WorldWideScience

Sample records for randomly fluctuating nuclear

  1. Random processes in nuclear reactors

    CERN Document Server

    Williams, M M R

    1974-01-01

    Random Processes in Nuclear Reactors describes the problems that a nuclear engineer may meet which involve random fluctuations and sets out in detail how they may be interpreted in terms of various models of the reactor system. Chapters set out to discuss topics on the origins of random processes and sources; the general technique to zero-power problems and bring out the basic effect of fission, and fluctuations in the lifetime of neutrons, on the measured response; the interpretation of power reactor noise; and associated problems connected with mechanical, hydraulic and thermal noise sources

  2. Ground state energy fluctuations in the nuclear shell model

    International Nuclear Information System (INIS)

    Velazquez, Victor; Hirsch, Jorge G.; Frank, Alejandro; Barea, Jose; Zuker, Andres P.

    2005-01-01

    Statistical fluctuations of the nuclear ground state energies are estimated using shell model calculations in which particles in the valence shells interact through well-defined forces, and are coupled to an upper shell governed by random 2-body interactions. Induced ground-state energy fluctuations are found to be one order of magnitude smaller than those previously associated with chaotic components, in close agreement with independent perturbative estimates based on the spreading widths of excited states

  3. Random matrices and chaos in nuclear physics: Nuclear structure

    International Nuclear Information System (INIS)

    Weidenmueller, H. A.; Mitchell, G. E.

    2009-01-01

    Evidence for the applicability of random-matrix theory to nuclear spectra is reviewed. In analogy to systems with few degrees of freedom, one speaks of chaos (more accurately, quantum chaos) in nuclei whenever random-matrix predictions are fulfilled. An introduction into the basic concepts of random-matrix theory is followed by a survey over the extant experimental information on spectral fluctuations, including a discussion of the violation of a symmetry or invariance property. Chaos in nuclear models is discussed for the spherical shell model, for the deformed shell model, and for the interacting boson model. Evidence for chaos also comes from random-matrix ensembles patterned after the shell model such as the embedded two-body ensemble, the two-body random ensemble, and the constrained ensembles. All this evidence points to the fact that chaos is a generic property of nuclear spectra, except for the ground-state regions of strongly deformed nuclei.

  4. Intrinsic intensity fluctuations in random lasers

    International Nuclear Information System (INIS)

    Molen, Karen L. van der; Mosk, Allard P.; Lagendijk, Ad

    2006-01-01

    We present a quantitative experimental and theoretical study of intensity fluctuations in the emitted light of a random laser that has different realizations of disorder for every pump pulse. A model that clarifies these intrinsic fluctuations is developed. We describe the output versus input power graphs of the random laser with an effective spontaneous emission factor (β factor)

  5. Fluctuation properties of nuclear energy levels and widths: comparison of theory with experiment

    International Nuclear Information System (INIS)

    Bohigas, O.; Haq, R.U.; Pandey, A.

    1982-09-01

    We analyze the fluctuation properties of nuclear energy levels and widths with new spectrally averaged measures. A remarkably close agreement between the predictions of random-matrix theories and experiment is found

  6. Random numbers from vacuum fluctuations

    International Nuclear Information System (INIS)

    Shi, Yicheng; Kurtsiefer, Christian; Chng, Brenda

    2016-01-01

    We implement a quantum random number generator based on a balanced homodyne measurement of vacuum fluctuations of the electromagnetic field. The digitized signal is directly processed with a fast randomness extraction scheme based on a linear feedback shift register. The random bit stream is continuously read in a computer at a rate of about 480 Mbit/s and passes an extended test suite for random numbers.

  7. Random numbers from vacuum fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yicheng; Kurtsiefer, Christian, E-mail: christian.kurtsiefer@gmail.com [Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore); Center for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543 (Singapore); Chng, Brenda [Center for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543 (Singapore)

    2016-07-25

    We implement a quantum random number generator based on a balanced homodyne measurement of vacuum fluctuations of the electromagnetic field. The digitized signal is directly processed with a fast randomness extraction scheme based on a linear feedback shift register. The random bit stream is continuously read in a computer at a rate of about 480 Mbit/s and passes an extended test suite for random numbers.

  8. Fluctuation theory for radiative transfer in random media

    International Nuclear Information System (INIS)

    Bal, Guillaume; Jing Wenjia

    2011-01-01

    We consider the effect of small scale random fluctuations of the constitutive coefficients on boundary measurements of solutions to radiative transfer equations. As the correlation length of the random oscillations tends to zero, the transport solution is well approximated by a deterministic, averaged, solution. In this paper, we analyze the random fluctuations to the averaged solution, which may be interpreted as a central limit correction to homogenization. With the inverse transport problem in mind, we characterize the random structure of the singular components of the transport measurement operator. In regimes of moderate scattering, such components provide stable reconstructions of the constitutive parameters in the transport equation. We show that the random fluctuations strongly depend on the decorrelation properties of the random medium.

  9. Multiscale fluctuations in nuclear response

    International Nuclear Information System (INIS)

    Lacroix, D.; Chomaz, Ph.

    1999-01-01

    The nuclear collective response is investigated in the framework of a doorway picture in which the spreading width of the collective emotion is described as a coupling to more and more complex configurations. It is shown that this coupling induces fluctuations of the observed strength. In the case of a hierarchy of overlapping decay channels, Ericson fluctuations are observed at different scales. Methods for extracting these scales and the related lifetimes are discussed. Finally, it is shown that the coupling of different states at one level of complexity to some common decay channels at the next level, may produce interference-like patterns in the nuclear response. This quantum effect leads to anew type of fluctuations with a typical width related to the level spacing. (author)

  10. Multiscale fluctuations in nuclear response

    Energy Technology Data Exchange (ETDEWEB)

    Lacroix, D.; Chomaz, Ph

    1999-01-01

    The nuclear collective response is investigated in the framework of a doorway picture in which the spreading width of the collective emotion is described as a coupling to more and more complex configurations. It is shown that this coupling induces fluctuations of the observed strength. In the case of a hierarchy of overlapping decay channels, Ericson fluctuations are observed at different scales. Methods for extracting these scales and the related lifetimes are discussed. Finally, it is shown that the coupling of different states at one level of complexity to some common decay channels at the next level, may produce interference-like patterns in the nuclear response. This quantum effect leads to anew type of fluctuations with a typical width related to the level spacing. (author) 25 refs.

  11. Neutron fluctuations in a multiplying medium randomly varying in time

    Energy Technology Data Exchange (ETDEWEB)

    Pal, L. [KFKI Atomic Energy Research Inst., Budapest (Hungary); Pazsit, I. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Nuclear Engineering

    2006-07-15

    The master equation approach, which has traditionally been used for the calculation of neutron fluctuations in multiplying systems with constant parameters, is extended to a case when the parameters of the system change randomly in time. A forward type master equation is considered for the case of a multiplying system whose properties jump randomly between two discrete states, both with and without a stationary external source. The first two factorial moments are calculated, including the covariance. This model can be considered as the unification of stochastic methods that were used either in a constant multiplying medium via the master equation technique, or in a fluctuating medium via the Langevin technique. The results obtained show a much richer characteristic of the zero power noise than that in constant systems. The results are relevant in medium power subcritical nuclear systems where the zero power noise is still significant, but they also have a bearing on all types of branching processes, such as evolution of biological systems, spreading of epidemics etc, which are set in a time-varying environment.

  12. Neutron fluctuations in a multiplying medium randomly varying in time

    International Nuclear Information System (INIS)

    Pal, L.; Pazsit, I.

    2006-01-01

    The master equation approach, which has traditionally been used for the calculation of neutron fluctuations in multiplying systems with constant parameters, is extended to a case when the parameters of the system change randomly in time. A forward type master equation is considered for the case of a multiplying system whose properties jump randomly between two discrete states, both with and without a stationary external source. The first two factorial moments are calculated, including the covariance. This model can be considered as the unification of stochastic methods that were used either in a constant multiplying medium via the master equation technique, or in a fluctuating medium via the Langevin technique. The results obtained show a much richer characteristic of the zero power noise than that in constant systems. The results are relevant in medium power subcritical nuclear systems where the zero power noise is still significant, but they also have a bearing on all types of branching processes, such as evolution of biological systems, spreading of epidemics etc, which are set in a time-varying environment

  13. Studies of Fluctuation Processes in Nuclear Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Ayik, Sakir [Tennessee Technological Univ., Cookeville, TN (United States). Dept. of Physics

    2016-04-14

    The standard one-body transport approaches have been extensively applied to investigate heavy-ion collision dynamics at low and intermediate energies. At low energies the approach is the mean-field description of the time-dependent Hartree-Fock (TDHF) theory. At intermediate energies the approach is extended by including a collision term, and its application has been carried out mostly in the semi-classical framework of the Boltzmann-Uhling-Uhlenbeck (BUU) model. The standard transport models provide a good understanding of the average properties of the collision dynamics in terms of the effective interactions in both low and intermediate energies. However, the standard models are inadequate for describing the fluctuation dynamics of collective motion at low energies and disassembling of the nuclear system into fragments at intermediate energies resulting from the growth of density fluctuations in the spinodal region. Our tasks have been to improve the standard transport approaches by incorporating fluctuation mechanisms into the description. There are mainly two different mechanisms for fluctuations: (i) Collisional fluctuations generated by binary nucleon collisions, which provide the dominant mechanism at intermediate energies, and (ii) One-body mechanism or mean-field fluctuations, which is the dominant mechanism at low energies. In the first part of our project, the PI extended the standard transport model at intermediate energies by incorporating collisional mechanism according to the “Generalized Langevin Description” of Mori formalism. The PI and his collaborators carried out a number of applications for describing dynamical mechanism of nuclear multi fragmentations, and nuclear collective response in the semi-classical framework of the approach, which is known as the Boltzmann-Langevin model. In the second part of the project, we considered dynamical description at low energies. Because of the effective Pauli blocking, the collisional dissipation and

  14. Random matrix theory in nuclear structure: past, present and future

    International Nuclear Information System (INIS)

    Kota, V.K.B.

    2012-01-01

    Random matrix theory (RMT) introduced by Wigner in 50's to describe statistical properties of slow-neutron resonances in heavy nuclei such as 232 Th, was developed further in the 60's by Dyson, Mehta, Porter and others and in the 70's by French, Pandey, Bohigas and others. Going beyond this, the demonstration that level fluctuations of quantum analogues of classically chaotic few-degrees-of-freedom systems follow random matrix theory (integrable systems follow Poisson as shown by Berry) in 1984 by Bohigas and others on one hand and the recognition from 1995 onwards that two-body random matrix ensembles derived from shell model have wide ranging applications on the other, defined new directions in RMT applications in nuclear physics. Growth points in RMT in nuclear physics are: (i) analysis of nuclear data looking for order-chaos transitions and symmetry (Time-reversal, Parity, Isospin) breaking; (ii) analysis of shell model driven embedded (or two-body) random matrix ensembles giving statistical properties generated by random interactions in the presence of a mean-field; (iii) statistical nuclear spectroscopy generated by embedded ensembles for level densities, occupancies, GT strengths, transition strength sums and so on; (iv) the new paradigm of regular structures generated by random interactions as brought out by studies using various nuclear models; (v) random matrix theory for nuclear reactions with particular reference to open quantum systems; (vi) RMT results from nuclear physics to atomic physics, mesoscopic physics and quantum information science. Topics (i)-(vi) emphasizing recent results are discussed. (author)

  15. Dissipative neutrino oscillations in randomly fluctuating matter

    International Nuclear Information System (INIS)

    Benatti, F.; Floreanini, R.

    2005-01-01

    The generalized dynamics describing the propagation of neutrinos in randomly fluctuating media is analyzed: It takes into account matter-induced, decoherence phenomena that go beyond the standard Mikheyev-Smirnov-Wolfenstein (MSW) effect. A widely adopted density fluctuation pattern is found to be physically untenable: A more general model needs to be instead considered, leading to flavor changing effective neutrino-matter interactions. They induce new, dissipative effects that modify the neutrino oscillation pattern in a way amenable to a direct experimental analysis

  16. Dissipative neutrino oscillations in randomly fluctuating matter

    Science.gov (United States)

    Benatti, F.; Floreanini, R.

    2005-01-01

    The generalized dynamics describing the propagation of neutrinos in randomly fluctuating media is analyzed: It takes into account matter-induced, decoherence phenomena that go beyond the standard Mikheyev-Smirnov-Wolfenstein (MSW) effect. A widely adopted density fluctuation pattern is found to be physically untenable: A more general model needs to be instead considered, leading to flavor changing effective neutrino-matter interactions. They induce new, dissipative effects that modify the neutrino oscillation pattern in a way amenable to a direct experimental analysis.

  17. The importance for speech intelligibility of random fluctuations in "steady" background noise.

    Science.gov (United States)

    Stone, Michael A; Füllgrabe, Christian; Mackinnon, Robert C; Moore, Brian C J

    2011-11-01

    Spectrally shaped steady noise is commonly used as a masker of speech. The effects of inherent random fluctuations in amplitude of such a noise are typically ignored. Here, the importance of these random fluctuations was assessed by comparing two cases. For one, speech was mixed with steady speech-shaped noise and N-channel tone vocoded, a process referred to as signal-domain mixing (SDM); this preserved the random fluctuations of the noise. For the second, the envelope of speech alone was extracted for each vocoder channel and a constant was added corresponding to the root-mean-square value of the noise envelope for that channel. This is referred to as envelope-domain mixing (EDM); it removed the random fluctuations of the noise. Sinusoidally modulated noise and a single talker were also used as backgrounds, with both SDM and EDM. Speech intelligibility was measured for N = 12, 19, and 30, with the target-to-background ratio fixed at -7 dB. For SDM, performance was best for the speech background and worst for the steady noise. For EDM, this pattern was reversed. Intelligibility with steady noise was consistently very poor for SDM, but near-ceiling for EDM, demonstrating that the random fluctuations in steady noise have a large effect.

  18. Universal mesoscopic conductance fluctuations

    International Nuclear Information System (INIS)

    Evangelou, S.N.

    1992-01-01

    The theory of conductance fluctuations in disordered metallic systems with size large compared to the mean free path of the electron but small compared to localization length is considered. It is demonstrates that fluctuations have an universal character and are due to repulsion between levels and spectral rigidity. The basic fluctuation measures for the energy spectrum in the mesoscopic regime of disordered systems are consistent with the Gaussian random matrix ensemble predictions. Although our disordered electron random matrix ensemble does not belong to the Gaussian ensemble the two ensembles turn out to be essentially similar. The level repulsion and the spectral rigidity found in nuclear spectra should also be observed in the metallic regime of Anderson localization. 7 refs. (orig.)

  19. Fluctuation, stationarity, and ergodic properties of random-matrix ensembles

    International Nuclear Information System (INIS)

    Pandey, A.

    1979-01-01

    The properties of random-matrix ensembles and the application of such ensembles to energy-level fluctuations and strength fluctuations are discussed. The two-point correlation function for complex spectra described by the three standard Gaussian ensembles is calculated, and its essential simplicity, displayed by an elementary procedure that derives from the dominance of binary correlations. The resultant function is exact for the unitary case and a very good approximation to the orthogonal and symplectic cases. The same procedure yields the spectrum for a Gaussian orthogonal ensemble (GOE) deformed by a pairing interaction. Several extensions are given and relationships to other problems of current interest are discussed. The standard fluctuation measures are rederived for the GOE, and their extensions to the unitary and symplectic cases are given. The measures are shown to derive, for the most part, from the two-point function, and new relationships between them are established, answering some long-standing questions. Some comparisons with experimental values are also made. All the cluster functions, and therefore the fluctuation measures, are shown to be stationary and strongly ergodic, thus justifying the use of random matrices for individual spectra. Strength fluctuations in the orthogonal ensemble are also considered. The Porter-Thomas distribution in its various forms is rederived and its ergodicity is established

  20. Random-matrix physics: spectrum and strength fluctuations

    International Nuclear Information System (INIS)

    Brody, T.A.; Flores, J.; French, J.B.; Mello, P.A.; Pandey, A.; Wong, S.S.M.

    1981-01-01

    It now appears that the general nature of the deviations from uniformity in the spectrum of a complicated nucleus is essentially the same in all regions of the spectrum and over the entire Periodic Table. This behavior, moreover, is describable in terms of standard Hamiltonian ensembles which could be generated on the basis of simple information-theory concepts, and which give also a good account of fluctuation phenomena of other kinds and, apparently, in other many-body systems besides nuclei. The main departures from simple behavior are ascribable to the moderation of the level repulsion by effects due to symmetries and collectivities, for the description of which more complicated ensembles are called for. One purpose of this review is to give a self-contained account of the theory, using methods: sometimes approximate: which are consonant with the usual theory of stochastic processes. Another purpose is to give a proper foundation for the use of ensemble theory, to make clear the origin of the simplicities in the observable fluctuations, and to derive other general fluctuation results. In comparing theory and experiment, the authors give an analysis of much of the nuclear-energy-level data, as well as an extended discussion of observable effects in nuclear transitions and reactions and in the low-temperature thermodynamics of aggregates of small metallic particles

  1. Simulation Analyses of Behaviours of Spatially Extended Predator-Prey Systems with Random Fluctuations

    Directory of Open Access Journals (Sweden)

    ISHIKAWA, M.

    2008-04-01

    Full Text Available We often observe some kind or another of random fluctuations in physical, chemical and social phenomena to a greater or lesser extent. The analysis of influence of such fluctuations on phenomena is very important as a basic problem in various fields including design and planning of controlled systems in control engineering and analysis of option pricing in economics. In this paper, focusing on biological communities, we study the influence of the random fluctuations on predator-prey systems with diffusion. Noting that interaction of phytoplankton and zooplankton is the basis of a food chain in the lake and the ocean, we consider the two-species predator-prey systems consists of phytoplankton and zooplankton. We analyze the influence of the random fluctuations on the spatio-temporal patterns generated by phytoplankton and zooplankton by the numerical simulations.

  2. Nuclear shadowing and the optics of hadronic fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Mankiewicz, L. E-mail: lech_mankiewicz@camk.edu.pl; Piller, G.; Vaenttinen, M.; Weise, W

    2001-06-04

    A coordinate-space description of shadowing in deep-inelastic lepton-nucleus scattering is presented. The picture in the laboratory frame is that of quark-gluon fluctuations of the high-energy virtual photon, propagating coherently over large light-cone distances in the nuclear medium. We discuss the detailed dependence of the coherence effects on the invariant mass of the fluctuation. We comment on the issue of possible saturation in the shadowing effects at very small Bjorken-x.

  3. Listening to the Noise: Random Fluctuations Reveal Gene Network Parameters

    Science.gov (United States)

    Munsky, Brian; Trinh, Brooke; Khammash, Mustafa

    2010-03-01

    The cellular environment is abuzz with noise originating from the inherent random motion of reacting molecules in the living cell. In this noisy environment, clonal cell populations exhibit cell-to-cell variability that can manifest significant prototypical differences. Noise induced stochastic fluctuations in cellular constituents can be measured and their statistics quantified using flow cytometry, single molecule fluorescence in situ hybridization, time lapse fluorescence microscopy and other single cell and single molecule measurement techniques. We show that these random fluctuations carry within them valuable information about the underlying genetic network. Far from being a nuisance, the ever-present cellular noise acts as a rich source of excitation that, when processed through a gene network, carries its distinctive fingerprint that encodes a wealth of information about that network. We demonstrate that in some cases the analysis of these random fluctuations enables the full identification of network parameters, including those that may otherwise be difficult to measure. We use theoretical investigations to establish experimental guidelines for the identification of gene regulatory networks, and we apply these guideline to experimentally identify predictive models for different regulatory mechanisms in bacteria and yeast.

  4. Quantum random bit generation using energy fluctuations in stimulated Raman scattering.

    Science.gov (United States)

    Bustard, Philip J; England, Duncan G; Nunn, Josh; Moffatt, Doug; Spanner, Michael; Lausten, Rune; Sussman, Benjamin J

    2013-12-02

    Random number sequences are a critical resource in modern information processing systems, with applications in cryptography, numerical simulation, and data sampling. We introduce a quantum random number generator based on the measurement of pulse energy quantum fluctuations in Stokes light generated by spontaneously-initiated stimulated Raman scattering. Bright Stokes pulse energy fluctuations up to five times the mean energy are measured with fast photodiodes and converted to unbiased random binary strings. Since the pulse energy is a continuous variable, multiple bits can be extracted from a single measurement. Our approach can be generalized to a wide range of Raman active materials; here we demonstrate a prototype using the optical phonon line in bulk diamond.

  5. The nuclear fluctuation width and the method of maxima in excitation curves

    International Nuclear Information System (INIS)

    Burjan, V.

    1988-01-01

    The method of counting maxima of excitation curves in the region of the occurrence of nuclear cross section fluctuations is extended to the case of the more realistic maxima defined as a sequence of five points instead of the simpler and commonly used case of a sequence of three points of an excitation curve. The dependence of the coefficient b (5) (κ), relating the number of five-point maxima and the mean level width Γ of the compound nucleus, on the relative distance K of excitation curve points is calculated. The influence of the random background on the coefficient b (5) (κ) is discussed and a comparison with the properties of the three-point coefficient b (3) (κ) is made - also in connection with the contribution of the random background. The calculated values of b (5) (κ) are well reproduced by the data obtained from the analysis of artificial excitation curves. (orig.)

  6. No pion condensate in nuclear matter due to fluctuations

    International Nuclear Information System (INIS)

    Kleinert, H.

    1981-01-01

    We show that if pion condensation occurs in a mean-field theory of infinite nuclear matter, fluctuations completely prevent the formation of a condensate as well as of the associated Goldstone mode. Thus if an increase of opalescence should ever be observed experimentally, it is these fluctuations which are measured rather than the scattering on the Goldstone modes. They preserve isotopic symmetry and increase very smoothly as the density passes the formerly critical density. There are no discontinuities in any thermodynamic quantitiy. (orig.)

  7. Evaluation of random temperature fluctuation problems with frequency response approach

    International Nuclear Information System (INIS)

    Lejeail, Yves; Kasahara, Naoto

    2000-01-01

    Since thermal striping is a coupled thermohydraulic and thermomechanical phenomenon, sodium mock-up tests were usually required to confirm structural integrity. Authors have developed the frequency response function to establish design-by-analysis methodology for this phenomenon. Applicability of this method to sinusoidal fluctuation was validated through two benchmark problems with FAENA and TIFFSS facilities under EJCC contract. This report describes the extension of the frequency response method to random fluctuations. As an example of application, fatigue strength of a Tee junction of PHENIX secondary piping system was investigated. (author)

  8. Non-classical radiation transport in random media with fluctuating densities

    International Nuclear Information System (INIS)

    Dyuldya, S.V.; Bratchenko, M.I.

    2012-01-01

    The ensemble averaged propagation kernels of the non-classical radiation transport are studied by means of the proposed application of the stochastic differential equation random medium generators. It is shown that the non-classical transport is favored in long-correlated weakly fluctuating media. The developed kernel models have been implemented in GEANT4 and validated against the d ouble Monte Carlo m odeling of absorptions curves of disperse neutron absorbers and γ-albedos from a scatterer/absorber random mix

  9. Pressure fluctuation characteristics of flow field of mixed flow nuclear primary pump

    International Nuclear Information System (INIS)

    Wang Chunlin; Yang Xiaoyong; Li Changjun; Jia Fei; Zhao Binjuan

    2013-01-01

    In order to research the pressure fluctuation characteristics of flow field of mixed flow nuclear primary pump, this study used the technique of ANSYS-Workbench and CFX fluid solid heat coupling to do numerical simulation analysis for model pump. According to the situation of pressure fluctuation of time domain and frequency domain, the main cause of pressure fluctuation was discussed. For different flow, the pressure fluctuations were compared. This study shows it is feasible that large eddy simulation method is used for the research of pressure fluctuation. The pressure fluctuation amplitudes of four sections are increasing from wheel hub to wheel rim. The pressure fluctuation of inlet and outlet of impeller depends on the rotational frequency of impeller. Along with the fluid flowing away from the impeller, the effect of the impeller on the fluid pressure fluctuation weakens gradually. Comparing the different results of three flow conditions, the pressure fluctuation in design condition flow is superior to the others. (authors)

  10. Fluctuation effects on bubble growth in hot nuclear matter

    International Nuclear Information System (INIS)

    Santiago, A.J.; Chung, K.C.

    1991-01-01

    The evolution of bubbles with arbitrary density in an infinite nuclear system is studied in a simplified treatment. Kinetic pressure fluctuations on the bubble surface are considered. The critical radius, evolution time and probability for bubble expansion are shown to depend significantly on the initial bubble density. (author)

  11. Fluctuations around equilibrium laws in ergodic continuous-time random walks.

    Science.gov (United States)

    Schulz, Johannes H P; Barkai, Eli

    2015-06-01

    We study occupation time statistics in ergodic continuous-time random walks. Under thermal detailed balance conditions, the average occupation time is given by the Boltzmann-Gibbs canonical law. But close to the nonergodic phase, the finite-time fluctuations around this mean are large and nontrivial. They exhibit dual time scaling and distribution laws: the infinite density of large fluctuations complements the Lévy-stable density of bulk fluctuations. Neither of the two should be interpreted as a stand-alone limiting law, as each has its own deficiency: the infinite density has an infinite norm (despite particle conservation), while the stable distribution has an infinite variance (although occupation times are bounded). These unphysical divergences are remedied by consistent use and interpretation of both formulas. Interestingly, while the system's canonical equilibrium laws naturally determine the mean occupation time of the ergodic motion, they also control the infinite and Lévy-stable densities of fluctuations. The duality of stable and infinite densities is in fact ubiquitous for these dynamics, as it concerns the time averages of general physical observables.

  12. Ultrafast quantum random number generation based on quantum phase fluctuations.

    Science.gov (United States)

    Xu, Feihu; Qi, Bing; Ma, Xiongfeng; Xu, He; Zheng, Haoxuan; Lo, Hoi-Kwong

    2012-05-21

    A quantum random number generator (QRNG) can generate true randomness by exploiting the fundamental indeterminism of quantum mechanics. Most approaches to QRNG employ single-photon detection technologies and are limited in speed. Here, we experimentally demonstrate an ultrafast QRNG at a rate over 6 Gbits/s based on the quantum phase fluctuations of a laser operating near threshold. Moreover, we consider a potential adversary who has partial knowledge on the raw data and discuss how one can rigorously remove such partial knowledge with postprocessing. We quantify the quantum randomness through min-entropy by modeling our system and employ two randomness extractors--Trevisan's extractor and Toeplitz-hashing--to distill the randomness, which is information-theoretically provable. The simplicity and high-speed of our experimental setup show the feasibility of a robust, low-cost, high-speed QRNG.

  13. Absorption-Fluctuation Theorem for Nuclear Reactions: Brink-Axel, Incomplete Fusion and All That

    International Nuclear Information System (INIS)

    Hussein, M. S.

    2008-01-01

    We discuss the connection between absorption, averages and fluctuations in nuclear reactions. The fluctuations in the entrance channel result in the compound-nucleus Hauser-Feshbach cross section, and the fluctuations in the intermediate channels result in modifications of multistep reaction cross sections, while the fluctuations in the final channel result in hybrid cross sections that can be used to describe incomplete fusion reactions. We discuss the latter in detail and comment on the validity of the assumptions used in the development of the Surrogate method. We also discuss the theory of multistep reactions with regards to intermediate state fluctuations and the energy dependence and non-locality of the intermediate-channel optical potentials

  14. Nuclear dynamics of zero point fluctuations in ordinary and in gauge space

    International Nuclear Information System (INIS)

    Broglia, R.A.; Barranco, F.; Gallardo, M.

    1985-01-01

    The change of the nuclear density due to the zero point fluctuations associated with surface modes are calculated making use of field theoretical many-body techniques. For medium heavy nuclei the density renormalizations (vertex corrections) are much smaller than the potential renormalizations (self-energy contributions). The microscopic results agree well with the results of the collective model. Zero point fluctuations associated with pairing vibrations renormalize the properties of strongly rotating nuclei around the critical frequency at which the pairing phase transition takes place. Fluctuations of the pairing field play also an important role in the sub-barrier fusion cross section associated with the 58 Ni+ 64 Ni reaction. (orig.)

  15. Multifractal detrended fluctuation analysis of analog random multiplicative processes

    Energy Technology Data Exchange (ETDEWEB)

    Silva, L.B.M.; Vermelho, M.V.D. [Instituto de Fisica, Universidade Federal de Alagoas, Maceio - AL, 57072-970 (Brazil); Lyra, M.L. [Instituto de Fisica, Universidade Federal de Alagoas, Maceio - AL, 57072-970 (Brazil)], E-mail: marcelo@if.ufal.br; Viswanathan, G.M. [Instituto de Fisica, Universidade Federal de Alagoas, Maceio - AL, 57072-970 (Brazil)

    2009-09-15

    We investigate non-Gaussian statistical properties of stationary stochastic signals generated by an analog circuit that simulates a random multiplicative process with weak additive noise. The random noises are originated by thermal shot noise and avalanche processes, while the multiplicative process is generated by a fully analog circuit. The resulting signal describes stochastic time series of current interest in several areas such as turbulence, finance, biology and environment, which exhibit power-law distributions. Specifically, we study the correlation properties of the signal by employing a detrended fluctuation analysis and explore its multifractal nature. The singularity spectrum is obtained and analyzed as a function of the control circuit parameter that tunes the asymptotic power-law form of the probability distribution function.

  16. Hanle effect in (In,Ga)As quantum dots: Role of nuclear spin fluctuations

    OpenAIRE

    Kuznetsova, M. S.; Flisinski, K.; Gerlovin, I. Ya.; Ignatiev, I. V.; Kavokin, K. V.; Verbin, S. Yu.; Yakovlev, D. R.; Reuter, D.; Wieck, A. D.; Bayer, M.

    2013-01-01

    The role of nuclear spin fluctuations in the dynamic polarization of nuclear spins by electrons is investigated in (In,Ga)As quantum dots. The photoluminescence polarization under circularly polarized optical pumping in transverse magnetic fields (Hanle effect) is studied. A weak additional magnetic field parallel to the optical axis is used to control the efficiency of nuclear spin cooling and the sign of nuclear spin temperature. The shape of the Hanle curve is drastically modified with cha...

  17. Intermittency in nuclear multifragmentation

    International Nuclear Information System (INIS)

    Ploszajczak, M.; Tucholski, A.

    1990-07-01

    Fluctuations of the fragment size distribution in a percolation model and in nuclear multifragmentation following the breakup of high energy nuclei in the nuclear emulsion are studied using the method of scaled factorial moments. An intermittent patern of fluctuations is found in the data as well as in the percolation lattice calculation. This is a consequence of both a self-similarity in the fragment size distribution and a random character for the scaling law. These fluctuations are in general well-described by percolation model. The multifractal dimensions are calculated and their relevance to the study of possible critical behaviour is pointed out. (orig.)

  18. Scaling law of resistance fluctuations in stationary random resistor networks

    Science.gov (United States)

    Pennetta; Trefan; Reggiani

    2000-12-11

    In a random resistor network we consider the simultaneous evolution of two competing random processes consisting in breaking and recovering the elementary resistors with probabilities W(D) and W(R). The condition W(R)>W(D)/(1+W(D)) leads to a stationary state, while in the opposite case, the broken resistor fraction reaches the percolation threshold p(c). We study the resistance noise of this system under stationary conditions by Monte Carlo simulations. The variance of resistance fluctuations is found to follow a scaling law |p-p(c)|(-kappa(0)) with kappa(0) = 5.5. The proposed model relates quantitatively the defectiveness of a disordered media with its electrical and excess-noise characteristics.

  19. Two-dimensional multiplicity fluctuation analysis of target residues in nuclear collisions

    International Nuclear Information System (INIS)

    Dong-Hai, Zhang; Yao-Jie, Niu; Li-Chun, Wang; Wen-Jun, Yan; Li-Juan, Gao; Ming-Xing, Li; Li-Ping, Wu; Hui-Ling, Li; Jun-Sheng, Li

    2010-01-01

    Multiplicity fluctuation of the target residues emitted in the interactions in a wide range of projectile energies from 500 A MeV to 60 A GeV is investigated in the framework of two-dimensional scaled factorial moment methodology. The evidence of non-statistical multiplicity fluctuation is found in 16 O–AgBr collisions at 60 A GeV, but not in 56 Fe–AgBr collisions at 500 A MeV, 84 Kr–AgBr collisions at 1.7 A GeV, 16 O–AgBr collisions at 3.7 A GeV and 197 Au–AgBr collisions at 10.7 A GeV. (nuclear physics)

  20. Non-statistical fluctuations in fragmentation of target nuclei in high energy nuclear interactions

    International Nuclear Information System (INIS)

    Ghosh, Dipak; Ghosh, Premomoy; Ghosh, Alokananda; Roy, Jaya

    1994-01-01

    Analysis of target fragmented ''black'' particles in nuclear emulsion from high energy relativistic interactions initiated by 16 O at 2.1 GeV/nucleon and 12 C and 24 Mg at 4.5 GeV/nucleon reveal the existence of non-statistical fluctuations in the azimuthal plane of interaction. The asymmetry or the non-statistical fluctuations, while found to be independent of projectile mass or incident energy, are dependent on the excitation energy of the target nucleus. (Author)

  1. Quantum Mechanical Enhancement of the Random Dopant Induced Threshold Voltage Fluctuations and Lowering in Sub 0.1 Micron MOSFETs

    Science.gov (United States)

    Asenov, Asen; Slavcheva, G.; Brown, A. R.; Davies, J. H.; Saini, Subhash

    1999-01-01

    A detailed study of the influence of quantum effects in the inversion layer on the random dopant induced threshold voltage fluctuations and lowering in sub 0.1 micron MOSFETs has been performed. This has been achieved using a full 3D implementation of the density gradient (DG) formalism incorporated in our previously published 3D 'atomistic' simulation approach. This results in a consistent, fully 3D, quantum mechanical picture which implies not only the vertical inversion layer quantisation but also the lateral confinement effects manifested by current filamentation in the 'valleys' of the random potential fluctuations. We have shown that the net result of including quantum mechanical effects, while considering statistical fluctuations, is an increase in both threshold voltage fluctuations and lowering.

  2. Neutron fluctuations in a medium randomly varying in time

    International Nuclear Information System (INIS)

    Lenard, Pal; Imre, Pazsit

    2005-01-01

    The master equation approach, which has traditionally been used for the calculation of neutron fluctuations in zero power systems with constant parameters, is extended to a case when the parameters of the system change randomly in time. We consider a forward type master equation for the probability distribution of the number of particles in a multiplying system whose properties jump randomly between two discrete states, both with and without an external source. The first two factorial moments are calculated, including the covariance. This model can be considered the unification of stochastic methods that were used either in a constant multiplying medium via the master equation technique, or in a fluctuating medium via the Langevin technique. In contrast to these methods, the one presented here can calculate the inherent noise in time-varying systems. The results obtained show a much richer characteristics of the zero power noise than that in constant systems. Even the concept of criticality has to be given a probabilistic interpretation. The asymptotic behaviour of the variance will be also qualitatively different from that in constant systems. The covariance of the neutron number in a subcritical system with a source, and the corresponding power spectrum, shows both the inherent and parametrically induced noise components. The results are relevant in medium power subcritical systems where the zero power noise is still significant, but they also have a bearing on all types of branching processes, such as evolution of biological systems, spreading of epidemics etc., which are set in a time-varying environment. (authors)

  3. Neutron fluctuations in a medium randomly varying in time

    Energy Technology Data Exchange (ETDEWEB)

    Lenard, Pal [KFKI Atomic Energy Research Institute, Budapest (Hungary); Imre, Pazsit [Chalmers Univ. of Technology, Dept. of Nuclear Engineering, SE, Goteborg (Sweden)

    2005-07-01

    The master equation approach, which has traditionally been used for the calculation of neutron fluctuations in zero power systems with constant parameters, is extended to a case when the parameters of the system change randomly in time. We consider a forward type master equation for the probability distribution of the number of particles in a multiplying system whose properties jump randomly between two discrete states, both with and without an external source. The first two factorial moments are calculated, including the covariance. This model can be considered the unification of stochastic methods that were used either in a constant multiplying medium via the master equation technique, or in a fluctuating medium via the Langevin technique. In contrast to these methods, the one presented here can calculate the inherent noise in time-varying systems. The results obtained show a much richer characteristics of the zero power noise than that in constant systems. Even the concept of criticality has to be given a probabilistic interpretation. The asymptotic behaviour of the variance will be also qualitatively different from that in constant systems. The covariance of the neutron number in a subcritical system with a source, and the corresponding power spectrum, shows both the inherent and parametrically induced noise components. The results are relevant in medium power subcritical systems where the zero power noise is still significant, but they also have a bearing on all types of branching processes, such as evolution of biological systems, spreading of epidemics etc., which are set in a time-varying environment. (authors)

  4. Non-statistical fluctuations in fragmentation of target nuclei in high energy nuclear interactions

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Dipak; Ghosh, Premomoy; Ghosh, Alokananda; Roy, Jaya [Jadavpur Univ., Calcutta (India)

    1994-07-01

    Analysis of target fragmented ''black'' particles in nuclear emulsion from high energy relativistic interactions initiated by [sup 16]O at 2.1 GeV/nucleon and [sup 12]C and [sup 24]Mg at 4.5 GeV/nucleon reveal the existence of non-statistical fluctuations in the azimuthal plane of interaction. The asymmetry or the non-statistical fluctuations, while found to be independent of projectile mass or incident energy, are dependent on the excitation energy of the target nucleus. (Author).

  5. Lead-position dependent regular oscillations and random fluctuations of conductance in graphene quantum dots

    International Nuclear Information System (INIS)

    Huang Liang; Yang Rui; Lai Yingcheng; Ferry, David K

    2013-01-01

    Quantum interference causes a wavefunction to have sensitive spatial dependence, and this has a significant effect on quantum transport. For example, in a quantum-dot system, the conductance can depend on the lead positions. We investigate, for graphene quantum dots, the conductance variations with the lead positions. Since for graphene the types of boundaries, e.g., zigzag and armchair, can fundamentally affect the quantum transport characteristics, we focus on rectangular graphene quantum dots, for which the effects of boundaries can be systematically studied. For both zigzag and armchair horizontal boundaries, we find that changing the positions of the leads can induce significant conductance variations. Depending on the Fermi energy, the variations can be either regular oscillations or random conductance fluctuations. We develop a physical theory to elucidate the origin of the conductance oscillation/fluctuation patterns. In particular, quantum interference leads to standing-wave-like-patterns in the quantum dot which, in the absence of leads, are regulated by the energy-band structure of the corresponding vertical graphene ribbon. The observed ‘coexistence’ of regular oscillations and random fluctuations in the conductance can be exploited for the development of graphene-based nanodevices. (paper)

  6. RAINIER: A simulation tool for distributions of excited nuclear states and cascade fluctuations

    Science.gov (United States)

    Kirsch, L. E.; Bernstein, L. A.

    2018-06-01

    A new code has been developed named RAINIER that simulates the γ-ray decay of discrete and quasi-continuum nuclear levels for a user-specified range of energy, angular momentum, and parity including a realistic treatment of level spacing and transition width fluctuations. A similar program, DICEBOX, uses the Monte Carlo method to simulate level and width fluctuations but is restricted in its initial level population algorithm. On the other hand, modern reaction codes such as TALYS and EMPIRE populate a wide range of states in the residual nucleus prior to γ-ray decay, but do not go beyond the use of deterministic functions and therefore neglect cascade fluctuations. This combination of capabilities allows RAINIER to be used to determine quasi-continuum properties through comparison with experimental data. Several examples are given that demonstrate how cascade fluctuations influence experimental high-resolution γ-ray spectra from reactions that populate a wide range of initial states.

  7. Catalytic micromotor generating self-propelled regular motion through random fluctuation

    Science.gov (United States)

    Yamamoto, Daigo; Mukai, Atsushi; Okita, Naoaki; Yoshikawa, Kenichi; Shioi, Akihisa

    2013-07-01

    Most of the current studies on nano/microscale motors to generate regular motion have adapted the strategy to fabricate a composite with different materials. In this paper, we report that a simple object solely made of platinum generates regular motion driven by a catalytic chemical reaction with hydrogen peroxide. Depending on the morphological symmetry of the catalytic particles, a rich variety of random and regular motions are observed. The experimental trend is well reproduced by a simple theoretical model by taking into account of the anisotropic viscous effect on the self-propelled active Brownian fluctuation.

  8. Intensity approximation of random fluctuation in complex systems

    Science.gov (United States)

    Yulmetyev, R. M.; Gafarov, F. M.; Yulmetyeva, D. G.; Emeljanova, N. A.

    2002-01-01

    The Markov and non-Markov processes in complex systems are examined with the help of dynamical information Shannon entropy method. Here we consider the essential role of two mutually independent channels of entropy involving creation of correlation and annihilation of correlation. The developed method has been used to analyze the intensity fluctuation of the complex systems of various nature: in psychology (to analyze numerical and pattern short-time human memory, to study the effect of stress on the parameters of the dynamical taping-test) and in cardiology (to analyze the random dynamics of RR-intervals in human ECG's and to diagnose various diseases of human cardiovascular systems). The received results show that the application of intensity approximation allows to improve essentially the diagnostics of parameters in the evolution of human dynamic states.

  9. Potential fluctuations due to randomly distributed charges at the semiconductor-insulator interface in MIS-structures

    International Nuclear Information System (INIS)

    Yanchev, I.

    2003-01-01

    A new expression for the Fourier transform of the binary correlation function of the random potential near the semiconductor-insulator interface is derived. The screening from the metal electrode in MIS-structure is taken into account introducing an effective insulator thickness. An essential advantage of this correlation function is the finite dispersion of the random potential to which it leads in distinction with the so far known correlation functions leading to a divergent dispersion. The dispersion, an important characteristic of the random potential distribution, determining the amplitude of the potential fluctuations is calculated

  10. Potential fluctuations due to randomly distributed charges at the semiconductor-insulator interface in MIS-structures

    CERN Document Server

    Yanchev, I

    2003-01-01

    A new expression for the Fourier transform of the binary correlation function of the random potential near the semiconductor-insulator interface is derived. The screening from the metal electrode in MIS-structure is taken into account introducing an effective insulator thickness. An essential advantage of this correlation function is the finite dispersion of the random potential to which it leads in distinction with the so far known correlation functions leading to a divergent dispersion. The dispersion, an important characteristic of the random potential distribution, determining the amplitude of the potential fluctuations is calculated.

  11. Potential fluctuations due to randomly distributed charges at the semiconductor-insulator interface in MIS-structures

    Energy Technology Data Exchange (ETDEWEB)

    Yanchev, I

    2003-07-01

    A new expression for the Fourier transform of the binary correlation function of the random potential near the semiconductor-insulator interface is derived. The screening from the metal electrode in MIS-structure is taken into account introducing an effective insulator thickness. An essential advantage of this correlation function is the finite dispersion of the random potential to which it leads in distinction with the so far known correlation functions leading to a divergent dispersion. The dispersion, an important characteristic of the random potential distribution, determining the amplitude of the potential fluctuations is calculated.

  12. Fluctuations in a system depending on several random parameters. Application to reactors (1962); Fluctuations d'un systeme dependant de plusieurs parametres aleatoires. Application aux reacteurs nucleaires (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Blaquiere, A [Faculte des Sciences de Paris, 75 (France); Pachowska, R [Universite Technique de Varsovie (Poland)

    1962-07-01

    We have previously developed a method for studying neutronic fluctuations in nuclear reactors using the analogy between the behaviour of a reactor and that of certain common radioelectric circuits. The fluctuations may then be calculated by introducing into the circuit a suitable noise source. By this method we have been able to consider the overall fluctuations in a particularly simple form and we have provided a physical significance for certain results obtained more laboriously by other methods. The object of the present report is to generalise this method and in particular to extend it to the case of a reactor having a cellular structure and to apply it to fluctuations within a cell. It is thus shown that the fluctuations in a cell are the resultant of two terms: - a rapidly evolving Poissonian noise, not related to the overall fluctuations; - a slowly evolving noise, when the reactor is not too far from criticality, which is related to the overall fluctuations. The first term arises from a rapid 'ordering' of the system, during which time the cells come mutually into equilibrium. The second term is due to the coordinated evolution of all the cells, after the end of the first transitory phase. The conclusions reached show that it would be useful to complete the study with an analysis of non-linear phenomena which can considerably influence the transitory behaviour of the cells during the initial pre-equilibrium phase. This report also Stresses the relationship of the new method to the old methods. It tends also to place pile fluctuation theory in a more general framework, that of the fluctuations of a system depending on several random parameters; from this point of view, the method could easily be transposed and adapted to the study of other physical problems of this type. (authors) [French] Nous avons precedemment developpe une methode d'etude des fluctuations neutroniques des reacteurs nucleaires mettant a profit l'analogie entre le comportement d

  13. Random walks on a fluctuating lattice: A renormalization group approach applied in one dimension

    International Nuclear Information System (INIS)

    Levermore, C.D.; Nadler, W.; Stein, D.L.

    1995-01-01

    We study the problem of a random walk on a lattice in which bonds connecting nearest-neighbor sites open and close randomly in time, a situation often encountered in fluctuating media. We present a simple renormalization group technique to solve for the effective diffusive behavior at long times. For one-dimensional lattices we obtain better quantitative agreement with simulation data than earlier effective medium results. Our technique works in principle in any dimension, although the amount of computation required rises with the dimensionality of the lattice

  14. The generation of 68 Gbps quantum random number by measuring laser phase fluctuations

    International Nuclear Information System (INIS)

    Nie, You-Qi; Liu, Yang; Zhang, Jun; Pan, Jian-Wei; Huang, Leilei; Payne, Frank

    2015-01-01

    The speed of a quantum random number generator is essential for practical applications, such as high-speed quantum key distribution systems. Here, we push the speed of a quantum random number generator to 68 Gbps by operating a laser around its threshold level. To achieve the rate, not only high-speed photodetector and high sampling rate are needed but also a very stable interferometer is required. A practical interferometer with active feedback instead of common temperature control is developed to meet the requirement of stability. Phase fluctuations of the laser are measured by the interferometer with a photodetector and then digitalized to raw random numbers with a rate of 80 Gbps. The min-entropy of the raw data is evaluated by modeling the system and is used to quantify the quantum randomness of the raw data. The bias of the raw data caused by other signals, such as classical and detection noises, can be removed by Toeplitz-matrix hashing randomness extraction. The final random numbers can pass through the standard randomness tests. Our demonstration shows that high-speed quantum random number generators are ready for practical usage

  15. Effects of thermal and particle-number fluctuations on the giant isovector dipole modes for the 58Ni nucleus in the finite-temperature random-phase approximation

    International Nuclear Information System (INIS)

    Nguyen Dinhdang; Nguyen Zuythang

    1988-01-01

    Using the realistic single-particle energy spectrum obtained in the Woods-Saxon nucleon mean-field potential, we calculate the BCS pairing gap for 58 Ni as a function of temperature taking into account the thermal and particle-number fluctuations. The strength distributions of the electric dipole transitions and the centroids of the isovector giant dipole resonance (IV-GDR) are computed in the framework of the finite-temperature random-phase approximation (RPA) based on the Hamiltonian of the quasiparticle-phonon nuclear model with separate dipole forces. It is shown that the change of the pairing gap at finite temperature can noticeably influence the IV-GDR localisation in realistic nuclei. By taking both thermal and quasiparticle fluctuations in the pairing gap into account the effect of the phase transition from superfluid to normal in the temperature dependence of the IV-GDR centroid is completely smeared out. (author)

  16. Resistance and resistance fluctuations in random resistor networks under biased percolation.

    Science.gov (United States)

    Pennetta, Cecilia; Reggiani, L; Trefán, Gy; Alfinito, E

    2002-06-01

    We consider a two-dimensional random resistor network (RRN) in the presence of two competing biased processes consisting of the breaking and recovering of elementary resistors. These two processes are driven by the joint effects of an electrical bias and of the heat exchange with a thermal bath. The electrical bias is set up by applying a constant voltage or, alternatively, a constant current. Monte Carlo simulations are performed to analyze the network evolution in the full range of bias values. Depending on the bias strength, electrical failure or steady state are achieved. Here we investigate the steady state of the RRN focusing on the properties of the non-Ohmic regime. In constant-voltage conditions, a scaling relation is found between /(0) and V/V(0), where is the average network resistance, (0) the linear regime resistance, and V0 the threshold value for the onset of nonlinearity. A similar relation is found in constant-current conditions. The relative variance of resistance fluctuations also exhibits a strong nonlinearity whose properties are investigated. The power spectral density of resistance fluctuations presents a Lorentzian spectrum and the amplitude of fluctuations shows a significant non-Gaussian behavior in the prebreakdown region. These results compare well with electrical breakdown measurements in thin films of composites and of other conducting materials.

  17. Potential fluctuations due to randomly distributed charges at the semiconductor-insulator interface in mis-structures

    International Nuclear Information System (INIS)

    Yanchev, I; Slavcheva, G.

    1993-01-01

    A new expression for the Fourier transform of the binary correlation function of the random potential near the semiconductor-insulator interface is derived. The screening from the metal electrode in MIS-structure is taken into account introducing an effective insulator thickness. An essential advantage of this correlation function is the finite dispersion of the random potential Γ 2 to which it leads in distinction with the so far known correlation functions leading to divergent dispersion. The important characteristic of the random potential distribution Γ 2 determining the amplitude of the potential fluctuations is calculated. 7 refs. (orig.)

  18. Fluctuations and Photons

    International Nuclear Information System (INIS)

    Gupta, Sourendu

    2007-01-01

    In this talk I discuss measures of fluctuations, especially those leading to the proof that the quark gluon plasma indeed contains quarks. I discuss the quark mass dependence of the critical end point of QCD. Then I discuss probes of the QCD critical point. Non-gaussian behaviour of event-to-event fluctuations of conserved quantum numbers is one such probe. Another is due to the coupling of fluctuations in baryon number and electrical charge, giving rise to long range random fluctuations of local charge density which relax slowly. These fluctuations can scatter photons, giving rise to critical opalescence

  19. Fluctuations and Photons

    Science.gov (United States)

    Gupta, Sourendu

    2007-02-01

    In this talk I discuss measures of fluctuations, especially those leading to the proof that the quark gluon plasma indeed contains quarks. I discuss the quark mass dependence of the critical end point of QCD. Then I discuss probes of the QCD critical point. Non-gaussian behaviour of event-to-event fluctuations of conserved quantum numbers is one such probe. Another is due to the coupling of fluctuations in baryon number and electrical charge, giving rise to long range random fluctuations of local charge density which relax slowly. These fluctuations can scatter photons, giving rise to critical opalescence.

  20. Fluctuations and Photons

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Sourendu [Department of Theoretical Physics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India)

    2007-02-15

    In this talk I discuss measures of fluctuations, especially those leading to the proof that the quark gluon plasma indeed contains quarks. I discuss the quark mass dependence of the critical end point of QCD. Then I discuss probes of the QCD critical point. Non-gaussian behaviour of event-to-event fluctuations of conserved quantum numbers is one such probe. Another is due to the coupling of fluctuations in baryon number and electrical charge, giving rise to long range random fluctuations of local charge density which relax slowly. These fluctuations can scatter photons, giving rise to critical opalescence.

  1. Fluctuations, dynamical instabilities and clusterization processes

    International Nuclear Information System (INIS)

    Burgio, G.F.; Chomaz, Ph.; Randrup, J.

    1992-01-01

    Recent progress with regard to the numerical simulation of fluctuations in nuclear dynamics is reported. Cluster formation in unstable nuclear matter is studied within the framework of a Boltzmann-Langevin equation developed to describe large amplitude fluctuations. Through the Fourier analysis of the fluctuating nuclear density in coordinate space, the onset of the clusterization is related to the dispersion relation of harmonic density oscillations. This detailed study on the simple two-dimensional case demonstrates the validity of the general approach. It is also shown, how the inclusion of fluctuations implies a description in terms of ensemble of trajectories and it is discussed why the presence of a stochastic term may cure the intrinsic unpredictability of deterministic theories (such as mean-field approximation) in presence of instabilities and/or chaos. (author) 8 refs., 3 figs

  2. Nuclear relaxation and critical fluctuations in membranes containing cholesterol

    Science.gov (United States)

    McConnell, Harden

    2009-04-01

    Nuclear resonance frequencies in bilayer membranes depend on lipid composition. Our calculations describe the combined effects of composition fluctuations and diffusion on nuclear relaxation near a miscibility critical point. Both tracer and gradient diffusion are included. The calculations involve correlation functions and a correlation length ξ =ξ0T/(T -Tc), where T -Tc is temperature above the critical temperature and ξ0 is a parameter of molecular length. Several correlation functions are examined, each of which is related in some degree to the Ising model correlation function. These correlation functions are used in the calculation of transverse deuterium relaxation rates in magic angle spinning and quadrupole echo experiments. The calculations are compared with experiments that report maxima in deuterium and proton nuclear relaxation rates at the critical temperature [Veatch et al., Proc. Nat. Acad. Sci. U.S.A. 104, 17650 (2007)]. One Ising-model-related correlation function yields a maximum 1/T2 relaxation rate at the critical temperature for both magic angle spinning and quadrupole echo experiments. The calculated rates at the critical temperature are close to the experimental rates. The rate maxima involve relatively rapid tracer diffusion in a static composition gradient over distances of up to 10-100 nm.

  3. Forward-backward multiplicity fluctuation and longitudinal harmonics in high-energy nuclear collisions

    Science.gov (United States)

    Jia, Jiangyong; Radhakrishnan, Sooraj; Zhou, Mingliang; Huo, Peng

    2016-12-01

    Forward-backward (FB) multiplicity fluctuation in high-energy nuclear collisions can be quantified by two-particle pseudo-rapidity correlation function and its expansion into Legendre polynomials. The corresponding coefficients represent different fluctuation modes in longitudinal direction. The leading term corresponds to the asymmetry of numbers of the participants from the two colliding nuclei. This method is tested in events generated from AMPT and HIJING model. The an signal are found to be strongly dampened in AMPT than in HIJIGN, due to weaker short-range correlaitons and final-state effects in AMPT. Two-particle correlation also reveals an intresting shallow minimum around Δη ≈ 0 in AMPT events, which is absent in HIJING results. The method opens a new avenue to elucidate the particle production mechanism and early time dynamics in heavy-ion collisions.

  4. Bridging the gap between event-by-event fluctuation measurements and theory predictions in relativistic nuclear collisions

    Energy Technology Data Exchange (ETDEWEB)

    Braun-Munzinger, P., E-mail: p.braun-munzinger@gsi.de [Extreme Matter Institute EMMI, GSI, Darmstadt (Germany); Physikalisches Institut, Universität Heidelberg, Heidelberg (Germany); Rustamov, A., E-mail: a.rustamov@cern.ch [Physikalisches Institut, Universität Heidelberg, Heidelberg (Germany); National Nuclear Research Center, Baku (Azerbaijan); Stachel, J., E-mail: stachel@physi.uni-heidelberg.de [Physikalisches Institut, Universität Heidelberg, Heidelberg (Germany)

    2017-04-15

    We develop methods to deal with non-dynamical contributions to event-by-event fluctuation measurements of net-particle numbers in relativistic nuclear collisions. These contributions arise from impact parameter fluctuations and from the requirement of overall net-baryon number or net-charge conservation and may mask the dynamical fluctuations of interest, such as those due to critical endpoints in the QCD phase diagram. Within a model of independent particle sources we derive formulae for net-particle fluctuations and develop a rigorous approach to take into account contributions from participant fluctuations in realistic experimental environments and at any cumulant order. Interestingly, contributions from participant fluctuations to the second and third cumulants of net-baryon distributions are found to vanish at mid-rapidity for LHC energies while higher cumulants of even order are non-zero even when the net-baryon number at mid-rapidity is zero. At lower beam energies the effect of participant fluctuations increases and induces spurious higher moments. The necessary corrections become large and need to be carefully taken into account before comparison to theory. We also provide a procedure for selecting the optimal phase–space coverage of particles for fluctuation analyses and discuss quantitatively the necessary correction due to global charge conservation.

  5. On the fluctuations of sums of independent random variables.

    Science.gov (United States)

    Feller, W

    1969-07-01

    If X(1), X(2),... are independent random variables with zero expectation and finite variances, the cumulative sums S(n) are, on the average, of the order of magnitude S(n), where S(n) (2) = E(S(n) (2)). The occasional maxima of the ratios S(n)/S(n) are surprisingly large and the problem is to estimate the extent of their probable fluctuations.Specifically, let S(n) (*) = (S(n) - b(n))/a(n), where {a(n)} and {b(n)}, two numerical sequences. For any interval I, denote by p(I) the probability that the event S(n) (*) epsilon I occurs for infinitely many n. Under mild conditions on {a(n)} and {b(n)}, it is shown that p(I) equals 0 or 1 according as a certain series converges or diverges. To obtain the upper limit of S(n)/a(n), one has to set b(n) = +/- epsilon a(n), but finer results are obtained with smaller b(n). No assumptions concerning the under-lying distributions are made; the criteria explain structurally which features of {X(n)} affect the fluctuations, but for concrete results something about P{S(n)>a(n)} must be known. For example, a complete solution is possible when the X(n) are normal, replacing the classical law of the iterated logarithm. Further concrete estimates may be obtained by combining the new criteria with some recently developed limit theorems.

  6. Neutron noise in nuclear reactors

    International Nuclear Information System (INIS)

    Blaquiere, A.; Pachowska, R.

    1961-06-01

    The power of a nuclear reactor, in the operating conditions, presents fluctuations due to various causes. This random behaviour can be included in the study of 'noises'. Among other sources of noise, we analyse hereafter the fluctuations due: a) to the discontinuous emissions of neutrons from an independent source; b) to the multiplication of neutrons inside the reactor. The method which we present makes use of the analogies between the rules governing a nuclear reactor in operation and a number of radio-electrical systems, in particular the feed-back loops. The reactor can be characterized by its 'passing band' and is described as a system submitted to a sequence of random pulses. In non linear operating condition, the effect of neutron noise is defined by means of a non-linear functional, this theory is thus related to previous works the references of which are given at the end of the present report. This leads us in particular in the case of nuclear reactors to some results given by A. Blaquiere in the case of radio-electrical loops. (author) [fr

  7. Analysis of fluctuations in semiconductor devices

    Science.gov (United States)

    Andrei, Petru

    The random nature of ion implantation and diffusion processes as well as inevitable tolerances in fabrication result in random fluctuations of doping concentrations and oxide thickness in semiconductor devices. These fluctuations are especially pronounced in ultrasmall (nanoscale) semiconductor devices when the spatial scale of doping and oxide thickness variations become comparable with the geometric dimensions of devices. In the dissertation, the effects of these fluctuations on device characteristics are analyzed by using a new technique for the analysis of random doping and oxide thickness induced fluctuations. This technique is universal in nature in the sense that it is applicable to any transport model (drift-diffusion, semiclassical transport, quantum transport etc.) and it can be naturally extended to take into account random fluctuations of the oxide (trapped) charges and channel length. The technique is based on linearization of the transport equations with respect to the fluctuating quantities. It is computationally much (a few orders of magnitude) more efficient than the traditional Monte-Carlo approach and it yields information on the sensitivity of fluctuations of parameters of interest (e.g. threshold voltage, small-signal parameters, cut-off frequencies, etc.) to the locations of doping and oxide thickness fluctuations. For this reason, it can be very instrumental in the design of fluctuation-resistant structures of semiconductor devices. Quantum mechanical effects are taken into account by using the density-gradient model as well as through self-consistent Poisson-Schrodinger computations. Special attention is paid to the presenting of the technique in a form that is suitable for implementation on commercial device simulators. The numerical implementation of the technique is discussed in detail and numerous computational results are presented and compared with those previously published in literature.

  8. Fully Quantum Fluctuation Theorems

    Science.gov (United States)

    Åberg, Johan

    2018-02-01

    Systems that are driven out of thermal equilibrium typically dissipate random quantities of energy on microscopic scales. Crooks fluctuation theorem relates the distribution of these random work costs to the corresponding distribution for the reverse process. By an analysis that explicitly incorporates the energy reservoir that donates the energy and the control system that implements the dynamic, we obtain a quantum generalization of Crooks theorem that not only includes the energy changes in the reservoir but also the full description of its evolution, including coherences. Moreover, this approach opens up the possibility for generalizations of the concept of fluctuation relations. Here, we introduce "conditional" fluctuation relations that are applicable to nonequilibrium systems, as well as approximate fluctuation relations that allow for the analysis of autonomous evolution generated by global time-independent Hamiltonians. We furthermore extend these notions to Markovian master equations, implicitly modeling the influence of the heat bath.

  9. Interplanetary Alfvenic fluctuations: A stochastic model

    International Nuclear Information System (INIS)

    Barnes, A.

    1981-01-01

    The strong alignment of the average directions of minimum magnetic variance and mean magnetic field in interplanetary Alfvenic fluctuations is inconsistent with the usual wave-propagation models. We investigate the concept of minimum variance for nonplanar Alfvenic fluctuations in which the field direction varies stochastically. It is found that the tendency of the minimum variance and mean field directions to be aligned may be purely a consequence of the randomness of the field direction. In particular, a well-defined direction of minimum variance does not imply that the fluctuations are necessarily planar. The fluctuation power spectrum is a power law for frequencies much higher than the inverse of the correlation time. The probability distribution of directions a randomly fluctuating field of constant magnitude is calculated. A new approach for observational studies of interplanetary fluctuations is suggested

  10. Adams-Bashforth-Moulton method with Savitzky-Golay filter to reduce reactivity fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Suescun-Diaz, Daniel; Rasero Causil, Diego A. [Univ. Surcolombiana, Neiva (Colombia). Dept. de Ciencias Exactas y Naturales; Figueroa-Jimenez, Jorge H. [Pontificia Universidad Javeriana Cali, Cali (Colombia). Dept. de Ciencias Naturales y Matematicas

    2017-12-15

    In this paper we present a new method of calculating reactivity with fluctuation reduction. First we propose the generalized predictor and corrector using the fourth order Adams-Basforth-Moulton (ABM) for the numerical solution of the point kinetic equations for the calculation of reactivity, without using the history of nuclear power. Due to the nature of point kinetic equations, we use modifiers of the different predictors to increase precision in the approximation obtained. Secondly, we use the filter known as Savitzky-Golay (SG), which permits the reduction of the fluctuation in reactivity. It is known that the SG filter smoothing without diminishing the value of the nuclear power, irrespective of its form; this guarantees the reduction of Gaussian random noise levels, which is distributed around the average value of the nuclear power of up to σ = 0.1, with a time step h = 0.01 s. This formulation uses the Gram polynomial approximation, with a degree d = 2 the results show better values in the maximum difference in reactivity in comparison with that reported in literature.

  11. The dependence of the nuclear charge form factor on short range correlations and surface fluctuation effects

    International Nuclear Information System (INIS)

    Massen, S. E.; Garistov, V. P.; Grypeos, M. E.

    1996-01-01

    The effects of nuclear surface fluctuations on harmonic oscillator elastic charge form factor of light nuclei are investigated, simultaneously approximating the short-range correlations through a Jastrow correlation factor. Inclusion of the surface fluctuation effects within this description, by truncating the cluster expansion at the two-body part, is found to improve somewhat the fit to the elastic charge form-factor of 16 O and 40 Ca. However, the convergence of the cluster expansion is expected to deteriorate. An additional finding is that surface-fluctuation correlations produce a drastic change in the asymptotic behaviour of the point-proton form-factor, which now falls off quite slowly (i.e. as const.q -4 ) at large values of the momentum transfer q

  12. Potential fluctuations due to the randomly distributed charges at the semiconductor-insulator interface in MIS-structures

    International Nuclear Information System (INIS)

    Slavcheva, G.; Yanchev, I.

    1991-01-01

    A new expression for the Fourier transform of the binary correlation function of the random potential near the semiconductor-insulator interface is derived. The screening due to the image charge with respect to the metal electrode in MIS-structure is taken into account, introducing an effective insulator thickness. An essential advantage of this correlation function is the finite dispersion of the random potential Γ 2 to which it leads in distinction with the so far known correlation functions leading to divergent dispersion. The important characteristic of the random potential distribution Γ 2 determining the amplitude of the potential fluctuations is calculated. (author). 7 refs, 1 fig

  13. Fluctuations of the single-particle density in nuclear dynamics

    International Nuclear Information System (INIS)

    Burgio, G.F.; Chomaz, P.; Randrup, J.

