DEFF Research Database (Denmark)
2013-01-01
This is a very simple program to help you put together input files for use in Gries' (2007) R-based collostruction analysis program. It basically puts together a text file with a frequency list of lexemes in the construction and inserts a column where you can add the corpus frequencies. It requires...... it as input for basic collexeme collostructional analysis (Stefanowitsch & Gries 2003) in Gries' (2007) program. ColloInputGenerator is, in its current state, based on programming commands introduced in Gries (2009). Projected updates: Generation of complete work-ready frequency lists....
International Nuclear Information System (INIS)
Guo Ya'nan; Jin Dapeng; Zhao Dixin; Liu Zhen'an; Qiao Qiao; Chinese Academy of Sciences, Beijing
2007-01-01
Due to the randomness of radioactive decay and nuclear reaction, the signals from detectors are random in time. But normal pulse generator generates periodical pulses. To measure the performances of nuclear electronic devices under random inputs, a random generator is necessary. Types of random pulse generator are reviewed, 2 digital random pulse generators are introduced. (authors)
Energy Technology Data Exchange (ETDEWEB)
2017-02-01
The PLEXOS Input Data Generator (PIDG) is a tool that enables PLEXOS users to better version their data, automate data processing, collaborate in developing inputs, and transfer data between different production cost modeling and other power systems analysis software. PIDG can process data that is in a generalized format from multiple input sources, including CSV files, PostgreSQL databases, and PSS/E .raw files and write it to an Excel file that can be imported into PLEXOS with only limited manual intervention.
Modeling and generating input processes
Energy Technology Data Exchange (ETDEWEB)
Johnson, M.E.
1987-01-01
This tutorial paper provides information relevant to the selection and generation of stochastic inputs to simulation studies. The primary area considered is multivariate but much of the philosophy at least is relevant to univariate inputs as well. 14 refs.
Quantum random number generator
Pooser, Raphael C.
2016-05-10
A quantum random number generator (QRNG) and a photon generator for a QRNG are provided. The photon generator may be operated in a spontaneous mode below a lasing threshold to emit photons. Photons emitted from the photon generator may have at least one random characteristic, which may be monitored by the QRNG to generate a random number. In one embodiment, the photon generator may include a photon emitter and an amplifier coupled to the photon emitter. The amplifier may enable the photon generator to be used in the QRNG without introducing significant bias in the random number and may enable multiplexing of multiple random numbers. The amplifier may also desensitize the photon generator to fluctuations in power supplied thereto while operating in the spontaneous mode. In one embodiment, the photon emitter and amplifier may be a tapered diode amplifier.
Quantum random number generator
Soubusta, Jan; Haderka, Ondrej; Hendrych, Martin
2001-03-01
Since reflection or transmission of a quantum particle on a beamsplitter is inherently random quantum process, a device built on this principle does not suffer from drawbacks of neither pseudo-random computer generators or classical noise sources. Nevertheless, a number of physical conditions necessary for high quality random numbers generation must be satisfied. Luckily, in quantum optics realization they can be well controlled. We present an easy random number generator based on the division of weak light pulses on a beamsplitter. The randomness of the generated bit stream is supported by passing the data through series of 15 statistical test. The device generates at a rate of 109.7 kbit/s.
Computer Generated Inputs for NMIS Processor Verification
International Nuclear Information System (INIS)
J. A. Mullens; J. E. Breeding; J. A. McEvers; R. W. Wysor; L. G. Chiang; J. R. Lenarduzzi; J. T. Mihalczo; J. K. Mattingly
2001-01-01
Proper operation of the Nuclear Identification Materials System (NMIS) processor can be verified using computer-generated inputs [BIST (Built-In-Self-Test)] at the digital inputs. Preselected sequences of input pulses to all channels with known correlation functions are compared to the output of the processor. These types of verifications have been utilized in NMIS type correlation processors at the Oak Ridge National Laboratory since 1984. The use of this test confirmed a malfunction in a NMIS processor at the All-Russian Scientific Research Institute of Experimental Physics (VNIIEF) in 1998. The NMIS processor boards were returned to the U.S. for repair and subsequently used in NMIS passive and active measurements with Pu at VNIIEF in 1999
Uniform random number generators
Farr, W. R.
1971-01-01
Methods are presented for the generation of random numbers with uniform and normal distributions. Subprogram listings of Fortran generators for the Univac 1108, SDS 930, and CDC 3200 digital computers are also included. The generators are of the mixed multiplicative type, and the mathematical method employed is that of Marsaglia and Bray.
International Nuclear Information System (INIS)
Coveyou, R.R.
1974-01-01
The subject of random number generation is currently controversial. Differing opinions on this subject seem to stem from implicit or explicit differences in philosophy; in particular, from differing ideas concerning the role of probability in the real world of physical processes, electronic computers, and Monte Carlo calculations. An attempt is made here to reconcile these views. The role of stochastic ideas in mathematical models is discussed. In illustration of these ideas, a mathematical model of the use of random number generators in Monte Carlo calculations is constructed. This model is used to set up criteria for the comparison and evaluation of random number generators. (U.S.)
Modal Parameter Identification from Responses of General Unknown Random Inputs
DEFF Research Database (Denmark)
Ibrahim, S. R.; Asmussen, J. C.; Brincker, Rune
1996-01-01
Modal parameter identification from ambient responses due to a general unknown random inputs is investigated. Existing identification techniques which are based on assumptions of white noise and or stationary random inputs are utilized even though the inputs conditions are not satisfied....... This is accomplished via adding. In cascade. A force cascade conversion to the structures system under consideration. The input to the force conversion system is white noise and the output of which is the actual force(s) applied to the structure. The white noise input(s) and the structures responses are then used...
[Intel random number generator-based true random number generator].
Huang, Feng; Shen, Hong
2004-09-01
To establish a true random number generator on the basis of certain Intel chips. The random numbers were acquired by programming using Microsoft Visual C++ 6.0 via register reading from the random number generator (RNG) unit of an Intel 815 chipset-based computer with Intel Security Driver (ISD). We tested the generator with 500 random numbers in NIST FIPS 140-1 and X(2) R-Squared test, and the result showed that the random number it generated satisfied the demand of independence and uniform distribution. We also compared the random numbers generated by Intel RNG-based true random number generator and those from the random number table statistically, by using the same amount of 7500 random numbers in the same value domain, which showed that the SD, SE and CV of Intel RNG-based random number generator were less than those of the random number table. The result of u test of two CVs revealed no significant difference between the two methods. Intel RNG-based random number generator can produce high-quality random numbers with good independence and uniform distribution, and solves some problems with random number table in acquisition of the random numbers.
Hydrogen Generation Rate Model Calculation Input Data
International Nuclear Information System (INIS)
KUFAHL, M.A.
2000-01-01
This report documents the procedures and techniques utilized in the collection and analysis of analyte input data values in support of the flammable gas hazard safety analyses. This document represents the analyses of data current at the time of its writing and does not account for data available since then
Source-Independent Quantum Random Number Generation
Cao, Zhu; Zhou, Hongyi; Yuan, Xiao; Ma, Xiongfeng
2016-01-01
Quantum random number generators can provide genuine randomness by appealing to the fundamental principles of quantum mechanics. In general, a physical generator contains two parts—a randomness source and its readout. The source is essential to the quality of the resulting random numbers; hence, it needs to be carefully calibrated and modeled to achieve information-theoretical provable randomness. However, in practice, the source is a complicated physical system, such as a light source or an atomic ensemble, and any deviations in the real-life implementation from the theoretical model may affect the randomness of the output. To close this gap, we propose a source-independent scheme for quantum random number generation in which output randomness can be certified, even when the source is uncharacterized and untrusted. In our randomness analysis, we make no assumptions about the dimension of the source. For instance, multiphoton emissions are allowed in optical implementations. Our analysis takes into account the finite-key effect with the composable security definition. In the limit of large data size, the length of the input random seed is exponentially small compared to that of the output random bit. In addition, by modifying a quantum key distribution system, we experimentally demonstrate our scheme and achieve a randomness generation rate of over 5 ×103 bit /s .
Source-Independent Quantum Random Number Generation
Directory of Open Access Journals (Sweden)
Zhu Cao
2016-02-01
Full Text Available Quantum random number generators can provide genuine randomness by appealing to the fundamental principles of quantum mechanics. In general, a physical generator contains two parts—a randomness source and its readout. The source is essential to the quality of the resulting random numbers; hence, it needs to be carefully calibrated and modeled to achieve information-theoretical provable randomness. However, in practice, the source is a complicated physical system, such as a light source or an atomic ensemble, and any deviations in the real-life implementation from the theoretical model may affect the randomness of the output. To close this gap, we propose a source-independent scheme for quantum random number generation in which output randomness can be certified, even when the source is uncharacterized and untrusted. In our randomness analysis, we make no assumptions about the dimension of the source. For instance, multiphoton emissions are allowed in optical implementations. Our analysis takes into account the finite-key effect with the composable security definition. In the limit of large data size, the length of the input random seed is exponentially small compared to that of the output random bit. In addition, by modifying a quantum key distribution system, we experimentally demonstrate our scheme and achieve a randomness generation rate of over 5×10^{3} bit/s.
FED, Geometry Input Generator for Program TRUMP
International Nuclear Information System (INIS)
Schauer, D.A.; Elrod, D.C.
1996-01-01
1 - Description of program or function: FED reduces the effort required to obtain the necessary geometric input for problems which are to be solved using the heat-transfer code, TRUMP (NESC 771). TRUMP calculates transient and steady-state temperature distributions in multidimensional systems. FED can properly zone any body of revolution in one, or three dimensions. 2 - Method of solution: The region of interest must first be divided into areas which may consist of a common material. The boundaries of these areas are the required FED input. Each area is subdivided into volume nodes, and the geometrical properties are calculated. Finally, FED connects the adjacent nodes to one another, using the proper surface area, interface distance, and, if specified, radiation form factor and interface conductance. 3 - Restrictions on the complexity of the problem: Rectangular bodies can only be approximated by using a very large radius of revolution compared to the total radial thickness and by considering only a small angular segment in the circumferential direction
Digital random-number generator
Brocker, D. H.
1973-01-01
For binary digit array of N bits, use N noise sources to feed N nonlinear operators; each flip-flop in digit array is set by nonlinear operator to reflect whether amplitude of generator which feeds it is above or below mean value of generated noise. Fixed-point uniform distribution random number generation method can also be used to generate random numbers with other than uniform distribution.
Object grammars and random generation
Directory of Open Access Journals (Sweden)
I. Dutour
1998-12-01
Full Text Available This paper presents a new systematic approach for the uniform random generation of combinatorial objects. The method is based on the notion of object grammars which give recursive descriptions of objects and generalize context-freegrammars. The application of particular valuations to these grammars leads to enumeration and random generation of objects according to non algebraic parameters.
Long period pseudo random number sequence generator
Wang, Charles C. (Inventor)
1989-01-01
A circuit for generating a sequence of pseudo random numbers, (A sub K). There is an exponentiator in GF(2 sup m) for the normal basis representation of elements in a finite field GF(2 sup m) each represented by m binary digits and having two inputs and an output from which the sequence (A sub K). Of pseudo random numbers is taken. One of the two inputs is connected to receive the outputs (E sub K) of maximal length shift register of n stages. There is a switch having a pair of inputs and an output. The switch outputs is connected to the other of the two inputs of the exponentiator. One of the switch inputs is connected for initially receiving a primitive element (A sub O) in GF(2 sup m). Finally, there is a delay circuit having an input and an output. The delay circuit output is connected to the other of the switch inputs and the delay circuit input is connected to the output of the exponentiator. Whereby after the exponentiator initially receives the primitive element (A sub O) in GF(2 sup m) through the switch, the switch can be switched to cause the exponentiator to receive as its input a delayed output A(K-1) from the exponentiator thereby generating (A sub K) continuously at the output of the exponentiator. The exponentiator in GF(2 sup m) is novel and comprises a cyclic-shift circuit; a Massey-Omura multiplier; and, a control logic circuit all operably connected together to perform the function U(sub i) = 92(sup i) (for n(sub i) = 1 or 1 (for n(subi) = 0).
Random number generation and creativity.
Bains, William
2008-01-01
A previous paper suggested that humans can generate genuinely random numbers. I tested this hypothesis by repeating the experiment with a larger number of highly numerate subjects, asking them to call out a sequence of digits selected from 0 through 9. The resulting sequences were substantially non-random, with an excess of sequential pairs of numbers and a deficit of repeats of the same number, in line with previous literature. However, the previous literature suggests that humans generate random numbers with substantial conscious effort, and distractions which reduce that effort reduce the randomness of the numbers. I reduced my subjects' concentration by asking them to call out in another language, and with alcohol - neither affected the randomness of their responses. This suggests that the ability to generate random numbers is a 'basic' function of the human mind, even if those numbers are not mathematically 'random'. I hypothesise that there is a 'creativity' mechanism, while not truly random, provides novelty as part of the mind's defence against closed programming loops, and that testing for the effects seen here in people more or less familiar with numbers or with spontaneous creativity could identify more features of this process. It is possible that training to perform better at simple random generation tasks could help to increase creativity, through training people to reduce the conscious mind's suppression of the 'spontaneous', creative response to new questions.
Microcomputer Unit: Generating Random Numbers.
Haigh, William E.
1986-01-01
Presents an activity, suitable for students in grades 6-12, on generating random numbers. Objectives, equipment needed, list of prerequisite experiences, instructional strategies, and ready-to-copy student worksheets are included. (JN)
Reduced basis ANOVA methods for partial differential equations with high-dimensional random inputs
Energy Technology Data Exchange (ETDEWEB)
Liao, Qifeng, E-mail: liaoqf@shanghaitech.edu.cn [School of Information Science and Technology, ShanghaiTech University, Shanghai 200031 (China); Lin, Guang, E-mail: guanglin@purdue.edu [Department of Mathematics & School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907 (United States)
2016-07-15
In this paper we present a reduced basis ANOVA approach for partial deferential equations (PDEs) with random inputs. The ANOVA method combined with stochastic collocation methods provides model reduction in high-dimensional parameter space through decomposing high-dimensional inputs into unions of low-dimensional inputs. In this work, to further reduce the computational cost, we investigate spatial low-rank structures in the ANOVA-collocation method, and develop efficient spatial model reduction techniques using hierarchically generated reduced bases. We present a general mathematical framework of the methodology, validate its accuracy and demonstrate its efficiency with numerical experiments.
Computer generation of random deviates
International Nuclear Information System (INIS)
Cormack, John
1991-01-01
The need for random deviates arises in many scientific applications. In medical physics, Monte Carlo simulations have been used in radiology, radiation therapy and nuclear medicine. Specific instances include the modelling of x-ray scattering processes and the addition of random noise to images or curves in order to assess the effects of various processing procedures. Reliable sources of random deviates with statistical properties indistinguishable from true random deviates are a fundamental necessity for such tasks. This paper provides a review of computer algorithms which can be used to generate uniform random deviates and other distributions of interest to medical physicists, along with a few caveats relating to various problems and pitfalls which can occur. Source code listings for the generators discussed (in FORTRAN, Turbo-PASCAL and Data General ASSEMBLER) are available on request from the authors. 27 refs., 3 tabs., 5 figs
LPTAU, Quasi Random Sequence Generator
International Nuclear Information System (INIS)
Sobol, Ilya M.
1993-01-01
1 - Description of program or function: LPTAU generates quasi random sequences. These are uniformly distributed sets of L=M N points in the N-dimensional unit cube: I N =[0,1]x...x[0,1]. These sequences are used as nodes for multidimensional integration; as searching points in global optimization; as trial points in multi-criteria decision making; as quasi-random points for quasi Monte Carlo algorithms. 2 - Method of solution: Uses LP-TAU sequence generation (see references). 3 - Restrictions on the complexity of the problem: The number of points that can be generated is L 30 . The dimension of the space cannot exceed 51
The MIXMAX random number generator
Savvidy, Konstantin G.
2015-11-01
In this paper, we study the randomness properties of unimodular matrix random number generators. Under well-known conditions, these discrete-time dynamical systems have the highly desirable K-mixing properties which guarantee high quality random numbers. It is found that some widely used random number generators have poor Kolmogorov entropy and consequently fail in empirical tests of randomness. These tests show that the lowest acceptable value of the Kolmogorov entropy is around 50. Next, we provide a solution to the problem of determining the maximal period of unimodular matrix generators of pseudo-random numbers. We formulate the necessary and sufficient condition to attain the maximum period and present a family of specific generators in the MIXMAX family with superior performance and excellent statistical properties. Finally, we construct three efficient algorithms for operations with the MIXMAX matrix which is a multi-dimensional generalization of the famous cat-map. First, allowing to compute the multiplication by the MIXMAX matrix with O(N) operations. Second, to recursively compute its characteristic polynomial with O(N2) operations, and third, to apply skips of large number of steps S to the sequence in O(N2 log(S)) operations.
Conceptual Design of GRIG (GUI Based RETRAN Input Generator)
International Nuclear Information System (INIS)
Lee, Gyung Jin; Hwang, Su Hyun; Hong, Soon Joon; Lee, Byung Chul; Jang, Chan Su; Um, Kil Sup
2007-01-01
For the development of high performance methodology using advanced transient analysis code, it is essential to generate the basic input of transient analysis code by rigorous QA procedures. There are various types of operating NPPs (Nuclear Power Plants) in Korea such as Westinghouse plants, KSNP(Korea Standard Nuclear Power Plant), APR1400 (Advance Power Reactor), etc. So there are some difficulties to generate and manage systematically the input of transient analysis code reflecting the inherent characteristics of various types of NPPs. To minimize the user faults and investment man power and to generate effectively and accurately the basic inputs of transient analysis code for all domestic NPPs, it is needed to develop the program that can automatically generate the basic input, which can be directly applied to the transient analysis, from the NPP design material. ViRRE (Visual RETRAN Running Environment) developed by KEPCO (Korea Electric Power Corporation) and KAERI (Korea Atomic Energy Research Institute) provides convenient working environment for Kori Unit 1/2. ViRRE shows the calculated results through on-line display but its capability is limited on the convenient execution of RETRAN. So it can not be used as input generator. ViSA (Visual System Analyzer) developed by KAERI is a NPA (Nuclear Plant Analyzer) using RETRAN and MARS code as thermal-hydraulic engine. ViSA contains both pre-processing and post-processing functions. In the pre-processing, only the trip data cards and boundary conditions can be changed through GUI mode based on pre-prepared text-input, so the capability of input generation is very limited. SNAP (Symbolic Nuclear Analysis Package) developed by Applied Programming Technology, Inc. and NRC (Nuclear Regulatory Commission) provides efficient working environment for the use of nuclear safety analysis codes such as RELAP5 and TRAC-M codes. SNAP covers wide aspects of thermal-hydraulic analysis from model creation through data analysis
Using random response input in Ibrahim Time Domain
DEFF Research Database (Denmark)
Olsen, Peter; Brincker, R.
2013-01-01
In this paper the time domain technique Ibrahim Time Domain (ITD) is used to analyze random time data. ITD is known to be a technique for identification of output only systems. The traditional formulation of ITD is claimed to be limited, when identifying closely spaced modes, because....... In this article it is showed that when using the modified ITD random time data can be analyzed. The application of the technique is displayed by a case study, with simulations and experimental data....... of the technique being Single Input Multiple Output (SIMO). It has earlier been showed that when modifying ITD with Toeplitz matrix averaging. Identification of time data with closely spaced modes is improved. In the traditional formulation of ITD the time data has to be free decays or impulse response functions...
Pseudo-Random Number Generators
Howell, L. W.; Rheinfurth, M. H.
1984-01-01
Package features comprehensive selection of probabilistic distributions. Monte Carlo simulations resorted to whenever systems studied not amenable to deterministic analyses or when direct experimentation not feasible. Random numbers having certain specified distribution characteristic integral part of simulations. Package consists of collector of "pseudorandom" number generators for use in Monte Carlo simulations.
Generating random networks and graphs
Coolen, Ton; Roberts, Ekaterina
2017-01-01
This book supports researchers who need to generate random networks, or who are interested in the theoretical study of random graphs. The coverage includes exponential random graphs (where the targeted probability of each network appearing in the ensemble is specified), growth algorithms (i.e. preferential attachment and the stub-joining configuration model), special constructions (e.g. geometric graphs and Watts Strogatz models) and graphs on structured spaces (e.g. multiplex networks). The presentation aims to be a complete starting point, including details of both theory and implementation, as well as discussions of the main strengths and weaknesses of each approach. It includes extensive references for readers wishing to go further. The material is carefully structured to be accessible to researchers from all disciplines while also containing rigorous mathematical analysis (largely based on the techniques of statistical mechanics) to support those wishing to further develop or implement the theory of rand...
Multi detector input and function generator for polarized neutron experiments
International Nuclear Information System (INIS)
De Blois, J.; Beunes, A.J.H.; Ende, P. v.d.; Osterholt, E.A.; Rekveldt, M.T.; Schipper, M.N.; Velthuis, S.G.E. te
1998-01-01
In this paper a VME module is described for static or stroboscopic measurements with a neutron scattering instrument, consisting essentially of a series of up to 64 3 He neutron detectors around a sample environment. Each detector is provided with an amplifier and a discriminator to separate the neutrons from noise. To reduce the wiring, the discriminator outputs are connected to the module by coding boxes. Two 16-inputs to one-output coding boxes generate serial output codes on a fiber optic connection. This basically fast connection reduces the dead time introduced by the coding, and the influence of environmental noise. With stroboscopic measurements a periodic function is used to affect the sample surrounded by a field coil. Each detected neutron is labeled with a data label containing the detector number and the time of detection with respect to a time reference. The data time base can be programmed on a linear or a nonlinear scale. An external source or an attribute of the periodic function may generate the time reference pulse. A 12-bit DAC connected to the output of an 8 K, 16-bits memory, where the pattern of the current has been stored before, generates the function. The function memory is scanned by the programmable function time base. Attributes are set by the four remaining bits of the memory. One separate detector input connects a monitor detector in the neutron beam with a 32-bit counter/timer that provides measuring on a preset count, preset time or preset frame. (orig.)
Web service based system for generating input data sets
International Nuclear Information System (INIS)
Kralev, Velin; Kraleva, Radoslava
2011-01-01
This article deals with a three-layer architectural model of a distributed information system based on Web services, which will be used for automatic generation of sets of input data. The information system will be constructed of a client layer, a service layer and of a data layer. The web services as a tool of developing distributed software systems will be presented briefly. A web service and the implementation of its web methods will be described. A way to use the developed web methods in real application will be proposed. Keywords: web services
Random Generators and Normal Numbers
Bailey, David H.; Crandall, Richard E.
2002-01-01
Pursuant to the authors' previous chaotic-dynamical model for random digits of fundamental constants, we investigate a complementary, statistical picture in which pseudorandom number generators (PRNGs) are central. Some rigorous results are achieved: We establish b-normality for constants of the form $\\sum_i 1/(b^{m_i} c^{n_i})$ for certain sequences $(m_i), (n_i)$ of integers. This work unifies and extends previously known classes of explicit normals. We prove that for coprime $b,c>1$ the...
A random number generator for continuous random variables
Guerra, V. M.; Tapia, R. A.; Thompson, J. R.
1972-01-01
A FORTRAN 4 routine is given which may be used to generate random observations of a continuous real valued random variable. Normal distribution of F(x), X, E(akimas), and E(linear) is presented in tabular form.
DEFF Research Database (Denmark)
Bigoni, Daniele; Engsig-Karup, Allan Peter; Eskilsson, Claes
2016-01-01
A major challenge in next-generation industrial applications is to improve numerical analysis by quantifying uncertainties in predictions. In this work we present a formulation of a fully nonlinear and dispersive potential flow water wave model with random inputs for the probabilistic description...... at different points in the parameter space, allowing for the reuse of existing simulation software. The choice of the applied methods is driven by the number of uncertain input parameters and by the fact that finding the solution of the considered model is computationally intensive. We revisit experimental...... benchmarks often used for validation of deterministic water wave models. Based on numerical experiments and assumed uncertainties in boundary data, our analysis reveals that some of the known discrepancies from deterministic simulation in comparison with experimental measurements could be partially explained...
The RANDOM computer program: A linear congruential random number generator
Miles, R. F., Jr.
1986-01-01
The RANDOM Computer Program is a FORTRAN program for generating random number sequences and testing linear congruential random number generators (LCGs). The linear congruential form of random number generator is discussed, and the selection of parameters of an LCG for a microcomputer described. This document describes the following: (1) The RANDOM Computer Program; (2) RANDOM.MOD, the computer code needed to implement an LCG in a FORTRAN program; and (3) The RANCYCLE and the ARITH Computer Programs that provide computational assistance in the selection of parameters for an LCG. The RANDOM, RANCYCLE, and ARITH Computer Programs are written in Microsoft FORTRAN for the IBM PC microcomputer and its compatibles. With only minor modifications, the RANDOM Computer Program and its LCG can be run on most micromputers or mainframe computers.
Generation of pseudo-random numbers
Howell, L. W.; Rheinfurth, M. H.
1982-01-01
Practical methods for generating acceptable random numbers from a variety of probability distributions which are frequently encountered in engineering applications are described. The speed, accuracy, and guarantee of statistical randomness of the various methods are discussed.
Self-correcting random number generator
Humble, Travis S.; Pooser, Raphael C.
2016-09-06
A system and method for generating random numbers. The system may include a random number generator (RNG), such as a quantum random number generator (QRNG) configured to self-correct or adapt in order to substantially achieve randomness from the output of the RNG. By adapting, the RNG may generate a random number that may be considered random regardless of whether the random number itself is tested as such. As an example, the RNG may include components to monitor one or more characteristics of the RNG during operation, and may use the monitored characteristics as a basis for adapting, or self-correcting, to provide a random number according to one or more performance criteria.
Input energy measurement toward warm dense matter generation using intense pulsed power generator
Hayashi, R.; Ito, T.; Ishitani, T.; Tamura, F.; Kudo, T.; Takakura, N.; Kashine, K.; Takahashi, K.; Sasaki, T.; Kikuchi, T.; Harada, Nob.; Jiang, W.; Tokuchi, A.
2016-05-01
In order to investigate properties of warm dense matter (WDM) in inertial confinement fusion (ICF), evaluation method for the WDM with isochoric heating on the implosion time-scale using an intense pulsed power generator ETIGO-II (∼1 TW, ∼50 ns) has been considered. In this study, the history of input energy into the sample is measured from the voltage and the current waveforms. To achieve isochoric heating, a foamed aluminum with pore sizes 600 μm and with 90% porosity was packed into a hollow glass capillary (ø 5 mm × 10 mm). The temperature of the sample is calculated from the numerical calculation using the measured input power. According to the above measurements, the input energy into a sample and the achievable temperature are estimated to be 300 J and 6000 K. It indicates that the WDM state is generated using the proposed method with ICF implosion time-scale.
Analysis of android random number generator
Sarıtaş, Serkan
2013-01-01
Ankara : The Department of Computer Engineering and the Graduate School of Engineering and Science of Bilkent University, 2013. Thesis (Master's) -- Bilkent University, 2013. Includes bibliographical references leaves 61-65. Randomness is a crucial resource for cryptography, and random number generators are critical building blocks of almost all cryptographic systems. Therefore, random number generation is one of the key parts of secure communication. Random number generatio...
IFF, Full-Screen Input Menu Generator for FORTRAN Program
International Nuclear Information System (INIS)
Seidl, Albert
1991-01-01
1 - Description of program or function: The IFF-package contains input modules for use within FORTRAN programs. This package enables the programmer to easily include interactive menu-directed data input (module VTMEN1) and command-word processing (module INPCOM) into a FORTRAN program. 2 - Method of solution: No mathematical operations are performed. 3 - Restrictions on the complexity of the problem: Certain restrictions of use may arise from the dimensioning of arrays. Field lengths are defined via PARAMETER-statements
How random are random numbers generated using photons?
International Nuclear Information System (INIS)
Solis, Aldo; Angulo Martínez, Alí M; Ramírez Alarcón, Roberto; Cruz Ramírez, Hector; U’Ren, Alfred B; Hirsch, Jorge G
2015-01-01
Randomness is fundamental in quantum theory, with many philosophical and practical implications. In this paper we discuss the concept of algorithmic randomness, which provides a quantitative method to assess the Borel normality of a given sequence of numbers, a necessary condition for it to be considered random. We use Borel normality as a tool to investigate the randomness of ten sequences of bits generated from the differences between detection times of photon pairs generated by spontaneous parametric downconversion. These sequences are shown to fulfil the randomness criteria without difficulties. As deviations from Borel normality for photon-generated random number sequences have been reported in previous work, a strategy to understand these diverging findings is outlined. (paper)
All-optical fast random number generator.
Li, Pu; Wang, Yun-Cai; Zhang, Jian-Zhong
2010-09-13
We propose a scheme of all-optical random number generator (RNG), which consists of an ultra-wide bandwidth (UWB) chaotic laser, an all-optical sampler and an all-optical comparator. Free from the electric-device bandwidth, it can generate 10Gbit/s random numbers in our simulation. The high-speed bit sequences can pass standard statistical tests for randomness after all-optical exclusive-or (XOR) operation.
Quality pseudo-random number generator
International Nuclear Information System (INIS)
Tarasiuk, J.
1996-01-01
The pseudo-random number generator (RNG) was written to match needs of nuclear and high-energy physics computation which in some cases require very long and independent random number sequences. In this random number generator the repetition period is about 10 36 what should be sufficient for all computers in the world. In this article the test results of RNG correlation, speed and identity of computations for PC, Sun4 and VAX computer tests are presented
Random Number Generation in Autism.
Williams, Mark A.; Moss, Simon A.; Bradshaw, John L.; Rinehart, Nicole J.
2002-01-01
This study explored the ability of 14 individuals with autism to generate a unique series of digits. Individuals with autism were more likely to repeat previous digits than comparison individuals, suggesting they may exhibit a shortfall in response inhibition. Results support the executive dysfunction theory of autism. (Contains references.)…
International Nuclear Information System (INIS)
Mironowicz, Piotr; Tavakoli, Armin; Hameedi, Alley; Marques, Breno; Bourennane, Mohamed; Pawłowski, Marcin
2016-01-01
Quantum communication with systems of dimension larger than two provides advantages in information processing tasks. Examples include higher rates of key distribution and random number generation. The main disadvantage of using such multi-dimensional quantum systems is the increased complexity of the experimental setup. Here, we analyze a not-so-obvious problem: the relation between randomness certification and computational requirements of the post-processing of experimental data. In particular, we consider semi-device independent randomness certification from an experiment using a four dimensional quantum system to violate the classical bound of a random access code. Using state-of-the-art techniques, a smaller quantum violation requires more computational power to demonstrate randomness, which at some point becomes impossible with today’s computers although the randomness is (probably) still there. We show that by dedicating more input settings of the experiment to randomness certification, then by more computational postprocessing of the experimental data which corresponds to a quantum violation, one may increase the amount of certified randomness. Furthermore, we introduce a method that significantly lowers the computational complexity of randomness certification. Our results show how more randomness can be generated without altering the hardware and indicate a path for future semi-device independent protocols to follow. (paper)
Random Item Generation Is Affected by Age
Multani, Namita; Rudzicz, Frank; Wong, Wing Yiu Stephanie; Namasivayam, Aravind Kumar; van Lieshout, Pascal
2016-01-01
Purpose: Random item generation (RIG) involves central executive functioning. Measuring aspects of random sequences can therefore provide a simple method to complement other tools for cognitive assessment. We examine the extent to which RIG relates to specific measures of cognitive function, and whether those measures can be estimated using RIG…
Synchronization properties of coupled chaotic neurons: The role of random shared input
Energy Technology Data Exchange (ETDEWEB)
Kumar, Rupesh [School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067 (India); Bilal, Shakir [Department of Physics and Astrophysics, University of Delhi, Delhi 110 007 (India); Ramaswamy, Ram [School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067 (India); School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067 (India)
2016-06-15
Spike-time correlations of neighbouring neurons depend on their intrinsic firing properties as well as on the inputs they share. Studies have shown that periodically firing neurons, when subjected to random shared input, exhibit asynchronicity. Here, we study the effect of random shared input on the synchronization of weakly coupled chaotic neurons. The cases of so-called electrical and chemical coupling are both considered, and we observe a wide range of synchronization behaviour. When subjected to identical shared random input, there is a decrease in the threshold coupling strength needed for chaotic neurons to synchronize in-phase. The system also supports lag–synchronous states, and for these, we find that shared input can cause desynchronization. We carry out a master stability function analysis for a network of such neurons and show agreement with the numerical simulations. The contrasting role of shared random input for complete and lag synchronized neurons is useful in understanding spike-time correlations observed in many areas of the brain.
Synchronization properties of coupled chaotic neurons: The role of random shared input
International Nuclear Information System (INIS)
Kumar, Rupesh; Bilal, Shakir; Ramaswamy, Ram
2016-01-01
Spike-time correlations of neighbouring neurons depend on their intrinsic firing properties as well as on the inputs they share. Studies have shown that periodically firing neurons, when subjected to random shared input, exhibit asynchronicity. Here, we study the effect of random shared input on the synchronization of weakly coupled chaotic neurons. The cases of so-called electrical and chemical coupling are both considered, and we observe a wide range of synchronization behaviour. When subjected to identical shared random input, there is a decrease in the threshold coupling strength needed for chaotic neurons to synchronize in-phase. The system also supports lag–synchronous states, and for these, we find that shared input can cause desynchronization. We carry out a master stability function analysis for a network of such neurons and show agreement with the numerical simulations. The contrasting role of shared random input for complete and lag synchronized neurons is useful in understanding spike-time correlations observed in many areas of the brain.
Quantifiers for randomness of chaotic pseudo-random number generators.
De Micco, L; Larrondo, H A; Plastino, A; Rosso, O A
2009-08-28
We deal with randomness quantifiers and concentrate on their ability to discern the hallmark of chaos in time series used in connection with pseudo-random number generators (PRNGs). Workers in the field are motivated to use chaotic maps for generating PRNGs because of the simplicity of their implementation. Although there exist very efficient general-purpose benchmarks for testing PRNGs, we feel that the analysis provided here sheds additional didactic light on the importance of the main statistical characteristics of a chaotic map, namely (i) its invariant measure and (ii) the mixing constant. This is of help in answering two questions that arise in applications: (i) which is the best PRNG among the available ones? and (ii) if a given PRNG turns out not to be good enough and a randomization procedure must still be applied to it, which is the best applicable randomization procedure? Our answer provides a comparative analysis of several quantifiers advanced in the extant literature.
Pseudo-random number generator based on asymptotic deterministic randomness
Wang, Kai; Pei, Wenjiang; Xia, Haishan; Cheung, Yiu-ming
2008-06-01
A novel approach to generate the pseudorandom-bit sequence from the asymptotic deterministic randomness system is proposed in this Letter. We study the characteristic of multi-value correspondence of the asymptotic deterministic randomness constructed by the piecewise linear map and the noninvertible nonlinearity transform, and then give the discretized systems in the finite digitized state space. The statistic characteristics of the asymptotic deterministic randomness are investigated numerically, such as stationary probability density function and random-like behavior. Furthermore, we analyze the dynamics of the symbolic sequence. Both theoretical and experimental results show that the symbolic sequence of the asymptotic deterministic randomness possesses very good cryptographic properties, which improve the security of chaos based PRBGs and increase the resistance against entropy attacks and symbolic dynamics attacks.
Pseudo-random number generator based on asymptotic deterministic randomness
International Nuclear Information System (INIS)
Wang Kai; Pei Wenjiang; Xia Haishan; Cheung Yiuming
2008-01-01
A novel approach to generate the pseudorandom-bit sequence from the asymptotic deterministic randomness system is proposed in this Letter. We study the characteristic of multi-value correspondence of the asymptotic deterministic randomness constructed by the piecewise linear map and the noninvertible nonlinearity transform, and then give the discretized systems in the finite digitized state space. The statistic characteristics of the asymptotic deterministic randomness are investigated numerically, such as stationary probability density function and random-like behavior. Furthermore, we analyze the dynamics of the symbolic sequence. Both theoretical and experimental results show that the symbolic sequence of the asymptotic deterministic randomness possesses very good cryptographic properties, which improve the security of chaos based PRBGs and increase the resistance against entropy attacks and symbolic dynamics attacks
RANDNA: a random DNA sequence generator.
Piva, Francesco; Principato, Giovanni
2006-01-01
Monte Carlo simulations are useful to verify the significance of data. Genomic regularities, such as the nucleotide correlations or the not uniform distribution of the motifs throughout genomic or mature mRNA sequences, exist and their significance can be checked by means of the Monte Carlo test. The test needs good quality random sequences in order to work, moreover they should have the same nucleotide distribution as the sequences in which the regularities have been found. Random DNA sequences are also useful to estimate the background score of an alignment, that is a threshold below which the resulting score is merely due to chance. We have developed RANDNA, a free software which allows to produce random DNA or RNA sequences setting both their length and the percentage of nucleotide composition. Sequences having the same nucleotide distribution of exonic, intronic or intergenic sequences can be generated. Its graphic interface makes it possible to easily set the parameters that characterize the sequences being produced and saved in a text format file. The pseudo-random number generator function of Borland Delphi 6 is used, since it guarantees a good randomness, a long cycle length and a high speed. We have checked the quality of sequences generated by the software, by means of well-known tests, both by themselves and versus genuine random sequences. We show the good quality of the generated sequences. The software, complete with examples and documentation, is freely available to users from: http://www.introni.it/en/software.
Generating equilateral random polygons in confinement III
International Nuclear Information System (INIS)
Diao, Y; Ernst, C; Montemayor, A; Ziegler, U
2012-01-01
In this paper we continue our earlier studies (Diao et al 2011 J. Phys. A: Math. Theor. 44 405202, Diao et al J. Phys. A: Math. Theor. 45 275203) on the generation methods of random equilateral polygons confined in a sphere. The first half of this paper is concerned with the generation of confined equilateral random walks. We show that if the selection of a vertex is uniform subject to the position of its previous vertex and the confining condition, then the distributions of the vertices are not uniform, although there exists a distribution such that if the initial vertex is selected following this distribution, then all vertices of the random walk follow this same distribution. Thus in order to generate a confined equilateral random walk, the selection of a vertex cannot be uniform subject to the position of its previous vertex and the confining condition. We provide a simple algorithm capable of generating confined equilateral random walks whose vertex distribution is almost uniform in the confinement sphere. In the second half of this paper we show that any process generating confined equilateral random walks can be turned into a process generating confined equilateral random polygons with the property that the vertex distribution of the polygons approaches the vertex distribution of the walks as the polygons get longer and longer. In our earlier studies, the starting point of the confined polygon is fixed at the center of the sphere. The new approach here allows us to move the starting point of the confined polygon off the center of the sphere. (paper)
Generation of correlated finite alphabet waveforms using gaussian random variables
Ahmed, Sajid
2016-01-13
Various examples of methods and systems are provided for generation of correlated finite alphabet waveforms using Gaussian random variables in, e.g., radar and communication applications. In one example, a method includes mapping an input signal comprising Gaussian random variables (RVs) onto finite-alphabet non-constant-envelope (FANCE) symbols using a predetermined mapping function, and transmitting FANCE waveforms through a uniform linear array of antenna elements to obtain a corresponding beampattern. The FANCE waveforms can be based upon the mapping of the Gaussian RVs onto the FANCE symbols. In another example, a system includes a memory unit that can store a plurality of digital bit streams corresponding to FANCE symbols and a front end unit that can transmit FANCE waveforms through a uniform linear array of antenna elements to obtain a corresponding beampattern. The system can include a processing unit that can encode the input signal and/or determine the mapping function.
Generation of correlated finite alphabet waveforms using gaussian random variables
Ahmed, Sajid; Alouini, Mohamed-Slim; Jardak, Seifallah
2016-01-01
Various examples of methods and systems are provided for generation of correlated finite alphabet waveforms using Gaussian random variables in, e.g., radar and communication applications. In one example, a method includes mapping an input signal comprising Gaussian random variables (RVs) onto finite-alphabet non-constant-envelope (FANCE) symbols using a predetermined mapping function, and transmitting FANCE waveforms through a uniform linear array of antenna elements to obtain a corresponding beampattern. The FANCE waveforms can be based upon the mapping of the Gaussian RVs onto the FANCE symbols. In another example, a system includes a memory unit that can store a plurality of digital bit streams corresponding to FANCE symbols and a front end unit that can transmit FANCE waveforms through a uniform linear array of antenna elements to obtain a corresponding beampattern. The system can include a processing unit that can encode the input signal and/or determine the mapping function.
On grey levels in random CAPTCHA generation
Newton, Fraser; Kouritzin, Michael A.
2011-06-01
A CAPTCHA is an automatically generated test designed to distinguish between humans and computer programs; specifically, they are designed to be easy for humans but difficult for computer programs to pass in order to prevent the abuse of resources by automated bots. They are commonly seen guarding webmail registration forms, online auction sites, and preventing brute force attacks on passwords. In the following, we address the question: How does adding a grey level to random CAPTCHA generation affect the utility of the CAPTCHA? We treat the problem of generating the random CAPTCHA as one of random field simulation: An initial state of background noise is evolved over time using Gibbs sampling and an efficient algorithm for generating correlated random variables. This approach has already been found to yield highly-readable yet difficult-to-crack CAPTCHAs. We detail how the requisite parameters for introducing grey levels are estimated and how we generate the random CAPTCHA. The resulting CAPTCHA will be evaluated in terms of human readability as well as its resistance to automated attacks in the forms of character segmentation and optical character recognition.
A non-linear dimension reduction methodology for generating data-driven stochastic input models
Ganapathysubramanian, Baskar; Zabaras, Nicholas
2008-06-01
Stochastic analysis of random heterogeneous media (polycrystalline materials, porous media, functionally graded materials) provides information of significance only if realistic input models of the topology and property variations are used. This paper proposes a framework to construct such input stochastic models for the topology and thermal diffusivity variations in heterogeneous media using a data-driven strategy. Given a set of microstructure realizations (input samples) generated from given statistical information about the medium topology, the framework constructs a reduced-order stochastic representation of the thermal diffusivity. This problem of constructing a low-dimensional stochastic representation of property variations is analogous to the problem of manifold learning and parametric fitting of hyper-surfaces encountered in image processing and psychology. Denote by M the set of microstructures that satisfy the given experimental statistics. A non-linear dimension reduction strategy is utilized to map M to a low-dimensional region, A. We first show that M is a compact manifold embedded in a high-dimensional input space Rn. An isometric mapping F from M to a low-dimensional, compact, connected set A⊂Rd(d≪n) is constructed. Given only a finite set of samples of the data, the methodology uses arguments from graph theory and differential geometry to construct the isometric transformation F:M→A. Asymptotic convergence of the representation of M by A is shown. This mapping F serves as an accurate, low-dimensional, data-driven representation of the property variations. The reduced-order model of the material topology and thermal diffusivity variations is subsequently used as an input in the solution of stochastic partial differential equations that describe the evolution of dependant variables. A sparse grid collocation strategy (Smolyak algorithm) is utilized to solve these stochastic equations efficiently. We showcase the methodology by constructing low
A non-linear dimension reduction methodology for generating data-driven stochastic input models
International Nuclear Information System (INIS)
Ganapathysubramanian, Baskar; Zabaras, Nicholas
2008-01-01
Stochastic analysis of random heterogeneous media (polycrystalline materials, porous media, functionally graded materials) provides information of significance only if realistic input models of the topology and property variations are used. This paper proposes a framework to construct such input stochastic models for the topology and thermal diffusivity variations in heterogeneous media using a data-driven strategy. Given a set of microstructure realizations (input samples) generated from given statistical information about the medium topology, the framework constructs a reduced-order stochastic representation of the thermal diffusivity. This problem of constructing a low-dimensional stochastic representation of property variations is analogous to the problem of manifold learning and parametric fitting of hyper-surfaces encountered in image processing and psychology. Denote by M the set of microstructures that satisfy the given experimental statistics. A non-linear dimension reduction strategy is utilized to map M to a low-dimensional region, A. We first show that M is a compact manifold embedded in a high-dimensional input space R n . An isometric mapping F from M to a low-dimensional, compact, connected set A is contained in R d (d<< n) is constructed. Given only a finite set of samples of the data, the methodology uses arguments from graph theory and differential geometry to construct the isometric transformation F:M→A. Asymptotic convergence of the representation of M by A is shown. This mapping F serves as an accurate, low-dimensional, data-driven representation of the property variations. The reduced-order model of the material topology and thermal diffusivity variations is subsequently used as an input in the solution of stochastic partial differential equations that describe the evolution of dependant variables. A sparse grid collocation strategy (Smolyak algorithm) is utilized to solve these stochastic equations efficiently. We showcase the methodology
Generating equilateral random polygons in confinement II
International Nuclear Information System (INIS)
Diao, Y; Ernst, C; Montemayor, A; Ziegler, U
2012-01-01
In this paper we continue an earlier study (Diao et al 2011 J. Phys. A: Math. Theor. 44 405202) on the generation algorithms of random equilateral polygons confined in a sphere. Here, the equilateral random polygons are rooted at the center of the confining sphere and the confining sphere behaves like an absorbing boundary. One way to generate such a random polygon is the accept/reject method in which an unconditioned equilateral random polygon rooted at origin is generated. The polygon is accepted if it is within the confining sphere, otherwise it is rejected and the process is repeated. The algorithm proposed in this paper offers an alternative to the accept/reject method, yielding a faster generation process when the confining sphere is small. In order to use this algorithm effectively, a large, reusable data set needs to be pre-computed only once. We derive the theoretical distribution of the given random polygon model and demonstrate, with strong numerical evidence, that our implementation of the algorithm follows this distribution. A run time analysis and a numerical error estimate are given at the end of the paper. (paper)
A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data
Babuška, Ivo; Nobile, Fabio; Tempone, Raul
2010-01-01
This work proposes and analyzes a stochastic collocation method for solving elliptic partial differential equations with random coefficients and forcing terms. These input data are assumed to depend on a finite number of random variables. The method consists of a Galerkin approximation in space and a collocation in the zeros of suitable tensor product orthogonal polynomials (Gauss points) in the probability space, and naturally leads to the solution of uncoupled deterministic problems as in the Monte Carlo approach. It treats easily a wide range of situations, such as input data that depend nonlinearly on the random variables, diffusivity coefficients with unbounded second moments, and random variables that are correlated or even unbounded. We provide a rigorous convergence analysis and demonstrate exponential convergence of the “probability error” with respect to the number of Gauss points in each direction of the probability space, under some regularity assumptions on the random input data. Numerical examples show the effectiveness of the method. Finally, we include a section with developments posterior to the original publication of this work. There we review sparse grid stochastic collocation methods, which are effective collocation strategies for problems that depend on a moderately large number of random variables.
Generating Realistic Labelled, Weighted Random Graphs
Directory of Open Access Journals (Sweden)
Michael Charles Davis
2015-12-01
Full Text Available Generative algorithms for random graphs have yielded insights into the structure and evolution of real-world networks. Most networks exhibit a well-known set of properties, such as heavy-tailed degree distributions, clustering and community formation. Usually, random graph models consider only structural information, but many real-world networks also have labelled vertices and weighted edges. In this paper, we present a generative model for random graphs with discrete vertex labels and numeric edge weights. The weights are represented as a set of Beta Mixture Models (BMMs with an arbitrary number of mixtures, which are learned from real-world networks. We propose a Bayesian Variational Inference (VI approach, which yields an accurate estimation while keeping computation times tractable. We compare our approach to state-of-the-art random labelled graph generators and an earlier approach based on Gaussian Mixture Models (GMMs. Our results allow us to draw conclusions about the contribution of vertex labels and edge weights to graph structure.
Statistical evaluation of PACSTAT random number generation capabilities
Energy Technology Data Exchange (ETDEWEB)
Piepel, G.F.; Toland, M.R.; Harty, H.; Budden, M.J.; Bartley, C.L.
1988-05-01
This report summarizes the work performed in verifying the general purpose Monte Carlo driver-program PACSTAT. The main objective of the work was to verify the performance of PACSTAT's random number generation capabilities. Secondary objectives were to document (using controlled configuration management procedures) changes made in PACSTAT at Pacific Northwest Laboratory, and to assure that PACSTAT input and output files satisfy quality assurance traceability constraints. Upon receipt of the PRIME version of the PACSTAT code from the Basalt Waste Isolation Project, Pacific Northwest Laboratory staff converted the code to run on Digital Equipment Corporation (DEC) VAXs. The modifications to PACSTAT were implemented using the WITNESS configuration management system, with the modifications themselves intended to make the code as portable as possible. Certain modifications were made to make the PACSTAT input and output files conform to quality assurance traceability constraints. 10 refs., 17 figs., 6 tabs.
Using Random Forests to Select Optimal Input Variables for Short-Term Wind Speed Forecasting Models
Directory of Open Access Journals (Sweden)
Hui Wang
2017-10-01
Full Text Available Achieving relatively high-accuracy short-term wind speed forecasting estimates is a precondition for the construction and grid-connected operation of wind power forecasting systems for wind farms. Currently, most research is focused on the structure of forecasting models and does not consider the selection of input variables, which can have significant impacts on forecasting performance. This paper presents an input variable selection method for wind speed forecasting models. The candidate input variables for various leading periods are selected and random forests (RF is employed to evaluate the importance of all variable as features. The feature subset with the best evaluation performance is selected as the optimal feature set. Then, kernel-based extreme learning machine is constructed to evaluate the performance of input variables selection based on RF. The results of the case study show that by removing the uncorrelated and redundant features, RF effectively extracts the most strongly correlated set of features from the candidate input variables. By finding the optimal feature combination to represent the original information, RF simplifies the structure of the wind speed forecasting model, shortens the training time required, and substantially improves the model’s accuracy and generalization ability, demonstrating that the input variables selected by RF are effective.
Generation of correlated finite alphabet waveforms using gaussian random variables
Jardak, Seifallah
2014-09-01
Correlated waveforms have a number of applications in different fields, such as radar and communication. It is very easy to generate correlated waveforms using infinite alphabets, but for some of the applications, it is very challenging to use them in practice. Moreover, to generate infinite alphabet constant envelope correlated waveforms, the available research uses iterative algorithms, which are computationally very expensive. In this work, we propose simple novel methods to generate correlated waveforms using finite alphabet constant and non-constant-envelope symbols. To generate finite alphabet waveforms, the proposed method map the Gaussian random variables onto the phase-shift-keying, pulse-amplitude, and quadrature-amplitude modulation schemes. For such mapping, the probability-density-function of Gaussian random variables is divided into M regions, where M is the number of alphabets in the corresponding modulation scheme. By exploiting the mapping function, the relationship between the cross-correlation of Gaussian and finite alphabet symbols is derived. To generate equiprobable symbols, the area of each region is kept same. If the requirement is to have each symbol with its own unique probability, the proposed scheme allows us that as well. Although, the proposed scheme is general, the main focus of this paper is to generate finite alphabet waveforms for multiple-input multiple-output radar, where correlated waveforms are used to achieve desired beampatterns. © 2014 IEEE.
Quantum random number generator based on quantum nature of vacuum fluctuations
Ivanova, A. E.; Chivilikhin, S. A.; Gleim, A. V.
2017-11-01
Quantum random number generator (QRNG) allows obtaining true random bit sequences. In QRNG based on quantum nature of vacuum, optical beam splitter with two inputs and two outputs is normally used. We compare mathematical descriptions of spatial beam splitter and fiber Y-splitter in the quantum model for QRNG, based on homodyne detection. These descriptions were identical, that allows to use fiber Y-splitters in practical QRNG schemes, simplifying the setup. Also we receive relations between the input radiation and the resulting differential current in homodyne detector. We experimentally demonstrate possibility of true random bits generation by using QRNG based on homodyne detection with Y-splitter.
Generating Correlated QPSK Waveforms By Exploiting Real Gaussian Random Variables
Jardak, Seifallah
2012-11-01
The design of waveforms with specified auto- and cross-correlation properties has a number of applications in multiple-input multiple-output (MIMO) radar, one of them is the desired transmit beampattern design. In this work, an algorithm is proposed to generate quadrature phase shift- keying (QPSK) waveforms with required cross-correlation properties using real Gaussian random-variables (RV’s). This work can be considered as the extension of what was presented in [1] to generate BPSK waveforms. This work will be extended for the generation of correlated higher-order phase shift-keying (PSK) and quadrature amplitude modulation (QAM) schemes that can better approximate the desired beampattern.
A programmable Gaussian random pulse generator for automated performance measurements
International Nuclear Information System (INIS)
Abdel-Aal, R.E.
1989-01-01
This paper describes a versatile random signal generator which produces logic pulses with a Gaussian distribution for the pulse spacing. The average rate at the pulse generator output can be software-programmed, which makes it useful in performing automated measurements of dead time and CPU time performance of data acquisition systems and modules over a wide range of data rates. Hardware and software components are described and data on the input-output characteristics and the statistical properties of the pulse generator are given. Typical applications are discussed together with advantages over using radioactive test sources. Results obtained from an automated performance run on a VAX 11/785 data acquisition system are presented. (orig.)
Generating Correlated QPSK Waveforms By Exploiting Real Gaussian Random Variables
Jardak, Seifallah; Ahmed, Sajid; Alouini, Mohamed-Slim
2012-01-01
The design of waveforms with specified auto- and cross-correlation properties has a number of applications in multiple-input multiple-output (MIMO) radar, one of them is the desired transmit beampattern design. In this work, an algorithm is proposed to generate quadrature phase shift- keying (QPSK) waveforms with required cross-correlation properties using real Gaussian random-variables (RV’s). This work can be considered as the extension of what was presented in [1] to generate BPSK waveforms. This work will be extended for the generation of correlated higher-order phase shift-keying (PSK) and quadrature amplitude modulation (QAM) schemes that can better approximate the desired beampattern.
Physical Principle for Generation of Randomness
Zak, Michail
2009-01-01
A physical principle (more precisely, a principle that incorporates mathematical models used in physics) has been conceived as the basis of a method of generating randomness in Monte Carlo simulations. The principle eliminates the need for conventional random-number generators. The Monte Carlo simulation method is among the most powerful computational methods for solving high-dimensional problems in physics, chemistry, economics, and information processing. The Monte Carlo simulation method is especially effective for solving problems in which computational complexity increases exponentially with dimensionality. The main advantage of the Monte Carlo simulation method over other methods is that the demand on computational resources becomes independent of dimensionality. As augmented by the present principle, the Monte Carlo simulation method becomes an even more powerful computational method that is especially useful for solving problems associated with dynamics of fluids, planning, scheduling, and combinatorial optimization. The present principle is based on coupling of dynamical equations with the corresponding Liouville equation. The randomness is generated by non-Lipschitz instability of dynamics triggered and controlled by feedback from the Liouville equation. (In non-Lipschitz dynamics, the derivatives of solutions of the dynamical equations are not required to be bounded.)
