Diffuse spreading of inhomogeneities in the ionospheric dusty plasma
Energy Technology Data Exchange (ETDEWEB)
Shalimov, S. L., E-mail: pmsk7@mail.ru [Russian Academy of Sciences, Schmidt Institute of Physics of the Earth (Russian Federation); Kozlovsky, A. [Sodankylä Geophysical Observatory (Finland)
2015-08-15
According to results of sounding of the lower ionosphere at altitudes of about 100 km, the duration of radio reflections from sufficiently dense ionized meteor trails, which characterizes their lifetime, can reach a few tens of seconds to several tens of minutes. This is much longer than the characteristic spreading time (on the order of fractions of a second to several seconds) typical in meteor radar measurements. The presence of dust in the lower ionosphere is shown to affect the ambipolar diffusion coefficient, which determines the spreading of plasma inhomogeneities. It is found that the diffusion coefficient depends substantially on the charge and size of dust grains, which allows one to explain the results of ionospheric sounding.
Striation formation associated with barium clouds in an inhomogeneous ionosphere
International Nuclear Information System (INIS)
Goldman, S.R.; Baker, L.; Ossakow, S.L.; Scannapieco, A.J.
1976-01-01
The present study investigates, via linear theory, how striations (treated as perturbations) created in a plasma cloud centered at 200 km will penetrate into the background inhomogeneous (real) ionosphere as a function of wavelength, integrated Pedersen conductivity ratio of the cloud to ionosphere (Σ/sub p/ /sub b//Σ/sub p/ /sub i/), and ambient ionospheric conditions. The study is posed as an eigenvalue problem which, while determining the potential variation (eigenmode) along magnetic field lines, self-consistently solves for the growth rate (eigenvalue) in the coupled cloud-inhomogeneous ionosphere system. Perturbed particle densities, fluxes parallel to the magnetic field B, and electrostatic potential are presented as a function of altitude. The results show the importance of the transport parameter the magnitude of imaging and aspect angle of striations with respect to B (i.e., striations take on a parallel component of wave number). Our results show that clouds with smaller conductivity ratios produce image striations further down into the background E region ionosphere with a more uniform coupling as a function of wavelength. It is further shown that there is a slight dependence of the E region coupling of the perturbations on the level of solar activity (solar maximum or minimum conditions) and also that this E region coupling shows a slight dependence on the extent of F region coupling above the cloud. Finally, with a fully self-consistent treatment of F region coupling, the growth rates show negligible short-wavelength damping due to ionospheric coupling for the Σ/sub p/ /sub b//Σ/sub p/ /sub i/=4 case
Critical behavior in inhomogeneous random graphs
Hofstad, van der R.W.
2013-01-01
We study the critical behavior of inhomogeneous random graphs in the so-called rank-1 case, where edges are present independently but with unequal edge occupation probabilities. The edge occupation probabilities are moderated by vertex weights, and are such that the degree of vertex i is close in
Critical behavior in inhomogeneous random graphs
Hofstad, van der R.W.
2009-01-01
We study the critical behavior of inhomogeneous random graphs where edges are present independently but with unequal edge occupation probabilities. We show that the critical behavior depends sensitively on the properties of the asymptotic degrees. Indeed, when the proportion of vertices with degree
Cliques in dense inhomogenous random graphs
Czech Academy of Sciences Publication Activity Database
Doležal, Martin; Hladký, Jan; Máthé, A.
2017-01-01
Roč. 51, č. 2 (2017), s. 275-314 ISSN 1042-9832 R&D Projects: GA ČR GA16-07378S EU Projects: European Commission(XE) 628974 - PAECIDM Institutional support: RVO:67985840 Keywords : inhomogeneous random graphs * clique number Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.243, year: 2016 http://onlinelibrary.wiley.com/doi/10.1002/ rsa .20715/abstract
Cliques in dense inhomogenous random graphs
Czech Academy of Sciences Publication Activity Database
Doležal, Martin; Hladký, Jan; Máthé, A.
2017-01-01
Roč. 51, č. 2 (2017), s. 275-314 ISSN 1042-9832 R&D Projects: GA ČR GA16-07378S EU Projects: European Commission(XE) 628974 - PAECIDM Institutional support: RVO:67985840 Keywords : inhomogeneous random graphs * clique number Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.243, year: 2016 http://onlinelibrary.wiley.com/doi/10.1002/rsa.20715/abstract
Excitation of planetary electromagnetic waves in the inhomogeneous ionosphere
Directory of Open Access Journals (Sweden)
Yu. Rapoport
2014-04-01
Full Text Available In this paper we develop a new method for the analysis of excitation and propagation of planetary electromagnetic waves (PEMW in the ionosphere of the Earth. The nonlinear system of equations for PEMW, valid for any height, from D to F regions, including intermediate altitudes between D and E and between E and F regions, is derived. In particular, we have found the system of nonlinear one-fluid MHD equations in the β-plane approximation valid for the ionospheric F region (Aburjania et al., 2003a, 2005. The series expansion in a "small" (relative to the local geomagnetic field non-stationary magnetic field has been applied only at the last step of the derivation of the equations. The small mechanical vertical displacement of the media is taken into account. We have shown that obtained equations can be reduced to the well-known system with Larichev–Reznik vortex solution in the equatorial region (see e.g. Aburjania et al., 2002. The excitation of planetary electromagnetic waves by different initial perturbations has been investigated numerically. Some means for the PEMW detection and data processing are discussed.
Studies of small-scale plasma inhomogeneities in the cusp ionosphere using sounding rocket data
Chernyshov, Alexander A.; Spicher, Andres; Ilyasov, Askar A.; Miloch, Wojciech J.; Clausen, Lasse B. N.; Saito, Yoshifumi; Jin, Yaqi; Moen, Jøran I.
2018-04-01
Microprocesses associated with plasma inhomogeneities are studied on the basis of data from the Investigation of Cusp Irregularities (ICI-3) sounding rocket. The ICI-3 rocket is devoted to investigating a reverse flow event in the cusp F region ionosphere. By numerical stability analysis, it is demonstrated that inhomogeneous-energy-density-driven (IEDD) instability can be a mechanism for the excitation of small-scale plasma inhomogeneities. The Local Intermittency Measure (LIM) method also applied the rocket data to analyze irregular structures of the electric field during rocket flight in the cusp. A qualitative agreement between high values of the growth rates of the IEDD instability and the regions with enhanced LIM is observed. This suggests that IEDD instability is connected to turbulent non-Gaussian processes.
International Nuclear Information System (INIS)
Bogolyobov, A.A.; Erukhimov, L.M.; Kryazhev, V.A.; Myasnikov, E.N.
1985-01-01
The authors show how it is possible to determine the shapes of inhomogeneities by using a method of correlation analysis of the fluctuations in signals from orbiting satellites. The authors show that when this method is used, the finite thickness of the layer containing the inhomogeneity must be taken into accout. It is established that the inhomogeneities in the auroral ionosphere which are responsible for the amplitude fluctuations in the signals are extended along the lines of force of the geomagnetic field and that they have a shape which is close to being axially symmetric in the plane orthogonal to the geomagnetic field and that the fluctuations in the signals may be concentrated in localized regions
Cluster tails for critical power-law inhomogeneous random graphs
van der Hofstad, R.; Kliem, S.; van Leeuwaarden, J.S.H.
2018-01-01
Recently, the scaling limit of cluster sizes for critical inhomogeneous random graphs of rank-1 type having finite variance but infinite third moment degrees was obtained in Bhamidi et al. (Ann Probab 40:2299–2361, 2012). It was proved that when the degrees obey a power law with exponent τ∈ (3 , 4)
Random field assessment of nanoscopic inhomogeneity of bone.
Dong, X Neil; Luo, Qing; Sparkman, Daniel M; Millwater, Harry R; Wang, Xiaodu
2010-12-01
Bone quality is significantly correlated with the inhomogeneous distribution of material and ultrastructural properties (e.g., modulus and mineralization) of the tissue. Current techniques for quantifying inhomogeneity consist of descriptive statistics such as mean, standard deviation and coefficient of variation. However, these parameters do not describe the spatial variations of bone properties. The objective of this study was to develop a novel statistical method to characterize and quantitatively describe the spatial variation of bone properties at ultrastructural levels. To do so, a random field defined by an exponential covariance function was used to represent the spatial uncertainty of elastic modulus by delineating the correlation of the modulus at different locations in bone lamellae. The correlation length, a characteristic parameter of the covariance function, was employed to estimate the fluctuation of the elastic modulus in the random field. Using this approach, two distribution maps of the elastic modulus within bone lamellae were generated using simulation and compared with those obtained experimentally by a combination of atomic force microscopy and nanoindentation techniques. The simulation-generated maps of elastic modulus were in close agreement with the experimental ones, thus validating the random field approach in defining the inhomogeneity of elastic modulus in lamellae of bone. Indeed, generation of such random fields will facilitate multi-scale modeling of bone in more pragmatic details. Copyright © 2010 Elsevier Inc. All rights reserved.
Cluster Tails for Critical Power-Law Inhomogeneous Random Graphs
van der Hofstad, Remco; Kliem, Sandra; van Leeuwaarden, Johan S. H.
2018-04-01
Recently, the scaling limit of cluster sizes for critical inhomogeneous random graphs of rank-1 type having finite variance but infinite third moment degrees was obtained in Bhamidi et al. (Ann Probab 40:2299-2361, 2012). It was proved that when the degrees obey a power law with exponent τ \\in (3,4), the sequence of clusters ordered in decreasing size and multiplied through by n^{-(τ -2)/(τ -1)} converges as n→ ∞ to a sequence of decreasing non-degenerate random variables. Here, we study the tails of the limit of the rescaled largest cluster, i.e., the probability that the scaling limit of the largest cluster takes a large value u, as a function of u. This extends a related result of Pittel (J Combin Theory Ser B 82(2):237-269, 2001) for the Erdős-Rényi random graph to the setting of rank-1 inhomogeneous random graphs with infinite third moment degrees. We make use of delicate large deviations and weak convergence arguments.
Roerdink, J.B.T.M.; Shuler, K.E.
1985-01-01
The previously developed formalism for the calculation of asymptotic properties of multistate random walks is used to study random walks on several inhomogeneous periodic lattices, where the periodically repeated unit cell contains a number of inequivalent sites, as well as on lattices with a random
Percolation for a model of statistically inhomogeneous random media
International Nuclear Information System (INIS)
Quintanilla, J.; Torquato, S.
1999-01-01
We study clustering and percolation phenomena for a model of statistically inhomogeneous two-phase random media, including functionally graded materials. This model consists of inhomogeneous fully penetrable (Poisson distributed) disks and can be constructed for any specified variation of volume fraction. We quantify the transition zone in the model, defined by the frontier of the cluster of disks which are connected to the disk-covered portion of the model, by defining the coastline function and correlation functions for the coastline. We find that the behavior of these functions becomes largely independent of the specific choice of grade in volume fraction as the separation of length scales becomes large. We also show that the correlation function behaves in a manner similar to that of fractal Brownian motion. Finally, we study fractal characteristics of the frontier itself and compare to similar properties for two-dimensional percolation on a lattice. In particular, we show that the average location of the frontier appears to be related to the percolation threshold for homogeneous fully penetrable disks. copyright 1999 American Institute of Physics
International Nuclear Information System (INIS)
Platov, Yu.V.; Vanyarkha, N.Ya.; Vanyarkha, E.S.
1989-01-01
Shape of brightness vertical profile for the ionospheric emission layers, observed near the night horizon from space vehicles, depends essentially on structure of luminescence regions. Brightness profiles, obtained from photometry of the first emission layer photons at ∼ 100 km heights, are compared with calculated ones for model distribution of the excited atom concentration to determine typical dimensions of heterogeneities. Luminescence region in the used model was represented by symmetric spot with concentration exponentially decreasing in horizontal direction and with vertical distribution of concentration characterized by rather abrupt maximum at ∼ 10 km height
Random field assessment of nanoscopic inhomogeneity of bone
Dong, X. Neil; Luo, Qing; Sparkman, Daniel M.; Millwater, Harry R.; Wang, Xiaodu
2010-01-01
Bone quality is significantly correlated with the inhomogeneous distribution of material and ultrastructural properties (e.g., modulus and mineralization) of the tissue. Current techniques for quantifying inhomogeneity consist of descriptive statistics such as mean, standard deviation and coefficient of variation. However, these parameters do not describe the spatial variations of bone properties. The objective of this study was to develop a novel statistical method to characterize and quanti...
Energy Technology Data Exchange (ETDEWEB)
Taieb, C [Centre National d' Etudes des Telecommunications (CNET), 92 - Issy-les-Moulineaux (France)
1977-11-01
This paper comprises four parts. The first one deals with the neutral atmosphere, its structure, its composition, its variations. The second one describes the ionospheric plasma, (the ionized part) and explains its formation. The influence of the geomagnetic field is discussed in the third chapter, the fourth one being concerned with the means of studying the ionosphere: ionograms obtained by ionosondes or incoherent scattering sounding or from satellite measurements.
Takahashi, T.; Obana, K.; Yamamoto, Y.; Nakanishi, A.; Kaiho, Y.; Kodaira, S.; Kaneda, Y.
2012-12-01
The Nankai trough in southwestern Japan is a convergent margin where the Philippine sea plate is subducted beneath the Eurasian plate. There are major faults segments of huge earthquakes that are called Tokai, Tonankai and Nankai earthquakes. According to the earthquake occurrence history over the past hundreds years, we must expect various rupture patters such as simultaneous or nearly continuous ruptures of plural fault segments. Japan Agency for Marine-Earth Science and Technology (JAMSTEC) conducted seismic surveys at Nankai trough in order to clarify mutual relations between seismic structures and fault segments, as a part of "Research concerning Interaction Between the Tokai, Tonankai and Nankai Earthquakes" funded by Ministry of Education, Culture, Sports, Science and Technology, Japan. This study evaluated the spatial distribution of random velocity inhomogeneities from Hyuga-nada to Kii-channel by using velocity seismograms of small and moderate sized earthquakes. Random velocity inhomogeneities are estimated by the peak delay time analysis of S-wave envelopes (e.g., Takahashi et al. 2009). Peak delay time is defined as the time lag from the S-wave onset to its maximal amplitude arrival. This quantity mainly reflects the accumulated multiple forward scattering effect due to random inhomogeneities, and is quite insensitive to the inelastic attenuation. Peak delay times are measured from the rms envelopes of horizontal components at 4-8Hz, 8-16Hz and 16-32Hz. This study used the velocity seismograms that are recorded by 495 ocean bottom seismographs and 378 onshore seismic stations. Onshore stations are composed of the F-net and Hi-net stations that are maintained by National Research Institute for Earth Science and Disaster Prevention (NIED) of Japan. It is assumed that the random inhomogeneities are represented by the von Karman type PSDF. Preliminary result of inversion analysis shows that spectral gradient of PSDF (i.e., scale dependence of
Roerdink, J.B.T.M.
1981-01-01
The cumulant expansion for linear stochastic differential equations is extended to the general case in which the coefficient matrix, the inhomogeneous part and the initial condition are all random and, moreover, statistically interdependent. The expansion now involves not only the autocorrelation
Scattering of electromagnetic wave by the layer with one-dimensional random inhomogeneities
Kogan, Lev; Zaboronkova, Tatiana; Grigoriev, Gennadii., IV.
A great deal of attention has been paid to the study of probability characteristics of electro-magnetic waves scattered by one-dimensional fluctuations of medium dielectric permittivity. However, the problem of a determination of a density of a probability and average intensity of the field inside the stochastically inhomogeneous medium with arbitrary extension of fluc-tuations has not been considered yet. It is the purpose of the present report to find and to analyze the indicated functions for the plane electromagnetic wave scattered by the layer with one-dimensional fluctuations of permittivity. We assumed that the length and the amplitude of individual fluctuations as well the interval between them are random quantities. All of indi-cated fluctuation parameters are supposed as independent random values possessing Gaussian distribution. We considered the stationary time cases both small-scale and large-scale rarefied inhomogeneities. Mathematically such problem can be reduced to the solution of integral Fred-holm equation of second kind for Hertz potential (U). Using the decomposition of the field into the series of multiply scattered waves we obtained the expression for a probability density of the field of the plane wave and determined the moments of the scattered field. We have shown that all odd moments of the centered field (U-¡U¿) are equal to zero and the even moments depend on the intensity. It was obtained that the probability density of the field possesses the Gaussian distribution. The average field is small compared with the standard fluctuation of scattered field for all considered cases of inhomogeneities. The value of average intensity of the field is an order of a standard of fluctuations of field intensity and drops with increases the inhomogeneities length in the case of small-scale inhomogeneities. The behavior of average intensity is more complicated in the case of large-scale medium inhomogeneities. The value of average intensity is the
International Nuclear Information System (INIS)
Ryutova, M.
1990-08-01
Effects of strong and random inhomogeneities of the magnetic fields, plasma density, and temperature in the solar atmosphere on the properties of magnetoacoustic waves of arbitrary amplitudes are studied. The procedure which allows one to obtain the averaged equation containing the nonlinearity of a wave, dispersion properties of a system, and dissipative effects is described. It is shown that depending on the statistical properties of the medium, different scenarios of wave propagation arise: in the predominance of dissipative effects the primary wave is damped away in the linear stage and the efficiency of heating due to inhomogeneities is much greater than that in homogeneous medium. Depending on the interplay of nonlinear and dispersion effects, the process of heating can be afforded through the formation of shocks or through the storing of energy in a system of solitons which are later damped away. Our computer simulation supports and extends the above theoretical investigations. In particular the enhanced dissipation of waves due to the strong and random inhomogeneities is observed and this is more pronounced for shorter waves
International Nuclear Information System (INIS)
Sanpera, A.; Lewenstein, M.; Kantian, A.; Sanchez-Palencia, L.; Zakrzewski, J.
2004-01-01
We investigate strongly interacting atomic Fermi-Bose mixtures in inhomogeneous and random optical lattices. We derive an effective Hamiltonian for the system and discuss its low temperature physics. We demonstrate the possibility of controlling the interactions at local level in inhomogeneous but regular lattices. Such a control leads to the achievement of Fermi glass, quantum Fermi spin-glass, and quantum percolation regimes involving bare and/or composite fermions in random lattices
Nonlinear and diffraction effects in propagation of N-waves in randomly inhomogeneous moving media.
Averiyanov, Mikhail; Blanc-Benon, Philippe; Cleveland, Robin O; Khokhlova, Vera
2011-04-01
Finite amplitude acoustic wave propagation through atmospheric turbulence is modeled using a Khokhlov-Zabolotskaya-Kuznetsov (KZK)-type equation. The equation accounts for the combined effects of nonlinearity, diffraction, absorption, and vectorial inhomogeneities of the medium. A numerical algorithm is developed which uses a shock capturing scheme to reduce the number of temporal grid points. The inhomogeneous medium is modeled using random Fourier modes technique. Propagation of N-waves through the medium produces regions of focusing and defocusing that is consistent with geometrical ray theory. However, differences up to ten wavelengths are observed in the locations of fist foci. Nonlinear effects are shown to enhance local focusing, increase the maximum peak pressure (up to 60%), and decrease the shock rise time (about 30 times). Although the peak pressure increases and the rise time decreases in focal regions, statistical analysis across the entire wavefront at a distance 120 wavelengths from the source indicates that turbulence: decreases the mean time-of-flight by 15% of a pulse duration, decreases the mean peak pressure by 6%, and increases the mean rise time by almost 100%. The peak pressure and the arrival time are primarily governed by large scale inhomogeneities, while the rise time is also sensitive to small scales.
Inverse random source scattering for the Helmholtz equation in inhomogeneous media
Li, Ming; Chen, Chuchu; Li, Peijun
2018-01-01
This paper is concerned with an inverse random source scattering problem in an inhomogeneous background medium. The wave propagation is modeled by the stochastic Helmholtz equation with the source driven by additive white noise. The goal is to reconstruct the statistical properties of the random source such as the mean and variance from the boundary measurement of the radiated random wave field at multiple frequencies. Both the direct and inverse problems are considered. We show that the direct problem has a unique mild solution by a constructive proof. For the inverse problem, we derive Fredholm integral equations, which connect the boundary measurement of the radiated wave field with the unknown source function. A regularized block Kaczmarz method is developed to solve the ill-posed integral equations. Numerical experiments are included to demonstrate the effectiveness of the proposed method.
Parametric interaction of waves in the plasma with random large-scale inhomogeneities
International Nuclear Information System (INIS)
Abramovich, B.S.; Tamojkin, V.V.
1980-01-01
Parametric processes of the decay and fusion of three waves in a weakly turbulent plasma with random inhomogeneities, the size of which is too big as compared with wave-lengths are considered. Under the diffusive approximation applicability closed equations are obtained, which determine the behaviour of all the intensity moments of parametrically bound waves. It is shown that under the conditions when the characteristic length of the multiple scattering is considerably less than the nonlinear interaction, length the effective increment of average intensity increase and its moments at dissociation processes is too small as compared with the homogeneous plasma case. At fusion processes the same increment (decrement) determines the distance at which all intensity moments are in the saturation regime
Baumgarten, Daniel; Eichardt, Roland; Crevecoeur, Guillaume; Supriyanto, Eko; Haueisen, Jens
2013-01-01
Biomedical applications of magnetic nanoparticles require a precise knowledge of their biodistribution. From multi-channel magnetorelaxometry measurements, this distribution can be determined by means of inverse methods. It was recently shown that the combination of sequential inhomogeneous excitation fields in these measurements is favorable regarding the reconstruction accuracy when compared to homogeneous activation . In this paper, approaches for the determination of activation sequences for these measurements are investigated. Therefor, consecutive activation of single coils, random activation patterns and families of m-sequences are examined in computer simulations involving a sample measurement setup and compared with respect to the relative condition number of the system matrix. We obtain that the values of this condition number decrease with larger number of measurement samples for all approaches. Random sequences and m-sequences reveal similar results with a significant reduction of the required number of samples. We conclude that the application of pseudo-random sequences for sequential activation in the magnetorelaxometry imaging of magnetic nanoparticles considerably reduces the number of required sequences while preserving the relevant measurement information.
International Nuclear Information System (INIS)
Lorenzana, J.; Grynberg, M.D.; Yu, L.; Yonemitsu, K.; Bishop, A.R.
1992-11-01
The ground state energy, and static and dynamic correlation functions are investigated in the inhomogeneous Hartree-Fock (HF) plus random phase approximation (RPA) approach applied to a one-dimensional spinless fermion model showing self-trapped doping states at the mean field level. Results are compared with homogeneous HF and exact diagonalization. RPA fluctuations added to the generally inhomogeneous HF ground state allows the computation of dynamical correlation functions that compare well with exact diagonalization results. The RPA correction to the ground state energy agrees well with the exact results at strong and weak coupling limits. We also compare it with a related quasi-boson approach. The instability towards self-trapped behaviour is signaled by a RPA mode with frequency approaching zero. (author). 21 refs, 10 figs
Frydel, Derek; Ma, Manman
2016-06-01
Using the adiabatic connection, we formulate the free energy in terms of the correlation function of a fictitious system, h_{λ}(r,r^{'}), in which interactions λu(r,r^{'}) are gradually switched on as λ changes from 0 to 1. The function h_{λ}(r,r^{'}) is then obtained from the inhomogeneous Ornstein-Zernike equation and the two equations constitute a general liquid-state framework for treating inhomogeneous fluids. The two equations do not yet constitute a closed set. In the present work we use the closure c_{λ}(r,r^{'})≈-λβu(r,r^{'}), known as the random-phase approximation (RPA). We demonstrate that the RPA is identical with the variational Gaussian approximation derived within the field-theoretical framework, originally derived and used for charged particles. We apply our generalized RPA approximation to the Gaussian core model and Coulomb charges.
International Nuclear Information System (INIS)
Adzhemyan, L.Ts.; Vasil'ev, A.N.; Pis'mak, Yu.M.
1988-01-01
The investigation of the infrared behavior of the propagator of a light wave in a randomly inhomogeneous medium with massless Gaussian noise is continued. The infrared representation of the propagator for correlation function D varphi (k)∼k -2 is generalized to the case of an arbitrary power-law noise correlation function is rigorously established in the first two orders of the infrared asymptotic behavior by construction of a suitable R operation. As a consequence, the results are generalized to the case of critical opalescence, when D varphi (k)∼k -2+η , where η ∼ 0.03 is the Fisher index
Müller, Christian L.; Sbalzarini, Ivo F.; van Gunsteren, Wilfred F.; Žagrović, Bojan; Hünenberger, Philippe H.
2009-06-01
The concept of high-resolution shapes (also referred to as folds or states, depending on the context) of a polymer chain plays a central role in polymer science, structural biology, bioinformatics, and biopolymer dynamics. However, although the idea of shape is intuitively very useful, there is no unambiguous mathematical definition for this concept. In the present work, the distributions of high-resolution shapes within the ideal random-walk ensembles with N =3,…,6 beads (or up to N =10 for some properties) are investigated using a systematic (grid-based) approach based on a simple working definition of shapes relying on the root-mean-square atomic positional deviation as a metric (i.e., to define the distance between pairs of structures) and a single cutoff criterion for the shape assignment. Although the random-walk ensemble appears to represent the paramount of homogeneity and randomness, this analysis reveals that the distribution of shapes within this ensemble, i.e., in the total absence of interatomic interactions characteristic of a specific polymer (beyond the generic connectivity constraint), is significantly inhomogeneous. In particular, a specific (densest) shape occurs with a local probability that is 1.28, 1.79, 2.94, and 10.05 times (N =3,…,6) higher than the corresponding average over all possible shapes (these results can tentatively be extrapolated to a factor as large as about 1028 for N =100). The qualitative results of this analysis lead to a few rather counterintuitive suggestions, namely, that, e.g., (i) a fold classification analysis applied to the random-walk ensemble would lead to the identification of random-walk "folds;" (ii) a clustering analysis applied to the random-walk ensemble would also lead to the identification random-walk "states" and associated relative free energies; and (iii) a random-walk ensemble of polymer chains could lead to well-defined diffraction patterns in hypothetical fiber or crystal diffraction experiments
Large Deviations for the Annealed Ising Model on Inhomogeneous Random Graphs: Spins and Degrees
Dommers, Sander; Giardinà, Cristian; Giberti, Claudio; Hofstad, Remco van der
2018-04-01
We prove a large deviations principle for the total spin and the number of edges under the annealed Ising measure on generalized random graphs. We also give detailed results on how the annealing over the Ising model changes the degrees of the vertices in the graph and show how it gives rise to interesting correlated random graphs.
van Lieshout, Maria Nicolette Margaretha
2018-01-01
We propose new summary statistics to quantify the association between the components in coverage-reweighted moment stationary multivariate random sets and measures. They are defined in terms of the coverage-reweighted cumulant densities and extend classic functional statistics for stationary random closed sets. We study the relations between these statistics and evaluate them explicitly for a range of models. Unbiased estimators are given for all statistics and applied to simulated examples a...
Limit distribution function of inhomogeneities in regions with random boundary in the Hilbert space
International Nuclear Information System (INIS)
Rasulova, M.Yu.; Tashpulatov, S.M.
2004-10-01
The interaction of charged particle systems with a membrane consisting of nonhomogeneities which are randomly distributed by the same law in the vicinity of appropriate sites of a planax crystal lattice is studied. A system of equations for the self-consistent potential U 1 (x,ξ 0 ,..., ξ N ,...) and the density of induced charges σ(x,ξ 0 ,...,ξ N ,...) is solved on Hilbert space. (author)
Percolation and lasing in real 3D crystals with inhomogeneous distributed random pores
Energy Technology Data Exchange (ETDEWEB)
Burlak, Gennadiy, E-mail: gburlak@uaem.mx; Calderón-Segura, Yessica
2014-11-15
We systematically study the percolation phase transition in real 3D crystals where not only the state of pores but also their radius r and displacement s are random valued numbers. The mean values R=〈r〉 and S=〈s〉 emerge as additional spatial scales in such an extended network. This leads to variations of the threshold (critical) percolation probability p{sub C} and the percolation order parameter P that become to be the intricate functions of R and S. Our numerical simulations have shown that in such extended system the incipient spanning cluster can arise even for situations where for simple periodical system the percolation does not exist. We analyzed the validity of the nearest neighbor's approximation and found that such approximation is not valid for materials with large dispersivity of pores. The lasing of nanoemitters incorporated in such percolating spanning cluster is studied too. This effect can open interesting perspectives in modern nano- and micro-information technologies.
PROBABILISTIC MODEL OF BEAM–PLASMA INTERACTION IN RANDOMLY INHOMOGENEOUS PLASMA
International Nuclear Information System (INIS)
Voshchepynets, A.; Krasnoselskikh, V.; Artemyev, A.; Volokitin, A.
2015-01-01
We propose a new model that describes beam–plasma interaction in the presence of random density fluctuations with a known probability distribution. We use the property that, for the given frequency, the probability distribution of the density fluctuations uniquely determines the probability distribution of the phase velocity of waves. We present the system as discrete and consisting of small, equal spatial intervals with a linear density profile. This approach allows one to estimate variations in wave energy density and particle velocity, depending on the density gradient on any small spatial interval. Because the characteristic time for the evolution of the electron distribution function and the wave energy is much longer than the time required for a single wave–particle resonant interaction over a small interval, we determine the description for the relaxation process in terms of averaged quantities. We derive a system of equations, similar to the quasi-linear approximation, with the conventional velocity diffusion coefficient D and the wave growth rate γ replaced by the average in phase space, by making use of the probability distribution for phase velocities and by assuming that the interaction in each interval is independent of previous interactions. Functions D and γ are completely determined by the distribution function for the amplitudes of the fluctuations. For the Gaussian distribution of the density fluctuations, we show that the relaxation process is determined by the ratio of beam velocity to plasma thermal velocity, the dispersion of the fluctuations, and the width of the beam in the velocity space
Atmosphere-Ionosphere Electrodynamic Coupling
Sorokin, V. M.; Chmyrev, V. M.
Numerous phenomena that occur in the mesosphere, ionosphere, and the magnetosphere of the Earth are caused by the sources located in the lower atmosphere and on the ground. We describe the effects produced by lightning activity and by ground-based transmitters operated in high frequency (HF) and very low frequency (VLF) ranges. Among these phenomena are the ionosphere heating and the formation of plasma density inhomogeneities, the excitation of gamma ray bursts and atmospheric emissions in different spectral bands, the generation of ULF/ELF/VLF electromagnetic waves and plasma turbulence in the ionosphere, the stimulation of radiation belt electron precipitations and the acceleration of ions in the upper ionosphere. The most interesting results of experimental and theoretical studies of these phenomena are discussed below. The ionosphere is subject to the action of the conductive electric current flowing in the atmosphere-ionosphere circuit. We present a physical model of DC electric field and current formation in this circuit. The key element of this model is an external current, which is formed with the occurrence of convective upward transport of charged aerosols and their gravitational sedimentation in the atmosphere. An increase in the level of atmospheric radioactivity results in the appearance of additional ionization and change of electrical conductivity. Variation of conductivity and external current in the lower atmosphere leads to perturbation of the electric current flowing in the global atmosphere-ionosphere circuit and to the associated DC electric field perturbation both on the Earth's surface and in the ionosphere. Description of these processes and some results of the electric field and current calculations are presented below. The seismic-induced electric field perturbations produce noticeable effects in the ionosphere by generating the electromagnetic field and plasma disturbances. We describe the generation mechanisms of such experimentally
Propagation and reflection of chirped pulses in the nonuniform ionospheric plasma
International Nuclear Information System (INIS)
Levitsky, S.M.
2009-01-01
By passing of a chirped pulse in a inhomogeneous ionospheric plasma this pulses due to the dispersion futures of the plasma becomes deformed and can be strongly compressed. The chirped pulse can be compressed also being reflected by the ionosphere. This can give some advantage using such pulses in the experiments of ionospheric zoning.
Juhász, Márk; Nagy, Viktor L; Székely, Hajnal; Kocsis, Dorottya; Tulassay, Zsolt; László, János F
2014-09-06
This pilot study was devoted to the effect of static magnetic field (SMF)-exposure on erosive gastritis. The randomized, self- and placebo-controlled, double-blind, pilot study included 16 patients of the 2nd Department of Internal Medicine, Semmelweis University diagnosed with erosive gastritis. The instrumental analysis followed a qualitative (pre-intervention) assessment of the symptoms by the patient: lower heartburn (in the ventricle), upper heartburn (in the oesophagus), epigastric pain, regurgitation, bloating and dry cough. Medical diagnosis included a double-line upper panendoscopy followed by 30 min local inhomogeneous SMF-exposure intervention at the lower sternal region over the stomach with peak-to-peak magnetic induction of 3 mT and 30 mT m(-1) gradient at the target site. A qualitative (post-intervention) assessment of the same symptoms closed the examination. Sham- or SMF-exposure was used in a double-blind manner. The authors succeeded in justifying the clinically and statistically significant beneficial effect of the SMF- over sham-exposure on the symptoms of erosive gastritis, the average effect of inhibition was 56% by p = 0.001, n = 42 + 96. This pilot study was aimed to encourage gastroenterologists to test local, inhomogeneous SMF-exposure on erosive gastritis patients, so this intervention may become an evidence-based alternative or complementary method in the clinical use especially in cases when conventional therapy options are contraindicated. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
International Nuclear Information System (INIS)
Tinkham, M.
1978-01-01
The coherence length xi and penetration depth lambda set the characteristic length scales in superconductors, typically 100 to 5,000 A. A lattice of flux lines, each carrying a single quantum, can penetrate type II superconductors, i.e., those for which kappa identical with lambda/xi > 1/√2. Inhomogeneities on the scale of the flux lattice spacing are required to pin the lattice to prevent dissipative flux motion. Recent work using voids as pinning centers has demonstrated this principle, but practical materials rely on cold-work, inclusions of second phases, etc., to provide the inhomogeneity. For stability against thermal fluctuations, the superconductor should have the form of many filaments of diameter 10 to 100 μm imbedded in a highly conductive normal metal matrix. Such wire is made by drawing down billets of copper containing rods of the superconductor. An alternative approach is the metallurgical one of Tsuei, which leads to thousands of superconducting filamentary segments in a copper matrix. The superconducting proximity effect causes the whole material to superconduct at low current densities. At high current densities, the range of the proximity effect is reduced so that the effective superconducting volume fraction falls below the percolation threshold, and a finite resistance arises from the copper matrix. But, because of the extremely elongated filaments, this resistance is orders of magnitude lower than that of the normal wire, and low enough to permit the possibility of technical applications
International Nuclear Information System (INIS)
Taieb, C.
1977-01-01
This paper comprises four parts. The first one is dealing with the neutral atmosphere, its structure, its composition, its variations. The second one describes the ionospheric plasma, (the ionized part) and explains its formation. The influence of the geomagnetic field is discussed in the third chapter, the fourth one being concerned with the means of studying the ionosphere: ionograms obtained by ionosondes or incoherent scattering sounding or from satellite measurements [fr
A Review of Ionospheric Scintillation Models.
Priyadarshi, S
This is a general review of the existing climatological models of ionospheric radio scintillation for high and equatorial latitudes. Trans-ionospheric communication of radio waves from transmitter to user is affected by the ionosphere which is highly variable and dynamic in both time and space. Scintillation is the term given to irregular amplitude and phase fluctuations of the received signals and related to the electron density irregularities in the ionosphere. Key sources of ionospheric irregularities are plasma instabilities; every irregularities model is based on the theory of radio wave propagation in random media. It is important to understand scintillation phenomena and the approach of different theories. Therefore, we have briefly discussed the theories that are used to interpret ionospheric scintillation data. The global morphology of ionospheric scintillation is also discussed briefly. The most important (in our opinion) analytical and physical models of scintillation are reviewed here.
SAR Imaging through the Earth’s Ionosphere
2013-11-06
Xiaoqing Pi, Anthony Freeman, Bruce Chapman, Paul Rosen, and Zhenhong Li . Imaging ionospheric inhomogeneities using spaceborne synthetic aperture radar. J...resolution SAR phase correction. IEEE Trans. Aerosp. Electron. Syst., 30(3):827–835, 1994. [30] Lianlin Li and Fang Li . Ionosphere tomography based on...Manduchi and G. A. Mian . Accuracy analysis for correlation-based image registartion algorithms. In Proceedings of the 1993 IEEE International
National Oceanic and Atmospheric Administration, Department of Commerce — The ionosphere is that part of the Earth's atmosphere that results mainly from the photo ionization of the upper atmosphere. Traditionally, the following ionospheric...
Multicolour Observations, Inhomogeneity & Evolution
Hellaby, Charles
2000-01-01
We propose a method of testing source evolution theories that is independent of the effects of inhomogeneity, and thus complementary to other studies of evolution. It is suitable for large scale sky surveys, and the new generation of large telescopes. In an earlier paper it was shown that basic cosmological observations - luminosity versus redshift, area distance versus redshift and number counts versus redshift - cannot separate the effects of cosmic inhomogeneity, cosmic evolution and sourc...
Quantum entanglement in inhomogeneous 1D systems
Ramírez, Giovanni
2018-04-01
The entanglement entropy of the ground state of a quantum lattice model with local interactions usually satisfies an area law. However, in 1D systems some violations may appear in inhomogeneous systems or in random systems. In our inhomogeneous system, the inhomogeneity parameter, h, allows us to tune different regimes where a volumetric violation of the area law appears. We apply the strong disorder renormalization group to describe the maximally entangled state of the system in a strong inhomogeneity regime. Moreover, in a weak inhomogeneity regime, we use a continuum approximation to describe the state as a thermo-field double in a conformal field theory with an effective temperature which is proportional to the inhomogeneity parameter of the system. The latter description also shows that the universal scaling features of this model are captured by a massless Dirac fermion in a curved space-time with constant negative curvature R = h2, providing another example of the relation between quantum entanglement and space-time geometry. The results we discuss here were already published before, but here we present a more didactic exposure of basic concepts of the rainbow system for the students attending the Latin American School of Physics "Marcos Moshinsky" 2017.
Upper ionosphere and magnetospheric-ionospheric coupling
International Nuclear Information System (INIS)
Manzano, J.R.
1989-02-01
After a presentation of the ionospheric physics and of the earth magnetosphere morphology, generation and dynamics, the magnetosphere-ionosphere coupling in quiet and perturbed conditions is discussed. Some summary information about other planetary magnetospheres, particularly Venus and Jupiter magnetospheres, are finally given. 41 refs, 24 figs
Ionospheric modification and parametric instabilities
International Nuclear Information System (INIS)
Fejer, J.A.
1979-01-01
Thresholds and linear growth rates for stimulated Brillouin and Raman scattering and for the parametric decay instability are derived by using arguments of energy transfer. For this purpose an expression for the ponderomotive force is derived. Conditions under which the partial pressure force due to differential dissipation exceeds the ponderomotive force are also discussed. Stimulated Brillouin and Raman scattering are weakly excited by existing incoherent backscatter radars. The parametric decay instability is strongly excited in ionospheric heating experiments. Saturation theories of the parametric decay instability are therefore described. After a brief discussion of the purely growing instability the effect of using several pumps is discussed as well as the effects of inhomogenicity. Turning to detailed theories of ionospheric heating, artificial spread F is discussed in terms of a purely growing instability where the nonlinearity is due to dissipation. Field-aligned short-scale striations are explained in terms of dissipation of the parametrically excited Langmuir waves (plasma oscillations): they might be further amplified by an explosive instability (except the magnetic equator). Broadband absorption is probably responsible for the 'overshoot' effect: the initially observed level of parametrically excited Langmuir waves is much higher than the steady state level
Wave processes. Small-scale inhomogeneities in the ionosphere
International Nuclear Information System (INIS)
Uspenskij, M.V.
1993-01-01
The problem of existence of intensive electron density fluctuations in the high latitude E region is discussed. It is pointed out that the size of fluctuations changes from several decimeters to several decameters in the direction across the geomagnetic field. The indicated size along the geomagnetic field is more than 1-2 order of magnitude
Instabilities in inhomogeneous plasma
International Nuclear Information System (INIS)
Mikhailovsky, A.B.
1983-01-01
The plasma inhomogeneity across the magnetic field causes a wide class of instabilities which are called instabilities of an inhomogeneous plasma or gradient instabilities. The instabilities that can be studied in the approximation of a magnetic field with parallel straight field lines are treated first, followed by a discussion of the influence of shear on these instabilities. The instabilities of a weakly inhomogeneous plasma with the Maxwellian velocity distribution of particles caused by the density and temperature gradients are often called drift instabilities, and the corresponding types of perturbations are the drift waves. An elementary theory of drift instabilities is presented, based on the simplest equations of motion of particles in the field of low-frequency and long-wavelength perturbations. Following that is a more complete theory of inhomogeneous collisionless plasma instabilities which uses the permittivity tensor and, in the case of electrostatic perturbations, the scalar of permittivity. The results are used to study the instabilities of a strongly inhomogeneous plasma. The instabilities of a plasma in crossed fields are discussed and the electromagnetic instabilities of plasma with finite and high pressure are described. (Auth.)
Big Bounce and inhomogeneities
International Nuclear Information System (INIS)
Brizuela, David; Mena Marugan, Guillermo A; Pawlowski, Tomasz
2010-01-01
The dynamics of an inhomogeneous universe is studied with the methods of loop quantum cosmology, via a so-called hybrid quantization, as an example of the quantization of vacuum cosmological spacetimes containing gravitational waves (Gowdy spacetimes). The analysis of this model with an infinite number of degrees of freedom, performed at the effective level, shows that (i) the initial Big Bang singularity is replaced (as in the case of homogeneous cosmological models) by a Big Bounce, joining deterministically two large universes, (ii) the universe size at the bounce is at least of the same order of magnitude as that of the background homogeneous universe and (iii) for each gravitational wave mode, the difference in amplitude at very early and very late times has a vanishing statistical average when the bounce dynamics is strongly dominated by the inhomogeneities, whereas this average is positive when the dynamics is in a near-vacuum regime, so that statistically the inhomogeneities are amplified. (fast track communication)
Radiation transport in statistically inhomogeneous rocks
International Nuclear Information System (INIS)
Lukhminskij, B.E.
1975-01-01
A study has been made of radiation transfer in statistically inhomogeneous rocks. Account has been taken of the statistical character of rock composition through randomization of density. Formulas are summarized for sigma-distribution, homogeneous density, the Simpson and Cauchy distributions. Consideration is given to the statistics of mean square ranges in a medium, simulated by the jump Markov random function. A quantitative criterion of rock heterogeneity is proposed
Antennas in inhomogeneous media
Galejs, Janis; Fock, V A; Wait, J R
2013-01-01
Antennas in Inhomogeneous Media details the methods of analyzing antennas in such inhomogeneous media. The title covers the complex geometrical configurations along with its variational formulations. The coverage of the text includes various conditions the antennas are subjected to, such as antennas in the interface between two media; antennas in compressible isotropic plasma; and linear antennas in a magnetoionic medium. The selection also covers insulated loops in lossy media; slot antennas with a stratified dielectric or isotropic plasma layers; and cavity-backed slot antennas. The book wil
High latitude ionospheric structure
International Nuclear Information System (INIS)
1984-06-01
The Earth's ionosphere is an important element in solar-terrestrial energy transfer processes. As a major terrestrial sink for many solar and magnetospheric events, the ionosphere has characteristic features that are traced to such seemingly remote phenomena as solar flares, radiation belt wave-particle interactions and magnetospheric substorms. In considering the multiple of solar-terrestrial plasma interactions, it is important to recognize that the high-latitude ionosphere is not altogether a simple receptor of various energy deposition processes. The high-altitude ionosphere plays an active feedback role by controlling the conductivity at the base of far-reaching magnetic field lines and by providing a plasma source for the magnetosphere. Indeed, the role of the ionosphere during magnetospheric substorms is emerging as a topic for meaningful study in the overall picture of magnetospheric-ionospheric coupling
International Nuclear Information System (INIS)
Abdu, M.A.
1984-01-01
Ionosphere investigations at INPE are mainly concerned with the problems of equatorial and tropical ionospheres and their electrodynamic coupling with the high latitude ionosphere. Present research objectives include investigations in the following specific areas: equatorial ionospheric plasma dynamics; plasma irregularity generation and morphology, and effects on space borne radar operations; ionospheric response to disturbance dynamo and magnetospheric electric fields; aeronomic effcts of charged particle precipitation in the magnetic anomaly, etc. These problems are being investigated using experimental datacollected from ionospheric diagnostic instruments being operated at different locations in Brazil. These instruments are: ionosondes, VHF electronic polarimeters, L-band scintillation receivers, airglow photometers, riometers and VLF receivers. A brief summary of the research activities and some recnet results will be presented. (Author) [pt
Random-field induced memory effects in inhomogeneously diluted antiferromagnets K2NixZn1−xF4
DEFF Research Database (Denmark)
Dikken, B. J.; Arts, A. F. M.; de Wijn, H. W.
1986-01-01
Using neutron diffraction a random-field generated memory is observed in K2NixZn1−xF4 with x = 0.96, 0.85, and 0.75. The intensities and profiles of magnetic Bragg reflections are found to follow unique trajectories determined by switching the external magnetic field on and off while cooling...
Role of parametric decay instabilities in generating ionospheric irregularities
International Nuclear Information System (INIS)
Kuo, S.P.; Cheo, B.R.; Lee, M.C.
1983-01-01
We show that purely growing instabilities driven by the saturation spectrum of parametric decay instabilities can produce a broad spectrum of ionospheric irregularities. The threshold field Vertical BarE/sub th/Vertical Bar of the instabilities decreases with the scale lengths lambda of the ionospheric irregularities as Vertical BarE/sub th/Vertical Barproportionallambda -2 in the small-scale range ( -2 with scale lengths larger than a few kilometers. The excitation of kilometer-scale irregularities is strictly restricted by the instabilities themselves and by the spatial inhomogeneity of the medium. These results are drawn from the analyses of four-wave interaction. Ion-neutral collisions impose no net effect on the instabilities when the excited ionospheric irregularities have a field-aligned nature
Ionospheric reflection of the magnetic activity described by the index η
Dziak-Jankowska, Beata; Stanisławska, Iwona; Ernst, Tomasz; Tomasik, Łukasz
2011-09-01
Differences in the external part of the vertical geomagnetic component point to the existence of local inhomogeneities in the magnetosphere or the ionosphere. Usually used magnetic indices are not sufficient to express the state of ionosphere, the common used global Kp index derived in the three-hour interval does not indicate much more rapidly changes appearing in ionosphere. Magnetic index η reflects ionospheric disturbances when other indices show very quiet conditions. Data of ionospheric characteristics (foE, foEs, h'E, h'F2) during 28-day long quiet day conditions (Kp = 0-2) in 2004 were analyzed. The correlations between strong local disturbances in ionosphere during very quiet days and high values of magnetic index η were found. The most sensitive to magnetic influence - ionospheric E layer data (foE characteristic) - reaches median deviations up to (+0.8 MHz and -0.8 MHz) during very low magnetic activity (Kp = 0-1). The high peaks (2-2.7) of the magnetic index η correlate in time with large local median deviations of foE. Such local deviations can suggest local inhomogeneities (vertical drifts) in the ionosphere. The correlation in space is not trivial. The strong peak of η is situated between the positive and negative deviations of foE. Additional observation is connected with correlation in time of the high η value with the negative median deviations of h'F2 (in some cases up to -90 km). The analysis was based on one-minute data recorded at each of 20 European Magnetic Observatories working in the INTERMAGNET network and from 19 ionosondes for 2004. Ionospheric data are sparse in time and in space in opposite to the magnetic data. The map of the magnetic indices can suggest the behavior of ionospheric characteristics in the areas where we have no data.
Inhomogeneous compact extra dimensions
Energy Technology Data Exchange (ETDEWEB)
Bronnikov, K.A. [Center of Gravity and Fundamental Metrology, VNIIMS, 46 Ozyornaya st., Moscow 119361 (Russian Federation); Budaev, R.I.; Grobov, A.V.; Dmitriev, A.E.; Rubin, Sergey G., E-mail: kb20@yandex.ru, E-mail: buday48@mail.ru, E-mail: alexey.grobov@gmail.com, E-mail: alexdintras@mail.ru, E-mail: sergeirubin@list.ru [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow (Russian Federation)
2017-10-01
We show that an inhomogeneous compact extra space possesses two necessary features— their existence does not contradict the observable value of the cosmological constant Λ{sub 4} in pure f ( R ) theory, and the extra dimensions are stable relative to the 'radion mode' of perturbations, the only mode considered. For a two-dimensional extra space, both analytical and numerical solutions for the metric are found, able to provide a zero or arbitrarily small Λ{sub 4}. A no-go theorem has also been proved, that maximally symmetric compact extra spaces are inconsistent with 4D Minkowski space in the framework of pure f ( R ) gravity.
The inhomogeneous Suslov problem
Energy Technology Data Exchange (ETDEWEB)
García-Naranjo, Luis C., E-mail: luis@mym.iimas.unam.mx [Departamento de Matemáticas y Mecánica, IIMAS-UNAM, Apdo Postal 20-726, Mexico City 01000 (Mexico); Maciejewski, Andrzej J., E-mail: andrzej.j.maciejewski@gmail.com [J. Kepler Institute of Astronomy, University of Zielona Góra, Licealna 9, 65-417 Zielona Góra (Poland); Marrero, Juan C., E-mail: jcmarrero@ull.edu.es [ULL-CSIC, Geometría Diferencial y Mecánica Geométrica, Departamento de Matemática Fundamental, Facultad de Matemáticas, Universidad de la Laguna, La Laguna, Tenerife, Canary Islands (Spain); Przybylska, Maria, E-mail: M.Przybylska@if.uz.zgora.pl [Institute of Physics, University of Zielona Góra, Licealna 9, 65-417 Zielona Góra (Poland)
2014-06-27
We consider the Suslov problem of nonholonomic rigid body motion with inhomogeneous constraints. We show that if the direction along which the Suslov constraint is enforced is perpendicular to a principal axis of inertia of the body, then the reduced equations are integrable and, in the generic case, possess a smooth invariant measure. Interestingly, in this generic case, the first integral that permits integration is transcendental and the density of the invariant measure depends on the angular velocities. We also study the Painlevé property of the solutions. - Highlights: • We consider the Suslov problem of nonholonomic rigid body motion with inhomogeneous constraints. • We study the problem in detail for a particular choice of the parameters that has a clear physical interpretation. • We show that the equations of motion possess an invariant measure whose density depends on the velocity variables. • We show that the reduced system is integrable due to the existence of a transcendental first integral. • We study the Painlevé property of the solutions.
Inhomogeneous anisotropic cosmology
International Nuclear Information System (INIS)
Kleban, Matthew; Senatore, Leonardo
2016-01-01
In homogeneous and isotropic Friedmann-Robertson-Walker cosmology, the topology of the universe determines its ultimate fate. If the Weak Energy Condition is satisfied, open and flat universes must expand forever, while closed cosmologies can recollapse to a Big Crunch. A similar statement holds for homogeneous but anisotropic (Bianchi) universes. Here, we prove that arbitrarily inhomogeneous and anisotropic cosmologies with “flat” (including toroidal) and “open” (including compact hyperbolic) spatial topology that are initially expanding must continue to expand forever at least in some region at a rate bounded from below by a positive number, despite the presence of arbitrarily large density fluctuations and/or the formation of black holes. Because the set of 3-manifold topologies is countable, a single integer determines the ultimate fate of the universe, and, in a specific sense, most 3-manifolds are “flat” or “open”. Our result has important implications for inflation: if there is a positive cosmological constant (or suitable inflationary potential) and initial conditions for the inflaton, cosmologies with “flat” or “open” topology must expand forever in some region at least as fast as de Sitter space, and are therefore very likely to begin inflationary expansion eventually, regardless of the scale of the inflationary energy or the spectrum and amplitude of initial inhomogeneities and gravitational waves. Our result is also significant for numerical general relativity, which often makes use of periodic (toroidal) boundary conditions.
Ionospheric electron acceleration by electromagnetic waves near regions of plasma resonances
International Nuclear Information System (INIS)
Villalon, E.
1989-01-01
Electron acceleration by electromagnetic fields propagating in the inhomogeneous ionospheric plasma is investigated. It is found that high-amplitude short wavelength electrostatic waves are generated by the incident electromagnetic fields that penetrate the radio window. These waves can very efficiently transfer their energy to the electrons if the incident frequency is near the second harmonic of the cyclotron frequency
Sudden Ionospheric Disturbances (SID)
National Oceanic and Atmospheric Administration, Department of Commerce — Sudden ionospheric disturbances (SID) are caused by solar flare enhanced X-rays in the 1 to 10 angstrom range. Solar flares can produce large increases of ionization...
Tsunami Ionospheric warning and Ionospheric seismology
Lognonne, Philippe; Rolland, Lucie; Rakoto, Virgile; Coisson, Pierdavide; Occhipinti, Giovanni; Larmat, Carene; Walwer, Damien; Astafyeva, Elvira; Hebert, Helene; Okal, Emile; Makela, Jonathan
2014-05-01
The last decade demonstrated that seismic waves and tsunamis are coupled to the ionosphere. Observations of Total Electron Content (TEC) and airglow perturbations of unique quality and amplitude were made during the Tohoku, 2011 giant Japan quake, and observations of much lower tsunamis down to a few cm in sea uplift are now routinely done, including for the Kuril 2006, Samoa 2009, Chili 2010, Haida Gwai 2012 tsunamis. This new branch of seismology is now mature enough to tackle the new challenge associated to the inversion of these data, with either the goal to provide from these data maps or profile of the earth surface vertical displacement (and therefore crucial information for tsunami warning system) or inversion, with ground and ionospheric data set, of the various parameters (atmospheric sound speed, viscosity, collision frequencies) controlling the coupling between the surface, lower atmosphere and the ionosphere. We first present the state of the art in the modeling of the tsunami-atmospheric coupling, including in terms of slight perturbation in the tsunami phase and group velocity and dependance of the coupling strength with local time, ocean depth and season. We then show the confrontation of modelled signals with observations. For tsunami, this is made with the different type of measurement having proven ionospheric tsunami detection over the last 5 years (ground and space GPS, Airglow), while we focus on GPS and GOCE observation for seismic waves. These observation systems allowed to track the propagation of the signal from the ground (with GPS and seismometers) to the neutral atmosphere (with infrasound sensors and GOCE drag measurement) to the ionosphere (with GPS TEC and airglow among other ionospheric sounding techniques). Modelling with different techniques (normal modes, spectral element methods, finite differences) are used and shown. While the fits of the waveform are generally very good, we analyse the differences and draw direction of future
Electron dynamics in inhomogeneous magnetic fields
Energy Technology Data Exchange (ETDEWEB)
Nogaret, Alain, E-mail: A.R.Nogaret@bath.ac.u [Department of Physics, University of Bath, Bath BA2 7AY (United Kingdom)
2010-06-30
This review explores the dynamics of two-dimensional electrons in magnetic potentials that vary on scales smaller than the mean free path. The physics of microscopically inhomogeneous magnetic fields relates to important fundamental problems in the fractional quantum Hall effect, superconductivity, spintronics and graphene physics and spins out promising applications which will be described here. After introducing the initial work done on electron localization in random magnetic fields, the experimental methods for fabricating magnetic potentials are presented. Drift-diffusion phenomena are then described, which include commensurability oscillations, magnetic channelling, resistance resonance effects and magnetic dots. We then review quantum phenomena in magnetic potentials including magnetic quantum wires, magnetic minibands in superlattices, rectification by snake states, quantum tunnelling and Klein tunnelling. The third part is devoted to spintronics in inhomogeneous magnetic fields. This covers spin filtering by magnetic field gradients and circular magnetic fields, electrically induced spin resonance, spin resonance fluorescence and coherent spin manipulation. (topical review)
Inhomogeneous microstructural growth by irradiation
DEFF Research Database (Denmark)
Krishan, K.; Singh, Bachu Narain; Leffers, Torben
1985-01-01
In the present paper we discuss the development of heterogeneous microstructure for uniform irradiation conditions. It is shown that microstructural inhomogeneities on a scale of 0.1 μm can develop purely from kinematic considerations because of the basic structure of the rate equations used...... to describe such evolution. Two aspects of the growth of such inhomogeneities are discussed. Firstly, it is shown that a local variation in the sink densities of the various microstructural defects will tend to enhance the inhomogeneity rather than remove it. Secondly, such inhomogeneities will lead to point...... defect fluxes that result in a spatial growth of the inhomogeneous region, which will be stopped only when the microstructural density around this region becomes large. The results have important implications in the formation of denuded zones and void formation in metals....
Large linear magnetoresistivity in strongly inhomogeneous planar and layered systems
International Nuclear Information System (INIS)
Bulgadaev, S.A.; Kusmartsev, F.V.
2005-01-01
Explicit expressions for magnetoresistance R of planar and layered strongly inhomogeneous two-phase systems are obtained, using exact dual transformation, connecting effective conductivities of in-plane isotropic two-phase systems with and without magnetic field. These expressions allow to describe the magnetoresistance of various inhomogeneous media at arbitrary concentrations x and magnetic fields H. All expressions show large linear magnetoresistance effect with different dependencies on the phase concentrations. The corresponding plots of the x- and H-dependencies of R(x,H) are represented for various values, respectively, of magnetic field and concentrations at some values of inhomogeneity parameter. The obtained results show a remarkable similarity with the existing experimental data on linear magnetoresistance in silver chalcogenides Ag 2+δ Se. A possible physical explanation of this similarity is proposed. It is shown that the random, stripe type, structures of inhomogeneities are the most suitable for a fabrication of magnetic sensors and a storage of information at room temperatures
Particle creation in inhomogeneous spacetimes
International Nuclear Information System (INIS)
Frieman, J.A.