    1991-01-01

    In recent years semiclassical methods have been developed to study heavy-ion collisions in the framework of the Boltzmann-Uehling-Uhlenbeck theory, in which the collisionless mean field evolution has been augmented by a Pauli-blocked Nordheim collision term. Since these models describe the average dynamic trajectory, they cannot be applied to describe fluctuations of one-body observables, correlations in the emission of light particles and catastrophic processes like multifragmentation. The authors have developed a new method in order to include the stochastic part of the collision integral into BUU-type simulations of the nuclear dynamics. They apply this method to a two-dimensional gas of fermions on a torus, for which the time evolution of the mean trajectory and the associated correlation function are calculated; the variance of the phase-space occupancy follows closely the predictions of the corresponding Fokker-Planck equation and relaxes towards the appropriate quantum-statistical limit. The breaking of the translational and spherical symmetry in the model permits the study of unstable situations in phase-space. The introduction of the nonlinear one-body field allows them to explore dynamical instabilities and bifurcations. Therefore the model can be appropriate for studying nuclear multifragmentation

  14. Diagnostics of the boiling state of coolant based on neutron fluctuation at the Paks Nuclear Power Plant

    International Nuclear Information System (INIS)

    Por, G.; Gloeckler, O.; Izsak, E.; Valko, J.

    1985-09-01

    A short summary of theory and early experiments on the effect of propagating perturbation on neutron fluctuations in nuclear reactors is given. Boiling noise was examined in the Rheisenberg reactor of 70 MWe. Comparing the results of measurements with those carried out in the Paks nuclear power plant it seems possible that a small subcooled boiling took place during the 2nd fuel cycle. (author)

  15. BWIP-RANDOM-SAMPLING, Random Sample Generation for Nuclear Waste Disposal

    International Nuclear Information System (INIS)

    Sagar, B.

    1989-01-01

    1 - Description of program or function: Random samples for different distribution types are generated. Distribution types as required for performance assessment modeling of geologic nuclear waste disposal are provided. These are: - Uniform, - Log-uniform (base 10 or natural), - Normal, - Lognormal (base 10 or natural), - Exponential, - Bernoulli, - User defined continuous distribution. 2 - Method of solution: A linear congruential generator is used for uniform random numbers. A set of functions is used to transform the uniform distribution to the other distributions. Stratified, rather than random, sampling can be chosen. Truncated limits can be specified on many distributions, whose usual definition has an infinite support. 3 - Restrictions on the complexity of the problem: Generation of correlated random variables is not included

  16. Fluctuations in Schottky barrier heights

    International Nuclear Information System (INIS)

    Mahan, G.D.

    1984-01-01

    A double Schottky barrier is often formed at the grain boundary in polycrystalline semiconductors. The barrier height is shown to fluctuate in value due to the random nature of the impurity positions. The magnitude of the fluctuations is 0.1 eV, and the fluctuations cause the barrier height measured by capacitance to differ from the one measured by electrical conductivity

  17. Theory of fluctuations and parametric noise in a point nuclear reactor model

    International Nuclear Information System (INIS)

    Rodriguez, M.A.; San Miguel, M.; Sancho, J.M.

    1984-01-01

    We present a joint description of internal fluctuations and parametric noise in a point nuclear reactor model in which delayed neutrons and a detector are considered. We obtain kinetic equations for the first moments and define effective kinetic parameters which take into account the effect of parametric Gaussian white noise. We comment on the validity of Langevin approximations for this problem. We propose a general method to deal with weak but otherwise arbitrary non-white parametric noise. Exact kinetic equations are derived for Gaussian non-white noise. (author)

  18. Fluctuations in the thermal superfluid model for heated spherical nuclei

    International Nuclear Information System (INIS)

    Nguyen Dinhdang; Nguyen Zuythang

    1990-01-01

    The effect of the non-vanishing thermal pairing gap due to statistical fluctuations is investigated by calculating fluctuations of selected observables such as the energy and particle number fluctuations, the nuclear level density, the level density parameter and the specific heat within the framework of the thermal nuclear superfluid model. In numerical calculations for heated spherical nuclei 58 Ni, 142 Sm and 208 Pb the realistic single-particle energy spectra defined in the Woods-Saxon potential are used. It is found that the results obtained with the non-vanishing thermal average pairing gap can yield an adequate estimate of the true fluctuations in the finite heating non-rotating nuclear systems. (author)

  19. Dual-Material Gate Approach to Suppression of Random-Dopant-Induced Characteristic Fluctuation in 16 nm Metal-Oxide-Semiconductor Field-Effect-Transistor Devices

    Science.gov (United States)

    Li, Yiming; Lee, Kuo-Fu; Yiu, Chun-Yen; Chiu, Yung-Yueh; Chang, Ru-Wei

    2011-04-01

    In this work, we explore for the first time dual-material gate (DMG) and inverse DMG devices for suppressing the random-dopant (RD)-induced characteristic fluctuation in 16 nm metal-oxide-semiconductor field-effect-transistor (MOSFET) devices. The physical mechanism of suppressing the characteristic fluctuation of DMG devices is observed and discussed. The achieved improvement in suppressing the RD-induced threshold voltage, on-state current, and off-state current fluctuations are 28, 12.3, and 59%, respectively. To further suppress the fluctuations, an approach that combines the DMG method and channel-doping-profile engineering is also advanced and explored. The results of our study show that among the suppression techniques, the use of the DMG device with an inverse lateral asymmetric channel-doping-profile has good immunity to fluctuation.

  20. Quantifying fluctuations in economic systems by adapting methods of statistical physics

    Science.gov (United States)

    Stanley, H. E.; Gopikrishnan, P.; Plerou, V.; Amaral, L. A. N.

    2000-12-01

    The emerging subfield of econophysics explores the degree to which certain concepts and methods from statistical physics can be appropriately modified and adapted to provide new insights into questions that have been the focus of interest in the economics community. Here we give a brief overview of two examples of research topics that are receiving recent attention. A first topic is the characterization of the dynamics of stock price fluctuations. For example, we investigate the relation between trading activity - measured by the number of transactions NΔ t - and the price change GΔ t for a given stock, over a time interval [t, t+ Δt] . We relate the time-dependent standard deviation of price fluctuations - volatility - to two microscopic quantities: the number of transactions NΔ t in Δ t and the variance WΔ t2 of the price changes for all transactions in Δ t. Our work indicates that while the pronounced tails in the distribution of price fluctuations arise from WΔ t, the long-range correlations found in ∣ GΔ t∣ are largely due to NΔ t. We also investigate the relation between price fluctuations and the number of shares QΔ t traded in Δ t. We find that the distribution of QΔ t is consistent with a stable Lévy distribution, suggesting a Lévy scaling relationship between QΔ t and NΔ t, which would provide one explanation for volume-volatility co-movement. A second topic concerns cross-correlations between the price fluctuations of different stocks. We adapt a conceptual framework, random matrix theory (RMT), first used in physics to interpret statistical properties of nuclear energy spectra. RMT makes predictions for the statistical properties of matrices that are universal, that is, do not depend on the interactions between the elements comprising the system. In physics systems, deviations from the predictions of RMT provide clues regarding the mechanisms controlling the dynamics of a given system, so this framework can be of potential value if

  1. Random River Fluctuations Shape the Root Profile of Riparian Plants

    Science.gov (United States)

    Perona, P.; Tron, S.; Gorla, L.; Schwarz, M.; Laio, F.; Ridolfi, L.

    2015-12-01

    Plant roots are recognized to play a key role in the riparian ecosystems: they contribute to the plant as well as to the streambank and bedforms stability, help to enhance the water quality of the river, and sustain the belowground biodiversity. The complexity of the root-system architecture recalls their remarkable ability to respond to environmental conditions, notably including soil heterogeneity, resource availability, and climate. In fluvial environments where nutrient availability is not a limiting factor for plant to grow, the root growth of phreatophytic plants is strongly influenced by water and oxygen availability in the soil. In this work, we demonstrate that the randomness of water table fluctuations, determined by streamflow stochastic variability, is likely to be the main driver for the root development strategy of riparian plants. A collection of root measurements from field and outdoor controlled experiments is used to demonstrate that the vertical root density distribution can be described by a simple analytical expression, whose parameters are linked to properties of soil, plant and water table fluctuations. This physically-based expression is able to predict riparian plant roots adaptability to different hydrological and pedologic scenarios in riverine environments. Hence, this model has great potential towards the comprehension of the effects of future climate and environmental changing conditions on plant adaptation and river ecomorphodynamic processes. Finally, we present an open access graphical user interface that we developed in order to estimate the vertical root distribution in fluvial environments and to make the model easily available to a wider scientific and professional audience.

  2. Interwell Radiative Recombination in the Presence of Random Potential Fluctuations in GaAs/AlGaAs Biased Double Quantum Wells

    DEFF Research Database (Denmark)

    Timofeev, V.B.; Larionov, A.V.; Ioselevich, A.S.

    1999-01-01

    The interwell luminescence (PL) of spatially separated e-h pairs exhibits systematic narrowing with temperature increase which are explained in terms of lateral thermo-activated tunneling of e-h pairs localized by random potential fluctuations (RPF). At critical temperatures the quasi-equilibrium......The interwell luminescence (PL) of spatially separated e-h pairs exhibits systematic narrowing with temperature increase which are explained in terms of lateral thermo-activated tunneling of e-h pairs localized by random potential fluctuations (RPF). At critical temperatures the quasi......-equilibrium of carriers, undergoes an abrupt transition. This occurs with significant redistribution of the electrical field inside the structure and give rise to a low frequency noice appearing in the luminescence. Below critical temperature the new steady state results in the accumulation of 2DEG in one of the well....

  3. Pressure fluctuation analysis for charging pump of chemical and volume control system of nuclear power plant

    Directory of Open Access Journals (Sweden)

    Chen Qiang

    2016-01-01

    Full Text Available Equipment Failure Root Cause Analysis (ERCA methodology is employed in this paper to investigate the root cause for charging pump’s pressure fluctuation of chemical and volume control system (RCV in pressurized water reactor (PWR nuclear power plant. RCA project task group has been set up at the beginning of the analysis process. The possible failure modes are listed according to the characteristics of charging pump’s actual pressure fluctuation and maintenance experience during the analysis process. And the failure modes are analysed in proper sequence by the evidence-collecting. It suggests that the gradually untightened and loosed shaft nut in service should be the root cause. And corresponding corrective actions are put forward in details.

  4. Statistical methods in nuclear theory

    International Nuclear Information System (INIS)

    Shubin, Yu.N.

    1974-01-01

    The paper outlines statistical methods which are widely used for describing properties of excited states of nuclei and nuclear reactions. It discusses physical assumptions lying at the basis of known distributions between levels (Wigner, Poisson distributions) and of widths of highly excited states (Porter-Thomas distribution, as well as assumptions used in the statistical theory of nuclear reactions and in the fluctuation analysis. The author considers the random matrix method, which consists in replacing the matrix elements of a residual interaction by random variables with a simple statistical distribution. Experimental data are compared with results of calculations using the statistical model. The superfluid nucleus model is considered with regard to superconducting-type pair correlations

  5. Quantum fluctuations and inflation

    International Nuclear Information System (INIS)

    Bardeen, J.M.; Bublik, G.J.

    1986-05-01

    We study the effect of quantum fluctuations on the roll-down rate of the inflation field in a semiclassical approximation; this is done by treating the inflation field as a classical random field. The quantum fluctuations are simulated by a noise term in the equation of motion. We consider two different inflationary scenarios (new and chaotic inflation) and find that the roll-down rate of the median value of the inflation field is increased by the quantum fluctuations. Non-linear effects may become important in the later stages of the inflationary regime. 8 refs., 2 figs

  6. Quantum fluctuations and inflation

    International Nuclear Information System (INIS)

    Bardeen, J.M.; Bublik, G.J.

    1987-01-01

    The authors study the effect of quantum fluctuations on the roll-down rate of the inflation field in a semiclassical approximation; this is done by treating the inflation field as a classical random field. The quantum fluctuations are simulated by a noise term in the equation of motion. Two different inflationary scenarios (new and chaotic inflation) are considered and it is found that the roll-down rate of the median value of the inflation field is increased by the quantum fluctuations. Non-linear effects may become important in the later stages of the inflationary regime. (author)

  7. Nuclear quantum effects and hydrogen bond fluctuations in water

    Science.gov (United States)

    Ceriotti, Michele; Cuny, Jérôme; Parrinello, Michele; Manolopoulos, David E.

    2013-01-01

    The hydrogen bond (HB) is central to our understanding of the properties of water. However, despite intense theoretical and experimental study, it continues to hold some surprises. Here, we show from an analysis of ab initio simulations that take proper account of nuclear quantum effects that the hydrogen-bonded protons in liquid water experience significant excursions in the direction of the acceptor oxygen atoms. This generates a small but nonnegligible fraction of transient autoprotolysis events that are not seen in simulations with classical nuclei. These events are associated with major rearrangements of the electronic density, as revealed by an analysis of the computed Wannier centers and 1H chemical shifts. We also show that the quantum fluctuations exhibit significant correlations across neighboring HBs, consistent with an ephemeral shuttling of protons along water wires. We end by suggesting possible implications for our understanding of how perturbations (solvated ions, interfaces, and confinement) might affect the HB network in water. PMID:24014589

  8. Non-Gaussian conductivity fluctuations in semiconductors

    International Nuclear Information System (INIS)

    Melkonyan, S.V.

    2010-01-01

    A theoretical study is presented on the statistical properties of conductivity fluctuations caused by concentration and mobility fluctuations of the current carriers. It is established that mobility fluctuations result from random deviations in the thermal equilibrium distribution of the carriers. It is shown that mobility fluctuations have generation-recombination and shot components which do not satisfy the requirements of the central limit theorem, in contrast to the current carrier's concentration fluctuation and intraband component of the mobility fluctuation. It is shown that in general the mobility fluctuation consist of thermal (or intraband) Gaussian and non-thermal (or generation-recombination, shot, etc.) non-Gaussian components. The analyses of theoretical results and experimental data from literature show that the statistical properties of mobility fluctuation and of 1/f-noise fully coincide. The deviation from Gaussian statistics of the mobility or 1/f fluctuations goes hand in hand with the magnitude of non-thermal noise (generation-recombination, shot, burst, pulse noises, etc.).

  9. Studies of fluctuation processes in nuclear collisions

    International Nuclear Information System (INIS)

    Ayik, S.

    1991-02-01

    This report summarizes the progress on grant No. DE-FG05-89ER40530 during the period April 15, 1990 to February 15, 1991. Our studies of heavy-ion collisions in the framework of ''a stochastic one-body transport model'' has progress in several directions. We developed a method for obtaining approximate numerical solutions of the transport-equation in semi-classical limit, i.e., Boltzmann-Langevin equation, and tested the method in realistic cases of heavy-ion collisions at energies below 100 MeV per nucleon. Some results of the numerical simulations for a head-on collision of 12 C + 12 C system is included in this report. Work has also continued on studying the stochastic one-body transport model in a quantal representation, which provides a microscopic basis for a consistent description of dissipation and fluctuation properties of large amplitude collective nuclear motion. The previous derivation of the stochastic one-body transport model was presented within the density matrix formalisam. We generalized this treatment and proposed an alternative derivation of the model by employing the Green's function approach within the real-time path formalism of Keldish. One manuscript has been submitted to Nucl. Phys. A for publication. Two other manuscripts are in preparation for publication. Several seminars and contributed talks were presented at various meeting

  10. Inverse heat conduction estimation of inner wall temperature fluctuations under turbulent penetration

    Science.gov (United States)

    Guo, Zhouchao; Lu, Tao; Liu, Bo

    2017-04-01

    Turbulent penetration can occur when hot and cold fluids mix in a horizontal T-junction pipe at nuclear plants. Caused by the unstable turbulent penetration, temperature fluctuations with large amplitude and high frequency can lead to time-varying wall thermal stress and even thermal fatigue on the inner wall. Numerous cases, however, exist where inner wall temperatures cannot be measured and only outer wall temperature measurements are feasible. Therefore, it is one of the popular research areas in nuclear science and engineering to estimate temperature fluctuations on the inner wall from measurements of outer wall temperatures without damaging the structure of the pipe. In this study, both the one-dimensional (1D) and the two-dimensional (2D) inverse heat conduction problem (IHCP) were solved to estimate the temperature fluctuations on the inner wall. First, numerical models of both the 1D and the 2D direct heat conduction problem (DHCP) were structured in MATLAB, based on the finite difference method with an implicit scheme. Second, both the 1D IHCP and the 2D IHCP were solved by the steepest descent method (SDM), and the DHCP results of temperatures on the outer wall were used to estimate the temperature fluctuations on the inner wall. Third, we compared the temperature fluctuations on the inner wall estimated by the 1D IHCP with those estimated by the 2D IHCP in four cases: (1) when the maximum disturbance of temperature of fluid inside the pipe was 3°C, (2) when the maximum disturbance of temperature of fluid inside the pipe was 30°C, (3) when the maximum disturbance of temperature of fluid inside the pipe was 160°C, and (4) when the fluid temperatures inside the pipe were random from 50°C to 210°C.

  11. Band gaps and localization of surface water waves over large-scale sand waves with random fluctuations

    Science.gov (United States)

    Zhang, Yu; Li, Yan; Shao, Hao; Zhong, Yaozhao; Zhang, Sai; Zhao, Zongxi

    2012-06-01

    Band structure and wave localization are investigated for sea surface water waves over large-scale sand wave topography. Sand wave height, sand wave width, water depth, and water width between adjacent sand waves have significant impact on band gaps. Random fluctuations of sand wave height, sand wave width, and water depth induce water wave localization. However, random water width produces a perfect transmission tunnel of water waves at a certain frequency so that localization does not occur no matter how large a disorder level is applied. Together with theoretical results, the field experimental observations in the Taiwan Bank suggest band gap and wave localization as the physical mechanism of sea surface water wave propagating over natural large-scale sand waves.

  12. Fluctuation microscopy: a probe of medium range order

    International Nuclear Information System (INIS)

    Treacy, M M J; Gibson, J M; Fan, L; Paterson, D J; McNulty, I

    2005-01-01

    Fluctuation microscopy is a hybrid diffraction-imaging technique that detects medium range order in amorphous materials by examining spatial fluctuations in coherent scattering. These fluctuations appear as speckle in images and diffraction patterns. The volume of material contributing to the speckle is determined by the point-spread function (the resolution) of the imaging optics and the sample thickness. The spatial periodicities being probed are related to the diffraction vector. Statistical analysis of the speckle allows the random and non-random (ordered) contributions to be discriminated. The image resolution that gives the maximum speckle contrast, as determined by the normalized variance of the image intensity, is determined by the characteristic length scale of the ordering. Because medium range ordering length scales can extend out to about the tenth coordination shell, fluctuation microscopy tends to be a low image resolution technique. This review presents the kinematical scattering theory underpinning fluctuation microscopy and a description of fluctuation electron microscopy as it has been employed in the transmission electron microscope for studying amorphous materials. Recent results using soft x-rays for studying nanoscale materials are also presented. We summarize outstanding issues and point to possible future directions for fluctuation microscopy as a technique

  13. Fluctuations of nuclear cross sections in the region of strong overlapping resonances and at large number of open channels

    International Nuclear Information System (INIS)

    Kun, S.Yu.

    1985-01-01

    On the basis of the symmetrized Simonius representation of the S matrix statistical properties of its fluctuating component in the presence of direct reactions are investigated. The case is considered where the resonance levels are strongly overlapping and there is a lot of open channels, assuming that compound-nucleus cross sections which couple different channels are equal. It is shown that using the averaged unitarity condition on the real energy axis one can eliminate both resonance-resonance and channel-channel correlations from partial r transition amplitudes. As a result, we derive the basic points of the Epicson fluctuation theory of nuclear cross sections, independently of the relation between the resonance overlapping and the number of open channels, and the validity of the Hauser-Feshbach model is established. If the number of open channels is large, the time of uniform population of compound-nucleus configurations, for an open excited nuclear system, is much smaller than the Poincare time. The life time of compound nucleus is discussed

  14. On the origin of shape fluctuations of the cell nucleus.

    Science.gov (United States)

    Chu, Fang-Yi; Haley, Shannon C; Zidovska, Alexandra

    2017-09-26

    The nuclear envelope (NE) presents a physical boundary between the cytoplasm and the nucleoplasm, sandwiched in between two highly active systems inside the cell: cytoskeleton and chromatin. NE defines the shape and size of the cell nucleus, which increases during the cell cycle, accommodating for chromosome decondensation followed by genome duplication. In this work, we study nuclear shape fluctuations at short time scales of seconds in human cells. Using spinning disk confocal microscopy, we observe fast fluctuations of the NE, visualized by fluorescently labeled lamin A, and of the chromatin globule surface (CGS) underneath the NE, visualized by fluorescently labeled histone H2B. Our findings reveal that fluctuation amplitudes of both CGS and NE monotonously decrease during the cell cycle, serving as a reliable cell cycle stage indicator. Remarkably, we find that, while CGS and NE typically fluctuate in phase, they do exhibit localized regions of out-of-phase motion, which lead to separation of NE and CGS. To explore the mechanism behind these shape fluctuations, we use biochemical perturbations. We find the shape fluctuations of CGS and NE to be both thermally and actively driven, the latter caused by forces from chromatin and cytoskeleton. Such undulations might affect gene regulation as well as contribute to the anomalously high rates of nuclear transport by, e.g., stirring of molecules next to NE, or increasing flux of molecules through the nuclear pores.

  15. Fluctuation microscopy analysis of amorphous silicon models

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, J.M., E-mail: jmgibson@fsu.edu [Northeastern University, Department of Physics, Boston MA 02115 (United States); FAMU/FSU Joint College of Engineering, 225 Pottsdamer Street, Tallahassee, FL 32310 (United States); Treacy, M.M.J. [Arizona State University, Department of Physics, Tempe AZ 85287 (United States)

    2017-05-15

    Highlights: • Studied competing computer models for amorphous silicon and simulated fluctuation microscopy data. • Show that only paracrystalline/random network composite can fit published data. • Specifically show that pure random network or random network with void models do not fit available data. • Identify a new means to measure volume fraction of ordered material. • Identify unreported limitations of the Debye model for simulating fluctuation microscopy data. - Abstract: Using computer-generated models we discuss the use of fluctuation electron microscopy (FEM) to identify the structure of amorphous silicon. We show that a combination of variable resolution FEM to measure the correlation length, with correlograph analysis to obtain the structural motif, can pin down structural correlations. We introduce the method of correlograph variance as a promising means of independently measuring the volume fraction of a paracrystalline composite. From comparisons with published data, we affirm that only a composite material of paracrystalline and continuous random network that is substantially paracrystalline could explain the existing experimental data, and point the way to more precise measurements on amorphous semiconductors. The results are of general interest for other classes of disordered materials.

  16. Fluctuation microscopy analysis of amorphous silicon models

    International Nuclear Information System (INIS)

    Gibson, J.M.; Treacy, M.M.J.

    2017-01-01

    Highlights: • Studied competing computer models for amorphous silicon and simulated fluctuation microscopy data. • Show that only paracrystalline/random network composite can fit published data. • Specifically show that pure random network or random network with void models do not fit available data. • Identify a new means to measure volume fraction of ordered material. • Identify unreported limitations of the Debye model for simulating fluctuation microscopy data. - Abstract: Using computer-generated models we discuss the use of fluctuation electron microscopy (FEM) to identify the structure of amorphous silicon. We show that a combination of variable resolution FEM to measure the correlation length, with correlograph analysis to obtain the structural motif, can pin down structural correlations. We introduce the method of correlograph variance as a promising means of independently measuring the volume fraction of a paracrystalline composite. From comparisons with published data, we affirm that only a composite material of paracrystalline and continuous random network that is substantially paracrystalline could explain the existing experimental data, and point the way to more precise measurements on amorphous semiconductors. The results are of general interest for other classes of disordered materials.

  17. Discussion on the establishment of blood glucose fluctuation animal models

    OpenAIRE

    Chun-Liu Gai; Jing-Ru Zhao; Xiao-Long Chen

    2014-01-01

    AIM: To provide the experimental basis for the in vivo study of blood glucose fluctuation injury mechanism, through intraperitoneal injection of glucose to establish blood glucose fluctuation animal models and to simulate blood glucose fluctuation of patients with diabetes.METHODS: Rats were randomly divided into four groups: normal control group(NC), normal fluctuation group(NF), diabetes mellitus group(DM)and diabetes fluctuation group(DF). Diabetic models were induced through intraperitone...

  18. Counting statistics in low level radioactivity measurements fluctuating counting efficiency

    International Nuclear Information System (INIS)

    Pazdur, M.F.

    1976-01-01

    A divergence between the probability distribution of the number of nuclear disintegrations and the number of observed counts, caused by counting efficiency fluctuation, is discussed. The negative binominal distribution is proposed to describe the probability distribution of the number of counts, instead of Poisson distribution, which is assumed to hold for the number of nuclear disintegrations only. From actual measurements the r.m.s. amplitude of counting efficiency fluctuation is estimated. Some consequences of counting efficiency fluctuation are investigated and the corresponding formulae are derived: (1) for detection limit as a function of the number of partial measurements and the relative amplitude of counting efficiency fluctuation, and (2) for optimum allocation of the number of partial measurements between sample and background. (author)

  19. Exchange-correlation energy from pairing matrix fluctuation and the particle-particle random phase approximation.

    Science.gov (United States)

    van Aggelen, Helen; Yang, Yang; Yang, Weitao

    2014-05-14

    Despite their unmatched success for many applications, commonly used local, semi-local, and hybrid density functionals still face challenges when it comes to describing long-range interactions, static correlation, and electron delocalization. Density functionals of both the occupied and virtual orbitals are able to address these problems. The particle-hole (ph-) Random Phase Approximation (RPA), a functional of occupied and virtual orbitals, has recently known a revival within the density functional theory community. Following up on an idea introduced in our recent communication [H. van Aggelen, Y. Yang, and W. Yang, Phys. Rev. A 88, 030501 (2013)], we formulate more general adiabatic connections for the correlation energy in terms of pairing matrix fluctuations described by the particle-particle (pp-) propagator. With numerical examples of the pp-RPA, the lowest-order approximation to the pp-propagator, we illustrate the potential of density functional approximations based on pairing matrix fluctuations. The pp-RPA is size-extensive, self-interaction free, fully anti-symmetric, describes the strong static correlation limit in H2, and eliminates delocalization errors in H2(+) and other single-bond systems. It gives surprisingly good non-bonded interaction energies--competitive with the ph-RPA--with the correct R(-6) asymptotic decay as a function of the separation R, which we argue is mainly attributable to its correct second-order energy term. While the pp-RPA tends to underestimate absolute correlation energies, it gives good relative energies: much better atomization energies than the ph-RPA, as it has no tendency to underbind, and reaction energies of similar quality. The adiabatic connection in terms of pairing matrix fluctuation paves the way for promising new density functional approximations.

  20. Exchange-correlation energy from pairing matrix fluctuation and the particle-particle random phase approximation

    International Nuclear Information System (INIS)

    Aggelen, Helen van; Yang, Yang; Yang, Weitao

    2014-01-01

    Despite their unmatched success for many applications, commonly used local, semi-local, and hybrid density functionals still face challenges when it comes to describing long-range interactions, static correlation, and electron delocalization. Density functionals of both the occupied and virtual orbitals are able to address these problems. The particle-hole (ph-) Random Phase Approximation (RPA), a functional of occupied and virtual orbitals, has recently known a revival within the density functional theory community. Following up on an idea introduced in our recent communication [H. van Aggelen, Y. Yang, and W. Yang, Phys. Rev. A 88, 030501 (2013)], we formulate more general adiabatic connections for the correlation energy in terms of pairing matrix fluctuations described by the particle-particle (pp-) propagator. With numerical examples of the pp-RPA, the lowest-order approximation to the pp-propagator, we illustrate the potential of density functional approximations based on pairing matrix fluctuations. The pp-RPA is size-extensive, self-interaction free, fully anti-symmetric, describes the strong static correlation limit in H 2 , and eliminates delocalization errors in H 2 + and other single-bond systems. It gives surprisingly good non-bonded interaction energies – competitive with the ph-RPA – with the correct R −6 asymptotic decay as a function of the separation R, which we argue is mainly attributable to its correct second-order energy term. While the pp-RPA tends to underestimate absolute correlation energies, it gives good relative energies: much better atomization energies than the ph-RPA, as it has no tendency to underbind, and reaction energies of similar quality. The adiabatic connection in terms of pairing matrix fluctuation paves the way for promising new density functional approximations

  1. Fluctuations in the multiparticle dynamics

    International Nuclear Information System (INIS)

    Bozek, P.; Ploszajczak, M.

    1993-01-01

    The appearance and properties of intermittent fluctuations in physical systems, in particular the formation of rare structures in transport phenomena are discussed. The distribution of fluctuations approaches a limiting log-normal statistical distribution. The log-normal distribution is introduced as a simple parametrization of the energy fluctuations leading to the subthreshold production of particles in nuclear collisions, and it is shown that it fits all available data both for total π 0 production cross section as well as the π 0 kinetic energy spectra for E/A < 90 MeV. It is suggested that the same universal distribution should also describe the subthreshold production of other hadrons like η and K. (author) 36 refs., 11 figs

  2. Embedded random matrix ensembles from nuclear structure and their recent applications

    Science.gov (United States)

    Kota, V. K. B.; Chavda, N. D.

    Embedded random matrix ensembles generated by random interactions (of low body rank and usually two-body) in the presence of a one-body mean field, introduced in nuclear structure physics, are now established to be indispensable in describing statistical properties of a large number of isolated finite quantum many-particle systems. Lie algebra symmetries of the interactions, as identified from nuclear shell model and the interacting boson model, led to the introduction of a variety of embedded ensembles (EEs). These ensembles with a mean field and chaos generating two-body interaction generate in three different stages, delocalization of wave functions in the Fock space of the mean-field basis states. The last stage corresponds to what one may call thermalization and complex nuclei, as seen from many shell model calculations, lie in this region. Besides briefly describing them, their recent applications to nuclear structure are presented and they are (i) nuclear level densities with interactions; (ii) orbit occupancies; (iii) neutrinoless double beta decay nuclear transition matrix elements as transition strengths. In addition, their applications are also presented briefly that go beyond nuclear structure and they are (i) fidelity, decoherence, entanglement and thermalization in isolated finite quantum systems with interactions; (ii) quantum transport in disordered networks connected by many-body interactions with centrosymmetry; (iii) semicircle to Gaussian transition in eigenvalue densities with k-body random interactions and its relation to the Sachdev-Ye-Kitaev (SYK) model for majorana fermions.

  3. The random signal generator of imitated nuclear radiation pulse

    International Nuclear Information System (INIS)

    Li Dongcang; Yang Lei; Yuan Shulin; Yang Yinghui; Zang Fujia

    2007-01-01

    Based in pseudo-random uniformity number, it produces random numbers of Gaussian distribution and exponential distribution by arithmetic. The hardware is the single-chip microcomputer of 89C51. Program language makes use of Keil C. The output pulse amplitude is Gaussian distribution, exponential distribution or uniformity distribution. Likewise, it has two mode or upwards two. The time alternation of output pulse is both periodic and exponential distribution. The generator has achieved output control of multi-mode distribution, imitated random characteristic of nuclear pulse in amplitude and in time. (authors)

  4. Protocol for generating multiphoton entangled states from quantum dots in the presence of nuclear spin fluctuations

    DEFF Research Database (Denmark)

    Denning, Emil Vosmar; Iles-Smith, Jake; McCutcheon, Dara P. S.

    2017-01-01

    Multiphoton entangled states are a crucial resource for many applications inquantum information science. Semiconductor quantum dots offer a promising route to generate such states by mediating photon-photon correlations via a confinedelectron spin, but dephasing caused by the host nuclear spin...... environment typically limits coherence (and hence entanglement) between photons to the spin T2* time of a few nanoseconds. We propose a protocol for the deterministic generation of multiphoton entangled states that is inherently robust against the dominating slow nuclear spin environment fluctuations, meaning...... that coherence and entanglement is instead limited only by the much longer spin T2 time of microseconds. Unlike previous protocols, the present schemeallows for the generation of very low error probability polarisation encoded three-photon GHZ states and larger entangled states, without the need for spin echo...

  5. Multiplicity Fluctuations in Central Nuclear Reaction of Pb + AgBr Events at 158A GeV

    Directory of Open Access Journals (Sweden)

    Mohammad Ayaz Ahmad

    2017-12-01

    Full Text Available In the present articles an attempt has been made for the study of multiplicity fluctuations of the secondary charged particles produced in central relativistic nuclear collisions of (Pb+AgBr at an energy 158A GeV, to find the first-order phase transition (QGP to hadron phase state. This study has been carried out for the experimental data along with the theoretical prediction of FRITIOF simulation program and Monte-Carlo (RanMC simulation. The theoretical model predictions were found in good agreements.

  6. Modified Feynman ratchet with velocity-dependent fluctuations

    Directory of Open Access Journals (Sweden)

    Jack Denur

    2004-03-01

    Full Text Available Abstract: The randomness of Brownian motion at thermodynamic equilibrium can be spontaneously broken by velocity-dependence of fluctuations, i.e., by dependence of values or probability distributions of fluctuating properties on Brownian-motional velocity. Such randomness-breaking can spontaneously obtain via interaction between Brownian-motional Doppler effects --- which manifest the required velocity-dependence --- and system geometrical asymmetry. A non random walk is thereby spontaneously superposed on Brownian motion, resulting in a systematic net drift velocity despite thermodynamic equilibrium. The time evolution of this systematic net drift velocity --- and of velocity probability density, force, and power output --- is derived for a velocity-dependent modification of Feynman's ratchet. We show that said spontaneous randomness-breaking, and consequent systematic net drift velocity, imply: bias from the Maxwellian of the system's velocity probability density, the force that tends to accelerate it, and its power output. Maximization, especially of power output, is discussed. Uncompensated decreases in total entropy, challenging the second law of thermodynamics, are thereby implied.

  7. Fluctuations and the nuclear Meissner effect in rapidly rotating nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Canto, L F; Ring, P; Rasmussen, J O

    1985-10-24

    The phase transition from a superfluid system to a normal fluid system in nuclei under the influence of a strong Coriolis field is investigated by the generator coordinate method (GCM). The strange behavior of the experimental moments of inertia in the nucleus WYHf is well reproduced in this theory. The pairing collapse of the neutrons, however, is completely washed out by the fluctuations. It is found that the fluctuations of the orientation in gauge space, taken into account by number projection before the variation play the most important role. Fluctuations connected with the virtual admixture of pairing vibrations add only small corrections. (orig.).

  8. Role of stochastic fluctuations in the charge on macroscopic particles in dusty plasmas

    International Nuclear Information System (INIS)

    Vaulina, O.S.; Nefedov, A.P.; Petrov, O.F.; Khrapak, S.A.

    1999-01-01

    The currents which charge a macroscopic particle placed in a plasma consist of discrete charges; hence, the charge can undergo random fluctuations about its equilibrium value. These random fluctuations can be described by a simple model which, if the mechanisms for charging of macroscopic particles are known, makes it possible to determine the dependence of the temporal and amplitude characteristics of the fluctuations on the plasma parameters. This model can be used to study the effect of charge fluctuations on the dynamics of the macroscopic particles. The case of so-called plasma-dust crystals (i.e., highly ordered structures which develop because of strong interactions among macroscopic particles) in laboratory gaseous discharge plasmas is considered as an example. The molecular dynamics method shows that, under certain conditions, random fluctuations in the charge can effectively heat a system of macroscopic particles, thereby impeding the ordering process

  9. Phonon mechanism of mobility equilibrium fluctuation and properties of 1/f-noise

    International Nuclear Information System (INIS)

    Melkonyan, S.V.; Aroutiounian, V.M.; Gasparyan, F.V.; Asriyan, H.V.

    2006-01-01

    The main mechanisms of the generation of the equilibrium fluctuations of the electron mobility in homogeneous and non-degenerate semiconductors are studied. It is proven that the mobility fluctuations are related to energy fluctuations and are conditioned by random non-elastic scattering and generation-recombination processes. In particular, it is shown that the mobility fluctuations come into existence as a result of random electron-phonon and phonon-phonon scattering processes. The case of acoustic phonon-phonon scattering is considered in detail. The spectral density of the electron lattice mobility fluctuations is calculated on the base of a new phonon mechanism. It is shown that the noise spectrum over a broad frequency range has a 1/f form. The theoretical results for many samples agree with experimental data

  10. Characteristics of quantum open systems: free random variables approach

    International Nuclear Information System (INIS)

    Gudowska-Nowak, E.; Papp, G.; Brickmann, J.

    1998-01-01

    Random Matrix Theory provides an interesting tool for modelling a number of phenomena where noises (fluctuations) play a prominent role. Various applications range from the theory of mesoscopic systems in nuclear and atomic physics to biophysical models, like Hopfield-type models of neural networks and protein folding. Random Matrix Theory is also used to study dissipative systems with broken time-reversal invariance providing a setup for analysis of dynamic processes in condensed, disordered media. In the paper we use the Random Matrix Theory (RMT) within the formalism of Free Random Variables (alias Blue's functions), which allows to characterize spectral properties of non-Hermitean ''Hamiltonians''. The relevance of using the Blue's function method is discussed in connection with application of non-Hermitean operators in various problems of physical chemistry. (author)

  11. The electron-nuclear spin system in (In,Ga)As quantum dots

    International Nuclear Information System (INIS)

    Auer, Thomas

    2008-01-01

    For a long time, the nuclear spins in quantum dots were virtually ignored. It was thought that the interaction strength was so small that the interaction between the nuclei and electrons could only be observed under very specific optical pumping conditions. Then, in the pursuit of long living electron spins as a building block for quantum information storage and processing, their destructive action on the lifetime of the electron spin became apparent. The nuclear spin system increasingly gained the attention of the quantum dot community. It seemed that the randomly oriented, fluctuating nuclear spins can only be counteracted by strong magnetic fields suppressing the depolarising effect of the random nuclear spin fluctuation fields on a single electron spin. Gradually, however, the work done thirty years before on the electron-nuclear spin system in bulk semiconductors attracted the notice of scientists again. Some of the old experiments could be performed with quantum dots as well. It could be shown that the nuclear spins in quantum dots may well be polarised by optical orientation and that their action is not always destructive at all. The nuclear spins in quantum dots are increasingly used in order to create and tailor a specific environment for a single electron in a quantum dot. In this way quantum dots contain their own ''nuclear nanomagnet''. This might be the future of the studies on the electron-nuclear spin system. The aim of this work is to shed some more light on the complex interdependent system formed of an electron spin and the nuclear spin ensemble in quantum dots. The effects are manifold, often unexpected, sometimes miraculous. Nevertheless, I believe that this work is another tiny step towards the understanding of this challenging system. I have shown that the randomly polarised nuclear spin system always affects the electron spin of a single electron in quantum dots. Further we have seen, however, that the nuclear spin system can easily be

  12. Fluctuating Navier-Stokes equations for inelastic hard spheres or disks.

    Science.gov (United States)

    Brey, J Javier; Maynar, P; de Soria, M I García

    2011-04-01

    Starting from the fluctuating Boltzmann equation for smooth inelastic hard spheres or disks, closed equations for the fluctuating hydrodynamic fields to Navier-Stokes order are derived. This requires deriving constitutive relations for both the fluctuating fluxes and the correlations of the random forces. The former are identified as having the same form as the macroscopic average fluxes and involving the same transport coefficients. On the other hand, the random force terms exhibit two peculiarities as compared with their elastic limit for molecular systems. First, they are not white but have some finite relaxation time. Second, their amplitude is not determined by the macroscopic transport coefficients but involves new coefficients. ©2011 American Physical Society

  13. Intrinsically-generated fluctuating activity in excitatory-inhibitory networks

    Science.gov (United States)

    Mastrogiuseppe, Francesca; Ostojic, Srdjan

    2017-01-01

    Recurrent networks of non-linear units display a variety of dynamical regimes depending on the structure of their synaptic connectivity. A particularly remarkable phenomenon is the appearance of strongly fluctuating, chaotic activity in networks of deterministic, but randomly connected rate units. How this type of intrinsically generated fluctuations appears in more realistic networks of spiking neurons has been a long standing question. To ease the comparison between rate and spiking networks, recent works investigated the dynamical regimes of randomly-connected rate networks with segregated excitatory and inhibitory populations, and firing rates constrained to be positive. These works derived general dynamical mean field (DMF) equations describing the fluctuating dynamics, but solved these equations only in the case of purely inhibitory networks. Using a simplified excitatory-inhibitory architecture in which DMF equations are more easily tractable, here we show that the presence of excitation qualitatively modifies the fluctuating activity compared to purely inhibitory networks. In presence of excitation, intrinsically generated fluctuations induce a strong increase in mean firing rates, a phenomenon that is much weaker in purely inhibitory networks. Excitation moreover induces two different fluctuating regimes: for moderate overall coupling, recurrent inhibition is sufficient to stabilize fluctuations; for strong coupling, firing rates are stabilized solely by the upper bound imposed on activity, even if inhibition is stronger than excitation. These results extend to more general network architectures, and to rate networks receiving noisy inputs mimicking spiking activity. Finally, we show that signatures of the second dynamical regime appear in networks of integrate-and-fire neurons. PMID:28437436

  14. Quantifying fluctuations in reversible enzymatic cycles and clocks

    Science.gov (United States)

    Wierenga, Harmen; ten Wolde, Pieter Rein; Becker, Nils B.

    2018-04-01

    Biochemical reactions are fundamentally noisy at a molecular scale. This limits the precision of reaction networks, but it also allows fluctuation measurements that may reveal the structure and dynamics of the underlying biochemical network. Here, we study nonequilibrium reaction cycles, such as the mechanochemical cycle of molecular motors, the phosphorylation cycle of circadian clock proteins, or the transition state cycle of enzymes. Fluctuations in such cycles may be measured using either of two classical definitions of the randomness parameter, which we show to be equivalent in general microscopically reversible cycles. We define a stochastic period for reversible cycles and present analytical solutions for its moments. Furthermore, we associate the two forms of the randomness parameter with the thermodynamic uncertainty relation, which sets limits on the timing precision of the cycle in terms of thermodynamic quantities. Our results should prove useful also for the study of temporal fluctuations in more general networks.

  15. Photons in dense nuclear matter: Random-phase approximation

    Science.gov (United States)

    Stetina, Stephan; Rrapaj, Ermal; Reddy, Sanjay

    2018-04-01

    We present a comprehensive and pedagogic discussion of the properties of photons in cold and dense nuclear matter based on the resummed one-loop photon self-energy. Correlations among electrons, muons, protons, and neutrons in β equilibrium that arise as a result of electromagnetic and strong interactions are consistently taken into account within the random phase approximation. Screening effects, damping, and collective excitations are systematically studied in a fully relativistic setup. Our study is relevant to the linear response theory of dense nuclear matter, calculations of transport properties of cold dense matter, and investigations of the production and propagation of hypothetical vector bosons such as the dark photons.

  16. Critical Fluctuations in Spatial Complex Networks

    Science.gov (United States)

    Bradde, Serena; Caccioli, Fabio; Dall'Asta, Luca; Bianconi, Ginestra

    2010-05-01

    An anomalous mean-field solution is known to capture the nontrivial phase diagram of the Ising model in annealed complex networks. Nevertheless, the critical fluctuations in random complex networks remain mean field. Here we show that a breakdown of this scenario can be obtained when complex networks are embedded in geometrical spaces. Through the analysis of the Ising model on annealed spatial networks, we reveal, in particular, the spectral properties of networks responsible for critical fluctuations and we generalize the Ginsburg criterion to complex topologies.

  17. Faraday polarization fluctuations of satellite beacon signals

    Science.gov (United States)

    Lee, M. C.; Klobuchar, J. A.

    1988-01-01

    The anisotropic effects of random density irregularities in causing Faraday polarization fluctuations of VHF radio signals are examined, taking both rod-like and sheet-like irregularities into consideration. It is found that the variance of Faraday polarization fluctuations depends on the ratio of perpendicular to parallel correlation lengths. The anisotropic effect of rod-like ionospheric irregularities are shown to be most appreciable for longitudinal propagation. The anisotropic effect of sheet-like ionospheric irregularities, however, is not strongly dependent on the radio propagation angle. During transionospheric propagation at large angles with respect to the geomagnetic field, sheet-like irregularities may cause greater Faraday polarization fluctuations than rod-like irregularities.

  18. Statistical theory of nuclear cross section fluctuations with account s-matrix unitarity

    International Nuclear Information System (INIS)

    Kun, S.Yu.

    1985-01-01

    Statistical properties of the S-matrix fluctuating part delta S=S- sub(T) in the T/D>>1, N>>1 Ericoson fluctuations mode are investigated. A unitary representation is used for the investigation of statistical properties of the S-matrix. The problem on correlation of fluctuating elements of the S-matrix is discussed. The S-matrix unitary representation allows one to strictly substantiates the assumptions of the Ericson fluctuations theory: a) the real and imaginary parts of the deltaS-matrix have identical dispersions, do not correlate and are distributed according to the normal law; 2) various deltaS-matrix elements do not correlate

  19. Persistent fluctuations in synchronization rate in globally coupled oscillators with periodic external forcing

    Science.gov (United States)

    Atsumi, Yu; Nakao, Hiroya

    2012-05-01

    A system of phase oscillators with repulsive global coupling and periodic external forcing undergoing asynchronous rotation is considered. The synchronization rate of the system can exhibit persistent fluctuations depending on parameters and initial phase distributions, and the amplitude of the fluctuations scales with the system size for uniformly random initial phase distributions. Using the Watanabe-Strogatz transformation that reduces the original system to low-dimensional macroscopic equations, we show that the fluctuations are collective dynamics of the system corresponding to low-dimensional trajectories of the reduced equations. It is argued that the amplitude of the fluctuations is determined by the inhomogeneity of the initial phase distribution, resulting in system-size scaling for the random case.

  20. Gambling with Superconducting Fluctuations

    Science.gov (United States)

    Foltyn, Marek; Zgirski, Maciej

    2015-08-01

    Josephson junctions and superconducting nanowires, when biased close to superconducting critical current, can switch to a nonzero voltage state by thermal or quantum fluctuations. The process is understood as an escape of a Brownian particle from a metastable state. Since this effect is fully stochastic, we propose to use it for generating random numbers. We present protocol for obtaining random numbers and test the experimentally harvested data for their fidelity. Our work is prerequisite for using the Josephson junction as a tool for stochastic (probabilistic) determination of physical parameters such as magnetic flux, temperature, and current.

  1. Fluctuation analysis of rotational spectra

    International Nuclear Information System (INIS)

    Doessing, T.; Bracco, A.; Broglia, R.A.; Matsuo, M.

    1996-01-01

    The compound state rotational degree of freedom is ''damped'' in the sense that the electric quadrupole decay of a single quantum state with angular momentum I exhibits a spectrum of final states all having spin I-2. In actual experiments, the cascade of γ-rays associated with each of the members of the ensemble of compound nuclei uses each of the ''discrete'' transitions many more times than the ''continuum'' transitions. Relatively large and small fluctuations in the recorded coincidence spectrum ensue, respectively. The analysis of the fluctuations will be shown to be instrumental to gain insight into the phenomenon of rotational damping. For this purpose, two- and higher-fold coincidence spectra emitted from rotating nuclei are analyzed with respect to the count fluctuations. The coincidences from consecutive γ-rays emitted from discrete rotational bands generate ridges in the E γ1 .E γ2 spectrum, and the fluctuation analysis of the ridges is based upon the ansatz of a random selection of transition energies from band to band. This ansatz is supported by a cranked mean-field calculation for the nucleus 168 Yb, as well as by analyzing resolved bands in 168 Yb and its neighbors. The fluctuation analysis of the central valley (E γ1 =E γ2 ) is based upon the ansatz of fluctuations in the intensity of the transitions of Porter-Thomas type superposed on a smooth spectrum of transition energies. This ansatz is again supported by a mixed-band calculation. The mathematical treatment of count fluctuations is formulated in general (orig.)

  2. Active control on high-order coherence and statistic characterization on random phase fluctuation of two classical point sources.

    Science.gov (United States)

    Hong, Peilong; Li, Liming; Liu, Jianji; Zhang, Guoquan

    2016-03-29

    Young's double-slit or two-beam interference is of fundamental importance to understand various interference effects, in which the stationary phase difference between two beams plays the key role in the first-order coherence. Different from the case of first-order coherence, in the high-order optical coherence the statistic behavior of the optical phase will play the key role. In this article, by employing a fundamental interfering configuration with two classical point sources, we showed that the high- order optical coherence between two classical point sources can be actively designed by controlling the statistic behavior of the relative phase difference between two point sources. Synchronous position Nth-order subwavelength interference with an effective wavelength of λ/M was demonstrated, in which λ is the wavelength of point sources and M is an integer not larger than N. Interestingly, we found that the synchronous position Nth-order interference fringe fingerprints the statistic trace of random phase fluctuation of two classical point sources, therefore, it provides an effective way to characterize the statistic properties of phase fluctuation for incoherent light sources.

  3. Fluctuations in macroscopically agitated plasma:quasiparticles and effective temperature

    International Nuclear Information System (INIS)

    Sosenko, P.P.; Gresillon, D.

    1994-01-01

    Fluctuations in the plasma, in which macroscopic fluid-like motion is agitated due to large-scale and low-frequency electro-magnetic fields, are studied. Such fields can be produced by external factors or internally, for example due to turbulence. Fluctuation spectral distributions are calculated with regard to the renormalization of the transition probability for a test-particle and of the test-particle shielding. If the correlation length for the random fluid-like motion is large as compared to the fluctuation scale lengths, then the fluctuation spectral distributions can be explained in terms of quasiparticles originating from macroscopic plasma agitation and of an effective temperature

  4. Event-by-event fluctuations of the mean transverse momentum $M_{p_{T}}$ at SPS energies

    CERN Document Server

    Appelshäuser, Harald

    2004-01-01

    The study of event-by-event fluctuations has been proposed as a tool to investigate the properties of hot and dense nuclear matter created in nuclear collisions. Significant fluctuations of the mean transverse momentum beyond purely statistical ones may signal the passage of the system through the QCD phase boundary or close to the critical point. Fluctuations of M/sub PT/ provide valuable information about the dynamical evolution of A A collisions. In this contribution, recent measurements by the CERES experiment at the CERN-SPS are discussed. The analysis comprises a centrality dependent study of M/sub PT/ fluctuations near mid-rapidity in Pb-Au collisions at 40, 80, and 158 A GeV/c. The non-statistical (dynamical) contribution to M/sub PT/ fluctuations has been evaluated in terms of the fluctuation measure Sigma /sub PT/.

  5. A Generalization of Electromagnetic Fluctuation-Induced Casimir Energy

    Directory of Open Access Journals (Sweden)

    Yi Zheng

    2015-01-01

    Full Text Available Intermolecular forces responsible for adhesion and cohesion can be classified according to their origins; interactions between charges, ions, random dipole—random dipole (Keesom, random dipole—induced dipole (Debye are due to electrostatic effects; covalent bonding, London dispersion forces between fluctuating dipoles, and Lewis acid-base interactions are due to quantum mechanical effects; pressure and osmotic forces are of entropic origin. Of all these interactions, the London dispersion interaction is universal and exists between all types of atoms as well as macroscopic objects. The dispersion force between macroscopic objects is called Casimir/van der Waals force. It results from alteration of the quantum and thermal fluctuations of the electrodynamic field due to the presence of interfaces and plays a significant role in the interaction between macroscopic objects at micrometer and nanometer length scales. This paper discusses how fluctuational electrodynamics can be used to determine the Casimir energy/pressure between planar multilayer objects. Though it is confirmation of the famous work of Dzyaloshinskii, Lifshitz, and Pitaevskii (DLP, we have solved the problem without having to use methods from quantum field theory that DLP resorted to. Because of this new approach, we have been able to clarify the contributions of propagating and evanescent waves to Casimir energy/pressure in dissipative media.

  6. Nuclear structure theory: Technical progress report for period September 1, 1986-August 31, 1987

    International Nuclear Information System (INIS)

    French, J.B.; Koltun, D.S.

    1987-08-01

    This report summarizes progress in the following areas of research: (1) quark theory of nuclear matter, including further development of models in one-dimension with analytic solutions, numerical studies, bound properties, inclusion of spin and isospin degrees of freedom, excitation properties and response function; electron scattering, including application of sum rules to deeply inelastic scattering, and of quark models of nuclei; charge exchange in pion-nucleus reactions, including models of isotensor optical potential, optical theorem for double charge exchange, and coupled-channel calculations of single charge exchange; a unified theory of reaction dynamics and nuclear structure for intermediate energies, including diagrammatic formulation and development of appropriate computer programs; weak interactions: a study of the neutrino mass-matrix; bounds for time reversal noninvariance in the nucleon-nucleon interaction, obtained from spectral and strength fluctuations in complex nuclei, and separately from detailed balance in compound nuclear reactions. The relative sensitivities of the two methods are discussed; fluctuation measures for the two-dimensional harmonic oscillator; random matrices and symmetry-breaking in atomic spectra data; saturation effects for spectral measures in many-particle systems; and finally fluctuation-free statistical spectroscopy, applied to state densities and partition functions, including accurate absolute calculations of nuclear level spacings

  7. Radiation propagation in random media: From positive to negative correlations in high-frequency fluctuations

    International Nuclear Information System (INIS)

    Davis, Anthony B.; Mineev-Weinstein, Mark B.

    2011-01-01

    We survey research on radiation propagation or ballistic particle motion through media with randomly variable material density, and we investigate the topic with an emphasis on very high spatial frequencies. Our new results are based on a specific variability model consisting of a zero-mean Gaussian scaling noise riding on a constant value that is large enough with respect to the amplitude of the noise to yield overwhelmingly non-negative density. We first generalize known results about sub-exponential transmission from regular functions, which are almost everywhere continuous, to merely 'measurable' ones, which are almost everywhere discontinuous (akin to statistically stationary noises), with positively correlated fluctuations. We then use the generalized measure-theoretic formulation to address negatively correlated stochastic media without leaving the framework of conventional (continuum-limit) transport theory. We thus resolve a controversy about recent claims that only discrete-point process approaches can accommodate negative correlations, i.e., anti-clustering of the material particles. We obtain in this case the predicted super-exponential behavior, but it is rather weak. Physically, and much like the alternative discrete-point process approach, the new model applies most naturally to scales commensurate with the inter-particle distance in the material, i.e., when the notion of particle density breaks down due to Poissonian-or maybe not-so-Poissonian-number-count fluctuations occur in the sample volume. At the same time, the noisy structure must prevail up to scales commensurate with the mean-free-path to be of practical significance. Possible applications are discussed.

  8. Fluctuating Asymmetry of Human Populations: A Review

    Directory of Open Access Journals (Sweden)

    John H. Graham

    2016-12-01

    Full Text Available Fluctuating asymmetry, the random deviation from perfect symmetry, is a widely used population-level index of developmental instability, developmental noise, and robustness. It reflects a population’s state of adaptation and genomic coadaptation. Here, we review the literature on fluctuating asymmetry of human populations. The most widely used bilateral traits include skeletal, dental, and facial dimensions; dermatoglyphic patterns and ridge counts; and facial shape. Each trait has its advantages and disadvantages, but results are most robust when multiple traits are combined into a composite index of fluctuating asymmetry (CFA. Both environmental (diet, climate, toxins and genetic (aneuploidy, heterozygosity, inbreeding stressors have been linked to population-level variation in fluctuating asymmetry. In general, these stressors increase average fluctuating asymmetry. Nevertheless, there have been many conflicting results, in part because (1 fluctuating asymmetry is a weak signal in a sea of noise; and (2 studies of human fluctuating asymmetry have not always followed best practices. The most serious concerns are insensitive asymmetry indices (correlation coefficient and coefficient of indetermination, inappropriate size scaling, unrecognized mixture distributions, inappropriate corrections for directional asymmetry, failure to use composite indices, and inattention to measurement error. Consequently, it is often difficult (or impossible to compare results across traits, and across studies.

  9. RF current drive and plasma fluctuations

    International Nuclear Information System (INIS)

    Peysson, Yves; Decker, Joan; Morini, L; Coda, S

    2011-01-01

    The role played by electron density fluctuations near the plasma edge on rf current drive in tokamaks is assessed quantitatively. For this purpose, a general framework for incorporating density fluctuations in existing modelling tools has been developed. It is valid when rf power absorption takes place far from the fluctuating region of the plasma. The ray-tracing formalism is modified in order to take into account time-dependent perturbations of the density, while the Fokker–Planck solver remains unchanged. The evolution of the electron distribution function in time and space under the competing effects of collisions and quasilinear diffusion by rf waves is determined consistently with the time scale of fluctuations described as a statistical process. Using the ray-tracing code C3PO and the 3D linearized relativistic bounce-averaged Fokker–Planck solver LUKE, the effect of electron density fluctuations on the current driven by the lower hybrid (LH) and the electron cyclotron (EC) waves is estimated quantitatively. A thin fluctuating layer characterized by electron drift wave turbulence at the plasma edge is considered. The effect of fluctuations on the LH wave propagation is equivalent to a random scattering process with a broadening of the poloidal mode spectrum proportional to the level of the perturbation. However, in the multipass regime, the LH current density profile remains sensitive to the ray chaotic behaviour, which is not averaged by fluctuations. The effect of large amplitude fluctuations on the EC driven current is found to be similar to an anomalous radial transport of the fast electrons. The resulting lower current drive efficiency and broader current profile are in better agreement with experimental observations. Finally, applied to the ITER ELMy H-mode regime, the model predicts a significant broadening of the EC driven current density profile with the fluctuation level, which can make the stabilization of neoclassical tearing mode potentially

  10. Thermal and active fluctuations of a compressible bilayer vesicle

    Science.gov (United States)

    Sachin Krishnan, T. V.; Yasuda, Kento; Okamoto, Ryuichi; Komura, Shigeyuki

    2018-05-01

    We discuss thermal and active fluctuations of a compressible bilayer vesicle by using the results of hydrodynamic theory for vesicles. Coupled Langevin equations for the membrane deformation and the density fields are employed to calculate the power spectral density matrix of membrane fluctuations. Thermal contribution is obtained by means of the fluctuation dissipation theorem, whereas active contribution is calculated from exponentially decaying time correlation functions of active random forces. We obtain the total power spectral density as a sum of thermal and active contributions. An apparent response function is further calculated in order to compare with the recent microrheology experiment on red blood cells. An enhanced response is predicted in the low-frequency regime for non-thermal active fluctuations.

  11. Scattering of lower-hybrid waves by density fluctuations

    International Nuclear Information System (INIS)

    Andrews, P.L.; Perkins, F.W.

    1981-07-01

    The investigation of the scattering of lower-hybrid waves by density fluctuations in tokamaks is distinguished by the presence in the wave equation of a large, random, derivative-coupling term. Assuming the fluctuations to be of long wavelength compared to the incident wave the similarity of the wave equation to the Schroedinger equation for a particle in a random magnetic field is used to derive a two-way diffusion equation for the wave energy density. The diffusion constant found disagrees with earlier findings and the source of the discrepancy is pointed out. When the correct boundary conditions are imposed this equation can be solved by separation of variables. However most of the important features of the solution are apparent without detailed algebra

  12. Curvature of fluctuation geometry and its implications on Riemannian fluctuation theory

    International Nuclear Information System (INIS)

    Velazquez, L

    2013-01-01

    Fluctuation geometry was recently proposed as a counterpart approach of the Riemannian geometry of inference theory (widely known as information geometry). This theory describes the geometric features of the statistical manifold M of random events that are described by a family of continuous distributions dp(x|θ). A main goal of this work is to clarify the statistical relevance of the Levi-Civita curvature tensor R ijkl (x|θ) of the statistical manifold M. For this purpose, the notion of irreducible statistical correlations is introduced. Specifically, a distribution dp(x|θ) exhibits irreducible statistical correlations if every distribution dp(x-check|θ) obtained from dp(x|θ) by considering a coordinate change x-check = φ(x) cannot be factorized into independent distributions as dp(x-check|θ) = prod i dp (i) (x-check i |θ). It is shown that the curvature tensor R ijkl (x|θ) arises as a direct indicator about the existence of irreducible statistical correlations. Moreover, the curvature scalar R(x|θ) allows us to introduce a criterium for the applicability of the Gaussian approximation of a given distribution function. This type of asymptotic result is obtained in the framework of the second-order geometric expansion of the distribution family dp(x|θ), which appears as a counterpart development of the high-order asymptotic theory of statistical estimation. In physics, fluctuation geometry represents the mathematical apparatus of a Riemannian extension for Einstein’s fluctuation theory of statistical mechanics. Some exact results of fluctuation geometry are now employed to derive the invariant fluctuation theorems. Moreover, the curvature scalar allows us to express some asymptotic formulae that account for the system fluctuating behavior beyond the Gaussian approximation, e.g.: it appears as a second-order correction of the Legendre transformation between thermodynamic potentials, P(θ)=θ i x-bar i -s( x-bar |θ)+k 2 R(x|θ)/6. (paper)

  13. Total charge fluctuation in heavy ion collision

    International Nuclear Information System (INIS)

    Mishra, D.K.; Netrakanti, P.K.; Mohanty, A.K.; Garg, P.

    2014-01-01

    Event-by-event fluctuations of positive, negative, total and net charge produced in relativistic nuclear collisions have been of interest to explore phase transition and/or a critical end point (CEP) which is believed to exist somewhere between the hadronic phase and the quark-gluon phase of the QCD phase diagram. The entropy is closely related to the particle multiplicity, and it is expected to be approximately conserved during the evolution of the matter created at the early stage. The entropy fluctuations are not directly observed but can be inferred from the experimentally measured quantities. The final state mean multiplicity is proportional to the entropy of the initial state ( ∼ S). The particle multiplicity can be measured on an event-by-event basis, whereas the entropy is defined by averaging the particle multiplicities in the ensemble of events. Thus, the dynamical entropy fluctuations can be measured experimentally by measuring the fluctuations in the mean multiplicity

  14. Fluctuations of Wigner-type random matrices associated with symmetric spaces of class DIII and CI

    Science.gov (United States)

    Stolz, Michael

    2018-02-01

    Wigner-type randomizations of the tangent spaces of classical symmetric spaces can be thought of as ordinary Wigner matrices on which additional symmetries have been imposed. In particular, they fall within the scope of a framework, due to Schenker and Schulz-Baldes, for the study of fluctuations of Wigner matrices with additional dependencies among their entries. In this contribution, we complement the results of these authors by explicit calculations of the asymptotic covariances for symmetry classes DIII and CI and thus obtain explicit CLTs for these classes. On the technical level, the present work is an exercise in controlling the cumulative effect of systematically occurring sign factors in an involved sum of products by setting up a suitable combinatorial model for the summands. This aspect may be of independent interest. Research supported by Deutsche Forschungsgemeinschaft (DFG) via SFB 878.

  15. Strong Shock Propagating Over A Random Bed of Spherical Particles

    Science.gov (United States)

    Mehta, Yash; Salari, Kambiz; Jackson, Thomas L.; Balachandar, S.; Thakur, Siddharth

    2017-11-01

    The study of shock interaction with particles has been largely motivated because of its wide-ranging applications. The complex interaction between the compressible flow features, such as shock wave and expansion fan, and the dispersed phase makes this multi-phase flow very difficult to predict and control. In this talk we will be presenting results on fully resolved inviscid simulations of shock interaction with random bed of particles. One of the fascinating observations from these simulations are the flow field fluctuations due to the presence of randomly distributed particles. Rigorous averaging (Favre averaging) of the governing equations results in Reynolds stress like term, which can be classified as pseudo turbulence in this case. We have computed this ``Reynolds stress'' term along with individual fluctuations and the turbulent kinetic energy. Average pressure was also computed to characterize the strength of the transmitted and the reflected waves. This work was supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program.

  16. Adaptation to Temporally Fluctuating Environments by the Evolution of Maternal Effects.

    Directory of Open Access Journals (Sweden)

    Snigdhadip Dey

    2016-02-01

    Full Text Available All organisms live in temporally fluctuating environments. Theory predicts that the evolution of deterministic maternal effects (i.e., anticipatory maternal effects or transgenerational phenotypic plasticity underlies adaptation to environments that fluctuate in a predictably alternating fashion over maternal-offspring generations. In contrast, randomizing maternal effects (i.e., diversifying and conservative bet-hedging, are expected to evolve in response to unpredictably fluctuating environments. Although maternal effects are common, evidence for their adaptive significance is equivocal since they can easily evolve as a correlated response to maternal selection and may or may not increase the future fitness of offspring. Using the hermaphroditic nematode Caenorhabditis elegans, we here show that the experimental evolution of maternal glycogen provisioning underlies adaptation to a fluctuating normoxia-anoxia hatching environment by increasing embryo survival under anoxia. In strictly alternating environments, we found that hermaphrodites evolved the ability to increase embryo glycogen provisioning when they experienced normoxia and to decrease embryo glycogen provisioning when they experienced anoxia. At odds with existing theory, however, populations facing irregularly fluctuating normoxia-anoxia hatching environments failed to evolve randomizing maternal effects. Instead, adaptation in these populations may have occurred through the evolution of fitness effects that percolate over multiple generations, as they maintained considerably high expected growth rates during experimental evolution despite evolving reduced fecundity and reduced embryo survival under one or two generations of anoxia. We develop theoretical models that explain why adaptation to a wide range of patterns of environmental fluctuations hinges on the existence of deterministic maternal effects, and that such deterministic maternal effects are more likely to contribute to

  17. Bell inequalities for random fields

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, Peter [Physics Department, Yale University, CT 06520 (United States)

    2006-06-09

    The assumptions required for the derivation of Bell inequalities are not satisfied for random field models in which there are any thermal or quantum fluctuations, in contrast to the general satisfaction of the assumptions for classical two point particle models. Classical random field models that explicitly include the effects of quantum fluctuations on measurement are possible for experiments that violate Bell inequalities.