Generating equilateral random polygons in confinement
International Nuclear Information System (INIS)
Diao, Y; Ernst, C; Montemayor, A; Ziegler, U
2011-01-01
One challenging problem in biology is to understand the mechanism of DNA packing in a confined volume such as a cell. It is known that confined circular DNA is often knotted and hence the topology of the extracted (and relaxed) circular DNA can be used as a probe of the DNA packing mechanism. However, in order to properly estimate the topological properties of the confined circular DNA structures using mathematical models, it is necessary to generate large ensembles of simulated closed chains (i.e. polygons) of equal edge lengths that are confined in a volume such as a sphere of certain fixed radius. Finding efficient algorithms that properly sample the space of such confined equilateral random polygons is a difficult problem. In this paper, we propose a method that generates confined equilateral random polygons based on their probability distribution. This method requires the creation of a large database initially. However, once the database has been created, a confined equilateral random polygon of length n can be generated in linear time in terms of n. The errors introduced by the method can be controlled and reduced by the refinement of the database. Furthermore, our numerical simulations indicate that these errors are unbiased and tend to cancel each other in a long polygon. (paper)
Development and validation of gui based input file generation code for relap
International Nuclear Information System (INIS)
Anwar, M.M.; Khan, A.A.; Chughati, I.R.; Chaudri, K.S.; Inyat, M.H.; Hayat, T.
2009-01-01
Reactor Excursion and Leak Analysis Program (RELAP) is a widely acceptable computer code for thermal hydraulics modeling of Nuclear Power Plants. It calculates thermal- hydraulic transients in water-cooled nuclear reactors by solving approximations to the one-dimensional, two-phase equations of hydraulics in an arbitrarily connected system of nodes. However, the preparation of input file and subsequent analysis of results in this code is a tedious task. The development of a Graphical User Interface (GUI) for preparation of the input file for RELAP-5 is done with the validation of GUI generated Input File. The GUI is developed in Microsoft Visual Studio using Visual C Sharp (C) as programming language. The Nodalization diagram is drawn graphically and the program contains various component forms along with the starting data form, which are launched for properties assignment to generate Input File Cards serving as GUI for the user. The GUI is provided with Open / Save function to store and recall the Nodalization diagram along with Components' properties. The GUI generated Input File is validated for several case studies and individual component cards are compared with the originally required format. The generated Input File of RELAP is found consistent with the requirement of RELAP. The GUI provided a useful platform for simulating complex hydrodynamic problems efficiently with RELAP. (author)
Optimum systems design with random input and output applied to solar water heating
Abdel-Malek, L. L.
1980-03-01
Solar water heating systems are evaluated. Models were developed to estimate the percentage of energy supplied from the Sun to a household. Since solar water heating systems have random input and output queueing theory, birth and death processes were the major tools in developing the models of evaluation. Microeconomics methods help in determining the optimum size of the solar water heating system design parameters, i.e., the water tank volume and the collector area.
DOG -II input generator program for DOT3.5 code
International Nuclear Information System (INIS)
Hayashi, Katsumi; Handa, Hiroyuki; Yamada, Koubun; Kamogawa, Susumu; Takatsu, Hideyuki; Koizumi, Kouichi; Seki, Yasushi
1992-01-01
DOT3.5 is widely used for radiation transport analysis of fission reactors, fusion experimental facilities and particle accelerators. We developed the input generator program for DOT3.5 code in aim to prepare input data effectively. Formar program DOG was developed and used internally in Hitachi Engineering Company. In this new version DOG-II, limitation for R-Θ geometry was removed. All the input data is created by interactive method in front of color display without using DOT3.5 manual. Also the geometry related input are easily created without calculation of precise curved mesh point. By using DOG-II, reliable input data for DOT3.5 code is obtained easily and quickly
Teoh, Andrew B J; Goh, Alwyn; Ngo, David C L
2006-12-01
Biometric analysis for identity verification is becoming a widespread reality. Such implementations necessitate large-scale capture and storage of biometric data, which raises serious issues in terms of data privacy and (if such data is compromised) identity theft. These problems stem from the essential permanence of biometric data, which (unlike secret passwords or physical tokens) cannot be refreshed or reissued if compromised. Our previously presented biometric-hash framework prescribes the integration of external (password or token-derived) randomness with user-specific biometrics, resulting in bitstring outputs with security characteristics (i.e., noninvertibility) comparable to cryptographic ciphers or hashes. The resultant BioHashes are hence cancellable, i.e., straightforwardly revoked and reissued (via refreshed password or reissued token) if compromised. BioHashing furthermore enhances recognition effectiveness, which is explained in this paper as arising from the Random Multispace Quantization (RMQ) of biometric and external random inputs.
Miszczak, Jarosław Adam
2013-01-01
The presented package for the Mathematica computing system allows the harnessing of quantum random number generators (QRNG) for investigating the statistical properties of quantum states. The described package implements a number of functions for generating random states. The new version of the package adds the ability to use the on-line quantum random number generator service and implements new functions for retrieving lists of random numbers. Thanks to the introduced improvements, the new version provides faster access to high-quality sources of random numbers and can be used in simulations requiring large amount of random data. New version program summaryProgram title: TRQS Catalogue identifier: AEKA_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKA_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 18 134 No. of bytes in distributed program, including test data, etc.: 2 520 49 Distribution format: tar.gz Programming language: Mathematica, C. Computer: Any supporting Mathematica in version 7 or higher. Operating system: Any platform supporting Mathematica; tested with GNU/Linux (32 and 64 bit). RAM: Case-dependent Supplementary material: Fig. 1 mentioned below can be downloaded. Classification: 4.15. External routines: Quantis software library (http://www.idquantique.com/support/quantis-trng.html) Catalogue identifier of previous version: AEKA_v1_0 Journal reference of previous version: Comput. Phys. Comm. 183(2012)118 Does the new version supersede the previous version?: Yes Nature of problem: Generation of random density matrices and utilization of high-quality random numbers for the purpose of computer simulation. Solution method: Use of a physical quantum random number generator and an on-line service providing access to the source of true random
The UK waste input-output table: Linking waste generation to the UK economy.
Salemdeeb, Ramy; Al-Tabbaa, Abir; Reynolds, Christian
2016-10-01
In order to achieve a circular economy, there must be a greater understanding of the links between economic activity and waste generation. This study introduces the first version of the UK waste input-output table that could be used to quantify both direct and indirect waste arisings across the supply chain. The proposed waste input-output table features 21 industrial sectors and 34 waste types and is for the 2010 time-period. Using the waste input-output table, the study results quantitatively confirm that sectors with a long supply chain (i.e. manufacturing and services sectors) have higher indirect waste generation rates compared with industrial primary sectors (e.g. mining and quarrying) and sectors with a shorter supply chain (e.g. construction). Results also reveal that the construction, mining and quarrying sectors have the highest waste generation rates, 742 and 694 tonne per £1m of final demand, respectively. Owing to the aggregated format of the first version of the waste input-output, the model does not address the relationship between waste generation and recycling activities. Therefore, an updated version of the waste input-output table is expected be developed considering this issue. Consequently, the expanded model would lead to a better understanding of waste and resource flows in the supply chain. © The Author(s) 2016.
Graphical analysis of some pseudo-random number generators
Lewis, Peter A. W.
1986-01-01
There exist today many 'good' pseudo-random number generators; the problem is to retrieve them. This document discusses three commonly used pseudo- random number generators, the first being RANDU, a notoriously bad generator, but one which is still occasionally used. The next is the widely used prime modulus, multiplicative congruential generator used in LL-RANDOMII, the Naval Postgraduate School random number package, and the last is the random number generator provided for microcomputers wi...
Standard random number generation for MBASIC
Tausworthe, R. C.
1976-01-01
A machine-independent algorithm is presented and analyzed for generating pseudorandom numbers suitable for the standard MBASIC system. The algorithm used is the polynomial congruential or linear recurrence modulo 2 method. Numbers, formed as nonoverlapping adjacent 28-bit words taken from the bit stream produced by the formula a sub m + 532 = a sub m + 37 + a sub m (modulo 2), do not repeat within the projected age of the solar system, show no ensemble correlation, exhibit uniform distribution of adjacent numbers up to 19 dimensions, and do not deviate from random runs-up and runs-down behavior.
Cellular Automata-Based Parallel Random Number Generators Using FPGAs
Directory of Open Access Journals (Sweden)
David H. K. Hoe
2012-01-01
Full Text Available Cellular computing represents a new paradigm for implementing high-speed massively parallel machines. Cellular automata (CA, which consist of an array of locally connected processing elements, are a basic form of a cellular-based architecture. The use of field programmable gate arrays (FPGAs for implementing CA accelerators has shown promising results. This paper investigates the design of CA-based pseudo-random number generators (PRNGs using an FPGA platform. To improve the quality of the random numbers that are generated, the basic CA structure is enhanced in two ways. First, the addition of a superrule to each CA cell is considered. The resulting self-programmable CA (SPCA uses the superrule to determine when to make a dynamic rule change in each CA cell. The superrule takes its inputs from neighboring cells and can be considered itself a second CA working in parallel with the main CA. When implemented on an FPGA, the use of lookup tables in each logic cell removes any restrictions on how the super-rules should be defined. Second, a hybrid configuration is formed by combining a CA with a linear feedback shift register (LFSR. This is advantageous for FPGA designs due to the compactness of the LFSR implementations. A standard software package for statistically evaluating the quality of random number sequences known as Diehard is used to validate the results. Both the SPCA and the hybrid CA/LFSR were found to pass all the Diehard tests.
Testing, Selection, and Implementation of Random Number Generators
National Research Council Canada - National Science Library
Collins, Joseph C
2008-01-01
An exhaustive evaluation of state-of-the-art random number generators with several well-known suites of tests provides the basis for selection of suitable random number generators for use in stochastic simulations...
A Method of Erasing Data Using Random Number Generators
井上,正人
2012-01-01
Erasing data is an indispensable step for disposal of computers or external storage media. Except physical destruction, erasing data means writing random information on entire disk drives or media. We propose a method which erases data safely using random number generators. These random number generators create true random numbers based on quantum processes.
Relationship between fatigue of generation II image intensifier and input illumination
Chen, Qingyou
1995-09-01
If there is fatigue for an image intesifier, then it has an effect on the imaging property of the night vision system. In this paper, using the principle of Joule Heat, we derive a mathematical formula for the generated heat of semiconductor photocathode. We describe the relationship among the various parameters in the formula. We also discuss reasons for the fatigue of Generation II image intensifier caused by bigger input illumination.
Random Sequence for Optimal Low-Power Laser Generated Ultrasound
Vangi, D.; Virga, A.; Gulino, M. S.
2017-08-01
Low-power laser generated ultrasounds are lately gaining importance in the research world, thanks to the possibility of investigating a mechanical component structural integrity through a non-contact and Non-Destructive Testing (NDT) procedure. The ultrasounds are, however, very low in amplitude, making it necessary to use pre-processing and post-processing operations on the signals to detect them. The cross-correlation technique is used in this work, meaning that a random signal must be used as laser input. For this purpose, a highly random and simple-to-create code called T sequence, capable of enhancing the ultrasound detectability, is introduced (not previously available at the state of the art). Several important parameters which characterize the T sequence can influence the process: the number of pulses Npulses , the pulse duration δ and the distance between pulses dpulses . A Finite Element FE model of a 3 mm steel disk has been initially developed to analytically study the longitudinal ultrasound generation mechanism and the obtainable outputs. Later, experimental tests have shown that the T sequence is highly flexible for ultrasound detection purposes, making it optimal to use high Npulses and δ but low dpulses . In the end, apart from describing all phenomena that arise in the low-power laser generation process, the results of this study are also important for setting up an effective NDT procedure using this technology.
Evidence of significant bias in an elementary random number generator
International Nuclear Information System (INIS)
Borgwaldt, H.; Brandl, V.
1981-03-01
An elementary pseudo random number generator for isotropically distributed unit vectors in 3-dimensional space has ben tested for bias. This generator uses the IBM-suplied routine RANDU and a transparent rejection technique. The tests show clearly that non-randomness in the pseudo random numbers generated by the primary IBM generator leads to bias in the order of 1 percent in estimates obtained from the secondary random number generator. FORTRAN listings of 4 variants of the random number generator called by a simple test programme and output listings are included for direct reference. (orig.) [de
A versatile programmable CAMAC random pulse generator
International Nuclear Information System (INIS)
Abdel-Aal, R.E.
1991-01-01
A new technique for generating linear pulses which can be random in both amplitude and time is described. With this technique, desired values for both pulse amplitude and spacing are set for the individual pulses by the software on a pulse-by-pulse basis. The versatility offered by this software programming allows a wide range of distributions to be obtained; with the user having close control on the distribution parameters. A number of such distributions may also be combined into a single output pulse stream. An implementation in a CAMAC module is presented. Both hardware and software aspects are described and typical performance results for amplitude and time distributions of the uniform and Gaussian type are given. Implications of using the pulser in a typical data acquisition environment on both the data acquisition and the pulser performance are considered. Typical applications are discussed together with some of the limitations. (orig.)
Generation and Analysis of Constrained Random Sampling Patterns
DEFF Research Database (Denmark)
Pierzchlewski, Jacek; Arildsen, Thomas
2016-01-01
Random sampling is a technique for signal acquisition which is gaining popularity in practical signal processing systems. Nowadays, event-driven analog-to-digital converters make random sampling feasible in practical applications. A process of random sampling is defined by a sampling pattern, which...... indicates signal sampling points in time. Practical random sampling patterns are constrained by ADC characteristics and application requirements. In this paper, we introduce statistical methods which evaluate random sampling pattern generators with emphasis on practical applications. Furthermore, we propose...... algorithm generates random sampling patterns dedicated for event-driven-ADCs better than existed sampling pattern generators. Finally, implementation issues of random sampling patterns are discussed....
International Nuclear Information System (INIS)
Bagherpour, Esmaeel A.; HairiTazdi, Mohammad Reza; Mahjoob, Mohammad
2014-01-01
In this paper, we deal with residual vector generation for fault detection problems in linear systems via unknown input observer (UIO) when the so-called observer matching condition is not satisfied. Based on the relative degree between unknown input and output, a vector of the auxiliary output is introduced so that the observer matching condition is satisfied with respect to the vector. Auxiliary outputs are related to the derivatives of measured signals. However, differentiation leads to excessive amplification of measurement noise. A dynamically equivalent configuration of linear systems is developed using successive integrations to avoid differentiation. As such, auxiliary outputs are constructed without differentiation. Then, the equivalent dynamic system and its corresponding auxiliary outputs are used to generate the residual vector via an exponentially converging UIO. Fault detection in the generated residual vector is also investigated. Finally, the effectiveness of the proposed method is shown via numerical simulation.
Fast physical random bit generation with chaotic semiconductor lasers
Uchida, Atsushi; Amano, Kazuya; Inoue, Masaki; Hirano, Kunihito; Naito, Sunao; Someya, Hiroyuki; Oowada, Isao; Kurashige, Takayuki; Shiki, Masaru; Yoshimori, Shigeru; Yoshimura, Kazuyuki; Davis, Peter
2008-12-01
Random number generators in digital information systems make use of physical entropy sources such as electronic and photonic noise to add unpredictability to deterministically generated pseudo-random sequences. However, there is a large gap between the generation rates achieved with existing physical sources and the high data rates of many computation and communication systems; this is a fundamental weakness of these systems. Here we show that good quality random bit sequences can be generated at very fast bit rates using physical chaos in semiconductor lasers. Streams of bits that pass standard statistical tests for randomness have been generated at rates of up to 1.7 Gbps by sampling the fluctuating optical output of two chaotic lasers. This rate is an order of magnitude faster than that of previously reported devices for physical random bit generators with verified randomness. This means that the performance of random number generators can be greatly improved by using chaotic laser devices as physical entropy sources.
A pseudo-random number generator and its spectral test
International Nuclear Information System (INIS)
Wang Lai
1998-01-01
The author introduces a pseudo-random number generator and describes its algorithm and C language implementation. The performance of the generator is tested and compared with some well known LCG generators
DEFF Research Database (Denmark)
Loosvelt, Lien; Peters, Jan; Skriver, Henning
2012-01-01
Although the use of multidate polarimetric synthetic aperture radar (SAR) data for highly accurate land cover classification has been acknowledged in the literature, the high dimensionality of the data set remains a major issue. This study presents two different strategies to reduce the number...... acquired by the Danish EMISAR on four dates within the period April to July in 1998. The predictive capacity of each feature is analyzed by the importance score generated by random forests (RF). Results show that according to the variation in importance score over time, a distinction can be made between...... general and specific features for crop classification. Based on the importance ranking, features are gradually removed from the single-date data sets in order to construct several multidate data sets with decreasing dimensionality. In the accuracy-oriented and efficiency-oriented reduction, the input...
The optimal input optical pulse shape for the self-phase modulation based chirp generator
Zachinyaev, Yuriy; Rumyantsev, Konstantin
2018-04-01
The work is aimed to obtain the optimal shape of the input optical pulse for the proper functioning of the self-phase modulation based chirp generator allowing to achieve high values of chirp frequency deviation. During the research, the structure of the device based on self-phase modulation effect using has been analyzed. The influence of the input optical pulse shape of the transmitting optical module on the chirp frequency deviation has been studied. The relationship between the frequency deviation of the generated chirp and frequency linearity for the three options for implementation of the pulse shape has been also estimated. The results of research are related to the development of the theory of radio processors based on fiber-optic structures and can be used in radars, secure communications, geolocation and tomography.
Towards a high-speed quantum random number generator
Stucki, Damien; Burri, Samuel; Charbon, Edoardo; Chunnilall, Christopher; Meneghetti, Alessio; Regazzoni, Francesco
2013-10-01
Randomness is of fundamental importance in various fields, such as cryptography, numerical simulations, or the gaming industry. Quantum physics, which is fundamentally probabilistic, is the best option for a physical random number generator. In this article, we will present the work carried out in various projects in the context of the development of a commercial and certified high speed random number generator.
An integrable low-cost hardware random number generator
Ranasinghe, Damith C.; Lim, Daihyun; Devadas, Srinivas; Jamali, Behnam; Zhu, Zheng; Cole, Peter H.
2005-02-01
A hardware random number generator is different from a pseudo-random number generator; a pseudo-random number generator approximates the assumed behavior of a real hardware random number generator. Simple pseudo random number generators suffices for most applications, however for demanding situations such as the generation of cryptographic keys, requires an efficient and a cost effective source of random numbers. Arbiter-based Physical Unclonable Functions (PUFs) proposed for physical authentication of ICs exploits statistical delay variation of wires and transistors across integrated circuits, as a result of process variations, to build a secret key unique to each IC. Experimental results and theoretical studies show that a sufficient amount of variation exits across IC"s. This variation enables each IC to be identified securely. It is possible to exploit the unreliability of these PUF responses to build a physical random number generator. There exists measurement noise, which comes from the instability of an arbiter when it is in a racing condition. There exist challenges whose responses are unpredictable. Without environmental variations, the responses of these challenges are random in repeated measurements. Compared to other physical random number generators, the PUF-based random number generators can be a compact and a low-power solution since the generator need only be turned on when required. A 64-stage PUF circuit costs less than 1000 gates and the circuit can be implemented using a standard IC manufacturing processes. In this paper we have presented a fast and an efficient random number generator, and analysed the quality of random numbers produced using an array of tests used by the National Institute of Standards and Technology to evaluate the randomness of random number generators designed for cryptographic applications.
Day-ahead load forecast using random forest and expert input selection
International Nuclear Information System (INIS)
Lahouar, A.; Ben Hadj Slama, J.
2015-01-01
Highlights: • A model based on random forests for short term load forecast is proposed. • An expert feature selection is added to refine inputs. • Special attention is paid to customers behavior, load profile and special holidays. • The model is flexible and able to handle complex load signal. • A technical comparison is performed to assess the forecast accuracy. - Abstract: The electrical load forecast is getting more and more important in recent years due to the electricity market deregulation and integration of renewable resources. To overcome the incoming challenges and ensure accurate power prediction for different time horizons, sophisticated intelligent methods are elaborated. Utilization of intelligent forecast algorithms is among main characteristics of smart grids, and is an efficient tool to face uncertainty. Several crucial tasks of power operators such as load dispatch rely on the short term forecast, thus it should be as accurate as possible. To this end, this paper proposes a short term load predictor, able to forecast the next 24 h of load. Using random forest, characterized by immunity to parameter variations and internal cross validation, the model is constructed following an online learning process. The inputs are refined by expert feature selection using a set of if–then rules, in order to include the own user specifications about the country weather or market, and to generalize the forecast ability. The proposed approach is tested through a real historical set from the Tunisian Power Company, and the simulation shows accurate and satisfactory results for one day in advance, with an average error exceeding rarely 2.3%. The model is validated for regular working days and weekends, and special attention is paid to moving holidays, following non Gregorian calendar
Generating random numbers by means of nonlinear dynamic systems
Zang, Jiaqi; Hu, Haojie; Zhong, Juhua; Luo, Duanbin; Fang, Yi
2018-07-01
To introduce the randomness of a physical process to students, a chaotic pendulum experiment was opened in East China University of Science and Technology (ECUST) on the undergraduate level in the physics department. It was shown chaotic motion could be initiated through adjusting the operation of a chaotic pendulum. By using the data of the angular displacements of chaotic motion, random binary numerical arrays can be generated. To check the randomness of generated numerical arrays, the NIST Special Publication 800-20 method was adopted. As a result, it was found that all the random arrays which were generated by the chaotic motion could pass the validity criteria and some of them were even better than the quality of pseudo-random numbers generated by a computer. Through the experiments, it is demonstrated that chaotic pendulum can be used as an efficient mechanical facility in generating random numbers, and can be applied in teaching random motion to the students.
The intermittency of vector fields and random-number generators
Kalinin, A. O.; Sokoloff, D. D.; Tutubalin, V. N.
2017-09-01
We examine how well natural random-number generators can reproduce the intermittency phenomena that arise in the transfer of vector fields in random media. A generator based on the analysis of financial indices is suggested as the most promising random-number generator. Is it shown that even this generator, however, fails to reproduce the phenomenon long enough to confidently detect intermittency, while the C++ generator successfully solves this problem. We discuss the prospects of using shell models of turbulence as the desired generator.
Pseudo-Random Number Generator Based on Coupled Map Lattices
Lü, Huaping; Wang, Shihong; Hu, Gang
A one-way coupled chaotic map lattice is used for generating pseudo-random numbers. It is shown that with suitable cooperative applications of both chaotic and conventional approaches, the output of the spatiotemporally chaotic system can easily meet the practical requirements of random numbers, i.e., excellent random statistical properties, long periodicity of computer realizations, and fast speed of random number generations. This pseudo-random number generator system can be used as ideal synchronous and self-synchronizing stream cipher systems for secure communications.
The CAIN computer code for the generation of MABEL input data sets: a user's manual
International Nuclear Information System (INIS)
Tilley, D.R.
1983-03-01
CAIN is an interactive FORTRAN computer code designed to overcome the substantial effort involved in manually creating the thermal-hydraulics input data required by MABEL-2. CAIN achieves this by processing output from either of the whole-core codes, RELAP or TRAC, interpolating where necessary, and by scanning RELAP/TRAC output in order to generate additional information. This user's manual describes the actions required in order to create RELAP/TRAC data sets from magnetic tape, to create the other input data sets required by CAIN, and to operate the interactive command procedure for the execution of CAIN. In addition, the CAIN code is described in detail. This programme of work is part of the Nuclear Installations Inspectorate (NII)'s contribution to the United Kingdom Atomic Energy Authority's independent safety assessment of pressurized water reactors. (author)
Generation of correlated finite alphabet waveforms using gaussian random variables
Jardak, Seifallah; Ahmed, Sajid; Alouini, Mohamed-Slim
2014-01-01
, the proposed scheme is general, the main focus of this paper is to generate finite alphabet waveforms for multiple-input multiple-output radar, where correlated waveforms are used to achieve desired beampatterns. © 2014 IEEE.
On Generating Optimal Signal Probabilities for Random Tests: A Genetic Approach
Directory of Open Access Journals (Sweden)
M. Srinivas
1996-01-01
Full Text Available Genetic Algorithms are robust search and optimization techniques. A Genetic Algorithm based approach for determining the optimal input distributions for generating random test vectors is proposed in the paper. A cost function based on the COP testability measure for determining the efficacy of the input distributions is discussed. A brief overview of Genetic Algorithms (GAs and the specific details of our implementation are described. Experimental results based on ISCAS-85 benchmark circuits are presented. The performance of our GAbased approach is compared with previous results. While the GA generates more efficient input distributions than the previous methods which are based on gradient descent search, the overheads of the GA in computing the input distributions are larger.
Quantum random number generation for loophole-free Bell tests
Mitchell, Morgan; Abellan, Carlos; Amaya, Waldimar
2015-05-01
We describe the generation of quantum random numbers at multi-Gbps rates, combined with real-time randomness extraction, to give very high purity random numbers based on quantum events at most tens of ns in the past. The system satisfies the stringent requirements of quantum non-locality tests that aim to close the timing loophole. We describe the generation mechanism using spontaneous-emission-driven phase diffusion in a semiconductor laser, digitization, and extraction by parity calculation using multi-GHz logic chips. We pay special attention to experimental proof of the quality of the random numbers and analysis of the randomness extraction. In contrast to widely-used models of randomness generators in the computer science literature, we argue that randomness generation by spontaneous emission can be extracted from a single source.
International Nuclear Information System (INIS)
Kenne, Godpromesse; Goma, Raphael; Nkwawo, Homere; Lamnabhi-Lagarrigue, Francoise; Arzande, Amir; Vannier, Jean Claude
2010-01-01
A nonlinear adaptive excitation controller is proposed to enhance the transient stability and voltage regulation of synchronous generators with unknown power angle and mechanical power input. The proposed method is based on a standard third-order model of a synchronous generator which requires only information about the physical available measurements of relative angular speed, active electric power, infinite bus and generator terminal voltages. The operating conditions are computed online using the above physical available measurements, the terminal voltage reference value and the estimate of the mechanical power input. The proposed design is therefore capable of providing satisfactory voltage in the presence of unknown variations of the power system operating conditions. Using the concept of sliding mode equivalent control techniques, a robust decentralized adaptive controller which insures the exponential convergence of the outputs to the desired ones, is obtained. Real-time experimental results are reported, comparing the performance of the proposed adaptive nonlinear control scheme to one of the conventional AVR/PSS controller. The high simplicity of the overall adaptive control scheme and its robustness with respect to line impedance variation including critical unbalanced operating condition and temporary turbine fault, constitute the main positive features of the proposed approach.
Energy Technology Data Exchange (ETDEWEB)
Kenne, Godpromesse, E-mail: gokenne@yahoo.co [Laboratoire d' Automatique et d' Informatique Appliquee (LAIA), Departement de Genie Electrique, Universite de Dschang, B.P. 134 Bandjoun (Cameroon); Goma, Raphael, E-mail: raphael.goma@lss.supelec.f [Laboratoire des Signaux et Systemes (L2S), CNRS-SUPELEC, Universite Paris XI, 3 Rue Joliot Curie, 91192 Gif-sur-Yvette (France); Nkwawo, Homere, E-mail: homere.nkwawo@iutv.univ-paris13.f [Departement GEII, Universite Paris XIII, 99 Avenue Jean Baptiste Clement, 93430 Villetaneuse (France); Lamnabhi-Lagarrigue, Francoise, E-mail: lamnabhi@lss.supelec.f [Laboratoire des Signaux et Systemes (L2S), CNRS-SUPELEC, Universite Paris XI, 3 Rue Joliot Curie, 91192 Gif-sur-Yvette (France); Arzande, Amir, E-mail: Amir.arzande@supelec.f [Departement Energie, Ecole Superieure d' Electricite-SUPELEC, 3 Rue Joliot Curie, 91192 Gif-sur-Yvette (France); Vannier, Jean Claude, E-mail: Jean-claude.vannier@supelec.f [Departement Energie, Ecole Superieure d' Electricite-SUPELEC, 3 Rue Joliot Curie, 91192 Gif-sur-Yvette (France)
2010-01-15
A nonlinear adaptive excitation controller is proposed to enhance the transient stability and voltage regulation of synchronous generators with unknown power angle and mechanical power input. The proposed method is based on a standard third-order model of a synchronous generator which requires only information about the physical available measurements of relative angular speed, active electric power, infinite bus and generator terminal voltages. The operating conditions are computed online using the above physical available measurements, the terminal voltage reference value and the estimate of the mechanical power input. The proposed design is therefore capable of providing satisfactory voltage in the presence of unknown variations of the power system operating conditions. Using the concept of sliding mode equivalent control techniques, a robust decentralized adaptive controller which insures the exponential convergence of the outputs to the desired ones, is obtained. Real-time experimental results are reported, comparing the performance of the proposed adaptive nonlinear control scheme to one of the conventional AVR/PSS controller. The high simplicity of the overall adaptive control scheme and its robustness with respect to line impedance variation including critical unbalanced operating condition and temporary turbine fault, constitute the main positive features of the proposed approach.
Halabi, Claudia Elizabeth
2000-10-01
In this paper I use a stochastic distance frontier approach to assess the performance of Chile's hydroelectric industry, which operates within a regulatory framework designed to achieve a competitive outcome. An occasionally free input, water, is the sole energy input. The econometric analysis indicates substantial technical and allocative inefficiencies as well as volatile productivity scores, due presumably to the volatility of the energy input. Some allocative inefficiencies have diminished dramatically as the time under deregulation has grown. The Lerner index suggests that firms in the industry enjoy some degree of market power, reflected by prices that exceed marginal costs. This market power is consistent with operation within a centralized dispatch center, as predicted by a strategic bidding model. I also find that run-of-river plants exhibit increasing returns to scale, while plants relying on dams show slightly diminishing returns. The shadow marginal cost for run-of-river plants is found to be close to zero. Substantial cost savings could be realized if firms in Chile's hydro-electric generation industry were to operate efficiently.
Truly random dynamics generated by autonomous dynamical systems
González, J. A.; Reyes, L. I.
2001-09-01
We investigate explicit functions that can produce truly random numbers. We use the analytical properties of the explicit functions to show that a certain class of autonomous dynamical systems can generate random dynamics. This dynamics presents fundamental differences with the known chaotic systems. We present real physical systems that can produce this kind of random time-series. Some applications are discussed.
Superparamagnetic perpendicular magnetic tunnel junctions for true random number generators
Parks, Bradley; Bapna, Mukund; Igbokwe, Julianne; Almasi, Hamid; Wang, Weigang; Majetich, Sara A.
2018-05-01
Superparamagnetic perpendicular magnetic tunnel junctions are fabricated and analyzed for use in random number generators. Time-resolved resistance measurements are used as streams of bits in statistical tests for randomness. Voltage control of the thermal stability enables tuning the average speed of random bit generation up to 70 kHz in a 60 nm diameter device. In its most efficient operating mode, the device generates random bits at an energy cost of 600 fJ/bit. A narrow range of magnetic field tunes the probability of a given state from 0 to 1, offering a means of probabilistic computing.
Program pseudo-random number generator for microcomputers
International Nuclear Information System (INIS)
Ososkov, G.A.
1980-01-01
Program pseudo-random number generators (PNG) intended for the test of control equipment and communication channels are considered. In the case of 8-bit microcomputers it is necessary to assign 4 words of storage to allocate one random number. The proposed economical algorithms of the random number generation are based on the idea of the ''mixing'' of such quarters of the preceeding random number to obtain the next one. Test results of the PNG are displayed for two such generators. A FORTRAN variant of the PNG is presented along with a program realizing the PNG made on the base of the INTEL-8080 autocode
Microcomputer-Assisted Discoveries: Generate Your Own Random Numbers.
Kimberling, Clark
1984-01-01
Having students try to generate their own random numbers can lead to much discovery learning as one tries to create 'patternlessness' from formulas. Developing an equidistribution test and runs test, plus other ideas for generating random numbers, is discussed, with computer programs given. (MNS)
Thompson, J. R.; Taylor, M. S.
1982-01-01
Let X be a K-dimensional random variable serving as input for a system with output Y (not necessarily of dimension k). given X, an outcome Y or a distribution of outcomes G(Y/X) may be obtained either explicitly or implicity. The situation is considered in which there is a real world data set X sub j sub = 1 (n) and a means of simulating an outcome Y. A method for empirical random number generation based on the sample of observations of the random variable X without estimating the underlying density is discussed.
Generation of SCALE 6 Input Data File for Cross Section Library of PWR Spent Fuel
International Nuclear Information System (INIS)
Jeong, Chang Joon; Cho, Dong Keun
2010-11-01
In order to obtain the cross section libraries of the Korean Pressurized water reactor (PWR) spent fuel (SF), SCALE 6 code input files have been generated. The PWR fuel data were obtained from the nuclear design report (NDR) of the current operating PWRs. The input file were prepared for 16 fuel types such as 4 types of Westinghouse 14x14, 3 types of OPR-1000 16x16, 4 types of Westinghouse 16x16, and 6 types of Westinghouse 17x17. For each fuel type, 5 kinds of fuel enrichments have been considered such as 1.5, 2.0 ,3.0, 4.0 and 5.0 wt%. In the SCALE 6 calculation, a ENDF-V 44 group was used. The 25 burnup step until 72000 MWD/T was used. A 1/4 symmetry model was used for 16x16 and 17x17 fuel assembly, and 1/2 symmetry model was used for 14x14 fuel assembly The generated cross section libraries will be used for the source-term analysis of the PWR SF
New Trends in Pseudo-Random Number Generation
Gutbrod, F.
Properties of pseudo-random number generators are reviewed. The emphasis is on correlations between successive random numbers and their suppression by improvement steps. The generators under discussion are the linear congruential generators, lagged Fibonacci generators with various operations, and the improvement techniques combination, shuffling and decimation. The properties of the RANSHI generator are reviewed somewhat more extensively. The transition to 64-bit technology is discussed in several cases. The generators are subject to several tests, which look both for short range and for long range correlations. Some performance figures are given for a Pentium Pro PC. Recommendations are presented in the final chapter.
Generating and using truly random quantum states in Mathematica
Miszczak, Jarosław Adam
2012-01-01
The problem of generating random quantum states is of a great interest from the quantum information theory point of view. In this paper we present a package for Mathematica computing system harnessing a specific piece of hardware, namely Quantis quantum random number generator (QRNG), for investigating statistical properties of quantum states. The described package implements a number of functions for generating random states, which use Quantis QRNG as a source of randomness. It also provides procedures which can be used in simulations not related directly to quantum information processing. Program summaryProgram title: TRQS Catalogue identifier: AEKA_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKA_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 7924 No. of bytes in distributed program, including test data, etc.: 88 651 Distribution format: tar.gz Programming language: Mathematica, C Computer: Requires a Quantis quantum random number generator (QRNG, http://www.idquantique.com/true-random-number-generator/products-overview.html) and supporting a recent version of Mathematica Operating system: Any platform supporting Mathematica; tested with GNU/Linux (32 and 64 bit) RAM: Case dependent Classification: 4.15 Nature of problem: Generation of random density matrices. Solution method: Use of a physical quantum random number generator. Running time: Generating 100 random numbers takes about 1 second, generating 1000 random density matrices takes more than a minute.
Generating random walks and polygons with stiffness in confinement
International Nuclear Information System (INIS)
Diao, Y; Ernst, C; Saarinen, S; Ziegler, U
2015-01-01
The purpose of this paper is to explore ways to generate random walks and polygons in confinement with a bias toward stiffness. Here the stiffness refers to the curvature angle between two consecutive edges along the random walk or polygon. The stiffer the walk (polygon), the smaller this angle on average. Thus random walks and polygons with an elevated stiffness have lower than expected curvatures. The authors introduced and studied several generation algorithms with a stiffness parameter s>0 that regulates the expected curvature angle at a given vertex in which the random walks and polygons are generated one edge at a time using conditional probability density functions. Our generating algorithms also allow the generation of unconfined random walks and polygons with any desired mean curvature angle. In the case of random walks and polygons confined in a sphere of fixed radius, we observe that, as expected, stiff random walks or polygons are more likely to be close to the confinement boundary. The methods developed here require that the random walks and random polygons be rooted at the center of the confinement sphere. (paper)
Random Number Generation for High Performance Computing
2015-01-01
number streams, a quality metric for the parallel random number streams. * * * * * Atty. Dkt . No.: 5660-14400 Customer No. 35690 Eric B. Meyertons...responsibility to ensure timely payment of maintenance fees when due. Pagel of3 PTOL-85 (Rev. 02/11) Atty. Dkt . No.: 5660-14400 Page 1 Meyertons...with each subtask executed by a separate thread or process (henceforth, process). Each process has Atty. Dkt . No.: 5660-14400 Page 2 Meyertons
Li, Dongfang; Lu, Zhaojun; Zou, Xuecheng; Liu, Zhenglin
2015-10-16
Random number generators (RNG) play an important role in many sensor network systems and applications, such as those requiring secure and robust communications. In this paper, we develop a high-security and high-throughput hardware true random number generator, called PUFKEY, which consists of two kinds of physical unclonable function (PUF) elements. Combined with a conditioning algorithm, true random seeds are extracted from the noise on the start-up pattern of SRAM memories. These true random seeds contain full entropy. Then, the true random seeds are used as the input for a non-deterministic hardware RNG to generate a stream of true random bits with a throughput as high as 803 Mbps. The experimental results show that the bitstream generated by the proposed PUFKEY can pass all standard national institute of standards and technology (NIST) randomness tests and is resilient to a wide range of security attacks.
Directory of Open Access Journals (Sweden)
Dongfang Li
2015-10-01
Full Text Available Random number generators (RNG play an important role in many sensor network systems and applications, such as those requiring secure and robust communications. In this paper, we develop a high-security and high-throughput hardware true random number generator, called PUFKEY, which consists of two kinds of physical unclonable function (PUF elements. Combined with a conditioning algorithm, true random seeds are extracted from the noise on the start-up pattern of SRAM memories. These true random seeds contain full entropy. Then, the true random seeds are used as the input for a non-deterministic hardware RNG to generate a stream of true random bits with a throughput as high as 803 Mbps. The experimental results show that the bitstream generated by the proposed PUFKEY can pass all standard national institute of standards and technology (NIST randomness tests and is resilient to a wide range of security attacks.
Image encryption using random sequence generated from generalized information domain
International Nuclear Information System (INIS)
Zhang Xia-Yan; Wu Jie-Hua; Zhang Guo-Ji; Li Xuan; Ren Ya-Zhou
2016-01-01
A novel image encryption method based on the random sequence generated from the generalized information domain and permutation–diffusion architecture is proposed. The random sequence is generated by reconstruction from the generalized information file and discrete trajectory extraction from the data stream. The trajectory address sequence is used to generate a P-box to shuffle the plain image while random sequences are treated as keystreams. A new factor called drift factor is employed to accelerate and enhance the performance of the random sequence generator. An initial value is introduced to make the encryption method an approximately one-time pad. Experimental results show that the random sequences pass the NIST statistical test with a high ratio and extensive analysis demonstrates that the new encryption scheme has superior security. (paper)
Program for the Generation of MCNP Inputs from State Files of CAREM
International Nuclear Information System (INIS)
Leszczynski, Francisco; Lopasso, Edmundo; Villarino, E
2000-01-01
The objective of this work is the development and tests of detailed input data for the Monte Carlo program MCNP, to be able of model the core of CAREM reactor, with the detail included on the updated models, for having available a calculation system that allow the production of confident results to be compared with results obtained with the system used today for designing the CAREM reactor core (CONDOR-CITVAP).The model includes the possibility of temperature and coolant density, and temperature and numeric densities of fuel.The detail consists of 21 different fuel elements (symmetry 3) and 14 axial zones.Results of comparisons of reactivity and power pick factors are presented, between MCNP and CONDOR-CITVAP.On average, these results show an acceptable agreement for all the compared parameters.It is described, also, the interface CONDOR-CITVAP-MCNP program, that has been developed for generating inputs of materials for MCNP, from outputs of CONDOR and CITVAP, for different reactor states
User's guide for MAGIC-Meteorologic and hydrologic genscn (generate scenarios) input converter
Ortel, Terry W.; Martin, Angel
2010-01-01
Meteorologic and hydrologic data used in watershed modeling studies are collected by various agencies and organizations, and stored in various formats. Data may be in a raw, un-processed format with little or no quality control, or may be checked for validity before being made available. Flood-simulation systems require data in near real-time so that adequate flood warnings can be made. Additionally, forecasted data are needed to operate flood-control structures to potentially mitigate flood damages. Because real-time data are of a provisional nature, missing data may need to be estimated for use in floodsimulation systems. The Meteorologic and Hydrologic GenScn (Generate Scenarios) Input Converter (MAGIC) can be used to convert data from selected formats into the Hydrologic Simulation System-Fortran hourly-observations format for input to a Watershed Data Management database, for use in hydrologic modeling studies. MAGIC also can reformat the data to the Full Equations model time-series format, for use in hydraulic modeling studies. Examples of the application of MAGIC for use in the flood-simulation system for Salt Creek in northeastern Illinois are presented in this report.
An Approach for Generating Precipitation Input for Worst-Case Flood Modelling
Felder, Guido; Weingartner, Rolf
2015-04-01
There is a lack of suitable methods for creating precipitation scenarios that can be used to realistically estimate peak discharges with very low probabilities. On the one hand, existing methods are methodically questionable when it comes to physical system boundaries. On the other hand, the spatio-temporal representativeness of precipitation patterns as system input is limited. In response, this study proposes a method of deriving representative spatio-temporal precipitation patterns and presents a step towards making methodically correct estimations of infrequent floods by using a worst-case approach. A Monte-Carlo rainfall-runoff model allows for the testing of a wide range of different spatio-temporal distributions of an extreme precipitation event and therefore for the generation of a hydrograph for each of these distributions. Out of these numerous hydrographs and their corresponding peak discharges, the worst-case catchment reactions on the system input can be derived. The spatio-temporal distributions leading to the highest peak discharges are identified and can eventually be used for further investigations.
International Nuclear Information System (INIS)
Ikushima, Takeshi
1988-12-01
A computer program PRE-CASKETSS has been developed for the purpose of input data generation for thermal and structural analysis computer code system CASKETSS (CASKETSS means a modular code system for CASK Evaluation code system for Thermal and Structural Safety). Main features of PRE-CASKETSS are as follow; (1) Function of input data generation for thermal and structural analysis computer programs is provided in the program. (2) Two- and three-dimensional mesh generation for finite element and finite difference programs are available in the program. (3) The capacity of the material input data generation are provided in the program. (4) The boundary conditions, the load conditions and the initial conditions are capable in the program. (5) This computer program operate both the time shearing system and the batch system. In the paper, brief illustration of calculation method, input data and sample calculations are presented. (author)
Energy Technology Data Exchange (ETDEWEB)
Vignati, E.; Hertel, O.; Berkowicz, R. [National Environmental Research Inst., Dept. of Atmospheric Enviroment (Denmark); Raaschou-Nielsen, O. [Danish Cancer Society, Division of Cancer Epidemiology (Denmark)
1997-05-01
The method for generation of the input data for the calculations with OSPM is presented in this report. The described method which is based on information provided from a questionnaire, will be used for model calculations of long term exposure for a large number of children in connection with an epidemiological study. A test of the calculation method has been performed on a few locations in which detailed measurements of air pollution, meteorological data and traffic were available. Comparisons between measured and calculated concentrations were made for hourly, monthly and yearly values. Beside the measured concentrations, the test results were compared to results obtained with the optimal street configuration data and measured traffic. The main conclusions drawn from this investigation are: (1) The calculation method works satisfactory well for long term averages, whereas the uncertainties are high when short term averages are considered. (2) The street width is one of the most crucial input parameters for the calculation of street pollution levels for both short and long term averages. Using H.C. Andersens Boulevard as an example, it was shown that estimation of street width based on traffic amount can lead to large overestimation of the concentration levels (in this case 50% for NO{sub x} and 30% for NO{sub 2}). (3) The street orientation and geometry is important for prediction of short term concentrations but this importance diminished for longer term averages. (4) The uncertainties in diurnal traffic profiles can influence the accuracy of short term averages, but are less important for long term averages. The correlation is good between modelled and measured concentrations when the actual background concentrations are replaced with the generated values. Even though extreme situations are difficult to reproduce with this method, the comparison between the yearly averaged modelled and measured concentrations is very good. (LN) 20 refs.
Unbiased All-Optical Random-Number Generator
Steinle, Tobias; Greiner, Johannes N.; Wrachtrup, Jörg; Giessen, Harald; Gerhardt, Ilja
2017-10-01
The generation of random bits is of enormous importance in modern information science. Cryptographic security is based on random numbers which require a physical process for their generation. This is commonly performed by hardware random-number generators. These often exhibit a number of problems, namely experimental bias, memory in the system, and other technical subtleties, which reduce the reliability in the entropy estimation. Further, the generated outcome has to be postprocessed to "iron out" such spurious effects. Here, we present a purely optical randomness generator, based on the bistable output of an optical parametric oscillator. Detector noise plays no role and postprocessing is reduced to a minimum. Upon entering the bistable regime, initially the resulting output phase depends on vacuum fluctuations. Later, the phase is rigidly locked and can be well determined versus a pulse train, which is derived from the pump laser. This delivers an ambiguity-free output, which is reliably detected and associated with a binary outcome. The resulting random bit stream resembles a perfect coin toss and passes all relevant randomness measures. The random nature of the generated binary outcome is furthermore confirmed by an analysis of resulting conditional entropies.
Energy Technology Data Exchange (ETDEWEB)
Jin, Shi, E-mail: sjin@wisc.edu [Department of Mathematics, University of Wisconsin-Madison, Madison, WI 53706 (United States); Institute of Natural Sciences, Department of Mathematics, MOE-LSEC and SHL-MAC, Shanghai Jiao Tong University, Shanghai 200240 (China); Lu, Hanqing, E-mail: hanqing@math.wisc.edu [Department of Mathematics, University of Wisconsin-Madison, Madison, WI 53706 (United States)
2017-04-01
In this paper, we develop an Asymptotic-Preserving (AP) stochastic Galerkin scheme for the radiative heat transfer equations with random inputs and diffusive scalings. In this problem the random inputs arise due to uncertainties in cross section, initial data or boundary data. We use the generalized polynomial chaos based stochastic Galerkin (gPC-SG) method, which is combined with the micro–macro decomposition based deterministic AP framework in order to handle efficiently the diffusive regime. For linearized problem we prove the regularity of the solution in the random space and consequently the spectral accuracy of the gPC-SG method. We also prove the uniform (in the mean free path) linear stability for the space-time discretizations. Several numerical tests are presented to show the efficiency and accuracy of proposed scheme, especially in the diffusive regime.
Pseudo-random number generator for the Sigma 5 computer
Carroll, S. N.
1983-01-01
A technique is presented for developing a pseudo-random number generator based on the linear congruential form. The two numbers used for the generator are a prime number and a corresponding primitive root, where the prime is the largest prime number that can be accurately represented on a particular computer. The primitive root is selected by applying Marsaglia's lattice test. The technique presented was applied to write a random number program for the Sigma 5 computer. The new program, named S:RANDOM1, is judged to be superior to the older program named S:RANDOM. For applications requiring several independent random number generators, a table is included showing several acceptable primitive roots. The technique and programs described can be applied to any computer having word length different from that of the Sigma 5.
A hybrid-type quantum random number generator
Hai-Qiang, Ma; Wu, Zhu; Ke-Jin, Wei; Rui-Xue, Li; Hong-Wei, Liu
2016-05-01
This paper proposes a well-performing hybrid-type truly quantum random number generator based on the time interval between two independent single-photon detection signals, which is practical and intuitive, and generates the initial random number sources from a combination of multiple existing random number sources. A time-to-amplitude converter and multichannel analyzer are used for qualitative analysis to demonstrate that each and every step is random. Furthermore, a carefully designed data acquisition system is used to obtain a high-quality random sequence. Our scheme is simple and proves that the random number bit rate can be dramatically increased to satisfy practical requirements. Project supported by the National Natural Science Foundation of China (Grant Nos. 61178010 and 11374042), the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), China, and the Fundamental Research Funds for the Central Universities of China (Grant No. bupt2014TS01).
Pseudo-random number generator based on mixing of three chaotic maps
François, M.; Grosges, T.; Barchiesi, D.; Erra, R.
2014-04-01
A secure pseudo-random number generator three-mixer is proposed. The principle of the method consists in mixing three chaotic maps produced from an input initial vector. The algorithm uses permutations whose positions are computed and indexed by a standard chaotic function and a linear congruence. The performance of that scheme is evaluated through statistical analysis. Such a cryptosystem lets appear significant cryptographic qualities for a high security level.
Pseudo-random bit generator based on Chebyshev map
Stoyanov, B. P.
2013-10-01
In this paper, we study a pseudo-random bit generator based on two Chebyshev polynomial maps. The novel derivative algorithm shows perfect statistical properties established by number of statistical tests.
Hardware implementation of a GFSR pseudo-random number generator
Aiello, G. R.; Budinich, M.; Milotti, E.
1989-12-01
We describe the hardware implementation of a pseudo-random number generator of the "Generalized Feedback Shift Register" (GFSR) type. After brief theoretical considerations we describe two versions of the hardware, the tests done and the performances achieved.
Random number generation based on digital differential chaos
Zidan, Mohammed A.; Radwan, Ahmed G.; Salama, Khaled N.
2012-01-01
In this paper, we present a fully digital differential chaos based random number generator. The output of the digital circuit is proved to be chaotic by calculating the output time series maximum Lyapunov exponent. We introduce a new post processing
Note on Marsaglia\\'s Xorshift Random Number Generators
Directory of Open Access Journals (Sweden)
Richard P. Brent
2004-08-01
Full Text Available Marsaglia (2003 has described a class of Xorshift random number generators (RNGs with periods 2n - 1 for n = 32, 64, etc. We show that the sequences generated by these RNGs are identical to the sequences generated by certain linear feedback shift register (LFSR generators using "exclusive or" (xor operations on n-bit words, with a recurrence defined by a primitive polynomial of degree n.
A Repetition Test for Pseudo-Random Number Generators
Gil, Manuel; Gonnet, Gaston H.; Petersen, Wesley P.
2017-01-01
A new statistical test for uniform pseudo-random number generators (PRNGs) is presented. The idea is that a sequence of pseudo-random numbers should have numbers reappear with a certain probability. The expectation time that a repetition occurs provides the metric for the test. For linear congruential generators (LCGs) failure can be shown theoretically. Empirical test results for a number of commonly used PRNGs are reported, showing that some PRNGs considered to have good statistical propert...
Experimentally generated randomness certified by the impossibility of superluminal signals.
Bierhorst, Peter; Knill, Emanuel; Glancy, Scott; Zhang, Yanbao; Mink, Alan; Jordan, Stephen; Rommal, Andrea; Liu, Yi-Kai; Christensen, Bradley; Nam, Sae Woo; Stevens, Martin J; Shalm, Lynden K
2018-04-01
From dice to modern electronic circuits, there have been many attempts to build better devices to generate random numbers. Randomness is fundamental to security and cryptographic systems and to safeguarding privacy. A key challenge with random-number generators is that it is hard to ensure that their outputs are unpredictable 1-3 . For a random-number generator based on a physical process, such as a noisy classical system or an elementary quantum measurement, a detailed model that describes the underlying physics is necessary to assert unpredictability. Imperfections in the model compromise the integrity of the device. However, it is possible to exploit the phenomenon of quantum non-locality with a loophole-free Bell test to build a random-number generator that can produce output that is unpredictable to any adversary that is limited only by general physical principles, such as special relativity 1-11 . With recent technological developments, it is now possible to carry out such a loophole-free Bell test 12-14,22 . Here we present certified randomness obtained from a photonic Bell experiment and extract 1,024 random bits that are uniformly distributed to within 10 -12 . These random bits could not have been predicted according to any physical theory that prohibits faster-than-light (superluminal) signalling and that allows independent measurement choices. To certify and quantify the randomness, we describe a protocol that is optimized for devices that are characterized by a low per-trial violation of Bell inequalities. Future random-number generators based on loophole-free Bell tests may have a role in increasing the security and trust of our cryptographic systems and infrastructure.
Pseudo-random bit generator based on lag time series
García-Martínez, M.; Campos-Cantón, E.
2014-12-01
In this paper, we present a pseudo-random bit generator (PRBG) based on two lag time series of the logistic map using positive and negative values in the bifurcation parameter. In order to hidden the map used to build the pseudo-random series we have used a delay in the generation of time series. These new series when they are mapped xn against xn+1 present a cloud of points unrelated to the logistic map. Finally, the pseudo-random sequences have been tested with the suite of NIST giving satisfactory results for use in stream ciphers.
Analysis of random number generators in abnormal usage conditions
International Nuclear Information System (INIS)
Soucarros, M.
2012-01-01
Random numbers have been used through the ages for games of chance, more recently for secret codes and today they are necessary to the execution of computer programs. Random number generators have now evolved from simple dices to electronic circuits and algorithms. Accordingly, the ability to distinguish between random and non-random numbers has become more difficult. Furthermore, whereas in the past dices were loaded in order to increase winning chances, it is now possible to influence the outcome of random number generators. In consequence, this subject is still very much an issue and has recently made the headlines. Indeed, there was talks about the PS3 game console which generates constant random numbers and redundant distribution of secret keys on the internet. This thesis presents a study of several generators as well as different means to perturb them. It shows the inherent defects of their conceptions and possible consequences of their failure when they are embedded inside security components. Moreover, this work highlights problems yet to be solved concerning the testing of random numbers and the post-processing eliminating bias in these numbers distribution. (author) [fr
Ultrafast quantum random number generation based on quantum phase fluctuations.
Xu, Feihu; Qi, Bing; Ma, Xiongfeng; Xu, He; Zheng, Haoxuan; Lo, Hoi-Kwong
2012-05-21
A quantum random number generator (QRNG) can generate true randomness by exploiting the fundamental indeterminism of quantum mechanics. Most approaches to QRNG employ single-photon detection technologies and are limited in speed. Here, we experimentally demonstrate an ultrafast QRNG at a rate over 6 Gbits/s based on the quantum phase fluctuations of a laser operating near threshold. Moreover, we consider a potential adversary who has partial knowledge on the raw data and discuss how one can rigorously remove such partial knowledge with postprocessing. We quantify the quantum randomness through min-entropy by modeling our system and employ two randomness extractors--Trevisan's extractor and Toeplitz-hashing--to distill the randomness, which is information-theoretically provable. The simplicity and high-speed of our experimental setup show the feasibility of a robust, low-cost, high-speed QRNG.
Parallel random number generator for inexpensive configurable hardware cells
Ackermann, J.; Tangen, U.; Bödekker, B.; Breyer, J.; Stoll, E.; McCaskill, J. S.
2001-11-01
A new random number generator ( RNG) adapted to parallel processors has been created. This RNG can be implemented with inexpensive hardware cells. The correlation between neighboring cells is suppressed with smart connections. With such connection structures, sequences of pseudo-random numbers are produced. Numerical tests including a self-avoiding random walk test and the simulation of the order parameter and energy of the 2D Ising model give no evidence for correlation in the pseudo-random sequences. Because the new random number generator has suppressed the correlation between neighboring cells which is usually observed in cellular automaton implementations, it is applicable for extended time simulations. It gives an immense speed-up factor if implemented directly in configurable hardware, and has recently been used for long time simulations of spatially resolved molecular evolution.