1989-01-01
We study the creation of particles by inhomogeneous perturbations of spatially flat Friedmann-Robertson-Walker cosmologies. For massless scalar fields, the pair-creation probability can be expressed in terms of geometric quantities (curvature invariants). The results suggest that inhomogeneities on scales up to the particle horizon will be damped out near the Planck time. Perturbations on scales larger than the horizon are explicitly shown to yield no created pairs. The results generalize to inhomogeneous spacetimes several earlier studies of pair creation in homogeneous anisotropic cosmologies
Influence of Ionospheric Irregularities on GNSS Remote Sensing
Directory of Open Access Journals (Sweden)
M. V. Tinin
2015-01-01
Full Text Available We have used numerical simulation to study the effects of ionospheric irregularities on accuracy of global navigation satellite system (GNSS measurements, using ionosphere-free (in atmospheric research and geometry-free (in ionospheric research dual-frequency phase combinations. It is known that elimination of these effects from multifrequency GNSS measurements is handi-capped by diffraction effects during signal propagation through turbulent ionospheric plasma with the inner scale being smaller than the Fresnel radius. We demonstrated the possibility of reducing the residual ionospheric error in dual-frequency GNSS remote sensing in ionosphere-free combination by Fresnel inversion. The inversion parameter, the distance to the virtual screen, may be selected from the minimum of amplitude fluctuations. This suggests the possibility of improving the accuracy of GNSS remote sensing in meteorology. In the study of ionospheric disturbances with the aid of geometry-free combination, the Fresnel inversion eliminates only the third-order error. To eliminate the random TEC component which, like the measured average TEC, is the first-order correction, we should use temporal filtering (averaging.
Calvert, W
1966-10-14
Over the past few years, the satellite topside sounders have significantly contributed to the understanding of the upper ionosphere. A great quantity of radio echo data has been accumulated, from which the ionospheric electrondensity distribution can be determined. The topside measurements of electron density essentially agree with similar measurements from the ground, except for an occasional 10-percent discrepancy near the peak of the ionosphere. While horizontal non-uniformity is a likely cause, this discrepancy has not yet been adequately explained. The electron-density scale heights measured at a constant altitude indicate both a higher temperature and a heavier mean ion mass at high latitudes. At low latitudes the topside measurements have shown the detailed latitudinal structure of the equatorial anomaly, demonstrating control by the geomagnetic field. A variety of electron-density irregularities have been studied. Most are greatly elongated along the magnetic field, and produce echoes either by lateral scattering, if they are thin, or by longitudinal ducting, if they are thick. Some of the thick irregularities are continuous between the hemispheres and support conjugate echo propagation. The topside sounders have revealed the complex structure of the ionosphere near the auroral zone and at higher latitudes. At night an east-west trough of greatly reduced electron density occurs equatorward of the auroral zone. At the auroral zone itself the electron density is high and quite variable, both in space and time. The electron density at the polar cap within the auroral zone is often uniform and smooth. Ionospheric irregularities are common in the area of the trough and the auroral zone. Among other satellites, the topside sounders have been used in various plasma studies involving the excitation and propagation of waves. These studies suggest that the ionosphere is an appropriate region for future plasma physics investigations, especially with rocket and
Inclusions and inhomogeneities under stress
CSIR Research Space (South Africa)
Nabarro, FRN
1996-02-01
Full Text Available Some general theorems, new and old, concerning the behaviour of elastic inclusions and inhomogeneities in bodies without or with external stress, are assembled. The principal new result is that arbitrary external tractions cannot influence the shape...
Nonlinear dynamic processes in modified ionospheric plasma
Kochetov, A.; Terina, G.
Presented work is a contribution to the experimental and theoretical study of nonlinear effects arising on ionospheric plasma under the action of powerful radio emission (G.I. Terina, J. Atm. Terr. Phys., 1995, v.57, p.273; A.V. Kochetov et. al., Advances in Space Research, 2002, in press). The experimental results were obtained by the method of sounding of artificially disturbed ionosphere by short radio pulses. The amplitude and phase characteristics of scattered signal as of "caviton" type (CS) (analogy of narrow-band component of stimulation electromagnetic emission (SEE)) as the main signal (MS) of probing transmitter are considered. The theoretical model is based on numerical solution of driven nonlinear Shrödinger equation (NSE) in inhomogeneous plasma. The simulation allows us to study a self-consistent spatial-temporal dynamics of field and plasma. The observed evolution of phase characteristics of MS and CS qualitatively correspond to the results of numerical simulation and demonstrate the penetration processes of powerful electromagnetic wave in supercritical (in linear approach) plasma regions. The modeling results explain also the periodic generation of CS, the travel CS maximum down to density gradient, the aftereffect of CS. The obtained results show the excitation of strong turbulence and allow us to interpret CS, NC and so far inexplicable phenomena as "spikes" too. The work was supported in part by Russian Foundation for Basic Research (grants Nos. 99-02-16642, 99-02- 16399).
Ionosphere Waves Service - A demonstration
Crespon, François
2013-04-01
In the frame of the FP7 POPDAT project the Ionosphere Waves Service was developed by ionosphere experts to answer several questions: How make the old ionosphere missions more valuable? How provide scientific community with a new insight on wave processes that take place in the ionosphere? The answer is a unique data mining service accessing a collection of topical catalogues that characterize a huge number of Atmospheric Gravity Waves, Travelling Ionosphere Disturbances and Whistlers events. The Ionosphere Waves Service regroups databases of specific events extracted by experts from a ten of ionosphere missions which end users can access by applying specific searches and by using statistical analysis modules for their domain of interest. The scientific applications covered by the IWS are relative to earthquake precursors, ionosphere climatology, geomagnetic storms, troposphere-ionosphere energy transfer, and trans-ionosphere link perturbations. In this presentation we propose to detail the service design, the hardware and software architecture, and the service functions. The service interface and capabilities will be the focus of a demonstration in order to help potential end-users for their first access to the Ionosphere Waves Service portal. This work is made with the support of FP7 grant # 263240.
Effect of Ionosphere on Geostationary Communication Satellite Signals
Erdem, Esra; Arikan, Feza; Gulgonul, Senol
2016-07-01
Geostationary orbit (GEO) communications satellites allow radio, television, and telephone transmissions to be sent live anywhere in the world. They are extremely important in daily life and also for military applications. Since, satellite communication is an expensive technology addressing crowd of people, it is critical to improve the performance of this technology. GEO satellites are at 35,786 kilometres from Earth's surface situated directly over the equator. A satellite in a geostationary orbit (GEO) appears to stand still in the sky, in a fixed position with respect to an observer on the earth, because the satellite's orbital period is the same as the rotation rate of the Earth. The advantage of this orbit is that ground antennas can be fixed to point towards to satellite without their having to track the satellite's motion. Radio frequency ranges used in satellite communications are C, X, Ku, Ka and even EHG and V-band. Satellite signals are disturbed by atmospheric effects on the path between the satellite and the receiver antenna. These effects are mostly rain, cloud and gaseous attenuation. It is expected that ionosphere has a minor effect on the satellite signals when the ionosphere is quiet. But there are anomalies and perturbations on the structure of ionosphere with respect to geomagnetic field and solar activity and these conditions may cause further affects on the satellite signals. In this study IONOLAB-RAY algorithm is adopted to examine the effect of ionosphere on satellite signals. IONOLAB-RAY is developed to calculate propagation path and characteristics of high frequency signals. The algorithm does not have any frequency limitation and models the plasmasphere up to 20,200 km altitude, so that propagation between a GEO satellite and antenna on Earth can be simulated. The algorithm models inhomogeneous, anisotropic and time dependent structure of the ionosphere with a 3-D spherical grid geometry and calculates physical parameters of the
Ionospheric earthquake precursors
International Nuclear Information System (INIS)
Bulachenko, A.L.; Oraevskij, V.N.; Pokhotelov, O.A.; Sorokin, V.N.; Strakhov, V.N.; Chmyrev, V.M.
1996-01-01
Results of experimental study on ionospheric earthquake precursors, program development on processes in the earthquake focus and physical mechanisms of formation of various type precursors are considered. Composition of experimental cosmic system for earthquake precursors monitoring is determined. 36 refs., 5 figs
Ionosphere and Radio Communication
Indian Academy of Sciences (India)
The upperionosphere is used for radio communication and navigationas it reflects long, medium, as well as short radio waves. Sincesolar radiation is the main cause of the existence of ionosphere,any variation in the radiations can affect the entireradio communication system. This article attempts to brieflyintroduce the ...
Inhomogeneous wire explosion in water
International Nuclear Information System (INIS)
Hwangbo, C.K.; Kong, H.J.; Lee, S.S.
1980-01-01
Inhomogeneous processes are observed in underwater copper wire explosion induced by a condensed capacitor discharge. The wire used is 0.1 mm in diameter and 10 mm long, and the capacitor of 2 μF is charged to 5 KV. A N 2 laser is used for the diagnostic of spatial extension of exploding copper vapour. The photographs obtained in this experiment show unambiguously the inhomogeneous explosion along the exploding wire. The quenching of plasma by the surrounding water inhibits the expansion of the vapour. It is believed the observed inhomogeneous explosion along the wire is located and localized around Goronkin's striae, which was first reported by Goronkin and discussed by Froengel as a pre-breakdown phenomenon. (author)
Dynamics of inhomogeneous chiral condensates
Carlomagno, Juan Pablo; Krein, Gastão; Kroff, Daniel; Peixoto, Thiago
2018-01-01
We study the dynamics of the formation of inhomogeneous chirally broken phases in the final stages of a heavy-ion collision, with particular interest on the time scales involved in the formation process. The study is conducted within the framework of a Ginzburg-Landau time evolution, driven by a free energy functional motivated by the Nambu-Jona-Lasinio model. Expansion of the medium is modeled by one-dimensional Bjorken flow and its effect on the formation of inhomogeneous condensates is investigated. We also use a free energy functional from a nonlocal Nambu-Jona-Lasinio model which predicts metastable phases that lead to long-lived inhomogeneous condensates before reaching an equilibrium phase with homogeneous condensates.
Parametric instabilities in inhomogeneous plasma
International Nuclear Information System (INIS)
Nicholson, D.R.
1975-01-01
The nonlinear coupling of three waves in a plasma is considered. One of the waves is assumed large and constant; its amplitude is the parameter of the parametric instability. The spatial-temporal evolution of the other two waves is treated theoretically, in one dimension, by analytic methods and by direct numerical integration of the basic equations. Various monotonic forms of inhomogeneity are considered; agreement with previous work is found and new results are established. Nonmonotonic inhomogeneities are considered, in the form of turbulence and, as a model problem, in the form of a simple sinusoidal modulation. Relatively small amounts of nonmonotonic inhomogeneity, in the presence of a linear density gradient, are found to destabilize the well-known convective saturation, absolute growth occurring instead. (U.S.)
Ionospheric disturbance dynamo
International Nuclear Information System (INIS)
Blanc, M.; Richmond, A.D.
1980-01-01
A numerical simulation study of the thermospheric winds produced by auroral heating during magnetic storms, and of their global dynamo effects, establishes the main features of the ionospheric disturbanc dynamo. Driven by auroral heating, a Hadley cell is created with equatorward winds blowing above about 120 km at mid-latitudes. The transport of angular momentum by these winds produces a subrotation of the midlatitude thermosphere, or westward motion with respect to the earth. The westward winds in turn drive equatorward Pedersen currents which accumulate charge toward the equator, resulting in the generation of a poleward electric field, a westward E x B drift, and an eastward current. When realistic local time conductivity variations are simulated, the eastward mid-latitude current is found to close partly via lower latitudes, resulting in an 'anti-Sq' type of current vortex. Both electric field and current at low latitudes thus vary in opposition to their normal quiet-day behavior. This total pattern of distrubance winds, electric fields, and currents is superimposed upon the background quiet-day pattern. When the neutral winds are artificially confined on the nightside, the basic pattern of predominantly westward E x B plasma drifts still prevails on the nightside but no longer extends into the dayside. Considerable observational evidence exists, suggesting that the ionospheric disturbance dynamo has an appreciable influence on storm-time ionospheric electric fields at middle and low latitudes
Kriging with Unknown Variance Components for Regional Ionospheric Reconstruction
Directory of Open Access Journals (Sweden)
Ling Huang
2017-02-01
Full Text Available Ionospheric delay effect is a critical issue that limits the accuracy of precise Global Navigation Satellite System (GNSS positioning and navigation for single-frequency users, especially in mid- and low-latitude regions where variations in the ionosphere are larger. Kriging spatial interpolation techniques have been recently introduced to model the spatial correlation and variability of ionosphere, which intrinsically assume that the ionosphere field is stochastically stationary but does not take the random observational errors into account. In this paper, by treating the spatial statistical information on ionosphere as prior knowledge and based on Total Electron Content (TEC semivariogram analysis, we use Kriging techniques to spatially interpolate TEC values. By assuming that the stochastic models of both the ionospheric signals and measurement errors are only known up to some unknown factors, we propose a new Kriging spatial interpolation method with unknown variance components for both the signals of ionosphere and TEC measurements. Variance component estimation has been integrated with Kriging to reconstruct regional ionospheric delays. The method has been applied to data from the Crustal Movement Observation Network of China (CMONOC and compared with the ordinary Kriging and polynomial interpolations with spherical cap harmonic functions, polynomial functions and low-degree spherical harmonic functions. The statistics of results indicate that the daily ionospheric variations during the experimental period characterized by the proposed approach have good agreement with the other methods, ranging from 10 to 80 TEC Unit (TECU, 1 TECU = 1 × 1016 electrons/m2 with an overall mean of 28.2 TECU. The proposed method can produce more appropriate estimations whose general TEC level is as smooth as the ordinary Kriging but with a smaller standard deviation around 3 TECU than others. The residual results show that the interpolation precision of the
High Resolution Reconstruction of the Ionosphere for SAR Applications
Minkwitz, David; Gerzen, Tatjana; Hoque, Mainul
2014-05-01
the ionosphere is studied in space and time on the base of ground-based TEC measurements in the European region. In order to determine the correlation of measurements at different locations or points of time the TEC measurements are subtracted by a base model to define a stationary random field. We outline the application of the NeQuick model and the final IGS TEC maps as background and show first results regarding the distribution and the stationarity of the resulting residuals. Moreover, the occurred problems and questions are discussed and finally an outlook towards the next modelling steps is presented.
Electrodynamics of the magnetosphere-ionosphere coupling in the nightside subauroral zone
International Nuclear Information System (INIS)
Streltsov, A.V.; Foster, J.C.
2004-01-01
Results from a numerical study of the oscillations of the electric field measured by the Millstone Hill incoherent scatter radar in the E-layer of the nightside subauroral ionosphere during the geomagnetic storm of May 25, 2000 are presented. The frequencies of these oscillations correspond to the discrete frequencies of geomagnetic pulsations usually attributed to the field line resonances or global cavity modes at a high-latitude auroral zone, but they are well below the fundamental eigenfrequency of the subauroral magnetosphere. It is shown that these oscillations can be interpreted as an ionospheric footprint of the surface Alfven waves generated at the equatorial magnetosphere on a steep transverse gradient in the background plasma density associated with the inner edge of the plasmapause developed during strong geomagnetic storms/substorms. This density gradient together with the ionospheric Pedersen conductivity defines the location and amplitude of the electric field in the E-layer: the amplitude of the field is proportional to the amplitude of the density inhomogeneity and inversely proportional to its scale-size and the ionospheric conductivity. Interaction of the large amplitude perpendicular electric field with the low-conducting ionosphere can cause the ionospheric feedback instability, which leads to the formation of small-scale, intense structures in the electric field and the parallel current density in the subauroral magnetosphere
Simple inhomogeneous cosmological (toy) models
International Nuclear Information System (INIS)
Isidro, Eddy G. Chirinos; Zimdahl, Winfried; Vargas, Cristofher Zuñiga
2016-01-01
Based on the Lemaître-Tolman-Bondi (LTB) metric we consider two flat inhomogeneous big-bang models. We aim at clarifying, as far as possible analytically, basic features of the dynamics of the simplest inhomogeneous models and to point out the potential usefulness of exact inhomogeneous solutions as generalizations of the homogeneous configurations of the cosmological standard model. We discuss explicitly partial successes but also potential pitfalls of these simplest models. Although primarily seen as toy models, the relevant free parameters are fixed by best-fit values using the Joint Light-curve Analysis (JLA)-sample data. On the basis of a likelihood analysis we find that a local hump with an extension of almost 2 Gpc provides a better description of the observations than a local void for which we obtain a best-fit scale of about 30 Mpc. Future redshift-drift measurements are discussed as a promising tool to discriminate between inhomogeneous configurations and the ΛCDM model.
Quasilinear diffusion in inhomogeneous plasmas
International Nuclear Information System (INIS)
Hooley, D.L.
1975-05-01
The problem of inhomogeneous diffusion in a plasma is considered with emphasis on its possible application to relativistic electron beams. A one-dimensional model with a background electrostatic field is used to illustrate the basic approach, which is then extended to a two-dimensional plasma with a background magnetic field. Only preliminary results are available. (U.S.)
Physical model of optical inhomogeneities of water
Shybanov, E. B.
2017-11-01
The paper is devoted to theoretical aspects of the light scattering of water that does not contain suspended particles. To be consistent with current physical point of view the water as far as any liquid is regarded as a complex unstable nonergodic media. It was proposed that at fixed time the water as a condensed medium had global inhomogeneities similar to linear and planar defects in a solid. Anticipated own global inhomogeneities of water have been approximated by the system randomly distributed spherical clusters filling the entire water bulk. An analytical expression for the single scattered light has been derived. The formula simultaneously describes both the high anisotropy of light scattering and the high degree of polarization which one close to those for molecular scattering. It is shown that at general angles there is a qualitative coincidence with the two-component Kopelevich's model for the light scattering by marine particles. On the contrary towards to forwards angles the spectral law becomes much more prominent i.e. it corresponds to results for model of optically soft particles.
A theoretical description of inhomogeneous turbulence
International Nuclear Information System (INIS)
Turner, L.
2000-01-01
This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). In this LDRD, we have developed a highly compact and descriptive formalism that allows us to broach the theoretically formidable morass of inhomogeneous turbulence. Our formalism has two novel aspects: (a) an adaptation of helicity basis functions to represent an arbitrary incompressible channel flow and (b) the invocation of a hypothesis of random phase. A result of this compact formalism is that the mathematical description of inhomogeneous turbulence looks much like that of homogeneous turbulence--at the moment, the most rigorously explored terrain in turbulence research. As a result, we can explore the effect of boundaries on such important quantities as the gradients of mean flow, mean pressure, triple-velocity correlations and pressure velocity correlations, all of which vanish under the conventional, but artificial, assumption that the turbulence is statistically spatially uniform. Under suitable conditions, we have predicted that a mean flow gradient can develop even when none is initially present
A method to identify aperiodic disturbances in the ionosphere
Wang, J.-S.; Chen, Z.; Huang, C.-M.
2014-05-01
In this paper, variations in the ionospheric F2 layer's critical frequency are decomposed into their periodic and aperiodic components. The latter include disturbances caused both by geophysical impacts on the ionosphere and random noise. The spectral whitening method (SWM), a signal-processing technique used in statistical estimation and/or detection, was used to identify aperiodic components in the ionosphere. The whitening algorithm adopted herein is used to divide the Fourier transform of the observed data series by a real envelope function. As a result, periodic components are suppressed and aperiodic components emerge as the dominant contributors. Application to a synthetic data set based on significant simulated periodic features of ionospheric observations containing artificial (and, hence, controllable) disturbances was used to validate the SWM for identification of aperiodic components. Although the random noise was somewhat enhanced by post-processing, the artificial disturbances could still be clearly identified. The SWM was then applied to real ionospheric observations. It was found to be more sensitive than the often-used monthly median method to identify geomagnetic effects. In addition, disturbances detected by the SWM were characterized by a Gaussian-type probability density function over all timescales, which further simplifies statistical analysis and suggests that the disturbances thus identified can be compared regardless of timescale.
Inhomogeneous Markov point processes by transformation
DEFF Research Database (Denmark)
Jensen, Eva B. Vedel; Nielsen, Linda Stougaard
2000-01-01
We construct parametrized models for point processes, allowing for both inhomogeneity and interaction. The inhomogeneity is obtained by applying parametrized transformations to homogeneous Markov point processes. An interesting model class, which can be constructed by this transformation approach......, is that of exponential inhomogeneous Markov point processes. Statistical inference For such processes is discussed in some detail....
International Nuclear Information System (INIS)
Tran, A.; Polk, C.
1976-01-01
To analyze ELF wave propagation in the earth-ionosphere cavity, a flat earth approximation may be derived from the exact equations, which are applicable to the spherical cavity, by introducing a second-order or Debye approximation for the spherical Hankel functions. In the frequency range 3 to 30 Hz, however, the assumed conditions for the Debye approximation are not satisfied. For this reason an exact evaluation of the spherical Hankel functions is used to study the effects of the flat earth approximation on various propagation and resonance parameters. By comparing the resonance equation for a spherical cavity with its flat earth counterpart and by assuming that the surface impedance Z/sub i/ at the upper cavity boundary is known, the relation between the eigenvalue ν and S/sub v/, the sine of the complex angle of incidence at the lower ionosphere boundary, is established as ν(ν + 1) = (kaS/sub v/) 2 . It is also shown that the approximation ν(ν + 1) approximately equals (ν + 1/2) 2 which was used by some authors is not adequate below 30 Hz. Numerical results for both spherical and planar stratification show that (1) planar stratification is adequate for the computation of the lowest three ELF resonance frequencies to within 0.1 Hz; (2) planar stratification will lead to errors in cavity Q and wave attenuation which increase with frequency; (3) computation of resonance frequencies to within 0.1 Hz requires the extension of the lower boundary of the ionosphere to a height where the ratio of conduction current to displacement current, (sigma/ωepsilon 0 ), is less than 0.3; (4) atmospheric conductivity should be considered down to ground level in computing cavity Q and wave attenuation
Diffusion in inhomogeneous polymer membranes
Kasargod, Sameer S.; Adib, Farhad; Neogi, P.
1995-10-01
The dual mode sorption solubility isotherms assume, and in instances Zimm-Lundberg analysis of the solubilities show, that glassy polymers are heterogeneous and that the distribution of the solute in the polymer is also inhomogeneous. Under some conditions, the heterogeneities cannot be represented as holes. A mathematical model describing diffusion in inhomogeneous polymer membranes is presented using Cahn and Hilliard's gradient theory. The fractional mass uptake is found to be proportional to the fourth root of time rather than the square root, predicted by Fickian diffusion. This type of diffusion is classified as pseudo-Fickian. The model is compared with one experimental result available. A negative value of the persistence factor is obtained and the results are interpreted.
Quasiadiabatic modes from viscous inhomogeneities
Giovannini, Massimo
2016-04-20
The viscous inhomogeneities of a relativistic plasma determine a further class of entropic modes whose amplitude must be sufficiently small since curvature perturbations are observed to be predominantly adiabatic and Gaussian over large scales. When the viscous coefficients only depend on the energy density of the fluid the corresponding curvature fluctuations are shown to be almost adiabatic. After addressing the problem in a gauge-invariant perturbative expansion, the same analysis is repeated at a non-perturbative level by investigating the nonlinear curvature inhomogeneities induced by the spatial variation of the viscous coefficients. It is demonstrated that the quasiadiabatic modes are suppressed in comparison with a bona fide adiabatic solution. Because of its anomalously large tensor to scalar ratio the quasiadiabatic mode cannot be a substitute for the conventional adiabatic paradigm so that, ultimately, the present findings seems to exclude the possibility of a successful accelerated dynamics solely...
Inhomogeneities in a Friedmann universe
International Nuclear Information System (INIS)
Tauber, G.E.
1987-08-01
One of the outstanding problems in cosmology is the growth of inhomogeneities, which are characterized by an anisotropic pressure and density distribution. Following a method developed by McVittie (1967, 1968) it has been possible to find time-dependent spherically symmetric solutions of Einstein's field equations containing an arbitrary pressure and density distribution which connect smoothly to a Friedmann universe for any desired equation of state. (author). 5 refs
Theory of ionospheric heating experiments
International Nuclear Information System (INIS)
Cragin, B.L.
1975-01-01
A brief description of the F region ionospheric heating experiments is given including some historical notes and a brief summary of the observations. A theory for the phenomenon of ''artificial spread F'' is presented. The explanation is in terms of scattering by approximately field-aligned, large scale ionization density irregularities, which are produced by a thermal version of the stimulated Brillouin scattering instability in which the heating wave decays into another electromagnetic wave and an electrostatic wave of very low frequency. This thermal instability differs from conventional stimulated Brillouin scattering in that the low frequency wave is driven by differential heating in the interference pattern of the two electromagnetic waves, rather than by the usual ponderomotive force. Some aspects of the theory of the phenomenon of ''wide-band attenuation'' or ''anomalous absorption'' of a probing electromagnetic wave. Some general results from the theory of wave propagation in a random medium are used to derive equations describing the absorption of a probing electromagnetic wave due to scattering (by large scale irregularities) into new electromagnetic waves or (by small scale irregularities) into electron plasma oscillations
Sounding rockets explore the ionosphere
International Nuclear Information System (INIS)
Mendillo, M.
1990-01-01
It is suggested that small, expendable, solid-fuel rockets used to explore ionospheric plasma can offer insight into all the processes and complexities common to space plasma. NASA's sounding rocket program for ionospheric research focuses on the flight of instruments to measure parameters governing the natural state of the ionosphere. Parameters include input functions, such as photons, particles, and composition of the neutral atmosphere; resultant structures, such as electron and ion densities, temperatures and drifts; and emerging signals such as photons and electric and magnetic fields. Systematic study of the aurora is also conducted by these rockets, allowing sampling at relatively high spatial and temporal rates as well as investigation of parameters, such as energetic particle fluxes, not accessible to ground based systems. Recent active experiments in the ionosphere are discussed, and future sounding rocket missions are cited
Pi, Xiaoqing; Mannucci, Anthony J.; Verkhoglyadova, Olga; Stephens, Philip; Iijima, Bryron A.
2013-01-01
Modeling and imaging the Earth's ionosphere as well as understanding its structures, inhomogeneities, and disturbances is a key part of NASA's Heliophysics Directorate science roadmap. This invention provides a design tool for scientific missions focused on the ionosphere. It is a scientifically important and technologically challenging task to assess the impact of a new observation system quantitatively on our capability of imaging and modeling the ionosphere. This question is often raised whenever a new satellite system is proposed, a new type of data is emerging, or a new modeling technique is developed. The proposed constellation would be part of a new observation system with more low-Earth orbiters tracking more radio occultation signals broadcast by Global Navigation Satellite System (GNSS) than those offered by the current GPS and COSMIC observation system. A simulation system was developed to fulfill this task. The system is composed of a suite of software that combines the Global Assimilative Ionospheric Model (GAIM) including first-principles and empirical ionospheric models, a multiple- dipole geomagnetic field model, data assimilation modules, observation simulator, visualization software, and orbit design, simulation, and optimization software.
Martian Ionospheric Observation and Modeling
González-Galindo, Francisco
2018-02-01
The Martian ionosphere is a plasma embedded within the neutral upper atmosphere of the planet. Its main source is the ionization of the CO2-dominated Martian mesosphere and thermosphere by the energetic EUV solar radiation. The ionosphere of Mars is subject to an important variability induced by changes in its forcing mechanisms (e.g., the UV solar flux) and by variations in the neutral atmosphere (e.g., the presence of global dust storms, atmospheric waves and tides, changes in atmospheric composition, etc.). Its vertical structure is dominated by a maximum in the electron concentration placed at about 120–140 km of altitude, coincident with the peak of the ionization rate. Below, a secondary peak produced by solar X-rays and photoelectron-impact ionization is observed. A sporadic third layer, possibly of meteoric origin, has been also detected below. The most abundant ion in the Martian ionosphere is O2+, although O+ can become more abundant in the upper ionospheric layers. While below about 180–200 km the Martian ionosphere is dominated by photochemical processes, above those altitudes the dynamics of the plasma become more important. The ionosphere is also an important source of escaping particles via processes such as dissociative recombination of ions or ion pickup. So, characterization of the ionosphere provides or can provide information about such disparate systems and processes as the solar radiation getting to the planet, the neutral atmosphere, the meteoric influx, the atmospheric escape to space, or the interaction of the planet with the solar wind. It is thus not surprising that the interest about this region dates from the beginning of the space era. From the first measurements provided by the Mariner 4 mission in the 1960s to the contemporaneous observations, still ongoing, by the Mars Express and MAVEN orbiters, our current knowledge of this atmospheric region is the consequence of the accumulation of more than 50 years of discontinuous
Accretion from an inhomogeneous medium
International Nuclear Information System (INIS)
Livio, M.; Soker, N.; Koo, M. de; Savonije, G.J.
1986-01-01
The problem of accretion by a compact object from an inhomogeneous medium is studied in the general γnot=1 case. The mass accretion rate is found to decrease with increasing γ. The rate of accretion of angular momentum is found to be significantly lower than the rate at which angular momentum is deposited into the Bondi-Hoyle, symmetrical, accretion cylinder. The consequences of the results are studied for the cases of neutron stars accreting from the winds of early-type companions and white dwarfs and main-sequence stars accreting from winds of cool giants. (author)
Inhomogeneous Big Bang Nucleosynthesis Revisited
Lara, J. F.; Kajino, T.; Mathews, G. J.
2006-01-01
We reanalyze the allowed parameters for inhomogeneous big bang nucleosynthesis in light of the WMAP constraints on the baryon-to-photon ratio and a recent measurement which has set the neutron lifetime to be 878.5 +/- 0.7 +/- 0.3 seconds. For a set baryon-to-photon ratio the new lifetime reduces the mass fraction of He4 by 0.0015 but does not significantly change the abundances of other isotopes. This enlarges the region of concordance between He4 and deuterium in the parameter space of the b...
The worldwide ionospheric data base
Bilitza, Dieter
1989-01-01
The worldwide ionospheric data base is scattered over the entire globe. Different data sets are held at different institutions in the U.S., U.S.S.R., Australia, Europe, and Asia. The World Data Centers on the different continents archive and distribute part of the huge data base; the scope and cross section of the individual data holdings depend on the regional and special interest of the center. An attempt is made to pull together all the strings that point toward different ionospheric data holdings. Requesters are provided with the information about what is available and where to get it. An attempt is also made to evaluate the reliability and compatibility of the different data sets based on the consensus in the ionospheric research community. The status and accuracy of the standard ionospheric models are also discussed because they may facilitate first order assessment of ionospheric effects. This is a first step toward an ionospheric data directory within the framework of NSSDC's master directory.
The worldwide ionospheric data base
International Nuclear Information System (INIS)
Bilitza, D.
1989-04-01
The worldwide ionospheric data base is scattered over the entire globe. Different data sets are held at different institutions in the U.S., U.S.S.R., Australia, Europe, and Asia. The World Data Centers on the different continents archive and distribute part of the huge data base; the scope and cross section of the individual data holdings depend on the regional and special interest of the center. An attempt is made to pull together all the strings that point toward different ionospheric data holdings. Requesters are provided with the information about what is available and where to get it. An attempt is also made to evaluate the reliability and compatibility of the different data sets based on the consensus in the ionospheric research community. The status and accuracy of the standard ionospheric models are also discussed because they may facilitate first order assessment of ionospheric effects. This is a first step toward an ionospheric data directory within the framework of NSSDC's master directory
Casimir stress in an inhomogeneous medium
International Nuclear Information System (INIS)
Philbin, T.G.; Xiong, C.; Leonhardt, U.
2010-01-01
The Casimir effect in an inhomogeneous dielectric is investigated using Lifshitz's theory of electromagnetic vacuum energy. A permittivity function that depends continuously on one Cartesian coordinate is chosen, bounded on each side by homogeneous dielectrics. The result for the Casimir stress is infinite everywhere inside the inhomogeneous region, a divergence that does not occur for piece-wise homogeneous dielectrics with planar boundaries. A Casimir force per unit volume can be extracted from the infinite stress but it diverges on the boundaries between the inhomogeneous medium and the homogeneous dielectrics. An alternative regularization of the vacuum stress is considered that removes the contribution of the inhomogeneity over small distances, where macroscopic electromagnetism is invalid. The alternative regularization yields a finite Casimir stress inside the inhomogeneous region, but the stress and force per unit volume diverge on the boundaries with the homogeneous dielectrics. The case of inhomogeneous dielectrics with planar boundaries thus falls outside the current understanding of the Casimir effect.
Large scale inhomogeneities and the cosmological principle
International Nuclear Information System (INIS)
Lukacs, B.; Meszaros, A.
1984-12-01
The compatibility of cosmologic principles and possible large scale inhomogeneities of the Universe is discussed. It seems that the strongest symmetry principle which is still compatible with reasonable inhomogeneities, is a full conformal symmetry in the 3-space defined by the cosmological velocity field, but even in such a case, the standard model is isolated from the inhomogeneous ones when the whole evolution is considered. (author)
Inhomogeneous dusty Universes and their deceleration
Giovannini, Massimo
2006-01-01
Exact results stemming directly from Einstein equations imply that inhomogeneous Universes endowed with vanishing pressure density can only decelerate, unless the energy density of the Universe becomes negative. Recent proposals seem to argue that inhomogeneous (but isotropic) space-times, filled only with incoherent matter,may turn into accelerated Universes for sufficiently late times. To scrutinize these scenarios, fully inhomogeneous Einstein equations are discussed in the synchronous system. In a dust-dominated Universe, the inhomogeneous generalization of the deceleration parameter is always positive semi-definite implying that no acceleration takes place.
Research to Operations of Ionospheric Scintillation Detection and Forecasting
Jones, J.; Scro, K.; Payne, D.; Ruhge, R.; Erickson, B.; Andorka, S.; Ludwig, C.; Karmann, J.; Ebelhar, D.
Ionospheric Scintillation refers to random fluctuations in phase and amplitude of electromagnetic waves caused by a rapidly varying refractive index due to turbulent features in the ionosphere. Scintillation of transionospheric UHF and L-Band radio frequency signals is particularly troublesome since this phenomenon can lead to degradation of signal strength and integrity that can negatively impact satellite communications and navigation, radar, or radio signals from other systems that traverse or interact with the ionosphere. Although ionospheric scintillation occurs in both the equatorial and polar regions of the Earth, the focus of this modeling effort is on equatorial scintillation. The ionospheric scintillation model is data-driven in a sense that scintillation observations are used to perform detection and characterization of scintillation structures. These structures are then propagated to future times using drift and decay models to represent the natural evolution of ionospheric scintillation. The impact on radio signals is also determined by the model and represented in graphical format to the user. A frequency scaling algorithm allows for impact analysis on frequencies other than the observation frequencies. The project began with lab-grade software and through a tailored Agile development process, deployed operational-grade code to a DoD operational center. The Agile development process promotes adaptive promote adaptive planning, evolutionary development, early delivery, continuous improvement, regular collaboration with the customer, and encourage rapid and flexible response to customer-driven changes. The Agile philosophy values individuals and interactions over processes and tools, working software over comprehensive documentation, customer collaboration over contract negotiation, and responding to change over following a rigid plan. The end result was an operational capability that met customer expectations. Details of the model and the process of
Estimating functions for inhomogeneous Cox processes
DEFF Research Database (Denmark)
Waagepetersen, Rasmus
2006-01-01
Estimation methods are reviewed for inhomogeneous Cox processes with tractable first and second order properties. We illustrate the various suggestions by means of data examples.......Estimation methods are reviewed for inhomogeneous Cox processes with tractable first and second order properties. We illustrate the various suggestions by means of data examples....
Low-latitude ionospheric disturbances associated with earthquakes
Energy Technology Data Exchange (ETDEWEB)
Depueva, A.; Rotanova, N. [Russian Academy of Sciences, Inst. of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Moscow (Russian Federation)
2001-04-01
Topside electron density measured on satellite board was analysed. It was shown that before the two considered earthquakes with their epicenters located at low and equatorial latitudes the stable modification of the ionosphere both at and above the height of the F-layer peak was observed. Electron density gradually decreased and its spatial distribution looked like a funnel located either immediately over the epicenter or from its one side. Electron density irregularities of 300-500 km size in a meridional direction also occurred side by side with aforesaid background large-scale depletions. For detection of local structures of more than 1000 km extent, the method of natural orthogonal component expansion was applied; spectra of smaller scale inhomogeneities were investigated by means of the Blackman-Tukey method. A proposal is made for observed experimental data interpretation.
Liu, Yu; Zhang, Zhongkai; Lei, Jiuhou; Cao, Jinxiang; Yu, Pengcheng; Zhang, Xiao; Xu, Liang; Zhao, Yaodong
2016-09-01
In this work, the design and construction of the Keda Space Plasma EXperiment (KSPEX), which aims to study the boundary layer processes of ionospheric depletions, are described in detail. The device is composed of three stainless-steel sections: two source chambers at both ends and an experimental chamber in the center. KSPEX is a steady state experimental device, in which hot filament arrays are used to produce plasmas in the two sources. A Macor-mesh design is adopted to adjust the plasma density and potential difference between the two plasmas, which creates a boundary layer with a controllable electron density gradient and inhomogeneous radial electric field. In addition, attachment chemicals can be released into the plasmas through a tailor-made needle valve which leads to the generation of negative ions plasmas. Ionospheric depletions can be modeled and simulated using KSPEX, and many micro-physical processes of the formation and evolution of an ionospheric depletion can be experimentally studied.
Metrology and ionospheric observation standards
Panshin, Evgeniy; Minligareev, Vladimir; Pronin, Anton
Accuracy and ionospheric observation validity are urgent trends nowadays. WMO, URSI and national metrological and standardisation services bring forward requirements and descriptions of the ionospheric observation means. Researches in the sphere of metrological and standardisation observation moved to the next level in the Russian Federation. Fedorov Institute of Applied Geophysics (IAG) is in charge of ionospheric observation in the Russian Federation and the National Technical Committee, TC-101 , which was set up on the base of IAG- of the standardisation in the sphere. TC-101 can be the platform for initiation of the core international committee in the network of ISO The new type of the ionosounde “Parus-A” is engineered, which is up to the national requirements. “Parus-A” calibration and test were conducted by National metrological Institute (NMI) -D.I. Mendeleyev Institute for Metrology (VNIIM), signed CIMP MRA in 1991. VNIIM is a basic NMI in the sphere of Space weather (including ionospheric observations), the founder of which was celebrated chemist and metrologist Dmitriy I. Mendeleyev. Tests and calibration were carried out for the 1st time throughout 50-year-history of ionosonde exploitation in Russia. The following metrological characteristics were tested: -measurement range of radiofrequency time delay 0.5-10 ms; -time measurement inaccuracy of radio- frequency pulse ±12mcs; -frequency range of radio impulse 1-20 MHz ; -measurement inaccuracy of radio impulse carrier frequency± 5KHz. For example, the sound impulse simulator that was built-in in the ionosounde was used for measurement range of radiofrequency time delay testing. The number of standards on different levels is developed. - “Ionospheric observation guidance”; - “The Earth ionosphere. Terms and definitions”.
New Model for Ionospheric Irregularities at Mars
Keskinen, M. J.
2018-03-01
A new model for ionospheric irregularities at Mars is presented. It is shown that wind-driven currents in the dynamo region of the Martian ionosphere can be unstable to the electromagnetic gradient drift instability. This plasma instability can generate ionospheric density and magnetic field irregularities with scale sizes of approximately 15-20 km down to a few kilometers. We show that the instability-driven magnetic field fluctuation amplitudes relative to background are correlated with the ionospheric density fluctuation amplitudes relative to background. Our results can explain recent observations made by the Mars Atmosphere and Volatile EvolutioN spacecraft in the Martian ionosphere dynamo region.
International Nuclear Information System (INIS)
Mahalov, Alex
2014-01-01
Multiscale modeling and high resolution three-dimensional simulations of nonequilibrium ionospheric dynamics are major frontiers in the field of space sciences. The latest developments in fast computational algorithms and novel numerical methods have advanced reliable forecasting of ionospheric environments at fine scales. These new capabilities include improved physics-based predictive modeling, nesting and implicit relaxation techniques that are designed to integrate models of disparate scales. A range of scales, from mesoscale to ionospheric microscale, are included in a 3D modeling framework. Analyses and simulations of primary and secondary Rayleigh–Taylor instabilities in the equatorial spread F (ESF), the response of the plasma density to the neutral turbulent dynamics, and wave breaking in the lower region of the ionosphere and nonequilibrium layer dynamics at fine scales are presented for coupled systems (ions, electrons and neutral winds), thus enabling studies of mesoscale/microscale dynamics for a range of altitudes that encompass the ionospheric E and F layers. We examine the organizing mixing patterns for plasma flows, which occur due to polarized gravity wave excitations in the neutral field, using Lagrangian coherent structures (LCS). LCS objectively depict the flow topology and the extracted scintillation-producing irregularities that indicate a generation of ionospheric density gradients, due to the accumulation of plasma. The scintillation effects in propagation, through strongly inhomogeneous ionospheric media, are induced by trapping electromagnetic (EM) waves in parabolic cavities, which are created by the refractive index gradients along the propagation paths. (paper)
Inhomogenous loop quantum cosmology with matter
International Nuclear Information System (INIS)
Martín-de Bias, D; Mena Marugán, G A; Martín-Benito, M
2012-01-01
The linearly polarized Gowdy T 3 model with a massless scalar field with the same symmetries as the metric is quantized by applying a hybrid approach. The homogeneous geometry degrees of freedom are loop quantized, fact which leads to the resolution of the cosmological singularity, while a Fock quantization is employed for both matter and gravitational inhomogeneities. Owing to the inclusion of the massless scalar field this system allows us to modelize flat Friedmann-Robertson-Walker cosmologies filled with inhomogeneities propagating in one direction. It provides a perfect scenario to study the quantum back-reaction between the inhomogeneities and the polymeric homogeneous and isotropic background.
Inhomogeneous electric field air cleaner
International Nuclear Information System (INIS)
Schuster, B.G.
1976-01-01
For applications requiring the filtration of air contaminated with enriched uranium, plutonium or other transuranium compounds, it appears desirable to collect the material in a fashion more amenable to recovery than is now practical when material is collected on HEPA filters. In some instances, it may also be desirable to use an air cleaner of this type to substantially reduce the loading to which HEPA filters are subjected. A theoretical evaluation of such an air cleaner considers the interaction between an electrically neutral particle, dielectric or conducting, with an inhomogeneous electric field. An expression is derived for the force exerted on a particle in an electrode configuration of two concentric cylinders. Equations of motion are obtained for a particle suspended in a laminar flow of air passing through this geometry. An electrical quadrupole geometry is also examined and shown to be inferior to the cylindrical one. The results of two separate configurations of the single cell prototypes of the proposed air cleaner are described. These tests were designed to evaluate collection efficiencies using mono-disperse polystyrene latex and polydisperse NaCl aerosols. The advantages and problems of such systems in terms of a large scale air cleaning facility will be discussed
Effects of the equatorial ionosphere on L-band Earth-space transmissions
Smith, Ernest K.; Flock, Warren L.
1993-01-01
Ionosphere scintillation can effect satellite telecommunication up to Ku-band. Nighttime scintillation can be attributed to large-scale inhomogeneity in the F-region of the ionosphere predominantly between heights of 200 and 600 km. Daytime scintillation has been attributed to sporadic E. It can be thought of as occurring in three belts: equatorial, high-latitude, and mid-latitude, in order of severity. Equatorial scintillation occurs between magnetic latitudes +/- 25 degrees, peaking near +/- 10 degrees. It commonly starts abruptly near 2000 local time and dies out shortly after midnight. There is a strong solar cycle dependence and a seasonal preference for the equinoxes, particularly the vernal one. Equatorial scintillation occurs more frequently on magnetically quiet than on magnetically disturbed days in most longitudes. At the peak of the sunspot cycle scintillation depths as great as 20 dB were observed at L-band.
Multiscale Modeling of Ionospheric Irregularities
2014-10-22
numerical simulations of ionospheric plasma density structures associated with nonlinear evolution of the Rayleigh-Taylor (RT) instabilities in...model was developed to resolve the transport pat- terns of plasma density coupled with neutral atmospheric dynamics. Inclusion of neutral dynamics in...trapping electromagnetic (EM) waves in parabolic cavities, which are created by the refractive index gradients along the propagation paths. Keywords
Interplanetary phenomenon, geomagnetic and ionospheric ...
African Journals Online (AJOL)
The analysis of the D(foF2) plots appear to show that the storm event is characterized by (i) the occurrence of positive ionospheric storm at the high latitudes and mid latitude stations of Khabarovsk, Yamagawa and Okinawa stations before the beginning of the storm event (ii) Presence of strong negative phase at Manila, ...
DEFF Research Database (Denmark)
Yuan, Y.; Tscherning, C.C.; Knudsen, Per
2006-01-01
A new method for modeling the ionospheric delay using global positioning system (GPS) data is proposed, called the ionospheric eclipse factor method (IEFM). It is based on establishing a concept referred to as the ionospheric eclipse factor (IEF) lambda of the ionospheric pierce point (IPP....... The IEFM-based ionospheric delay estimates are validated by combining an absolute positioning mode with several ionospheric delay correction models or algorithms, using GPS data at an international Global Navigation Satellite System (GNSS) service (IGS) station (WTZR). Our results indicate that the IEFM...
Plasma waves in an inhomogeneous cylindrical plasma
International Nuclear Information System (INIS)
Pesic, S.S.
1976-01-01
The complete dispersion equation governing small amplitude plasma waves propagating in an inhomogeneous cylindrical plasma confined by a helical magnetic field is solved numerically. The efficiency of the wave energy thermalization in the lower hybrid frequency range is studied
Ehrenfest force in inhomogeneous magnetic field
International Nuclear Information System (INIS)
Sisakyan, A.N.; Shevchenko, O.Yu.; Samojlov, V.N.
2000-01-01
The Ehrenfest force in an inhomogeneous magnetic field is calculated. It is shown that there exist such (very rare) topologically nontrivial physical situations when the Gauss theorem in its classic formulation fails and, as a consequence, apart from the usual Lorentz force an additional, purely imaginary force acts on the charged particle. This force arises only in inhomogeneous magnetic fields of special configurations, has a purely quantum origin, and disappears in the classical limit
Impact of cosmic inhomogeneities on SNe observations
Kainulainen, Kimmo; Marra, Valerio
2010-06-01
We study the impact of cosmic inhomogeneities on the interpretation of SNe observations. We build an inhomogeneous universe model that can confront supernova data and yet is reasonably well compatible with the Copernican Principle. Our model combines a relatively small local void, that gives apparent acceleration at low redshifts, with a meatball model that gives sizeable lensing (dimming) at high redshifts. Together these two elements, which focus on different effects of voids on the data, allow the model to mimic the concordance model.
Inhomogeneous inflation: The initial-value problem
International Nuclear Information System (INIS)
Laguna, P.; Kurki-Suonio, H.; Matzner, R.A.
1991-01-01
We present a spatially three-dimensional study for solving the initial-value problem in general relativity for inhomogeneous cosmologies. We use York's conformal approach to solve the constraint equations of Einstein's field equations for scalar field sources and find the initial data which will be used in the evolution. This work constitutes the first stage in the development of a code to analyze the effects of matter and spacetime inhomogeneities on inflation
International Nuclear Information System (INIS)
Aksenov, V.I.; Artem'eva, u.M.; Komrakov, G.P.; Skrebkova, L.A.
1982-01-01
Results of investigations into inhomogeneities of electron concentration obtained in 1973 by means of '' the Interkosmos-Kopernik-500'' satellite are presented. A high-frequency impedance probe installed at the satellite (3.1 and 15 MHz working frequencies) provided measurement of the electron concentration in ionosphere in the ranges from 10 3 to 1.8x10 6 cm -3 and of its inhomogeneities of sizes from 0.5 to 100 km having relative fluctuations ΔN/N >= 3x10 -4 . Probability P of appearance of the electron concentration inhomogeneities with relative fluctuations √ (ΔN/N) 2 >= 0.2% at altitudes of 200-1500 km changes within the limits from 2 to 60-70% for middle and equatorial latitudes. The highest probability of the inhomogeneity appearance in the summer hemisphere (northern hemispere) is observed above the maximum of F 2 stratum. Values P at 400-1500 km altitudes at night-time increase from equatorial latitudes to middle ones. At Ksub(p) 2 at altitudes H > 400 km in the northern (summer) hemisphere are mainly lower than in the southern (winter). During the periods of increased geomagnetic activity (Ksub(p) > 3) the probabilities of the inhomogeneity appearance for the latitudes (middle and equatorial) under investigation change insignificantly as a whole. Power character of the inhomogeneous structures spectra at the altitudes of the F region and partially outer ionosphere at middle, low and equatorial latitudes of the northern and southern hemispheres is their common characteristic feature
Perturbed soliton excitations in inhomogeneous DNA
International Nuclear Information System (INIS)
Daniel, M.; Vasumathi, V.
2005-05-01
We study nonlinear dynamics of inhomogeneous DNA double helical chain under dynamic plane-base rotator model by considering angular rotation of bases in a plane normal to the helical axis. The DNA dynamics in this case is found to be governed by a perturbed sine-Gordon equation when taking into account the interstrand hydrogen bonding energy and intrastrand inhomogeneous stacking energy and making an analogy with the Heisenberg model of the Hamiltonian for an inhomogeneous anisotropic spin ladder with ferromagnetic legs and antiferromagentic rung coupling. In the homogeneous limit the dynamics is governed by the kink-antikink soliton of the sine-Gordon equation which represents the formation of open state configuration in DNA double helix. The effect of inhomogeneity in stacking energy in the form of localized and periodic variations on the formation of open states in DNA is studied under perturbation. The perturbed soliton is obtained using a multiple scale soliton perturbation theory by solving the associated linear eigen value problem and constructing the complete set of eigen functions. The inhomogeneity in stacking energy is found to modulate the width and speed of the soliton depending on the nature of inhomogeneity. Also it introduces fluctuations in the form of train of pulses or periodic oscillation in the open state configuration (author)
Preface: International Reference Ionosphere - Progress in Ionospheric Modelling
Bilitza Dieter; Reinisch, Bodo
2010-01-01
The international reference ionosphere (lRI) is the internationally recommended empirical model for the specification of ionospheric parameters supported by the Committee on Space Research (COSPAR) and the International Union of Radio Science (URSI) and recognized by the International Standardization Organization (ISO). IRI is being continually improved by a team of international experts as new data become available and better models are being developed. This issue chronicles the latest phase of model updates as reported during two IRI-related meetings. The first was a special session during the Scientific Assembly of the Committee of Space Research (COSPAR) in Montreal, Canada in July 2008 and the second was an IRI Task Force Activity at the US Air Force Academy in Colorado Springs in May 2009. This work led to several improvements and additions of the model which will be included in the next version, IRI-201O. The issue is divided into three sections focusing on the improvements made in the topside ionosphere, the F-peak, and the lower ionosphere, respectively. This issue would not have been possible without the reviewing efforts of many individuals. Each paper was reviewed by two referees. We thankfully acknowledge the contribution to this issue made by the following reviewers: Jacob Adeniyi, David Altadill, Eduardo Araujo, Feza Arikan, Dieter Bilitza, Jilijana Cander, Bela Fejer, Tamara Gulyaeva, Manuel Hermindez-Pajares, Ivan Kutiev, John MacDougal, Leo McNamara, Bruno Nava, Olivier Obrou, Elijah Oyeyemi, Vadym Paznukhov, Bodo Reinisch, John Retterer, Phil Richards, Gary Sales, J.H. Sastri, Ludger Scherliess, Iwona Stanislavska, Stamir Stankov, Shin-Yi Su, Manlian Zhang, Y ongliang Zhang, and Irina Zakharenkova. We are grateful to Peggy Ann Shea for her final review and guidance as the editor-in-chief for special issues of Advances in Space Research. We thank the authors for their timely submission and their quick response to the reviewer comments and humbly
Characterising the Ionosphere (La caracterisation de l’ionosphere)
2009-01-01
2003; Valdivia , 2003; Tong et al ., 2004). Tidal motions and planetary waves in the thermosphere have significant influence on ionospheric...such as storms, earthquakes and volcanic explosions may produce F2-layer signatures (Rishbeth, 2006 ). Kazimirovsky et al . (2003) have reviewed such...possible effects. Pulinets et al . ( 2006 ) have published a case study of anomalous variations of the total electron content (TEC) registered over the
Lagopedo: two F-region ionospheric depletion experiments
International Nuclear Information System (INIS)
Pongratz, M.B.; Smith, G.M.; Sutherland, C.D.; Zinn, J.
1977-01-01
A significant depletion of ionospheric plasma was produced by a chemical release experiment in the F-layer ionosphere over Hawaii. The results of measurements of the hole produced in the ionospheric plasma are reported
Ionospheric effects of thunderstorms and lightning
Energy Technology Data Exchange (ETDEWEB)
Lay, Erin H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2014-02-03
Tropospheric thunderstorms have been reported to disturb the lower ionosphere (~65-90 km) by convective atmospheric gravity waves and by electromagnetic field changes produced by lightning discharges. However, due to the low electron density in the lower ionosphere, active probing of its electron distribution is difficult, and the various perturbative effects are poorly understood. Recently, we have demonstrated that by using remotely-detected ?me waveforms of lightning radio signals it is possible to probe the lower ionosphere and its fluctuations in a spatially and temporally-resolved manner. Here we report evidence of gravity wave effects on the lower ionosphere originating from the thunderstorm. We also report variations in the nighttime ionosphere atop a small thunderstorm and associate the variations with the storm’s electrical activity. Finally, we present a data analysis technique to map ionospheric acoustic waves near thunderstorms.
Developing an ionospheric map for South Africa
Directory of Open Access Journals (Sweden)
D. I. Okoh
2010-07-01
Full Text Available The development of a map of the ionosphere over South Africa is presented in this paper. The International Reference Ionosphere (IRI model, South African Bottomside Ionospheric Model (SABIM, and measurements from ionosondes in the South African Ionosonde Network, were combined within their own limitations to develop an accurate representation of the South African ionosphere. The map is essentially in the form of a computer program that shows spatial and temporal representations of the South African ionosphere for a given set of geophysical parameters. A validation of the map is attempted using a comparison of Total Electron Content (TEC values derived from the map, from the IRI model, and from Global Positioning System (GPS measurements. It is foreseen that the final South African ionospheric map will be implemented as a Space Weather product of the African Space Weather Regional Warning Centre.
Ionospheric behaviour during storm recovery phase
Buresova, D.; Lastovicka, J.; Boska, J.; Sindelarova, T.; Chum, J.
2012-04-01
Intensive ionospheric research, numerous multi-instrumental observations and large-scale numerical simulations of ionospheric F region response to magnetic storm-induced disturbances during the last several decades were primarily focused on the storm main phase, in most cases covering only a few hours of the recovery phase following after storm culmination. Ionospheric behaviour during entire recovery phase still belongs to not sufficiently explored and hardly predictable features. In general, the recovery phase is characterized by an abatement of perturbations and a gradual return to the "ground state" of ionosphere. However, observations of stormy ionosphere show significant departures from the climatology also within this phase. This paper deals with the quantitative and qualitative analysis of the ionospheric behaviour during the entire recovery phase of strong-to-severe magnetic storms at middle latitudes for nowadays and future modelling and forecasting purposes.
Inverse problem of radiofrequency sounding of ionosphere
Velichko, E. N.; Yu. Grishentsev, A.; Korobeynikov, A. G.
2016-01-01
An algorithm for the solution of the inverse problem of vertical ionosphere sounding and a mathematical model of noise filtering are presented. An automated system for processing and analysis of spectrograms of vertical ionosphere sounding based on our algorithm is described. It is shown that the algorithm we suggest has a rather high efficiency. This is supported by the data obtained at the ionospheric stations of the so-called “AIS-M” type.
Ionospheric Change and Solar EUV Irradiance
Sojka, J. J.; David, M.; Jensen, J. B.; Schunk, R. W.
2011-12-01
The ionosphere has been quantitatively monitored for the past six solar cycles. The past few years of observations are showing trends that differ from the prior cycles! Our good statistical relationships between the solar radio flux index at 10.7 cm, the solar EUV Irradiance, and the ionospheric F-layer peak density are showing indications of divergence! Present day discussion of the Sun-Earth entering a Dalton Minimum would suggest change is occurring in the Sun, as the driver, followed by the Earth, as the receptor. The dayside ionosphere is driven by the solar EUV Irradiance. But different components of this spectrum affect the ionospheric layers differently. For a first time the continuous high cadence EUV spectra from the SDO EVE instrument enable ionospheric scientists the opportunity to evaluate solar EUV variability as a driver of ionospheric variability. A definitive understanding of which spectral components are responsible for the E- and F-layers of the ionosphere will enable assessments of how over 50 years of ionospheric observations, the solar EUV Irradiance has changed. If indeed the evidence suggesting the Sun-Earth system is entering a Dalton Minimum periods is correct, then the comprehensive EVE solar EUV Irradiance data base combined with the ongoing ionospheric data bases will provide a most fortuitous fiduciary reference baseline for Sun-Earth dependencies. Using the EVE EUV Irradiances, a physics based ionospheric model (TDIM), and 50 plus years of ionospheric observation from Wallops Island (Virginia) the above Sun-Earth ionospheric relationship will be reported on.