  18. Bell inequalities for random fields

    OpenAIRE

    Morgan, Peter

    2004-01-01

    The assumptions required for the derivation of Bell inequalities are not usually satisfied for random fields in which there are any thermal or quantum fluctuations, in contrast to the general satisfaction of the assumptions for classical two point particle models. Classical random field models that explicitly include the effects of quantum fluctuations on measurement are possible for experiments that violate Bell inequalities.

  19. Amplitude and phase fluctuations of Van der Pol oscillator under external random forcing

    Science.gov (United States)

    Singh, Aman K.; Yadava, R. D. S.

    2018-05-01

    The paper presents an analytical study of noise in Van der Pol oscillator output subjected to an external force noise assumed to be characterized by delta function (white noise). The external fluctuations are assumed to be small in comparison to the average response of the noise free system. The autocorrelation function and power spectrum are calculated under the condition of weak nonlinearity. The latter ensures limit cycle oscillations. The total spectral power density is dominated by the contributions from the phase fluctuations. The amplitude fluctuations are at least two orders of magnitude smaller. The analysis is shown to be useful to interpretation microcantilever based biosensing data.

  20. The effect of random dopant fluctuation on threshold voltage and drain current variation in junctionless nanotransistors

    International Nuclear Information System (INIS)

    Rezapour, Arash; Rezapour, Pegah

    2015-01-01

    We investigate the effect of dopant random fluctuation on threshold voltage and drain current variation in a two-gate nanoscale transistor. We used a quantum-corrected technology computer aided design simulation to run the simulation (10000 randomizations). With this simulation, we could study the effects of varying the dimensions (length and width), and thicknesses of oxide and dopant factors of a transistor on the threshold voltage and drain current in subthreshold region (off) and overthreshold (on). It was found that in the subthreshold region the variability of the drain current and threshold voltage is relatively fixed while in the overthreshold region the variability of the threshold voltage and drain current decreases remarkably, despite the slight reduction of gate voltage diffusion (compared with that of the subthreshold). These results have been interpreted by using previously reported models for threshold current variability, load displacement, and simple analytical calculations. Scaling analysis shows that the variability of the characteristics of this semiconductor increases as the effects of the short channel increases. Therefore, with a slight increase of length and a reduction of width, oxide thickness, and dopant factor, we could correct the effect of the short channel. (paper)

  1. Transverse eV Ion Heating by Random Electric Field Fluctuations in the Plasmasphere

    Science.gov (United States)

    Artemyev, A. V.; Mourenas, D.; Agapitov, O. V.; Blum, L.

    2017-01-01

    Charged particle acceleration in the Earth inner magnetosphere is believed to be mainly due to the local resonant wave-particle interaction or particle transport processes. However, the Van Allen Probes have recently provided interesting evidence of a relatively slow transverse heating of eV ions at distances about 2-3 Earth radii during quiet times. Waves that are able to resonantly interact with such very cold ions are generally rare in this region of space, called the plasmasphere. Thus, non-resonant wave-particle interactions are expected to play an important role in the observed ion heating. We demonstrate that stochastic heating by random transverse electric field fluctuations of whistler (and possibly electromagnetic ion cyclotron) waves could explain this weak and slow transverse heating of H+ and O+ ions in the inner magnetosphere. The essential element of the proposed model of ion heating is the presence of trains of random whistler (hiss) wave packets, with significant amplitude modulations produced by strong wave damping, rapid wave growth, or a superposition of wave packets of different frequencies, phases, and amplitudes. Such characteristics correspond to measured characteristics of hiss waves in this region. Using test particle simulations with typical wave and plasma parameters, we demonstrate that the corresponding stochastic transverse ion heating reaches 0.07-0.2 eV/h for protons and 0.007-0.015 eV/h for O+ ions. This global temperature increase of the Maxwellian ion population from an initial Ti approx. 0.3 eV could potentially explain the observations.

  2. Multiplicity distributions and charged-neutral fluctuations

    Indian Academy of Sciences (India)

    from the WA98 experiment at the CERN-SPS. For a thermalized .... light nuclei are well described in the framework of wounded nuclear model [21]. In this ... state rescattering, where the incoming particles loose their memory and every participant ..... In order to compare these fluctuations at different scales in the same level,.

  3. Interwell radiative recombination in the presence of random potential fluctuations in GaAs/AlGaAs biased double quantum wells

    DEFF Research Database (Denmark)

    Timofeev, V.B.; Larionov, A.V.; Ioselevich, A.S.

    1998-01-01

    narrowing with temperature increase from 4.5 to 30 K. A theoretical model is presented which explains the observed narrowing in terms of lateral thermally activated tunneling of spatially separated e-h pairs localized by random potential fluctuations in the quantum wells. (C) 1998 American Institute......The interwell radiative recombination from biased double quantum wells (DQW) in pin GaAs/AlGaAs heterostructures is investigated at different temperatures and external electrical fields. The luminescence line of interwell recombination of spatially separated electron-hole pairs exhibits systematic...

  4. Modeling of low- and high-frequency noise by slow and fast fluctuators

    Science.gov (United States)

    Nesterov, Alexander I.; Berman, Gennady P.

    2012-05-01

    We study the dynamics of dephasing in a quantum two-level system by modeling both 1/f and high-frequency noise by random telegraph processes. Our approach is based on a so-called spin-fluctuator model in which a noisy environment is modeled by a large number of fluctuators. In the continuous limit we obtain an effective random process (ERP) that is described by a distribution function of the fluctuators. In a simplified model, we reduce the ERP to the two (slow and fast) ensembles of fluctuators. Using this model, we study decoherence in a superconducting flux qubit and we compare our theoretical results with the available experimental data. We demonstrate good agreement of our theoretical predictions with the experiments. Our approach can be applied to many quantum systems, such as biological complexes, semiconductors, superconducting, and spin qubits, where the effects of interaction with the environment are essential.

  5. Large-scale fluctuations in the diffusive decomposition of solid solutions

    International Nuclear Information System (INIS)

    Karpov, V.G.; Grimsditch, M.

    1995-01-01

    The concept of an instability in the classic Ostwald ripening theory with respect to compositional fluctuations is suggested. We show that small statistical fluctuations in the precipitate phase lead to gigantic Coulomb-like fluctuations in the solute concentration which in turn affect the ripening. As a result large-scale fluctuations in both the precipitate and solute concentrations appear. These fluctuations are characterized by amplitudes of the order of the average values of the corresponding quantities and by a space scale L∼(na) -1/2 which is considerably greater than both the average nuclear radius and internuclear distance. The Lifshitz-Slyozov theory of ripening is shown to remain locally applicable, over length scales much less than L. The implications of these findings for elastic light scattering in solid solutions that have undergone Ostwald ripening are considered

  6. Large-scale fluctuations in the diffusive decomposition of solid solutions

    Science.gov (United States)

    Karpov, V. G.; Grimsditch, M.

    1995-04-01

    The concept of an instability in the classic Ostwald ripening theory with respect to compositional fluctuations is suggested. We show that small statistical fluctuations in the precipitate phase lead to gigantic Coulomb-like fluctuations in the solute concentration which in turn affect the ripening. As a result large-scale fluctuations in both the precipitate and solute concentrations appear. These fluctuations are characterized by amplitudes of the order of the average values of the corresponding quantities and by a space scale L~(na)-1/2 which is considerably greater than both the average nuclear radius and internuclear distance. The Lifshitz-Slyozov theory of ripening is shown to remain locally applicable, over length scales much less than L. The implications of these findings for elastic light scattering in solid solutions that have undergone Ostwald ripening are considered.

  7. Model of cancer growth affected by irradiation. Effect of fluctuating intensity of the dose

    International Nuclear Information System (INIS)

    Gudowska-Nowak, E.

    1984-01-01

    The behaviour of a biological model system which describes the growth of a cancer cell population in the presence of external irradiation is studied. The effect of randomly fluctuating source of radiation is analysed and its influence on cancer cell extinction is presented. The main stress is put on the biological significance of random fluctuations which seem to favour rejection of a tumor. (author)

  8. A new approach of chaos and complex network method to study fluctuation and phase transition in nuclear collision at high energy

    Energy Technology Data Exchange (ETDEWEB)

    Bhaduri, Susmita; Bhaduri, Anirban; Ghosh, Dipak [Deepa Ghosh Research Foundation, Kolkata (India)

    2017-06-15

    In the endeavour to study fluctuation and a signature of phase transition in ultrarelativistic nuclear collision during the process of particle production, an approach based on chaos and complex network is proposed. In this work we have attempted an exhaustive study of pion fluctuation in η space, φ space, their cross-correlation and finally two-dimensional fluctuation in terms of scaling of void probability distribution. The analysis is done on the η values and their corresponding φ values extracted from the {sup 32}S-Ag/Br interaction at an incident energy of 200 GeV per nucleon. The methods used are Multifractal Detrended Cross-Correlation Analysis (MF-DXA) and a chaos-based rigorous complex network method -Visibility Graph. The analysis reveals that the highest degree of cross-correlation between pseudorapidity and azimuthal angles exists in the most central region of the interaction. The analysis further shows that two-dimensional void distribution corresponding to the η-φ space reveals a strong scaling behaviour. Both cross-correlation coefficients of MF-DXA and PSVG (Power of the Scale-freeness in Visibility Graph, which is implicitly connected with the Hurst exponent) can be effectively used for the quantitative assessment of pion fluctuation in a very precise manner and have the capability to assess the tendency of approaching criticality for phase transitions. (orig.)

  9. Work extraction from quantum systems with bounded fluctuations in work

    Science.gov (United States)

    Richens, Jonathan G.; Masanes, Lluis

    2016-11-01

    In the standard framework of thermodynamics, work is a random variable whose average is bounded by the change in free energy of the system. This average work is calculated without regard for the size of its fluctuations. Here we show that for some processes, such as reversible cooling, the fluctuations in work diverge. Realistic thermal machines may be unable to cope with arbitrarily large fluctuations. Hence, it is important to understand how thermodynamic efficiency rates are modified by bounding fluctuations. We quantify the work content and work of formation of arbitrary finite dimensional quantum states when the fluctuations in work are bounded by a given amount c. By varying c we interpolate between the standard and minimum free energies. We derive fundamental trade-offs between the magnitude of work and its fluctuations. As one application of these results, we derive the corrected Carnot efficiency of a qubit heat engine with bounded fluctuations.

  10. True random numbers from amplified quantum vacuum.

    Science.gov (United States)

    Jofre, M; Curty, M; Steinlechner, F; Anzolin, G; Torres, J P; Mitchell, M W; Pruneri, V

    2011-10-10

    Random numbers are essential for applications ranging from secure communications to numerical simulation and quantitative finance. Algorithms can rapidly produce pseudo-random outcomes, series of numbers that mimic most properties of true random numbers while quantum random number generators (QRNGs) exploit intrinsic quantum randomness to produce true random numbers. Single-photon QRNGs are conceptually simple but produce few random bits per detection. In contrast, vacuum fluctuations are a vast resource for QRNGs: they are broad-band and thus can encode many random bits per second. Direct recording of vacuum fluctuations is possible, but requires shot-noise-limited detectors, at the cost of bandwidth. We demonstrate efficient conversion of vacuum fluctuations to true random bits using optical amplification of vacuum and interferometry. Using commercially-available optical components we demonstrate a QRNG at a bit rate of 1.11 Gbps. The proposed scheme has the potential to be extended to 10 Gbps and even up to 100 Gbps by taking advantage of high speed modulation sources and detectors for optical fiber telecommunication devices.

  11. Statistical fluctuations of the number of neutrons in a pile; Fluctuations statistiques du nombre de neutrons dans une pile

    Energy Technology Data Exchange (ETDEWEB)

    Raievski, V [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    The theory of the statistical fluctuations in a pile is extended to the space dependent case, and gives the fluctuations of the number of neutrons in a cell of the core or reflector of the pile. This number changes through elementary processes occurring at random, which are, capture, source, fission and scattering. Of all these processes, fission is the only one which changes more than one neutron at a time and so is responsible of the deviation of the fluctuations from a Poisson law. The importance of this deviation depends on the dimensions of the cell compared to the slowing down length. When the dimensions are small, the fluctuations close to a Poisson law. (author) [French] La theorie des fluctuations statistiques est etendue au cas local et donne les fluctuations du nombre de neutrons dans une cellule situee dans le coeur ou le reflecteur de la pile. Ce nombre evolue au cours du temps sous l'influence de phenomenes aleatoires qui sont la capture, la diffusion, les sources et les neutrons secondaires de fission. L'emission simultanee de plusieurs neutrons distingue ce phenomene des precedents qui n'affectent qu'un neutron individuellement. L'importance de ce phenomene sur la loi de fluctuation depend des dimensions de la cellule par rapport a la longueur de ralentissement. Quand ces dimensions sont petites, le caractere particulier de ce phenomene disparait. (auteur)

  12. Charge-fluctuation-induced heating of dust particles in a plasma.

    Science.gov (United States)

    Vaulina, O S; Khrapak, S A; Nefedov, A P; Petrov, O F

    1999-11-01

    Random charge fluctuations are always present in dusty plasmas due to the discrete nature of currents charging the dust particle. These fluctuations can be a reason for the heating of the dust particle system. Such unexpected heating leading to the melting of the dust crystals was observed recently in several experiments. In this paper we show by analytical evaluations and numerical simulation that charge fluctuations provide an effective source of energy and can heat the dust particles up to several eV, in conditions close to experimental ones.

  13. A random walk approach to stochastic neutron transport

    International Nuclear Information System (INIS)

    Mulatier, Clelia de

    2015-01-01

    One of the key goals of nuclear reactor physics is to determine the distribution of the neutron population within a reactor core. This population indeed fluctuates due to the stochastic nature of the interactions of the neutrons with the nuclei of the surrounding medium: scattering, emission of neutrons from fission events and capture by nuclear absorption. Due to these physical mechanisms, the stochastic process performed by neutrons is a branching random walk. For most applications, the neutron population considered is very large, and all physical observables related to its behaviour, such as the heat production due to fissions, are well characterised by their average values. Generally, these mean quantities are governed by the classical neutron transport equation, called linear Boltzmann equation. During my PhD, using tools from branching random walks and anomalous diffusion, I have tackled two aspects of neutron transport that cannot be approached by the linear Boltzmann equation. First, thanks to the Feynman-Kac backward formalism, I have characterised the phenomenon of 'neutron clustering' that has been highlighted for low-density configuration of neutrons and results from strong fluctuations in space and time of the neutron population. Then, I focused on several properties of anomalous (non-exponential) transport, that can model neutron transport in strongly heterogeneous and disordered media, such as pebble-bed reactors. One of the novel aspects of this work is that problems are treated in the presence of boundaries. Indeed, even though real systems are finite (confined geometries), most of previously existing results were obtained for infinite systems. (author) [fr

  14. Searching for gluon number fluctuations effects in eA collisions

    Energy Technology Data Exchange (ETDEWEB)

    Kugeratski, M. S. [Universidade Federal de Santa Catarina, Campus Joinville, Rua Presidente Prudente de Moraes, 406, CEP 89218-000, Joinville, SC (Brazil); Gonçalves, V. P.; Santana Amaral, J. T. de [Instituto de Física e Matemática, Universidade Federal de Pelotas, Caixa Postal 354, CEP 96010-900, Pelotas, RS (Brazil)

    2014-11-11

    We propose to investigate the gluon number fluctuations effects in deep inelastic electron-ion scattering at high energies. We estimate the nuclear structure function F{sub 2}{sup A}(x,Q{sup 2}), as well the longitudinal and charm contributions, using a generalization for nuclear targets of the Golec-Biernat-Wusthoff (GBW) model which describes the electron proton HERA data. Here we consider that the nucleus at high energies acts as an amplifier of the physics of high parton densities. For a first investigation we study the scattering with Ca and Pb nuclei. Our preliminary results predict that the effects of gluon number fluctuations are small in the region of the future electron ion collider.

  15. Fluctuation charge effects in ionization fronts

    International Nuclear Information System (INIS)

    Arrayas, Manuel; Trueba, Jose L; Baltanas, J P

    2008-01-01

    In this paper, we study the effects of charge fluctuations on the propagation of both negative and positive ionization fronts in streamer discharges. We show that fronts accelerate when random charge creation events are present. This effect might play a similar role to photoionization in order to make the front move faster

  16. Fluctuation charge effects in ionization fronts

    Energy Technology Data Exchange (ETDEWEB)

    Arrayas, Manuel; Trueba, Jose L [Area de Electromagnetismo, Universidad Rey Juan Carlos, Camino del Molino s/n, 28943 Fuenlabrada, Madrid (Spain); Baltanas, J P [Departamento de Fisica Aplicada II, Universidad de Sevilla, Av. Reina Mercedes 2, 41012 Sevilla (Spain)

    2008-05-21

    In this paper, we study the effects of charge fluctuations on the propagation of both negative and positive ionization fronts in streamer discharges. We show that fronts accelerate when random charge creation events are present. This effect might play a similar role to photoionization in order to make the front move faster.

  17. Statistical fluctuations of the number of neutrons in a pile

    International Nuclear Information System (INIS)

    Raievski, V.

    1958-01-01

    The theory of the statistical fluctuations in a pile is extended to the space dependent case, and gives the fluctuations of the number of neutrons in a cell of the core or reflector of the pile. This number changes through elementary processes occurring at random, which are, capture, source, fission and scattering. Of all these processes, fission is the only one which changes more than one neutron at a time and so is responsible of the deviation of the fluctuations from a Poisson law. The importance of this deviation depends on the dimensions of the cell compared to the slowing down length. When the dimensions are small, the fluctuations close to a Poisson law. (author) [fr

  18. Dynamic and static correlation functions in the inhomogeneous Hartree-Fock-state approach with random-phase-approximation fluctuations

    International Nuclear Information System (INIS)

    Lorenzana, J.; Grynberg, M.D.; Yu, L.; Yonemitsu, K.; Bishop, A.R.

    1992-11-01

    The ground state energy, and static and dynamic correlation functions are investigated in the inhomogeneous Hartree-Fock (HF) plus random phase approximation (RPA) approach applied to a one-dimensional spinless fermion model showing self-trapped doping states at the mean field level. Results are compared with homogeneous HF and exact diagonalization. RPA fluctuations added to the generally inhomogeneous HF ground state allows the computation of dynamical correlation functions that compare well with exact diagonalization results. The RPA correction to the ground state energy agrees well with the exact results at strong and weak coupling limits. We also compare it with a related quasi-boson approach. The instability towards self-trapped behaviour is signaled by a RPA mode with frequency approaching zero. (author). 21 refs, 10 figs

  19. Nonlinear growth dynamics and the origin of fluctuating asymmetry

    Science.gov (United States)

    Emlen, J.M.; Freeman, D.C.; Graham, J.H.

    1993-01-01

    The nonlinear, complex nature of biosynthesis magnifies the impacts of small, random perturbations on organism growth, leading to distortions in adaptive allometries and, in particular, to fluctuating asymmetry. These distortions can be partly checked by cell-cell and inter-body part feedback during growth and development, though the latter mechanism also may lead to complex patterns in right-left asymmetry. Stress can be expected to increase the degree to which random growth perturbations are magnified and may also result in disruption of the check mechanisms, thus exaggerating fluctuating asymmetry.The processes described not only provide one explanation for the existence of fluctuating asymmetry and its augmentation under stress, but suggest additional effects of stress as well. Specifically, stress is predicted to lead to decreased fractal dimension of bone sutures and branching structures in animals, and in increased dimension of growth trace patterns such as those found in mollusc shells and fish otoliths and scales.A basic yet broad primer on fractals and chaos is provided as background for the theoretical development in this manuscript.

  20. Fluctuations of the charge on a dust grain in a plasma

    International Nuclear Information System (INIS)

    Cui, C.; Goree, J.

    1994-01-01

    A dust grain in a plasma acquires an electric charge by collecting electron and ion currents. These currents consist of discrete charges, causing the charge to fluctuate around an equilibrium value (Q). Electrons and ions are collected at random intervals and in a random sequence, with probabilities that depend on the grain's potential. The authors developed a model for these probabilities and implemented it in a numerical simulation of the collection of individual ions and electrons, yielding a time series Q(t) for the grain's charge. Electron emission from the grain is not included, although it could be added easily to the method. They obtained the power spectrum and the rms fluctuation level, as well as the distribution function of the charge. Most of the power in the spectrum lies at frequencies much lower than 1/τ, the inverse charging time. The rms fractional fluctuation level varies as 0.5 |left-angle N right-angle | -1/2 , where left-angle N right-angle = left-angle Q right-angle/e is the average number of electron charges on the grain. This inverse square-root scaling means that fluctuations are most important for small grains. They also show that very small grains can experience fluctuations to neutral and positive polarities, even in the absence of electron emission

  1. Fluctuation relations with intermittent non-Gaussian variables.

    Science.gov (United States)

    Budini, Adrián A

    2011-12-01

    Nonequilibrium stationary fluctuations may exhibit a special symmetry called fluctuation relations (FRs). Here, we show that this property is always satisfied by the subtraction of two random and independent variables related by a thermodynamiclike change of measure. Taking one of them as a modulated Poisson process, it is demonstrated that intermittence and FRs are compatible properties that may coexist naturally. Strong non-Gaussian features characterize the probability distribution and its generating function. Their associated large deviation functions develop a "kink" at the origin and a plateau regime respectively. Application of this model in different stationary nonequilibrium situations is discussed.

  2. Roughening in random sine-Gordon systems

    International Nuclear Information System (INIS)

    Schwartz, M.; Nattermann, T.

    1991-01-01

    We consider the spatial correlations of the optimal solutions of the random sine-Gordon equation as an example of the usefulness of a very simple ansatz relating the Fourier transforms of certain functions of the field Φ to the Fourier transform of the random fields. The dramatic change in the correlations when going from above to below two dimensions is directly attributed to the transfer from dominance of long range fluctuations of the randomness to the dominance of short range fluctuations. (orig.)

  3. Thermal fluctuation problems encountered in LMFRs

    International Nuclear Information System (INIS)

    Gelineau, O.; Sperandio, M.; Martin, P.; Ricard, J.B.; Martin, L.; Bougault, A.

    1994-01-01

    One of the most significant problems of LMFBRs deals with thermal fluctuations. The main reason is that LMFBRs operate with sodium coolant at very different temperatures which leads to the existence of several areas of transition between hot and cold sodium. These transitions areas which are the critical points, maybe found in the reactor block as well as in the secondary and auxiliary loops. The characteristics of these thermal fluctuations are not easy to quantify because of their complex (random) behaviour, and often demand the use of thermalhydraulic mock-up tests. A good knowledge of these phenomena is essential because of the potential high level of damage they can induce on structures. Two typical thermal fluctuation problems encountered on operation reactors are described. They were not originally anticipated at the design stage of the former Phenix and the latter Superphenix reactors. Description and the analyses performed to describe the damaging process are explained. A well known thermal fluctuation problem is presented. It is pointed out how the feedback from the damages observed on operating reactors is used to prevent the components from any high cycle fatigue

  4. The parity doublet model with fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Weyrich, Johannes; Smekal, Lorenz von [TU Darmstadt (Germany); Strodthoff, Nils [Universitaet Heidelberg (Germany)

    2014-07-01

    In the 1970s the Walecka model and the chiral Walecka model were developed and have since been studied intensively. It was noted early on, however, that the chiral model leads to massless Lee-Wick nuclear matter in the chirally restored phase. A promising variant to describe nuclear matter and chiral symmetry restoration consistently is the parity doublet model (or mirror model). It has already been treated in a mean field (MF) approach with promising results. This is motivation for us to to examine this model with functional renormalization group (FRG) methods, hence including full mesonic fluctuations.

  5. Poisson and Porter-Thomas fluctuations in off-yrast rotational transitions

    International Nuclear Information System (INIS)

    Matsuo, M.; Doessing, T.; Herskind, B.; Frauendorf, S.

    1993-01-01

    Fluctuations associated with stretched E2 transitions from high-spin levels in nuclei around 168 Yb are investigated by a cranked shell model extended to include residual two-body interactions. In the cranked mean-field model without residual interactions, it is found that gamma-ray energies behave like random variables and the energy spectra show Poisson fluctuation. With two-body residual interactions included, the discrete transition pattern with unmixed rotational bands is still valid up to around 600 keV above yrast, in good agreement with experiments. At higher excitation energy, a gradual onset of rotational damping emerges. At 1.8 MeV above yrast, complete damping is observed with GOE-type fluctuations for both energy levels and transition strengths (Porter-Thomas fluctuations). (orig.)

  6. Simulation of power fluctuation of wind farms based on frequency domain

    DEFF Research Database (Denmark)

    Lin, Jin; Sun, Yuanzhang; Li, Guojie

    2011-01-01

    , however, is incapable of completely explaining the physical mechanism of randomness of power fluctuation. To remedy such a situation, fluctuation modeling based on the frequency domain is proposed. The frequency domain characteristics of stochastic fluctuation on large wind farms are studied using...... the power spectral density of wind speed, the frequency domain model of a wind power generator and the information on weather and geography of the wind farms. The correctness and effectiveness of the model are verified by comparing the measurement data with simulation results of a certain wind farm. © 2011...

  7. Radiation Transport in Random Media With Large Fluctuations

    Science.gov (United States)

    Olson, Aaron; Prinja, Anil; Franke, Brian

    2017-09-01

    Neutral particle transport in media exhibiting large and complex material property spatial variation is modeled by representing cross sections as lognormal random functions of space and generated through a nonlinear memory-less transformation of a Gaussian process with covariance uniquely determined by the covariance of the cross section. A Karhunen-Loève decomposition of the Gaussian process is implemented to effciently generate realizations of the random cross sections and Woodcock Monte Carlo used to transport particles on each realization and generate benchmark solutions for the mean and variance of the particle flux as well as probability densities of the particle reflectance and transmittance. A computationally effcient stochastic collocation method is implemented to directly compute the statistical moments such as the mean and variance, while a polynomial chaos expansion in conjunction with stochastic collocation provides a convenient surrogate model that also produces probability densities of output quantities of interest. Extensive numerical testing demonstrates that use of stochastic reduced-order modeling provides an accurate and cost-effective alternative to random sampling for particle transport in random media.

  8. Evolution in fluctuating environments: decomposing selection into additive components of the Robertson-Price equation.

    Science.gov (United States)

    Engen, Steinar; Saether, Bernt-Erik

    2014-03-01

    We analyze the stochastic components of the Robertson-Price equation for the evolution of quantitative characters that enables decomposition of the selection differential into components due to demographic and environmental stochasticity. We show how these two types of stochasticity affect the evolution of multivariate quantitative characters by defining demographic and environmental variances as components of individual fitness. The exact covariance formula for selection is decomposed into three components, the deterministic mean value, as well as stochastic demographic and environmental components. We show that demographic and environmental stochasticity generate random genetic drift and fluctuating selection, respectively. This provides a common theoretical framework for linking ecological and evolutionary processes. Demographic stochasticity can cause random variation in selection differentials independent of fluctuating selection caused by environmental variation. We use this model of selection to illustrate that the effect on the expected selection differential of random variation in individual fitness is dependent on population size, and that the strength of fluctuating selection is affected by how environmental variation affects the covariance in Malthusian fitness between individuals with different phenotypes. Thus, our approach enables us to partition out the effects of fluctuating selection from the effects of selection due to random variation in individual fitness caused by demographic stochasticity. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  9. Study of fluctuations. Variance measurement on Proserpine; Etude de fluctuations. Mesure de variance sur Proserpine

    Energy Technology Data Exchange (ETDEWEB)

    Berger, F.; Renaux, R.

    1960-06-10

    The authors present an equipment designed for the study of the statistical fluctuation of the number of neutrons existing in a pile in the neighbourhood of its critical status. This equipment must allow series of counts of constant duration per series, and triggered by a random process. The counting assembly is presented (principle, description and operation), as well as the memorization assembly for a slow or quick count triggering.

  10. K/pi Fluctuations at Relativistic Energies

    Czech Academy of Sciences Publication Activity Database

    Abelev, B. I.; Aggarwal, M. M.; Ahammed, Z.; Anderson, B. D.; Arkhipkin, D.; Averichev, G. S.; Balewski, J.; Barannikova, O.; Barnby, L. S.; Baudot, J.; Baumgart, S.; Beavis, D.R.; Bellwied, R.; Benedosso, F.; Betancourt, M.J.; Betts, R. R.; Bhasin, A.; Bhati, A.K.; Bichsel, H.; Bielčík, Jaroslav; Bielčíková, Jana; Biritz, B.; Bland, L.C.; Bombara, M.; Bonner, B. E.; Botje, M.; Bouchet, J.; Braidot, E.; Brandin, A. V.; Bruna, E.; Bueltmann, S.; Burton, T. P.; Bysterský, Michal; Cai, X.Z.; Caines, H.; Sanchez, M.C.D.; Catu, O.; Cebra, D.; Cendejas, R.; Cervantes, M.C.; Chajecki, Z.; Chaloupka, Petr; Chattopadhyay, S.; Chen, H.F.; Chen, J.H.; Cheng, J.; Cherney, M.; Chikanian, A.; Choi, K.E.; Christie, W.; Clarke, R.F.; Codrington, M.J.M.; Corliss, R.; Cormier, T.M.; Coserea, R. M.; Cramer, J. G.; Crawford, H. J.; Das, D.; Dash, S.; Daugherity, M.; De Silva, L.C.; Dedovich, T. G.; DePhillips, M.; Derevschikov, A.A.; de Souza, R.D.; Didenko, L.; Djawotho, P.; Dunlop, J.C.; Mazumdar, M.R.D.; Edwards, W.R.; Efimov, L.G.; Elhalhuli, E.; Elnimr, M.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Eun, L.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Feng, A.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Gagliardi, C. A.; Gaillard, L.; Ganti, M. S.; Gangaharan, D.R.; Garcia-Solis, E.J.; Geromitsos, A.; Geurts, F.; Ghazikhanian, V.; Ghosh, P.; Gorbunov, Y.N.; Gordon, A.; Grebenyuk, O.; Grosnick, D.; Grube, B.; Guertin, S.M.; Guimaraes, K.S.F.F.; Gupta, A.; Gupta, N.; Guryn, W.; Haag, B.; Hallman, T.J.; Hamed, A.; Harris, J.W.; He, W.; Heinz, M.; Heppelmann, S.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffman, A.M.; Hoffmann, G.W.; Hofman, D.J.; Hollis, R.S.; Huang, H.Z.; Humanic, T.J.; Igo, G.; Iordanova, A.; Jacobs, P.; Jacobs, W.W.; Jakl, Pavel; Jena, C.; Jin, F.; Jones, C.L.; Jones, P.G.; Joseph, J.; Judd, E.G.; Kabana, S.; Kajimoto, K.; Kang, K.; Kapitán, Jan; Keane, D.; Kechechyan, A.; Kettler, D.; Khodyrev, V.Yu.; Kikola, D.P.; Kiryluk, J.; Kisiel, A.; Klein, S.R.; Knospe, A.G.; Kocoloski, A.; Koetke, D.D.; Kopytine, M.; Korsch, W.; Kotchenda, L.; Kushpil, Vasilij; Kravtsov, P.; Kravtsov, V.I.; Krueger, K.; Krus, M.; Kuhn, C.; Kumar, L.; Kurnadi, P.; Lamont, M.A.C.; Landgraf, J.M.; LaPointe, S.; Lauret, J.; Lebedev, A.; Lednický, Richard; Lee, Ch.; Lee, J.H.; Leight, W.; LeVine, M.J.; Li, N.; Li, C.; Li, Y.; Lin, G.; Lindenbaum, S.J.; Lisa, M.A.; Liu, F.; Liu, J.; Liu, L.; Ljubicic, T.; Llope, W.J.; Longacre, R.S.; Love, W.A.; Lu, Y.; Ludlam, T.; Ma, G.L.; Ma, Y.G.; Mahapatra, D.P.; Majka, R.; Mall, O.I.; Mangotra, L.K.; Manweiler, R.; Margetis, S.; Markert, C.; Matis, H.S.; Matulenko, Yu.A.; McShane, T.S.; Meschanin, A.; Milner, R.; Minaev, N.G.; Mioduszewski, S.; Mischke, A.; Mitchell, J.; Mohanty, B.; Morozov, D.A.; Munhoz, M. G.; Nandi, B.K.; Nattrass, C.; Nayak, T. K.; Nelson, J.M.; Netrakanti, P.K.; Ng, M.J.; Nogach, L.V.; Nurushev, S.B.; Odyniec, G.; Ogawa, A.; Okada, H.; Okorokov, V.; Olson, D.; Pachr, M.; Page, B.S.; Pal, S.K.; Pandit, Y.; Panebratsev, Y.; Panitkin, S.Y.; Pawlak, T.; Peitzmann, T.; Perevoztchikov, V.; Perkins, C.; Peryt, W.; Phatak, S.C.; Poljak, N.; Poskanzer, A.M.; Potukuchi, B.V.K.S.; Prindle, D.; Pruneau, C.; Pruthi, N.K.; Putschke, J.; Raniwala, R.; Raniwala, S.; Ray, R.L.; Redwine, R.; Reed, R.; Ridiger, A.; Ritter, H.G.; Roberts, J.B.; Rogachevskiy, O.V.; Romero, J.L.; Rose, A.; Roy, C.; Ruan, L.; Russcher, M.J.; Sahoo, R.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sarsour, M.; Schambach, J.; Scharenberg, R.P.; Schmitz, N.; Seger, J.; Selyuzhenkov, I.; Seyboth, P.; Shabetai, A.; Shahaliev, E.; Shao, M.; Sharma, M.; Shi, S.S.; Shi, X.H.; Sichtermann, E.P.; Simon, F.; Singaraju, R.N.; Skoby, M.J.; Smirnov, N.; Snellings, R.; Sorensen, P.; Sowinski, J.; Spinka, H.M.; Srivastava, B.; Stadnik, A.; Stanislaus, T.D.S.; Staszak, D.; Strikhanov, M.; Stringfellow, B.; Suaide, A.A.P.; Suarez, M.C.; Subba, N.L.; Šumbera, Michal; Sun, X.M.; Sun, Y.; Sun, Z.; Surrow, B.; Symons, T.J.M.; de Toledo, A. S.; Takahashi, J.; Tang, A.H.; Tang, Z.; Tarini, L.H.; Tarnowsky, T.; Thein, D.; Thomas, J.H.; Tian, J.; Timmins, A.R.; Timoshenko, S.; Tlustý, David; Tokarev, M. V.; Tram, V.N.; Trattner, A.L.; Trentalange, S.; Tribble, R. E.; Tsai, O.D.; Ulery, J.; Ullrich, T.; Underwood, D.G.; Van Buren, G.; van Leeuwen, M.; Molen, A.M.V.; Vanfossen, J.A.; Varma, R.; Vasconcelos, G.M.S.; Vasilevski, I.M.; Vasiliev, A.; Videbaek, F.; Vigdor, S.E.; Viyogi, Y. P.; Vokal, S.; Voloshin, S.A.; Wada, M.; Walker, M.; Wang, F.; Wang, G.; Wang, J.S.; Wang, Q.; Wang, X.; Wang, X.L.; Wang, Y.; Webb, G.; Webb, J.C.; Westfall, G.D.; Whitten, C.; Wieman, H.; Wissink, S.W.; Witt, R.; Wu, Y.; Xie, W.; Xu, N.; Xu, Q.H.; Xu, Y.; Xu, Z.; Yang, P.; Yepes, P.; Yip, K.; Yoo, I.K.; Yue, Q.; Zawisza, M.; Zbroszczyk, H.; Zhan, W.; Zhang, S.; Zhang, W.M.; Zhang, X.P.; Zhang, Y.; Zhang, Z.P.; Zhao, Y.; Zhong, C.; Zhou, J.; Zoulkarneev, R.; Zoulkarneeva, Y.; Zuo, J.X.

    2009-01-01

    Roč. 103, č. 9 (2009), 092301/1-092301/6 ISSN 0031-9007 R&D Projects: GA ČR GA202/07/0079; GA MŠk LC07048; GA MŠk LA09013 Institutional research plan: CEZ:AV0Z10480505; CEZ:AV0Z10100502 Keywords : heavy-ion collisions * strangeness * fluctuations Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 7.328, year: 2009

  11. Analysis in nuclear power accident emergency based on random network and particle swarm optimization

    International Nuclear Information System (INIS)

    Gong Dichen; Fang Fang; Ding Weicheng; Chen Zhi

    2014-01-01

    The GERT random network model of nuclear power accident emergency was built in this paper, and the intelligent computation was combined with the random network based on the analysis of Fukushima nuclear accident in Japan. The emergency process was divided into the series link and parallel link, and the parallel link was the part of series link. The overall allocation of resources was firstly optimized, and then the parallel link was analyzed. The effect of the resources for emergency used in different links was analyzed, and it was put forward that the corresponding particle velocity vector was limited under the condition of limited emergency resources. The resource-constrained particle swarm optimization was obtained by using velocity projection matrix to correct the motion of particles. The optimized allocation of resources in emergency process was obtained and the time consumption of nuclear power accident emergency was reduced. (authors)

  12. Resistance Fluctuations in GaAs Nanowire Grids

    Directory of Open Access Journals (Sweden)

    Ivan Marasović

    2014-01-01

    Full Text Available We present a numerical study on resistance fluctuations in a series of nanowire-based grids. Each grid is made of GaAs nanowires arranged in parallel with metallic contacts crossing all nanowires perpendicularly. Electrical properties of GaAs nanowires known from previous experimental research are used as input parameters in the simulation procedure. Due to the nonhomogeneous doping, the resistivity changes along nanowire. Allowing two possible nanowire orientations (“upwards” or “downwards”, the resulting grid is partially disordered in vertical direction which causes resistance fluctuations. The system is modeled using a two-dimensional random resistor network. Transfer-matrix computation algorithm is used to calculate the total network resistance. It is found that probability density function (PDF of resistance fluctuations for a series of nanowire grids changes from Gaussian behavior towards the Bramwell-Holdsworth-Pinton distribution when both nanowire orientations are equally represented in the grid.

  13. Force fluctuations assist nanopore unzipping of DNA

    International Nuclear Information System (INIS)

    Viasnoff, V; Chiaruttini, N; Muzard, J; Bockelmann, U

    2010-01-01

    We experimentally study the statistical distributions and the voltage dependence of the unzipping time of 45 base-pair-long double-stranded DNA through a nanopore. We then propose a quantitative theoretical description considering the nanopore unzipping process as a random walk of the opening fork through the DNA sequence energy landscape biased by a time-fluctuating force. To achieve quantitative agreement fluctuations need to be correlated over the millisecond range and have an amplitude of order k B T/bp. Significantly slower or faster fluctuations are not appropriate, suggesting that the unzipping process is efficiently enhanced by noise in the kHz range. We further show that the unzipping time of short 15 base-pair hairpins does not always increase with the global stability of the double helix and we theoretically study the role of DNA elasticity on the conversion of the electrical bias into a mechanical unzipping force.

  14. Neutron noise in nuclear reactors; Le bruit neutronique des reacteurs nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Blaquiere, A. [Institut National des Sciences et Techniques Nucleaires (France); Pachowska, R. [Universite Technique de Varsovie (Poland)

    1961-06-15

    The power of a nuclear reactor, in the operating conditions, presents fluctuations due to various causes. This random behaviour can be included in the study of 'noises'. Among other sources of noise, we analyse hereafter the fluctuations due: a) to the discontinuous emissions of neutrons from an independent source; b) to the multiplication of neutrons inside the reactor. The method which we present makes use of the analogies between the rules governing a nuclear reactor in operation and a number of radio-electrical systems, in particular the feed-back loops. The reactor can be characterized by its 'passing band' and is described as a system submitted to a sequence of random pulses. In non linear operating condition, the effect of neutron noise is defined by means of a non-linear functional, this theory is thus related to previous works the references of which are given at the end of the present report. This leads us in particular in the case of nuclear reactors to some results given by A. Blaquiere in the case of radio-electrical loops. (author) [French] La puissance d'un reacteur nucleaire, dans les conditions du regime, est affectee de fluctuations dont les causes sont tres diverses. Ce comportement aleatoire rentre dans le cadre general de l'etude des 'bruits'. Entre autres sources ce bruit, nous analysons ici les fluctuations dues: a) a l'emission discontinue des neutrons provenant d'une source autonome; b) a la multiplication des neutrons au sein du reacteur. La methode que nous introduisons exploite les analogies entre les lois qui regissent un reacteur nucleaire au regime et certains systemes radioelectriques, en particulier les circuits a boucle de reaction. Le reacteur est caracterise par sa 'bande passante' et est decrit comme un systeme soumis a une succession d'impulsions aleatoires. Dans les conditions de fonctionnement non lineaires, l'effet du bruit neutronique est precise en utilisant une fonctionnelle non lineaire, ce qui relie cette theorie a

  15. Flow induced vibrational excitation of nuclear reactor structures

    International Nuclear Information System (INIS)

    Gibert, R.J.

    1979-01-01

    The pressure fluctuations generated by disturbed flows, encountered in nuclear reactors induce vibrations in the structures. In order to make forecastings for these vibrational levels, it is necessary to know the characteristics of the random pressure fluctuations induced in the walls by the main flow peculiarities of the circuits. This knowledge is essentially provided by experimentation which shows that most of the energy from these fluctuations is in the low frequency area. It is also necessary to determine the transfer functions of the fluid-structure coupled system. Given the frequency range of the excitations, a calculation of the characteristics of the first eigenmodes is generally sufficient. This calculation is carried out by finite element codes, the modal dampings being assessed separately. In this paper, emphasis is placed mainly on the analysis of the sources of excitation due to flow peculiarities. Some examples will also be given of assessments of vibrations in real structures (pipes, reactor internals, etc.) and of comparisons with the experimental results obtained on models or on a site [fr

  16. Random pulse generator

    International Nuclear Information System (INIS)

    Guo Ya'nan; Jin Dapeng; Zhao Dixin; Liu Zhen'an; Qiao Qiao; Chinese Academy of Sciences, Beijing

    2007-01-01

    Due to the randomness of radioactive decay and nuclear reaction, the signals from detectors are random in time. But normal pulse generator generates periodical pulses. To measure the performances of nuclear electronic devices under random inputs, a random generator is necessary. Types of random pulse generator are reviewed, 2 digital random pulse generators are introduced. (authors)

  17. Statistical properties of fluctuations of time series representing appearances of words in nationwide blog data and their applications: An example of modeling fluctuation scalings of nonstationary time series.

    Science.gov (United States)

    Watanabe, Hayafumi; Sano, Yukie; Takayasu, Hideki; Takayasu, Misako

    2016-11-01

    To elucidate the nontrivial empirical statistical properties of fluctuations of a typical nonsteady time series representing the appearance of words in blogs, we investigated approximately 3×10^{9} Japanese blog articles over a period of six years and analyze some corresponding mathematical models. First, we introduce a solvable nonsteady extension of the random diffusion model, which can be deduced by modeling the behavior of heterogeneous random bloggers. Next, we deduce theoretical expressions for both the temporal and ensemble fluctuation scalings of this model, and demonstrate that these expressions can reproduce all empirical scalings over eight orders of magnitude. Furthermore, we show that the model can reproduce other statistical properties of time series representing the appearance of words in blogs, such as functional forms of the probability density and correlations in the total number of blogs. As an application, we quantify the abnormality of special nationwide events by measuring the fluctuation scalings of 1771 basic adjectives.

  18. Hole pairing induced by antiferromagnetic spin fluctuations

    International Nuclear Information System (INIS)

    Su, Z.B.; Yu Lu; Dong, J.M.; Tosatti, E.

    1987-08-01

    The effective interaction induced by antiferromagnetic spin fluctuations is considered in the random phase approximation in the context of the recently discovered high T c oxide superconductors. This effective attraction favours a triplet pairing of holes. The implications of such pairing mechanism are discussed in connection with the current experimental observations. (author). 30 refs, 2 figs

  19. Semi-classical theory of fluctuations in nuclear matter

    International Nuclear Information System (INIS)

    Benhassine, B.

    1994-01-01

    At intermediate energies the heavy ion collisions can be studied within the framework of a semi-classical approach based on the Vlasov-Uehling-Uhlenbeck (VUU) equation. Such an approach reduces the N-body problem to its description in terms of the one-body distribution function and constitutes the basis of several successful simulation models. Our aim in this work is to extend these average approaches to treat fluctuations. Within the framework of a linear approximation, we derived a Fokker-Planck transport equation in the one-body phase space. When it is reduced to its first moments, one recovers the VUU equation for the average dynamics together with the time evolution equation for the correlations. The collective transport coefficients are then obtained by projection on the one-body collective space. Independently, using a projection method introduced by Van Kampen, based on the constants of motion, we deduce the stationary expressions for the covariance matrix in phase space. We extract then, the equilibrium dispersions of one-body observables in a homogeneous case and in a spherical symmetric one. These results are compared with two types of simulation models in a relaxation time approximation. In the first one which is of Lagrangian type, the collective transport coefficients are directly extracted from the simulation and consequently the numerical fluctuations are washed out. The second model, due to its Eulerian character, allows us to make a microscopical comparison. (author)

  20. Applications of noise analysis to nuclear safety

    International Nuclear Information System (INIS)

    Aguilar Martinez, Omar

    2000-01-01

    Noise Analysis techniques (analysis of the fluctuation of physical parameters) have been successfully applied to the operational vigilance of the technical equipment that plays a decisive role in the production cycle of a very complex industry. Although fluctuation measurements in nuclear installations started almost at the start of the nuclear era (see works by Feynman and Rossi on the development of neutron methodology), only recently have neutron noise diagnostic applications begun to be a part of the standard procedures for the performance of some modern nuclear installations. Following the relevant technical advances made in information sciences and analogical electronics, measuring the fluctuation of physical parameters has become a very effective tool for detecting, guarding and following up possible defects in a nuclear system. As the processing techniques for the fluctuation of a nuclear reactor's physical-neutron parameters have evolved (temporal and frequency analysis, multi-parameter self -regression analysis, etc.), the applications of the theory of non-lineal dynamics and chaos theory have progressed by focusing on the problem from another perspective. This work reports on those nuclear applications of noise analysis that increase nuclear safety in all types of nuclear facilities and that have been carried out by the author over the last decade, such as: -Void Force Critical Set Applications (Zero Power Reactor Applications, Central Institute of Physical Research, Budapest, Hungary); -Research Reactor Applications (Triga Mark III Reactor, National Institute of Nuclear Research, ININ, Mexico); -Power Reactor Applications in a Nuclear Power Plant (First Circuit of Block II, Paks Nuclear Center, Hungary); -Second Loop applications in a Nuclear Power Plant (Block I Paks Nuclear Center, Hungary; Block II Kalinin Nuclear Center, Russia); -Shield System Applications for the Transport of Radioisotopes (Nuclear Technology Center, Havana, Cuba) New trends in

  1. Stabilization of the outputs of pulse amplifiers utilizing non-linear feedback networks. Application to nuclear spectrometer amplifiers

    International Nuclear Information System (INIS)

    Henein, K.L.

    1978-02-01

    In nuclear spectroscopy, baseline instability and random fluctuations at the output of the amplifier create imperfectly solved problems mainly at high counting rates. After a critical examination of current systems, solutions are proposed which surpass existing ones. It is shown that restorers and stabilizers of baselines have their own preferential application. Considering natural limits of performance the proposed solutions give entirely satisfactory results [fr

  2. Quantum fluctuations of a fullerene cage modulate its internal magnetic environment.

    Science.gov (United States)

    Kawatsu, Tsutomu; Tachikawa, Masanori

    2018-01-17

    To investigate the effect of quantum fluctuations on the magnetic environment inside a C 60 fullerene cage, we have calculated the nuclear magnetic shielding constant of protons in H 2 @C 60 and HD@C 60 systems by on-the-fly ab initio path integral simulation, including both thermal and nuclear quantum effects. The most dominant upfield from an isolated hydrogen molecule occurs due to the diamagnetic current of the C 60 cage, which is partly cancelled by the paramagnetic current, where the paramagnetic contribution is enlarged by the zero-point vibrational fluctuation of the C 60 carbon backbone structure via a widely distributed HOMO-LUMO gap. This quantum modulation mechanism of the nuclear magnetic shielding constant is newly proposed. Because this quantum effect is independent of the difference between H 2 and HD, the H 2 /HD isotope shift occurs in spite of the C 60 cage. The nuclear magnetic constants computed for H 2 @C 60 and HD@C 60 are 32.047 and 32.081 ppm, respectively, which are in reasonable agreement with the corresponding values of 32.19 and 32.23 ppm estimated from the experimental values of the chemical shifts.

  3. Probing gluon number fluctuation effects in future electron–hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Amaral, J.T.; Gonçalves, V.P. [Instituto de Física e Matemática, Universidade Federal de Pelotas, Caixa Postal 354, CEP 96010-900, Pelotas, RS (Brazil); Kugeratski, M.S. [Universidade Federal de Santa Catarina, Campus Joinville, Rua Presidente Prudente de Moraes, 406, CEP 89218-000, Joinville, SC (Brazil)

    2014-10-15

    The description of the QCD dynamics in the kinematical range which will be probed in the future electron–hadron colliders is still an open question. Although phenomenological studies indicate that the gluon number fluctuations, which are related to discreteness in the QCD evolution, are negligible at HERA, the magnitude of these effects for the next generation of colliders still should be estimated. In this paper we investigate inclusive and diffractive ep observables considering a model for the physical scattering amplitude which describes the HERA data. Moreover, we estimate, for the first time, the contribution of the fluctuation effects for the nuclear structure functions. Our results indicate that the study of these observables in the future colliders can be useful to constrain the presence of gluon number fluctuations.

  4. α-Glucosidase inhibitor miglitol attenuates glucose fluctuation, heart rate variability and sympathetic activity in patients with type 2 diabetes and acute coronary syndrome: a multicenter randomized controlled (MACS) study.

    Science.gov (United States)

    Shimabukuro, Michio; Tanaka, Atsushi; Sata, Masataka; Dai, Kazuoki; Shibata, Yoshisato; Inoue, Yohei; Ikenaga, Hiroki; Kishimoto, Shinji; Ogasawara, Kozue; Takashima, Akira; Niki, Toshiyuki; Arasaki, Osamu; Oshiro, Koichi; Mori, Yutaka; Ishihara, Masaharu; Node, Koichi

    2017-07-06

    Little is known about clinical associations between glucose fluctuations including hypoglycemia, heart rate variability (HRV), and the activity of the sympathetic nervous system (SNS) in patients with acute phase of acute coronary syndrome (ACS). This pilot study aimed to evaluate the short-term effects of glucose fluctuations on HRV and SNS activity in type 2 diabetes mellitus (T2DM) patients with recent ACS. We also examined the effect of suppressing glucose fluctuations with miglitol on these variables. This prospective, randomized, open-label, blinded-endpoint, multicenter, parallel-group comparative study included 39 T2DM patients with recent ACS, who were randomly assigned to either a miglitol group (n = 19) or a control group (n = 20). After initial 24-h Holter electrocardiogram (ECG) (Day 1), miglitol was commenced and another 24-h Holter ECG (Day 2) was recorded. In addition, continuous glucose monitoring (CGM) was performed throughout the Holter ECG. Although frequent episodes of subclinical hypoglycemia (≤4.44 mmo/L) during CGM were observed on Day 1 in the both groups (35% of patients in the control group and 31% in the miglitol group), glucose fluctuations were decreased and the minimum glucose level was increased with substantial reduction in the episodes of subclinical hypoglycemia to 7.7% in the miglitol group on Day 2. Holter ECG showed that the mean and maximum heart rate and mean LF/HF were increased on Day 2 in the control group, and these increases were attenuated by miglitol. When divided 24-h time periods into day-time (0700-1800 h), night-time (1800-0000 h), and bed-time (0000-0700 h), we found increased SNS activity during day-time, increased maximum heart rate during night-time, and glucose fluctuations during bed-time, which were attenuated by miglitol treatment. In T2DM patients with recent ACS, glucose fluctuations with subclinical hypoglycemia were associated with alterations of HRV and SNS activity, which were mitigated by

  5. Nuclear structure theory. Annual technical progress report, October 1, 1979-August 31, 1980

    International Nuclear Information System (INIS)

    French, J.B.; Koltun, D.S.

    1980-01-01

    This report summarizes progress during the past year in the following areas of nuclear structure and reaction theory: statistical spectroscopy (including random matrix methods, with applications to fluctuations in spectra and in strength distributions, and to problems of ergodicity; group symmetries in spectral-distribution theory; electromagnetic and β transitions); meson scattering and absorption by nuclei (including general scattering theory with absorption, multiple scattering theory and its reactive content, statistical theory of absorption); and meson currents in electromagnetic transitions

  6. Fluctuations in high-energy particle collisions

    International Nuclear Information System (INIS)

    Gronqvist, Hanna

    2016-01-01

    We study fluctuations that are omnipresent in high-energy particle collisions. These fluctuations can be either of either classical or quantum origin and we will study both. Firstly, we consider the type of quantum fluctuations that arise in proton-proton collisions. These are computable perturbatively in quantum field theory and we will focus on a specific class of diagrams in this set-up. Secondly, we will consider the fluctuations that are present in collisions between nuclei that can be heavier than protons. These are the quantum laws of nature that describe the positions of nucleons within a nucleus, but also the hydrodynamic fluctuations of classical, thermal origin that affect the evolution of the medium produced in heavy-ion collisions. The fluctuations arising in proton-proton collisions can be computed analytically up to a certain order in perturbative quantum field theory. We will focus on one-loop diagrams of a fixed topology. Loop diagrams give rise to integrals that typically are hard to evaluate. We show how modern mathematical methods can be used to ease their computation. We will study the relations among unitarity cuts of a diagram, the discontinuity across the corresponding branch cut and the coproduct. We show how the original integral corresponding to a given diagram can be reconstructed from the information contained in the coproduct. We expect that these methods can be applied to solve more complicated topologies and help in the computation of new amplitudes in the future. Finally, we study the two types of fluctuations arising in heavy-ion collisions. These are related either to the initial state or the intermediate state of matter produced in such collisions. The initial state fluctuations are experimentally observed to give rise to non-Gaussianities in the final-state spectra. We show how these non-Gaussianities can be explained by the random position and interaction energy of 'sources' in the colliding nuclei. Furthermore, we

  7. Signal yields, energy resolution, and recombination fluctuations in liquid xenon

    Science.gov (United States)

    Akerib, D. S.; Alsum, S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Beltrame, P.; Bernard, E. P.; Bernstein, A.; Biesiadzinski, T. P.; Boulton, E. M.; Bramante, R.; Brás, P.; Byram, D.; Cahn, S. B.; Carmona-Benitez, M. C.; Chan, C.; Chiller, A. A.; Chiller, C.; Currie, A.; Cutter, J. E.; Davison, T. J. R.; Dobi, A.; Dobson, J. E. Y.; Druszkiewicz, E.; Edwards, B. N.; Faham, C. H.; Fiorucci, S.; Gaitskell, R. J.; Gehman, V. M.; Ghag, C.; Gibson, K. R.; Gilchriese, M. G. D.; Hall, C. R.; Hanhardt, M.; Haselschwardt, S. J.; Hertel, S. A.; Hogan, D. P.; Horn, M.; Huang, D. Q.; Ignarra, C. M.; Ihm, M.; Jacobsen, R. G.; Ji, W.; Kamdin, K.; Kazkaz, K.; Khaitan, D.; Knoche, R.; Larsen, N. A.; Lee, C.; Lenardo, B. G.; Lesko, K. T.; Lindote, A.; Lopes, M. I.; Manalaysay, A.; Mannino, R. L.; Marzioni, M. F.; McKinsey, D. N.; Mei, D.-M.; Mock, J.; Moongweluwan, M.; Morad, J. A.; Murphy, A. St. J.; Nehrkorn, C.; Nelson, H. N.; Neves, F.; O'Sullivan, K.; Oliver-Mallory, K. C.; Palladino, K. J.; Pease, E. K.; Phelps, P.; Reichhart, L.; Rhyne, C.; Shaw, S.; Shutt, T. A.; Silva, C.; Solmaz, M.; Solovov, V. N.; Sorensen, P.; Stephenson, S.; Sumner, T. J.; Szydagis, M.; Taylor, D. J.; Taylor, W. C.; Tennyson, B. P.; Terman, P. A.; Tiedt, D. R.; To, W. H.; Tripathi, M.; Tvrznikova, L.; Uvarov, S.; Verbus, J. R.; Webb, R. C.; White, J. T.; Whitis, T. J.; Witherell, M. S.; Wolfs, F. L. H.; Xu, J.; Yazdani, K.; Young, S. K.; Zhang, C.; LUX Collaboration

    2017-01-01

    This work presents an analysis of monoenergetic electronic recoil peaks in the dark-matter-search and calibration data from the first underground science run of the Large Underground Xenon (LUX) detector. Liquid xenon charge and light yields for electronic recoil energies between 5.2 and 661.7 keV are measured, as well as the energy resolution for the LUX detector at those same energies. Additionally, there is an interpretation of existing measurements and descriptions of electron-ion recombination fluctuations in liquid xenon as limiting cases of a more general liquid xenon recombination fluctuation model. Measurements of the standard deviation of these fluctuations at monoenergetic electronic recoil peaks exhibit a linear dependence on the number of ions for energy deposits up to 661.7 keV, consistent with previous LUX measurements between 2 and 16 keV with 3H. We highlight similarities in liquid xenon recombination for electronic and nuclear recoils with a comparison of recombination fluctuations measured with low-energy calibration data.

  8. Random Young diagrams in a Rectangular Box

    DEFF Research Database (Denmark)

    Beltoft, Dan; Boutillier, Cédric; Enriquez, Nathanaël

    We exhibit the limit shape of random Young diagrams having a distribution proportional to the exponential of their area, and confined in a rectangular box. The Ornstein-Uhlenbeck bridge arises from the fluctuations around the limit shape.......We exhibit the limit shape of random Young diagrams having a distribution proportional to the exponential of their area, and confined in a rectangular box. The Ornstein-Uhlenbeck bridge arises from the fluctuations around the limit shape....

  9. Clustering phenomena in nuclear matter below the saturation density

    International Nuclear Information System (INIS)

    Takemoto, Hiroki; Fukushima, Masahiro; Chiba, Satoshi; Horiuchi, Hisashi; Akaishi, Yoshinori; Tohsaki, Akihiro

    2004-01-01

    We investigate density-fluctuated states of nuclear matter as a result of clustering below the saturation density ρ 0 by description in terms of the Bloch function. The Bloch description has the advantage of a unified representation for a density-fluctuated state from an aggregate of uncorrelated clusters in extremely low-density regions to the plane-wave state of uniform matter in relatively high-density regions. We treat the density-fluctuated states due to α and 16 O clustering in symmetric nuclear matter and due to 10 He clustering in asymmetric nuclear matter. The density-fluctuated states develop as the density of matter decreases below each critical density around 0.2-0.4 ρ 0 which depends on what kind of effective force we use

  10. Log-correlated random-energy models with extensive free-energy fluctuations: Pathologies caused by rare events as signatures of phase transitions

    Science.gov (United States)

    Cao, Xiangyu; Fyodorov, Yan V.; Le Doussal, Pierre

    2018-02-01

    We address systematically an apparent nonphysical behavior of the free-energy moment generating function for several instances of the logarithmically correlated models: the fractional Brownian motion with Hurst index H =0 (fBm0) (and its bridge version), a one-dimensional model appearing in decaying Burgers turbulence with log-correlated initial conditions and, finally, the two-dimensional log-correlated random-energy model (logREM) introduced in Cao et al. [Phys. Rev. Lett. 118, 090601 (2017), 10.1103/PhysRevLett.118.090601] based on the two-dimensional Gaussian free field with background charges and directly related to the Liouville field theory. All these models share anomalously large fluctuations of the associated free energy, with a variance proportional to the log of the system size. We argue that a seemingly nonphysical vanishing of the moment generating function for some values of parameters is related to the termination point transition (i.e., prefreezing). We study the associated universal log corrections in the frozen phase, both for logREMs and for the standard REM, filling a gap in the literature. For the above mentioned integrable instances of logREMs, we predict the nontrivial free-energy cumulants describing non-Gaussian fluctuations on the top of the Gaussian with extensive variance. Some of the predictions are tested numerically.

  11. The Effect of Quantum Fluctuations in Compact Star Observables

    Science.gov (United States)

    Pósfay, P.; Barnaföldi, G. G.; Jakovác, A.

    2018-05-01

    Astrophysical measurements regarding compact stars are just ahead of a big evolution jump, since the NICER experiment deployed on ISS on 2017 June 14. This will provide soon data that would enable the determination of compact star radius with less than 10% error. This can be further constrained by the new observation of gravitational waves originated from merging neutron stars, GW170817. This poses new challenges to nuclear models aiming to explain the structure of super dense nuclear matter found in neutron stars. Detailed studies of the QCD phase diagram show the importance of bosonic quantum fluctuations in the cold dense matter equation of state. Here we used a demonstrative model with one bosonic and one fermionic degree of freedom coupled by Yukawa coupling, we show the effect of bosonic quantum fluctuations on compact star observables such as mass, radius, and compactness. We have also calculated the difference in the value of compressibility which is caused by quantum fluctuations. The above-mentioned quantities are calculated in the mean field, one-loop, and in high order many loop approximation. The results show that the magnitude of these effects is in the range of 4-5%, which place it into the region where modern measurements may detect it. This forms a base for further investigations that how these results carry over to more complicated models.

  12. Nonergodicity, fluctuations, and criticality in heterogeneous diffusion processes.

    Science.gov (United States)

    Cherstvy, A G; Metzler, R

    2014-07-01

    We study the stochastic behavior of heterogeneous diffusion processes with the power-law dependence D(x) ∼ |x|(α) of the generalized diffusion coefficient encompassing sub- and superdiffusive anomalous diffusion. Based on statistical measures such as the amplitude scatter of the time-averaged mean-squared displacement of individual realizations, the ergodicity breaking and non-Gaussianity parameters, as well as the probability density function P(x,t), we analyze the weakly nonergodic character of the heterogeneous diffusion process and, particularly, the degree of irreproducibility of individual realizations. As we show, the fluctuations between individual realizations increase with growing modulus |α| of the scaling exponent. The fluctuations appear to diverge when the critical value α = 2 is approached, while for even larger α the fluctuations decrease, again. At criticality, the power-law behavior of the mean-squared displacement changes to an exponentially fast growth, and the fluctuations of the time-averaged mean-squared displacement do not converge for increasing number of realizations. From a systematic comparison we observe some striking similarities of the heterogeneous diffusion process with the familiar subdiffusive continuous time random walk process with power-law waiting time distribution and diverging characteristic waiting time.

  13. Noise and fluctuations an introduction

    CERN Document Server

    MacDonald, D K C

    2006-01-01

    An understanding of fluctuations and their role is both useful and fundamental to the study of physics. This concise study of random processes offers graduate students and research physicists a survey that encompasses both the relationship of Brownian Movement with statistical mechanics and the problem of irreversible processes. It outlines the basics of the physics involved, without the strictures of mathematical rigor.The three-part treatment starts with a general survey of Brownian Movement, including electrical Brownian Movement and ""shot-noise,"" Part two explores correlation, frequency

  14. Interplanetary Type III Bursts and Electron Density Fluctuations in the Solar Wind

    Science.gov (United States)

    Krupar, V.; Maksimovic, M.; Kontar, E. P.; Zaslavsky, A.; Santolik, O.; Soucek, J.; Kruparova, O.; Eastwood, J. P.; Szabo, A.