Experimental nonlocality-based randomness generation with nonprojective measurements
Gómez, S.; Mattar, A.; Gómez, E. S.; Cavalcanti, D.; Farías, O. Jiménez; Acín, A.; Lima, G.
2018-04-01
We report on an optical setup generating more than one bit of randomness from one entangled bit (i.e., a maximally entangled state of two qubits). The amount of randomness is certified through the observation of Bell nonlocal correlations. To attain this result we implemented a high-purity entanglement source and a nonprojective three-outcome measurement. Our implementation achieves a gain of 27% of randomness as compared with the standard methods using projective measurements. Additionally, we estimate the amount of randomness certified in a one-sided device-independent scenario, through the observation of Einstein-Podolsky-Rosen steering. Our results prove that nonprojective quantum measurements allow extending the limits for nonlocality-based certified randomness generation using current technology.
Yu, Aifang; Chen, Xiangyu; Cui, Haotian; Chen, Libo; Luo, Jianjun; Tang, Wei; Peng, Mingzeng; Zhang, Yang; Zhai, Junyi; Wang, Zhong Lin
2016-12-27
Modern cryptography increasingly employs random numbers generated from physical sources in lieu of conventional software-based pseudorandom numbers, primarily owing to the great demand of unpredictable, indecipherable cryptographic keys from true random numbers for information security. Thus, far, the sole demonstration of true random numbers has been generated through thermal noise and/or quantum effects, which suffers from expensive and complex equipment. In this paper, we demonstrate a method for self-powered creation of true random numbers by using triboelectric technology to collect random signals from nature. This random number generator based on coupled triboelectric and electrostatic induction effects at the liquid-dielectric interface includes an elaborately designed triboelectric generator (TENG) with an irregular grating structure, an electronic-optical device, and an optical-electronic device. The random characteristics of raindrops are harvested through TENG and consequently transformed and converted by electronic-optical device and an optical-electronic device with a nonlinear characteristic. The cooperation of the mechanical, electrical, and optical signals ensures that the generator possesses complex nonlinear input-output behavior and contributes to increased randomness. The random number sequences are deduced from final electrical signals received by an optical-electronic device using a familiar algorithm. These obtained random number sequences exhibit good statistical characteristics, unpredictability, and unrepeatability. Our study supplies a simple, practical, and effective method to generate true random numbers, which can be widely used in cryptographic protocols, digital signatures, authentication, identification, and other information security fields.
The Reliability of Randomly Generated Math Curriculum-Based Measurements
Strait, Gerald G.; Smith, Bradley H.; Pender, Carolyn; Malone, Patrick S.; Roberts, Jarod; Hall, John D.
2015-01-01
"Curriculum-Based Measurement" (CBM) is a direct method of academic assessment used to screen and evaluate students' skills and monitor their responses to academic instruction and intervention. Interventioncentral.org offers a math worksheet generator at no cost that creates randomly generated "math curriculum-based measures"…
Generation of Random Numbers and Parallel Random Number Streams for Monte Carlo Simulations
Directory of Open Access Journals (Sweden)
L. Yu. Barash
2012-01-01
Full Text Available Modern methods and libraries for high quality pseudorandom number generation and for generation of parallel random number streams for Monte Carlo simulations are considered. The probability equidistribution property and the parameters when the property holds at dimensions up to logarithm of mesh size are considered for Multiple Recursive Generators.
Directory of Open Access Journals (Sweden)
Ronghui ZHENG
2017-12-01
Full Text Available A control method for Multi-Input Multi-Output (MIMO non-Gaussian random vibration test with cross spectra consideration is proposed in the paper. The aim of the proposed control method is to replicate the specified references composed of auto spectral densities, cross spectral densities and kurtoses on the test article in the laboratory. It is found that the cross spectral densities will bring intractable coupling problems and induce difficulty for the control of the multi-output kurtoses. Hence, a sequential phase modification method is put forward to solve the coupling problems in multi-input multi-output non-Gaussian random vibration test. To achieve the specified responses, an improved zero memory nonlinear transformation is utilized first to modify the Fourier phases of the signals with sequential phase modification method to obtain one frame reference response signals which satisfy the reference spectra and reference kurtoses. Then, an inverse system method is used in frequency domain to obtain the continuous stationary drive signals. At the same time, the matrix power control algorithm is utilized to control the spectra and kurtoses of the response signals further. At the end of the paper, a simulation example with a cantilever beam and a vibration shaker test are implemented and the results support the proposed method very well. Keywords: Cross spectra, Kurtosis control, Multi-input multi-output, Non-Gaussian, Random vibration test
Input-profile-based software failure probability quantification for safety signal generation systems
International Nuclear Information System (INIS)
Kang, Hyun Gook; Lim, Ho Gon; Lee, Ho Jung; Kim, Man Cheol; Jang, Seung Cheol
2009-01-01
The approaches for software failure probability estimation are mainly based on the results of testing. Test cases represent the inputs, which are encountered in an actual use. The test inputs for the safety-critical application such as a reactor protection system (RPS) of a nuclear power plant are the inputs which cause the activation of protective action such as a reactor trip. A digital system treats inputs from instrumentation sensors as discrete digital values by using an analog-to-digital converter. Input profile must be determined in consideration of these characteristics for effective software failure probability quantification. Another important characteristic of software testing is that we do not have to repeat the test for the same input value since the software response is deterministic for each specific digital input. With these considerations, we propose an effective software testing method for quantifying the failure probability. As an example application, the input profile of the digital RPS is developed based on the typical plant data. The proposed method in this study is expected to provide a simple but realistic mean to quantify the software failure probability based on input profile and system dynamics.
Brain potentials index executive functions during random number generation.
Joppich, Gregor; Däuper, Jan; Dengler, Reinhard; Johannes, Sönke; Rodriguez-Fornells, Antoni; Münte, Thomas F
2004-06-01
The generation of random sequences is considered to tax different executive functions. To explore the involvement of these functions further, brain potentials were recorded in 16 healthy young adults while either engaging in random number generation (RNG) by pressing the number keys on a computer keyboard in a random sequence or in ordered number generation (ONG) necessitating key presses in the canonical order. Key presses were paced by an external auditory stimulus to yield either fast (1 press/800 ms) or slow (1 press/1300 ms) sequences in separate runs. Attentional demands of random and ordered tasks were assessed by the introduction of a secondary task (key-press to a target tone). The P3 amplitude to the target tone of this secondary task was reduced during RNG, reflecting the greater consumption of attentional resources during RNG. Moreover, RNG led to a left frontal negativity peaking 140 ms after the onset of the pacing stimulus, whenever the subjects produced a true random response. This negativity could be attributed to the left dorsolateral prefrontal cortex and was absent when numbers were repeated. This negativity was interpreted as an index for the inhibition of habitual responses. Finally, in response locked ERPs a negative component was apparent peaking about 50 ms after the key-press that was more prominent during RNG. Source localization suggested a medial frontal source. This effect was tentatively interpreted as a reflection of the greater monitoring demands during random sequence generation.
Generating functionals for quantum field theories with random potentials
International Nuclear Information System (INIS)
Jain, Mudit; Vanchurin, Vitaly
2016-01-01
We consider generating functionals for computing correlators in quantum field theories with random potentials. Examples of such theories include cosmological systems in context of the string theory landscape (e.g. cosmic inflation) or condensed matter systems with quenched disorder (e.g. spin glass). We use the so-called replica trick to define two different generating functionals for calculating correlators of the quantum fields averaged over a given distribution of random potentials. The first generating functional is appropriate for calculating averaged (in-out) amplitudes and involves a single replica of fields, but the replica limit is taken to an (unphysical) negative one number of fields outside of the path integral. When the number of replicas is doubled the generating functional can also be used for calculating averaged probabilities (squared amplitudes) using the in-in construction. The second generating functional involves an infinite number of replicas, but can be used for calculating both in-out and in-in correlators and the replica limits are taken to only a zero number of fields. We discuss the formalism in details for a single real scalar field, but the generalization to more fields or to different types of fields is straightforward. We work out three examples: one where the mass of scalar field is treated as a random variable and two where the functional form of interactions is random, one described by a Gaussian random field and the other by a Euclidean action in the field configuration space.
Energy Technology Data Exchange (ETDEWEB)
Stipčević, Mario, E-mail: mario.stipcevic@irb.hr [Photonics and Quantum Optics Research Unit, Center of Excellence for Advanced Materials and Sensing Devices, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb (Croatia)
2016-03-15
In this work, a new type of elementary logic circuit, named random flip-flop (RFF), is proposed, experimentally realized, and studied. Unlike conventional Boolean logic circuits whose action is deterministic and highly reproducible, the action of a RFF is intentionally made maximally unpredictable and, in the proposed realization, derived from a fundamentally random process of emission and detection of light quanta. We demonstrate novel applications of RFF in randomness preserving frequency division, random frequency synthesis, and random number generation. Possible usages of these applications in the information and communication technology, cryptographic hardware, and testing equipment are discussed.
An investigation of the uniform random number generator
Temple, E. C.
1982-01-01
Most random number generators that are in use today are of the congruential form X(i+1) + AX(i) + C mod M where A, C, and M are nonnegative integers. If C=O, the generator is called the multiplicative type and those for which C/O are called mixed congruential generators. It is easy to see that congruential generators will repeat a sequence of numbers after a maximum of M values have been generated. The number of numbers that a procedure generates before restarting the sequence is called the length or the period of the generator. Generally, it is desirable to make the period as long as possible. A detailed discussion of congruential generators is given. Also, several promising procedures that differ from the multiplicative and mixed procedure are discussed.
Chaos-based Pseudo-random Number Generation
Barakat, Mohamed L.
2014-04-10
Various methods and systems related to chaos-based pseudo-random number generation are presented. In one example, among others, a system includes a pseudo-random number generator (PRNG) to generate a series of digital outputs and a nonlinear post processing circuit to perform an exclusive OR (XOR) operation on a first portion of a current digital output of the PRNG and a permutated version of a corresponding first portion of a previous post processed output to generate a corresponding first portion of a current post processed output. In another example, a method includes receiving at least a first portion of a current output from a PRNG and performing an XOR operation on the first portion of the current PRNG output with a permutated version of a corresponding first portion of a previous post processed output to generate a corresponding first portion of a current post processed output.
Chaos-based Pseudo-random Number Generation
Barakat, Mohamed L.; Mansingka, Abhinav S.; Radwan, Ahmed Gomaa Ahmed; Salama, Khaled N.
2014-01-01
Various methods and systems related to chaos-based pseudo-random number generation are presented. In one example, among others, a system includes a pseudo-random number generator (PRNG) to generate a series of digital outputs and a nonlinear post processing circuit to perform an exclusive OR (XOR) operation on a first portion of a current digital output of the PRNG and a permutated version of a corresponding first portion of a previous post processed output to generate a corresponding first portion of a current post processed output. In another example, a method includes receiving at least a first portion of a current output from a PRNG and performing an XOR operation on the first portion of the current PRNG output with a permutated version of a corresponding first portion of a previous post processed output to generate a corresponding first portion of a current post processed output.
Random generation of RNA secondary structures according to native distributions
Directory of Open Access Journals (Sweden)
Nebel Markus E
2011-10-01
Full Text Available Abstract Background Random biological sequences are a topic of great interest in genome analysis since, according to a powerful paradigm, they represent the background noise from which the actual biological information must differentiate. Accordingly, the generation of random sequences has been investigated for a long time. Similarly, random object of a more complicated structure like RNA molecules or proteins are of interest. Results In this article, we present a new general framework for deriving algorithms for the non-uniform random generation of combinatorial objects according to the encoding and probability distribution implied by a stochastic context-free grammar. Briefly, the framework extends on the well-known recursive method for (uniform random generation and uses the popular framework of admissible specifications of combinatorial classes, introducing weighted combinatorial classes to allow for the non-uniform generation by means of unranking. This framework is used to derive an algorithm for the generation of RNA secondary structures of a given fixed size. We address the random generation of these structures according to a realistic distribution obtained from real-life data by using a very detailed context-free grammar (that models the class of RNA secondary structures by distinguishing between all known motifs in RNA structure. Compared to well-known sampling approaches used in several structure prediction tools (such as SFold ours has two major advantages: Firstly, after a preprocessing step in time O(n2 for the computation of all weighted class sizes needed, with our approach a set of m random secondary structures of a given structure size n can be computed in worst-case time complexity Om⋅n⋅ log(n while other algorithms typically have a runtime in O(m⋅n2. Secondly, our approach works with integer arithmetic only which is faster and saves us from all the discomforting details of using floating point arithmetic with
Secure self-calibrating quantum random-bit generator
International Nuclear Information System (INIS)
Fiorentino, M.; Santori, C.; Spillane, S. M.; Beausoleil, R. G.; Munro, W. J.
2007-01-01
Random-bit generators (RBGs) are key components of a variety of information processing applications ranging from simulations to cryptography. In particular, cryptographic systems require 'strong' RBGs that produce high-entropy bit sequences, but traditional software pseudo-RBGs have very low entropy content and therefore are relatively weak for cryptography. Hardware RBGs yield entropy from chaotic or quantum physical systems and therefore are expected to exhibit high entropy, but in current implementations their exact entropy content is unknown. Here we report a quantum random-bit generator (QRBG) that harvests entropy by measuring single-photon and entangled two-photon polarization states. We introduce and implement a quantum tomographic method to measure a lower bound on the 'min-entropy' of the system, and we employ this value to distill a truly random-bit sequence. This approach is secure: even if an attacker takes control of the source of optical states, a secure random sequence can be distilled
Efficient Raman generation in a waveguide: A route to ultrafast quantum random number generation
Energy Technology Data Exchange (ETDEWEB)
England, D. G.; Bustard, P. J.; Moffatt, D. J.; Nunn, J.; Lausten, R.; Sussman, B. J., E-mail: ben.sussman@nrc.ca [National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada)
2014-02-03
The inherent uncertainty in quantum mechanics offers a source of true randomness which can be used to produce unbreakable cryptographic keys. We discuss the development of a high-speed random number generator based on the quantum phase fluctuations in spontaneously initiated stimulated Raman scattering (SISRS). We utilize the tight confinement and long interaction length available in a Potassium Titanyl Phosphate waveguide to generate highly efficient SISRS using nanojoule pulse energies, reducing the high pump power requirements of the previous approaches. We measure the random phase of the Stokes output using a simple interferometric setup to yield quantum random numbers at 145 Mbps.
On the Periods of the {ranshi} Random Number Generator
Gutbrod, F.
The stochastic properties of the pseudo-random number generator {ranshi} are discussed, with emphasis on the average period. Within a factor 2 this turns out to be the root of the maximally possible period. The actual set of periods depends on minor details of the algorithm, and the system settles down in one of only a few different cycles. These features are in perfect agreement with absolute random motion in phase space, to the extent allowed by deterministic dynamics.
Energy Technology Data Exchange (ETDEWEB)
Faiz, J.; Rajabi-Sebdani, M.; Ebrahimi, B. M. (Univ. of Tehran, Tehran (Iran)); Khan, M. A. (Univ. of Cape Town, Cape Town (South Africa))
2008-07-01
This paper presents a multi-objective optimization method to maximize annual energy input (AEI) and minimize permanent magnet (PM) volume in use. For this purpose, the analytical model of the machine is utilized. Effects of generator specifications on the annual energy input and PM volume are then investigated. Permanent magnet synchronous generator (PMSG) parameters and dimensions are then optimized using genetic algorithm incorporated with an appropriate objective function. The results show an enhancement in PMSG performance. Finally 2D time stepping finite element method (2D TSFE) is used to verify the analytical results. Comparison of the results validates the optimization method
Search for a perfect generator of random numbers
International Nuclear Information System (INIS)
Musyck, E.
1977-01-01
Theoretical tests have been carried out by COVEYOU and MAC PHERSON to verify the applications of the LEHMER algorithm. In a similar way, a theoretical method is proposed to evaluate in a rigorous way the random character of numbers generated by a shift register. This theory introduces the concept of ''degree of randomness'' of the elements, taken in a definite order, of a shift register. It permits making the judicious choice of the elements of the shift register which will produce the bits of the random numbers. On the other hand, a calculation method is developed in order to verify the primitive character of any shift register of high complexity. A new test, called ''slice test'', of empirical and theoretical use is also described; it constitutes a significant contribution to the understanding of certain properties of pseudo-random sequences. As a practical example, a random number generator structure formed with 32 bits, built out of a shift register with 61 elements and 60 modulo-2 adder circuits was made. The author is convinced that this generator can be considered to be practically perfect for all empirical applications of random numbers, particularly for the solution of Monte-Carlo problems. (author)
Analysis of entropy extraction efficiencies in random number generation systems
Wang, Chao; Wang, Shuang; Chen, Wei; Yin, Zhen-Qiang; Han, Zheng-Fu
2016-05-01
Random numbers (RNs) have applications in many areas: lottery games, gambling, computer simulation, and, most importantly, cryptography [N. Gisin et al., Rev. Mod. Phys. 74 (2002) 145]. In cryptography theory, the theoretical security of the system calls for high quality RNs. Therefore, developing methods for producing unpredictable RNs with adequate speed is an attractive topic. Early on, despite the lack of theoretical support, pseudo RNs generated by algorithmic methods performed well and satisfied reasonable statistical requirements. However, as implemented, those pseudorandom sequences were completely determined by mathematical formulas and initial seeds, which cannot introduce extra entropy or information. In these cases, “random” bits are generated that are not at all random. Physical random number generators (RNGs), which, in contrast to algorithmic methods, are based on unpredictable physical random phenomena, have attracted considerable research interest. However, the way that we extract random bits from those physical entropy sources has a large influence on the efficiency and performance of the system. In this manuscript, we will review and discuss several randomness extraction schemes that are based on radiation or photon arrival times. We analyze the robustness, post-processing requirements and, in particular, the extraction efficiency of those methods to aid in the construction of efficient, compact and robust physical RNG systems.
The random signal generator of imitated nuclear radiation pulse
International Nuclear Information System (INIS)
Li Dongcang; Yang Lei; Yuan Shulin; Yang Yinghui; Zang Fujia
2007-01-01
Based in pseudo-random uniformity number, it produces random numbers of Gaussian distribution and exponential distribution by arithmetic. The hardware is the single-chip microcomputer of 89C51. Program language makes use of Keil C. The output pulse amplitude is Gaussian distribution, exponential distribution or uniformity distribution. Likewise, it has two mode or upwards two. The time alternation of output pulse is both periodic and exponential distribution. The generator has achieved output control of multi-mode distribution, imitated random characteristic of nuclear pulse in amplitude and in time. (authors)
Study on random number generator in Monte Carlo code
International Nuclear Information System (INIS)
Oya, Kentaro; Kitada, Takanori; Tanaka, Shinichi
2011-01-01
The Monte Carlo code uses a sequence of pseudo-random numbers with a random number generator (RNG) to simulate particle histories. A pseudo-random number has its own period depending on its generation method and the period is desired to be long enough not to exceed the period during one Monte Carlo calculation to ensure the correctness especially for a standard deviation of results. The linear congruential generator (LCG) is widely used as Monte Carlo RNG and the period of LCG is not so long by considering the increasing rate of simulation histories in a Monte Carlo calculation according to the remarkable enhancement of computer performance. Recently, many kinds of RNG have been developed and some of their features are better than those of LCG. In this study, we investigate the appropriate RNG in a Monte Carlo code as an alternative to LCG especially for the case of enormous histories. It is found that xorshift has desirable features compared with LCG, and xorshift has a larger period, a comparable speed to generate random numbers, a better randomness, and good applicability to parallel calculation. (author)
DNA-based random number generation in security circuitry.
Gearheart, Christy M; Arazi, Benjamin; Rouchka, Eric C
2010-06-01
DNA-based circuit design is an area of research in which traditional silicon-based technologies are replaced by naturally occurring phenomena taken from biochemistry and molecular biology. This research focuses on further developing DNA-based methodologies to mimic digital data manipulation. While exhibiting fundamental principles, this work was done in conjunction with the vision that DNA-based circuitry, when the technology matures, will form the basis for a tamper-proof security module, revolutionizing the meaning and concept of tamper-proofing and possibly preventing it altogether based on accurate scientific observations. A paramount part of such a solution would be self-generation of random numbers. A novel prototype schema employs solid phase synthesis of oligonucleotides for random construction of DNA sequences; temporary storage and retrieval is achieved through plasmid vectors. A discussion of how to evaluate sequence randomness is included, as well as how these techniques are applied to a simulation of the random number generation circuitry. Simulation results show generated sequences successfully pass three selected NIST random number generation tests specified for security applications.
A fast random number generator for the Intel Paragon supercomputer
Gutbrod, F.
1995-06-01
A pseudo-random number generator is presented which makes optimal use of the architecture of the i860-microprocessor and which is expected to have a very long period. It is therefore a good candidate for use on the parallel supercomputer Paragon XP. In the assembler version, it needs 6.4 cycles for a real∗4 random number. There is a FORTRAN routine which yields identical numbers up to rare and minor rounding discrepancies, and it needs 28 cycles. The FORTRAN performance on other microprocessors is somewhat better. Arguments for the quality of the generator and some numerical tests are given.
Accelerating Pseudo-Random Number Generator for MCNP on GPU
Gong, Chunye; Liu, Jie; Chi, Lihua; Hu, Qingfeng; Deng, Li; Gong, Zhenghu
2010-09-01
Pseudo-random number generators (PRNG) are intensively used in many stochastic algorithms in particle simulations, artificial neural networks and other scientific computation. The PRNG in Monte Carlo N-Particle Transport Code (MCNP) requires long period, high quality, flexible jump and fast enough. In this paper, we implement such a PRNG for MCNP on NVIDIA's GTX200 Graphics Processor Units (GPU) using CUDA programming model. Results shows that 3.80 to 8.10 times speedup are achieved compared with 4 to 6 cores CPUs and more than 679.18 million double precision random numbers can be generated per second on GPU.
Solution-Processed Carbon Nanotube True Random Number Generator.
Gaviria Rojas, William A; McMorrow, Julian J; Geier, Michael L; Tang, Qianying; Kim, Chris H; Marks, Tobin J; Hersam, Mark C
2017-08-09
With the growing adoption of interconnected electronic devices in consumer and industrial applications, there is an increasing demand for robust security protocols when transmitting and receiving sensitive data. Toward this end, hardware true random number generators (TRNGs), commonly used to create encryption keys, offer significant advantages over software pseudorandom number generators. However, the vast network of devices and sensors envisioned for the "Internet of Things" will require small, low-cost, and mechanically flexible TRNGs with low computational complexity. These rigorous constraints position solution-processed semiconducting single-walled carbon nanotubes (SWCNTs) as leading candidates for next-generation security devices. Here, we demonstrate the first TRNG using static random access memory (SRAM) cells based on solution-processed SWCNTs that digitize thermal noise to generate random bits. This bit generation strategy can be readily implemented in hardware with minimal transistor and computational overhead, resulting in an output stream that passes standardized statistical tests for randomness. By using solution-processed semiconducting SWCNTs in a low-power, complementary architecture to achieve TRNG, we demonstrate a promising approach for improving the security of printable and flexible electronics.
Korelin, Ivan A.; Porshnev, Sergey V.
2018-05-01
A model of the non-stationary queuing system (NQS) is described. The input of this model receives a flow of requests with input rate λ = λdet (t) + λrnd (t), where λdet (t) is a deterministic function depending on time; λrnd (t) is a random function. The parameters of functions λdet (t), λrnd (t) were identified on the basis of statistical information on visitor flows collected from various Russian football stadiums. The statistical modeling of NQS is carried out and the average statistical dependences are obtained: the length of the queue of requests waiting for service, the average wait time for the service, the number of visitors entered to the stadium on the time. It is shown that these dependencies can be characterized by the following parameters: the number of visitors who entered at the time of the match; time required to service all incoming visitors; the maximum value; the argument value when the studied dependence reaches its maximum value. The dependences of these parameters on the energy ratio of the deterministic and random component of the input rate are investigated.
BWIP-RANDOM-SAMPLING, Random Sample Generation for Nuclear Waste Disposal
International Nuclear Information System (INIS)
Sagar, B.
1989-01-01
1 - Description of program or function: Random samples for different distribution types are generated. Distribution types as required for performance assessment modeling of geologic nuclear waste disposal are provided. These are: - Uniform, - Log-uniform (base 10 or natural), - Normal, - Lognormal (base 10 or natural), - Exponential, - Bernoulli, - User defined continuous distribution. 2 - Method of solution: A linear congruential generator is used for uniform random numbers. A set of functions is used to transform the uniform distribution to the other distributions. Stratified, rather than random, sampling can be chosen. Truncated limits can be specified on many distributions, whose usual definition has an infinite support. 3 - Restrictions on the complexity of the problem: Generation of correlated random variables is not included
Device-independent randomness generation from several Bell estimators
Nieto-Silleras, Olmo; Bamps, Cédric; Silman, Jonathan; Pironio, Stefano
2018-02-01
Device-independent randomness generation and quantum key distribution protocols rely on a fundamental relation between the non-locality of quantum theory and its random character. This relation is usually expressed in terms of a trade-off between the probability of guessing correctly the outcomes of measurements performed on quantum systems and the amount of violation of a given Bell inequality. However, a more accurate assessment of the randomness produced in Bell experiments can be obtained if the value of several Bell expressions is simultaneously taken into account, or if the full set of probabilities characterizing the behavior of the device is considered. We introduce protocols for device-independent randomness generation secure against classical side information, that rely on the estimation of an arbitrary number of Bell expressions or even directly on the experimental frequencies of measurement outcomes. Asymptotically, this results in an optimal generation of randomness from experimental data (as measured by the min-entropy), without having to assume beforehand that the devices violate a specific Bell inequality.
Random number generators tested on quantum Monte Carlo simulations.
Hongo, Kenta; Maezono, Ryo; Miura, Kenichi
2010-08-01
We have tested and compared several (pseudo) random number generators (RNGs) applied to a practical application, ground state energy calculations of molecules using variational and diffusion Monte Carlo metheds. A new multiple recursive generator with 8th-order recursion (MRG8) and the Mersenne twister generator (MT19937) are tested and compared with the RANLUX generator with five luxury levels (RANLUX-[0-4]). Both MRG8 and MT19937 are proven to give the same total energy as that evaluated with RANLUX-4 (highest luxury level) within the statistical error bars with less computational cost to generate the sequence. We also tested the notorious implementation of linear congruential generator (LCG), RANDU, for comparison. (c) 2010 Wiley Periodicals, Inc.
Extensions of von Neumann's method for generating random variables
International Nuclear Information System (INIS)
Monahan, J.F.
1979-01-01
Von Neumann's method of generating random variables with the exponential distribution and Forsythe's method for obtaining distributions with densities of the form e/sup -G//sup( x/) are generalized to apply to certain power series representations. The flexibility of the power series methods is illustrated by algorithms for the Cauchy and geometric distributions
Algorithms for random generation and counting a Markov chain approach
Sinclair, Alistair
1993-01-01
This monograph studies two classical computational problems: counting the elements of a finite set of combinatorial structures, and generating them at random from some probability distribution. Apart from their intrinsic interest, these problems arise naturally in many branches of mathematics and the natural sciences.
International Nuclear Information System (INIS)
Tahir Shah, K.
1981-04-01
We give an axiomatic prescription for self-organization in the brain and in intelligent machines through random input of data. This self-organization leads to the formation of pre-cognition long term memory (LTM) subsystem. By using the notions of p-equivalent and its negation instead of true and false in the predicate calculus and pre-cognition LTM, a method is proposed for pattern recognition which can also be utilized for studying relations between the genetic code and the observed properties of respective species. (author)
RANDOMNUMBERS, Random Number Sequence Generated from Gas Ionisation Chamber Data
International Nuclear Information System (INIS)
Frigerio, N.A.; Sanathanan, L.P.; Morley, M.; Tyler, S.A.; Clark, N.A.; Wang, J.
1989-01-01
1 - Description of problem or function: RANDOM NUMBERS is a data collection of almost 2.7 million 31-bit random numbers generated by using a high resolution gas ionization detector chamber in conjunction with a 4096-channel multichannel analyzer to record the radioactive decay of alpha particles from a U-235 source. The signals from the decaying alpha particles were fed to the 4096-channel analyzer, and for each channel the frequency of signals registered in a 20,000-microsecond interval was recorded. The parity bits of these frequency counts, 0 for an even count and 1 for and odd count, were then assembled in sequence to form 31-bit random numbers and transcribed onto magnetic tape. This cycle was repeated to obtain the random numbers. 2 - Method of solution: The frequency distribution of counts from the device conforms to the Brockwell-Moyal distribution which takes into account the dead time of the counter. The count data were analyzed and tests for randomness on a sample indicate that the device is a highly reliable source of truly random numbers. 3 - Restrictions on the complexity of the problem: The RANDOM NUMBERS tape contains 2,669,568 31-bit numbers
Random number generation based on digital differential chaos
Zidan, Mohammed A.
2012-07-29
In this paper, we present a fully digital differential chaos based random number generator. The output of the digital circuit is proved to be chaotic by calculating the output time series maximum Lyapunov exponent. We introduce a new post processing technique to improve the distribution and statistical properties of the generated data. The post-processed output passes the NIST Sp. 800-22 statistical tests. The system is written in Verilog VHDL and realized on Xilinx Virtex® FPGA. The generator can fit into a very small area and have a maximum throughput of 2.1 Gb/s.
COGEDIF - automatic TORT and DORT input generation from MORSE combinatorial geometry models
International Nuclear Information System (INIS)
Castelli, R.A.; Barnett, D.A.
1992-01-01
COGEDIF is an interactive utility which was developed to automate the preparation of two and three dimensional geometrical inputs for the ORNL-TORT and DORT discrete ordinates programs from complex three dimensional models described using the MORSE combinatorial geometry input description. The program creates either continuous or disjoint mesh input based upon the intersections of user defined meshing planes and the MORSE body definitions. The composition overlay of the combinatorial geometry is used to create the composition mapping of the discretized geometry based upon the composition found at the centroid of each of the mesh cells. This program simplifies the process of using discrete orthogonal mesh cells to represent non-orthogonal geometries in large models which require mesh sizes of the order of a million cells or more. The program was specifically written to take advantage of the new TORT disjoint mesh option which was developed at ORNL
DNA based random key generation and management for OTP encryption.
Zhang, Yunpeng; Liu, Xin; Sun, Manhui
2017-09-01
One-time pad (OTP) is a principle of key generation applied to the stream ciphering method which offers total privacy. The OTP encryption scheme has proved to be unbreakable in theory, but difficult to realize in practical applications. Because OTP encryption specially requires the absolute randomness of the key, its development has suffered from dense constraints. DNA cryptography is a new and promising technology in the field of information security. DNA chromosomes storing capabilities can be used as one-time pad structures with pseudo-random number generation and indexing in order to encrypt the plaintext messages. In this paper, we present a feasible solution to the OTP symmetric key generation and transmission problem with DNA at the molecular level. Through recombinant DNA technology, by using only sender-receiver known restriction enzymes to combine the secure key represented by DNA sequence and the T vector, we generate the DNA bio-hiding secure key and then place the recombinant plasmid in implanted bacteria for secure key transmission. The designed bio experiments and simulation results show that the security of the transmission of the key is further improved and the environmental requirements of key transmission are reduced. Analysis has demonstrated that the proposed DNA-based random key generation and management solutions are marked by high security and usability. Published by Elsevier B.V.
Uniqueness: skews bit occurrence frequencies in randomly generated fingerprint libraries.
Chen, Nelson G
2016-08-01
Requiring that randomly generated chemical fingerprint libraries have unique fingerprints such that no two fingerprints are identical causes a systematic skew in bit occurrence frequencies, the proportion at which specified bits are set. Observed frequencies (O) at which each bit is set within the resulting libraries systematically differ from frequencies at which bits are set at fingerprint generation (E). Observed frequencies systematically skew toward 0.5, with the effect being more pronounced as library size approaches the compound space, which is the total number of unique possible fingerprints given the number of bit positions each fingerprint contains. The effect is quantified for varying library sizes as a fraction of the overall compound space, and for changes in the specified frequency E. The cause and implications for this systematic skew are subsequently discussed. When generating random libraries of chemical fingerprints, the imposition of a uniqueness requirement should either be avoided or taken into account.
International Nuclear Information System (INIS)
Russ, J.S.; Yarema, R.J.; Zimmerman, T.
1988-12-01
A group at Lawrence Berkeley Laboratory has reported an elegant CMOS VLSI circuit for amplifying, discriminating, and encoding the signals from highly-segmented charge output devices, e.g., silicon strip detectors or pad readout structures in gaseous detectors. The design exploits switched capacitor circuits and the well-known time structure of data acquisition in colliding beam accelerators to cancel leakage effects and switching noise. For random inputs, these methods are not directly applicable. However, the high speed of the reset switches makes possible a mode of operation for fixed target experiments that uses fast resets to erase unwanted data from random triggers. Data acquisition in this mode has been performed. Details of operation and measurements of noise and rate capability will be presented. 8 refs., 6 figs
A novel approach to generate random surface thermal loads in piping
Energy Technology Data Exchange (ETDEWEB)
Costa Garrido, Oriol, E-mail: oriol.costa@ijs.si; El Shawish, Samir; Cizelj, Leon
2014-07-01
Highlights: • Approach for generating continuous and time-dependent random thermal fields. • Temperature fields simulate fluid mixing thermal loads at fluid–wall interface. • Through plane-wave decomposition, experimental temperature statistics are reproduced. • Validation of the approach with a case study from literature. • Random surface thermal loads generation for future thermal fatigue analyses of piping. - Abstract: There is a need to perform three-dimensional mechanical analyses of pipes, subjected to complex thermo-mechanical loadings such as the ones evolving from turbulent fluid mixing in a T-junction. A novel approach is proposed in this paper for fast and reliable generation of random thermal loads at the pipe surface. The resultant continuous and time-dependent temperature fields simulate the fluid mixing thermal loads at the fluid–wall interface. The approach is based on reproducing discrete fluid temperature statistics, from experimental readings or computational fluid dynamic simulation's results, at interface locations through plane-wave decomposition of temperature fluctuations. The obtained random thermal fields contain large scale instabilities such as cold and hot spots traveling at flow velocities. These low frequency instabilities are believed to be among the major causes of the thermal fatigue in T-junction configurations. The case study found in the literature has been used to demonstrate the generation of random surface thermal loads. The thermal fields generated with the proposed approach are statistically equivalent (within the first two moments) to those from CFD simulations results of similar characteristics. The fields maintain the input data at field locations for a large set of parameters used to generate the thermal loads. This feature will be of great advantage in future sensitivity fatigue analyses of three-dimensional pipe structures.
A novel approach to generate random surface thermal loads in piping
International Nuclear Information System (INIS)
Costa Garrido, Oriol; El Shawish, Samir; Cizelj, Leon
2014-01-01
Highlights: • Approach for generating continuous and time-dependent random thermal fields. • Temperature fields simulate fluid mixing thermal loads at fluid–wall interface. • Through plane-wave decomposition, experimental temperature statistics are reproduced. • Validation of the approach with a case study from literature. • Random surface thermal loads generation for future thermal fatigue analyses of piping. - Abstract: There is a need to perform three-dimensional mechanical analyses of pipes, subjected to complex thermo-mechanical loadings such as the ones evolving from turbulent fluid mixing in a T-junction. A novel approach is proposed in this paper for fast and reliable generation of random thermal loads at the pipe surface. The resultant continuous and time-dependent temperature fields simulate the fluid mixing thermal loads at the fluid–wall interface. The approach is based on reproducing discrete fluid temperature statistics, from experimental readings or computational fluid dynamic simulation's results, at interface locations through plane-wave decomposition of temperature fluctuations. The obtained random thermal fields contain large scale instabilities such as cold and hot spots traveling at flow velocities. These low frequency instabilities are believed to be among the major causes of the thermal fatigue in T-junction configurations. The case study found in the literature has been used to demonstrate the generation of random surface thermal loads. The thermal fields generated with the proposed approach are statistically equivalent (within the first two moments) to those from CFD simulations results of similar characteristics. The fields maintain the input data at field locations for a large set of parameters used to generate the thermal loads. This feature will be of great advantage in future sensitivity fatigue analyses of three-dimensional pipe structures
GASPRNG: GPU accelerated scalable parallel random number generator library
Gao, Shuang; Peterson, Gregory D.
2013-04-01
Graphics processors represent a promising technology for accelerating computational science applications. Many computational science applications require fast and scalable random number generation with good statistical properties, so they use the Scalable Parallel Random Number Generators library (SPRNG). We present the GPU Accelerated SPRNG library (GASPRNG) to accelerate SPRNG in GPU-based high performance computing systems. GASPRNG includes code for a host CPU and CUDA code for execution on NVIDIA graphics processing units (GPUs) along with a programming interface to support various usage models for pseudorandom numbers and computational science applications executing on the CPU, GPU, or both. This paper describes the implementation approach used to produce high performance and also describes how to use the programming interface. The programming interface allows a user to be able to use GASPRNG the same way as SPRNG on traditional serial or parallel computers as well as to develop tightly coupled programs executing primarily on the GPU. We also describe how to install GASPRNG and use it. To help illustrate linking with GASPRNG, various demonstration codes are included for the different usage models. GASPRNG on a single GPU shows up to 280x speedup over SPRNG on a single CPU core and is able to scale for larger systems in the same manner as SPRNG. Because GASPRNG generates identical streams of pseudorandom numbers as SPRNG, users can be confident about the quality of GASPRNG for scalable computational science applications. Catalogue identifier: AEOI_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOI_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: UTK license. No. of lines in distributed program, including test data, etc.: 167900 No. of bytes in distributed program, including test data, etc.: 1422058 Distribution format: tar.gz Programming language: C and CUDA. Computer: Any PC or
Programmable pseudo-random detector-pulse-pattern generator
International Nuclear Information System (INIS)
Putten, R. van der; Nationaal Inst. voor Kernfysica en Hoge-Energiefysica
1990-01-01
This report discusses the design and realization of the digital part of the programmable pseudo-random detector pulse-pattern generator. For the design and realization use has been made of F-TTL and high speed special purpose ic's, in particular FAL's (15 ns). The design possibilities offered by the software for pro-gramming of the FAL's have been utilized as much as possible. In this way counters, registers and a state machine with extended control possibilities have been designed and an advanced 8 channel pulse generator has been developed which is controlled via the VME system bus. the generator possesses an internal clock oscillator of 16 MHZ. The moment when a pulse is generated can be adjusted with a step size of 250 ps. 2000 different periods (time windows) can be stored for generating a pattern. (author). 37 refs.; 6 figs
Testing random number generators for Monte Carlo applications
International Nuclear Information System (INIS)
Sim, L.H.
1992-01-01
Central to any system for modelling radiation transport phenomena using Monte Carlo techniques is the method by which pseudo random numbers are generated. This method is commonly referred to as the Random Number Generator (RNG). It is usually a computer implemented mathematical algorithm which produces a series of numbers uniformly distributed on the interval [0,1]. If this series satisfies certain statistical tests for randomness, then for practical purposes the pseudo random numbers in the series can be considered to be random. Tests of this nature are important not only for new RNGs but also to test the implementation of known RNG algorithms in different computer environments. Six RNGs have been tested using six statistical tests and one visual test. The statistical tests are the moments, frequency (digit and number), serial, gap, and poker tests. The visual test is a simple two dimensional ordered pair display. In addition the RNGs have been tested in a specific Monte Carlo application. This type of test is often overlooked, however it is important that in addition to satisfactory performance in statistical tests, the RNG be able to perform effectively in the applications of interest. The RNGs tested here are based on a variety of algorithms, including multiplicative and linear congruential, lagged Fibonacci, and combination arithmetic and lagged Fibonacci. The effect of the Bays-Durham shuffling algorithm on the output of a known bad RNG has also been investigated. 18 refs., 11 tabs., 4 figs. of
The additive congruential random number generator--A special case of a multiple recursive generator
Wikramaratna, Roy S.
2008-07-01
This paper considers an approach to generating uniformly distributed pseudo-random numbers which works well in serial applications but which also appears particularly well-suited for application on parallel processing systems. Additive Congruential Random Number (ACORN) generators are straightforward to implement for arbitrarily large order and modulus; if implemented using integer arithmetic, it becomes possible to generate identical sequences on any machine. Previously published theoretical analysis has demonstrated that a kth order ACORN sequence approximates to being uniformly distributed in up to k dimensions, for any given k. ACORN generators can be constructed to give period lengths exceeding any given number (for example, with period length in excess of 230p, for any given p). Results of empirical tests have demonstrated that, if p is greater than or equal to 2, then the ACORN generator can be used successfully for generating double precision uniform random variates. This paper demonstrates that an ACORN generator is a particular case of a multiple recursive generator (and, therefore, also a special case of a matrix generator). Both these latter approaches have been widely studied, and it is to be hoped that the results given in the present paper will lead to greater confidence in using the ACORN generators.
Quantum random number generator based on quantum tunneling effect
Zhou, Haihan; Li, Junlin; Pan, Dong; Zhang, Weixing; Long, Guilu
2017-01-01
In this paper, we proposed an experimental implementation of quantum random number generator(QRNG) with inherent randomness of quantum tunneling effect of electrons. We exploited InGaAs/InP diodes, whose valance band and conduction band shared a quasi-constant energy barrier. We applied a bias voltage on the InGaAs/InP avalanche diode, which made the diode works under Geiger mode, and triggered the tunneling events with a periodic pulse. Finally, after data collection and post-processing, our...
Guidelines for random excitation forces due to cross flow in steam generators
Energy Technology Data Exchange (ETDEWEB)
Taylor, C.E.; Pettigrew, M.J. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)
1998-07-01
Random excitation forces can cause low-amplitude tube motion that will result in long-term fretting-wear or fatigue. To prevent these tube failures in steam generators and other heat exchangers, designers and trouble-shooters must have guidelines that incorporate random or turbulent fluid forces. Experiments designed to measure fluid forces have been carried out at Chalk River Laboratories and at other labs around the world. The data from these experiments have been studied and collated to determine suitable guidelines for random excitation forces. In this paper, a guideline for random excitation forces in single-phase cross flow is presented in the form of normalised spectra that are applicable to a wide range of flow conditions and tube frequencies. In particular, the experimental results used in this study were carried out over the full range of flow conditions found in a nuclear steam generator. The proposed guidelines are applicable to steam generators, condensers, reheaters and other shell-and-tube heat exchangers. They may be used for flow-induced vibration analysis of new or existing components, as input to vibration analysis computer codes and as specifications in procurement documents. (author)
Guidelines for random excitation forces due to cross flow in steam generators
International Nuclear Information System (INIS)
Taylor, C.E.; Pettigrew, M.J.
1998-01-01
Random excitation forces can cause low-amplitude tube motion that will result in long-term fretting-wear or fatigue. To prevent these tube failures in steam generators and other heat exchangers, designers and trouble-shooters must have guidelines that incorporate random or turbulent fluid forces. Experiments designed to measure fluid forces have been carried out at Chalk River Laboratories and at other labs around the world. The data from these experiments have been studied and collated to determine suitable guidelines for random excitation forces. In this paper, a guideline for random excitation forces in single-phase cross flow is presented in the form of normalised spectra that are applicable to a wide range of flow conditions and tube frequencies. In particular, the experimental results used in this study were carried out over the full range of flow conditions found in a nuclear steam generator. The proposed guidelines are applicable to steam generators, condensers, reheaters and other shell-and-tube heat exchangers. They may be used for flow-induced vibration analysis of new or existing components, as input to vibration analysis computer codes and as specifications in procurement documents. (author)
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
In order to investigate the effect of wind input and whitecapping dissipation on the simulation of typhoon-waves, three experiments are conducted with the latest version of SWAN (Simulating Waves Nearshore) model. The three experiments adopt the Komen, Janssens, and Westhuysen expressions for wind input and whitecapping dissipation, respectively. Besides the above-mentioned source terms, other parameterization schemes in these experiments are the same. It shows that the experiment with the Westhuysen expression result in the least simulation errors while that with the Janssens expression has the most. The results from the experiments with Komen and Westhuysen expressions show that the differences in significant wave height (SWH) have a good correlation with the differences in dissipation energy caused by whitecapping. This indicates that the whitecapping dissipation source term plays an important role in the resultant differences of the simulated SWH between the two experiments.
SocialSensor: sensing user generated input for improved media discovery and experience
Diplaris, S.; Papadopoulos, S.; Kompatsiaris, I.; Goker, A.S.; MacFarlane, A.; Spangenberg, J.; Hacid, H.; Maknavicius, L.; Klusch, M.
2012-01-01
SocialSensor will develop a new framework for enabling real-time multimedia indexing and search in the Social Web. The project moves beyond conventional text-based indexing and retrieval models by mining and aggregating user inputs and content over multiple social networking sites. Social Indexing will incorporate information about the structure and activity of the users‟ social network directly into the multimedia analysis and search process. Furthermore, it will enhance the multimedia consu...
Very high performance pseudo-random number generation on DAP
Smith, K. A.; Reddaway, S. F.; Scott, D. M.
1985-07-01
Since the National DAP Service began at QMC in 1980, extensive use has been made of pseudo-random numbers in Monte Carlo simulation. Matrices of uniform numbers have been produced by various generators: (a) multiplicative ( x+ 1 = 13 13xn mod 2 59); (b) very long period shift register ( x4423 + x271 + 1); (c) multiple shorter period ( x127 + x7 + 1) shift registers generating several matrices per iteration. The above uniform generators can also feed a normal distribution generator that uses the Box-Muller transformation. This paper describes briefly the generators, their implementation and speed. Generator (b) has been greatly speeded-up by re-implementation, and now produces more than 100 × 10 6 high quality 16-bit numbers/s. Generator (c) is under development and will achieve even higher performance, mainly due to producing data in greater bulk. High quality numbers are expected, and performance will range from 400 to 800 × 10 6 numbers/s, depending on how the generator is used.
Automatic generation of randomized trial sequences for priming experiments.
Ihrke, Matthias; Behrendt, Jörg
2011-01-01
In most psychological experiments, a randomized presentation of successive displays is crucial for the validity of the results. For some paradigms, this is not a trivial issue because trials are interdependent, e.g., priming paradigms. We present a software that automatically generates optimized trial sequences for (negative-) priming experiments. Our implementation is based on an optimization heuristic known as genetic algorithms that allows for an intuitive interpretation due to its similarity to natural evolution. The program features a graphical user interface that allows the user to generate trial sequences and to interactively improve them. The software is based on freely available software and is released under the GNU General Public License.
GRD: An SPSS extension command for generating random data
Directory of Open Access Journals (Sweden)
Bradley Harding
2014-09-01
Full Text Available To master statistics and data analysis tools, it is necessary to understand a number of concepts, manyof which are quite abstract. For example, sampling from a theoretical distribution can help individuals explore andunderstand randomness. Sampling can also be used to build exercises aimed to help students master statistics. Here, we present GRD (Generator of Random Data, an extension command for SPSS (version 17 and above. With GRD, it is possible to get random data from a given distribution. In its simplest use, GRD will return a set of simulated data from a normal distribution.With subcommands to GRD, it is possible to get data from multiple groups, over multiple repeated measures, and with desired effectsizes. Group sizes can be equal or unequal. With further subcommands, it is possible to sample from any theoretical population, (not simply the normal distribution, introduce non-homogeneous variances,fix or randomize subject effects, etc. Finally, GRD’s generated data are in a format ready to be analyzed.
At least some errors are randomly generated (Freud was wrong)
Sellen, A. J.; Senders, J. W.
1986-01-01
An experiment was carried out to expose something about human error generating mechanisms. In the context of the experiment, an error was made when a subject pressed the wrong key on a computer keyboard or pressed no key at all in the time allotted. These might be considered, respectively, errors of substitution and errors of omission. Each of seven subjects saw a sequence of three digital numbers, made an easily learned binary judgement about each, and was to press the appropriate one of two keys. Each session consisted of 1,000 presentations of randomly permuted, fixed numbers broken into 10 blocks of 100. One of two keys should have been pressed within one second of the onset of each stimulus. These data were subjected to statistical analyses in order to probe the nature of the error generating mechanisms. Goodness of fit tests for a Poisson distribution for the number of errors per 50 trial interval and for an exponential distribution of the length of the intervals between errors were carried out. There is evidence for an endogenous mechanism that may best be described as a random error generator. Furthermore, an item analysis of the number of errors produced per stimulus suggests the existence of a second mechanism operating on task driven factors producing exogenous errors. Some errors, at least, are the result of constant probability generating mechanisms with error rate idiosyncratically determined for each subject.
PRIMITIVE MATRICES AND GENERATORS OF PSEUDO RANDOM SEQUENCES OF GALOIS
Directory of Open Access Journals (Sweden)
A. Beletsky
2014-04-01
Full Text Available In theory and practice of information cryptographic protection one of the key problems is the forming a binary pseudo-random sequences (PRS with a maximum length with acceptable statistical characteristics. PRS generators are usually implemented by linear shift register (LSR of maximum period with linear feedback [1]. In this paper we extend the concept of LSR, assuming that each of its rank (memory cell can be in one of the following condition. Let’s call such registers “generalized linear shift register.” The research goal is to develop algorithms for constructing Galois and Fibonacci generalized matrix of n-order over the field , which uniquely determined both the structure of corresponding generalized of n-order LSR maximal period, and formed on their basis Galois PRS generators of maximum length. Thus the article presents the questions of formation the primitive generalized Fibonacci and Galois arbitrary order matrix over the prime field . The synthesis of matrices is based on the use of irreducible polynomials of degree and primitive elements of the extended field generated by polynomial. The constructing methods of Galois and Fibonacci conjugated primitive matrices are suggested. The using possibilities of such matrices in solving the problem of constructing generalized generators of Galois pseudo-random sequences are discussed.
Multi-Input Converter with MPPT Feature for Wind-PV Power Generation System
Directory of Open Access Journals (Sweden)
Chih-Lung Shen
2013-01-01
Full Text Available A multi-input converter (MIC to process wind-PV power is proposed, designed, analyzed, simulated, and implemented. The MIC cannot only process solar energy but deal with wind power, of which structure is derived from forward-type DC/DC converter to step-down/up voltage for charger systems, DC distribution applications, or grid connection. The MIC comprises an upper modified double-ended forward, a lower modified double-ended forward, a common output inductor, and a DSP-based system controller. The two modified double-ended forwards can operate individually or simultaneously so as to accommodate the variation of the hybrid renewable energy under different atmospheric conditions. While the MIC operates at interleaving mode, better performance can be achieved and volume also is reduced. The proposed MIC is capable of recycling the energy stored in the leakage inductance and obtaining high step-up output voltage. In order to draw maximum power from wind turbine and PV panel, perturb-and-observe method is adopted to achieve maximum power point tracking (MPPT feature. The MIC is constructed, analyzed, simulated, and tested. Simulations and hardware measurements have demonstrated the feasibility and functionality of the proposed multi-input converter.
Primitive polynomials selection method for pseudo-random number generator
Anikin, I. V.; Alnajjar, Kh
2018-01-01
In this paper we suggested the method for primitive polynomials selection of special type. This kind of polynomials can be efficiently used as a characteristic polynomials for linear feedback shift registers in pseudo-random number generators. The proposed method consists of two basic steps: finding minimum-cost irreducible polynomials of the desired degree and applying primitivity tests to get the primitive ones. Finally two primitive polynomials, which was found by the proposed method, used in pseudorandom number generator based on fuzzy logic (FRNG) which had been suggested before by the authors. The sequences generated by new version of FRNG have low correlation magnitude, high linear complexity, less power consumption, is more balanced and have better statistical properties.
Xing, Lizhi; Dong, Xianlei; Guan, Jun
2017-04-01
Input-output table is very comprehensive and detailed in describing the national economic system with lots of economic relationships, which contains supply and demand information among industrial sectors. The complex network, a theory and method for measuring the structure of complex system, can describe the structural characteristics of the internal structure of the research object by measuring the structural indicators of the social and economic system, revealing the complex relationship between the inner hierarchy and the external economic function. This paper builds up GIVCN-WIOT models based on World Input-Output Database in order to depict the topological structure of Global Value Chain (GVC), and assumes the competitive advantage of nations is equal to the overall performance of its domestic sectors' impact on the GVC. Under the perspective of econophysics, Global Industrial Impact Coefficient (GIIC) is proposed to measure the national competitiveness in gaining information superiority and intermediate interests. Analysis of GIVCN-WIOT models yields several insights including the following: (1) sectors with higher Random Walk Centrality contribute more to transmitting value streams within the global economic system; (2) Half-Value Ratio can be used to measure robustness of open-economy macroeconomics in the process of globalization; (3) the positive correlation between GIIC and GDP indicates that one country's global industrial impact could reveal its international competitive advantage.
Energy Technology Data Exchange (ETDEWEB)
Park, Won Dong; Kim, Ji Hoon; Bahn, Chi Bum [Pusan National University, Busan (Korea, Republic of)
2016-10-15
Welding residual stresses are determined by various factors such as heat input, initial temperature of molten bead, heating time, cooling time, cooling conditions, and boundary conditions. In this study, a sensitivity analysis was performed to find the major factors and reasonable assumptions for simulation. Two-dimensional axisymmetric simulation was conducted by using commercial finite element analysis program ABAQUS, for multi-pass Alloy 82 welds in a 304 Stainless Steel and SA-105 Carbon Steel. The major object is to evaluate effects of the heat input methods and weld bead generation methods on the welding residual stress distribution. Totally four kinds of methods were compared. From the previous results, we could make the following conclusions. 1. Although there are non-negligible differences in HAZ depending on heat input method, welding residual stress distributions have roughly similar trends. However, it is needed to perform the more exact analysis to apply heat energy more carefully into the individual bead. 2. Residual stress distribution were similar for the two weld bead generation technique. However, overlapping was happened when element birth technique was applied. Effects of overlapping could not ignore as deformation increases. However, overlapping problem was avoided when quiet element technique was used. 3. Since existence of inactive bead elements, inaccurate weld residual stresses could be occurred in boundaries of previous and next weld elements in case of quiet element technique.
Das, Suman; Sadique Uz Zaman, J. K. M.; Ghosh, Ranjan
2016-06-01
In Advanced Encryption Standard (AES), the standard S-Box is conventionally generated by using a particular irreducible polynomial {11B} in GF(28) as the modulus and a particular additive constant polynomial {63} in GF(2), though it can be generated by many other polynomials. In this paper, it has been shown that it is possible to generate secured AES S-Boxes by using some other selected modulus and additive polynomials and also can be generated randomly, using a PRNG like BBS. A comparative study has been made on the randomness of corresponding AES ciphertexts generated, using these S-Boxes, by the NIST Test Suite coded for this paper. It has been found that besides using the standard one, other moduli and additive constants are also able to generate equally or better random ciphertexts; the same is true for random S-Boxes also. As these new types of S-Boxes are user-defined, hence unknown, they are able to prevent linear and differential cryptanalysis. Moreover, they act as additional key-inputs to AES, thus increasing the key-space.
