local improvement approach into ALA-EA. The first step of the local search algorithm is to raise empty space through the exchange among the packed items and then to improve the fitness value through packing unpacked items into the raised empty space. The second step is to exchange the packed items and the unpacked items one another toward improving the fitness value. The proposed algorithm is compared to the previous evolutionary approaches at the benchmark instances (with the same container capacity) and the modified benchmark instances (with different container capacity) and that the algorithm is proved to be superior to the previous evolutionary approaches in the solution quality.
Excise Tax Rates On Packs Of Cigarettes PDF Slides
U.S. Department of Health & Human Services — Download the current excise tax rates on packs of cigarettes slides. These slides are available in PDF and PowerPoint formats. The PowerPoint version can be found...
Solving Packing Problems by a Distributed Global Optimization Algorithm
Nian-Ze Hu
2012-01-01
Full Text Available Packing optimization problems aim to seek the best way of placing a given set of rectangular boxes within a minimum volume rectangular box. Current packing optimization methods either find it difficult to obtain an optimal solution or require too many extra 0-1 variables in the solution process. This study develops a novel method to convert the nonlinear objective function in a packing program into an increasing function with single variable and two fixed parameters. The original packing program then becomes a linear program promising to obtain a global optimum. Such a linear program is decomposed into several subproblems by specifying various parameter values, which is solvable simultaneously by a distributed computation algorithm. A reference solution obtained by applying a genetic algorithm is used as an upper bound of the optimal solution, used to reduce the entire search region.
A Breakthrough in Sphere Packing: The Search for Magic Functions
Laat, D. de; Vallentin, F.
2016-01-01
This paper by David de Laat and Frank Vallentin is an exposition about the two recent breakthrough results in the theory of sphere packings. It includes an interview with Henry Cohn, Abhinav Kumar, Stephen D. Miller and Maryna Viazovska.
Preparation and characterization of hexagonal close-packed Ni nanoparticles
2008-01-01
Hexagonal close-packed Ni nanoparticles were synthesized using a heat-treating technique with the precursors prepared by the sol-gel method.The synthesis condition,structure,and morphology of the samples were characterized and analysed by thermogravimetric analysis (TG),differential thermal analysis (DTA),X-ray diffraction (XRD) and transmission electron microscopy (TEM).Results indicate that the hexagonal close packed Ni nanoparticles were synthesized at a heat-treating temperature of 300℃.The cell constants are calculated at a=0.2652 nm and c=0.4334 nm.The average grain size of the hexagonal close-packed Ni particles evaluated by Scherrer equation is about 12 nm.The phase transformation from a hexagonal close-packed Ni to a face-centered cubic Ni structure occurred when the heat-treating temperature was increased.
GUO TieXin; CHEN XinXiang
2009-01-01
The purpose of this paper is to provide a random duality theory for the further development of the theory of random conjugate spaces for random normed modules.First,the complicated stratification structure of a module over the algebra L(μ,K) frequently makes our investigations into random duality theory considerably different from the corresponding ones into classical duality theory,thus in this paper we have to first begin in overcoming several substantial obstacles to the study of stratification structure on random locally convex modules.Then,we give the representation theorem of weakly continuous canonical module homomorphisms,the theorem of existence of random Mackey structure,and the random bipolar theorem with respect to a regular random duality pair together with some important random compatible invariants.
无
2009-01-01
The purpose of this paper is to provide a random duality theory for the further development of the theory of random conjugate spaces for random normed modules. First, the complicated stratification structure of a module over the algebra L(μ, K) frequently makes our investigations into random duality theory considerably difierent from the corresponding ones into classical duality theory, thus in this paper we have to first begin in overcoming several substantial obstacles to the study of stratification structure on random locally convex modules. Then, we give the representation theorem of weakly continuous canonical module homomorphisms, the theorem of existence of random Mackey structure, and the random bipolar theorem with respect to a regular random duality pair together with some important random compatible invariants.
[Promising technologies of packed red blood cells production and storage].
Maksimov, A G; Golota, A S; Krassiĭ, A B
2013-10-01
The current article is dedicated to promising technologies of packed red blood cells production and storage. The following new technical approaches are presented: (1) erythrocytes storage in strict anaerobic argon-hydrogen environment, (2) lyophilization of erythrocyte suspension by its atomization in nitrogen gas, (3) lyophilization of erythrocytes by directional freezing under the influence of radio frequency radiation, (4) automated pharming of antigen free packed red blood cells from progenitor cell directly at the battlefield.