    2018-04-01

    Type III bursts are generated by fast electron beams originated from magnetic reconnection sites of solar flares. As propagation of radio waves in the interplanetary medium is strongly affected by random electron density fluctuations, type III bursts provide us with a unique diagnostic tool for solar wind remote plasma measurements. Here, we performed a statistical survey of 152 simple and isolated type III bursts observed by the twin-spacecraft Solar TErrestrial RElations Observatory mission. We investigated their time–frequency profiles in order to retrieve decay times as a function of frequency. Next, we performed Monte Carlo simulations to study the role of scattering due to random electron density fluctuations on time–frequency profiles of radio emissions generated in the interplanetary medium. For simplification, we assumed the presence of isotropic electron density fluctuations described by a power law with the Kolmogorov spectral index. Decay times obtained from observations and simulations were compared. We found that the characteristic exponential decay profile of type III bursts can be explained by the scattering of the fundamental component between the source and the observer despite restrictive assumptions included in the Monte Carlo simulation algorithm. Our results suggest that relative electron density fluctuations /{n}{{e}} in the solar wind are 0.06–0.07 over wide range of heliospheric distances.

  15. Suppression of alloy fluctuations in GaAs-AlGaAs core-shell nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Loitsch, Bernhard; Winnerl, Julia; Parzinger, Eric; Matich, Sonja; Wurstbauer, Ursula; Riedl, Hubert; Abstreiter, Gerhard; Finley, Jonathan J.; Koblmüller, Gregor [Walter Schottky Institut and Physik Department, Technische Universität München, 85748 Garching (Germany); Jeon, Nari; Lauhon, Lincoln J. [Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 (United States); Döblinger, Markus [Department of Chemistry, Ludwig-Maximilians-Universität Munich, 81377 München (Germany)

    2016-08-29

    Probing localized alloy fluctuations and controlling them by growth kinetics have been relatively limited so far in nanoscale structures such as semiconductor nanowires (NWs). Here, we demonstrate the tuning of alloy fluctuations in molecular beam epitaxially grown GaAs-AlGaAs core-shell NWs by modifications of shell growth temperature, as investigated by correlated micro-photoluminescence, scanning transmission electron microscopy, and atom probe tomography. By reducing the shell growth temperature from T > 600 °C to below 400 °C, we find a strong reduction in alloy fluctuation mediated sharp-line luminescence, concurrent with a decrease in the non-randomness of the alloy distribution in the AlGaAs shell. This trend is further characterized by a change in the alloy compositional structure from unintentional quasi-superlattices of Ga- and Al-rich AlGaAs layers at high T to a nearly homogeneous random alloy distribution at low T.

  16. Calculations of hydrogen detonations in nuclear containments by the random choice method

    International Nuclear Information System (INIS)

    Delichatsios, M.A.; Genadry, M.B.

    1983-01-01

    Computer codes were developed for the prediction of pressure histories at different points of a nuclear containment wall due to postulated internal hydrogen detonations. These pressure histories are required to assess the structural response of a nuclear containment to hydrogen detonations. The compressible flow equations including detonation, which was treated as a sharp fluid discontinuity, were solved by the random choice method which reproduces maximum pressures and discontinuities sharply. The computer codes were validated by calculating pressure profiles and maximum wall pressures for plane and spherical geometries and comparing the results with exact analytic solutions. The two-dimensional axisymmetric program was used to calculate wall pressure histories in an actual nuclear containment. The numerical results for wall pressures are presented in a dimensionless form, which allows their use for different combinations of hydrogen concentration, and initial conditions. (orig.)

  17. Radiation measurement practice for understanding statistical fluctuation of radiation count using natural radiation sources

    International Nuclear Information System (INIS)

    Kawano, Takao

    2014-01-01

    It is known that radiation is detected at random and the radiation counts fluctuate statistically. In the present study, a radiation measurement experiment was performed to understand the randomness and statistical fluctuation of radiation counts. In the measurement, three natural radiation sources were used. The sources were fabricated from potassium chloride chemicals, chemical fertilizers and kelps. These materials contain naturally occurring potassium-40 that is a radionuclide. From high schools, junior high schools and elementary schools, nine teachers participated to the radiation measurement experiment. Each participant measured the 1-min integration counts of radiation five times using GM survey meters, and 45 sets of data were obtained for the respective natural radiation sources. It was found that the frequency of occurrence of radiation counts was distributed according to a Gaussian distribution curve, although the obtained 45 data sets of radiation counts superficially looked to be fluctuating meaninglessly. (author)

  18. Dissipation and fluctuation of the relative momentum in nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Feldmeier, H.; Spangenberger, H.

    1984-07-01

    The dissipation of the relative momentum in nucleus-nucleus collisions is treated in terms of a Langevin equation with a fluctuating force. Equations of motion for first and second moments of the macroscopic variables are derived directly from the Langevin equation. The properties of the fluctuating force which results from random particle exchange are investigated in detail. Drift and diffusion coefficients are calculated microscopically and analytical expressions are given which can be used in any trajectory calculation. An important feature of the model is that the Einstein relation between dissipation and fluctuation turns out to be only a limiting case of a more general expression which included nonthermal fluctuations. By treating the two nuclei as intrinsically equilibrated but not in thermal equilibrium with respect to each other several important aspects of the dissipative behaviour, seen in heavy ion collisions with final energies above the Coloumb barrier, can be understood. (orig.)

  19. Measurement of amplitude fluctuations in a rapid response photomultiplier

    International Nuclear Information System (INIS)

    Raimbault, P.

    1961-01-01

    In order to measure amplitude fluctuations in a rapid response photomultiplier, two independent random variables are introduced which determine the shape of the anode pulse. The energy of each pulse, which depends directly on the gain and the variance, is the first variable; amplitude fluctuations, functions of the first variable, depend as well on the pulse width which in turn constitutes the second variable. The results obtained on the variations of the maximum impulse, using a steep-edged pulse broadening circuit, and those obtained on the statistical variations of the gain, are compared to show that the variance relative to the maximum amplitude of the signal is greater than that of the gain. Within the limits of these fluctuations are shown the contribution of the secondary emission coefficient of the first dynode, and that of the mean secondary emission coefficient of the multiplier. (author) [fr

  20. Study of fluctuations. Variance measurement on Proserpine

    International Nuclear Information System (INIS)

    Berger, F.; Renaux, R.

    1960-01-01

    The authors present an equipment designed for the study of the statistical fluctuation of the number of neutrons existing in a pile in the neighbourhood of its critical status. This equipment must allow series of counts of constant duration per series, and triggered by a random process. The counting assembly is presented (principle, description and operation), as well as the memorization assembly for a slow or quick count triggering

  1. Respondence Between Electrochemical Fluctuations and Phenomenon for Localized Corrosion of Less-Noble Metals

    International Nuclear Information System (INIS)

    Itoi, Yasuhiko; Take, Seisho; Tsuru, Tooru

    2008-01-01

    We have been studying application of electrochemical noise (Fluctuation) analysis for localized corrosion. Foils of Zinc, Aluminum and Magnesium were used as specimens for electrochemical cell simulating localized corrosion. These specimens were dipped in sodium chloride solutions adjusted to each exponent of hydrogen ion concentration (pH) condition of 5.5, 10, 12 respectively. Time variations of potential and current were measured in those solutions, and simultaneously the surfaces of specimens were observed using microscope with television monitor. Two types of electrochemical cells were arranged for experiments simulated localized corrosion. The fluctuations on trendy component of short-circuited potential and short-circuited current were appeared in synchronization. It was seemed that these fluctuations result from hydrogen evolution on the aluminum active site in the crevice from the microscopic observation. In the case of zinc and magnesium, fluctuations appeared on the trendy component of the corrosion potential. Two types fluctuation were detected. First one is the fluctuation varied periodically. The second one is the random fluctuation. It was seemed that these fluctuations result from generation of corrosion products and hydrogen evolution on the active site in the crevice of zinc and magnesium from the microscopic observation

  2. Calculation of reactivity for safety in nuclear reactors; Calculo de la reactividad para seguridad en reactores nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Suescun D, D. [Universidad Surcolombiana, Av. Pastrana Borrero - Carrera 1, Neiva, Huila (Colombia); Rojas A, O., E-mail: daniel.suescun@usco.edu.co [Universidad Popular Autonoma del Estado de Puebla, Av. 9 Pte 1908, Barrio de Santiago, 72410 Puebla (Mexico)

    2017-09-15

    The measurement of reactivity is a function of time and its calculation results from the variation in nuclear power from the inverse equation of punctual kinetics. This equation is a differential integral, where the term of the integral conserves the historical power and the differential part is directly related to the period of the reactor. In practice, in a nuclear plant, sensors are required to record the signals. For example, the movements of the control rods that cause the fluctuations of nuclear power over time commonly generate signals with noise, an event that makes difficult to estimate the reactivity. Thus is necessary and very useful to build digital reactivity meters in real time, since allows a reactor to be operated with greater security. The calculation of the reactivity is carried out using punctual kinetics, especially the concentration of delayed neutron precursors. In this work we present a new way to reduce the fluctuations in the calculation of the reactivity, for the high precision we propose the generalization of the predictor and corrector of the Adams-Bashforth-Moulton (ABM) method of order 4 to solve numerically the equations of the point kinetics for the calculation of the reactivity, without using the power history, due to the nature of the equations of the punctual kinetics, the modifiers of the different predictors are used to increase the accuracy in the approximation obtained accompanied by the filter known as Savitzky-Golay (Sg), allow to reduce the fluctuations of reactivity. It is known that the Sg filter softens and does not attenuate the nuclear power regardless of its shape, guarantees to reduce noise levels up to σ = 0.01, with a calculation time step of σ = 0.01, s. This formulation uses a polynomial approximation of Gram, with a degree d = 2, to calculate the convolution coefficients by means of an analytical formula that is implemented computationally and avoids problems of bad conditioning, caused by the inversion of a

  3. Nuclear structure theory. Annual technical progress report, September 1, 1980-August 31, 1981

    International Nuclear Information System (INIS)

    French, J.B.; Koltun, D.S.

    1981-01-01

    This report summarizes progress during the past year in the following areas of nuclear structure and reaction theory: (1) statistical spectroscopy, including: random matrix methods, with applications to fluctuations in spectra and in strength distributions; group symmetries in spectral-distribution theory; electromagnetic and β transitions, limits to time-reversal symmetry breaking in the nucleon-nucleon interaction; (2) meson scattering and absorption by nuclei, including: general scattering theory with absorption, multiple scattering theory and its reactive content, statistical theory of absorption; and (3) meson currents in electromagnetic transitions

  4. Nuclear magnetic resonance of randomly diluted magnetic materials

    International Nuclear Information System (INIS)

    Magon, C.J.

    1985-01-01

    The temperature dependence of the nuclear relaxation rates and line shapes of the F O resonance in the diluted antiferromagnet Fe x Zn 1-x F 2 and Mn x Zn 1-x F 2 are studied over a large temperature range T N 1 ) of the F O nuclei, which are not transfer hyperfine coupled to the Fe (or Mn) spins, have been measured and calculated as a function of the concentration x. Good agreement with experiment is found for the theoretical results, which have been obtained in the range 0.1 ≤ x ≤ 0.8. The temperature dependence of 1/T 1 for T N 1 data near T N was used to study Random Field Effects on the critical behavior of Mn .65 Zn . 3 5 F 2 , for fields applied parallel and perpendicular to the easy (C) axis. It was found that the transition temperature T N depressed substantially with field only for H o || C. The experimental results are in general accord with the theory for Random Field Effects in disordered, anisotropic antiferromagnets. The critical divergence of the inhomogeneously broadened F O NMR was studied in Fe .6 Zn .4 F 2 above T N . The experimental results agree with Heller's calculation of the NMR line broadening by Random Field Effects. With H o || C the line shape changes from Gaussian towards Lozentzian for t -2 and below T N its line width increase qualitatively following the increase in the sublattice magnetization. (author)

  5. Nuclear interactions for 15 GeV/c protons and pions under random and channeling conditions in germanium single crystals

    CERN Document Server

    Andersen, S K; Fich, O.; Golovchenko, J.A.; Nielsen, Henry; Schiott, H.E.; Uggerhoj, E.; Vraast-Thomsen, C.; Charpak, Georges; Petersen, G.; Sauli, F.; Ponpon, J.P.; Siffert, P.

    1978-01-01

    Strong directional effects for nuclear-reaction probabilities have been observed when 15 GeV/ c protons and pions are incident on a 4.2 mm Ge single crystal. In the random situation, our measurements are in agreement with Glauber's theory of diffraction scattering and with published particle-production data. When protons are incident in an aligned direction, the nuclear-reaction probabilities fall off very drastically but in a way which is in agreement with standard channeling theory; for aligned negative pions where a simple channeling theory is lacking, there is some experimental indication that nuclear-reaction probabilities are enhanced compared to the corresponding random rates, an indication which is supported by detailed computer-simulation studies.

  6. Large fluctuations and fixation in evolutionary games

    International Nuclear Information System (INIS)

    Assaf, Michael; Mobilia, Mauro

    2010-01-01

    We study large fluctuations in evolutionary games belonging to the coordination and anti-coordination classes. The dynamics of these games, modeling cooperation dilemmas, is characterized by a coexistence fixed point separating two absorbing states. We are particularly interested in the problem of fixation that refers to the possibility that a few mutants take over the entire population. Here, the fixation phenomenon is induced by large fluctuations and is investigated by a semiclassical WKB (Wentzel–Kramers–Brillouin) theory generalized to treat stochastic systems possessing multiple absorbing states. Importantly, this method allows us to analyze the combined influence of selection and random fluctuations on the evolutionary dynamics beyond the weak selection limit often considered in previous works. We accurately compute, including pre-exponential factors, the probability distribution function in the long-lived coexistence state and the mean fixation time necessary for a few mutants to take over the entire population in anti-coordination games, and also the fixation probability in the coordination class. Our analytical results compare excellently with extensive numerical simulations. Furthermore, we demonstrate that our treatment is superior to the Fokker–Planck approximation when the selection intensity is finite

  7. Validation of the k-filtering technique for a signal composed of random-phase plane waves and non-random coherent structures

    Directory of Open Access Journals (Sweden)

    O. W. Roberts

    2014-12-01

    Full Text Available Recent observations of astrophysical magnetic fields have shown the presence of fluctuations being wave-like (propagating in the plasma frame and those described as being structure-like (advected by the plasma bulk velocity. Typically with single-spacecraft missions it is impossible to differentiate between these two fluctuations, due to the inherent spatio-temporal ambiguity associated with a single point measurement. However missions such as Cluster which contain multiple spacecraft have allowed for temporal and spatial changes to be resolved, using techniques such as k filtering. While this technique does not assume Taylor's hypothesis it requires both weak stationarity of the time series and that the fluctuations can be described by a superposition of plane waves with random phases. In this paper we test whether the method can cope with a synthetic signal which is composed of a combination of non-random-phase coherent structures with a mean radius d and a mean separation λ, as well as plane waves with random phase.

  8. Role of turbulence fluctuations on uncertainties of acoutic Doppler current profiler discharge measurements

    Science.gov (United States)

    Tarrab, Leticia; Garcia, Carlos M.; Cantero, Mariano I.; Oberg, Kevin

    2012-01-01

    This work presents a systematic analysis quantifying the role of the presence of turbulence fluctuations on uncertainties (random errors) of acoustic Doppler current profiler (ADCP) discharge measurements from moving platforms. Data sets of three-dimensional flow velocities with high temporal and spatial resolution were generated from direct numerical simulation (DNS) of turbulent open channel flow. Dimensionless functions relating parameters quantifying the uncertainty in discharge measurements due to flow turbulence (relative variance and relative maximum random error) to sampling configuration were developed from the DNS simulations and then validated with field-scale discharge measurements. The validated functions were used to evaluate the role of the presence of flow turbulence fluctuations on uncertainties in ADCP discharge measurements. The results of this work indicate that random errors due to the flow turbulence are significant when: (a) a low number of transects is used for a discharge measurement, and (b) measurements are made in shallow rivers using high boat velocity (short time for the boat to cross a flow turbulence structure).

  9. Complexity of low-frequency blood oxygen level-dependent fluctuations covaries with local connectivity.

    Science.gov (United States)

    Anderson, Jeffrey S; Zielinski, Brandon A; Nielsen, Jared A; Ferguson, Michael A

    2014-04-01

    Very low-frequency blood oxygen level-dependent (BOLD) fluctuations have emerged as a valuable tool for describing brain anatomy, neuropathology, and development. Such fluctuations exhibit power law frequency dynamics, with largest amplitude at lowest frequencies. The biophysical mechanisms generating such fluctuations are poorly understood. Using publicly available data from 1,019 subjects of age 7-30, we show that BOLD fluctuations exhibit temporal complexity that is linearly related to local connectivity (regional homogeneity), consistently and significantly covarying across subjects and across gray matter regions. This relationship persisted independently of covariance with gray matter density or standard deviation of BOLD signal. During late neurodevelopment, BOLD fluctuations were unchanged with age in association cortex while becoming more random throughout the rest of the brain. These data suggest that local interconnectivity may play a key role in establishing the complexity of low-frequency BOLD fluctuations underlying functional magnetic resonance imaging connectivity. Stable low-frequency power dynamics may emerge through segmentation and integration of connectivity during development of distributed large-scale brain networks. Copyright © 2013 Wiley Periodicals, Inc.

  10. The roles of shear and cross-correlations on the fluctuation levels in simple stochastic models. Revision

    International Nuclear Information System (INIS)

    Krommes, J.A.

    1999-01-01

    Highly simplified models of random flows interacting with background microturbulence are analyzed. In the limit of very rapid velocity fluctuations, it is shown rigorously that the fluctuation level of a passively advected scalar is not controlled by the rms shear. In a model with random velocities dependent only on time, the level of cross-correlations between the flows and the background turbulence regulates the saturation level. This effect is illustrated by considering a simple stochastic-oscillator model, both exactly and with analysis and numerical solutions of the direct-interaction approximation. Implications for the understanding of self-consistent turbulence are discussed briefly

  11. Bi-stability resistant to fluctuations

    Science.gov (United States)

    Caruel, M.; Truskinovsky, L.

    2017-12-01

    We study a simple micro-mechanical device that does not lose its snap-through behavior in an environment dominated by fluctuations. The main idea is to have several degrees of freedom that can cooperatively resist the de-synchronizing effect of random perturbations. As an inspiration we use the power stroke machinery of skeletal muscles, which ensures at sub-micron scales and finite temperatures a swift recovery of an abruptly applied slack. In addition to hypersensitive response at finite temperatures, our prototypical Brownian snap spring also exhibits criticality at special values of parameters which is another potentially interesting property for micro-scale engineering applications.

  12. Directed self-avoiding walks in random media

    International Nuclear Information System (INIS)

    Santra, S. B.; Seitz, W. A.; Klein, D. J.

    2001-01-01

    Two types of directed self-avoiding walks (SAW's), namely, three-choice directed SAW and outwardly directed SAW, have been studied on infinite percolation clusters on the square lattice in two dimensions. The walks on the percolation clusters are generated via a Monte Carlo technique. The longitudinal extension R N and the transverse fluctuation W N have been measured as a function of the number of steps N. Slight swelling is observed in the longitudinal direction on the random lattices. A crossover from shrinking to swelling of the transverse fluctuations is found at a certain length N c of the walks. The exponents related to the transverse fluctuations are seen to be unchanged in the random media even as the percolation threshold is reached. The scaling function form of the extensions are verified

  13. Investigation of the impact of dose fluctuations on tumour control

    International Nuclear Information System (INIS)

    Zavgorodni, S.F.; Royal Adelaide Hospital,; Booth, J.; Adelaide University,; Rosenfeld, A.

    2001-01-01

    Full text: The importance of spatial uniformity of the dose across the Planning Target Volume (PTV) has been investigated previously with the conclusion stated in 'uniform dose theorem' concluding that the uniform dose results in the highest Tumour Control Probability (TCP). The dose fluctuations, which appear in fractionated treatments as a result of setup errors, organ motion, treatment machine calibration and other reasons can be seen as temporal dose non-uniformity. The intuitive expectation, that the temporal dose non-uniformity would also reduce TCP, has been tested. The impact of temporal dose non-uniformity has been investigated considering intra and inter-treatment dose fluctuations. The dose was considered to be spatially uniform. The convolution technique was used and analytical expression of TCP accounting for the dose fluctuation has also been derived. Both techniques used Probability Density Function (PDF) to account for the dose fluctuations. The dose fluctuations with PDF symmetrical around its mean value (Gaussian) as well as non-symmetrical PDFs were both investigated. The symmetrical PDFs represented the fluctuations, which appear in the whole PTV as a result of day to day variation in treatment machine output. Non-symmetrical PDFs represented the dose fluctuations at the edges of PTV as a result of setup errors and organ motion. The effect of the dose fluctuations has been expressed in terms of an extra dose δ (positive or negative) which should be added to the value of temporally uniform dose in order to provide the same TCP as the one resulting from temporally non-uniform (fluctuating) dose. Intra-treatment dose fluctuations resulted in an increased TCP, though the effect is relatively small (δ<1 Gy for the treatment dose of 60 Gy). However, inter-treatment fluctuations of the dose reduced TCP for a patient population. The size of effect increases with the standard deviation of the PDF. Random ultra-treatment dose fluctuations resulted in

  14. Energy conservation law for randomly fluctuating electromagnetic fields

    International Nuclear Information System (INIS)

    Gbur, G.; Wolf, E.; James, D.

    1999-01-01

    An energy conservation law is derived for electromagnetic fields generated by any random, statistically stationary, source distribution. It is shown to provide insight into the phenomenon of correlation-induced spectral changes. The results are illustrated by an example. copyright 1999 The American Physical Society

  15. Hawking temperature and scalar field fluctuations in the de-Sitter space

    International Nuclear Information System (INIS)

    Rozhanskij, L.V.

    1988-01-01

    It is shown that diffusion equation for scalar field fluctuations in the de-Sitter space corresponds to Hawking temperature. The relationship between stationary solution of the equation and Hartle-Hawking instanton at random space dimensionality and any type of gravitational effect has been established

  16. Nuclear structure theory. Annual technical progress report, October 1, 1978-September 30, 1979

    International Nuclear Information System (INIS)

    French, J.B.; Koltun, D.S.

    1979-01-01

    This report summarizes progress during the past year in the following areas of nuclear structure and reaction theory: Statistical spectroscopy, including: Random matrix methods, with applications to fluctuations in spectra and in strength distributions, and to problems of ergodicity; Group symmetries in spectral-distribution theory; Electromagnetic and β transitions. Meson scattering and absorption by nuclei, including: general scattering theory with absorption, multiple scattering theory and its reactive content, statistical theory of absorption, theory of the absorption operator (πNN vertex), theory of πN scattering. A list of publications is included

  17. Experimental methods of investigation of kinetics and dynamics of nuclear reactors

    International Nuclear Information System (INIS)

    Costa Oliveira, Jaime M.

    1969-03-01

    The author presents experimental methods used to study kinetic and dynamic properties of nuclear reactors. Kinetic methods aim at determining characteristic parameters of the behaviour in time of neutrons. Dynamic methods aim at establishing the relationships between the reactor behaviour and its internal and external causes (notably the measurement of transfer functions). The author proposes a classification with respect to the excitation type: periodic excitation (reactivity sinusoidal modulation, source sinusoidal modulation, periodic pulse excitation), non periodic excitation (reactivity monitoring, reactivity linear variation, reactivity variation according to any given law, removal of starting source), random excitation (random reactivity or source excitation), natural fluctuations (alpha-Rossi method, methods of reduced variance, probabilistic methods, correlation methods, spectral analysis method). He also addresses space and energy effects. Applications are reported for low power and power reactors

  18. Limit Shapes and Fluctuations of Bounded Random Partitions

    DEFF Research Database (Denmark)

    Beltoft, Dan

    Random partitions of integers, bounded both in the number of summands and the size of each summand are considered, subject to the probability measure which assigns a probability proportional to some fixed positive number to the power of the number being partitioned. This corresponds to considering...

  19. An extension of Hewitt's inversion formula and its application to fluctuation theory

    NARCIS (Netherlands)

    Badila, E.S.

    2015-01-01

    We analyze fluctuations of random walks with generally distributed increments. Integral representations for key performance measures are obtained by extending an inversion theorem of Hewitt [11] for Laplace-Stieltjes transforms. Another important part of the anal- ysis involves the so-called

  20. Evidence for fluctuations in statistical model cross sections from the study of {sup 27}Al(d,{alpha}) {sup 25}Mg reaction; Mise en evidence des fluctuations de sections efficaces du modele statistique par l'etude de la reaction {sup 27}Al(d,{alpha}) {sup 25}Mg

    Energy Technology Data Exchange (ETDEWEB)

    Papineau born Heller, L [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-06-01

    A complete set of experimental data has been obtained for the reaction {sup 27}Al(d, {alpha}){sup 25}Mg for excitation energies in the compound nucleus {sup 29}Si between 19.7 and 27.4 MeV, in order to compare with the theoretical predictions of the statistical model of nuclear reactions including fluctuations. Numerical calculations of the theoretical cross sections were made and contributions to methods of analysis of fluctuating excitation functions are given. The results confirm strong evidence for statistical fluctuations in nuclear cross sections. (author) [French] On a obtenu un ensemble complet de donnees experimentales de la reaction {sup 27}Al(d, {alpha}){sup 25}Mg pour des energies d'excitation du noyau compose {sup 29}Si comprises entre 19,7 et 27,4 MeV, permettant la comparaison avec les previsions theoriques du modele statistique des reactions nucleaires dans sa version complete comprenant les fluctuations. Des calculs numeriques de sections efficaces theoriques ont ete effectues et des contributions ont ete apportees aux methodes d'analyse de fonctions d'excitation presentant des fluctuations. Les resultats ont clairement confirme l'existence de fluctuations statistiques de sections efficaces. (auteur)

  1. Measurement of amplitude fluctuations in a rapid response photomultiplier; Mesure des fluctuations d'amplitude d'un photo multiplicateur a reponse rapide

    Energy Technology Data Exchange (ETDEWEB)

    Raimbault, P [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1961-07-01

    In order to measure amplitude fluctuations in a rapid response photomultiplier, two independent random variables are introduced which determine the shape of the anode pulse. The energy of each pulse, which depends directly on the gain and the variance, is the first variable; amplitude fluctuations, functions of the first variable, depend as well on the pulse width which in turn constitutes the second variable. The results obtained on the variations of the maximum impulse, using a steep-edged pulse broadening circuit, and those obtained on the statistical variations of the gain, are compared to show that the variance relative to the maximum amplitude of the signal is greater than that of the gain. Within the limits of these fluctuations are shown the contribution of the secondary emission coefficient of the first dynode, and that of the mean secondary emission coefficient of the multiplier. (author) [French] Pour etudier les fluctuations d'amplitude d'un photomultiplicateur a reponse rapide, on introduit deux variables aleatoires independantes qui determinent la forme de l'impulsion anodique. L'energie de chaque impulsion, directement fonction du gain et de sa variance, est la premiere variable; les fluctuations d'amplitude, fonctions de la premiere variable, dependent egalement de la largeur de l'impulsion qui, elle, constitue la deuxieme variable. Les resultats obtenus sur les variations de l'amplitude maximale, a l'aide d'un circuit elargisseur d'impulsions a front raide, et les resultats des variations statistiques du gain sont compares pour mettre en evidence le fait que la variance relative a l'amplitude maximale du signal est plus grande que celle du gain. Dans la mesure de ces fluctuations, sont mises en evidence la contribution du coefficient d'emission secondaire de la premiere dynode et celle du coefficient d'emission secondaire moyen du multiplicateur. (auteur)

  2. Semi-classical theory of fluctuations in nuclear matter; Theorie semi-classique des fluctuations dans la matiere nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Benhassine, B. [Nantes Univ., 44 (France)

    1994-01-14

    At intermediate energies the heavy ion collisions can be studied within the framework of a semi-classical approach based on the Vlasov-Uehling-Uhlenbeck (VUU) equation. Such an approach reduces the N-body problem to its description in terms of the one-body distribution function and constitutes the basis of several successful simulation models. Our aim in this work is to extend these average approaches to treat fluctuations. Within the framework of a linear approximation, we derived a Fokker-Planck transport equation in the one-body phase space. When it is reduced to its first moments, one recovers the VUU equation for the average dynamics together with the time evolution equation for the correlations. The collective transport coefficients are then obtained by projection on the one-body collective space. Independently, using a projection method introduced by Van Kampen, based on the constants of motion, we deduce the stationary expressions for the covariance matrix in phase space. We extract then, the equilibrium dispersions of one-body observables in a homogeneous case and in a spherical symmetric one. These results are compared with two types of simulation models in a relaxation time approximation. In the first one which is of Lagrangian type, the collective transport coefficients are directly extracted from the simulation and consequently the numerical fluctuations are washed out. The second model, due to its Eulerian character, allows us to make a microscopical comparison. (author) 58 refs.

  3. Charge fluctuation in Ce-based filled-skutterudite

    International Nuclear Information System (INIS)

    Yogi, M; Niki, H; Mukuda, H; Kitaoka, Y; Sugawara, H; Sato, H

    2009-01-01

    We carried out 121,123 Sb nuclear quadrupole resonance (NQR) measurement on CeOs 4 Sb 12 to investigate an anomaly observed in ReOs 4 Sb 12 . The full width of half maximum of the NQR spectrum shows a step-like increase at 115 K with decreasing temperature (T). The nuclear spin-spin relaxation rate 1/T 2 also shows a divergence at the same T. These results are considered to be caused by a distribution of the electric field gradient (EFG) and its fluctuation, which might arise from a small deformation of the cage which consists of twelve Sb. It is considered that the anomaly observed in ReOs 4 Sb 12 at T ∼ 120 K is originated from an unique crystal structure of the filled skutterudite.

  4. Fluctuation in nuclear dynamics and multifragmentation

    International Nuclear Information System (INIS)

    Chomaz, P.; Di Toro, M.; Randrup, J.

    1993-01-01

    We first explain why any reduced descriptions, such as mean field approximation, are stochastic in nature. This concept is illustrated on the schematic example of the Hysteresis circle of two compasses. We study the dynamical behaviour of unstable systems, characterized by the occurrence of bifurcations or phase transitions. Concerning nuclear matter, we discuss the spinodal instability both in two and in three dimensions. In such a critical situation, we explore the possibility to replace the stochastic part of the collision integral in the Boltzmann-Langevin model by the numerical noise associated with the finite number of test particles in ordinary BUU treatment

  5. Fluctuation in nuclear dynamics and multifragmentation

    International Nuclear Information System (INIS)

    Chomaz, P.; Colonna, M.; Burgio, G.F.; Guarnera, A.; Di Toro, M.; Randrup, J.

    1993-01-01

    We first explain why any reduced descriptions, such as mean field approximation, are stochastic in nature. This concept is illustrated on the schematic example of the Hysteresis circle of two compasses. We study the dynamical behaviour of unstable systems, characterized by the occurrence of bifurcations or phase transitions. Concerning nuclear matter, we discuss the spinodal instability in two dimensions. In such a critical situation, we explore the possibility to replace the stochastic part of the collision integral in the Boltzmann-Langevin model by the numerical noise associated with the finite number of test particles in ordinary BUU treatment. (author). 24 refs., 10 figs

  6. Fluctuation in nuclear dynamics and multifragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Chomaz, P. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France); Colonna, M.; Burgio, G.F.; Guarnera, A. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France)]|[Istituto Nazionale di Fisica Nucleare, Catania (Italy); Di Toro, M. [Istituto Nazionale di Fisica Nucleare, Catania (Italy); Randrup, J. [Lawrence Berkeley Lab., CA (United States)]|[Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)

    1993-12-31

    We first explain why any reduced descriptions, such as mean field approximation, are stochastic in nature. This concept is illustrated on the schematic example of the Hysteresis circle of two compasses. We study the dynamical behaviour of unstable systems, characterized by the occurrence of bifurcations or phase transitions. Concerning nuclear matter, we discuss the spinodal instability in two dimensions. In such a critical situation, we explore the possibility to replace the stochastic part of the collision integral in the Boltzmann-Langevin model by the numerical noise associated with the finite number of test particles in ordinary BUU treatment. (author). 24 refs., 10 figs.

  7. On stochastic differential equations with random delay

    International Nuclear Information System (INIS)

    Krapivsky, P L; Luck, J M; Mallick, K

    2011-01-01

    We consider stochastic dynamical systems defined by differential equations with a uniform random time delay. The latter equations are shown to be equivalent to deterministic higher-order differential equations: for an nth-order equation with random delay, the corresponding deterministic equation has order n + 1. We analyze various examples of dynamical systems of this kind, and find a number of unusual behaviors. For instance, for the harmonic oscillator with random delay, the energy grows as exp((3/2) t 2/3 ) in reduced units. We then investigate the effect of introducing a discrete time step ε. At variance with the continuous situation, the discrete random recursion relations thus obtained have intrinsic fluctuations. The crossover between the fluctuating discrete problem and the deterministic continuous one as ε goes to zero is studied in detail on the example of a first-order linear differential equation

  8. Magnetic fluctuations associated with density fluctuations in the tokamak edge

    International Nuclear Information System (INIS)

    Kim, Y.J.; Gentle, K.W.; Ritz, C.P.; Rhodes, T.L.; Bengtson, R.D.

    1989-01-01

    Electrostatic density and potential fluctuations occurring with high amplitude near the edge of a tokamak are correlated with components of the fluctuating magnetic field measured outside the limiter radius. It has been established that this turbulence is associated with fluctuations in current as well as density and potential. The correlation extends for substantial toroidal distances, but only if the probes are displaced approximately along field lines, consistent with the short coherence lengths poloidally but long coherence lengths parallel to the field which are characteristic for this turbulence. Furthermore, the correlation can be found only with density fluctuations measured inside the limiter radius; density fluctuations behind the limiter have no detectable magnetic concomitant for the toroidally spaced probes used here. (author). Letter-to-the-editor. 12 refs, 3 figs

  9. Overdispersion in nuclear statistics

    International Nuclear Information System (INIS)

    Semkow, Thomas M.

    1999-01-01

    The modern statistical distribution theory is applied to the development of the overdispersion theory in ionizing-radiation statistics for the first time. The physical nuclear system is treated as a sequence of binomial processes, each depending on a characteristic probability, such as probability of decay, detection, etc. The probabilities fluctuate in the course of a measurement, and the physical reasons for that are discussed. If the average values of the probabilities change from measurement to measurement, which originates from the random Lexis binomial sampling scheme, then the resulting distribution is overdispersed. The generating functions and probability distribution functions are derived, followed by a moment analysis. The Poisson and Gaussian limits are also given. The distribution functions belong to a family of generalized hypergeometric factorial moment distributions by Kemp and Kemp, and can serve as likelihood functions for the statistical estimations. An application to radioactive decay with detection is described and working formulae are given, including a procedure for testing the counting data for overdispersion. More complex experiments in nuclear physics (such as solar neutrino) can be handled by this model, as well as distinguishing between the source and background

  10. Event-by-Event Observables and Fluctuations

    International Nuclear Information System (INIS)

    Petersen, Hannah

    2013-01-01

    In this talk the status and open questions of the phenomenological description of all the stages of a heavy ion reaction are highlighted. Special emphasis is put on event-by-event fluctuations and associated observables. The first part is concentrated on high RHIC and LHC energies and the second part reviews the challenges for modeling heavy ion reactions at lower beam energies in a more realistic fashion. Overall, the main conclusion is that sophisticated theoretical dynamical approaches that describe many observables in the same framework are essential for the quantitative understanding of the properties of hot and dense nuclear matter

  11. A study of power fluctuations in a flip fuel reactor using the technique of noise analysis

    Energy Technology Data Exchange (ETDEWEB)

    Randall, J D; Wood, G C; Edwards, M A [Texas A and M University (United States)

    1974-07-01

    The Nuclear Science Center Reactor at Texas A and M University has experienced minor power fluctuations when operating at or near 1 megawatt. A noise analysis system was developed to investigate these fluctuations assuming that void formation, primarily due to nucleate boiling, was the cause. Experiments were carried out to correlate boiling noise with power level, fission product poisoning, and pool temperature. Results show that void formation in the core is the probable cause of the fluctuations with the onset of boiling occurring at 400 Kw. Data was also obtained that indicated the presence of boiling in a standard TRIGA core. (author)

  12. Vessel size effect on the characteristic frequency of the free surface fluctuations

    International Nuclear Information System (INIS)

    Nam, Ho Yun; Kim, Min Joon; Kim, Jong Man; Choi, Byoung Hae

    2004-01-01

    Studies of the free surface fluctuations is one of the important topics in a liquid metal nuclear reactor using sodium as the coolant that has a free surface in the upper plenum of the reactor vessel. The main reasons for the study on the free surface fluctuations can be summarized as: 1. to secure the structural integrity of a reactor vessel by considering the thermal stress on the vessel wall induced by the fluctuations of the free surface between the hot sodium and cold cover gas, 2. to prevent the cover gas entrainment at the free surface of the sodium because the entrained gas causes a change in the reactivity and also reduces the heat removal capability in the core. Some experimental studies on the free surface fluctuations have been reported. However, most of them focus on the gas entrainment phenomena and only a few works concern the basic characteristics of the free surface fluctuations. Since the thermal stress on the wall is strongly dependent on the amplitude and frequency of the free surface fluctuations, studies on the amplitudes and frequencies should receive more attention. In Nam, empirical formulae on the amplitudes and frequencies with respect to the geometric and hydraulic parameters were introduced. It is an interesting result, but the experiment was performed within the parameter range near the onset point of the fluctuations. In the real reactor condition, larger sized fluctuations may exist and the formula needs to be modified. In this study, we performed experiments on the free surface fluctuations, especially on larger sized fluctuations and made an analysis of the amplitudes and frequencies. The main focus of this paper is the effect of the vessel size on the characteristic frequencies. It is thought to be helpful for finding the scaling laws, for example, designing a scale-down experiment

  13. Modelling the role of compositional fluctuations in nucleation kinetics

    International Nuclear Information System (INIS)

    Ženíšek, J.; Kozeschnik, E.; Svoboda, J.; Fischer, F.D.

    2015-01-01

    The classical nucleation theory of precipitate nucleation in interstitial/substitutional alloys is applied to account for the influence of spatial A–B composition fluctuations in an A–B–C matrix on the kinetics of nucleation of (A,B) 3 C precipitates. A and B are substitutional elements in the matrix and C is an interstitial component, assumed to preferentially bind to B atoms. All lattice sites are considered as potential nucleation sites. The fluctuations of chemical composition result in a local variation of the nucleation probability. The nucleation sites are eliminated from the system if they are located in a C-depleted diffusion zone belonging to an already nucleated and growing precipitate. The chemistry is that of an Fe–Cr–C system, and the specific interface energy is treated as a free parameter. Random, regular and homogeneous A–B distributions in the matrix are simulated and compared for various values of the interface energy. An increasing enhancement of the role of compositional fluctuations on nucleation kinetics with increasing interface energy and decreasing chemical driving force is observed

  14. Quantum fluctuations from thermal fluctuations in Jacobson formalism

    Energy Technology Data Exchange (ETDEWEB)

    Faizal, Mir [University of British Columbia-Okanagan, Irving K. Barber School of Arts and Sciences, Kelowna, BC (Canada); University of Lethbridge, Department of Physics and Astronomy, Lethbridge, AB (Canada); Ashour, Amani; Alcheikh, Mohammad [Damascus University, Mathematics Department, Faculty of Science, Damascus (Syrian Arab Republic); Alasfar, Lina [Universite Clermont Auvergne, Laboratoire de Physique Corpusculaire de Clermont-Ferrand, Aubiere (France); Alsaleh, Salwa; Mahroussah, Ahmed [King Saud University, Department of Physics and Astronomy, Riyadh (Saudi Arabia)

    2017-09-15

    In the Jacobson formalism general relativity is obtained from thermodynamics. This is done by using the Bekenstein-Hawking entropy-area relation. However, as a black hole gets smaller, its temperature will increase. This will cause the thermal fluctuations to also increase, and these will in turn correct the Bekenstein-Hawking entropy-area relation. Furthermore, with the reduction in the size of the black hole, quantum effects will also start to dominate. Just as the general relativity can be obtained from thermodynamics in the Jacobson formalism, we propose that the quantum fluctuations to the geometry can be obtained from thermal fluctuations. (orig.)

  15. Fluctuation-Induced Pattern Formation in a Surface Reaction

    DEFF Research Database (Denmark)

    Starke, Jens; Reichert, Christian; Eiswirth, Markus

    2006-01-01

    Spontaneous nucleation, pulse formation, and propagation failure have been observed experimentally in CO oxidation on Pt(110) at intermediate pressures ($\\approx 10^{-2}$mbar). This phenomenon can be reproduced with a stochastic model which includes temperature effects. Nucleation occurs randomly...... due to fluctuations in the reaction processes, whereas the subsequent damping out essentially follows the deterministic path. Conditions for the occurence of stochastic effects in the pattern formation during CO oxidation on Pt are discussed....

  16. Non-flow correlations and elliptic flow fluctuations in Au+Au collisions at sNN=200 GeV

    Science.gov (United States)

    Alver, B.; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Halliwell, C.; Hamblen, J.; Hauer, M.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Li, W.; Lin, W. T.; Loizides, C.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Reed, C.; Roland, C.; Roland, G.; Sagerer, J.; Seals, H.; Sedykh, I.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Walters, P.; Wenger, E.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wysłouch, B.

    2010-03-01

    This article presents results on event-by-event elliptic flow fluctuations in Au+Au collisions at sNN= 200 GeV, where the contribution from non-flow correlations has been subtracted. An analysis method is introduced to measure non-flow correlations, relying on the assumption that non-flow correlations are most prominent at short ranges (|Δη|2), relative elliptic flow fluctuations of approximately 30-40% are observed. These results are consistent with predictions based on spatial fluctuations of the participating nucleons in the initial nuclear overlap region. It is found that the long-range non-flow correlations in Au+Au collisions would have to be more than an order of magnitude stronger compared to the p+p data to lead to the observed azimuthal anisotropy fluctuations with no intrinsic elliptic flow fluctuations.

  17. Event-by-Event Fluctuations of Azimuthal Particle Anisotropy in Au+Au Collisions at sNN=200GeV

    Science.gov (United States)

    Alver, B.; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Halliwell, C.; Hamblen, J.; Hauer, M.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Li, W.; Lin, W. T.; Loizides, C.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Reed, C.; Roland, C.; Roland, G.; Sagerer, J.; Seals, H.; Sedykh, I.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Walters, P.; Wenger, E.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wysłouch, B.

    2010-04-01

    This Letter presents the first measurement of event-by-event fluctuations of the elliptic flow parameter v2 in Au+Au collisions at sNN=200GeV as a function of collision centrality. The relative nonstatistical fluctuations of the v2 parameter are found to be approximately 40%. The results, including contributions from event-by-event elliptic flow fluctuations and from azimuthal correlations that are unrelated to the reaction plane (nonflow correlations), establish an upper limit on the magnitude of underlying elliptic flow fluctuations. This limit is consistent with predictions based on spatial fluctuations of the participating nucleons in the initial nuclear overlap region. These results provide important constraints on models of the initial state and hydrodynamic evolution of relativistic heavy ion collisions.

  18. Electric field fluctuations in liquid tellurium alloys a hint to bond character

    NARCIS (Netherlands)

    Paulick, C.A.; Brinkmann, R.; Elwenspoek, Michael Curt; von Hartrott, M.; Kiehl, M.; Maxim, P.; Quitmann, D.

    1985-01-01

    Atomic scale electric field fluctuations in liquid tellurium alloys are detected as they induce nuclear spin relaxation rate RQ in noble gas impurity atoms, via quadrupolar interaction. Results for Xe in liquid Ag, Ga, In, Tl, Ge, Sn---Te alloys are discussed, assuming that bonding in these alloys

  19. Efficiency Drop in Green InGaN /GaN Light Emitting Diodes: The Role of Random Alloy Fluctuations

    Science.gov (United States)

    Auf der Maur, Matthias; Pecchia, Alessandro; Penazzi, Gabriele; Rodrigues, Walter; Di Carlo, Aldo

    2016-01-01

    White light emitting diodes (LEDs) based on III-nitride InGaN /GaN quantum wells currently offer the highest overall efficiency for solid state lighting applications. Although current phosphor-converted white LEDs have high electricity-to-light conversion efficiencies, it has been recently pointed out that the full potential of solid state lighting could be exploited only by color mixing approaches without employing phosphor-based wavelength conversion. Such an approach requires direct emitting LEDs of different colors, including, in particular, the green-yellow range of the visible spectrum. This range, however, suffers from a systematic drop in efficiency, known as the "green gap," whose physical origin has not been understood completely so far. In this work, we show by atomistic simulations that a consistent part of the green gap in c -plane InGaN /GaN -based light emitting diodes may be attributed to a decrease in the radiative recombination coefficient with increasing indium content due to random fluctuations of the indium concentration naturally present in any InGaN alloy.

  20. Anomalous enhancement of nuclear spin relaxation rates of 109Ag and 115In at low temperatures in cubic Γ3 ground-state system PrAg2In. First observation of octupole fluctuations of f-electrons

    International Nuclear Information System (INIS)

    Tanida, Hiroshi; Takagi, Shigeru; Suzuki, Hiroyuki S.; Satoh, Isamu; Komatsubara, Takemi

    2006-01-01

    Microscopic properties have been investigated on a cubic nonmagnetic non-Kramers Γ 3 doublet ground-state (GS) system PrAg 2 In by complementarily utilizing 115 In (I=9/2) and 109 Ag (I=1/2) NMR with particular emphasis on the low-frequency (low-ω) dipole and multipole (octupole and/or quadrupole) fluctuations of f-electrons as probed by the nuclear spin relaxation rates 1/ 115 T 1 and 1/ 109 T 1 . We show that 1/ 115 T 1 and 1/ 109 T 1 are anomalously enhanced respectively below≅50 K and ≅100K over those expected for the low-ω dipole fluctuations of the excited magnetic Γ 4 and Γ 5 states in a simple crystalline-electric-field model for a Γ 3 GS system. By comparing 1/( 115 T 1 T) and 1/( 109 T 1 T) and also by considering an invariant form of the hyperfine and/or quadrupole couplings of Γ 3 octupole and/or quadrupole moments with Ag/In nuclear dipole and/or quadrupole moments, we show that Γ 3 octupole fluctuations dominate 1/ 109 T 1 and quadrupole ones can possibly contribute to 1/ 115 T 1 at low T. (author)

  1. Scaling characteristics of one-dimensional fractional diffusion processes in the presence of power-law distributed random noise.

    Science.gov (United States)

    Nezhadhaghighi, Mohsen Ghasemi

    2017-08-01

    Here, we present results of numerical simulations and the scaling characteristics of one-dimensional random fluctuations with heavy-tailed probability distribution functions. Assuming that the distribution function of the random fluctuations obeys Lévy statistics with a power-law scaling exponent, we investigate the fractional diffusion equation in the presence of μ-stable Lévy noise. We study the scaling properties of the global width and two-point correlation functions and then compare the analytical and numerical results for the growth exponent β and the roughness exponent α. We also investigate the fractional Fokker-Planck equation for heavy-tailed random fluctuations. We show that the fractional diffusion processes in the presence of μ-stable Lévy noise display special scaling properties in the probability distribution function (PDF). Finally, we numerically study the scaling properties of the heavy-tailed random fluctuations by using the diffusion entropy analysis. This method is based on the evaluation of the Shannon entropy of the PDF generated by the random fluctuations, rather than on the measurement of the global width of the process. We apply the diffusion entropy analysis to extract the growth exponent β and to confirm the validity of our numerical analysis.

  2. Scaling characteristics of one-dimensional fractional diffusion processes in the presence of power-law distributed random noise

    Science.gov (United States)

    Nezhadhaghighi, Mohsen Ghasemi

    2017-08-01

    Here, we present results of numerical simulations and the scaling characteristics of one-dimensional random fluctuations with heavy-tailed probability distribution functions. Assuming that the distribution function of the random fluctuations obeys Lévy statistics with a power-law scaling exponent, we investigate the fractional diffusion equation in the presence of μ -stable Lévy noise. We study the scaling properties of the global width and two-point correlation functions and then compare the analytical and numerical results for the growth exponent β and the roughness exponent α . We also investigate the fractional Fokker-Planck equation for heavy-tailed random fluctuations. We show that the fractional diffusion processes in the presence of μ -stable Lévy noise display special scaling properties in the probability distribution function (PDF). Finally, we numerically study the scaling properties of the heavy-tailed random fluctuations by using the diffusion entropy analysis. This method is based on the evaluation of the Shannon entropy of the PDF generated by the random fluctuations, rather than on the measurement of the global width of the process. We apply the diffusion entropy analysis to extract the growth exponent β and to confirm the validity of our numerical analysis.

  3. Spin fluctuations in iron based superconductors probed by NMR relaxation rate

    Energy Technology Data Exchange (ETDEWEB)

    Graefe, Uwe; Kuehne, Tim; Wurmehl, Sabine; Buechner, Bernd; Grafe, Hans-Joachim [IFW Dresden, Institute for Solid State Research, PF 270116, 01171 Dresden (Germany); Hammerath, Franziska [IFW Dresden, Institute for Solid State Research, PF 270116, 01171 Dresden (Germany); Department of Physics ' ' A. Volta' ' , University of Pavia-CNISM, I-27100 Pavia (Italy); Lang, Guillaume [3LPEM-UPR5, CNRS, ESPCI Paris Tech, 10 Rue Vauquelin, 75005 Paris (France)

    2013-07-01

    We present {sup 75}As nuclear magnetic resonance (NMR) results in F doped LaOFeAs iron pnictides. In the underdoped superconducting samples, pronounced spin fluctuations lead to a peak in the NMR spin lattice relaxation rate, (T{sub 1}T){sup -1}. The peak shows a typical field dependence that indicates a critical slowing of spin fluctuations: it is reduced in height and shifted to higher temperatures. In contrast, a similar peak in the underdoped magnetic samples at the ordering temperature of the spin density wave does not show such a field dependence. Furthermore, the peak is absent in optimally and overdoped samples, suggesting the absence of strong spin fluctuations. Our results indicate a glassy magnetic ordering in the underdoped samples that is in contrast to the often reported Curie Weiss like increase of spin fluctuations towards T{sub c}. Additional measurements of the linewidth and the spin spin relaxation rate are in agreement with such a glassy magnetic ordering that is most likely competing with superconductivity. Our results will be compared to Co doped BaFe{sub 2}As{sub 2}, where a similar peak in (T{sub 1}T){sup -1} has been observed.

  4. Fluctuations in Fission Characteristics in the Resonance Range

    International Nuclear Information System (INIS)

    Fort, E.; Courcelle, A.

    2006-01-01

    In the resonance range, experimental data exhibit meaningful fluctuations of the number of prompt neutrons ν p (E) and γ-rays emitted in fission. Fluctuations of delayed-neutrons multiplicity ν d (E) are also expected. Although these fluctuations may have a non-negligible impact on reactor integral parameters (such as k eff , β eff ), they are usually not described in the current nuclear-data libraries Endf, JENDL or Jeff (except for 239 Pu evaluation in Jeff.1). Experiments by Hambsch et al. on 235 U have justified the fluctuations of total kinetic energy of fission fragments [i.e TKE(E)] by the fluctuations in the mass distributions. An interesting channel-mode formalism, described by Furman, provides a methodology to assess the fluctuations of fission characteristics in the resonance range. This approach is based on ideas relating fission channels or transition states as proposed by Bohr and fission modes as parameterized for instance by Brosa et al. This formalism requires the knowledge of physical parameters rarely measured up to now, such as PP JK (E), the energy dependant probability to form a transition state with a spin J and its projection along the deformation axis K, w m JK , the probability to feed the fission mode m from a (J,K) transition state. Nevertheless, in the case of 3 - and 4 - resonances of 235 U, various experiments permit these data to be extracted. The present study proposes a tentative evaluation of ν p of 235 U based on these ideas. The evaluation of νp for 239 Pu, performed in the 80's for the JEF library, was also revisited. At that time, the model was based on the existence of pre-fission gamma (the so called n-γf effect) as well as a spin effect (prescription of different ν p values for each spin state 0 + and 1 + ). This paper emphasizes the need for further measurements to provide more accurate information on the parameters used in this formalism, and improve the present work. (authors)

  5. Resolving a puzzle concerning fluctuation theorems for forced harmonic oscillators in non-Markovian heat baths

    International Nuclear Information System (INIS)

    Chaudhury, Srabanti; Chatterjee, Debarati; Cherayil, Binny J

    2008-01-01

    A harmonic oscillator that evolves under the action of both a systematic time-dependent force and a random time-correlated force can do work w. This work is a random quantity, and Mai and Dhar have recently shown, using the generalized Langevin equation (GLE) for the oscillator's position x, that it satisfies a fluctuation theorem. In principle, the same result could have been derived from the Fokker–Planck equation (FPE) for the probability density function, P(x,w,t), for the oscillator being at x at time t, having done work w. Although the FPE equivalent to the above GLE is easily constructed and solved, one finds, unexpectedly, that its predictions for the mean and variance of w do not agree with the fluctuation theorem. We show that to resolve this contradiction, it is necessary to construct an FPE that includes the velocity of the oscillator, v, as an additional variable. The FPE for P(x,v,w,t) does indeed yield expressions for the mean and variance of w that agree with the fluctuation theorem

  6. Spatial effects on the fluctuations of a nuclear power reactor

    International Nuclear Information System (INIS)

    Salinas-Rodriguez, E.; Rodriguez, R.F.; Wio, H.S.

    1990-01-01

    The effects of spatial inhomogeneities in a nuclear system are studied by using the compounding moments method. In particular, the neutron density and temperature equilibrium correlation functions are explicitly calculated for a realistic linearized nuclear reactor model described in terms of a master equation. (author)

  7. The influence of grating shape formation fluctuation on DFB laser diode threshold condition

    Science.gov (United States)

    Bao, Shiwei; Song, Qinghai; Xie, Chunmei

    2018-03-01

    Not only the grating material refractive index itself but also the Bragg grating physical shape formation affects the coupling strength greatly. The Bragg grating shape includes three factors, namely grating depth, duty ratio and grating angle. During the lithography and wet etching process, there always will be some fluctuation between the target and real grating shape formation after fabrication process. This grating shape fluctuation will affect the DFB coupling coefficient κ , and then consequently threshold current and corresponding wavelength. This paper studied the grating shape formation fluctuation influence to improve the DFB fabrication yield. A truncated normal random distribution fluctuation is considered in this paper. The simulation results conclude that it is better to choose relative thicker grating depth with lower refractive index to obtain a better fabrication tolerance, while not quite necessary to spend too much effort on improving lithography and wet etching process to get a precisely grating duty ratio and grating angle.

  8. Far from the intermediate nuclear field

    International Nuclear Information System (INIS)

    Dietrich, K.; Wagner, G.J.; Gregoire, C.; Campi, X.; Silvestre-Brac, B.; Platchkov, S.; Mayer, B.; Abgrall, Y.; Bohigas, O.; Grange, P.; Signarbieux, C.

    1988-01-01

    Pairing correlations in nuclear physics; the BCS state and quasi-particles; the layer model; collision effects on nuclear dynamics; the theory of cluster formation (application to nucleus fragmentation); short range correlations (few-particle systems); deuterium electron scattering; dibaryonic resonances; traditional and exotic hadron probes of nuclear structure; spectral fluctuations and chaotic motion; corrections to the intermediate nuclear field (nonrelativistic and other effects); and heavy nuclei splitting and nuclear superfluidity are introduced [fr

  9. Statistical properties of entropy production derived from fluctuation theorems

    International Nuclear Information System (INIS)

    Merhav, Neri; Kafri, Yariv

    2010-01-01

    Several implications of well-known fluctuation theorems, on the statistical properties of entropy production, are studied using various approaches. We begin by deriving a tight lower bound on the variance of the entropy production for a given mean of this random variable. It is shown that the Evans–Searles fluctuation theorem alone imposes a significant lower bound on the variance only when the mean entropy production is very small. It is then nonetheless demonstrated that upon incorporating additional information concerning the entropy production, this lower bound can be significantly improved, so as to capture extensivity properties. Another important aspect of the fluctuation properties of the entropy production is the relationship between the mean and the variance, on the one hand, and the probability of the event where the entropy production is negative, on the other hand. Accordingly, we derive upper and lower bounds on this probability in terms of the mean and the variance. These bounds are tighter than previous bounds that can be found in the literature. Moreover, they are tight in the sense that there exist probability distributions, satisfying the Evans–Searles fluctuation theorem, that achieve them with equality. Finally, we present a general method for generating a wide class of inequalities that must be satisfied by the entropy production. We use this method to derive several new inequalities that go beyond the standard derivation of the second law

  10. General framework for fluctuating dynamic density functional theory

    Science.gov (United States)

    Durán-Olivencia, Miguel A.; Yatsyshin, Peter; Goddard, Benjamin D.; Kalliadasis, Serafim

    2017-12-01

    We introduce a versatile bottom-up derivation of a formal theoretical framework to describe (passive) soft-matter systems out of equilibrium subject to fluctuations. We provide a unique connection between the constituent-particle dynamics of real systems and the time evolution equation of their measurable (coarse-grained) quantities, such as local density and velocity. The starting point is the full Hamiltonian description of a system of colloidal particles immersed in a fluid of identical bath particles. Then, we average out the bath via Zwanzig’s projection-operator techniques and obtain the stochastic Langevin equations governing the colloidal-particle dynamics. Introducing the appropriate definition of the local number and momentum density fields yields a generalisation of the Dean-Kawasaki (DK) model, which resembles the stochastic Navier-Stokes description of a fluid. Nevertheless, the DK equation still contains all the microscopic information and, for that reason, does not represent the dynamical law of observable quantities. We address this controversial feature of the DK description by carrying out a nonequilibrium ensemble average. Adopting a natural decomposition into local-equilibrium and nonequilibrium contribution, where the former is related to a generalised version of the canonical distribution, we finally obtain the fluctuating-hydrodynamic equation governing the time-evolution of the mesoscopic density and momentum fields. Along the way, we outline the connection between the ad hoc energy functional introduced in previous DK derivations and the free-energy functional from classical density-functional theory. The resultant equation has the structure of a dynamical density-functional theory (DDFT) with an additional fluctuating force coming from the random interactions with the bath. We show that our fluctuating DDFT formalism corresponds to a particular version of the fluctuating Navier-Stokes equations, originally derived by Landau and Lifshitz

  11. Nuclear spin noise in the central spin model

    Science.gov (United States)

    Fröhling, Nina; Anders, Frithjof B.; Glazov, Mikhail

    2018-05-01

    We study theoretically the fluctuations of the nuclear spins in quantum dots employing the central spin model which accounts for the hyperfine interaction of the nuclei with the electron spin. These fluctuations are calculated both with an analytical approach using homogeneous hyperfine couplings (box model) and with a numerical simulation using a distribution of hyperfine coupling constants. The approaches are in good agreement. The box model serves as a benchmark with low computational cost that explains the basic features of the nuclear spin noise well. We also demonstrate that the nuclear spin noise spectra comprise a two-peak structure centered at the nuclear Zeeman frequency in high magnetic fields with the shape of the spectrum controlled by the distribution of the hyperfine constants. This allows for direct access to this distribution function through nuclear spin noise spectroscopy.

  12. Productivity and species composition of algal mat communities exposed to a fluctuating thermal regime

    International Nuclear Information System (INIS)

    Tison, D.L.; Wilde, E.W.; Pope, D.H.; Fliermans, C.B.

    1981-01-01

    Algal mat communities growing in thermal effluents of production nuclear reactors at the Savannah River Plant, near Aiken, SC, are exposed to large temperature fluctuations resulting from reactor operations. Rates of primary production and species composition were monitored at 4 sites along a thermal gradient in a trough microcosm to determine how these large temperature fluctuations affected productivity and algal community structure. Blue-green algae (cyanobacteria) were the only phototrophic primary producers growing in water above 45 0 C. These thermophiles were able to survive and apparently adapt to ambient temperatures when the reactor was shut down. The algal mat communities exposed to 14 C-labeled dissolved organic compounds and a decrease in primary production were observed during periods of thermal fluctuation. The results show that the dominant phototrophs in this artificially heated aquatic habitat have been selected for their abiity to survive large temperature fluctuations and are similar to those of natural hot springs

  13. Generalized Whittle-Matern random field as a model of correlated fluctuations

    International Nuclear Information System (INIS)

    Lim, S C; Teo, L P

    2009-01-01

    This paper considers a generalization of the Gaussian random field with covariance function of the Whittle-Matern family. Such a random field can be obtained as the solution to the fractional stochastic differential equation with two fractional orders. Asymptotic properties of the covariance functions belonging to this generalized Whittle-Matern family are studied, which are used to deduce the sample path properties of the random field. The Whittle-Matern field has been widely used in modeling geostatistical data such as sea beam data, wind speed, field temperature and soil data. In this paper we show that the generalized Whittle-Matern field provides a more flexible model for wind speed data

  14. Quantum random number generator based on quantum nature of vacuum fluctuations

    Science.gov (United States)

    Ivanova, A. E.; Chivilikhin, S. A.; Gleim, A. V.

    2017-11-01

    Quantum random number generator (QRNG) allows obtaining true random bit sequences. In QRNG based on quantum nature of vacuum, optical beam splitter with two inputs and two outputs is normally used. We compare mathematical descriptions of spatial beam splitter and fiber Y-splitter in the quantum model for QRNG, based on homodyne detection. These descriptions were identical, that allows to use fiber Y-splitters in practical QRNG schemes, simplifying the setup. Also we receive relations between the input radiation and the resulting differential current in homodyne detector. We experimentally demonstrate possibility of true random bits generation by using QRNG based on homodyne detection with Y-splitter.

  15. Optically controlled locking of the nuclear field via coherent dark-state spectroscopy.

    Science.gov (United States)

    Xu, Xiaodong; Yao, Wang; Sun, Bo; Steel, Duncan G; Bracker, Allan S; Gammon, Daniel; Sham, L J

    2009-06-25

    A single electron or hole spin trapped inside a semiconductor quantum dot forms the foundation for many proposed quantum logic devices. In group III-V materials, the resonance and coherence between two ground states of the single spin are inevitably affected by the lattice nuclear spins through the hyperfine interaction, while the dynamics of the single spin also influence the nuclear environment. Recent efforts have been made to protect the coherence of spins in quantum dots by suppressing the nuclear spin fluctuations. However, coherent control of a single spin in a single dot with simultaneous suppression of the nuclear fluctuations has yet to be achieved. Here we report the suppression of nuclear field fluctuations in a singly charged quantum dot to well below the thermal value, as shown by an enhancement of the single electron spin dephasing time T(2)*, which we measure using coherent dark-state spectroscopy. The suppression of nuclear fluctuations is found to result from a hole-spin assisted dynamic nuclear spin polarization feedback process, where the stable value of the nuclear field is determined only by the laser frequencies at fixed laser powers. This nuclear field locking is further demonstrated in a three-laser measurement, indicating a possible enhancement of the electron spin T(2)* by a factor of several hundred. This is a simple and powerful method of enhancing the electron spin coherence time without use of 'spin echo'-type techniques. We expect that our results will enable the reproducible preparation of the nuclear spin environment for repetitive control and measurement of a single spin with minimal statistical broadening.

  16. Pressure fluctuations induced by fluid flow in singular points of industrial circuits

    International Nuclear Information System (INIS)

    Gibert, R.J.; Villard, B.

    1977-01-01

    Flow singularities (enlargements, bards, valves, tees,...) generate in the circuits of industrial plants wall pressure fluctuations which are the main cause of vibration. Two types of pressure fluctuations can be considered. - 'Local ' fluctuations: They are associated to the unsteadiness downstream from the singularity. These fluctuations may be characterized by frequency spectra, correlation length and phase lags. These parameters are used to calculate forces on the walls of the circuit. - 'Acoustic' fluctuations: The singularity acts as an acoustical source; its frequency spectrum and the acoustical transfer function of the circuit are needed to evaluate the acoustical level at any point. A methodical study of the most current singularities has been performed at C.E.A./D.E.M.T.: - On one hand a theory of noise generation by unsteady flow in internal acoustics has been developed. This theory uses the basic idea initiated by LIGHTILL. As a result it is shown that the plane wave propagation is a valid assumption and that a singularity can be acoustically modelled by a pressure and a mass-flow-rate discontinuities. Both are random functions of time, the spectra of which are determined from the local fluctuations characteristics. - On the other hand, characteristics of several singularities have been measured: (i) Intercorrelation spectra of local pressure fluctuations. (ii) Autocorrelation spectra of associated acoustical sources (the measure of the acoustical pressures in the experimental circuit are interpreted by using the D.E.M.T. computer code VIBRAPHONE which gives the acoustical response of a complex circuit). (Auth.)