Random-Number Generator Validity in Simulation Studies: An Investigation of Normality.
Bang, Jung W.; Schumacker, Randall E.; Schlieve, Paul L.
1998-01-01
The normality of number distributions generated by various random-number generators were studied, focusing on when the random-number generator reached a normal distribution and at what sample size. Findings suggest the steps that should be followed when using a random-number generator in a Monte Carlo simulation. (SLD)
International Nuclear Information System (INIS)
Bland, M; Walters, D; Wondra, J
1999-01-01
A graphical user interface (GUI) is under development for the MEEC family of SGEMP and SREMP simulation codes [1,2]. These codes are ''workhorse'' legacy codes that have been in use for nearly two decades, with modifications and enhanced physics models added throughout the years. The MEEC codes are currently being evaluated for use by the DOE in the Dual Revalidation Program and experiments at NIF. The new GUI makes the codes more accessible and less prone to input errors by automatically generating the parameters and grids that previously had to be designed ''by hand''. Physics-based algorithms define the simulation volume with expanding meshes. Users are able to specify objects, materials, and emission surfaces through dialogs and input boxes. 3D and orthographic views are available to view objects in the volume. Zone slice views are available for stepping through the overlay of objects on the mesh in planes aligned with the primary axes
Quantum Statistical Testing of a Quantum Random Number Generator
Energy Technology Data Exchange (ETDEWEB)
Humble, Travis S [ORNL
2014-01-01
The unobservable elements in a quantum technology, e.g., the quantum state, complicate system verification against promised behavior. Using model-based system engineering, we present methods for verifying the opera- tion of a prototypical quantum random number generator. We begin with the algorithmic design of the QRNG followed by the synthesis of its physical design requirements. We next discuss how quantum statistical testing can be used to verify device behavior as well as detect device bias. We conclude by highlighting how system design and verification methods must influence effort to certify future quantum technologies.
Big Data Analytics as Input for Problem Definition and Idea Generation in Technological Design
Escandón-Quintanilla , Ma-Lorena; Gardoni , Mickaël; Cohendet , Patrick
2016-01-01
Part 10: Big Data Analytics and Business Intelligence; International audience; Big data analytics enables organizations to process massive amounts of data in shorter amounts of time and with more understanding than ever before. Many uses have been found to take advantage of this tools and techniques, especially for decision making. However, little applications have been found in the first stages of innovation, namely problem definition and idea generation. This paper discusses how big data an...
Ghersi, Dario; Parakh, Abhishek; Mezei, Mihaly
2017-12-05
Four pseudorandom number generators were compared with a physical, quantum-based random number generator using the NIST suite of statistical tests, which only the quantum-based random number generator could successfully pass. We then measured the effect of the five random number generators on various calculated properties in different Markov-chain Monte Carlo simulations. Two types of systems were tested: conformational sampling of a small molecule in aqueous solution and liquid methanol under constant temperature and pressure. The results show that poor quality pseudorandom number generators produce results that deviate significantly from those obtained with the quantum-based random number generator, particularly in the case of the small molecule in aqueous solution setup. In contrast, the widely used Mersenne Twister pseudorandom generator and a 64-bit Linear Congruential Generator with a scrambler produce results that are statistically indistinguishable from those obtained with the quantum-based random number generator. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Pseudo random number generator based on quantum chaotic map
Akhshani, A.; Akhavan, A.; Mobaraki, A.; Lim, S.-C.; Hassan, Z.
2014-01-01
For many years dissipative quantum maps were widely used as informative models of quantum chaos. In this paper, a new scheme for generating good pseudo-random numbers (PRNG), based on quantum logistic map is proposed. Note that the PRNG merely relies on the equations used in the quantum chaotic map. The algorithm is not complex, which does not impose high requirement on computer hardware and thus computation speed is fast. In order to face the challenge of using the proposed PRNG in quantum cryptography and other practical applications, the proposed PRNG is subjected to statistical tests using well-known test suites such as NIST, DIEHARD, ENT and TestU01. The results of the statistical tests were promising, as the proposed PRNG successfully passed all these tests. Moreover, the degree of non-periodicity of the chaotic sequences of the quantum map is investigated through the Scale index technique. The obtained result shows that, the sequence is more non-periodic. From these results it can be concluded that, the new scheme can generate a high percentage of usable pseudo-random numbers for simulation and other applications in scientific computing.
Influence of Resolution of the Input Data on Distributed Generation Integration Studies
DEFF Research Database (Denmark)
Ciontea, Catalin-Iosif; Sera, Dezso; Iov, Florin
2014-01-01
One of the main issues concerning large penetration of the renewable energy based generators on the distribution network is related to the voltage variations due to intermittent character of the solar irradiance and wind. The actual power quality standards provide only general information regarding...... the evaluation procedure of the voltage fluctuations and no directions regarding the sampling frequency of the data used. As a consequence, most of the studies neglect effect of the solar irradiance and wind speed in fast changing conditions on the utility grid. This work proposes a methodology to evaluate...
Fully Digital Chaotic Oscillators Applied to Pseudo Random Number Generation
Mansingka, Abhinav S.
2012-05-01
adapted for pseudo random number generation by truncating statistically defective bits. Finally, a novel post-processing technique using the Fibonacci series is proposed and implemented with a non-autonomous driven hyperchaotic system to provide pseudo random number generators with high nonlinear complexity and controllable period length that enables full utilization of all branches of the chaotic output as statistically secure pseudo random output.
Random walk generated by random permutations of {1, 2, 3, ..., n + 1}
International Nuclear Information System (INIS)
Oshanin, G; Voituriez, R
2004-01-01
We study properties of a non-Markovian random walk X (n) l , l = 0, 1, 2, ..., n, evolving in discrete time l on a one-dimensional lattice of integers, whose moves to the right or to the left are prescribed by the rise-and-descent sequences characterizing random permutations π of [n + 1] = {1, 2, 3, ..., n + 1}. We determine exactly the probability of finding the end-point X n = X (n) n of the trajectory of such a permutation-generated random walk (PGRW) at site X, and show that in the limit n → ∞ it converges to a normal distribution with a smaller, compared to the conventional Polya random walk, diffusion coefficient. We formulate, as well, an auxiliary stochastic process whose distribution is identical to the distribution of the intermediate points X (n) l , l < n, which enables us to obtain the probability measure of different excursions and to define the asymptotic distribution of the number of 'turns' of the PGRW trajectories
Generative Learning Objects Instantiated with Random Numbers Based Expressions
Directory of Open Access Journals (Sweden)
Ciprian Bogdan Chirila
2015-12-01
Full Text Available The development of interactive e-learning content requires special skills like programming techniques, web integration, graphic design etc. Generally, online educators do not possess such skills and their e-learning products tend to be static like presentation slides and textbooks. In this paper we propose a new interactive model of generative learning objects as a compromise betweenstatic, dull materials and dynamic, complex software e-learning materials developed by specialized teams. We find that random numbers based automatic initialization learning objects increases content diversity, interactivity thus enabling learners’ engagement. The resulted learning object model is at a limited level of complexity related to special e-learning software, intuitive and capable of increasing learners’ interactivity, engagement and motivation through dynamic content. The approach was applied successfully on several computer programing disciplines.
Edison, Paul; Brooks, David J; Turkheimer, Federico E; Archer, Hilary A; Hinz, Rainer
2009-11-01
Pittsburgh compound B or [11C]PIB is an amyloid imaging agent which shows a clear differentiation between subjects with Alzheimer's disease (AD) and controls. However the observed signal difference in other forms of dementia such as dementia with Lewy bodies (DLB) is smaller, and mild cognitively impaired (MCI) subjects and some healthy elderly normals may show intermediate levels of [11C]PIB binding. The cerebellum, a commonly used reference region for non-specific tracer uptake in [11C]PIB studies in AD may not be valid in Prion disorders or monogenic forms of AD. The aim of this work was to: 1-compare methods for generating parametric maps of [11C]PIB retention in tissue using a plasma input function in respect of their ability to discriminate between AD subjects and controls and 2-estimate the test-retest reproducibility in AD subjects. 12 AD subjects (5 of which underwent a repeat scan within 6 weeks) and 10 control subjects had 90 minute [11C]PIB dynamic PET scans, and arterial plasma input functions were measured. Parametric maps were generated with graphical analysis of reversible binding (Logan plot), irreversible binding (Patlak plot), and spectral analysis. Between group differentiation was calculated using Student's t-test and comparisons between different methods were made using p values. Reproducibility was assessed by intraclass correlation coefficients (ICC). We found that the 75 min value of the impulse response function showed the best group differentiation and had a higher ICC than volume of distribution maps generated from Logan and spectral analysis. Patlak analysis of [11C]PIB binding was the least reproducible.
Random number generation as an index of controlled processing.
Jahanshahi, Marjan; Saleem, T; Ho, Aileen K; Dirnberger, Georg; Fuller, R
2006-07-01
Random number generation (RNG) is a functionally complex process that is highly controlled and therefore dependent on Baddeley's central executive. This study addresses this issue by investigating whether key predictions from this framework are compatible with empirical data. In Experiment 1, the effect of increasing task demands by increasing the rate of the paced generation was comprehensively examined. As expected, faster rates affected performance negatively because central resources were increasingly depleted. Next, the effects of participants' exposure were manipulated in Experiment 2 by providing increasing amounts of practice on the task. There was no improvement over 10 practice trials, suggesting that the high level of strategic control required by the task was constant and not amenable to any automatization gain with repeated exposure. Together, the results demonstrate that RNG performance is a highly controlled and demanding process sensitive to additional demands on central resources (Experiment 1) and is unaffected by repeated performance or practice (Experiment 2). These features render the easily administered RNG task an ideal and robust index of executive function that is highly suitable for repeated clinical use. ((c) 2006 APA, all rights reserved).
Generated effect modifiers (GEM's) in randomized clinical trials.
Petkova, Eva; Tarpey, Thaddeus; Su, Zhe; Ogden, R Todd
2017-01-01
In a randomized clinical trial (RCT), it is often of interest not only to estimate the effect of various treatments on the outcome, but also to determine whether any patient characteristic has a different relationship with the outcome, depending on treatment. In regression models for the outcome, if there is a non-zero interaction between treatment and a predictor, that predictor is called an "effect modifier". Identification of such effect modifiers is crucial as we move towards precision medicine, that is, optimizing individual treatment assignment based on patient measurements assessed when presenting for treatment. In most settings, there will be several baseline predictor variables that could potentially modify the treatment effects. This article proposes optimal methods of constructing a composite variable (defined as a linear combination of pre-treatment patient characteristics) in order to generate an effect modifier in an RCT setting. Several criteria are considered for generating effect modifiers and their performance is studied via simulations. An example from a RCT is provided for illustration. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Generated effect modifiers (GEM’s) in randomized clinical trials
Petkova, Eva; Tarpey, Thaddeus; Su, Zhe; Ogden, R. Todd
2017-01-01
In a randomized clinical trial (RCT), it is often of interest not only to estimate the effect of various treatments on the outcome, but also to determine whether any patient characteristic has a different relationship with the outcome, depending on treatment. In regression models for the outcome, if there is a non-zero interaction between treatment and a predictor, that predictor is called an “effect modifier”. Identification of such effect modifiers is crucial as we move towards precision medicine, that is, optimizing individual treatment assignment based on patient measurements assessed when presenting for treatment. In most settings, there will be several baseline predictor variables that could potentially modify the treatment effects. This article proposes optimal methods of constructing a composite variable (defined as a linear combination of pre-treatment patient characteristics) in order to generate an effect modifier in an RCT setting. Several criteria are considered for generating effect modifiers and their performance is studied via simulations. An example from a RCT is provided for illustration. PMID:27465235
About the problem of generating three-dimensional pseudo-random points.
Carpintero, D. D.
The author demonstrates that a popular pseudo-random number generator is not adequate in some circumstances to generate n-dimensional random points, n > 2. This problem is particularly noxious when direction cosines are generated. He proposes several soultions, among them a good generator that satisfies all statistical criteria.
An empirical test of pseudo random number generators by means of an exponential decaying process
International Nuclear Information System (INIS)
Coronel B, H.F.; Hernandez M, A.R.; Jimenez M, M.A.; Mora F, L.E.
2007-01-01
Empirical tests for pseudo random number generators based on the use of processes or physical models have been successfully used and are considered as complementary to theoretical tests of randomness. In this work a statistical methodology for evaluating the quality of pseudo random number generators is presented. The method is illustrated in the context of the so-called exponential decay process, using some pseudo random number generators commonly used in physics. (Author)
Novel pseudo-random number generator based on quantum random walks
Yang, Yu-Guang; Zhao, Qian-Qian
2016-02-01
In this paper, we investigate the potential application of quantum computation for constructing pseudo-random number generators (PRNGs) and further construct a novel PRNG based on quantum random walks (QRWs), a famous quantum computation model. The PRNG merely relies on the equations used in the QRWs, and thus the generation algorithm is simple and the computation speed is fast. The proposed PRNG is subjected to statistical tests such as NIST and successfully passed the test. Compared with the representative PRNG based on quantum chaotic maps (QCM), the present QRWs-based PRNG has some advantages such as better statistical complexity and recurrence. For example, the normalized Shannon entropy and the statistical complexity of the QRWs-based PRNG are 0.999699456771172 and 1.799961178212329e-04 respectively given the number of 8 bits-words, say, 16Mbits. By contrast, the corresponding values of the QCM-based PRNG are 0.999448131481064 and 3.701210794388818e-04 respectively. Thus the statistical complexity and the normalized entropy of the QRWs-based PRNG are closer to 0 and 1 respectively than those of the QCM-based PRNG when the number of words of the analyzed sequence increases. It provides a new clue to construct PRNGs and also extends the applications of quantum computation.
Novel pseudo-random number generator based on quantum random walks.
Yang, Yu-Guang; Zhao, Qian-Qian
2016-02-04
In this paper, we investigate the potential application of quantum computation for constructing pseudo-random number generators (PRNGs) and further construct a novel PRNG based on quantum random walks (QRWs), a famous quantum computation model. The PRNG merely relies on the equations used in the QRWs, and thus the generation algorithm is simple and the computation speed is fast. The proposed PRNG is subjected to statistical tests such as NIST and successfully passed the test. Compared with the representative PRNG based on quantum chaotic maps (QCM), the present QRWs-based PRNG has some advantages such as better statistical complexity and recurrence. For example, the normalized Shannon entropy and the statistical complexity of the QRWs-based PRNG are 0.999699456771172 and 1.799961178212329e-04 respectively given the number of 8 bits-words, say, 16Mbits. By contrast, the corresponding values of the QCM-based PRNG are 0.999448131481064 and 3.701210794388818e-04 respectively. Thus the statistical complexity and the normalized entropy of the QRWs-based PRNG are closer to 0 and 1 respectively than those of the QCM-based PRNG when the number of words of the analyzed sequence increases. It provides a new clue to construct PRNGs and also extends the applications of quantum computation.
Persaud, Navindra
2005-01-01
Computer algorithms can only produce seemingly random or pseudorandom numbers whereas certain natural phenomena, such as the decay of radioactive particles, can be utilized to produce truly random numbers. In this study, the ability of humans to generate random numbers was tested in healthy adults. Subjects were simply asked to generate and dictate random numbers. Generated numbers were tested for uniformity, independence and information density. The results suggest that humans can generate random numbers that are uniformly distributed, independent of one another and unpredictable. If humans can generate sequences of random numbers then neural networks or forms of artificial intelligence, which are purported to function in ways essentially the same as the human brain, should also be able to generate sequences of random numbers. Elucidating the precise mechanism by which humans generate random number sequences and the underlying neural substrates may have implications in the cognitive science of decision-making. It is possible that humans use their random-generating neural machinery to make difficult decisions in which all expected outcomes are similar. It is also possible that certain people, perhaps those with neurological or psychiatric impairments, are less able or unable to generate random numbers. If the random-generating neural machinery is employed in decision making its impairment would have profound implications in matters of agency and free will.
Venugopal, G; Deepak, P; Ghosh, Diptasree M; Ramakrishnan, S
2017-11-01
Surface electromyography is a non-invasive technique used for recording the electrical activity of neuromuscular systems. These signals are random, complex and multi-component. There are several techniques to extract information about the force exerted by muscles during any activity. This work attempts to generate surface electromyography signals for various magnitudes of force under isometric non-fatigue and fatigue conditions using a feedback model. The model is based on existing current distribution, volume conductor relations, the feedback control algorithm for rate coding and generation of firing pattern. The result shows that synthetic surface electromyography signals are highly complex in both non-fatigue and fatigue conditions. Furthermore, surface electromyography signals have higher amplitude and lower frequency under fatigue condition. This model can be used to study the influence of various signal parameters under fatigue and non-fatigue conditions.
Pseudo-random number generation using a 3-state cellular automaton
Bhattacharjee, Kamalika; Paul, Dipanjyoti; Das, Sukanta
This paper investigates the potentiality of pseudo-random number generation of a 3-neighborhood 3-state cellular automaton (CA) under periodic boundary condition. Theoretical and empirical tests are performed on the numbers, generated by the CA, to observe the quality of it as pseudo-random number generator (PRNG). We analyze the strength and weakness of the proposed PRNG and conclude that the selected CA is a good random number generator.
Properties making a chaotic system a good Pseudo Random Number Generator
Falcioni, Massimo; Palatella, Luigi; Pigolotti, Simone; Vulpiani, Angelo
2005-01-01
We discuss two properties making a deterministic algorithm suitable to generate a pseudo random sequence of numbers: high value of Kolmogorov-Sinai entropy and high-dimensionality. We propose the multi dimensional Anosov symplectic (cat) map as a Pseudo Random Number Generator. We show what chaotic features of this map are useful for generating Pseudo Random Numbers and investigate numerically which of them survive in the discrete version of the map. Testing and comparisons with other generat...
25 CFR 547.14 - What are the minimum technical standards for electronic random number generation?
2010-04-01
... random number generation? 547.14 Section 547.14 Indians NATIONAL INDIAN GAMING COMMISSION, DEPARTMENT OF... CLASS II GAMES § 547.14 What are the minimum technical standards for electronic random number generation...) Unpredictability; and (3) Non-repeatability. (b) Statistical Randomness.(1) Numbers produced by an RNG shall be...
Using Computer-Generated Random Numbers to Calculate the Lifetime of a Comet.
Danesh, Iraj
1991-01-01
An educational technique to calculate the lifetime of a comet using software-generated random numbers is introduced to undergraduate physiques and astronomy students. Discussed are the generation and eligibility of the required random numbers, background literature related to the problem, and the solution to the problem using random numbers.…
a Pseudo-Random Number Generator Employing Multiple RÉNYI Maps
Lui, Oi-Yan; Yuen, Ching-Hung; Wong, Kwok-Wo
2013-11-01
The increasing risk along with the drastic development of multimedia data transmission has raised a big concern on data security. A good pseudo-random number generator is an essential tool in cryptography. In this paper, we propose a novel pseudo-random number generator based on the controlled combination of the outputs of several digitized chaotic Rényi maps. The generated pseudo-random sequences have passed both the NIST 800-22 Revision 1a and the DIEHARD tests. Moreover, simulation results show that the proposed pseudo-random number generator requires less operation time than existing generators and is highly sensitive to the seed.
International Nuclear Information System (INIS)
Adar, E.M.; Kuells, C.
2002-01-01
The following MIG computer code is restricted to a steady flow and steady hydrochemical system. The code for a non-steady hydrological system is still heavily dependant on external optimization libraries, such as the NAG Library. Therefore, a stand-alone 'friendly' code or solver for the non-steady system has yet to be compiled. Readers looking to implement the mixing-cell approach in a non-steady hydrological flow system are encouraged to contact the authors. In order to simplify the procedure of preparing the data and running the Mixing-Cell Model for steady flow system (MCMsf), a special Mixing Input Generator (MIG) has been programmed. MIG is a Visual Basic Microsoft application that runs within Excel 5.0 (and with more advanced versions such as Office 2000) via Windows 95 or newer environment. The program has been tested and used successfully in Windows NT, Windows 95 and Windows 98 together with Excel 5.0, 7.0 and 2000. The development of the standalone Version MIGSA that will run on a Windows system without Microsoft Excel is under development. Section 1 provides some clarifications of terms that are used both in MCMsf and MIG, whereas Section 2 briefly reviews the mathematical algorithm. For elaboration of the basic assumptions and for further mathematical description, the user is referred to the explanations provided in the Model Simplification and to the references provided in this publication
ACORN—A new method for generating sequences of uniformly distributed Pseudo-random Numbers
Wikramaratna, R. S.
1989-07-01
A new family of pseudo-random number generators, the ACORN ( additive congruential random number) generators, is proposed. The resulting numbers are distributed uniformly in the interval [0, 1). The ACORN generators are defined recursively, and the ( k + 1)th order generator is easily derived from the kth order generator. Some theorems concerning the period length are presented and compared with existing results for linear congruential generators. A range of statistical tests are applied to the ACORN generators, and their performance is compared with that of the linear congruential generators and the Chebyshev generators. The tests show the ACORN generators to be statistically superior to the Chebyshev generators, while being statistically similar to the linear congruential generators. However, the ACORN generators execute faster than linear congruential generators for the same statistical faithfulness. The main advantages of the ACORN generator are speed of execution, long period length, and simplicity of coding.
Quantum random-number generator based on a photon-number-resolving detector
International Nuclear Information System (INIS)
Ren Min; Wu, E; Liang Yan; Jian Yi; Wu Guang; Zeng Heping
2011-01-01
We demonstrated a high-efficiency quantum random number generator which takes inherent advantage of the photon number distribution randomness of a coherent light source. This scheme was realized by comparing the photon flux of consecutive pulses with a photon number resolving detector. The random bit generation rate could reach 2.4 MHz with a system clock of 6.0 MHz, corresponding to a random bit generation efficiency as high as 40%. The random number files passed all the stringent statistical tests.
Realization of a Quantum Random Generator Certified with the Kochen-Specker Theorem
Kulikov, Anatoly; Jerger, Markus; Potočnik, Anton; Wallraff, Andreas; Fedorov, Arkady
2017-12-01
Random numbers are required for a variety of applications from secure communications to Monte Carlo simulation. Yet randomness is an asymptotic property, and no output string generated by a physical device can be strictly proven to be random. We report an experimental realization of a quantum random number generator (QRNG) with randomness certified by quantum contextuality and the Kochen-Specker theorem. The certification is not performed in a device-independent way but through a rigorous theoretical proof of each outcome being value indefinite even in the presence of experimental imperfections. The analysis of the generated data confirms the incomputable nature of our QRNG.
Super fast physical-random number generation using laser diode frequency noises
Ushiki, Tetsuro; Doi, Kohei; Maehara, Shinya; Sato, Takashi; Ohkawa, Masashi; Ohdaira, Yasuo
2011-02-01
Random numbers can be classified as either pseudo- or physical-random in character. Pseudo-random numbers' periodicity renders them inappropriate for use in cryptographic applications, but naturally-generated physical-random numbers have no calculable periodicity, thereby making them ideally-suited to the task. The laser diode naturally produces a wideband "noise" signal that is believed to have tremendous capacity and great promise, for the rapid generation of physical-random numbers for use in cryptographic applications. We measured a laser diode's output, at a fast photo detector and generated physical-random numbers from frequency noises. We then identified and evaluated the binary-number-line's statistical properties. The result shows that physical-random number generation, at speeds as high as 40Gbps, is obtainable, using the laser diode's frequency noise characteristic.
A method for generating skewed random numbers using two overlapping uniform distributions
International Nuclear Information System (INIS)
Ermak, D.L.; Nasstrom, J.S.
1995-02-01
The objective of this work was to implement and evaluate a method for generating skewed random numbers using a combination of uniform random numbers. The method provides a simple and accurate way of generating skewed random numbers from the specified first three moments without an a priori specification of the probability density function. We describe the procedure for generating skewed random numbers from unifon-n random numbers, and show that it accurately produces random numbers with the desired first three moments over a range of skewness values. We also show that in the limit of zero skewness, the distribution of random numbers is an accurate approximation to the Gaussian probability density function. Future work win use this method to provide skewed random numbers for a Langevin equation model for diffusion in skewed turbulence
International Nuclear Information System (INIS)
Liu Meng; Wang Ke
2012-01-01
Highlights: ► Random population model with pulse toxicant input in polluted environments. ► Threshold between persistence and extinction is obtained. ► Different random noises have different effects on the persistence of the population. ► Impulsive period plays a key role in determining persistence of the population. ► Simulation figures support the analytical findings. - Abstract: Taking both white noises and colored noises into account, a stochastic single-species model with Markov switching and impulsive toxicant input in a polluted environment is proposed and investigated. Sufficient conditions for extinction, non-persistence in the mean, weak persistence and stochastic permanence are established. The threshold between weak persistence and extinction is obtained. Some simulation figures are introduced to illustrate the main results.
sprotocols
2014-01-01
Authors: Spencer Reisbick & Patrick Willoughby ### Abstract This protocol describes an approach to preparing a series of Gaussian 09 computational input files for an ensemble of conformers generated in Spartan’14. The resulting input files are necessary for computing optimum geometries, relative conformer energies, and NMR shielding tensors using Gaussian. Using the conformational search feature within Spartan’14, an ensemble of conformational isomers was obtained. To convert the str...
An X-ray CCD signal generator with true random arrival time
International Nuclear Information System (INIS)
Huo Jia; Xu Yuming; Chen Yong; Cui Weiwei; Li Wei; Zhang Ziliang; Han Dawei; Wang Yusan; Wang Juan
2011-01-01
An FPGA-based true random signal generator with adjustable amplitude and exponential distribution of time interval is presented. Since traditional true random number generators (TRNG) are resource costly and difficult to transplant, we employed a method of random number generation based on jitter and phase noise in ring oscillators formed by gates in an FPGA. In order to improve the random characteristics, a combination of two different pseudo-random processing circuits is used for post processing. The effects of the design parameters, such as sample frequency are discussed. Statistical tests indicate that the generator can well simulate the timing behavior of random signals with Poisson distribution. The X-ray CCD signal generator will be used in debugging the CCD readout system of the Low Energy X-ray Instrument onboard the Hard X-ray Modulation Telescope (HXMT). (authors)
A true random number generator based on mouse movement and chaotic cryptography
International Nuclear Information System (INIS)
Hu Yue; Liao Xiaofeng; Wong, Kwok-wo; Zhou Qing
2009-01-01
True random number generators are in general more secure than pseudo random number generators. In this paper, we propose a novel true random number generator which generates a 256-bit random number by computer mouse movement. It is cheap, convenient and universal for personal computers. To eliminate the effect of similar movement patterns generated by the same user, three chaos-based approaches, namely, discretized 2D chaotic map permutation, spatiotemporal chaos and 'MASK' algorithm, are adopted to post-process the captured mouse movements. Random bits generated by three users are tested using NIST statistical tests. Both the spatiotemporal chaos approach and the 'MASK' algorithm pass the tests successfully. However, the latter has a better performance in terms of efficiency and effectiveness and so is more practical for common personal computer applications.
Post-processing Free Quantum Random Number Generator Based on Avalanche Photodiode Array
International Nuclear Information System (INIS)
Li Yang; Liao Sheng-Kai; Liang Fu-Tian; Shen Qi; Liang Hao; Peng Cheng-Zhi
2016-01-01
Quantum random number generators adopting single photon detection have been restricted due to the non-negligible dead time of avalanche photodiodes (APDs). We propose a new approach based on an APD array to improve the generation rate of random numbers significantly. This method compares the detectors' responses to consecutive optical pulses and generates the random sequence. We implement a demonstration experiment to show its simplicity, compactness and scalability. The generated numbers are proved to be unbiased, post-processing free, ready to use, and their randomness is verified by using the national institute of standard technology statistical test suite. The random bit generation efficiency is as high as 32.8% and the potential generation rate adopting the 32 × 32 APD array is up to tens of Gbits/s. (paper)
Generating variable and random schedules of reinforcement using Microsoft Excel macros.
Bancroft, Stacie L; Bourret, Jason C
2008-01-01
Variable reinforcement schedules are used to arrange the availability of reinforcement following varying response ratios or intervals of time. Random reinforcement schedules are subtypes of variable reinforcement schedules that can be used to arrange the availability of reinforcement at a constant probability across number of responses or time. Generating schedule values for variable and random reinforcement schedules can be difficult. The present article describes the steps necessary to write macros in Microsoft Excel that will generate variable-ratio, variable-interval, variable-time, random-ratio, random-interval, and random-time reinforcement schedule values.
Problems with the random number generator RANF implemented on the CDC cyber 205
Kalle, Claus; Wansleben, Stephan
1984-10-01
We show that using RANF may lead to wrong results when lattice models are simulated by Monte Carlo methods. We present a shift-register sequence random number generator which generates two random numbers per cycle on a two pipe CDC Cyber 205.
Pseudo-random-number generators and the square site percolation threshold.
Lee, Michael J
2008-09-01
Selected pseudo-random-number generators are applied to a Monte Carlo study of the two-dimensional square-lattice site percolation model. A generator suitable for high precision calculations is identified from an application specific test of randomness. After extended computation and analysis, an ostensibly reliable value of p_{c}=0.59274598(4) is obtained for the percolation threshold.
Fast random-number generation using a diode laser's frequency noise characteristic
Takamori, Hiroki; Doi, Kohei; Maehara, Shinya; Kawakami, Kohei; Sato, Takashi; Ohkawa, Masashi; Ohdaira, Yasuo
2012-02-01
Random numbers can be classified as either pseudo- or physical-random, in character. Pseudo-random numbers are generated by definite periodicity, so, their usefulness in cryptographic applications is somewhat limited. On the other hand, naturally-generated physical-random numbers have no calculable periodicity, thereby making them ideal for the task. Diode lasers' considerable wideband noise gives them tremendous capacity for generating physical-random numbers, at a high rate of speed. We measured a diode laser's output with a fast photo detector, and evaluated the binary-numbers from the diode laser's frequency noise characteristics. We then identified and evaluated the binary-number-line's statistical properties. We also investigate the possibility that much faster physical-random number parallel-generation is possible, using separate outputs of different optical-path length and character, which we refer to as "coherence collapse".
Random Scenario Generation for a Multiple Target Tracking Environment Evaluation
DEFF Research Database (Denmark)
Hussain, Dil Muhammad Akbar
2006-01-01
, which were normally crossing targets, was to test the efficiency of the track splitting algorithm for different situations. However this approach only gives a measure of performance for a specific, possibly unrealistic, scenario and it was felt appropriate to develop procedures that would enable a more...... general performance assessment. Therefore, a random target motion scenario is adopted. Its implementation in particular for testing the track splitting algorithm using Kalman filters is used and a couple of tracking performance parameters are computed to investigate such random scenarios....
International Nuclear Information System (INIS)
Corran, E.R.; Cummins, J.D.; Hopkinson, A.
1964-02-01
An experiment was performed to assess the usefulness of the binary cross-correlation method in the context of the identification problem. An auxiliary burner was excited with a discrete interval binary code and the response to the perturbation of the input heat was observed by recording the variations of the primary inlet, primary outlet and secondary outlet temperatures. The observations were analysed to yield cross-correlation functions and frequency responses were subsequently determined between primary inlet and primary outlet temperatures and also between primary inlet and secondary outlet temperatures. The analysis verified (1) that these dynamic responses of this cross flow heat exchanger may be predicted theoretically, (2) in so far as this heat exchanger is representative of the generality of plant, that the binary cross-correlation method provides adequate identification of plant dynamics for control purposes in environments where small input variations and low signal to noise ratio are obligatory. (author)
Evaluation of A Low-power Random Access Memory Generator
Kameswar Rao, Vaddina
2006-01-01
In this work, an existing RAM generator is analysed and evaluated. Some of the aspects that were considered in the evaluation are the optimization of the basic SRAM cell, how the RAM generator can be ported to newer technologys, automating the simulation process and the creation of the workflow for the energy model. One of the main focus of this thesis work is to optimize the basic SRAM cell. The SRAM cell which is used in the RAM generator is not optimized for area nor power. A compact layou...
An extended SPSS extension command for generating random data
Directory of Open Access Journals (Sweden)
Harding, Bradley
2015-10-01
Full Text Available The GRD extension command for SPSS (Harding & Cousineau, 2014 has been used in a variety of applications since its inception. Ranging from a teaching tool to demonstrate statistical analyses, to an inferential tool used to find critical values instead of looking into a z-table, GRD has been very well received. However, some users have requested other data generation components that would make GRD a more complete extension command: the possibility to add contaminants to the generated dataset as well as the ability to generate correlated variables. Another component we added is a graphical user interface (or GUI that makes GRD accessible through the drop-down menus in the SPSS Data Editor window. This GUI allows users to generate a simple dataset by entering parameters in dedicated fields rather than writing out the full script. Finally, we devised a small series of exercises to help users get acquainted with the new subcommands and GUI.
Generation of pseudo-random sequences for spread spectrum systems
Moser, R.; Stover, J.
1985-05-01
The characteristics of pseudo random radio signal sequences (PRS) are explored. The randomness of the PSR is a matter of artificially altering the sequence of binary digits broadcast. Autocorrelations of the two sequences shifted in time, if high, determine if the signals are the same and thus allow for position identification. Cross-correlation can also be calculated between sequences. Correlations closest to zero are obtained with large volume of prime numbers in the sequences. Techniques for selecting optimal and maximal lengths for the sequences are reviewed. If the correlations are near zero in the sequences, then signal channels can accommodate multiple users. Finally, Gold codes are discussed as a technique for maximizing the code lengths.
Autocatalytic polymerization generates persistent random walk of crawling cells.
Sambeth, R; Baumgaertner, A
2001-05-28
The autocatalytic polymerization kinetics of the cytoskeletal actin network provides the basic mechanism for a persistent random walk of a crawling cell. It is shown that network remodeling by branching processes near the cell membrane is essential for the bimodal spatial stability of the network which induces a spontaneous breaking of isotropic cell motion. Details of the phenomena are analyzed using a simple polymerization model studied by analytical and simulation methods.
Generation and monitoring of a discrete stable random process
Hopcraft, K I; Matthews, J O
2002-01-01
A discrete stochastic process with stationary power law distribution is obtained from a death-multiple immigration population model. Emigrations from the population form a random series of events which are monitored by a counting process with finite-dynamic range and response time. It is shown that the power law behaviour of the population is manifested in the intermittent behaviour of the series of events. (letter to the editor)
Efficient pseudo-random number generation for monte-carlo simulations using graphic processors
Mohanty, Siddhant; Mohanty, A. K.; Carminati, F.
2012-06-01
A hybrid approach based on the combination of three Tausworthe generators and one linear congruential generator for pseudo random number generation for GPU programing as suggested in NVIDIA-CUDA library has been used for MONTE-CARLO sampling. On each GPU thread, a random seed is generated on fly in a simple way using the quick and dirty algorithm where mod operation is not performed explicitly due to unsigned integer overflow. Using this hybrid generator, multivariate correlated sampling based on alias technique has been carried out using both CUDA and OpenCL languages.
Efficient pseudo-random number generation for Monte-Carlo simulations using graphic processors
International Nuclear Information System (INIS)
Mohanty, Siddhant; Mohanty, A K; Carminati, F
2012-01-01
A hybrid approach based on the combination of three Tausworthe generators and one linear congruential generator for pseudo random number generation for GPU programing as suggested in NVIDIA-CUDA library has been used for MONTE-CARLO sampling. On each GPU thread, a random seed is generated on fly in a simple way using the quick and dirty algorithm where mod operation is not performed explicitly due to unsigned integer overflow. Using this hybrid generator, multivariate correlated sampling based on alias technique has been carried out using both CUDA and OpenCL languages.
Recommendations and illustrations for the evaluation of photonic random number generators
Hart, Joseph D.; Terashima, Yuta; Uchida, Atsushi; Baumgartner, Gerald B.; Murphy, Thomas E.; Roy, Rajarshi
2017-09-01
The never-ending quest to improve the security of digital information combined with recent improvements in hardware technology has caused the field of random number generation to undergo a fundamental shift from relying solely on pseudo-random algorithms to employing optical entropy sources. Despite these significant advances on the hardware side, commonly used statistical measures and evaluation practices remain ill-suited to understand or quantify the optical entropy that underlies physical random number generation. We review the state of the art in the evaluation of optical random number generation and recommend a new paradigm: quantifying entropy generation and understanding the physical limits of the optical sources of randomness. In order to do this, we advocate for the separation of the physical entropy source from deterministic post-processing in the evaluation of random number generators and for the explicit consideration of the impact of the measurement and digitization process on the rate of entropy production. We present the Cohen-Procaccia estimate of the entropy rate h (𝜖 ,τ ) as one way to do this. In order to provide an illustration of our recommendations, we apply the Cohen-Procaccia estimate as well as the entropy estimates from the new NIST draft standards for physical random number generators to evaluate and compare three common optical entropy sources: single photon time-of-arrival detection, chaotic lasers, and amplified spontaneous emission.
Recommendations and illustrations for the evaluation of photonic random number generators
Directory of Open Access Journals (Sweden)
Joseph D. Hart
2017-09-01
Full Text Available The never-ending quest to improve the security of digital information combined with recent improvements in hardware technology has caused the field of random number generation to undergo a fundamental shift from relying solely on pseudo-random algorithms to employing optical entropy sources. Despite these significant advances on the hardware side, commonly used statistical measures and evaluation practices remain ill-suited to understand or quantify the optical entropy that underlies physical random number generation. We review the state of the art in the evaluation of optical random number generation and recommend a new paradigm: quantifying entropy generation and understanding the physical limits of the optical sources of randomness. In order to do this, we advocate for the separation of the physical entropy source from deterministic post-processing in the evaluation of random number generators and for the explicit consideration of the impact of the measurement and digitization process on the rate of entropy production. We present the Cohen-Procaccia estimate of the entropy rate h(,τ as one way to do this. In order to provide an illustration of our recommendations, we apply the Cohen-Procaccia estimate as well as the entropy estimates from the new NIST draft standards for physical random number generators to evaluate and compare three common optical entropy sources: single photon time-of-arrival detection, chaotic lasers, and amplified spontaneous emission.
Brownian motion properties of optoelectronic random bit generators based on laser chaos.
Li, Pu; Yi, Xiaogang; Liu, Xianglian; Wang, Yuncai; Wang, Yongge
2016-07-11
The nondeterministic property of the optoelectronic random bit generator (RBG) based on laser chaos are experimentally analyzed from two aspects of the central limit theorem and law of iterated logarithm. The random bits are extracted from an optical feedback chaotic laser diode using a multi-bit extraction technique in the electrical domain. Our experimental results demonstrate that the generated random bits have no statistical distance from the Brownian motion, besides that they can pass the state-of-the-art industry-benchmark statistical test suite (NIST SP800-22). All of them give a mathematically provable evidence that the ultrafast random bit generator based on laser chaos can be used as a nondeterministic random bit source.
Ultra-fast quantum randomness generation by accelerated phase diffusion in a pulsed laser diode.
Abellán, C; Amaya, W; Jofre, M; Curty, M; Acín, A; Capmany, J; Pruneri, V; Mitchell, M W
2014-01-27
We demonstrate a high bit-rate quantum random number generator by interferometric detection of phase diffusion in a gain-switched DFB laser diode. Gain switching at few-GHz frequencies produces a train of bright pulses with nearly equal amplitudes and random phases. An unbalanced Mach-Zehnder interferometer is used to interfere subsequent pulses and thereby generate strong random-amplitude pulses, which are detected and digitized to produce a high-rate random bit string. Using established models of semiconductor laser field dynamics, we predict a regime of high visibility interference and nearly complete vacuum-fluctuation-induced phase diffusion between pulses. These are confirmed by measurement of pulse power statistics at the output of the interferometer. Using a 5.825 GHz excitation rate and 14-bit digitization, we observe 43 Gbps quantum randomness generation.
A Comparison of Three Random Number Generators for Aircraft Dynamic Modeling Applications
Grauer, Jared A.
2017-01-01
Three random number generators, which produce Gaussian white noise sequences, were compared to assess their suitability in aircraft dynamic modeling applications. The first generator considered was the MATLAB (registered) implementation of the Mersenne-Twister algorithm. The second generator was a website called Random.org, which processes atmospheric noise measured using radios to create the random numbers. The third generator was based on synthesis of the Fourier series, where the random number sequences are constructed from prescribed amplitude and phase spectra. A total of 200 sequences, each having 601 random numbers, for each generator were collected and analyzed in terms of the mean, variance, normality, autocorrelation, and power spectral density. These sequences were then applied to two problems in aircraft dynamic modeling, namely estimating stability and control derivatives from simulated onboard sensor data, and simulating flight in atmospheric turbulence. In general, each random number generator had good performance and is well-suited for aircraft dynamic modeling applications. Specific strengths and weaknesses of each generator are discussed. For Monte Carlo simulation, the Fourier synthesis method is recommended because it most accurately and consistently approximated Gaussian white noise and can be implemented with reasonable computational effort.
Anosov C-systems and random number generators
Savvidy, G. K.
2016-08-01
We further develop our previous proposal to use hyperbolic Anosov C-systems to generate pseudorandom numbers and to use them for efficient Monte Carlo calculations in high energy particle physics. All trajectories of hyperbolic dynamical systems are exponentially unstable, and C-systems therefore have mixing of all orders, a countable Lebesgue spectrum, and a positive Kolmogorov entropy. These exceptional ergodic properties follow from the C-condition introduced by Anosov. This condition defines a rich class of dynamical systems forming an open set in the space of all dynamical systems. An important property of C-systems is that they have a countable set of everywhere dense periodic trajectories and their density increases exponentially with entropy. Of special interest are the C-systems defined on higher-dimensional tori. Such C-systems are excellent candidates for generating pseudorandom numbers that can be used in Monte Carlo calculations. An efficient algorithm was recently constructed that allows generating long C-system trajectories very rapidly. These trajectories have good statistical properties and can be used for calculations in quantum chromodynamics and in high energy particle physics.
A generator for unique quantum random numbers based on vacuum states
DEFF Research Database (Denmark)
Gabriel, C.; Wittmann, C.; Sych, D.
2010-01-01
the purity of a continuous-variable quantum vacuum state to generate unique random numbers. We use the intrinsic randomness in measuring the quadratures of a mode in the lowest energy vacuum state, which cannot be correlated to any other state. The simplicity of our source, combined with its verifiably......Random numbers are a valuable component in diverse applications that range from simulations(1) over gambling to cryptography(2,3). The quest for true randomness in these applications has engendered a large variety of different proposals for producing random numbers based on the foundational...... unpredictability of quantum mechanics(4-11). However, most approaches do not consider that a potential adversary could have knowledge about the generated numbers, so the numbers are not verifiably random and unique(12-15). Here we present a simple experimental setup based on homodyne measurements that uses...
High-speed true random number generation based on paired memristors for security electronics
Zhang, Teng; Yin, Minghui; Xu, Changmin; Lu, Xiayan; Sun, Xinhao; Yang, Yuchao; Huang, Ru
2017-11-01
True random number generator (TRNG) is a critical component in hardware security that is increasingly important in the era of mobile computing and internet of things. Here we demonstrate a TRNG using intrinsic variation of memristors as a natural source of entropy that is otherwise undesirable in most applications. The random bits were produced by cyclically switching a pair of tantalum oxide based memristors and comparing their resistance values in the off state, taking advantage of the more pronounced resistance variation compared with that in the on state. Using an alternating read scheme in the designed TRNG circuit, the unbiasedness of the random numbers was significantly improved, and the bitstream passed standard randomness tests. The Pt/TaO x /Ta memristors fabricated in this work have fast programming/erasing speeds of ˜30 ns, suggesting a high random number throughput. The approach proposed here thus holds great promise for physically-implemented random number generation.
Three-dimensional pseudo-random number generator for implementing in hybrid computer systems
International Nuclear Information System (INIS)
Ivanov, M.A.; Vasil'ev, N.P.; Voronin, A.V.; Kravtsov, M.Yu.; Maksutov, A.A.; Spiridonov, A.A.; Khudyakova, V.I.; Chugunkov, I.V.
2012-01-01
The algorithm for generating pseudo-random numbers oriented to implementation by using hybrid computer systems is considered. The proposed solution is characterized by a high degree of parallel computing [ru
Note: Fully integrated 3.2 Gbps quantum random number generator with real-time extraction
International Nuclear Information System (INIS)
Zhang, Xiao-Guang; Nie, You-Qi; Liang, Hao; Zhang, Jun; Pan, Jian-Wei; Zhou, Hongyi; Ma, Xiongfeng
2016-01-01
We present a real-time and fully integrated quantum random number generator (QRNG) by measuring laser phase fluctuations. The QRNG scheme based on laser phase fluctuations is featured for its capability of generating ultra-high-speed random numbers. However, the speed bottleneck of a practical QRNG lies on the limited speed of randomness extraction. To close the gap between the fast randomness generation and the slow post-processing, we propose a pipeline extraction algorithm based on Toeplitz matrix hashing and implement it in a high-speed field-programmable gate array. Further, all the QRNG components are integrated into a module, including a compact and actively stabilized interferometer, high-speed data acquisition, and real-time data post-processing and transmission. The final generation rate of the QRNG module with real-time extraction can reach 3.2 Gbps.
Note: Fully integrated 3.2 Gbps quantum random number generator with real-time extraction
Energy Technology Data Exchange (ETDEWEB)
Zhang, Xiao-Guang; Nie, You-Qi; Liang, Hao; Zhang, Jun, E-mail: zhangjun@ustc.edu.cn; Pan, Jian-Wei [Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Zhou, Hongyi; Ma, Xiongfeng [Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084 (China)
2016-07-15
We present a real-time and fully integrated quantum random number generator (QRNG) by measuring laser phase fluctuations. The QRNG scheme based on laser phase fluctuations is featured for its capability of generating ultra-high-speed random numbers. However, the speed bottleneck of a practical QRNG lies on the limited speed of randomness extraction. To close the gap between the fast randomness generation and the slow post-processing, we propose a pipeline extraction algorithm based on Toeplitz matrix hashing and implement it in a high-speed field-programmable gate array. Further, all the QRNG components are integrated into a module, including a compact and actively stabilized interferometer, high-speed data acquisition, and real-time data post-processing and transmission. The final generation rate of the QRNG module with real-time extraction can reach 3.2 Gbps.
Pseudo-random number generators for Monte Carlo simulations on ATI Graphics Processing Units
Demchik, Vadim
2011-03-01
Basic uniform pseudo-random number generators are implemented on ATI Graphics Processing Units (GPU). The performance results of the realized generators (multiplicative linear congruential (GGL), XOR-shift (XOR128), RANECU, RANMAR, RANLUX and Mersenne Twister (MT19937)) on CPU and GPU are discussed. The obtained speed up factor is hundreds of times in comparison with CPU. RANLUX generator is found to be the most appropriate for using on GPU in Monte Carlo simulations. The brief review of the pseudo-random number generators used in modern software packages for Monte Carlo simulations in high-energy physics is presented.
Molotkov, S. N.
2017-03-01
Various methods for the clustering of photocounts constituting a sequence of random numbers are considered. It is shown that the clustering of photocounts resulting in the Fermi-Dirac distribution makes it possible to achieve the theoretical limit of the random number generation rate.
Directory of Open Access Journals (Sweden)
Masaru eIshibashi
2015-06-01
Full Text Available A hallmark of the waking state is a shift in EEG power to higher frequencies with epochs of synchronized intracortical gamma activity (30-60 Hz - a process associated with high-level cognitive functions. The ascending arousal system, including cholinergic laterodorsal (LDT and pedunculopontine (PPT tegmental neurons and serotonergic dorsal raphe (DR neurons, promotes this state. Recently, this system has been proposed as a gamma wave generator, in part, because some neurons produce high-threshold, Ca2+-dependent oscillations at gamma frequencies. However, it is not known whether arousal-related inputs to these neurons generate such oscillations, or whether such oscillations are ever transmitted to neuronal targets. Since key arousal input arises from hypothalamic orexin (hypocretin neurons, we investigated whether the unusually noisy, depolarizing orexin current could provide significant gamma input to cholinergic and serotonergic neurons, and whether such input could drive Ca2+-dependent oscillations. Whole-cell recordings in brain slices were obtained from mice expressing Cre-induced fluorescence in cholinergic LDT and PPT, and serotonergic DR neurons. After first quantifying reporter expression accuracy in cholinergic and serotonergic neurons, we found that the orexin current produced significant high frequency, including gamma, input to both cholinergic and serotonergic neurons. Then, by using a dynamic clamp, we found that adding a noisy orexin conductance to cholinergic neurons induced a Ca2+-dependent resonance that peaked in the theta and alpha frequency range (4 - 14 Hz and extended up to 100 Hz. We propose that this orexin current noise and the Ca2+ dependent resonance work synergistically to boost the encoding of high-frequency synaptic inputs into action potentials and to help ensure cholinergic neurons fire during EEG activation. This activity could reinforce thalamocortical states supporting arousal, REM sleep and intracortical
Using pseudo-random number generator for making iterative algorithms of hashing data
International Nuclear Information System (INIS)
Ivanov, M.A.; Vasil'ev, N.P.; Kozyrskij, B.L.
2014-01-01
The method of stochastic data transformation made for usage in cryptographic methods of information protection has been analyzed. The authors prove the usage of cryptographically strong pseudo-random number generators as a basis for Sponge construction. This means that the analysis of the quality of the known methods and tools for assessing the statistical security of pseudo-random number generators can be used effectively [ru
High-Performance Pseudo-Random Number Generation on Graphics Processing Units
Nandapalan, Nimalan; Brent, Richard P.; Murray, Lawrence M.; Rendell, Alistair
2011-01-01
This work considers the deployment of pseudo-random number generators (PRNGs) on graphics processing units (GPUs), developing an approach based on the xorgens generator to rapidly produce pseudo-random numbers of high statistical quality. The chosen algorithm has configurable state size and period, making it ideal for tuning to the GPU architecture. We present a comparison of both speed and statistical quality with other common parallel, GPU-based PRNGs, demonstrating favourable performance o...
Layne, Charles S.; Forth, Katharine E.; Abercromby, Andrew F. J.
2005-05-01
Removal of the mechanical pressure gradient on the soles leads to physiological adaptations that ultimately result in neuromotor degradation during spaceflight. We propose that mechanical stimulation of the soles serves to partially restore the afference associated with bipedal loading and assists in attenuating the negative neuromotor consequences of spaceflight. A dynamic foot stimulus device was used to stimulate the soles in a variety of conditions with different stimulation locations, stimulation patterns and muscle spindle input. Surface electromyography revealed the lateral side of the sole elicited the greatest neuromuscular response in ankle musculature, followed by the medial side, then the heel. These responses were modified by preceding stimulation. Neuromuscular responses were also influenced by the level of muscle spindle input. These results provide important information that can be used to guide the development of a "passive" countermeasure that relies on sole stimulation and can supplement existing exercise protocols during spaceflight.
Akçay, A.E.; Biller, B.
2014-01-01
We consider an assemble-to-order production system where the product demands and the time since the last customer arrival are not independent. The simulation of this system requires a multivariate input model that generates random input vectors with correlated discrete and continuous components. In
Towards the generation of random bits at terahertz rates based on a chaotic semiconductor laser
International Nuclear Information System (INIS)
Kanter, Ido; Aviad, Yaara; Reidler, Igor; Cohen, Elad; Rosenbluh, Michael
2010-01-01
Random bit generators (RBGs) are important in many aspects of statistical physics and crucial in Monte-Carlo simulations, stochastic modeling and quantum cryptography. The quality of a RBG is measured by the unpredictability of the bit string it produces and the speed at which the truly random bits can be generated. Deterministic algorithms generate pseudo-random numbers at high data rates as they are only limited by electronic hardware speed, but their unpredictability is limited by the very nature of their deterministic origin. It is widely accepted that the core of any true RBG must be an intrinsically non-deterministic physical process, e.g. measuring thermal noise from a resistor. Owing to low signal levels, such systems are highly susceptible to bias, introduced by amplification, and to small nonrandom external perturbations resulting in a limited generation rate, typically less than 100M bit/s. We present a physical random bit generator, based on a chaotic semiconductor laser, having delayed optical feedback, which operates reliably at rates up to 300Gbit/s. The method uses a high derivative of the digitized chaotic laser intensity and generates the random sequence by retaining a number of the least significant bits of the high derivative value. The method is insensitive to laser operational parameters and eliminates the necessity for all external constraints such as incommensurate sampling rates and laser external cavity round trip time. The randomness of long bit strings is verified by standard statistical tests.
Towards the generation of random bits at terahertz rates based on a chaotic semiconductor laser
Kanter, Ido; Aviad, Yaara; Reidler, Igor; Cohen, Elad; Rosenbluh, Michael
2010-06-01
Random bit generators (RBGs) are important in many aspects of statistical physics and crucial in Monte-Carlo simulations, stochastic modeling and quantum cryptography. The quality of a RBG is measured by the unpredictability of the bit string it produces and the speed at which the truly random bits can be generated. Deterministic algorithms generate pseudo-random numbers at high data rates as they are only limited by electronic hardware speed, but their unpredictability is limited by the very nature of their deterministic origin. It is widely accepted that the core of any true RBG must be an intrinsically non-deterministic physical process, e.g. measuring thermal noise from a resistor. Owing to low signal levels, such systems are highly susceptible to bias, introduced by amplification, and to small nonrandom external perturbations resulting in a limited generation rate, typically less than 100M bit/s. We present a physical random bit generator, based on a chaotic semiconductor laser, having delayed optical feedback, which operates reliably at rates up to 300Gbit/s. The method uses a high derivative of the digitized chaotic laser intensity and generates the random sequence by retaining a number of the least significant bits of the high derivative value. The method is insensitive to laser operational parameters and eliminates the necessity for all external constraints such as incommensurate sampling rates and laser external cavity round trip time. The randomness of long bit strings is verified by standard statistical tests.
A fast ergodic algorithm for generating ensembles of equilateral random polygons
Varela, R.; Hinson, K.; Arsuaga, J.; Diao, Y.
2009-03-01
Knotted structures are commonly found in circular DNA and along the backbone of certain proteins. In order to properly estimate properties of these three-dimensional structures it is often necessary to generate large ensembles of simulated closed chains (i.e. polygons) of equal edge lengths (such polygons are called equilateral random polygons). However finding efficient algorithms that properly sample the space of equilateral random polygons is a difficult problem. Currently there are no proven algorithms that generate equilateral random polygons with its theoretical distribution. In this paper we propose a method that generates equilateral random polygons in a 'step-wise uniform' way. We prove that this method is ergodic in the sense that any given equilateral random polygon can be generated by this method and we show that the time needed to generate an equilateral random polygon of length n is linear in terms of n. These two properties make this algorithm a big improvement over the existing generating methods. Detailed numerical comparisons of our algorithm with other widely used algorithms are provided.
Quantum cryptography using coherent states: Randomized encryption and key generation
Corndorf, Eric
objectives of key generation and direct data-encryption, a new quantum cryptographic principle is demonstrated wherein keyed coherent-state signal sets are employed. Taking advantage of the fundamental and irreducible quantum-measurement noise of coherent states, these schemes do not require the users to measure the influence of an attacker. Experimental key-generation and data encryption schemes based on these techniques, which are compatible with today's WDM fiber-optic telecommunications infrastructure, are implemented and analyzed.