Preparation of Zirconia Based Packing Material and Its Evaluation
无
2001-01-01
A new reversed-phase packing (C18-PBD-ZrO2) was prepared by depositing and cross-linking 1-octadecene (ODE or C18) and polybutadiene (PBD) onto the surface of porous zirconia microspheres (5～10 mm in diameter) which were synthesized by a sol-gel process. These novel column packings possess high mechanical and chemical stability,wider usable pH range and can be used to separate basic compounds with no observable peak tailing.
Shock-Induced Flows through Packed Beds: Transient Regimes
Shtemler, Yuri M; Britan, Alex
2006-01-01
The early stage of the transient regimes in the shock-induced flows within solid-packed beds are investigated in the linear longwave and high-frequency approximation. The transient resistance law is refined as the Duhameltime integral that follows from the general concept of dynamic tortuosity and compressibility of the packed beds. A closed-form solution is expected to describe accurately the early stage of the transient regime flow and is in qualitative agreement with available experimental data.
Mathematical model partitioning and packing for parallel computer calculation
Arpasi, Dale J.; Milner, Edward J.
1986-01-01
This paper deals with the development of multiprocessor simulations from a serial set of ordinary differential equations describing a physical system. The identification of computational parallelism within the model equations is discussed. A technique is presented for identifying this parallelism and for partitioning the equations for parallel solution on a multiprocessor. Next, an algorithm which packs the equations into a minimum number of processors is described. The results of applying the packing algorithm to a turboshaft engine model are presented.
А heuristic algorithm for two-dimensional strip packing problem
Dayong, Cao; Kotov, V.M.
2011-01-01
In this paper, we construct an improved best-fit heuristic algorithm for two-dimensional rectangular strip packing problem (2D-RSPP), and compare it with some heuristic and metaheuristic algorithms from literatures. The experimental results show that BFBCC could produce satisfied packing layouts than these methods, especially for the large problem of 50 items or more, BFBCC could get better results in shorter time.
EXPERIMENTAL STUDY OF A ROTATING PACKED BED DISTILLATION COLUMN
Nascimento, JVS; Ravagnani, TMK; Pereira, JAFR
2009-01-01
The purpose of this work was to study the mass transfer performance of rotating packed beds applying the "Higee" process. The operations were carried out with the n-hexane/n-heptane distilling system at atmospheric pressure and under total reflux conditions. The rotating speed could be varied between 300 and 2500 rpm, which provided centrifugal forces from 5 to 316 times the Earth's gravity. The effects of concentration, vapor velocity, rotating speed and packing type (two different Raschig r...
Experimental study of a rotating packed bed distillation column
Nascimento,J. V. S.; Ravagnani,T. M. K.; Pereira,J. A. F. R.
2009-01-01
The purpose of this work was to study the mass transfer performance of rotating packed beds applying the "Higee" process. The operations were carried out with the n-hexane/n-heptane distilling system at atmospheric pressure and under total reflux conditions. The rotating speed could be varied between 300 and 2500 rpm, which provided centrifugal forces from 5 to 316 times the Earth's gravity. The effects of concentration, vapor velocity, rotating speed and packing type (two different Raschig r...
Packing in endoscopic sinus surgery: is it really required?
Eliashar, Ron; Gross, Menachem; Wohlgelernter, Jay; Sichel, Jean-Yves
2006-02-01
The aim of this study was to evaluate the routine use of packing or local hemostatic agents in endoscopic sinus surgery (ESS). Packing and/or hemostatic agents were used only when necessary in 100 consecutive adult ESS patients in a tertiary academic hospital. Necessity for packing the nose after excessive bleeding was analyzed in relation to demographic characteristics, medical history, previous surgeries, current surgical procedure, type of anesthesia, and amount of intraoperative bleeding. Three patients who required packing because of other reasons (such as bolstering of mucosa) were excluded from the study. The remaining 97 patients included 61 males and 36 females between the ages of 16 to 86 (mean 44). Forty-nine patients underwent only ESS, 40 ESSs associated with nasal polypectomy, and 8 underwent other endoscopic procedures. Fifty-four underwent the operation under general anesthesia and 43 under local anesthesia. Intraoperative blood loss was less than 30 mL in 82 patients (85%), 30 to 50 mL in 11 (11%), and more than 50 mL in 4 (4%). In 89 patients (92%), packing or a hemostatic agent was not used. No patient had bleeding complications postoperatively. A comparison between patients who required packing to those who did not showed that the only statistically significant associations related to general anesthesia (P = 0.0082) and to the amount of intraoperative bleeding (P postoperative complications, and cost of surgery.
Automating the packing heuristic design process with genetic programming.