  17. Main factors for fatigue failure probability of pipes subjected to fluid thermal fluctuation

    International Nuclear Information System (INIS)

    Machida, Hideo; Suzuki, Masaaki; Kasahara, Naoto

    2015-01-01

    It is very important to grasp failure probability and failure mode appropriately to carry out risk reduction measures of nuclear power plants. To clarify the important factors for failure probability and failure mode of pipes subjected to fluid thermal fluctuation, failure probability analyses were performed by changing the values of a stress range, stress ratio, stress components and threshold of stress intensity factor range. The important factors for the failure probability are range, stress ratio (mean stress condition) and threshold of stress intensity factor range. The important factor for the failure mode is a circumferential angle range of fluid thermal fluctuation. When a large fluid thermal fluctuation acts on the entire circumferential surface of the pipe, the probability of pipe breakage increases, calling for measures to prevent such a failure and reduce the risk to the plant. When the circumferential angle subjected to fluid thermal fluctuation is small, the failure mode of piping is leakage and the corrective maintenance might be applicable from the viewpoint of risk to the plant. (author)

  18. Correlation analysis of quantum fluctuations and repulsion effects of classical dynamics in SU(3) model

    International Nuclear Information System (INIS)

    Fujiwara, Shigeyasu; Sakata, Fumihiko

    2003-01-01

    In many quantum systems, random matrix theory has been used to characterize quantum level fluctuations, which is known to be a quantum correspondent to a regular-to-chaos transition in classical systems. We present a new qualitative analysis of quantum and classical fluctuation properties by exploiting correlation coefficients and variances. It is shown that the correlation coefficient of the quantum level density is roughly inversely proportional relation to the variance of consecutive phase-space point spacings on the Poincare section plane. (author)

  19. Statistical nuclear reactions

    International Nuclear Information System (INIS)

    Hilaire, S.

    2001-01-01

    A review of the statistical model of nuclear reactions is presented. The main relations are described, together with the ingredients necessary to perform practical calculations. In addition, a substantial overview of the width fluctuation correction factor is given. (author)

  20. Statistical fluctuations in reactors (1960); Fluctuations statistiques dans les piles (1960)

    Energy Technology Data Exchange (ETDEWEB)

    Raievski, V [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    The theory of space dependent fluctuations is developed, taking into account the effect of delayed neutrons. The 'diffusion equation' or Fokker-Planck equation is worked out in the case of age and two group theory, but the first one because of in physical significance is used in this report. The theory is applied to the study of the spectral density of fluctuations and fluctuations of counting rate and current flowing through the charge resistor of an ionisation chamber, the effect of the entrance capacity is discussed. The space dependent theory shows that the fluctuations in the core and reflector of a near critical pile obey to the same law. The spectral densities in the core and reflector are similar, there is no sensible attenuation of high frequency fluctuations in the reflector. Compared to the space independent theory, this theory give better agreement with experience, one can use the simple space independent theory but in checking with experiment it is necessary to introduce numerical factors given by the space dependent theory. (author) [French] La theorie des fluctuations statistiques est developpee dans le cas spatial en tenant compte des neutrons retardes, et dans le cadre de la theorie de l'age vitesse. L'equation d'evolution de la probabilite est egalement etablie dans le cadre de la theorie a deux groupes. Ces considerations sont appliquees a l'etude de la densite spectrale des fluctuations et aux fluctuations des taux de comptage et du courant circulant dans la resistance de charge du detecteur. On etudie en particulier l'effet de la constante de temps introduite par la capacite d'entree. Cette theorie etablit que les fluctuations dans le coeur et le reflecteur suivent la meme loi pour une pile critique, il en est de meme pour la densite spectrale meme a frequence elevee. Par rapport a la theorie d'ensemble, la theorie spatiale donne des coefficients numeriques ou facteurs de forme, qui permettent d'obtenir un bon accord entre la theorie et l

  1. Effect of static porosity fluctuations on reactive transport in a porous medium

    Science.gov (United States)

    L'Heureux, Ivan

    2018-02-01

    Reaction-diffusive transport phenomena in porous media are ubiquitous in engineering applications, biological and geochemical systems. The porosity field is usually random in space, but most models consider the porosity field as a well-defined deterministic function of space and time and ignore the porosity fluctuations. They use a reaction-diffusion equation written in terms of an average porosity and average concentration fields. In this contribution, we treat explicitly the effect of spatial porosity fluctuations on the dynamics of a concentration field for the case of a one-dimensional reaction-transport system with nonlinear kinetics. Three basic assumptions are considered. (i) The porosity fluctuations are assumed to have Gaussian properties and an arbitrary variance; (ii) we assume that the noise correlation length is small compared to the relevant macroscopic length scale; (iii) and we assume that the kinetics of the reactive term in the equations for the fluctuations is a self-consistently determined constant. Elimination of the fluctuating part of the concentration field from the dynamics leads to a renormalized equation involving the average concentration field. It is shown that the noise leads to a renormalized (generally smaller) diffusion coefficient and renormalized kinetics. Within the framework of the approximations used, numerical simulations are in agreement with our theory. We show that the porosity fluctuations may have a significant effect on the transport of a reactive species, even in the case of a homogeneous average porosity.

  2. Generalized theory of spin fluctuations in itinerant electron magnets: Crucial role of spin anharmonicity

    International Nuclear Information System (INIS)

    Solontsov, A.

    2015-01-01

    The paper critically overviews the recent developments of the theory of spatially dispersive spin fluctuations (SF) in itinerant electron magnetism with particular emphasis on spin-fluctuation coupling or spin anharmonicity. It is argued that the conventional self-consistent renormalized (SCR) theory of spin fluctuations is usually used aside of the range of its applicability actually defined by the constraint of weak spin anharmonicity based on the random phase approximation (RPA) arguments. An essential step in understanding SF in itinerant magnets beyond RPA-like arguments was made recently within the soft-mode theory of SF accounting for strong spin anharmonicity caused by zero-point SF. In the present paper we generalize it to apply for a wider range of temperatures and regimes of SF and show it to lead to qualitatively new results caused by zero-point effects. - Highlights: • We review the spin-fluctuation theory of itinerant electron magnets with account of zero-point effects. • We generalize the existing theory to account for different regimes of spin fluctuations. • We show that zero-point spin fluctuations play a crucial role in both low- and high-temperature properties of metallic magnets. • We argue that a new scheme of calculation of ground state properties of magnets is needed including zero-point effects

  3. Dynamic scaling for the growth of non-equilibrium fluctuations during thermophoretic diffusion in microgravity.

    Science.gov (United States)

    Cerbino, Roberto; Sun, Yifei; Donev, Aleksandar; Vailati, Alberto

    2015-09-30

    Diffusion processes are widespread in biological and chemical systems, where they play a fundamental role in the exchange of substances at the cellular level and in determining the rate of chemical reactions. Recently, the classical picture that portrays diffusion as random uncorrelated motion of molecules has been revised, when it was shown that giant non-equilibrium fluctuations develop during diffusion processes. Under microgravity conditions and at steady-state, non-equilibrium fluctuations exhibit scale invariance and their size is only limited by the boundaries of the system. In this work, we investigate the onset of non-equilibrium concentration fluctuations induced by thermophoretic diffusion in microgravity, a regime not accessible to analytical calculations but of great relevance for the understanding of several natural and technological processes. A combination of state of the art simulations and experiments allows us to attain a fully quantitative description of the development of fluctuations during transient diffusion in microgravity. Both experiments and simulations show that during the onset the fluctuations exhibit scale invariance at large wave vectors. In a broader range of wave vectors simulations predict a spinodal-like growth of fluctuations, where the amplitude and length-scale of the dominant mode are determined by the thickness of the diffuse layer.

  4. Beam-energy and system-size dependence of dynamical net charge fluctuations

    Czech Academy of Sciences Publication Activity Database

    Abelev, B. I.; Aggarwal, M. M.; Ahammed, Z.; Anderson, B. D.; Arkhipkin, D.; Averichev, G. S.; Balewski, J.; Barannikova, O.; Barnby, L. S.; Baudot, J.; Baumgart, S.; Beavis, D.R.; Bellwied, R.; Benedosso, F.; Betancourt, M.J.; Betts, R. R.; Bhasin, A.; Bhati, A.K.; Bichsel, H.; Bielčík, Jaroslav; Bielčíková, Jana; Biritz, B.; Bland, L.C.; Bombara, M.; Bonner, B. E.; Botje, M.; Bouchet, J.; Braidot, E.; Brandin, A. V.; Bruna, E.; Bueltmann, S.; Burton, T. P.; Bysterský, Michal; Cai, X.Z.; Caines, H.; Sanchez, M.C.D.; Catu, O.; Cebra, D.; Cendejas, R.; Cervantes, M.C.; Chajecki, Z.; Chaloupka, Petr; Chattopadhyay, S.; Chen, H.F.; Chen, J.H.; Cheng, J.; Cherney, M.; Chikanian, A.; Choi, K.E.; Christie, W.; Clarke, R.F.; Codrington, M.J.M.; Corliss, R.; Cormier, T.M.; Coserea, R. M.; Cramer, J. G.; Crawford, H. J.; Das, D.; Dash, S.; Daugherity, M.; De Silva, L.C.; Dedovich, T. G.; DePhillips, M.; Derevschikov, A.A.; de Souza, R.D.; Didenko, L.; Djawotho, P.; Dunlop, J.C.; Mazumdar, M.R.D.; Edwards, W.R.; Efimov, L.G.; Elhalhuli, E.; Elnimr, M.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Eun, L.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Feng, A.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Gagliardi, C. A.; Gaillard, L.; Ganti, M. S.; Gangaharan, D.R.; Garcia-Solis, E.J.; Geromitsos, A.; Geurts, F.; Ghazikhanian, V.; Ghosh, P.; Gorbunov, Y.N.; Gordon, A.; Grebenyuk, O.; Grosnick, D.; Grube, B.; Guertin, S.M.; Guimaraes, K.S.F.F.; Gupta, A.; Gupta, N.; Guryn, W.; Haag, B.; Hallman, T.J.; Hamed, A.; Harris, J.W.; He, W.; Heinz, M.; Heppelmann, S.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffman, A.M.; Hoffmann, G.W.; Hofman, D.J.; Hollis, R.S.; Huang, H.Z.; Humanic, T.J.; Igo, G.; Iordanova, A.; Jacobs, P.; Jacobs, W.W.; Jakl, Pavel; Jena, C.; Jin, F.; Jones, C.L.; Jones, P.G.; Joseph, J.; Judd, E.G.; Kabana, S.; Kajimoto, K.; Kang, K.; Kapitán, Jan; Keane, D.; Kechechyan, A.; Kettler, D.; Khodyrev, V.Yu.; Kikola, D.P.; Kiryluk, J.; Kisiel, A.; Klein, S.R.; Knospe, A.G.; Kocoloski, A.; Koetke, D.D.; Kopytine, M.; Korsch, W.; Kotchenda, L.; Kushpil, Vasilij; Kravtsov, P.; Kravtsov, V.I.; Krueger, K.; Krus, M.; Kuhn, C.; Kumar, L.; Kurnadi, P.; Lamont, M.A.C.; Landgraf, J.M.; LaPointe, S.; Lauret, J.; Lebedev, A.; Lednický, Richard; Lee, Ch.; Lee, J.H.; Leight, W.; LeVine, M.J.; Li, N.; Li, C.; Li, Y.; Lin, G.; Lindenbaum, S.J.; Lisa, M.A.; Liu, F.; Liu, J.; Liu, L.; Ljubicic, T.; Llope, W.J.; Longacre, R.S.; Love, W.A.; Lu, Y.; Ludlam, T.; Ma, G.L.; Ma, Y.G.; Mahapatra, D.P.; Majka, R.; Mall, O.I.; Mangotra, L.K.; Manweiler, R.; Margetis, S.; Markert, C.; Matis, H.S.; Matulenko, Yu.A.; McShane, T.S.; Meschanin, A.; Milner, R.; Minaev, N.G.; Mioduszewski, S.; Mischke, A.; Mitchell, J.; Mohanty, B.; Morozov, D.A.; Munhoz, M. G.; Nandi, B.K.; Nattrass, C.; Nayak, T. K.; Nelson, J.M.; Netrakanti, P.K.; Ng, M.J.; Nogach, L.V.; Nurushev, S.B.; Odyniec, G.; Ogawa, A.; Okada, H.; Okorokov, V.; Olson, D.; Pachr, M.; Page, B.S.; Pal, S.K.; Pandit, Y.; Panebratsev, Y.; Panitkin, S.Y.; Pawlak, T.; Peitzmann, T.; Perevoztchikov, V.; Perkins, C.; Peryt, W.; Phatak, S.C.; Poljak, N.; Poskanzer, A.M.; Potukuchi, B.V.K.S.; Prindle, D.; Pruneau, C.; Pruthi, N.K.; Putschke, J.; Raniwala, R.; Raniwala, S.; Ray, R.L.; Redwine, R.; Reed, R.; Ridiger, A.; Ritter, H.G.; Roberts, J.B.; Rogachevskiy, O.V.; Romero, J.L.; Rose, A.; Roy, C.; Ruan, L.; Russcher, M.J.; Sahoo, R.; Sakrejda, I.; Sakuma, T.; Salur, S.; Sandweiss, J.; Sarsour, M.; Schambach, J.; Scharenberg, R.P.; Schmitz, N.; Seger, J.; Selyuzhenkov, I.; Seyboth, P.; Shabetai, A.; Shahaliev, E.; Shao, M.; Sharma, M.; Shi, S.S.; Shi, X.H.; Sichtermann, E.P.; Simon, F.; Singaraju, R.N.; Skoby, M.J.; Smirnov, N.; Snellings, R.; Sorensen, P.; Sowinski, J.; Spinka, H.M.; Srivastava, B.; Stadnik, A.; Stanislaus, T.D.S.; Staszak, D.; Strikhanov, M.; Stringfellow, B.; Suaide, A.A.P.; Suarez, M.C.; Subba, N.L.; Šumbera, Michal; Sun, X.M.; Sun, Y.; Sun, Z.; Surrow, B.; Symons, T.J.M.; de Toledo, A. S.; Takahashi, J.; Tang, A.H.; Tang, Z.; Tarnowsky, T.; Thein, D.; Thomas, J.H.; Tian, J.; Timmins, A.R.; Timoshenko, S.; Tokarev, M. V.; Trainor, T.A.; Tram, V.N.; Trattner, A.L.; Trentalange, S.; Tribble, R. E.; Tsai, O.D.; Ulery, J.; Ullrich, T.; Underwood, D.G.; Van Buren, G.; van Leeuwen, M.; Vander Molen, A.M.; Vanfossen, J.A.; Varma, R.; Vasconcelos, G.S.M.; Vasilevski, I.M.; Vasiliev, A. N.; Videbaek, F.; Vigdor, S.E.; Viyogi, Y. P.; Vokal, S.; Voloshin, S.A.; Wada, M.; Walker, M.; Wang, F.; Wang, G.; Wang, J.S.; Wang, Q.; Wang, X.; Wang, X.L.; Wang, Y.; Webb, G.; Webb, J.C.; Westfall, G.D.; Whitten, C.; Wieman, H.; Wissink, S.W.; Witt, R.; Wu, Y.; Tlustý, David; Xie, W.; Xu, N.; Xu, Q.H.; Xu, Y.; Xu, Z.; Yang, P.; Yepes, P.; Yip, K.; Yoo, I.K.; Yue, Q.; Zawisza, M.; Zbroszczyk, H.; Zhan, W.; Zhang, S.; Zhang, W.M.; Zhang, X.P.; Zhang, Y.; Zhang, Z.; Zhao, Y.; Zhong, C.; Zhou, J.; Zoulkarneev, R.; Zoulkarneeva, Y.; Zuo, J.X.

    2009-01-01

    Roč. 79, č. 2 (2009), 024906/1-024906/14 ISSN 0556-2813 R&D Projects: GA ČR GA202/07/0079; GA MŠk LC07048 Institutional research plan: CEZ:AV0Z10480505; CEZ:AV0Z10100502 Keywords : NET CHARGE * DYNAMICAL FLUCTUATIONS * HEAVY-ION COLLISIONS Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 3.477, year: 2009

  5. Uniformity transition for ray intensities in random media

    Science.gov (United States)

    Pradas, Marc; Pumir, Alain; Wilkinson, Michael

    2018-04-01

    This paper analyses a model for the intensity of distribution for rays propagating without absorption in a random medium. The random medium is modelled as a dynamical map. After N iterations, the intensity is modelled as a sum S of {{\\mathcal N}} contributions from different trajectories, each of which is a product of N independent identically distributed random variables x k , representing successive focussing or de-focussing events. The number of ray trajectories reaching a given point is assumed to proliferate exponentially: {{\\mathcal N}}=ΛN , for some Λ>1 . We investigate the probability distribution of S. We find a phase transition as parameters of the model are varied. There is a phase where the fluctuations of S are suppressed as N\\to ∞ , and a phase where the S has large fluctuations, for which we provide a large deviation analysis.

  6. Simulation of short-term fluctuations in gamma exposure rate due to radioactive cloud released from nuclear power plant

    International Nuclear Information System (INIS)

    Ichikawa, Yoichi; Shikata, Hiroshi; Ishida, Kenji; Ohba, Tachimori.

    1981-01-01

    The measured γ-exposure rate around nuclear power plants is due mainly to natural causes and radioactive clouds emitted from the plants. An exposure calculation method based on puff model has been already proposed to identify the plant contributions and to estimate values in response to short-term fluctuations of meteorological condition and the release rate. However, the calculation method by this model consumes a lot of computer time, since the calculation requires a three-dimensional integration of the distribution of the concentration from each puff. Hence, we propose a simplified method using approximate polynominal equations and interpolations. The computer time needed for the calculation with the simplified method is reduced to 1/30 of that required by the previous method. The calculation results by simplified method are compared with those by the previous method and with the measured exposure rate less natural background. The results of two different methods are in good agreement. The calculated exposure rate is within the range from half to twice as much as the measured exposure rate less background. (author)

  7. Solvent fluctuations and nuclear quantum effects modulate the molecular hyperpolarizability of water

    Science.gov (United States)

    Liang, Chungwen; Tocci, Gabriele; Wilkins, David M.; Grisafi, Andrea; Roke, Sylvie; Ceriotti, Michele

    2017-07-01

    Second-harmonic scattering (SHS) experiments provide a unique approach to probe noncentrosymmetric environments in aqueous media, from bulk solutions to interfaces, living cells, and tissue. A central assumption made in analyzing SHS experiments is that each molecule scatters light according to a constant molecular hyperpolarizability tensor β(2 ). Here, we investigate the dependence of the molecular hyperpolarizability of water on its environment and internal geometric distortions, in order to test the hypothesis of constant β(2 ). We use quantum chemistry calculations of the hyperpolarizability of a molecule embedded in point-charge environments obtained from simulations of bulk water. We demonstrate that both the heterogeneity of the solvent configurations and the quantum mechanical fluctuations of the molecular geometry introduce large variations in the nonlinear optical response of water. This finding has the potential to change the way SHS experiments are interpreted: In particular, isotopic differences between H2O and D2O could explain recent SHS observations. Finally, we show that a machine-learning framework can predict accurately the fluctuations of the molecular hyperpolarizability. This model accounts for the microscopic inhomogeneity of the solvent and represents a step towards quantitative modeling of SHS experiments.

  8. Statistical fluctuations of an ocean surface inferred from shoes and ships

    Science.gov (United States)

    Lerche, Ian; Maubeuge, Frédéric

    1995-12-01

    This paper shows that it is possible to roughly estimate some ocean properties using simple time-dependent statistical models of ocean fluctuations. Based on a real incident, the loss by a vessel of a Nike shoes container in the North Pacific Ocean, a statistical model was tested on data sets consisting of the Nike shoes found by beachcombers a few months later. This statistical treatment of the shoes' motion allows one to infer velocity trends of the Pacific Ocean, together with their fluctuation strengths. The idea is to suppose that there is a mean bulk flow speed that can depend on location on the ocean surface and time. The fluctuations of the surface flow speed are then treated as statistically random. The distribution of shoes is described in space and time using Markov probability processes related to the mean and fluctuating ocean properties. The aim of the exercise is to provide some of the properties of the Pacific Ocean that are otherwise calculated using a sophisticated numerical model, OSCURS, where numerous data are needed. Relevant quantities are sharply estimated, which can be useful to (1) constrain output results from OSCURS computations, and (2) elucidate the behavior patterns of ocean flow characteristics on long time scales.

  9. The effects of the vegetable prices insurance on the fluctuation of price: Based on Shanghai evidences

    Science.gov (United States)

    Qu, Chunhong; Li, Huishang; Hao, Shuai; Zhang, Xuebiao; Yang, Wei

    2017-10-01

    Taking Shanghai as an example, the influence of the vegetable price insurance on the fluctuation of prices was analyzed in the article. It was found that the sequence of seasonal fluctuations characteristics of leafy vegetable prices was changed by the vegetable cost-price insurance, the period of price fluctuation was elongated from 12-to-18 months to 37 months, and the influence of random factors on the price fluctuations was reduced in some degree. There was still great space for innovation of the vegetable prices insurance system in Shanghai. Some countermeasures would be suggested to develop the insurance system to better to play the role of insurance and promote the market running more smoothly in Shanghai such as prolonging the insurance cycle, improving the price information monitoring mechanism and innovating income insurance products and so on.

  10. Propagation of the lower hybrid wave in a density fluctuating scrape-off layer (SOL)

    International Nuclear Information System (INIS)

    Madi, M; Peysson, Y; Decker, J; Kabalan, K Y

    2015-01-01

    The perturbation of the lower hybrid wave (LH) power spectrum by fluctuations of the plasma in the vicinity of the antenna is investigated by solving the full wave equation in a slab geometry using COMSOL Multiphysics®. The numerical model whose generality allows to study the effect of various types of fluctuations, including those with short characteristic wavelengths is validated against a coupling code in quiescent regimes. When electron density fluctuations along the toroidal direction are incorporated in the dielectric tensor over a thin perturbed layer in front of the grill, the power spectrum may be strongly modified from the antenna mouth to the plasma separatrix as the LH wave propagates. The diffraction effect by density fluctuations leads to the appearance of multiple satellite lobes with randomly varying positions and the averaged perturbation is found to be maximum for the Fourier components of the fluctuating spectrum in the vicinity of the launched LH wavelength. This highlights that fast toroidal inhomogeneities with short characteristics length scales in front of the grill may change significantly the initial LH power spectrum used in coupled ray-tracing and Fokker–Planck calculations. (paper)

  11. Concentration fluctuations in miscible polymer blends: Influence of temperature and chain rigidity

    International Nuclear Information System (INIS)

    Dudowicz, Jacek; Freed, Karl F.; Douglas, Jack F.

    2014-01-01

    In contrast to binary mixtures of small molecule fluids, homogeneous polymer blends exhibit relatively large concentration fluctuations that can strongly affect the transport properties of these complex fluids over wide ranges of temperatures and compositions. The spatial scale and intensity of these compositional fluctuations are studied by applying Kirkwood-Buff theory to model blends of linear semiflexible polymer chains with upper critical solution temperatures. The requisite quantities for determining the Kirkwood-Buff integrals are generated from the lattice cluster theory for the thermodynamics of the blend and from the generalization of the random phase approximation to compressible polymer mixtures. We explore how the scale and intensity of composition fluctuations in binary blends vary with the reduced temperature τ ≡ (T − T c )/T (where T c is the critical temperature) and with the asymmetry in the rigidities of the components. Knowledge of these variations is crucial for understanding the dynamics of materials fabricated from polymer blends, and evidence supporting these expectations is briefly discussed

  12. Nuclear structure theory. Annual technical progress report, October 1, 1977--September 30, 1978

    International Nuclear Information System (INIS)

    French, J.B.; Koltun, D.S.

    1978-01-01

    Progress during the past year in the following areas of nuclear structure and reaction theory is summarized: statistical spectroscopy, including random matrix methods, with applications to fluctuations in spectra and in strength distributions, and to problems of erogodicity; group symmetries in spectral distribution theory; effective interactions; statistical reaction theory, applied to ''deep inelastic'' collisions of heavy ions, and to pion absorption by nuclei; meson scattering and absorption by nuclei, including general scattering theory with absorption, multiple scattering theory and its reactive content, models for absorption, theory of the absorption operator (πNN vertex), theory of πN scattering. A list of publications is included

  13. Is more better or worse? New empirics on nuclear proliferation and interstate conflict by Random Forests1

    Directory of Open Access Journals (Sweden)

    Akisato Suzuki

    2015-06-01

    Full Text Available In the literature on nuclear proliferation, some argue that further proliferation decreases interstate conflict, some say that it increases interstate conflict, and others indicate a non-linear relationship between these two factors. However, there has been no systematic empirical investigation on the relationship between nuclear proliferation and a propensity for conflict at the interstate–systemic level. To fill this gap, the current paper uses the machine learning method Random Forests, which can investigate complex non-linear relationships between dependent and independent variables, and which can identify important regressors from a group of all potential regressors in explaining the relationship between nuclear proliferation and the propensity for conflict. The results indicate that, on average, a larger number of nuclear states decrease the systemic propensity for interstate conflict, while the emergence of new nuclear states does not have an important effect. This paper also notes, however, that scholars should investigate other risks of proliferation to assess whether nuclear proliferation is better or worse for international peace and security in general.

  14. Stochastic and information-thermodynamic structures of population dynamics in a fluctuating environment

    Science.gov (United States)

    Kobayashi, Tetsuya J.; Sughiyama, Yuki

    2017-07-01

    Adaptation in a fluctuating environment is a process of fueling environmental information to gain fitness. Living systems have gradually developed strategies for adaptation from random and passive diversification of the phenotype to more proactive decision making, in which environmental information is sensed and exploited more actively and effectively. Understanding the fundamental relation between fitness and information is therefore crucial to clarify the limits and universal properties of adaptation. In this work, we elucidate the underlying stochastic and information-thermodynamic structure in this process, by deriving causal fluctuation relations (FRs) of fitness and information. Combined with a duality between phenotypic and environmental dynamics, the FRs reveal the limit of fitness gain, the relation of time reversibility with the achievability of the limit, and the possibility and condition for gaining excess fitness due to environmental fluctuation. The loss of fitness due to causal constraints and the limited capacity of real organisms is shown to be the difference between time-forward and time-backward path probabilities of phenotypic and environmental dynamics. Furthermore, the FRs generalize the concept of the evolutionary stable state (ESS) for fluctuating environment by giving the probability that the optimal strategy on average can be invaded by a suboptimal one owing to rare environmental fluctuation. These results clarify the information-thermodynamic structures in adaptation and evolution.

  15. Fluctuations and structure of amphiphilic films; Fluctuations et structure de films d`amphiphiles

    Energy Technology Data Exchange (ETDEWEB)

    Gourier, CH

    1996-07-01

    This thesis is divided in three parts.The first part exposes in a theoretical point of view, how the fluctuations spectrum of an amphiphilic film is governed by its properties and its bidimensional characteristics.The measurements of fluctuations spectra of an interface are accessible with the measurement of intensity that interface diffuses out of the specular angle, we present in the second chapter the principles of the X rays diffusion by a real interface and see how the diffuse diffusion experiments allow to determine the fluctuations spectrum of an amphiphilic film. The second part is devoted to the different experimental techniques that have allowed to realize the study of fluctuation as well as the structural study.The third part is devoted to experimental results concerning the measurements of fluctuations spectra and to the study of the structure of amphiphilic films. We show that it is possible by using an intense source of X rays (ESRF: European Synchrotron Radiation Facility) to measure the water and amphiphilic films fluctuations spectra until molecular scales. The last chapter is devoted to the structural study and film fluctuations made of di-acetylenic molecules. (N.C.)

  16. Computer code ENDSAM for random sampling and validation of the resonance parameters covariance matrices of some major nuclear data libraries

    International Nuclear Information System (INIS)

    Plevnik, Lucijan; Žerovnik, Gašper

    2016-01-01

    Highlights: • Methods for random sampling of correlated parameters. • Link to open-source code for sampling of resonance parameters in ENDF-6 format. • Validation of the code on realistic and artificial data. • Validation of covariances in three major contemporary nuclear data libraries. - Abstract: Methods for random sampling of correlated parameters are presented. The methods are implemented for sampling of resonance parameters in ENDF-6 format and a link to the open-source code ENDSAM is given. The code has been validated on realistic data. Additionally, consistency of covariances of resonance parameters of three major contemporary nuclear data libraries (JEFF-3.2, ENDF/B-VII.1 and JENDL-4.0u2) has been checked.

  17. Influence of thermal fluctuations on ligament break-up: a fluctuating lattice Boltzmann study

    Science.gov (United States)

    Xue, Xiao; Biferale, Luca; Sbragaglia, Mauro; Toschi, Federico

    2017-11-01

    Thermal fluctuations are essential ingredients in a nanoscale system, driving Brownian motion of particles and capillary waves at non-ideal interfaces. Here we study the influence of thermal fluctuations on the breakup of liquid ligaments at the nanoscale. We offer quantitative characterization of the effects of thermal fluctuations on the Plateau-Rayleigh mechanism that drives the breakup process of ligaments. Due to thermal fluctuations, the droplet sizes after break-up need to be analyzed in terms of their distribution over an ensemble made of repeated experiments. To this aim, we make use of numerical simulations based on the fluctuating lattice Boltzmann method (FLBM) for multicomponent mixtures. The method allows an accurate and efficient simulation of the fluctuating hydrodynamics equations of a binary mixture, where both stochastic viscous stresses and diffusion fluxes are introduced. This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No 642069.

  18. Particle swarm optimization with random keys applied to the nuclear reactor reload problem

    Energy Technology Data Exchange (ETDEWEB)

    Meneses, Anderson Alvarenga de Moura [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Programa de Engenharia Nuclear; Fundacao Educacional de Macae (FUNEMAC), RJ (Brazil). Faculdade Professor Miguel Angelo da Silva Santos; Machado, Marcelo Dornellas; Medeiros, Jose Antonio Carlos Canedo; Schirru, Roberto [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Programa de Engenharia Nuclear]. E-mails: ameneses@con.ufrj.br; marcelo@lmp.ufrj.br; canedo@lmp.ufrj.br; schirru@lmp.ufrj.br

    2007-07-01

    In 1995, Kennedy and Eberhart presented the Particle Swarm Optimization (PSO), an Artificial Intelligence metaheuristic technique to optimize non-linear continuous functions. The concept of Swarm Intelligence is based on the socials aspects of intelligence, it means, the ability of individuals to learn with their own experience in a group as well as to take advantage of the performance of other individuals. Some PSO models for discrete search spaces have been developed for combinatorial optimization, although none of them presented satisfactory results to optimize a combinatorial problem as the nuclear reactor fuel reloading problem (NRFRP). In this sense, we developed the Particle Swarm Optimization with Random Keys (PSORK) in previous research to solve Combinatorial Problems. Experiences demonstrated that PSORK performed comparable to or better than other techniques. Thus, PSORK metaheuristic is being applied in optimization studies of the NRFRP for Angra 1 Nuclear Power Plant. Results will be compared with Genetic Algorithms and the manual method provided by a specialist. In this experience, the problem is being modeled for an eight-core symmetry and three-dimensional geometry, aiming at the minimization of the Nuclear Enthalpy Power Peaking Factor as well as the maximization of the cycle length. (author)

  19. Particle swarm optimization with random keys applied to the nuclear reactor reload problem

    International Nuclear Information System (INIS)

    Meneses, Anderson Alvarenga de Moura; Fundacao Educacional de Macae; Machado, Marcelo Dornellas; Medeiros, Jose Antonio Carlos Canedo; Schirru, Roberto

    2007-01-01

    In 1995, Kennedy and Eberhart presented the Particle Swarm Optimization (PSO), an Artificial Intelligence metaheuristic technique to optimize non-linear continuous functions. The concept of Swarm Intelligence is based on the socials aspects of intelligence, it means, the ability of individuals to learn with their own experience in a group as well as to take advantage of the performance of other individuals. Some PSO models for discrete search spaces have been developed for combinatorial optimization, although none of them presented satisfactory results to optimize a combinatorial problem as the nuclear reactor fuel reloading problem (NRFRP). In this sense, we developed the Particle Swarm Optimization with Random Keys (PSORK) in previous research to solve Combinatorial Problems. Experiences demonstrated that PSORK performed comparable to or better than other techniques. Thus, PSORK metaheuristic is being applied in optimization studies of the NRFRP for Angra 1 Nuclear Power Plant. Results will be compared with Genetic Algorithms and the manual method provided by a specialist. In this experience, the problem is being modeled for an eight-core symmetry and three-dimensional geometry, aiming at the minimization of the Nuclear Enthalpy Power Peaking Factor as well as the maximization of the cycle length. (author)

  20. Magnetic viscosity, susceptibility and fluctuation fields in sintered NdFeB

    International Nuclear Information System (INIS)

    Tomka, G.J.; Bissell, P.R.; O'Grady, K.; Chantrell, R.W.

    1990-01-01

    Magnetic viscosity and irreversible susceptibility of a sample of anisotropic sintered NdFeB have been measured using a vibrating sample magnetometer. The fluctuation field as a function of local field is found to decrease with increasing demagnetizing field with a dip at the coercivity. This behavior is compared with an existing computer model based on a non-interacting system of fine, uniaxial, randomly oriented particles

  1. Search for Correlated Fluctuations in the Beta+ Decay of Na-22

    Science.gov (United States)

    Silverman, M. P.; Strange, W.

    2008-10-01

    Claims for a ``cosmogenic'' force that correlates otherwise independent stochastic events have been made for at least 10 years, based largely on visual inspection of time series of histograms whose shapes were interpreted as suggestive of recurrent patterns with semi-diurnal, diurnal, and monthly periods. Building on our earlier work to test randomness of different nuclear decay processes, we have searched for correlations in the time-series of coincident positron-electron annihilations deriving from beta+ decay of Na-22. Disintegrations were counted within a narrow time window over a period of 7 days, leading to a time series of more than 1 million events. Statistical tests were performed on the raw time series, its correlation function, and its Fourier transform to search for cyclic correlations indicative of quantum-mechanical violating deviations from Poisson statistics. The time series was then partitioned into a sequence of 167 ``bags'' each of 8192 events. A histogram was made of the events of each bag, where contiguous frequency classes differed by a single count. The chronological sequence of histograms was then tested for correlations within classes. In all cases the results of the tests were in accord with statistical control, giving no evidence of correlated fluctuations.

  2. A randomized placebo-controlled trial of rasagiline in levodopa-treated patients with Parkinson disease and motor fluctuations: the PRESTO study.

    Science.gov (United States)

    2005-02-01

    Rasagiline (n-propargyl-1[R]-aminoindan) mesylate is a novel irreversible selective monoamine oxidase type B inhibitor, previously demonstrated to improve symptoms in early Parkinson disease (PD). To determine the safety, tolerability, and efficacy of rasagiline in levodopa-treated patients with PD and motor fluctuations. Multicenter, randomized, placebo-controlled, double-blind, parallel-group study. Parkinson disease patients (N = 472) with at least 21/2 hours of daily "off" (poor motor function) time, despite optimized treatment with other anti-PD medications. Rasagiline, 1.0 or 0.5 mg/d, or matching placebo. Change from baseline in total daily off time measured by patients' home diaries during 26 weeks of treatment, percentage of patients completing 26 weeks of treatment, and adverse event frequency. During the treatment period, the mean adjusted total daily off time decreased from baseline by 1.85 hours (29%) in patients treated with 1.0 mg/d of rasagiline, 1.41 hours (23%) with 0.5 mg/d rasagiline, and 0.91 hour (15%) with placebo. Compared with placebo, patients treated with 1.0 mg/d rasagiline had 0.94 hour less off time per day, and patients treated with 0.5 mg/d rasagiline had 0.49 hour less off time per day. Prespecified secondary end points also improved during rasagiline treatment, including scores on an investigator-rated clinical global impression scale and the Unified Parkinson's Disease Rating Scale (activities of daily living in the off state and motor performance in the "on" state). Rasagiline was well tolerated. Rasagiline improves motor fluctuations and PD symptoms in levodopa-treated PD patients. In light of recently reported benefits in patients with early illness, rasagiline is a promising new treatment for PD.

  3. Quantum random number generator

    Science.gov (United States)

    Pooser, Raphael C.

    2016-05-10

    A quantum random number generator (QRNG) and a photon generator for a QRNG are provided. The photon generator may be operated in a spontaneous mode below a lasing threshold to emit photons. Photons emitted from the photon generator may have at least one random characteristic, which may be monitored by the QRNG to generate a random number. In one embodiment, the photon generator may include a photon emitter and an amplifier coupled to the photon emitter. The amplifier may enable the photon generator to be used in the QRNG without introducing significant bias in the random number and may enable multiplexing of multiple random numbers. The amplifier may also desensitize the photon generator to fluctuations in power supplied thereto while operating in the spontaneous mode. In one embodiment, the photon emitter and amplifier may be a tapered diode amplifier.

  4. Anomalous neutron scattering in nuclear-polarized media

    International Nuclear Information System (INIS)

    Bashkin, E.P.

    1989-01-01

    A novel inelastic scattering exchange mechanism involving spin flip is considered for slow neutrons moving through a nuclear-polarized medium. The scattering is accompanied by the emission or absorption of thermal fluctuations of the transverse magnetization of the medium. The main role in the fluctuations is played by weakly decaying Larmor precession of the nuclear spins in an external magnetic field. Under 'giant opalescence' conditions the effect is enormous and the respective cross sections exceed significantly those for ordinary elastic scattering. Thus, for 29 Si and 3 He in typical experimental conditions the cross sections for the inelastic processes are of the order of 10 5 -10 6 barn

  5. Polarized Radiative Transfer in Fluctuating Stochastic Media

    International Nuclear Information System (INIS)

    Sallah, M.; Degheidy, A.R.; Selim, M.M.

    2009-01-01

    The problem of polarized radiative transfer in a planar cluttered atmospheric medium (like cloudy atmosphere) is proposed. The solution is presented for an arbitrary absorption and scattering cross sections. The extinction function of the medium is assumed to be a continuous random function of position, with fluctuations about the mean taken as Gaussian distributed. The joint probability distribution function of these Gaussian random variables is used to calculate the ensemble-averaged quantities, such as reflectivity, radiative energy and radiative flux, for an arbitrary correlation function. A modified Gaussian probability distribution function is also used to average the solution in order to exclude the probable negative values of the optical variable. The problem is considered in half space medium which has specular reflecting boundary exposed to unit external incident flux. Numerical results of the average reflectivity, average radiant energy and average net flux are obtained for both Gaussian and modified Gaussian probability density functions at different degrees of polarization

  6. Correlation between detrended fluctuation analysis and the Lempel-Ziv complexity in nonlinear time series analysis

    International Nuclear Information System (INIS)

    Tang You-Fu; Liu Shu-Lin; Jiang Rui-Hong; Liu Ying-Hui

    2013-01-01

    We study the correlation between detrended fluctuation analysis (DFA) and the Lempel-Ziv complexity (LZC) in nonlinear time series analysis in this paper. Typical dynamic systems including a logistic map and a Duffing model are investigated. Moreover, the influence of Gaussian random noise on both the DFA and LZC are analyzed. The results show a high correlation between the DFA and LZC, which can quantify the non-stationarity and the nonlinearity of the time series, respectively. With the enhancement of the random component, the exponent a and the normalized complexity index C show increasing trends. In addition, C is found to be more sensitive to the fluctuation in the nonlinear time series than α. Finally, the correlation between the DFA and LZC is applied to the extraction of vibration signals for a reciprocating compressor gas valve, and an effective fault diagnosis result is obtained

  7. Nuclear moment of inertia and spin distribution of nuclear levels

    International Nuclear Information System (INIS)

    Alhassid, Y.; Fang, L.; Liu, S.; Bertsch, G.F.

    2005-01-01

    We introduce a simple model to calculate the nuclear moment of inertia at finite temperature. This moment of inertia describes the spin distribution of nuclear levels in the framework of the spin-cutoff model. Our model is based on a deformed single-particle Hamiltonian with pairing interaction and takes into account fluctuations in the pairing gap. We derive a formula for the moment of inertia at finite temperature that generalizes the Belyaev formula for zero temperature. We show that a number-parity projection explains the strong odd-even effects observed in shell model Monte Carlo studies of the nuclear moment of inertia in the iron region

  8. Random Interchange of Magnetic Connectivity

    Science.gov (United States)

    Matthaeus, W. H.; Ruffolo, D. J.; Servidio, S.; Wan, M.; Rappazzo, A. F.

    2015-12-01

    Magnetic connectivity, the connection between two points along a magnetic field line, has a stochastic character associated with field lines random walking in space due to magnetic fluctuations, but connectivity can also change in time due to dynamical activity [1]. For fluctuations transverse to a strong mean field, this connectivity change be caused by stochastic interchange due to component reconnection. The process may be understood approximately by formulating a diffusion-like Fokker-Planck coefficient [2] that is asymptotically related to standard field line random walk. Quantitative estimates are provided, for transverse magnetic field models and anisotropic models such as reduced magnetohydrodynamics. In heliospheric applications, these estimates may be useful for understanding mixing between open and close field line regions near coronal hole boundaries, and large latitude excursions of connectivity associated with turbulence. [1] A. F. Rappazzo, W. H. Matthaeus, D. Ruffolo, S. Servidio & M. Velli, ApJL, 758, L14 (2012) [2] D. Ruffolo & W. Matthaeus, ApJ, 806, 233 (2015)

  9. Spectrum fluctuations from regular and damped rotational structures in {sup 16}`8Yb and {sup 163}Tm nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Herskind, B; Dossing, T; Ninel, N; Atac, A; Jensen, H J; Hagemann, G B; Lieder, R M; Maj, A; Nyberg, J; Piiparinen, M; Sugawara, M; Virtanen, A [Niels Bohr Inst., Copenhagen (Denmark); Leoni, S; Vigezzi, E; Bosetti, P; Bracco, A; Broglia, R A; Million, B [Milan Univ. (Italy); Matsuo, M [Kyoto Univ., Uji (Japan). Uji Research Center of Yukawa Inst. for Theoretical Physics; Bergstrom, M; Brockstedt, A; Carlsson, H; Ekstrom, P; Nordlund, A; Ryde, H [Lund Univ. (Sweden). Dept. of Physics; Jongman, J [Rijksuniversiteit Groningen (Netherlands). Kernfysisch Versneller Inst.; Ingebretsen, F; Tjom, P O [Oslo Univ. (Norway); Lonnroth, T [Aabo Akademi, Turku (Finland). Dept. of Physics

    1992-08-01

    A new method has been developed for analyzing fluctuations of count in two-dimensional gamma ray energy coincidence spectra of deformed nuclei formed in heavy ion fusion reactions. Most of the gamma decay cascades flow through regions of high level density, and the method is based upon assumptions about average properties of the excited states. Transition energies along discrete rotational bands are viewed as randomly selected from a continuous distribution of rotational frequencies and moments of inertia. For damped rotational motion, implying a mixing of the rotational bands, a random matrix model is assumed, leading to smooth energy spectra, and strong fluctuations of the transition strengths. The method is illustrated for {sup 168}Yb and {sup 163}Tm. 4 refs., 4 figs.

  10. Fluctuating Thermodynamics for Biological Processes

    Science.gov (United States)

    Ham, Sihyun

    Because biomolecular processes are largely under thermodynamic control, dynamic extension of thermodynamics is necessary to uncover the mechanisms and driving factors of fluctuating processes. The fluctuating thermodynamics technology presented in this talk offers a practical means for the thermodynamic characterization of conformational dynamics in biomolecules. The use of fluctuating thermodynamics has the potential to provide a comprehensive picture of fluctuating phenomena in diverse biological processes. Through the application of fluctuating thermodynamics, we provide a thermodynamic perspective on the misfolding and aggregation of the various proteins associated with human diseases. In this talk, I will present the detailed concepts and applications of the fluctuating thermodynamics technology for elucidating biological processes. This work was supported by Samsung Science and Technology Foundation under Project Number SSTF-BA1401-13.

  11. Nonstationary interference and scattering from random media

    International Nuclear Information System (INIS)

    Nazikian, R.

    1991-12-01

    For the small angle scattering of coherent plane waves from inhomogeneous random media, the three dimensional mean square distribution of random fluctuations may be recovered from the interferometric detection of the nonstationary modulational structure of the scattered field. Modulational properties of coherent waves scattered from random media are related to nonlocal correlations in the double sideband structure of the Fourier transform of the scattering potential. Such correlations may be expressed in terms of a suitability generalized spectral coherence function for analytic fields

  12. Laser beam propagation through random media

    CERN Document Server

    Andrews, Larry C

    2005-01-01

    Since publication of the first edition of this text in 1998, there have been several new, important developments in the theory of beam wave propagation through a random medium, which have been incorporated into this second edition. Also new to this edition are models for the scintillation index under moderate-to-strong irradiance fluctuations; models for aperture averaging based on ABCD ray matrices; beam wander and its effects on scintillation; theory of partial coherence of the source; models of rough targets for ladar applications; phase fluctuations; analysis of other beam shapes; plus exp

  13. Neutron fluctuations in accelerator driven and power reactors via backward master equations

    International Nuclear Information System (INIS)

    Zhifeng Kuang

    2000-05-01

    The transport of neutrons in a reactor is a random process, and thus the number of neutrons in a reactor is a random variable. Fluctuations in the number of neutrons in a reactor can be divided into two categories, namely zero noise and power reactor noise. As the name indicates, they dominate (i.e. are observable) at different power levels. The reasons for their occurrences and utilization are also different. In addition, they are described via different mathematical tools, namely master equations and the Langevin equation, respectively. Zero noise carries information about some nuclear properties such as reactor reactivity. Hence methods such as Feynman- and Rossi-alpha methods have been established to determine the subcritical reactivity of a subcritical system. Such methods received a renewed interest recently with the advent of the so-called accelerator driven systems (ADS). Such systems, intended to be used either for energy production or transuranium transmutation, will use a subcritical core with a strong spallation source. A spallation source has statistical properties that are different from those of the traditionally used radioactive sources which were also assumed in the derivation of the Feynman- and Rossi-alpha formulae. Therefore it is necessary to re-derive the Feynman- and Rossi-alpha formulae. Such formulae for ADS have been derived recently but in simpler neutronic models. One subject of this thesis is the extension of such formulae to a more general case in which six groups of delayed neutron precursors are taken into account, and the full joint statistics of the prompt and all delayed groups is included. The involved complexity problems are solved with a combination of effective analytical techniques and symbolic algebra codes. Power reactor noise carries information about parametric perturbation of the system. Langevin technique has been used to extract such information. In such a treatment, zero noise has been neglected. This is a pragmatic

  14. Electron diffusion in tokamaks due to electromagnetic fluctuations

    International Nuclear Information System (INIS)

    Horton, W.; Choi, D.-I.; Yushmanov, P.N.; Parail, V.V.

    1987-01-01

    Calculations for the stochastic diffusion of electrons in Tokamaks due to a spectrum of electromagnetic drift fluctuations are presented. The parametric dependence of the diffusion coefficient on the amplitude and phase velocity of the spectrum, and the bounce frequency for the electrons is studied. The wavenumber spectrum is taken to be a low order (5 x 5) randomly-phased, isotropic, monotonic spectrum extending from k sub(perpendicular to min) ≅ ωsub(ci)/Csub(s) to k sub(perpendicular to max) ≅ 3ωsub(pe)/C with different power laws of decrease φsub(k) ≅ φ 1 /ksup(m), 1 ≤ m ≤ 3. A nonlinear Ohm's law is derived for the self-consistent relation between the electrostatic and parallel vector potentials. The parallel structure of the fluctuations is taken to be such that ksup(nl)sub(parallel to)Vsub(e) < ωsub(k) due to the nonlinear perpendicular motion of the electrons described in the nonlinear Ohm's law. The diffusion coefficient scales approximately as the neo-Alcator and Merezhkin-Mukhovatov empirical formulas for plasma densities below a critical density. (author)

  15. Thermodynamic theory of equilibrium fluctuations

    International Nuclear Information System (INIS)

    Mishin, Y.

    2015-01-01

    The postulational basis of classical thermodynamics has been expanded to incorporate equilibrium fluctuations. The main additional elements of the proposed thermodynamic theory are the concept of quasi-equilibrium states, a definition of non-equilibrium entropy, a fundamental equation of state in the entropy representation, and a fluctuation postulate describing the probability distribution of macroscopic parameters of an isolated system. Although these elements introduce a statistical component that does not exist in classical thermodynamics, the logical structure of the theory is different from that of statistical mechanics and represents an expanded version of thermodynamics. Based on this theory, we present a regular procedure for calculations of equilibrium fluctuations of extensive parameters, intensive parameters and densities in systems with any number of fluctuating parameters. The proposed fluctuation formalism is demonstrated by four applications: (1) derivation of the complete set of fluctuation relations for a simple fluid in three different ensembles; (2) fluctuations in finite-reservoir systems interpolating between the canonical and micro-canonical ensembles; (3) derivation of fluctuation relations for excess properties of grain boundaries in binary solid solutions, and (4) derivation of the grain boundary width distribution for pre-melted grain boundaries in alloys. The last two applications offer an efficient fluctuation-based approach to calculations of interface excess properties and extraction of the disjoining potential in pre-melted grain boundaries. Possible future extensions of the theory are outlined.

  16. Superconductivity and spin fluctuations

    International Nuclear Information System (INIS)

    Scalapino, D.J.

    1999-01-01

    The organizers of the Memorial Session for Herman Rietschel asked that the author review some of the history of the interplay of superconductivity and spin fluctuations. Initially, Berk and Schrieffer showed how paramagnon spin fluctuations could suppress superconductivity in nearly-ferromagnetic materials. Following this, Rietschel and various co-workers wrote a number of papers in which they investigated the role of spin fluctuations in reducing the Tc of various electron-phonon superconductors. Paramagnon spin fluctuations are also believed to provide the p-wave pairing mechanism responsible for the superfluid phases of 3 He. More recently, antiferromagnetic spin fluctuations have been proposed as the mechanism for d-wave pairing in the heavy-fermion superconductors and in some organic materials as well as possibly the high-Tc cuprates. Here the author will review some of this early history and discuss some of the things he has learned more recently from numerical simulations

  17. Fluctuations of wavefunctions about their classical average

    International Nuclear Information System (INIS)

    Benet, L; Flores, J; Hernandez-Saldana, H; Izrailev, F M; Leyvraz, F; Seligman, T H

    2003-01-01

    Quantum-classical correspondence for the average shape of eigenfunctions and the local spectral density of states are well-known facts. In this paper, the fluctuations of the quantum wavefunctions around the classical value are discussed. A simple random matrix model leads to a Gaussian distribution of the amplitudes whose width is determined by the classical shape of the eigenfunction. To compare this prediction with numerical calculations in chaotic models of coupled quartic oscillators, we develop a rescaling method for the components. The expectations are broadly confirmed, but deviations due to scars are observed. This effect is much reduced when both Hamiltonians have chaotic dynamics

  18. Thermodynamic instabilities in hot and dense nuclear matter

    Directory of Open Access Journals (Sweden)

    Lavagno A.

    2016-01-01

    Full Text Available We study the presence of thermodynamic instabilities in a hot and dense nuclear medium where a nuclear phase transition can take place. Similarly to the low density nuclear liquid-gas phase transition, we show that such a phase transition is characterized by pure hadronic matter with both mechanical instability (fluctuations on the baryon density that by chemical-diffusive instability (fluctuations on the strangeness concentration. The analysis is performed by requiring the global conservation of baryon number and zero net strangeness in the framework of an effective relativistic mean field theory with the inclusion of the Δ(1232-isobars, hyperons and the lightest pseudoscalar and vector meson degrees of freedom. It turns out that in this situation hadronic phases with different values of strangeness content may coexist, altering significantly meson-antimeson ratios.

  19. On the theoretical treatment of random parametric excitations

    International Nuclear Information System (INIS)

    Saito, Keiichi

    1980-01-01

    Any natural phenomenon or artificial system sometimes exhibits a macroscopic behavior which is unaticipated based on its conventional deterministic evolutionary equation, when a certain fluctuating parameter appears multiplicatively in the equation. Kinetic equations having random driving forces or excitations are called stochastic differential equations and their calculus is naturally extensively applied also in our nuclear stochastic theory. The present paper is the first trial to survey sophisticated methods for solving stochastic reactor kinetic equations and summarizes their major results. A particular emphasis is imposed also upon how to set up the equation mostly appropriate to our understanding of reactor physical phenomena. The following two major problems about the status-quo are pointed out in this trial: 1) Unsatisfactory characterization of noise sources. Experimental efforts are specially welcome. 2) Insufficient evaluation of both the certainty of closure approximations and the precision of the obtained results, since the exact solutions are known only for a few cases. (author)

  20. Black Hole Area Quantization rule from Black Hole Mass Fluctuations

    OpenAIRE

    Schiffer, Marcelo

    2016-01-01

    We calculate the black hole mass distribution function that follows from the random emission of quanta by Hawking radiation and with this function we calculate the black hole mass fluctuation. From a complete different perspective we regard the black hole as quantum mechanical system with a quantized event horizon area and transition probabilities among the various energy levels and then calculate the mass dispersion. It turns out that there is a perfect agreement between the statistical and ...

  1. Theory of overdispersion in counting statistics caused by fluctuating probabilities

    International Nuclear Information System (INIS)

    Semkow, Thomas M.

    1999-01-01

    It is shown that the random Lexis fluctuations of probabilities such as probability of decay or detection cause the counting statistics to be overdispersed with respect to the classical binomial, Poisson, or Gaussian distributions. The generating and the distribution functions for the overdispersed counting statistics are derived. Applications to radioactive decay with detection and more complex experiments are given, as well as distinguishing between the source and background, in the presence of overdispersion. Monte-Carlo verifications are provided

  2. About the correlation between atomic charge fluctuations in a molecule

    International Nuclear Information System (INIS)

    Pitanga, P.; Giambiagi, M.S. de; Giambiagi, M.

    1987-01-01

    In this note, the features of the correlation between the electronic charge fluctuations of a pair of atoms within a molecule are analised. Through Schwarz's inequality for random operators in the Hilbert space, the softness of an atom in a molecule is related to its valence and to the softness of the other atoms. It is concluded that in the general case this correlation (from which in turn stems the chemical bond) in non-linear. (author) [pt

  3. Softness of Nuclear Matter and the Production of Strange Particles in Neutron Stars

    Institute of Scientific and Technical Information of China (English)

    陈伟; 文德华; 刘良钢

    2003-01-01

    In the various models, we study the influences of the softness of nuclear matter, the vacuum fluctuation ofnucleons and σ mesons on the production of strange particles in neutron stars. Wefind that the stiffer the nuclear matter is, the more easily the strange particles is produced in neutron stars. The vacuum fluctuation of nucleons has large effect on strange particle production while that of σ meson has little effect on it.

  4. Fluctuations in quantum chaos

    International Nuclear Information System (INIS)

    Casati, G.; Chirikov, B.V.

    1996-01-01

    Various fluctuations in quantum systems with discrete spectrum are discussed, including recent unpublished results. Open questions and unexplained peculiarities of quantum fluctuations are formulated [ru

  5. Impact of pitch angle fluctuations on airborne lidar forward sensing along the flight direction

    Science.gov (United States)

    Sergeevich Gurvich, Alexander; Alexeevich Kulikov, Victor

    2017-10-01

    Airborne lidar forward sensing along the flight direction can serve for notification of clear air turbulence (CAT) and help to prevent injuries or fatal air accidents. The validation of this concept was presented in the framework of the DELICAT (DEmonstration of LIdar-based CAT detection) project. However, the strong variations in signal level, which were observed during the DELICAT measurements but not explained, sometimes indicated the need of a better understanding the observational errors due to geometrical factors. In this paper, we discuss possible error sources pertinent to this technique, related to fluctuations of the flight parameters, which may lead to strong signal variations caused by the random deviations of the sensing beam from the forward flight trajectory. We analyze the variations in backscattered lidar signal caused by fluctuations of the most important forward-sensing flight parameter, the pitch angle. The fluctuation values considered in the paper correspond to the error limits of the compensational gyro platform used in civil aviation. The part of the pitch angle fluctuations not compensated for by the beam-steering device in the presence of aerosol concentration variations can lead to noticeable signal variations that can be mistakenly attributed to wind shear, turbulence, or fast evolution of the aerosol layer. We formulate the criteria that allow the recognition of signal variations caused by pitch angle fluctuations. Influence of these fluctuations is shown to be stronger for aerosol variations on smaller vertical scales. An example of DELICAT observations indicating a noticeable pitch angle fluctuation impact is presented.

  6. Impact of pitch angle fluctuations on airborne lidar forward sensing along the flight direction

    Directory of Open Access Journals (Sweden)

    A. S. Gurvich

    2017-10-01

    Full Text Available Airborne lidar forward sensing along the flight direction can serve for notification of clear air turbulence (CAT and help to prevent injuries or fatal air accidents. The validation of this concept was presented in the framework of the DELICAT (DEmonstration of LIdar-based CAT detection project. However, the strong variations in signal level, which were observed during the DELICAT measurements but not explained, sometimes indicated the need of a better understanding the observational errors due to geometrical factors. In this paper, we discuss possible error sources pertinent to this technique, related to fluctuations of the flight parameters, which may lead to strong signal variations caused by the random deviations of the sensing beam from the forward flight trajectory. We analyze the variations in backscattered lidar signal caused by fluctuations of the most important forward-sensing flight parameter, the pitch angle. The fluctuation values considered in the paper correspond to the error limits of the compensational gyro platform used in civil aviation. The part of the pitch angle fluctuations not compensated for by the beam-steering device in the presence of aerosol concentration variations can lead to noticeable signal variations that can be mistakenly attributed to wind shear, turbulence, or fast evolution of the aerosol layer. We formulate the criteria that allow the recognition of signal variations caused by pitch angle fluctuations. Influence of these fluctuations is shown to be stronger for aerosol variations on smaller vertical scales. An example of DELICAT observations indicating a noticeable pitch angle fluctuation impact is presented.

  7. Thermal fluctuation levels of magnetic and electric fields in unmagnetized plasma: The rigorous relativistic kinetic theory

    International Nuclear Information System (INIS)

    Yoon, P. H.; Schlickeiser, R.; Kolberg, U.

    2014-01-01

    Any fully ionized collisionless plasma with finite random particle velocities contains electric and magnetic field fluctuations. The fluctuations can be of three different types: weakly damped, weakly propagating, or aperiodic. The kinetics of these fluctuations in general unmagnetized plasmas, governed by the competition of spontaneous emission, absorption, and stimulated emission processes, is investigated, extending the well-known results for weakly damped fluctuations. The generalized Kirchhoff radiation law for both collective and noncollective fluctuations is derived, which in stationary plasmas provides the equilibrium energy densities of electromagnetic fluctuations by the ratio of the respective spontaneous emission coefficient and the true absorption coefficient. As an illustrative example, the equilibrium energy densities of aperiodic transverse collective electric and magnetic fluctuations in an isotropic thermal electron-proton plasmas of density n e are calculated as |δB|=√((δB) 2 )=2.8(n e m e c 2 ) 1/2 g 1/2 β e 7/4 and |δE|=√((δE) 2 )=3.2(n e m e c 2 ) 1/2 g 1/3 β e 2 , where g and β e denote the plasma parameter and the thermal electron velocity in units of the speed of light, respectively. For densities and temperatures of the reionized early intergalactic medium, |δB|=6·10 −18 G and |δE|=2·10 −16 G result

  8. Fluorescence fluctuation spectroscopy (FFS)

    CERN Document Server

    Tetin, Sergey

    2012-01-01

    This new volume of Methods in Enzymology continues the legacy of this premier serial with quality chapters authored by leaders in the field. This volume covers fluorescence fluctuation spectroscopy and includes chapters on such topics as Förster resonance energy transfer (fret) with fluctuation algorithms, protein corona on nanoparticles by FCS, and FFS approaches to the study of receptors in live cells. Continues the legacy of this premier serial with quality chapters authored by leaders in the field Covers fluorescence fluctuation spectroscopy Contains chapters on such topics as Förster resonance energy transfer (fret) with fluctuation algorithms, protein corona on nanoparticles by FCS, and FFS approaches to the study of receptors in live cells.

  9. Analysis of the Dynamic Evolutionary Behavior of American Heating Oil Spot and Futures Price Fluctuation Networks

    Directory of Open Access Journals (Sweden)

    Huan Chen

    2017-04-01

    Full Text Available Heating oil is an extremely important heating fuel to consumers in northeastern United States. This paper studies the fluctuations law and dynamic behavior of heating oil spot and futures prices by setting up their complex network models based on the data of America in recent 30 years. Firstly, modes are defined by the method of coarse graining, the spot price fluctuation network of heating oil (HSPFN and its futures price fluctuation network (HFPFN in different periods are established to analyze the transformation characteristics between the modes. Secondly, several indicators are investigated: average path length, node strength and strength distribution, betweeness, etc. In addition, a function is established to measure and analyze the network similarity. The results show the cumulative time of new nodes appearing in either spot or futures price network is not random but exhibits a growth trend of straight line. Meanwhile, the power law distributions of spot and futures price fluctuations in different periods present regularity and complexity. Moreover, these prices are strongly correlated in stable fluctuation period but weak in the phase of sharp fluctuation. Finally, the time distribution characteristics of important modes in the networks and the evolution results of the topological properties mentioned above are obtained.

  10. Groundwater Waves in a Coastal Fractured Aquifer of the Third Phase Qinshan Nuclear Power Engineering Field

    Institute of Scientific and Technical Information of China (English)

    ZHOU Nian-qing; TANG Yi-qun; TANG He-ping

    2005-01-01

    Tidal fluctuations of Hangzhou Bay produce progressive pressure waves in adjacent field fractured aquifers, as the pressure waves propagate, groundwater levels and hydraulic gradients continuously fluctuate. The effect of tidal fluctuations on groundwater flow can be determined using the mean hydraulic gradient that can be calculated by comparing mean ground and surface water elevations. Tidal fluctuation is shown to affect the piezometer readings taken in a nearshore fractured aquifer around the nuclear power engineering field. Continuous monitoring of a network of seven piezometers provided relations between the tidal cycle and the piezometer readings. The relations can be expressed in times of a time and amplitude scaling factor. The time lag and the tidal effi ciency factor and wavelength are calculated using these parameters. It provides significant scientific basis to prevent tide and groundwater for the nuclear power engineering construction and safety run of nuclear power station in the future.

  11. Fluctuation dynamics in geoelectrical data: an investigation by using multifractal detrended fluctuation analysis

    International Nuclear Information System (INIS)

    Telesca, Luciano; Colangelo, Gerardo; Lapenna, Vincenzo; Macchiato, Maria

    2004-01-01

    We analyzed fluctuations in the time dynamics of nonstationary geoelectrical data, recorded in a seismic area of southern Italy, by means of the multifractal detrended fluctuation analysis (MF-DFA). The multifractal character of the signal depends mostly on the different long-range properties for small and large fluctuations. The time variation of indices, denoting the departure from monofractal behaviour, reveals an enhancement of the multifractality of the signal prior seismic occurrences

  12. Separating intrinsic from extrinsic fluctuations in dynamic biological systems.

    Science.gov (United States)

    Hilfinger, Andreas; Paulsson, Johan

    2011-07-19

    From molecules in cells to organisms in ecosystems, biological populations fluctuate due to the intrinsic randomness of individual events and the extrinsic influence of changing environments. The combined effect is often too complex for effective analysis, and many studies therefore make simplifying assumptions, for example ignoring either intrinsic or extrinsic effects to reduce the number of model assumptions. Here we mathematically demonstrate how two identical and independent reporters embedded in a shared fluctuating environment can be used to identify intrinsic and extrinsic noise terms, but also how these contributions are qualitatively and quantitatively different from what has been previously reported. Furthermore, we show for which classes of biological systems the noise contributions identified by dual-reporter methods correspond to the noise contributions predicted by correct stochastic models of either intrinsic or extrinsic mechanisms. We find that for broad classes of systems, the extrinsic noise from the dual-reporter method can be rigorously analyzed using models that ignore intrinsic stochasticity. In contrast, the intrinsic noise can be rigorously analyzed using models that ignore extrinsic stochasticity only under very special conditions that rarely hold in biology. Testing whether the conditions are met is rarely possible and the dual-reporter method may thus produce flawed conclusions about the properties of the system, particularly about the intrinsic noise. Our results contribute toward establishing a rigorous framework to analyze dynamically fluctuating biological systems.

  13. Evolution of a Fluctuating Population in a Randomly Switching Environment.

    Science.gov (United States)

    Wienand, Karl; Frey, Erwin; Mobilia, Mauro

    2017-10-13

    Environment plays a fundamental role in the competition for resources, and hence in the evolution of populations. Here, we study a well-mixed, finite population consisting of two strains competing for the limited resources provided by an environment that randomly switches between states of abundance and scarcity. Assuming that one strain grows slightly faster than the other, we consider two scenarios-one of pure resource competition, and one in which one strain provides a public good-and investigate how environmental randomness (external noise) coupled to demographic (internal) noise determines the population's fixation properties and size distribution. By analytical means and simulations, we show that these coupled sources of noise can significantly enhance the fixation probability of the slower-growing species. We also show that the population size distribution can be unimodal, bimodal, or multimodal and undergoes noise-induced transitions between these regimes when the rate of switching matches the population's growth rate.