Creating, generating and comparing random network models with NetworkRandomizer.
Tosadori, Gabriele; Bestvina, Ivan; Spoto, Fausto; Laudanna, Carlo; Scardoni, Giovanni
2016-01-01
Biological networks are becoming a fundamental tool for the investigation of high-throughput data in several fields of biology and biotechnology. With the increasing amount of information, network-based models are gaining more and more interest and new techniques are required in order to mine the information and to validate the results. To fill the validation gap we present an app, for the Cytoscape platform, which aims at creating randomised networks and randomising existing, real networks. Since there is a lack of tools that allow performing such operations, our app aims at enabling researchers to exploit different, well known random network models that could be used as a benchmark for validating real, biological datasets. We also propose a novel methodology for creating random weighted networks, i.e. the multiplication algorithm, starting from real, quantitative data. Finally, the app provides a statistical tool that compares real versus randomly computed attributes, in order to validate the numerical findings. In summary, our app aims at creating a standardised methodology for the validation of the results in the context of the Cytoscape platform.
The generation of 68 Gbps quantum random number by measuring laser phase fluctuations
International Nuclear Information System (INIS)
Nie, You-Qi; Liu, Yang; Zhang, Jun; Pan, Jian-Wei; Huang, Leilei; Payne, Frank
2015-01-01
The speed of a quantum random number generator is essential for practical applications, such as high-speed quantum key distribution systems. Here, we push the speed of a quantum random number generator to 68 Gbps by operating a laser around its threshold level. To achieve the rate, not only high-speed photodetector and high sampling rate are needed but also a very stable interferometer is required. A practical interferometer with active feedback instead of common temperature control is developed to meet the requirement of stability. Phase fluctuations of the laser are measured by the interferometer with a photodetector and then digitalized to raw random numbers with a rate of 80 Gbps. The min-entropy of the raw data is evaluated by modeling the system and is used to quantify the quantum randomness of the raw data. The bias of the raw data caused by other signals, such as classical and detection noises, can be removed by Toeplitz-matrix hashing randomness extraction. The final random numbers can pass through the standard randomness tests. Our demonstration shows that high-speed quantum random number generators are ready for practical usage
High-Speed Device-Independent Quantum Random Number Generation without a Detection Loophole
Liu, Yang; Yuan, Xiao; Li, Ming-Han; Zhang, Weijun; Zhao, Qi; Zhong, Jiaqiang; Cao, Yuan; Li, Yu-Huai; Chen, Luo-Kan; Li, Hao; Peng, Tianyi; Chen, Yu-Ao; Peng, Cheng-Zhi; Shi, Sheng-Cai; Wang, Zhen; You, Lixing; Ma, Xiongfeng; Fan, Jingyun; Zhang, Qiang; Pan, Jian-Wei
2018-01-01
Quantum mechanics provides the means of generating genuine randomness that is impossible with deterministic classical processes. Remarkably, the unpredictability of randomness can be certified in a manner that is independent of implementation devices. Here, we present an experimental study of device-independent quantum random number generation based on a detection-loophole-free Bell test with entangled photons. In the randomness analysis, without the independent identical distribution assumption, we consider the worst case scenario that the adversary launches the most powerful attacks against the quantum adversary. After considering statistical fluctuations and applying an 80 Gb ×45.6 Mb Toeplitz matrix hashing, we achieve a final random bit rate of 114 bits /s , with a failure probability less than 10-5. This marks a critical step towards realistic applications in cryptography and fundamental physics tests.
GENERATION OF MULTI-LOD 3D CITY MODELS IN CITYGML WITH THE PROCEDURAL MODELLING ENGINE RANDOM3DCITY
Directory of Open Access Journals (Sweden)
F. Biljecki
2016-09-01
Full Text Available The production and dissemination of semantic 3D city models is rapidly increasing benefiting a growing number of use cases. However, their availability in multiple LODs and in the CityGML format is still problematic in practice. This hinders applications and experiments where multi-LOD datasets are required as input, for instance, to determine the performance of different LODs in a spatial analysis. An alternative approach to obtain 3D city models is to generate them with procedural modelling, which is – as we discuss in this paper – well suited as a method to source multi-LOD datasets useful for a number of applications. However, procedural modelling has not yet been employed for this purpose. Therefore, we have developed RANDOM3DCITY, an experimental procedural modelling engine for generating synthetic datasets of buildings and other urban features. The engine is designed to produce models in CityGML and does so in multiple LODs. Besides the generation of multiple geometric LODs, we implement the realisation of multiple levels of spatiosemantic coherence, geometric reference variants, and indoor representations. As a result of their permutations, each building can be generated in 392 different CityGML representations, an unprecedented number of modelling variants of the same feature. The datasets produced by RANDOM3DCITY are suited for several applications, as we show in this paper with documented uses. The developed engine is available under an open-source licence at Github at http://github.com/tudelft3d/Random3Dcity.
True random number generation from mobile telephone photo based on chaotic cryptography
International Nuclear Information System (INIS)
Zhao Liang; Liao Xiaofeng; Xiao Di; Xiang Tao; Zhou Qing; Duan Shukai
2009-01-01
A cheap, convenient and universal TRNG based on mobile telephone photo for producing random bit sequence is proposed. To settle the problem of sequential pixels and comparability, three chaos-based approaches are applied to post-process the generated binary image. The random numbers produced by three users are tested using US NIST RNG statistical test software. The experimental results indicate that the Arnold cat map is the fastest way to generate a random bit sequence and can be accepted on general PC. The 'MASK' algorithm also performs well. Finally, comparing with the TRNG of Hu et al. [Hu Y, Liao X, Wong KW, Zhou Q. A true random number generator based on mouse movement and chaotic cryptography. Chaos, Solitons and Fractals 2007. doi: 10.1016/j.chaos.2007.10.022] which is presented by Hu et al., many merits of the proposed TRNG in this paper has been found.
The generation of random directed networks with prescribed 1-node and 2-node degree correlations
Energy Technology Data Exchange (ETDEWEB)
Zamora-Lopez, Gorka; Kurths, Juergen [Institute of Physics, University of Potsdam, PO Box 601553, 14415 Potsdam (Germany); Zhou Changsong [Department of Physics, Hong Kong Baptist University, Kowloon Tong, Hong Kong (China); Zlatic, Vinko [Rudjer Boskovic Institute, PO Box 180, HR-10002 Zagreb (Croatia)
2008-06-06
The generation of random networks is a very common problem in complex network research. In this paper, we have studied the correlation nature of several real networks and found that, typically, a large number of links are deterministic, i.e. they cannot be randomized. This finding permits fast generation of ensembles of maximally random networks with prescribed 1-node and 2-node degree correlations. When the introduction of self-loops or multiple-links are not desired, random network generation methods typically reach blocked states. Here, a mechanism is proposed, the 'force-and-drop' method, to overcome such states. Our algorithm can be easily simplified for undirected graphs and reduced to account for any subclass of 2-node degree correlations.
The generation of random directed networks with prescribed 1-node and 2-node degree correlations
International Nuclear Information System (INIS)
Zamora-Lopez, Gorka; Kurths, Juergen; Zhou Changsong; Zlatic, Vinko
2008-01-01
The generation of random networks is a very common problem in complex network research. In this paper, we have studied the correlation nature of several real networks and found that, typically, a large number of links are deterministic, i.e. they cannot be randomized. This finding permits fast generation of ensembles of maximally random networks with prescribed 1-node and 2-node degree correlations. When the introduction of self-loops or multiple-links are not desired, random network generation methods typically reach blocked states. Here, a mechanism is proposed, the 'force-and-drop' method, to overcome such states. Our algorithm can be easily simplified for undirected graphs and reduced to account for any subclass of 2-node degree correlations
Robust random number generation using steady-state emission of gain-switched laser diodes
International Nuclear Information System (INIS)
Yuan, Z. L.; Lucamarini, M.; Dynes, J. F.; Fröhlich, B.; Plews, A.; Shields, A. J.
2014-01-01
We demonstrate robust, high-speed random number generation using interference of the steady-state emission of guaranteed random phases, obtained through gain-switching a semiconductor laser diode. Steady-state emission tolerates large temporal pulse misalignments and therefore significantly improves the interference quality. Using an 8-bit digitizer followed by a finite-impulse-response unbiasing algorithm, we achieve random number generation rates of 8 and 20 Gb/s, for laser repetition rates of 1 and 2.5 GHz, respectively, with a ±20% tolerance in the interferometer differential delay. We also report a generation rate of 80 Gb/s using partially phase-correlated short pulses. In relation to the field of quantum key distribution, our results confirm the gain-switched laser diode as a suitable light source, capable of providing phase-randomized coherent pulses at a clock rate of up to 2.5 GHz.
Strenge, Hans; Niederberger, Uwe
2008-06-01
The interference effect between Grooved Pegboard task with either hand and the executive task of cued verbal random number generation was investigated. 24 normal right-handed subjects performed each task under separate (single-task) and concurrent (dual-task) conditions. Articulatory suppression was required as an additional secondary task during pegboard performance. Analysis indicated an unambiguous distinction between the two hands. Comparisons of single-task and dual-task conditions showed an asymmetrical pattern of unidirectional interference with no practice effects during pegboard performance. Concurrent performance with nondominant hand but not the dominant hand of random number generation performance became continuously slower. There was no effect of divided attention on pegboard performance. Findings support the idea that the nondominant hand on the pegboard and random number tasks draw from the same processing resources but that for the executive aspect random number generation is more sensitive to changes in allocation of attentional resources.
Bisadi, Zahra; Acerbi, Fabio; Fontana, Giorgio; Zorzi, Nicola; Piemonte, Claudio; Pucker, Georg; Pavesi, Lorenzo
2018-02-01
A small-sized photonic quantum random number generator, easy to be implemented in small electronic devices for secure data encryption and other applications, is highly demanding nowadays. Here, we propose a compact configuration with Silicon nanocrystals large area light emitting device (LED) coupled to a Silicon photomultiplier to generate random numbers. The random number generation methodology is based on the photon arrival time and is robust against the non-idealities of the detector and the source of quantum entropy. The raw data show high quality of randomness and pass all the statistical tests in national institute of standards and technology tests (NIST) suite without a post-processing algorithm. The highest bit rate is 0.5 Mbps with the efficiency of 4 bits per detected photon.
On the design of henon and logistic map-based random number generator
Magfirawaty; Suryadi, M. T.; Ramli, Kalamullah
2017-10-01
The key sequence is one of the main elements in the cryptosystem. True Random Number Generators (TRNG) method is one of the approaches to generating the key sequence. The randomness source of the TRNG divided into three main groups, i.e. electrical noise based, jitter based and chaos based. The chaos based utilizes a non-linear dynamic system (continuous time or discrete time) as an entropy source. In this study, a new design of TRNG based on discrete time chaotic system is proposed, which is then simulated in LabVIEW. The principle of the design consists of combining 2D and 1D chaotic systems. A mathematical model is implemented for numerical simulations. We used comparator process as a harvester method to obtain the series of random bits. Without any post processing, the proposed design generated random bit sequence with high entropy value and passed all NIST 800.22 statistical tests.
Directory of Open Access Journals (Sweden)
Zahra Bisadi
2018-02-01
Full Text Available A small-sized photonic quantum random number generator, easy to be implemented in small electronic devices for secure data encryption and other applications, is highly demanding nowadays. Here, we propose a compact configuration with Silicon nanocrystals large area light emitting device (LED coupled to a Silicon photomultiplier to generate random numbers. The random number generation methodology is based on the photon arrival time and is robust against the non-idealities of the detector and the source of quantum entropy. The raw data show high quality of randomness and pass all the statistical tests in national institute of standards and technology tests (NIST suite without a post-processing algorithm. The highest bit rate is 0.5 Mbps with the efficiency of 4 bits per detected photon.
A portable high-quality random number generator for lattice field theory simulations
International Nuclear Information System (INIS)
Luescher, M.
1993-09-01
The theory underlying a proposed random number generator for numerical simulations in elementary particle physics and statistical mechanics is discussed. The generator is based on an algorithm introduced by Marsaglia and Zaman, with an important added feature leading to demonstrably good statistical properties. It can be implemented exactly on any computer complying with the IEEE-754 standard for single precision floating point arithmetic. (orig.)
Pseudo-Random Number Generators for Vector Processors and Multicore Processors
DEFF Research Database (Denmark)
Fog, Agner
2015-01-01
Large scale Monte Carlo applications need a good pseudo-random number generator capable of utilizing both the vector processing capabilities and multiprocessing capabilities of modern computers in order to get the maximum performance. The requirements for such a generator are discussed. New ways...
Energy Technology Data Exchange (ETDEWEB)
Lucena, Thomas Krisp de; Young, Carlos Eduardo Frickmann [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Dept. de Economia], e-mail: thomaskl@ig.com.br
2008-07-01
This article analysis the National Program of Biodiesel Production, and presents a methodology to estimate the direct and indirect effects of employment and wages generation using the Input-Output Model developed by Leontief. Four different simulations are carried out, but even in the most optimistic case, the results presented by the Government exceed considerably the estimates obtained using data from the Brazilian national accounts. The main recommendation is that these estimates need to be redone, in order to present more realistic expectations for the job and income generation from the expansion of the bio diesel. (author)
Matsumoto, Mari; Ohba, Ryuji; Yasuda, Shin-ichi; Uchida, Ken; Tanamoto, Tetsufumi; Fujita, Shinobu
2008-08-01
The demand for random numbers for security applications is increasing. A conventional random number generator using thermal noise can generate unpredictable high-quality random numbers, but the circuit is extremely large because of large amplifier circuit for a small thermal signal. On the other hand, a pseudo-random number generator is small but the quality of randomness is bad. For a small circuit and a high quality of randomness, we purpose a non-stoichiometric SixN metal-oxide-semiconductor field-effect transistor (MOSFET) noise source device. This device generates a very large noise signal without an amplifier circuit. As a result, it is shown that, utilizing a SiN MOSFET, we can attain a compact random number generator with a high generation rate near 1 Mbit/s, which is suitable for almost all security applications.
Probabilistic generation of random networks taking into account information on motifs occurrence.
Bois, Frederic Y; Gayraud, Ghislaine
2015-01-01
Because of the huge number of graphs possible even with a small number of nodes, inference on network structure is known to be a challenging problem. Generating large random directed graphs with prescribed probabilities of occurrences of some meaningful patterns (motifs) is also difficult. We show how to generate such random graphs according to a formal probabilistic representation, using fast Markov chain Monte Carlo methods to sample them. As an illustration, we generate realistic graphs with several hundred nodes mimicking a gene transcription interaction network in Escherichia coli.
Czech Academy of Sciences Publication Activity Database
Šípek, Václav; Daňhelka, J.
2015-01-01
Roč. 528, September (2015), s. 720-733 ISSN 0022-1694 Institutional support: RVO:67985874 Keywords : seasonal forecasting * ESP * large-scale climate * weather generator Subject RIV: DA - Hydrology ; Limnology Impact factor: 3.043, year: 2015
International Nuclear Information System (INIS)
Park, Won Dong; Bahn, Chi Bum; Kim, Ji Hoon
2017-01-01
In this study, a finite element analysis of a cylindrical multi-pass weldment for dissimilar metals was performed. The effects of the heat input method and weld bead generation method were considered. We compared two heat input methods: the heat flux method and the temperature method. We also compared two weld bead generation methods: the element birth method and the quiet element method. Although the results of the thermal analysis show deviations between the two heat input methods, the welding residual stresses were similar. Because the areas exposed to high temperature were similar and the strength of the material was very low in high temperature (above the 1000 ℃), the effects of the weld bead temperature were insignificant. The distributions of the welding residual stress were similar to each other. However, gaps and overlaps occurred on the welding boundary surfaces when the element birth method was applied. The quiet element method is more suitable for a large deformation model in order to simulate a more accurate weld shape.
Energy Technology Data Exchange (ETDEWEB)
Park, Won Dong; Bahn, Chi Bum; Kim, Ji Hoon [Pusan Nat’l Univ., Busan (Korea, Republic of)
2017-06-15
In this study, a finite element analysis of a cylindrical multi-pass weldment for dissimilar metals was performed. The effects of the heat input method and weld bead generation method were considered. We compared two heat input methods: the heat flux method and the temperature method. We also compared two weld bead generation methods: the element birth method and the quiet element method. Although the results of the thermal analysis show deviations between the two heat input methods, the welding residual stresses were similar. Because the areas exposed to high temperature were similar and the strength of the material was very low in high temperature (above the 1000 ℃), the effects of the weld bead temperature were insignificant. The distributions of the welding residual stress were similar to each other. However, gaps and overlaps occurred on the welding boundary surfaces when the element birth method was applied. The quiet element method is more suitable for a large deformation model in order to simulate a more accurate weld shape.
A revision of the subtract-with-borrow random number generators
Sibidanov, Alexei
2017-12-01
The most popular and widely used subtract-with-borrow generator, also known as RANLUX, is reimplemented as a linear congruential generator using large integer arithmetic with the modulus size of 576 bits. Modern computers, as well as the specific structure of the modulus inferred from RANLUX, allow for the development of a fast modular multiplication - the core of the procedure. This was previously believed to be slow and have too high cost in terms of computing resources. Our tests show a significant gain in generation speed which is comparable with other fast, high quality random number generators. An additional feature is the fast skipping of generator states leading to a seeding scheme which guarantees the uniqueness of random number sequences. Licensing provisions: GPLv3 Programming language: C++, C, Assembler
Random number generators in support of Monte Carlo problems in physics
International Nuclear Information System (INIS)
Dyadkin, I.G.
1993-01-01
The ability to support a modern users' expectations of random number generators to solve problems in physics is analyzed. The capabilities of the newest concepts and the old pseudo-random algorithms are compared. The author is in favor of multiplicative generators. Due to the 64-bit arithmetic of a modern PC, multiplicative generators have a sufficient number of periods (up to 2 62 ) and are quicker to generate and to govern independent sequences for parallel processing. In addition they are able to replicate sub-sequences (without storing their seeds) for each standard trial in any code and to simulate spatial and planar directions and EXP(-x) distributions often needed as ''bricks'' for simulating events in physics. Hundreds of multipliers for multiplicative generators have been tabulated and tested, and the required speeds have been obtained. (author)
Czech Academy of Sciences Publication Activity Database
Šípek, Václav; Daňhelka, J.
2015-01-01
Roč. 528, September (2015), s. 720-733 ISSN 0022-1694 Institutional support: RVO:67985874 Keywords : sea sonal forecasting * ESP * large-scale climate * weather generator Subject RIV: DA - Hydrology ; Limnology Impact factor: 3.043, year: 2015
Zheng, Guanglou; Fang, Gengfa; Shankaran, Rajan; Orgun, Mehmet A; Zhou, Jie; Qiao, Li; Saleem, Kashif
2017-05-01
Generating random binary sequences (BSes) is a fundamental requirement in cryptography. A BS is a sequence of N bits, and each bit has a value of 0 or 1. For securing sensors within wireless body area networks (WBANs), electrocardiogram (ECG)-based BS generation methods have been widely investigated in which interpulse intervals (IPIs) from each heartbeat cycle are processed to produce BSes. Using these IPI-based methods to generate a 128-bit BS in real time normally takes around half a minute. In order to improve the time efficiency of such methods, this paper presents an ECG multiple fiducial-points based binary sequence generation (MFBSG) algorithm. The technique of discrete wavelet transforms is employed to detect arrival time of these fiducial points, such as P, Q, R, S, and T peaks. Time intervals between them, including RR, RQ, RS, RP, and RT intervals, are then calculated based on this arrival time, and are used as ECG features to generate random BSes with low latency. According to our analysis on real ECG data, these ECG feature values exhibit the property of randomness and, thus, can be utilized to generate random BSes. Compared with the schemes that solely rely on IPIs to generate BSes, this MFBSG algorithm uses five feature values from one heart beat cycle, and can be up to five times faster than the solely IPI-based methods. So, it achieves a design goal of low latency. According to our analysis, the complexity of the algorithm is comparable to that of fast Fourier transforms. These randomly generated ECG BSes can be used as security keys for encryption or authentication in a WBAN system.
International Nuclear Information System (INIS)
Richards, A.G.
1989-11-01
This document describes the GUERAP User-Friendly Data-Input Program Package, called GUFDIPP for short. GUFDIPP is a large suite of programs, developed at RAL (Rutherfield Appleton Laboratory), with the specific purpose of providing a user-friendly interface to the GUERAP III straylight analysis program. GUERAP III is a powerful, Monte-Carlo based program (supplied under licence from ESTEC) for simulating the transfer of electromagnetic radiation between the surfaces of a physical structure and it requires a rather detailed data-set to describe the structure to be modelled. GUFDIPP was developed in order to permit the GUERAP III dataset to be easily, efficiently and accurately built-up and modified, so that access to the GUERAP III program would be much easier, therefore encouraging its use. This document acts as a user-manual for GUFDIPP. Perhaps the most powerful of GUFDIPP's capabilities are those which permit the extraction of subsets of surfaces from a model's datasets to create a new 'sub-model' and the ability to 'add' two models' datasets to create a new 'merged' model. These permit considerable time-saving when entering constraint surface information for a sensor model. (author)
A Bidirectional Generalized Synchronization Theorem-Based Chaotic Pseudo-random Number Generator
Directory of Open Access Journals (Sweden)
Han Shuangshuang
2013-07-01
Full Text Available Based on a bidirectional generalized synchronization theorem for discrete chaos system, this paper introduces a new 5-dimensional bidirectional generalized chaos synchronization system (BGCSDS, whose prototype is a novel chaotic system introduced in [12]. Numerical simulation showed that two pair variables of the BGCSDS achieve generalized chaos synchronization via a transform H.A chaos-based pseudo-random number generator (CPNG was designed by the new BGCSDS. Using the FIPS-140-2 tests issued by the National Institute of Standard and Technology (NIST verified the randomness of the 1000 binary number sequences generated via the CPNG and the RC4 algorithm respectively. The results showed that all the tested sequences passed the FIPS-140-2 tests. The confidence interval analysis showed the statistical properties of the randomness of the sequences generated via the CPNG and the RC4 algorithm do not have significant differences.
Modular Transformations, Order-Chaos Transitions and Pseudo-Random Number Generation
Bonelli, Antonio; Ruffo, Stefano
Successive pairs of pseudo-random numbers generated by standard linear congruential transformations display ordered patterns of parallel lines. We study the "ordered" and "chaotic" distribution of such pairs by solving the eigenvalue problem for two-dimensional modular transformations over integers. We conjecture that the optimal uniformity for pair distribution is obtained when the slope of linear modular eigenspaces takes the value n opt =maxint (p/√ {p-1}), where p is a prime number. We then propose a new generator of pairs of independent pseudo-random numbers, which realizes an optimal uniform distribution (in the "statistical" sense) of points on the unit square (0, 1] × (0, 1]. The method can be easily generalized to the generation of k-tuples of random numbers (with k>2).
Direct generation of all-optical random numbers from optical pulse amplitude chaos.
Li, Pu; Wang, Yun-Cai; Wang, An-Bang; Yang, Ling-Zhen; Zhang, Ming-Jiang; Zhang, Jian-Zhong
2012-02-13
We propose and theoretically demonstrate an all-optical method for directly generating all-optical random numbers from pulse amplitude chaos produced by a mode-locked fiber ring laser. Under an appropriate pump intensity, the mode-locked laser can experience a quasi-periodic route to chaos. Such a chaos consists of a stream of pulses with a fixed repetition frequency but random intensities. In this method, we do not require sampling procedure and external triggered clocks but directly quantize the chaotic pulses stream into random number sequence via an all-optical flip-flop. Moreover, our simulation results show that the pulse amplitude chaos has no periodicity and possesses a highly symmetric distribution of amplitude. Thus, in theory, the obtained random number sequence without post-processing has a high-quality randomness verified by industry-standard statistical tests.
Experimentally Generated Random Numbers Certified by the Impossibility of Superluminal Signaling
Bierhorst, Peter; Shalm, Lynden K.; Mink, Alan; Jordan, Stephen; Liu, Yi-Kai; Rommal, Andrea; Glancy, Scott; Christensen, Bradley; Nam, Sae Woo; Knill, Emanuel
Random numbers are an important resource for applications such as numerical simulation and secure communication. However, it is difficult to certify whether a physical random number generator is truly unpredictable. Here, we exploit the phenomenon of quantum nonlocality in a loophole-free photonic Bell test experiment to obtain data containing randomness that cannot be predicted by any theory that does not also allow the sending of signals faster than the speed of light. To certify and quantify the randomness, we develop a new protocol that performs well in an experimental regime characterized by low violation of Bell inequalities. Applying an extractor function to our data, we obtain 256 new random bits, uniform to within 10- 3 .
A universal algorithm to generate pseudo-random numbers based on uniform mapping as homeomorphism
International Nuclear Information System (INIS)
Fu-Lai, Wang
2010-01-01
A specific uniform map is constructed as a homeomorphism mapping chaotic time series into [0,1] to obtain sequences of standard uniform distribution. With the uniform map, a chaotic orbit and a sequence orbit obtained are topologically equivalent to each other so the map can preserve the most dynamic properties of chaotic systems such as permutation entropy. Based on the uniform map, a universal algorithm to generate pseudo random numbers is proposed and the pseudo random series is tested to follow the standard 0–1 random distribution both theoretically and experimentally. The algorithm is not complex, which does not impose high requirement on computer hard ware and thus computation speed is fast. The method not only extends the parameter spaces but also avoids the drawback of small function space caused by constraints on chaotic maps used to generate pseudo random numbers. The algorithm can be applied to any chaotic system and can produce pseudo random sequence of high quality, thus can be a good universal pseudo random number generator. (general)
A universal algorithm to generate pseudo-random numbers based on uniform mapping as homeomorphism
Wang, Fu-Lai
2010-09-01
A specific uniform map is constructed as a homeomorphism mapping chaotic time series into [0,1] to obtain sequences of standard uniform distribution. With the uniform map, a chaotic orbit and a sequence orbit obtained are topologically equivalent to each other so the map can preserve the most dynamic properties of chaotic systems such as permutation entropy. Based on the uniform map, a universal algorithm to generate pseudo random numbers is proposed and the pseudo random series is tested to follow the standard 0-1 random distribution both theoretically and experimentally. The algorithm is not complex, which does not impose high requirement on computer hard ware and thus computation speed is fast. The method not only extends the parameter spaces but also avoids the drawback of small function space caused by constraints on chaotic maps used to generate pseudo random numbers. The algorithm can be applied to any chaotic system and can produce pseudo random sequence of high quality, thus can be a good universal pseudo random number generator.
International Nuclear Information System (INIS)
Van Tilburg, X.; De Vries, H.J.; Pfeiffer, A.E.; Beekes, M.; Cleijne, J.W.
2005-09-01
A number of new initiatives in which bio-oil is used in stand-alone plants for power generation has been reviewed. The question to be answered is whether the reference case for stand alone biomass projects based on burning of wood chips can still be considered representative for the costs and benefits in this category. ECN, in cooperation with KEMA, have determined the financial gap between the costs and benefits of projects in which bio-oil is used in stand alone plants for power generation. The ranges and reference case for bio-oil in stand alone applications show that these projects have a substantially lower financial gap than the current reference case based on wood chips [nl
Scope of Various Random Number Generators in ant System Approach for TSP
Sen, S. K.; Shaykhian, Gholam Ali
2007-01-01
Experimented on heuristic, based on an ant system approach for traveling salesman problem, are several quasi- and pseudo-random number generators. This experiment is to explore if any particular generator is most desirable. Such an experiment on large samples has the potential to rank the performance of the generators for the foregoing heuristic. This is mainly to seek an answer to the controversial issue "which generator is the best in terms of quality of the result (accuracy) as well as cost of producing the result (time/computational complexity) in a probabilistic/statistical sense."
Pseudo-random properties of a linear congruential generator investigated by b-adic diaphony
Stoev, Peter; Stoilova, Stanislava
2017-12-01
In the proposed paper we continue the study of the diaphony, defined in b-adic number system, and we extend it in different directions. We investigate this diaphony as a tool for estimation of the pseudorandom properties of some of the most used random number generators. This is done by evaluating the distribution of specially constructed two-dimensional nets on the base of the obtained random numbers. The aim is to see how the generated numbers are suitable for calculations in some numerical methods (Monte Carlo etc.).
An efficient algorithm for generating random number pairs drawn from a bivariate normal distribution
Campbell, C. W.
1983-01-01
An efficient algorithm for generating random number pairs from a bivariate normal distribution was developed. Any desired value of the two means, two standard deviations, and correlation coefficient can be selected. Theoretically the technique is exact and in practice its accuracy is limited only by the quality of the uniform distribution random number generator, inaccuracies in computer function evaluation, and arithmetic. A FORTRAN routine was written to check the algorithm and good accuracy was obtained. Some small errors in the correlation coefficient were observed to vary in a surprisingly regular manner. A simple model was developed which explained the qualities aspects of the errors.
Fortran code for generating random probability vectors, unitaries, and quantum states
Directory of Open Access Journals (Sweden)
Jonas eMaziero
2016-03-01
Full Text Available The usefulness of generating random configurations is recognized in many areas of knowledge. Fortran was born for scientific computing and has been one of the main programming languages in this area since then. And several ongoing projects targeting towards its betterment indicate that it will keep this status in the decades to come. In this article, we describe Fortran codes produced, or organized, for the generation of the following random objects: numbers, probability vectors, unitary matrices, and quantum state vectors and density matrices. Some matrix functions are also included and may be of independent interest.
International Nuclear Information System (INIS)
Berrada, K.; Benmoussa, A.; Hassouni, Y.
2010-07-01
Using linear entropy as a measure of entanglement, we investigate the entanglement generated via a beam splitter using deformed Barut-Girardello coherent states. We show that the degree of entanglement depends strongly on the q-deformation parameter and amplitude Z of the states. We compute the Mandel Q parameter to examine the quantum statistical properties of these coherent states and make a comparison with the Glauber coherent states. It is shown that these states are useful to describe the states of real and ideal lasers by a proper choice of their characterizing parameters, using an alteration of the Holstein-Primakoff realization. (author)
International Nuclear Information System (INIS)
Chakraborty, Brahmananda
2009-01-01
Random number plays an important role in any Monte Carlo simulation. The accuracy of the results depends on the quality of the sequence of random numbers employed in the simulation. These include randomness of the random numbers, uniformity of their distribution, absence of correlation and long period. In a typical Monte Carlo simulation of particle transport in a nuclear reactor core, the history of a particle from its birth in a fission event until its death by an absorption or leakage event is tracked. The geometry of the core and the surrounding materials are exactly modeled in the simulation. To track a neutron history one needs random numbers for determining inter collision distance, nature of the collision, the direction of the scattered neutron etc. Neutrons are tracked in batches. In one batch approximately 2000-5000 neutrons are tracked. The statistical accuracy of the results of the simulation depends on the total number of particles (number of particles in one batch multiplied by the number of batches) tracked. The number of histories to be generated is usually large for a typical radiation transport problem. To track a very large number of histories one needs to generate a long sequence of independent random numbers. In other words the cycle length of the random number generator (RNG) should be more than the total number of random numbers required for simulating the given transport problem. The number of bits of the machine generally limits the cycle length. For a binary machine of p bits the maximum cycle length is 2 p . To achieve higher cycle length in the same machine one has to use either register arithmetic or bit manipulation technique
GenRGenS: Software for Generating Random Genomic Sequences and Structures
Ponty , Yann; Termier , Michel; Denise , Alain
2006-01-01
International audience; GenRGenS is a software tool dedicated to randomly generating genomic sequences and structures. It handles several classes of models useful for sequence analysis, such as Markov chains, hidden Markov models, weighted context-free grammars, regular expressions and PROSITE expressions. GenRGenS is the only program that can handle weighted context-free grammars, thus allowing the user to model and to generate structured objects (such as RNA secondary structures) of any giv...
Energy Technology Data Exchange (ETDEWEB)
Ortensi, Javier [Idaho National Lab. (INL), Idaho Falls, ID (United States); Baker, Benjamin Allen [Idaho National Lab. (INL), Idaho Falls, ID (United States); Schunert, Sebastian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wang, Yaqi [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gleicher, Frederick Nathan [Idaho National Lab. (INL), Idaho Falls, ID (United States); DeHart, Mark David [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2016-06-01
The INL is currently evolving the modeling and simulation (M&S) capability that will enable improved core operation as well as design and analysis of TREAT experiments. This M&S capability primarily uses MAMMOTH, a reactor physics application being developed under Multi-physics Object Oriented Simulation Environment (MOOSE) framework. MAMMOTH allows the coupling of a number of other MOOSE-based applications. This second year of work has been devoted to the generation of a deterministic reference solution for the full core, the preparation of anisotropic diffusion coefficients, the testing of the SPH equivalence method, and the improvement of the control rod modeling. In addition, this report includes the progress made in the modeling of the M8 core configuration and experiment vehicle since January of this year.
An On-Demand Optical Quantum Random Number Generator with In-Future Action and Ultra-Fast Response.
Stipčević, Mario; Ursin, Rupert
2015-06-09
Random numbers are essential for our modern information based society e.g. in cryptography. Unlike frequently used pseudo-random generators, physical random number generators do not depend on complex algorithms but rather on a physical process to provide true randomness. Quantum random number generators (QRNG) do rely on a process, which can be described by a probabilistic theory only, even in principle. Here we present a conceptually simple implementation, which offers a 100% efficiency of producing a random bit upon a request and simultaneously exhibits an ultra low latency. A careful technical and statistical analysis demonstrates its robustness against imperfections of the actual implemented technology and enables to quickly estimate randomness of very long sequences. Generated random numbers pass standard statistical tests without any post-processing. The setup described, as well as the theory presented here, demonstrate the maturity and overall understanding of the technology.
Minimal-post-processing 320-Gbps true random bit generation using physical white chaos.
Wang, Anbang; Wang, Longsheng; Li, Pu; Wang, Yuncai
2017-02-20
Chaotic external-cavity semiconductor laser (ECL) is a promising entropy source for generation of high-speed physical random bits or digital keys. The rate and randomness is unfortunately limited by laser relaxation oscillation and external-cavity resonance, and is usually improved by complicated post processing. Here, we propose using a physical broadband white chaos generated by optical heterodyning of two ECLs as entropy source to construct high-speed random bit generation (RBG) with minimal post processing. The optical heterodyne chaos not only has a white spectrum without signature of relaxation oscillation and external-cavity resonance but also has a symmetric amplitude distribution. Thus, after quantization with a multi-bit analog-digital-convertor (ADC), random bits can be obtained by extracting several least significant bits (LSBs) without any other processing. In experiments, a white chaos with a 3-dB bandwidth of 16.7 GHz is generated. Its entropy rate is estimated as 16 Gbps by single-bit quantization which means a spectrum efficiency of 96%. With quantization using an 8-bit ADC, 320-Gbps physical RBG is achieved by directly extracting 4 LSBs at 80-GHz sampling rate.
On a direct algorithm for the generation of log-normal pseudo-random numbers
Chamayou, J M F
1976-01-01
The random variable ( Pi /sub i=1//sup n/X/sub i//X/sub i+n/)/sup 1/ square root 2n/ is used to generate standard log normal variables Lambda (0, 1), where the X/sub i/ are independent uniform variables on (0, 1). (8 refs).
Bosch, Holger; Steinkamp, Fiona; Boller, Emil
2006-01-01
Seance-room and other large-scale psychokinetic phenomena have fascinated humankind for decades. Experimental research has reduced these phenomena to attempts to influence (a) the fall of dice and, later, (b) the output of random number generators (RNGs). The meta-analysis combined 380 studies that assessed whether RNG output correlated with human…
Digital-Analog Hybrid Scheme and Its Application to Chaotic Random Number Generators
Yuan, Zeshi; Li, Hongtao; Miao, Yunchi; Hu, Wen; Zhu, Xiaohua
2017-12-01
Practical random number generation (RNG) circuits are typically achieved with analog devices or digital approaches. Digital-based techniques, which use field programmable gate array (FPGA) and graphics processing units (GPU) etc. usually have better performances than analog methods as they are programmable, efficient and robust. However, digital realizations suffer from the effect of finite precision. Accordingly, the generated random numbers (RNs) are actually periodic instead of being real random. To tackle this limitation, in this paper we propose a novel digital-analog hybrid scheme that employs the digital unit as the main body, and minimum analog devices to generate physical RNs. Moreover, the possibility of realizing the proposed scheme with only one memory element is discussed. Without loss of generality, we use the capacitor and the memristor along with FPGA to construct the proposed hybrid system, and a chaotic true random number generator (TRNG) circuit is realized, producing physical RNs at a throughput of Gbit/s scale. These RNs successfully pass all the tests in the NIST SP800-22 package, confirming the significance of the scheme in practical applications. In addition, the use of this new scheme is not restricted to RNGs, and it also provides a strategy to solve the effect of finite precision in other digital systems.
Non-random mating for selection with restricted rates of inbreeding and overlapping generations
Sonesson, A.K.; Meuwissen, T.H.E.
2002-01-01
Minimum coancestry mating with a maximum of one offspring per mating pair (MC1) is compared with random mating schemes for populations with overlapping generations. Optimum contribution selection is used, whereby $\\\\\\\\Delta F$ is restricted. For schemes with $\\\\\\\\Delta F$ restricted to 0.25% per
A method for the generation of random multiple Coulomb scattering angles
International Nuclear Information System (INIS)
Campbell, J.R.
1995-06-01
A method for the random generation of spatial angles drawn from non-Gaussian multiple Coulomb scattering distributions is presented. The method employs direct numerical inversion of cumulative probability distributions computed from the universal non-Gaussian angular distributions of Marion and Zimmerman. (author). 12 refs., 3 figs
True random bit generators based on current time series of contact glow discharge electrolysis
Rojas, Andrea Espinel; Allagui, Anis; Elwakil, Ahmed S.; Alawadhi, Hussain
2018-05-01
Random bit generators (RBGs) in today's digital information and communication systems employ a high rate physical entropy sources such as electronic, photonic, or thermal time series signals. However, the proper functioning of such physical systems is bound by specific constrains that make them in some cases weak and susceptible to external attacks. In this study, we show that the electrical current time series of contact glow discharge electrolysis, which is a dc voltage-powered micro-plasma in liquids, can be used for generating random bit sequences in a wide range of high dc voltages. The current signal is quantized into a binary stream by first using a simple moving average function which makes the distribution centered around zero, and then applying logical operations which enables the binarized data to pass all tests in industry-standard randomness test suite by the National Institute of Standard Technology. Furthermore, the robustness of this RBG against power supply attacks has been examined and verified.
A robust random number generator based on differential comparison of chaotic laser signals.
Zhang, Jianzhong; Wang, Yuncai; Liu, Ming; Xue, Lugang; Li, Pu; Wang, Anbang; Zhang, Mingjiang
2012-03-26
We experimentally realize a robust real-time random number generator by differentially comparing the signal from a chaotic semiconductor laser and its delayed signal through a 1-bit analog-to-digital converter. The probability density distribution of the output chaotic signal based on the differential comparison method possesses an extremely small coefficient of Pearson's median skewness (1.5 × 10⁻⁶), which can yield a balanced random sequence much easily than the previously reported method that compares the signal from the chaotic laser with a certain threshold value. Moveover, we experimently demonstrate that our method can stably generate good random numbers at rates of 1.44 Gbit/s with excellent immunity from external perturbations while the previously reported method fails.
Quantum random bit generation using energy fluctuations in stimulated Raman scattering.
Bustard, Philip J; England, Duncan G; Nunn, Josh; Moffatt, Doug; Spanner, Michael; Lausten, Rune; Sussman, Benjamin J
2013-12-02
Random number sequences are a critical resource in modern information processing systems, with applications in cryptography, numerical simulation, and data sampling. We introduce a quantum random number generator based on the measurement of pulse energy quantum fluctuations in Stokes light generated by spontaneously-initiated stimulated Raman scattering. Bright Stokes pulse energy fluctuations up to five times the mean energy are measured with fast photodiodes and converted to unbiased random binary strings. Since the pulse energy is a continuous variable, multiple bits can be extracted from a single measurement. Our approach can be generalized to a wide range of Raman active materials; here we demonstrate a prototype using the optical phonon line in bulk diamond.
Experimental study of a quantum random-number generator based on two independent lasers
Sun, Shi-Hai; Xu, Feihu
2017-12-01
A quantum random-number generator (QRNG) can produce true randomness by utilizing the inherent probabilistic nature of quantum mechanics. Recently, the spontaneous-emission quantum phase noise of the laser has been widely deployed for quantum random-number generation, due to its high rate, its low cost, and the feasibility of chip-scale integration. Here, we perform a comprehensive experimental study of a phase-noise-based QRNG with two independent lasers, each of which operates in either continuous-wave (CW) or pulsed mode. We implement the QRNG by operating the two lasers in three configurations, namely, CW + CW, CW + pulsed, and pulsed + pulsed, and demonstrate their trade-offs, strengths, and weaknesses.
International Nuclear Information System (INIS)
Hall, Jim W.; Lawry, Jonathan
2004-01-01
Random set theory provides a convenient mechanism for representing uncertain knowledge including probabilistic and set-based information, and extending it through a function. This paper focuses upon the situation when the available information is in terms of coherent lower and upper probabilities, which are encountered, for example, when a probability distribution is specified by interval parameters. We propose an Iterative Rescaling Method (IRM) for constructing a random set with corresponding belief and plausibility measures that are a close outer approximation to the lower and upper probabilities. The approach is compared with the discrete approximation method of Williamson and Downs (sometimes referred to as the p-box), which generates a closer approximation to lower and upper cumulative probability distributions but in most cases a less accurate approximation to the lower and upper probabilities on the remainder of the power set. Four combination methods are compared by application to example random sets generated using the IRM
Norris, Brian J; Weaver, Adam L; Wenning, Angela; García, Paul S; Calabrese, Ronald L
2007-11-01
The central pattern generator (CPG) for heartbeat in leeches consists of seven identified pairs of segmental heart interneurons and one unidentified pair. Four of the identified pairs and the unidentified pair of interneurons make inhibitory synaptic connections with segmental heart motor neurons. The CPG produces a side-to-side asymmetric pattern of intersegmental coordination among ipsilateral premotor interneurons corresponding to a similarly asymmetric fictive motor pattern in heart motor neurons, and asymmetric constriction pattern of the two tubular hearts: synchronous and peristaltic. Using extracellular techniques, we recorded, in 61 isolated nerve cords, the activity of motor neurons in conjunction with the phase reference premotor heart interneuron, HN(4), and another premotor interneuron that allowed us to assess the coordination mode. These data were then coupled with a previous description of the temporal pattern of premotor interneuron activity in the two coordination modes to synthesize a global phase diagram for the known elements of the CPG and the entire motor neuron ensemble. These average data reveal the stereotypical side-to-side asymmetric patterns of intersegmental coordination among the motor neurons and show how this pattern meshes with the activity pattern of premotor interneurons. Analysis of animal-to-animal variability in this coordination indicates that the intersegmental phase progression of motor neuron activity in the midbody in the peristaltic coordination mode is the most stereotypical feature of the fictive motor pattern. Bilateral recordings from motor neurons corroborate the main features of the asymmetric motor pattern.
Norris, Brian J; Weaver, Adam L; Wenning, Angela; García, Paul S; Calabrese, Ronald L
2007-11-01
The central pattern generator (CPG) for heartbeat in medicinal leeches consists of seven identified pairs of segmental heart interneurons and one unidentified pair. Four of the identified pairs and the unidentified pair of interneurons make inhibitory synaptic connections with segmental heart motor neurons. The CPG produces a side-to-side asymmetric pattern of intersegmental coordination among ipsilateral premotor interneurons corresponding to a similarly asymmetric fictive motor pattern in heart motor neurons, and asymmetric constriction pattern of the two tubular hearts, synchronous and peristaltic. Using extracellular recordings from premotor interneurons and voltage-clamp recordings of ipsilateral segmental motor neurons in 69 isolated nerve cords, we assessed the strength and dynamics of premotor inhibitory synaptic output onto the entire ensemble of heart motor neurons and the associated conduction delays in both coordination modes. We conclude that premotor interneurons establish a stereotypical pattern of intersegmental synaptic connectivity, strengths, and dynamics that is invariant across coordination modes, despite wide variations among preparations. These data coupled with a previous description of the temporal pattern of premotor interneuron activity and relative phasing of motor neuron activity in the two coordination modes enable a direct assessment of how premotor interneurons through their temporal pattern of activity and their spatial pattern of synaptic connectivity, strengths, and dynamics coordinate segmental motor neurons into a functional pattern of activity.
Directory of Open Access Journals (Sweden)
Zohreh Salimian
2012-01-01
Full Text Available Subsidizing energy in Iran has imposed high costs on country's economy. Thus revising energy prices, on the basis of a subsidy reform plan, is a vital remedy to boost up the economy. While the direct consequence of cutting subsidies on electricity generation costs can be determined in a simple way, identifying indirect effects, which reflect higher costs for input factors such as labor, is a challenging problem. In this paper, variables such as compensation of employees and private consumption are endogenized by using extended Input-Output (I-O price model to evaluate direct and indirect effects of electricity and fuel prices increase on economic subsectors. The determination of the short-run marginal generation cost of electricity using I-O technique with taken into account the Iranian targeted subsidy plan's influences is the main goal of this paper. Marginal cost of electricity, in various scenarios of price adjustment of energy, is estimated for three conventional categories of thermal power plants. Our results show that the raising the price of energy leads to an increase in the electricity production costs. Accordingly, the production costs will be higher than 1000 Rials per kWh until 2014 as predicted in the beginning of the reform plan by electricity suppliers.
Zhang, Guo-Qiang; Tao, Shiqiang; Xing, Guangming; Mozes, Jeno; Zonjy, Bilal; Lhatoo, Samden D; Cui, Licong
2015-11-10
A unique study identifier serves as a key for linking research data about a study subject without revealing protected health information in the identifier. While sufficient for single-site and limited-scale studies, the use of common unique study identifiers has several drawbacks for large multicenter studies, where thousands of research participants may be recruited from multiple sites. An important property of study identifiers is error tolerance (or validatable), in that inadvertent editing mistakes during their transmission and use will most likely result in invalid study identifiers. This paper introduces a novel method called "Randomized N-gram Hashing (NHash)," for generating unique study identifiers in a distributed and validatable fashion, in multicenter research. NHash has a unique set of properties: (1) it is a pseudonym serving the purpose of linking research data about a study participant for research purposes; (2) it can be generated automatically in a completely distributed fashion with virtually no risk for identifier collision; (3) it incorporates a set of cryptographic hash functions based on N-grams, with a combination of additional encryption techniques such as a shift cipher; (d) it is validatable (error tolerant) in the sense that inadvertent edit errors will mostly result in invalid identifiers. NHash consists of 2 phases. First, an intermediate string using randomized N-gram hashing is generated. This string consists of a collection of N-gram hashes f1, f2, ..., fk. The input for each function fi has 3 components: a random number r, an integer n, and input data m. The result, fi(r, n, m), is an n-gram of m with a starting position s, which is computed as (r mod |m|), where |m| represents the length of m. The output for Step 1 is the concatenation of the sequence f1(r1, n1, m1), f2(r2, n2, m2), ..., fk(rk, nk, mk). In the second phase, the intermediate string generated in Phase 1 is encrypted using techniques such as shift cipher. The result
Lawnik, Marcin
2018-01-01
The scope of the paper is the presentation of a new method of generating numbers from a given distribution. The method uses the inverse cumulative distribution function and a method of flattening of probabilistic distributions. On the grounds of these methods, a new construction of chaotic maps was derived, which generates values from a given distribution. The analysis of the new method was conducted on the example of a newly constructed chaotic recurrences, based on the Box-Muller transformation and the quantile function of the exponential distribution. The obtained results certify that the proposed method may be successively applicable for the construction of generators of pseudo-random numbers.
Generating log-normally distributed random numbers by using the Ziggurat algorithm
International Nuclear Information System (INIS)
Choi, Jong Soo
2016-01-01
Uncertainty analyses are usually based on the Monte Carlo method. Using an efficient random number generator(RNG) is a key element in success of Monte Carlo simulations. Log-normal distributed variates are very typical in NPP PSAs. This paper proposes an approach to generate log normally distributed variates based on the Ziggurat algorithm and evaluates the efficiency of the proposed Ziggurat RNG. The proposed RNG can be helpful to improve the uncertainty analysis of NPP PSAs. This paper focuses on evaluating the efficiency of the Ziggurat algorithm from a NPP PSA point of view. From this study, we can draw the following conclusions. - The Ziggurat algorithm is one of perfect random number generators to product normal distributed variates. - The Ziggurat algorithm is computationally much faster than the most commonly used method, Marsaglia polar method
Kanter, Ido; Butkovski, Maria; Peleg, Yitzhak; Zigzag, Meital; Aviad, Yaara; Reidler, Igor; Rosenbluh, Michael; Kinzel, Wolfgang
2010-08-16
Random bit generators (RBGs) constitute an important tool in cryptography, stochastic simulations and secure communications. The later in particular has some difficult requirements: high generation rate of unpredictable bit strings and secure key-exchange protocols over public channels. Deterministic algorithms generate pseudo-random number sequences at high rates, however, their unpredictability is limited by the very nature of their deterministic origin. Recently, physical RBGs based on chaotic semiconductor lasers were shown to exceed Gbit/s rates. Whether secure synchronization of two high rate physical RBGs is possible remains an open question. Here we propose a method, whereby two fast RBGs based on mutually coupled chaotic lasers, are synchronized. Using information theoretic analysis we demonstrate security against a powerful computational eavesdropper, capable of noiseless amplification, where all parameters are publicly known. The method is also extended to secure synchronization of a small network of three RBGs.
Theoretical and empirical convergence results for additive congruential random number generators
Wikramaratna, Roy S.
2010-03-01
Additive Congruential Random Number (ACORN) generators represent an approach to generating uniformly distributed pseudo-random numbers that is straightforward to implement efficiently for arbitrarily large order and modulus; if it is implemented using integer arithmetic, it becomes possible to generate identical sequences on any machine. This paper briefly reviews existing results concerning ACORN generators and relevant theory concerning sequences that are well distributed mod 1 in k dimensions. It then demonstrates some new theoretical results for ACORN generators implemented in integer arithmetic with modulus M=2[mu] showing that they are a family of generators that converge (in a sense that is defined in the paper) to being well distributed mod 1 in k dimensions, as [mu]=log2M tends to infinity. By increasing k, it is possible to increase without limit the number of dimensions in which the resulting sequences approximate to well distributed. The paper concludes by applying the standard TestU01 test suite to ACORN generators for selected values of the modulus (between 260 and 2150), the order (between 4 and 30) and various odd seed values. On the basis of these and earlier results, it is recommended that an order of at least 9 be used together with an odd seed and modulus equal to 230p, for a small integer value of p. While a choice of p=2 should be adequate for most typical applications, increasing p to 3 or 4 gives a sequence that will consistently pass all the tests in the TestU01 test suite, giving additional confidence in more demanding applications. The results demonstrate that the ACORN generators are a reliable source of uniformly distributed pseudo-random numbers, and that in practice (as suggested by the theoretical convergence results) the quality of the ACORN sequences increases with increasing modulus and order.
An adaptive random search for short term generation scheduling with network constraints.
Directory of Open Access Journals (Sweden)
J A Marmolejo
Full Text Available This paper presents an adaptive random search approach to address a short term generation scheduling with network constraints, which determines the startup and shutdown schedules of thermal units over a given planning horizon. In this model, we consider the transmission network through capacity limits and line losses. The mathematical model is stated in the form of a Mixed Integer Non Linear Problem with binary variables. The proposed heuristic is a population-based method that generates a set of new potential solutions via a random search strategy. The random search is based on the Markov Chain Monte Carlo method. The main key of the proposed method is that the noise level of the random search is adaptively controlled in order to exploring and exploiting the entire search space. In order to improve the solutions, we consider coupling a local search into random search process. Several test systems are presented to evaluate the performance of the proposed heuristic. We use a commercial optimizer to compare the quality of the solutions provided by the proposed method. The solution of the proposed algorithm showed a significant reduction in computational effort with respect to the full-scale outer approximation commercial solver. Numerical results show the potential and robustness of our approach.
Pseudo-Random Sequences Generated by a Class of One-Dimensional Smooth Map
Wang, Xing-Yuan; Qin, Xue; Xie, Yi-Xin
2011-08-01
We extend a class of a one-dimensional smooth map. We make sure that for each desired interval of the parameter the map's Lyapunov exponent is positive. Then we propose a novel parameter perturbation method based on the good property of the extended one-dimensional smooth map. We perturb the parameter r in each iteration by the real number xi generated by the iteration. The auto-correlation function and NIST statistical test suite are taken to illustrate the method's randomness finally. We provide an application of this method in image encryption. Experiments show that the pseudo-random sequences are suitable for this application.
Pseudo-Random Sequences Generated by a Class of One-Dimensional Smooth Map
International Nuclear Information System (INIS)
Wang Xing-Yuan; Qin Xue; Xie Yi-Xin
2011-01-01
We extend a class of a one-dimensional smooth map. We make sure that for each desired interval of the parameter the map's Lyapunov exponent is positive. Then we propose a novel parameter perturbation method based on the good property of the extended one-dimensional smooth map. We perturb the parameter r in each iteration by the real number x i generated by the iteration. The auto-correlation function and NIST statistical test suite are taken to illustrate the method's randomness finally. We provide an application of this method in image encryption. Experiments show that the pseudo-random sequences are suitable for this application. (general)
Generation of pseudo-random numbers with the use of inverse chaotic transformation
Directory of Open Access Journals (Sweden)
Lawnik Marcin
2018-02-01
Full Text Available In (Lawnik M., Generation of numbers with the distribution close to uniform with the use of chaotic maps, In: Obaidat M.S., Kacprzyk J., Ören T. (Ed., International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH (28-30 August 2014, Vienna, Austria, SCITEPRESS, 2014 Lawnik discussed a method of generating pseudo-random numbers from uniform distribution with the use of adequate chaotic transformation. The method enables the “flattening” of continuous distributions to uniform one. In this paper a inverse process to the above-mentioned method is presented, and, in consequence, a new manner of generating pseudo-random numbers from a given continuous distribution. The method utilizes the frequency of the occurrence of successive branches of chaotic transformation in the process of “flattening”. To generate the values from the given distribution one discrete and one continuous value of a random variable are required. The presented method does not directly involve the knowledge of the density function or the cumulative distribution function, which is, undoubtedly, a great advantage in comparison with other well-known methods. The described method was analysed on the example of the standard normal distribution.