HAARP-Induced Ionospheric Ducts
International Nuclear Information System (INIS)
Milikh, Gennady; Vartanyan, Aram
2011-01-01
It is well known that strong electron heating by a powerful HF-facility can lead to the formation of electron and ion density perturbations that stretch along the magnetic field line. Those density perturbations can serve as ducts for ELF waves, both of natural and artificial origin. This paper presents observations of the plasma density perturbations caused by the HF-heating of the ionosphere by the HAARP facility. The low orbit satellite DEMETER was used as a diagnostic tool to measure the electron and ion temperature and density along the satellite orbit overflying close to the magnetic zenith of the HF-heater. Those observations will be then checked against the theoretical model of duct formation due to HF-heating of the ionosphere. The model is based on the modified SAMI2 code, and is validated by comparison with well documented experiments.
Global Application of TaiWan Ionospheric Model to Single-Frequency GPS Positioning
Macalalad, E.; Tsai, L. C.; Wu, J.
2012-04-01
Ionospheric delay is one the major sources of error in GPS positioning and navigation. This error in both pseudorange and phase ranges vary depending on the location of observation, local time, season, solar cycle and geomagnetic activity. For single-frequency receivers, this delay is usually removed using ionospheric models. Two of them are the Klobuchar, or broadcast, model and the global ionosphere map (GIM) provided by the International GNSS Service (IGS). In this paper, a three dimensional ionospheric electron (ne) density model derived from FormoSat3/COSMIC GPS Radio Occultation measurements, called the TaiWan Ionosphere Model, is used. It was used to calculate the slant total electron content (STEC) between receiver and GPS satellites to correct the pseudorange single-frequency observations. The corrected pseudorange for every epoch was used to determine a more accurate position of the receiver. Observations were made in July 2, 2011(Kp index = 0-2) in five randomly selected sites across the globe, four of which are IGS stations (station ID: cnmr, coso, irkj and morp) while the other is a low-cost single-frequency receiver located in Chungli City, Taiwan (ID: isls). It was illustrated that TEC maps generated using TWIM exhibited a detailed structure of the ionosphere, whereas Klobuchar and GIM only provided the basic diurnal and geographic features of the ionosphere. Also, it was shown that for single-frequency static point positioning TWIM provides more accurate and more precise positioning than the Klobuchar and GIM models for all stations. The average %error of the corrections made by Klobuchar, GIM and TWIM in DRMS are 3.88%, 0.78% and 17.45%, respectively. While the average %error in VRMS for Klobuchar, GIM and TWIM are 53.55%, 62.09%, 66.02%, respectively. This shows the capability of TWIM to provide a good global 3-dimensional ionospheric model.
Complex network description of the ionosphere
Lu, Shikun; Zhang, Hao; Li, Xihai; Li, Yihong; Niu, Chao; Yang, Xiaoyun; Liu, Daizhi
2018-03-01
Complex networks have emerged as an essential approach of geoscience to generate novel insights into the nature of geophysical systems. To investigate the dynamic processes in the ionosphere, a directed complex network is constructed, based on a probabilistic graph of the vertical total electron content (VTEC) from 2012. The results of the power-law hypothesis test show that both the out-degree and in-degree distribution of the ionospheric network are not scale-free. Thus, the distribution of the interactions in the ionosphere is homogenous. None of the geospatial positions play an eminently important role in the propagation of the dynamic ionospheric processes. The spatial analysis of the ionospheric network shows that the interconnections principally exist between adjacent geographical locations, indicating that the propagation of the dynamic processes primarily depends on the geospatial distance in the ionosphere. Moreover, the joint distribution of the edge distances with respect to longitude and latitude directions shows that the dynamic processes travel further along the longitude than along the latitude in the ionosphere. The analysis of small-world-ness indicates that the ionospheric network possesses the small-world property, which can make the ionosphere stable and efficient in the propagation of dynamic processes.
Ionospheric research for space weather service support
Stanislawska, Iwona; Gulyaeva, Tamara; Dziak-Jankowska, Beata
2016-07-01
Knowledge of the behavior of the ionosphere is very important for space weather services. A wide variety of ground based and satellite existing and future systems (communications, radar, surveillance, intelligence gathering, satellite operation, etc) is affected by the ionosphere. There are the needs for reliable and efficient support for such systems against natural hazard and minimalization of the risk failure. The joint research Project on the 'Ionospheric Weather' of IZMIRAN and SRC PAS is aimed to provide on-line the ionospheric parameters characterizing the space weather in the ionosphere. It is devoted to science, techniques and to more application oriented areas of ionospheric investigation in order to support space weather services. The studies based on data mining philosophy increasing the knowledge of ionospheric physical properties, modelling capabilities and gain applications of various procedures in ionospheric monitoring and forecasting were concerned. In the framework of the joint Project the novel techniques for data analysis, the original system of the ionospheric disturbance indices and their implementation for the ionosphere and the ionospheric radio wave propagation are developed since 1997. Data of ionosonde measurements and results of their forecasting for the ionospheric observatories network, the regional maps and global ionospheric maps of total electron content from the navigational satellite system (GNSS) observations, the global maps of the F2 layer peak parameters (foF2, hmF2) and W-index of the ionospheric variability are provided at the web pages of SRC PAS and IZMIRAN. The data processing systems include analysis and forecast of geomagnetic indices ap and kp and new eta index applied for the ionosphere forecasting. For the first time in the world the new products of the W-index maps analysis are provided in Catalogues of the ionospheric storms and sub-storms and their association with the global geomagnetic Dst storms is
A STUDY ON THE KOREAN IONOSPHERIC VARIABILITY
Directory of Open Access Journals (Sweden)
Seok-Hee Bae
1992-06-01
Full Text Available The ionosphere in accordance with solar activity can affect the transmission of radio waves. The effect of the ionosphere on the radio wave propagation are scattering of radio waves, attenuation, angle error, ranging error, and time delay. The present study is based on the Korean ionospheirc data obtained at the AnYang Radio Research Laboratory from January 1985 through October 1989. The data are analyzed to show the daily and the annual variations of the ionosphere. The data are also used to simulate the density distribution of the Korean ionosphere following the Chapman law.
Ionospheric phenomena before strong earthquakes
Directory of Open Access Journals (Sweden)
A. S. Silina
2001-01-01
Full Text Available A statistical analysis of several ionospheric parameters before earthquakes with magnitude M > 5.5 located less than 500 km from an ionospheric vertical sounding station is performed. Ionospheric effects preceding "deep" (depth h > 33 km and "crust" (h 33 km earthquakes were analysed separately. Data of nighttime measurements of the critical frequencies foF2 and foEs, the frequency fbEs and Es-spread at the middle latitude station Dushanbe were used. The frequencies foF2 and fbEs are proportional to the square root of the ionization density at heights of 300 km and 100 km, respectively. It is shown that two days before the earthquakes the values of foF2 averaged over the morning hours (00:00 LT–06:00 LT and of fbEs averaged over the nighttime hours (18:00 LT–06:00 LT decrease; the effect is stronger for the "deep" earthquakes. Analysing the coefficient of semitransparency which characterizes the degree of small-scale turbulence, it was shown that this value increases 1–4 days before "crust" earthquakes, and it does not change before "deep" earthquakes. Studying Es-spread which manifests itself as diffuse Es track on ionograms and characterizes the degree of large-scale turbulence, it was found that the number of Es-spread observations increases 1–3 days before the earthquakes; for "deep" earthquakes the effect is more intensive. Thus it may be concluded that different mechanisms of energy transfer from the region of earthquake preparation to the ionosphere occur for "deep" and "crust" events.
Triton's Ionosphere: Chemistry and Composition
Delitsky, Mona
2006-09-01
The ionosphere of Triton was observed by the Voyager spacecraft in 1989 to have a remarkably high electron density of 40,000/cc at its peak altitude. Delitsky et al. (1990) modeled this ionosphere using only N2 and CH4, the constituents of the atmosphere known at that time, and found that, at the extremely cold temperatures in the Triton atmosphere, cluster ions would form. These clusters are created when N+ or N2+ resulting from photolysis or radiolysis accrete neutral N2 molecules and form ions such as (N2+(N2)n). In these clusters, n can be very high, around 50-100, depending on temperature. Cluster ions easily sweep up electrons at the low altitudes where they form (keeping the e- content low) which leads to dissociative recombination. This neutralizes the cluster ions and releases the N2 molecules back into the atmosphere. In 1991, CO and CO2 were observed on Triton (Cruikshank et al. 1991). At Tritonian temperatures, CO will have a very high vapor pressure and could constitute up to 6% of the Triton atmosphere. Any N+ or N2+ will charge exchange with CO (and NO from chemistry) to yield CO+, NO+ and C+. These then become the core ions to the clusters (CO+(N2)n), (NO+(N2)n), or (C+(N2)n). (Delitsky et al. 1992, Delitsky, 1995). Clusters cannot form at higher altitudes and lower pressures and so at the peak altitude, the ionosphere is comprised almost totally of C+ ions. From modeling, CO + hv -> C+ (+ O) does not appear to be an important source of the C+ . Rather, the charge exchange reaction, CO+ + C -> C+ + CO produces the C+ which charge balances the electrons in the ionosphere. Ref: Cruikshank et al., BAAS, 23,1208 (1991);.. Delitsky et al. GRL, 17, 1725 (1990); ..Delitsky et al. Neptune conf, 1992; ..Delitsky, BAAS, 27, 1100 (1995)
Soliton collapse during ionospheric heating
International Nuclear Information System (INIS)
Sheerin, J.P.; Nicholson, D.R.; Payne, G.L.; Duncan, L.M.
1984-01-01
We present analytical and numerical work which indicates that during ionospheric heating with high-powered hf radio waves, the oscillating two-stream instability may dominate the parametric decay instability. The oscillating two-stream instability saturates nonlinearly through the formation of solitons which undergo a collisionally damped collapse. Using the heater and radar facilities at Arecibo Observatory, we have investigated this phenomenon experimentally. Recent results from our theoretical and experimental investigations are presented
Electrodynamics of the Martian Ionosphere
Ledvina, S. A.; Brecht, S. H.
2017-12-01
The presence of the Martian crustal magnetic fields makes a significant modification to the interaction between the solar wind/IMF and the ionosphere of the planet. This paper presents the results of 3-D hybrid simulations of Martian solar wind interaction containing the Martian crustal fields., self-consistent ionospheric chemistry and planetary rotation. It has already been reported that the addition of the crustal fields and planetary rotation makes a significant modification of the ionospheric loss from Mars, Brecht et al., 2016. This paper focuses on two other aspects of the interaction, the electric fields and the current systems created by the solar wind interaction. The results of several simulations will be analyzed and compared. The electric fields around Mars due to its interaction with the solar wind will be examined. Special attention will be paid to the electric field constituents (∇ X B, ∇Pe, ηJ). Regions where the electric field is parallel to the magnetic field will be found and the implications of these regions will be discussed. Current systems for each ion species will be shown. Finally the effects on the electric fields and the current systems due to the rotation of Mars will be examined.
TRIO (Triplet Ionospheric Observatory) Mission
Lee, D.; Seon, J.; Jin, H.; Kim, K.; Lee, J.; Jang, M.; Pak, S.; Kim, K.; Lin, R. P.; Parks, G. K.; Halekas, J. S.; Larson, D. E.; Eastwood, J. P.; Roelof, E. C.; Horbury, T. S.
2009-12-01
Triplets of identical cubesats will be built to carry out the following scientific objectives: i) multi-observations of ionospheric ENA (Energetic Neutral Atom) imaging, ii) ionospheric signature of suprathermal electrons and ions associated with auroral acceleration as well as electron microbursts, and iii) complementary measurements of magnetic fields for particle data. Each satellite, a cubesat for ion, neutral, electron, and magnetic fields (CINEMA), is equipped with a suprathermal electron, ion, neutral (STEIN) instrument and a 3-axis magnetometer of magnetoresistive sensors. TRIO is developed by three institutes: i) two CINEMA by Kyung Hee University (KHU) under the WCU program, ii) one CINEMA by UC Berkeley under the NSF support, and iii) three magnetometers by Imperial College, respectively. Multi-spacecraft observations in the STEIN instruments will provide i) stereo ENA imaging with a wide angle in local times, which are sensitive to the evolution of ring current phase space distributions, ii) suprathermal electron measurements with narrow spacings, which reveal the differential signature of accelerated electrons driven by Alfven waves and/or double layer formation in the ionosphere between the acceleration region and the aurora, and iii) suprathermal ion precipitation when the storm-time ring current appears. In addition, multi-spacecraft magnetic field measurements in low earth orbits will allow the tracking of the phase fronts of ULF waves, FTEs, and quasi-periodic reconnection events between ground-based magnetometer data and upstream satellite data.
Improved MR imaging in extremely inhomogenous radiofrequency fields
International Nuclear Information System (INIS)
Bansal, N.; Nunnally, R.L.
1989-01-01
A previous study developed a method for acquiring images in extremely inhomogeneous radio-frequency fields with use of adiabatic pulses. Since adiabatic pulses most suited to section selection are the inversion type, the method is prone to artifacts from receiver and analog-to-digital converter (ADC) saturation and subtraction errors. These problems are substantially reduced by using a pseudo-noise-modulated selective (PNMS) prepulse to randomize the unwanted spin magnetization. To compute the PNMS pulse shape, the frequency spectrum of a wave form with constant amplitude and random phase was determined by means of Fourier transformation and then inverted after a consecutive number of points were set to zero in the center. The performance of the prepulse with the imaging sequence was tested on a 1.8-T system. Results are presented
Magnetotail processes and their ionospheric signatures
Ferdousi, B.; Raeder, J.; Zesta, E.; Murphy, K. R.; Cramer, W. D.
2017-12-01
In-situ observations in the magnetotail are sparse and limited to single point measurements. In the ionosphere, on the other hand, there is a broad range of observations, including magnetometers, auroral imagers, and various radars. Since the ionosphere is to some extent a mirror of plasmasheet processes it can be used as a monitor of magnetotail dynamics. Thus, it is of great importance to understand the coupling between the ionosphere and the magnetosphere in order to properly interpret the ionosphere and ground observations in terms of magnetotail dynamics. For this purpose, the global magnetohydrodynamic model OpenGGCM is used to investigate magnetosphere-ionosphere coupling. One of the key processes in magnetotail dynamics are bursty bulk flows (BBFs) which are the major means by which momentum and energy get transferred through the magnetotail and down to the ionosphere. BBFs often manifested in the ionosphere as auroral streamers. This study focuses on mapping such flow bursts from the magnetotail to the ionosphere along the magnetic field lines for three states of the magnetotail: pre-substorm onset through substorm expansion and during steady magnetospheric convection (SMC) following the substorm. We find that the orientation of streamers in the ionosphere differes for different local times, and that, for both tail and ionospheric signatures, activity increases during the SCM configutation compared to the pre-onset and quiet times. We also find that the background convection in the tail impacts the direction and deflection of the BBFs and the subsequent orientation of the auroral streamers in the ionosphere.
Traveltime approximations for inhomogeneous HTI media
Alkhalifah, Tariq Ali
2011-01-01
Traveltimes information is convenient for parameter estimation especially if the medium is described by an anisotropic set of parameters. This is especially true if we could relate traveltimes analytically to these medium parameters, which is generally hard to do in inhomogeneous media. As a result, I develop traveltimes approximations for horizontaly transversely isotropic (HTI) media as simplified and even linear functions of the anisotropic parameters. This is accomplished by perturbing the solution of the HTI eikonal equation with respect to η and the azimuthal symmetry direction (usually used to describe the fracture direction) from a generally inhomogeneous elliptically anisotropic background medium. The resulting approximations can provide accurate analytical description of the traveltime in a homogenous background compared to other published moveout equations out there. These equations will allow us to readily extend the inhomogenous background elliptical anisotropic model to an HTI with a variable, but smoothly varying, η and horizontal symmetry direction values. © 2011 Society of Exploration Geophysicists.
Assessment of inhomogeneous ELF magnetic field exposures
International Nuclear Information System (INIS)
Leitgeb, N.; Cech, R.; Schroettner, J.
2008-01-01
In daily life as well as at workplaces, exposures to inhomogeneous magnetic fields become very frequent. This makes easily applicable compliance assessment methods increasingly important. Reference levels have been defined linking basic restrictions to levels of homogeneous fields at worst-case exposure conditions. If reference levels are met, compliance with basic restrictions can be assumed. If not, further investigations could still prove compliance. Because of the lower induction efficiency, inhomogeneous magnetic fields such as from electric appliances could be allowed exceeding reference levels. To easily assess inhomogeneous magnetic fields, a quick and flexible multi-step assessment procedure is proposed. On the basis of simulations with numerical, anatomical human models reference factors were calculated elevating reference levels to link hot-spot values measured at source surfaces to basic limits and allowing accounting for different source distance, size, orientation and position. Compliance rules are proposed minimising assessment efforts. (authors)
Fractal behaviour of flow of an inhomogeneous fluid over a smooth inclined surface
International Nuclear Information System (INIS)
Rouhani, S.; Maleki Jirsarani, N.; Ghane Motlagh, B.; Baradaran, S.; Shokrian, E.
2001-01-01
We have observed and analyzed fractal patterns made by the flow of an inhomogeneous fluid (a suspension) over an inclined smooth surface. We observed that if the angle of inclination is above a threshold (10 d eg C - 12 d eg C), the length of fractal clusters become infinity. We measured a fractal dimension of df=1.40 ± 0.05. This falls within the same general class of patterns of flow of water over an inhomogeneous surface. This observation is consistent with the results of theoretical modes for nonlinear fluid flow in random media
Inhomogeneous Markov Models for Describing Driving Patterns
DEFF Research Database (Denmark)
Iversen, Emil Banning; Møller, Jan K.; Morales, Juan Miguel
2017-01-01
. Specifically, an inhomogeneous Markov model that captures the diurnal variation in the use of a vehicle is presented. The model is defined by the time-varying probabilities of starting and ending a trip, and is justified due to the uncertainty associated with the use of the vehicle. The model is fitted to data...... collected from the actual utilization of a vehicle. Inhomogeneous Markov models imply a large number of parameters. The number of parameters in the proposed model is reduced using B-splines....
Inhomogeneous Markov Models for Describing Driving Patterns
DEFF Research Database (Denmark)
Iversen, Jan Emil Banning; Møller, Jan Kloppenborg; Morales González, Juan Miguel
. Specically, an inhomogeneous Markov model that captures the diurnal variation in the use of a vehicle is presented. The model is dened by the time-varying probabilities of starting and ending a trip and is justied due to the uncertainty associated with the use of the vehicle. The model is tted to data...... collected from the actual utilization of a vehicle. Inhomogeneous Markov models imply a large number of parameters. The number of parameters in the proposed model is reduced using B-splines....
Ionospheric Modeling for Precise GNSS Applications
Memarzadeh, Y.
2009-01-01
The main objective of this thesis is to develop a procedure for modeling and predicting ionospheric Total Electron Content (TEC) for high precision differential GNSS applications. As the ionosphere is a highly dynamic medium, we believe that to have a reliable procedure it is necessary to transfer
Formation of dipole vortex in the ionosphere
International Nuclear Information System (INIS)
Shukla, P.K.; Yu, M.Y.
1985-01-01
It is shown that isolated dipole vortices can exist in the F-region of the ionosphere. These are associated with the Rayleigh-Taylor and E x B 0 gradient drift instabilities. The vortices may be responsible for the rapid structuring of barium clouds as well as other phenomena observed in the upper ionosphere
Artificial neural network applications in ionospheric studies
Directory of Open Access Journals (Sweden)
L. R. Cander
1998-06-01
Full Text Available The ionosphere of Earth exhibits considerable spatial changes and has large temporal variability of various timescales related to the mechanisms of creation, decay and transport of space ionospheric plasma. Many techniques for modelling electron density profiles through entire ionosphere have been developed in order to solve the "age-old problem" of ionospheric physics which has not yet been fully solved. A new way to address this problem is by applying artificial intelligence methodologies to current large amounts of solar-terrestrial and ionospheric data. It is the aim of this paper to show by the most recent examples that modern development of numerical models for ionospheric monthly median long-term prediction and daily hourly short-term forecasting may proceed successfully applying the artificial neural networks. The performance of these techniques is illustrated with different artificial neural networks developed to model and predict the temporal and spatial variations of ionospheric critical frequency, f0F2 and Total Electron Content (TEC. Comparisons between results obtained by the proposed approaches and measured f0F2 and TEC data provide prospects for future applications of the artificial neural networks in ionospheric studies.
Ionospheric control of the magnetosphere: conductance
Directory of Open Access Journals (Sweden)
A. J. Ridley
2004-01-01
Full Text Available It is well known that the ionosphere plays a role in determining the global state of the magnetosphere. The ionosphere allows magnetospheric currents to close, thereby allowing magnetospheric convection to occur. The amount of current which can be carried through the ionosphere is mainly determined by the ionospheric conductivity. This paper starts to quantify the nonlinear relationship between the ionospheric conductivity and the global state of the magnetosphere. It is found that the steady-state magnetosphere acts neither as a current nor as a voltage generator; a uniform Hall conductance can influence the potential pattern at low latitudes, but not at high latitude; the EUV generated conductance forces the currents to close in the sunlight, while the potential is large on the nightside; the solar generated Hall conductances cause a large asymmetry between the dawn and dusk potential, which effects the pressure distribution in the magnetosphere; a uniform polar cap potential removes some of this asymmetry; the potential difference between solar minimum and maximum is ∼11%; and the auroral precipitation can be related to the local field-aligned current through an exponential function. Key words. Ionosphere (ionosphere-magnetosphere interactions; modelling and forecasting; polar ionosphere
Ionospheric control of the magnetosphere: conductance
Directory of Open Access Journals (Sweden)
A. J. Ridley
2004-01-01
Full Text Available It is well known that the ionosphere plays a role in determining the global state of the magnetosphere. The ionosphere allows magnetospheric currents to close, thereby allowing magnetospheric convection to occur. The amount of current which can be carried through the ionosphere is mainly determined by the ionospheric conductivity. This paper starts to quantify the nonlinear relationship between the ionospheric conductivity and the global state of the magnetosphere. It is found that the steady-state magnetosphere acts neither as a current nor as a voltage generator; a uniform Hall conductance can influence the potential pattern at low latitudes, but not at high latitude; the EUV generated conductance forces the currents to close in the sunlight, while the potential is large on the nightside; the solar generated Hall conductances cause a large asymmetry between the dawn and dusk potential, which effects the pressure distribution in the magnetosphere; a uniform polar cap potential removes some of this asymmetry; the potential difference between solar minimum and maximum is ∼11%; and the auroral precipitation can be related to the local field-aligned current through an exponential function.
Key words. Ionosphere (ionosphere-magnetosphere interactions; modelling and forecasting; polar ionosphere
Effect of Inhomogeneity on s-wave Superconductivity in the Attractive Hubbard Model
Energy Technology Data Exchange (ETDEWEB)
Aryanpour, K. A. [University of California, Davis; Dagotto, Elbio R [ORNL; Mayr, Matthias [Max-Planck-Institut fur Feskorperforschung, Stuttgart, Germany; Paiva, T. [Universidade Federal do Rio de Janeiro, Brazil; Pickett, W. E. [University of California, Davis; Scalettar, Richard T [ORNL
2006-01-01
Inhomogeneous s-wave superconductivity is studied in the two-dimensional, square lattice attractive Hubbard Hamiltonian using the Bogoliubov-de Gennes BdG mean field approximation. We find that at weak coupling, and for densities mainly below half-filling, an inhomogeneous interaction in which the on-site interaction Ui takes on two values, Ui=0, 2U results in a larger zero temperature pairing amplitude, and that the superconducting Tc can also be significantly increased, relative to a uniform system with Ui=U on all sites. These effects are observed for stripe, checkerboard, and even random patterns of the attractive centers, suggesting that the pattern of inhomogeneity is unimportant. Monte Carlo calculations which reintroduce some of the fluctuations neglected within the BdG approach see the same effect, both for the attractive Hubbard model and a Hamiltonian with d-wave pairing symmetry.
Three-dimensional FDTD Modeling of Earth-ionosphere Cavity Resonances
Yang, H.; Pasko, V. P.
2003-12-01
Resonance properties of the earth-ionosphere cavity were first predicted by W. O. Schumann in 1952 [Schumann, Z. Naturforsch. A, 7, 149, 1952]. Since then observations of extremely low frequency (ELF) signals in the frequency range 1-500 Hz have become a powerful tool for monitoring of global lightning activity and planetary scale variability of the lower ionosphere, as well as, in recent years, for location and remote sensing of sprites, jets and elves and associated lightning discharges [e.g., Sato et al., JASTP, 65, 607, 2003; Su et al., Nature, 423, 974, 2003; and references cited therein]. The simplicity and flexibility of finite difference time domain (FDTD) technique for finding first principles solutions of electromagnetic problems in a medium with arbitrary inhomogeneities and ever-increasing computer power make FDTD an excellent candidate to be the technique of the future in development of realistic numerical models of VLF/ELF propagation in Earth-ionosphere waveguide [Cummer, IEEE Trans. Antennas Propagat., 48, 1420, 2000], and several reports about successful application of the FDTD technique for solution of related problems have recently appeared in the literature [e.g., Thevenot et al., Ann. Telecommun., 54, 297, 1999; Cummer, 2000; Berenger, Ann. Telecommun., 57, 1059, 2002, Simpson and Taflove, IEEE Antennas Wireless Propagat. Lett., 1, 53, 2002]. In this talk we will present results from a new three-dimensional spherical FDTD model, which is designed for studies of ELF electromagnetic signals under 100 Hz in the earth-ionosphere cavity. The model accounts for a realistic latitudinal and longitudinal variation of ground conductivity (i.e., for the boundaries between oceans and continents) by employing a broadband surface impedance technique proposed in [Breggs et al., IEEE Trans. Antenna Propagat., 41, 118, 1993]. The realistic distributions of atmospheric/lower ionospheric conductivity are derived from the international reference ionosphere model
Advanced algorithms for ionosphere modelling in GNSS applications within AUDITOR project
Goss, Andreas; Erdogan, Eren; Schmidt, Michael; Garcia-Rigo, Alberto; Hernandez-Pajares, Manuel; Lyu, Haixia; Nohutcu, Metin
2017-04-01
The H2020 project AUDITOR of the European Union started on January 1st 2016, with the participation of several European institutions and universities. The goal of the project is the implementation of a novel precise positioning technique, based on augmentation data in a customized GNSS receiver. Therefore more sophisticated ionospheric models have to be developed and implemented to increase the accuracy in real-time at the user side. Since the service should be available for the public, we use public data from GNSS networks (e.g. IGS, EUREF). The contributions of DGFI-TUM and UPC are focusing on the development of high accuracy GNSS algorithms to provide enhanced ionospheric corrections. This includes two major issues: 1. The existing mapping function to convert the slant total electron content (STEC) measurable by GNSS into the vertical total electron content (VTEC) is based on a so called single layer model (SLM), where all electrons are concentrated on an infinitesimal thin layer with fixed height (between 350 and 450 kilometers). This quantity is called the effective ionospheric height (EIH). An improvement of the mapping function shall be achieved by estimating more realistic numerical values for the EIH by means of a voxel-based tomographic model (TOMION). 2. The ionospheric observations are distributed rather unevenly over the globe and within specific regions. This inhomogeneous distribution is handled by data adaptive B-Spline approaches, with polynomial and trigonometric functions used for the latitude and longitude representations to provide high resolution VTEC maps for global and regional purposes. A Kalman filter is used as sequential estimator. The unknown parameters of the filter state vector are composed of the B-spline coefficients as well as the satellite and receiver DCBs. The resulting high accuracy ionosphere products will be disseminated to the users via downlink from a dedicated server to a receiver site. In this context, an appropriate
Directory of Open Access Journals (Sweden)
O. Molchanov
2004-01-01
Full Text Available We present a general concept of mechanisms of preseismic phenomena in the atmosphere and ionosphere. After short review of observational results we conclude: 1. Upward migration of fluid substrate matter (bubble can lead to ousting of the hot water/gas near the ground surface and cause an earthquake (EQ itself in the strength-weakened area; 2. Thus, time and place of the bubble appearance could be random values, but EQ, geochemistry anomaly and foreshocks (seismic, SA and ULF electromagnetic ones are casually connected; 3. Atmospheric perturbation of temperature and density could follow preseismic hot water/gas release resulting in generation of atmospheric gravity waves (AGW with periods in a range of 6–60min; 4. Seismo-induced AGW could lead to modification of the ionospheric turbulence and to the change of over-horizon radio-wave propagation in the atmosphere, perturbation of LF waves in the lower ionosphere and ULF emission depression at the ground.
Ionospheric Anomaly before Kyushu|Japan Earthquake
Directory of Open Access Journals (Sweden)
YANG Li
2017-05-01
Full Text Available GIM data released by IGS is used in the article and a new method of combining the Sliding Time Window Method and the Ionospheric TEC correlation analysis method of adjacent grid points is proposed to study the relationship between pre-earthquake ionospheric anomalies and earthquake. By analyzing the abnormal change of TEC in the 5 grid points around the seismic region, the abnormal change of ionospheric TEC is found before the earthquake and the correlation between the TEC sequences of lattice points is significantly affected by earthquake. Based on the analysis of the spatial distribution of TEC anomaly, anomalies of 6 h, 12 h and 6 h were found near the epicenter three days before the earthquake. Finally, ionospheric tomographic technology is used to do tomographic inversion on electron density. And the distribution of the electron density in the ionospheric anomaly is further analyzed.
Electromagnetically Driven Plasma-Field Dynamics in Modified Ionosphere
Kochetov, Andrey; Terina, Galina
Under sounding of an artificial ionospheric turbulence by short probing radio pulses of ordinary polarization the two types of scattered signals were observed: a "caviton" signal (CS) and a "plasma" signal (PS), which appeared with the heating transmitter switching on and disap-peared after its switching off (G.I. Terina J. Atm. Terr. Phys, 57, 1995, 273, Izv. VUZov, Radiofizika, 39, 1998, 203). The scattered signal of PS type was revealed also after the heating switching off. It was called an "aftereffect plasma signal" (AEPS) (G.I. Terina Izv .VUZov, Radiofizika, 43, 2000, 958). This signal had large time and spatial delays and appeared mostly when corresponding PS had envelope fluctuations. The aftereffect phenomenon was expressed at time on CS by amplitude increasing at once after the heating transmitter turning off. The theoretical model of this phenomenon is proposed in and some peculiarities of the aftereffect phenomena of the scattered signals in modified ionospheric plasma are considered and discussed. For theoretical interpretation of the characteristics of CS and AEPS the numerical solution of nonlinear Shrüdinger equation (NSE) with driven extension were carried out in inhomogeneous plasma layer with linear electron density profile (A.V. Kochetov, V.A. Mironov, G.I. Terina, Adv. Space Reseacrh, 29, 2002, 1369) and for the one with prescribed density depletion (and A.V. Kochetov, G.I. Terina, Adv. Space Reseacrh, 38, 2006, 2490). The simulation results obtained for linear inhomogeneous plasma layer and for plasma one with density depletion al-low us to interpret the aftereffect of CS and PS qualitatively. The field amplitude increase at relaxation stage displayed at calculations allows us to interpret of CS aftereffect. The large time delays of AEPS can be explained as a result of powerful radio waves trapping in the forming at the plasma resonance regions density depletions (E. Mjøhus, J. Geophys. Res. 103, 1998, 14711; B. Eliasson and L. Stenflo, J
Effective permittivity of finite inhomogeneous objects
Raghunathan, S.B.; Budko, N.V.
2010-01-01
A generalization of the S-parameter retrieval method for finite three-dimensional inhomogeneous objects under arbitrary illumination and observation conditions is presented. The effective permittivity of such objects may be rigorously defined as a solution of a nonlinear inverse scattering problem.
No hair theorem for inhomogeneous cosmologies
International Nuclear Information System (INIS)
Jensen, L.G.; Stein-Schabes, J.A.
1986-03-01
We show that under very general conditions any inhomogeneous cosmological model with a positive cosmological constant, that can be described in a synchronous reference system will tend asymptotically in time towards the de Sitter solution. This is shown to be relevant in the context of inflationary models as it makes inflation very weakly dependent on initial conditions. 8 refs
Electron Beam interaction with an inhomogeneous
Energy Technology Data Exchange (ETDEWEB)
Zaki, N G; El-Shorbagy, Kh H [Plasma physics and Nuclear Fusion Dept. Nuclear Research Centre Atomic Energy Authority, Cairo, (Egypt)
1997-12-31
The linear and nonlinear interaction of an electron beam with an inhomogeneous semi bounded warm plasma is investigated. The amount of energy absorbed by the plasma is obtained. The formation of waves at double frequency at the inlet of the beam into the plasma is also considered.
Inhomogeneous Pre-Big Bang String Cosmology
Veneziano, Gabriele
1997-01-01
An inhomogeneous version of pre--Big Bang cosmology emerges, within string theory, from quite generic initial conditions, provided they lie deeply inside the weak-coupling, low-curvature regime. Large-scale homogeneity, flatness, and isotropy appear naturally as late-time outcomes of such an evolution.
MICROWAVE INTERACTIONS WITH INHOMOGENEOUS PARTIALLY IONIZED PLASMA
Energy Technology Data Exchange (ETDEWEB)
Kritz, A. H.
1962-11-15
Microwave interactions with inhomogeneous plasmas are often studied by employing a simplified electromagnetic approach, i.e., by representing the effects of the plasma by an effective dielectric coefficient. The problems and approximations associated with this procedure are discussed. The equation describing the microwave field in an inhomogeneous partially ionized plasma is derived, and the method that is applied to obtain the reflected, transmitted, and absorbed intensities in inhomogeneous plasmas is presented. The interactions of microwaves with plasmas having Gaussian electron density profiles are considered. The variation of collision frequency with position is usually neglected. In general, the assumption of constant collision frequency is not justified; e.g., for a highly ionized plasma, the electron density profile determines, in part, the profile of the electron-ion collision frequency. The effect of the variation of the collision frequency profile on the interaction of microwaves with inhomogeneous plasmas is studied in order to obtain an estimate of the degree of error that may result when constant collision frequency is assumed instead of a more realistic collision frequency profile. It is shown that the degree of error is of particular importance when microwave analysis is used as a plasma diagnostic. (auth)
Optical inhomogeneity developing in flashlamp photolysis lasers
Energy Technology Data Exchange (ETDEWEB)
Alekhin, B V; Borovkov, V V; Brodskii, A Ya; Lazhintsev, B V; Nor-Arevian, V A; Sukhanov, L V
1980-07-01
The paper discusses the dynamics of optical inhomogenity developing in the active medium of a high-power flashlamp-pumped photolysis laser in inverse population storage, fast inversion suppression, and free-running lasing regimes. A chemical component of the refractive index was found in a C3F7I photolysis experiment, along with the anomalous growth of a gas refractive index.
Whistlers and related ionospheric phenomena
Helliwell, Robert A
2006-01-01
The investigation of whistlers and related phenomena is a key element in studies of very-low-frequency propagation, satellite communication, the outer ionosphere, and solar-terrestrial relationships. This comprehensive text presents a history of the study of the phenomena and includes all the elements necessary for the calculation of the characteristics of whistlers and whistler-mode signals.An introduction and brief history are followed by a summary of the theory of whistlers and a detailed explanation of the calculation of their characteristics. Succeeding chapters offer a complete atlas of
A re-analysis of the atmospheric and ionospheric effects of the Flixborough explosion
Krasnov, V. M.; Drobzheva, Ya. V.; Venart, J. E. S.; Lastovicka, J.
2003-07-01
The ionospheric record of the 1974 cyclohexane vapour cloud explosion (VCE) accident near Flixborough is re-examined in light of a new theory used to describe the acoustic field in the atmosphere and ionosphere caused by explosions on the ground. The reconstructed oblique Doppler sounding records from six radio traces agree remarkably well with experimental results when a ground source explosion yield of 283+/-38tons of TNT is utilized. This result, when compared to the detonation of large hydrocarbon fuel-drop-air clouds, suggests that only 14+/-2tons of cyclohexane was involved in the explosion. Additionally the time of the explosion determined from the model, 15:52:08+/-6, agrees, within the mutual uncertainty, with that determined seismically, 15:52:15.5+/-2 UT. The precision in the value of the yield and accuracy of the time of the explosion validates the model used to describe the propagation of acoustic waves by taking into account expansion, absorption, and non-linear and inhomogeneous effects in the atmosphere and ionosphere.
VLF wave generation by beating of two HF waves in the ionosphere
Kuo, Spencer; Snyder, Arnold; Kossey, Paul; Chang, Chia-Lie; Labenski, John
2011-05-01
Theory of a beat-wave mechanism for very low frequency (VLF) wave generation in the ionosphere is presented. The VLF current is produced by beating two high power HF waves of slightly different frequencies through the nonlinearity and inhomogeneity of the ionospheric plasma. Theory also shows that the density irregularities can enhance the beat-wave generation. An experiment was conducted by transmitting two high power HF waves of 3.2 MHz and 3.2 MHz + f, where f = 5, 8, 13, and 2.02 kHz, from the HAARP transmitter. In the experiment, the ionosphere was underdense to the O-mode heater, i.e., the heater frequency f0 > foF2, and overdense or slightly underdense to the X-mode heater, i.e., f0 < fxF2 or f0 ≥ fxF2. The radiation intensity increased with the VLF wave frequency, was much stronger with the X-mode heaters, and was not sensitive to the electrojet. The strongest VLF radiation of 13 kHz was generated when the reflection layer of the X-mode heater was just slightly below the foF2 layer and the spread of the O-mode sounding echoes had the largest enhancement, suggesting an optimal setting for beat-wave generation of VLF waves by the HF heaters.
Yuan, Y.; Tscherning, C. C.; Knudsen, P.; Xu, G.; Ou, J.
2008-01-01
A new method for modeling the ionospheric delay using global positioning system (GPS) data is proposed, called the ionospheric eclipse factor method (IEFM). It is based on establishing a concept referred to as the ionospheric eclipse factor (IEF) λ of the ionospheric pierce point (IPP) and the IEF’s influence factor (IFF) bar{λ}. The IEF can be used to make a relatively precise distinction between ionospheric daytime and nighttime, whereas the IFF is advantageous for describing the IEF’s variations with day, month, season and year, associated with seasonal variations of total electron content (TEC) of the ionosphere. By combining λ and bar{λ} with the local time t of IPP, the IEFM has the ability to precisely distinguish between ionospheric daytime and nighttime, as well as efficiently combine them during different seasons or months over a year at the IPP. The IEFM-based ionospheric delay estimates are validated by combining an absolute positioning mode with several ionospheric delay correction models or algorithms, using GPS data at an international Global Navigation Satellite System (GNSS) service (IGS) station (WTZR). Our results indicate that the IEFM may further improve ionospheric delay modeling using GPS data.
Daytime dependence of disturbances of ionospheric Es-layers connected to earthquakes
Liperovskaya, E. V.; Liperovsky, A. V.; Meister, C.-V.; Silina, A. S.
2012-04-01
In the present work variations of the semi-transparency of the sporadic E-layer of the ionosphere due to seismic activities are studied. The semi-transparency Q is determined by the blanketing frequency fbEs and the characteristic frequency foEs, Q = (foEs - fbEs)/fbEs. At low values of the blanketing frequency fbEs, the critical frequency foEs does not describe the maximum ionisation density of the Es-layer, as the critical frequencies of regular ionospheric layers (e.g. foF2) do, but it describes the occurrence of small-scall (tenths of meters) inhomogeneities of the ionisation density along the vertical in the layer. The maximum ionisation density of the sporadic layer is proportional to the square of fbEs. In the case of vertical ionospheric sounding, the sporadic layer becomes transparent for signals with frequencies larger than fbEs. Investigations showed that about three days before an earthquake an increase of the semi-transparency interval is observed during sunset and sunrise. In the present work, analogous results are found for data of the vertical sounding stations "Tokyo" and "Petropavlovsk-Kamchatsky". Using the method of superposition of epoches, more than 50 earthquakes with magnitudes M > 5, depths h < 40 km, and distances between the station and the epicenter R < 300 km are considered in case of the vertical sounding station "Tokyo". More than 20 earthquakes with such parameters were analysed in case of the station "Petropavlovsk-Kamchatsky". Days with strong geomagnetic activity were excluded from the analysis. According to the station "Petropavlovsk-Kamchatsky" about 1-3 days before earthquakes, an increase of Es-spread is observed a few hours before midnight. This increase is a sign of large-scale inhomogeneities in the sporadic layers.
Axi-symmetric analysis of vertically inhomogeneous elastic multilayered systems
CSIR Research Space (South Africa)
Maina, JW
2009-06-01
Full Text Available primary resilient responses are investigated by way of worked examples of hypothetical three-layer system, which was analyzed by considering homogenous and inhomogeneous material properties in each of the three layers. Effect of a inhomogeneity parameter...
Full-wave solution of short impulses in inhomogeneous plasma
Indian Academy of Sciences (India)
... in arbitrarily inhomogeneous media will be presented on a fundamentally new, ... The general problem of wave propagation of monochromatic signals in inhomogeneous media was enlightened in [1]. ... Pramana – Journal of Physics | News.
Energy Technology Data Exchange (ETDEWEB)
Hellaby, Charles, E-mail: Charles.Hellaby@uct.ac.za [Dept. of Maths. and Applied Maths, University of Cape Town, Rondebosch, 7701 (South Africa)
2012-01-01
A new method for constructing exact inhomogeneous universes is presented, that allows variation in 3 dimensions. The resulting spacetime may be statistically uniform on average, or have random, non-repeating variation. The construction utilises the Darmois junction conditions to join many different component spacetime regions. In the initial simple example given, the component parts are spatially flat and uniform, but much more general combinations should be possible. Further inhomogeneity may be added via swiss cheese vacuoles and inhomogeneous metrics. This model is used to explore the proposal, that observers are located in bound, non-expanding regions, while the universe is actually in the process of becoming void dominated, and thus its average expansion rate is increasing. The model confirms qualitatively that the faster expanding components come to dominate the average, and that inhomogeneity results in average parameters which evolve differently from those of any one component, but more realistic modelling of the effect will need this construction to be generalised.
Quantitative modeling of the ionospheric response to geomagnetic activity
Directory of Open Access Journals (Sweden)
T. J. Fuller-Rowell
Full Text Available A physical model of the coupled thermosphere and ionosphere has been used to determine the accuracy of model predictions of the ionospheric response to geomagnetic activity, and assess our understanding of the physical processes. The physical model is driven by empirical descriptions of the high-latitude electric field and auroral precipitation, as measures of the strength of the magnetospheric sources of energy and momentum to the upper atmosphere. Both sources are keyed to the time-dependent TIROS/NOAA auroral power index. The output of the model is the departure of the ionospheric F region from the normal climatological mean. A 50-day interval towards the end of 1997 has been simulated with the model for two cases. The first simulation uses only the electric fields and auroral forcing from the empirical models, and the second has an additional source of random electric field variability. In both cases, output from the physical model is compared with F-region data from ionosonde stations. Quantitative model/data comparisons have been performed to move beyond the conventional "visual" scientific assessment, in order to determine the value of the predictions for operational use. For this study, the ionosphere at two ionosonde stations has been studied in depth, one each from the northern and southern mid-latitudes. The model clearly captures the seasonal dependence in the ionospheric response to geomagnetic activity at mid-latitude, reproducing the tendency for decreased ion density in the summer hemisphere and increased densities in winter. In contrast to the "visual" success of the model, the detailed quantitative comparisons, which are necessary for space weather applications, are less impressive. The accuracy, or value, of the model has been quantified by evaluating the daily standard deviation, the root-mean-square error, and the correlation coefficient between the data and model predictions. The modeled quiet-time variability, or standard
Quantitative modeling of the ionospheric response to geomagnetic activity
Directory of Open Access Journals (Sweden)
T. J. Fuller-Rowell
2000-07-01
Full Text Available A physical model of the coupled thermosphere and ionosphere has been used to determine the accuracy of model predictions of the ionospheric response to geomagnetic activity, and assess our understanding of the physical processes. The physical model is driven by empirical descriptions of the high-latitude electric field and auroral precipitation, as measures of the strength of the magnetospheric sources of energy and momentum to the upper atmosphere. Both sources are keyed to the time-dependent TIROS/NOAA auroral power index. The output of the model is the departure of the ionospheric F region from the normal climatological mean. A 50-day interval towards the end of 1997 has been simulated with the model for two cases. The first simulation uses only the electric fields and auroral forcing from the empirical models, and the second has an additional source of random electric field variability. In both cases, output from the physical model is compared with F-region data from ionosonde stations. Quantitative model/data comparisons have been performed to move beyond the conventional "visual" scientific assessment, in order to determine the value of the predictions for operational use. For this study, the ionosphere at two ionosonde stations has been studied in depth, one each from the northern and southern mid-latitudes. The model clearly captures the seasonal dependence in the ionospheric response to geomagnetic activity at mid-latitude, reproducing the tendency for decreased ion density in the summer hemisphere and increased densities in winter. In contrast to the "visual" success of the model, the detailed quantitative comparisons, which are necessary for space weather applications, are less impressive. The accuracy, or value, of the model has been quantified by evaluating the daily standard deviation, the root-mean-square error, and the correlation coefficient between the data and model predictions. The modeled quiet-time variability, or standard
Metrical theorems on systems of small inhomogeneous linear forms
DEFF Research Database (Denmark)
Hussain, Mumtaz; Kristensen, Simon
In this paper we establish complete Khintchine-Groshev and Schmidt type theorems for inhomogeneous small linear forms in the so-called doubly metric case, in which the inhomogeneous parameter is not fixed.......In this paper we establish complete Khintchine-Groshev and Schmidt type theorems for inhomogeneous small linear forms in the so-called doubly metric case, in which the inhomogeneous parameter is not fixed....
Propagation of strong electromagnetic beams in inhomogeneous plasmas
Energy Technology Data Exchange (ETDEWEB)
Ferrari, A; Massaglia, S [Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica; Turin Univ. (Italy). Ist. di Fisica Generale)
1980-09-01
We study some simple aspects of nonlinear propagation of relativistically strong electromagnetic beams in inhomogeneous plasmas, especially in connection with effects of beam self-trapping in extended extragalactic radio sources. The two effects of (i) long scale longitudinal and radial inhomogeneities inherent to the plasma and (ii) radial inhomogeneities produced by the ponderomotive force of the beam itself are investigated.
Dynamics of an inhomogeneous anisotropic antiferromagnetic spin chain
International Nuclear Information System (INIS)
Daniel, M.; Amuda, R.
1994-11-01
We investigate the nonlinear spin excitations in the two sublattice model of a one dimensional classical continuum Heisenberg inhomogeneous antiferromagnetic spin chain. The dynamics of the inhomogeneous chain reduces to that of its homogeneous counterpart when the inhomogeneity assumes a particular form. Apart from the usual twists and pulses, we obtain some planar configurations representing the nonlinear dynamics of spins. (author). 12 refs
How Forest Inhomogeneities Affect the Edge Flow
DEFF Research Database (Denmark)
Boudreault, Louis-Étienne; Dupont, Sylvain; Bechmann, Andreas
2016-01-01
Most of our knowledge on forest-edge flows comes from numerical and wind-tunnel experiments where canopies are horizontally homogeneous. To investigate the impact of tree-scale heterogeneities (>1 m) on the edge-flow dynamics, the flow in an inhomogeneous forest edge on Falster island in Denmark...... is investigated using large-eddy simulation. The three-dimensional forest structure is prescribed in the model using high resolution helicopter-based lidar scans. After evaluating the simulation against wind measurements upwind and downwind of the forest leading edge, the flow dynamics are compared between...... the scanned forest and an equivalent homogeneous forest. The simulations reveal that forest inhomogeneities facilitate flow penetration into the canopy from the edge, inducing important dispersive fluxes in the edge region as a consequence of the flow spatial variability. Further downstream from the edge...
A nonquasiclassical description of inhomogeneous superconductors
International Nuclear Information System (INIS)
Zaikin, A.D.; Panyukov, S.V.
1988-01-01
Exact microscopic equations are derived that make it possible to describe inhomogeneous superconductors when the quasi-classical approach is not suitable. These equations are simpler than the Gorkov equations. The authors generalize the derived equations for describing the nonequilibrium states of inhomogeneous superconductors. It is demonstrated that the derived equations (including the case of a nonequilibrium quasi particle distribution function) may be written in the form of linear differential equations for the simultaneous wave function μ, ν. The quasi-classical limit of such equations is examined. Effective boundary conditions are derived for the μ, ν functions that allow description of superconductors with a sharp change in parameters within the scope of the quasi-classical approach
Inhomogeneities from quantum collapse scheme without inflation
Energy Technology Data Exchange (ETDEWEB)
Bengochea, Gabriel R., E-mail: gabriel@iafe.uba.ar [Instituto de Astronomía y Física del Espacio (IAFE), UBA-CONICET, CC 67, Suc. 28, 1428 Buenos Aires (Argentina); Cañate, Pedro, E-mail: pedro.canate@nucleares.unam.mx [Instituto de Ciencias Nucleares, UNAM, México D.F. 04510, México (Mexico); Sudarsky, Daniel, E-mail: sudarsky@nucleares.unam.mx [Instituto de Ciencias Nucleares, UNAM, México D.F. 04510, México (Mexico)
2015-04-09
In this work, we consider the problem of the emergence of seeds of cosmic structure in the framework of the non-inflationary model proposed by Hollands and Wald. In particular, we consider a modification to that proposal designed to account for breaking the symmetries of the initial quantum state, leading to the generation of the primordial inhomogeneities. This new ingredient is described in terms of a spontaneous reduction of the wave function. We investigate under which conditions one can recover an essentially scale free spectrum of primordial inhomogeneities, and which are the dominant deviations that arise in the model as a consequence of the introduction of the collapse of the quantum state into that scenario.
Equilibrium and stability in strongly inhomogeneous plasmas
International Nuclear Information System (INIS)
Mynick, H.E.
1978-10-01
The equilibrium of strongly inhomogeneous, collisionless, slab plasmas, is studied using a generalized version of a formalism previously developed, which permits the generation of self-consistent equilibria, for plasmas with arbitrary magnetic shear, and variation of magnetic field strength. A systematic procedure is developed for deriving the form of the guiding-center Hamiltonian K, for finite eta, in an axisymmetric geometry. In the process of obtaining K, an expression for the first adiabatic invariant (the gyroaction) is obtained, which generalizes the usual expression 1/2 mv/sub perpendicular/ 2 /Ω/sub c/ (Ω/sub c/ = eB/mc), to finite eta and magnetic shear. A formalism is developed for the study of the stability of strongly-inhomogeneous, magnetized slab plasmas; it is then applied to the ion-drift-cyclotron instability
Primordial inhomogeneities from massive defects during inflation
Energy Technology Data Exchange (ETDEWEB)
Firouzjahi, Hassan; Karami, Asieh; Rostami, Tahereh, E-mail: firouz@ipm.ir, E-mail: karami@ipm.ir, E-mail: t.rostami@ipm.ir [School of Astronomy, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)
2016-10-01
We consider the imprints of local massive defects, such as a black hole or a massive monopole, during inflation. The massive defect breaks the background homogeneity. We consider the limit that the physical Schwarzschild radius of the defect is much smaller than the inflationary Hubble radius so a perturbative analysis is allowed. The inhomogeneities induced in scalar and gravitational wave power spectrum are calculated. We obtain the amplitudes of dipole, quadrupole and octupole anisotropies in curvature perturbation power spectrum and identify the relative configuration of the defect to CMB sphere in which large observable dipole asymmetry can be generated. We observe a curious reflection symmetry in which the configuration where the defect is inside the CMB comoving sphere has the same inhomogeneous variance as its mirror configuration where the defect is outside the CMB sphere.
Theory of Thomson scattering in inhomogeneous media.
Kozlowski, P M; Crowley, B J B; Gericke, D O; Regan, S P; Gregori, G
2016-04-12
Thomson scattering of laser light is one of the most fundamental diagnostics of plasma density, temperature and magnetic fields. It relies on the assumption that the properties in the probed volume are homogeneous and constant during the probing time. On the other hand, laboratory plasmas are seldom uniform and homogeneous on the temporal and spatial dimensions over which data is collected. This is particularly true for laser-produced high-energy-density matter, which often exhibits steep gradients in temperature, density and pressure, on a scale determined by the laser focus. Here, we discuss the modification of the cross section for Thomson scattering in fully-ionized media exhibiting steep spatial inhomogeneities and/or fast temporal fluctuations. We show that the predicted Thomson scattering spectra are greatly altered compared to the uniform case, and may lead to violations of detailed balance. Therefore, careful interpretation of the spectra is necessary for spatially or temporally inhomogeneous systems.
Cosmic acceleration driven by mirage inhomogeneities
Energy Technology Data Exchange (ETDEWEB)
Galfard, Christophe [DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce road, Cambridge CB3 0WA (United Kingdom); Germani, Cristiano [DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce road, Cambridge CB3 0WA (United Kingdom); Kehagias, Alex [Physics Division, National Technical University of Athens, 15780 Zografou Campus, Athens (Greece)
2006-03-21
A cosmological model based on an inhomogeneous D3-brane moving in an AdS{sub 5} x S{sub 5} bulk is introduced. Although there are no special points in the bulk, the brane universe has a centre and is isotropic around it. The model has an accelerating expansion and its effective cosmological constant is inversely proportional to the distance from the centre, giving a possible geometrical origin for the smallness of a present-day cosmological constant. Besides, if our model is considered as an alternative of early-time acceleration, it is shown that the early stage accelerating phase ends in a dust-dominated FRW homogeneous universe. Mirage-driven acceleration thus provides a dark matter component for the brane universe final state. We finally show that the model fulfils the current constraints on inhomogeneities.
Inflation and inhomogeneities: a hybrid quantization
International Nuclear Information System (INIS)
Olmedo, J; Fernández-Méndez, M; Mena Marugán, G A
2012-01-01
We provide a complete quantization of a homogeneous and isotropic spacetime with positive spatial curvature coupled to a massive scalar field in the framework of Loop Quantum Cosmology. The physical Hilbert space is constructed out of the space of initial data on the minimum volume section. By means of a perturbative treatment we introduce inhomogeneities and thereafter we adopt a hybrid quantum approach, in which these inhomogeneous degrees of freedom are described by a standard Fock quantization. For the considered case of compact spatial topology, the requirements of: i) invariance of the vacuum state under the spatial isometries, and ii) unitary implementation of the quantum dynamics, pick up a privileged set of canonical fields and a unique Fock representation (up to unitary equivalence).
Diffusion MRI: Mitigation of Magnetic Field Inhomogeneities
Czech Academy of Sciences Publication Activity Database
Marcon, P.; Bartušek, Karel; Dokoupil, Zdeněk; Gescheidtová, E.
2012-01-01
Roč. 12, č. 5 (2012), s. 205-212 ISSN 1335-8871 R&D Projects: GA MŠk ED0017/01/01; GA ČR GAP102/11/0318; GA ČR GAP102/12/1104 Institutional support: RVO:68081731 Keywords : correction * diffusion * inhomogeneity * eddy currents * magnetic resonance Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.233, year: 2012
Controlling Charged Particles with Inhomogeneous Electrostatic Fields
Herrero, Federico A. (Inventor)
2016-01-01
An energy analyzer for a charged-particle spectrometer may include a top deflection plate and a bottom deflection plate. The top and bottom deflection plates may be non-symmetric and configured to generate an inhomogeneous electrostatic field when a voltage is applied to one of the top or bottom deflection plates. In some instances, the top and bottom deflection plates may be L-shaped deflection plates.
Process Modeling With Inhomogeneous Thin Films
Machorro, R.; Macleod, H. A.; Jacobson, M. R.
1986-12-01
Designers of optical multilayer coatings commonly assume that the individual layers will be ideally homogeneous and isotropic. In practice, it is very difficult to control the conditions involved in the complex evaporation process sufficiently to produce such ideal films. Clearly, changes in process parameters, such as evaporation rate, chamber pressure, and substrate temperature, affect the microstructure of the growing film, frequently producing inhomogeneity in structure or composition. In many cases, these effects are interdependent, further complicating the situation. However, this process can be simulated on powerful, interactive, and accessible microcomputers. In this work, we present such a model and apply it to estimate the influence of an inhomogeneous layer on multilayer performance. Presently, the program simulates film growth, thermal expansion and contraction, and thickness monitoring procedures, and includes the effects of uncertainty in these parameters or noise. Although the model is being developed to cover very general cases, we restrict the present discussion to isotropic and nondispersive quarterwave layers to understand the particular effects of inhomogeneity. We studied several coating designs and related results and tolerances to variations in evaporation conditions. The model is composed of several modular subprograms, is written in Fortran, and is executed on an IBM-PC with 640 K of memory. The results can be presented in graphic form on a monochrome monitor. We are currently installing and implementing color capability to improve the clarity of the multidimensional output.
Inhomogeneities and the Modeling of Radio Supernovae
Energy Technology Data Exchange (ETDEWEB)
Björnsson, C.-I.; Keshavarzi, S. T., E-mail: bjornsson@astro.su.se [Department of Astronomy, AlbaNova University Center, Stockholm University, SE–106 91 Stockholm (Sweden)
2017-05-20
Observations of radio supernovae (SNe) often exhibit characteristics not readily accounted for by a homogeneous, spherically symmetric synchrotron model; e.g., flat-topped spectra/light curves. It is shown that many of these deviations from the standard model can be attributed to an inhomogeneous source structure. When inhomogeneities are present, the deduced radius of the source and, hence, the shock velocity, is sensitive to the details of the modeling. As the inhomogeneities are likely to result from the same mechanism that amplify the magnetic field, a comparison between observations and the detailed numerical simulations now under way may prove mutually beneficial. It is argued that the radio emission in Type Ib/c SNe has a small volume filling factor and comes from a narrow region associated with the forward shock, while the radio emission region in SN 1993J (Type IIb) is determined by the extent of the Rayleigh–Taylor instability emanating from the contact discontinuity. Attention is also drawn to the similarities between radio SNe and the structural properties of SN remnants.