  14. Stochastic dynamics of resistive switching: fluctuations lead to optimal particle number

    International Nuclear Information System (INIS)

    Radtke, Paul K; Schimansky-Geier, Lutz; Hazel, Andrew L; Straube, Arthur V

    2017-01-01

    Resistive switching (RS) is one of the foremost candidates for building novel types of non-volatile random access memories. Any practical implementation of such a memory cell calls for a strong miniaturization, at which point fluctuations start playing a role that cannot be neglected. A detailed understanding of switching mechanisms and reliability is essential. For this reason, we formulate a particle model based on the stochastic motion of oxygen vacancies. It allows us to investigate fluctuations in the resistance states of a switch with two active zones. The vacancies’ dynamics are governed by a master equation. Upon the application of a voltage pulse, the vacancies travel collectively through the switch. By deriving a generalized Burgers equation we can interpret this collective motion as nonlinear traveling waves, and numerically verify this result. Further, we define binary logical states by means of the underlying vacancy distributions, and establish a framework of writing and reading such memory element with voltage pulses. Considerations about the discriminability of these operations under fluctuations together with the markedness of the RS effect itself lead to the conclusion, that an intermediate vacancy number is optimal for performance. (paper)

  15. Stochastic dynamics of resistive switching: fluctuations lead to optimal particle number

    Science.gov (United States)

    Radtke, Paul K.; Hazel, Andrew L.; Straube, Arthur V.; Schimansky-Geier, Lutz

    2017-09-01

    Resistive switching (RS) is one of the foremost candidates for building novel types of non-volatile random access memories. Any practical implementation of such a memory cell calls for a strong miniaturization, at which point fluctuations start playing a role that cannot be neglected. A detailed understanding of switching mechanisms and reliability is essential. For this reason, we formulate a particle model based on the stochastic motion of oxygen vacancies. It allows us to investigate fluctuations in the resistance states of a switch with two active zones. The vacancies’ dynamics are governed by a master equation. Upon the application of a voltage pulse, the vacancies travel collectively through the switch. By deriving a generalized Burgers equation we can interpret this collective motion as nonlinear traveling waves, and numerically verify this result. Further, we define binary logical states by means of the underlying vacancy distributions, and establish a framework of writing and reading such memory element with voltage pulses. Considerations about the discriminability of these operations under fluctuations together with the markedness of the RS effect itself lead to the conclusion, that an intermediate vacancy number is optimal for performance.

  16. Strain fluctuations and elastic constants

    Energy Technology Data Exchange (ETDEWEB)

    Parrinello, M.; Rahman, A.

    1982-03-01

    It is shown that the elastic strain fluctuations are a direct measure of elastic compliances in a general anisotropic medium; depending on the ensemble in which the fluctuation is measured either the isothermal or the adiabatic compliances are obtained. These fluctuations can now be calculated in a constant enthalpy and pressure, and hence, constant entropy, ensemble due to recent develpments in the molecular dynamics techniques. A calculation for a Ni single crystal under uniform uniaxial 100 tensile or compressive load is presented as an illustration of the relationships derived between various strain fluctuations and the elastic modulii. The Born stability criteria and the behavior of strain fluctuations are shown to be related.

  17. Influence of the nuclear autocorrelation function on the positron production in heavy-ion collisions

    International Nuclear Information System (INIS)

    Tomoda, T.; Weidenmueller, H.A.

    1983-01-01

    The influence of a nuclear reaction on atomic positron production in heavy-ion collisions is investigated. Using statistical concepts, we describe the nuclear S matrix for a heavy-ion induced reaction as a statistically fluctuating function of energy. The positron production rate is then dependent on the autocorrelation function of this S matrix, and on the ratio of the ''direct'' versus the ''fluctuating'' part of the nuclear cross section. Numerical calculations show that in this way, current experimental results on positron production in heavy-ion collisions can be reproduced in a semiquantitative fashion

  18. Interferometry of high energy nuclear collisions

    International Nuclear Information System (INIS)

    Padula, S.S.

    1990-01-01

    The interferometry is used for determining large space time dimensions of the Quark Gluon Plasma formed in high energy nuclear collisions or in high multiplicity fluctuations in p-barp collisions. (M.C.K.)

  19. Nuclear magnetic resonance of randomly diluted magnetic materials; Ressonancia nuclear magnetica em materiais magneticos diluidos aleatoriamente

    Energy Technology Data Exchange (ETDEWEB)

    Magon, C J

    1986-12-31

    The temperature dependence of the nuclear relaxation rates and line shapes of the F{sub O} resonance in the diluted antiferromagnet Fe{sub x} Zn{sub 1-x} F{sub 2} and Mn{sub x} Zn{sub 1-x} F{sub 2} are studied over a large temperature range T{sub N} < {approx} T {<=} 300 K. The high (room) temperature spin-lattice relaxation rates (1/T{sub 1}) of the F{sub O} nuclei, which are not transfer hyperfine coupled to the Fe (or Mn) spins, have been measured and calculated as a function of the concentration x. Good agreement with experiment is found for the theoretical results, which have been obtained in the range 0.1 {<=} x {<=} 0.8. The temperature dependence of 1/T{sub 1} for T{sub N}Random Field Effects on the critical behavior of Mn{sub .65} Zn{sub .}3{sub 5} F{sub 2}, for fields applied parallel and perpendicular to the easy (C) axis. It was found that the transition temperature T{sub N} depressed substantially with field only for H{sub o} || C. The experimental results are in general accord with the theory for Random Field Effects in disordered, anisotropic antiferromagnets. The critical divergence of the inhomogeneously broadened F{sub O} NMR was studied in Fe{sub .6} Zn{sub .4} F{sub 2} above T{sub N}. The experimental results agree with Heller`s calculation of the NMR line broadening by Random Field Effects. With H{sub o} || C the line shape changes from Gaussian towards Lozentzian for t < {approx} 10{sup -2} and below T{sub N} its line width increase qualitatively following the increase in the sublattice magnetization. (author).

  20. Reduction of fluctuations in reactivity using symmetric matrix

    International Nuclear Information System (INIS)

    Suescun D, D.; Segovia Ch, F. A.; Bonilla L, H. F.

    2016-09-01

    A new filtering method is presented in this work known as Savitzky-Golay (SG); allows reducing the fluctuations in the calculation of the reactivity. The filter softens and does not attenuate the nuclear power regardless of its shape, guaranteeing to decrease different degrees of noise with different steps of calculation time. This formulation employs a polynomial approximation of a certain degree to calculate the convolution coefficients. Its implementation is computational and avoids problems of bad conditioning, caused by the inversion of a linear system. The results show values in the maximum difference and in the averages absolute errors of the reactivity in comparison with that reported in the literature. (Author)

  1. Deformation and concentration fluctuations under stretching in a polymer network with free chains. The ``butterfly`` effect; Fluctuations de deformation et de concentration sous etirement dans un reseau polymere contenant des chaines libres. L`effet ``papillon``

    Energy Technology Data Exchange (ETDEWEB)

    Ramzi, A

    1994-06-01

    Small Angle Neutron Scattering gives access to concentration fluctuations of mobile labeled polymer chains embedded in a polymer network. At rest they appear progressively larger than for random mixing, with increasing ratio. Under uniaxial stretching, they decrease towards ideal mixing along the direction perpendicular to stretching, and can grow strongly along the parallel one, including the zero scattering vector q limit. This gives rise to intensity contours with double-winged patterns, in the shape of the figure `8`, or of `butterfly`. Random crosslinking and end-linking of monodisperse chains have both been studied. The strength of the `butterfly` effect increases with the molecular weight of the free chains, the crosslinking ratio, the network heterogeneity, and the elongation ratio. Eventually, the signal collapses on an `asymptotic` function I(q), of increasing correlation length with the elongation ratio. Deformation appears heterogeneous, maximal for soft areas, where the mobile chains localize preferentially. This could be due to spontaneous fluctuations, or linked to frozen fluctuations of the crosslink density. However, disagreement with the corresponding theoretical expressions makes it necessary to account for the spatial correlations of crosslink density, and their progressive unscreening as displayed by the asymptotic behavior. Networks containing pending labeled chains and free labeled stars lead to more precise understanding of the diffusion of free species and the heterogeneity of the deformation. It seems that the latter occurs even without diffusion for heterogeneous enough networks. In extreme cases (of the crosslinking parameters), the spatial correlations display on apparent fractal behavior, of dimensions 2 to 2.5, which is discussed here in terms of random clusters. 200 refs., 95 figs., 21 tabs., 10 appends.

  2. Nuclear structure theory

    International Nuclear Information System (INIS)

    French, J.B.; Koltun, D.S.

    1990-06-01

    This report summarizes progress during the past ten months in the following areas of research: pion double charge exchange reactions, including a theory of the isotensor term in the pion-nucleus optical potential, and a study of meson exchange contributions to the reactions at low energies. Nuclear inelastic scattering, using quark models to calculate nuclear structure functions, and to test for sensitivity to the substructure of nucleons in nuclei. Fluctuation-free statistical spectroscopy including the theory and computer programs for interacting-particle densities, spin cutoff factors, occupancies, strength sums, and other expectation values

  3. Nonequilibrium fluctuations in a resistor.

    Science.gov (United States)

    Garnier, N; Ciliberto, S

    2005-06-01

    In small systems where relevant energies are comparable to thermal agitation, fluctuations are of the order of average values. In systems in thermodynamical equilibrium, the variance of these fluctuations can be related to the dissipation constant in the system, exploiting the fluctuation-dissipation theorem. In nonequilibrium steady systems, fluctuations theorems (FT) additionally describe symmetry properties of the probability density functions (PDFs) of the fluctuations of injected and dissipated energies. We experimentally probe a model system: an electrical dipole driven out of equilibrium by a small constant current I, and show that FT are experimentally accessible and valid. Furthermore, we stress that FT can be used to measure the dissipated power P = R I2 in the system by just studying the PDFs' symmetries.

  4. Shock Interaction with Random Spherical Particle Beds

    Science.gov (United States)

    Neal, Chris; Mehta, Yash; Salari, Kambiz; Jackson, Thomas L.; Balachandar, S. "Bala"; Thakur, Siddharth

    2016-11-01

    In this talk we present results on fully resolved simulations of shock interaction with randomly distributed bed of particles. Multiple simulations were carried out by varying the number of particles to isolate the effect of volume fraction. Major focus of these simulations was to understand 1) the effect of the shockwave and volume fraction on the forces experienced by the particles, 2) the effect of particles on the shock wave, and 3) fluid mediated particle-particle interactions. Peak drag force for particles at different volume fractions show a downward trend as the depth of the bed increased. This can be attributed to dissipation of energy as the shockwave travels through the bed of particles. One of the fascinating observations from these simulations was the fluctuations in different quantities due to presence of multiple particles and their random distribution. These are large simulations with hundreds of particles resulting in large amount of data. We present statistical analysis of the data and make relevant observations. Average pressure in the computational domain is computed to characterize the strengths of the reflected and transmitted waves. We also present flow field contour plots to support our observations. U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378.

  5. Numerical simulations of pressure fluctuations at branch piping in BWR main steam line

    International Nuclear Information System (INIS)

    Morita, Ryo; Inada, Fumio; Yoshikawa, Kazuhiro; Takahashi, Shiro

    2009-01-01

    The power uprating of a nuclear power plant may increase/accelerate degradation phenomena such as flow-induced vibration and wall thinking. A steam dryer was damaged by a high cycle fatigue due to an acoustic-induced vibration at the branch piping of safety relief valves (SRVs) in main steam lines. In this study, we conducted the numerical simulations of steam/air flow around a simplified branch piping to clarify the basic characteristics of resonance. LES simulations were conducted in ordinary pressure/temperature air and steam under BWR plant conditions. In both cases, the excitation of the pressure fluctuations at the branch was observed under some inlet velocity conditions. These fluctuations and inlet conditions were normalized and the obtained results were compared. The normalized results showed that the range and maximum amplitude of pressure fluctuations were almost the same in low-pressure/temperature air and high-pressure/temperature steam. We found that ordinary pressure/temperature air experiments and simulations can possibly clarify the characteristics of the resonance in high-pressure/temperature steam. (author)

  6. A random walk in the land of precompound decay

    International Nuclear Information System (INIS)

    Akkermans, J.M.

    1982-09-01

    Several aspects of precompound-decay (preequilibrium) reactions, relevant for the application to fusion-reactor design, are considered. Preequilibrium angular distributions are discussed in the framework of the generalized exciton model. A critical discussion of the theory is given and various refinements are suggested. A comparison is made with experimental data on 14 MeV neutron-induced reactions for a large number of nuclides covering the whole mass range. The exciton model is further generalized to the description of multiparticle emission. Preequilibrium effects in multiple emission are investigated. Computational aspects of preequilibrium theory are examined whereby the exact solution for the mean exciton-state lifetimes is derived in closed form. A random-walk model of precompound decay is developed. The dynamics of the nuclear relaxation process and the fluctuations originating from its stochastic nature are studied in detail. Uncertainty calculations are presented for the exciton-state lifetimes and the emission cross-sections. (Auth.)

  7. Fluctuation-Driven Transport in Biological Nanopores. A 3D Poisson–Nernst–Planck Study

    Directory of Open Access Journals (Sweden)

    Marcel Aguilella-Arzo

    2017-03-01

    Full Text Available Living systems display a variety of situations in which non-equilibrium fluctuations couple to certain protein functions yielding astonishing results. Here we study the bacterial channel OmpF under conditions similar to those met in vivo, where acidic resistance mechanisms are known to yield oscillations in the electric potential across the cell membrane. We use a three-dimensional structure-based theoretical approach to assess the possibility of obtaining fluctuation-driven transport. Our calculations show that remarkably high voltages would be necessary to observe the actual transport of ions against their concentration gradient. The reasons behind this are the mild selectivity of this bacterial pore and the relatively low efficiencies of the oscillating signals characteristic of membrane cells (random telegraph noise and thermal noise.

  8. Detecting long-range correlation with detrended fluctuation analysis: Application to BWR stability

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa-Paredes, Gilberto [Departamento de Ingenieria de Procesos e Hidraulica, Universidad Autonoma Metropolitana-Iztapalapa, Apartado Postal 55-534, Mexico, DF 09340 (Mexico)]. E-mail: gepe@xanum.uam.mx; Alvarez-Ramirez, Jose [Departamento de Ingenieria de Procesos e Hidraulica, Universidad Autonoma Metropolitana-Iztapalapa, Apartado Postal 55-534, Mexico, DF 09340 (Mexico); Vazquez, Alejandro [Departamento de Ingenieria de Procesos e Hidraulica, Universidad Autonoma Metropolitana-Iztapalapa, Apartado Postal 55-534, Mexico, DF 09340 (Mexico)

    2006-11-15

    The aim of this paper is to explore the application of detrended fluctuation analysis (DFA) to study boiling water reactor stability. DFA is a scaling method commonly used for detecting long-range correlations in non-stationary time series. This method is based on the random walk theory and was applied to neutronic power signal of Forsmark stability benchmark. Our results shows that the scaling properties breakdown during unstable oscillations.

  9. Detecting long-range correlation with detrended fluctuation analysis: Application to BWR stability

    International Nuclear Information System (INIS)

    Espinosa-Paredes, Gilberto; Alvarez-Ramirez, Jose; Vazquez, Alejandro

    2006-01-01

    The aim of this paper is to explore the application of detrended fluctuation analysis (DFA) to study boiling water reactor stability. DFA is a scaling method commonly used for detecting long-range correlations in non-stationary time series. This method is based on the random walk theory and was applied to neutronic power signal of Forsmark stability benchmark. Our results shows that the scaling properties breakdown during unstable oscillations

  10. Entanglement dynamics in random media

    Science.gov (United States)

    Menezes, G.; Svaiter, N. F.; Zarro, C. A. D.

    2017-12-01

    We study how the entanglement dynamics between two-level atoms is impacted by random fluctuations of the light cone. In our model the two-atom system is envisaged as an open system coupled with an electromagnetic field in the vacuum state. We employ the quantum master equation in the Born-Markov approximation in order to describe the completely positive time evolution of the atomic system. We restrict our investigations to the situation in which the atoms are coupled individually to two spatially separated cavities, one of which displays the emergence of light-cone fluctuations. In such a disordered cavity, we assume that the coefficients of the Klein-Gordon equation are random functions of the spatial coordinates. The disordered medium is modeled by a centered, stationary, and Gaussian process. We demonstrate that disorder has the effect of slowing down the entanglement decay. We conjecture that in a strong-disorder environment the mean life of entangled states can be enhanced in such a way as to almost completely suppress quantum nonlocal decoherence.

  11. Increasing stripe-type fluctuations in A Fe2As2 (A =K , Rb, Cs) superconductors probed by 75As NMR spectroscopy

    Science.gov (United States)

    Zhang, Z. T.; Dmytriieva, D.; Molatta, S.; Wosnitza, J.; Khim, S.; Gass, S.; Wolter, A. U. B.; Wurmehl, S.; Grafe, H.-J.; Kühne, H.

    2018-03-01

    We report 75As nuclear magnetic resonance measurements on single crystals of RbFe2As2 and CsFe2As2 . Taking previously reported results for KFe2As2 into account, we find that the anisotropic electronic correlations evolve towards a magnetic instability in the A Fe2As2 series (with A =K , Rb, Cs). Upon isovalent substitution with larger alkali-metal ions, a drastic enhancement of the anisotropic nuclear spin-lattice relaxation rate and decreasing Knight shift reveal the formation of pronounced spin fluctuations with stripe-type modulation. Furthermore, a decreasing power-law exponent of the nuclear spin-lattice relaxation rate (1/T1)H ∥a b, probing the in-plane spin fluctuations, evidences an emergent deviation from Fermi-liquid behavior. All these findings clearly indicate that the expansion of the lattice in the A Fe2As2 series tunes the electronic correlations towards a quantum critical point at the transition to a yet unobserved ordered phase.

  12. Hydrodynamical fluctuations in smooth shear flows

    International Nuclear Information System (INIS)

    Chagelishvili, G.D.; Khujadze, G.R.; Lominadze, J.G.

    1999-11-01

    Background of hydrodynamical fluctuations in a intrinsically/stochastically forced, laminar, uniform shear flow is studied. The employment of so-called nonmodal mathematical analysis makes it possible to represent the background of fluctuations in a new light and to get more insight into the physics of its formation. The basic physical processes responsible for the formation of vortex and acoustic wave fluctuation backgrounds are analyzed. Interplay of the processes at low and moderate shear rates is described. Three-dimensional vortex fluctuations around a given macroscopic state are numerically calculated. The correlation functions of the fluctuations of physical quantities are analyzed. It is shown that there exists subspace D k in the wave-number space (k-space) that is limited externally by spherical surface with radius k ν ≡ A/ν (where A is the velocity shear parameter, ν - the kinematic viscosity) in the nonequilibrium open system under study. The spatial Fourier harmonics of vortex as well as acoustic wave fluctuations are strongly subjected by flow shear (by the open character of the system) at wave-numbers satisfying the condition k ν . Specifically it is shown that in D k : The fluctuations are non-Markovian; the spatial spectral density of energy of the vortex fluctuations by far exceeds the white-noise; the term of a new type associated to the hydrodynamical fluctuation of velocity appears in the correlation function of pressure; the fluctuation background of the acoustic waves is completely different at low and moderate shear rates (at low shear rates it is reduced in D k in comparison to the uniform (non-shear) flow; at moderate shear rates it it comparable to the background of the vortex fluctuations). The fluctuation background of both the vortex and the acoustic wave modes is anisotropic. The possible significance of the fluctuation background of vortices for the subcritical transition to turbulence and Brownian motion of small macroscopic

  13. Coherent density fluctuation model as a local-scale limit to ATDHF

    International Nuclear Information System (INIS)

    Antonov, A.N.; Petkov, I.Zh.; Stoitsov, M.V.

    1985-04-01

    The local scale transformation method is used for the construction of an Adiabatic Time-Dependent Hartree-Fock approach in terms of the local density distribution. The coherent density fluctuation relations of the model result in a particular case when the ''flucton'' local density is connected with the plane wave determinant model function be means of the local-scale coordinate transformation. The collective potential energy expression is obtained and its relation to the nuclear matter energy saturation curve is revealed. (author)

  14. Critical fluctuations of the number of neutrons in a reactor

    International Nuclear Information System (INIS)

    Ryazanov, V.V.; Lakoza, E.L.; Sysoev, V.M.

    1995-01-01

    The nuclear chain reaction is the most important physical process in a reactor. The theory of nuclear chain reaction fluctuations (neutron noise), developed in and other studies, has given results that are important for reactor physics and reactor practice (correlation analysis of neutron noise for measurement of the physical characteristics and reactor monitoring, stability of the critical state, etc.). Here we propose to study these problems by applying the methods of continuous phase transitions and synergetics and using the analogy with chemical chain reactions and the general laws of critical phenomena. The optimal reactor operating conditions are critical. To predict how a critical reactor will behave it is necessary to reveal those features of the neutron laws that are universal in some way, i.e., do not depend on the details of the individual acts of neutron motion and transformation that occur in reactors of different types. The similarity between chemical and nuclear chain reactions was noted long ago. Consequently, a universal theory of continuous phase transition was developed for systems of diverse physical nature

  15. Dynamic pathways to mediate reactions buried in thermal fluctuations. I. Time-dependent normal form theory for multidimensional Langevin equation.

    Science.gov (United States)

    Kawai, Shinnosuke; Komatsuzaki, Tamiki

    2009-12-14

    We present a novel theory which enables us to explore the mechanism of reaction selectivity and robust functions in complex systems persisting under thermal fluctuation. The theory constructs a nonlinear coordinate transformation so that the equation of motion for the new reaction coordinate is independent of the other nonreactive coordinates in the presence of thermal fluctuation. In this article we suppose that reacting systems subject to thermal noise are described by a multidimensional Langevin equation without a priori assumption for the form of potential. The reaction coordinate is composed not only of all the coordinates and velocities associated with the system (solute) but also of the random force exerted by the environment (solvent) with friction constants. The sign of the reaction coordinate at any instantaneous moment in the region of a saddle determines the fate of the reaction, i.e., whether the reaction will proceed through to the products or go back to the reactants. By assuming the statistical properties of the random force, one can know a priori a well-defined boundary of the reaction which separates the full position-velocity space in the saddle region into mainly reactive and mainly nonreactive regions even under thermal fluctuation. The analytical expression of the reaction coordinate provides the firm foundation on the mechanism of how and why reaction proceeds in thermal fluctuating environments.

  16. Electron diffusion in tokamaks due to electromagnetic fluctuations

    International Nuclear Information System (INIS)

    Horton, W.; Choi, D.I.; Yushmanov, P.N.; Parail, V.V.

    1986-05-01

    Calculations for the stochastic diffusion of electrons in tokamaks due to a spectrum of electromagnetic drift fluctuations are presented. The parametric dependence of the diffusion coefficient on the amplitude and phase velocity of the spectrum, and the bounce frequency for the electrons is studied. The wavenumber spectrum is taken to be a low order (5 x 5) randomly-phased, isotropic, Monotonic spectrum extending from k /sub perpendicular min/ approx. = ω/sub ci//c/sub s/ to k/sub perpendicular max/ approx. = 3ω/sub pe//c with different power laws of decrease phi k approx. = phi 1/k/sup m/, 1 less than or equal to m less than or equal to 3. A nonlinear Ohm's law is derived for the self-consistent relation between the electrostatic and parallel vector potentials. The parallel structure of the fluctuations is taken to be such that k parallel/sup nl/upsilon/sub e/ < w/sub k/ due to the nonlinear perpendicular motion of the electrons described in the nonlinear Ohm's law. The diffusion coefficient scales approximately as the neo-Alcator and Merezhkin-Mukhovatoc empirical formulas for plasma densities above a critical density

  17. New Development on Modelling Fluctuations and Fragmentation in Heavy-Ion Collisions

    Science.gov (United States)

    Lin, Hao; Danielewicz, Pawel

    2017-09-01

    During heavy-ion collisions (HIC), colliding nuclei form an excited composite system. Instabilities present in the system may deform the shape of the system exotically, leading to a break-up into fragments. Many experimental efforts have been devoted to the nuclear multifragmentation phenomenon, while traditional HIC models, lacking in proper treatment of fluctuations, fall short in explaining it. In view of this, we are developing a new model to implement realistic fluctuations into transport simulation. The new model is motivated by the Brownian motion description of colliding particles. The effects of two-body collisions are recast in one-body diffusion processes. Vastly different dynamical paths are sampled by solving Langevin equations in momentum space. It is the stochastic sampling of dynamical paths that leads to a wide spread of exit channels. In addition, the nucleon degree of freedom is used to enhance the fluctuations. The model has been tested in reactions such as 112Sn + 112Sn and 58Ni + 58Ni, where reasonable results are yielded. An exploratory comparison on the 112Sn + 112Sn reaction at 50 MeV/nucleon with two other models, the stochastic mean-field (SMF) and the antisymmetrized molecular dynamics (AMD) models, has also been conducted. Work supported by the NSF Grant No. PHY-1403906.

  18. Hadronic Correlations and Fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Volker

    2008-10-09

    We will provide a review of some of the physics which can be addressed by studying fluctuations and correlations in heavy ion collisions. We will discuss Lattice QCD results on fluctuations and correlations and will put them into context with observables which have been measured in heavy-ion collisions. Special attention will be given to the QCD critical point and the first order co-existence region, and we will discuss how the measurement of fluctuations and correlations can help in an experimental search for non-trivial structures in the QCD phase diagram.

  19. Power-law neuronal fluctuations in a recurrent network model of parametric working memory.

    Science.gov (United States)

    Miller, Paul; Wang, Xiao-Jing

    2006-02-01

    In a working memory system, persistent activity maintains information in the absence of external stimulation, therefore the time scale and structure of correlated neural fluctuations reflect the intrinsic microcircuit dynamics rather than direct responses to sensory inputs. Here we show that a parametric working memory model capable of graded persistent activity is characterized by arbitrarily long correlation times, with Fano factors and power spectra of neural activity described by the power laws of a random walk. Collective drifts of the mnemonic firing pattern induce long-term noise correlations between pairs of cells, with the sign (positive or negative) and amplitude proportional to the product of the gradients of their tuning curves. None of the power-law behavior was observed in a variant of the model endowed with discrete bistable neural groups, where noise fluctuations were unable to cause long-term changes in rate. Therefore such behavior can serve as a probe for a quasi-continuous attractor. We propose that the unusual correlated fluctuations have important implications for neural coding in parametric working memory circuits.

  20. Fluctuations and correlations in nucleus-nucleus collisions within transport approaches

    International Nuclear Information System (INIS)

    Konchakovski, Volodymyr P.

    2009-01-01

    The current thesis is devoted to a systematic study of fluctuations and correlations in heavy-ion collisions, which might be considered as probes for the phase transition and the critical point in the phase diagram, within the Hadron-String- Dynamics (HSD) microscopic transport approach. This is a powerful tool to study nucleus-nucleus collisions and allows to completely simulate experimental collisions on an event-by-event basis. Thus, the transport model has been used to study fluctuations and correlations including the influence of experimental acceptance as well as centrality, system size and collision energy. The comparison to experimental data can separate the effects induced by a phase transition since there is no phase transition in the HSD version used here. Firstly the centrality dependence of multiplicity fluctuations has been studied. Different centrality selections have been performed in the analysis in correspondence to the experimental situation. For the fixed target experiment NA49 events with fixed numbers of the projectile participants have been studied while in the collider experiment PHENIX centrality classes of events have been defined by the multiplicity in certain phase space region. A decrease of participant number fluctuations (and thus volume fluctuations) in more central collisions for both experiments has been obtained. Another area of this work addresses to transport model calculations of multiplicity fluctuations in nucleus-nucleus collisions as a function of colliding energy and system size. This study is in full correspondence to the experimental program of the NA61 Collaboration at the SPS. Central C+C, S+S, In+In, and Pb+Pb nuclear collisions at Elab = 10, 20, 30, 40, 80, 158 AGeV have been investigated. The expected enhanced fluctuations - attributed to the critical point and phase transition - can be observed experimentally on top of a monotonic and smooth 'hadronic background'. These findings should be helpful for the optimal

  1. Fluctuations and correlations in nucleus-nucleus collisions within transport approaches

    Energy Technology Data Exchange (ETDEWEB)

    Konchakovski, Volodymyr P.

    2009-10-01

    The current thesis is devoted to a systematic study of fluctuations and correlations in heavy-ion collisions, which might be considered as probes for the phase transition and the critical point in the phase diagram, within the Hadron-String- Dynamics (HSD) microscopic transport approach. This is a powerful tool to study nucleus-nucleus collisions and allows to completely simulate experimental collisions on an event-by-event basis. Thus, the transport model has been used to study fluctuations and correlations including the influence of experimental acceptance as well as centrality, system size and collision energy. The comparison to experimental data can separate the effects induced by a phase transition since there is no phase transition in the HSD version used here. Firstly the centrality dependence of multiplicity fluctuations has been studied. Different centrality selections have been performed in the analysis in correspondence to the experimental situation. For the fixed target experiment NA49 events with fixed numbers of the projectile participants have been studied while in the collider experiment PHENIX centrality classes of events have been defined by the multiplicity in certain phase space region. A decrease of participant number fluctuations (and thus volume fluctuations) in more central collisions for both experiments has been obtained. Another area of this work addresses to transport model calculations of multiplicity fluctuations in nucleus-nucleus collisions as a function of colliding energy and system size. This study is in full correspondence to the experimental program of the NA61 Collaboration at the SPS. Central C+C, S+S, In+In, and Pb+Pb nuclear collisions at Elab = 10, 20, 30, 40, 80, 158 AGeV have been investigated. The expected enhanced fluctuations - attributed to the critical point and phase transition - can be observed experimentally on top of a monotonic and smooth 'hadronic background'. These findings should be helpful for the

  2. On the systematic behaviour of the intermittency-induces in nuclear interactions

    International Nuclear Information System (INIS)

    Adamovich, M.I.; Aggarwal, M.M.; Alexandrov, Y.A.; Andreeva, N.P.; Anson, Z.V.; Arora, R.; Avetyan, F.A.; Badyal, S.K.; Basova, E.; Bhalla, K.B.; Bhasin, A.; Bhatia, V.S.; Bogdanov, V.G.; Bubnov, V.I.; Burnett, T.H.; Cai, X.; Chasnikov, I.Y.; Chernova, L.P.; Chernyavski, M.M.; Dressel, B.; Eligbaeva, G.Z.; Eremenko, L.E.; Friedlander, E.M.; Gaitinov, A.S.; Ganssauge, E.R.; Garpman, S.; Gerassimov, S.G.; Grote, J.; Gulamov, K.G.; Gupta, S.K.; Gupta, V.; Heckman, H.H.; Huang, H.; Jakobsson, B.; Judek, B.; Kachroo, S.; Kadyrov, F.G.; Kalyachkina, G.S.; Kanygina, E.K.; Karabova, M.; Kaul, G.L.; Kaur, M.; Kharlamov, S.P.; Koss, T.; Krasnov, S.A.; Kumar, V.; Lal, P.; Larionova, V.G.; Lepetan, V.N.; Lindstrom, P.J.; Liu, L.S.; Lokanathan, S.; Lord, J.; Lukicheva, N.S.; Luo, S.B.; Mangotra, L.K.; Marutyan, N.A.; Maslennikova, N.V.; Mittra, I.S.; Mookerjee, S.; Mueller, C.; Nasrulaeva, H.; Nasyrov, S.H.; Navotny, V.S.; Orlova, G.I.; Otterlund, I.; Palsania, H.S.; Peresadko, N.G.; Petrov, N.V.; Plyushchev, V.A.; Qian, W.Y.; Raniwala, R.; Raniwala, S.; Rao, N.K.; Rappoport, V.M.; Rhee, J.T.; Saidkhanov, N.; Salmanova, N.A.; Sarkisova, L.G.; Sarkisyan, V.R.; Schulz, W.; Shabratova, G.S.; Shakhova, T.I.; Singh, B.; Skelding, D.; Soederstroem, K.; Solovjeva, Z.I.; Stenlund, E.; Strausz, S.C.; Sun, J.F.; Svechnikova, L.N.; Tolstov, K.D.; Tretyakova, M.I.; Trofimova, T.P.; Tuleeva, U.; Vokal, S.; Wang, H.Q.; Weng, Z.Q.; Wilkes, R.J.; Xu, G.F.; Zhang, D.H.; Zheng, P.Y.; Zhochova, S.I.; Zhou, D.C.; Zhou, J.C.

    1991-01-01

    The non-statistical fluctuations observed in nuclear interactions, as described by the intermittency-indices from scaled factorial moment analyses, are found to follow a systematic behaviour. The heaviest systems studied, i.e. interactions with sulfur projectiles, are found to have fluctuations which are larger than expected from simple scaling rules. (orig.)

  3. On the systematic behaviour of the intermittency-induces in nuclear interactions

    Energy Technology Data Exchange (ETDEWEB)

    Adamovich, M I; Aggarwal, M M; Alexandrov, Y A; Andreeva, N P; Anson, Z V; Arora, R; Avetyan, F A; Badyal, S K; Basova, E; Bhalla, K B; Bhasin, A; Bhatia, V S; Bogdanov, V G; Bubnov, V I; Burnett, T H; Cai, X; Chasnikov, I Y; Chernova, L P; Chernyavski, M M; Dressel, B; Eligbaeva, G Z; Eremenko, L E; Friedlander, E M; Gaitinov, A S; Ganssauge, E R; Garpman, S; Gerassimov, S G; Grote, J; Gulamov, K G; Gupta, S K; Gupta, V; Heckman, H H; Huang, H; Jakobsson, B; Judek, B; Kachroo, S; Kadyrov, F G; Kalyachkina, G S; Kanygina, E K; Karabova, M; Kaul, G L; Kaur, M; Kharlamov, S P; Koss, T; Krasnov, S A; Kumar, V; Lal, P; Larionova, V G; Lepetan, V N; Lindstrom, P J; Liu, L S; Lokanathan, S; Lord, J; Lukicheva, N S; Luo, S B; Mangotra, L K; Marutyan, N A; Maslennikova, N V; Mittra, I S; Mookerjee, S; Mueller, C; Nasrulaeva, H; Nasyrov, S H; Navotny, V S; Orlova, G I; Otterlund, I; Palsania, H S; Peresadko, N G; Petrov, N V; EMU01 Collaboration

    1991-07-18

    The non-statistical fluctuations observed in nuclear interactions, as described by the intermittency-indices from scaled factorial moment analyses, are found to follow a systematic behaviour. The heaviest systems studied, i.e. interactions with sulfur projectiles, are found to have fluctuations which are larger than expected from simple scaling rules. (orig.).

  4. Pharmacologically Induced Sex Hormone Fluctuation Effects on Resting-State Functional Connectivity in a Risk Model for Depression

    DEFF Research Database (Denmark)

    Fisher, Patrick MacDonald; Larsen, Camilla Borgsted; Beliveau, Vincent

    2017-01-01

    Women are at relatively greater lifetime risk for depression than men. This elevated risk in women is partly due to heightened risk during time periods characterized by marked fluctuations in sex hormones, including postpartum and perimenopausal periods. How sex hormone fluctuations contribute...... to heightened risk is not fully understood but may involve intrinsic functional connectivity. We induced a biphasic ovarian sex hormone fluctuation using the gonadotropin-releasing hormone agonist (GnRHa) goserelin to determine, with a randomized placebo-controlled design, intervention effects on or Gn....... Considering the GnRHa group only, the emergence of depressive symptoms following intervention was positively associated with amygdala-right temporal cortex and negatively associated with hippocampus-cingulate rs-FC. A test for mediation suggested that rs-FC changes in these networks marginally mediated...

  5. Large-deviation theory for diluted Wishart random matrices

    Science.gov (United States)

    Castillo, Isaac Pérez; Metz, Fernando L.

    2018-03-01

    Wishart random matrices with a sparse or diluted structure are ubiquitous in the processing of large datasets, with applications in physics, biology, and economy. In this work, we develop a theory for the eigenvalue fluctuations of diluted Wishart random matrices based on the replica approach of disordered systems. We derive an analytical expression for the cumulant generating function of the number of eigenvalues IN(x ) smaller than x ∈R+ , from which all cumulants of IN(x ) and the rate function Ψx(k ) controlling its large-deviation probability Prob[IN(x ) =k N ] ≍e-N Ψx(k ) follow. Explicit results for the mean value and the variance of IN(x ) , its rate function, and its third cumulant are discussed and thoroughly compared to numerical diagonalization, showing very good agreement. The present work establishes the theoretical framework put forward in a recent letter [Phys. Rev. Lett. 117, 104101 (2016), 10.1103/PhysRevLett.117.104101] as an exact and compelling approach to deal with eigenvalue fluctuations of sparse random matrices.

  6. Two-dimensional quantum gravity - a laboratory for fluctuating graphs and quenched connectivity disorder

    Directory of Open Access Journals (Sweden)

    W.Janke

    2006-01-01

    Full Text Available This paper gives a brief introduction to using two-dimensional discrete and Euclidean quantum gravity approaches as a laboratory for studying the properties of fluctuating and frozen random graphs in interaction with "matter fields" represented by simple spin or vertex models. Due to the existence of numerous exact analytical results and predictions for comparison with simulational work, this is an interesting and useful enterprise.

  7. Dynamics of collisional particles in a fluctuating magnetic field

    International Nuclear Information System (INIS)

    Spineanu, F.; Vlad, M.

    1995-01-01

    The equations of motion of a test particle in a stochastic magnetic field and interacting through collisions with a plasma are Langevin-type equations. Under reasonable assumptions on the statistical properties of the random processes (field and collisional velocity fluctuations), we perform an analytical calculation of the mean-square displacement (MSD) of the particle. The basic nonlinearity in the problem (Lagrangian argument of the random field) yields complicated averages, which we carry out using a functional formalism. The result is expressed as a series, and we find the conditions for its convergence, i.e. the limits of validity of our approach (essentially, we must restrict attention to non-chaotic regimes). Further, employing realistic bounds (spectral cut-off and limited time of observation), we derive an explicit formula for the MSD. We show that from this unique expression, we can obtain several previously known results. (author)

  8. Fluctuating ideal-gas lattice Boltzmann method with fluctuation dissipation theorem for nonvanishing velocities.

    Science.gov (United States)

    Kaehler, G; Wagner, A J

    2013-06-01

    Current implementations of fluctuating ideal-gas descriptions with the lattice Boltzmann methods are based on a fluctuation dissipation theorem, which, while greatly simplifying the implementation, strictly holds only for zero mean velocity and small fluctuations. We show how to derive the fluctuation dissipation theorem for all k, which was done only for k=0 in previous derivations. The consistent derivation requires, in principle, locally velocity-dependent multirelaxation time transforms. Such an implementation is computationally prohibitively expensive but, with a small computational trick, it is feasible to reproduce the correct FDT without overhead in computation time. It is then shown that the previous standard implementations perform poorly for non vanishing mean velocity as indicated by violations of Galilean invariance of measured structure factors. Results obtained with the method introduced here show a significant reduction of the Galilean invariance violations.

  9. Cross-section fluctuations and self-shielding effects in the unresolved resonance region - International Evaluation Co-operation volume 15

    International Nuclear Information System (INIS)

    Froehner, F.H.; Larson, Duane C.; Tagesen, Siegfried; Petrizzi, Luigi; Hasegawa, Akira; Nakagawa, Tsuneo; Hogenbirk, Alfred; Weigmann, H.

    1995-01-01

    A Working Party on International Evaluation Co-operation was established under the sponsorship of the OECD/NEA Nuclear Science Committee (NSC) to promote the exchange of information on nuclear data evaluations, validation, and related topics. Its aim is also to provide a framework for co-operative activities between members of the major nuclear data evaluation projects. This includes the possible exchange of scientists in order to encourage co-operation. Requirements for experimental data resulting from this activity are compiled. The Working Party determines common criteria for evaluated nuclear data files with a view to assessing and improving the quality and completeness of evaluated data. The Parties to the project are: ENDF (United States), JEFF/EFF (NEA Data Bank Member countries), and JENDL (Japan). Co-operation with evaluation projects of non-OECD countries are organised through the Nuclear Data Section of the International Atomic Energy Agency (IAEA). NEA/NSC Subgroup 15 has had the task to assess self-shielding effects in the unresolved resonance range of structural materials, in particular their importance at various energies, and possible ways to deal with them in shielding and activation work. The principal results achieved are summarised briefly, in particular: - New data base consisting of high-resolution transmission data measured at Oak Ridge and Geel; - Improved theoretical understanding of cross-section fluctuations, including their prediction, that has been derived from the Hauser-Feshbach theory; - Benchmark results on the importance of self-shielding in iron at various energies; - Consequences for information storage in evaluated nuclear data files; - Practical utilisation of self-shielding information from evaluated files. Benchmark results as well as the Hauser-Feshbach theory show that self-shielding effects are important up to a 4-or 5-MeV neutron energy. Fluctuation factors extracted from high-resolution total cross-section data can be

  10. Driving reconnection in sheared magnetic configurations with forced fluctuations

    Science.gov (United States)

    Pongkitiwanichakul, Peera; Makwana, Kirit D.; Ruffolo, David

    2018-02-01

    We investigate reconnection of magnetic field lines in sheared magnetic field configurations due to fluctuations driven by random forcing by means of numerical simulations. The simulations are performed with an incompressible, pseudo-spectral magnetohydrodynamics code in 2D where we take thick, resistively decaying, current-sheet like sheared magnetic configurations which do not reconnect spontaneously. We describe and test the forcing that is introduced in the momentum equation to drive fluctuations. It is found that the forcing does not change the rate of decay; however, it adds and removes energy faster in the presence of the magnetic shear structure compared to when it has decayed away. We observe that such a forcing can induce magnetic reconnection due to field line wandering leading to the formation of magnetic islands and O-points. These reconnecting field lines spread out as the current sheet decays with time. A semi-empirical formula is derived which reasonably explains the formation and spread of O-points. We find that reconnection spreads faster with stronger forcing and longer correlation time of forcing, while the wavenumber of forcing does not have a significant effect. When the field line wandering becomes large enough, the neighboring current sheets with opposite polarity start interacting, and then the magnetic field is rapidly annihilated. This work is useful to understand how forced fluctuations can drive reconnection in large scale current structures in space and astrophysical plasmas that are not susceptible to reconnection.

  11. Deformation and concentration fluctuations under stretching in a polymer network with free chains. The ''butterfly'' effect

    International Nuclear Information System (INIS)

    Ramzi, A.

    1994-06-01

    Small Angle Neutron Scattering gives access to concentration fluctuations of mobile labeled polymer chains embedded in a polymer network. At rest they appear progressively larger than for random mixing, with increasing ratio. Under uniaxial stretching, they decrease towards ideal mixing along the direction perpendicular to stretching, and can grow strongly along the parallel one, including the zero scattering vector q limit. This gives rise to intensity contours with double-winged patterns, in the shape of the figure '8', or of 'butterfly'. Random crosslinking and end-linking of monodisperse chains have both been studied. The strength of the 'butterfly' effect increases with the molecular weight of the free chains, the crosslinking ratio, the network heterogeneity, and the elongation ratio. Eventually, the signal collapses on an 'asymptotic' function I(q), of increasing correlation length with the elongation ratio. Deformation appears heterogeneous, maximal for soft areas, where the mobile chains localize preferentially. This could be due to spontaneous fluctuations, or linked to frozen fluctuations of the crosslink density. However, disagreement with the corresponding theoretical expressions makes it necessary to account for the spatial correlations of crosslink density, and their progressive unscreening as displayed by the asymptotic behavior. Networks containing pending labeled chains and free labeled stars lead to more precise understanding of the diffusion of free species and the heterogeneity of the deformation. It seems that the latter occurs even without diffusion for heterogeneous enough networks. In extreme cases (of the crosslinking parameters), the spatial correlations display on apparent fractal behavior, of dimensions 2 to 2.5, which is discussed here in terms of random clusters. 200 refs., 95 figs., 21 tabs., 10 appends

  12. Random nanolasing in the Anderson localized regime

    DEFF Research Database (Denmark)

    Liu, Jin; Garcia, P. D.; Ek, Sara

    2014-01-01

    The development of nanoscale optical devices for classical and quantum photonics is affected by unavoidable fabrication imperfections that often impose performance limitations. However, disorder may also enable new functionalities, for example in random lasers, where lasing relies on random...... multiple scattering. The applicability of random lasers has been limited due to multidirectional emission, lack of tunability, and strong mode competition with chaotic fluctuations due to a weak mode confinement. The regime of Anderson localization of light has been proposed for obtaining stable multimode...... random lasing, and initial work concerned macroscopic one-dimensional layered media. Here, we demonstrate on-chip random nanolasers where the cavity feedback is provided by the intrinsic disorder. The strong confinement achieved by Anderson localization reduces the spatial overlap between lasing modes...

  13. Detrended fluctuation analysis of short datasets: An application to fetal cardiac data

    Science.gov (United States)

    Govindan, R. B.; Wilson, J. D.; Preißl, H.; Eswaran, H.; Campbell, J. Q.; Lowery, C. L.

    2007-02-01

    Using detrended fluctuation analysis (DFA) we perform scaling analysis of short datasets of length 500-1500 data points. We quantify the long range correlation (exponent α) by computing the mean value of the local exponents αL (in the asymptotic regime). The local exponents are obtained as the (numerical) derivative of the logarithm of the fluctuation function F(s) with respect to the logarithm of the scale factor s:αL=dlog10F(s)/dlog10s. These local exponents display huge variations and complicate the correct quantification of the underlying correlations. We propose the use of the phase randomized surrogate (PRS), which preserves the long range correlations of the original data, to minimize the variations in the local exponents. Using the numerically generated uncorrelated and long range correlated data, we show that performing DFA on several realizations of PRS and estimating αL from the averaged fluctuation functions (of all realizations) can minimize the variations in αL. The application of this approach to the fetal cardiac data (RR intervals) is discussed and we show that there is a statistically significant correlation between α and the gestation age.

  14. Temporal step fluctuations on a conductor surface: electromigration force, surface resistivity and low-frequency noise

    International Nuclear Information System (INIS)

    Williams, E D; Bondarchuk, O; Tao, C G; Yan, W; Cullen, W G; Rous, P J; Bole, T

    2007-01-01

    Scattering of charge carriers from surface structures will become an increasing factor in the resistivity as the structure decreases in size to the nanoscale. The effects of scattering at the most basic surface defect, a kink in a step edge, are here analyzed using the continuum step model. Using a Langevin analysis, it has been shown that the electromigration force on the atoms at the step edge causes changes in the temporal evolution of the step-edge. For an electromigration force acting perpendicular to the average step edge and mass-transport dominated by step-edge diffusion, significant deviations from the usual t 1/4 scaling of the displacement correlation function occur dependent on a critical time τ and the direction of the force relative to the step edge (i.e. uphill or downhill). Experimental observations of step fluctuations on Ag(111) show the predicted changes among step fluctuations without current, and with current in the up- and down-hill directions for a current density of order 10 5 A cm -2 . The results yield the magnitude of the electromigration force acting on kinked sites at the step-edge. This in turn yields the contribution of the fluctuating steps to the surface resistivity, which exceeds 1% of the bulk resistivity as wire diameters decrease below 10s of nanometres. The temporal fluctuations of kink density can thus also be related to resistivity noise. Relating the known fluctuation spectrum of the step displacements to fluctuations in their lengths, the corresponding resistivity noise is predicted to show spectral signatures of ∼f -1/2 for step fluctuations governed by random attachment/detachment, and ∼f -3/4 for step fluctuations governed by step-edge diffusion

  15. Transition-strength fluctuations and the onset of chaotic motion

    International Nuclear Information System (INIS)

    Alhassid, Y.; Levine, R.D.

    1986-01-01

    The maximum-entropy formalism is used to characterize the fluctuations in transition strengths for a bound quantum-mechanical system. In the chaotic limit only one, ever present, sum rule is required as a constraint. The resulting distribution is that of Porter and Thomas, which can also be derived from random-matrix theory. For nonchaotic systems the distribution of transition strengths has a lower entropy. A possible additional constraint, operative during the onset of chaos, is proposed. The distribution of maximal entropy subject to both constraints accords with computed intensities in a system of two degrees of freedom

  16. Net charge fluctuations and local charge compensation

    International Nuclear Information System (INIS)

    Fu Jinghua

    2006-01-01

    We propose net charge fluctuation as a measure of local charge correlation length. It is demonstrated that, in terms of a schematic multiperipheral model, net charge fluctuation satisfies the same Quigg-Thomas relation as satisfied by charge transfer fluctuation. Net charge fluctuations measured in finite rapidity windows depend on both the local charge correlation length and the size of the observation window. When the observation window is larger than the local charge correlation length, the net charge fluctuation only depends on the local charge correlation length, while forward-backward charge fluctuations always have strong dependence on the observation window size. Net charge fluctuations and forward-backward charge fluctuations measured in the present heavy ion experiments show characteristic features similar to those from multiperipheral models. But the data cannot all be understood within this simple model

  17. On transient effects in violent nuclear collisions

    International Nuclear Information System (INIS)

    Suraud, E.; Belkacem, M.; Feng-Shou Zhang; Academia Sinica, Lanzhou, GS

    1993-01-01

    It is shown that the numerical simulations of the recently developed Boltzmann-Langevin model exhibit large dynamical fluctuations in momentum space during the early stages of heavy-ion collisions, which arise from an interplay between the nuclear meanfield and binary collisions. It is pointed out that this transient behaviour provides an initial seed for the development of density fluctuations, and could strongly influence the particle production cross-sections at subthreshold energies. (author) 13 refs.; 3 figs

  18. Current density fluctuations and ambipolarity of transport

    International Nuclear Information System (INIS)

    Shen, W.; Dexter, R.N.; Prager, S.C.

    1991-10-01

    The fluctuation in the plasma current density is measured in the MIST reversed field pinch experiment. Such fluctuations, and the measured radial profile of the k spectrum of magnetic fluctuations, supports the view and that low frequency fluctuations (f r >) demonstrates that radial particle transport from particle motion parallel to a fluctuating magnetic field is ambipolar over the full frequency range

  19. NAFASS: Fluctuation spectroscopy and the Prony spectrum for description of multi-frequency signals in complex systems

    Science.gov (United States)

    Nigmatullin, R. R.; Gubaidullin, I. A.

    2018-03-01

    In this paper, we essentially modernize the NAFASS (Non-orthogonal Amplitude Frequency Analysis of the Smoothed Signals) approach suggested earlier. Actually, we solved two important problems: (a) new and effective algorithm was proposed and (b) we proved that the segment of the Prony spectrum could be used as the fitting function for description of the desired frequency spectrum. These two basic elements open an alternative way for creation of the fluctuation spectroscopy when the segment of the Fourier series can fit any random signal with trend but the dispersion spectrum of the Fourier series ω0 · k(ω0 ≡ 2 π / T) ⇒Ωk(k = 0 , 1 , 2 , . . . , K - 1) is replaced by the specific dispersion law Ωk calculated with the help of original algorithm described below. It implies that any finite signal will have a compact amplitude-frequency response (AFR), where the number of the modes is much less in comparison with the number of data points (K economic data and compare 30-years world prices for meat (beef, chicken, lamb and pork) entering as the basic components to every-day food consumption. These data were taken from the official site http://www.indexmundi.com/commodities/. We fitted these random functions with the high accuracy and calculated the desired ;amplitude-frequency; response for these random price fluctuations. The calculated distribution of the amplitudes (Ack, Ask) and frequency spectrum Ωk (k = 0, 1,…, K-1) allows one to compress initial data (K (number of modes) << N (number of data points), N/K ≅ 20-40) and receive an additional information for their comparison with each other. As the second example, we considered the transcendental/irrational numbers description in the frame of the proposed NAFASS approach, as well. This possibility was demonstrated on the quantitative description of the transcendental number π = 3.1415926535897932…, containing initially 6ṡ104 digits. The results obtained for the second type of data can be useful for

  20. Non-linear Membrane Properties in Entorhinal Cortical Stellate Cells Reduce Modulation of Input-Output Responses by Voltage Fluctuations

    Science.gov (United States)

    Fernandez, Fernando R.; Malerba, Paola; White, John A.

    2015-01-01

    The presence of voltage fluctuations arising from synaptic activity is a critical component in models of gain control, neuronal output gating, and spike rate coding. The degree to which individual neuronal input-output functions are modulated by voltage fluctuations, however, is not well established across different cortical areas. Additionally, the extent and mechanisms of input-output modulation through fluctuations have been explored largely in simplified models of spike generation, and with limited consideration for the role of non-linear and voltage-dependent membrane properties. To address these issues, we studied fluctuation-based modulation of input-output responses in medial entorhinal cortical (MEC) stellate cells of rats, which express strong sub-threshold non-linear membrane properties. Using in vitro recordings, dynamic clamp and modeling, we show that the modulation of input-output responses by random voltage fluctuations in stellate cells is significantly limited. In stellate cells, a voltage-dependent increase in membrane resistance at sub-threshold voltages mediated by Na+ conductance activation limits the ability of fluctuations to elicit spikes. Similarly, in exponential leaky integrate-and-fire models using a shallow voltage-dependence for the exponential term that matches stellate cell membrane properties, a low degree of fluctuation-based modulation of input-output responses can be attained. These results demonstrate that fluctuation-based modulation of input-output responses is not a universal feature of neurons and can be significantly limited by subthreshold voltage-gated conductances. PMID:25909971

  1. Generation and monitoring of discrete stable random processes using multiple immigration population models

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, J O; Hopcraft, K I; Jakeman, E [Applied Mathematics Division, School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD (United Kingdom)

    2003-11-21

    Some properties of classical population processes that comprise births, deaths and multiple immigrations are investigated. The rates at which the immigrants arrive can be tailored to produce a population whose steady state fluctuations are described by a pre-selected distribution. Attention is focused on the class of distributions with a discrete stable law, which have power-law tails and whose moments and autocorrelation function do not exist. The separate problem of monitoring and characterizing the fluctuations is studied, analysing the statistics of individuals that leave the population. The fluctuations in the size of the population are transferred to the times between emigrants that form an intermittent time series of events. The emigrants are counted with a detector of finite dynamic range and response time. This is modelled through clipping the time series or saturating it at an arbitrary but finite level, whereupon its moments and correlation properties become finite. Distributions for the time to the first counted event and for the time between events exhibit power-law regimes that are characteristic of the fluctuations in population size. The processes provide analytical models with which properties of complex discrete random phenomena can be explored, and in addition provide generic means by which random time series encompassing a wide range of intermittent and other discrete random behaviour may be generated.

  2. Generation and monitoring of discrete stable random processes using multiple immigration population models

    International Nuclear Information System (INIS)

    Matthews, J O; Hopcraft, K I; Jakeman, E

    2003-01-01

    Some properties of classical population processes that comprise births, deaths and multiple immigrations are investigated. The rates at which the immigrants arrive can be tailored to produce a population whose steady state fluctuations are described by a pre-selected distribution. Attention is focused on the class of distributions with a discrete stable law, which have power-law tails and whose moments and autocorrelation function do not exist. The separate problem of monitoring and characterizing the fluctuations is studied, analysing the statistics of individuals that leave the population. The fluctuations in the size of the population are transferred to the times between emigrants that form an intermittent time series of events. The emigrants are counted with a detector of finite dynamic range and response time. This is modelled through clipping the time series or saturating it at an arbitrary but finite level, whereupon its moments and correlation properties become finite. Distributions for the time to the first counted event and for the time between events exhibit power-law regimes that are characteristic of the fluctuations in population size. The processes provide analytical models with which properties of complex discrete random phenomena can be explored, and in addition provide generic means by which random time series encompassing a wide range of intermittent and other discrete random behaviour may be generated

  3. The Spectrum of Wind Power Fluctuations

    Science.gov (United States)

    Bandi, Mahesh

    2016-11-01

    Wind is a variable energy source whose fluctuations threaten electrical grid stability and complicate dynamical load balancing. The power generated by a wind turbine fluctuates due to the variable wind speed that blows past the turbine. Indeed, the spectrum of wind power fluctuations is widely believed to reflect the Kolmogorov spectrum; both vary with frequency f as f - 5 / 3. This variability decreases when aggregate power fluctuations from geographically distributed wind farms are averaged at the grid via a mechanism known as geographic smoothing. Neither the f - 5 / 3 wind power fluctuation spectrum nor the mechanism of geographic smoothing are understood. In this work, we explain the wind power fluctuation spectrum from the turbine through grid scales. The f - 5 / 3 wind power fluctuation spectrum results from the largest length scales of atmospheric turbulence of order 200 km influencing the small scales where individual turbines operate. This long-range influence spatially couples geographically distributed wind farms and synchronizes farm outputs over a range of frequencies and decreases with increasing inter-farm distance. Consequently, aggregate grid-scale power fluctuations remain correlated, and are smoothed until they reach a limiting f - 7 / 3 spectrum. This work was funded by the Collective Interactions Unit, OIST Graduate University, Japan.

  4. Anomalous Brownian motion of colloidal particle in a nematic environment: effect of the director fluctuations

    Directory of Open Access Journals (Sweden)

    T. Turiv

    2015-06-01

    Full Text Available As recently reported [Turiv T. et al., Science, 2013, Vol. 342, 1351], fluctuations in the orientation of the liquid crystal (LC director can transfer momentum from the LC to a colloid, such that the diffusion of the colloid becomes anomalous on a short time scale. Using video microscopy and single particle tracking, we investigate random thermal motion of colloidal particles in a nematic liquid crystal for the time scales shorter than the expected time of director fluctuations. At long times, compared to the characteristic time of the nematic director relaxation we observe typical anisotropic Brownian motion with the mean square displacement (MSD linear in time τ and inversly proportional to the effective viscosity of the nematic medium. At shorter times, however, the dynamics is markedly nonlinear with MSD growing more slowly (subdiffusion or faster (superdiffusion than τ. These results are discussed in the context of coupling of colloidal particle's dynamics to the director fluctuation dynamics.

  5. Topics in fluctuating nonlinear hydrodynamics

    International Nuclear Information System (INIS)

    Milner, S.T.

    1986-01-01

    Models of fluctuating nonlinear hydrodynamics have enjoyed much success in explaining the effect of long-wavelength fluctuations in diverse hydrodynamic systems. This thesis explores two such problems; in both, the body of hydrodynamic assumptions powerfully constrains the predictions of a well-posed theory. The effects of layer fluctuations in smectic-A liquid crystals are first examined. The static theory (introduced by Grinstein and Pelcovits) is reviewed. Ward identities, resulting from the arbitrariness of the layering direction, are derived and exploited. The static results motivate an examination of dynamic fluctuation effects. A new sound-damping experiment is proposed that would probe singular dependence of viscosities on applied stress. A theory of Procaccia and Gitterman that reaction rates of chemically reacting binary mixtures are drastically reduced near their thermodynamic critical points is analyzed. Hydrodynamic arguments and Van Hove theory are applied, concluding that the PG idea is drastically slowed, and spatially varying composition fluctuations are at best slowed down over a narrow range of wavenumbers

  6. Note: Fully integrated 3.2 Gbps quantum random number generator with real-time extraction

    International Nuclear Information System (INIS)

    Zhang, Xiao-Guang; Nie, You-Qi; Liang, Hao; Zhang, Jun; Pan, Jian-Wei; Zhou, Hongyi; Ma, Xiongfeng

    2016-01-01

    We present a real-time and fully integrated quantum random number generator (QRNG) by measuring laser phase fluctuations. The QRNG scheme based on laser phase fluctuations is featured for its capability of generating ultra-high-speed random numbers. However, the speed bottleneck of a practical QRNG lies on the limited speed of randomness extraction. To close the gap between the fast randomness generation and the slow post-processing, we propose a pipeline extraction algorithm based on Toeplitz matrix hashing and implement it in a high-speed field-programmable gate array. Further, all the QRNG components are integrated into a module, including a compact and actively stabilized interferometer, high-speed data acquisition, and real-time data post-processing and transmission. The final generation rate of the QRNG module with real-time extraction can reach 3.2 Gbps.

  7. Note: Fully integrated 3.2 Gbps quantum random number generator with real-time extraction

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiao-Guang; Nie, You-Qi; Liang, Hao; Zhang, Jun, E-mail: zhangjun@ustc.edu.cn; Pan, Jian-Wei [Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Zhou, Hongyi; Ma, Xiongfeng [Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084 (China)

    2016-07-15

    We present a real-time and fully integrated quantum random number generator (QRNG) by measuring laser phase fluctuations. The QRNG scheme based on laser phase fluctuations is featured for its capability of generating ultra-high-speed random numbers. However, the speed bottleneck of a practical QRNG lies on the limited speed of randomness extraction. To close the gap between the fast randomness generation and the slow post-processing, we propose a pipeline extraction algorithm based on Toeplitz matrix hashing and implement it in a high-speed field-programmable gate array. Further, all the QRNG components are integrated into a module, including a compact and actively stabilized interferometer, high-speed data acquisition, and real-time data post-processing and transmission. The final generation rate of the QRNG module with real-time extraction can reach 3.2 Gbps.

  8. Principle of minimal work fluctuations.

    Science.gov (United States)

    Xiao, Gaoyang; Gong, Jiangbin

    2015-08-01

    Understanding and manipulating work fluctuations in microscale and nanoscale systems are of both fundamental and practical interest. For example, in considering the Jarzynski equality 〈e-βW〉=e-βΔF, a change in the fluctuations of e-βW may impact how rapidly the statistical average of e-βW converges towards the theoretical value e-βΔF, where W is the work, β is the inverse temperature, and ΔF is the free energy difference between two equilibrium states. Motivated by our previous study aiming at the suppression of work fluctuations, here we obtain a principle of minimal work fluctuations. In brief, adiabatic processes as treated in quantum and classical adiabatic theorems yield the minimal fluctuations in e-βW. In the quantum domain, if a system initially prepared at thermal equilibrium is subjected to a work protocol but isolated from a bath during the time evolution, then a quantum adiabatic process without energy level crossing (or an assisted adiabatic process reaching the same final states as in a conventional adiabatic process) yields the minimal fluctuations in e-βW, where W is the quantum work defined by two energy measurements at the beginning and at the end of the process. In the classical domain where the classical work protocol is realizable by an adiabatic process, then the classical adiabatic process also yields the minimal fluctuations in e-βW. Numerical experiments based on a Landau-Zener process confirm our theory in the quantum domain, and our theory in the classical domain explains our previous numerical findings regarding the suppression of classical work fluctuations [G. Y. Xiao and J. B. Gong, Phys. Rev. E 90, 052132 (2014)].

  9. Thermophoresis as persistent random walk

    International Nuclear Information System (INIS)

    Plyukhin, A.V.

    2009-01-01

    In a simple model of a continuous random walk a particle moves in one dimension with the velocity fluctuating between +v and -v. If v is associated with the thermal velocity of a Brownian particle and allowed to be position dependent, the model accounts readily for the particle's drift along the temperature gradient and recovers basic results of the conventional thermophoresis theory.

  10. Neutrino propagation in a fluctuating sun

    International Nuclear Information System (INIS)

    Burgess, C.P.; Michaud, D.