Directory of Open Access Journals (Sweden)
Noroozian
2009-06-01
Full Text Available This paper presents the modeling and simulation of a proton exchange membrane fuel cell (PEMFC generation system for off-grid and on-grid operation and configuration. A fuel cell DG system consists of a fuel cell power plant, a DC/DC converter and a DC/AC inverter. The dynamic model for fuel cell array and its power electronic interfacing are presented also a multi-input single output (MISO DC/DC converter and its control scheme is proposed and analyzed. This DC/DC converter is capable of interfacing fuel cell arrays to the DC/AC inverter. Also the mathematical model of the inverter is obtained by using average technique. Then the novel control strategy of DC/AC inverter for different operating conditions is demonstrated. The simulation results show the effectiveness of the suggested control systems under both on-grid and off-grid operation modes.
40 CFR 761.308 - Sample selection by random number generation on any two-dimensional square grid.
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Sample selection by random number... Â§ 761.79(b)(3) § 761.308 Sample selection by random number generation on any two-dimensional square... area created in accordance with paragraph (a) of this section, select two random numbers: one each for...
International Nuclear Information System (INIS)
De Menezes, Marcio Argollo; Brigatti, Edgardo; Schwämmle, Veit
2013-01-01
Microbiological systems evolve to fulfil their tasks with maximal efficiency. The immune system is a remarkable example, where the distinction between self and non-self is made by means of molecular interaction between self-proteins and antigens, triggering affinity-dependent systemic actions. Specificity of this binding and the infinitude of potential antigenic patterns call for novel mechanisms to generate antibody diversity. Inspired by this problem, we develop a genetic algorithm where agents evolve their strings in the presence of random antigenic strings and reproduce with affinity-dependent rates. We ask what is the best strategy to generate diversity if agents can rearrange their strings a finite number of times. We find that endowing each agent with an inheritable cellular automaton rule for performing rearrangements makes the system more efficient in pattern-matching than if transformations are totally random. In the former implementation, the population evolves to a stationary state where agents with different automata rules coexist. (paper)
Catalytic micromotor generating self-propelled regular motion through random fluctuation
Yamamoto, Daigo; Mukai, Atsushi; Okita, Naoaki; Yoshikawa, Kenichi; Shioi, Akihisa
2013-07-01
Most of the current studies on nano/microscale motors to generate regular motion have adapted the strategy to fabricate a composite with different materials. In this paper, we report that a simple object solely made of platinum generates regular motion driven by a catalytic chemical reaction with hydrogen peroxide. Depending on the morphological symmetry of the catalytic particles, a rich variety of random and regular motions are observed. The experimental trend is well reproduced by a simple theoretical model by taking into account of the anisotropic viscous effect on the self-propelled active Brownian fluctuation.
Distributed Pseudo-Random Number Generation and Its Application to Cloud Database
Chen, Jiageng; Miyaji, Atsuko; Su, Chunhua
2014-01-01
Cloud database is now a rapidly growing trend in cloud computing market recently. It enables the clients run their computation on out-sourcing databases or access to some distributed database service on the cloud. At the same time, the security and privacy concerns is major challenge for cloud database to continue growing. To enhance the security and privacy of the cloud database technology, the pseudo-random number generation (PRNG) plays an important roles in data encryptions and privacy-pr...
Smoothing Brascamp-Lieb Inequalities and Strong Converses for Common Randomness Generation
Liu, Jingbo; Courtade, Thomas A.; Cuff, Paul; Verdu, Sergio
2016-01-01
We study the infimum of the best constant in a functional inequality, the Brascamp-Lieb-like inequality, over auxiliary measures within a neighborhood of a product distribution. In the finite alphabet and the Gaussian cases, such an infimum converges to the best constant in a mutual information inequality. Implications for strong converse properties of two common randomness (CR) generation problems are discussed. In particular, we prove the strong converse property of the rate region for the ...
Directory of Open Access Journals (Sweden)
Khvedelidze Arsen
2018-01-01
Full Text Available The generation of random mixed states is discussed, aiming for the computation of probabilistic characteristics of composite finite dimensional quantum systems. In particular, we consider the generation of random Hilbert-Schmidt and Bures ensembles of qubit and qutrit pairs and compute the corresponding probabilities to find a separable state among the states of a fixed rank.
Boonsathorn, Wasita; Charoen, Danuvasin; Dryver, Arthur L.
2014-01-01
E-Learning brings access to a powerful but often overlooked teaching tool: random number generation. Using random number generation, a practically infinite number of quantitative problem-solution sets can be created. In addition, within the e-learning context, in the spirit of the mastery of learning, it is possible to assign online quantitative…
Directory of Open Access Journals (Sweden)
Nicholas J. Sexton
2014-07-01
Full Text Available Random number generation (RNG is a complex cognitive task for human subjects, requiring deliberative control to avoid production of habitual, stereotyped sequences. Under various manipulations (e.g., speeded responding, transcranial magnetic stimulation, or neurological damage the performance of human subjects deteriorates, as reflected in a number of qualitatively distinct, dissociable biases. For example, the intrusion of stereotyped behaviour (e.g., counting increases at faster rates of generation. Theoretical accounts of the task postulate that it requires the integrated operation of multiple, computationally heterogeneous cognitive control ('executive' processes. We present a computational model of RNG, within the framework of a novel, neuropsychologically-inspired cognitive architecture, ESPro. Manipulating the rate of sequence generation in the model reproduced a number of key effects observed in empirical studies, including increasing sequence stereotypy at faster rates. Within the model, this was due to time limitations on the interaction of supervisory control processes, namely, task setting, proposal of responses, monitoring, and response inhibition. The model thus supports the fractionation of executive function into multiple, computationally heterogeneous processes.
Lee, Jeffrey S; Cleaver, Gerald B
2017-10-01
In this note, the Cosmic Microwave Background (CMB) Radiation is shown to be capable of functioning as a Random Bit Generator, and constitutes an effectively infinite supply of truly random one-time pad values of arbitrary length. It is further argued that the CMB power spectrum potentially conforms to the FIPS 140-2 standard. Additionally, its applicability to the generation of a (n × n) random key matrix for a Vernam cipher is established.
International Nuclear Information System (INIS)
Phillips, Carolyn L.; Anderson, Joshua A.; Glotzer, Sharon C.
2011-01-01
Highlights: → Molecular Dynamics codes implemented on GPUs have achieved two-order of magnitude computational accelerations. → Brownian Dynamics and Dissipative Particle Dynamics simulations require a large number of random numbers per time step. → We introduce a method for generating small batches of pseudorandom numbers distributed over many threads of calculations. → With this method, Dissipative Particle Dynamics is implemented on a GPU device without requiring thread-to-thread communication. - Abstract: Brownian Dynamics (BD), also known as Langevin Dynamics, and Dissipative Particle Dynamics (DPD) are implicit solvent methods commonly used in models of soft matter and biomolecular systems. The interaction of the numerous solvent particles with larger particles is coarse-grained as a Langevin thermostat is applied to individual particles or to particle pairs. The Langevin thermostat requires a pseudo-random number generator (PRNG) to generate the stochastic force applied to each particle or pair of neighboring particles during each time step in the integration of Newton's equations of motion. In a Single-Instruction-Multiple-Thread (SIMT) GPU parallel computing environment, small batches of random numbers must be generated over thousands of threads and millions of kernel calls. In this communication we introduce a one-PRNG-per-kernel-call-per-thread scheme, in which a micro-stream of pseudorandom numbers is generated in each thread and kernel call. These high quality, statistically robust micro-streams require no global memory for state storage, are more computationally efficient than other PRNG schemes in memory-bound kernels, and uniquely enable the DPD simulation method without requiring communication between threads.
Phillips, Carolyn L.; Anderson, Joshua A.; Glotzer, Sharon C.
2011-08-01
Brownian Dynamics (BD), also known as Langevin Dynamics, and Dissipative Particle Dynamics (DPD) are implicit solvent methods commonly used in models of soft matter and biomolecular systems. The interaction of the numerous solvent particles with larger particles is coarse-grained as a Langevin thermostat is applied to individual particles or to particle pairs. The Langevin thermostat requires a pseudo-random number generator (PRNG) to generate the stochastic force applied to each particle or pair of neighboring particles during each time step in the integration of Newton's equations of motion. In a Single-Instruction-Multiple-Thread (SIMT) GPU parallel computing environment, small batches of random numbers must be generated over thousands of threads and millions of kernel calls. In this communication we introduce a one-PRNG-per-kernel-call-per-thread scheme, in which a micro-stream of pseudorandom numbers is generated in each thread and kernel call. These high quality, statistically robust micro-streams require no global memory for state storage, are more computationally efficient than other PRNG schemes in memory-bound kernels, and uniquely enable the DPD simulation method without requiring communication between threads.
Application of random number generators in genetic algorithms to improve rainfall-runoff modelling
Chlumecký, Martin; Buchtele, Josef; Richta, Karel
2017-10-01
The efficient calibration of rainfall-runoff models is a difficult issue, even for experienced hydrologists. Therefore, fast and high-quality model calibration is a valuable improvement. This paper describes a novel methodology and software for the optimisation of a rainfall-runoff modelling using a genetic algorithm (GA) with a newly prepared concept of a random number generator (HRNG), which is the core of the optimisation. The GA estimates model parameters using evolutionary principles, which requires a quality number generator. The new HRNG generates random numbers based on hydrological information and it provides better numbers compared to pure software generators. The GA enhances the model calibration very well and the goal is to optimise the calibration of the model with a minimum of user interaction. This article focuses on improving the internal structure of the GA, which is shielded from the user. The results that we obtained indicate that the HRNG provides a stable trend in the output quality of the model, despite various configurations of the GA. In contrast to previous research, the HRNG speeds up the calibration of the model and offers an improvement of rainfall-runoff modelling.
Directory of Open Access Journals (Sweden)
Lara Ortiz-Martin
2018-01-01
Full Text Available The proliferation of wearable and implantable medical devices has given rise to an interest in developing security schemes suitable for these systems and the environment in which they operate. One area that has received much attention lately is the use of (human biological signals as the basis for biometric authentication, identification and the generation of cryptographic keys. The heart signal (e.g., as recorded in an electrocardiogram has been used by several researchers in the last few years. Specifically, the so-called Inter-Pulse Intervals (IPIs, which is the time between two consecutive heartbeats, have been repeatedly pointed out as a potentially good source of entropy and are at the core of various recent authentication protocols. In this work, we report the results of a large-scale statistical study to determine whether such an assumption is (or not upheld. For this, we have analyzed 19 public datasets of heart signals from the Physionet repository, spanning electrocardiograms from 1353 subjects sampled at different frequencies and with lengths that vary between a few minutes and several hours. We believe this is the largest dataset on this topic analyzed in the literature. We have then applied a standard battery of randomness tests to the extracted IPIs. Under the algorithms described in this paper and after analyzing these 19 public ECG datasets, our results raise doubts about the use of IPI values as a good source of randomness for cryptographic purposes. This has repercussions both in the security of some of the protocols proposed up to now and also in the design of future IPI-based schemes.
Random generation of bubble sizes on the heated wall during subcooled boiling
International Nuclear Information System (INIS)
Koncar, B.; Mavko, B.
2003-01-01
In subcooled flow boiling, a locally averaged bubble diameter significantly varies in the transverse direction to the flow. From the experimental data of Bartel, a bent crosssectional profile of local bubble diameter with the maximum value shifted away from the heated wall may be observed. In the present paper, the increasing part of the profile (near the heated wall) is explained by a random generation of bubble sizes on the heated wall. The hypothesis was supported by a statistical analysis of different CFD simulations, varying by the size of the generated bubble (normal distribution) and the number of generated bubbles per unit surface. Local averaging of calculated void fraction distributions over different bubble classes was performed. The increasing curve of the locally averaged bubble diameter in the near-wall region was successfully predicted. (author)
Tlelo-Cuautle, Esteban; de la Fraga, Luis Gerardo
2016-01-01
This book offers readers a clear guide to implementing engineering applications with FPGAs, from the mathematical description to the hardware synthesis, including discussion of VHDL programming and co-simulation issues. Coverage includes FPGA realizations such as: chaos generators that are described from their mathematical models; artificial neural networks (ANNs) to predict chaotic time series, for which a discussion of different ANN topologies is included, with different learning techniques and activation functions; random number generators (RNGs) that are realized using different chaos generators, and discussions of their maximum Lyapunov exponent values and entropies. Finally, optimized chaotic oscillators are synchronized and realized to implement a secure communication system that processes black and white and grey-scale images. In each application, readers will find VHDL programming guidelines and computer arithmetic issues, along with co-simulation examples with Active-HDL and Simulink. Readers will b...
Chaotic oscillation and random-number generation based on nanoscale optical-energy transfer.
Naruse, Makoto; Kim, Song-Ju; Aono, Masashi; Hori, Hirokazu; Ohtsu, Motoichi
2014-08-12
By using nanoscale energy-transfer dynamics and density matrix formalism, we demonstrate theoretically and numerically that chaotic oscillation and random-number generation occur in a nanoscale system. The physical system consists of a pair of quantum dots (QDs), with one QD smaller than the other, between which energy transfers via optical near-field interactions. When the system is pumped by continuous-wave radiation and incorporates a timing delay between two energy transfers within the system, it emits optical pulses. We refer to such QD pairs as nano-optical pulsers (NOPs). Irradiating an NOP with external periodic optical pulses causes the oscillating frequency of the NOP to synchronize with the external stimulus. We find that chaotic oscillation occurs in the NOP population when they are connected by an external time delay. Moreover, by evaluating the time-domain signals by statistical-test suites, we confirm that the signals are sufficiently random to qualify the system as a random-number generator (RNG). This study reveals that even relatively simple nanodevices that interact locally with each other through optical energy transfer at scales far below the wavelength of irradiating light can exhibit complex oscillatory dynamics. These findings are significant for applications such as ultrasmall RNGs.
Thermodynamic method for generating random stress distributions on an earthquake fault
Barall, Michael; Harris, Ruth A.
2012-01-01
This report presents a new method for generating random stress distributions on an earthquake fault, suitable for use as initial conditions in a dynamic rupture simulation. The method employs concepts from thermodynamics and statistical mechanics. A pattern of fault slip is considered to be analogous to a micro-state of a thermodynamic system. The energy of the micro-state is taken to be the elastic energy stored in the surrounding medium. Then, the Boltzmann distribution gives the probability of a given pattern of fault slip and stress. We show how to decompose the system into independent degrees of freedom, which makes it computationally feasible to select a random state. However, due to the equipartition theorem, straightforward application of the Boltzmann distribution leads to a divergence which predicts infinite stress. To avoid equipartition, we show that the finite strength of the fault acts to restrict the possible states of the system. By analyzing a set of earthquake scaling relations, we derive a new formula for the expected power spectral density of the stress distribution, which allows us to construct a computer algorithm free of infinities. We then present a new technique for controlling the extent of the rupture by generating a random stress distribution thousands of times larger than the fault surface, and selecting a portion which, by chance, has a positive stress perturbation of the desired size. Finally, we present a new two-stage nucleation method that combines a small zone of forced rupture with a larger zone of reduced fracture energy.
Security Flaws in an Efficient Pseudo-Random Number Generator for Low-Power Environments
Peris-Lopez, Pedro; Hernandez-Castro, Julio C.; Tapiador, Juan M. E.; Millán, Enrique San; van der Lubbe, Jan C. A.
In 2004, Settharam and Rhee tackled the design of a lightweight Pseudo-Random Number Generator (PRNG) suitable for low-power environments (e.g. sensor networks, low-cost RFID tags). First, they explicitly fixed a set of requirements for this primitive. Then, they proposed a PRNG conforming to these requirements and using a free-running timer [9]. We analyze this primitive discovering important security faults. The proposed algorithm fails to pass even relatively non-stringent batteries of randomness such as ENT (i.e. a pseudorandom number sequence test program). We prove that their recommended PRNG has a very short period due to the flawed design of its core. The internal state can be easily revealed, compromising its backward and forward security. Additionally, the rekeying algorithm is defectively designed mainly related to the unpractical value proposed for this purpose.
On the generation of log-Levy distributions and extreme randomness
International Nuclear Information System (INIS)
Eliazar, Iddo; Klafter, Joseph
2011-01-01
The log-normal distribution is prevalent across the sciences, as it emerges from the combination of multiplicative processes and the central limit theorem (CLT). The CLT, beyond yielding the normal distribution, also yields the class of Levy distributions. The log-Levy distributions are the Levy counterparts of the log-normal distribution, they appear in the context of ultraslow diffusion processes, and they are categorized by Mandelbrot as belonging to the class of extreme randomness. In this paper, we present a natural stochastic growth model from which both the log-normal distribution and the log-Levy distributions emerge universally-the former in the case of deterministic underlying setting, and the latter in the case of stochastic underlying setting. In particular, we establish a stochastic growth model which universally generates Mandelbrot's extreme randomness. (paper)
Precise algorithm to generate random sequential adsorption of hard polygons at saturation
Zhang, G.
2018-04-01
Random sequential adsorption (RSA) is a time-dependent packing process, in which particles of certain shapes are randomly and sequentially placed into an empty space without overlap. In the infinite-time limit, the density approaches a "saturation" limit. Although this limit has attracted particular research interest, the majority of past studies could only probe this limit by extrapolation. We have previously found an algorithm to reach this limit using finite computational time for spherical particles and could thus determine the saturation density of spheres with high accuracy. In this paper, we generalize this algorithm to generate saturated RSA packings of two-dimensional polygons. We also calculate the saturation density for regular polygons of three to ten sides and obtain results that are consistent with previous, extrapolation-based studies.
Czernik, Pawel
2013-10-01
The hardware random number generator based on the 74121 monostable multivibrators for applications in cryptographically secure distributed measurement and control systems with asymmetric resources was presented. This device was implemented on the basis of the physical electronic vibration generator in which the circuit is composed of two "loop" 74121 monostable multivibrators, D flip-flop and external clock signal source. The clock signal, witch control D flip-flop was generated by a computer on one of the parallel port pins. There was presented programmed the author's acquisition process of random data from the measuring system to a computer. The presented system was designed, builded and thoroughly tested in the term of cryptographic security in our laboratory, what there is the most important part of this publication. Real cryptographic security was tested based on the author's software and the software environment called RDieHarder. The obtained results was here presented and analyzed in detail with particular reference to the specificity of distributed measurement and control systems with asymmetric resources.
MODIFIED AES WITH RANDOM S BOX GENERATION TO OVERCOME THE SIDE CHANNEL ASSAULTS USING CLOUD
Directory of Open Access Journals (Sweden)
M. Navaneetha Krishnan
2017-01-01
Full Text Available Development of any communication system with secure and complex cryptographic algorithms highly depends on concepts of data security which is crucial in the current technological world. The security and complexity of the cryptography algorithms need to get increased by randomization of secret keys. To overcome the issues associated to data security and for improvising it during encryption and decryption process over the encrypting device, a novel Secure Side Channel Assault Prevention (SSCAP approach has been projected which will eliminate outflow of side channel messages and also provides effective security over the encrypting device. An effective Enriched AES (E-AES encryption algorithm is proposed to reduce the side channel attack; the modified algorithm in this research shows its improvement in the Generation of Random Multiple S - Box (GRM S-Box which makes it hard to the attacks to break the text which is in encrypted form. Our novel SSCAP approach also improves the security over the original information; it widely minimizes the leakage of the side channel information. Attackers cannot easily get a clue about the proposed S-Box Generation technique. Our E-AES algorithm will be implemented in cloud environment thereby improving the cloud security. The proposed SSCAP approach is judged against the existing security based algorithms on the scale of encryption and decryption time, time taken for generating the key, and performance. The proposed work proves to outperform over all other methods used in the past.
Maglennon, Gareth A; Cook, Beth S; Deeney, Alannah S; Bossé, Janine T; Peters, Sarah E; Langford, Paul R; Maskell, Duncan J; Tucker, Alexander W; Wren, Brendan W; Rycroft, Andrew N
2013-12-21
Mycoplasma hyopneumoniae is the cause of enzootic pneumonia in pigs, a chronic respiratory disease associated with significant economic losses to swine producers worldwide. The molecular pathogenesis of infection is poorly understood due to the lack of genetic tools to allow manipulation of the organism and more generally for the Mycoplasma genus. The objective of this study was to develop a system for generating random transposon insertion mutants in M. hyopneumoniae that could prove a powerful tool in enabling the pathogenesis of infection to be unraveled. A novel delivery vector was constructed containing a hyperactive C9 mutant of the Himar1 transposase along with a mini transposon containing the tetracycline resistance cassette, tetM. M. hyopneumoniae strain 232 was electroporated with the construct and tetM-expressing transformants selected on agar containing tetracycline. Individual transformants contained single transposon insertions that were stable upon serial passages in broth medium. The insertion sites of 44 individual transformants were determined and confirmed disruption of several M. hyopneumoniae genes. A large pool of over 10 000 mutants was generated that should allow saturation of the M. hyopneumoniae strain 232 genome. This is the first time that transposon mutagenesis has been demonstrated in this important pathogen and could be generally applied for other Mycoplasma species that are intractable to genetic manipulation. The ability to generate random mutant libraries is a powerful tool in the further study of the pathogenesis of this important swine pathogen.
Cassie state robustness of plasma generated randomly nano-rough surfaces
Energy Technology Data Exchange (ETDEWEB)
Di Mundo, Rosa, E-mail: rosa.dimundo@poliba.it; Bottiglione, Francesco; Carbone, Giuseppe
2014-10-15
Graphical abstract: - Highlights: • Superhydrophobic randomly rough surfaces are generated by plasma etching. • Statistical analysis of roughness allows calculation of theWenzel roughness factor, r{sub W.} • A r{sub W} threshold is theoretically determined, above which superhydrophobicity is “robust”. • Dynamic wetting, e.g. with high speed impacting drops, confirms this prediction. - Abstract: Superhydrophobic surfaces are effective in practical applications provided they are “robust superhydrophobic”, i.e. able to retain the Cassie state, i.e. with water suspended onto the surface protrusions, even under severe conditions (high pressure, vibrations, high speed impact, etc.). We show that for randomly rough surfaces, given the Young angle, Cassie states are robust when a threshold value of the Wenzel roughness factor, r{sub W}, is exceeded. In particular, superhydrophobic nano-textured surfaces have been generated by self-masked plasma etching. In view of their random roughness, topography features, acquired by Atomic Force Microscopy, have been statistically analyzed in order to gain information on statistical parameters such as power spectral density, fractal dimension and Wenzel roughness factor (r{sub W}), which has been used to assess Cassie state robustness. Results indicate that randomly rough surfaces produced by plasma at high power or long treatment duration, which are also fractal self-affine, have a r{sub W} higher than the theoretical threshold, thus for them a robust superhydrophobicity is predicted. In agreement with this, under dynamic wetting conditionson these surfaces the most pronounced superhydrophobic character has been appreciated: they show the lowest contact angle hysteresis and result in the sharpest bouncing when hit by drops at high impact velocity.
Mansingka, Abhinav S.
2014-06-18
This paper introduces fully digital implementations of four di erent systems in the 3rd order jerk-equation based chaotic family using the Euler approximation. The digitization approach enables controllable chaotic systems that reliably provide sinusoidal or chaotic output based on a selection input. New systems are introduced, derived using logical and arithmetic operations between two system implementations of different bus widths, with up to 100x higher maximum Lyapunov exponent than the original jerkequation based chaotic systems. The resulting chaotic output is shown to pass the NIST sp. 800-22 statistical test suite for pseudorandom number generators without post-processing by only eliminating the statistically defective bits. The systems are designed in Verilog HDL and experimentally verified on a Xilinx Virtex 4 FPGA for a maximum throughput of 15.59 Gbits/s for the native chaotic output and 8.77 Gbits/s for the resulting pseudo-random number generators.
Application of random number generators in genetic algorithms to improve rainfall-runoff modelling
Czech Academy of Sciences Publication Activity Database
Chlumecký, M.; Buchtele, Josef; Richta, K.
2017-01-01
Roč. 553, October (2017), s. 350-355 ISSN 0022-1694 Institutional support: RVO:67985874 Keywords : genetic algorithm * optimisation * rainfall-runoff modeling * random generator Subject RIV: DA - Hydrology ; Limnology OBOR OECD: Hydrology Impact factor: 3.483, year: 2016 https://ac.els-cdn.com/S0022169417305516/1-s2.0-S0022169417305516-main.pdf?_tid=fa1bad8a-bd6a-11e7-8567-00000aab0f27&acdnat=1509365462_a1335d3d997e9eab19e23b1eee977705
Randomly Generating Four Mixed Bell-Diagonal States with a Concurrences Sum to Unity
International Nuclear Information System (INIS)
Toh, S. P.; Zainuddin Hishamuddin; Foo Kim Eng
2012-01-01
A two-qubit system in quantum information theory is the simplest bipartite quantum system and its concurrence for pure and mixed states is well known. As a subset of two-qubit systems, Bell-diagonal states can be depicted by a very simple geometrical representation of a tetrahedron with sides of length 2√2. Based on this geometric representation, we propose a simple approach to randomly generate four mixed Bell decomposable states in which the sum of their concurrence is equal to one. (general)
Stochastic generation of explicit pore structures by thresholding Gaussian random fields
Energy Technology Data Exchange (ETDEWEB)
Hyman, Jeffrey D., E-mail: jhyman@lanl.gov [Program in Applied Mathematics, University of Arizona, Tucson, AZ 85721-0089 (United States); Computational Earth Science, Earth and Environmental Sciences (EES-16), and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Winter, C. Larrabee, E-mail: winter@email.arizona.edu [Program in Applied Mathematics, University of Arizona, Tucson, AZ 85721-0089 (United States); Department of Hydrology and Water Resources, University of Arizona, Tucson, AZ 85721-0011 (United States)
2014-11-15
We provide a description and computational investigation of an efficient method to stochastically generate realistic pore structures. Smolarkiewicz and Winter introduced this specific method in pores resolving simulation of Darcy flows (Smolarkiewicz and Winter, 2010 [1]) without giving a complete formal description or analysis of the method, or indicating how to control the parameterization of the ensemble. We address both issues in this paper. The method consists of two steps. First, a realization of a correlated Gaussian field, or topography, is produced by convolving a prescribed kernel with an initial field of independent, identically distributed random variables. The intrinsic length scales of the kernel determine the correlation structure of the topography. Next, a sample pore space is generated by applying a level threshold to the Gaussian field realization: points are assigned to the void phase or the solid phase depending on whether the topography over them is above or below the threshold. Hence, the topology and geometry of the pore space depend on the form of the kernel and the level threshold. Manipulating these two user prescribed quantities allows good control of pore space observables, in particular the Minkowski functionals. Extensions of the method to generate media with multiple pore structures and preferential flow directions are also discussed. To demonstrate its usefulness, the method is used to generate a pore space with physical and hydrological properties similar to a sample of Berea sandstone. -- Graphical abstract: -- Highlights: •An efficient method to stochastically generate realistic pore structures is provided. •Samples are generated by applying a level threshold to a Gaussian field realization. •Two user prescribed quantities determine the topology and geometry of the pore space. •Multiple pore structures and preferential flow directions can be produced. •A pore space based on Berea sandstone is generated.
Random source generating far field with elliptical flat-topped beam profile
International Nuclear Information System (INIS)
Zhang, Yongtao; Cai, Yangjian
2014-01-01
Circular and rectangular multi-Gaussian Schell-model (MGSM) sources which generate far fields with circular and rectangular flat-topped beam profiles were introduced just recently (Sahin and Korotkova 2012 Opt. Lett. 37 2970; Korotkova 2014 Opt. Lett. 39 64). In this paper, a random source named an elliptical MGSM source is introduced. An analytical expression for the propagation factor of an elliptical MGSM beam is derived. Furthermore, an analytical propagation formula for an elliptical MGSM beam passing through a stigmatic ABCD optical system is derived, and its propagation properties in free space are studied. It is interesting to find that an elliptical MGSM source generates a far field with an elliptical flat-topped beam profile, being qualitatively different from that of circular and rectangular MGSM sources. The ellipticity and the flatness of the elliptical flat-topped beam profile in the far field are determined by the initial coherence widths and the beam index, respectively. (paper)
The determinants of cost efficiency of hydroelectric generating plants: A random frontier approach
International Nuclear Information System (INIS)
Barros, Carlos P.; Peypoch, Nicolas
2007-01-01
This paper analyses the technical efficiency in the hydroelectric generating plants of a main Portuguese electricity enterprise EDP (Electricity of Portugal) between 1994 and 2004, investigating the role played by increase in competition and regulation. A random cost frontier method is adopted. A translog frontier model is used and the maximum likelihood estimation technique is employed to estimate the empirical model. We estimate the efficiency scores and decompose the exogenous variables into homogeneous and heterogeneous. It is concluded that production and capacity are heterogeneous, signifying that the hydroelectric generating plants are very distinct and therefore any energy policy should take into account this heterogeneity. It is also concluded that competition, rather than regulation, plays the key role in increasing hydroelectric plant efficiency
Random number generators for large-scale parallel Monte Carlo simulations on FPGA
Lin, Y.; Wang, F.; Liu, B.
2018-05-01
Through parallelization, field programmable gate array (FPGA) can achieve unprecedented speeds in large-scale parallel Monte Carlo (LPMC) simulations. FPGA presents both new constraints and new opportunities for the implementations of random number generators (RNGs), which are key elements of any Monte Carlo (MC) simulation system. Using empirical and application based tests, this study evaluates all of the four RNGs used in previous FPGA based MC studies and newly proposed FPGA implementations for two well-known high-quality RNGs that are suitable for LPMC studies on FPGA. One of the newly proposed FPGA implementations: a parallel version of additive lagged Fibonacci generator (Parallel ALFG) is found to be the best among the evaluated RNGs in fulfilling the needs of LPMC simulations on FPGA.
Sheppard, David P; Woods, Steven Paul; Doyle, Katie L; Verduzco, Marizela
2017-02-01
HIV is associated with frontostriatal dysregulation and executive dysfunction. This study evaluated whether HIV-infected individuals evidence deficits in random number generation (RNG), which is a strategic task requiring paced, rule-guided production of digits. In total, 74 HIV+ adults and 54 seronegative comparison participants completed a comprehensive research neuropsychological battery. Participants produced a random digit sequence by avoiding any order and using numbers 1 through 10 for 100 s at a pace of 1 digit/s. Outcomes included intrusions, repetitions, seriation (1-2-3-4), and cycling (median length of gaps between repeating digits). HIV disease was associated with higher levels of seriation and cycling (ps .10). Among HIV+ individuals, higher seriation was associated with neuropsychological performance including poorer auditory attention, verbal learning, and delayed memory, whereas higher cycling scores were associated with poorer delayed memory and verbal fluency (ps random sequences, which showed medium associations with higher order verbal abilities and may contribute to greater declines in everyday functioning outcomes. Future studies might examine RNG's role in health behaviors such as medical decision-making or medication adherence. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Energy Technology Data Exchange (ETDEWEB)
Matthews, J O; Hopcraft, K I; Jakeman, E [Applied Mathematics Division, School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD (United Kingdom)
2003-11-21
Some properties of classical population processes that comprise births, deaths and multiple immigrations are investigated. The rates at which the immigrants arrive can be tailored to produce a population whose steady state fluctuations are described by a pre-selected distribution. Attention is focused on the class of distributions with a discrete stable law, which have power-law tails and whose moments and autocorrelation function do not exist. The separate problem of monitoring and characterizing the fluctuations is studied, analysing the statistics of individuals that leave the population. The fluctuations in the size of the population are transferred to the times between emigrants that form an intermittent time series of events. The emigrants are counted with a detector of finite dynamic range and response time. This is modelled through clipping the time series or saturating it at an arbitrary but finite level, whereupon its moments and correlation properties become finite. Distributions for the time to the first counted event and for the time between events exhibit power-law regimes that are characteristic of the fluctuations in population size. The processes provide analytical models with which properties of complex discrete random phenomena can be explored, and in addition provide generic means by which random time series encompassing a wide range of intermittent and other discrete random behaviour may be generated.
International Nuclear Information System (INIS)
Matthews, J O; Hopcraft, K I; Jakeman, E
2003-01-01
Some properties of classical population processes that comprise births, deaths and multiple immigrations are investigated. The rates at which the immigrants arrive can be tailored to produce a population whose steady state fluctuations are described by a pre-selected distribution. Attention is focused on the class of distributions with a discrete stable law, which have power-law tails and whose moments and autocorrelation function do not exist. The separate problem of monitoring and characterizing the fluctuations is studied, analysing the statistics of individuals that leave the population. The fluctuations in the size of the population are transferred to the times between emigrants that form an intermittent time series of events. The emigrants are counted with a detector of finite dynamic range and response time. This is modelled through clipping the time series or saturating it at an arbitrary but finite level, whereupon its moments and correlation properties become finite. Distributions for the time to the first counted event and for the time between events exhibit power-law regimes that are characteristic of the fluctuations in population size. The processes provide analytical models with which properties of complex discrete random phenomena can be explored, and in addition provide generic means by which random time series encompassing a wide range of intermittent and other discrete random behaviour may be generated
Li, Xiayue; Curtis, Farren S.; Rose, Timothy; Schober, Christoph; Vazquez-Mayagoitia, Alvaro; Reuter, Karsten; Oberhofer, Harald; Marom, Noa
2018-06-01
We present Genarris, a Python package that performs configuration space screening for molecular crystals of rigid molecules by random sampling with physical constraints. For fast energy evaluations, Genarris employs a Harris approximation, whereby the total density of a molecular crystal is constructed via superposition of single molecule densities. Dispersion-inclusive density functional theory is then used for the Harris density without performing a self-consistency cycle. Genarris uses machine learning for clustering, based on a relative coordinate descriptor developed specifically for molecular crystals, which is shown to be robust in identifying packing motif similarity. In addition to random structure generation, Genarris offers three workflows based on different sequences of successive clustering and selection steps: the "Rigorous" workflow is an exhaustive exploration of the potential energy landscape, the "Energy" workflow produces a set of low energy structures, and the "Diverse" workflow produces a maximally diverse set of structures. The latter is recommended for generating initial populations for genetic algorithms. Here, the implementation of Genarris is reported and its application is demonstrated for three test cases.
Ossola, Giovanni; Sokal, Alan D
2004-08-01
We show that linear congruential pseudo-random-number generators can cause systematic errors in Monte Carlo simulations using the Swendsen-Wang algorithm, if the lattice size is a multiple of a very large power of 2 and one random number is used per bond. These systematic errors arise from correlations within a single bond-update half-sweep. The errors can be eliminated (or at least radically reduced) by updating the bonds in a random order or in an aperiodic manner. It also helps to use a generator of large modulus (e.g., 60 or more bits).
Directory of Open Access Journals (Sweden)
Jeffrey S. Lee
2017-10-01
Full Text Available In this note, the Cosmic Microwave Background (CMB Radiation is shown to be capable of functioning as a Random Bit Generator, and constitutes an effectively infinite supply of truly random one-time pad values of arbitrary length. It is further argued that the CMB power spectrum potentially conforms to the FIPS 140-2 standard. Additionally, its applicability to the generation of a (n × n random key matrix for a Vernam cipher is established. Keywords: Particle physics, Computer science, Mathematics, Astrophysics
Directory of Open Access Journals (Sweden)
Marcin Piotr Pawlowski
2015-10-01
Full Text Available Entropy in computer security is associated with the unpredictability of a source of randomness. The random source with high entropy tends to achieve a uniform distribution of random values. Random number generators are one of the most important building blocks of cryptosystems. In constrained devices of the Internet of Things ecosystem, high entropy random number generators are hard to achieve due to hardware limitations. For the purpose of the random number generation in constrained devices, this work proposes a solution based on the least-significant bits concatenation entropy harvesting method. As a potential source of entropy, on-board integrated sensors (i.e., temperature, humidity and two different light sensors have been analyzed. Additionally, the costs (i.e., time and memory consumption of the presented approach have been measured. The results obtained from the proposed method with statistical fine tuning achieved a Shannon entropy of around 7.9 bits per byte of data for temperature and humidity sensors. The results showed that sensor-based random number generators are a valuable source of entropy with very small RAM and Flash memory requirements for constrained devices of the Internet of Things.
Pawlowski, Marcin Piotr; Jara, Antonio; Ogorzalek, Maciej
2015-01-01
Entropy in computer security is associated with the unpredictability of a source of randomness. The random source with high entropy tends to achieve a uniform distribution of random values. Random number generators are one of the most important building blocks of cryptosystems. In constrained devices of the Internet of Things ecosystem, high entropy random number generators are hard to achieve due to hardware limitations. For the purpose of the random number generation in constrained devices, this work proposes a solution based on the least-significant bits concatenation entropy harvesting method. As a potential source of entropy, on-board integrated sensors (i.e., temperature, humidity and two different light sensors) have been analyzed. Additionally, the costs (i.e., time and memory consumption) of the presented approach have been measured. The results obtained from the proposed method with statistical fine tuning achieved a Shannon entropy of around 7.9 bits per byte of data for temperature and humidity sensors. The results showed that sensor-based random number generators are a valuable source of entropy with very small RAM and Flash memory requirements for constrained devices of the Internet of Things. PMID:26506357
Pawlowski, Marcin Piotr; Jara, Antonio; Ogorzalek, Maciej
2015-10-22
Entropy in computer security is associated with the unpredictability of a source of randomness. The random source with high entropy tends to achieve a uniform distribution of random values. Random number generators are one of the most important building blocks of cryptosystems. In constrained devices of the Internet of Things ecosystem, high entropy random number generators are hard to achieve due to hardware limitations. For the purpose of the random number generation in constrained devices, this work proposes a solution based on the least-significant bits concatenation entropy harvesting method. As a potential source of entropy, on-board integrated sensors (i.e., temperature, humidity and two different light sensors) have been analyzed. Additionally, the costs (i.e., time and memory consumption) of the presented approach have been measured. The results obtained from the proposed method with statistical fine tuning achieved a Shannon entropy of around 7.9 bits per byte of data for temperature and humidity sensors. The results showed that sensor-based random number generators are a valuable source of entropy with very small RAM and Flash memory requirements for constrained devices of the Internet of Things.
Li, Jiafu; Xiang, Shuiying; Wang, Haoning; Gong, Junkai; Wen, Aijun
2018-03-01
In this paper, a novel image encryption algorithm based on synchronization of physical random bit generated in a cascade-coupled semiconductor ring lasers (CCSRL) system is proposed, and the security analysis is performed. In both transmitter and receiver parts, the CCSRL system is a master-slave configuration consisting of a master semiconductor ring laser (M-SRL) with cross-feedback and a solitary SRL (S-SRL). The proposed image encryption algorithm includes image preprocessing based on conventional chaotic maps, pixel confusion based on control matrix extracted from physical random bit, and pixel diffusion based on random bit stream extracted from physical random bit. Firstly, the preprocessing method is used to eliminate the correlation between adjacent pixels. Secondly, physical random bit with verified randomness is generated based on chaos in the CCSRL system, and is used to simultaneously generate the control matrix and random bit stream. Finally, the control matrix and random bit stream are used for the encryption algorithm in order to change the position and the values of pixels, respectively. Simulation results and security analysis demonstrate that the proposed algorithm is effective and able to resist various typical attacks, and thus is an excellent candidate for secure image communication application.
Graphene resistive random memory — the promising memory device in next generation
International Nuclear Information System (INIS)
Wang Xue-Feng; Zhao Hai-Ming; Yang Yi; Ren Tian-Ling
2017-01-01
Graphene-based resistive random access memory (GRRAM) has grasped researchers’ attention due to its merits compared with ordinary RRAM. In this paper, we briefly review different types of GRRAMs. These GRRAMs can be divided into two categories: graphene RRAM and graphene oxide (GO)/reduced graphene oxide (rGO) RRAM. Using graphene as the electrode, GRRAM can own many good characteristics, such as low power consumption, higher density, transparency, SET voltage modulation, high uniformity, and so on. Graphene flakes sandwiched between two dielectric layers can lower the SET voltage and achieve multilevel switching. Moreover, the GRRAM with rGO and GO as the dielectric or electrode can be simply fabricated. Flexible and high performance RRAM and GO film can be modified by adding other materials layer or making a composite with polymer, nanoparticle, and 2D materials to further improve the performance. Above all, GRRAM shows huge potential to become the next generation memory. (topical reviews)
Macizo, Pedro; Bajo, Teresa; Soriano, Maria Felipa
2006-02-01
Working Memory (WM) span predicts subjects' performance in control executive tasks and, in addition, it has been related to the capacity to inhibit irrelevant information. In this paper we investigate the role of WM span in two executive tasks focusing our attention on inhibitory components of both tasks. High and low span participants recalled targets words rejecting irrelevant items at the same time (Experiment 1) and they generated random numbers (Experiment 2). Results showed a clear relation between WM span and performance in both tasks. In addition, analyses of intrusion errors (Experiment 1) and stereotyped responses (Experiment 2) indicated that high span individuals were able to efficiently use the inhibitory component implied in both tasks. The pattern of data provides support to the relation between WM span and control executive tasks through an inhibitory mechanism.
Jahanshahi, M; Profice, P; Brown, R G; Ridding, M C; Dirnberger, G; Rothwell, J C
1998-08-01
Random number generation is an attention-demanding task that engages working memory and executive processes. Random number generation requires holding information 'on line', suppression of habitual counting, internally driven response generation and monitoring of responses. Evidence from PET studies suggests that the dorsolateral prefrontal cortex (DLPFC) is involved in the generation of random responses. We examined the effects of short trains of transcranial magnetic stimulation (TMS) over the left or right DLPFC or medial frontal cortex on random number generation in healthy normal participants. As in previous evidence, in control trials without stimulation participants performed poorly on the random number generation task, showing repetition avoidance and a tendency to count. Brief disruption of processing with TMS over the left DLPFC changed the balance of the individuals' counting bias, increasing the most habitual counting in ones and reducing the lower probability response of counting in twos. This differential effect of TMS over the left DLPFC on the balance of the subject's counting bias was not obtained with TMS over the right DLPFC or the medial frontal cortex. The results suggest that, with disruption of the left DLPFC with TMS, habitual counting in ones that has previously been suppressed is released from inhibition. From these findings a network modulation model of random number generation is proposed, whereby suppression of habitual responses is achieved through the modulatory influence of the left DLPFC over a number-associative network in the superior temporal cortex. To allow emergence of appropriate random responses, the left DLPFC inhibits the superior temporal cortex to prevent spreading activation and habitual counting in ones.
International Nuclear Information System (INIS)
Cornejo Diaz, N.; Vergara Gil, A.; Jurado Vargas, M.
2010-01-01
The Monte Carlo method has become a valuable numerical laboratory framework in which to simulate complex physical systems. It is based on the generation of pseudo-random number sequences by numerical algorithms called random generators. In this work we assessed the suitability of different well-known random number generators for the simulation of gamma-ray spectrometry systems during efficiency calibrations. The assessment was carried out in two stages. The generators considered (Delphi's linear congruential, mersenne twister, XorShift, multiplier with carry, universal virtual array, and non-periodic logistic map based generator) were first evaluated with different statistical empirical tests, including moments, correlations, uniformity, independence of terms and the DIEHARD battery of tests. In a second step, an application-specific test was conducted by implementing the generators in our Monte Carlo program DETEFF and comparing the results obtained with them. The calculations were performed with two different CPUs, for a typical HpGe detector and a water sample in Marinelli geometry, with gamma-rays between 59 and 1800 keV. For the Non-periodic Logistic Map based generator, dependence of the most significant bits was evident. This explains the bias, in excess of 5%, of the efficiency values obtained with this generator. The results of the application-specific assessment and the statistical performance of the other algorithms studied indicate their suitability for the Monte Carlo simulation of gamma-ray spectrometry systems for efficiency calculations.
Díaz, N Cornejo; Gil, A Vergara; Vargas, M Jurado
2010-03-01
The Monte Carlo method has become a valuable numerical laboratory framework in which to simulate complex physical systems. It is based on the generation of pseudo-random number sequences by numerical algorithms called random generators. In this work we assessed the suitability of different well-known random number generators for the simulation of gamma-ray spectrometry systems during efficiency calibrations. The assessment was carried out in two stages. The generators considered (Delphi's linear congruential, mersenne twister, XorShift, multiplier with carry, universal virtual array, and non-periodic logistic map based generator) were first evaluated with different statistical empirical tests, including moments, correlations, uniformity, independence of terms and the DIEHARD battery of tests. In a second step, an application-specific test was conducted by implementing the generators in our Monte Carlo program DETEFF and comparing the results obtained with them. The calculations were performed with two different CPUs, for a typical HpGe detector and a water sample in Marinelli geometry, with gamma-rays between 59 and 1800 keV. For the Non-periodic Logistic Map based generator, dependence of the most significant bits was evident. This explains the bias, in excess of 5%, of the efficiency values obtained with this generator. The results of the application-specific assessment and the statistical performance of the other algorithms studied indicate their suitability for the Monte Carlo simulation of gamma-ray spectrometry systems for efficiency calculations. Copyright 2009 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Bilan Stepan
2017-01-01
Full Text Available To date, there are many tasks that are aimed at studying the dynamic changes in physical processes. These tasks do not give advance known result. The solution of such problems is based on the construction of a dynamic model of the object. Successful structural and functional implementation of the object model can give a positive result in time. This approach uses the task of constructing artificial biological objects. To solve such problems, pseudo-random number generators are used, which also find wide application for information protection tasks. Such generators should have good statistical properties and give a long repetition period of the generated pseudo-random bit sequence. This work is aimed at improving these characteristics. The paper considers the method of forming pseudo-random sequences of numbers on the basis of aperiodic cellular automata with two active cells. A pseudo-random number generator is proposed that generates three bit sequences. The first two bit sequences are formed by the corresponding two active cells in the cellular automaton. The third bit sequence is the result of executing the XOR function over the bits of the first two sequences and it has better characteristics compared to them. The use of cellular automata with two active cells allowed to improve the statistical properties of the formed bit sequence, as well as its repetition period. This is proved by using graphical tests for generators built based on cellular automata using the neighborhoods of von Neumann and Moore. The tests showed high efficiency of the generator based on an asynchronous cellular automaton with the neighborhood of Moore. The proposed pseudo-random number generators have good statistical properties, which makes it possible to use them in information security systems, as well as for simulation tasks of various dynamic processes.
Directory of Open Access Journals (Sweden)
M. Varchola
2009-12-01
Full Text Available This paper deals with an evaluation platform for cryptographic True Random Number Generators (TRNGs based on the hardware implementation of statistical tests for FPGAs. It was developed in order to provide an automatic tool that helps to speed up the TRNG design process and can provide new insights on the TRNG behavior as it will be shown on a particular example in the paper. It enables to test sufﬁcient statistical properties of various TRNG designs under various working conditions on the ﬂy. Moreover, the tests are suitable to be embedded into cryptographic hardware products in order to recognize TRNG output of weak quality and thus increase its robustness and reliability. Tests are fully compatible with the FIPS 140 standard and are implemented by the VHDL language as an IP-Core for vendor independent FPGAs. A recent Flash based Actel Fusion FPGA was chosen for preliminary experiments. The Actel version of the tests possesses an interface to the Actel’s CoreMP7 softcore processor that is fully compatible with the industry standard ARM7TDMI. Moreover, identical tests suite was implemented to the Xilinx Virtex 2 and 5 in order to compare the performance of the proposed solution with the performance of already published one based on the same FPGAs. It was achieved 25% and 65% greater clock frequency respectively while consuming almost equal resources of the Xilinx FPGAs. On the top of it, the proposed FIPS 140 architecture is capable of processing one random bit per one clock cycle which results in 311.5 Mbps throughput for Virtex 5 FPGA.
A high-speed on-chip pseudo-random binary sequence generator for multi-tone phase calibration
Gommé, Liesbeth; Vandersteen, Gerd; Rolain, Yves
2011-07-01
An on-chip reference generator is conceived by adopting the technique of decimating a pseudo-random binary sequence (PRBS) signal in parallel sequences. This is of great benefit when high-speed generation of PRBS and PRBS-derived signals is the objective. The design implemented standard CMOS logic is available in commercial libraries to provide the logic functions for the generator. The design allows the user to select the periodicity of the PRBS and the PRBS-derived signals. The characterization of the on-chip generator marks its performance and reveals promising specifications.
A high-speed on-chip pseudo-random binary sequence generator for multi-tone phase calibration
International Nuclear Information System (INIS)
Gommé, Liesbeth; Vandersteen, Gerd; Rolain, Yves
2011-01-01
An on-chip reference generator is conceived by adopting the technique of decimating a pseudo-random binary sequence (PRBS) signal in parallel sequences. This is of great benefit when high-speed generation of PRBS and PRBS-derived signals is the objective. The design implemented standard CMOS logic is available in commercial libraries to provide the logic functions for the generator. The design allows the user to select the periodicity of the PRBS and the PRBS-derived signals. The characterization of the on-chip generator marks its performance and reveals promising specifications
Horimatsu, Takahiro; Sano, Yasushi; Tanaka, Shinji; Kawamura, Takuji; Saito, Shoichi; Iwatate, Mineo; Oka, Shiro; Uno, Koji; Yoshimura, Kenichi; Ishikawa, Hideki; Muto, Manabu; Tajiri, Hisao
2015-07-01
Previous studies have yielded conflicting results on the colonic polyp detection rate with narrow-band imaging (NBI) compared with white-light imaging (WLI). We compared the mean number of colonic polyps detected per patient for NBI versus WLI using a next-generation NBI system (EVIS LUCERA ELITE; Olympus Medical Systems) used with standard-definition (SD) colonoscopy and wide-angle (WA) colonoscopy. this study is a 2 × 2 factorial, prospective, multicenter randomized controlled trial. this study was conducted at five academic centers in Japan. patients were allocated to one of four groups: (1) WLI with SD colonoscopy (H260AZI), (2) NBI with SD colonoscopy (H260AZI), (3) WLI with WA colonoscopy (CF-HQ290), and (4) NBI with WA colonoscopy (CF-HQ290). the mean numbers of polyps detected per patient were compared between the four groups: WLI with/without WA colonoscopy and NBI with/without WA colonoscopy. Of the 454 patients recruited, 431 patients were enrolled. The total numbers of polyps detected by WLI with SD, NBI with SD, WLI with WA, and NBI with WA were 164, 176, 188, and 241, respectively. The mean number of polyps detected per patient was significantly higher in the NBI group than in the WLI group (2.01 vs 1.56; P = 0.032). The rate was not higher in the WA group than in the SD group (1.97 vs 1.61; P = 0.089). Although WA colonoscopy did not improve the polyp detection, next-generation NBI colonoscopy represents a significant improvement in the detection of colonic polyps.
Halton, John H.
1989-09-01
A class of families of linear congruential pseudo-random sequences is defined, for which it is possible to branch at any event without changing the sequence of random numbers used in the original random walk and for which the sequences in different branches show properties analogous to mutual statistical independence. This is a hitherto unavailable, and computationally desirable, tool.
Can social capital be intentionally generated? a randomized trial from rural South Africa.
Pronyk, Paul M; Harpham, Trudy; Busza, Joanna; Phetla, Godfrey; Morison, Linda A; Hargreaves, James R; Kim, Julia C; Watts, Charlotte H; Porter, John D
2008-11-01
While much descriptive research has documented positive associations between social capital and a range of economic, social and health outcomes, there have been few intervention studies to assess whether social capital can be intentionally generated. We conducted an intervention in rural South Africa that combined group-based microfinance with participatory gender and HIV training in an attempt to catalyze changes in solidarity, reciprocity and social group membership as a means to reduce women's vulnerability to intimate partner violence and HIV. A cluster randomized trial was used to assess intervention effects among eight study villages. In this paper, we examined effects on structural and cognitive social capital among 845 participants and age and wealth matched women from households in comparison villages. This was supported by a diverse portfolio of qualitative research. After two years, adjusted effect estimates indicated higher levels of structural and cognitive social capital in the intervention group than the comparison group, although confidence intervals were wide. Qualitative research illustrated the ways in which economic and social gains enhanced participation in social groups, and the positive and negative dynamics that emerged within the program. There were numerous instances where individuals and village loan centres worked to address community concerns, both working through existing social networks, and through the establishment of new partnerships with local leadership structures, police, the health sector and NGOs. This is among the first experimental trials suggesting that social capital can be exogenously strengthened. The implications for community interventions in public health are further explored.
Implementation of a RANLUX Based Pseudo-Random Number Generator in FPGA Using VHDL and Impulse C
Agnieszka Dąbrowska-Boruch; Grzegorz Gancarczyk; Kazimierz Wiatr
2014-01-01
Monte Carlo simulations are widely used e.g. in the field of physics and molecular modelling. The main role played in these is by the high performance random number generators, such as RANLUX or MERSSENE TWISTER. In this paper the authors introduce the world's first implementation of the RANLUX algorithm on an FPGA platform for high performance computing purposes. A significant speed-up of one generator instance over 60 times, compared with a graphic card based solution, can be noticed. Compa...
International Nuclear Information System (INIS)
Procassini, R J; Beck, B R
2004-01-01
It might be assumed that use of a ''high-quality'' random number generator (RNG), producing a sequence of ''pseudo random'' numbers with a ''long'' repetition period, is crucial for producing unbiased results in Monte Carlo particle transport simulations. While several theoretical and empirical tests have been devised to check the quality (randomness and period) of an RNG, for many applications it is not clear what level of RNG quality is required to produce unbiased results. This paper explores the issue of RNG quality in the context of parallel, Monte Carlo transport simulations in order to determine how ''good'' is ''good enough''. This study employs the MERCURY Monte Carlo code, which incorporates the CNPRNG library for the generation of pseudo-random numbers via linear congruential generator (LCG) algorithms. The paper outlines the usage of random numbers during parallel MERCURY simulations, and then describes the source and criticality transport simulations which comprise the empirical basis of this study. A series of calculations for each test problem in which the quality of the RNG (period of the LCG) is varied provides the empirical basis for determining the minimum repetition period which may be employed without producing a bias in the mean integrated results
Directory of Open Access Journals (Sweden)
Gautier Jennifer
2011-10-01
Full Text Available Abstract Background Current treatments for Alzheimer's disease and related disorders (ADRD are symptomatic and can only temporarily slow down ADRD. Future possibilities of care rely on multi-target drugs therapies that address simultaneously several pathophysiological processes leading to neurodegeneration. We hypothesized that the combination of memantine with vitamin D could be neuroprotective in ADRD, thereby limiting neuronal loss and cognitive decline. The aim of this trial is to compare the effect after 24 weeks of the oral intake of vitamin D3 (cholecalciferol with the effect of a placebo on the change of cognitive performance in patients suffering from moderate ADRD and receiving memantine. Methods The AD-IDEA Trial is a unicentre, double-blind, randomized, placebo-controlled, intent-to-treat, superiority trial. Patients aged 60 years and older presenting with moderate ADRD (i.e., Mini-Mental State Examination [MMSE] score between 10-20, hypovitaminosis D (i.e., serum 25-hydroxyvitamin D [25OHD] Discussion The combination of memantine plus vitamin D may represent a new multi-target therapeutic class for the treatment of ADRD. The AD-IDEA Trial seeks to provide evidence on its efficacy in limiting cognitive and functional declines in ADRD. Trial Registration ClinicalTrials.gov number, NCT01409694
Strenge, Hans; Lesmana, Cokorda Bagus Jaya; Suryani, Luh Ketut
2009-08-01
Verbal random number generation is a procedurally simple task to assess executive function and appears ideally suited for the use under diverse settings in cross-cultural research. The objective of this study was to examine ethnic group differences between young adults in Bali (Indonesia) and Kiel (Germany): 50 bilingual healthy students, 30 Balinese and 20 Germans, attempted to generate a random sequence of the digits 1 to 9. In Balinese participants, randomization was done in Balinese (native language L1) and Indonesian (first foreign language L2), in German subjects in the German (L1) and English (L2) languages. 10 of 30 Balinese (33%), but no Germans, were unable to inhibit habitual counting in more than half of the responses. The Balinese produced significantly more nonrandom responses than the Germans with higher rates of counting and significantly less occurrence of the digits 2 and 3 in L1 compared with L2. Repetition and cycling behavior did not differ between the four languages. The findings highlight the importance of taking into account culture-bound psychosocial factors for Balinese individuals when administering and interpreting a random number generation test.