Burke, Edmund K; Hyde, Matthew R; Kendall, Graham; Woodward, John
2012-01-01
The literature shows that one-, two-, and three-dimensional bin packing and knapsack packing are difficult problems in operational research. Many techniques, including exact, heuristic, and metaheuristic approaches, have been investigated to solve these problems and it is often not clear which method to use when presented with a new instance. This paper presents an approach which is motivated by the goal of building computer systems which can design heuristic methods. The overall aim is to explore the possibilities for automating the heuristic design process. We present a genetic programming system to automatically generate a good quality heuristic for each instance. It is not necessary to change the methodology depending on the problem type (one-, two-, or three-dimensional knapsack and bin packing problems), and it therefore has a level of generality unmatched by other systems in the literature. We carry out an extensive suite of experiments and compare with the best human designed heuristics in the literature. Note that our heuristic design methodology uses the same parameters for all the experiments. The contribution of this paper is to present a more general packing methodology than those currently available, and to show that, by using this methodology, it is possible for a computer system to design heuristics which are competitive with the human designed heuristics from the literature. This represents the first packing algorithm in the literature able to claim human competitive results in such a wide variety of packing domains.
Dense packing properties of mineral admixtures in cementitious material
Yanzhou Peng; Shuguang Hu; Qingjun Ding
2009-01-01
The effect of ultra-fine fly ash (UFFA), steel slag (SS) and silica fume (SF) on packing density of binary, ternary and quaternary cementitious materials was studied in this paper in terms of minimum water requirement of cement. The influence of mineral admixtures on the relative density of pastes with low water/binder ratios was analyzed and the relationship between paste density and compressive strength of the corresponding hardened mortars was discussed. The results indicate that the incorporation of mineral admixtures can effectively improve the packing density of cementitious materials; the increase in packing density of a composite with incorporation of two or three kinds of mineral admixtures is even more obvious than that with only one mineral admixture. Moreover, an optimal amount of mineral admixture imparts to the mixture maximum packing density. The dense packing effect of a mineral admixture can increase the packing density of the resulting cementitious material and also the density of paste with low water/binder ratio, which evidently enhances the compressive strength of the hardened mortar.
TYMPANOPLASTY: BLOOD-SOAKED GELFOAM VERSES ANTIBIOTIC-SOAKED GELFOAM AS EAR CANAL PACKING
Gaurav Khandelwal
2016-07-01
Full Text Available OBJECTIVE The objective of our study is to compare the result of blood-soaked gelfoam with antibiotic-soaked gelfoam on graft stickiness in tympanoplasty. STUDY DESIGN A prospective randomized case control study was performed to compare the outcome of our patient who underwent surgery by using blood-soaked gelfoam and gelfoam soaked in antibiotic ear drops. METHOD Patients having central perforation were divided into two groups using random tables. After complete investigations, they underwent tympanoplasty. Temporalis fascia graft was used and placed by underlay technique. Middle ear was not packed with gelfoam. After placing the graft, gelfoam was placed around the freshened perforation margins to hold the graft. These gelfoam pieces were either antibiotic soaked or fresh blood soaked. RESULT A total of 55 patients were enrolled in the study. Graft stickiness at 4 week was 93.10% for blood-soaked group, whereas it was 84.81% for antibiotic-soaked group. Total success rate at 6 months was 94.5%. CONCLUSION Blood-soaked gelfoam packing of external meatus around the perforation margins gives good results in tympanoplasty.
Chishko, K. A.; Antsygina, T. N.; Poltavskaya, M. I.
2017-01-01
We apply the model of a crystalline polytype built of close-packed 2D monoatomic basal planes with triangular lattice to interpret the anomalous thermodynamical and mechanical properties of solid hexagonal close-packed (HCP) ^4{He} . The polytype is a 3D stack of the basal planes, and its structure can be built from the simplest periodic packing (HCP, FCC, 4H, 5H, 6R, ldots etc.) up to random stacking fault system (RSFS) totally aperiodic in only c-direction perpendicular to the basal planes. RSFS is a crystal without microscopic translation symmetry along c-axis, i.e., entirely disordered in only one spatial direction. Despite of packing disorder, c-direction remains the crystallographic axis of third order at arbitrary sequence of the 2D plates in the whole stack. In a long-wave limit the HCP polytype can be treated as 3D anisotropic continuum, as a result its phonon spectrum and Helmholtz free energy have been calculated. The temperature dependence of the phonon pressure is calculated theoretically and compared with experimental data. A quantitative agreement between the theory and the experiment is achieved. Mechanical properties of ^4{He} crystals in the framework of the polytype model are briefly discussed.