    1997-01-01

    We adapt to neutrino physics a general formulation for particle propagation in fluctuating media, initially developed for applications to electromagnetism and neutron optics. In leading approximation this formalism leads to the usual MSW effective Hamiltonian governing neutrino propagation through a medium. Next-to-leading contributions describe deviations from this description, which arise due to neutrino interactions with fluctuations in the medium. We compute these corrections for two types of fluctuations: (i) microscopic thermal fluctuations and (ii) macroscopic fluctuations in the medium s density. While the first of these reproduces standard estimates, which are negligible for applications to solar neutrinos, we find that the second can be quite large, since it grows in size with the correlation length of the fluctuation. We consider two models in some detail. For fluctuations whose correlations extend only over a local region in space of length l, appreciable effects for MSW oscillations arise if (δn/n) 2 l approx-gt 100m or so. Alternatively, a crude model of helioseismic p-waves gives appreciable effects only when (δn/n)approx-gt 1%. In general the dominant effect is to diminish the quality of the resonance, making the suppression of the 7 Be neutrinos a good experimental probe of fluctuations deep within the sun. Fluctuations can also provide a new mechanism for reducing the solar neutrino flux, giving an energy-independent suppression factor of 1/2 away from the resonant region, even for small vacuum mixing angles. copyright 1997 Academic Press, Inc

  11. Characteristics of fluctuating pressure generated in BWR main steam lines

    International Nuclear Information System (INIS)

    Takahashi, Shiro; Okuyama, Keita; Tamura, Akinori

    2009-01-01

    The BWR-3 steam dryer in the Quad Cities Unit 2 Nuclear Power Plant was damaged by high cycle fatigue due to acoustic-induced vibration. The dryer failure was as attributed to flow-induced acoustic resonance at the stub pipes of safety relief valves (SRVs) in the main steam lines (MSLs). The acoustic resonance was considered to be generated by interaction between the sound field and an unstable shear layer across the closed side branches with SRV stub pipes. We have started a research program on BWR dryers to develop their loading evaluation methods. Moreover, it has been necessary to evaluate the dryer integrity of BWR-5 plants which are the main type of BWR in Japan. In the present study, we used 1/10-scale BWR tests and analyses to investigate the flow-induced acoustic resonance and acoustic characteristics in MSLs. The test apparatus consisted of a steam dryer, a steam dome and 4 MSLs with 20 SRV stub pipes. A finite element method (FEM) was applied for the calculation of three-dimensional wave equations in acoustic analysis. We demonstrated that remarkable fluctuating pressures occurred in high and low frequency regions. High frequency fluctuating pressures was generated by the flow-induced acoustic resonance in the SRV stub pipes. Low frequency fluctuating pressure was generated in an MSL with the dead leg. The frequency of the latter almost coincided with the natural frequency of the MSL with the dead leg. The amplitude of the fluctuating pressures in the multiple stub pipes became more intense because of interaction between them compared with that in the single stub pipe. Acoustic analysis results showed that the multiple stub pipes caused several natural frequencies in the vicinity of the natural frequency of the single stub pipe and several modes of the standing wave in the MSLs. (author)

  12. Development of a generalized stochastic model for the analysis of monoenergetic space-time nuclear factor Kinetics

    International Nuclear Information System (INIS)

    Pham, Nhu Viet Ha

    2011-02-01

    To predict the space-time dependent behavior of a nuclear reactor, the conventional space-dependent kinetics equations are widely used for treating the spatial variables. However, the solutions of such deterministic space-dependent kinetics equations, which give only the mean values of the neutron population and the delayed neutron precursor concentrations, do not offer sufficient insight into the actual dynamic processes within a reactor, where the interacting populations vary randomly with space and time. It is also noted that at high power levels, the random behavior of a reactor is negligible but at low power levels, such as at start-up, random fluctuations in population dynamics can be significant. To mathematically describe the evolution of the state of a nuclear reactor using a set of stochastic kinetics equations, the forward stochastic model (FSM) in stochastic kinetics theory is devised through the concept of reactor transition probability and its probability generating function as the spatial domain of a reactor is partitioned into a number of space cells. Nevertheless, the FSM equations for the mean value of neutron and precursor distribution are deterministic-like. Furthermore, the numerical treatment of the FSM equations for the means, variances, and covariances is quite complicated and time-consuming. In the present study, a generalized stochastic model (called the stochastic space-dependent kinetics model or SSKM) based on the FSM and the Its stochastic differential equations was newly developed for the analysis of monoenergetic spacetime nuclear reactor kinetics in one dimension. First, the FSM equations for determining the mean values of neutron and delayed-neutron precursor populations were considered as the deterministic ones without taking into account their variances and covariances. Second, the system of interest was randomized again in the light of the Its stochastic differential equations in order to derive the SSKM. The proposed model

  13. Magnetic properties of strongly asymmetric nuclear matter

    International Nuclear Information System (INIS)

    Kutschera, M.; Wojcik, W.

    1988-01-01

    We investigate stability of neutron matter containing a small proton admixture with respect to spin fluctuations. We establish conditions under which strongly asymmetric nuclear matter could acquire a permanent magnetization. It is shown that if the protons are localized, the system becomes unstable to spin fluctuations for arbitrarily weak proton-neutron spin interactions. For non-localized protons there exists a threshold value of the spin interaction above which the system can develop a spontaneous polarization. 12 refs., 2 figs. (author)

  14. Electrostatic fluctuation and fluctuation-induced particle flux during formation of the edge transport barrier in the JFT-2M tokamak

    International Nuclear Information System (INIS)

    Ido, T.; Hamada, Y.; Nagashima, Y.; Nishizawa, A.; Kawasumi, Y.; Miura, Y.; Hoshino, K.; Ogawa, H.; Shinohara, K.; Kamiya, K.; Kusama, Y.

    2005-01-01

    The electrostatic fluctuation with Geodesic-Acoustic-Mode (GAM) frequency is observed in L-mode plasmas. The fluctuation has the poloidal wave number (k θ ) of (-2 ± 24) x 10 -3 (cm -1 ), that corresponds to the poloidal mode number of 1.5 or less, and the radial wave number (k r ) of 0.94 ± 0.05 (cm -1 ), that is corresponds to k r ρ i = 0.26 < 1. The amplitude of the fluctuation changes in the radial direction; it is small near the separatrix and it has maximum at 3 cm inside the separatrix. The relation between the amplitude of potential fluctuation and that of density fluctuation is the same as that of the predicted GAM. The fluctuation is probably GAM. The envelope of ambient density fluctuation and the potential fluctuation have a significant coherence at the GAM frequency. Thus, it is clearly verified that the fluctuation with the GAM frequency correlates with the ambient density fluctuation. The fluctuation with the GAM frequency affects the particle transport through the modulation of the ambient fluctuation. But the effect is not large, and it is not a sufficient condition to form the edge transport barrier and to drive the intermittent particle flux. (author)

  15. Electrostatic fluctuation and fluctuation-induced particle flux during formation of the edge transport barrier in the JFT-2M tokamak

    International Nuclear Information System (INIS)

    Ido, T.; Miura, K.; Hoshino, K.

    2005-01-01

    The electrostatic fluctuation with Geodesic-Acoustic-Mode (GAM) frequency is observed in L-mode plasmas. The fluctuation has the poloidal wave number (k θ ) of (-2 ± 24) x 10 -3 (cm -1 ), that corresponds to the poloidal mode number of 1.5 or less, and the radial wave number (k γ ) of 0.94±0.05 (cm -1 ), that is corresponds to k γ ρ i =0.26 < 1. The amplitude of the fluctuation changes in the radial direction; it is small near the separatrix and it has maximum at 3 cm inside the separatrix. The relation between the amplitude of potential fluctuation and that of density fluctuation is the same as that of the predicted GAM. The fluctuation is probably GAM. The envelope of ambient density fluctuation and the potential fluctuation have a significant coherence at the GAM frequency. Thus, it is clearly verified that the fluctuation with the GAM frequency correlates with the ambient density fluctuation. The fluctuation with the GAM frequency affects the particle transport through the modulation of the ambient fluctuation. But the effect is not large, and it is not a sufficient condition to form the edge transport barrier and to drive the intermittent particle flux. (author)

  16. Measuring shape fluctuations in biological membranes

    International Nuclear Information System (INIS)

    Monzel, C; Sengupta, K

    2016-01-01

    Shape fluctuations of lipid membranes have intrigued cell biologists and physicists alike. In the cellular context, their origin—thermal or active—and their physiological significance are open questions. These small incessant displacements, also called membrane undulations, have mostly been studied in model membranes and membranes of simple cells like erythrocytes. Thermal fluctuations of such membranes have been very well described both theoretically and experimentally; active fluctuations are a topic of current interest. Experimentally, membrane fluctuations are not easy to measure, the main challenge being to develop techniques which are capable of measuring very small displacements at very high speed, and preferably over a large area and long time. Scattering techniques have given access to fluctuations in membrane stacks and a variety of optical microscopy based techniques have been devised to study membrane fluctuations of unilamellar vesicles, erythrocytes and other cells. Among them are flicker spectroscopy, dynamic light scattering, diffraction phase microscopy and reflection interference contrast microscopy. Each of these techniques has its advantages and limitations. Here we review the basic principles of the major experimental techniques used to measure bending or shape fluctuations of biomembranes. We report seminal results obtained with each technique and highlight how these studies furthered our understanding of physical properties of membranes and their interactions. We also discuss suggested role of membrane fluctuations in different biological processes. (topical review)

  17. Nuclear opacity for neutrinos at small Q2

    International Nuclear Information System (INIS)

    Kopeliovich, B.Z.

    1989-01-01

    The causes of nuclear screening of the vector and the weak axial currents are quite different. The hadronic fluctuations of neutrino in the nuclear matter live much longer than in the vacuum, due to interaction with nucleons. Nuclear opacity for neutrinos calculated using Glauber-Gribov theory, differs considerably from that given by the Bell optical model. A good agreement of the theory with the recent BEBC WA59 Collaboration measurements is found. 14 refs.; 4 figs

  18. Nuclear vorticity and the low-energy nuclear response. Towards the neutron drip line

    International Nuclear Information System (INIS)

    Papakonstantinou, P.; Athens Univ.; Wambach, J.; Ponomarev, V.Y.; Mavrommatis, E.

    2004-01-01

    The transition density and current provide valuable insight into the nature of nuclear vibrations. Nuclear vorticity is a quantity related to the transverse transition current. In this work, we study the evolution of the strength distribution, related to density fluctuations, and the vorticity strength distribution, as the neutron drip line is approached. Our results on the isoscalar, natural-parity multipole response of Ni isotopes, obtained by using a self-consistent Skyrme-Hartree-Fock+continuum RPA model, indicate that, close to the drip line, the low-energy response is dominated by L > 1 vortical transitions. (orig.)

  19. Industry plots nuclear revival

    International Nuclear Information System (INIS)

    Nogee, A.

    1984-01-01

    A successful revival of the nuclear power industry will require standardization and a reduction in the number of companies managing construction, according to Atomic Industrial Forum spokesmen. In describing the concept of a few superutilities to build nuclear plants, they emphasize the need for a nuclear culture among construction management. Future plant designs emphasize small scale, with design, engineering, licensing, financing, operator training, and paperwork completed before the sale. Utilities continue to pursue economy-of-scale despite the evidence that small-scale reactors can be economical and are more appropriate for fluctuating demand growth. Financiers want more say in construction plans in the future, while utilities want to establish generating subsidiaries for wholesale power sales

  20. Estimation of piping temperature fluctuations based on external strain measurements

    International Nuclear Information System (INIS)

    Morilhat, P.; Maye, J.P.

    1993-01-01

    Due to the difficulty to carry out measurements at the inner sides of nuclear reactor piping subjected to thermal transients, temperature and stress variations in the pipe walls are estimated by means of external thermocouples and strain-gauges. This inverse problem is solved by spectral analysis. Since the wall harmonic transfer function (response to a harmonic load) is known, the inner side signal will be obtained by convolution of the inverse transfer function of the system and of the strain measurement enables detection of internal temperature fluctuations in a frequency range beyond the scope of the thermocouples. (authors). 5 figs., 3 refs

  1. Microscopic model for the non-linear fluctuating hydrodynamic of 4 He superfluid helium deduced by maximum entropy method

    International Nuclear Information System (INIS)

    Alvarez R, J.T.

    1998-01-01

    elements that lead to the local transport coefficients for the superfluid helium, by means of a generalization of the Green-Kubo fluctuation-dissipation relation, in analogy with the results present in the Appendix A, obtained with a local equilibrium statistical operator ρhut l -tilde. Specified the Lagrange multipliers, the currents and the local transport coefficients, a non-linear local FP equation is determined for the superfluid helium in the Fourier space. Starting with such FP equation their associated non-linear equations of the Langevin type are built, where the random forces that appear are of multiplicative type. Forces that are expressed as the product of Gaussian random variables and local variablesin such way that the variances of the random variables are independent of the local variables. Finally, applying the Fourier inverse transformed to the non-linear equations of the Langevin type in the space of Fourier, the equations of the non-linear fluctuating hydrodynamic are built for the superfluid helium in the configuration space. Lastly, in the chapter 4, it is presented a discussion of the results and the conclusions of this thesis. (Author)

  2. Fluctuations and structure of amphiphilic films

    International Nuclear Information System (INIS)

    Gourier, CH.

    1996-01-01

    This thesis is divided in three parts.The first part exposes in a theoretical point of view, how the fluctuations spectrum of an amphiphilic film is governed by its properties and its bidimensional characteristics.The measurements of fluctuations spectra of an interface are accessible with the measurement of intensity that interface diffuses out of the specular angle, we present in the second chapter the principles of the X rays diffusion by a real interface and see how the diffuse diffusion experiments allow to determine the fluctuations spectrum of an amphiphilic film. The second part is devoted to the different experimental techniques that have allowed to realize the study of fluctuation as well as the structural study.The third part is devoted to experimental results concerning the measurements of fluctuations spectra and to the study of the structure of amphiphilic films. We show that it is possible by using an intense source of X rays (ESRF: European Synchrotron Radiation Facility) to measure the water and amphiphilic films fluctuations spectra until molecular scales. The last chapter is devoted to the structural study and film fluctuations made of di-acetylenic molecules. (N.C.)

  3. Mathematical model for logarithmic scaling of velocity fluctuations in wall turbulence.

    Science.gov (United States)

    Mouri, Hideaki

    2015-12-01

    For wall turbulence, moments of velocity fluctuations are known to be logarithmic functions of the height from the wall. This logarithmic scaling is due to the existence of a characteristic velocity and to the nonexistence of any characteristic height in the range of the scaling. By using the mathematics of random variables, we obtain its necessary and sufficient conditions. They are compared with characteristics of a phenomenological model of eddies attached to the wall and also with those of the logarithmic scaling of the mean velocity.

  4. The Fluctuation Niche in Plants

    Directory of Open Access Journals (Sweden)

    Jaume Terradas

    2009-01-01

    Full Text Available Classical approaches to niche in coexisting plants have undervalued temporal fluctuations. We propose that fluctuation niche is an important dimension of the total niche and interacts with habitat and life-history niches to provide a better understanding of the multidimensional niche space where ecological interactions occur. To scale a fluctuation niche, it is necessary to relate environmental constrictions or species performance not only to the absolute values of the usual environmental and ecophysiological variables but also to their variances or other measures of variability. We use Mediterranean plant communities as examples, because they present characteristic large seasonal and interannual fluctuations in water and nutrient availabilities, along an episodic-constant gradient, and because the plant responses include a number of syndromes coupled to this gradient.

  5. The Fluctuation Niche in Plants

    International Nuclear Information System (INIS)

    Terradas, J.; Penuelas, J.; Lloret, F.; Penuelas, J.

    2009-01-01

    Classical approaches to niche in coexisting plants have undervalued temporal fluctuations. We propose that fluctuation niche is an important dimension of the total niche and interacts with habitat and life-history niches to provide a better understanding of the multidimensional niche space where ecological interactions occur. To scale a fluctuation niche, it is necessary to relate environmental constrictions or species performance not only to the absolute values of the usual environmental and eco physiological variables but also to their variances or other measures of variability. We use Mediterranean plant communities as examples, because they present characteristic large seasonal and inter annual fluctuations in water and nutrient availabilities, along an episodic-constant gradient, and because the plant responses include a number of syndromes coupled to this gradient.

  6. Fluctuations at electrode-YSZ interfaces

    DEFF Research Database (Denmark)

    Jacobsen, Torben; Hansen, Karin Vels; Skou, Eivind

    2005-01-01

    Current fluctuations at potentiostatically controlled point electrodes of Pt, La$_{0.85}$Sr$_{0.15}$MnO$_3$ and Ni on YSZ surfaces are determined at 1000$^\\circ$C. For the oxygen reduction process on Pt electrodes characteristic sawtooth shaped low frequency fluctuations are observed. At temperat......Current fluctuations at potentiostatically controlled point electrodes of Pt, La$_{0.85}$Sr$_{0.15}$MnO$_3$ and Ni on YSZ surfaces are determined at 1000$^\\circ$C. For the oxygen reduction process on Pt electrodes characteristic sawtooth shaped low frequency fluctuations are observed....../water atmosphere are presented for discussion. The origin of the observations is not known at present but it appears likely that they are related to the activation/deactivation mechanism of SOFCs....

  7. At convenience and systematic random sampling: effects on the prognostic value of nuclear area assessments in breast cancer patients.

    Science.gov (United States)

    Jannink, I; Bennen, J N; Blaauw, J; van Diest, P J; Baak, J P

    1995-01-01

    This study compares the influence of two different nuclear sampling methods on the prognostic value of assessments of mean and standard deviation of nuclear area (MNA, SDNA) in 191 consecutive invasive breast cancer patients with long term follow up. The first sampling method used was 'at convenience' sampling (ACS); the second, systematic random sampling (SRS). Both sampling methods were tested with a sample size of 50 nuclei (ACS-50 and SRS-50). To determine whether, besides the sampling methods, sample size had impact on prognostic value as well, the SRS method was also tested using a sample size of 100 nuclei (SRS-100). SDNA values were systematically lower for ACS, obviously due to (unconsciously) not including small and large nuclei. Testing prognostic value of a series of cut off points, MNA and SDNA values assessed by the SRS method were prognostically significantly stronger than the values obtained by the ACS method. This was confirmed in Cox regression analysis. For the MNA, the Mantel-Cox p-values from SRS-50 and SRS-100 measurements were not significantly different. However, for the SDNA, SRS-100 yielded significantly lower p-values than SRS-50. In conclusion, compared with the 'at convenience' nuclear sampling method, systematic random sampling of nuclei is not only superior with respect to reproducibility of results, but also provides a better prognostic value in patients with invasive breast cancer.

  8. Time characteristics for the spinodal decomposition in nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Idier, D.; Farine, M.; Benhassine, B.; Remaud, B.; Sebille, F.

    1992-12-31

    Dynamics of the fluctuation growth are studied. Time characteristics are key quantities to determine the conditions under which spinodal decomposition could be observed. Dynamical instabilities arising from fluctuations in spinodal zone for nuclear matter are studied using Skyrme type interactions within a pseudo-particle model. Typical times for cluster formation are extracted. The numerical treatment is based on the Vlasov phase space transport equation. (K.A.) 11 refs.; 7 figs.

  9. Time characteristics for the spinodal decomposition in nuclear matter

    International Nuclear Information System (INIS)

    Idier, D.; Farine, M.; Benhassine, B.; Remaud, B.; Sebille, F.

    1992-01-01

    Dynamics of the fluctuation growth are studied. Time characteristics are key quantities to determine the conditions under which spinodal decomposition could be observed. Dynamical instabilities arising from fluctuations in spinodal zone for nuclear matter are studied using Skyrme type interactions within a pseudo-particle model. Typical times for cluster formation are extracted. The numerical treatment is based on the Vlasov phase space transport equation. (K.A.) 11 refs.; 7 figs

  10. Big Bang or vacuum fluctuation

    International Nuclear Information System (INIS)

    Zel'dovich, Ya.B.

    1980-01-01

    Some general properties of vacuum fluctuations in quantum field theory are described. The connection between the ''energy dominance'' of the energy density of vacuum fluctuations in curved space-time and the presence of singularity is discussed. It is pointed out that a de-Sitter space-time (with the energy density of the vacuum fluctuations in the Einstein equations) that matches the expanding Friedman solution may describe the history of the Universe before the Big Bang. (P.L.)

  11. Inertial-particle dynamics in turbulent flows: caustics, concentration fluctuations and random uncorrelated motion

    International Nuclear Information System (INIS)

    Gustavsson, K; Mehlig, B; Meneguz, E; Reeks, M

    2012-01-01

    We have performed numerical simulations of inertial particles in random model flows in the white-noise limit (at zero Kubo number, Ku = 0) and at finite Kubo numbers. Our results for the moments of relative inertial-particle velocities are in good agreement with recent theoretical results (Gustavsson and Mehlig 2011a) based on the formation of phase-space singularities in the inertial-particle dynamics (caustics). We discuss the relation between three recent approaches describing the dynamics and spatial distribution of inertial particles suspended in turbulent flows: caustic formation, real-space singularities of the deformation tensor and random uncorrelated motion. We discuss how the phase- and real-space singularities are related. Their formation is well understood in terms of a local theory. We summarise the implications for random uncorrelated motion. (paper)

  12. Implementation of $ab$ $initio$ perturbed angular correlation observables for analysis of fluctuating quadrupole interactions

    CERN Document Server

    Barbosa, Marcelo

    A review about the nuclear properties, namely the nuclear moments (magnetic dipole moment and electric quadrupole moment) and their interaction with electromagnetic fields external to the nucleus (hyperfine interactions), as well as the angular distribution of radiation produced by $\\gamma$-decay, is presented. A detailed description about the theory of Perturbed Angular Correlations was done, including the comparison between $\\gamma-\\gamma$- correlations and $e^{-}- \\gamma$ correlations. For dynamic nuclear interactions, an introduction to the theory of stochastic states in PAC was performed. We focused on ab-initio implementation of observables for analyzing fluctuating quadrupole hyperfine interactions on time dependent perturbed angular correlations experiments. The development of computacional codes solving the full problem, adapted to fit data obtained on single crystals or polycrystals for two-state transient fields with any axial symmetry and orientation was the main purpose of this work. The final pa...

  13. Timing of the Crab pulsar III. The slowing down and the nature of the random process

    International Nuclear Information System (INIS)

    Groth, E.J.

    1975-01-01

    The Crab pulsar arrival times are analyzed. The data are found to be consistent with a smooth slowing down with a braking index of 2.515+-0.005. Superposed on the smooth slowdown is a random process which has the same second moments as a random walk in the frequency. The strength of the random process is R 2 >=0.53 (+0.24, -0.12) x10 -22 Hz 2 s -1 , where R is the mean rate of steps and 2 > is the second moment of the step amplitude distribution. Neither the braking index nor the strength of the random process shows evidence of statistically significant time variations, although small fluctuations in the braking index and rather large fluctuations in the noise strength cannot be ruled out. There is a possibility that the random process contains a small component with the same second moments as a random walk in the phase. If so, a time scale of 3.5 days is indicated

  14. Spin fluctuations and the

    Directory of Open Access Journals (Sweden)

    V.M. Loktev

    2008-09-01

    Full Text Available We analyze the spectral properties of a phenomenological model for a weakly doped two-dimensional antiferromagnet, in which the carriers move within one of the two sublattices where they were introduced. Such a constraint results in the free carrier spectra with the maxima at k=(± π/2 , ± π/2 observed in some cuprates. We consider the spectral properties of the model by taking into account fluctuations of the spins in the antiferromagnetic background. We show that such fluctuations lead to a non-pole-like structure of the single-hole Green's function and these fluctuations can be responsible for some anomalous "strange metal" properties of underdoped cuprates in the nonsuperconducting regime.

  15. An Objective Fluctuation Score for Parkinson's Disease

    Science.gov (United States)

    Horne, Malcolm K.; McGregor, Sarah; Bergquist, Filip

    2015-01-01

    Introduction Establishing the presence and severity of fluctuations is important in managing Parkinson’s Disease yet there is no reliable, objective means of doing this. In this study we have evaluated a Fluctuation Score derived from variations in dyskinesia and bradykinesia scores produced by an accelerometry based system. Methods The Fluctuation Score was produced by summing the interquartile range of bradykinesia scores and dyskinesia scores produced every 2 minutes between 0900-1800 for at least 6 days by the accelerometry based system and expressing it as an algorithm. Results This Score could distinguish between fluctuating and non-fluctuating patients with high sensitivity and selectivity and was significant lower following activation of deep brain stimulators. The scores following deep brain stimulation lay in a band just above the score separating fluctuators from non-fluctuators, suggesting a range representing adequate motor control. When compared with control subjects the score of newly diagnosed patients show a loss of fluctuation with onset of PD. The score was calculated in subjects whose duration of disease was known and this showed that newly diagnosed patients soon develop higher scores which either fall under or within the range representing adequate motor control or instead go on to develop more severe fluctuations. Conclusion The Fluctuation Score described here promises to be a useful tool for identifying patients whose fluctuations are progressing and may require therapeutic changes. It also shows promise as a useful research tool. Further studies are required to more accurately identify therapeutic targets and ranges. PMID:25928634

  16. Control of the electromagnetic drag using fluctuating light fields

    Science.gov (United States)

    Pastor, Víctor J. López; Marqués, Manuel I.

    2018-05-01

    An expression for the electromagnetic drag force experienced by an electric dipole in a light field consisting of a monochromatic plane wave with polarization and phase randomly fluctuating is obtained. The expression explicitly considers the transformations of the field and frequency due to the Doppler shift and the change of the polarizability response of the electric dipole. The conditions to be fulfilled by the polarizability of the dipole in order to obtain a positive, a null, and a negative drag coefficient are analytically determined and checked against numerical simulations for the dynamics of a silver nanoparticle. The theoretically predicted diffusive, superdiffusive, and exponentially accelerated dynamical regimes are numerically confirmed.

  17. Fluctuations and Instability in Sedimentation

    KAUST Repository

    Guazzelli, É lisabeth; Hinch, John

    2011-01-01

    This review concentrates on the fluctuations of the velocities of sedimenting spheres, and on the structural instability of a suspension of settling fibers. For many years, theoretical estimates and numerical simulations predicted the fluctuations

  18. Localized description of valence fluctuations

    International Nuclear Information System (INIS)

    Alascio, B.; Allub, R.; Aligia, A.

    1979-07-01

    The authors set up a model for intermediate valence equivalent to the ''atomic'' limit of the Anderson Hamiltonian. Detailed analysis of this model shows that most of the essential characteristics of valence fluctuators are already present in this crudely simplified Hamiltonian. The spin-spin and the 4f charge-charge correlation functions are studied and it is shown that it is possible to define a spin fluctuation frequency ωsub(s.f.) and a charge fluctuation frequency ωsub(ch.f.).ωsub(s.f.) and ωsub(ch.f.) can differ considerably for some values of the parameters of the model. The magnetic susceptibility and the specific heat are calculated as functions of temperature and it is shown how the results simulate the behaviour found in valence fluctuators. (author)

  19. Quantum fluctuations in insulating ferroelectrics

    International Nuclear Information System (INIS)

    Riseborough, Peter S.

    2010-01-01

    Graphical abstract: It has been proposed that in a ferroelectric insulator, an applied magnetic field may couple the transverse phonon modes and produce left and right circularly polarized phonon modes which are no longer degenerate. We quantize the theory and examine the effects of quantal fluctuations. In particular, we show that the zero point fluctuations result in a large diamagnetic contribution to the magnetic susceptibility. - Abstract: It has been proposed that in a ferroelectric insulator, an applied magnetic field may couple the transverse phonon modes and produce left and right circularly polarized phonon modes which are no longer degenerate. We quantize the theory and examine the effects of quantal fluctuations. In particular, we show that the zero-point fluctuations result in a large diamagnetic contribution to the magnetic susceptibility.

  20. The fluctuating gap model

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Xiaobin

    2011-01-15

    The quasi-one-dimensional systems exhibit some unusual phenomenon, such as the Peierls instability, the pseudogap phenomena and the absence of a Fermi-Dirac distribution function line shape in the photoemission spectroscopy. Ever since the discovery of materials with highly anisotropic properties, it has been recognized that fluctuations play an important role above the three-dimensional phase transition. This regime where the precursor fluctuations are presented can be described by the so called fluctuating gap model (FGM) which was derived from the Froehlich Hamiltonian to study the low energy physics of the one-dimensional electron-phonon system. Not only is the FGM of great interest in the context of quasi-one-dimensional materials, liquid metal and spin waves above T{sub c} in ferromagnets, but also in the semiclassical approximation of superconductivity, it is possible to replace the original three-dimensional problem by a directional average over effectively one-dimensional problem which in the weak coupling limit is described by the FGM. In this work, we investigate the FGM in a wide temperature range with different statistics of the order parameter fluctuations. We derive a formally exact solution to this problem and calculate the density of states, the spectral function and the optical conductivity. In our calculation, we show that a Dyson singularity appears in the low energy density of states for Gaussian fluctuations in the commensurate case. In the incommensurate case, there is no such kind of singularity, and the zero frequency density of states varies differently as a function of the correlation lengths for different statistics of the order parameter fluctuations. Using the density of states we calculated with non-Gaussian order parameter fluctuations, we are able to calculate the static spin susceptibility which agrees with the experimental data very well. In the calculation of the spectral functions, we show that as the correlation increases, the

  1. The fluctuating gap model

    International Nuclear Information System (INIS)

    Cao, Xiaobin

    2011-01-01

    The quasi-one-dimensional systems exhibit some unusual phenomenon, such as the Peierls instability, the pseudogap phenomena and the absence of a Fermi-Dirac distribution function line shape in the photoemission spectroscopy. Ever since the discovery of materials with highly anisotropic properties, it has been recognized that fluctuations play an important role above the three-dimensional phase transition. This regime where the precursor fluctuations are presented can be described by the so called fluctuating gap model (FGM) which was derived from the Froehlich Hamiltonian to study the low energy physics of the one-dimensional electron-phonon system. Not only is the FGM of great interest in the context of quasi-one-dimensional materials, liquid metal and spin waves above T c in ferromagnets, but also in the semiclassical approximation of superconductivity, it is possible to replace the original three-dimensional problem by a directional average over effectively one-dimensional problem which in the weak coupling limit is described by the FGM. In this work, we investigate the FGM in a wide temperature range with different statistics of the order parameter fluctuations. We derive a formally exact solution to this problem and calculate the density of states, the spectral function and the optical conductivity. In our calculation, we show that a Dyson singularity appears in the low energy density of states for Gaussian fluctuations in the commensurate case. In the incommensurate case, there is no such kind of singularity, and the zero frequency density of states varies differently as a function of the correlation lengths for different statistics of the order parameter fluctuations. Using the density of states we calculated with non-Gaussian order parameter fluctuations, we are able to calculate the static spin susceptibility which agrees with the experimental data very well. In the calculation of the spectral functions, we show that as the correlation increases, the quasi

  2. Some results of the spectra of random Schroedinger operators and their application to random point interaction models in one and three dimensions

    International Nuclear Information System (INIS)

    Kirsch, W.; Martinelli, F.

    1981-01-01

    After the derivation of weak conditions under which the potential for the Schroedinger operator is well defined the authers state an ergodicity assumption of this potential which ensures that the spectrum of this operator is a fixed non random set. Then random point interaction Hamiltonians are considered in this framework. Finally the authors consider a model where for sufficiently small fluctuations around the equilibrium positions a finite number of gaps appears. (HSI)

  3. Energy paper II: Nuclear energy revival

    International Nuclear Information System (INIS)

    Anonymous

    2008-01-01

    ESI Energy paper is called 'Issue Paper' awarded by think-tank Energy Security Institute. The second issue focuses on the energy security of countries from the perspective of Renaissance of construction of nuclear power plants. Topicality is documented by fluctuations in fossil fuel prices on the world commodity markets and by extortionate potential, disposed by their main producers. The Slovak Republic is actively engaged into international dialogue on the need for the development of nuclear energy.

  4. Visible imaging of edge fluctuations in TFTR

    International Nuclear Information System (INIS)

    Zweben, S.J.; Medley, S.S.

    1989-03-01

    Images of the visible light emission from the inner wall region of TFTR have been made using a rapidly gated, intensified TV camera. Strong ''filamentation'' of the neutral deuterium Dα light is observed when the camera gating time is <100 μsec during neutral-beam-heated discharges. These turbulent filaments vary in position randomly vs. time and have a poloidal wavelength of ∼3-5 cm which is much shorter than their parallel wavelength of ∼100 cm. A second and new type of edge fluctuation phenomenon, which we call a ''merfe,'' is also described. Merfes are a regular poloidal pattern of toroidally symmetric, small-scale marfes which move away from the inner midplane during the current decay after neutral beam injection. Some tentative interpretations of these two phenomena are presented. 27 refs., 8 figs

  5. Effect of the ground state correlations in the density distribution and zero point fluctuations

    International Nuclear Information System (INIS)

    Barranco, F.; Broglia, R.A.

    1985-01-01

    The existence of collective vibrations in the spectrum implies that the description of the ground state in an independent particle model must be corrected. This is because of the zero point fluctuations induced by the collective vibrations, so that ground state correlations have to be included. These are taken into account via the diagrammatic expansion of the Nuclear Field Theory, giving place to a renormalization in the different properties of the ground state. As far as the density distribution is concerned, in a NFT consistent calculation, the largest contributions arise from diagrams that cannot be expressed in terms of backward going amplitudes of the phonon RPA wave function. For a given multipolarity the main correction comes from the low lying state. The giant resonance is of smaller relevance since it lies at larger energies in the response function. The octupole modes give the dominant contribution, and the effect in average becomes smaller as the multipolarity increases. These results agree quite well with those obtained taking into account the zero point fluctuations of the nuclear surface in the collective model with the Esbensen and Bertsch prescription, which the authors use to explain the anomalous behaviour of the mean square radii of the Calcium isotopes

  6. Nuclear structure theory

    International Nuclear Information System (INIS)

    French, J.B.; Koltun, D.S.

    1989-01-01

    This report summarizes progress during the past year in the following areas of research: Pion charge exchange reactions, including a theory of the contribution of pion absorption and correlated double scattering to double charge exchange, new coupled channel calculations for single and double charge exchange from 14 C. Nuclear inelastic scattering, using quark models to calculate nuclear structure functions, and test for sensitivity to the substructure of nucleons in nuclei. Fluctuation-free statistical spectroscopy including the theory and computer programs for interacting-particle densities, spin cutoff factors, occupancies, strength sums, and other expectation values. Proposed research for the coming year in each area is presented

  7. Analysis of dynamic multiplicity fluctuations at PHOBOS

    Science.gov (United States)

    Chai, Zhengwei; PHOBOS Collaboration; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Holynski, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tang, J. L.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wolfs, F. L. H.; Wosiek, B.; Wozniak, K.; Wuosmaa, A. H.; Wyslouch, B.

    2005-01-01

    This paper presents the analysis of the dynamic fluctuations in the inclusive charged particle multiplicity measured by PHOBOS for Au+Au collisions at surdsNN = 200GeV within the pseudo-rapidity range of -3 < η < 3. First the definition of the fluctuations observables used in this analysis is presented, together with the discussion of their physics meaning. Then the procedure for the extraction of dynamic fluctuations is described. Some preliminary results are included to illustrate the correlation features of the fluctuation observable. New dynamic fluctuations results will be available in a later publication.

  8. Phase transitions in transmission lines with long-range fluctuating correlated disorder

    International Nuclear Information System (INIS)

    Lazo, E.; Diez, E.

    2013-01-01

    In this work we study the localization properties of the disordered classical dual transmission lines, when the values of capacitances {C j } and inductances {L j } fluctuate in phase in the form C j =C 0 +bsin(2πx j ) and L j =L 0 +bsin(2πx j ), where b is the fluctuation amplitude. {x j } is a disordered long-range correlated sequence obtained using the Fourier filtering method which depends on the correlation exponent α. To obtain the transition point in the thermodynamic limit, we study the critical behavior of the participation number D. To do so, we calculate the linear relationship between ln(D) versus ln(N), the relative fluctuation η D and the Binder cumulant B D . The critical value obtained with these three methods is totally coincident between them. In addition, we calculate the critical behavior of the normalized localization length Λ(b) as a function of the system size N. With these data we build the phase diagram (b,α), which separates the extended states from the localized states. A final result of our work is the disappearance of the conduction bands when we introduce a finite number of impurities in random sites. This process can serve as a mechanism of secure communication, since a little alteration of the original sequence of capacitances and inductances, can destroy the band of extended states

  9. Galilean invariance and homogeneous anisotropic randomly stirred flows

    International Nuclear Information System (INIS)

    Berera, Arjun; Hochberg, David

    2005-01-01

    The Ward-Takahashi identities for incompressible flow implied by Galilean invariance are derived for the randomly forced Navier-Stokes equation, in which both the mean and fluctuating velocity components are explicitly present. The consequences of the Galilean invariance for the vertex renormalization are drawn from this identity

  10. Wind fluctuations over the North Sea

    DEFF Research Database (Denmark)

    Vincent, Claire Louise; Pinson, Pierre; Giebel, Gregor

    2011-01-01

    Climatological patterns in wind speed fluctuations with periods of 1 min to 10 h are analysed using data from a meteorological mast in the Danish North Sea. Fluctuations on these time scales are of particular relevance to the effective management of the power supply from large wind farms. The Hil......Climatological patterns in wind speed fluctuations with periods of 1 min to 10 h are analysed using data from a meteorological mast in the Danish North Sea. Fluctuations on these time scales are of particular relevance to the effective management of the power supply from large wind farms...

  11. Electric Field Fluctuations in Water

    Science.gov (United States)

    Thorpe, Dayton; Limmer, David; Chandler, David

    2013-03-01

    Charge transfer in solution, such as autoionization and ion pair dissociation in water, is governed by rare electric field fluctuations of the solvent. Knowing the statistics of such fluctuations can help explain the dynamics of these rare events. Trajectories short enough to be tractable by computer simulation are virtually certain not to sample the large fluctuations that promote rare events. Here, we employ importance sampling techniques with classical molecular dynamics simulations of liquid water to study statistics of electric field fluctuations far from their means. We find that the distributions of electric fields located on individual water molecules are not in general gaussian. Near the mean this non-gaussianity is due to the internal charge distribution of the water molecule. Further from the mean, however, there is a previously unreported Bjerrum-like defect that stabilizes certain large fluctuations out of equilibrium. As expected, differences in electric fields acting between molecules are gaussian to a remarkable degree. By studying these differences, though, we are able to determine what configurations result not only in large electric fields, but also in electric fields with long spatial correlations that may be needed to promote charge separation.

  12. Feedwater control system in nuclear power plants

    International Nuclear Information System (INIS)

    Masuyama, Hideo.

    1981-01-01

    Purpose: To enable switching operation for feedwater systems in a short time and with no fluctuations in the reactor water level by increasing or decreasing the flow rate in the feedwater systems during automatic operation by the amount of the fluctuations in the flow rate in the feedwater system during manual operation. Constitution: In a BWR type nuclear power plant having a plurality of feedwater systems to a nuclear reactor, a feedwater control system is constituted with a reactor water level controller, a M/A switcher for switching either of automatic flow rate demand signals or manual flow rate set signals from the reactor level controller to apply flow rate demand signals for each of the feedwater systems, a calculation device for calculating the flow rate set signals in the feedwater systems during manual operation and an adder for subtracting the flow rate set signals in the manual feedwater system calculated in the calculating device from the automatic flow rate demand signals for the feedwater systems during automatic operation. This enables rapid switching for the feedwater systems with no fluctuations in the reactor water level by increasing or decreasing the flow rate in the feedwater systems during automatic operation by the amount of fluctuations in the flow rate in the feedwater systems during manual operation and compensating the effects in upon manual and automatic switching by the M/A switcher. (Seki, T.)

  13. Elucidating fluctuating diffusivity in center-of-mass motion of polymer models with time-averaged mean-square-displacement tensor

    Science.gov (United States)

    Miyaguchi, Tomoshige

    2017-10-01

    There have been increasing reports that the diffusion coefficient of macromolecules depends on time and fluctuates randomly. Here a method is developed to elucidate this fluctuating diffusivity from trajectory data. Time-averaged mean-square displacement (MSD), a common tool in single-particle-tracking (SPT) experiments, is generalized to a second-order tensor with which both magnitude and orientation fluctuations of the diffusivity can be clearly detected. This method is used to analyze the center-of-mass motion of four fundamental polymer models: the Rouse model, the Zimm model, a reptation model, and a rigid rodlike polymer. It is found that these models exhibit distinctly different types of magnitude and orientation fluctuations of diffusivity. This is an advantage of the present method over previous ones, such as the ergodicity-breaking parameter and a non-Gaussian parameter, because with either of these parameters it is difficult to distinguish the dynamics of the four polymer models. Also, the present method of a time-averaged MSD tensor could be used to analyze trajectory data obtained in SPT experiments.

  14. Nonstatistical fluctuation in 16O-Ag/Br collisions at 200 A GeV/c

    International Nuclear Information System (INIS)

    Ghosh, M.K.; Mukhopadhyay, A.; Haldar, P.K.; Manna, S.K.; Singh, G.

    2009-01-01

    Presence of non-statistical fluctuations in the density distribution of singly charged particles produced in 16 O-Ag/Br interactions at an incident momentum of 200A GeV/c, has been identified and characterized with the help of the intermittency technique. Nuclear photoemulsion data on 16 O-Ag/Br events have been used in the analysis. In each of the 280 events present in the sample, the projectile nucleus underwent complete fragmentation

  15. Insects in fluctuating thermal environments.

    Science.gov (United States)

    Colinet, Hervé; Sinclair, Brent J; Vernon, Philippe; Renault, David

    2015-01-07

    All climate change scenarios predict an increase in both global temperature means and the magnitude of seasonal and diel temperature variation. The nonlinear relationship between temperature and biological processes means that fluctuating temperatures lead to physiological, life history, and ecological consequences for ectothermic insects that diverge from those predicted from constant temperatures. Fluctuating temperatures that remain within permissive temperature ranges generally improve performance. By contrast, those which extend to stressful temperatures may have either positive impacts, allowing repair of damage accrued during exposure to thermal extremes, or negative impacts from cumulative damage during successive exposures. We discuss the mechanisms underlying these differing effects. Fluctuating temperatures could be used to enhance or weaken insects in applied rearing programs, and any prediction of insect performance in the field-including models of climate change or population performance-must account for the effect of fluctuating temperatures.

  16. Nonequilibrium quantum fluctuations of work.

    Science.gov (United States)

    Allahverdyan, A E

    2014-09-01

    The concept of work is basic for statistical thermodynamics. To gain a fuller understanding of work and its (quantum) features, it needs to be represented as an average of a fluctuating quantity. Here I focus on the work done between two moments of time for a thermally isolated quantum system driven by a time-dependent Hamiltonian. I formulate two natural conditions needed for the fluctuating work to be physically meaningful for a system that starts its evolution from a nonequilibrium state. The existing definitions do not satisfy these conditions due to issues that are traced back to noncommutativity. I propose a definition of fluctuating work that is free of previous drawbacks and that applies for a wide class of nonequilibrium initial states. It allows the deduction of a generalized work-fluctuation theorem that applies for an arbitrary (out-of-equilibrium) initial state.

  17. Coupled Quantum Fluctuations and Quantum Annealing

    Science.gov (United States)

    Hormozi, Layla; Kerman, Jamie

    We study the relative effectiveness of coupled quantum fluctuations, compared to single spin fluctuations, in the performance of quantum annealing. We focus on problem Hamiltonians resembling the the Sherrington-Kirkpatrick model of Ising spin glass and compare the effectiveness of different types of fluctuations by numerically calculating the relative success probabilities and residual energies in fully-connected spin systems. We find that for a small class of instances coupled fluctuations can provide improvement over single spin fluctuations and analyze the properties of the corresponding class. Disclaimer: This research was funded by ODNI, IARPA via MIT Lincoln Laboratory under Air Force Contract No. FA8721-05-C-0002. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of ODNI, IARPA, or the US Government.

  18. Stability and fluctuations in black hole thermodynamics

    International Nuclear Information System (INIS)

    Ruppeiner, George

    2007-01-01

    I examine thermodynamic fluctuations for a Kerr-Newman black hole in an extensive, infinite environment. This problem is not strictly solvable because full equilibrium with such an environment cannot be achieved by any black hole with mass M, angular momentum J, and charge Q. However, if we consider one (or two) of M, J, or Q to vary so slowly compared with the others that we can regard it as fixed, instances of stability occur, and thermodynamic fluctuation theory could plausibly apply. I examine seven cases with one, two, or three independent fluctuating variables. No knowledge about the thermodynamic behavior of the environment is needed. The thermodynamics of the black hole is sufficient. Let the fluctuation moment for a thermodynamic quantity X be √( 2 >). Fluctuations at fixed M are stable for all thermodynamic states, including that of a nonrotating and uncharged environment, corresponding to average values J=Q=0. Here, the fluctuation moments for J and Q take on maximum values. That for J is proportional to M. For the Planck mass it is 0.3990(ℎ/2π). That for Q is 3.301e, independent of M. In all cases, fluctuation moments for M, J, and Q go to zero at the limit of the physical regime, where the temperature goes to zero. With M fluctuating there are no stable cases for average J=Q=0. But, there are transitions to stability marked by infinite fluctuations. For purely M fluctuations, this coincides with a curve which Davies identified as a phase transition

  19. Charge-imbalance fluctuations in superconductors

    International Nuclear Information System (INIS)

    Lemberger, T.R.

    1981-01-01

    We calculate that the mean-square amplitude of the fluctuations of the condensate chemical potential μ/sub s/ due to charge-imbalance fluctuations in the limit Δ/k/sub B/T 2 > = 2(k/sub B/T) 2 /πdeltaΩN(0) in a volume Ω of superconductor. We relate these fluctuations via Nyquist's theorem to measured values of the contribution of self-injected charge imbalance to the dc resistance of SIN tunnel junctions. In this relation the dynamic charge-imbalance relaxation rate is 1/tau/sub E/, the electron-phonon scattering rate

  20. Thermal fatigue analysis of vertical annulus with inner rotating cylinder induced by two temperature fluid mixing

    International Nuclear Information System (INIS)

    Miyano, Hiroshi; Narabayashi, Tadashi

    2011-01-01

    Mechanical seal for nuclear reactor coolant recirculation pump must purge the cold water supply from the outside. The cold purge water is flowing into the hot water zone in the pump through a narrow gap between pump shaft and casing over. On the mixing region of the cold purge water and hot water in the narrow gap, the random level temperature fluctuation occurs on the structural metal surface of casing cover and pump shaft. Then it could lead to cyclic thermal stress and fatigue damage. The experiments and analysis have done, made clear the mechanism of generation of temperature fluctuations. Also, it was studied how to measure the structure of the mixing zone temperature control and how to prevent the occurrence of a large temperature fluctuation. In addition, it is proposed the method of evaluating a random temperature fluctuation by using the envelope curve and its fatigue by OOR counting to applying to the evaluation of the similar random fluid temperature fluctuation problems. (author)

  1. Nonlinear Characteristics of Randomly Excited Transonic Flutter

    DEFF Research Database (Denmark)

    Christiansen, Lasse Engbo; Lehn-Schiøler, Tue; Mosekilde, Erik

    2002-01-01

    . When this model is extended by the introduction of nonlinear terms, it can reproduce the subcritical Hopf bifurcation. We hereafter consider the effects of subjecting simplified versions of the model to random external excitations representing the fluctuations present in the airflow. These models can......The paper describes the effects of random external excitations on the onset and dynamical characteristics of transonic flutter (i.e. large-amplitude, self-sustained oscillations) for a high aspect ratio wing. Wind tunnel experiments performed at the National Aerospace Laboratory (NAL) in Japan have...

  2. A random matrix approach to credit risk.

    Directory of Open Access Journals (Sweden)

    Michael C Münnix

    Full Text Available We estimate generic statistical properties of a structural credit risk model by considering an ensemble of correlation matrices. This ensemble is set up by Random Matrix Theory. We demonstrate analytically that the presence of correlations severely limits the effect of diversification in a credit portfolio if the correlations are not identically zero. The existence of correlations alters the tails of the loss distribution considerably, even if their average is zero. Under the assumption of randomly fluctuating correlations, a lower bound for the estimation of the loss distribution is provided.

  3. A random matrix approach to credit risk.

    Science.gov (United States)

    Münnix, Michael C; Schäfer, Rudi; Guhr, Thomas

    2014-01-01

    We estimate generic statistical properties of a structural credit risk model by considering an ensemble of correlation matrices. This ensemble is set up by Random Matrix Theory. We demonstrate analytically that the presence of correlations severely limits the effect of diversification in a credit portfolio if the correlations are not identically zero. The existence of correlations alters the tails of the loss distribution considerably, even if their average is zero. Under the assumption of randomly fluctuating correlations, a lower bound for the estimation of the loss distribution is provided.

  4. Meson theory and nuclear matter

    International Nuclear Information System (INIS)

    Skyrme, T.H.R.

    1994-01-01

    An attempt is made to justify the use of the concept of a 'mesic fluid' in connection with the structure of nuclear matter. A transformation is made of the usual symmetric pseudo-scalar meson theory to bring into evidence certain saturation properties, which provide a natural basis for the use of a 'self-consistent' field in the discussion of nuclear structure. Fluctuations about this semi-classical saturated state will give rise to residual interparticle forces within the nucleus, and are also briefly considered in relation to electromagnetic interactions. (author). 5 refs

  5. Charge Fluctuations in Nanoscale Capacitors

    NARCIS (Netherlands)

    Limmer, D.T.; Merlet, C.; Salanne, M.; Chandler, D.; Madden, P.A.; van Roij, R.H.H.G.; Rotenberg, B.

    2013-01-01

    The fluctuations of the charge on an electrode contain information on the microscopic correlations within the adjacent fluid and their effect on the electronic properties of the interface. We investigate these fluctuations using molecular dynamics simulations in a constant-potential ensemble with

  6. Fluctuating attention in Parkinson's disease

    DEFF Research Database (Denmark)

    Starrfelt, Randi; Aarsland, Dag; Janvin, Carmen

    2001-01-01

    Lewy body dementia (DLB), which share many clinical and pathological features with Parkinson’s disease (PD), is charac- terised by marked fluctuations in cognition and consciousness. Fluctuating cognition has not been formally studied in PD, although some studies indicate that PD patients show...

  7. Quasilinear theory without the random phase approximation

    International Nuclear Information System (INIS)

    Weibel, E.S.; Vaclavik, J.

    1980-08-01

    The system of quasilinear equations is derived without making use of the random phase approximation. The fluctuating quantities are described by the autocorrelation function of the electric field using the techniques of Fourier analysis. The resulting equations posses the necessary conservation properties, but comprise new terms which hitherto have been lost in the conventional derivations

  8. Fluctuations in the cosmic microwave background

    International Nuclear Information System (INIS)

    Banday, A.J.; Wolfendale, A.W.

    1990-01-01

    In view of the importance to contemporary cosmology, and to our understanding of the Universe, of the precise nature of the Cosmic Microwave Background (CMB) spectrum, we consider the effects on this spectrum of contamination by other radiation fields of both galactic and extragalactic origin. Particular attention is given to the significance of measurements of the fluctuations in the 'background' radiation detected at 10.46 GHz and we conclude that these fluctuations are of the same magnitude as those expected from galactic cosmic-ray effects. A more detailed study of the cosmic-ray induced fluctuations and measurements at higher frequencies will be needed before genuine CMB fluctuations can be claimed. (author)

  9. Fluctuations and Instability in Sedimentation

    KAUST Repository

    Guazzelli, Élisabeth

    2011-01-21

    This review concentrates on the fluctuations of the velocities of sedimenting spheres, and on the structural instability of a suspension of settling fibers. For many years, theoretical estimates and numerical simulations predicted the fluctuations of the velocities of spheres to increase with the size of the container, whereas experiments found no such variation. Two ideas have increased our understanding. First, the correlation length of the velocity fluctuations was found experimentally to be 20 interparticle separations. Second, in dilute suspensions, a vertical variation in the concentration due to the spreading of the front with the clear fluid can inhibit the velocity fluctuations. In a very dilute regime, a homogeneous suspension of fibers suffers a spontaneous instability in which fast descending fiber-rich columns are separated by rising fiber-sparse columns. In a semidilute regime, the settling is hindered, more so than for spheres. © 2011 by Annual Reviews. All rights reserved.

  10. Hedging electricity price volatility using nuclear power

    International Nuclear Information System (INIS)

    Mari, Carlo

    2014-01-01

    Highlights: • Nuclear power is an important asset to reduce the volatility of electricity prices. • Unpredictability of fossil fuels and carbon prices makes power prices very volatile. • The dynamics of fossil fuels and carbon prices is described by Brownian motions. • LCOE values, volatilities and correlations are obtained via Monte Carlo simulations. • Optimal portfolios of generating technologies are get using a mean–variance approach. - Abstract: The analysis presented in this paper aims to put in some evidence the role of nuclear power as hedging asset against the volatility of electricity prices. The unpredictability of natural gas and coal market prices as well as the uncertainty in environmental policies may affect power generating costs, thus enhancing volatility in electricity market prices. The nuclear option, allowing to generate electricity without carbon emissions, offers the possibility to reduce the volatility of electricity prices through optimal diversification of power generating technologies. This paper provides a methodological scheme to plan well diversified “portfolios” of generating capacity that minimize the electricity price risk induced by random movements of fossil fuels market prices and by unpredictable fluctuations of carbon credits prices. The analysis is developed within a stochastic environment in which the dynamics of fuel prices as well as the dynamics of carbon credits prices is assumed to evolve in time according to well defined Brownian processes. Starting from market data and using Monte Carlo techniques to simulate generating cost values, the hedging argument is developed by selecting optimal portfolio of power generating technologies using a mean–variance approach

  11. Fluctuation-enhanced electric conductivity in electrolyte solutions.

    Science.gov (United States)

    Péraud, Jean-Philippe; Nonaka, Andrew J; Bell, John B; Donev, Aleksandar; Garcia, Alejandro L

    2017-10-10

    We analyze the effects of an externally applied electric field on thermal fluctuations for a binary electrolyte fluid. We show that the fluctuating Poisson-Nernst-Planck (PNP) equations for charged multispecies diffusion coupled with the fluctuating fluid momentum equation result in enhanced charge transport via a mechanism distinct from the well-known enhancement of mass transport that accompanies giant fluctuations. Although the mass and charge transport occurs by advection by thermal velocity fluctuations, it can macroscopically be represented as electrodiffusion with renormalized electric conductivity and a nonzero cation-anion diffusion coefficient. Specifically, we predict a nonzero cation-anion Maxwell-Stefan coefficient proportional to the square root of the salt concentration, a prediction that agrees quantitatively with experimental measurements. The renormalized or effective macroscopic equations are different from the starting PNP equations, which contain no cross-diffusion terms, even for rather dilute binary electrolytes. At the same time, for infinitely dilute solutions the renormalized electric conductivity and renormalized diffusion coefficients are consistent and the classical PNP equations with renormalized coefficients are recovered, demonstrating the self-consistency of the fluctuating hydrodynamics equations. Our calculations show that the fluctuating hydrodynamics approach recovers the electrophoretic and relaxation corrections obtained by Debye-Huckel-Onsager theory, while elucidating the physical origins of these corrections and generalizing straightforwardly to more complex multispecies electrolytes. Finally, we show that strong applied electric fields result in anisotropically enhanced "giant" velocity fluctuations and reduced fluctuations of salt concentration.

  12. Coexistence of Velocity Renormalization and Ferrimagnetic Fluctuation in the Organic Dirac Electron System α-(BEDT-TTF)2I3

    Science.gov (United States)

    Matsuno, Genki; Kobayashi, Akito

    2018-05-01

    We evaluate the uniform spin susceptibility in an extended Hubbard model describing α-(BEDT-TTF)2I3. Employing the Fock-type self-energy with the long-range Coulomb interaction and the random phase approximation with the on-site Coulomb interaction, it is clarified that the characteristic energy scales at which ferrimagnetic fluctuation and velocity renormalization emerge are different. This is why these phenomena coexist while the ferrimagnetic fluctuation is disturbed by the velocity renormalization. In addition, it is found that screening effect to the self-energy is irrelevant in the presence of a strong on-site Coulomb interaction U.

  13. Detrended fluctuation analysis made flexible to detect range of cross-correlated fluctuations

    Science.gov (United States)

    Kwapień, Jarosław; Oświecimka, Paweł; DroŻdŻ, Stanisław

    2015-11-01

    The detrended cross-correlation coefficient ρDCCA has recently been proposed to quantify the strength of cross-correlations on different temporal scales in bivariate, nonstationary time series. It is based on the detrended cross-correlation and detrended fluctuation analyses (DCCA and DFA, respectively) and can be viewed as an analog of the Pearson coefficient in the case of the fluctuation analysis. The coefficient ρDCCA works well in many practical situations but by construction its applicability is limited to detection of whether two signals are generally cross-correlated, without the possibility to obtain information on the amplitude of fluctuations that are responsible for those cross-correlations. In order to introduce some related flexibility, here we propose an extension of ρDCCA that exploits the multifractal versions of DFA and DCCA: multifractal detrended fluctuation analysis and multifractal detrended cross-correlation analysis, respectively. The resulting new coefficient ρq not only is able to quantify the strength of correlations but also allows one to identify the range of detrended fluctuation amplitudes that are correlated in two signals under study. We show how the coefficient ρq works in practical situations by applying it to stochastic time series representing processes with long memory: autoregressive and multiplicative ones. Such processes are often used to model signals recorded from complex systems and complex physical phenomena like turbulence, so we are convinced that this new measure can successfully be applied in time-series analysis. In particular, we present an example of such application to highly complex empirical data from financial markets. The present formulation can straightforwardly be extended to multivariate data in terms of the q -dependent counterpart of the correlation matrices and then to the network representation.

  14. NMR line broadening in solids by slowing down of spin fluctuations

    International Nuclear Information System (INIS)

    Mehring, M.; Sinning, G.; Pines, A.; California Univ., Berkeley

    1976-01-01

    The 109 Ag nuclear magnetic resonance line in a sample of polycrystalline AgF is observed to broaden substantially when the 19 F spins are irradiated near the magic angle in their rotating frame. This is due to the reduction of 19 F- 19 F dipolar coupling, which normally causes fluctuations in the 19 F- 109 Ag interactions (Abragam and Winter), inducing an exchange narrowing analogous to classical motional narrowing. The 109 Ag linewidths obtained over the entire motional range at different 19 F frequencies are compared with those calculated exactly from the ratio of second to fourth moment. (orig.) [de

  15. Instability in relativistic nuclear matter

    International Nuclear Information System (INIS)

    Tezuka, Hirokazu.

    1979-11-01

    The stability of the Fermi gas state in the nuclear matter which satisfies the saturation property is considered relativistically. It is shown that the Fermi gas state is stable at very low density and at high density, but it is unstable for density fluctuation in the intermediate density region including the normal density. (author)

  16. Deterministic nonlinear characteristics of in vivo blood flow velocity and arteriolar diameter fluctuations

    International Nuclear Information System (INIS)

    Parthimos, D; Osterloh, K; Pries, A R; Griffith, T M

    2004-01-01

    We have performed a nonlinear analysis of fluctuations in red cell velocity and arteriolar calibre in the mesenteric bed of the anaesthetized rat. Measurements were obtained under control conditions and during local superfusion with N G -nitro-L-arginine (L-NNA, 30 μM) and tetrabutylammonium (TBA, 0.1 mM), which suppress NO synthesis and block Ca 2+ activated K + channels (K Ca ), respectively. Time series were analysed by calculating correlation dimensions and largest Lyapunov exponents. Both statistics were higher for red cell velocity than diameter fluctuations, thereby potentially differentiating between global and local mechanisms that regulate microvascular flow. Evidence for underlying nonlinear structure was provided by analysis of surrogate time series generated from the experimental data following randomization of Fourier phase. Complexity indices characterizing time series under control conditions were in general higher than those derived from data obtained during superfusion with L-NNA and TBA

  17. Fluctuating exciton localization in giant π-conjugated spoked-wheel macrocycles

    Science.gov (United States)

    Aggarwal, A. Vikas; Thiessen, Alexander; Idelson, Alissa; Kalle, Daniel; Würsch, Dominik; Stangl, Thomas; Steiner, Florian; Jester, Stefan-S.; Vogelsang, Jan; Höger, Sigurd; Lupton, John M.

    2013-11-01

    Conjugated polymers offer potential for many diverse applications, but we still lack a fundamental microscopic understanding of their electronic structure. Elementary photoexcitations (excitons) span only a few nanometres of a molecule, which itself can extend over microns, and how their behaviour is affected by molecular dimensions is not immediately obvious. For example, where is the exciton formed within a conjugated segment and is it always situated on the same repeat units? Here, we introduce structurally rigid molecular spoked wheels, 6 nm in diameter, as a model of extended π conjugation. Single-molecule fluorescence reveals random exciton localization, which leads to temporally varying emission polarization. Initially, this random localization arises after every photon absorption event because of temperature-independent spontaneous symmetry breaking. These fast fluctuations are slowed to millisecond timescales after prolonged illumination. Intramolecular heterogeneity is revealed in cryogenic spectroscopy by jumps in transition energy, but emission polarization can also switch without a spectral jump occurring, which implies long-range homogeneity in the local dielectric environment.

  18. Mesoscale wind fluctuations over Danish waters

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, C.L.

    2010-12-15

    Mesoscale wind fluctuations affect the large scale integration of wind power because they undermine the day-ahead predictability of wind speed and power production, and because they can result in large fluctuations in power generation that must be balanced using reserve power. Large fluctuations in generated power are a particular problem for offshore wind farms because the typically high concentration of turbines within a limited geographical area means that fluctuations can be correlated across large numbers of turbines. Furthermore, organised mesoscale structures that often form over water, such as convective rolls and cellular convection, have length scales of tens of kilometers, and can cause large wind fluctuations on a time scale of around an hour. This thesis is an exploration of the predictability of mesoscale wind fluctuations using observations from the world's first two large offshore wind farms - Horns Rev I in the North Sea, and Nysted in the Baltic Sea. The thesis begins with a climatological analysis of wind fluctuations on time scales of 1-10 hours at the two sites. A novel method for calculating conditional climatologies of spectral information is proposed, based on binning and averaging the time axis of the Hilbert spectrum. Results reveal clear patterns between wind fluctuations and locally observed meteorological conditions. The analysis is expanded by classifying wind fluctuations on time scales of 1-3 hours according to synoptic patterns, satellite pictures and wind classes. Results indicate that cold air outbreaks and open cellular convection are a significant contributor to mesoscale wind variability at Horns Rev. The predictability of mesoscale wind fluctuations is tested by implementing standard statistical models that relate local wind variability to parameters based on a large scale weather analysis. The models show some skill, but only achieve a 15% improvement on a persistence forecast. The possibility of explicitly modelling

  19. Method for operating nuclear reactor

    International Nuclear Information System (INIS)

    Utamura, Motoaki; Urata, Megumu; Uchida, Shunsuke

    1978-01-01

    Purpose: In order to judge the fuel failures, if any, without opening a reactor container for BWR type reactors, a method has been described for measuring the difference between the temperature dependent iodine spike value and the pressure dependent iodine spike value in the pressure vessel. Method: After the scram of a nuclear reactor, steam generated by decay heat is condensed in a remaining heat exchanger and cooling water is returned through a recycling pipe line to a reactor core. At the same time, a control rod drive system pump is operated, the reactor core is filled with the cooling water. Then, the coolant is taken from the recycling pipe line to cool the reactor core. After applying the temperature fluctuation, the cooling water is sampled at a predetermined time interval at a sampling point to determine the changes with time in the radioactive concentration of iodine. When the radioactivity of iodine in the cooling water is lowered sufficiently by a reactor purifying system, the nuclear reactor vessel is depressurized. After applying pressure fluctuation, iodine spike value is determined. (Kawakami, Y.)

  20. Fluctuations of the transcription factor ATML1 generate the pattern of giant cells in the Arabidopsis sepal

    Science.gov (United States)

    Meyer, Heather M; Teles, José; Formosa-Jordan, Pau; Refahi, Yassin; San-Bento, Rita; Ingram, Gwyneth; Jönsson, Henrik; Locke, James C W; Roeder, Adrienne H K

    2017-01-01

    Multicellular development produces patterns of specialized cell types. Yet, it is often unclear how individual cells within a field of identical cells initiate the patterning process. Using live imaging, quantitative image analyses and modeling, we show that during Arabidopsis thaliana sepal development, fluctuations in the concentration of the transcription factor ATML1 pattern a field of identical epidermal cells to differentiate into giant cells interspersed between smaller cells. We find that ATML1 is expressed in all epidermal cells. However, its level fluctuates in each of these cells. If ATML1 levels surpass a threshold during the G2 phase of the cell cycle, the cell will likely enter a state of endoreduplication and become giant. Otherwise, the cell divides. Our results demonstrate a fluctuation-driven patterning mechanism for how cell fate decisions can be initiated through a random yet tightly regulated process. DOI: http://dx.doi.org/10.7554/eLife.19131.001 PMID:28145865

  1. Correlation analysis between the current fluctuation characteristics and the conductive filament morphology of HfO2-based memristor

    Science.gov (United States)

    Li, Yi; Yin, Kang-Sheng; Zhang, Mei-Yun; Cheng, Long; Lu, Ke; Long, Shi-Bing; Zhou, Yaxiong; Wang, Zhuorui; Xue, Kan-Hao; Liu, Ming; Miao, Xiang-Shui

    2017-11-01

    Memristors are attracting considerable interest for their prospective applications in nonvolatile memory, neuromorphic computing, and in-memory computing. However, the nature of resistance switching is still under debate, and current fluctuation in memristors is one of the critical concerns for stable performance. In this work, random telegraph noise (RTN) as the indication of current instabilities in distinct resistance states of the Pt/Ti/HfO2/W memristor is thoroughly investigated. Standard two-level digital-like RTN, multilevel current instabilities with non-correlation/correlation defects, and irreversible current transitions are observed and analyzed. The dependence of RTN on the resistance and read bias reveals that the current fluctuation depends strongly on the morphology and evolution of the conductive filament composed of oxygen vacancies. Our results link the current fluctuation behaviors to the evolution of the conductive filament and will guide continuous optimization of memristive devices.