INHOMOGENEOUS NEARLY INCOMPRESSIBLE DESCRIPTION OF MAGNETOHYDRODYNAMIC TURBULENCE
International Nuclear Information System (INIS)
Hunana, P.; Zank, G. P.
2010-01-01
The nearly incompressible theory of magnetohydrodynamics (MHD) is formulated in the presence of a static large-scale inhomogeneous background. The theory is an inhomogeneous generalization of the homogeneous nearly incompressible MHD description of Zank and Matthaeus and a polytropic equation of state is assumed. The theory is primarily developed to describe solar wind turbulence where the assumption of a composition of two-dimensional (2D) and slab turbulence with the dominance of the 2D component has been used for some time. It was however unclear, if in the presence of a large-scale inhomogeneous background, the dominant component will also be mainly 2D and we consider three distinct MHD regimes for the plasma beta β > 1. For regimes appropriate to the solar wind (β 2 s δp is not valid for the leading-order O(M) density fluctuations, and therefore in observational studies, the density fluctuations should not be analyzed through the pressure fluctuations. The pseudosound relation is valid only for higher order O(M 2 ) density fluctuations, and then only for short-length scales and fast timescales. The spectrum of the leading-order density fluctuations should be modeled as k -5/3 in the inertial range, followed by a Bessel function solution K ν (k), where for stationary turbulence ν = 1, in the viscous-convective and diffusion range. Other implications for solar wind turbulence with an emphasis on the evolution of density fluctuations are also discussed.
Rotational inhomogeneities from pre-big bang?
International Nuclear Information System (INIS)
Giovannini, Massimo
2005-01-01
The evolution of the rotational inhomogeneities is investigated in the specific framework of four-dimensional pre-big bang models. While minimal (dilaton-driven) scenarios do not lead to rotational fluctuations, in the case of non-minimal (string-driven) models, fluid sources are present in the pre-big bang phase. The rotational modes of the geometry, coupled to the divergenceless part of the velocity field, can then be amplified depending upon the value of the barotropic index of the perfect fluids. In the light of a possible production of rotational inhomogeneities, solutions describing the coupled evolution of the dilaton field and of the fluid sources are scrutinized in both the string and Einstein frames. In semi-realistic scenarios, where the curvature divergences are regularized by means of a non-local dilaton potential, the rotational inhomogeneities are amplified during the pre-big bang phase but they decay later on. Similar analyses can also be performed when a contraction occurs directly in the string frame metric
Inhomogeneous neutrino degeneracy and big bang nucleosynthesis
International Nuclear Information System (INIS)
Whitmire, Scott E.; Scherrer, Robert J.
2000-01-01
We examine big bang nucleosynthesis (BBN) in the case of inhomogeneous neutrino degeneracy, in the limit where the fluctuations are sufficiently small on large length scales that the present-day element abundances are homogeneous. We consider two representative cases: degeneracy of the electron neutrino alone and equal chemical potentials for all three neutrinos. We use a linear programming method to constrain an arbitrary distribution of the chemical potentials. For the current set of (highly restrictive) limits on the primordial element abundances, homogeneous neutrino degeneracy barely changes the allowed range of the baryon-to-photon ratio η. Inhomogeneous degeneracy allows for little change in the lower bound on η, but the upper bound in this case can be as large as η=1.1x10 -8 (only ν e degeneracy) or η=1.0x10 -9 (equal degeneracies for all three neutrinos). For the case of inhomogeneous neutrino degeneracy, we show that there is no BBN upper bound on the neutrino energy density, which is bounded in this case only by limits from structure formation and the cosmic microwave background. (c) 2000 The American Physical Society
Rotational inhomogeneities from pre-big bang?
Energy Technology Data Exchange (ETDEWEB)
Giovannini, Massimo [Department of Physics, Theory Division, CERN, 1211 Geneva 23 (Switzerland)
2005-01-21
The evolution of the rotational inhomogeneities is investigated in the specific framework of four-dimensional pre-big bang models. While minimal (dilaton-driven) scenarios do not lead to rotational fluctuations, in the case of non-minimal (string-driven) models, fluid sources are present in the pre-big bang phase. The rotational modes of the geometry, coupled to the divergenceless part of the velocity field, can then be amplified depending upon the value of the barotropic index of the perfect fluids. In the light of a possible production of rotational inhomogeneities, solutions describing the coupled evolution of the dilaton field and of the fluid sources are scrutinized in both the string and Einstein frames. In semi-realistic scenarios, where the curvature divergences are regularized by means of a non-local dilaton potential, the rotational inhomogeneities are amplified during the pre-big bang phase but they decay later on. Similar analyses can also be performed when a contraction occurs directly in the string frame metric.
The Earth's ionosphere plasma physics and electrodynamics
Kelley, Michael C
2007-01-01
Although interesting in its own right, due to the ever-increasing use of satellites for communication and navigation, weather in the ionosphere is of great concern. Every such system uses trans-ionospheric propagation of radio waves, waves which must traverse the commonly turbulent ionosphere. Understanding this turbulence and predicting it are one of the major goals of the National Space Weather program. Acquiring such a prediction capability will rest on understanding the very topics of this book, the plasma physics and electrodynamics of the system. Fully updated to reflect advances in the field in the 20 years since the first edition published Explores the buffeting of the ionosphere from above by the sun and from below by the lower atmosphere Unique text appropriate both as a reference and for coursework.
Associating an ionospheric parameter with major earthquake ...
Indian Academy of Sciences (India)
ionospheric disturbance (SID) and 'td' is the dura- tion of the ... dayside of the earth, ionizing atmospheric parti- ... the increased emanation of excited radon molecules from the ground ..... tration following strong earthquake; Int. J. Remote Sens.
Ionospheric Oblique Incidence Soundings by Satellites
National Oceanic and Atmospheric Administration, Department of Commerce — The oblique incidence sweep-frequency ionospheric sounding technique uses the same principle of operation as the vertical incidence sounder. The primary difference...
Thermospheric storms and related ionospheric effects
International Nuclear Information System (INIS)
Chandra, S.; Spencer, N.W.
1976-01-01
A comparative study of thermospheric storms for the equinox and winter conditions is presented based on the neutral composition measurements from the Aeros-A Nate (Neutral Atmosphere Temperature Experiment) experiment. The main features of the two storms as inferred from the changes in N 2 , Ar, He, and O are described, and their implications to current theories of thermospheric storms are discussed. On the basis of the study of the F region critical frequency measured from a chain of ground-based ionospheric stations during the two storm periods, the general characteristics of the ionospheric storms and the traveling ionospheric disturbances are described. It is suggested that the positive and negative phases of ionospheric storms are the various manifestations of thermospheric storms
Digital processing of ionospheric electron content data
Bernhardt, P. A.
1979-01-01
Ionospheric electron content data contain periodicities that are produced by a diversity of sources including hydromagnetic waves, gravity waves, and lunar tides. Often these periodicities are masked by the strong daily variation in the data. Digital filtering can be used to isolate the weaker components. The filtered data can then be further processed to provide estimates of the source properties. In addition, homomorphic filtering may be used to identify nonlinear interactions in the ionosphere.
Ionospheric disturbances under low solar activity conditions
Czech Academy of Sciences Publication Activity Database
Burešová, Dalia; Laštovička, Jan; Hejda, Pavel; Bochníček, Josef
2014-01-01
Roč. 54, č. 2 (2014), s. 185-196 ISSN 0273-1177 R&D Projects: GA ČR(CZ) GAP209/11/1908 Institutional support: RVO:68378289 ; RVO:67985530 Keywords : ionosphere * solar minimum * magnetic storm s * ionospheric variability Subject RIV: DG - Athmosphere Sciences, Meteorology; DG - Athmosphere Sciences, Meteorology (GFU-E) Impact factor: 1.358, year: 2014 http://www.sciencedirect.com/science/article/pii/S027311771400221X
On Electron Hole Evolution in Inhomogeneous Plasmas
Kuzichev, I.; Vasko, I.; Agapitov, O. V.; Mozer, F.; Artemyev, A.
2017-12-01
Electron holes (EHs) are the stationary localized non-linear structures in phase space existing due to an electron population trapped within EH electrostatic potential. EHs were found to be a common phenomenon in the Earth's magnetosphere. Such structures were observed in reconnecting current sheets, injection fronts in the outer radiation belt, and in many other situations. EHs usually propagate along magnetic field lines with velocities about electron thermal velocity, are localized on the scale of about 4-10 Debye lengths, and have the field amplitude up to hundreds of mV/m. Generation of these structures, evolution, and their role in relaxation of instabilities and energy dissipation, particle energization, supporting large-scale potential drops is under active investigation. In this report, we present the results of 1.5D gyrokinetic Vlasov-Maxwell simulations of the EH evolution in plasmas with inhomogeneous magnetic field and inhomogeneous density. Our calculations show that the inhomogeneity has a critical effect on the EH dynamics. EHs propagating into stronger (weaker) magnetic field are decelerated (accelerated) with deceleration (acceleration) rate dependent on the magnetic field gradient. During the deceleration of EH, the potential drop (weak double layer) along EH is generated. Such a potential drop might be experimentally observable even for single EH in the reconnecting current sheets. The same holds for the propagation in the plasma with inhomogeneous density. For some parameters of the system, the deceleration results in the turning of the hole. The interesting feature of this process is that the turning point depends only on the EH parameters, being independent of the average inhomogeneity scale. Our calculations also demonstrate the significant difference between "quasi-particle" concept and real evolution of the hole. Indeed, the EH is accelerated (decelerated) faster than it follows from a quasi-particle energy conservation law. It indicates
Kotova, Daria; Klimenko, Maxim; Klimenko, Vladimir; Zakharov, Veniamin
2013-04-01
In this work we have investigated the global ionospheric response to geomagnetic storm on May 2-3, 2010 using GSM TIP (Global Self-consistent Model of the Thermosphere, Ionosphere and Protonosphere) simulation results. In the GSM TIP storm time model runs, several input parameters such as cross-polar cap potential difference and R2 FAC (Region 2 Field-Aligned Currents) varied as a function of the geomagnetic activity AE-index. Current simulation also uses the empirical model of high-energy particle precipitation by Zhang and Paxton. In this model, the energy and energy flux of precipitating electrons depend on a 3 hour Kp-index. We also have included the 30 min time delay of R2 FAC variations with respect to the variations of cross-polar cap potential difference. In addition, we use the ground-based ionosonde data for comparison our model results with observations. We present an analysis of the physical mechanisms responsible for the ionospheric effects of geomagnetic storms. The obtained simulation results are used by us as a medium for HF radio wave propagation at different latitudes in quiet conditions, and during main and recovery phase of a geomagnetic storm. To solve the problem of the radio wave propagation we used Zakharov's (I. Kant BFU) model based on geometric optics. In this model the solution of the eikonal equation for each of the two normal modes is reduced using the method of characteristics to the integration of the six ray equation system for the coordinates and momentum. All model equations of this system are solved in spherical geomagnetic coordinate system by the Runge-Kutta method. This model was tested for a plane wave in a parabolic layer. In this study, the complex refractive indices of the ordinary and extraordinary waves at ionospheric heights was calculated for the first time using the global first-principal model of the thermosphere-ionosphere system that describes the parameters of an inhomogeneous anisotropic medium during a
LIFDAR: A Diagnostic Tool for the Ionosphere
Kia, O. E.; Rodgers, C. T.; Batholomew, J. L.
2011-12-01
ITT Corporation proposes a novel system to measure and monitor the ion species within the Earth's ionosphere called Laser Induced Fluorescence Detection and Ranging (LIFDAR). Unlike current ionosphere measurements that detect electrons and magnetic field, LIFDAR remotely measures the major contributing ion species to the electron plasma. The LIFDAR dataset has the added capability to demonstrate stratification and classification of the layers of the ionosphere to ultimately give a true tomographic view. We propose a proof of concept study using existing atmospheric LIDAR sensors combined with a mountaintop observatory for a single ion species that is prevalent in all layers of the atmosphere. We envision the LIFDAR concept will enable verification, validation, and exploration of the physics of the magneto-hydrodynamic models used in ionosphere forecasting community. The LIFDAR dataset will provide the necessary ion and electron density data for the system wide data gap. To begin a proof of concept, we present the science justification of the LIFDAR system based on the model photon budget. This analysis is based on the fluorescence of ionized oxygen within the ionosphere versus altitude. We use existing model abundance data of the ionosphere during normal and perturbed states. We propagate the photon uncertainties from the laser source through the atmosphere to the plasma and back to the collecting optics and detector. We calculate the expected photon budget to determine signal to noise estimates based on the targeted altitude and detection efficiency. Finally, we use these results to derive a LIFDAR observation strategy compatible with operational parameters.
QCD under extreme conditions. Inhomogeneous condensation
Energy Technology Data Exchange (ETDEWEB)
Heinz, Achim
2014-10-15
Almost 40 years after the first publication on the phase diagram of quantum chromodynamics (QCD) big progress has been made but many questions are still open. This work covers several aspects of low-energy QCD and introduces advanced methods to calculate selected parts of the QCD phase diagram. Spontaneous chiral symmetry breaking as well as its restoration is a major aspect of QCD. Two effective models, the Nambu-Jona-Lasinio (NJL) model and the linear σ-model, are widely used to describe the QCD chiral phase transition. We study the large-N{sub c} behavior of the critical temperature T{sub c} for chiral symmetry restoration in the framework of both models. While in the NJL model T{sub c} is independent of N{sub c} (and in agreement with the expected QCD scaling), the scaling behavior in the linear σ-model reads T{sub c} ∝ N{sup 1/2}{sub c}. However, this mismatch can be corrected: phenomenologically motivated temperature-dependent parameters or the extension with the Polyakov-loop renders the scaling in the linear σ-model compatible with the QCD scaling. The requirement that the chiral condensate which is the order parameter of the chiral symmetry is constant in space is too restrictive. Recent studies on inhomogeneous chiral condensation in cold, dense quark matter suggest a rich crystalline structure. These studies feature models with quark degrees of freedom. In this thesis we investigate the formation of the chiral density wave (CDW) in the framework of the so-called extended linear sigma model (eLSM) at high densities and zero temperature. The eLSM is a modern development of the linear σ-model which contains scalar, pseudoscalar, vector, as well as axial-vector mesons, and in addition, a light tetraquark state. The nucleon and its chiral partner are introduced as parity doublets in the mirror assignment. The model describes successfully the vacuum phenomenology and nuclear matter ground-state properties. As a result we find that an inhomogeneous phase
A new simulation model for inhomogeneous Au/n-GaN structure
Energy Technology Data Exchange (ETDEWEB)
Kavasoglu, Nese, E-mail: knesese@gmail.com; Kavasoglu, Abdulkadir Sertap; Metin, Bengul [Mugla Sitki Kocman University, Faculty of Sciences, Department of Physics, Photovoltaic Material and Device Laboratory (Turkey)
2016-05-15
The larger the device area, the more difficult to carry on homogeneity during the fabrication and following treatments. Structural inhomogeneity may indicate themselves in variations in local electronic device parameters. Electrical current through the potential barriers is exponentially sensitive to the local device parameters and its fluctuations in the Schottky devices. A new simulation program is developed to describe a relation between multiple, random barrier heights and current-voltage characteristics of the Schottky device. We model the barrier height inhomogeneity in terms of random microcells connected in parallel, which have different barrier height values. Analyzing the integral of the simulated light current-voltage curves show that fluctuations of the local barrier height result in a degradation of the open circuit voltage, fill factor and in consequence, of the over all power conversation efficiency. The implementation described here is quite general and can be used to simulate any device parameter fluctuations in the Schottky devices.
Directory of Open Access Journals (Sweden)
E. Zuccheretti
1997-06-01
Full Text Available The IEN Galileo Ferraris uses GPS for time and frequency synchronization. To obtain high performance it is important to reduce the error due to the ionospheric time-delay in GPS measurements. Evaluations of TEC in the direction of GPS satellites, obtained from three different ionospheric models, have been compared with corresponding measurements by GPS signal.
Southern European ionospheric TEC maps based on Kriging technique to monitor ionosphere behavior
Rodríguez-Bouza, Marta; Paparini, Claudia; Otero, Xurxo; Herraiz, Miguel; Radicella, Sandro M.; Abe, Oladipo E.; Rodríguez-Caderot, Gracia
2017-10-01
Global or regional Maps of the ionospheric Total Electron Content (TEC) are an efficient tool to monitor the delay introduced by the ionosphere in the satellite signals. Ionospheric disturbance periods are of particular interest because these conditions can strongly affect satellite navigation range measurements. This work presents post-processing regional vertical TEC maps over Southern Europe ([35°N-50°N] latitude) obtained by applying Kriging interpolation to GPS derived TEC over more than 100 Global Navigation Satellite System (GNSS) stations. These maps are used to study the behavior of the ionosphere during space weather events and their effects. To validate these maps, hereafter called Southern European Ionospheric Maps (SEIMs), their TEC values have been compared with those obtained from EGNOS Message Server (EMS) and with direct experimental TEC data from GNSS stations. Ionospheric space weather events related to geomagnetic storms of March 17th, 2013, February 19th, 2014 and March 17th, 2015 have been selected. To test the methodology, one period of quiet days has been also analyzed. TEC values obtained by SEIMs in the Ionospheric Grid Points (IGPs) defined by EGNOS are very close to those given by EMS and in the period of major geomagnetic storms the difference does not exceed 6 TEC units. These results confirm the good performance of the technique used for obtaining the SEIMs that can be a useful tool to study the ionosphere behavior during geomagnetic storms and their effects in the region of interest.
Genomic mid-range inhomogeneity correlates with an abundance of RNA secondary structures
Directory of Open Access Journals (Sweden)
Song Jun
2008-06-01
Full Text Available Abstract Background Genomes possess different levels of non-randomness, in particular, an inhomogeneity in their nucleotide composition. Inhomogeneity is manifest from the short-range where neighboring nucleotides influence the choice of base at a site, to the long-range, commonly known as isochores, where a particular base composition can span millions of nucleotides. A separate genomic issue that has yet to be thoroughly elucidated is the role that RNA secondary structure (SS plays in gene expression. Results We present novel data and approaches that show that a mid-range inhomogeneity (~30 to 1000 nt not only exists in mammalian genomes but is also significantly associated with strong RNA SS. A whole-genome bioinformatics investigation of local SS in a set of 11,315 non-redundant human pre-mRNA sequences has been carried out. Four distinct components of these molecules (5'-UTRs, exons, introns and 3'-UTRs were considered separately, since they differ in overall nucleotide composition, sequence motifs and periodicities. For each pre-mRNA component, the abundance of strong local SS ( Conclusion We demonstrate that the excess of strong local SS in pre-mRNAs is linked to the little explored phenomenon of genomic mid-range inhomogeneity (MRI. MRI is an interdependence between nucleotide choice and base composition over a distance of 20–1000 nt. Additionally, we have created a public computational resource to support further study of genomic MRI.
Spectroscopy and Raman imaging of inhomogeneous materials
International Nuclear Information System (INIS)
Maslova, Olga
2014-01-01
This thesis is aimed at developing methodologies in Raman spectroscopy and imaging. After reviewing the statistical instruments which allow treating giant amount of data (multivariate analysis and classification), the study is applied to two families of well-known materials which are used as models for testing the limits of the implemented developments. The first family is a series of carbon materials pyrolyzed at various temperatures and exhibiting inhomogeneities at a nm scale which is suitable for Raman-X-ray diffraction combination. Another results concern the polishing effect on carbon structure. Since it is found to induce Raman artifacts leading to the overestimation of the local structural disorder, a method based on the use of the G band width is therefore proposed in order to evaluate the crystallite size in both unpolished and polished nano-graphites. The second class of materials presents inhomogeneities at higher (micrometric) scales by the example of uranium dioxide ceramics. Being well adapted in terms of spatial scale, Raman imaging is thus used for probing their surfaces. Data processing is implemented via an approach combining the multivariate (principal component) analysis and the classical fitting procedure with Lorentzian profiles. The interpretation of results is supported via electron backscattering diffraction (EBSD) analysis which enables us to distinguish the orientation effects of ceramic grains from other underlying contributions. The last ones are mainly localized at the grain boundaries, that is testified by the appearance of a specific Raman mode. Their origin seems to be caused by stoichiometric oxygen variations or impurities, as well as strain inhomogeneities. The perspectives of this work include both the implementation of other mathematical methods and in-depth analysis of UO 2 structure damaged by irradiation (anisotropic effects, role of grain boundaries). (author) [fr
Comparative ionospheres: Terrestrial and giant planets
Mendillo, Michael; Trovato, Jeffrey; Moore, Luke; Müller-Wodarg, Ingo
2018-03-01
The study of planetary ionospheres within our solar system offers a variety of settings to probe mechanisms of photo-ionization, chemical loss, and plasma transport. Ionospheres are a minor component of upper atmospheres, and thus their mix of ions observed depends on the neutral gas composition of their parent atmospheres. The same solar irradiance (x-rays and extreme-ultra-violet vs. wavelength) impinges upon each of these atmospheres, with solar flux magnitudes changed only by the inverse square of distance from the Sun. If all planets had the same neutral atmosphere-with ionospheres governed by photochemical equilibrium (production = loss)-their peak electron densities would decrease as the inverse of distance from the Sun, and any changes in solar output would exhibit coherent effects throughout the solar system. Here we examine the outer planet with the most observations of its ionosphere (Saturn) and compare its patterns of electron density with those at Earth under the same-day solar conditions. We show that, while the average magnitudes of the major layers of molecular ions at Earth and Saturn are approximately in accord with distance effects, only minor correlations exist between solar effects and day-to-day electron densities. This is in marked contrast to the strong correlations found between the ionospheres of Earth and Mars. Moreover, the variability observed for Saturn's ionosphere (maximum electron density and total electron content) is much larger than found at Earth and Mars. With solar irradiance changes far too small to cause such effects, we use model results to explore the roles of other agents. We find that water sources from Enceladus at low latitudes, and 'ring rain' at middle latitudes, contribute substantially to variability via water ion chemistry. Thermospheric winds and electrodynamics generated at auroral latitudes are suggested causes of high latitude ionospheric variability, but remain inconclusive due to the lack of relevant
Curvaton and the inhomogeneous end of inflation
International Nuclear Information System (INIS)
Assadullahi, Hooshyar; Wands, David; Firouzjahi, Hassan; Namjoo, Mohammad Hossein
2012-01-01
We study the primordial density perturbations and non-Gaussianities generated from the combined effects of an inhomogeneous end of inflation and curvaton decay in hybrid inflation. This dual role is played by a single isocurvature field which is massless during inflation but acquire a mass at the end of inflation via the waterfall phase transition. We calculate the resulting primordial non-Gaussianity characterized by the non-linearity parameter, f NL , recovering the usual end-of-inflation result when the field decays promptly and the usual curvaton result if the field decays sufficiently late
Nature of inhomogeneous states in superconducting junctions
International Nuclear Information System (INIS)
Ivlev, B.I.; Kopnin, N.B.
1982-01-01
A superconducting structure which arises in a superconducting film under a strong injection of a current through a tunnel junction is considered. If the current density in the film exceeds the critical Ginzburg-Landau value, an inhomogeneous resistive state with phase-slip centers can arise in it. This state is charcterized by the presence of regions with different chemical potentials of the Cooper pairs. These shifts of the pair chemical potential and the nonuniform structure of the order parameter may account for the so-called multigap states which have been observed experimentally
Refractive index inhomogeneity within an aerogel block
International Nuclear Information System (INIS)
Bellunato, T.; Calvi, M.; Da Silva Costa, C.F.; Matteuzzi, C.; Musy, M.; Perego, D.L.
2006-01-01
Evaluating local inhomogeneities of the refractive index inside aerogel blocks to be used as Cherenkov radiator is important for a high energy physics experiment where angular resolution is crucial. Two approaches are described and compared. The first one is based on the bending of a laser beam induced by refractive index gradients along directions normal to the unperturbed optical path. The second method exploits the Cherenkov effect itself by shooting an ultra-relativistic collimated electron beam through different points of the aerogel surface. Local refractive index variations result in sizable differences in the Cherenkov photons distribution
Albedo and transmittance of inhomogeneous stratus clouds
Energy Technology Data Exchange (ETDEWEB)
Zuev, V.E.; Kasyanov, E.I.; Titov, G.A. [Institute of Atmospheric Optics, Tomsk (Russian Federation)] [and others
1996-04-01
A highly important topic is the study of the relationship between the statistical parameters of optical and radiative charactertistics of inhomogeneous stratus clouds. This is important because the radiation codes of general circulation models need improvement, and it is important for geophysical information. A cascade model has been developed at the Goddard Space Flight Center to treat stratocumulus clouds with the simplest geometry and horizontal fluctuations of the liquid water path (optical thickness). The model evaluates the strength with which the stochastic geometry of clouds influences the statistical characteristics of albedo and the trnasmittance of solar radiation.
Metric inhomogeneous Diophantine approximation in positive characteristic
DEFF Research Database (Denmark)
Kristensen, Simon
2011-01-01
We obtain asymptotic formulae for the number of solutions to systems of inhomogeneous linear Diophantine inequalities over the field of formal Laurent series with coefficients from a finite fields, which are valid for almost every such system. Here `almost every' is with respect to Haar measure...... of the coefficients of the homogeneous part when the number of variables is at least two (singly metric case), and with respect to the Haar measure of all coefficients for any number of variables (doubly metric case). As consequences, we derive zero-one laws in the spirit of the Khintchine-Groshev Theorem and zero...
Metric inhomogeneous Diophantine approximation in positive characteristic
DEFF Research Database (Denmark)
Kristensen, S.
We obtain asymptotic formulae for the number of solutions to systems of inhomogeneous linear Diophantine inequalities over the field of formal Laurent series with coefficients from a finite fields, which are valid for almost every such system. Here 'almost every' is with respect to Haar measure...... of the coefficients of the homogeneous part when the number of variables is at least two (singly metric case), and with respect to the Haar measure of all coefficients for any number of variables (doubly metric case). As consequences, we derive zero-one laws in the spirit of the Khintchine--Groshev Theorem and zero...
Waves in inhomogeneous plasma of cylindrical geometry
International Nuclear Information System (INIS)
Rebut, P.H.
1966-01-01
The conductivity tensor of a hot and inhomogeneous plasma has been calculated for a cylindrical geometry using Vlasov equations. The method used consists in a perturbation method involving the first integrals of the unperturbed movement. The conductivity tensor will be particularly useful for dealing with stability problems. In the case of a cold plasma the wave equation giving the electric fields as a function of the radius is obtained. This equation shows the existence of resonant layers which lead to an absorption analogous to the Landau absorption in a hot plasma. (author) [fr
Fluctuations and transport in an inhomogeneous plasma
International Nuclear Information System (INIS)
Nevins, W.M.; Chen, L.
1979-11-01
A formalism is developed for calculating the equilibrium fluctuation level in an inhomogeneous plasma. This formalism is applied to the collisionless drift wave in a sheared magnetic field. The fluctuation level is found to be anomalously large due to both the presence of weakly damped normal modes and convective amplification. As the magnetic shear is reduced, the steady-state fluctuation spectrum is found to increase both in coherence and in amplitude. The transport associated with this mode is evaluated. The diffusion coefficient is found to scale as D is proportional to B 2 /nT/sup 1/2/
Full-wave solution of short impulses in inhomogeneous plasma
International Nuclear Information System (INIS)
Ferencz, Orsolya E.
2005-01-01
In this paper the problem of real impulse propagation in arbitrarily inhomogeneous media will be presented on a fundamentally new, general, theoretical way. The general problem of wave propagation of monochromatic signals in inhomogeneous media was enlightened. The earlier theoretical models for spatial inhomogeneities have some errors regarding the structure of the resultant signal originated from backward and forward propagating parts. The application of the method of inhomogeneous basic modes (MIBM) and the complete full-wave solution of arbitrarily shaped non-monochromatic plane waves in plasmas made it possible to obtain a better description of the problem, on a fully analytical way, directly from Maxwell's equations. The model investigated in this paper is inhomogeneous of arbitrary order (while the wave pattern can exist), anisotropic (magnetized), linear, cold plasma, in which the gradient of the one-dimensional spatial inhomogeneity is parallel to the direction of propagation. (author)
OBSERVABLE DEVIATIONS FROM HOMOGENEITY IN AN INHOMOGENEOUS UNIVERSE
Energy Technology Data Exchange (ETDEWEB)
Giblin, John T. Jr. [Department of Physics, Kenyon College, 201 N College Road Gambier, OH 43022 (United States); Mertens, James B.; Starkman, Glenn D. [CERCA/ISO, Department of Physics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106 (United States)
2016-12-20
How does inhomogeneity affect our interpretation of cosmological observations? It has long been wondered to what extent the observable properties of an inhomogeneous universe differ from those of a corresponding Friedmann–Lemaître–Robertson–Walker (FLRW) model, and how the inhomogeneities affect that correspondence. Here, we use numerical relativity to study the behavior of light beams traversing an inhomogeneous universe, and construct the resulting Hubble diagrams. The universe that emerges exhibits an average FLRW behavior, but inhomogeneous structures contribute to deviations in observables across the observer’s sky. We also investigate the relationship between angular diameter distance and the angular extent of a source, finding deviations that grow with source redshift. These departures from FLRW are important path-dependent effects, with implications for using real observables in an inhomogeneous universe such as our own.
OBSERVABLE DEVIATIONS FROM HOMOGENEITY IN AN INHOMOGENEOUS UNIVERSE
International Nuclear Information System (INIS)
Giblin, John T. Jr.; Mertens, James B.; Starkman, Glenn D.
2016-01-01
How does inhomogeneity affect our interpretation of cosmological observations? It has long been wondered to what extent the observable properties of an inhomogeneous universe differ from those of a corresponding Friedmann–Lemaître–Robertson–Walker (FLRW) model, and how the inhomogeneities affect that correspondence. Here, we use numerical relativity to study the behavior of light beams traversing an inhomogeneous universe, and construct the resulting Hubble diagrams. The universe that emerges exhibits an average FLRW behavior, but inhomogeneous structures contribute to deviations in observables across the observer’s sky. We also investigate the relationship between angular diameter distance and the angular extent of a source, finding deviations that grow with source redshift. These departures from FLRW are important path-dependent effects, with implications for using real observables in an inhomogeneous universe such as our own.
International Nuclear Information System (INIS)
Mejlikhov, E.Z.; Farzetdinova, R.M.
1997-01-01
Critical current of inhomogeneous intergranular Josephson transition is calculated in the assumption concerning superconductivity suppression by local strains of boundary dislocations with random distribution
Acoustic Streaming and Its Suppression in Inhomogeneous Fluids
DEFF Research Database (Denmark)
Karlsen, Jonas Tobias; Qiu, Wei; Augustsson, Per
2018-01-01
We present a theoretical and experimental study of boundary-driven acoustic streaming in an inhomogeneous fluid with variations in density and compressibility. In a homogeneous fluid this streaming results from dissipation in the boundary layers (Rayleigh streaming). We show...... that in an inhomogeneous fluid, an additional nondissipative force density acts on the fluid to stabilize particular inhomogeneity configurations, which markedly alters and even suppresses the streaming flows. Our theoretical and numerical analysis of the phenomenon is supported by ultrasound experiments performed...
Electric fields in the ionosphere
International Nuclear Information System (INIS)
Kirchhoff, V.W.J.H.
1975-01-01
F-region drift velocities, measured by incoherent-scatter radar, were analyzed in terms of diurnal, seasonal, magnetic-activity, and solar-cycle effects. A comprehensive electric field model was developed that includes the effects of the E and F-region dynamos, magnetospheric sources, and ionospheric conductivities, for both the local and conjugate regions. The E-region dynamo dominates during the day, but at night the F-region and convection are more important. This model provides much better agreement with observations of the F-region drifts than previous models. Results indicate that larger magnitudes occur at night, and that daily variation is dominated by the diurnal mode. Seasonal variations in conductivities and thermospheric winds indicate a reversal in direction in the early morning during winter from south to northward. On magnetic perturbed days the drifts deviate rather strongly from the quiet days average, especially around 13 L.T. for the northward and 18 L.T. for the westward component
Ionospheric Scintillation Effects on GPS
Steenburgh, R. A.; Smithtro, C.; Groves, K.
2007-12-01
. Ionospheric scintillation of Global Positioning System (GPS) signals threatens navigation and military operations by degrading performance or making GPS unavailable. Scintillation is particularly active, although not limited to, a belt encircling the earth within 20 degrees of the geomagnetic equator. As GPS applications and users increases, so does the potential for detrimental impacts from scintillation. We examined amplitude scintillation data spanning seven years from Ascension Island, U.K.; Ancon, Peru; and Antofagasta, Chile in the Atlantic/Americas longitudinal sector at as well as data from Parepare, Indonesia; Marak Parak, Malaysia; Pontianak, Indonesia; Guam; and Diego Garcia, U.K.; in the Pacific longitudinal sector. From these data, we calculate percent probability of occurrence of scintillation at various intensities described by the S4 index. Additionally, we determine Dilution of Precision at one minute resolution. We examine diurnal, seasonal and solar cycle characteristics and make spatial comparisons. In general, activity was greatest during the equinoxes and solar maximum, although scintillation at Antofagasta, Chile was higher during 1998 rather than at solar maximum.
Ionospheric scintillation monitoring and modelling
Directory of Open Access Journals (Sweden)
Mariusz Pozoga
2009-06-01
Full Text Available
This paper presents a review of the ionospheric scintillation monitoring and modelling by the European groups
involved in COST 296. Several of these groups have organized scintillation measurement campaigns at low and
high latitudes. Some characteristic results obtained from the measured data are presented. The paper also addresses the modeling activities: four models, based on phase screen techniques, with different options and application domains are detailed. Finally some new trends for research topics are given. This includes the wavelet analysis, the high latitudes analysis, the construction of scintillation maps and the mitigation techniques.
Ionospheric Caustics in Solar Radio Observations
Koval, A.; Chen, Y.; Stanislavsky, A.
2016-12-01
The Earth ionosphere possesses by natural focusing and defocusing effects on radio waves due to presence of variable ionospheric irregularities which could act like convergent and divergent lenses on incident radiation. In particular, the focusing of emission from the Sun was firstly detected on the Nançay Decameter Array dynamic spectra in the 1980s. On time-frequency spectrograms the intensity variations form specific structures different from well-known solar radio bursts and clearly distinguishing on a background of solar radiation. Such structures have been identified as ionospheric caustics (ICs) and considered to be the result of radio waves refraction on medium scale travelling ionospheric disturbances (MSTIDs). Although nowadays the ICs are registered by different radio observatories due to augmentation of low-frequency radio telescopes, the most recent papers devoted to ICs in solar radio records date back to the 1980s. In this study, we revisit the ICs issue with some new results by conducting a statistical analysis of occurrence rate of ICs in solar dynamic spectra in meter-decameter wavelength range for long continuous period (15 years). The seasonal variations in ICs appearance have been found for the first time. Besides, we report the possible solar cycle dependence of ICs emergence. The radio waves propagation in the ionosphere comprising MSTIDs will be considered. The present research renews the subject of ICs in the low-frequency solar radio astronomy after about 35-year letup.
Turbulent structure of stably stratified inhomogeneous flow
Iida, Oaki
2018-04-01
Effects of buoyancy force stabilizing disturbances are investigated on the inhomogeneous flow where disturbances are dispersed from the turbulent to non-turbulent field in the direction perpendicular to the gravity force. Attaching the fringe region, where disturbances are excited by the artificial body force, a Fourier spectral method is used for the inhomogeneous flow stirred at one side of the cuboid computational box. As a result, it is found that the turbulent kinetic energy is dispersed as layered structures elongated in the streamwise direction through the vibrating motion. A close look at the layered structures shows that they are flanked by colder fluids at the top and hotter fluids at the bottom, and hence vertically compressed and horizontally expanded by the buoyancy related to the countergradient heat flux, though they are punctuated by the vertical expansion of fluids at the forefront of the layered structures, which is related to the downgradient heat flux, indicating that the layered structures are gravity currents. However, the phase between temperature fluctuations and vertical velocity is shifted by π/2 rad, indicating that temperature fluctuations are generated by the propagation of internal gravity waves.
Robustness of inflation to inhomogeneous initial conditions
Energy Technology Data Exchange (ETDEWEB)
Clough, Katy; Lim, Eugene A. [Theoretical Particle Physics and Cosmology Group, Physics Department, Kings College London, Strand, London WC2R 2LS (United Kingdom); DiNunno, Brandon S.; Fischler, Willy; Flauger, Raphael; Paban, Sonia, E-mail: katy.clough@kcl.ac.uk, E-mail: eugene.a.lim@gmail.com, E-mail: bsd86@physics.utexas.edu, E-mail: fischler@physics.utexas.edu, E-mail: flauger@physics.utexas.edu, E-mail: paban@physics.utexas.edu [Department of Physics, The University of Texas at Austin, Austin, TX, 78712 (United States)
2017-09-01
We consider the effects of inhomogeneous initial conditions in both the scalar field profile and the extrinsic curvature on different inflationary models. In particular, we compare the robustness of small field inflation to that of large field inflation, using numerical simulations with Einstein gravity in 3+1 dimensions. We find that small field inflation can fail in the presence of subdominant gradient energies, suggesting that it is much less robust to inhomogeneities than large field inflation, which withstands dominant gradient energies. However, we also show that small field inflation can be successful even if some regions of spacetime start out in the region of the potential that does not support inflation. In the large field case, we confirm previous results that inflation is robust if the inflaton occupies the inflationary part of the potential. Furthermore, we show that increasing initial scalar gradients will not form sufficiently massive inflation-ending black holes if the initial hypersurface is approximately flat. Finally, we consider the large field case with a varying extrinsic curvature K , such that some regions are initially collapsing. We find that this may again lead to local black holes, but overall the spacetime remains inflationary if the spacetime is open, which confirms previous theoretical studies.
Microstructural evolution in inhomogeneous elastic media
International Nuclear Information System (INIS)
Jou, H.J.; Leo, P.H.; Lowengrub, J.S.
1997-01-01
We simulate the diffusional evolution of microstructures produced by solid state diffusional transformations in elastically stressed binary alloys in two dimensions. The microstructure consists of arbitrarily shaped precipitates embedded coherently in an infinite matrix. The precipitate and matrix are taken to be elastically isotropic, although they may have different elastic constants (elastically inhomogeneous). Both far-field applied strains and mismatch strains between the phases are considered. The diffusion and elastic fields are calculated using the boundary integral method, together with a small scale preconditioner to remove ill-conditioning. The precipitate-matrix interfaces are tracked using a nonstiff time updating method. The numerical method is spectrally accurate and efficient. Simulations of a single precipitate indicate that precipitate shapes depend strongly on the mass flux into the system as well as on the elastic fields. Growing shapes (positive mass flux) are dendritic while equilibrium shapes (zero mass flux) are squarish. Simulations of multiparticle systems show complicated interactions between precipitate morphology and the overall development of microstructure (i.e., precipitate alignment, translation, merging, and coarsening). In both single and multiple particle simulations, the details of the microstructural evolution depend strongly o the elastic inhomogeneity, misfit strain, and applied fields. 57 refs., 24 figs
The effect of inhomogeneity of microstructure on ducility in superplasticity
International Nuclear Information System (INIS)
Manonukul, A.; Dunne, F.P.E.
1996-01-01
Finite element cell models have been developed to represent inhomogeneous grain size fields that occur in commercial Ti-6Al-4V. The models are used to investigate the influence of microstructure on superplastic stress-strain behaviour, inhomogeneity of deformation, and on ductility in superplastic deformation. It is shown that increasing the level of initial microstructural inhomogeneity leads to increasing flow stress for given strain, and that the microstructural inhomogeneity leads to inhomogeneous deformation. As superplasticity proceeds, the level of microstructural inhomogeneity diminishes, but the inhomogeneity itself is preserved during the deformation. It is shown that the inhomogeneity of microstructure leads to strain localisation which increases in severity with deformation until material necking and failure occur. Increasing the initial microstructural inhomogeneity is shown to lead to a decrease in ductility, but the effect diminishes for grain size ranges in excess of 30 μm. An empirical relationship is presented that relates the ductility to the initial grain size range through a power law. (orig.)
Acoustic Streaming and Its Suppression in Inhomogeneous Fluids.
Karlsen, Jonas T; Qiu, Wei; Augustsson, Per; Bruus, Henrik
2018-02-02
We present a theoretical and experimental study of boundary-driven acoustic streaming in an inhomogeneous fluid with variations in density and compressibility. In a homogeneous fluid this streaming results from dissipation in the boundary layers (Rayleigh streaming). We show that in an inhomogeneous fluid, an additional nondissipative force density acts on the fluid to stabilize particular inhomogeneity configurations, which markedly alters and even suppresses the streaming flows. Our theoretical and numerical analysis of the phenomenon is supported by ultrasound experiments performed with inhomogeneous aqueous iodixanol solutions in a glass-silicon microchip.
Spatial inhomogeneity in spectra and exciton dynamics in porphyrin ...
Indian Academy of Sciences (India)
inhomogeneity. This is elucidated by time-resolved confocal microscopy. ... dynamics of such supramolecular aggregates. Weisman ... protein scaffold and faithfully represents a biomimetic reminiscent .... increased intermolecular interactions.
An ionospheric index suitable for estimating the degree of ionospheric perturbations
Wilken, Volker; Kriegel, Martin; Jakowski, Norbert; Berdermann, Jens
2018-03-01
Space weather can strongly affect trans-ionospheric radio signals depending on the used frequency. In order to assess the strength of a space weather event from its origin at the sun towards its impact on the ionosphere a number of physical quantities need to be derived from scientific measurements. These are for example the Wolf number sunspot index, the solar flux density F10.7, measurements of the interplanetary magnetic field, the proton density, the solar wind speed, the dynamical pressure, the geomagnetic indices Auroral Electrojet, Kp, Ap and Dst as well as the Total Electron Content (TEC), the Rate of TEC, the scintillation indices S4 and σ(ϕ) and the Along-Arc TEC Rate index index. All these quantities provide in combination with an additional classification an orientation in a physical complex environment. Hence, they are used for brief communication of a simplified but appropriate space situation awareness. However, space weather driven ionospheric phenomena can affect many customers in the communication and navigation domain, which are still served inadequately by the existing indices. We present a new robust index, that is able to properly characterize temporal and spatial ionospheric variations of small to medium scales. The proposed ionospheric disturbance index can overcome several drawbacks of other ionospheric measures and might be suitable as potential driver for an ionospheric space weather scale.
Electromagnetic fields of ionospheric point dipoles in the earthionosphere waveguide
International Nuclear Information System (INIS)
Rybachek, S.T.
1985-01-01
This paper addresses the problem of excitation of the spherical earth-anisotropic ionosphere waveguide by ionospheric dipole sources. The solution obtained is based on a generalized reciprocity theorem which provides a relationship to the problem of finding electromagnetic fields in the ionosphere created by sources located in the waveguide. Some results of the calculations are presented
Characteristics of low latitude ionospheric E-region irregularities ...
Indian Academy of Sciences (India)
154°E, dip angle = 37.3°, sub-ionospheric dip = 34°) have been analyzed to study the behaviour of ionospheric E-region irregularities during the active solar and magnetic periods. The autocorrelation functions, power spectral densities, signal de-correlation times are computed to study the temporal features of ionospheric ...
International Nuclear Information System (INIS)
Wapenaar, Kees
2004-01-01
A correlation-type reciprocity theorem is used to show that the elastodynamic Green's function of any inhomogeneous medium (random or deterministic) can be retrieved from the cross correlation of two recordings of a wave field at different receiver locations at the free surface. Unlike in other derivations, which apply to diffuse wave fields in random media or irregular finite bodies, no assumptions are made about the diffusivity of the wave field. In a second version, it is assumed that the wave field is diffuse due to many uncorrelated sources inside the medium
2017-12-29
AFRL-AFOSR-JP-TR-2018-0009 Multi-instrument investigation of ionospheric flow channels and their impact on the ionosphere and thermosphere during...SUBTITLE Multi-instrument investigation of ionospheric flow channels and their impact on the ionosphere and thermosphere during geomagnetic storms 5a...Experiment) and GOCE (Gravity field and steady- state Ocean Circulation Explorer) satellite data. We also created a series of computer algorithms to
Holschneider, M.; Ferrat, K.; Lesur, V.; Stolle, C.
2017-12-01
Ionospheric fields are modelled in terms of random structures taking into account a mean behaviour as well as random fluctuations which are described through two point correlation kernels. These kernels are estimated from long time series of numerical simulations from various models. These correlations are best expressed in SM system of coordinates. For the moment we limit ourselves to spatial correlations only in this coordinate system. We study the influence of various indices as possible predictor parameters for these correlations as well as seasonal effects. The various time series of ionospheric fields are stored in a HDF5 database which is accessible via a web interface. The obtained correlation structures serve as prior information to separate external and internal field components from observatory based measurements. We present a model that predicts the correlations as a function of time and some geomagnetic indices. First results of the inversion from observatory data are presented.
Ionospheric irregularities in periods of meteorological disturbances
Borchevkina, O. P.; Karpov, I. V.
2017-09-01
The results of observations of the total electron content (TEC) in periods of storm disturbances of meteorological situation are presented in the paper. The observational results have shown that a passage of a meteorological storm is accompanied by a substantial decrease in values of TEC and critical frequencies of the ionospheric F2 region. The decreases in values of these ionospheric parameters reach 50% and up to 30% in TEC and critical frequency of the F2 layer, respectively, as compared to meteorologically quiet days. Based on qualitative analysis, it is found that the processes related to formation of local regions of thermospheric heating due to a dissipation of AGW coming into the upper atmosphere from the region of the meteorological disturbance in the lower atmosphere are a possible cause of these ionospheric disturbances.
Hernández-Pajares, Manuel; Roma-Dollase, David; Krankowski, Andrzej; García-Rigo, Alberto; Orús-Pérez, Raül
2017-12-01
A summary of the main concepts on global ionospheric map(s) [hereinafter GIM(s)] of vertical total electron content (VTEC), with special emphasis on their assessment, is presented in this paper. It is based on the experience accumulated during almost two decades of collaborative work in the context of the international global navigation satellite systems (GNSS) service (IGS) ionosphere working group. A representative comparison of the two main assessments of ionospheric electron content models (VTEC-altimeter and difference of Slant TEC, based on independent global positioning system data GPS, dSTEC-GPS) is performed. It is based on 26 GPS receivers worldwide distributed and mostly placed on islands, from the last quarter of 2010 to the end of 2016. The consistency between dSTEC-GPS and VTEC-altimeter assessments for one of the most accurate IGS GIMs (the tomographic-kriging GIM `UQRG' computed by UPC) is shown. Typical error RMS values of 2 TECU for VTEC-altimeter and 0.5 TECU for dSTEC-GPS assessments are found. And, as expected by following a simple random model, there is a significant correlation between both RMS and specially relative errors, mainly evident when large enough number of observations per pass is considered. The authors expect that this manuscript will be useful for new analysis contributor centres and in general for the scientific and technical community interested in simple and truly external ways of validating electron content models of the ionosphere.
Ionospheric Impacts on UHF Space Surveillance
Jones, J. C.
2017-12-01
Earth's atmosphere contains regions of ionized plasma caused by the interaction of highly energetic solar radiation. This region of ionization is called the ionosphere and varies significantly with altitude, latitude, local solar time, season, and solar cycle. Significant ionization begins at about 100 km (E layer) with a peak in the ionization at about 300 km (F2 layer). Above the F2 layer, the atmosphere is mostly ionized but the ion and electron densities are low due to the unavailability of neutral molecules for ionization so the density decreases exponentially with height to well over 1000 km. The gradients of these variations in the ionosphere play a significant role in radio wave propagation. These gradients induce variations in the index of refraction and cause some radio waves to refract. The amount of refraction depends on the magnitude and direction of the electron density gradient and the frequency of the radio wave. The refraction is significant at HF frequencies (3-30 MHz) with decreasing effects toward the UHF (300-3000 MHz) range. UHF is commonly used for tracking of space objects in low Earth orbit (LEO). While ionospheric refraction is small for UHF frequencies, it can cause errors in range, azimuth angle, and elevation angle estimation by ground-based radars tracking space objects. These errors can cause significant errors in precise orbit determinations. For radio waves transiting the ionosphere, it is important to understand and account for these effects. Using a sophisticated radio wave propagation tool suite and an empirical ionospheric model, we calculate the errors induced by the ionosphere in a simulation of a notional space surveillance radar tracking objects in LEO. These errors are analyzed to determine daily, monthly, annual, and solar cycle trends. Corrections to surveillance radar measurements can be adapted from our simulation capability.
VHF Scintillation in an Artificially Heated Ionosphere
Suszcynsky, D. M.; Layne, J.; Light, M. E.; Pigue, M. J.; Rivera, L.
2017-12-01
As part of an ongoing project to characterize very-high-frequency (VHF) radio wave propagation through structured ionospheres, Los Alamos National Laboratory has been conducting a set of experiments to measure the scintillation effects of VHF transmissions under a variety of ionospheric conditions. Previous work (see 2015 Fall AGU poster by D. Suszcynsky et al.) measured the S4 index and ionospheric coherence bandwidth in the 32 - 44 MHz frequency range under naturally scintillated conditions in the equatorial region at Kwajalein Atoll during three separate campaigns centered on the 2014 and 2015 equinoxes. In this paper, we will present preliminary results from the February and September, 2017 High Altitude Auroral Research Project (HAARP) Experimental Campaigns where we are attempting to make these measurements under more controlled conditions using the HAARP ionospheric heater in a twisted-beam mode. Two types of measurements are made by transmitting VHF signals through the heated ionospheric volume to the Radio Frequency Propagation (RFProp) satellite experiment. The S4 scintillation index is determined by measuring the power fluctuations of a 135-MHz continuous wave signal and the ionospheric coherence bandwidth is simultaneously determined by measuring the delay spread of a frequency-modulated continuous wave (FMCW) signal in the 130 - 140 MHz frequency range. Additionally, a spatial Fourier transform of the CW time series is used to calculate the irregularity spectral density function. Finally, the temporal evolution of the time series is used to characterize spread-Doppler clutter effects arising from preferential ray paths to the satellite due to refraction off of isolated density irregularities. All results are compared to theory and scaled for comparison to the 32 - 44 MHz Kwajalein measurements.
Moessbauer spectroscopy of locally inhomogeneous systems
International Nuclear Information System (INIS)
Rusakov, V. S.; Kadyrzhanov, K. K.
2004-01-01
Substances with characteristic local inhomogeneities - with different from position to position neighborhood and properties of like atoms - gain recently increased scientific attention and wide practical application. We would call a system locally inhomogeneous if atoms in the system are in non-equivalent atomic locations and reveal different properties. Such systems are, first of all, variable composition phases, amorphous, multi-phase, admixture, defect and other systems. LIS are most convenient model objects for studies of structure, charge, and spin atomic states, interatomic interactions, relations between matter properties and its local characteristics as well as for studies of diffusion kinetics, phase formation, crystallization and atomic ordering; all that explains considerable scientific interest in such LIS. Such systems find their practical application due to wide spectrum of useful, and sometimes unique, properties that can be controlled varying character and degree of local inhomogeneity. Moessbauer spectroscopy is one of the most effective methods for investigation of LIS. Local character of obtained information combined with information on cooperative phenomena makes it possible to run investigations impossible for other methods. Moessbauer spectroscopy may provide with abundant information on peculiarities of macro- and microscopic state of matter including that for materials without regular structure. At the same time, analysis, processing and interpretation of Moessbauer spectra for LIS (that are sets of a large amount of partial spectra) face considerable difficulties. Development of computer technique is accompanied with development of mathematical methods used for obtaining physical information from experimental data. The methods make it possible to improve considerably, with some available a priori information, effectiveness of the research. Utilization of up-to-date mathematical methods in Moessbauer spectroscopy requires not only adaptation
Diurnal variations of Titan's ionosphere
Cui, J.; Galand, M.; Yelle, R. V.; Vuitton, V.; Wahlund, J.-E.; Lavvas, P. P.; Müller-Wodarg, I. C. F.; Cravens, T. E.; Kasprzak, W. T.; Waite, J. H.
2009-06-01
We present our analysis of the diurnal variations of Titan's ionosphere (between 1000 and 1300 km) based on a sample of Ion Neutral Mass Spectrometer (INMS) measurements in the Open Source Ion (OSI) mode obtained from eight close encounters of the Cassini spacecraft with Titan. Although there is an overall ion depletion well beyond the terminator, the ion content on Titan's nightside is still appreciable, with a density plateau of ˜700 cm-3 below ˜1300 km. Such a plateau is a combined result of significant depletion of light ions and modest depletion of heavy ones on Titan's nightside. We propose that the distinctions between the diurnal variations of light and heavy ions are associated with their different chemical loss pathways, with the former primarily through “fast” ion-neutral chemistry and the latter through “slow” electron dissociative recombination. The strong correlation between the observed night-to-day ion density ratios and the associated ion lifetimes suggests a scenario in which the ions created on Titan's dayside may survive well to the nightside. The observed asymmetry between the dawn and dusk ion density profiles also supports such an interpretation. We construct a time-dependent ion chemistry model to investigate the effect of ion survival associated with solid body rotation alone as well as superrotating horizontal winds. For long-lived ions, the predicted diurnal variations have similar general characteristics to those observed. However, for short-lived ions, the model densities on the nightside are significantly lower than the observed values. This implies that electron precipitation from Saturn's magnetosphere may be an additional and important contributor to the densities of the short-lived ions observed on Titan's nightside.
Theory of imperfect magnetosphere-ionosphere coupling
International Nuclear Information System (INIS)
Kan, J.R.; Lee, L.C.
1980-01-01
Atheory of magnetosphere-ionosphere coupling in the presence of field-aligned potential drops is formulated within the framework of magnetohydrodynamic equations. Our formulation allows the magnetosphere as well as the ionosphere to respond self-consistently to the parallel potential drop along auroral field lines. Equipotential contours are distorted into a V-shaped structure near the convection reversal boundary and S-shaped on the equatorward side, each gives rise to an inverted V precipitation band. The loading effect of the imperfect coupling results in a valley in the electric field profile which occurs equatorward of the convection reversal boundary
Time properties of ionospheric wave disturbances
International Nuclear Information System (INIS)
Kaliev, M.Z.; Krasnikov, I.M.; Litvinov, Yu.G.; Chakenov, B.D.; Yakovets, A.F.
1989-01-01
Records of Doppler frequency shifts of an ionospheric signal, taken in separate observation posts in the vicinity of Alma-Ata in 1986-1987, are analyzed. It is shown that the coherent parts of Doppler shift oscillations are wave disturbance trains in the ionospheric F region. The relation between the train duration and its central frequency is established. With the frequency decrease the mean train length increases, while the maximum train length, determined in the experiment, is about 6h. The probabilities of train detection in the low and high-frequency ranges are nearly the same, and moreover, they are equal in day time and at night
Using DORIS measurements for ionosphere modeling
Dettmering, Denise; Schmidt, Michael; Limberger, Marco
2013-04-01
Nowadays, most of the ionosphere models used in geodesy are based on terrestrial GNSS measurements and describe the Vertical Total Electron Content (VTEC) depending on longitude, latitude, and time. Since modeling the height distribution of the electrons is difficult due to the measurement geometry, the VTEC maps are based on the the assumption of a single-layer ionosphere. Moreover, the accuracy of the VTEC maps is different for different regions of the Earth, because the GNSS stations are unevenly distributed over the globe and some regions (especially the ocean areas) are not very well covered by observations. To overcome the unsatisfying measurement geometry of the terrestrial GNSS measurements and to take advantage of the different sensitivities of other space-geodetic observation techniques, we work on the development of multi-dimensional models of the ionosphere from the combination of modern space-geodetic satellite techniques. Our approach consists of a given background model and an unknown correction part expanded in terms of B-spline functions. Different space-geodetic measurements are used to estimate the unknown model coefficients. In order to take into account the different accuracy levels of the observations, a Variance Component Estimation (VCE) is applied. We already have proven the usefulness of radio occultation data from space-borne GPS receivers and of two-frequency altimetry data. Currently, we test the capability of DORIS observations to derive ionospheric parameters such as VTEC. Although DORIS was primarily designed for precise orbit computation of satellites, it can be used as a tool to study the Earth's ionosphere. The DORIS ground beacons are almost globally distributed and the system is on board of various Low Earth Orbiters (LEO) with different orbit heights, such as Jason-2, Cryosat-2, and HY-2. The last generation of DORIS receivers directly provides phase measurements on two frequencies. In this contribution, we test the DORIS
The remote atmospheric and ionospheric detection system
International Nuclear Information System (INIS)
McCoy, R.P.; Wolfram, K.D.; Meier, R.R.
1986-01-01
The Remote Atmospheric and Ionospheric Detection System (RAIDS) experiment, to fly on a TIROS spacecraft in the late 1980's, consists of a comprehensive set of one limb imaging and seven limb scanning optical sensors. These eight instruments span the spectral range from the extreme ultraviolet to the near infrared, allowing simultaneous observations of the neutral and ion composition on the day and night side as well as in the auroral region. The primary objective of RAIDS is to demonstrate a system for remote sensing of the ionosphere to produce global maps of the electron density, peak altitude and critical frequency
Frictional Heating of Ions In The F2-region of The Ionosphere
Zhizhko, G. O.; Vlasov, V. G.