International Nuclear Information System (INIS)
Sarajaervi, U.; Cronvall, O.
2007-03-01
Fatigue is produced by cyclic application of stresses by mechanical or thermal loading. The metal subjected to fluctuating stress will fail at stresses much lower than those required to cause fracture in a single application of load. The key parameters are the range of stress variation and the number of its occurrences. Low-cycle fatigue, usually induced by mechanical and thermal loads, is distinguished from high-cycle fatigue, mainly associated with vibration or high number of small thermal fluctuations. Numerical models describing fatigue behaviour of austenitic stainless piping steels under cyclic loading and their applicability for modelling of low-cycle-fatigue are discussed in this report. In order to describe the cyclic behaviour of the material for analysis with finite element method (FEM) based analysis code ABAQUS, the test data, i.e. stress-strain curves, have to be processed. A code to process the data all through the test duration was developed within this study. A description of this code is given also in this report. Input data for ABAQUS was obtained to describe both kinematic and isotropic hardening properties. Further, by combining the result data for various strain amplitudes a mathematic expression was be created which allows defining a parameter surface for cyclic (i.e. isotropic) hardening. Input data for any strain amplitude within the range of minimum and maximum strain amplitudes of the test data can be assessed with the help of the developed 3D stress-strain surface presentation. The modelling of the fatigue induced initiation and growth of cracks was not considered in this study. On the other hand, a considerable part of the fatigue life of nuclear power plant (NPP) piping components is spent in the phase preceding the initiation and growth of cracks. (au)
Energy Technology Data Exchange (ETDEWEB)
Sarajaervi, U.; Cronvall, O. [VTT (Finland)
2007-03-15
Fatigue is produced by cyclic application of stresses by mechanical or thermal loading. The metal subjected to fluctuating stress will fail at stresses much lower than those required to cause fracture in a single application of load. The key parameters are the range of stress variation and the number of its occurrences. Low-cycle fatigue, usually induced by mechanical and thermal loads, is distinguished from high-cycle fatigue, mainly associated with vibration or high number of small thermal fluctuations. Numerical models describing fatigue behaviour of austenitic stainless piping steels under cyclic loading and their applicability for modelling of low-cycle-fatigue are discussed in this report. In order to describe the cyclic behaviour of the material for analysis with finite element method (FEM) based analysis code ABAQUS, the test data, i.e. stress-strain curves, have to be processed. A code to process the data all through the test duration was developed within this study. A description of this code is given also in this report. Input data for ABAQUS was obtained to describe both kinematic and isotropic hardening properties. Further, by combining the result data for various strain amplitudes a mathematic expression was be created which allows defining a parameter surface for cyclic (i.e. isotropic) hardening. Input data for any strain amplitude within the range of minimum and maximum strain amplitudes of the test data can be assessed with the help of the developed 3D stress-strain surface presentation. The modelling of the fatigue induced initiation and growth of cracks was not considered in this study. On the other hand, a considerable part of the fatigue life of nuclear power plant (NPP) piping components is spent in the phase preceding the initiation and growth of cracks. (au)
International Nuclear Information System (INIS)
Takada, Shoji; Funatake, Yoshio; Inagaki, Yoshiyuki
2009-01-01
A design of a MIMO controller, which links magnetic forces of multiple magnetic bearings by feedback of multiple measurement values of vibration of a rotor, was proposed for the radial magnetic bearings for the generator rotor of helium gas turbine with a power output of 300 MWe. The generator rotor is a flexible rotor, which passes over the forth critical speed. A controller transfer function was derived at the forth critical speed, in which the bending vibration mode is similar to the one which is excited by unbalance mass to reduce a modeling error. A 1404-dimensional un-symmetric coefficient matrix of equation of state for the rotating rotor affected by Jayro effect was reduced by a modal decomposition using Schur decomposition to reduce a reduction error. The numerical results showed that unbalance response of rotor was 53 and 80 μm p-p , respectively, well below the allowable limits both at the rated and critical speeds. (author)
Energy Technology Data Exchange (ETDEWEB)
Wang, Yonggang, E-mail: wangyg@ustc.edu.cn; Hui, Cong; Liu, Chong; Xu, Chao [Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China)
2016-04-15
The contribution of this paper is proposing a new entropy extraction mechanism based on sampling phase jitter in ring oscillators to make a high throughput true random number generator in a field programmable gate array (FPGA) practical. Starting from experimental observation and analysis of the entropy source in FPGA, a multi-phase sampling method is exploited to harvest the clock jitter with a maximum entropy and fast sampling speed. This parametrized design is implemented in a Xilinx Artix-7 FPGA, where the carry chains in the FPGA are explored to realize the precise phase shifting. The generator circuit is simple and resource-saving, so that multiple generation channels can run in parallel to scale the output throughput for specific applications. The prototype integrates 64 circuit units in the FPGA to provide a total output throughput of 7.68 Gbps, which meets the requirement of current high-speed quantum key distribution systems. The randomness evaluation, as well as its robustness to ambient temperature, confirms that the new method in a purely digital fashion can provide high-speed high-quality random bit sequences for a variety of embedded applications.
Using histograms to introduce randomization in the generation of ensembles of decision trees
Kamath, Chandrika; Cantu-Paz, Erick; Littau, David
2005-02-22
A system for decision tree ensembles that includes a module to read the data, a module to create a histogram, a module to evaluate a potential split according to some criterion using the histogram, a module to select a split point randomly in an interval around the best split, a module to split the data, and a module to combine multiple decision trees in ensembles. The decision tree method includes the steps of reading the data; creating a histogram; evaluating a potential split according to some criterion using the histogram, selecting a split point randomly in an interval around the best split, splitting the data, and combining multiple decision trees in ensembles.
Statistical analysis of the ratio of electric and magnetic fields in random fields generators
Serra, R.; Nijenhuis, J.
2013-01-01
In this paper we present statistical models of the ratio of random electric and magnetic fields in mode-stirred reverberation chambers. This ratio is based on the electric and magnetic field statistics derived for ideal reverberation conditions. It provides a further performance indicator for
Generating Random Samples of a Given Size Using Social Security Numbers.
Erickson, Richard C.; Brauchle, Paul E.
1984-01-01
The purposes of this article are (1) to present a method by which social security numbers may be used to draw cluster samples of a predetermined size and (2) to describe procedures used to validate this method of drawing random samples. (JOW)
Agarwal, G. S.; Dogariu, A.; Visser, T.D.; Wolf, E.
2005-01-01
The recently developed theory that unifies the treatments of polarization and coherence of random electro-magnetic beams is applied to study field correlations in Young's interference experiment. It is found that at certain pairs of points the transmitted field is spatially fully coherent,
Generation of triangulated random surfaces by the Monte Carlo method in the grand canonical ensemble
International Nuclear Information System (INIS)
Zmushko, V.V.; Migdal, A.A.
1987-01-01
A model of triangulated random surfaces which is the discrete analog of the Polyakov string is considered. An algorithm is proposed which enables one to study the model by the Monte Carlo method in the grand canonical ensemble. Preliminary results on the determination of the critical index γ are presented
Generating Variable and Random Schedules of Reinforcement Using Microsoft Excel Macros
Bancroft, Stacie L.; Bourret, Jason C.
2008-01-01
Variable reinforcement schedules are used to arrange the availability of reinforcement following varying response ratios or intervals of time. Random reinforcement schedules are subtypes of variable reinforcement schedules that can be used to arrange the availability of reinforcement at a constant probability across number of responses or time.…
Beliakov, G.; Creighton, D.; Johnstone, M.; Wilkin, T.
2013-08-01
This paper describes an implementation of a Linear Congruential Generator (LCG) based on the binary representation of the normal number α, and of a combined generator based on that LCG. The base LCG with the modulus 333 provides a quality sequence with the period ≈3.7ṡ1015, which passes all but two statistical tests from BigCrush test suite. We improved on the original implementation by adapting Barrett's modular reduction method, which resulted in four-fold increase in efficiency. The combined generator has the period of ≈1023 and passes all tests from BigCrush suite.
Simulated Performance Evaluation of a Selective Tracker Through Random Scenario Generation
DEFF Research Database (Denmark)
Hussain, Dil Muhammad Akbar
2006-01-01
performance assessment. Therefore, a random target motion scenario is adopted. Its implementation in particular for testing the proposed selective track splitting algorithm using Kalman filters is investigated through a number of performance parameters which gives the activity profile of the tracking scenario...... The paper presents a simulation study on the performance of a target tracker using selective track splitting filter algorithm through a random scenario implemented on a digital signal processor. In a typical track splitting filter all the observation which fall inside a likelihood ellipse...... are used for update, however, in our proposed selective track splitting filter less number of observations are used for track update. Much of the previous performance work [1] has been done on specific (deterministic) scenarios. One of the reasons for considering the specific scenarios, which were...
Raffaelli, Francesco; Ferranti, Giacomo; Mahler, Dylan H.; Sibson, Philip; Kennard, Jake E.; Santamato, Alberto; Sinclair, Gary; Bonneau, Damien; Thompson, Mark G.; Matthews, Jonathan C. F.
2018-04-01
Optical homodyne detection has found use as a characterisation tool in a range of quantum technologies. So far implementations have been limited to bulk optics. Here we present the optical integration of a homodyne detector onto a silicon photonics chip. The resulting device operates at high speed, up 150 MHz, it is compact and it operates with low noise, quantified with 11 dB clearance between shot noise and electronic noise. We perform on-chip quantum tomography of coherent states with the detector and show that it meets the requirements for characterising more general quantum states of light. We also show that the detector is able to produce quantum random numbers at a rate of 1.2 Gbps, by measuring the vacuum state of the electromagnetic field and applying off-line post processing. The produced random numbers pass all the statistical tests provided by the NIST test suite.
Pseudo-Random Modulation of a Laser Diode for Generating Ultrasonic Longitudinal Waves
Madaras, Eric I.; Anatasi, Robert F.
2004-01-01
Laser generated ultrasound systems have historically been more complicated and expensive than conventional piezoelectric based systems, and this fact has relegated the acceptance of laser based systems to niche applications for which piezoelectric based systems are less suitable. Lowering system costs, while improving throughput, increasing ultrasound signal levels, and improving signal-to-noise are goals which will help increase the general acceptance of laser based ultrasound. One current limitation with conventional laser generated ultrasound is a material s damage threshold limit. Increasing the optical power to generate more signal eventually damages the material being tested due to rapid, high heating. Generation limitations for laser based ultrasound suggests the use of pulse modulation techniques as an alternate generation method. Pulse modulation techniques can spread the laser energy over time or space, thus reducing laser power densities and minimizing damage. Previous experiments by various organizations using spatial or temporal pulse modulation have been shown to generate detectable surface, plate, and bulk ultrasonic waves with narrow frequency bandwidths . Using narrow frequency bandwidths improved signal detectability, but required the use of expensive and powerful lasers and opto-electronic systems. The use of a laser diode to generate ultrasound is attractive because of its low cost, small size, light weight, simple optics and modulation capability. The use of pulse compression techniques should allow certain types of laser diodes to produce usable ultrasonic signals. The method also does not need to be limited to narrow frequency bandwidths. The method demonstrated here uses a low power laser diode (approximately 150 mW) that is modulated by controlling the diode s drive current and the resulting signal is recovered by cross correlation. A potential application for this system which is briefly demonstrated is in detecting signals in thick
International Nuclear Information System (INIS)
Kimlinger, J.R.; Plechaty, E.F.
1982-01-01
The TART code is a Monte Carlo neutron/photon transport code that is only on the CRAY computer. All the input cards for the TART code are listed, and definitions for all input parameters are given. The execution and limitations of the code are described, and input for two sample problems are given
Material input of nuclear fuel
International Nuclear Information System (INIS)
Rissanen, S.; Tarjanne, R.
2001-01-01
The Material Input (MI) of nuclear fuel, expressed in terms of the total amount of natural material needed for manufacturing a product, is examined. The suitability of the MI method for assessing the environmental impacts of fuels is also discussed. Material input is expressed as a Material Input Coefficient (MIC), equalling to the total mass of natural material divided by the mass of the completed product. The material input coefficient is, however, only an intermediate result, which should not be used as such for the comparison of different fuels, because the energy contents of nuclear fuel is about 100 000-fold compared to the energy contents of fossil fuels. As a final result, the material input is expressed in proportion to the amount of generated electricity, which is called MIPS (Material Input Per Service unit). Material input is a simplified and commensurable indicator for the use of natural material, but because it does not take into account the harmfulness of materials or the way how the residual material is processed, it does not alone express the amount of environmental impacts. The examination of the mere amount does not differentiate between for example coal, natural gas or waste rock containing usually just sand. Natural gas is, however, substantially more harmful for the ecosystem than sand. Therefore, other methods should also be used to consider the environmental load of a product. The material input coefficient of nuclear fuel is calculated using data from different types of mines. The calculations are made among other things by using the data of an open pit mine (Key Lake, Canada), an underground mine (McArthur River, Canada) and a by-product mine (Olympic Dam, Australia). Furthermore, the coefficient is calculated for nuclear fuel corresponding to the nuclear fuel supply of Teollisuuden Voima (TVO) company in 2001. Because there is some uncertainty in the initial data, the inaccuracy of the final results can be even 20-50 per cent. The value
Jobet, E; Bougnoux, M E; Morand, S; Rivault, C; Cloarec, A; Hugot, J P
1998-03-01
Random amplified DNA markers (RAPD; Williams et al., 1990) were used to obtained specific RAPD fragments characterising different species of oxyuroids. We tested six species of worms parasitizing vertebrates or invertebrates: Passalurus ambiguus Rudolphi, 1819, parasite of Leporids; Syphacia obvelata (Rudolphi, 1802) Seurat, 1916, a parasite of rodents; Blatticola blattae (Graeffe, 1860) Chitwood, 1932 parasite of the cockroach Blattella germanica; Hammerschmidtiella diesingi (Hammerschmidt, 1838) Chitwood, 1932 and Thelastoma bulhoesi (Magalhaes, 1990) Travassos, 1929, parasites of the cockroach Periplaneta americana, and an undescribed parasite species of a passalid insect from New Caledonia. Among 15 oligonucleotides tested, nine produced several specific bands allowing the interspecific discrimination.
On random number generators providing convergence more rapid than 1/√N
International Nuclear Information System (INIS)
Belov, V.A.
1982-01-01
To realize the simulation of processes in High Energy Physics a practical test of the efficiency in applying quasirandom numbers to check multiple integration with Monte-Karlo method is presented together with the comparison of the wellknown generators of quasirandom and pseudorandom numbers [ru
Energy Technology Data Exchange (ETDEWEB)
Assaf, A. George [Isenberg School of Management, University of Massachusetts-Amherst, 90 Campus Center Way, Amherst 01002 (United States); Barros, Carlos Pestana [Instituto Superior de Economia e Gestao, Technical University of Lisbon, Rua Miguel Lupi, 20, 1249-078 Lisbon (Portugal); Managi, Shunsuke [Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aramaki-Aza Aoba, Aoba-Ku, Sendai 980-8579 (Japan)
2011-04-15
This study analyses and compares the cost efficiency of Japanese steam power generation companies using the fixed and random Bayesian frontier models. We show that it is essential to account for heterogeneity in modelling the performance of energy companies. Results from the model estimation also indicate that restricting CO{sub 2} emissions can lead to a decrease in total cost. The study finally discusses the efficiency variations between the energy companies under analysis, and elaborates on the managerial and policy implications of the results. (author)
Directory of Open Access Journals (Sweden)
Orla Doyle
Full Text Available This study examined the impact of a targeted Irish early intervention program on children's emotional and behavioral development using multiple methods to test the robustness of the results. Data on 164 Preparing for Life participants who were randomly assigned into an intervention group, involving home visits from pregnancy onwards, or a control group, was used to test the impact of the intervention on Child Behavior Checklist scores at 24-months. Using inverse probability weighting to account for differential attrition, permutation testing to address small sample size, and quantile regression to characterize the distributional impact of the intervention, we found that the few treatment effects were largely concentrated among boys most at risk of developing emotional and behavioral problems. The average treatment effect identified a 13% reduction in the likelihood of falling into the borderline clinical threshold for Total Problems. The interaction and subgroup analysis found that this main effect was driven by boys. The distributional analysis identified a 10-point reduction in the Externalizing Problems score for boys at the 90th percentile. No effects were observed for girls or for the continuous measures of Total, Internalizing, and Externalizing problems. These findings suggest that the impact of this prenatally commencing home visiting program may be limited to boys experiencing the most difficulties. Further adoption of the statistical methods applied here may help to improve the internal validity of randomized controlled trials and contribute to the field of evaluation science more generally.ISRCTN Registry ISRCTN04631728.
Sensitivity analysis of complex models: Coping with dynamic and static inputs
International Nuclear Information System (INIS)
Anstett-Collin, F.; Goffart, J.; Mara, T.; Denis-Vidal, L.
2015-01-01
In this paper, we address the issue of conducting a sensitivity analysis of complex models with both static and dynamic uncertain inputs. While several approaches have been proposed to compute the sensitivity indices of the static inputs (i.e. parameters), the one of the dynamic inputs (i.e. stochastic fields) have been rarely addressed. For this purpose, we first treat each dynamic as a Gaussian process. Then, the truncated Karhunen–Loève expansion of each dynamic input is performed. Such an expansion allows to generate independent Gaussian processes from a finite number of independent random variables. Given that a dynamic input is represented by a finite number of random variables, its variance-based sensitivity index is defined by the sensitivity index of this group of variables. Besides, an efficient sampling-based strategy is described to estimate the first-order indices of all the input factors by only using two input samples. The approach is applied to a building energy model, in order to assess the impact of the uncertainties of the material properties (static inputs) and the weather data (dynamic inputs) on the energy performance of a real low energy consumption house. - Highlights: • Sensitivity analysis of models with uncertain static and dynamic inputs is performed. • Karhunen–Loève (KL) decomposition of the spatio/temporal inputs is performed. • The influence of the dynamic inputs is studied through the modes of the KL expansion. • The proposed approach is applied to a building energy model. • Impact of weather data and material properties on performance of real house is given
Park, Boongik; Lee, Kihwan; Park, Jongjin; Kim, Jongmin; Kim, Ohyun
2013-03-01
A hybrid architecture consisting of an inverted organic photovoltaic device and a randomly-oriented electrospun PVDF piezoelectric device was fabricated as a highly-efficient energy generator. It uses the inverted photovoltaic device with coupled electrospun PVDF nanofibers as tandem structure to convert solar and mechanical vibrations energy to electricity simultaneously or individually. The power conversion efficiency of the photovoltaic device was also significantly improved up to 4.72% by optimized processes such as intrinsic ZnO, MoO3 and active layer. A simple electrospinning method with the two electrode technique was adopted to achieve a high voltage of - 300 mV in PVDF piezoelectric fibers. Highly-efficient HEG using voltage adder circuit provides the conceptual possibility of realizing multi-functional energy generator whenever and wherever various energy sources are available.
BINARY PARTICLE SWARM OPTIMIZATION APPROACH FOR RANDOM GENERATION OUTAGE MAINTENANCE SCHEDULING
Directory of Open Access Journals (Sweden)
K. Suresh
2013-01-01
Full Text Available This paper presents a methodology for maintenance scheduling (MS of generators using binary particle swarm optimization (BPSO based probabilistic approach. The objective of this paper is to reduce the loss of load probability (LOLP for a power system. The capacity outage probability table (COPT is the initial step in creating maintenance schedule using the probabilistic levelized risk method. This paper proposes BPSO method which is used to construct the COPT. In order to mitigate the effects of probabilistic levelized risk method, BPSO based probabilistic levelized risk method is embarked on a MS problem. In order to validate the effectiveness of the proposed algorithm, case study results for simple five unit system can accomplish a significant levelization in the reliability indices that make possible to evaluate system generation system adequacy in the MS horizon of the power system. The proposed method shows better performance compared with other optimization methods and conventional method with improved search performance.
ANALYSIS AND VALIDATION OF GRID DEM GENERATION BASED ON GAUSSIAN MARKOV RANDOM FIELD
Directory of Open Access Journals (Sweden)
F. J. Aguilar
2016-06-01
Full Text Available Digital Elevation Models (DEMs are considered as one of the most relevant geospatial data to carry out land-cover and land-use classification. This work deals with the application of a mathematical framework based on a Gaussian Markov Random Field (GMRF to interpolate grid DEMs from scattered elevation data. The performance of the GMRF interpolation model was tested on a set of LiDAR data (0.87 points/m2 provided by the Spanish Government (PNOA Programme over a complex working area mainly covered by greenhouses in Almería, Spain. The original LiDAR data was decimated by randomly removing different fractions of the original points (from 10% to up to 99% of points removed. In every case, the remaining points (scattered observed points were used to obtain a 1 m grid spacing GMRF-interpolated Digital Surface Model (DSM whose accuracy was assessed by means of the set of previously extracted checkpoints. The GMRF accuracy results were compared with those provided by the widely known Triangulation with Linear Interpolation (TLI. Finally, the GMRF method was applied to a real-world case consisting of filling the LiDAR-derived DSM gaps after manually filtering out non-ground points to obtain a Digital Terrain Model (DTM. Regarding accuracy, both GMRF and TLI produced visually pleasing and similar results in terms of vertical accuracy. As an added bonus, the GMRF mathematical framework makes possible to both retrieve the estimated uncertainty for every interpolated elevation point (the DEM uncertainty and include break lines or terrain discontinuities between adjacent cells to produce higher quality DTMs.
Zhang, Guang-He; Poon, Carmen C Y; Zhang, Yuan-Ting
2012-01-01
Wireless body sensor network (WBSN), a key building block for m-Health, demands extremely stringent resource constraints and thus lightweight security methods are preferred. To minimize resource consumption, utilizing information already available to a WBSN, particularly common to different sensor nodes of a WBSN, for security purposes becomes an attractive solution. In this paper, we tested the randomness and distinctiveness of the 128-bit biometric binary sequences (BSs) generated from interpulse intervals (IPIs) of 20 healthy subjects as well as 30 patients suffered from myocardial infarction and 34 subjects with other cardiovascular diseases. The encoding time of a biometric BS on a WBSN node is on average 23 ms and memory occupation is 204 bytes for any given IPI sequence. The results from five U.S. National Institute of Standards and Technology statistical tests suggest that random biometric BSs can be generated from both healthy subjects and cardiovascular patients and can potentially be used as authentication identifiers for securing WBSNs. Ultimately, it is preferred that these biometric BSs can be used as encryption keys such that key distribution over the WBSN can be avoided.
Arumugam, Jayavel; Bukkapatnam, Satish T S; Narayanan, Krishna R; Srinivasa, Arun R
2016-01-01
Current methods for distinguishing acute coronary syndromes such as heart attack from stable coronary artery disease, based on the kinetics of thrombin formation, have been limited to evaluating sensitivity of well-established chemical species (e.g., thrombin) using simple quantifiers of their concentration profiles (e.g., maximum level of thrombin concentration, area under the thrombin concentration versus time curve). In order to get an improved classifier, we use a 34-protein factor clotting cascade model and convert the simulation data into a high-dimensional representation (about 19000 features) using a piecewise cubic polynomial fit. Then, we systematically find plausible assays to effectively gauge changes in acute coronary syndrome/coronary artery disease populations by introducing a statistical learning technique called Random Forests. We find that differences associated with acute coronary syndromes emerge in combinations of a handful of features. For instance, concentrations of 3 chemical species, namely, active alpha-thrombin, tissue factor-factor VIIa-factor Xa ternary complex, and intrinsic tenase complex with factor X, at specific time windows, could be used to classify acute coronary syndromes to an accuracy of about 87.2%. Such a combination could be used to efficiently assay the coagulation system.
Directory of Open Access Journals (Sweden)
Jayavel Arumugam
Full Text Available Current methods for distinguishing acute coronary syndromes such as heart attack from stable coronary artery disease, based on the kinetics of thrombin formation, have been limited to evaluating sensitivity of well-established chemical species (e.g., thrombin using simple quantifiers of their concentration profiles (e.g., maximum level of thrombin concentration, area under the thrombin concentration versus time curve. In order to get an improved classifier, we use a 34-protein factor clotting cascade model and convert the simulation data into a high-dimensional representation (about 19000 features using a piecewise cubic polynomial fit. Then, we systematically find plausible assays to effectively gauge changes in acute coronary syndrome/coronary artery disease populations by introducing a statistical learning technique called Random Forests. We find that differences associated with acute coronary syndromes emerge in combinations of a handful of features. For instance, concentrations of 3 chemical species, namely, active alpha-thrombin, tissue factor-factor VIIa-factor Xa ternary complex, and intrinsic tenase complex with factor X, at specific time windows, could be used to classify acute coronary syndromes to an accuracy of about 87.2%. Such a combination could be used to efficiently assay the coagulation system.
International Nuclear Information System (INIS)
Dupuy, R.
1970-01-01
The input-output supervisor is the program which monitors the flow of informations between core storage and peripheral equipments of a computer. This work is composed of three parts: 1 - Study of a generalized input-output supervisor. With sample modifications it looks like most of input-output supervisors which are running now on computers. 2 - Application of this theory on a magnetic drum. 3 - Hardware requirement for time-sharing. (author) [fr
International Nuclear Information System (INIS)
Meyder, R.
1983-12-01
The code system SSYST-3 is designed to analyse the thermal and mechanical behaviour of a fuel rod during a LOCA. The report contains a complete input-list for all modules and several tested inputs for a LOCA analysis. (orig.)
Johnson-Throop, Kathy A.; Vowell, C. W.; Smith, Byron; Darcy, Jeannette
2006-01-01
This viewgraph presentation reviews the inputs to the MDS Medical Information Communique (MIC) catalog. The purpose of the group is to provide input for updating the MDS MIC Catalog and to request that MMOP assign Action Item to other working groups and FSs to support the MITWG Process for developing MIC-DDs.
Directory of Open Access Journals (Sweden)
Wouter eOomens
2015-06-01
Full Text Available The concept of executive functions plays a prominent role in contemporary experimental and clinical studies on cognition. One paradigm used in this framework is the random number generation (RNG task, the execution of which demands aspects of executive functioning, specifically inhibition and working memory. Data from the RNG task are best seen as a series of successive events. However, traditional RNG measures that are used to quantify executive functioning are mostly summary statistics referring to deviations from mathematical randomness. In the current study, we explore the utility of recurrence quantification analysis (RQA, a nonlinear method that keeps the entire sequence intact, as a better way to describe executive functioning compared to traditional measures. To this aim, 242 first- and second-year students completed a non-paced RNG task. Principal component analysis of their data showed that traditional and RQA measures convey more or less the same information. However, RQA measures do so more parsimoniously and have a better interpretation.
Morse, Melvin L; Beem, Lance W
2011-12-01
Reiki therapy is documented for relief of pain and stress. Energetic healing has been documented to alter biologic markers of illness such as hematocrit. True random number generators are reported to be affected by energy healers and spiritually oriented conscious awareness. The patient was a then 54-year-old severely ill man who had hepatitis C types 1 and 2 and who did not improve with conventional therapy. He also suffered from obesity, the metabolic syndrome, asthma, and hypertension. He was treated with experimental high-dose interferon/riboviron therapy with resultant profound anemia and neutropenia. Energetic healing and Reiki therapy was administered initially to enhance the patient's sense of well-being and to relieve anxiety. Possible effects on the patient's absolute neutrophil count and hematocrit were incidentally noted. Reiki therapy was then initiated at times of profound neutropenia to assess its possible effect on the patient's absolute neutrophil count (ANC). Reiki and other energetic healing sessions were monitored with a true random number generator (RNG). Statistically significant relationships were documented between Reiki therapy, a quieting of the electronically created white noise of the RNG during healing sessions, and improvement in the patient's ANC. The immediate clinical result was that the patient could tolerate the high-dose interferon regimen without missing doses because of absolute neutropenia. The patient was initially a late responder to interferon and had been given a 5% chance of clearing the virus. He remains clear of the virus 1 year after treatment. The association between changes in the RNG, Reiki therapy, and a patient's ANC is the first to the authors' knowledge in the medical literature. Future studies assessing the effects of energetic healing on specific biologic markers of disease are anticipated. Concurrent use of a true RNG may prove to correlate with the effectiveness of energetic therapy.
Andrade, Jason G; Dubuc, Marc; Guerra, Peter G; Landry, Evelyn; Coulombe, Nicolas; Leduc, Hugues; Rivard, Léna; Macle, Laurent; Thibault, Bernard; Talajic, Mario; Roy, Denis; Khairy, Paul
2013-06-01
Optimal cryoballoon ablation parameters for pulmonary vein (PV) isolation remain to be defined. We conducted a randomized preclinical trial to compare 2- versus 4-minute ablation lesions and assess the safety of active (forced) cryoballoon deflation. Thirty-two dogs underwent PV isolation with a second-generation 23 mm cryoballoon catheter. The left superior (LSPV) and inferior (LIPV) PVs were randomized in a factorial design to (1) a single 2- versus 4-minute cryoapplication, and (2) passive versus active cryoballoon deflation. Animals were survived for 30 days, after which histopathologic analysis was performed. Acute PV isolation was attained in 89.8% of PVs after a single application (93.8% LSPV, 85.2% LIPV; P = 0.2823). Mean time to PV isolation was 29.5 ± 18.5 seconds. Although 4-minute lesions were associated with a thicker neointima than 2-minute lesions (223.8 μm versus 135.6 μm; P = 0.007), no differences were observed in procedural characteristics (freezing temperature, rewarming time), rates of acute PV isolation, or the achievement of complete circumferentially transmural lesions at 30 days (78.7% overall; 86.2% for 2 minutes vs 70.0% for 4 minutes; P = 0.285). Active deflation was associated with faster balloon rewarming but not with significant differences in mean or maximum neointimal thickness. A single application with the second-generation cryoballoon catheter results in a high rate of PV isolation. The degree of vascular injury was not increased by active balloon deflation and no differences in acute efficacy or mature transmural circumferential lesions were observed with 2- versus 4-minute applications. © 2013 Wiley Periodicals, Inc.
Directory of Open Access Journals (Sweden)
Nattagit Jiteurtragool
2018-02-01
Full Text Available The search for generation approaches to robust chaos has received considerable attention due to potential applications in cryptography or secure communications. This paper is of interest regarding a 1-D sigmoidal chaotic map, which has never been distinctly investigated. This paper introduces a generic form of the sigmoidal chaotic map with three terms, i.e., xn+1 = ∓AfNL(Bxn ± Cxn ± D, where A, B, C, and D are real constants. The unification of modified sigmoid and hyperbolic tangent (tanh functions reveals the existence of a “unified sigmoidal chaotic map” generically fulfilling the three terms, with robust chaos partially appearing in some parameter ranges. A simplified generic form, i.e., xn+1 = ∓fNL(Bxn ± Cxn, through various S-shaped functions, has recently led to the possibility of linearization using (i hardtanh and (ii signum functions. This study finds a linearized sigmoidal chaotic map that potentially offers robust chaos over an entire range of parameters. Chaos dynamics are described in terms of chaotic waveforms, histogram, cobweb plots, fixed point, Jacobian, and a bifurcation structure diagram based on Lyapunov exponents. As a practical example, a true random bit generator using the linearized sigmoidal chaotic map is demonstrated. The resulting output is evaluated using the NIST SP800-22 test suite and TestU01.
International Nuclear Information System (INIS)
Marklund, J.E.; Bergstroem, U.; Edlund, O.
1980-01-01
The computer program BIOPATH describes the flow of radioactivity within a given ecosystem after a postulated release of radioactive material and the resulting dose for specified population groups. The present report accounts for the input data necessary to run BIOPATH. The report also contains descriptions of possible control cards and an input example as well as a short summary of the basic theory.(author)
International Nuclear Information System (INIS)
Carr, S.; Lane, G.; Rowling, G.
1986-11-01
This document describes the input procedures, input data files and operating instructions for the SYVAC A/C 1.03 computer program. SYVAC A/C 1.03 simulates the groundwater mediated movement of radionuclides from underground facilities for the disposal of low and intermediate level wastes to the accessible environment, and provides an estimate of the subsequent radiological risk to man. (author)
Keates, Simeon; Robinson, Peter
1999-01-01
For users with motion impairments, the standard keyboard and mouse arrangement for computer access often presents problems. Other approaches have to be adopted to overcome this. In this paper, we will describe the development of a prototype multimodal input system based on two gestural input channels. Results from extensive user trials of this system are presented. These trials showed that the physical and cognitive loads on the user can quickly become excessive and detrimental to the interac...
Energy Technology Data Exchange (ETDEWEB)
Coronel B, H.F.; Hernandez M, A.R.; Jimenez M, M.A. [Facultad de Fisica e Inteligencia Artificial, Universidad Veracruzana, A.P. 475, Xalapa, Veracruz (Mexico); Mora F, L.E. [CIMAT, A.P. 402, 36000 Guanajuato (Mexico)]. e-mail: hcoronel@uv.mx
2007-07-01
Empirical tests for pseudo random number generators based on the use of processes or physical models have been successfully used and are considered as complementary to theoretical tests of randomness. In this work a statistical methodology for evaluating the quality of pseudo random number generators is presented. The method is illustrated in the context of the so-called exponential decay process, using some pseudo random number generators commonly used in physics. (Author)
Characterization of memory states of the Preisach operator with stochastic inputs
International Nuclear Information System (INIS)
Amann, A.; Brokate, M.; McCarthy, S.; Rachinskii, D.; Temnov, G.
2012-01-01
The Preisach operator with inputs defined by a Markov process x t is considered. The question we address is: what is the distribution of the random memory state of the Preisach operator at a given time moment t 0 in the limit r→∞ of infinitely long input history x t , t 0 -r≤t≤t 0 ? In order to answer this question, we introduce a Markov chain (called the memory state Markov chain) where the states are pairs (m k ,M k ) of elements from the monotone sequences of the local minimum input values m k and the local maximum input values M k recorded in the memory state and the index k of the elements plays the role of time. We express the transition probabilities of this Markov chain in terms of the transition probabilities of the input stochastic process and show that the memory state Markov chain and the input process generate the same distribution of the memory states. These results are illustrated by several examples of stochastic inputs such as the Wiener and Bernoulli processes and their mixture (we first discuss a discrete version of these processes and then the continuous time and state setting). The memory state Markov chain is then used to find the distribution of the random number of elements in the memory state sequence. We show that this number has the Poisson distribution for the Wiener and Bernoulli processes inputs. In particular, in the discrete setting, the mean value of the number of elements in the memory state scales as lnN, where N is the number of the input states, while the mean time it takes the input to generate this memory state scales as N 2 for the Wiener process and as N for the Bernoulli process. A similar relationship between the dimension of the memory state vector and the number of iterations in the numerical realization of the input is shown for the mixture of the Wiener and Bernoulli processes, thus confirming that the memory state Markov chain is an efficient tool for generating the distribution of the Preisach operator memory
Characterization of memory states of the Preisach operator with stochastic inputs
Energy Technology Data Exchange (ETDEWEB)
Amann, A. [Department of Applied Mathematics, University College Cork (Ireland); Brokate, M. [Zentrum Mathematik, Technische Universitaet Muenchen (Germany); McCarthy, S. [Department of Applied Mathematics, University College Cork (Ireland); Rachinskii, D., E-mail: d.rachinskii@ucc.ie [Department of Applied Mathematics, University College Cork (Ireland); Temnov, G. [Department of Mathematics, University College Cork (Ireland)
2012-05-01
The Preisach operator with inputs defined by a Markov process x{sup t} is considered. The question we address is: what is the distribution of the random memory state of the Preisach operator at a given time moment t{sub 0} in the limit r{yields}{infinity} of infinitely long input history x{sup t}, t{sub 0}-r{<=}t{<=}t{sub 0}? In order to answer this question, we introduce a Markov chain (called the memory state Markov chain) where the states are pairs (m{sub k},M{sub k}) of elements from the monotone sequences of the local minimum input values m{sub k} and the local maximum input values M{sub k} recorded in the memory state and the index k of the elements plays the role of time. We express the transition probabilities of this Markov chain in terms of the transition probabilities of the input stochastic process and show that the memory state Markov chain and the input process generate the same distribution of the memory states. These results are illustrated by several examples of stochastic inputs such as the Wiener and Bernoulli processes and their mixture (we first discuss a discrete version of these processes and then the continuous time and state setting). The memory state Markov chain is then used to find the distribution of the random number of elements in the memory state sequence. We show that this number has the Poisson distribution for the Wiener and Bernoulli processes inputs. In particular, in the discrete setting, the mean value of the number of elements in the memory state scales as lnN, where N is the number of the input states, while the mean time it takes the input to generate this memory state scales as N{sup 2} for the Wiener process and as N for the Bernoulli process. A similar relationship between the dimension of the memory state vector and the number of iterations in the numerical realization of the input is shown for the mixture of the Wiener and Bernoulli processes, thus confirming that the memory state Markov chain is an efficient tool for
Kooijman, D.G.; Balau, A.E.; Wilkins, S.; Ligterink, N.; Cuelenaere, R.
2015-01-01
European light duty vehicle emission legislation is gradually shifting the focus from test procedures with merely static test cycles, towards procedures including Real Driving Emissions (RDE), as they are a mean to achieve the European (NOx) emission reduction target. Hence a RDE trip must represent
Kooijman, D.G.; Balau, A.E.; Wilkins, S.; Ligterink, N.; Cuelenaere, R.
2015-01-01
European light duty vehicle emission legislation is gradually shifting the focus from test procedures with merely static test cycles, towards procedures including Real Driving Emissions (RDE), as they are a mean to achieve the European (NOx) emission reduction target. Hence a RDE trip must represent
Onsongo, Getiria; Baughn, Linda B; Bower, Matthew; Henzler, Christine; Schomaker, Matthew; Silverstein, Kevin A T; Thyagarajan, Bharat
2016-11-01
Simultaneous detection of small copy number variations (CNVs) (<0.5 kb) and single-nucleotide variants in clinically significant genes is of great interest for clinical laboratories. The analytical variability in next-generation sequencing (NGS) and artifacts in coverage data because of issues with mappability along with lack of robust bioinformatics tools for CNV detection have limited the utility of targeted NGS data to identify CNVs. We describe the development and implementation of a bioinformatics algorithm, copy number variation-random forest (CNV-RF), that incorporates a machine learning component to identify CNVs from targeted NGS data. Using CNV-RF, we identified 12 of 13 deletions in samples with known CNVs, two cases with duplications, and identified novel deletions in 22 additional cases. Furthermore, no CNVs were identified among 60 genes in 14 cases with normal copy number and no CNVs were identified in another 104 patients with clinical suspicion of CNVs. All positive deletions and duplications were confirmed using a quantitative PCR method. CNV-RF also detected heterozygous deletions and duplications with a specificity of 50% across 4813 genes. The ability of CNV-RF to detect clinically relevant CNVs with a high degree of sensitivity along with confirmation using a low-cost quantitative PCR method provides a framework for providing comprehensive NGS-based CNV/single-nucleotide variant detection in a clinical molecular diagnostics laboratory. Copyright © 2016 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
High speed true random number generator with a new structure of coarse-tuning PDL in FPGA
Fang, Hongzhen; Wang, Pengjun; Cheng, Xu; Zhou, Keji
2018-03-01
A metastability-based TRNG (true random number generator) is presented in this paper, and implemented in FPGA. The metastable state of a D flip-flop is tunable through a two-stage PDL (programmable delay line). With the proposed coarse-tuning PDL structure, the TRNG core does not require extra placement and routing to ensure its entropy. Furthermore, the core needs fewer stages of coarse-tuning PDL at higher operating frequency, and thus saves more resources in FPGA. The designed TRNG achieves 25 Mbps @ 100 MHz throughput after proper post-processing, which is several times higher than other previous TRNGs based on FPGA. Moreover, the robustness of the system is enhanced with the adoption of a feedback system. The quality of the designed TRNG is verified by NIST (National Institute of Standards and Technology) and also accepted by class P1 of the AIS-20/31 test suite. Project supported by the S&T Plan of Zhejiang Provincial Science and Technology Department (No. 2016C31078), the National Natural Science Foundation of China (Nos. 61574041, 61474068, 61234002), and the K.C. Wong Magna Fund in Ningbo University, China.
Sahu, Sandeep; Yadav, Prabhat Chand; Shekhar, Shashank
2018-02-01
In this investigation, Inconel 600 alloy was thermomechanically processed to different strains via hot rolling followed by a short-time annealing treatment to determine an appropriate thermomechanical process to achieve a high fraction of low-Σ CSL boundaries. Experimental results demonstrate that a certain level of deformation is necessary to obtain effective "grain boundary engineering"; i.e., the deformation must be sufficiently high to provide the required driving force for postdeformation static recrystallization, yet it should be low enough to retain a large fraction of original twin boundaries. Samples processed in such a fashion exhibited 77 pct length fraction of low-Σ CSL boundaries, a dominant fraction of which was from Σ3 ( 64 pct), the latter with very low deviation from its theoretical misorientation. The application of hot rolling also resulted in a very low fraction of Σ1 ( 1 pct) boundaries, as desired. The process also leads to so-called "triple junction engineering" with the generation of special triple junctions, which are very effective in disrupting the connectivity of the random grain boundary network.
Seto, Hiroaki; Ikeda, Hiroshi; Hisaoka, Hidehiko; Kurosawa, Hisashi
2008-05-01
Thermotherapy is widely known to be effective for osteoarthritis of the knee (knee OA), but most treatment methods make use of dry heat. We developed a sheet that generates heat and steam simultaneously. In this prospective randomized study, we evaluated the effectiveness of this sheet. Of 41 female patients with knee OA randomized to use the heat/steam-generating sheet or the dry heat-generating sheet, 37 patients (20 using the heat/steam-generating sheet and 17 using the dry heat-generating sheet) who used the sheets continuously for 4 weeks were studied. Outcome measures included the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) and Japan Orthopaedic Association (JOA) scores, which were applied at baseline and after 2 and 4 weeks of use. Significant improvement of the total WOMAC score was observed at 2 and 4 weeks (compared to baseline) in the heat/steam-generating sheet group, but no significant change was observed in the dry heat-generating sheet group. Among the JOA scores, the gait ability score was also improved significantly only in the heat/steam-generating sheet group. The effects were still seen 6 weeks after completion of treatment. The present study provided evidence that the heat/steam-generating sheet that we developed is effective for alleviating pain and is especially superior in regard to improving stiffness and gait impairment in patients with knee OA. Furthermore, the effect persists for at least 6 weeks after application.
Pohle, Ina; Niebisch, Michael; Müller, Hannes; Schümberg, Sabine; Zha, Tingting; Maurer, Thomas; Hinz, Christoph
2018-07-01
To simulate the impacts of within-storm rainfall variabilities on fast hydrological processes, long precipitation time series with high temporal resolution are required. Due to limited availability of observed data such time series are typically obtained from stochastic models. However, most existing rainfall models are limited in their ability to conserve rainfall event statistics which are relevant for hydrological processes. Poisson rectangular pulse models are widely applied to generate long time series of alternating precipitation events durations and mean intensities as well as interstorm period durations. Multiplicative microcanonical random cascade (MRC) models are used to disaggregate precipitation time series from coarse to fine temporal resolution. To overcome the inconsistencies between the temporal structure of the Poisson rectangular pulse model and the MRC model, we developed a new coupling approach by introducing two modifications to the MRC model. These modifications comprise (a) a modified cascade model ("constrained cascade") which preserves the event durations generated by the Poisson rectangular model by constraining the first and last interval of a precipitation event to contain precipitation and (b) continuous sigmoid functions of the multiplicative weights to consider the scale-dependency in the disaggregation of precipitation events of different durations. The constrained cascade model was evaluated in its ability to disaggregate observed precipitation events in comparison to existing MRC models. For that, we used a 20-year record of hourly precipitation at six stations across Germany. The constrained cascade model showed a pronounced better agreement with the observed data in terms of both the temporal pattern of the precipitation time series (e.g. the dry and wet spell durations and autocorrelations) and event characteristics (e.g. intra-event intermittency and intensity fluctuation within events). The constrained cascade model also
Rinehart, Nicole J.; Bradshaw, John L.; Moss, Simon A.; Brereton, Avril V.; Tonge, Bruce J.
2006-01-01
The repetitive, stereotyped and obsessive behaviours, which are core diagnostic features of autism, are thought to be underpinned by executive dysfunction. This study examined executive impairment in individuals with autism and Asperger's disorder using a verbal equivalent of an established pseudo-random number generating task. Different patterns…
Yang, Yu-Guang; Xu, Peng; Yang, Rui; Zhou, Yi-Hua; Shi, Wei-Min
2016-01-01
Quantum information and quantum computation have achieved a huge success during the last years. In this paper, we investigate the capability of quantum Hash function, which can be constructed by subtly modifying quantum walks, a famous quantum computation model. It is found that quantum Hash function can act as a hash function for the privacy amplification process of quantum key distribution systems with higher security. As a byproduct, quantum Hash function can also be used for pseudo-random number generation due to its inherent chaotic dynamics. Further we discuss the application of quantum Hash function to image encryption and propose a novel image encryption algorithm. Numerical simulations and performance comparisons show that quantum Hash function is eligible for privacy amplification in quantum key distribution, pseudo-random number generation and image encryption in terms of various hash tests and randomness tests. It extends the scope of application of quantum computation and quantum information.
Yang, Yu-Guang; Xu, Peng; Yang, Rui; Zhou, Yi-Hua; Shi, Wei-Min
2016-01-01
Quantum information and quantum computation have achieved a huge success during the last years. In this paper, we investigate the capability of quantum Hash function, which can be constructed by subtly modifying quantum walks, a famous quantum computation model. It is found that quantum Hash function can act as a hash function for the privacy amplification process of quantum key distribution systems with higher security. As a byproduct, quantum Hash function can also be used for pseudo-random number generation due to its inherent chaotic dynamics. Further we discuss the application of quantum Hash function to image encryption and propose a novel image encryption algorithm. Numerical simulations and performance comparisons show that quantum Hash function is eligible for privacy amplification in quantum key distribution, pseudo-random number generation and image encryption in terms of various hash tests and randomness tests. It extends the scope of application of quantum computation and quantum information. PMID:26823196
CBM First-level Event Selector Input Interface Demonstrator
Hutter, Dirk; de Cuveland, Jan; Lindenstruth, Volker
2017-10-01
CBM is a heavy-ion experiment at the future FAIR facility in Darmstadt, Germany. Featuring self-triggered front-end electronics and free-streaming read-out, event selection will exclusively be done by the First Level Event Selector (FLES). Designed as an HPC cluster with several hundred nodes its task is an online analysis and selection of the physics data at a total input data rate exceeding 1 TByte/s. To allow efficient event selection, the FLES performs timeslice building, which combines the data from all given input links to self-contained, potentially overlapping processing intervals and distributes them to compute nodes. Partitioning the input data streams into specialized containers allows performing this task very efficiently. The FLES Input Interface defines the linkage between the FEE and the FLES data transport framework. A custom FPGA PCIe board, the FLES Interface Board (FLIB), is used to receive data via optical links and transfer them via DMA to the host’s memory. The current prototype of the FLIB features a Kintex-7 FPGA and provides up to eight 10 GBit/s optical links. A custom FPGA design has been developed for this board. DMA transfers and data structures are optimized for subsequent timeslice building. Index tables generated by the FPGA enable fast random access to the written data containers. In addition the DMA target buffers can directly serve as InfiniBand RDMA source buffers without copying the data. The usage of POSIX shared memory for these buffers allows data access from multiple processes. An accompanying HDL module has been developed to integrate the FLES link into the front-end FPGA designs. It implements the front-end logic interface as well as the link protocol. Prototypes of all Input Interface components have been implemented and integrated into the FLES test framework. This allows the implementation and evaluation of the foreseen CBM read-out chain.
Directory of Open Access Journals (Sweden)
Regad Leslie
2010-01-01
Full Text Available Abstract Background In bioinformatics it is common to search for a pattern of interest in a potentially large set of rather short sequences (upstream gene regions, proteins, exons, etc.. Although many methodological approaches allow practitioners to compute the distribution of a pattern count in a random sequence generated by a Markov source, no specific developments have taken into account the counting of occurrences in a set of independent sequences. We aim to address this problem by deriving efficient approaches and algorithms to perform these computations both for low and high complexity patterns in the framework of homogeneous or heterogeneous Markov models. Results The latest advances in the field allowed us to use a technique of optimal Markov chain embedding based on deterministic finite automata to introduce three innovative algorithms. Algorithm 1 is the only one able to deal with heterogeneous models. It also permits to avoid any product of convolution of the pattern distribution in individual sequences. When working with homogeneous models, Algorithm 2 yields a dramatic reduction in the complexity by taking advantage of previous computations to obtain moment generating functions efficiently. In the particular case of low or moderate complexity patterns, Algorithm 3 exploits power computation and binary decomposition to further reduce the time complexity to a logarithmic scale. All these algorithms and their relative interest in comparison with existing ones were then tested and discussed on a toy-example and three biological data sets: structural patterns in protein loop structures, PROSITE signatures in a bacterial proteome, and transcription factors in upstream gene regions. On these data sets, we also compared our exact approaches to the tempting approximation that consists in concatenating the sequences in the data set into a single sequence. Conclusions Our algorithms prove to be effective and able to handle real data sets with
Nuel, Gregory; Regad, Leslie; Martin, Juliette; Camproux, Anne-Claude
2010-01-26
In bioinformatics it is common to search for a pattern of interest in a potentially large set of rather short sequences (upstream gene regions, proteins, exons, etc.). Although many methodological approaches allow practitioners to compute the distribution of a pattern count in a random sequence generated by a Markov source, no specific developments have taken into account the counting of occurrences in a set of independent sequences. We aim to address this problem by deriving efficient approaches and algorithms to perform these computations both for low and high complexity patterns in the framework of homogeneous or heterogeneous Markov models. The latest advances in the field allowed us to use a technique of optimal Markov chain embedding based on deterministic finite automata to introduce three innovative algorithms. Algorithm 1 is the only one able to deal with heterogeneous models. It also permits to avoid any product of convolution of the pattern distribution in individual sequences. When working with homogeneous models, Algorithm 2 yields a dramatic reduction in the complexity by taking advantage of previous computations to obtain moment generating functions efficiently. In the particular case of low or moderate complexity patterns, Algorithm 3 exploits power computation and binary decomposition to further reduce the time complexity to a logarithmic scale. All these algorithms and their relative interest in comparison with existing ones were then tested and discussed on a toy-example and three biological data sets: structural patterns in protein loop structures, PROSITE signatures in a bacterial proteome, and transcription factors in upstream gene regions. On these data sets, we also compared our exact approaches to the tempting approximation that consists in concatenating the sequences in the data set into a single sequence. Our algorithms prove to be effective and able to handle real data sets with multiple sequences, as well as biological patterns of
Directory of Open Access Journals (Sweden)
Jackson W. Cryns
2013-01-01
Full Text Available Harvesting power with a piezoelectric vibration powered generator using a full-wave rectifier conditioning circuit is experimentally compared for varying sinusoidal, random, and sine on random (SOR input vibration scenarios; the implications of source vibration characteristics on harvester design are discussed. The rise in popularity of harvesting energy from ambient vibrations has made compact, energy dense piezoelectric generators commercially available. Much of the available literature focuses on maximizing harvested power through nonlinear processing circuits that require accurate knowledge of generator internal mechanical and electrical characteristics and idealization of the input vibration source, which cannot be assumed in general application. Variations in source vibration and load resistance are explored for a commercially available piezoelectric generator. The results agree with numerical and theoretical predictions in the previous literature for optimal power harvesting in sinusoidal and flat broadband vibration scenarios. Going beyond idealized steady-state sinusoidal and flat random vibration input, experimental SOR testing allows for more accurate representation of real world ambient vibration. It is shown that characteristic interactions from more complex vibration sources significantly alter power generation and processing requirements by varying harvested power, shifting optimal conditioning impedance, inducing voltage fluctuations, and ultimately rendering idealized sinusoidal and random analyses incorrect.
Philip, Femi; Stewart, Susan; Southard, Jeffrey A
2016-07-01
The relative safety of drug-eluting stents (DES) and bare-metal stents (BMS) in primary percutaneous coronary intervention (PPCI) in ST elevation myocardial infarction (STEMI) continues to be debated. The long-term clinical outcomes between second generation DES and BMS for primary percutaneous coronary intervention (PCI) using network meta-analysis were compared. Randomized controlled trials comparing stent types (first generation DES, second generation DES, or BMS) were considered for inclusion. A search strategy used Medline, Embase, Cochrane databases, and proceedings of international meetings. Information about study design, inclusion criteria, and sample characteristics were extracted. Network meta-analysis was used to pool direct (comparison of second generation DES to BMS) and indirect evidence (first generation DES with BMS and second generation DES) from the randomized trials. Twelve trials comparing all stents types including 9,673 patients randomly assigned to treatment groups were analyzed. Second generation DES was associated with significantly lower incidence of definite or probable ST (OR 0.59, 95% CI 0.39-0.89), MI (OR 0.59, 95% CI 0.39-0.89), and TVR at 3 years (OR 0.50: 95% CI 0.31-0.81) compared with BMS. In addition, there was a significantly lower incidence of MACE with second generation DES versus BMS (OR 0.54, 95% CI 0.34-0.74) at 3 years. These were driven by a higher rate of TVR, MI and stent thrombosis in the BMS group at 3 years. There was a non-significant reduction in the overall and cardiac mortality [OR 0.83, 95% CI (0.60-1.14), OR 0.88, 95% CI (0.6-1.28)] with the use of second generation DES versus BMS at 3 years. Network meta-analysis of randomized trials of primary PCI demonstrated lower incidence of MACE, MI, TVR, and stent thrombosis with second generation DES compared with BMS. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Connectivity in the human brain dissociates entropy and complexity of auditory inputs.