  2. Measurement of magnetic fluctuation induced energy transport

    International Nuclear Information System (INIS)

    Fiksel, G.; Prager, S.C.; Shen, W.; Stoneking, M.

    1993-11-01

    The local electron energy flux produced by magnetic fluctuations has been measured directly in the MST reversed field pinch (over the radial range r/a > 0.75). The flux, produced by electrons traveling parallel to a fluctuating magnetic field, is obtained from correlation between the fluctuations in the parallel heat flux and the radial magnetic field. The fluctuation induced flux is large (100 kW/cm 2 ) in the ''core'' (r/a 2 ) in the edge

  3. Analog model for quantum gravity effects: phonons in random fluids.

    Science.gov (United States)

    Krein, G; Menezes, G; Svaiter, N F

    2010-09-24

    We describe an analog model for quantum gravity effects in condensed matter physics. The situation discussed is that of phonons propagating in a fluid with a random velocity wave equation. We consider that there are random fluctuations in the reciprocal of the bulk modulus of the system and study free phonons in the presence of Gaussian colored noise with zero mean. We show that, in this model, after performing the random averages over the noise function a free conventional scalar quantum field theory describing free phonons becomes a self-interacting model.

  4. Fluctuation studies at the subnuclear level of matter: Evidence for stability, stationarity, and scaling

    International Nuclear Information System (INIS)

    Liu Qin; Meng Tachung

    2004-01-01

    It is pointed out that the concepts and methods introduced by Bachelier and by Mandelbrot to finance and economics can be used to examine the fluctuations observed in high-energy hadron production processes. Theoretical arguments and experimental evidence are presented which show that the relative variations of hadron numbers between successive rapidity intervals are non-Gaussian stable random variables, which exhibit stationarity and scaling. The implications of the obtained results are discussed

  5. Parameter optimization in biased decoy-state quantum key distribution with both source errors and statistical fluctuations

    Science.gov (United States)

    Zhu, Jian-Rong; Li, Jian; Zhang, Chun-Mei; Wang, Qin

    2017-10-01

    The decoy-state method has been widely used in commercial quantum key distribution (QKD) systems. In view of the practical decoy-state QKD with both source errors and statistical fluctuations, we propose a universal model of full parameter optimization in biased decoy-state QKD with phase-randomized sources. Besides, we adopt this model to carry out simulations of two widely used sources: weak coherent source (WCS) and heralded single-photon source (HSPS). Results show that full parameter optimization can significantly improve not only the secure transmission distance but also the final key generation rate. And when taking source errors and statistical fluctuations into account, the performance of decoy-state QKD using HSPS suffered less than that of decoy-state QKD using WCS.

  6. Time fluctuation analysis of forest fire sequences

    Science.gov (United States)

    Vega Orozco, Carmen D.; Kanevski, Mikhaïl; Tonini, Marj; Golay, Jean; Pereira, Mário J. G.

    2013-04-01

    Forest fires are complex events involving both space and time fluctuations. Understanding of their dynamics and pattern distribution is of great importance in order to improve the resource allocation and support fire management actions at local and global levels. This study aims at characterizing the temporal fluctuations of forest fire sequences observed in Portugal, which is the country that holds the largest wildfire land dataset in Europe. This research applies several exploratory data analysis measures to 302,000 forest fires occurred from 1980 to 2007. The applied clustering measures are: Morisita clustering index, fractal and multifractal dimensions (box-counting), Ripley's K-function, Allan Factor, and variography. These algorithms enable a global time structural analysis describing the degree of clustering of a point pattern and defining whether the observed events occur randomly, in clusters or in a regular pattern. The considered methods are of general importance and can be used for other spatio-temporal events (i.e. crime, epidemiology, biodiversity, geomarketing, etc.). An important contribution of this research deals with the analysis and estimation of local measures of clustering that helps understanding their temporal structure. Each measure is described and executed for the raw data (forest fires geo-database) and results are compared to reference patterns generated under the null hypothesis of randomness (Poisson processes) embedded in the same time period of the raw data. This comparison enables estimating the degree of the deviation of the real data from a Poisson process. Generalizations to functional measures of these clustering methods, taking into account the phenomena, were also applied and adapted to detect time dependences in a measured variable (i.e. burned area). The time clustering of the raw data is compared several times with the Poisson processes at different thresholds of the measured function. Then, the clustering measure value

  7. Radioactive contamination in the Tokyo metropolitan area in the early stage of the Fukushima Daiichi Nuclear Power Plant (FDNPP accident and its fluctuation over five years.

    Directory of Open Access Journals (Sweden)

    Masanobu Ishida

    Full Text Available Radioactive contamination in the Tokyo metropolitan area in the immediate aftermath of the Fukushima Daiichi Nuclear Power Plant (FDNPP accident was analyzed via surface soil sampled during a two-month period after the accident. 131I, 134Cs, and 137Cs were detected in these soil samples. The activity and inventory of radioactive material in the eastern part of Tokyo tended to be high. The 134Cs/137Cs activity ratio in soil was 0.978 ± 0.053. The 131I/137Cs ratio fluctuated widely, and was 19.7 ± 9.0 (weighted average 18.71 ± 0.13, n = 14 in the Tokyo metropolitan area. The radioactive plume with high 131I activity spread into the Tokyo metropolitan area and was higher than the weighted average of 6.07 ± 0.04 (n = 26 in other areas. The radiocesium activity and inventory surveyed in soil from a garden in Chiyoda Ward in the center of Tokyo, fell approximately 85% in the four months after the accident, and subsequently tended to rise slightly while fluctuating widely. It is possible that migration and redistribution of radiocesium occurred. The behavior of radiocesium in Tokyo was analyzed via monitoring of radiocesium in sludge incineration ash. The radiocesium activity in the incineration ash was high at wastewater treatment centers that had catchment areas in eastern Tokyo and low at those with catchment areas in western Tokyo. Similar to the case of the garden soil, even in incineration ash, the radiocesium activity dropped rapidly immediately after the accident. The radiocesium activity in the incineration ash fell steadily from the tenth month after the accident until December 2016, and its half-life was about 500 days. According to frequency analysis, in central Tokyo, the cycles of fluctuation of radiocesium activity in incineration ash and rainfall conformed, clearly showing that radiocesium deposited in urban areas was resuspended and transported by rainfall run-off.

  8. Computer code system for the R and D of nuclear fuel cycle with fast reactor. 2. Development and application of analytical evaluation system for thermal striping phenomena

    International Nuclear Information System (INIS)

    Muramatsu, Toshiharu

    2001-01-01

    Fluid-structure thermal interaction phenomena characterized by stationary random temperature fluctuations, namely thermal striping are observed in the downstream region such as a T-junction piping system of liquid metal fast reactors (LMFRs). Therefore, the piping wall located in the downstream region must be protected against the stationary random thermal process, which might induce high-cycle fatigue. This paper describes the evaluation system based on numerical simulation methods consisting of three thermohydraulics computer programs AQUA, DINUS-3 and THEMIS and of three thermomechanical computer programs BEMSET, FINAS and CANIS, for the thermal striping developed at Japan Nuclear Cycle Development Institute (JNC). Verification results for each computer code and the system are also introduced based on out-of-pile experimental data using water and sodium as working fluids. (author)

  9. Magnetic fluctuation measurements in the Tokapole II tokamak

    International Nuclear Information System (INIS)

    LaPointe, M.A.

    1990-09-01

    Magnetic fluctuation measurements have been made in the Tokapole II tokamak in the frequency range 10 kHz ≤ f ≤ 5 MHz. The fluctuations above 500 kHz varied greatly as the effective edge safety factor, q a , was varied over the range 0.8 ≤ q a ≤ 3.8. As q a was varied from 3.8 to 0.8 the high frequency magnetic fluctuation amplitude increased by over three orders of magnitude. The fluctuation amplitude for 0.5 to 2.0 MHz was a factor of 10 lower than the fluctuation amplitude in the range 100 to 400 kHz for q a of 0.8. When q a was increased to 3.8 the difference between the differing frequency ranges increased to a factor of 10 3 . Comparison of the measured broadband fluctuation amplitudes with those predicted from thermally driven Alfven and magnetosonic waves shows that the amplitudes are at least 1000 times larger than the theoretical predictions. This indicates that there is some other mechanism driving the higher frequency magnetic fluctuations. Estimates show that the contribution by the magnetic fluctuations above 500 kHz to the estimated electron energy loss from stochastic fields is negligible. The profiles of the various components of the magnetic fluctuations indicate the possibility that the shear in the magnetic field may stabilize whatever instabilities drive the magnetic fluctuations

  10. Nuclear reactor technology: the next 50 years

    International Nuclear Information System (INIS)

    Sollychin, R.; Subki, H.; Adelfang, P.; Koshy, T.

    2013-01-01

    In light of the growing awareness of the environmental externalities of fossil fuel combustion, alternatives for electric power generation such as solar, wind and nuclear energy are becoming more desirable. In developed countries, large power markets are currently served by a centralized energy system through well inter-connected electricity grids. However, as shares of variable renewable energy sources (mainly wind and solar power) are increasing in the future; larger fluctuation in power generation can be expected which lead to higher risk of grid instabilities. Less-capital intensive small and medium sized nuclear reactors (SMR) are emerging as an important element of alternative power generation system to fossil fuel, with a unique additional role of balancing the power generation fluctuation caused by the solar and wind power generation. In regions not served by large electricity grids, including many parts of the developing countries with increasing demand for energy at rates above world's average, power generation using locally available energy sources including renewable energy is the practical means of providing basic energy needed for social and economic development. The integration of locally supportable SMR and local renewable energy system in a hybrid fashion can reduce the relative scale but not eliminate the fluctuation in power generation caused by the irregular availability of solar and wind energy. Without the use of commercial electricity trading that is only available in regions served by large inter-connected electricity grids, further minimization of power generation fluctuation can be done by the installation of local energy (electricity and/or heat) applications and/or energy storage device. The operation of these applications and energy storage can be done in synchronization with the availability of excess power throughout the fluctuation of the overall power generation in the region. Under these conditions, SMRs utilization as part of

  11. Pressure fluctuations induced by fluid flow in singular points of industrial circuits

    International Nuclear Information System (INIS)

    Gibert, R.J.; Villard, B.

    1977-01-01

    Flow singularities (enlargements, bards, valves, tees, ...) generate in the circuits of industrial plants wall pressure fluctuations which are the main cause of vibration. A methodical study of the most current singularities has been performed at C.E.A./D.E.M.T. On one hand a theory of noise generation by unsteady flow in internal acoustics has been developed. This theory uses the basic ideas initiated by LIGHTILL. As a result it is shown that the plane wave propagation is a valid assumption and that a singularity can be acoustically modelled by a pressure and a mass-flow-rate discontinuities. Both are random functions of time, the spectra of which are determined from the local fluctuations characteristics. On other hand, characteristics of several singularities have been measured: intercorrelation spectra of local pressure fluctuations. Autocorrelation spectra of associated acoustical sources (the measure of the acoustical pressures in the experimental circuit are interpreted by using the D.E.M.T. computer code VIBRAPHONE which gives the acoustical response of a complex circuit. Experimental atmospheric air and water loops have been used. The Reynolds number has been changed between about 10 5 and 10 6 ; the Mach number between about 0,01 and 0,5. Simple laws with dimensionless parameters are formulated and can be used for the estimation of the acoustical and mechanical vibration level of a circuit with given singularities

  12. Cluster formation in nuclear reactions from mean-field inhomogeneities

    Science.gov (United States)

    Napolitani, Paolo; Colonna, Maria; Mancini-Terracciano, Carlo

    2018-05-01

    Perturbing fluids of neutrons and protons (nuclear matter) may lead, as the most catastrophic effect, to the rearrangement of the fluid into clusters of nucleons. A similar process may occur in a single atomic nucleus undergoing a violent perturbation, like in heavy-ion collisions tracked in particle accelerators at around 30 to 50 MeV per nucleon: in this conditions, after the initial collision shock, the nucleus expands and then clusterises into several smaller nuclear fragments. Microscopically, when violent perturbation are applied to nuclear matter, a process of clusterisation arises from the combination of several fluctuation modes of large-amplitude where neutrons and protons may oscillate in phase or out of phase. The imposed perturbation leads to conditions of instability, the wavelengths which are the most amplified have sizes comparable to small atomic nuclei. We found that these conditions, explored in heavy-ion collisions, correspond to the splitting of a nucleus into fragments ranging from Oxygen to Neon in a time interval shorter than one zeptosecond (10 ‑ 21s). From the out-of-phase oscillations of neutrons and protons another property arises, the smaller fragments belonging to a more volatile phase get more neutron enriched: in the heavy-ion collision case this process, called distillation, reflects in the isotopic distributions of the fragments. The resulting dynamical description of heavy-ion collisions is an improvement with respect to more usual statistical approaches, based on the equilibrium assumption. It allows in fact to characterise also the very fast early stages of the collision process which are out of equilibrium. Such dynamical description is the core of the Boltzmann-Langevin One Body (BLOB) model, which in its latest development unifies in a common approach the description of fluctuations in nuclear matter, and a predictive description of the disintegration of nuclei into nuclear fragments. After a theoretical introduction, a few

  13. The extinction probability in systems randomly varying in time

    Directory of Open Access Journals (Sweden)

    Imre Pázsit

    2017-09-01

    Full Text Available The extinction probability of a branching process (a neutron chain in a multiplying medium is calculated for a system randomly varying in time. The evolution of the first two moments of such a process was calculated previously by the authors in a system randomly shifting between two states of different multiplication properties. The same model is used here for the investigation of the extinction probability. It is seen that the determination of the extinction probability is significantly more complicated than that of the moments, and it can only be achieved by pure numerical methods. The numerical results indicate that for systems fluctuating between two subcritical or two supercritical states, the extinction probability behaves as expected, but for systems fluctuating between a supercritical and a subcritical state, there is a crucial and unexpected deviation from the predicted behaviour. The results bear some significance not only for neutron chains in a multiplying medium, but also for the evolution of biological populations in a time-varying environment.

  14. Homogenization of metasurfaces formed by random resonant particles in periodical lattices

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Lavrinenko, Andrei; Petrov, Mihail

    2016-01-01

    In this paper we suggest a simple analytical method for description of electromagnetic properties of a geometrically regular two-dimensional subwavelength arrays (metasurfaces) formed by particles with randomly fluctuating polarizabilities. We propose an analytical homogenization method applicable...

  15. The influence of gas phase velocity fluctuations on primary atomization and droplet deformation

    Science.gov (United States)

    Kourmatzis, A.; Masri, A. R.

    2014-02-01

    The effects of grid-generated velocity fluctuations on the primary atomization and subsequent droplet deformation of a range of laminar liquid jets are examined using microscopic high-speed backlit imaging of the break-up zone and laser Doppler anemometry of the gas phase separately. This is done for fixed gas mean flow conditions in a miniature wind tunnel experiment utilizing a selection of fuels, turbulence-generating grids and two syringe sizes. The constant mean flow allows for an isolated study of velocity fluctuation effects on primary atomization in a close approximation to homogeneous decaying turbulence. The qualitative morphology of the primary break-up region is examined over a range of turbulence intensities, and spectral analysis is performed in order to ascertain the break-up frequency which, for a case of no grid, compares well with the existing literature. The addition of velocity fluctuations tends to randomize the break-up process. Slightly downstream of the break-up region, image processing is conducted in order to extract a number of metrics, which do not depend on droplet sphericity, and these include droplet aspect ratio and orientation, the latter quantity being somewhat unconventional in spray characterization. A turbulent Weber number which takes into account gas phase fluctuations is utilized to characterize the resulting droplet shapes, in addition to a mean Weber number . Above a a clear positive relationship exists between the mean aspect ratio of droplets and the turbulent Weber number where is varied by altering all relevant variables including the velocity root mean square, the initial droplet diameter, the surface tension and the density.

  16. Quantized vortices in the ideal bose gas: a physical realization of random polynomials.

    Science.gov (United States)

    Castin, Yvan; Hadzibabic, Zoran; Stock, Sabine; Dalibard, Jean; Stringari, Sandro

    2006-02-03

    We propose a physical system allowing one to experimentally observe the distribution of the complex zeros of a random polynomial. We consider a degenerate, rotating, quasi-ideal atomic Bose gas prepared in the lowest Landau level. Thermal fluctuations provide the randomness of the bosonic field and of the locations of the vortex cores. These vortices can be mapped to zeros of random polynomials, and observed in the density profile of the gas.

  17. Unbiased All-Optical Random-Number Generator

    Science.gov (United States)

    Steinle, Tobias; Greiner, Johannes N.; Wrachtrup, Jörg; Giessen, Harald; Gerhardt, Ilja

    2017-10-01

    The generation of random bits is of enormous importance in modern information science. Cryptographic security is based on random numbers which require a physical process for their generation. This is commonly performed by hardware random-number generators. These often exhibit a number of problems, namely experimental bias, memory in the system, and other technical subtleties, which reduce the reliability in the entropy estimation. Further, the generated outcome has to be postprocessed to "iron out" such spurious effects. Here, we present a purely optical randomness generator, based on the bistable output of an optical parametric oscillator. Detector noise plays no role and postprocessing is reduced to a minimum. Upon entering the bistable regime, initially the resulting output phase depends on vacuum fluctuations. Later, the phase is rigidly locked and can be well determined versus a pulse train, which is derived from the pump laser. This delivers an ambiguity-free output, which is reliably detected and associated with a binary outcome. The resulting random bit stream resembles a perfect coin toss and passes all relevant randomness measures. The random nature of the generated binary outcome is furthermore confirmed by an analysis of resulting conditional entropies.

  18. Fluctuation traits of Litchi wholesale price in China

    Science.gov (United States)

    Yan, F. F.; Qi, W. E.; Ouyang, X.

    2017-07-01

    This paper chose the wholesale price of litchi as research object based on the daily data of 11 main sales markets in China -- Beijing, Chengdu, Guangzhou, Hefei, Jiaxing, Nanjing, Shanghai, Shenyang, Changsha, Zhengzhou and Chongqing from April 1, 2012 to September 30, 2016. After analyzing the fluctuation characteristics with BP filter method and H-P filter method, and the fluctuation trends of litchi wholesale price in China obtained by BP filter are roughly consistent with the trends obtained by H-P filter. The main conclusions are as follows: there is strong cyclicality in the fluctuation of litchi wholesale price; the period of fluctuations of litchi wholesale prices are not repeatable; litchi wholesale price fluctuates asymmetrically in one fluctuation cycle.

  19. Chiral NNLOsat descriptions of nuclear multipole resonances within the random-phase approximation

    Science.gov (United States)

    Wu, Q.; Hu, B. S.; Xu, F. R.; Ma, Y. Z.; Dai, S. J.; Sun, Z. H.; Jansen, G. R.

    2018-05-01

    We study nuclear multipole resonances in the framework of the random-phase approximation by using the chiral potential NNLOsat. This potential includes two- and three-body terms that have been simultaneously optimized to low-energy nucleon-nucleon scattering data and selected nuclear structure data. Our main focuses have been the isoscalar monopole, isovector dipole, and isoscalar quadrupole resonances of the closed-shell nuclei, 4He, O 16 ,22 ,24 , and Ca,4840. These resonance modes have been widely observed in experiment. In addition, we use a renormalized chiral potential Vlow-k, based on the N3LO two-body potential by Entem and Machleidt [Phys. Rev. C 68, 041001 (2011), 10.1103/PhysRevC.68.041001]. This introduces a dependency on the cutoff parameter used in the normalization procedure as reported in previous works by other groups. While NNLOsat can reasonably reproduce observed multipole resonances, it is not possible to find a single cutoff parameter for the Vlow-k potential that simultaneously describes the different types of resonance modes. The sensitivity to the cutoff parameter can be explained by missing induced three-body forces in the calculations. Our results for neutron-rich O,2422 show a mixing nature of isoscalar and isovector resonances in the dipole channel at low energies. We predict that 22O and 24O have low-energy isoscalar quadrupole resonances at energies lower than 5 MeV.

  20. Colloquium: Random matrices and chaos in nuclear spectra

    International Nuclear Information System (INIS)

    Papenbrock, T.; Weidenmueller, H. A.

    2007-01-01

    Chaos occurs in quantum systems if the statistical properties of the eigenvalue spectrum coincide with predictions of random-matrix theory. Chaos is a typical feature of atomic nuclei and other self-bound Fermi systems. How can the existence of chaos be reconciled with the known dynamical features of spherical nuclei? Such nuclei are described by the shell model (a mean-field theory) plus a residual interaction. The question is answered using a statistical approach (the two-body random ensemble): The matrix elements of the residual interaction are taken to be random variables. Chaos is shown to be a generic feature of the ensemble and some of its properties are displayed, emphasizing those which differ from standard random-matrix theory. In particular, the existence of correlations among spectra carrying different quantum numbers is demonstrated. These are subject to experimental verification

  1. Fluctuation characteristics in detached recombining plasmas

    International Nuclear Information System (INIS)

    Ohno, Noriyasu; Tanaka, Naoyuki; Takamura, Shuichi; Budaev, Viatcheslav

    2002-01-01

    Fluctuation in detached recombining plasmas has been investigated experimentally in the linear divertor plasma simulator, NAGDIS-II. As increasing neutral gas pressure, floating potential fluctuation of the target plate installed at the end of the NADIS-II device becomes larger and bursty negative spikes are observed in the signal associated with a transition from attached to detached a plasmas. The fluctuation property has been analyzed by using Fast Fourier Transform (FFT), probability distribution function (PDF) and wavelet transform. The PDF of the floating potential fluctuation in the attached plasma condition obeys the Gaussian distribution function, on the other hand, the PDF in detached plasma shows a strong deviation from the Gaussian distribution function, which can be characterized by flatness and skewness. Comparison of the fluctuation properties between the floating potential and the optical emission from the detached plasma has been done based on the wavelet transform to show that a strong correlation between them, which could indicate bursty transport of energetic electrons from upstream to downstream region along the magnetic field. (author)

  2. Scattering of electromagnetic wave by the layer with one-dimensional random inhomogeneities

    Science.gov (United States)

    Kogan, Lev; Zaboronkova, Tatiana; Grigoriev, Gennadii., IV.

    A great deal of attention has been paid to the study of probability characteristics of electro-magnetic waves scattered by one-dimensional fluctuations of medium dielectric permittivity. However, the problem of a determination of a density of a probability and average intensity of the field inside the stochastically inhomogeneous medium with arbitrary extension of fluc-tuations has not been considered yet. It is the purpose of the present report to find and to analyze the indicated functions for the plane electromagnetic wave scattered by the layer with one-dimensional fluctuations of permittivity. We assumed that the length and the amplitude of individual fluctuations as well the interval between them are random quantities. All of indi-cated fluctuation parameters are supposed as independent random values possessing Gaussian distribution. We considered the stationary time cases both small-scale and large-scale rarefied inhomogeneities. Mathematically such problem can be reduced to the solution of integral Fred-holm equation of second kind for Hertz potential (U). Using the decomposition of the field into the series of multiply scattered waves we obtained the expression for a probability density of the field of the plane wave and determined the moments of the scattered field. We have shown that all odd moments of the centered field (U-¡U¿) are equal to zero and the even moments depend on the intensity. It was obtained that the probability density of the field possesses the Gaussian distribution. The average field is small compared with the standard fluctuation of scattered field for all considered cases of inhomogeneities. The value of average intensity of the field is an order of a standard of fluctuations of field intensity and drops with increases the inhomogeneities length in the case of small-scale inhomogeneities. The behavior of average intensity is more complicated in the case of large-scale medium inhomogeneities. The value of average intensity is the

  3. Thermal fluctuations in a hyperscaling-violation background

    Energy Technology Data Exchange (ETDEWEB)

    Pourhassan, Behnam [Damghan University, School of Physics, Damghan (Iran, Islamic Republic of); Faizal, Mir [University of British Columbia-Okanagan, Irving K. Barber School of Arts and Sciences, Kelowna, BC (Canada); University of Lethbridge, Department of Physics and Astronomy, Lethbridge, AB (Canada); Upadhyay, Sudhaker [Indian Institute of Technology Kharagpur, Centre for Theoretical Studies, Kharagpur (India); Al Asfar, Lina [Universite Blaise Pascal, Laboratoire de Physique Corpusculaire de Clermont-Ferrand, Aubiere (France)

    2017-08-15

    In this paper, we study the effect of thermal fluctuations on the thermodynamics of a black geometry with hyperscaling violation. These thermal fluctuations in the thermodynamics of this system are produced from quantum corrections of geometry describing this system. We discuss the stability of this system using specific heat and the entire Hessian matrix of the free energy. We will analyze the effects of thermal fluctuations on the stability of this system. We also analyze the effects of thermal fluctuations on the criticality of the hyperscaling-violation background. (orig.)

  4. Nonlinear evolution equations for waves in random media

    International Nuclear Information System (INIS)

    Pelinovsky, E.; Talipova, T.

    1994-01-01

    The scope of this paper is to highlight the main ideas of asymptotical methods applying in modern approaches of description of nonlinear wave propagation in random media. We start with the discussion of the classical conception of ''mean field''. Then an exactly solvable model describing nonlinear wave propagation in the medium with fluctuating parameters is considered in order to demonstrate that the ''mean field'' method is not correct. We develop new asymptotic procedures of obtaining the nonlinear evolution equations for the wave fields in random media. (author). 16 refs

  5. Portfolio optimization and the random magnet problem

    Science.gov (United States)

    Rosenow, B.; Plerou, V.; Gopikrishnan, P.; Stanley, H. E.

    2002-08-01

    Diversification of an investment into independently fluctuating assets reduces its risk. In reality, movements of assets are mutually correlated and therefore knowledge of cross-correlations among asset price movements are of great importance. Our results support the possibility that the problem of finding an investment in stocks which exposes invested funds to a minimum level of risk is analogous to the problem of finding the magnetization of a random magnet. The interactions for this "random magnet problem" are given by the cross-correlation matrix C of stock returns. We find that random matrix theory allows us to make an estimate for C which outperforms the standard estimate in terms of constructing an investment which carries a minimum level of risk.

  6. NMR evidence of charge fluctuations in multiferroic CuBr2

    Science.gov (United States)

    Wang, Rui-Qi; Zheng, Jia-Cheng; Chen, Tao; Wang, Peng-Shuai; Zhang, Jin-Shan; Cui, Yi; Wang, Chao; Li, Yuan; Xu, Sheng; Yuan, Feng; Yu, Wei-Qiang

    2018-03-01

    We report combined magnetic susceptibility, dielectric constant, nuclear quadruple resonance (NQR), and zero-field nuclear magnetic resonance (NMR) measurements on single crystals of multiferroics CuBr2. High quality of the sample is demonstrated by the sharp magnetic and magnetic-driven ferroelectric transition at {T}{{N}}={T}{{C}}≈ 74 K. The zero-field 79Br and 81Br NMR are resolved below T N. The spin-lattice relaxation rates reveal charge fluctuations when cooled below 60 K. Evidences of an increase of NMR linewidth, a reduction of dielectric constant, and an increase of magnetic susceptibility are also seen at low temperatures. These data suggest an emergent instability which competes with the spiral magnetic ordering and the ferroelectricity. Candidate mechanisms are discussed based on the quasi-one-dimensional nature of the magnetic system. Project supported by the Ministry of Science and Technology of China (Grant No. 2016YFA0300504), the National Natural Science Foundation of China (Grant No. 11374364), the Fundamental Research Funds for the Central Universities of China, and the Research Funds of Renmin University, China (Grant No. 14XNLF08).

  7. Some investigations on the mean and fluctuating velocities of an oscillating Taylor bubble

    International Nuclear Information System (INIS)

    Madani, Sara; Caballina, Ophelie; Souhar, Mohamed

    2012-01-01

    Highlights: ► The unsteady motion of an oscillating Taylor bubble has been studied. ► A non-dimensionalized velocity differential equation is numerically solved. ► The role of dimensionless numbers on the dynamics of the bubble is highlighted. ► Mean and fluctuating velocities and the phase shift are experimentally investigated. ► Correlations allowing the prediction of these latter parameters are proposed. - Abstract: The slug flow characterized by large elongated bubbles also called Taylor bubbles is widely encountered in nuclear reactor steam generators, cooling plants, reboilers, etc. The analysis of slug flow is very important as the instability caused by such flows can affect the safety features of nuclear reactors and other two-phase flow equipments. In this paper, we study the motion of a Taylor bubble rising in stagnant fluids in a vertical oscillating pipe. The investigation is restricted to high Reynolds numbers and to an intermediate range of Bond numbers where the effects of surface tension can be considered. The Froude number ranged between 0.22 and 0.33. Firstly, detailed analysis of models proposed in the literature for the motion of a Taylor bubble in an unsteady acceleration field is realized. The velocity differential equation obtained in the case of potential and axisymmetric flow without surface tension given in the literature is first non-dimensionalized to highlight dimensionless numbers. Then, the instantaneous velocity of the bubble is numerically determined. Mean and fluctuating velocities as well as the phase shift (U ¯ b , U f and φ) are estimated by using a technique based on the nonlinear least squares method. Results enable a discussion on the role played by dimensionless numbers on the dynamics of the bubble. It is found that the two parameters, the relative acceleration and the Bond number (a and Bo) have a governing role on the evolution of mean and fluctuating velocities while the ratio of the oscillation amplitude to

  8. Origin of density fluctuations in extended inflation

    International Nuclear Information System (INIS)

    Kolb, E.W.; Salopek, D.S.; Turner, M.S.

    1990-01-01

    We calculate both the curvature and isocurvature density fluctuations that arise due to quantum fluctuations in a simple model of extended inflation based upon the Jordan-Brans-Dicke theory. The curvature fluctuations that arise due to quantum fluctuations in the Brans-Dicke field in general have a non-scale-invariant spectrum and an amplitude that is cosmologically acceptable and interesting without having to tune any coupling constant to a very small value. The curvature perturbations that arise due to the Higgs field are subdominant. If there are other massless fields in the theory, e.g., an axion or an ilion, then isocurvature fluctuations arise in these fields too. Production of gravitational waves and the massless particles associated with excitations of the Brans-Dicke field are also discussed. Several attempts at more realistic models of extended inflation are also analyzed. The importance of the Einstein conformal frame in calculating curvature fluctuations is emphasized. When viewed in this frame, extended inflation closely resembles slow-rollover inflation with an exponential potential, and the usual formula for the amplitude of curvature perturbations applies directly

  9. Origin of density fluctuations in extended inflation

    International Nuclear Information System (INIS)

    Kolb, E.W.; Salopek, D.S.; Turner, M.S.

    1990-05-01

    The density fluctuations (both curvature and isocurvature) that arise due to quantum fluctuations in a simple model of extended inflation based upon the Jordan-Brans-Dicke theory are calculated. Curvature fluctuations arise due to quantum fluctuations in the Brans-Dicke field, in general have a nonscale-invariant spectrum, and can have an amplitude that is cosmologically acceptable and interesting without having to tune any coupling constant to a very small value. The density perturbations that arise due to the inflation field are subdominant. If there are other massless fields in the theory, e.g., an axion or an ilion, then isocurvature fluctuations arise in these fields too. Production of gravitational waves and the massless particles associated with excitations of the Brans-Dicke field are also discussed. Several attempts at more realistic models of extended inflation are also analyzed. The importance of the Einstein conformal frame in calculating curvature fluctuations is emphasized. When viewed in this frame, extended inflation closely resembles slow-rollover inflation with an exponential potential and the usual formula for the amplitude of curvature perturbations applies

  10. Randomization of inspections

    International Nuclear Information System (INIS)

    Markin, J.T.

    1989-01-01

    As the numbers and complexity of nuclear facilities increase, limitations on resources for international safeguards may restrict attainment of safeguards goals. One option for improving the efficiency of limited resources is to expand the current inspection regime to include random allocation of the amount and frequency of inspection effort to material strata or to facilities. This paper identifies the changes in safeguards policy, administrative procedures, and operational procedures that would be necessary to accommodate randomized inspections and identifies those situations where randomization can improve inspection efficiency and those situations where the current nonrandom inspections should be maintained. 9 refs., 1 tab

  11. Event-by-Event Identified Particle Ratio Fluctuations in Pb–Pb Collisions with ALICE

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00245664

    ALICE is the dedicated heavy-ion experiment among the experiments at the LHC at CERN. It is, in particular, designed to exploit the physics of strongly interacting matter. The theory of strong interactions, Quantum Chromodynamics (QCD), predicts that at sufficiently high energy densities nuclear matter transforms into a deconfined state of quarks and gluons. One of the possible signatures of a transition between hadronic and partonic phases is the enhancement of fluctuations of the number of particles in the hadronic final state of relativistic heavy-ion collisions. \\\\ \\\\ The observable $\

  12. Zero-point oscillations, zero-point fluctuations, and fluctuations of zero-point oscillations

    International Nuclear Information System (INIS)

    Khalili, Farit Ya

    2003-01-01

    Several physical effects and methodological issues relating to the ground state of an oscillator are considered. Even in the simplest case of an ideal lossless harmonic oscillator, its ground state exhibits properties that are unusual from the classical point of view. In particular, the mean value of the product of two non-negative observables, kinetic and potential energies, is negative in the ground state. It is shown that semiclassical and rigorous quantum approaches yield substantially different results for the ground state energy fluctuations of an oscillator with finite losses. The dependence of zero-point fluctuations on the boundary conditions is considered. Using this dependence, it is possible to transmit information without emitting electromagnetic quanta. Fluctuations of electromagnetic pressure of zero-point oscillations are analyzed, and the corresponding mechanical friction is considered. This friction can be viewed as the most fundamental mechanism limiting the quality factor of mechanical oscillators. Observation of these effects exceeds the possibilities of contemporary experimental physics but almost undoubtedly will be possible in the near future. (methodological notes)

  13. Quantum Fluctuations for Gravitational Impulsive Waves

    OpenAIRE

    Enginer, Y.; Hortacsu, M.; Ozdemir, N.

    1998-01-01

    Quantum fluctuations for a massless scalar field in the background metric of spherical impulsive gravitational waves through Minkowski and de Sitter spaces are investigated. It is shown that there exist finite fluctuations for de Sitter space.

  14. Nuclear radiation moisture gauge calibration standard

    International Nuclear Information System (INIS)

    Berry, R.L.

    1981-01-01

    A hydrophobic standard for calibrating radiation moisture gauges is described. This standard has little or no affinity for water and accordingly will not take up or give off water under ambient conditions of fluctuating humidity in such a manner as to change the hydrogen content presented to a nuclear gauge undergoing calibration. (O.T.)

  15. Quantum horizon fluctuations of an evaporating black hole

    International Nuclear Information System (INIS)

    Roura, Albert

    2007-01-01

    The quantum fluctuations of a black hole spacetime are studied within a low-energy effective field theory approach to quantum gravity. Our approach accounts for both intrinsic metric fluctuations and those induced by matter fields interacting with the gravitational field. Here we will concentrate on spherically symmetric fluctuations of the black hole horizon. Our results suggest that for a sufficiently massive evaporating black hole, fluctuations can accumulate over time and become significant well before reaching Planckian scales. In addition, we provide the sketch of a proof that the symmetrized two-point function of the stress-tensor operator smeared over a null hypersurface is actually divergent and discuss the implications for the analysis of horizon fluctuations. Finally, a natural way to probe quantum metric fluctuations near the horizon is briefly described

  16. Quantitative Brightness Analysis of Fluorescence Intensity Fluctuations in E. Coli.

    Directory of Open Access Journals (Sweden)

    Kwang-Ho Hur

    Full Text Available The brightness measured by fluorescence fluctuation spectroscopy specifies the average stoichiometry of a labeled protein in a sample. Here we extended brightness analysis, which has been mainly applied in eukaryotic cells, to prokaryotic cells with E. coli serving as a model system. The small size of the E. coli cell introduces unique challenges for applying brightness analysis that are addressed in this work. Photobleaching leads to a depletion of fluorophores and a reduction of the brightness of protein complexes. In addition, the E. coli cell and the point spread function of the instrument only partially overlap, which influences intensity fluctuations. To address these challenges we developed MSQ analysis, which is based on the mean Q-value of segmented photon count data, and combined it with the analysis of axial scans through the E. coli cell. The MSQ method recovers brightness, concentration, and diffusion time of soluble proteins in E. coli. We applied MSQ to measure the brightness of EGFP in E. coli and compared it to solution measurements. We further used MSQ analysis to determine the oligomeric state of nuclear transport factor 2 labeled with EGFP expressed in E. coli cells. The results obtained demonstrate the feasibility of quantifying the stoichiometry of proteins by brightness analysis in a prokaryotic cell.

  17. Fluctuation relations for anomalous dynamics

    International Nuclear Information System (INIS)

    Chechkin, A V; Klages, R

    2009-01-01

    We consider work fluctuation relations (FRs) for generic types of dynamics generating anomalous diffusion: Lévy flights, long-correlated Gaussian processes and time-fractional kinetics. By combining Langevin and kinetic approaches we calculate the probability distributions of mechanical and thermodynamical work in two paradigmatic nonequilibrium situations, respectively: a particle subject to a constant force and a particle in a harmonic potential dragged by a constant force. We check the transient FR for two models exhibiting superdiffusion, where a fluctuation-dissipation relation does not exist, and for two other models displaying subdiffusion, where there is a fluctuation-dissipation relation. In the two former cases the conventional transient FR is not recovered, whereas in the latter two it holds either exactly or in the long-time limit. (letter)

  18. Pairing fluctuations in trapped Fermi gases

    International Nuclear Information System (INIS)

    Viverit, Luciano; Bruun, Georg M.; Minguzzi, Anna; Fazio, Rosario

    2004-01-01

    We examine the contribution of pairing fluctuations to the superfluid order parameter for harmonically trapped atomic Fermi gases in the BCS regime. In the limit of small systems we consider, both analytically and numerically, their space and temperature dependence. We predict a parity effect, i.e., that pairing fluctuations show a maximum or a minimum at the center of the trap, depending on the value of the last occupied shell being even or odd. We propose to detect pairing fluctuations by measuring the density-density correlation function after a ballistic expansion of the gas

  19. Density Fluctuations in a Polar Coronal Hole

    Science.gov (United States)

    Hahn, Michael; D’Huys, Elke; Savin, Daniel Wolf

    2018-06-01

    We have measured the root-mean-square (rms) amplitude of intensity fluctuations, ΔI, in plume and interplume regions of a polar coronal hole. These intensity fluctuations correspond to density fluctuations. Using data from the Sun Watcher using the Active Pixel System detector and Image Processing on the Project for Onboard Autonomy (Proba2), our results extend up to a height of about 1.35 R ⊙. One advantage of the rms analysis is that it does not rely on a detailed evaluation of the power spectrum, which is limited by noise levels to low heights in the corona. The rms approach can be performed up to larger heights where the noise level is greater, provided that the noise itself can be quantified. At low heights, both the absolute ΔI, and the amplitude relative to the mean intensity, ΔI/I, decrease with height. However, starting at about 1.2 R ⊙, ΔI/I increases, reaching 20%–40% by 1.35 R ⊙. This corresponds to density fluctuations of Δn e/n e ≈ 10%–20%. The increasing relative amplitude implies that the density fluctuations are generated in the corona itself. One possibility is that the density fluctuations are generated by an instability of Alfvén waves. This generation mechanism is consistent with some theoretical models and with observations of Alfvén wave amplitudes in coronal holes. Although we find that the energy of the observed density fluctuations is small, these fluctuations are likely to play an important indirect role in coronal heating by promoting the reflection of Alfvén waves and driving turbulence.

  20. Fluctuating hydrodynamics for ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Lazaridis, Konstantinos [Department of Mathematics and Statistics, Washington State University, Pullman, 99163 (United States); Wickham, Logan [Department of Computer Science, Washington State University, Richland, 99354 (United States); Voulgarakis, Nikolaos, E-mail: n.voulgarakis@wsu.edu [Department of Mathematics and Statistics, Washington State University, Pullman, 99163 (United States)

    2017-04-25

    We present a mean-field fluctuating hydrodynamics (FHD) method for studying the structural and transport properties of ionic liquids in bulk and near electrified surfaces. The free energy of the system consists of two competing terms: (1) a Landau–Lifshitz functional that models the spontaneous separation of the ionic groups, and (2) the standard mean-field electrostatic interaction between the ions in the liquid. The numerical approach used to solve the resulting FHD-Poisson equations is very efficient and models thermal fluctuations with remarkable accuracy. Such density fluctuations are sufficiently strong to excite the experimentally observed spontaneous formation of liquid nano-domains. Statistical analysis of our simulations provides quantitative information about the properties of ionic liquids, such as the mixing quality, stability, and the size of the nano-domains. Our model, thus, can be adequately parameterized by directly comparing our prediction with experimental measurements and all-atom simulations. Conclusively, this work can serve as a practical mathematical tool for testing various theories and designing more efficient mixtures of ionic liquids. - Highlights: • A new fluctuating hydrodynamics method for ionic liquids. • Description of ionic liquid morphology in bulk and near electrified surfaces. • Direct comparison with experimental measurements.

  1. Fast physical random bit generation with chaotic semiconductor lasers

    Science.gov (United States)

    Uchida, Atsushi; Amano, Kazuya; Inoue, Masaki; Hirano, Kunihito; Naito, Sunao; Someya, Hiroyuki; Oowada, Isao; Kurashige, Takayuki; Shiki, Masaru; Yoshimori, Shigeru; Yoshimura, Kazuyuki; Davis, Peter

    2008-12-01

    Random number generators in digital information systems make use of physical entropy sources such as electronic and photonic noise to add unpredictability to deterministically generated pseudo-random sequences. However, there is a large gap between the generation rates achieved with existing physical sources and the high data rates of many computation and communication systems; this is a fundamental weakness of these systems. Here we show that good quality random bit sequences can be generated at very fast bit rates using physical chaos in semiconductor lasers. Streams of bits that pass standard statistical tests for randomness have been generated at rates of up to 1.7 Gbps by sampling the fluctuating optical output of two chaotic lasers. This rate is an order of magnitude faster than that of previously reported devices for physical random bit generators with verified randomness. This means that the performance of random number generators can be greatly improved by using chaotic laser devices as physical entropy sources.

  2. Plastic fluctuations in empty crystals formed by cubic wireframe particles

    Science.gov (United States)

    McBride, John M.; Avendaño, Carlos

    2018-05-01

    We present a computer simulation study of the phase behavior of colloidal hard cubic frames, i.e., particles with nonconvex cubic wireframe geometry interacting purely by excluded volume. Despite the propensity of cubic wireframe particles to form cubic phases akin to their convex counterparts, these particles exhibit unusual plastic fluctuations in which a random and dynamic fraction of particles rotate around their lattice positions in the crystal lattice while the remainder of the particles remains fully ordered. We argue that this unexpected effect stems from the nonconvex geometry of the particles in which the faces of a particle can be penetrated by the vertices of the nearest neighbors even at high number densities.

  3. On the optimal degree of fluctuations in practice for motor learning.

    Science.gov (United States)

    Hossner, Ernst-Joachim; Käch, Boris; Enz, Jonas

    2016-06-01

    In human movement science, it is widely accepted that random practice generally enhances complex motor-skill learning compared to repetitive practice. In two experiments, a particular variability-related concept is put to empirical test, namely the concept of differencial learning (DL), which assumes (i) that learners should not be distracted from task-space exploration by corrections, and (ii) that learning is facilitated by large inter-trial fluctuations. In both experiments, the advantage of DL over repetitive learning was not statistically significant. Moreover, learning was more pronounced when participants either received corrections in addition to DL (Exp. 1) or practiced in an order in which differences between consecutive trials were relatively small (Exp. 2). These findings suggest that the positive DL effects reported in literature cannot be attributed to the reduction of feedback or to the increase of inter-trial fluctuations. These results are discussed in the light of the structural-learning approach and the two-state model of motor learning in which structure-related learning effects are distinguished from the capability to adapt to current changes. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Possible mechanism to enhance spin-fluctuation-mediated superconductivity in two-dimensional organic conductor

    Energy Technology Data Exchange (ETDEWEB)

    Nonoyama, Yoshito; Maekawa, Yukiko; Kobayashi, Akito; Suzumura, Yoshikazu [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Yamada, Jun-ichi [Department of Material Science, Graduate School of Material Science, University of Hyogo, Hyogo 678-1297 (Japan)], E-mail: nonoyama@slab.phys.nagoya-u.ac.jp

    2008-10-15

    Mechanisms of superconductivity in quasi-two-dimensional organic conductors have been investigated using an extended Hubbard model by using the transfer energies between BDA-TTP molecules for {beta}-(BDA-TTP){sub 2}I{sub 3} based on the X-ray experiment data and the extended Hueckel calculation. We obtain several mean-field solutions with charge orderings which may represent short-range orderings or low-energy fluctuations in the low-dimensional electronic system. In the pressure-temperature phase diagram, a charge ordered metal state almost degenerates with a normal metal state between an insulating phase with charge ordering and the normal metal phase. Using the random phase approximation (RPA) and the linearized gap equation, the transition temperature of the superconducting state is estimated for the charge-ordered metal state and the normal metal state. It is found that transition temperature of the superconductivity induced by spin fluctuations in the charge-ordered metal state is much higher than that of the normal metal state and that the superconductivity in the charge-ordered metal state is the gapless d-wave. This suggests that the short range charge ordering may also contribute to an enhancement of spin-fluctuation-mediated superconductivity. The difference in the superconducting states between {beta}-(BDA-TTP){sub 2}I{sub 3} and {beta}-(BDA-TTP){sub 2}SbF{sub 6} are briefly discussed.

  5. Possible mechanism to enhance spin-fluctuation-mediated superconductivity in two-dimensional organic conductor

    International Nuclear Information System (INIS)

    Nonoyama, Yoshito; Maekawa, Yukiko; Kobayashi, Akito; Suzumura, Yoshikazu; Yamada, Jun-ichi

    2008-01-01

    Mechanisms of superconductivity in quasi-two-dimensional organic conductors have been investigated using an extended Hubbard model by using the transfer energies between BDA-TTP molecules for β-(BDA-TTP) 2 I 3 based on the X-ray experiment data and the extended Hueckel calculation. We obtain several mean-field solutions with charge orderings which may represent short-range orderings or low-energy fluctuations in the low-dimensional electronic system. In the pressure-temperature phase diagram, a charge ordered metal state almost degenerates with a normal metal state between an insulating phase with charge ordering and the normal metal phase. Using the random phase approximation (RPA) and the linearized gap equation, the transition temperature of the superconducting state is estimated for the charge-ordered metal state and the normal metal state. It is found that transition temperature of the superconductivity induced by spin fluctuations in the charge-ordered metal state is much higher than that of the normal metal state and that the superconductivity in the charge-ordered metal state is the gapless d-wave. This suggests that the short range charge ordering may also contribute to an enhancement of spin-fluctuation-mediated superconductivity. The difference in the superconducting states between β-(BDA-TTP) 2 I 3 and β-(BDA-TTP) 2 SbF 6 are briefly discussed.

  6. Spatial mobility fluctuation induced giant linear magnetoresistance in multilayered graphene foam

    KAUST Repository

    Li, Peng

    2016-07-05

    Giant, positive, and near-temperature-independent linear magnetoresistance (LMR), as large as 340%, was observed in graphene foam with a three-dimensional flexible network. Careful analysis of the magnetoresistance revealed that Shubnikov–de Haas (SdH) oscillations occurred at low temperatures and decayed with increasing temperature. The average classical mobility ranged from 300 (2 K) to 150 (300 K) cm2V−1s−1, which is much smaller than that required by the observed SdH oscillations. To understand the mechanism behind the observation, we performed the same measurements on the microsized graphene sheets that constitute the graphene foam. Much more pronounced SdH oscillations superimposed on the LMR background were observed in these microscaled samples, which correspond to a quantum mobility as high as 26,500cm2V−1s−1. Moreover, the spatial mobility fluctuated significantly from 64,200cm2V−1s−1 to 1370cm2V−1s−1, accompanied by a variation of magnetoresistance from near 20,000% to less than 20%. The presence of SdH oscillations actually excludes the possibility that the observed LMR originated from the extreme quantum limit, because this would demand all electrons to be in the first Landau level. Instead, we ascribe the large LMR to the second case of the classical Parish and Littlewood model, in which spatial mobility fluctuation dominates electrical transport. This is an experimental confirmation of the Parish and Littlewood model by measuring the local mobility randomly (by measuring the microsized graphene sheets) and finding the spatial mobility fluctuation.

  7. Correlated mixture between adiabatic and isocurvature fluctuations and recent CMB observations

    International Nuclear Information System (INIS)

    Andrade, Ana Paula A.; Wuensche, Carlos Alexandre; Ribeiro, Andre Luis Batista

    2005-01-01

    This work presents a reduced χ ν 2 test to search for non-Gaussian signals in the cosmic microwave background radiation (CMBR) TT power spectrum of recent CMBR data, Wilkinson Anisotropy Microwave Probe, Arcminute Cosmology Bolometer Array Receiver, and Cosmic Background Imager data sets, assuming a mixed density field including adiabatic and isocurvature fluctuations. We assume a skew positive mixed model with adiabatic inflation perturbations plus additional isocurvature perturbations possibly produced by topological defects. The joint probability distribution used in this context is a weighted combination of Gaussian and non-Gaussian random fields. Results from simulations of CMBR temperature for the mixed field show a distinct signature in CMB power spectrum for very small deviations (∼0.1%) from a pure Gaussian field, and can be used as a direct test for the nature of primordial fluctuations. A reduced χ ν 2 test applied on the most recent CMBR observations reveals that an isocurvature fluctuations field is not ruled out and indeed permits a very good description for a flat geometry Λ-CDM Universe, χ 930 2 ∼1.5, rather than the simple inflationary standard model with χ 930 2 ∼2.3. This result may looks is particular discrepant with the reduced χ 2 of 1.07 obtained with the same model in Spergel et al. [Astrophys. J. 148, 175 (2003)] for temperature only, however, our work is restricted to a region of the parameter space that does not include the best fit model for TT only of Spergel et al.

  8. 1/f Fluctuations in ion implanted metal semiconductor contacts

    International Nuclear Information System (INIS)

    Stojanovic, M.; Marjanovic, N.; Radojevic, B.

    1998-01-01

    Ion implanted Metal-Semiconductor contacts is the most widely used structures in electrical devices. Weather complete devices or some parts are of interest, properties of metal-semiconductor junction strongly influence the quality and external characteristic of electronic devices. That is the reason why special attention is paid to the investigation of factor (noise for example) that could influence given junction. Low frequency 1/f fluctuations (noise) are constantly present in metal-semiconductor junction, so measurement of their level as well as the dependence on factors such as temperature must be taken into account in detailed analysis of electrical characteristics of devices such as contact, nuclear detector with surface barrier etc. In this paper we present the results of low frequency noise level measurements on TiN-Ti-Si structures produced by As + ion implantation. (author)

  9. Symmetry Breaking in a random passive scalar

    Science.gov (United States)

    Kilic, Zeliha; McLaughlin, Richard; Camassa, Roberto

    2017-11-01

    We consider the evolution of a decaying passive scalar in the presence of a gaussian white noise fluctuating shear flow. We focus on deterministic initial data and establish the short, intermediate, and long time symmetry properties of the evolving point wise probability measure for the random passive scalar. Analytical results are compared directly to Monte Carlo simulations. Time permitting we will compare the predictions to experimental observations.

  10. Modeling the response of a standard accretion disc to stochastic viscous fluctuations

    Science.gov (United States)

    Ahmad, Naveel; Misra, Ranjeev; Iqbal, Naseer; Maqbool, Bari; Hamid, Mubashir

    2018-01-01

    The observed variability of X-ray binaries over a wide range of time-scales can be understood in the framework of a stochastic propagation model, where viscous fluctuations at different radii induce accretion rate variability that propagate inwards to the X-ray producing region. The scenario successfully explains the power spectra, the linear rms-flux relation as well as the time-lag between different energy photons. The predictions of this model have been obtained using approximate analytical solutions or empirically motivated models which take into account the effect of these propagating variability on the radiative process of complex accretion flows. Here, we study the variation of the accretion rate due to such viscous fluctuations using a hydro-dynamical code for the standard geometrically thin, gas pressure dominated α-disc with a zero torque boundary condition. Our results confirm earlier findings that the time-lag between a perturbation and the resultant inner accretion rate variation depends on the frequency (or time-period) of the perturbation. Here we have quantified that the time-lag tlag ∝f-0.54 , for time-periods less than the viscous time-scale of the perturbation radius and is nearly constant otherwise. This, coupled with radiative process would produce the observed frequency dependent time-lag between different energy bands. We also confirm that if there are random Gaussian fluctuations of the α-parameter at different radii, the resultant inner accretion rate has a power spectrum which is a power-law.

  11. Black holes and random matrices

    Energy Technology Data Exchange (ETDEWEB)

    Cotler, Jordan S.; Gur-Ari, Guy [Stanford Institute for Theoretical Physics, Stanford University,Stanford, CA 94305 (United States); Hanada, Masanori [Stanford Institute for Theoretical Physics, Stanford University,Stanford, CA 94305 (United States); Yukawa Institute for Theoretical Physics, Kyoto University,Kyoto 606-8502 (Japan); The Hakubi Center for Advanced Research, Kyoto University,Kyoto 606-8502 (Japan); Polchinski, Joseph [Department of Physics, University of California,Santa Barbara, CA 93106 (United States); Kavli Institute for Theoretical Physics, University of California,Santa Barbara, CA 93106 (United States); Saad, Phil; Shenker, Stephen H. [Stanford Institute for Theoretical Physics, Stanford University,Stanford, CA 94305 (United States); Stanford, Douglas [Institute for Advanced Study,Princeton, NJ 08540 (United States); Streicher, Alexandre [Stanford Institute for Theoretical Physics, Stanford University,Stanford, CA 94305 (United States); Department of Physics, University of California,Santa Barbara, CA 93106 (United States); Tezuka, Masaki [Department of Physics, Kyoto University,Kyoto 606-8501 (Japan)

    2017-05-22

    We argue that the late time behavior of horizon fluctuations in large anti-de Sitter (AdS) black holes is governed by the random matrix dynamics characteristic of quantum chaotic systems. Our main tool is the Sachdev-Ye-Kitaev (SYK) model, which we use as a simple model of a black hole. We use an analytically continued partition function |Z(β+it)|{sup 2} as well as correlation functions as diagnostics. Using numerical techniques we establish random matrix behavior at late times. We determine the early time behavior exactly in a double scaling limit, giving us a plausible estimate for the crossover time to random matrix behavior. We use these ideas to formulate a conjecture about general large AdS black holes, like those dual to 4D super-Yang-Mills theory, giving a provisional estimate of the crossover time. We make some preliminary comments about challenges to understanding the late time dynamics from a bulk point of view.

  12. Chaotic motion and random matrix theories

    International Nuclear Information System (INIS)

    Bohigas, O.; Giannoni, M.J.

    1983-01-01

    The authors discussed how to characterize level fluctuations. In full generality, one needs the set of k-level cluster functions Y/sub k/. Some of the most relevant qualitative features of GOE fluctuations have been emphasized: level repulsion (small probability of occurrence of small spacings) and spectral rigidity (for instance, logarithmic increase with L of the variance of the number of levels to be found in an interval of length L). This is in contrast with what happens for a spectrum obtained by adding spacings coming from random independent trials distributed like e/sup - x/, viz.a Poisson spectrum. In this case there is by construction no level repulsion but level clustering (the variance of the number of levels increases linearly with L). The effect of level repulsion is that levels appear rather evenly distributed, and when spectral rigidity is present the spectrum looks incompressible. It is important to notice that the spacing distribution p(x) contains no information about spacing correlations, one of the main characteristics of GOE-fluctuation patterns. The role of exact symmetries is prominent and GOE-predictions apply to levels having the same set of exact quantum number (Jπ)

  13. High-accuracy CFD prediction methods for fluid and structure temperature fluctuations at T-junction for thermal fatigue evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Shaoxiang, E-mail: qian.shaoxiang@jgc.com [EN Technology Center, Process Technology Division, JGC Corporation, 2-3-1 Minato Mirai, Nishi-ku, Yokohama 220-6001 (Japan); Kanamaru, Shinichiro [EN Technology Center, Process Technology Division, JGC Corporation, 2-3-1 Minato Mirai, Nishi-ku, Yokohama 220-6001 (Japan); Kasahara, Naoto [Nuclear Engineering and Management, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2015-07-15

    Highlights: • Numerical methods for accurate prediction of thermal loading were proposed. • Predicted fluid temperature fluctuation (FTF) intensity is close to the experiment. • Predicted structure temperature fluctuation (STF) range is close to the experiment. • Predicted peak frequencies of FTF and STF also agree well with the experiment. • CFD results show the proposed numerical methods are of sufficiently high accuracy. - Abstract: Temperature fluctuations generated by the mixing of hot and cold fluids at a T-junction, which is widely used in nuclear power and process plants, can cause thermal fatigue failure. The conventional methods for evaluating thermal fatigue tend to provide insufficient accuracy, because they were developed based on limited experimental data and a simplified one-dimensional finite element analysis (FEA). CFD/FEA coupling analysis is expected as a useful tool for the more accurate evaluation of thermal fatigue. The present paper aims to verify the accuracy of proposed numerical methods of simulating fluid and structure temperature fluctuations at a T-junction for thermal fatigue evaluation. The dynamic Smagorinsky model (DSM) is used for large eddy simulation (LES) sub-grid scale (SGS) turbulence model, and a hybrid scheme (HS) is adopted for the calculation of convective terms in the governing equations. Also, heat transfer between fluid and structure is calculated directly through thermal conduction by creating a mesh with near wall resolution (NWR) by allocating grid points within the thermal boundary sub-layer. The simulation results show that the distribution of fluid temperature fluctuation intensity and the range of structure temperature fluctuation are remarkably close to the experimental results. Moreover, the peak frequencies of power spectrum density (PSD) of both fluid and structure temperature fluctuations also agree well with the experimental results. Therefore, the numerical methods used in the present paper are

  14. Effect of Stochastic Charge Fluctuations on Dust Dynamics

    Science.gov (United States)

    Matthews, Lorin; Shotorban, Babak; Hyde, Truell

    2017-10-01

    The charging of particles in a plasma environment occurs through the collection of electrons and ions on the particle surface. Depending on the particle size and the plasma density, the standard deviation of the number of collected elementary charges, which fluctuates due to the randomness in times of collisions with electrons or ions, may be a significant fraction of the equilibrium charge. We use a discrete stochastic charging model to simulate the variations in charge across the dust surface as well as in time. The resultant asymmetric particle potentials, even for spherical grains, has a significant impact on the particle coagulation rate as well as the structure of the resulting aggregates. We compare the effects on particle collisions and growth in typical laboratory and astrophysical plasma environments. This work was supported by the National Science Foundation under Grant PHY-1414523.

  15. Assessment of Pressure Fluctuation Effect for Thermal Fatigue in a T-junction Using Thermo-Hydro Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pyo, Jaebum; Kim, Jungwoo; Huh, Namsu [Seoul National Univ. of Science and Technology, Seoul (Korea, Republic of); Kim, Sunhye [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2013-10-15

    As a result, when evaluating thermal fatigue for the mixing tee, temperature fluctuation is dominant for this phenomenon, it can be reasonably assumed that the pressure is constant on the pipe inner wall. Recently, thermal fatigue due to mixing of the fluids having different temperatures has been considered as an important issue on the fatigue evaluation of nuclear piping. Mainly, this phenomenon occurs in a T-junction operating with the fluids consisted of different temperatures. Because of the turbulent mixing of hot and cold water, the temperature on the inner wall of the pipe fluctuates rapidly, causing the variation of thermal stresses in the pipe and resulting in high cycle thermal fatigue. In practice, cracking by high cycle thermal fatigue is reported at a T-junction in the residual heat removal system at Civaux unit 1 in France. However, because of irregular flow inside the pipe, the pressure also fluctuates rapidly as well as temperature in the inner wall of the pipe. Therefore, in this paper, three-dimensional thermo-hydro analysis was performed for the mixing tee of the shutdown cooling system of the pressurized water reactor plant, examining the pressure variation at the pipe inner wall. Based on the analysis result, this study aims at assessing the pressure fluctuation effect on the thermal fatigue. In this paper, it is verified that there is pressure fluctuation as well as temperature on the inner wall of mixing tee operating with the fluids having different temperatures. However, since the amplitude of pressure is relatively smaller than design pressure of the shutdown cooling system, the effect wouldn't be important for the thermal fatigue.

  16. Theory of electromagnetic fluctuations for magnetized multi-species plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, Roberto E., E-mail: roberto.navarro@ug.uchile.cl; Muñoz, Víctor [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Araneda, Jaime [Departamento de Física, Universidad de Concepción, Concepción 4070386 (Chile); Moya, Pablo S. [NASA Goddard Space Flight Center, Heliophysics Science Division, Geospace Physics Laboratory, Mail Code 673, Greenbelt, Maryland 20771 (United States); Department of Physics, Catholic University of America, Washington, D. C. 20064 (United States); Viñas, Adolfo F. [NASA Goddard Space Flight Center, Heliophysics Science Division, Geospace Physics Laboratory, Mail Code 673, Greenbelt, Maryland 20771 (United States); Valdivia, Juan A. [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Centro de Estudios Interdisciplinarios Básicos y Aplicados en Complejidad, CEIBA complejidad, Bogotá (Colombia)

    2014-09-15

    Analysis of electromagnetic fluctuations in plasma provides relevant information about the plasma state and its macroscopic properties. In particular, the solar wind persistently sustains a small but detectable level of magnetic fluctuation power even near thermal equilibrium. These fluctuations may be related to spontaneous electromagnetic fluctuations arising from the discreteness of charged particles. Here, we derive general expressions for the plasma fluctuations in a multi-species plasma following arbitrary distribution functions. This formalism, which generalizes and includes previous works on the subject, is then applied to the generation of electromagnetic fluctuations propagating along a background magnetic field in a plasma of two proton populations described by drifting bi-Maxwellians.

  17. Quality pseudo-random number generator

    International Nuclear Information System (INIS)

    Tarasiuk, J.

    1996-01-01

    The pseudo-random number generator (RNG) was written to match needs of nuclear and high-energy physics computation which in some cases require very long and independent random number sequences. In this random number generator the repetition period is about 10 36 what should be sufficient for all computers in the world. In this article the test results of RNG correlation, speed and identity of computations for PC, Sun4 and VAX computer tests are presented

  18. Personnel supply and demand issues in the nuclear power industry. Final report of the Nuclear Manpower Study Committee

    International Nuclear Information System (INIS)

    1981-01-01

    The anticipated personnel needs of the nuclear power industry have varied widely in recent years, in response to both increasing regulatory requirements and declining orders for new plants. Recent employment patterns in the nuclear energy field, with their fluctuations, resemble those of defense industries more than those traditionally associated with electric utilities. Reactions to the accident at Three Mile Island Unit 2 by industry and regulators have increased the demand for trained and experienced personnel, causing salaries to rise. Industry, for example, has established several advisory organizations like the Institute for Nuclear Power Operations (INPO). At the same time, the US Nuclear Regulatory Commission (NRC) has imposed many new construction and operating requirements in an effort to take advantage of lessons learned from the Three Mile Island incident and to respond to the perceived public interest in better regulation of nuclear power. Thus, at present, utilities, architect-engineer firms, reactor vendors, and organizations in the nuclear development community have heavy workloads

  19. Plasma diffusion due to magnetic field fluctuations

    International Nuclear Information System (INIS)

    Okuda, H.; Lee, W.W.; Lin, A.T.

    1979-01-01

    Plasma diffusion due to magnetic field fluctuations has been studied in two dimensions for a plasma near thermal equilibrium and when the fluctuations are suprathermal. It is found that near thermal equilibrium electron diffusion varies as B -2 when the collisionless skin depth is greater than the thermal electron gyroradius and is generally smaller than the diffusion due to collisions or electrostatic fluctuations for a low-β plasma. When the suprathermal magnetic fluctuation exists because of macroscopic plasma currents, electron diffusion is enhanced due to the coalescence of current filaments and magnetic islands. Magnetic field energy is found to condense to the longest wavelength available in the system and stays there longer than the electron diffusion time scale

  20. Energy issues, destabilization challenge? The nuclear power example

    International Nuclear Information System (INIS)

    Castel, Viviane du

    2010-01-01

    The depletion of oil, geopolitical uncertainties resulting, fluctuation and price volatility leads, since the 2000's, a development in which the economy favors nuclear energy for civilian use. Thus, the development of the international market for nuclear industry is linked to the competitiveness of nuclear deal with their competitors using fossil fuels (oil, gas, coal). Nuclear power is both an energy benefit to the countries that we use (low emissions of greenhouse gas emissions, low pollution, stable prices and competitive supply without major obstacles) and worrying (no real solution for waste, transfer risk from civilian to nuclear weapons). The Business Intelligence (BI) appears to be essential for companies in this industry and is based on technical and urgent challenges. BI has become an imperative for companies in the energy sector