Auroral electron beams unstable on the Cherenkov resonance are stabilized by large- scale inhomogeneity of the plasma density during all their way from the acceleration region to the E-region of the ionosphere. The generation of plasma waves by beam is possible only in the region of small plasma density gradients, that always is the area of the F2-region maximum. Thus, collective dissipation of the electron beam energy occurs in the local region with the length about several tens of kilometers. This leads to the intensive heating of the electrons(up to temperatures about 10000 K) and will give origin to the ion upflows with velocity about 1 km/s and density about 109 cm-2 s-1. These flows can result in the ion frictional heating. At the same time ion temperatures reach the values about 5000 K. A numerical simulation of the ion frictional heating in the presence of collective elec- tron heating in the high-latitude F2-region of the ionosphere was performed. The sim- ulation has shown that the most critical parameter for the occurence of the ion fric- tional heating was the the steepness of the plasma density profile above the F2-region maximum.
DEFF Research Database (Denmark)
Nielsen, Kaspar Kirstein; Engelbrecht, Kurt; Bahl, Christian R.H.
2013-01-01
of 50 random stacks having equal average channel thicknesses with 20 channels each are used to provide a statistical base. The standard deviation of the stacks is varied as are the flow rate (Reynolds number) and the thermal conductivity of the solid heat exchanger material. It is found that the heat...... transfer performance of inhomogeneous stacks of parallel plates may be reduced significantly due to the maldistribution of the fluid flow compared to the ideal homogeneous case. The individual channels experience different flow velocities and this further induces an inter-channel thermal cross talk.......The heat transfer performance of inhomogeneous parallel plate heat exchangers in transient operation is investigated using an established model. A performance parameter, denoted the Nusselt-scaling factor, is used as benchmark and calculated using a well-established single blow technique. A sample...
Nonlocal inhomogeneous broadening in plasmonic nanoparticle ensembles
DEFF Research Database (Denmark)
Tserkezis, Christos; Maack, Johan Rosenkrantz; Liu, Z.
Nonclassical effects are increasingly more relevant in plasmonics as modern nanofabrication techniques rapidly approach the extreme nanoscale limits, for which departing from classical electrodynamics becomes important. One of the largest-scale necessary corrections towards this direction...... is to abandon the local response approximation (LRA) and take the nonlocal response of the metal into account, typically through the simple hydrodynamic Drude model (HDM), which predicts a sizedependent deviation of plasmon modes from the quasistatic (QS) limit. While this behaviour has been explored for simple...... metallic nanoparticles (NPs) or NP dimers, the possibility of inhomogeneous resonance broadening due to size variation in a large NP collection and the resulting spectral overlap of modes (as depicted in Fig. 1), has been so far overlooked. Here we study theoretically the effect of nonlocality on ensemble...
Measurable inhomogeneities in stock trading volume flow
Cortines, A. A. G.; Riera, R.; Anteneodo, C.
2008-08-01
We investigate the statistics of volumes of shares traded in stock markets. We show that the stochastic process of trading volumes can be understood on the basis of a mixed Poisson process at the microscopic time level. The beta distribution of the second kind (also known as q-gamma distribution), that has been proposed to describe empirical volume histograms, naturally results from our analysis. In particular, the shape of the distribution at small volumes is governed by the degree of granularity in the trading process, while the exponent controlling the tail is a measure of the inhomogeneities in market activity. Furthermore, the present case furnishes empirical evidence of how power law probability distributions can arise as a consequence of a fluctuating intrinsic parameter.
Origin of Inhomogeneity in Glass Melts
DEFF Research Database (Denmark)
Jensen, Martin; Keding, Ralf; Yue, Yuanzheng
The homogeneity of a glass plays a crucial role in many applications as the inhomogeneities can provide local changes in mechanical properties, optical properties, and thermal expansion coefficient. Homogeneity is not a single property of the glass, instead, it consists of several factors...... such as bubbles, striae, trace element concentration, undissolved species, and crystallised species. As it is not possible to address all the factors in a single study, this work focuses on one of the major factors: chemical striae. Up to now, the quantification of chemical striae in glasses, particularly......, in less transparent glasses, has been a challenge due to the lack of an applicable method. In this study, we have established a simple and accurate method for quantifying the extent of the striae, which is based on the scanning and picture processing through the Fourier transformation. By performing...
Large sample neutron activation analysis of a reference inhomogeneous sample
International Nuclear Information System (INIS)
Vasilopoulou, T.; Athens National Technical University, Athens; Tzika, F.; Stamatelatos, I.E.; Koster-Ammerlaan, M.J.J.
2011-01-01
A benchmark experiment was performed for Neutron Activation Analysis (NAA) of a large inhomogeneous sample. The reference sample was developed in-house and consisted of SiO 2 matrix and an Al-Zn alloy 'inhomogeneity' body. Monte Carlo simulations were employed to derive appropriate correction factors for neutron self-shielding during irradiation as well as self-attenuation of gamma rays and sample geometry during counting. The large sample neutron activation analysis (LSNAA) results were compared against reference values and the trueness of the technique was evaluated. An agreement within ±10% was observed between LSNAA and reference elemental mass values, for all matrix and inhomogeneity elements except Samarium, provided that the inhomogeneity body was fully simulated. However, in cases that the inhomogeneity was treated as not known, the results showed a reasonable agreement for most matrix elements, while large discrepancies were observed for the inhomogeneity elements. This study provided a quantification of the uncertainties associated with inhomogeneity in large sample analysis and contributed to the identification of the needs for future development of LSNAA facilities for analysis of inhomogeneous samples. (author)
MRI intensity inhomogeneity correction by combining intensity and spatial information
International Nuclear Information System (INIS)
Vovk, Uros; Pernus, Franjo; Likar, Bostjan
2004-01-01
We propose a novel fully automated method for retrospective correction of intensity inhomogeneity, which is an undesired phenomenon in many automatic image analysis tasks, especially if quantitative analysis is the final goal. Besides most commonly used intensity features, additional spatial image features are incorporated to improve inhomogeneity correction and to make it more dynamic, so that local intensity variations can be corrected more efficiently. The proposed method is a four-step iterative procedure in which a non-parametric inhomogeneity correction is conducted. First, the probability distribution of image intensities and corresponding second derivatives is obtained. Second, intensity correction forces, condensing the probability distribution along the intensity feature, are computed for each voxel. Third, the inhomogeneity correction field is estimated by regularization of all voxel forces, and fourth, the corresponding partial inhomogeneity correction is performed. The degree of inhomogeneity correction dynamics is determined by the size of regularization kernel. The method was qualitatively and quantitatively evaluated on simulated and real MR brain images. The obtained results show that the proposed method does not corrupt inhomogeneity-free images and successfully corrects intensity inhomogeneity artefacts even if these are more dynamic
Collapse arresting in an inhomogeneous quintic nonlinear Schrodinger model
DEFF Research Database (Denmark)
Gaididei, Yuri Borisovich; Schjødt-Eriksen, Jens; Christiansen, Peter Leth
1999-01-01
Collapse of (1 + 1)-dimensional beams in the inhomogeneous one-dimensional quintic nonlinear Schrodinger equation is analyzed both numerically and analytically. It is shown that in the vicinity of a narrow attractive inhomogeneity, the collapse of beams in which the homogeneous medium would blow up...
Bistable soliton states and switching in doubly inhomogeneously ...
Indian Academy of Sciences (India)
Dec. 2001 physics pp. 969–979. Bistable soliton states and switching in doubly inhomogeneously doped fiber couplers. AJIT KUMAR. Department of Physics, Indian Institute of Technology, Hauz Khas, New Delhi 110 016, India. Abstract. Switching between the bistable soliton states in a doubly and inhomogeneously doped.
Scattering of a spherical pulse from a small inhomogeneity ...
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging Solutions)
Perturbations in elastic constants and density distinguish a volume inhomogeneity from its homoge- neous surroundings. The equation of motion for the first order scattering is studied in the perturbed medium. The scattered waves are generated by the interaction between the primary waves and the inhomogeneity.
Consideration of inhomogeneities in irradiation planning. Pt. 1
International Nuclear Information System (INIS)
Zwicker, H.; Felix, R.
1976-01-01
In radiation therapy, the focal doses during irradiation of a tumor are based on the values for water, since water has almost the same absorption coefficient as muscular tissue, even for different kinds and energies of radiation. But calculation of the tumor dose will become inaccurate if inhomogeneities in the ray path are not considered such as fat, bones, plaster, metal plates, Kuentscher nails, endoprotheses. These materials, having a density sigma different from water, represent inhomogeneities relative to water with regard to the absorption of high-energy radiation. The experiments yielded the following results: All measurements revealed that the change in the course of the depth dose curve caused by inhomogeneities in water depends essentially on the density sigma and on the thickness d of the inhomogeneity. If the density sigma of the inhomogeneity exceeds one, a shift of the depth dose curve in water results in the direction of the surface; if the density sigma is smaller than one, the depth dose curve will move towards greater depth because of the inhomogeneity. With Co-60 gamma radiation, the shift of the depth dose curve in water due to an inhomogeneity occurs almost parallel. A correlation obtained empirically allows a calculation of th extent of the shift the depth dose is subject to for different inhomogeneities. (orig./ORU) [de
Wang, Jin; Zhou, Xiaoming; Qiao, Lei; Gong, Wanlin
2018-03-01
An upgrade of Wuhan Ionospheric Backscattering Sounding System (WIOBSS) was developed in 2015. Based on the Universal Serial Bus (USB), and a high performance FPGA, the newly designed WIOBSS has a completely digital structure, which makes it portable and flexible. Two identical WIOBSSs, which were situated at Mile (24.31°N, 103.39°E) and Puer (22.74°N, 101.05°E) respectively, were used to investigate the ionospheric irregularities. The comparisons of group distance, Doppler shift and width between Mile-Puer and Puer-Mile VHF ionospheric propagation paths indicate that the reciprocity of the irregularities is satisfied at midlatitude region. The WIOBSS is robust in the detection of ionospheric irregularities.
A review of ionospheric effects on Earth-space propagation
Klobuchar, J. A.
1984-01-01
A short description is given of each ionospheric total electron content (TEC) effect upon radio waves, along with a representative value of the magnitude of each of these effects under normal ionospheric conditions. A discussion is given of the important characteristics of average ionospheric TEC behavior and the temporal and spatial variability of TEC. Radio waves undergo several effects when they pass through the Earth's ionosphere. One of the most important of these effects is a retardation, or group delay, on the modulation or information carried on the radio wave that is due to its encounter with the free, thermal electrons in the Earth's ionosphere. Other effects the ionosphere has on radio waves include: radio frequency (RF) carrier phase advance; Doppler shift of the RF carrier of the radio wave; Faraday rotation of the plane of polarization of linearly polarized waves; angular refraction or bending of the radio wave path as it travels through the ionosphere; and amplitude and phase scintillations.
Effects of nanoscale density inhomogeneities on shearing fluids
DEFF Research Database (Denmark)
Ben, Dalton,; Peter, Daivis,; Hansen, Jesper Schmidt
2013-01-01
It is well known that density inhomogeneities at the solid-liquid interface can have a strong effect on the velocity profile of a nanoconfined fluid in planar Poiseuille flow. However, it is difficult to control the density inhomogeneities induced by solid walls, making this type of system...... systems. Using the sinusoidal transverse force method to produce shearing velocity profiles and the sinusoidal longitudinal force method to produce inhomogeneous density profiles, we are able to observe the interactions between the two property inhomogeneities at the level of individual Fourier components....... This gives us a method for direct measurement of the coupling between the density and velocity fields and allows us to introduce various feedback control mechanisms which customize fluid behavior in individual Fourier components. We briefly discuss the role of temperature inhomogeneity and consider whether...
Merkin, V. G.; Wiltberger, M. J.; Zhang, B.; Liu, J.; Wang, W.; Dimant, Y. S.; Oppenheim, M. M.; Lyon, J.
2017-12-01
During geomagnetic storms the magnetosphere-ionosphere-thermosphere system becomes activated in ways that are unique to disturbed conditions. This leads to emergence of physical feedback loops that provide tighter coupling between the system elements, often operating across disparate spatial and temporal scales. One such process that has recently received renewed interest is the generation of microscopic ionospheric turbulence in the electrojet regions (electrojet turbulence, ET) that results from strong convective electric fields imposed by the solar wind-magnetosphere interaction. ET leads to anomalous electron heating and generation of non-linear Pedersen current - both of which result in significant increases in effective ionospheric conductances. This, in turn, provides strong non-linear feedback on the magnetosphere. Recently, our group has published two studies aiming at a comprehensive analysis of the global effects of this microscopic process on the magnetosphere-ionosphere-thermosphere system. In one study, ET physics was incorporated in the TIEGCM model of the ionosphere-thermosphere. In the other study, ad hoc corrections to the ionospheric conductances based on ET theory were incorporated in the conductance module of the Lyon-Fedder-Mobarry (LFM) global magnetosphere model. In this presentation, we make the final step toward the full coupling of the microscopic ET physics within our global coupled model including LFM, the Rice Convection Model (RCM) and TIEGCM. To this end, ET effects are incorporated in the TIEGCM model and propagate throughout the system via thus modified TIEGCM conductances. The March 17, 2013 geomagnetic storm is used as a testbed for these fully coupled simulations, and the results of the model are compared with various ionospheric and magnetospheric observatories, including DMSP, AMPERE, and Van Allen Probes. Via these comparisons, we investigate, in particular, the ET effects on the global magnetosphere indicators such as the
Ionospheric effects during severe space weather events seen in ionospheric service data products
Jakowski, Norbert; Danielides, Michael; Mayer, Christoph; Borries, Claudia
Space weather effects are closely related to complex perturbation processes in the magnetosphere-ionosphere-thermosphere systems, initiated by enhanced solar energy input. To understand and model complex space weather processes, different views on the same subject are helpful. One of the ionosphere key parameters is the Total Electron Content (TEC) which provides a first or-der approximation of the ionospheric range error in Global Navigation Satellite System (GNSS) applications. Additionally, horizontal gradients and time rate of change of TEC are important for estimating the perturbation degree of the ionosphere. TEC maps can effectively be gener-ated using ground based GNSS measurements from global receiver networks. Whereas ground based GNSS measurements provide good horizontal resolution, space based radio occultation measurements can complete the view by providing information on the vertical plasma density distribution. The combination of ground based TEC and vertical sounding measurements pro-vide essential information on the shape of the vertical electron density profile by computing the equivalent slab thickness at the ionosonde station site. Since radio beacon measurements at 150/400 MHz are well suited to trace the horizontal structure of Travelling Ionospheric Dis-turbances (TIDs), these data products essentially complete GNSS based TEC mapping results. Radio scintillation data products, characterising small scale irregularities in the ionosphere, are useful to estimate the continuity and availability of transionospheric radio signals. The different data products are addressed while discussing severe space weather events in the ionosphere e.g. events in October/November 2003. The complementary view of different near real time service data products is helpful to better understand the complex dynamics of ionospheric perturbation processes and to forecast the development of parameters customers are interested in.
Ionospheric precursors for crustal earthquakes in Italy
Directory of Open Access Journals (Sweden)
L. Perrone
2010-04-01
Full Text Available Crustal earthquakes with magnitude 6.0>M≥5.5 observed in Italy for the period 1979–2009 including the last one at L'Aquila on 6 April 2009 were considered to check if the earlier obtained relationships for ionospheric precursors for strong Japanese earthquakes are valid for the Italian moderate earthquakes. The ionospheric precursors are based on the observed variations of the sporadic E-layer parameters (h'Es, fbEs and foF2 at the ionospheric station Rome. Empirical dependencies for the seismo-ionospheric disturbances relating the earthquake magnitude and the epicenter distance are obtained and they have been shown to be similar to those obtained earlier for Japanese earthquakes. The dependences indicate the process of spreading the disturbance from the epicenter towards periphery during the earthquake preparation process. Large lead times for the precursor occurrence (up to 34 days for M=5.8–5.9 tells about a prolong preparation period. A possibility of using the obtained relationships for the earthquakes prediction is discussed.
Ionospheric TEC Weather Map Over South America
Takahashi, H.; Wrasse, C. M.; Denardini, C. M.; Pádua, M. B.; de Paula, E. R.; Costa, S. M. A.; Otsuka, Y.; Shiokawa, K.; Monico, J. F. Galera; Ivo, A.; Sant'Anna, N.
2016-11-01
Ionospheric weather maps using the total electron content (TEC) monitored by ground-based Global Navigation Satellite Systems (GNSS) receivers over South American continent, TECMAP, have been operationally produced by Instituto Nacional de Pesquisas Espaciais's Space Weather Study and Monitoring Program (Estudo e Monitoramento Brasileiro de Clima Especial) since 2013. In order to cover the whole continent, four GNSS receiver networks, (Rede Brasileiro de Monitoramento Contínuo) RBMC/Brazilian Institute for Geography and Statistics, Low-latitude Ionospheric Sensor Network, International GNSS Service, and Red Argentina de Monitoreo Satelital Continuo, in total 140 sites, have been used. TECMAPs with a time resolution of 10 min are produced in 12 h time delay. Spatial resolution of the map is rather low, varying between 50 and 500 km depending on the density of the observation points. Large day-to-day variabilities of the equatorial ionization anomaly have been observed. Spatial gradient of TEC from the anomaly trough (total electron content unit, 1 TECU = 1016 el m-2 (TECU) 80) causes a large ionospheric range delay in the GNSS positioning system. Ionospheric plasma bubbles, their seeding and development, could be monitored. This plasma density (spatial and temporal) variability causes not only the GNSS-based positioning error but also radio wave scintillations. Monitoring of these phenomena by TEC mapping becomes an important issue for space weather concern for high-technology positioning system and telecommunication.
Ionospheric error analysis in gps measurements
Directory of Open Access Journals (Sweden)
G. Pugliano
2008-06-01
Full Text Available The results of an experiment aimed at evaluating the effects of the ionosphere on GPS positioning applications are presented in this paper. Specifically, the study, based upon a differential approach, was conducted utilizing GPS measurements acquired by various receivers located at increasing inter-distances. The experimental research was developed upon the basis of two groups of baselines: the first group is comprised of "short" baselines (less than 10 km; the second group is characterized by greater distances (up to 90 km. The obtained results were compared either upon the basis of the geometric characteristics, for six different baseline lengths, using 24 hours of data, or upon temporal variations, by examining two periods of varying intensity in ionospheric activity respectively coinciding with the maximum of the 23 solar cycle and in conditions of low ionospheric activity. The analysis revealed variations in terms of inter-distance as well as different performances primarily owing to temporal modifications in the state of the ionosphere.
Midday reversal of equatorial ionospheric electric field
Directory of Open Access Journals (Sweden)
R. G. Rastogi
1997-10-01
Full Text Available A comparative study of the geomagnetic and ionospheric data at equatorial and low-latitude stations in India over the 20 year period 1956–1975 is described. The reversal of the electric field in the ionosphere over the magnetic equator during the midday hours indicated by the disappearance of the equatorial sporadic E region echoes on the ionograms is a rare phenomenon occurring on about 1% of time. Most of these events are associated with geomagnetically active periods. By comparing the simultaneous geomagnetic H field at Kodaikanal and at Alibag during the geomagnetic storms it is shown that ring current decreases are observed at both stations. However, an additional westward electric field is superimposed in the ionosphere during the main phase of the storm which can be strong enough to temporarily reverse the normally eastward electric field in the dayside ionosphere. It is suggested that these electric fields associated with the V×Bz electric fields originate at the magnetopause due to the interaction of the solar wind and the interplanetary magnetic field.
Data ingestion and assimilation in ionospheric models
Czech Academy of Sciences Publication Activity Database
Burešová, Dalia; Nava, B.; Galkin, I.; Angling, M.; Stankov, S. M.; Coisson, P.
2009-01-01
Roč. 52, 3/4 (2009), s. 235-253 ISSN 1593-5213 R&D Projects: GA ČR GA205/08/1356; GA MŠk OC 091 Institutional research plan: CEZ:AV0Z30420517 Keywords : ionosphere * models * data assimilation * data ingestion Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 0.548, year: 2009
Broadband Ionospheric Scintillation Measurements from Space
Suszcynsky, D. M.; Light, M. E.; Pigue, M. J.
2014-12-01
The U.S. Department of Energy's Radio Frequency Propagation (RFProp) experiment consists of a satellite-based radio receiver suite to study various aspects of trans-ionospheric signal propagation and detection in four frequency bands, 2 - 55 MHz, 125 - 175 MHz, 365 - 415 MHz and 825 - 1100 MHz. In this paper, we present an overview of the RFProp on-orbit research and analysis effort with particular focus on an equatorial scintillation experiment called ESCINT. The 3-year ESCINT project is designed to characterize equatorial ionospheric scintillation in the upper HF and lower VHF portions of the radio spectrum (20 - 150 MHz). Both a 40 MHz continuous wave (CW) signal and 30 - 42 MHz swept frequency signal are transmitted to the satellite receiver suite from the Reagan Test Site at Kwajalein Atoll in the Marshall Islands (8.7° N, 167.7° E) in four separate campaigns centered on the 2014 and 2015 equinoxes. Results from the first campaign conducted from April 22 - May 15, 2014 will be presented including (a) coherence bandwidth measurements over a full range of transmission frequencies and scintillation activity levels, (b) spread-Doppler clutter effects arising from preferential ray paths to the satellite due to refraction off of isolated density irregularities, and (c) supporting ray-trace simulations. The broadband nature of the measurements is found to offer unique insight into both the structure of ionospheric irregularities and their impact on HF/VHF trans-ionospheric radio wave propagation.
Midday reversal of equatorial ionospheric electric field
Directory of Open Access Journals (Sweden)
R. G. Rastogi
Full Text Available A comparative study of the geomagnetic and ionospheric data at equatorial and low-latitude stations in India over the 20 year period 1956–1975 is described. The reversal of the electric field in the ionosphere over the magnetic equator during the midday hours indicated by the disappearance of the equatorial sporadic E region echoes on the ionograms is a rare phenomenon occurring on about 1% of time. Most of these events are associated with geomagnetically active periods. By comparing the simultaneous geomagnetic H field at Kodaikanal and at Alibag during the geomagnetic storms it is shown that ring current decreases are observed at both stations. However, an additional westward electric field is superimposed in the ionosphere during the main phase of the storm which can be strong enough to temporarily reverse the normally eastward electric field in the dayside ionosphere. It is suggested that these electric fields associated with the V×Bz electric fields originate at the magnetopause due to the interaction of the solar wind and the interplanetary magnetic field.
ionFR: Ionospheric Faraday rotation [Dataset
Sotomayor-Beltran, C.; et al., [Unknown; Hessels, J.W.T.; van Leeuwen, J.; Markoff, S.; Wijers, R.A.M.J.
2013-01-01
IonFR calculates the amount of ionospheric Faraday rotation for a specific epoch, geographic location, and line-of-sight. The code uses a number of publicly available, GPS-derived total electron content maps and the most recent release of the International Geomagnetic Reference Field. ionFR can be
LANGMUIR WAVE DECAY IN INHOMOGENEOUS SOLAR WIND PLASMAS: SIMULATION RESULTS
Energy Technology Data Exchange (ETDEWEB)
Krafft, C. [Laboratoire de Physique des Plasmas, Ecole Polytechnique, F-91128 Palaiseau Cedex (France); Volokitin, A. S. [IZMIRAN, Troitsk, 142190, Moscow (Russian Federation); Krasnoselskikh, V. V., E-mail: catherine.krafft@u-psud.fr [Laboratoire de Physique et Chimie de l’Environnement et de l’Espace, 3A Av. de la Recherche Scientifique, F-45071 Orléans Cedex 2 (France)
2015-08-20
Langmuir turbulence excited by electron flows in solar wind plasmas is studied on the basis of numerical simulations. In particular, nonlinear wave decay processes involving ion-sound (IS) waves are considered in order to understand their dependence on external long-wavelength plasma density fluctuations. In the presence of inhomogeneities, it is shown that the decay processes are localized in space and, due to the differences between the group velocities of Langmuir and IS waves, their duration is limited so that a full nonlinear saturation cannot be achieved. The reflection and the scattering of Langmuir wave packets on the ambient and randomly varying density fluctuations lead to crucial effects impacting the development of the IS wave spectrum. Notably, beatings between forward propagating Langmuir waves and reflected ones result in the parametric generation of waves of noticeable amplitudes and in the amplification of IS waves. These processes, repeated at different space locations, form a series of cascades of wave energy transfer, similar to those studied in the frame of weak turbulence theory. The dynamics of such a cascading mechanism and its influence on the acceleration of the most energetic part of the electron beam are studied. Finally, the role of the decay processes in the shaping of the profiles of the Langmuir wave packets is discussed, and the waveforms calculated are compared with those observed recently on board the spacecraft Solar TErrestrial RElations Observatory and WIND.
Inhomogeneity Based Characterization of Distribution Patterns on the Plasma Membrane.
Directory of Open Access Journals (Sweden)
Laura Paparelli
2016-09-01
Full Text Available Cell surface protein and lipid molecules are organized in various patterns: randomly, along gradients, or clustered when segregated into discrete micro- and nano-domains. Their distribution is tightly coupled to events such as polarization, endocytosis, and intracellular signaling, but challenging to quantify using traditional techniques. Here we present a novel approach to quantify the distribution of plasma membrane proteins and lipids. This approach describes spatial patterns in degrees of inhomogeneity and incorporates an intensity-based correction to analyze images with a wide range of resolutions; we have termed it Quantitative Analysis of the Spatial distributions in Images using Mosaic segmentation and Dual parameter Optimization in Histograms (QuASIMoDOH. We tested its applicability using simulated microscopy images and images acquired by widefield microscopy, total internal reflection microscopy, structured illumination microscopy, and photoactivated localization microscopy. We validated QuASIMoDOH, successfully quantifying the distribution of protein and lipid molecules detected with several labeling techniques, in different cell model systems. We also used this method to characterize the reorganization of cell surface lipids in response to disrupted endosomal trafficking and to detect dynamic changes in the global and local organization of epidermal growth factor receptors across the cell surface. Our findings demonstrate that QuASIMoDOH can be used to assess protein and lipid patterns, quantifying distribution changes and spatial reorganization at the cell surface. An ImageJ/Fiji plugin of this analysis tool is provided.
Ionospheric response to particle precipitation within aurora
International Nuclear Information System (INIS)
Wahlund, J.E.
1992-03-01
The aurora is just the visible signature of a large number of processes occurring in a planetary ionosphere as a response to energetic charged particles falling in from the near-empty space far above the planetary atmosphere. This thesis, based on measurements using the EISCAT incoherent scatter radar system in northern Scandinavia, discusses ionospheric response processes and especially a mechanism leading to atmospheric gas escape from a planet. One of the most spectacular events in the high latitude atmosphere on earth are the 'auroral arcs' - dynamic rayed sheets of light. An investigation of the conditions of the ionosphere surrounding auroral arcs shows that strong field-aligned bulk ion outflows appear in the topside ionosphere which account for a large fraction of the escape of atmospheric oxygen from earth. Four different additional ionospheric responses are closely related to this ion outflow; 1. enhanced electron temperatures of several thousand Kelvin above an altitude of about 250 km, 2. enhanced ionization around an altitude of 200 km corresponding to electron precipitation with energies of a few hundred eV, 3. the occurrence of naturally enhanced ion acoustic fluctuations seen in the radar spectrum, most likely produced by an ion-ion two-stream instability, and 4. upward directed field-aligned currents partly carried by the outflowing ions. From these observations, it is suggested that the energy dissipation into the background plasma through Joule heating, the production of a few hundred eV energetic run-away electrons, and strong ion outflows are partly produced by the simultaneous presence of ion acoustic turbulence and field-aligned currents above auroral arcs. (20 refs.) (au)
Radio Observations of the Ionosphere From an Imaging Array and a CubeSat
Isham, B.; Gustavsson, B.; Bullett, T. W.; Bergman, J. E. S.; Rincón-Charris, A.; Bruhn, F.; Funk, P.
2017-12-01
The ionosphere is a source of many radio emissions in the various low-frequency, medium-frequency, and high-frequency bands (0 to 30 MHz). In addition to natural radio emissions, artificial emissions can be stimulated using high-power radiowave ionospheric modification facilities. Two complementary projects are underway for the purpose of improving our knowledge of the processes of radio emissions from the ionosphere. One project is the Aguadilla radio array, located in northwestern Puerto Rico. The Aguadilla array is intended to produce 2 to 25 MHz radio images of the ionosphere, as well as to perform bistatic radar imaging of the ionosphere over Puerto Rico. The array will consist of multiple antenna elements, each of which is a single active (electromagnetically short) crossed electric dipole. The elements are arranged within a roughly 200 by 300-meter core array, in a semi-random pattern providing an optimal distribution of baseline vectors, with 6-meter minimum spacing to eliminate spacial aliasing. In addition, several elements are arranged in a partial ring around the central core, providing a roughly four times expanded region in u-v space for improved image resolution and quality. Phase is maintained via cabled connections to a central location. A remote array is also being developed, in which phase is maintained between elements by through the use of GPS-disciplined rubidium clocks. The other project involves the GimmeRF radio instrument, designed for 0.3 to 30 MHz vector observation of the radio electric field, and planned for launch in 2020 on a CubeSat. The data rate that can be sustained by GimmeRF far exceeds any available communication strategy. By exploiting fast on-board computing and efficient artificial intelligence (AI) algorithms for analysis and data selection, the usage of the telemetry link can be optimized and value added to the mission. Radio images recorded by the radio array from below the ionosphere can be directly compared with the
Simpson, J. J.; Taflove, A.
2005-12-01
We report a finite-difference time-domain (FDTD) computational solution of Maxwell's equations [1] that models the possibility of detecting and characterizing ionospheric disturbances above seismic regions. Specifically, we study anomalies in Schumann resonance spectra in the extremely low frequency (ELF) range below 30 Hz as observed in Japan caused by a hypothetical cylindrical ionospheric disturbance above Taiwan. We consider excitation of the global Earth-ionosphere waveguide by lightning in three major thunderstorm regions of the world: Southeast Asia, South America (Amazon region), and Africa. Furthermore, we investigate varying geometries and characteristics of the ionospheric disturbance above Taiwan. The FDTD technique used in this study enables a direct, full-vector, three-dimensional (3-D) time-domain Maxwell's equations calculation of round-the-world ELF propagation accounting for arbitrary horizontal as well as vertical geometrical and electrical inhomogeneities and anisotropies of the excitation, ionosphere, lithosphere, and oceans. Our entire-Earth model grids the annular lithosphere-atmosphere volume within 100 km of sea level, and contains over 6,500,000 grid-points (63 km laterally between adjacent grid points, 5 km radial resolution). We use our recently developed spherical geodesic gridding technique having a spatial discretization best described as resembling the surface of a soccer ball [2]. The grid is comprised entirely of hexagonal cells except for a small fixed number of pentagonal cells needed for completion. Grid-cell areas and locations are optimized to yield a smoothly varying area difference between adjacent cells, thereby maximizing numerical convergence. We compare our calculated results with measured data prior to the Chi-Chi earthquake in Taiwan as reported by Hayakawa et. al. [3]. Acknowledgement This work was suggested by Dr. Masashi Hayakawa, University of Electro-Communications, Chofugaoka, Chofu Tokyo. References [1] A
International Nuclear Information System (INIS)
Babaeva, Natalia Yu; Kushner, Mark J
2009-01-01
The branching of electric discharge streamers in atmospheric pressure air, dense gases and liquids is a common occurrence whose origins are likely found with many causes, both deterministic and stochastic. One mechanism for streamer branching may be inhomogeneities in the path of a streamer which either divert the streamer (typically a region of lower ionization) or produce a new branch (a region of higher ionization). The propagation and branching of streamers in liquids is likely aided by low density inhomogeneities, bubbles; however, modeling of streamers in liquids is made difficult by the lack of transport coefficients. As a first step towards understanding the propagation and branching of streamers in liquids, we investigated the consequences of random inhomogeneities in the form of low pressure bubbles on the propagation of streamers in high pressure humid air. By virtue of their lower density, bubbles have larger E/N (electric field/gas number density) than the ambient gas with larger rates of ionization. The intersection of a streamer with a bubble will focus the plasma into the bubble by virtue of that higher rate of ionization but the details of the interaction depend on the relative sizes of the bubble and streamer. When a streamer intersects a field of bubbles, the large E/N in the bubble avalanches seed electrons produced by photoionization from the streamer. Each bubble then launches both a negative and positive going streamer that may link with those from adjacent bubbles or the original streamer. The total process then appears as streamer branching.
Ordering dynamics of self-propelled particles in an inhomogeneous medium
Das, Rakesh; Mishra, Shradha; Puri, Sanjay
2018-02-01
Ordering dynamics of self-propelled particles in an inhomogeneous medium in two dimensions is studied. We write coarse-grained hydrodynamic equations of motion for density and polarisation fields in the presence of an external random disorder field, which is quenched in time. The strength of inhomogeneity is tuned from zero disorder (clean system) to large disorder. In the clean system, the polarisation field grows algebraically as LP ∼ t0.5 . The density field does not show clean power-law growth; however, it follows Lρ ∼ t0.8 approximately. In the inhomogeneous system, we find a disorder-dependent growth. For both the density and the polarisation, growth slows down with increasing strength of disorder. The polarisation shows a disorder-dependent power-law growth LP(t,Δ) ∼ t1/\\bar zP(Δ) for intermediate times. At late times, there is a crossover to logarithmic growth LP(t,Δ) ∼ (\\ln t)1/\\varphi , where φ is a disorder-independent exponent. Two-point correlation functions for the polarisation show dynamical scaling, but the density does not.
Phase function of a spherical particle when scattering an inhomogeneous electromagnetic plane wave.
Frisvad, Jeppe Revall
2018-04-01
In absorbing media, electromagnetic plane waves are most often inhomogeneous. Existing solutions for the scattering of an inhomogeneous plane wave by a spherical particle provide no explicit expressions for the scattering components. In addition, current analytical solutions require evaluation of the complex hypergeometric function F 1 2 for every term of a series expansion. In this work, I develop a simpler solution based on associated Legendre functions with argument zero. It is similar to the solution for homogeneous plane waves but with new explicit expressions for the angular dependency of the far-field scattering components, that is, the phase function. I include recurrence formulas for practical evaluation and provide numerical examples to evaluate how well the new expressions match previous work in some limiting cases. The predicted difference in the scattering phase function due to inhomogeneity is not negligible for light entering an absorbing medium at an oblique angle. The presented theory could thus be useful for predicting scattering behavior in dye-based random lasing and in solar cell absorption enhancement.
Evolution of vacuum bubbles embedded in inhomogeneous spacetimes
Energy Technology Data Exchange (ETDEWEB)
Pannia, Florencia Anabella Teppa [Grupo de Astrofísica, Relatividad y Cosmología, Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Paseo del Bosque s/n B1900FWA, La Plata (Argentina); Bergliaffa, Santiago Esteban Perez, E-mail: fteppa@fcaglp.unlp.edu.ar, E-mail: sepbergliaffa@gmail.com [Departamento de Física Teórica, Instituto de Física, Universidade do Estado de Rio de Janeiro, CEP 20550-013, Rio de Janeiro, Brazil. (Brazil)
2017-03-01
We study the propagation of bubbles of new vacuum in a radially inhomogeneous background filled with dust or radiation, and including a cosmological constant, as a first step in the analysis of the influence of inhomogeneities in the evolution of an inflating region. We also compare the cases with dust and radiation backgrounds and show that the evolution of the bubble in radiation environments is notably different from that in the corresponding dust cases, both for homogeneous and inhomogeneous ambients, leading to appreciable differences in the evolution of the proper radius of the bubble.
Inhomogeneity of epidemic spreading with entropy-based infected clusters.
Wen-Jie, Zhou; Xing-Yuan, Wang
2013-12-01
Considering the difference in the sizes of the infected clusters in the dynamic complex networks, the normalized entropy based on infected clusters (δ*) is proposed to characterize the inhomogeneity of epidemic spreading. δ* gives information on the variability of the infected clusters in the system. We investigate the variation in the inhomogeneity of the distribution of the epidemic with the absolute velocity v of moving agent, the infection density ρ, and the interaction radius r. By comparing δ* in the dynamic networks with δH* in homogeneous mode, the simulation experiments show that the inhomogeneity of epidemic spreading becomes smaller with the increase of v, ρ, r.
Microinstabilities in a moderately inhomogeneous plasma
International Nuclear Information System (INIS)
Singer, C.E.
1977-01-01
We describe the onset of plasma instability due to heat conduction in a fully ionized hydrogen plasma with small temperature, pressure, and electric potential gradients. The effect of these gradients on plasma stability depends on a single inhomogeneity parameter B/sub t/, which is a measure of the ratio of the electron mean free path to the scale height of the plasma. A large value of vertical-barB/sub t/vertical-bar indicates that the plasma is collisionless. We find the least value of vertical-barB/sub t/vertical-bar needed to produce instability for the range of electron to hydrogen ion temperature ratios T and ion to magnetic pressure ratios β/sub i/, relevant to the solar wind and other plasmas. The wave parameters of the first unstable modes (the modes which become unstable for the least value of vertical-barB/sub t/vertical-bar) are described. The fast mode is the first unstable mode at high β/sub i/, the intermediate mode is the first unstable mode at low β/sub i/, and low temperature ratios, and the slow mode is the first unstable mode at low β/sub i/ and higher temperature ratios
Mathematical Modeling of Extinction of Inhomogeneous Populations
Karev, G.P.; Kareva, I.
2016-01-01
Mathematical models of population extinction have a variety of applications in such areas as ecology, paleontology and conservation biology. Here we propose and investigate two types of sub-exponential models of population extinction. Unlike the more traditional exponential models, the life duration of sub-exponential models is finite. In the first model, the population is assumed to be composed clones that are independent from each other. In the second model, we assume that the size of the population as a whole decreases according to the sub-exponential equation. We then investigate the “unobserved heterogeneity”, i.e. the underlying inhomogeneous population model, and calculate the distribution of frequencies of clones for both models. We show that the dynamics of frequencies in the first model is governed by the principle of minimum of Tsallis information loss. In the second model, the notion of “internal population time” is proposed; with respect to the internal time, the dynamics of frequencies is governed by the principle of minimum of Shannon information loss. The results of this analysis show that the principle of minimum of information loss is the underlying law for the evolution of a broad class of models of population extinction. Finally, we propose a possible application of this modeling framework to mechanisms underlying time perception. PMID:27090117
Inhomogeneity and the foundations of concordance cosmology
International Nuclear Information System (INIS)
Clarkson, Chris; Maartens, Roy
2010-01-01
The apparent accelerating expansion of the universe is forcing us to examine the foundational aspects of the standard model of cosmology-in particular, the fact that dark energy is a direct consequence of the homogeneity assumption. We discuss the foundations of the assumption of spatial homogeneity, in the case when the Copernican principle is adopted. We present results that show how (almost) homogeneity follows from (almost) isotropy of various observables. The analysis requires fully nonlinear field equations-i.e. it is not possible to use second- or higher-order perturbation theory, since one cannot assume a homogeneous and isotropic background. Then we consider what happens if the Copernican principle is abandoned in our Hubble volume. The simplest models are inhomogeneous but spherically symmetric universes which do not require dark energy to fit the distance modulus. Key problems in these models are to compute the CMB anisotropies and the features of large-scale structure. We review how to construct perturbation theory on a non-homogeneous cosmological background, and discuss the complexities that arise in using this to determine the growth of large-scale structure.
Low-Frequency Waves in HF Heating of the Ionosphere
Sharma, A. S.; Eliasson, B.; Milikh, G. M.; Najmi, A.; Papadopoulos, K.; Shao, X.; Vartanyan, A.
2016-02-01
Ionospheric heating experiments have enabled an exploration of the ionosphere as a large-scale natural laboratory for the study of many plasma processes. These experiments inject high-frequency (HF) radio waves using high-power transmitters and an array of ground- and space-based diagnostics. This chapter discusses the excitation and propagation of low-frequency waves in HF heating of the ionosphere. The theoretical aspects and the associated models and simulations, and the results from experiments, mostly from the HAARP facility, are presented together to provide a comprehensive interpretation of the relevant plasma processes. The chapter presents the plasma model of the ionosphere for describing the physical processes during HF heating, the numerical code, and the simulations of the excitation of low-frequency waves by HF heating. It then gives the simulations of the high-latitude ionosphere and mid-latitude ionosphere. The chapter also briefly discusses the role of kinetic processes associated with wave generation.
Kong, Jian; Yao, Yibin; Xu, Yahui; Kuo, Chungyen; Zhang, Liang; Liu, Lei; Zhai, Changzhi
2017-09-01
The global navigation satellite system (GNSS) total electron content (TEC) sequences were used to capture the arrival time and location of the ionosphere disturbances in response to the 2015 Typhoon Dujuan. After removing the de-trended TEC variation, the clear ionosphere disturbances on the typhoon landing day could be distinguished, and these disturbances disappeared from the TEC sequences before and after the typhoon landing day. The foF2 data observed by Xiamen ionosonde station also show ionosphere disturbances. Based on the advantages of GNSS multi-point observations, the disturbances horizontal velocity in the ionosphere were estimated according to the linear theory for a dispersion relation of acoustic gravity waves (AGWs) in an isothermal atmosphere. The average horizontal velocity (˜ 240 m/s) and the radial velocity (˜ 287 m/s) were used in the two-dimensional grid search for the origin point on the Earth's surface. The origin area was determined to be on the eastern side of Taiwan. Lastly, a possible physical mechanism is discussed in this study. When typhoons land on Taiwan, the severe convective storms and the drag effect from the Central Mountains create an ideal location for development of AGWs. Topographic conditions, like the high lapse rate, contribute to the formation of AGWs, which then propagates into the ionosphere altitude.
International Nuclear Information System (INIS)
Tanaka, T.
1981-01-01
By monitoring C band beacon signals from geostationary satellites in Japan, we have observed anomalously strong ionospheric scintillations several times during three years from 1978 to 1980. These severe scinitillations occur associated with geomagnetic storms and accompany sudden and intense ionospheric perturbations in the low-latiude region. Through the analysis of these phenomena we have identified a new type of ionospheric disturbances characterized by intensifications of equatorial anomalies and successive severe ionospheric scintillations that extend to the C band range. The events occur only during a limited local time interval after the sunset, when storm time decreases of midlatitude geomagnetic fields in the same meridan take place during the same time interval. From the viewpoint of ionospheric storms, these disturbances precede the occurrence of midlatitude negative phases and storm time depressions of equatorial anomalies to indicate that the cause of the events is different from distrubed thermospheric circulations. The timing and magnitude of substorms at high-latitudes not always correlate with the events. We have concluded that the phenomena are closely related with penetrations toward low-latitudes of electric fields owing to the partial closure of asymmetrical ring currents
Thermal quantum discord of spins in an inhomogeneous magnetic field
International Nuclear Information System (INIS)
Guo Jinliang; Mi Yingjuan; Zhang Jian; Song Heshan
2011-01-01
In contrast with the thermal entanglement, we study the quantum discord and classical correlation in a two-qubit Heisenberg XXZ model with an inhomogeneous magnetic field. It is shown that the effects of the external magnetic fields, including the uniform and inhomogeneous magnetic fields, on the thermal entanglement, quantum discord and classical correlation behave differently in various aspects, which depend on system temperature and model type. We can tune the inhomogeneous magnetic field to enhance the entanglement or classical correlation and meanwhile decrease the quantum discord. In addition, taking into account the inhomogeneous magnetic field, the sudden change in the behaviour of quantum discord still survives, which can detect the critical points of quantum phase transitions at finite temperature, but not for a uniform magnetic field.
Cyclotron spectra from inhomogeneous accretion columns. II. Polarization
International Nuclear Information System (INIS)
Wu, K.; Chanmugam, G.
1989-01-01
Circularly and linearly polarized radiation from inhomogeneous cyclotron emission regions with uniform magnetic field and temperature but different electron density profiles are studied. Calculations show that the inhomogeneous models generally produce larger polarization for low harmonics and smaller polarization for high harmonics compared to the homogeneous models. Polarization light curves for different inhomogeneous models with a wide variety of parameters are presented, providing handy theoretical results to compare with observations. The observed polarization light curves of ST LMi, EF Eri, and BL Hydri are fitted using an inhomogeneous model for the first time, and good fits are obtained, supporting the hypothesis that the cyclotron emission regions of AM Her systems have a complicated structure. 37 refs
On the penetration of solar wind inhomogeneities into the magnetosphere
International Nuclear Information System (INIS)
Maksimov, V.P.; Senatorov, V.N.
1980-01-01
Laboratory experiments were used as a basis to study the process of interaction between solar wind inhomogeneities and the Earth's magnetosphere. The given inhomogeneity represents a lump of plasma characterized by an increased concentration of particles (nsub(e) approximately 20-30 cm -3 ), a discrete form (characteristic dimensions of the lump are inferior to the magnetosphere diameter) and the velocity v approximately 350 km/s. It is shown that there is the possibility of penetration of solar wind inhomogeneities inside the Earth's magnetosphere because of the appearance in the inhomogeneity of an electric field of transverse polarization. The said process is a possible mechanism of the formation of the magnetopshere entrance layer
Anomalous transient behavior from an inhomogeneous initial optical vortex density
CSIR Research Space (South Africa)
Roux, FS
2011-04-01
Full Text Available . However, the decay curves contain oscillatory features that are counterintuitive: for a short while, the inhomogeneity actually increases. The author provides numerical simulations and analytic calculations to study the appearance of the anomalous features...
Investigation of local optical inhomogeneities in flashlamp photolysis lasers
Energy Technology Data Exchange (ETDEWEB)
Alekhin, B V; Borovkov, V V; Lazhintsev, B V; Nor-Arenian, V A; Sukhanov, L V; Ustinenko, V A
1979-09-01
Local changes in the refractive index which occur in the active medium under flashlamp-excited photolysis laser action are examined experimentally. Under conditions of the inverse population storage and suppression of the laser action by a strong quencher, local inhomogeneities have been absent. It is shown that the stimulated emission is inhomogeneous over the active medium and features regular character with the radiation density modulation within 20-30 percent and with typical size of inhomogeneities of not greater than 0.5 mm. On the basis of experimental results and estimation, a conclusion is drawn that the local optical inhomogeneities are caused by gasdynamic displacements of the gas due to different heat evolutions in the regions of the radiation density maximum and minimum.
Solar cycle variations in the ionosphere of Mars
Energy Technology Data Exchange (ETDEWEB)
Sanchez-Cano, B.; Lester, M.; Witasse, Ol; Blelly, P.L.; Cartacci, M.; Radicella, S.M.; Herraiz, M.
2016-07-01
Solar cycle variations in solar radiation create notable changes in the Martian ionosphere, which have been analysed with Mars Express plasma datasets in this paper. In general, lower densities and temperatures of the ionosphere are found during the low solar activity phase, while higher densities and temperatures are found during the high solar activity phase. In this paper, we assess the degree of influence of the long term solar flux variations in the ionosphere of Mars. (Author)
4 GHz ionospheric scintillations observed at Taipei
International Nuclear Information System (INIS)
Huang, Y.N.; Jeng, B.S.
1978-01-01
In a study of ionospheric scintillations 3950 MHz beacon signals from geostationary communication satellites Intelsat-IV-F8 and Intelsat-IV-F1 were recorded on a strip chart and magnetic tape at the Taipei Earth Station. While the strip charts were used to monitor the occurrence of the scintillation, the magnetic tape output was digitized and processed by a computerized system to yield a detailed analysis of scintillation events. It was found that diurnal variations were similar to the diurnal patterns of sporadic E at greater than 5 MHz and VHF band ionospheric scintillations during daytime as reported by Huang (1978). Eight typical scintillation events were selected for the calculation of the scintillation index, S4, and other parameters. The mean S4 index for the 8 events was found to be 0.15. Numerical and graphic results are presented for the cumulative amplitude distributions, message reliability, autocorrelation functions and power spectra
Radio techniques for probing the terrestrial ionosphere.
Hunsucker, R. D.
The subject of the book is a description of the basic principles of operation, plus the capabilities and limitations of all generic radio techniques employed to investigate the terrestrial ionosphere. The purpose of this book is to present to the reader a balanced treatment of each technique so they can understand how to interpret ionospheric data and decide which techniques are most effective for studying specific phenomena. The first two chapters outline the basic theory underlying the techniques, and each following chapter discusses a separate technique. This monograph is entirely devoted to techniques in aeronomy and space physics. The approach is unique in its presentation of the principles, capabilities and limitations of the most important presently used radio techniques. Typical examples of data are shown for the various techniques, and a brief historical account of the technique development is presented. An extended annotated bibliography of the salient papers in the field is included.
ULF Generation by Modulated Ionospheric Heating
Chang, C.; Labenski, J.; Wallace, T.; Papadopoulos, K.
2013-12-01
Modulated ionospheric heating experiments designed to generate ULF waves using the HAARP heater have been conducted since 2007. Artificial ULF waves in the Pc1 frequency range were observed from space and by ground induction magnetometers located in the vicinity of the heater as well as at long distances. Two distinct generation mechanisms of artificial ULF waves were identified. The first was electroject modulation under geomagnetically disturbed conditions. The second was pressure modulation in the E and F regions of the ionosphere under quiet conditions. Ground detections of ULF waves near the heater included both Shear Alfven waves and Magnetosonic waves generated by electrojet and/or pressure modulations. Distant ULF detections involved Magnetosonic wave propagation in the Alfvenic duct with pressure modulation as the most likely source. Summary of our observations and theoretical interpretations will be presented at the meeting. We would like to acknowledge the support provided by the staff at the HAARP facility during our ULF experiments.
Ground-based measurements of ionospheric dynamics
Kouba, Daniel; Chum, Jaroslav
2018-05-01
Different methods are used to research and monitor the ionospheric dynamics using ground measurements: Digisonde Drift Measurements (DDM) and Continuous Doppler Sounding (CDS). For the first time, we present comparison between both methods on specific examples. Both methods provide information about the vertical drift velocity component. The DDM provides more information about the drift velocity vector and detected reflection points. However, the method is limited by the relatively low time resolution. In contrast, the strength of CDS is its high time resolution. The discussed methods can be used for real-time monitoring of medium scale travelling ionospheric disturbances. We conclude that it is advantageous to use both methods simultaneously if possible. The CDS is then applied for the disturbance detection and analysis, and the DDM is applied for the reflection height control.
Electric and electrothermal conductivity of planetary ionospheres
International Nuclear Information System (INIS)
Pavlov, A.V.
1984-01-01
In the first, second and third approximations of expansion of the Chapman-Enskog method in Sonin polynomials, an explicit form is found of coefficients of electrical and electrothermal electron condituctjvity in a magnetic field in a multicomponent ionosphere with allowance for the electron temperature difference from the heavy component temperature. The generic expressions for the electron transport coefficients are reduced to the form suitable for practical applications. In the first approximation of expansion in Sonin polynomials, the equations are derived for determining the ion diffusion velocities in a magnetic field in a multicomponent gas mixtures. +he approximating expressions for frequencies of electron collisions with main neutral components of planet upper atmospheres are refined. In the first, second and third approximations the equations are derived for determining velocities of ambipolar ion diffusion in a multicomponent ionosphere without a magnetic field (or parallel to it). The explicit form of the electron thermodiffusion factor, being a part of these equations, has been found
Detection of Buried Inhomogeneous Elliptic Cylinders by a Memetic Algorithm
Caorsi, Salvatore; Massa, Andrea; Pastorino, Matteo; Raffetto, Mirco; Randazzo, Andrea
2003-01-01
The application of a global optimization procedure to the detection of buried inhomogeneities is studied in the present paper. The object inhomogeneities are schematized as multilayer infinite dielectric cylinders with elliptic cross sections. An efficient recursive analytical procedure is used for the forward scattering computation. A functional is constructed in which the field is expressed in series solution of Mathieu functions. Starting by the input scattered data, the iterative minimiza...
Nonlinear interaction of waves in an inhomogeneous plasma
International Nuclear Information System (INIS)
Istomin, Ya.N.
1988-01-01
Nonlinear wave processes in a weakly inhomogeneous plasma are considered. A quasilinear equation is derived which takes into account the effect of the waves on resonance particles, provided that the inhomogeneity appreciably affects the nature of the resonance interaction. Three-wave interaction is investigated under the same conditions. As an example, the nonlinear interaction in a relativistic plasma moving along a strong curvilinear magnetic field is considered
Radio frequency conductivity of plasma in inhomogeneous magnetic field
International Nuclear Information System (INIS)
Itoh, Sanae; Nishikawa, Kyoji; Fukuyama, Atsushi; Itoh, Kimitaka.
1985-01-01
Nonlocal conductivity tensor is obtained to study the kinetic effects on propagation and absorption of radio frequency (rf) waves in dispersive plasmas. Generalized linear propagator in the presence of the inhomogeneity of magnetic field strength along the field line is calculated. The influence of the inhomogeneity to the rf wave-energy deposition is found to be appreciable. Application to toroidal plasmas is shown. (author)
Polymers undergoing inhomogeneous adsorption: exact results and Monte Carlo simulations
Energy Technology Data Exchange (ETDEWEB)
Iliev, G K [Department of Mathematics, University of Melbourne, Parkville, Victoria (Australia); Orlandini, E [Dipartimento di Fisica, CNISM, Universita di Padova, Via Marzolo 8, 35131 Padova (Italy); Whittington, S G, E-mail: giliev@yorku.ca [Department of Chemistry, University of Toronto, Toronto (Canada)
2011-10-07
We consider several types of inhomogeneous polymer adsorption. In each case, the inhomogeneity is regular and resides in the surface, in the polymer or in both. We consider two different polymer models: a directed walk model that can be solved exactly and a self-avoiding walk model which we investigate using Monte Carlo methods. In each case, we compute the phase diagram. We compare and contrast the phase diagrams and give qualitative arguments about their forms. (paper)
Solitons of an envelope in an inhomogeneous medium
International Nuclear Information System (INIS)
Churilov, S.M.
1982-01-01
Solutions of the Schroedinger nonlinear equation (SNE) used for the description of evolution of a wave packet envelope has been investigated in inhomogeneous and nonstationary media. It is shown that the SNE solution possessing two important properties exists. Firstly, the wave packet remains localized when propagating in an inhomogeneous medium. Secondly, the soliton width and amplitude are determined only with local characteristics of medium and don't depend on the prehistory. Problem of limits of obtained result applicability has been considered
Off-center observers versus supernovae in inhomogeneous pressure universes
Balcerzak, Adam; Dabrowski, Mariusz P.; Denkiewicz, Tomasz
2013-01-01
Exact luminosity distance and apparent magnitude formulas are applied to Union2 557 supernovae sample in order to constrain possible position of an observer outside of the center of symmetry in spherically symmetric inhomogeneous pressure Stephani universes which are complementary to inhomogeneous density Lema\\^itre-Tolman-Bondi (LTB) void models. Two specific models are investigated. The first which allows a barotropic equation of state at the center of symmetry with no scale factor function...
Love waves in a structure with an inhomogeneous layer
International Nuclear Information System (INIS)
Ghazaryan, K.B.; Piliposyan, D.G.
2011-01-01
The problem of the propagation of Love type waves in a structure consisting of a finite inhomogeneous layer sandwiched between two isotropic homogeneous half spaces is investigated. Two types of inhomogeneity are considered. It is shown that in one case the amplitude of vibrations in the middle layer is a sinusoidal function of distance from the plane of symmetry, but that in the other case it may be non-sinusoidal for certain values of the parameters of the problem
Minimum weight design of inhomogeneous rotating discs
International Nuclear Information System (INIS)
Jahed, Hamid; Farshi, Behrooz; Bidabadi, Jalal
2005-01-01
There are numerous applications for gas turbine discs in the aerospace industry such as in turbojet engines. These discs normally work under high temperatures while subjected to high angular velocities. Minimizing the weight of such items in aerospace applications results in benefits such as low dead weights and lower costs. High speed of rotation causes large centrifugal forces in a disc and simultaneous application of high temperatures reduces disc material strength. Thus, the latter effects tend to increase deformations of the disc under the applied loads. In order to obtain a reliable disc analysis and arrive at the corresponding correct stress distribution, solutions should consider changes in material properties due to the temperature field throughout the disc. To achieve this goal, an inhomogeneous disc model with variable thickness is considered. Using the variable material properties method, stresses are obtained for the disc under rotation and a steady temperature field. In this paper this is done by modelling the rotating disc as a series of rings of different but constant properties. The optimum disc profile is arrived at by sequentially proportioning the thicknesses of each ring to satisfy the stress requirements. This method vis-a-vis a mathematical programming procedure for optimization shows several advantages. Firstly, it is simple iterative proportioning in each design cycle not requiring involved mathematical operations. Secondly, due to its simplicity it alleviates the necessity of certain simplifications that are common in so-called rigorous mathematical procedures. The results obtained, compared to those published in the literature show agreement and superiority. A further advantage of the proposed method is the independence of the end results from the initially assumed point in the iterative design routine, unlike most methods published so far
Variations of the electron concentration in the polar ionosphere
International Nuclear Information System (INIS)
Chasovitin, Yu.K.; Shushkova, V.B.