Nastase, Samuel A; Iacovella, Vittorio; Davis, Ben; Hasson, Uri
2015-03-01
Complex systems are described according to two central dimensions: (a) the randomness of their output, quantified via entropy; and (b) their complexity, which reflects the organization of a system's generators. Whereas some approaches hold that complexity can be reduced to uncertainty or entropy, an axiom of complexity science is that signals with very high or very low entropy are generated by relatively non-complex systems, while complex systems typically generate outputs with entropy peaking between these two extremes. In understanding their environment, individuals would benefit from coding for both input entropy and complexity; entropy indexes uncertainty and can inform probabilistic coding strategies, whereas complexity reflects a concise and abstract representation of the underlying environmental configuration, which can serve independent purposes, e.g., as a template for generalization and rapid comparisons between environments. Using functional neuroimaging, we demonstrate that, in response to passively processed auditory inputs, functional integration patterns in the human brain track both the entropy and complexity of the auditory signal. Connectivity between several brain regions scaled monotonically with input entropy, suggesting sensitivity to uncertainty, whereas connectivity between other regions tracked entropy in a convex manner consistent with sensitivity to input complexity. These findings suggest that the human brain simultaneously tracks the uncertainty of sensory data and effectively models their environmental generators. Copyright © 2014. Published by Elsevier Inc.
Van Den Broeke, Douglas J.; Laidig, Thomas L.; Chen, J. Fung; Wampler, Kurt E.; Hsu, Stephen D.; Shi, Xuelong; Socha, Robert J.; Dusa, Mircea V.; Corcoran, Noel P.
2004-08-01
Imaging contact and via layers continues to be one of the major challenges to be overcome for 65nm node lithography. Initial results of using ASML MaskTools' CPL Technology to print contact arrays through pitch have demonstrated the potential to further extend contact imaging to a k1 near 0.30. While there are advantages and disadvantages for any potential RET, the benefits of not having to solve the phase assignment problem (which can lead to unresolvable phase conflicts), of it being a single reticle - single exposure technique, and its application to multiple layers within a device (clear field and dark field) make CPL an attractive, cost effective solution to low k1 imaging. However, real semiconductor circuit designs consist of much more than regular arrays of contact holes and a method to define the CPL reticle design for a full chip circuit pattern is required in order for this technique to be feasible in volume manufacturing. Interference Mapping Lithography (IML) is a novel approach for defining optimum reticle patterns based on the imaging conditions that will be used when the wafer is exposed. Figure 1 shows an interference map for an isolated contact simulated using ASML /1150 settings of 0.75NA and 0.92/0.72/30deg Quasar illumination. This technique provides a model-based approach for placing all types features (scattering bars, anti-scattering bars, non-printing assist features, phase shifted and non-phase shifted) for the purpose of enhancing the resolution of the target pattern and it can be applied to any reticle type including binary (COG), attenuated phase shifting mask (attPSM), alternating aperture phase shifting mask (altPSM), and CPL. In this work, we investigate the application of IML to generate CPL reticle designs for random contact patterns that are typical for 65nm node logic devices. We examine the critical issues related to using CPL with Interference Mapping Lithography including controlling side lobe printing, contact patterns with
Radioactive inputs to the North Sea and the Channel
International Nuclear Information System (INIS)
1984-01-01
The subject is covered in sections: introduction (radioactivity; radioisotopes; discharges from nuclear establishments); data sources (statutory requirements); sources of liquid radioactive waste (figure showing location of principal sources of radioactive discharges; tables listing principal discharges by activity and by nature of radioisotope); Central Electricity Generating Board nuclear power stations; research and industrial establishments; Ministy of Defence establishments; other UK inputs of radioactive waste; total inputs to the North Sea and the Channel (direct inputs; river inputs; adjacent sea areas); conclusions. (U.K.)
International Nuclear Information System (INIS)
Borgwaldt, H.; Baumann, W.; Willerding, G.
1991-05-01
FLUTAN is a highly vectorized computer code for 3-D fluiddynamic and thermal-hydraulic analyses in cartesian and cylinder coordinates. It is related to the family of COMMIX codes originally developed at Argonne National Laboratory, USA. To a large extent, FLUTAN relies on basic concepts and structures imported from COMMIX-1B and COMMIX-2 which were made available to KfK in the frame of cooperation contracts in the fast reactor safety field. While on the one hand not all features of the original COMMIX versions have been implemented in FLUTAN, the code on the other hand includes some essential innovative options like CRESOR solution algorithm, general 3-dimensional rebalacing scheme for solving the pressure equation, and LECUSSO-QUICK-FRAM techniques suitable for reducing 'numerical diffusion' in both the enthalphy and momentum equations. This report provides users with detailed input instructions, presents formulations of the various model options, and explains by means of comprehensive sample input, how to use the code. (orig.) [de
Energy Technology Data Exchange (ETDEWEB)
Zdunek, A.; Soederberg, M. (Aeronautical Research Inst. of Sweden, Bromma (Sweden))
1989-01-01
The input card deck for the finite element program GARFEM version 3.2 is described in this manual. The program includes, but is not limited to, capabilities to handle the following problems: * Linear bar and beam element structures, * Geometrically non-linear problems (bar and beam), both static and transient dynamic analysis, * Transient response dynamics from a catalog of time varying external forcing function types or input function tables, * Eigenvalue solution (modes and frequencies), * Multi point constraints (MPC) for the modelling of mechanisms and e.g. rigid links. The MPC definition is used only in the geometrically linearized sense, * Beams with disjunct shear axis and neutral axis, * Beams with rigid offset. An interface exist that connects GARFEM with the program GAROS. GAROS is a program for aeroelastic analysis of rotating structures. Since this interface was developed GARFEM now serves as a preprocessor program in place of NASTRAN which was formerly used. Documentation of the methods applied in GARFEM exists but is so far limited to the capacities in existence before the GAROS interface was developed.
Directory of Open Access Journals (Sweden)
Judit Navracsics
2014-01-01
Full Text Available According to the critical period hypothesis, the earlier the acquisition of a second language starts, the better. Owing to the plasticity of the brain, up until a certain age a second language can be acquired successfully according to this view. Early second language learners are commonly said to have an advantage over later ones especially in phonetic/phonological acquisition. Native-like pronunciation is said to be most likely to be achieved by young learners. However, there is evidence of accentfree speech in second languages learnt after puberty as well. Occasionally, on the other hand, a nonnative accent may appear even in early second (or third language acquisition. Cross-linguistic influences are natural in multilingual development, and we would expect the dominant language to have an impact on the weaker one(s. The dominant language is usually the one that provides the largest amount of input for the child. But is it always the amount that counts? Perhaps sometimes other factors, such as emotions, ome into play? In this paper, data obtained from an EnglishPersian-Hungarian trilingual pair of siblings (under age 4 and 3 respectively is analyzed, with a special focus on cross-linguistic influences at the phonetic/phonological levels. It will be shown that beyond the amount of input there are more important factors that trigger interference in multilingual development.
Selectivity and sparseness in randomly connected balanced networks.
Directory of Open Access Journals (Sweden)
Cengiz Pehlevan
Full Text Available Neurons in sensory cortex show stimulus selectivity and sparse population response, even in cases where no strong functionally specific structure in connectivity can be detected. This raises the question whether selectivity and sparseness can be generated and maintained in randomly connected networks. We consider a recurrent network of excitatory and inhibitory spiking neurons with random connectivity, driven by random projections from an input layer of stimulus selective neurons. In this architecture, the stimulus-to-stimulus and neuron-to-neuron modulation of total synaptic input is weak compared to the mean input. Surprisingly, we show that in the balanced state the network can still support high stimulus selectivity and sparse population response. In the balanced state, strong synapses amplify the variation in synaptic input and recurrent inhibition cancels the mean. Functional specificity in connectivity emerges due to the inhomogeneity caused by the generative statistical rule used to build the network. We further elucidate the mechanism behind and evaluate the effects of model parameters on population sparseness and stimulus selectivity. Network response to mixtures of stimuli is investigated. It is shown that a balanced state with unselective inhibition can be achieved with densely connected input to inhibitory population. Balanced networks exhibit the "paradoxical" effect: an increase in excitatory drive to inhibition leads to decreased inhibitory population firing rate. We compare and contrast selectivity and sparseness generated by the balanced network to randomly connected unbalanced networks. Finally, we discuss our results in light of experiments.
Robust input design for nonlinear dynamic modeling of AUV.
Nouri, Nowrouz Mohammad; Valadi, Mehrdad
2017-09-01
Input design has a dominant role in developing the dynamic model of autonomous underwater vehicles (AUVs) through system identification. Optimal input design is the process of generating informative inputs that can be used to generate the good quality dynamic model of AUVs. In a problem with optimal input design, the desired input signal depends on the unknown system which is intended to be identified. In this paper, the input design approach which is robust to uncertainties in model parameters is used. The Bayesian robust design strategy is applied to design input signals for dynamic modeling of AUVs. The employed approach can design multiple inputs and apply constraints on an AUV system's inputs and outputs. Particle swarm optimization (PSO) is employed to solve the constraint robust optimization problem. The presented algorithm is used for designing the input signals for an AUV, and the estimate obtained by robust input design is compared with that of the optimal input design. According to the results, proposed input design can satisfy both robustness of constraints and optimality. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Vollan, A.; Soederberg, M. (Aeronautical Research Inst. of Sweden, Bromma (Sweden))
1989-01-01
This report describes the input for the programs GAROS1 and GAROS2, version 5.8 and later, February 1988. The GAROS system, developed by Arne Vollan, Omega GmbH, is used for the analysis of the mechanical and aeroelastic properties for general rotating systems. It has been specially designed to meet the requirements of aeroelastic stability and dynamic response of horizontal axis wind energy converters. Some of the special characteristics are: * The rotor may have one or more blades. * The blades may be rigidly attached to the hub, or they may be fully articulated. * The full elastic properties of the blades, the hub, the machine house and the tower are taken into account. * With the same basic model, a number of different analyses can be performed: Snap-shot analysis, Floquet method, transient response analysis, frequency response analysis etc.
DEFF Research Database (Denmark)
Czarnitzki, Dirk; Grimpe, Christoph; Pellens, Maikel
2015-01-01
The viability of modern open science norms and practices depends on public disclosure of new knowledge, methods, and materials. However, increasing industry funding of research can restrict the dissemination of results and materials. We show, through a survey sample of 837 German scientists in life...... sciences, natural sciences, engineering, and social sciences, that scientists who receive industry funding are twice as likely to deny requests for research inputs as those who do not. Receiving external funding in general does not affect denying others access. Scientists who receive external funding...... of any kind are, however, 50 % more likely to be denied access to research materials by others, but this is not affected by being funded specifically by industry...
DEFF Research Database (Denmark)
Czarnitzki, Dirk; Grimpe, Christoph; Pellens, Maikel
The viability of modern open science norms and practices depend on public disclosure of new knowledge, methods, and materials. However, increasing industry funding of research can restrict the dissemination of results and materials. We show, through a survey sample of 837 German scientists in life...... sciences, natural sciences, engineering, and social sciences, that scientists who receive industry funding are twice as likely to deny requests for research inputs as those who do not. Receiving external funding in general does not affect denying others access. Scientists who receive external funding...... of any kind are, however, 50% more likely to be denied access to research materials by others, but this is not affected by being funded specifically by industry....
Does Input Enhancement Work for Learning Politeness Strategies?
Khatib, Mohammad; Safari, Mahmood
2013-01-01
The present study investigated the effect of input enhancement on the acquisition of English politeness strategies by intermediate EFL learners. Two groups of freshman English majors were randomly assigned to the experimental (enhanced input) group and the control (mere exposure) group. Initially, a TOEFL test and a discourse completion test (DCT)…
A high speed digital noise generator
Obrien, J.; Gaffney, B.; Liu, B.
In testing of digital signal processing hardware, a high speed pseudo-random noise generator is often required to simulate an input noise source to the hardware. This allows the hardware to be exercised in a manner analogous to actual operating conditions. In certain radar and communication environments, a noise generator operating at speeds in excess of 60 MHz may be required. In this paper, a method of generating high speed pseudo-random numbers from an arbitrarily specified distribution (Gaussian, Log-Normal, etc.) using a transformation from a uniform noise source is described. A noise generator operating at 80 MHz has been constructed. Different distributions can be readily obtained by simply changing the ROM set. The hardware and test results will be described. Using this approach, the generation of pseudo-random sequences with arbitrary distributions at word rates in excess of 200 MHz can be readily achieved.
Input dependent cell assembly dynamics in a model of the striatal medium spiny neuron network
Directory of Open Access Journals (Sweden)
Adam ePonzi
2012-03-01
Full Text Available The striatal medium spiny neuron (MSNs network is sparsely connected with fairly weak GABAergic collaterals receiving an excitatory glutamatergic cortical projection. Peri stimulus time histograms (PSTH of MSN population response investigated in various experimental studies display strong firing rate modulations distributed throughout behavioural task epochs. In previous work we have shown by numerical simulation that sparse random networks of inhibitory spiking neurons with characteristics appropriate for UP state MSNs form cell assemblies which fire together coherently in sequences on long behaviourally relevant timescales when the network receives a fixed pattern of constant input excitation. Here we first extend that model to the case where cortical excitation is composed of many independent noisy Poisson processes and demonstrate that cell assembly dynamics is still observed when the input is sufficiently weak. However if cortical excitation strength is increased more regularly firing and completely quiescent cells are found, which depend on the cortical stimulation. Subsequently we further extend previous work to consider what happens when the excitatory input varies as it would in when the animal is engaged in behavior. We investigate how sudden switches in excitation interact with network generated patterned activity. We show that sequences of cell assembly activations can be locked to the excitatory input sequence and delineate the range of parameters where this behaviour is shown. Model cell population PSTH display both stimulus and temporal specificity, with large population firing rate modulations locked to elapsed time from task events. Thus the random network can generate a large diversity of temporally evolving stimulus dependent responses even though the input is fixed between switches. We suggest the MSN network is well suited to the generation of such slow coherent task dependent response
Input dependent cell assembly dynamics in a model of the striatal medium spiny neuron network.
Ponzi, Adam; Wickens, Jeff
2012-01-01
The striatal medium spiny neuron (MSN) network is sparsely connected with fairly weak GABAergic collaterals receiving an excitatory glutamatergic cortical projection. Peri-stimulus time histograms (PSTH) of MSN population response investigated in various experimental studies display strong firing rate modulations distributed throughout behavioral task epochs. In previous work we have shown by numerical simulation that sparse random networks of inhibitory spiking neurons with characteristics appropriate for UP state MSNs form cell assemblies which fire together coherently in sequences on long behaviorally relevant timescales when the network receives a fixed pattern of constant input excitation. Here we first extend that model to the case where cortical excitation is composed of many independent noisy Poisson processes and demonstrate that cell assembly dynamics is still observed when the input is sufficiently weak. However if cortical excitation strength is increased more regularly firing and completely quiescent cells are found, which depend on the cortical stimulation. Subsequently we further extend previous work to consider what happens when the excitatory input varies as it would when the animal is engaged in behavior. We investigate how sudden switches in excitation interact with network generated patterned activity. We show that sequences of cell assembly activations can be locked to the excitatory input sequence and outline the range of parameters where this behavior is shown. Model cell population PSTH display both stimulus and temporal specificity, with large population firing rate modulations locked to elapsed time from task events. Thus the random network can generate a large diversity of temporally evolving stimulus dependent responses even though the input is fixed between switches. We suggest the MSN network is well suited to the generation of such slow coherent task dependent response which could be utilized by the animal in behavior.
Michelitsch, T. M.; Collet, B. A.; Riascos, A. P.; Nowakowski, A. F.; Nicolleau, F. C. G. A.
2017-12-01
We analyze a Markovian random walk strategy on undirected regular networks involving power matrix functions of the type L\\frac{α{2}} where L indicates a ‘simple’ Laplacian matrix. We refer to such walks as ‘fractional random walks’ with admissible interval 0walk. From these analytical results we establish a generalization of Polya’s recurrence theorem for fractional random walks on d-dimensional infinite lattices: The fractional random walk is transient for dimensions d > α (recurrent for d≤slantα ) of the lattice. As a consequence, for 0walk is transient for all lattice dimensions d=1, 2, .. and in the range 1≤slantα walk is transient only for lattice dimensions d≥slant 3 . The generalization of Polya’s recurrence theorem remains valid for the class of random walks with Lévy flight asymptotics for long-range steps. We also analyze the mean first passage probabilities, mean residence times, mean first passage times and global mean first passage times (Kemeny constant) for the fractional random walk. For an infinite 1D lattice (infinite ring) we obtain for the transient regime 0walk is generated by the non-diagonality of the fractional Laplacian matrix with Lévy-type heavy tailed inverse power law decay for the probability of long-range moves. This non-local and asymptotic behavior of the fractional random walk introduces small-world properties with the emergence of Lévy flights on large (infinite) lattices.
Six axis force feedback input device
Ohm, Timothy (Inventor)
1998-01-01
The present invention is a low friction, low inertia, six-axis force feedback input device comprising an arm with double-jointed, tendon-driven revolute joints, a decoupled tendon-driven wrist, and a base with encoders and motors. The input device functions as a master robot manipulator of a microsurgical teleoperated robot system including a slave robot manipulator coupled to an amplifier chassis, which is coupled to a control chassis, which is coupled to a workstation with a graphical user interface. The amplifier chassis is coupled to the motors of the master robot manipulator and the control chassis is coupled to the encoders of the master robot manipulator. A force feedback can be applied to the input device and can be generated from the slave robot to enable a user to operate the slave robot via the input device without physically viewing the slave robot. Also, the force feedback can be generated from the workstation to represent fictitious forces to constrain the input device's control of the slave robot to be within imaginary predetermined boundaries.
International Nuclear Information System (INIS)
Zmushko, V.V.; Migdal, A.A.
1987-01-01
A model of triangulated random surfaces which is the discrete analogue of the Polyakov string is considered in the work. An algorithm is proposed which enables one to study the model by means of the Monte Carlo method in the grand canonical ensemble. Preliminary results are presented on the evaluation of the critical index γ
Reprocessing input data validation
International Nuclear Information System (INIS)
Persiani, P.J.; Bucher, R.G.; Pond, R.B.; Cornella, R.J.
1990-01-01
The Isotope Correlation Technique (ICT), in conjunction with the gravimetric (Pu/U ratio) method for mass determination, provides an independent verification of the input accountancy at the dissolver or accountancy stage of the reprocessing plant. The Isotope Correlation Technique has been applied to many classes of domestic and international reactor systems (light-water, heavy-water, graphite, and liquid-metal) operating in a variety of modes (power, research, production, and breeder), and for a variety of reprocessing fuel cycle management strategies. Analysis of reprocessing operations data based on isotopic correlations derived for assemblies in a PWR environment and fuel management scheme, yielded differences between the measurement-derived and ICT-derived plutonium mass determinations of (-0.02 ± 0.23)% for the measured U-235 and (+0.50 ± 0.31)% for the measured Pu-239, for a core campaign. The ICT analyses has been implemented for the plutonium isotopics in a depleted uranium assembly in a heavy-water, enriched uranium system and for the uranium isotopes in the fuel assemblies in light-water, highly-enriched systems. 7 refs., 5 figs., 4 tabs
Directory of Open Access Journals (Sweden)
Boris Jesús Goenaga
2017-01-01
Full Text Available The pavement roughness is the main variable that produces the vertical excitation in vehicles. Pavement profiles are the main determinant of (i discomfort perception on users and (ii dynamic loads generated at the tire-pavement interface, hence its evaluation constitutes an essential step on a Pavement Management System. The present document evaluates two specific techniques used to simulate pavement profiles; these are the shaping filter and the sinusoidal approach, both based on the Power Spectral Density. Pavement roughness was evaluated using the International Roughness Index (IRI, which represents the most used index to characterize longitudinal road profiles. Appropriate parameters were defined in the simulation process to obtain pavement profiles with specific ranges of IRI values using both simulation techniques. The results suggest that using a sinusoidal approach one can generate random profiles with IRI values that are representative of different road types, therefore, one could generate a profile for a paved or an unpaved road, representing all the proposed categories defined by ISO 8608 standard. On the other hand, to obtain similar results using the shaping filter approximation a modification in the simulation parameters is necessary. The new proposed values allow one to generate pavement profiles with high levels of roughness, covering a wider range of surface types. Finally, the results of the current investigation could be used to further improve our understanding on the effect of pavement roughness on tire pavement interaction. The evaluated methodologies could be used to generate random profiles with specific levels of roughness to assess its effect on dynamic loads generated at the tire-pavement interface and user’s perception of road condition.
International Nuclear Information System (INIS)
Filipovic, N; Haber, S; Kojic, M; Tsuda, A
2008-01-01
Traditional DPD methods address dissipative and random forces exerted along the line connecting neighbouring particles. Espanol (1998 Phys. Rev. E 57 2930-48) suggested adding dissipative and random force components in a direction perpendicular to this line. This paper focuses on the advantages and disadvantages of such an addition as compared with the traditional DPD method. Our benchmark system comprises fluid initially at rest occupying the space between two concentric cylinders rotating with various angular velocities. The effect of the lateral force components on the time evolution of the simulated velocity profile was also compared with that of the known analytical solution. The results show that (i) the solution accuracy at steady state has improved and the error has been reduced by at least 30% (in one case by 75%), (ii) the DPD time to reach steady state has been halved, (iii) the CPU time has increased by only 30%, and (iv) no significant differences exist in density and temperature distributions
International Nuclear Information System (INIS)
Lucianna F A; Carrillo M A; Mangussi M J
2012-01-01
The present work describes the development of a pseudo-random system to provide to a simulator pulse of radiation detectors the ability to emit pulses patterns similar to those recorded when measuring actual radioisotope. The idea is that the system can emulate characteristic spectral distributions of known radioisotopes, as well as creating individual spectra for specific purposes. This design is based on an improvement in terms of software from earlier development that only supplied predefined amplitude pulses at constant intervals (author)
Energy Technology Data Exchange (ETDEWEB)
Cryns, Jackson W.; Hatchell, Brian K.; Santiago-Rojas, Emiliano; Silvers, Kurt L.
2013-07-01
Formal journal article Experimental analysis of a piezoelectric energy harvesting system for harmonic, random, and sine on random vibration Abstract: Harvesting power with a piezoelectric vibration powered generator using a full-wave rectifier conditioning circuit is experimentally compared for varying sinusoidal, random and sine on random (SOR) input vibration scenarios. Additionally, the implications of source vibration characteristics on harvester design are discussed. Studies in vibration harvesting have yielded numerous alternatives for harvesting electrical energy from vibrations but piezoceramics arose as the most compact, energy dense means of energy transduction. The rise in popularity of harvesting energy from ambient vibrations has made piezoelectric generators commercially available. Much of the available literature focuses on maximizing harvested power through nonlinear processing circuits that require accurate knowledge of generator internal mechanical and electrical characteristics and idealization of the input vibration source, which cannot be assumed in general application. In this manuscript, variations in source vibration and load resistance are explored for a commercially available piezoelectric generator. We characterize the source vibration by its acceleration response for repeatability and transcription to general application. The results agree with numerical and theoretical predictions for in previous literature that load optimal resistance varies with transducer natural frequency and source type, and the findings demonstrate that significant gains are seen with lower tuned transducer natural frequencies for similar source amplitudes. Going beyond idealized steady state sinusoidal and simplified random vibration input, SOR testing allows for more accurate representation of real world ambient vibration. It is shown that characteristic interactions from more complex vibrational sources significantly alter power generation and power processing
DEFF Research Database (Denmark)
Li, Yan-Fu; Ding, Yi; Zio, Enrico
2014-01-01
. In this work, we extend the traditional universal generating function (UGF) approach for multi-state system (MSS) availability and reliability assessment to account for both aleatory and epistemic uncertainties. First, a theoretical extension, named hybrid UGF (HUGF), is made to introduce the use of random...... fuzzy variables (RFVs) in the approach. Second, the composition operator of HUGF is defined by considering simultaneously the probabilistic convolution and the fuzzy extension principle. Finally, an efficient algorithm is designed to extract probability boxes ($p$ -boxes) from the system HUGF, which...
International Nuclear Information System (INIS)
Lim, Sang Gyu; You, Sung Chang; Kim, Han Gon
2011-01-01
Regulatory guide 1.20 revision 3 of the Nuclear Regulatory Committee (NRC) modifies guidance for vibration assessments of reactor internals and steam generator internals. The new guidance requires applicants to provide a preliminary analysis and evaluation of the design and performance of a facility, including the safety margins of during normal operation and transient conditions anticipated during the life of the facility. Especially, revision 3 require rigorous assessments of adverse flow effects in the steam dryer cased by flow-excited acoustic and structural resonances such as the abnormality from power-uprated BWR cases. For two nearly identical nuclear power plants, the steam system of one BWR plant experienced failure of steam dryers and the main steam system components when steam flow was increased by 16 percent for extended power uprate (EPU). The mechanisms of those failures have revealed that a small adverse flow changing from the prototype condition induced severe flow-excited acoustic and structural resonances, leading to structural failures. In accordance with the historical background, therefore, potential adverse flow effects should be evaluated rigorously for steam generator internals in both BWR and Pressurized Water Reactor (PWR). The Advanced Power Reactor 1400 (APR1400), an evolutionary light water reactor, increased the power by 7.7 percent from the design of the 'Valid Prototype', System80+. Thus, reliable evaluations of potential adverse flow effects on the steam generator of APR1400 are necessary according to the regulatory guide. This paper is part of the computational fluid dynamics (CFD) analysis results for evaluation of the adverse flow effect for the steam generator internals of APR1400, including a series of sensitivity analyses to enhance the reliability of CFD analysis and an estimation the effect of flow loads on the internals of the steam generator under normal operation conditions
Radwan, Ahmed Gomaa
2014-06-18
This paper presents a digital implementation of a 3rd order chaotic system using the Euler approximation. Short-term predictability is studied in relation to system precision, Euler step size and attractor size and optimal parameters for maximum performance are derived. Defective bits from the native chaotic output are neglected and the remaining pass the NIST SP. 800-22 tests without post-processing. The resulting optimized pseudorandom number generator has throughput up to 17.60 Gbits/s for a 64-bit design experimentally verified on a Xilinx Virtex 4 FPGA with logic utilization less than 1.85%.
Radwan, Ahmed Gomaa; Mansingka, Abhinav S.; Salama, Khaled N.; Zidan, Mohammed A.
2014-01-01
This paper presents a digital implementation of a 3rd order chaotic system using the Euler approximation. Short-term predictability is studied in relation to system precision, Euler step size and attractor size and optimal parameters for maximum performance are derived. Defective bits from the native chaotic output are neglected and the remaining pass the NIST SP. 800-22 tests without post-processing. The resulting optimized pseudorandom number generator has throughput up to 17.60 Gbits/s for a 64-bit design experimentally verified on a Xilinx Virtex 4 FPGA with logic utilization less than 1.85%.
Enhanced Input in LCTL Pedagogy
Directory of Open Access Journals (Sweden)
Marilyn S. Manley
2009-08-01
Full Text Available Language materials for the more-commonly-taught languages (MCTLs often include visual input enhancement (Sharwood Smith 1991, 1993 which makes use of typographical cues like bolding and underlining to enhance the saliency of targeted forms. For a variety of reasons, this paper argues that the use of enhanced input, both visual and oral, is especially important as a tool for the lesscommonly-taught languages (LCTLs. As there continues to be a scarcity of teaching resources for the LCTLs, individual teachers must take it upon themselves to incorporate enhanced input into their own self-made materials. Specific examples of how to incorporate both visual and oral enhanced input into language teaching are drawn from the author’s own experiences teaching Cuzco Quechua. Additionally, survey results are presented from the author’s Fall 2010 semester Cuzco Quechua language students, supporting the use of both visual and oral enhanced input.
Enhanced Input in LCTL Pedagogy
Directory of Open Access Journals (Sweden)
Marilyn S. Manley
2010-08-01
Full Text Available Language materials for the more-commonly-taught languages (MCTLs often include visual input enhancement (Sharwood Smith 1991, 1993 which makes use of typographical cues like bolding and underlining to enhance the saliency of targeted forms. For a variety of reasons, this paper argues that the use of enhanced input, both visual and oral, is especially important as a tool for the lesscommonly-taught languages (LCTLs. As there continues to be a scarcity of teaching resources for the LCTLs, individual teachers must take it upon themselves to incorporate enhanced input into their own self-made materials. Specific examples of how to incorporate both visual and oral enhanced input into language teaching are drawn from the author’s own experiences teaching Cuzco Quechua. Additionally, survey results are presented from the author’s Fall 2010 semester Cuzco Quechua language students, supporting the use of both visual and oral enhanced input.
Energy Technology Data Exchange (ETDEWEB)
Kastanya, Doddy [Safety and Licensing Department, Candesco Division of Kinectrics Inc., Toronto (Canada)
2017-02-15
In any reactor physics analysis, the instantaneous power distribution in the core can be calculated when the actual bundle-wise burnup distribution is known. Considering the fact that CANDU (Canada Deuterium Uranium) utilizes on-power refueling to compensate for the reduction of reactivity due to fuel burnup, in the CANDU fuel management analysis, snapshots of power and burnup distributions can be obtained by simulating and tracking the reactor operation over an extended period using various tools such as the *SIMULATE module of the Reactor Fueling Simulation Program (RFSP) code. However, for some studies, such as an evaluation of a conceptual design of a next-generation CANDU reactor, the preferred approach to obtain a snapshot of the power distribution in the core is based on the patterned-channel-age model implemented in the *INSTANTAN module of the RFSP code. The objective of this approach is to obtain a representative snapshot of core conditions quickly. At present, such patterns could be generated by using a program called RANDIS, which is implemented within the *INSTANTAN module. In this work, we present an alternative approach to derive the patterned-channel-age model where a simulated-annealing-based algorithm is used to find such patterns, which produce reasonable power distributions.
Directory of Open Access Journals (Sweden)
Doddy Kastanya
2017-02-01
Full Text Available In any reactor physics analysis, the instantaneous power distribution in the core can be calculated when the actual bundle-wise burnup distribution is known. Considering the fact that CANDU (Canada Deuterium Uranium utilizes on-power refueling to compensate for the reduction of reactivity due to fuel burnup, in the CANDU fuel management analysis, snapshots of power and burnup distributions can be obtained by simulating and tracking the reactor operation over an extended period using various tools such as the *SIMULATE module of the Reactor Fueling Simulation Program (RFSP code. However, for some studies, such as an evaluation of a conceptual design of a next-generation CANDU reactor, the preferred approach to obtain a snapshot of the power distribution in the core is based on the patterned-channel-age model implemented in the *INSTANTAN module of the RFSP code. The objective of this approach is to obtain a representative snapshot of core conditions quickly. At present, such patterns could be generated by using a program called RANDIS, which is implemented within the *INSTANTAN module. In this work, we present an alternative approach to derive the patterned-channel-age model where a simulated-annealing-based algorithm is used to find such patterns, which produce reasonable power distributions.
Mohr, Christine; Koutrakis, Nikolaos; Kuhn, Gustav
2015-01-01
Magical ideation and belief in the paranormal is considered to represent a trait-like character; people either believe in it or not. Yet, anecdotes indicate that exposure to an anomalous event can turn skeptics into believers. This transformation is likely to be accompanied by altered cognitive functioning such as impaired judgments of event likelihood. Here, we investigated whether the exposure to an anomalous event changes individuals’ explicit traditional (religious) and non-traditional (e.g., paranormal) beliefs as well as cognitive biases that have previously been associated with non-traditional beliefs, e.g., repetition avoidance when producing random numbers in a mental dice task. In a classroom, 91 students saw a magic demonstration after their psychology lecture. Before the demonstration, half of the students were told that the performance was done respectively by a conjuror (magician group) or a psychic (psychic group). The instruction influenced participants’ explanations of the anomalous event. Participants in the magician, as compared to the psychic group, were more likely to explain the event through conjuring abilities while the reverse was true for psychic abilities. Moreover, these explanations correlated positively with their prior traditional and non-traditional beliefs. Finally, we observed that the psychic group showed more repetition avoidance than the magician group, and this effect remained the same regardless of whether assessed before or after the magic demonstration. We conclude that pre-existing beliefs and contextual suggestions both influence people’s interpretations of anomalous events and associated cognitive biases. Beliefs and associated cognitive biases are likely flexible well into adulthood and change with actual life events. PMID:25653626
Directory of Open Access Journals (Sweden)
Christine eMohr
2015-01-01
Full Text Available Magical ideation and belief in the paranormal is considered to represent a trait-like character; people either believe in it or not. Yet, anecdotes indicate that exposure to an anomalous event can turn sceptics into believers. This transformation is likely to be accompanied by altered cognitive functioning such as impaired judgements of event likelihood. Here, we investigated whether the exposure to an anomalous event changes individuals’ explicit traditional (religious and non-traditional (e.g. paranormal beliefs as well as cognitive biases that have previously been associated with non-traditional beliefs, e.g. repetition avoidance when producing random numbers in a mental dice task. In a classroom, 91 students saw a magic demonstration after their psychology lecture. Before the demonstration, half of the students were told that the performance was done respectively by a conjuror (magician group or a psychic (psychic group. The instruction influenced participants’ explanations of the anomalous event. Participants in the magician, as compared to the psychic group, were more likely to explain the event through conjuring abilities while the reverse was true for psychic abilities. Moreover, these explanations correlated positively with their prior traditional and non-traditional beliefs. Finally, we observed that the psychic group showed more repetition avoidance than the magician group, and this effect remained the same regardless of whether assessed before or after the magic demonstration. We conclude that pre-existing beliefs and contextual suggestions both influence people’s interpretations of anomalous events and associated cognitive biases. Beliefs and associated cognitive biases are likely flexible well into adulthood and change with actual life events.
Private randomness expansion with untrusted devices
International Nuclear Information System (INIS)
Colbeck, Roger; Kent, Adrian
2011-01-01
Randomness is an important resource for many applications, from gambling to secure communication. However, guaranteeing that the output from a candidate random source could not have been predicted by an outside party is a challenging task, and many supposedly random sources used today provide no such guarantee. Quantum solutions to this problem exist, for example a device which internally sends a photon through a beamsplitter and observes on which side it emerges, but, presently, such solutions require the user to trust the internal workings of the device. Here, we seek to go beyond this limitation by asking whether randomness can be generated using untrusted devices-even ones created by an adversarial agent-while providing a guarantee that no outside party (including the agent) can predict it. Since this is easily seen to be impossible unless the user has an initially private random string, the task we investigate here is private randomness expansion. We introduce a protocol for private randomness expansion with untrusted devices which is designed to take as input an initially private random string and produce as output a longer private random string. We point out that private randomness expansion protocols are generally vulnerable to attacks that can render the initial string partially insecure, even though that string is used only inside a secure laboratory; our protocol is designed to remove this previously unconsidered vulnerability by privacy amplification. We also discuss extensions of our protocol designed to generate an arbitrarily long random string from a finite initially private random string. The security of these protocols against the most general attacks is left as an open question.
Private randomness expansion with untrusted devices
Colbeck, Roger; Kent, Adrian
2011-03-01
Randomness is an important resource for many applications, from gambling to secure communication. However, guaranteeing that the output from a candidate random source could not have been predicted by an outside party is a challenging task, and many supposedly random sources used today provide no such guarantee. Quantum solutions to this problem exist, for example a device which internally sends a photon through a beamsplitter and observes on which side it emerges, but, presently, such solutions require the user to trust the internal workings of the device. Here, we seek to go beyond this limitation by asking whether randomness can be generated using untrusted devices—even ones created by an adversarial agent—while providing a guarantee that no outside party (including the agent) can predict it. Since this is easily seen to be impossible unless the user has an initially private random string, the task we investigate here is private randomness expansion. We introduce a protocol for private randomness expansion with untrusted devices which is designed to take as input an initially private random string and produce as output a longer private random string. We point out that private randomness expansion protocols are generally vulnerable to attacks that can render the initial string partially insecure, even though that string is used only inside a secure laboratory; our protocol is designed to remove this previously unconsidered vulnerability by privacy amplification. We also discuss extensions of our protocol designed to generate an arbitrarily long random string from a finite initially private random string. The security of these protocols against the most general attacks is left as an open question.
Private randomness expansion with untrusted devices
Energy Technology Data Exchange (ETDEWEB)
Colbeck, Roger; Kent, Adrian, E-mail: rcolbeck@perimeterinstitute.ca, E-mail: a.p.a.kent@damtp.cam.ac.uk [Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, ON N2L 2Y5 (Canada)
2011-03-04
Randomness is an important resource for many applications, from gambling to secure communication. However, guaranteeing that the output from a candidate random source could not have been predicted by an outside party is a challenging task, and many supposedly random sources used today provide no such guarantee. Quantum solutions to this problem exist, for example a device which internally sends a photon through a beamsplitter and observes on which side it emerges, but, presently, such solutions require the user to trust the internal workings of the device. Here, we seek to go beyond this limitation by asking whether randomness can be generated using untrusted devices-even ones created by an adversarial agent-while providing a guarantee that no outside party (including the agent) can predict it. Since this is easily seen to be impossible unless the user has an initially private random string, the task we investigate here is private randomness expansion. We introduce a protocol for private randomness expansion with untrusted devices which is designed to take as input an initially private random string and produce as output a longer private random string. We point out that private randomness expansion protocols are generally vulnerable to attacks that can render the initial string partially insecure, even though that string is used only inside a secure laboratory; our protocol is designed to remove this previously unconsidered vulnerability by privacy amplification. We also discuss extensions of our protocol designed to generate an arbitrarily long random string from a finite initially private random string. The security of these protocols against the most general attacks is left as an open question.
Documentation of CATHENA input files for the APOLLO computer
International Nuclear Information System (INIS)
1988-06-01
Input files created for the VAX version of the CATHENA two-fluid code have been modified and documented for simulation on the AECB's APOLLO computer system. The input files describe the RD-14 thermalhydraulic loop, the RD-14 steam generator, the RD-12 steam generator blowdown test facility, the Stern Laboratories Cold Water Injection Facility (CWIT), and a CANDU 600 reactor. Sample CATHENA predictions are given and compared with experimental results where applicable. 24 refs
Logarithmic-function generator
Caron, P. R.
1975-01-01
Solid-state logarithmic-function generator is compact and provides improved accuracy. Generator includes a stable multivibrator feeding into RC circuit. Resulting exponentially decaying voltage is compared with input signal. Generator output is proportional to time required for exponential voltage to decay from preset reference level to level of input signal.
Khan, Zafar Ali; Sohn, Won
2012-10-01
The growing population of elderly people living alone increases the need for automatic healthcare monitoring systems for elderly care. Automatic vision sensor-based systems are increasingly used for human activity recognition (HAR) in recent years. This study presents an improved model, tested using actors, of a sensor-based HAR system to recognize daily life activities of elderly people at home and generate an alert in case of abnormal HAR. Datasets consisting of six abnormal activities (falling backward, falling forward, falling rightward, falling leftward, chest pain, and fainting) and four normal activities (walking, rushing, sitting down, and standing up) are generated from different view angles (90°, -90°, 45°, -45°). Feature extraction and dimensions reduction are performed by R-transform followed by generalized discriminant analysis (GDA) methods. R-transform extracts symmetric, scale, and translation-invariant features from the sequences of activities. GDA increases the discrimination between different classes of highly similar activities. Silhouette sequences are quantified by the Linde-Buzo-Gray algorithm and recognized by hidden conditional random fields. Experimental results provide an average recognition rate of 94.2% for abnormal activities and 92.7% for normal activities. The recognition rate for the highly similar activities from different view angles shows the flexibility and efficacy of the proposed abnormal HAR and alert generation system for elderly care.
Morosi, J; Berti, N; Akrout, A; Picozzi, A; Guasoni, M; Fatome, J
2018-01-22
In this manuscript, we experimentally and numerically investigate the chaotic dynamics of the state-of-polarization in a nonlinear optical fiber due to the cross-interaction between an incident signal and its intense backward replica generated at the fiber-end through an amplified reflective delayed loop. Thanks to the cross-polarization interaction between the two-delayed counter-propagating waves, the output polarization exhibits fast temporal chaotic dynamics, which enable a powerful scrambling process with moving speeds up to 600-krad/s. The performance of this all-optical scrambler was then evaluated on a 10-Gbit/s On/Off Keying telecom signal achieving an error-free transmission. We also describe how these temporal and chaotic polarization fluctuations can be exploited as an all-optical random number generator. To this aim, a billion-bit sequence was experimentally generated and successfully confronted to the dieharder benchmarking statistic tools. Our experimental analysis are supported by numerical simulations based on the resolution of counter-propagating coupled nonlinear propagation equations that confirm the observed behaviors.
Kawaguchi, Minato; Mino, Hiroyuki; Durand, Dominique M
2007-01-01
Stochastic resonance (SR) has been shown to enhance the signal to noise ratio or detection of signals in neurons. It is not yet clear how this effect of SR on the signal to noise ratio affects signal processing in neural networks. In this paper, we investigate the effects of the location of background noise input on information transmission in a hippocampal CA1 neuron model. In the computer simulation, random sub-threshold spike trains (signal) generated by a filtered homogeneous Poisson process were presented repeatedly to the middle point of the main apical branch, while the homogeneous Poisson shot noise (background noise) was applied to a location of the dendrite in the hippocampal CA1 model consisting of the soma with a sodium, a calcium, and five potassium channels. The location of the background noise input was varied along the dendrites to investigate the effects of background noise input location on information transmission. The computer simulation results show that the information rate reached a maximum value for an optimal amplitude of the background noise amplitude. It is also shown that this optimal amplitude of the background noise is independent of the distance between the soma and the noise input location. The results also show that the location of the background noise input does not significantly affect the maximum values of the information rates generated by stochastic resonance.
Fernandez, Fernando R.; Malerba, Paola; White, John A.
2015-01-01
The presence of voltage fluctuations arising from synaptic activity is a critical component in models of gain control, neuronal output gating, and spike rate coding. The degree to which individual neuronal input-output functions are modulated by voltage fluctuations, however, is not well established across different cortical areas. Additionally, the extent and mechanisms of input-output modulation through fluctuations have been explored largely in simplified models of spike generation, and with limited consideration for the role of non-linear and voltage-dependent membrane properties. To address these issues, we studied fluctuation-based modulation of input-output responses in medial entorhinal cortical (MEC) stellate cells of rats, which express strong sub-threshold non-linear membrane properties. Using in vitro recordings, dynamic clamp and modeling, we show that the modulation of input-output responses by random voltage fluctuations in stellate cells is significantly limited. In stellate cells, a voltage-dependent increase in membrane resistance at sub-threshold voltages mediated by Na+ conductance activation limits the ability of fluctuations to elicit spikes. Similarly, in exponential leaky integrate-and-fire models using a shallow voltage-dependence for the exponential term that matches stellate cell membrane properties, a low degree of fluctuation-based modulation of input-output responses can be attained. These results demonstrate that fluctuation-based modulation of input-output responses is not a universal feature of neurons and can be significantly limited by subthreshold voltage-gated conductances. PMID:25909971
Input data required for specific performance assessment codes
International Nuclear Information System (INIS)
Seitz, R.R.; Garcia, R.S.; Starmer, R.J.; Dicke, C.A.; Leonard, P.R.; Maheras, S.J.; Rood, A.S.; Smith, R.W.
1992-02-01
The Department of Energy's National Low-Level Waste Management Program at the Idaho National Engineering Laboratory generated this report on input data requirements for computer codes to assist States and compacts in their performance assessments. This report gives generators, developers, operators, and users some guidelines on what input data is required to satisfy 22 common performance assessment codes. Each of the codes is summarized and a matrix table is provided to allow comparison of the various input required by the codes. This report does not determine or recommend which codes are preferable
Uncertainty of input data for room acoustic simulations
DEFF Research Database (Denmark)
Jeong, Cheol-Ho; Marbjerg, Gerd; Brunskog, Jonas
2016-01-01
Although many room acoustic simulation models have been well established, simulation results will never be accurate with inaccurate and uncertain input data. This study addresses inappropriateness and uncertainty of input data for room acoustic simulations. Firstly, the random incidence absorption...... and scattering coefficients are insufficient when simulating highly non-diffuse rooms. More detailed information, such as the phase and angle dependence, can greatly improve the simulation results of pressure-based geometrical and wave-based models at frequencies well below the Schroeder frequency. Phase...... summarizes potential advanced absorption measurement techniques that can improve the quality of input data for room acoustic simulations. Lastly, plenty of uncertain input data are copied from unreliable sources. Software developers and users should be careful when spreading such uncertain input data. More...
Eriksson, Clas
2015-01-01
This paper explores economic policies related to the potential conflict between economic growth and the environment. It applies a model with directed technological change and focuses on the case with low elasticity of substitution between clean and dirty inputs in production. New technology is substituted for the polluting input, which results in a gradual decline in pollution along the optimal long-run growth path. In contrast to some recent work, the era of pollution and environmental polic...
Chou, Y. C.; Hsiao, Yi-Feng; Hwang, Gwo-Jen; To, Kiwing
2016-02-01
The rotation of the γ subunit of F1-ATPase is stochastic, processive, unidirectional, reversible through an external torque, and stepwise with a slow rotation. We propose a mechanism that can explain these properties of the rotary molecular motor, and that can determine the direction of rotation. The asymmetric structures of the γ subunit, both at the tip of the shaft (C and N termini) and at the part (ɛ subunit) protruding from the α3β3 subunits, are critical. The torque required for stochastic rotation is generated from the impulsive reactive force due to the random collisions between the γ subunit and the quasihexagonal α3β3 subunits. The rotation is the result of the random motion of the confined asymmetric γ subunit. The steps originate from the chemical reactions of the γ subunit and physical interaction between the γ subunit and the flexible protrusions of the α3β3 subunits. An external torque as well as a configurational modification in the γ subunit (the central rotor) can reverse the rotational direction. We demonstrate the applicability of the mechanism to a macroscopic simulation system, which has the essential ingredients of the F1-ATPase structure, by reproducing the dynamic properties of the rotation.
Application of computer voice input/output
International Nuclear Information System (INIS)
Ford, W.; Shirk, D.G.
1981-01-01
The advent of microprocessors and other large-scale integration (LSI) circuits is making voice input and output for computers and instruments practical; specialized LSI chips for speech processing are appearing on the market. Voice can be used to input data or to issue instrument commands; this allows the operator to engage in other tasks, move about, and to use standard data entry systems. Voice synthesizers can generate audible, easily understood instructions. Using voice characteristics, a control system can verify speaker identity for security purposes. Two simple voice-controlled systems have been designed at Los Alamos for nuclear safeguards applicaations. Each can easily be expanded as time allows. The first system is for instrument control that accepts voice commands and issues audible operator prompts. The second system is for access control. The speaker's voice is used to verify his identity and to actuate external devices
Jun, Chung-Hwan; Park, Chang-Hwan; Lee, Wan-Sik; Joo, Young-Eun; Kim, Hyun-Soo; Choi, Sung-Kyu; Rew, Jong-Sun; Kim, Sei-Jong; Kim, Young-Dae
2006-10-01
Bacterial infection may be a critical trigger for variceal bleeding. Antibiotic prophylaxis can prevent rebleeding in patients with acute gastroesophageal variceal bleeding (GEVB). The aim of the study was to compare prophylactic third generation cephalosporins with on-demand antibiotics for the prevention of gastroesophageal variceal rebleeding. In a prospective trial, patients with the first acute GEVB were randomly assigned to receive prophylactic antibiotics (intravenous cefotaxime 2 g q 8 hr for 7 days, prophylactic antibiotics group) or to receive the same antibiotics only when infection became evident (on-demand group). Sixty-two patients in the prophylactic group and 58 patients in the on-demand group were included for analysis. Antibiotic prophylaxis decreased infection (3.2% vs. 15.5%, p=0.026). The actuarial rebleeding rate in the prophylactic group was significantly lower than that in the on-demand group (33.9% vs. 62.1%, p=0.004). The difference of rebleeding rate was mostly due to early rebleeding within 6 weeks (4.8% vs. 20.7%, p=0.012). On multivariate analysis, antibiotic prophylaxis (relative hazard: 0.248, 95% confidence interval (CI): 0.067-0.919, p=0.037) and bacterial infection (relative hazard: 3.901, 95% CI: 1.053-14.448, p=0.042) were two independent determinants of early rebleeding. In conclusion, antibiotic prophylaxis using third generation cephalosporins can prevent bacterial infection and early rebleeding in patients with the first acute GEVB.
A probabilistic graphical model based stochastic input model construction
International Nuclear Information System (INIS)
Wan, Jiang; Zabaras, Nicholas
2014-01-01
Model reduction techniques have been widely used in modeling of high-dimensional stochastic input in uncertainty quantification tasks. However, the probabilistic modeling of random variables projected into reduced-order spaces presents a number of computational challenges. Due to the curse of dimensionality, the underlying dependence relationships between these random variables are difficult to capture. In this work, a probabilistic graphical model based approach is employed to learn the dependence by running a number of conditional independence tests using observation data. Thus a probabilistic model of the joint PDF is obtained and the PDF is factorized into a set of conditional distributions based on the dependence structure of the variables. The estimation of the joint PDF from data is then transformed to estimating conditional distributions under reduced dimensions. To improve the computational efficiency, a polynomial chaos expansion is further applied to represent the random field in terms of a set of standard random variables. This technique is combined with both linear and nonlinear model reduction methods. Numerical examples are presented to demonstrate the accuracy and efficiency of the probabilistic graphical model based stochastic input models. - Highlights: • Data-driven stochastic input models without the assumption of independence of the reduced random variables. • The problem is transformed to a Bayesian network structure learning problem. • Examples are given in flows in random media
El-Hayek, Georges; Bangalore, Sripal; Casso Dominguez, Abel; Devireddy, Chandan; Jaber, Wissam; Kumar, Gautam; Mavromatis, Kreton; Tamis-Holland, Jacqueline; Samady, Habib
2017-03-13
The authors sought to perform a meta-analysis of randomized clinical trials (RCTs) comparing the safety and efficacy of biodegradable polymer drug-eluting stents (BP-DES) to second-generation durable polymer drug-eluting stents (DP-DES). Prior meta-analyses have established the superiority of BP-DES over bare-metal stents and first-generation DP-DES; however, their advantage compared with second-generation DP-DES remains controversial. The authors searched PubMed and Scopus databases for RCTs comparing BP-DES to the second-generation DP-DES. Outcomes included target vessel revascularization (TVR) as efficacy outcome and cardiac death, myocardial infarction (MI), and definite or probable stent thrombosis (ST) as safety outcomes. In addition, we performed landmark analysis for endpoints beyond 1 year of follow-up and a subgroup analysis based on the stent characteristics. The authors included 16 RCTs comprising 19,886 patients in the meta-analysis. At the longest available follow-up (mean duration 26 months), we observed no significant differences in TVR (p = 0.62), cardiac death (p = 0.46), MI (p = 0.98), or ST (risk ratio: 0.83, 95% confidence interval: 0.64 to 1.09; p = 0.19). Our landmark analysis showed that BP-DES were not associated with a reduction in the risk of very late ST (risk ratio: 0.87, 95% confidence interval: 0.49 to 1.53; p = 0.62). Similar outcomes were seen regardless of the eluting drug (biolimus vs. sirolimus), the stent platform (stainless steel vs. alloy), the kinetics of polymer degradation or drug release (6 months), the strut thickness of the BP-DES (thin 100 μm), or the DAPT duration (≥6 months vs. ≥12 months). BP-DES have similar safety and efficacy profiles to second-generation DP-DES. Published by Elsevier Inc.
Profitability, Inputs Elasticities And Resource-Use Efficiency In Small ...
African Journals Online (AJOL)
The study examined profitability, inputs elasticities and resource-use efficiency in small scale cowpea production in Niger State, Nigeria. The primary data for the study were obtained using structured questionnaire administered to one hundred randomly sampled farmers from two Local Government Areas. Descriptive ...
Fishing input requirements of artisanal fishers in coastal ...
African Journals Online (AJOL)
Efforts towards increase in fish production through artisanal fishery can be achieved by making needed inputs available. Fishing requirements of artisanal fishers in coastal communities of Ondo State, Nigeria were studied. Data were obtained from two hundred and sixteen artisans using multistage random sampling ...
Williams, Isobel Anne; Wilkinson, Leonora; Limousin, Patricia; Jahanshahi, Marjan
2015-01-01
Deep brain stimulation of the subthalamic nucleus (STN DBS) ameliorates the motor symptoms of Parkinson's disease (PD). However, some aspects of executive control are impaired with STN DBS. We tested the prediction that (i) STN DBS interferes with switching from automatic to controlled processing during fast-paced random number generation (RNG) (ii) STN DBS-induced cognitive control changes are load-dependent. Fifteen PD patients with bilateral STN DBS performed paced-RNG, under three levels of cognitive load synchronised with a pacing stimulus presented at 1, 0.5 and 0.33 Hz (faster rates require greater cognitive control), with DBS on or off. Measures of output randomness were calculated. Countscore 1 (CS1) indicates habitual counting in steps of one (CS1). Countscore 2 (CS2) indicates a more controlled strategy of counting in twos. The fastest rate was associated with an increased CS1 score with STN DBS on compared to off. At the slowest rate, patients had higher CS2 scores with DBS off than on, such that the differences between CS1 and CS2 scores disappeared. We provide evidence for a load-dependent effect of STN DBS on paced RNG in PD. Patients could switch to more controlled RNG strategies during conditions of low cognitive load at slower rates only when the STN stimulators were off, but when STN stimulation was on, they engaged in more automatic habitual counting under increased cognitive load. These findings are consistent with the proposal that the STN implements a switch signal from the medial frontal cortex which enables a shift from automatic to controlled processing.
Directory of Open Access Journals (Sweden)
Federica Cerina
Full Text Available Production systems, traditionally analyzed as almost independent national systems, are increasingly connected on a global scale. Only recently becoming available, the World Input-Output Database (WIOD is one of the first efforts to construct the global multi-regional input-output (GMRIO tables. By viewing the world input-output system as an interdependent network where the nodes are the individual industries in different economies and the edges are the monetary goods flows between industries, we analyze respectively the global, regional, and local network properties of the so-called world input-output network (WION and document its evolution over time. At global level, we find that the industries are highly but asymmetrically connected, which implies that micro shocks can lead to macro fluctuations. At regional level, we find that the world production is still operated nationally or at most regionally as the communities detected are either individual economies or geographically well defined regions. Finally, at local level, for each industry we compare the network-based measures with the traditional methods of backward linkages. We find that the network-based measures such as PageRank centrality and community coreness measure can give valuable insights into identifying the key industries.
Parameter setting and input reduction
Evers, A.; van Kampen, N.J.|info:eu-repo/dai/nl/126439737
2008-01-01
The language acquisition procedure identifies certain properties of the target grammar before others. The evidence from the input is processed in a stepwise order. Section 1 equates that order and its typical effects with an order of parameter setting. The question is how the acquisition procedure
Constituency Input into Budget Management.
Miller, Norman E.
1995-01-01
Presents techniques for ensuring constituency involvement in district- and site-level budget management. Outlines four models for securing constituent input and focuses on strategies to orchestrate the more complex model for staff and community participation. Two figures are included. (LMI)
1972-01-01
A general view of the remote input/output station installed in building 112 (ISR) and used for submitting jobs to the CDC 6500 and 6600. The card reader on the left and the line printer on the right are operated by programmers on a self-service basis.