1980-01-01
The possibility of constructing an empirical model of electron concentration in the polar ionosphere is considered. The results of rocket measurements carried out at Fort Churchill and on the Hays island at 70-210 km heights are used to analyse the distribution of electron concentration in the non-illuminated sector of the auroral oval, in the subauroral ionosphere and in the polar cap. Taking account of magnetospheric-ionospheric relationships and the geomagnetic environment, certain regularities in the distribution of electron concentration in the polar field, which may serve as a basis for constructing an empirical model of the polar ionosphere have been identified
Numerical Simulation of Ionospheric Electron Concentration Depletion by Rocket Exhaust
International Nuclear Information System (INIS)
Huang Yong; Shi Jiaming; Yuan Zhongcai
2011-01-01
In terms of the diffusive process of the gases injected from rocket exhaust into the ionosphere and the relevant chemical reactions between the gases and the composition of ionosphere, the modifications in ionosphere caused by the injected hydrogen and carbon dioxide gas from the rocket exhaust are investigated. The results show that the diffusive process of the injected gases at the ionospheric height is very fast, and the injected gases can lead to a local depletion of electron concentration in the F-region. Furthermore, the plasma 'hole' caused by carbon dioxide is larger, deeper and more durable than that by the hydrogen. (astrophysics and space plasma)
Impulsive Alfven coupling between the magnetosphere and ionosphere
International Nuclear Information System (INIS)
Reddy, R.V.; Watanabe, K.; Sato, T.; Watanabe, T.H.
1994-04-01
Basic properties of the impulsive Alfven interaction between the magnetosphere and ionosphere have been studied by means of a three-dimensional self-consistent simulation of the coupled magnetosphere and ionosphere system. It is found that the duration time of an impulsive perturbation at the magnetospheric equator, the latitudinal distribution of the Alfven propagation time along the field lines, and the ratio between the magnetospheric impedance and the ionospheric resistance is the main key factors that determine the propagation dynamics and the ionospheric responses for an impulsive MHD perturbation in the magnetosphere. (author)
Ionospheric wave and irregularity measurements using passive radio astronomy techniques
International Nuclear Information System (INIS)
Erickson, W.C.; Mahoney, M.J.; Jacobson, A.R.; Knowles, S.H.
1988-01-01
The observation of midlatitude structures using passive radio astronomy techniques is discussed, with particular attention being given to the low-frequency radio telescope at the Clark Lake Radio Observatory. The present telescope operates in the 10-125-MHz frequency range. Observations of the ionosphere at separations of a few kilometers to a few hundreds of kilometers by the lines of sight to sources are possible, allowing the determination of the amplitude, wavelength, direction of propagation, and propagation speed of ionospheric waves. Data are considered on large-scale ionospheric gradients and the two-dimensional shapes and sizes of ionospheric irregularities. 10 references
Ionospheric Irregularities at Mars Probed by MARSIS Topside Sounding
Harada, Y.; Gurnett, D. A.; Kopf, A. J.; Halekas, J. S.; Ruhunusiri, S.
2018-01-01
The upper ionosphere of Mars contains a variety of perturbations driven by solar wind forcing from above and upward propagating atmospheric waves from below. Here we explore the global distribution and variability of ionospheric irregularities around the exobase at Mars by analyzing topside sounding data from the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) instrument on board Mars Express. As irregular structure gives rise to off-vertical echoes with excess propagation time, the diffuseness of ionospheric echo traces can be used as a diagnostic tool for perturbed reflection surfaces. The observed properties of diffuse echoes above unmagnetized regions suggest that ionospheric irregularities with horizontal wavelengths of tens to hundreds of kilometers are particularly enhanced in the winter hemisphere and at high solar zenith angles. Given the known inverse dependence of neutral gravity wave amplitudes on the background atmospheric temperature, the ionospheric irregularities probed by MARSIS are most likely associated with plasma perturbations driven by atmospheric gravity waves. Though extreme events with unusually diffuse echoes are more frequently observed for high solar wind dynamic pressures during some time intervals, the vast majority of the diffuse echo events are unaffected by varying solar wind conditions, implying limited influence of solar wind forcing on the generation of ionospheric irregularities. Combination of remote and in situ measurements of ionospheric irregularities would offer the opportunity for a better understanding of the ionospheric dynamics at Mars.
Geomagnetic oriented electromagnetic radiation in the ionosphere
International Nuclear Information System (INIS)
Benton, C.U.; Fowles, H.M.; Goen, P.K.
1976-08-01
Strong bursts of electromagnetic radiation were observed in the ionosphere during the Waso rocket Electromagnetic Pulse (EMP) experiment. The pulses have a frequency content from below 20 MHz to above 70 MHz. They vary in duration between 5 μs and 2 ms and in peak-amplitudes of 2 mV/m to greater than 200 mV/m. These pulses show a high degree of geomagnetic correlation and are of unknown origin
PRECURSORS OF EARTHQUAKES: VLF SIGNALSIONOSPHERE IONOSPHERE RELATION
Directory of Open Access Journals (Sweden)
Mustafa ULAS
2013-01-01
Full Text Available lot of people have died because of earthquakes every year. Therefore It is crucial to predict the time of the earthquakes reasonable time before it had happed. This paper presents recent information published in the literature about precursors of earthquakes. The relationships between earthquakes and ionosphere are targeted to guide new researches in order to study further to find novel prediction methods.
Inhomogeneous initial data and small-field inflation
Marsh, M. C. David; Barrow, John D.; Ganguly, Chandrima
2018-05-01
We consider the robustness of small-field inflation in the presence of scalar field inhomogeneities. Previous numerical work has shown that if the scalar potential is flat only over a narrow interval, such as in commonly considered inflection-point models, even small-amplitude inhomogeneities present at the would-be onset of inflation at τ = τi can disrupt the accelerated expansion. In this paper, we parametrise and evolve the inhomogeneities from an earlier time τIC at which the initial data were imprinted, and show that for a broad range of inflationary and pre-inflationary models, inflection-point inflation withstands initial inhomogeneities. We consider three classes of perturbative pre-inflationary solutions (corresponding to energetic domination by the scalar field kinetic term, a relativistic fluid, and isotropic negative curvature), and two classes of exact solutions to Einstein's equations with large inhomogeneities (corresponding to a stiff fluid with cylindrical symmetry, and anisotropic negative curvature). We derive a stability condition that depends on the Hubble scales H(τi) and H(τIC), and a few properties of the pre-inflationary cosmology. For initial data imprinted at the Planck scale, the absence of an inhomogeneous initial data problem for inflection-point inflation leads to a novel, lower limit on the tensor-to-scalar ratio.
Ionosphere monitoring and forecast activities within the IAG working group "Ionosphere Prediction"
Hoque, Mainul; Garcia-Rigo, Alberto; Erdogan, Eren; Cueto Santamaría, Marta; Jakowski, Norbert; Berdermann, Jens; Hernandez-Pajares, Manuel; Schmidt, Michael; Wilken, Volker
2017-04-01
Ionospheric disturbances can affect technologies in space and on Earth disrupting satellite and airline operations, communications networks, navigation systems. As the world becomes ever more dependent on these technologies, ionospheric disturbances as part of space weather pose an increasing risk to the economic vitality and national security. Therefore, having the knowledge of ionospheric state in advance during space weather events is becoming more and more important. To promote scientific cooperation we recently formed a Working Group (WG) called "Ionosphere Predictions" within the International Association of Geodesy (IAG) under Sub-Commission 4.3 "Atmosphere Remote Sensing" of the Commission 4 "Positioning and Applications". The general objective of the WG is to promote the development of ionosphere prediction algorithm/models based on the dependence of ionospheric characteristics on solar and magnetic conditions combining data from different sensors to improve the spatial and temporal resolution and sensitivity taking advantage of different sounding geometries and latency. Our presented work enables the possibility to compare total electron content (TEC) prediction approaches/results from different centers contributing to this WG such as German Aerospace Center (DLR), Universitat Politècnica de Catalunya (UPC), Technische Universität München (TUM) and GMV. DLR developed a model-assisted TEC forecast algorithm taking benefit from actual trends of the TEC behavior at each grid point. Since during perturbations, characterized by large TEC fluctuations or ionization fronts, this approach may fail, the trend information is merged with the current background model which provides a stable climatological TEC behavior. The presented solution is a first step to regularly provide forecasted TEC services via SWACI/IMPC by DLR. UPC forecast model is based on applying linear regression to a temporal window of TEC maps in the Discrete Cosine Transform (DCT) domain
Paetzold, M.; Andert, T.; Bird, M. K.; Häusler, B.; Hinson, D. P.; Peter, K.; Tellmann, S.
2017-12-01
Planetary ionospheres are usually sounded at single frequency, e.g. S-band or X-band, or at dual-frequencies, e.g. simultaneous S-band and X-band frequencies. The differential Doppler is computed from the received dual-frequency sounding and it has the advantage that any residual motion by the spaceraft body is compensated. The electron density profile is derived from the propagation of the two radio signals through the ionospheric plasma. Vibrational motion of small amplitude by the spacecraft body may still be contained in the single frequency residuals and may be translated into electron densities. Examples from Mars Express and Venus Express shall be presented. Cases from other missions shall be presented where wave-like structures in the upper ionosphere may be a misinterpretation.
Space weather: Modeling and forecasting ionospheric
International Nuclear Information System (INIS)
Calzadilla Mendez, A.
2008-01-01
Full text: Space weather is the set of phenomena and interactions that take place in the interplanetary medium. It is regulated primarily by the activity originating in the Sun and affects both the artificial satellites that are outside of the protective cover of the Earth's atmosphere as the rest of the planets in the solar system. Among the phenomena that are of great relevance and impact on Earth are the auroras and geomagnetic storms , these are a direct result of irregularities in the flow of the solar wind and the interplanetary magnetic field . Given the high complexity of the physical phenomena involved (magnetic reconnection , particle inlet and ionizing radiation to the atmosphere) one of the great scientific challenges today is to forecast the state of plasmatic means either the interplanetary medium , the magnetosphere and ionosphere , for their importance to the development of various human activities such as radio , global positioning , navigation, etc. . It briefly address some of the international ionospheric modeling methods and contributions and participation that currently has the space group of the Institute of Geophysics Geophysics and Astronomy (IGA) in these activities of modeling and forecasting ionospheric. (author)
A snapshot of the polar ionosphere
International Nuclear Information System (INIS)
Whitteker, J.H.
1976-01-01
This paper presents a picture of the north polar F layer and topside ionosphere obtained primarily from three satellites (Alouette 2, ISIS 1, ISIS 2), that passed over the region within a time interval of ca. 50 min on 25 April 1971, a magnetically quiet day. The horizontal distribution of electron densities at the peak of the F layer is found to be similar to synoptic results from the IGY. Energetic particle and ionospheric plasma data are also presented, and the F layer data are discussed in terms of these measurements, and also in terms of electric field and neutral N 2 density measurements made by other satellites on other occasions. The major features observed are as follows: A tongue of F region ionization extends from the dayside across the polar cap, which is accounted for by antisunward drift due to magnetospheric convection. In the F layer and topside ionosphere, the main effect of auroral precipitation appears to be heating and expansion of the topside. A region of low F layer density appears on the morning side of the polar cap, which may be due to convection and possibly also to enhanced N 2 densities. (author)
Equinoctial transitions in the ionosphere and thermosphere
Directory of Open Access Journals (Sweden)
A. V. Mikhailov
2001-07-01
Full Text Available Equinoctial summer/winter transitions in the parameters of the F2-region are analyzed using ground-based ionosonde and incoherent scatter observations. Average transition from one type of diurnal NmF2 variation to another takes 20–25 days, but cases of very fast (6–10 days transitions are observed as well. Strong day-time NmF2 deviations of both signs from the monthly median, not related to geomagnetic activity, are revealed for the transition periods. Both longitudinal and latitudinal variations take place for the amplitude of such quiet time NmF2 deviations. The summer-type diurnal NmF2 variation during the transition period is characterized by decreased atomic oxygen concentration [O] and a small equatorward thermospheric wind compared to winter-type days with strong poleward wind and increased [O]. Molecular N2 and O2 concentrations remain practically unchanged in such day-to-day transitions. The main cause of the F2-layer variations during the transition periods is the change of atomic oxygen abundance in the thermosphere related to changes of global thermospheric circulation. A possible relationship with an equinoctial transition of atomic oxygen at the E-region heights is discussed.Key words. Atmospheric composition and structure (thermosphere – composition and chemistry – Ionosphere (ionosphere- atmosphere interactions; ionospheric disturbances
Directory of Open Access Journals (Sweden)
Ferencz Csaba
2014-05-01
Full Text Available In the frame of the FP7 POPDAT project the Ionosphere Waves Service (IWS has been developed and opened for public access by ionosphere experts. IWS is forming a database, derived from archived ionospheric wave records to assist the ionosphere and Space Weather research, and to answer the following questions: How can the data of earlier ionospheric missions be reprocessed with current algorithms to gain more profitable results? How could the scientific community be provided with a new insight on wave processes that take place in the ionosphere? The answer is a specific and unique data mining service accessing a collection of topical catalogs that characterize a huge number of recorded occurrences of Whistler-like Electromagnetic Wave Phenomena, Atmosphere Gravity Waves, and Traveling Ionosphere Disturbances. IWS online service (http://popdat.cbk.waw.pl offers end users to query optional set of predefined wave phenomena, their detailed characteristics. These were collected by target specific event detection algorithms in selected satellite records during database buildup phase. Result of performed wave processing thus represents useful information on statistical or comparative investigations of wave types, listed in a detailed catalog of ionospheric wave phenomena. The IWS provides wave event characteristics, extracted by specific software systems from data records of the selected satellite missions. The end-user can access targets by making specific searches and use statistical modules within the service in their field of interest. Therefore the IWS opens a new way in ionosphere and Space Weather research. The scientific applications covered by IWS concern beyond Space Weather also other fields like earthquake precursors, ionosphere climatology, geomagnetic storms, troposphere-ionosphere energy transfer, and trans-ionosphere link perturbations.
Ferencz, Csaba; Lizunov, Georgii; Crespon, François; Price, Ivan; Bankov, Ludmil; Przepiórka, Dorota; Brieß, Klaus; Dudkin, Denis; Girenko, Andrey; Korepanov, Valery; Kuzmych, Andrii; Skorokhod, Tetiana; Marinov, Pencho; Piankova, Olena; Rothkaehl, Hanna; Shtus, Tetyana; Steinbach, Péter; Lichtenberger, János; Sterenharz, Arnold; Vassileva, Any
2014-05-01
In the frame of the FP7 POPDAT project the Ionosphere Waves Service (IWS) has been developed and opened for public access by ionosphere experts. IWS is forming a database, derived from archived ionospheric wave records to assist the ionosphere and Space Weather research, and to answer the following questions: How can the data of earlier ionospheric missions be reprocessed with current algorithms to gain more profitable results? How could the scientific community be provided with a new insight on wave processes that take place in the ionosphere? The answer is a specific and unique data mining service accessing a collection of topical catalogs that characterize a huge number of recorded occurrences of Whistler-like Electromagnetic Wave Phenomena, Atmosphere Gravity Waves, and Traveling Ionosphere Disturbances. IWS online service (http://popdat.cbk.waw.pl) offers end users to query optional set of predefined wave phenomena, their detailed characteristics. These were collected by target specific event detection algorithms in selected satellite records during database buildup phase. Result of performed wave processing thus represents useful information on statistical or comparative investigations of wave types, listed in a detailed catalog of ionospheric wave phenomena. The IWS provides wave event characteristics, extracted by specific software systems from data records of the selected satellite missions. The end-user can access targets by making specific searches and use statistical modules within the service in their field of interest. Therefore the IWS opens a new way in ionosphere and Space Weather research. The scientific applications covered by IWS concern beyond Space Weather also other fields like earthquake precursors, ionosphere climatology, geomagnetic storms, troposphere-ionosphere energy transfer, and trans-ionosphere link perturbations.
Solar eclipses at high latitudes: ionospheric effects in the lower ionosphere
Cherniakov, S.
2017-12-01
The partial reflection facility of the Polar Geophysical Institute (the Tumanny observatory, 69.0N, 35.7E) has observed behavior of the high-latitude lower ionosphere during the 20 March 2015 total solar eclipse. There were several effects during the eclipse. At the heights of 60-80 km the ionosphere has shown the effect of a "short night", but at the higher altitudes local enhanced electron concentration had a wave-like form. Data received by the riometer of the Tumanny observatory have also shown wave-like behavior. The behavior can be explained by influence of acoustic-gravity waves which originated after cooling of the atmosphere during the lunar shadow supersonic movement, and transport processes during the eclipse. During the 21 August 2017 solar eclipse there was a substorm at the high latitudes. But after the end of the substorm in the region of the Tumanny observatory the observed amplitudes of the reflected waves had wave effects which could be connected with the coming waves from the region of the eclipse. The wave features were also shown in the behavior of the total electron content (TEC) of the lower ionosphere. During several solar eclipses it was implemented observations of lower ionosphere behavior by the partial reflection facility of the Tumanny observatory. The consideration of the lower ionosphere TEC had revealed common features in the TEC behavior during the eclipses. The photochemical theory of processes in the lower ionosphere is very complicated and up to now it is not completely developed. Therefore introduction of the effective coefficients determining the total speed of several important reactions has been widely adopted when modeling the D-region of the ionosphere. However, experimental opportunities for obtaining effective recombination coefficients are rather limited. One of the methods to estimate effective recombination coefficients uses the phenomenon of a solar eclipse. During solar eclipses at the partial reflection facility of
A Weighted Configuration Model and Inhomogeneous Epidemics
Britton, Tom; Deijfen, Maria; Liljeros, Fredrik
2011-12-01
A random graph model with prescribed degree distribution and degree dependent edge weights is introduced. Each vertex is independently equipped with a random number of half-edges and each half-edge is assigned an integer valued weight according to a distribution that is allowed to depend on the degree of its vertex. Half-edges with the same weight are then paired randomly to create edges. An expression for the threshold for the appearance of a giant component in the resulting graph is derived using results on multi-type branching processes. The same technique also gives an expression for the basic reproduction number for an epidemic on the graph where the probability that a certain edge is used for transmission is a function of the edge weight (reflecting how closely `connected' the corresponding vertices are). It is demonstrated that, if vertices with large degree tend to have large (small) weights on their edges and if the transmission probability increases with the edge weight, then it is easier (harder) for the epidemic to take off compared to a randomized epidemic with the same degree and weight distribution. A recipe for calculating the probability of a large outbreak in the epidemic and the size of such an outbreak is also given. Finally, the model is fitted to three empirical weighted networks of importance for the spread of contagious diseases and it is shown that R 0 can be substantially over- or underestimated if the correlation between degree and weight is not taken into account.
SECTIONING METHOD APPLICATION AT ELLIPSOMETRY OF INHOMOGENEOUS REFLECTION SYSTEMS
Directory of Open Access Journals (Sweden)
A. N. Gorlyak
2014-05-01
Full Text Available The paper deals with investigation of application peculiarities of ellipsometry methods and UF spectrophotometry at mechanical and chemical processing of optical engineering surface elements made of quartz glass. Ellipsometer LEF–3M–1, spectrophotometer SF–26 and interferometer MII–4 are used as experiment tools; they obtain widely known technical characteristics. Polarization characteristics of reflected light beam were measured by ellipsometry method; spectrophotometry method was used for measuring radiation transmission factor in UF spectrum area; by interference method surface layer thickness at quartz glass etching was measured. A method for HF–sectioning of inhomogeneous surface layer of polished quartz glass is developed based on ellipsometry equation for reflection system «inhomogeneous layer – inhomogeneous padding». The method makes it possible to carry out the measuring and analysis of optical characteristics for inhomogeneous layers system on inhomogeneous padding and to reconstruct optical profile of surface layers at quartz glass chemical processing. For definition of refractive index change along the layer depth, approximation of experimental values for polarization characteristics of homogeneous layers system is used. Inhomogeneous surface layer of polished quartz glass consists of an area (with thickness up to 20 nm and layer refractive index less than refractive index for quartz glass and an area (with thickness up to 0,1 μm and layer refractive index larger than refractive index for quartz glass. Ellipsometry and photometry methods are used for definition of technological conditions and optical characteristics of inhomogeneous layers at quartz glass chemical processing for optical elements with minimum radiation losses in UF spectrum area.
International Nuclear Information System (INIS)
Girij, V.A.; Shpinar, L.I.; Yaskovets, I.I.; Zaitov, V.R.; Hille, R.
1997-01-01
The analyses of the measurement data on the territory of the Ukrainian Polesie region carried out by the Research Centre Juelich and the Ukrainian Institute of Radioecology shows that there is a high degree of inhomogeneity for the contamination pattern, they transfer from soil to the biosphere and for the food consumption. Therefore, a deterministic environmental assessment model may not be convenient because most processes are not known in detailed. In this situation a probabilistic approach seems to be more promising. In this report presented a dynamic model for the transfer of radioactivity in terrestrial food chains that fit to the regionally conditions and agricultural practice. The living organism will be treated as dynamic system subject to random action of radioactivity. This system is described by stochastic differential equations of Langevene's type. Starting from this base we calculated a distribution function of radionuclide body burdens for inhabitant ensembles under the assumptions that entering of activity into organisms is a random temporary function that can be approximated by certain impulse Poison processes. A comparison of calculated distribution function is carried out with measurement results of internal body burden. It shown a satisfactory description of the real situation found for four investigated villages of Ukrainian Polesie region (Olevsk, Narodichi, Vezhitsa and Stare Selo) that were characterized by different degree of contamination and different degree of inhomogeneity
Study of ionospheric anomalies due to impact of typhoon using ...
Indian Academy of Sciences (India)
Page 1 ... landing of typhoon Matsa, with TEC increasing from its monthly median over the typhoon area by. Keywords. Principal Component Analysis; total electron content; global ionospheric map; .... dent on temperature and wind structure in the atmosphere. Coupling between typhoon processes and the ionosphere has ...
Monitoring the three-dimensional ionospheric electron density ...
Indian Academy of Sciences (India)
In this paper, an IRI model assisted GPS-based Computerized Ionospheric Tomography (CIT) technique is developed to inverse the ionospheric ... are usually installed along a fixed longitude chain. Kunitsyn et al (1997) first confirmed the .... The IED value at the center of each pixel is gen- erated from the IRI2001 model and ...
Impact of Galileo on Global Ionosphere Map Estimation
Undetermined, U.
2006-01-01
The upcoming GNSS Galileo, with its new satellite geometry and frequency plan, will not only bring many benefits for navigation and positioning but also help to improve ionosphere delay estimation. This paper investigates ionosphere estimation with Galileo and compares it with the results from
Probing ionospheric structures using the LOFAR radio telescope
Mevius, M.; van der Tol, S.; Pandey, V.N.; Vedantham, H. K.; Brentjens, M. A.; Bruyn, A. G.; Abdalla, F. B.; Asad, K. M. B.; Bregman, J. D.; Brouw, W. N.; Bus, S.; Chapman, E.; Ciardi, B.; Fernandez, E. R.; Ghosh, A.; Harker, G.; Iliev, I. T.; Jelic, Vibor; Kazemi, S.; Koopmans, L. V. E.; Noordam, J. E.; Offringa, A. R.; Patil, A. H.; Weeren, R. J.; Wijnholds, S.; Yatawatta, S.; Zaroubi, S.
2016-01-01
LOFAR is the LOw-Frequency Radio interferometer ARray located at midlatitude (52°53'N). Here we present results on ionospheric structures derived from 29 LOFAR nighttime observations during the winters of 2012/2013 and 2013/2014. We show that LOFAR is able to determine differential ionospheric total
Bayesian estimation for ionospheric calibration in radio astronomy
Van der Tol, S.
2009-01-01
Radio astronomical observations at low frequencies (< 250 MHz), can be severely distorted by fluctuations in electron density in the ionosphere. The free electrons cause a phase change of electromagnetic waves traveling through the ionosphere. This effect increases for lower frequencies. For this
The F-Region Equatorial Ionospheric Electrodynamics Drifts ...
African Journals Online (AJOL)
The ionospheric plasma drift is one of the most essential parameters for understanding the dynamics of ionospheric F-region. F-region electromagnetic drifts are calculated for three seasonal conditions from ionosonde observations acquired during quiet period of a typical year of high and low solar activity at Ibadan (7.4oN, ...
Czech Academy of Sciences Publication Activity Database
Němec, F.; Morgan, D. D.; Fowler, C.M.; Kopf, A.J.; Andersson, L.; Gurnett, D. A.; Andrews, D.J.; Truhlík, Vladimír
2017-01-01
Roč. 122, č. 12 (2017), s. 12393-12405 E-ISSN 2169-9402 Institutional support: RVO:68378289 Keywords : Mars * ionosphere * MARSIS * Mars Express * MAVEN * radar sounding Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) http://onlinelibrary.wiley.com/doi/10.1002/2017JA024629/full
A study of the ionospheric signature of ion supply from the ionosphere to the magnetosphere
International Nuclear Information System (INIS)
Loranc, M.A.P.
1988-01-01
Recent studies have demonstrated the importance of the ionosphere as a source of magnetospheric plasma; in particular, the observations of upwelling ions (UWI) by the DE-1 Retarding Ion Mass Spectrometer have illustrated the significance of low-energy ion supply to the magnetosphere. The composition of the UWI implies an ionospheric source, and the Dynamics Explorer dual satellite mission provides an opportunity to search for the ionospheric signature of UWI. Magnetometer data from both satellites are used to determine magnetic conjunctions of the satellites; these conjunctions are searched for correlated observations of UWI and upward flowing thermal ion (UFI) events. Four cases of correlated observations are presented as proof of that the UFI are indeed the ionospheric signature of UWI; it is found from these examples that the event are associated with intense field-aligned currents at both satellites and with anti-sunward convection, enhanced fluxes of low-energy precipitating electrons from the boundary plasma sheet, and upward thermal ion fluxes in excess of 10 9 cm -2 s -1 at DE-2. While USI are primarily a dayside phenomena, UFI are found in all local time sectors sampled by DE-2
Using GPS TEC measurements to probe ionospheric spatial spectra at mid-latitudes
Lay, E. H.; Parker, P. A.; Light, M. E.; Carrano, C. S.; Debchoudhury, S.; Haaser, R. A.
2017-12-01
The physics of how random ionospheric structure causes signal degradation is well understood as weak forward scattering through an effective diffraction grating created by plasma irregularities in the ionosphere. However, the spatial scale spectrum of those irregularities required for input into scintillation models and models of traveling ionospheric disturbances is poorly characterized, particularly at the kilometer to tens of kilometer scale lengths important for very-high-frequency (VHF) scintillation prediction. Furthermore, the majority of characterization studies have been performed in low-latitude or high-latitude regions where geomagnetic activity dominates the physical processes. At mid-latitudes, tropospheric and geomagnetic phenomena compete in disturbing the ionosphere, and it is not well understood how these multiple sources affect the drivers that influence the spatial spectrum. In this study, we are interested in mid-latitude electron density irregularities on the order of 10s of kilometers that would affect VHF signals. Data from the GPS networks Japan GEONET and the Plate Boundary Observatory (PBO, UNAVCO) in the western United States were analyzed for this study. Japan GEONET is a dense network of GPS receivers (station spacing of tens of km), with fairly evenly spaced positions over all of Japan. The PBO, on the other hand, has several pockets of extremely dense coverage (station spacing within a few km), but is less dense on average. We analyze a day with a large solar storm (2015/03/17, St. Patrick's Day Storm) to allow high scintillation potential at mid-latitudes, a day with low geomagnetic activity and low thunderstorm activity (2016/01/31), and a day with low geomagnetic activity and high thunderstorm activity (2015/08/02). We then perform two-dimensional spatial analyses on the TEC data from these two networks on scale lengths of 20 to 200 km to infer the spatial scale spectra.
Directory of Open Access Journals (Sweden)
V. Barabash
2014-03-01
vapour concentration upper limit at altitudes between 75 and 87 km, beyond which the water vapour concentration ceases to influence the numerical densities of Cl2+ and Cl1+, the effective recombination coefficient and the electron number density in the summer ionosphere. This water vapour concentration limit corresponds to values found in the H2O-1 profile that was observed in the summer mesosphere by the Upper Atmosphere Research Satellite (UARS. The electron density modelled using the H2O-1 profile agreed well with the electron density measured in the summer ionosphere when the measured profiles did not have sharp gradients. For sharp gradients in electron and positive ion number densities, a water profile that can reproduce the characteristic behaviour of the ionospheric parameters should have an inhomogeneous height distribution of water vapour.
Updated climatological model predictions of ionospheric and HF propagation parameters
International Nuclear Information System (INIS)
Reilly, M.H.; Rhoads, F.J.; Goodman, J.M.; Singh, M.
1991-01-01
The prediction performances of several climatological models, including the ionospheric conductivity and electron density model, RADAR C, and Ionospheric Communications Analysis and Predictions Program, are evaluated for different regions and sunspot number inputs. Particular attention is given to the near-real-time (NRT) predictions associated with single-station updates. It is shown that a dramatic improvement can be obtained by using single-station ionospheric data to update the driving parameters for an ionospheric model for NRT predictions of f(0)F2 and other ionospheric and HF circuit parameters. For middle latitudes, the improvement extends out thousands of kilometers from the update point to points of comparable corrected geomagnetic latitude. 10 refs
A Study on the Radio Propagation in the Korean Ionosphere
Directory of Open Access Journals (Sweden)
Seok-Hee Bae
1992-06-01
Full Text Available The effects of the ionosphere on the radio wave propagation are scattering of radio waves, attenuation, angle error, ranging error, and time delay. If ionospheric conditions are suitable, the charged particles can remove energy from radio waves and thus attenuate the signal. Also, a radio wave traveling a path along which the electron density is not constant undergoes changes in direction, position and time of propagation. The present study is based on Korean ionospheric data obtained at the AnYong Radio Research Institute from Jan. 1985 through Oct. 1989. The data are used to simulate the Korean ionosphere following the Chapman law. The effects of the model ionosphere on the radio wave propagation, such as the angle, position error, time delay, and the attenuation, are studies for the various cases of the wave frequency and the altitude.
Evaluation of Inversion Methods Applied to Ionospheric ro Observations
Rios Caceres, Arq. Estela Alejandra; Rios, Victor Hugo; Guyot, Elia
The new technique of radio-occultation can be used to study the Earth's ionosphere. The retrieval processes of ionospheric profiling from radio occultation observations usually assume spherical symmetry of electron density distribution at the locality of occultation and use the Abel integral transform to invert the measured total electron content (TEC) values. This pa-per presents a set of ionospheric profiles obtained from SAC-C satellite with the Abel inversion technique. The effects of the ionosphere on the GPS signal during occultation, such as bending and scintillation, are examined. Electron density profiles are obtained using the Abel inversion technique. Ionospheric radio occultations are validated using vertical profiles of electron con-centration from inverted ionograms , obtained from ionosonde sounding in the vicinity of the occultation. Results indicate that the Abel transform works well in the mid-latitudes during the daytime, but is less accurate during the night-time.
Guo, Qiang; Galushko, Volodymyr G.; Zalizovski, Andriy V.; Kashcheyev, Sergiy B.; Zheng, Yu
2018-05-01
A modification of the Doppler Interferometry Technique is suggested to enable estimating angles of arrival of comparatively broadband HF signals scattered by random irregularities of the ionospheric plasma with the use of small-size weakly directional antennas. The technique is based on the measurements of cross-spectra phases of the probe radiation recorded at least in three spatially separated points. The developed algorithm has been used to investigate the angular and frequency-time characteristics of HF signals propagating at frequencies above the maximum usable one (MUF) for the direct radio path Moscow-Kharkiv. The received signal spectra show presence of three families of spatial components attributed, respectively, to scattering by plasma irregularities near the middle point of the radio path, ground backscatter signals and scattering of the sounding signals by the intense plasma turbulence associated with auroral activations. It has been shown that the regions responsible for the formation of the third family components are located well inside the auroral oval. The drift velocity and direction of the auroral ionosphere plasma have been determined. The obtained estimates are consistent with the classical conception of the ionospheric plasma convection at high latitudes and do not contradict the results of investigations of the auroral ionosphere dynamics using the SuperDARN network.
The atmosphere and ionosphere of Io
International Nuclear Information System (INIS)
McElroy, M.B.; Yung, Y.L.
1975-01-01
A variety of models for Io's atmosphere, ionosphere, surface, and environment are developed and discussed in the context of recent observational data. The sodium emission detected by Brown appears to require a collisional excitation process in Io's atmosphere, and the extended sodium emission measured by Trafton et al. may require scattering of the planetary radiation by an extended sodium cloud. The sodium is presumably present initially in bound form on Io's surface and may be released by the sputtering mechanism suggested by Matson et al. The ionosphere detected by the radio occultation experiment on Pioneer 10 could be attributed to photoionization of atmospheric sodium if Io's atmosphere could sustain significant vertical motions, of order 1 s/sup -1/ directed up during the day, down at night. Vertical motions of this magnitude could be driven by condensation of atmospheric NH 3 . The total density of gas at Io's surface appears to lie in the range 10 10 -10 12 molecules cm/sup -3/. Corpuscular ionization could play an additional role for the ionosphere. In this case the sateSe should exhibit an exceedingly bright, approx.10 kR, airglow at Lα. The incomplete hydrogen torus observed by Judge and Carlson in the vicinity of Io requires a large supply of hydrogen from the satellite's atmosphere. The escape flux should be of order 10 11 cm/sup -2/ s/sup -1/ and could be maintained by photolysis of atmospheric NH 3 . The observed geometry of the hydrogen torus appears to require a surprisingly short lifetime, approx.10 5 s, for neutral hydrogen near Io's orbit, and may indicate the presence of a large flux, approx.10 9 cm/sup -2/ s/sup -1/, of low-energy protons in Jupiter's magnetosphere. Implications of the hydrogen torus for the energy and mass balance of Jupiter's magnetosphere are discussed briefly, and observational programs are identified which might illuminate present uncertainties in our understanding of Io
Equatorial Ionospheric Irregularities Study from ROCSAT Data
2017-10-20
UNLIMITED: PB Public Release 13. SUPPLEMENTARY NOTES 14. ABSTRACT Ionospheric irregularity/scintillation occurrences can be caused by external driving ...Academia Sinica, Taipei, Taiwan e-mail: chliu2@gate.sinica.edu.tw phone :886-3-4227151x34757 CoPI: Shin-Yi Su Institution: National Central...University, Chung-Li, Taiwan e-mail: sysu@csrsr.ncu.edu.tw phone :886-3-4227151x57643 CoPI: Lung-Chi Tsai Institution: National Central University, Chung-Li
Troposphere - ionosphere interaction during tropospheric MCC events
International Nuclear Information System (INIS)
Manzano, J.R.; Zossi Artigas, M.M. de; Filippi Manzano, A.N. de; Cosio Ragone, A.H. de
1995-09-01
The present paper describes the investigation of possible effects of the type of large meteorological events known as Mesoscale Convective Complexes (MCC) on the F-region of the ionosphere over Argentina. These warm-season weather systems of huge size are present in the United States (Maddox, 1980) and in South Americal (Velasco and Fritsch, 1987). Their extension can be as large as 1,300,000 Km 2 and they tend to move in different directions over the earth surface. It is expected that these meteorological events should leave its signature in the upper region of the atmosphere. 13 refs, 12 figs, 1 tab
The International Reference Ionosphere: Model Update 2016
Bilitza, Dieter; Altadill, David; Reinisch, Bodo; Galkin, Ivan; Shubin, Valentin; Truhlik, Vladimir
2016-04-01
The International Reference Ionosphere (IRI) is recognized as the official standard for the ionosphere (COSPAR, URSI, ISO) and is widely used for a multitude of different applications as evidenced by the many papers in science and engineering journals that acknowledge the use of IRI (e.g., about 11% of all Radio Science papers each year). One of the shortcomings of the model has been the dependence of the F2 peak height modeling on the propagation factor M(3000)F2. With the 2016 version of IRI, two new models will be introduced for hmF2 that were developed directly based on hmF2 measurements by ionosondes [Altadill et al., 2013] and by COSMIC radio occultation [Shubin, 2015], respectively. In addition IRI-2016 will include an improved representation of the ionosphere during the very low solar activities that were reached during the last solar minimum in 2008/2009. This presentation will review these and other improvements that are being implemented with the 2016 version of the IRI model. We will also discuss recent IRI workshops and their findings and results. One of the most exciting new projects is the development of the Real-Time IRI [Galkin et al., 2012]. We will discuss the current status and plans for the future. Altadill, D., S. Magdaleno, J.M. Torta, E. Blanch (2013), Global empirical models of the density peak height and of the equivalent scale height for quiet conditions, Advances in Space Research 52, 1756-1769, doi:10.1016/j.asr.2012.11.018. Galkin, I.A., B.W. Reinisch, X. Huang, and D. Bilitza (2012), Assimilation of GIRO Data into a Real-Time IRI, Radio Science, 47, RS0L07, doi:10.1029/2011RS004952. Shubin V.N. (2015), Global median model of the F2-layer peak height based on ionospheric radio-occultation and ground-based Digisonde observations, Advances in Space Research 56, 916-928, doi:10.1016/j.asr.2015.05.029.
A study of low-dimensional inhomogeneous systems
International Nuclear Information System (INIS)
Arredondo Leon, Yesenia
2009-01-01
While the properties of homogeneous one-dimensional systems, even with disorder, are relatively well-understood, very little is known about the properties of strongly interacting inhomogeneous systems. Their high-energy physics is determined by the underlying chemistry which, in the atomic scale, introduces Coulomb correlations and local potentials. On the other hand, at large length scales, the physics has to be described by the Tomonaga-Luttinger liquid (TLL) model. In order to establish a connection between the low-energy TLL and the quasi-one-dimensional systems synthesized in the laboratory, we investigate the density-density correlation function in inhomogeneous one-dimensional systems in the asymptotic region. To investigate homogeneous as well as inhomogeneous systems, we use the density-matrix renormalization group (DMRG) method. We present results for ground state properties, such as the density-density correlation function and the parameter K c , which characterizes its decay at large distances. (orig.)
Time-dependent inhomogeneous jet models for BL Lac objects
Marlowe, A. T.; Urry, C. M.; George, I. M.
1992-05-01
Relativistic beaming can explain many of the observed properties of BL Lac objects (e.g., rapid variability, high polarization, etc.). In particular, the broadband radio through X-ray spectra are well modeled by synchrotron-self Compton emission from an inhomogeneous relativistic jet. We have done a uniform analysis on several BL Lac objects using a simple but plausible inhomogeneous jet model. For all objects, we found that the assumed power-law distribution of the magnetic field and the electron density can be adjusted to match the observed BL Lac spectrum. While such models are typically unconstrained, consideration of spectral variability strongly restricts the allowed parameters, although to date the sampling has generally been too sparse to constrain the current models effectively. We investigate the time evolution of the inhomogeneous jet model for a simple perturbation propagating along the jet. The implications of this time evolution model and its relevance to observed data are discussed.
Solutions of the chemical kinetic equations for initially inhomogeneous mixtures.
Hilst, G. R.
1973-01-01
Following the recent discussions by O'Brien (1971) and Donaldson and Hilst (1972) of the effects of inhomogeneous mixing and turbulent diffusion on simple chemical reaction rates, the present report provides a more extensive analysis of when inhomogeneous mixing has a significant effect on chemical reaction rates. The analysis is then extended to the development of an approximate chemical sub-model which provides much improved predictions of chemical reaction rates over a wide range of inhomogeneities and pathological distributions of the concentrations of the reacting chemical species. In particular, the development of an approximate representation of the third-order correlations of the joint concentration fluctuations permits closure of the chemical sub-model at the level of the second-order moments of these fluctuations and the mean concentrations.
A study of low-dimensional inhomogeneous systems
Energy Technology Data Exchange (ETDEWEB)
Arredondo Leon, Yesenia
2009-01-15
While the properties of homogeneous one-dimensional systems, even with disorder, are relatively well-understood, very little is known about the properties of strongly interacting inhomogeneous systems. Their high-energy physics is determined by the underlying chemistry which, in the atomic scale, introduces Coulomb correlations and local potentials. On the other hand, at large length scales, the physics has to be described by the Tomonaga-Luttinger liquid (TLL) model. In order to establish a connection between the low-energy TLL and the quasi-one-dimensional systems synthesized in the laboratory, we investigate the density-density correlation function in inhomogeneous one-dimensional systems in the asymptotic region. To investigate homogeneous as well as inhomogeneous systems, we use the density-matrix renormalization group (DMRG) method. We present results for ground state properties, such as the density-density correlation function and the parameter K{sub c}, which characterizes its decay at large distances. (orig.)
Brownian motion probe for water-ethanol inhomogeneous mixtures
Furukawa, Kazuki; Judai, Ken
2017-12-01
Brownian motion provides information regarding the microscopic geometry and motion of molecules, insofar as it occurs as a result of molecular collisions with a colloid particle. We found that the mobility of polystyrene beads from the Brownian motion in a water-ethanol mixture is larger than that predicted from the liquid shear viscosity. This indicates that mixing water and ethanol is inhomogeneous in micron-sized probe beads. The discrepancy between the mobility of Brownian motion and liquid mobility can be explained by the way the rotation of the beads in an inhomogeneous viscous solvent converts the translational movement.
Transformation instability of oscillations in inhomogeneous beam-plasma system
International Nuclear Information System (INIS)
Kitsenko, A.B.
1985-01-01
Wave transformation is studied in a plasma system which was weak-inhomogeneous along beam velocity, in absence of external magnetic field. For the case of small density beam formulae are obtained which have set a coupling between the charge density beam wave amplitudes and the Langmuir wave on both sides of transformation point. It is shown that in collisionless plasma the wave production is a cause of the absorption of the charge density beam waves. Transformation mechanism of the absolute instability in the weak-inhomogeneous beam-plasma system is revealed
Reflection of oblique electron thermal modes in an inhomogeneous plasma
International Nuclear Information System (INIS)
Ohnuma, T.; Watanabe, T.; Sanuki, H.
1980-04-01
In an inhomogeneous magnetoplasma, reflection of an oblique electron thermal mode radiated from a local source is investigated experimentally and theoretically near the electron plasma frequency layer. The experimental observation of reflection in the lower plasma density region than the f sub(p)-layer is found to be in qualitative accord with the theoretical reflection, which is obtained from a kinetic theory in an inhomogeneous magnetoplasma. The reflection of the thermal mode is also compared with that of an electromagnetic mode at the f sub(p)-layer. (author)
Parallel application of plasma equilibrium fitting based on inhomogeneous platforms
International Nuclear Information System (INIS)
Liao Min; Zhang Jinhua; Chen Liaoyuan; Li Yongge; Pan Wei; Pan Li
2008-01-01
An online analysis and online display platform EFIT, which is based on the equilibrium-fitting mode, is inducted in this paper. This application can realize large data transportation between inhomogeneous platforms by designing a communication mechanism using sockets. It spends approximately one minute to complete the equilibrium fitting reconstruction by using a finite state machine to describe the management node and several node computers of cluster system to fulfill the parallel computation, this satisfies the online display during the discharge interval. An effective communication model between inhomogeneous platforms is provided, which could transport the computing results from Linux platform to Windows platform for online analysis and display. (authors)
Baryon inhomogeneity from the cosmic quark-hadron phase transition
International Nuclear Information System (INIS)
Kurki-Suonio, H.
1991-01-01
We discuss the generation of inhomogeneity in the baryon-number density during the cosmic quark-hadron phase transition. We use a simple model with thin-wall phase boundaries and ideal-gas equations of state. The nucleation of the phase transition introduces a new distance scale into the universe which will be the scale of the generated inhomogeneity. We review the estimate of this scale. During the transition baryon number is likely to collect onto a layer at the phase boundary. These layers may in the end be deposited as small regions of very high baryon density. 21 refs., 1 fig
Forces and energy dissipation in inhomogeneous non-equilibrium superconductors
International Nuclear Information System (INIS)
Poluehktov, Yu.M.; Slezov, V.V.
1987-01-01
The phenomenological theory of volume forces and dissipation processes in inhomogeneous non-equilibrium superconductors near temperature transition from the normal to superconducting state is constructed. The approach is based on application of dynamic equations of superconductivity formulated on the basis of the Lagrangian formalism. These equations are generalized the Ginzburg-Landau theory in the nonstationary non-equilibrium case for ''foul'' superconductors. The value estimations of volume forces arising in inhomogeneities during relaxation of an order parameter and when the electrical field is penetrated into the superconductor, are given
Phase synchronization in inhomogeneous globally coupled map lattices
International Nuclear Information System (INIS)
Ho Mingchung; Hung Yaochen; Jiang, I-M.
2004-01-01
The study of inhomogeneous-coupled chaotic systems has attracted a lot of attention recently. With simple definition of phase, we present the phase-locking behavior in ensembles of globally coupled non-identical maps. The inhomogeneous globally coupled maps consist of logistic map and tent map simultaneously. Average phase synchronization ratios, which are used to characterize the phase coherent phenomena, depend on different coupling coefficients and chaotic parameters. By using interdependence, the relationship between a single unit and the mean field is illustrated. Moreover, we take the effect of external noise and parameter mismatch into consideration and present the results by numerical simulation
Nonlinear acoustic waves in micro-inhomogeneous solids
Nazarov, Veniamin
2014-01-01
Nonlinear Acoustic Waves in Micro-inhomogeneous Solids covers the broad and dynamic branch of nonlinear acoustics, presenting a wide variety of different phenomena from both experimental and theoretical perspectives. The introductory chapters, written in the style of graduate-level textbook, present a review of the main achievements of classic nonlinear acoustics of homogeneous media. This enables readers to gain insight into nonlinear wave processes in homogeneous and micro-inhomogeneous solids and compare it within the framework of the book. The subsequent eight chapters covering: Physical m
Dose inhomogeneities at various levels of biological organization
International Nuclear Information System (INIS)
Bond, V.P.
1988-01-01
Dose inhomogeneities in both tumor and normal tissue, inherent to the application of boron neutron capture therapy (BNCT), can be the result not only of ununiform distribution of 10 B at various levels of biological organization, but also of the distribution of the thermal neutrons and of the energy depositions from more energetic neutrons and other radiations comprising the externally-applied beams. The severity of the problems resulting from such inhomogeneities, and approaches to evaluating them, are illustrated by three examples, at the macro, micro and intermediate levels
Ray tracing for inhomogeneous media applied to the human eye
Diaz-Gonzalez, G.; Iturbe-Castillo, M. D.; Juarez-Salazar, R.
2017-08-01
Inhomogeneous or gradient index media exhibit a refractive index varying with the position. This kind of media are very interesting because they can be found in both synthetic as well as real life optical devices such as the human lens. In this work we present the development of a computational tool for ray tracing in refractive optical systems. Particularly, the human eye is used as the optical system under study. An inhomogeneous medium with similar characteristics to the human lens is introduced and modeled by the so-called slices method. The useful of our proposal is illustrated by several graphical results.
International Nuclear Information System (INIS)
George, S.M.; Harris, C.B.
1982-01-01
The dependence of inhomogeneous vibrational linewidth broadening on attractive forces form slowly varying local liquid number densities is examined. The recently developed Schweizer--Chandler theory of vibrational dephasing is used to compute absolute inhomogeneous broadening linewidths. The computed linewidths are compared to measured inhomogeneous broadening linewidths determined using picosecond vibrational dephasing experiments. There is a similarity between correlations of the Schweizer--Chandler and George--Auweter--Harris predicted inhomogeneous broadening linewidths and the measured inhomogeneous broadening linewidths. For the methyl stretches under investigation, this correspondence suggests that the width of the number density distribution in the liquid determines the relative inhomogeneous broadening magnitudes
Nighttime ionospheric D region: Equatorial and nonequatorial
Thomson, Neil R.; McRae, Wayne M.
2009-08-01
Nighttime ionospheric D region parameters are found to be generally well modeled by the traditional H‧ and β as used by Wait and by the U.S. Navy in their Earth-ionosphere VLF radio waveguide programs. New comparisons with nonequatorial, mainly all-sea VLF path observations reported over several decades are shown to be consistent with the previously determined height H‧ ˜ 85.0 km and sharpness β ˜ 0.63 km-1. These paths include NPM (Hawaii) to Washington, D. C., Omega Hawaii and NLK (Seattle) to Japan, NWC (N.W. Australia) to Madagascar, and NBA (Panama) to Colorado. In marked contrast, transequatorial path observations (even when nearly all-sea) are found to be often not well modeled: for example, for Omega Japan and JJI (Japan) to Dunedin, New Zealand, the observed amplitudes are markedly lower than those which would be expected from H‧ ˜ 85.0 km and β ˜ 0.63 km-1, or any other realistic values of H‧ and β. Other transequatorial observations compared with modeling include NWC to Japan, Omega Hawaii to Dunedin, and NPM (Hawaii) to Dunedin. It is suggested that the effects of irregularities in the equatorial electrojet may extend down into the nighttime D region and so account for the observed equatorial VLF perturbations through scattering or mode conversion.
Ionization balance in Titan's nightside ionosphere
Vigren, E.; Galand, M.; Yelle, R. V.; Wellbrock, A.; Coates, A. J.; Snowden, D.; Cui, J.; Lavvas, P.; Edberg, N. J. T.; Shebanits, O.; Wahlund, J.-E.; Vuitton, V.; Mandt, K.
2015-03-01
Based on a multi-instrumental Cassini dataset we make model versus observation comparisons of plasma number densities, nP = (nenI)1/2 (ne and nI being the electron number density and total positive ion number density, respectively) and short-lived ion number densities (N+, CH2+, CH3+, CH4+) in the southern hemisphere of Titan's nightside ionosphere over altitudes ranging from 1100 and 1200 km and from 1100 to 1350 km, respectively. The nP model assumes photochemical equilibrium, ion-electron pair production driven by magnetospheric electron precipitation and dissociative recombination as the principal plasma neutralization process. The model to derive short-lived-ion number densities assumes photochemical equilibrium for the short-lived ions, primary ion production by electron-impact ionization of N2 and CH4 and removal of the short-lived ions through reactions with CH4. It is shown that the models reasonably reproduce the observations, both with regards to nP and the number densities of the short-lived ions. This is contrasted by the difficulties in accurately reproducing ion and electron number densities in Titan's sunlit ionosphere.
Ionospheric hot spot at high latitudes
International Nuclear Information System (INIS)
Schunk, R.W.; Sojka, J.J.
1982-01-01
A hot spot (or spots) can occur in the high-latitude ionosphere depending on the plasma convection pattern. The hot spot corresponds to a small magnetic local time-magnetic latitude region of elevated ion temperatures located near the dusk and/or dawn meridians. For asymmetric convection electric field patterns, with enhanced flow in either the dusk or dawn sector of the polar cap, a single hot spot should occur in association with the strong convection cell. However, on geomagnetically disturbed days, two strong convection cells can occur, and hence, two hot spots should exist. The hot spot should be detectable when the electric field in the strong convection cell exceeds about 40 mV m -1 . For electric fields of the order of 100 mV m -1 in the convection cell, the ion temperature in the hot spot is greatest at low altitudes, reaching 4000 0 K at 160 km, and decreases with altitude in the F-region. An ionospheric hot spot (or spots) can be expected at all seasons and for a wide range of solar cycle conditions
The Comprehensive Inner Magnetosphere-Ionosphere Model
Fok, M.-C.; Buzulukova, N. Y.; Chen, S.-H.; Glocer, A.; Nagai, T.; Valek, P.; Perez, J. D.
2014-01-01
Simulation studies of the Earth's radiation belts and ring current are very useful in understanding the acceleration, transport, and loss of energetic particles. Recently, the Comprehensive Ring Current Model (CRCM) and the Radiation Belt Environment (RBE) model were merged to form a Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model. CIMI solves for many essential quantities in the inner magnetosphere, including ion and electron distributions in the ring current and radiation belts, plasmaspheric density, Region 2 currents, convection potential, and precipitation in the ionosphere. It incorporates whistler mode chorus and hiss wave diffusion of energetic electrons in energy, pitch angle, and cross terms. CIMI thus represents a comprehensive model that considers the effects of the ring current and plasmasphere on the radiation belts. We have performed a CIMI simulation for the storm on 5-9 April 2010 and then compared our results with data from the Two Wide-angle Imaging Neutral-atom Spectrometers and Akebono satellites. We identify the dominant energization and loss processes for the ring current and radiation belts. We find that the interactions with the whistler mode chorus waves are the main cause of the flux increase of MeV electrons during the recovery phase of this particular storm. When a self-consistent electric field from the CRCM is used, the enhancement of MeV electrons is higher than when an empirical convection model is applied. We also demonstrate how CIMI can be a powerful tool for analyzing and interpreting data from the new Van Allen Probes mission.
The Effect of Ionospheric Variability on the Accuracy of High Frequency Position Location
1981-08-01
these problems are not the major ones in radio source location 1H. Rishbeth and 0. K. Garriot, 1969, Introduction to Ionospheric Physics, Academic Press ...ionospheric distur- banca ; and (4) employ an integrated network of ionosondes. The firt option recognizes the basic constraints of the available ionospheric...Rishbeth, H., and 0. K. Garriot, 1969, Introduction to Ionospheric Physics, Academic Press , NY. 2. Georges, T. M., 1967, Ionospheric Effects of
Effect of Inhomogeneity correction for lung volume model in TPS
International Nuclear Information System (INIS)
Chung, Se Young; Lee, Sang Rok; Kim, Young Bum; Kwon, Young Ho
2004-01-01
The phantom that includes high density materials such as steel was custom-made to fix lung and bone in order to evaluation inhomogeneity correction at the time of conducting radiation therapy to treat lung cancer. Using this, values resulting from the inhomogeneous correction algorithm are compared on the 2 and 3 dimensional radiation therapy planning systems. Moreover, change in dose calculation was evaluated according to inhomogeneous by comparing with the actual measurement. As for the image acquisition, inhomogeneous correction phantom(Pig's vertebra, steel(8.21 g/cm 3 ), cork(0.23 g/cm 3 )) that was custom-made and the CT(Volume zoom, Siemens, Germany) were used. As for the radiation therapy planning system, Marks Plan(2D) and XiO(CMS, USA, 3D) were used. To compare with the measurement value, linear accelerator(CL/1800, Varian, USA) and ion chamber were used. Image, obtained from the CT was used to obtain point dose and dose distribution from the region of interest (ROI) while on the radiation therapy planning device. After measurement was conducted under the same conditions, value on the treatment planning device and measured value were subjected to comparison and analysis. And difference between the resulting for the evaluation on the use (or non-use) of inhomogeneity correction algorithm, and diverse inhomogeneity correction algorithm that is included in the radiation therapy planning device was compared as well. As result of comparing the results of measurement value on the region of interest within the inhomogeneity correction phantom and the value that resulted from the homogeneous and inhomogeneous correction, gained from the therapy planning device, margin of error of the measurement value and inhomogeneous correction value at the location 1 of the lung showed 0.8% on 2D and 0.5% on 3D. Margin of error of the measurement value and inhomogeneous correction value at the location 1 of the steel showed 12% on 2D and 5% on 3D, however, it is possible to
Performance Analysis of Different NeQuick Ionospheric Model Parameters
Directory of Open Access Journals (Sweden)
WANG Ningbo
2017-04-01
Full Text Available Galileo adopts NeQuick model for single-frequency ionospheric delay corrections. For the standard operation of Galileo, NeQuick model is driven by the effective ionization level parameter Az instead of the solar activity level index, and the three broadcast ionospheric coefficients are determined by a second-polynomial through fitting the Az values estimated from globally distributed Galileo Sensor Stations (GSS. In this study, the processing strategies for the estimation of NeQuick ionospheric coefficients are discussed and the characteristics of the NeQuick coefficients are also analyzed. The accuracy of Global Position System (GPS broadcast Klobuchar, original NeQuick2 and fitted NeQuickC as well as Galileo broadcast NeQuickG models is evaluated over the continental and oceanic regions, respectively, in comparison with the ionospheric total electron content (TEC provided by global ionospheric maps (GIM, GPS test stations and JASON-2 altimeter. The results show that NeQuickG can mitigate ionospheric delay by 54.2%~65.8% on a global scale, and NeQuickC can correct for 71.1%~74.2% of the ionospheric delay. NeQuick2 performs at the same level with NeQuickG, which is a bit better than that of GPS broadcast Klobuchar model.
GNSS monitoring of the ionosphere for Space Weather services
Krankowski, A.; Sieradzki, R.; Zakharenkova, I. E.; Cherniak, I. V.
2012-04-01
The International GNSS Service (IGS) Ionosphere Working Group routinely provides the users global ionosphere maps (GIMs) of vertical total electron content (vTEC). The IGS GIMs are provided with spatial resolution of 5.0 degrees x 2.5 degrees in longitude and latitude, respectively. The current temporal resolution is 2 hours, however, 1-hour maps are delivered as a pilot project. There are three types IGS GIMs: the final, rapid and predicted. The latencies of the IGS ionospheric final and rapid products are 10 days and 1 day, respectively. The predicted GIMs are generated for 1 and 2 days in advance. There are four IGS Associate Analysis Centres (IAACs) that provide ionosphere maps computed with independent methodologies using GNSS data. These maps are uploaded to the IGS Ionosphere Combination and Validation Center at the GRL/UWM (Geodynamics Research Laboratory of the University of Warmia and Mazury in Olsztyn, Poland) that produces the IGS official ionospheric products, which are published online via ftp and www. On the other hand, the increasing number of permanently tracking GNSS stations near the North Geomagnetic Pole allow for using satellite observations to detect the ionospheric disturbances at high latitudes with even higher spatial resolution. In the space weather service developed at GRL/UWM, the data from the Arctic stations belonging to IGS/EPN/POLENET networks were used to study TEC fluctuations and scintillations. Since the beginning of 2011, a near real-time service presenting the conditions in the ionosphere have been operational at GRL/UWM www site. The rate of TEC index (ROTI) expressed in TECU/min is used as a measure of TEC fluctuations. The service provides 2-hour maps of the TEC variability. In addition, for each day the daily map of the ionospheric fluctuations as a function geomagnetic local time is also created. This presentation shows the architecture, algorithms, performance and future developments of the IGS GIMs and this new space
A modern trans-ionospheric propagation sensing system
Bishop, G. J.; Klobuchar, J. A.; Ronn, A. E.; Bedard, M. G.
1989-09-01
One of the most important potential problems with modern military systems which utilize spacecraft is the effect of the ionosphere on the radio signals which pass to and from the spacecraft. Such systems include active communications and navigation satellites as well as both ground-based and potential space-based ranging systems. The major effects the ionosphere can have on such systems are the additional time delay the electrons in the earth's ionosphere add to the free space path delay, the short term rate of change of this additional delay, amplitude scintillation or fading effects the signal encounters due to irregularities in the ionosphere, and Faraday rotation of linearly polarized radio waves transmitted through the ionosphere. While some of these effects were studied adequate models of these effects on military systems still do not exist. A modern trans-ionospheric sensing system, called TISS, is being procured which will consist of a number of stations located throughout the world, making real time measurements of the time delay of the ionosphere, and its rate of change, as well as amplitude scintillation, along several different viewing directions from each station. These trans-ionospheric measurements will be used to allow models, which currently provide only monthly propagation parameters. The real-time specifications of these parameters can then be used as decision aids in both the tactical and the strategic military environments. The TISS will include first order artificial intelligence design to aid in gathering the most appropriate sets of available real-time trans-ionospheric propagation data, and will communicate these data sets to the Air Weather Service Forecasting Center where they will be tailored to specific military customers.
Predicting ionospheric scintillation: Recent advancements and future challenges
Carter, B. A.; Currie, J. L.; Terkildsen, M.; Bouya, Z.; Parkinson, M. L.
2017-12-01
Society greatly benefits from space-based infrastructure and technology. For example, signals from Global Navigation Satellite Systems (GNSS) are used across a wide range of industrial sectors; including aviation, mining, agriculture and finance. Current trends indicate that the use of these space-based technologies is likely to increase over the coming decades as the global economy becomes more technology-dependent. Space weather represents a key vulnerability to space-based technology, both in terms of the space environment effects on satellite infrastructure and the influence of the ionosphere on the radio signals used for satellite communications. In recent decades, the impact of the ionosphere on GNSS signals has re-ignited research interest into the equatorial ionosphere, particularly towards understanding Equatorial Plasma Bubbles (EPBs). EPBs are a dominant source of nighttime plasma irregularities in the low-latitude ionosphere, which can cause severe scintillation on GNSS signals and subsequent degradation on GNSS product quality. Currently, ionospheric scintillation event forecasts are not being routinely released by any space weather prediction agency around the world, but this is likely to change in the near future. In this contribution, an overview of recent efforts to develop a global ionospheric scintillation prediction capability within Australia will be given. The challenges in understanding user requirements for ionospheric scintillation predictions will be discussed. Next, the use of ground- and space-based datasets for the purpose of near-real time ionospheric scintillation monitoring will be explored. Finally, some modeling that has shown significant promise in transitioning towards an operational ionospheric scintillation forecasting system will be discussed.
Considering the potential of IAR emissions for ionospheric sounding
Potapov, A. S.; Polyushkina, T. N.; Tsegmed, B.; Oinats, A. V.; Pashinin, A. Yu.; Edemskiy, I. K.; Mylnikova, A. A.; Ratovsky, K. G.
2017-11-01
Knowledge of the ionospheric state allows us to adjust the forecasts of radio wave propagation, specify the environment models, and follow the changes of space weather. At present, probing of the ionosphere is produced by radio sounding with ground ionosondes, as well as by raying signals from satellites. We want to draw attention to the possibility of the diagnosis of the ionospheric parameters by detecting ultra-low frequency (ULF) electromagnetic emission generated in the so-called ionospheric Alfvén resonator (IAR). To do this, we present observations of the IAR emission made simultaneously for the first time at three stations using identical induction magnetometers. The stations are within one-hour difference of local time, two of them are mid-latitudinal; the third one is situated in the auroral zone. We compare frequency and frequency difference between adjacent harmonics of the observed multi-band emission with ionospheric parameters measured at the stations using ionosondes and GPS-observations. Diurnal variations of the ionospheric and ULF emission characteristics are also compared. The results show that there is quite a stable correlation between the resonant frequencies of the resonator bands and the critical frequency of the F2 layer of the ionosphere, namely, the frequency of the IAR emission varies inversely as the critical frequency of the ionosphere. This is due to the fact that the frequency of oscillation captured in the resonator is primarily determined by the Alfvén velocity (which depends on the plasma density) in the ionospheric F2 layer. The correlation is high; it varies at different stations, but is observed distinctly along the whole meridian. However, coefficients of a regression equation that connects the ionosphere critical frequency with DSB frequency vary significantly from day to day at all stations. The reason for such a big spread of the regression parameters is not clear and needs further investigation before we are able to
Inhomogeneous Spin Diffusion in Traps with Cold Atoms
DEFF Research Database (Denmark)
Heiselberg, Henning
2012-01-01
increases. The inhomogeneity and the smaller nite trap size signicantly reduce the spin diusion rate at low temperatures. The resulting spin diusion rates and spin drag at longer time scales are compatible with measurements at low to high temperatures for resonant attractive interactions...
Motoneuron membrane potentials follow a time inhomogeneous jump diffusion process
DEFF Research Database (Denmark)
Jahn, Patrick; Berg, Rune W; Hounsgaard, Jørn
2011-01-01
models can only be applied over short time windows. However, experimental data show varying time constants, state dependent noise, a graded firing threshold and time-inhomogeneous input. In the present study we build a jump diffusion model that incorporates these features, and introduce a firing...
Inhomogeneous generalizations of Bianchi type VIh models with perfect fluid
Roy, S. R.; Prasad, A.
1991-07-01
Inhomogeneous universes admitting an Abelian G2 of isometry and filled with perfect fluid have been derived. These contain as special cases exact homogeneous universes of Bianchi type VIh. Many of these universes asymptotically tend to homogeneous Bianchi VIh universes. The models have been discussed for their physical and kinematical behaviors.
Material inhomogeneities and their evolution a geometric approach
Epstein, Marcelo
2007-01-01
Presents a unified treatment of the inhomogeneity theory using some of the tools of modern differential geometry. This book deals with the geometrical description of uniform bodies and their homogeneity conditions. It also develops a theory of material evolution and discusses its relevance in various applied contexts.
Flux and polarization signals of spatially inhomogeneous gaseous exoplanets
Karalidi, T.; Stam, D.M.; Guirado, D.
2013-01-01
Aims. We present numerically calculated, disk-integrated, spectropolarimetric signals of starlight that is reflected by vertically and horizontally inhomogeneous gaseous exoplanets. We include various spatial features that are present on Solar System’s gaseous planets: belts and zones, cyclonic
Coherent excitonic nonlinearity versus inhomogeneous broadening in single quantum wells
DEFF Research Database (Denmark)
Langbein, Wolfgang Werner; Borri, Paola; Hvam, Jørn Märcher
1998-01-01
The coherent response of excitons in semiconductor nanostructures, as measured in four wave mixing (FWM) experiments, depends strongly on the inhomogeneous broadening of the exciton transition. We investigate GaAs-AlGaAs single quantum wells (SQW) of 4 nm to 25 nm well width. Two main mechanisms...
Rate-optimal Bayesian intensity smoothing for inhomogeneous Poisson processes
Belitser, E.N.; Serra, P.; van Zanten, H.
2015-01-01
We apply nonparametric Bayesian methods to study the problem of estimating the intensity function of an inhomogeneous Poisson process. To motivate our results we start by analyzing count data coming from a call center which we model as a Poisson process. This analysis is carried out using a certain
Rate-optimal Bayesian intensity smoothing for inhomogeneous Poisson processes
Belitser, E.; Andrade Serra, De P.J.; Zanten, van J.H.
2013-01-01
We apply nonparametric Bayesian methods to study the problem of estimating the intensity function of an inhomogeneous Poisson process. We exhibit a prior on intensities which both leads to a computationally feasible method and enjoys desirable theoretical optimality properties. The prior we use is
Spherically symmetric inhomogeneous bianisotropic media: Wave propagation and light scattering
DEFF Research Database (Denmark)
Novitsky, Andrey; Shalin, Alexander S.; Lavrinenko, Andrei
2017-01-01
We develop a technique for finding closed-form expressions for electromagnetic fields in radially inhomogeneous bianisotropic media, both the solutions of the Maxwell equations and material tensors being defined by the set of auxiliary two-dimensional matrices. The approach is applied to determine...
An algorithm of computing inhomogeneous differential equations for definite integrals
Nakayama, Hiromasa; Nishiyama, Kenta
2010-01-01
We give an algorithm to compute inhomogeneous differential equations for definite integrals with parameters. The algorithm is based on the integration algorithm for $D$-modules by Oaku. Main tool in the algorithm is the Gr\\"obner basis method in the ring of differential operators.
Baryon inhomogeneities due to cosmic string wakes at the quark ...
Indian Academy of Sciences (India)
abundances of light elements if they persist up to the time of nucleosynthesis. These inhomogeneities ... the creation of compact baryon-rich objects as well as alter the abundances of light ele- ments if they persist up to the time ... The trajectories of collisionless particles bend while passing by the string. They overlap in the ...
Energy transfer rates in inhomogeneous van der Waals clusters
International Nuclear Information System (INIS)
Desfrancois, C.; Schermann, J.P.
1991-01-01
The internal energy exchange inside an inhomogeneous van der Waals cluster are investigated by means of molecular dynamic calculations. The very long time scales for relaxation of the high frequency degrees of freedom are examined within the framework of Nekhoroshev's theorem. (orig.)
Effect of Inhomogeneity of the Universe on a Gravitationally Bound ...
Indian Academy of Sciences (India)
2012-04-16
Apr 16, 2012 ... on a gravitationally bound local system such as the solar system. We con- ... method to describe the large-scale inhomogeneity of the Universe. ..... is regular at the origin r = 0 where the central body is located, and that the test.
Optical coherent control in semiconductors: Fringe contrast and inhomogeneous broadening
DEFF Research Database (Denmark)
Østergaard, John Erland; Vadim, Lyssenko; Hvam, Jørn Märcher
2001-01-01
in the interplay between the homogeneous and inhomogeneous broadenings are measured. Based on these experiments, a coherent control model describing the optical fringe contrast using different detection schemes, such as photoluminescence or four-wave mixing, is established. Significant spectral modulation...
Lower hybrid waves instability in a velocity–sheared inhomogenous ...
African Journals Online (AJOL)
An electrostatic linear kinetic analysis of velocity-sheared inhomogeneous charged dust streaming parallel to a magnetic field in plasma is presented. Excited mode and the growth rates are derived in the lower hybrid-like mode regime, with collisional effects included. In the case where the drift velocity u is very small the ...
An inhomogeneous wave equation and non-linear Diophantine approximation
DEFF Research Database (Denmark)
Beresnevich, V.; Dodson, M. M.; Kristensen, S.
2008-01-01
A non-linear Diophantine condition involving perfect squares and arising from an inhomogeneous wave equation on the torus guarantees the existence of a smooth solution. The exceptional set associated with the failure of the Diophantine condition and hence of the existence of a smooth solution...
Particle Production and Effective Thermalization in Inhomogeneous Mean Field Theory
Aarts, G.; Smit, J.
2000-01-01
As a toy model for dynamics in nonequilibrium quantum field theory we consider the abelian Higgs model in 1+1 dimensions with fermions. In the approximate dynamical equations, inhomogeneous classical (mean) Bose fields are coupled to quantized fermion fields, which are treated with a mode function
Threshold of decay instability in an inhomogeneous plasma (Leningrad 1973)
International Nuclear Information System (INIS)
Piliia, A.D.
It is shown that in a spatially inhomogeneous plasma there can exist an absolute decay instability with a threshold lower than that found earlier. This instability arises when two parametrically coupled waves have turning points inside the plasma layer. The cause of the instability is a positive inverse coupling, caused by a nonlinear conversion and a reflection of the waves
Spatial Inhomogeneity of Kinetic and Magnetic Dissipations in Thermal Convection
Energy Technology Data Exchange (ETDEWEB)
Hotta, H. [Department of Physics, Graduate School of Science, Chiba university, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522 (Japan)
2017-08-20
We investigate the inhomogeneity of kinetic and magnetic dissipations in thermal convection using high-resolution calculations. In statistically steady turbulence, the injected and dissipated energies are balanced. This means that a large amount of energy is continuously converted into internal energy via dissipation. As in thermal convection, downflows are colder than upflows and the inhomogeneity of the dissipation potentially changes the convection structure. Our investigation of the inhomogeneity of the dissipation shows the following. (1) More dissipation is seen around the bottom of the calculation domain, and this tendency is promoted with the magnetic field. (2) The dissipation in the downflow is much larger than that in the upflow. The dissipation in the downflow is more than 80% of the total at maximum. This tendency is also promoted with the magnetic field. (3) Although 2D probability density functions of the kinetic and magnetic dissipations versus the vertical velocity are similar, the kinetic and magnetic dissipations are not well correlated. Our result suggests that the spatial inhomogeneity of the dissipation is significant and should be considered when modeling a small-scale strong magnetic field generated with an efficient small-scale dynamo for low-resolution calculations.
Jeans instability of an inhomogeneous streaming dusty plasma
Indian Academy of Sciences (India)
The dynamics of a self-gravitating unmagnetized, inhomogeneous, streaming dusty plasma is studied in the present work. The presence of the shear ﬂow causes the coupling between gravitational and electrostatic forces. In the absence of self-gravity, the ﬂuctuations in the plasma may grow at the expense of the density ...
Acoustic Force Density Acting on Inhomogeneous Fluids in Acoustic Fields
DEFF Research Database (Denmark)
Karlsen, Jonas Tobias; Augustsson, Per; Bruus, Henrik
2016-01-01
, the theory predicts a relocation of the inhomogeneities into stable field-dependent configurations, which are qualitatively different from the horizontally layered configurations due to gravity. Experimental validation is obtained by confocal imaging of aqueous solutions in a glass-silicon microchip....
Electron-Bernstein Waves in Inhomogeneous Magnetic Fields
DEFF Research Database (Denmark)
Armstrong, R. J.; Frederiksen, Å.; Pécseli, Hans
1984-01-01
The propagation of small amplitude electron-Bernstein waves in different inhomogeneous magnetic field geometries is investigated experimentally. Wave propagation towards both cut-offs and resonances are considered. The experimental results are supported by a numerical ray-tracing analysis. Spatia...
Measurements of weak localization of graphene in inhomogeneous magnetic fields
DEFF Research Database (Denmark)
Lindvall, N.; Shivayogimath, Abhay; Yurgens, A.
2015-01-01
attribute this to the inhomogeneous field caused by vortices in the superconductor. The deviation, which depends on the carrier concentration in graphene, can be tuned by the gate voltage. In addition, collective vortex motion, known as vortex avalanches, is observed through magnetoresistance measurements...
Multiple solutions for inhomogeneous nonlinear elliptic problems arising in astrophyiscs
Directory of Open Access Journals (Sweden)
Marco Calahorrano
2004-04-01
Full Text Available Using variational methods we prove the existence and multiplicity of solutions for some nonlinear inhomogeneous elliptic problems on a bounded domain in $mathbb{R}^n$, with $ngeq 2$ and a smooth boundary, and when the domain is $mathbb{R}_+^n$
Energy conversion through mass loading of escaping ionospheric ions for different Kp values
Yamauchi, Masatoshi; Slapak, Rikard
2018-01-01
By conserving momentum during the mixing of fast solar wind flow and slow planetary ion flow in an inelastic way, mass loading converts kinetic energy to other forms - e.g. first to electrical energy through charge separation and then to thermal energy (randomness) through gyromotion of the newly born cold ions for the comet and Mars cases. Here, we consider the Earth's exterior cusp and plasma mantle, where the ionospheric origin escaping ions with finite temperatures are loaded into the decelerated solar wind flow. Due to direct connectivity to the ionosphere through the geomagnetic field, a large part of this electrical energy is consumed to maintain field-aligned currents (FACs) toward the ionosphere, in a similar manner as the solar wind-driven ionospheric convection in the open geomagnetic field region. We show that the energy extraction rate by the mass loading of escaping ions (ΔK) is sufficient to explain the cusp FACs, and that ΔK depends only on the solar wind velocity accessing the mass-loading region (usw) and the total mass flux of the escaping ions into this region (mloadFload), as ΔK ˜ -mloadFloadu2sw/4. The expected distribution of the separated charges by this process also predicts the observed flowing directions of the cusp FACs for different interplanetary magnetic field (IMF) orientations if we include the deflection of the solar wind flow directions in the exterior cusp. Using empirical relations of u0 ∝ Kp + 1.2 and Fload ∝ exp(0.45Kp) for Kp = 1-7, where u0 is the solar wind velocity upstream of the bow shock, ΔK becomes a simple function of Kp as log10(ΔK) = 0.2 ṡ Kp + 2 ṡ log10(Kp + 1.2) + constant. The major contribution of this nearly linear increase is the Fload term, i.e. positive feedback between the increase of ion escaping rate Fload through the increased energy consumption in the ionosphere for high Kp, and subsequent extraction of more kinetic energy ΔK from the solar wind to the current system by the increased
Nonstationary interference and scattering from random media
International Nuclear Information System (INIS)
Nazikian, R.
1991-12-01
For the small angle scattering of coherent plane waves from inhomogeneous random media, the three dimensional mean square distribution of random fluctuations may be recovered from the interferometric detection of the nonstationary modulational structure of the scattered field. Modulational properties of coherent waves scattered from random media are related to nonlocal correlations in the double sideband structure of the Fourier transform of the scattering potential. Such correlations may be expressed in terms of a suitability generalized spectral coherence function for analytic fields
Zinchik, Alexander A.; Muzychenko, Yana B.
2015-06-01
This paper discusses theoretical and experimental results of the investigation of light beams that retain their intensity structure during propagation and focusing. Spiral laser beams are a family of laser beams that preserve the structural stability up to scale and rotation with the propagation. Properties of spiral beams are of practical interest for laser technology, medicine and biotechnology. Researchers use a spiral beams for movement and manipulation of microparticles. Functionality laser manipulators can be significantly enhanced by using spiral beams whose intensity remains invariable. It is well known, that these beams has non-zero orbital angular momentum. Spiral beams have a complicated phase distribution in cross section. In this paper we investigate the structural stability of the laser beams having a spiral phase structure by passing them through an inhomogeneous phase medium. Laser beam is passed through a medium is characterized by a random distribution of phase in the range 0..2π. The modeling was performed using VirtualLab 5.0 (manufacturer LightTrans GmbH). Compared the intensity distribution of the spiral and ordinary laser beam after the passage of the inhomogeneous medium. It is shown that the spiral beams exhibit a significantly better structural stability during the passage phase heterogeneous environments than conventional laser beams. The results obtained in the simulation are tested experimentally. Experimental results show good agreement with the theoretical results.
Observable relations in an inhomogeneous self-similar cosmology
International Nuclear Information System (INIS)
Wesson, P.S.
1979-01-01
An exact self-similar solution is taken in general relativity as a model for an inhomogeneous cosmology. The self-similarity property means (conceptually) that the model is scale-free and (mathematically) that its essential parameters are functions of only one dimensionless variable zeta (equivalentct/R, where R and t are distance and time coordinates and c is the velocity of light). It begins inhomogeneous (zeta=0 or t=0), and tends to a homogeneous Einstein--de Sitter type state as zeta (or t) →infinity. Such a model can be used (a) for evaluating the observational effects of a clumpy universe; (b) for studying astrophysical processes such as galaxy formation and the growth and decay of inhomogeneities in initially clumpy cosmologies; and (c) as a relativistic basis for cosmological models with extended clustering of the de Vaucouleurs and Peebles types. The model has two adjustable parameters, namely, the observer's coordinate zeta 0 and a constant α/sub s/ that fixes the effect of the inhomogeneity. Expressions are obtained for the redshift, Hubble parameter, deceleration parameter, magnitude-redshift relation, and (number density of objects) --redshift relation. Expected anisotropies in the 3 K microwave background are also examined. There is no conflict with observation if zeta 0 /α/sub s/> or approx. =10, and four tests of the model are suggested that can be used to further determine the acceptability of inhomogeneous cosmologies of this type. The ratio α/sub s//zeta 0 on presently available data is α/sub s//zeta 0 < or approx. =10% and this, loosely speaking, means that the universe at the present epoch is globally homogeneous to within about 10%
Artificial periodic irregularities in the auroral ionosphere
Directory of Open Access Journals (Sweden)
M. T. Rietveld
1996-12-01
Full Text Available Artificial periodic irregularities (API are produced in the ionospheric plasma by a powerful standing electromagnetic wave reflected off the F region. The resulting electron-density irregularities can scatter other high-frequency waves if the Bragg scattering condition is met. Such measurements have been performed at mid-latitudes for two decades and have been developed into a useful ionospheric diagnostic technique. We report here the first measurements from a high-latitude station, using the EISCAT heating facility near Tromsø, Norway. Both F-region and lower-altitude ionospheric echoes have been obtained, but the bulk of the data has been in the E and D regions with echoes extending down to 52-km altitude. Examples of API are shown, mainly from the D region, together with simultaneous VHF incoherent-scatter-radar (ISR data. Vertical velocities derived from the rate of phase change during the irregularity decay are shown and compared with velocities derived from the ISR. Some of the API-derived velocities in the 75–115-km height range appear consistent with vertical neutral winds as shown by their magnitudes and by evidence of gravity waves, while other data in the 50–70-km range show an unrealistically large bias. For a comparison with ISR data it has proved difficult to get good quality data sets overlapping in height and time. The initial comparisons show some agreement, but discrepancies of several metres per second do not yet allow us to conclude that the two techniques are measuring the same quantity. The irregularity decay time-constants between about 53 and 70 km are compared with the results of an advanced ion-chemistry model, and height profiles of recorded signal power are compared with model estimates in the same altitude range. The calculated amplitude shows good agreement with the data in that the maximum occurs at about the same height as that of the measured amplitude. The calculated time-constant agrees very well with the
The MITRA as a solar and ionospheric instrument
Beeharry, G. K.
2015-12-01
The MITRA is an international/pan-African radioastronomy project which aims to do extremely wide field imaging with heterogeneous non coplanar arrays. It can be used for solar and ionospheric studies.
CAT scanning of the ionosphere: Pros and cons
Indian Academy of Sciences (India)
First page Back Continue Last page Graphics. Excellent Spatial coverage. Excellent Spatial coverage. Snapshots of the large scale features (km-scale) of the ionosphere. bottomside and topside. Information on remote and inaccessible regions. Inexpensive.
Magnetic and solar effects on ionospheric absorption at high latitude
Directory of Open Access Journals (Sweden)
M. Pietrella
2002-06-01
Full Text Available Some periods of intense solar events and of strong magnetic storms have been selected and their effects on the ionospheric D region have been investigated on the basis of ionospheric absorption data derived from riometer measurements made at the Italian Antarctic Base of Terra Nova Bay (geographic coordinates: 74.69 S, 164.12 E; geomagnetic coordinates: 77.34 S, 279.41 E. It was found that sharp increases in ionospheric absorption are mainly due to solar protons emission with an energy greater than 10 MeV. Moreover, the day to night ratios of the ionospheric absorption are greater than 2 in the case of strong events of energetic protons emitted by the Sun, while during magnetic storms, these ratios range between 1 and 2.
Global GPS Ionospheric Modelling Using Spherical Harmonic Expansion Approach
Directory of Open Access Journals (Sweden)
Byung-Kyu Choi
2010-12-01
Full Text Available In this study, we developed a global ionosphere model based on measurements from a worldwide network of global positioning system (GPS. The total number of the international GPS reference stations for development of ionospheric model is about 100 and the spherical harmonic expansion approach as a mathematical method was used. In order to produce the ionospheric total electron content (TEC based on grid form, we defined spatial resolution of 2.0 degree and 5.0 degree in latitude and longitude, respectively. Two-dimensional TEC maps were constructed within the interval of one hour, and have a high temporal resolution compared to global ionosphere maps which are produced by several analysis centers. As a result, we could detect the sudden increase of TEC by processing GPS observables on 29 October, 2003 when the massive solar flare took place.
Ionospheric/protonospheric electron content studies using ATS-6
International Nuclear Information System (INIS)
Hajeb-Hosseinieh, H.; Kersley, L.; Edwards, K.J.
1978-01-01
Measurements of ionospheric and protonospheric contents obtained at Aberystwyth from observations of the ATS-6 satellite radio beacon are reported. The monthly median diurnal behavior shows protonospheric contributions of approximately 15 to 20% to the total content along the ray path by day, rising to a predawn maximum of 35% in summer and more than 40% in winter. The protonospheric results are shown to be typical of those expected from other European stations and differences from earlier American measurements are explained in terms of ionospheric interactions in the conjugate hemisphere. The temporal gradients of protonospheric content provide information on the net integrated ionospheric/protonospheric plasma fluxes and the results obtained indicate the importance of plasma exchange with both local and conjugate ionospheres
Low ionospheric reactions on tropical depressions prior hurricanes
Nina, Aleksandra; Radovanović, Milan; Milovanović, Boško; Kovačević, Andjelka; Bajčetić, Jovan; Popović, Luka Č.
2017-10-01
We study the reactions of the low ionosphere during tropical depressions (TDs) which have been detected before the hurricane appearances in the Atlantic Ocean. We explore 41 TD events using very low frequency (VLF) radio signals emitted by NAA transmitter located in the USA and recorded by VLF receiver located in Belgrade (Serbia). We found VLF signal deviations (caused ionospheric turbulence) in the case of 36 out of 41 TD events (88%). Additionally, we explore 27 TDs which have not been developed in hurricanes and found similar low ionospheric reactions. However, in the sample of 41 TDs which are followed by hurricanes the typical low ionosphere perturbations seem to be more frequent than other TDs.
Global scale ionospheric irregularities associated with thunderstorm activity
International Nuclear Information System (INIS)
Pulinets, Sergey A.; Depuev, Victor H.
2003-01-01
The potential difference near 280 kV exists between ground and ionosphere. This potential difference is generated by thunderstorm discharges all over the world, and return current closes the circuit in the areas of fair weather (so-called fair weather current). The model calculations and experimental measurements clearly demonstrate non-uniform latitude-longitude distribution of electric field within the atmosphere. The recent calculations show that the strong large scale vertical atmospheric electric field can penetrate into the ionosphere and create large scale irregularities of the electron concentration. To check this the global distributions of thunderstorm activity obtained with the satellite monitoring for different seasons were compared with the global distributions of ionosphere critical frequency (which is equivalent to peak electron concentration) obtained with the help of satellite topside sounding. The similarity of the obtained global distributions clearly demonstrates the effects of thunderstorm electric fields onto the Earth's ionosphere. (author)
Horizontal dimensions of ionosphere agitation provoked by underground nuclear explosions
International Nuclear Information System (INIS)
Drobzheva, Ya.V.; Krasnov, V.M.; Sokolova, O.I.
2001-01-01
The horizontal dimensions of ionosphere agitation provoked by underground nuclear explosions have been experimentally determined for 13 explosions conducted at the Balapan test site of the Semipalatinsk test site. (author)
The Shock Wave in the ionosphere during an Earthquake
Directory of Open Access Journals (Sweden)
Kuznetsov Vladimir
2016-01-01
Full Text Available Fundamentally new model of the shock wave (SW generation in atmosphere and ionosphere during earthquake is proposed. The model proceeds from the idea of cooperative shock water crystallization in a cloud.
Measurements of the Absorptive Properties of the Ionosphere
National Oceanic and Atmospheric Administration, Department of Commerce — Absorption of radio waves occurs when electrons responding to the wave fields collide with and transfer energy to the neutral particles. A study of ionospheric...
Modelling the Main Ionospheric Trough Across the Northern Hemisphere
National Research Council Canada - National Science Library
Mitchell, Cathryn
2004-01-01
This report results from a contract tasking University of Bath as follows: The contractor will investigate disturbances in the Northern Hemisphere ionosphere using a Multi-instrument data analysis (MIDAS) imaging algorithm...
The Multifractal Structure of Small-Scale Artificial Ionospheric Turbulence
Directory of Open Access Journals (Sweden)
Vybornov F. I.
2013-03-01
Full Text Available We present the results of investigation of a multifractal structure of the artificial ionospheric turbulence when the midlatitude ionosphere is affected by high-power radio waves. The experimental studies were performed on the basis of the SURA heating facility with the help of radio sounding of the disturbed region of ionospheric plasma by signals from the Earth’s orbital satellities. In the case of vertical radio sounding of the disturbed ionosphere region, the measured multipower and generalized multifractal spectra of turbulence coincide well with similar multifractal characteristics of the ionosperic turbulence under the natural conditions. In the case of oblique sounding of the disturbance region at small angles between the line of sight to the satellite and the direction of the Earth’s magnetic field, a nonuniform structure of the small-scale turbulence with a relatively narrow multipower spectrum and small variations in the generalized multifractal spectrum of the electron density was detected.
Modeling the Electrodynamics of the Low-Latitude Ionosphere
National Research Council Canada - National Science Library
Wohlwend, Christian S
2008-01-01
.... This two-part study focused on the gravity wave seeding mechanism of equatorial plasma depletions in the ionosphere and the associated-equatorial spread F, as well as the differences between a two...
Dust Acoustic Mode Manifestations in Earth's Dusty Ionosphere
International Nuclear Information System (INIS)
Kopnin, S.I.; Popel, S.I.
2005-01-01
Dust acoustic mode manifestations in the dusty ionosphere are studied. The reason for an appearance of the low-frequency radio noises associated with such meteor fluxes as Perseids, Orionids, Leonids, and Gemenids is determined
Signatures of mesospheric particles in ionospheric data
Directory of Open Access Journals (Sweden)
M. Friedrich
2009-02-01
Full Text Available The state of the ionosphere during the 2007 ECOMA/MASS campaign is described by in-situ observations by three sounding rockets launched from the Andøya Rocket Range and by ground based observations. The ground based measurements included the incoherent scatter radar EISCAT near Tromsø (both on UHF and VHF, as well as an MF radar, a meteor radar and an imaging riometer all located in the close vicinity of the rocket range. The pronounced electron density bite-outs seen by two of the rockets could not be detected from the ground, but the associated PMSE (Polar Mesospheric Summer Echoes provide indirect evidence of pronounced perturbations of mesospheric electron densities.
Magnetosphere - Ionosphere - Thermosphere (MIT) Coupling at Jupiter
Yates, J. N.; Ray, L. C.; Achilleos, N.
2017-12-01
Jupiter's upper atmospheric temperature is considerably higher than that predicted by Solar Extreme Ultraviolet (EUV) heating alone. Simulations incorporating magnetosphere-ionosphere coupling effects into general circulation models have, to date, struggled to reproduce the observed atmospheric temperatures under simplifying assumptions such as azimuthal symmetry and a spin-aligned dipole magnetic field. Here we present the development of a full three-dimensional thermosphere model coupled in both hemispheres to an axisymmetric magnetosphere model. This new coupled model is based on the two-dimensional MIT model presented in Yates et al., 2014. This coupled model is a critical step towards to the development of a fully coupled 3D MIT model. We discuss and compare the resulting thermospheric flows, energy balance and MI coupling currents to those presented in previous 2D MIT models.
The D-region of the ionosphere
International Nuclear Information System (INIS)
Mitra, A.P.
1978-01-01
The D-region of the ionosphere, traditionally defined as the region of ionization below 100 km, is a link between the non-ionized stratosphere below and the dense plasma above. In it, minor neutral constituents play a dominant role and chemical reactions, both neutral and ionic, are dominant. It plays a very important role in the propagation of radiowaves at all frequencies below 30 MHz, and is particularly important in effecting communication over areas of the earth, such as polar regions, that are inaccessible to synchronous satellite links. Work which has been carried out on the neutral environment, D-region ionization, positive and negative ions found in the D-region, disturbances in the D-region (of solar origin and due to local dynamics or thermal changes), and the chemistry of the region, is considered. Possible future D-region studies are outlined. (UK)
Does Io's ionosphere influence Jupiter's radio bursts.
Webster, D. L.; Alksne, A. Y.; Whitten, R. C.
1972-01-01
Goldreich and Lynden-Bell's theory of Jupiter's Io-correlated decametric radiation sets a lower limit to Io's conductivity, high enough to carry the current associated with the radiated power. Dermott's analysis of conductivities of rocks and ice shows no such conductivity at Io's temperature. However, we show that if Io has even a small atmosphere, say of methane as suggested by Binder and Cruikshank, or of argon or nitrogen, it will have an ionosphere with adequate conductivity to meet the above criterion. A requirement for higher conductivity was found by Goldreich and Lynden-Bell on the basis of motion of magnetic lines past Io. This requirement appears to us unnecessary in view of experiments which prove that motion of the lines is not the source of the electromotance.
VLF Observation of Long Ionospheric Recovery Events
Cotts, B. R.; Inan, U. S.
2006-12-01
On the evening of 20 November 1992, three early/fast events were observed on the great circle path (GCP) from the NAU transmitter in Puerto Rico to Gander (GA), Newfoundland. These events were found to have significantly longer recovery times (up to 20 minutes) than any previously documented events. Typical early/fast events and Lightning-induced Electron Precipitation (LEP) events affect the D-region ionosphere near the night-time VLF-reflection height of ~85 km and exhibit recovery to pre-event levels of gigantic jets. In this context, preliminary results indicate that the lightning-associated VLF long recovery events appear to be more common in oceanic thunderstorms. In this paper, we present occurrence statistics and other measured properties of VLF long recovery events, observed on all-sea based and land based VLF great circle paths.
Ionospheric drift measurements: Skymap points selection
Czech Academy of Sciences Publication Activity Database
Kouba, Daniel; Boška, Josef; Galkin, I. A.; Santolík, Ondřej; Šauli, Petra
2008-01-01
Roč. 43, č. 1 (2008), RS1S90/1-RS1S90/11 ISSN 0048-6604 R&D Projects: GA ČR GA205/06/1619; GA ČR GA205/06/1267; GA AV ČR IAA300420504 Grant - others:GA MŠk(CZ) OC 296; MIERS(XE) COST 296 Institutional research plan: CEZ:AV0Z30420517 Keywords : digisonde drift measurement * plasma drift * radio sounding * ionosphere * Doppler shift * skymap processing Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.092, year: 2008 http://www.agu.org/pubs/crossref/2008/2007RS003633.shtml
Ionogram inversion for a tilted ionosphere
International Nuclear Information System (INIS)
Wright, J.W.
1990-01-01
Digital ionosondes such as the Dynasonde disclose that the ionosphere is seldom horizontal even when it is plane stratified to a good approximation. The local magnetic dip does not then determine correctly the radiowave propagation angle for inversion of the ionogram to a plasma density profile. The measured echo direction of arrival can be used together with the known dip for an improved propagation angle. The effects are small for simple one-parameter laminae but become important when differential (ordinary, extraordinary) retardations are used to aid correction for valley and starting ambiguities. The resulting profile describes the plasma distribution along the direction of observation, rather than the vertical; it thus conveys information about horizontal gradients. Observations suggest that advantages in inversion methods may be practicable for application to modern ionosonde recordings, by which local lateral structure can be described in greater detail. 20 refs
Ionosphere research with a HF/MF cubesat radio instrument
Kallio, Esa; Aikio, Anita; Alho, Markku; Fontell, Mathias; Harri, Ari-Matti; Kauristie, Kirsti; Kestilä, Antti; Koskimaa, Petri; Mäkelä, Jakke; Mäkelä, Miika; Turunen, Esa; Vanhamäki, Heikki; Verronen, Pekka
2017-04-01
New technology provides new possibilities to study geospace and 3D ionosphere by using spacecraft and computer simulations. A type of nanosatellites, CubeSats, provide a cost effective possibility to provide in-situ measurements in the ionosphere. Moreover, combined CubeSat observations with ground-based observations gives a new view on auroras and associated electromagnetic phenomena. Especially joint and active CubeSat - ground based observation campaigns enable the possibility of studying the 3D structure of the ionosphere. Furthermore using several CubeSats to form satellite constellations enables much higher temporal resolution. At the same time, increasing computation capacity has made it possible to perform simulations where properties of the ionosphere, such as propagation of the electromagnetic waves in the medium frequency, MF (0.3-3 MHz) and high frequency, HF (3-30 MHz), ranges is based on a 3D ionospheric model and on first-principles modelling. Electromagnetic waves at those frequencies are strongly affected by ionospheric electrons and, consequently, those frequencies can be used for studying the plasma. On the other hand, even if the ionosphere originally enables long-range telecommunication at MF and HF frequencies, the frequent occurrence of spatiotemporal variations in the ionosphere disturbs communication channels, especially at high latitudes. Therefore, study of the MF and HF waves in the ionosphere has both a strong science and technology interests. We introduce recently developed simulation models as well as measuring principles and techniques to investigate the arctic ionosphere by a polar orbiting CubeSat whose novel AM radio instrument measures HF and MF waves. The cubesat, which contains also a white light aurora camera, is planned to be launched in late 2017 (http://www.suomi100satelliitti.fi/eng). The new models are (1) a 3D ray tracing model and (2) a 3D full kinetic electromagnetic simulation. We also introduce how combining of the
Electon density profiles of the topside ionosphere
Directory of Open Access Journals (Sweden)
D. Bilitza
2002-06-01
Full Text Available The existing uncertainties about the electron density profiles in the topside ionosphere, i.e., in the height region from h m F 2 to ~ 2000 km, require the search for new data sources. The ISIS and Alouette topside sounder satellites from the sixties to the eighties recorded millions of ionograms but most were not analyzed in terms of electron density profiles. In recent years an effort started to digitize the analog recordings to prepare the ionograms for computerized analysis. As of November 2001 about 350 000 ionograms have been digitized from the original 7-track analog tapes. These data are available in binary and CDF format from the anonymous ftp site of the National Space Science Data Center. A search site and browse capabilities on CDAWeb assist the scientific usage of these data. All information and access links can be found at http://nssdc.gsfc.nasa.gov/space/isis/isis-status. html. This paper describes the ISIS data restoration effort and shows how the digital ionograms are automatically processed into electron density profiles from satellite orbit altitude (1400 km for ISIS-2 down to the F peak. Because of the large volume of data an automated processing algorithm is imperative. The TOPside Ionogram Scaler with True height algorithm TOPIST software developed for this task is successfully scaling ~ 70% of the ionograms. An «editing process» is available to manually scale the more difficult ionograms. The automated processing of the digitized ISIS ionograms is now underway, producing a much-needed database of topside electron density profiles for ionospheric modeling covering more than one solar cycle.
Ionospheric data available on CD-ROM and on NDADS
International Nuclear Information System (INIS)
Bilitza, D.
1996-01-01
Information is provided on two CD-ROMs (for PCs) with ionospheric data: the ionosonde CD issued by NGDC/WDC-A-STP/NOAA/Boulder and the Atmosphere Explorer CD produced by NSSDC/WDC-A-R and S/NASA/Greenbelt. We also briefly describe the ionospheric/thermospheric data available through NSSDC's automated mail retrieval system (NDADS) and explain the procedure for obtaining NDADS data. (author). 3 figs
Reconstruction of the ionospheric electron density by geostatistical inversion
Minkwitz, David; van den Boogaart, Karl Gerald; Hoque, Mainul; Gerzen, Tatjana
2015-04-01
The ionosphere is the upper part of the atmosphere where sufficient free electrons exist to affect the propagation of radio waves. Typically, the ionosphere extends from about 50 - 1000 km and its morphology is mainly driven by solar radiation, particle precipitation and charge exchange. Due to the strong ionospheric impact on many applications dealing with trans-ionospheric signals such as Global Navigation Satellite Systems (GNSS) positioning, navigation and remote sensing, the demand for a highly accurate reconstruction of the electron density is ever increasing. Within the Helmholtz Alliance project "Remote Sensing and Earth System Dynamics" (EDA) the utilization of the upcoming radar mission TanDEM-L and its related products are prepared. The TanDEM-L mission will operate in L-band with a wavelength of approximately 24 cm and aims at an improved understanding of environmental processes and ecosystem change, e.g. earthquakes, volcanos, glaciers, soil moisture and carbon cycle. Since its lower frequency compared to the X-band (3 cm) and C-band (5 cm) radar missions, the influence of the ionosphere will increase and might lead to a significant degradation of the radar image quality if no correction is applied. Consequently, our interest is the reconstruction of the ionospheric electron density in order to mitigate the ionospheric delay. Following the ionosphere's behaviour we establish a non-stationary and anisotropic spatial covariance model of the electron density separated into a vertical and horizontal component. In order to estimate the model's parameters we chose a maximum likelihood approach. This approach incorporates GNSS total electron content measurements, representing integral measurements of the electron density between satellite to receiver ray paths, and the NeQuick model as a non-stationary trend. Based on a multivariate normal distribution the spatial covariance model parameters are optimized and afterwards the 3D electron density can be
Ionospheric threats to the integrity of airborne GPS users
Datta-Barua, Seebany
The Global Positioning System (GPS) has both revolutionized and entwined the worlds of aviation and atmospheric science. As the largest and most unpredictable source of GPS positioning error, the ionospheric layer of the atmosphere, if left unchecked, can endanger the safety, or "integrity," of the single frequency airborne user. An augmentation system is a differential-GPS-based navigation system that provides integrity through independent ionospheric monitoring by reference stations. However, the monitor stations are not in general colocated with the user's GPS receiver. The augmentation system must protect users from possible ionosphere density variations occurring between its measurements and the user's. This study analyzes observations from ionospherically active periods to identify what types of ionospheric disturbances may cause threats to user safety if left unmitigated. This work identifies when such disturbances may occur using a geomagnetic measure of activity and then considers two disturbances as case studies. The first case study indicates the need for a non-trivial threat model for the Federal Aviation Administration's Local Area Augmentation System (LAAS) that was not known prior to the work. The second case study uses ground- and space-based data to model an ionospheric disturbance of interest to the Federal Aviation Administration's Wide Area Augmentation System (WAAS). This work is a step in the justification for, and possible future refinement of, one of the WAAS integrity algorithms. For both WAAS and LAAS, integrity threats are basically caused by events that may be occurring but are unobservable. Prior to the data available in this solar cycle, events of such magnitude were not known to be possible. This work serves as evidence that the ionospheric threat models developed for WARS and LAAS are warranted and that they are sufficiently conservative to maintain user integrity even under extreme ionospheric behavior.
Far-field coseismic ionospheric disturbances of Tohoku earthquake
Czech Academy of Sciences Publication Activity Database
Krasnov, V. M.; Drobzheva, Ya. V.; Chum, Jaroslav
2015-01-01
Roč. 135, December (2015), s. 12-21 ISSN 1364-6826 R&D Projects: GA ČR(CZ) GC15-07281J Institutional support: RVO:68378289 Keywords : earthquake * infrasonic waves * ionospheric disturbances * infrasound triggered by the earthquake * co-seismic ionospheric perturbations * modeling * remote sensing Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.463, year: 2015 http://www.sciencedirect.com/science/article/pii/S1364682615300584
Ionospheric scintillation observations over Kenyan region - Preliminary results
Olwendo, O. J.; Xiao, Yu; Ming, Ou
2016-11-01
Ionospheric scintillation refers to the rapid fluctuations in the amplitude and phase of a satellite signal as it passes through small-scale plasma density irregularities in the ionosphere. By analyzing ionospheric scintillation observation datasets from satellite signals such as GPS signals we can study the morphology of ionospheric bubbles. At low latitudes, the diurnal behavior of scintillation is driven by the formation of large-scale equatorial density depletions which form one to two hours after sunset via the Rayleigh-Taylor instability mechanism near the magnetic equator. In this work we present ionospheric scintillation activity over Kenya using data derived from a newly installed scintillation monitor developed by CRIRP at Pwani University (39.78°E, 3.24°S) during the period August to December, 2014. The results reveal the scintillation activity mainly occurs from post-sunset to post-midnight hours, and ceases around 04:00 LT. We also found that the ionospheric scintillation tends to appear at the southwest and northwest of the station. These locations coincide with the southern part of the Equatorial Ionization Anomaly crest over Kenya region. The occurrence of post-midnight L-band scintillation events which are not linked to pre-midnight scintillation observations raises fundamental question on the mechanism and source of electric fields driving the plasma depletion under conditions of very low background electron density.
Evaluation of the performance of DIAS ionospheric forecasting models
Directory of Open Access Journals (Sweden)
Tsagouri Ioanna
2011-08-01
Full Text Available Nowcasting and forecasting ionospheric products and services for the European region are regularly provided since August 2006 through the European Digital upper Atmosphere Server (DIAS, http://dias.space.noa.gr. Currently, DIAS ionospheric forecasts are based on the online implementation of two models: (i the solar wind driven autoregression model for ionospheric short-term forecast (SWIF, which combines historical and real-time ionospheric observations with solar-wind parameters obtained in real time at the L1 point from NASA ACE spacecraft, and (ii the geomagnetically correlated autoregression model (GCAM, which is a time series forecasting method driven by a synthetic geomagnetic index. In this paper we investigate the operational ability and the accuracy of both DIAS models carrying out a metrics-based evaluation of their performance under all possible conditions. The analysis was established on the systematic comparison between models’ predictions with actual observations obtained over almost one solar cycle (1998–2007 at four European ionospheric locations (Athens, Chilton, Juliusruh and Rome and on the comparison of the models’ performance against two simple prediction strategies, the median- and the persistence-based predictions during storm conditions. The results verify operational validity for both models and quantify their prediction accuracy under all possible conditions in support of operational applications but also of comparative studies in assessing or expanding the current ionospheric forecasting capabilities.
Modeling the Ionosphere with GPS and Rotation Measure Observations
Malins, J. B.; Taylor, G. B.; White, S. M.; Dowell, J.
2017-12-01
Advances in digital processing have created new tools for looking at and examining the ionosphere. We have combined data from dual frequency GPSs, digital ionosondes and observations from The Long Wavelength Array (LWA), a 256 dipole low frequency radio telescope situated in central New Mexico in order to examine ionospheric profiles. By studying polarized pulsars, the LWA is able to very accurately determine the Faraday rotation caused by the ionosphere. By combining this data with the international geomagnetic reference field, the LWA can evaluate ionospheric profiles and how well they predict the actual Faraday rotation. Dual frequency GPS measurements of total electron content, as well as measurements from digisonde data were used to model the ionosphere, and to predict the Faraday rotation to with in 0.1 rad/m2. Additionally, it was discovered that the predicted topside profile of the digisonde data did not accurate predict faraday rotation measurements, suggesting a need to reexamine the methods for creating the topside predicted profile. I will discuss the methods used to measure rotation measure and ionosphere profiles as well as discuss possible corrections to the topside model.
New Method for Solving Inductive Electric Fields in the Ionosphere
Vanhamäki, H.
2005-12-01
We present a new method for calculating inductive electric fields in the ionosphere. It is well established that on large scales the ionospheric electric field is a potential field. This is understandable, since the temporal variations of large scale current systems are generally quite slow, in the timescales of several minutes, so inductive effects should be small. However, studies of Alfven wave reflection have indicated that in some situations inductive phenomena could well play a significant role in the reflection process, and thus modify the nature of ionosphere-magnetosphere coupling. The input to our calculation method are the time series of the potential part of the ionospheric electric field together with the Hall and Pedersen conductances. The output is the time series of the induced rotational part of the ionospheric electric field. The calculation method works in the time-domain and can be used with non-uniform, time-dependent conductances. In addition no particular symmetry requirements are imposed on the input potential electric field. The presented method makes use of special non-local vector basis functions called Cartesian Elementary Current Systems (CECS). This vector basis offers a convenient way of representing curl-free and divergence-free parts of 2-dimensional vector fields and makes it possible to solve the induction problem using simple linear algebra. The new calculation method is validated by comparing it with previously published results for Alfven wave reflection from uniformly conducting ionosphere.
Uplift of Ionospheric Oxygen Ions During Extreme Magnetic Storms
Tsurutani, Bruce T.; Mannucci, Anthony J.; Verkhoglyadova, Olga P.; Huba, Joseph; Lakhina, Gurbax S.
2013-01-01
Research reported earlier in literature was conducted relating to estimation of the ionospheric electrical field, which may have occurred during the September 1859 Carrington geomagnetic storm event, with regard to modern-day consequences. In this research, the NRL SAMI2 ionospheric code has been modified and applied the estimated electric field to the dayside ionosphere. The modeling was done at 15-minute time increments to track the general ionospheric changes. Although it has been known that magnetospheric electric fields get down into the ionosphere, it has been only in the last ten years that scientists have discovered that intense magnetic storm electric fields do also. On the dayside, these dawn-to-dusk directed electric fields lift the plasma (electrons and ions) up to higher altitudes and latitudes. As plasma is removed from lower altitudes, solar UV creates new plasma, so the total plasma in the ionosphere is increased several-fold. Thus, this complex process creates super-dense plasmas at high altitudes (from 700 to 1,000 km and higher).
Resonant Magnetization Tunneling in Molecular Magnets: Where is the Inhomogeneous Broadening?
Friedman, Jonathan R.; Sarachik, M. P.
1998-03-01
Since the discovery(J. R. Friedman, et al., Phys. Rev. Lett. 76), 3830 (1996) of resonant magnetization tunneling in the molecular magnet Mn_12 there has been intense research into the underlying mechanism of tunneling. Most current theories( V. Dobrovitski and A. Zvezdin, Europhys. Lett. 38), 377 (1997); L. Gunther, Europhys. Lett. 39, 1 (1997); D Garanin and E. Chudnovsky, Phys. Rev. B 56, 11102 (1997). suggest that a local internal (hyperfine or dipole) field transverse to the easy magnetization axis induces tunneling. These theories predict a resonance width orders of magnitude smaller than that actually observed. This discrepancy is attributed to inhomogeneous broadening of the resonance by the random internal fields. We present a detailed study of the tunnel resonance lineshape and show that it is Lorentzian, suggesting it has a deeper physical origin. Since the hyperfine fields are believed to be comparable to the observed width, it is surprising that there is no Gaussian broadening.
A multi target approach to control chemical reactions in their inhomogeneous solvent environment
International Nuclear Information System (INIS)
Keefer, Daniel; Thallmair, Sebastian; Zauleck, Julius P P; Vivie-Riedle, Regina de
2015-01-01
Shaped laser pulses offer a powerful tool to manipulate molecular quantum systems. Their application to chemical reactions in solution is a promising concept to redesign chemical synthesis. Along this road, theoretical developments to include the solvent surrounding are necessary. An appropriate theoretical treatment is helpful to understand the underlying mechanisms. In our approach we simulate the solvent by randomly selected snapshots from molecular dynamics trajectories. We use multi target optimal control theory to optimize pulses for the various arrangements of explicit solvent molecules simultaneously. This constitutes a major challenge for the control algorithm, as the solvent configurations introduce a large inhomogeneity to the potential surfaces. We investigate how the algorithm handles the new challenges and how well the controllability of the system is preserved with increasing complexity. Additionally, we introduce a way to statistically estimate the efficiency of the optimized laser pulses in the complete thermodynamical ensemble. (paper)
Big bang nucleosynthesis with Gaussian inhomogeneous neutrino degeneracy
International Nuclear Information System (INIS)
Stirling, Spencer D.; Scherrer, Robert J.
2002-01-01
We consider the effect of inhomogeneous neutrino degeneracy on big bang nucleosynthesis for the case where the distribution of neutrino chemical potentials is given by a Gaussian. The chemical potential fluctuations are taken to be isocurvature, so that only inhomogeneities in the electron chemical potential are relevant. Then the final element abundances are a function only of the baryon-photon ratio η, the effective number of additional neutrinos ΔN ν , the mean electron neutrino degeneracy parameter ξ-bar, and the rms fluctuation of the degeneracy parameter, σ ξ . We find that for fixed η, ΔN ν , and ξ-bar, the abundances of 4 He, D, and 7 Li are, in general, increasing functions of σ ξ . Hence, the effect of adding a Gaussian distribution for the electron neutrino degeneracy parameter is to decrease the allowed range for η. We show that this result can be generalized to a wide variety of distributions for ξ
Dissipation of Alfven waves in compressible inhomogeneous media
International Nuclear Information System (INIS)
Malara, F.; Primavera, L.; Veltri, P.
1997-01-01
In weakly dissipative media governed by the magnetohydrodynamics (MHD) equations, any efficient mechanism of energy dissipation requires the formation of small scales. Using numerical simulations, we study the properties of Alfven waves propagating in a compressible inhomogeneous medium, with an inhomogeneity transverse to the direction of wave propagation. Two dynamical effects, energy pinching and phase mixing, are responsible for the small-scales formation, similarly to the incompressible case. Moreover, compressive perturbations, slow waves and a static entropy wave are generated; the former are subject to steepening and form shock waves, which efficiently dissipate their energy, regardless of the Reynolds number. Rough estimates show that the dissipation times are consistent with those required to dissipate Alfven waves of photospheric origin inside the solar corona
Study of the thermal noise caused by inhomogeneously distributed loss
Yamamoto, K; Ando, M; Kawabe, K; Tsubono, K
2002-01-01
The normal modal expansion is the most frequently used method to estimate the thermal noise of interferometric gravitational wave detectors. However, the method does not agree with new estimation methods, direct approaches, when the loss is distributed inhomogeneously. We have checked the modal expansion and direct approaches experimentally using a mechanical oscillator, such as a mirror. The experiments showed that the modal expansion is invalid. On the other hand, the measured spectra are consistent with the direct approaches. We calculated the thermal noise of a real mirror with inhomogeneous loss using the direct approaches. This calculation showed that the thermal motions caused by loss in the reflective coating and at coil-magnet actuators are comparable with the sensitivity goals of future gravitational wave detector projects. In addition, according to our calculation, a mechanical loss may cause much larger or much smaller thermal motion than is expected in modal expansion, depending on the loss distr...
Sensitivity of resistive and Hall measurements to local inhomogeneities
DEFF Research Database (Denmark)
Koon, Daniel W.; Wang, Fei; Petersen, Dirch Hjorth
2014-01-01
We derive exact, analytic expressions for the sensitivity of sheet resistance and Hall sheet resistance measurements to local inhomogeneities for the cases of nonzero magnetic fields, strong perturbations, and perturbations over a finite area, extending our earlier results on weak perturbations. ...... simulations on both a linear four-point probe array on a large circular disc and a van der Pauw square geometry. Furthermore, the results also agree well with Náhlík et al. published experimental results for physical holes in a circular copper foil disc.......We derive exact, analytic expressions for the sensitivity of sheet resistance and Hall sheet resistance measurements to local inhomogeneities for the cases of nonzero magnetic fields, strong perturbations, and perturbations over a finite area, extending our earlier results on weak perturbations. We...
Toroidal inhomogeneity of the vertical field in a tokamak apparatus
International Nuclear Information System (INIS)
Sometani, Taro; Takashima, Hidekazu
1977-01-01
An experiment with a model device has been made on the toroidal inhomogeneity of the vertical field in a Tokamak with an iron core. The D.C. vertical field is increased near the yokes of the iron core, while the gross plasma image field (consisting of the components due to the plasma current, the primary current, and its image) is reduced there. These two vertical fields, when superposed, exert force on the plasma as a less inhomogeneous external vertical field. The vertical field can be homogenized satisfactorily by using a compensation winding wound at a proper position on the iron core even if the shielding plates, which are mounted on some Tokamaks, are dispensed with. (auth.)
The Prediction of Wave Competitions in Inhomogeneous Brusselator Systems
International Nuclear Information System (INIS)
Cui Xiao-Hua; Dong Yun-Xia; Huang Xiao-Qing; Li Ning
2015-01-01
The competition of waves has remained a hot topic in physics over the past few decades, especially the area of pattern control. Because of improved understanding of various dynamic behaviors, many practical applications have sprung up recently. The prediction of wave competitions is also very important and quite useful in these fields. This paper considers the behaviors of wave competitions in simple, inhomogeneous media which is modeled by Brusselator equations. We present a simple rule to judge the results of wave competitions utilizing the dispersion relation curves and the waves coming from different wave sources. Moreover, this rule can also be used to predict the results of wave propagation. It provides methods of obtaining the desired waves with given frequencies in inhomogeneous media. All our results are concluded and verified by computer simulations. (paper)
Effects of dipole magnet inhomogeneities on the beam ellipsoid
International Nuclear Information System (INIS)
Tsoupas, N.; Colman, J.; Levine, M.; McKenzie-Wilson, R.; Ward, T.; Grand, P.
1986-01-01
The RAYTRACE computer code has been modified to accept magnetic fields measured in the median plane of a dipole magnet. This modification allows one to study the effects of a non-ideal dipole magnet on the beam ellipsoid (as defined by the TRANSPORT code manual). The effects on the beam ellipsoid are due to: field inhomogeneities in the interior region of the dipole, and discrepancies from design conditions of the magnetic field values in the fringe field region. The results of the RAYTRACE code calculations based on experimentally measured fields will be compared with the results derived using both an ideal (no inhomogeneities) dipole with SCOFF boundaries and an ideal dipole with perfect (according to design) fringe fields
Spin diffusion from an inhomogeneous quench in an integrable system.
Ljubotina, Marko; Žnidarič, Marko; Prosen, Tomaž
2017-07-13
Generalized hydrodynamics predicts universal ballistic transport in integrable lattice systems when prepared in generic inhomogeneous initial states. However, the ballistic contribution to transport can vanish in systems with additional discrete symmetries. Here we perform large scale numerical simulations of spin dynamics in the anisotropic Heisenberg XXZ spin 1/2 chain starting from an inhomogeneous mixed initial state which is symmetric with respect to a combination of spin reversal and spatial reflection. In the isotropic and easy-axis regimes we find non-ballistic spin transport which we analyse in detail in terms of scaling exponents of the transported magnetization and scaling profiles of the spin density. While in the easy-axis regime we find accurate evidence of normal diffusion, the spin transport in the isotropic case is clearly super-diffusive, with the scaling exponent very close to 2/3, but with universal scaling dynamics which obeys the diffusion equation in nonlinearly scaled time.
Negative refraction of inhomogeneous waves in lossy isotropic media
International Nuclear Information System (INIS)
Fedorov, V Yu; Nakajima, T
2014-01-01
We theoretically study negative refraction of inhomogeneous waves at the interface of lossy isotropic media. We obtain explicit (up to the sign) expressions for the parameters of a wave transmitted through the interface between two lossy media characterized by complex permittivity and permeability. We show that the criterion of negative refraction that requires negative permittivity and permeability can be used only in the case of a homogeneous incident wave at the interface between a lossless and lossy media. In a more general situation, when the incident wave is inhomogeneous, or both media are lossy, the criterion of negative refraction becomes dependent on an incidence angle. Most interestingly, we show that negative refraction can be realized in conventional lossy materials (such as metals) if their interfaces are properly oriented. (paper)
TRANSMISSION AND ABSORPTION OF MICROWAVES BY AN INHOMOGENEOUS SPHERE PLASMA
Institute of Scientific and Technical Information of China (English)
SONG Falun; CAO Jinxiang; WANG Ge
2004-01-01
The numerical calculation of the transmission and absorption of microwaves at an arbitrarily incident angle to the inhomogeneous spherically symmetric plasma is presented.The nonuniform sphere is modeled by a series of concentric spherical shells, and the electron density is constant in each shell. The overall density profile follows any given distribution function. By using the geometrical optics approximation and considering the propagation coefficient is complex, as well as the attenuation and phase coefficients are vectors, the detailed evaluation shows that the transmission and absorption of microwaves in the inhomogeneous spherically symmetric plasma depend on the electron and neutral particle collision frequency, central density, incident angle of the microwaves and density distribution profiles.
Parametric trapping of electromagnetic waves in an inhomogeneous plasma
International Nuclear Information System (INIS)
Silin, V.P.; Starodub, A.N.
1977-01-01
Considered is parametric instability in an inhomogeneous plasma at which a pumping wave is transformed to an electromagnetic wave and aperiodically in-time-growing disturbances. It is shown that after achievement of some boundary pumping value by electric field intensity an absolute parametric instability evolution becomes possible. In-time growing plasma disturbances are localized near electric field extremums of a pumping wave. Such localization areas are small as compared to characteristic size of pumping inhomogeneity in a plasma. The secondary electromagnetic waves stay within the localization areas and, therefore, are not scattered by a plasma. As following from this it has been established, that due to parametric instability electromagnetic radiation trapping by a plasma occurs. Such a trapping is considerably connected with a spatial structure of a pumping field and it cannot arise within the field of a running wave in the theoretical model considered. However parametric trapping turns out to be possible even with very small reflection coefficients
Glauber theory and the quantum coherence of curvature inhomogeneities
Giovannini, Massimo
2017-01-12
The curvature inhomogeneities are systematically scrutinized in the framework of the Glauber approach. The amplified quantum fluctuations of the scalar and tensor modes of the geometry are shown to be first-order coherent while the interference of the corresponding intensities is larger than in the case of Bose-Einstein correlations. After showing that the degree of second-order coherence does not suffice to characterize unambiguously the curvature inhomogeneities, we argue that direct analyses of the degrees of third and fourth-order coherence are necessary to discriminate between different correlated states and to infer more reliably the statistical properties of the large-scale fluctuations. We speculate that the moments of the multiplicity distributions of the relic phonons might be observationally accessible thanks to new generations of instruments able to count the single photons of the Cosmic Microwave Background in the THz region.
Friction, slip and structural inhomogeneity of the buried interface
International Nuclear Information System (INIS)
Dong, Y; Wu, J; Martini, A; Li, Q
2011-01-01
An atomistic model of metallic contacts using realistic interatomic potentials is used to study the connection between friction, slip and the structure of the buried interface. Incommensurability induced by misalignment and lattice mismatch is modeled with contact sizes that are large enough to observe superstructures formed by the relative orientations of the surfaces. The periodicity of the superstructures is quantitatively related to inhomogeneous shear stress distributions in the contact area, and a reduced order model is used to clarify the connection between friction and structural inhomogeneity. Finally, the movement of atoms is evaluated before, during and after slip in both aligned and misaligned contacts to understand how the interfacial structure affects the mechanisms of slip and the corresponding frictional behavior
General solution to inhomogeneous dephasing and smooth pulse dynamical decoupling
Zeng, Junkai; Deng, Xiu-Hao; Russo, Antonio; Barnes, Edwin
2018-03-01
In order to achieve the high-fidelity quantum control needed for a broad range of quantum information technologies, reducing the effects of noise and system inhomogeneities is an essential task. It is well known that a system can be decoupled from noise or made insensitive to inhomogeneous dephasing dynamically by using carefully designed pulse sequences based on square or delta-function waveforms such as Hahn spin echo or CPMG. However, such ideal pulses are often challenging to implement experimentally with high fidelity. Here, we uncover a new geometrical framework for visualizing all possible driving fields, which enables one to generate an unlimited number of smooth, experimentally feasible pulses that perform dynamical decoupling or dynamically corrected gates to arbitrarily high order. We demonstrate that this scheme can significantly enhance the fidelity of single-qubit operations in the presence of noise and when realistic limitations on pulse rise times and amplitudes are taken into account.
Determination of critical exponents of inhomogeneous Gd films
Energy Technology Data Exchange (ETDEWEB)
Rosales-Rivera, A., E-mail: arosalesr@unal.edu.co [Laboratorio de Magnetismo y Materiales Avanzados, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Colombia, Sede Manizales, Manizales (Colombia); Salazar, N.A. [Laboratorio de Magnetismo y Materiales Avanzados, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Colombia, Sede Manizales, Manizales (Colombia); Hovorka, O.; Idigoras, O.; Berger, A. [CIC nanoGUNE Consolider, Tolosa Hiribidea 76, E-20018 Donostia-San Sebastian (Spain)
2012-08-15
The role of inhomogeneity on the critical behavior is studied for non-epitaxial Gd films. For this purpose, the film inhomogeneity was varied experimentally by annealing otherwise identical samples at different temperatures T{sub AN}=200, 400, and 500 Degree-Sign C. Vibrating sample magnetometry (VSM) was used for magnetization M vs. T measurements at different external fields H. A method based upon the linear superposition of different sample parts having different Curie temperatures T{sub C} was used to extract the critical exponents and the intrinsic distribution of Curie temperatures. We found that this method allows extracting reliable values of the critical exponents for all annealing temperatures, which enabled us to study the effects of disorder onto the universality class of Gd films.
Control of inhomogeneous atomic ensembles of hyperfine qudits
DEFF Research Database (Denmark)
Mischuck, Brian Edward; Merkel, Seth T.; Deutsch, Ivan H.
2012-01-01
We study the ability to control d-dimensional quantum systems (qudits) encoded in the hyperfine spin of alkali-metal atoms through the application of radio- and microwave-frequency magnetic fields in the presence of inhomogeneities in amplitude and detuning. Such a capability is essential...... to the design of robust pulses that mitigate the effects of experimental uncertainty and also for application to tomographic addressing of particular members of an extended ensemble. We study the problem of preparing an arbitrary state in the Hilbert space from an initial fiducial state. We prove...... that inhomogeneous control of qudit ensembles is possible based on a semianalytic protocol that synthesizes the target through a sequence of alternating rf and microwave-driven SU(2) rotations in overlapping irreducible subspaces. Several examples of robust control are studied, and the semianalytic protocol...
Determination of critical exponents of inhomogeneous Gd films
International Nuclear Information System (INIS)
Rosales-Rivera, A.; Salazar, N.A.; Hovorka, O.; Idigoras, O.; Berger, A.
2012-01-01
The role of inhomogeneity on the critical behavior is studied for non-epitaxial Gd films. For this purpose, the film inhomogeneity was varied experimentally by annealing otherwise identical samples at different temperatures T AN =200, 400, and 500 °C. Vibrating sample magnetometry (VSM) was used for magnetization M vs. T measurements at different external fields H. A method based upon the linear superposition of different sample parts having different Curie temperatures T C was used to extract the critical exponents and the intrinsic distribution of Curie temperatures. We found that this method allows extracting reliable values of the critical exponents for all annealing temperatures, which enabled us to study the effects of disorder onto the universality class of Gd films.
A Methodology to Assess Ionospheric Models for GNSS
Rovira-Garcia, Adria; Juan, José Miguel; Sanz, Jaume; González-Casado, Guillermo; Ibánez, Deimos
2015-04-01
Testing the accuracy of the ionospheric models used in the Global Navigation Satellite System (GNSS) is a long-standing issue. It is still a challenging problem due to the lack of accurate enough slant ionospheric determinations to be used as a reference. The present study proposes a methodology to assess any ionospheric model used in satellite-based applications and, in particular, GNSS ionospheric models. The methodology complements other analysis comparing the navigation based on different models to correct the code and carrier-phase observations. Specifically, the following ionospheric models are assessed: the operational models broadcast in the Global Positioning System (GPS), Galileo and the European Geostationary Navigation Overlay System (EGNOS), the post-process Global Ionospheric Maps (GIMs) from different analysis centers belonging to the International GNSS Service (IGS) and, finally, a new GIM computed by the gAGE/UPC research group. The methodology is based in the comparison between the predictions of the ionospheric model with actual unambiguous carrier-phase measurements from a global distribution of permanent receivers. The differences shall be separated into the hardware delays (a receiver constant plus a satellite constant) per data interval, e.g., a day. The condition that these Differential Code Biases (DCBs) are commonly shared throughout the world-wide network of receivers and satellites provides a global character to the assessment. This approach generalizes simple tests based on double differenced Slant Total Electron Contents (STECs) between pairs of satellites and receivers on a much local scale. The present study has been conducted during the entire 2014, i.e., the last Solar Maximum. The seasonal and latitudinal structures of the results clearly reflect the different strategies used by the different models. On one hand, ionospheric model corrections based on a grid (IGS-GIMs or EGNOS) are shown to be several times better than the models
Neutrino emission in inhomogeneous pion condensed quark matter
International Nuclear Information System (INIS)
Huang, Xuguang; Wang, Qun; Zhuang, Pengfei
2008-01-01
It is believed that quark matter can exist in neutron star interior if the baryon density is high enough. When there is a large isospin density, quark matter could be in a pion condensed phase. We compute neutrino emission from direct Urca processes in such a phase, particularly in the inhomogeneous Larkin-Ovchinnikov-Fulde-Ferrell (LOFF) states. The neutrino emissivity and specific heat are obtained, from which the cooling rate is estimated. (author)
Electron acoustic vortices in the presence of inhomogeneous current
Energy Technology Data Exchange (ETDEWEB)
Haque, Q; Masood, W; Saleem, H [Theoretical Plasma Physics Division, PINSTECH, P O Nilore, Islamabad (Pakistan)], E-mail: qamar@pinstech.org.pk
2008-03-15
Linear and nonlinear dynamics of an electron acoustic wave in an inhomogeneous magnetized plasma are studied in the presence of non-uniform background current. The modified Rayleigh instability condition is found due to shear in the magnetic field and the current. A nonlinear stationary solution is also obtained in the form of tripolar vortices. The relevance of the present study to auroral and magnetotail plasmas is pointed out.
Characterization of residual stresses generated during inhomogeneous plastic deformation
DEFF Research Database (Denmark)
Lorentzen, T.; Faurholdt, T.; Clausen, B.
1998-01-01
Residual stresses generated by macroscopic inhomogeneous plastic deformation are predicted by an explicit finite element (FE) technique. The numerical predictions are evaluated by characterizing the residual elastic strains by neutron diffraction using two different (hkl) reflections. Intergranular...... compare well and verify the capability of the numerical technique as well as the possibilities of experimental validation using neutron diffraction. The presented experimental and numerical approach will subsequently be utilized for the evaluation of more complicated plastic deformation processes...
Matrix product solution of an inhomogeneous multi-species TASEP
Arita, Chikashi; Mallick, Kirone
2013-03-01
We study a multi-species exclusion process with inhomogeneous hopping rates and find a matrix product representation for the stationary state of this model. The matrices belong to the tensor algebra of the fundamental quadratic algebra associated with the exclusion process. We show that our matrix product representation is equivalent to a graphical construction proposed by Ayyer and Linusson (2012 arXiv:1206.0316), which generalizes an earlier probabilistic construction due to Ferrari and Martin (2007 Ann. Prob. 35 807).
Ion-optical properties of Wien's filters with inhomogeneous fields
International Nuclear Information System (INIS)
Golikov, Yu.K.; Matyshev, A.A.; Solov'ev, K.V.
1991-01-01
Common conditions of beam stigmatic focusing in the Wien filters with direct axial trajectory in arbitrary two-dimensional inhomogeneous crossed electrical magnetic fields are obtained. Coefficients for geometrical aberrations of the second order of the crossed field system, characterized by stigmatic focusing properties, are found. Possibility of synthesis on the basis of the developed field system theory with required ion-optical properties is shown
Scattering cross-section of an inhomogeneous plasma cylinder
International Nuclear Information System (INIS)
Jiaming Shi; Lijian Qiu; Ling, Y.
1995-01-01
Scattering of em waves by the plasma cylinder is of significance in radar target detection, plasma diagnosis, etc. This paper discusses the general method to calculate the scattering cross-section of em waves from a plasma cylinder which is radially inhomogeneous and infinitely long. Numerical results are also provided for several plasma density profiles. The effect of the electron density distribution on the scattering cross-section is investigated
Hydromagnetic modes in an inhomogeneous collisionless plasma of finite pressure
International Nuclear Information System (INIS)
Klimushkin, D.Yu.
2006-01-01
One studied three-dimensional structure and rate of growth of hydromagnetic waves. The mode is shown to be the Alfven modified inhomogeneity, finite pressure and plasma anisotropy. The mode structure transverse the magnetic shells may be of two types. Under some specific conditions one may observe image-drift waves in the magnetosphere. The described modes may be responsible for some types of geomagnetic field oscillations [ru
Inhomogeneous critical nonlinear Schroedinger equations with a harmonic potential
International Nuclear Information System (INIS)
Cao Daomin; Han Pigong
2010-01-01
In this paper, we study the Cauchy problem of the inhomogeneous nonlinear Schroedinger equation with a harmonic potential: i∂ t u=-div(f(x)∇u)+|x| 2 u-k(x)|u| 4/N u, x is an element of R N , N≥1, which models the remarkable Bose-Einstein condensation. We discuss the existence and nonexistence results and investigate the limiting profile of blow-up solutions with critical mass.
Pair creation in inhomogeneous fields from worldline instantons
International Nuclear Information System (INIS)
Dunne, Gerald V.; Schubert, Christian
2006-01-01
We show how to do semiclassical nonperturbative computations within the worldline approach to quantum field theory using ''worldline instantons''. These worldline instantons are classical solutions to the Euclidean worldline loop equations of motion, and are closed spacetime loops parametrized by the proper-time. Specifically, we compute the imaginary part of the one loop effective action in scalar and spinor QED using worldline instantons, for a wide class of inhomogeneous electric field backgrounds
Inhomogeneous effects in the quantum free electron laser
International Nuclear Information System (INIS)
Piovella, N.; Bonifacio, R.
2006-01-01
We include inhomogeneous effects in the quantum model of a free electron laser taking into account the initial energy spread of the electron beam. From a linear analysis, we obtain a generalized dispersion relation, from which the exponential gain can be explicitly calculated. We determine the maximum allowed initial energy spread in the quantum exponential regime and we discuss the limit of large energy spread
Detection of detachments and inhomogeneities in frescos by Compton scattering
International Nuclear Information System (INIS)
Castellano, A.; Cesareo, R.; Buccolieri, G.; Donativi, M.; Palama, F.; Quarta, S.; De Nunzio, G.; Brunetti, A.; Marabelli, M.; Santamaria, U.
2005-01-01
A mobile instrument has been developed for the detection and mapping of detachments in frescos by using Compton back scattered photons. The instrument is mainly composed of a high energy X-ray tube, an X-ray detection system and a translation table. The instrument was first applied to samples simulating various detachment situations, and then transferred to the Vatican Museum to detect detachments and inhomogeneities in the stanza di Eliodoro, one of the 'Raphael's stanze'
Detection of detachments and inhomogeneities in frescos by Compton scattering
Energy Technology Data Exchange (ETDEWEB)
Castellano, A. [Dipartimento di Scienza dei Materiali, Universita di Lecce, 73100 Lecce (Italy); INFN, Sezione di Lecce, via per Arnesano, 73100 Lecce (Italy); Cesareo, R. [Istituto di Matematica e Fisica, Universita di Sassari, 07100 Sassari (Italy) and INFN, Sezione di Cagliari, Cittadella Universitaria di Monserrato, 09042 Cagliari (Italy)]. E-mail: cesareo@uniss.it; Buccolieri, G. [Dipartimento di Scienza dei Materiali, Universita di Lecce, 73100 Lecce (Italy); INFN, Sezione di Lecce, via per Arnesano, 73100 Lecce (Italy); Donativi, M. [Dipartimento di Scienza dei Materiali, Universita di Lecce, 73100 Lecce (Italy); Palama, F. [Dipartimento di Scienza dei Materiali, Universita di Lecce, 73100 Lecce (Italy); INFN, Sezione di Lecce, via per Arnesano, 73100 Lecce (Italy); Quarta, S. [Dipartimento di Scienza dei Materiali, Universita di Lecce, 73100 Lecce (Italy); INFN, Sezione di Lecce, via per Arnesano, 73100 Lecce (Italy); De Nunzio, G. [Dipartimento di Scienza dei Materiali, Universita di Lecce, 73100 Lecce (Italy); INFN, Sezione di Lecce, via per Arnesano, 73100 Lecce (Italy); Brunetti, A. [Istituto di Matematica e Fisica, Universita di Sassari, 07100 Sassari (Italy); INFN, Sezione di Cagliari, Cittadella Universitaria di Monserrato, 09042 Cagliari (Italy); Marabelli, M. [Istituto Centrale del Restauro, P.zza S. Francesco di Paola, 00184 Rome (Italy); Santamaria, U. [Laboratori dei Musei Vaticani, Citta del Vaticano, Rome (Italy)
2005-07-01
A mobile instrument has been developed for the detection and mapping of detachments in frescos by using Compton back scattered photons. The instrument is mainly composed of a high energy X-ray tube, an X-ray detection system and a translation table. The instrument was first applied to samples simulating various detachment situations, and then transferred to the Vatican Museum to detect detachments and inhomogeneities in the stanza di Eliodoro, one of the 'Raphael's stanze'.
Two-step estimation for inhomogeneous spatial point processes
DEFF Research Database (Denmark)
Waagepetersen, Rasmus; Guan, Yongtao
This paper is concerned with parameter estimation for inhomogeneous spatial point processes with a regression model for the intensity function and tractable second order properties (K-function). Regression parameters are estimated using a Poisson likelihood score estimating function and in a second...... step minimum contrast estimation is applied for the residual clustering parameters. Asymptotic normality of parameter estimates is established under certain mixing conditions and we exemplify how the results may be applied in ecological studies of rain forests....
Non-Linear Instabilities in an Inhomogeneous Plasma
International Nuclear Information System (INIS)
Coppi, B.; Laval, G.; Pellat, R.; Khiet, Tu
1969-01-01
The low-frequency drift modes of a low-pressure isothermal inhomogeneous plasma can be stabilized if the shear of the magnetic field lines exceeds a critical value given by the expression r/L s = (1/2 √2) (a/r), where L s is the shear length, r the characteristic length of density variation, and a the ion Larmor radius. The authors first show that, even if r/L s [fr
On the motion of incompressible inhomogeneous Euler-Korteweg fluids
Czech Academy of Sciences Publication Activity Database
Bulíček, M.; Feireisl, Eduard; Málek, J.; Shvydkoy, R.
2010-01-01
Roč. 3, č. 3 (2010), s. 497-515 ISSN 1937-1632 R&D Projects: GA MŠk LC06052; GA ČR GA201/09/0917 Institutional research plan: CEZ:AV0Z10190503 Keywords : Korteweg fluid * inhomogeneous Euler fluid * Korteweg stress * local-in-time well-posedness * smooth solution Subject RIV: BA - General Mathematics http://www.aimsciences.org/journals/displayArticles.jsp?paperID=5226
Multiple scattering theory of radiative transfer in inhomogeneous atmospheres.
Kanal, M.
1973-01-01
In this paper we treat the multiple scattering theory of radiative transfer in plane-parallel inhomogeneous atmospheres. The treatment presented here may be adopted to model atmospheres characterized by an optical depth dependent coherent scattering phase function. For the purpose of illustration we consider the semi-infinite medium in which the absorption property of the atmosphere is characterized by an exponential function. The methodology employed here is the extension of the case treated previously by the author for homogeneous atmospheres.
Numerical treatment of linearized equations describing inhomogeneous collisionless plasmas
International Nuclear Information System (INIS)
Lewis, H.R.
1979-01-01
The equations governing the small-signal response of spatially inhomogeneous collisionless plasmas have practical significance in physics, for example in controlled thermonuclear fusion research. Although the solutions are very complicated and the equations are different to solve numerically, effective methods for them are being developed which are applicable when the equilibrium involves only one nonignorable coordinate. The general theoretical framework probably will provide a basis for progress when there are two or three nonignorable coordinates
Inhomogeneous ensembles of radical pairs in chemical compasses
Procopio, Maria; Ritz, Thorsten
2016-11-01
The biophysical basis for the ability of animals to detect the geomagnetic field and to use it for finding directions remains a mystery of sensory biology. One much debated hypothesis suggests that an ensemble of specialized light-induced radical pair reactions can provide the primary signal for a magnetic compass sensor. The question arises what features of such a radical pair ensemble could be optimized by evolution so as to improve the detection of the direction of weak magnetic fields. Here, we focus on the overlooked aspect of the noise arising from inhomogeneity of copies of biomolecules in a realistic biological environment. Such inhomogeneity leads to variations of the radical pair parameters, thereby deteriorating the signal arising from an ensemble and providing a source of noise. We investigate the effect of variations in hyperfine interactions between different copies of simple radical pairs on the directional response of a compass system. We find that the choice of radical pair parameters greatly influences how strongly the directional response of an ensemble is affected by inhomogeneity.
The phase transition to an inhomogeneous condensate state
International Nuclear Information System (INIS)
Voskresensky, D.N.
1984-01-01
The Lagrangian (free energy) of the model with a complex scalar order parameter in which the phase transition to an inhomogeneous condensate state exists is constructed in the coordinate representation. In the case of condensation of charged particles (for example paired electrons) interaction with the electromagnetic field is included. The excitation spectrum in the presence of the condensate is found. The oscillations are strongly anisotropic. It is shown that superfluidity is absent for an uncharged system but that the charged one has the property of superconductivity. The important role of thermal fluctuations is demonstrated. They drastically change the behaviour of the condensate system. The condensation in a finite system is considered. A study is carried out for the behaviour of an inhomogeneous condensate in magnetic field. It is shown that the inhomogeneous condensate is a type II superconductor with Ginzburg-Landau parameter kappa >> 1, but that the structure of the mixed state of the system is unusual - consisting of plane layers of the normal phase, when Hsub(c1)< H< H'sub(c2). The distribution of condensate in the strong magnetic field H'sub(c2)< H< Hsub(c2) is also studied. (Auth.)
Magnetostatic modes in ferromagnetic samples with inhomogeneous internal fields
Arias, Rodrigo
2015-03-01
Magnetostatic modes in ferromagnetic samples are very well characterized and understood in samples with uniform internal magnetic fields. More recently interest has shifted to the study of magnetization modes in ferromagnetic samples with inhomogeneous internal fields. The present work shows that under the magnetostatic approximation and for samples of arbitrary shape and/or arbitrary inhomogeneous internal magnetic fields the modes can be classified as elliptic or hyperbolic, and their associated frequency spectrum can be delimited. This results from the analysis of the character of the second order partial differential equation for the magnetostatic potential under these general conditions. In general, a sample with an inhomogeneous internal field and at a given frequency, may have regions of elliptic and hyperbolic character separated by a boundary. In the elliptic regions the magnetostatic modes have a smooth monotonic character (generally decaying form the surfaces (a ``tunneling'' behavior)) and in hyperbolic regions an oscillatory wave-like character. A simple local criterion distinguishes hyperbolic from elliptic regions: the sign of a susceptibility parameter. This study shows that one may control to some extent magnetostatic modes via external fields or geometry. R.E.A. acknowledges Financiamiento Basal para Centros Cientificos y Tecnologicos de Excelencia under Project No. FB 0807 (Chile), Grant No. ICM P10-061-F by Fondo de Innovacion para la Competitividad-MINECON, and Proyecto Fondecyt 1130192.
Large Scale Cosmological Anomalies and Inhomogeneous Dark Energy
Directory of Open Access Journals (Sweden)
Leandros Perivolaropoulos
2014-01-01
Full Text Available A wide range of large scale observations hint towards possible modifications on the standard cosmological model which is based on a homogeneous and isotropic universe with a small cosmological constant and matter. These observations, also known as “cosmic anomalies” include unexpected Cosmic Microwave Background perturbations on large angular scales, large dipolar peculiar velocity flows of galaxies (“bulk flows”, the measurement of inhomogenous values of the fine structure constant on cosmological scales (“alpha dipole” and other effects. The presence of the observational anomalies could either be a large statistical fluctuation in the context of ΛCDM or it could indicate a non-trivial departure from the cosmological principle on Hubble scales. Such a departure is very much constrained by cosmological observations for matter. For dark energy however there are no significant observational constraints for Hubble scale inhomogeneities. In this brief review I discuss some of the theoretical models that can naturally lead to inhomogeneous dark energy, their observational constraints and their potential to explain the large scale cosmic anomalies.
Control of inhomogeneous materials strength by method of acoustic emission
Directory of Open Access Journals (Sweden)
В. В. Носов
2017-08-01
Full Text Available The ambiguous connection between the results of acoustic emission control and the strength of materials makes acoustic-emission diagnosis ineffective and actualizes the problem of strength and metrological heterogeneity. Inhomogeneity is some deviation from a certain norm. The real object is always heterogeneous, homogeneity is an assumption that simplifies the image of the object and the solution of the tasks associated with it. The need to consider heterogeneity is due to the need to clarify a particular task and is a transition to a more complex level of research. Accounting for heterogeneity requires the definition of its type, criterion and method of evaluation. The type of heterogeneity depends on the problem being solved and should be related to the property that determines the function of the real object, the criterion should be informative, and the way of its evaluation is non-destructive. The complexity of predicting the behavior of heterogeneous materials necessitates the modeling of the destructive process that determines the operability, the formulation of the inhomogeneity criterion, the interpretation of the Kaiser effect, as showing inhomogeneity of the phenomenon of non-reproduction of acoustic emission (AE activity upon repeated loading of the examined object.The article gives an example of modeling strength and metrological heterogeneity, analyzes and estimates the informative effect of the Kaiser effect on the danger degree of state of diagnosed object from the positions of the micromechanical model of time dependencies of AE parameters recorded during loading of structural materials and technical objects.
Electron-positron pair production in inhomogeneous electromagnetic fields
International Nuclear Information System (INIS)
Kohlfürst, C.
2015-01-01
The process of electron-positron pair production is investigated within the phase-space Wigner formalism. The similarities between atomic ionization and pair production for homogeneous, but time-dependent linearly polarized electric fields are examined mainly in the regime of multiphoton absorption (field-dependent threshold, above-threshold pair production). Characteristic signatures in the particle spectra are identified (effective mass, channel closing). The non-monotonic dependence of the particle yield on the carrier frequency is discussed as well. The investigations are then extended to spatially inhomogeneous electric fields. New effects arising due to the spatial dependence of the effective mass are discussed in terms of a semi-classical interpretation. An increase in the normalized particle yield is found for various field configurations.Pair production in inhomogeneous electric and magnetic fields is also studied. The influence of a time-dependent spatially inhomogeneous magnetic field on the momentum spectrum and the particle yield is investigated. The Lorentz invariants are identified to be crucial in order to understand pair production by strong electric fields in the presence of strong magnetic fields. (author) [de
Cubesat-Based Dtv Receiver Constellation for Ionospheric Tomography
Bahcivan, H.; Leveque, K.; Doe, R. A.
2013-12-01
The Radio Aurora Explorer mission, funded by NSF's Space Weather and Atmospheric Research program, has demonstrated the utility of CubeSat-based radio receiver payloads for ionospheric research. RAX has primarily been an investigation of microphysics of meter-scale ionospheric structures; however, the data products are also suitable for research on ionospheric effects on radio propagation. To date, the spacecraft has acquired (1) ground-based UHF radar signals that are backscattered from meter-scale ionospheric irregularities, which have been used to measure the dispersion properties of meter-scale plasma waves and (2) ground-based signals, directly on the transmitter-spacecraft path, which have been used to measure radio propagation disturbances (scintillations). Herein we describe the application of a CubeSat constellation of UHF receivers to expand the latter research topic for global-scale ionospheric tomography. The enabling factor for this expansion is the worldwide availability of ground-based digital television (DTV) broadcast signals whose characteristics are optimal for scintillation analysis. A significant part of the populated world have transitioned, or soon to be transitioned, to DTV. The DTV signal has a standard format that contains a highly phase-stable pilot carrier that can be readily adapted for propagation diagnostics. A multi-frequency software-defined radar receiver, similar to the RAX payload, can measure these signals at a large number of pilot carrier frequencies to make radio ray and diffraction tomographic measurements of the ionosphere and the irregularities contained in it. A constellation of CubeSats, launched simultaneously, or in sequence over years, similar to DMSPs, can listen to the DTV stations, providing a vast and dense probing of the ionosphere. Each spacecraft can establish links to a preprogrammed list of DTV stations and cycle through them using time-division frequency multiplexing (TDFM) method. An on board program can
The Role of Ionospheric Outflow Preconditioning in Determining Storm Geoeffectiveness
Welling, D. T.; Liemohn, M. W.; Ridley, A. J.
2012-12-01
It is now well accepted that ionospheric outflow plays an important role in the development of the plasma sheet and ring current during geomagnetic storms. Furthermore, even during quiet times, ionospheric plasma populates the magnetospheric lobes, producing a reservoir of hydrogen and oxygen ions. When the Interplanetary Magnetic Field (IMF) turns southward, this reservoir is connected to the plasma sheet and ring current through magnetospheric convection. Hence, the conditions of the ionosphere and magnetospheric lobes leading up to magnetospheric storm onset have important implications for storm development. Despite this, there has been little research on this preconditioning; most global simulations begin just before storm onset, neglecting preconditioning altogether. This work explores the role of preconditioning in determining the geoeffectiveness of storms using a coupled global model system. A model of ionospheric outflow (the Polar Wind Outflow Model, PWOM) is two-way coupled to a global magnetohydrodynamic model (the Block-Adaptive Tree Solar wind Roe-type Upwind Scheme, BATS-R-US), which in turn drives a ring current model (the Ring current Atmosphere interactions Model, RAM). This unique setup is used to simulate an idealized storm. The model is started at many different times, from 1 hour before storm onset to 12 hours before. The effects of storm preconditioning are examined by investigating the total ionospheric plasma content in the lobes just before onset, the total ionospheric contribution in the ring current just after onset, and the effects on Dst, magnetic elevation angle at geosynchronous, and total ring current energy density. This experiment is repeated for different solar activity levels as set by F10.7 flux. Finally, a synthetic double-dip storm is constructed to see how two closely spaced storms affect each other by changing the preconditioning environment. It is found that preconditioning of the magnetospheric lobes via ionospheric
An alternative ionospheric correction model for global navigation satellite systems
Hoque, M. M.; Jakowski, N.
2015-04-01
The ionosphere is recognized as a major error source for single-frequency operations of global navigation satellite systems (GNSS). To enhance single-frequency operations the global positioning system (GPS) uses an ionospheric correction algorithm (ICA) driven by 8 coefficients broadcasted in the navigation message every 24 h. Similarly, the global navigation satellite system Galileo uses the electron density NeQuick model for ionospheric correction. The Galileo satellite vehicles (SVs) transmit 3 ionospheric correction coefficients as driver parameters of the NeQuick model. In the present work, we propose an alternative ionospheric correction algorithm called Neustrelitz TEC broadcast model NTCM-BC that is also applicable for global satellite navigation systems. Like the GPS ICA or Galileo NeQuick, the NTCM-BC can be optimized on a daily basis by utilizing GNSS data obtained at the previous day at monitor stations. To drive the NTCM-BC, 9 ionospheric correction coefficients need to be uploaded to the SVs for broadcasting in the navigation message. Our investigation using GPS data of about 200 worldwide ground stations shows that the 24-h-ahead prediction performance of the NTCM-BC is better than the GPS ICA and comparable to the Galileo NeQuick model. We have found that the 95 percentiles of the prediction error are about 16.1, 16.1 and 13.4 TECU for the GPS ICA, Galileo NeQuick and NTCM-BC, respectively, during a selected quiet ionospheric period, whereas the corresponding numbers are found about 40.5, 28.2 and 26.5 TECU during a selected geomagnetic perturbed period. However, in terms of complexity the NTCM-BC is easier to handle than the Galileo NeQuick and in this respect comparable to the GPS ICA.
On the effect of ionospheric delay on geodetic relative GPS positioning
Georgiadou, P.Y.; Kleusberg, A.
1988-01-01
Uncorrected ionospheric delay is one of the factors limiting the accuracy in geodetic relative positioning with single frequency Global Positioning System (GPS) carrier phase observations. Dual frequency measurements can be combined to eliminate the ionospheric delay in the observations. A
Assessment of the Impact of Various Ionospheric Models on High-Frequency Signal Raytracing
National Research Council Canada - National Science Library
Werner, Joshua T
2007-01-01
.... Ionospheric refraction can strongly affect the propagation of HF signals. Consequently, Department of Defense missions such as over-the-horizon RADAR, HF communications, and geo-location all depend on an accurate specification of the ionosphere...
Ionospheric Values (Daily Work Sheets), F-Plots, Tabulations, Booklets, Catalogs, and Log Books
National Oceanic and Atmospheric Administration, Department of Commerce — These ionospheric data consist of scaling notes, equipment usage logs, and ionospheric values in the form of daily work sheets, F-Plots, tabulations, and booklets....
Asymptotic Properties of Multistate Random Walks. I. Theory
Roerdink, J.B.T.M.; Shuler, K.E.
1985-01-01
A calculation is presented of the long-time behavior of various random walk properties (moments, probability of return to the origin, expected number of distinct sites visited) for multistate random walks on periodic lattices. In particular, we consider inhomogeneous periodic lattices, consisting of
DESIGN AND ENGINEERING BACKGROUND FOR STATION NETWORKS OF VERTICAL IONOSPHERE SOUNDING
Directory of Open Access Journals (Sweden)
A. Y. Grishentsev
2013-05-01
Full Text Available The paper deals with analysis of the network stations structure for ionosphere vertical sounding. Design features and creation principle of the program complexes for automated processing, analysis and storage of ionosphere sounding are considered. Conceptual model of complex database control system is created. The results of work are used in research practice of leading national organizations to study the ionosphere. Obtained application results of suggested algorithms and programs for automated processing and analysis of ionosphere vertical sounding are shown.
AATR an ionospheric activity indicator specifically based on GNSS measurements
Juan, José Miguel; Sanz, Jaume; Rovira-Garcia, Adrià; González-Casado, Guillermo; Ibáñez, D.; Perez, R. Orus
2018-03-01
This work reviews an ionospheric activity indicator useful for identifying disturbed periods affecting the performance of Global Navigation Satellite System (GNSS). This index is based in the Along Arc TEC Rate (AATR) and can be easily computed from dual-frequency GNSS measurements. The AATR indicator has been assessed over more than one Solar Cycle (2002-2017) involving about 140 receivers distributed world-wide. Results show that it is well correlated with the ionospheric activity and, unlike other global indicators linked to the geomagnetic activity (i.e. DST or Ap), it is sensitive to the regional behaviour of the ionosphere and identifies specific effects on GNSS users. Moreover, from a devoted analysis of different Satellite Based Augmentation System (SBAS) performances in different ionospheric conditions, it follows that the AATR indicator is a very suitable mean to reveal whether SBAS service availability anomalies are linked to the ionosphere. On this account, the AATR indicator has been selected as the metric to characterise the ionosphere operational conditions in the frame of the European Space Agency activities on the European Geostationary Navigation Overlay System (EGNOS). The AATR index has been adopted as a standard tool by the International Civil Aviation Organization (ICAO) for joint ionospheric studies in SBAS. In this work we explain how the AATR is computed, paying special attention to the cycle-slip detection, which is one of the key issues in the AATR computation, not fully addressed in other indicators such as the Rate Of change of the TEC Index (ROTI). After this explanation we present some of the main conclusions about the ionospheric activity that can extracted from the AATR values during the above mentioned long-term study. These conclusions are: (a) the different spatial correlation related with the MOdified DIP (MODIP) which allows to clearly separate high, mid and low latitude regions, (b) the large spatial correlation in mid
Parallel electric fields from ionospheric winds
International Nuclear Information System (INIS)
Nakada, M.P.
1987-01-01
The possible production of electric fields parallel to the magnetic field by dynamo winds in the E region is examined, using a jet stream wind model. Current return paths through the F region above the stream are examined as well as return paths through the conjugate ionosphere. The Wulf geometry with horizontal winds moving in opposite directions one above the other is also examined. Parallel electric fields are found to depend strongly on the width of current sheets at the edges of the jet stream. If these are narrow enough, appreciable parallel electric fields are produced. These appear to be sufficient to heat the electrons which reduces the conductivity and produces further increases in parallel electric fields and temperatures. Calculations indicate that high enough temperatures for optical emission can be produced in less than 0.3 s. Some properties of auroras that might be produced by dynamo winds are examined; one property is a time delay in brightening at higher and lower altitudes
Ionospheric shock waves triggered by rockets
Directory of Open Access Journals (Sweden)
C. H. Lin
2014-09-01
Full Text Available This paper presents a two-dimensional structure of the shock wave signatures in ionospheric electron density resulting from a rocket transit using the rate of change of the total electron content (TEC derived from ground-based GPS receivers around Japan and Taiwan for the first time. From the TEC maps constructed for the 2009 North Korea (NK Taepodong-2 and 2013 South Korea (SK Korea Space Launch Vehicle-II (KSLV-II rocket launches, features of the V-shaped shock wave fronts in TEC perturbations are prominently seen. These fronts, with periods of 100–600 s, produced by the propulsive blasts of the rockets appear immediately and then propagate perpendicularly outward from the rocket trajectory with supersonic velocities between 800–1200 m s−1 for both events. Additionally, clear rocket exhaust depletions of TECs are seen along the trajectory and are deflected by the background thermospheric neutral wind. Twenty minutes after the rocket transits, delayed electron density perturbation waves propagating along the bow wave direction appear with phase velocities of 800–1200 m s−1. According to their propagation character, these delayed waves may be generated by rocket exhaust plumes at earlier rocket locations at lower altitudes.
On the mapping of ionospheric convection into the magnetosphere
International Nuclear Information System (INIS)
Hesse, M.; Birn, J.; Hoffman, R.A.
1997-01-01
Under steady state conditions and in the absence of parallel electric fields, ionospheric convection is a direct map of plasma and magnetic flux convection in the magnetosphere, and quantitative estimates can be obtained from the mapping along magnetic field lines of electrostatic ionospheric electric fields. The resulting magnetospheric electrostatic potential distribution then provides the convection electric field in various magnetospheric regions. We present a quantitative framework for the investigation of the applicability and limitations of this approach based on an analytical theory derived from first principles. Particular emphasis is on the role of parallel electric field regions and on inductive effects, such as expected during the growth and expansive phases of magnetospheric substorms. We derive quantitative estimates for the limits in which either effect leads to a significant decoupling between ionospheric and magnetospheric convection and provide an interpretation of ionospheric convection which is independent of the presence of inductive electric fields elsewhere in the magnetosphere. Finally, we present a study of the relation between average and instantaneous convection, using two periodic dynamical models. The models demonstrate and quantify the potential mismatch between the average electric fields in the ionosphere and the magnetosphere in strongly time-dependent cases that may exist even when they are governed entirely by ideal MHD
Influence of Ionospheric Weather on GNSS Radio Occultation Signals
Yue, X.; Schreiner, W. S.; Pedatella, N. M.; Kuo, Y. H.
2016-12-01
Transient loss of lock (LOL) is one of the key space weather effects on the Global Navigation Satellite System (GNSS). Based on the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) Global Positioning System (GPS) radio occultation (RO) observations during 2007-2011, we have analyzed the signal cycle slip (CS) occurrence comprehensively and its correlation to the ionospheric weather phenomena such as sporadic E (Es), equatorial F region irregularity (EFI), and the ionospheric equatorial ionization anomaly (EIA). The high vertical resolution of RO observations enables us to distinguish the CS resulting from different ionospheric layers clearly on a global scale. In the E layer, the CS is dominated by the Es occurrence, while in the F layer, the CS is mainly related to the EIA and EFI at low and equatorial latitudes. In the polar region, the CS is primarily related to polar cap electron density gradients. The overall average CS (> 6 cycles) occurrence is 23% per occultation, with the E (50-150 km) and F (150-600 km) layers contributing 8.3% and 14.7%, respectively. Awareness of the effect of the ionospheric weather on the CS of the low-Earth-orbit (LEO)-based GNSS signal could be beneficial to a variety of applications, including the LEO-based GNSS data processing and the corresponding hardware/firmware design.
Irregular ionization and scintillation of the ionosphere in equator region
International Nuclear Information System (INIS)
Shinno, Kenji
1974-01-01
The latest studies on the scintillation in satellite communication and its related irregularities of ionosphere are reviewed. They were made clear by means of spread-F, the direct measurement with scientific satellites, VHF radar observation, and radio wave propagation in equator region. The fundamental occurrence mechanism may be instability of plasma caused by the interaction of movement of neutral atmosphere and magnetic field. Comparison of the main characteristics of scintillation, namely the dependence on region, solar activity, season, local time, geomagnetic activity, movement in ionosphere, scattering source, frequency and transmission mode, was made and the correlation among spread-F, TEP and scintillation was summarized. The latest principal studies were the observations made by Intelsat and by ATS. Scintillation of Syncom-3 and Intelsat-II-F2 and spread-F by ionosphere observation were compared by Huang. It is reasonable to consider that the occurrence of scintillation is caused by the irregularities in ionosphere which are particular in equator region, because of the similar characteristics of spread-F and VHF propagation in the equator region. These three phenomena may occur in relation to the irregularities of ionosphere. Interpretation of spread-F and the abnormal propagation wave across the equator are given. The study using VHF radar and the movement of irregular ionization by the direct observation with artificial satellites are reviewd. (Iwakiri, K.)
Longitudinal Ionospheric Variability Observed by LITES on the ISS
Stephan, A. W.; Finn, S. C.; Cook, T.; Geddes, G.; Chakrabarti, S.; Budzien, S. A.
2017-12-01
The Limb-Imaging Ionospheric and Thermospheric Extreme-Ultraviolet Spectrograph (LITES) is an imaging spectrograph designed to measure altitude profiles (150-350 km) of extreme- and far-ultraviolet airglow emissions that originate from photochemical processes in the ionosphere and thermosphere. During the daytime, LITES observes the bright O+ 83.4 nm emission from which the ionospheric profile can be inferred. At night, recombination emissions at 91.1 and 135.6 nm provide a direct measure of the electron content along the line of sight. LITES was launched and installed on the International Space Station (ISS) in late February 2017 where it has been operating along with the highly complementary GPS Radio Occultation and Ultraviolet Photometry - Colocated (GROUP-C) experiment. We will present some of the first observations from LITES in April 2017 that show longitudinal patterns in ionospheric density and the daily variability in those patterns. LITES vertical imaging from a vantage point near 410 km enables a particularly unique perspective on the altitude of the ionospheric peak density at night that can complement and inform other ground- and space-based measurements, and track the longitude-altitude variability that is reflective of changes in equatorial electrodynamics.
Directory of Open Access Journals (Sweden)
A. W. Wernik
1996-01-01
Full Text Available Four data sets of density fluctuations measured in-situ by the Dynamics Explorer (DE 2 were analyzed in an attempt to study chaotic nature of the high-latitude turbulence and, in this way to complement the conventional spectral analysis. It has been found that the probability distribution function of density differences is far from Gaussian and similar to that observed in the intermittent fluid or MBD turbulence. This indicates that ionospheric density fluctuations are not stochastic but coherent to some extent. Wayland's and surrogate data tests for determinism in a time series of density data allowed us to differentiate between regions of intense shear and moderate shear. We observe that in the region of strong field aligned currents (FAC and intense shear, or along the convection in the collisional regime, ionospheric turbulence behaves like a random noise with non-Gaussian statistics implying that the underlying physical process is nondeterministic. On the other hand, when FACs are weak, and shear is moderate or observations made in the inertial regime the turbulence is chaotic. The attractor dimension is lowest (1.9 for 'old' convected irregularities. The dimension 3.2 is found for turbulence in the inertial regime and considerably smaller (2.4 in the collisional regime. It is suggested that a high dimension in the inertial regime may be caused by a complicated velocity structure in the shear instability region.
Electron collision frequency variations and electric fields in the lower ionosphere
International Nuclear Information System (INIS)
Gokov, A.M.; Martynenko, S.I.
1997-01-01
Distribution of relative variations of the electron effective collision frequency at the ionosphere lower boundary is determined on the basis of analysis of radio-signals partially reflected from the lower ionosphere. Technique to evaluate the strength of electrical fields at the ionosphere lower boundary using experimentally measured variations of the effective frequency of electron collisions is elaborated. 12 refs., 2 figs
Could ionospheric variations be precursors of a seismic event? A short discussion
Energy Technology Data Exchange (ETDEWEB)
Kouris, S.S. [Thessaloniki Univ., Thessaloniki (Greece). Dept. of Electrical and Computer Engineering; Spalla, P. [Consiglio Nazionale delle Ricerche, Istituto di Ricerca Onde Elettromagnetiche, Florence (Italy); Zolesi, B. [Istituto Nazionale di Geofisica e Vulcanologia, Rome (Italy)
2001-04-01
A short review of published papers on the perturbations in the ionosphere due to seismogenic effects is reported. The method to correlate different classes of phenomena as ionospheric variations and subsequent seismic events is discussed. Even if the theoretical attempts to understand or to explain the electromagnetic phenomena in the ionosphere, as precursors of earthquakes are not satisfactory, the reported results encourage further investigations.
Structure of the polar ionosphere and convection of magnetospheric plasma outside the plazmapause
International Nuclear Information System (INIS)
Mozhaev, A.M.; Osipov, N.K.; AN SSSR, Moscow. Inst. Zemnogo Magnetizma, Ionosfery i Rasprostraneniya Radiovoln)
1977-01-01
The effect of large-scale magnetospheric convection on the space structure of high-latitude ionosphere was investigated. Simple analytical models were used. The continuity equation for the electron concentration at a given rate of transfer is solved. It has been found that the formation of the principal structural forms in the ionosphere is associated with the horizontal convective transfer of ionospheric plasma
Unexpected Southern Hemisphere ionospheric response to geomagnetic storm of 15 August 2015
Czech Academy of Sciences Publication Activity Database
Edemskiy, I.; Laštovička, Jan; Burešová, Dalia; Habarulema, J. B.; Nepomnyashchikh, I.
2018-01-01
Roč. 36, č. 1 (2018), s. 71-79 ISSN 0992-7689 Institutional support: RVO:68378289 Keywords : ionosphere * ionospheric disturbances * midlatitude ionosphere Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Meteorology and atmospheric sciences Impact factor: 1.610, year: 2016 https://www.ann-geophys.net/36/71/2018/angeo-36-71-2018.pdf
Dudorov, Vadim V.; Kolosov, Valerii V.
2003-04-01
The propagation problem for partially coherent wave fields in inhomogeneous media is considered in this work. The influence of refraction, inhomogeneity of gain medium properties and refraction parameter fluctuations on target characteristics of radiation are taken into consideration. Such problems arise in the study of laser propagation on atmosphere paths, under investigation of directional radiation pattern forming for lasers which gain media is characterized by strong fluctuation of dielectric constant and for lasers which resonator have an atmosphere area. The ray-tracing technique allows us to make effective algorithms for modeling of a partially coherent wave field propagation through inhomogeneous random media is presented for case when the influecne of an optical wave refraction, the influence of the inhomogeiety of radiaitn amplification or absorption, and also the influence of fluctuations of a refraction parameter on target radiation parameters are basic. Novelty of the technique consists in the account of the additional refraction caused by inhomogeneity of gain, and also in the method of an account of turbulent distortions of a beam with any initial coherence allowing to execute construction of effective numerical algorithms. The technique based on the solution of the equation for coherence function of the second order.
Liu, Congliang; Kirchengast, Gottfried; Sun, Yueqiang; Zhang, Kefei; Norman, Robert; Schwaerz, Marc; Bai, Weihua; Du, Qifei; Li, Ying
2018-04-01
The Global Navigation Satellite System (GNSS) radio occultation (RO) technique is widely used to observe the atmosphere for applications such as numerical weather prediction and global climate monitoring. The ionosphere is a major error source to RO at upper stratospheric altitudes, and a linear dual-frequency bending angle correction is commonly used to remove the first-order ionospheric effect. However, the higher-order residual ionospheric error (RIE) can still be significant, so it needs to be further mitigated for high-accuracy applications, especially from 35 km altitude upward, where the RIE is most relevant compared to the decreasing magnitude of the atmospheric bending angle. In a previous study we quantified RIEs using an ensemble of about 700 quasi-realistic end-to-end simulated RO events, finding typical RIEs at the 0.1 to 0.5 µrad noise level, but were left with 26 exceptional events with anomalous RIEs at the 1 to 10 µrad level that remained unexplained. In this study, we focused on investigating the causes of the high RIE of these exceptional events, employing detailed along-ray-path analyses of atmospheric and ionospheric refractivities, impact parameter changes, and bending angles and RIEs under asymmetric and symmetric ionospheric structures. We found that the main causes of the high RIEs are a combination of physics-based effects - where asymmetric ionospheric conditions play the primary role, more than the ionization level driven by solar activity - and technical ray tracer effects due to occasions of imperfect smoothness in ionospheric refractivity model derivatives. We also found that along-ray impact parameter variations of more than 10 to 20 m are possible due to ionospheric asymmetries and, depending on prevailing horizontal refractivity gradients, are positive or negative relative to the initial impact parameter at the GNSS transmitter. Furthermore, mesospheric RIEs are found generally higher than upper-stratospheric ones, likely due to
Macalalad, E. P.; Tsai, L.; Wu, J.
2011-12-01
Ionospheric delay is one of the major sources of error in GPS positioning and navigation. This error in both pseudorange and phase ranges can vary depending on the location of observation, local time, season, solar cycle and geomagnetic activity. This effect can be practically removed using dual-frequency receivers. However, these types of receivers are very expensive and thus, impractical for most users. Therefore, for single-frequency receivers, ionosphere is usually modeled to attempt to remove this effect analytically. Numerous ionosphere models have been introduced in the past. Some of which are the Klobuchar (or broadcast) model and the global ionosphere map (GIM) provided by the International GNSS Service (IGS). In this paper, another model, called the TaiWan Ionosphere Model (TWIM) was used to correct this effect. TWIM is a three dimensional ionospheric electron (ne) density model derived from FormoSat3/COSMIC GPS Radio Occultation measurements, was used to calculate ionospheric delay for GPS single-frequency positioning. The ne profiles were used to calculate the slant TEC (STEC) between a receiver and each GPS satellite and correct the pseudorange single-frequency observations. The corrected pseudorange for every epoch was used to calculate the position of the receiver. Observations were made in a low-latitude location near one of the peaks of the equatorial anomaly. It was shown that TEC maps generated using TWIM exhibited detailed structure of the ionosphere, whereas Klobuchar and GIM only provided the basic diurnal and geographic features of the ionosphere. Also, it was shown that for static point positioning TWIM provides more accurate and more precise positioning than the Klobuchar and GIM models. That is, on the average, the horizontal accuracy, represented by the circular error probable (CEP), distance RMS (DRMS) and twice the DRMS (2DRMS), were better by 15-18% as compared with the CEP, DRMS and 2DRMS of uncorrected, Klobuchar and GIM. Moreover
Nearly incompressible fluids: Hydrodynamics and large scale inhomogeneity
International Nuclear Information System (INIS)
Hunana, P.; Zank, G. P.; Shaikh, D.
2006-01-01
A system of hydrodynamic equations in the presence of large-scale inhomogeneities for a high plasma beta solar wind is derived. The theory is derived under the assumption of low turbulent Mach number and is developed for the flows where the usual incompressible description is not satisfactory and a full compressible treatment is too complex for any analytical studies. When the effects of compressibility are incorporated only weakly, a new description, referred to as 'nearly incompressible hydrodynamics', is obtained. The nearly incompressible theory, was originally applied to homogeneous flows. However, large-scale gradients in density, pressure, temperature, etc., are typical in the solar wind and it was unclear how inhomogeneities would affect the usual incompressible and nearly incompressible descriptions. In the homogeneous case, the lowest order expansion of the fully compressible equations leads to the usual incompressible equations, followed at higher orders by the nearly incompressible equations, as introduced by Zank and Matthaeus. With this work we show that the inclusion of large-scale inhomogeneities (in this case time-independent and radially symmetric background solar wind) modifies the leading-order incompressible description of solar wind flow. We find, for example, that the divergence of velocity fluctuations is nonsolenoidal and that density fluctuations can be described to leading order as a passive scalar. Locally (for small lengthscales), this system of equations converges to the usual incompressible equations and we therefore use the term 'locally incompressible' to describe the equations. This term should be distinguished from the term 'nearly incompressible', which is reserved for higher-order corrections. Furthermore, we find that density fluctuations scale with Mach number linearly, in contrast to the original homogeneous nearly incompressible theory, in which density fluctuations scale with the square of Mach number. Inhomogeneous nearly
Inhomogeneous target-dose distributions: a dimension more for optimization?
International Nuclear Information System (INIS)
Gersem, Werner R.T. de; Derycke, Sylvie; Colle, Christophe O.; Wagter, Carlos de; Neve, Wilfried J. de
1999-01-01
Purpose: To evaluate if the use of inhomogeneous target-dose distributions, obtained by 3D conformal radiotherapy plans with or without beam intensity modulation, offers the possibility to decrease indices of toxicity to normal tissues and/or increase indices of tumor control stage III non-small cell lung cancer (NSCLC). Methods and Materials: Ten patients with stage III NSCLC were planned using a conventional 3D technique and a technique involving noncoplanar beam intensity modulation (BIM). Two planning target volumes (PTVs) were defined: PTV1 included macroscopic tumor volume and PTV2 included macroscopic and microscopic tumor volume. Virtual simulation defined the beam shapes and incidences as well as the wedge orientations (3D) and segment outlines (BIM). Weights of wedged beams, unwedged beams, and segments were determined by optimization using an objective function with a biological and a physical component. The biological component included tumor control probability (TCP) for PTV1 (TCP1), PTV2 (TCP2), and normal tissue complication probability (NTCP) for lung, spinal cord, and heart. The physical component included the maximum and minimum dose as well as the standard deviation of the dose at PTV1. The most inhomogeneous target-dose distributions were obtained by using only the biological component of the objective function (biological optimization). By enabling the physical component in addition to the biological component, PTV1 inhomogeneity was reduced (biophysical optimization). As indices for toxicity to normal tissues, NTCP-values as well as maximum doses or dose levels to relevant fractions of the organ's volume were used. As indices for tumor control, TCP-values as well as minimum doses to the PTVs were used. Results: When optimization was performed with the biophysical as compared to the biological objective function, the PTV1 inhomogeneity decreased from 13 (8-23)% to 4 (2-9)% for the 3D-(p = 0.00009) and from 44 (33-56)% to 20 (9-34)% for the BIM
Ionospheric Gradient Threat Mitigation in Future Dual Frequency GBAS
Directory of Open Access Journals (Sweden)
Michael Felux
2017-01-01
Full Text Available The Ground Based Augmentation System (GBAS is a landing system for aircraft based on differential corrections for the signals of Global Navigation Satellite Systems (GNSS, such as GPS or Galileo. The main impact on the availability of current single frequency systems results from the necessary protection against ionospheric gradients. With the introduction of Galileo and the latest generation of GPS satellites, a second frequency is available for aeronautical navigation. Dual frequency methods allow forming of ionospheric free combinations of the signals, eliminating a large part of the ionospheric threats to GBAS. However, the combination of several signals increases the noise in the position solution and in the calculation of error bounds. We, therefore, developed a method to base positioning algorithms on single frequency measurements and use the second frequency only for monitoring purposes. In this paper, we describe a detailed derivation of the monitoring scheme and discuss its implications for the use in an aviation context.