Random processes in nuclear reactors
Williams, M M R
1974-01-01
Random Processes in Nuclear Reactors describes the problems that a nuclear engineer may meet which involve random fluctuations and sets out in detail how they may be interpreted in terms of various models of the reactor system. Chapters set out to discuss topics on the origins of random processes and sources; the general technique to zero-power problems and bring out the basic effect of fission, and fluctuations in the lifetime of neutrons, on the measured response; the interpretation of power reactor noise; and associated problems connected with mechanical, hydraulic and thermal noise sources
Studies of Fluctuation Processes in Nuclear Collisions
Energy Technology Data Exchange (ETDEWEB)
Ayik, Sakir [Tennessee Technological Univ., Cookeville, TN (United States). Dept. of Physics
2016-04-14
The standard one-body transport approaches have been extensively applied to investigate heavy-ion collision dynamics at low and intermediate energies. At low energies the approach is the mean-field description of the time-dependent Hartree-Fock (TDHF) theory. At intermediate energies the approach is extended by including a collision term, and its application has been carried out mostly in the semi-classical framework of the Boltzmann-Uhling-Uhlenbeck (BUU) model. The standard transport models provide a good understanding of the average properties of the collision dynamics in terms of the effective interactions in both low and intermediate energies. However, the standard models are inadequate for describing the fluctuation dynamics of collective motion at low energies and disassembling of the nuclear system into fragments at intermediate energies resulting from the growth of density fluctuations in the spinodal region. Our tasks have been to improve the standard transport approaches by incorporating fluctuation mechanisms into the description. There are mainly two different mechanisms for fluctuations: (i) Collisional fluctuations generated by binary nucleon collisions, which provide the dominant mechanism at intermediate energies, and (ii) One-body mechanism or mean-field fluctuations, which is the dominant mechanism at low energies. In the first part of our project, the PI extended the standard transport model at intermediate energies by incorporating collisional mechanism according to the “Generalized Langevin Description” of Mori formalism. The PI and his collaborators carried out a number of applications for describing dynamical mechanism of nuclear multi fragmentations, and nuclear collective response in the semi-classical framework of the approach, which is known as the Boltzmann-Langevin model. In the second part of the project, we considered dynamical description at low energies. Because of the effective Pauli blocking, the collisional dissipation and
Fluctuations and symmetry energy in nuclear fragmentation dynamics.
Colonna, M
2013-01-25
Within a dynamical description of nuclear fragmentation, based on the liquid-gas phase transition scenario, we explore the relation between neutron-proton density fluctuations and nuclear symmetry energy. We show that, along the fragmentation path, isovector fluctuations follow the evolution of the local density and approach an equilibrium value connected to the local symmetry energy. Higher-density regions are characterized by smaller average asymmetry and narrower isotopic distributions. This dynamical analysis points out that fragment final state isospin fluctuations can probe the symmetry energy of the density domains from which fragments originate.
Quantum fluctuation effects on nuclear fragment and atomic cluster formation
Energy Technology Data Exchange (ETDEWEB)
Ohnishi, Akira [Hokkaido Univ., Sapporo (Japan). Dept. of Physics; Randrup, J.
1997-05-01
We investigate the nuclear fragmentation and atomic cluster formation by means of the recently proposed quantal Langevin treatment. It is shown that the effect of the quantal fluctuation is in the opposite direction in nuclear fragment and atomic cluster size distribution. This tendency is understood through the effective classical temperature for the observables. (author)
Nuclear shadowing and the optics of hadronic fluctuations
Energy Technology Data Exchange (ETDEWEB)
Mankiewicz, L. E-mail: lech_mankiewicz@camk.edu.pl; Piller, G.; Vaenttinen, M.; Weise, W
2001-06-04
A coordinate-space description of shadowing in deep-inelastic lepton-nucleus scattering is presented. The picture in the laboratory frame is that of quark-gluon fluctuations of the high-energy virtual photon, propagating coherently over large light-cone distances in the nuclear medium. We discuss the detailed dependence of the coherence effects on the invariant mass of the fluctuation. We comment on the issue of possible saturation in the shadowing effects at very small Bjorken-x.
Evidence for color fluctuations in hadrons from coherent nuclear diffraction
Energy Technology Data Exchange (ETDEWEB)
Frankfurt, L. (Tel Aviv University, Ramat Aviv (Israel)); Miller, G.A. (Department of Physcis, FM-15, University of Washington, Seattle, Washington 98195 (United States)); Strikman, M. (Department of Physcis, Pennsylvania State University, University Park, Pennsylvania 16801 (United States))
1993-11-01
A QCD-based treatment of projectile size fluctuations is used to compute inelastic diffractive cross sections [sigma][sub diff] for coherent hadron-nuclear processes. We find that fluctuations near the average size give the major contribution to the cross section with [lt] few % contribution from small size configurations. The computed values of [sigma][sub diff] are consistent with the limited available data. The importance of coherent diffraction studies for a wide range of projectiles for high energy Fermilab fixed target experiments is emphasized. The implications of these significant color fluctuations for relativistic heavy ion collisions are discussed.
Gluon field fluctuations in nuclear collisions: Multiplicity and eccentricity distributions
Energy Technology Data Exchange (ETDEWEB)
Schenke, Björn [Physics Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Tribedy, Prithwish [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700064 (India); Venugopalan, Raju [Physics Department, Brookhaven National Laboratory, Upton, NY 11973 (United States)
2014-06-15
We discuss different sources of fluctuations in nuclear collisions and their realization in the IP-Glasma model. We present results for multiplicity distributions in p+p and p+A collisions and compare eccentricity (ε{sub 2}, ε{sub 3}, ε{sub 4}) distributions in A + A collisions to the v{sub n} distributions in 10 centrality classes measured by the ATLAS Collaboration.
Persistence of randomly coupled fluctuating interfaces.
Majumdar, Satya N; Das, Dibyendu
2005-03-01
We study the persistence properties in a simple model of two coupled interfaces characterized by heights h(1) and h(2) , respectively, each growing over a d -dimensional substrate. The first interface evolves independently of the second and can correspond to any generic growing interface, e.g., of the Edwards-Wilkinson or of the Kardar-Parisi-Zhang variety. The evolution of h(2) , however, is coupled to h(1) via a quenched random velocity field. In the limit d-->0 , our model reduces to the Matheron-de Marsily model in two dimensions. For d=1, our model describes a Rouse polymer chain in two dimensions advected by a transverse velocity field. We show analytically that after a long waiting time t(0) -->infinity , the stochastic process h(2) , at a fixed point in space but as a function of time, becomes a fractional Brownian motion with a Hurst exponent, H2 =1- beta(1) /2 , where beta(1) is the growth exponent characterizing the first interface. The associated persistence exponent is shown to be theta(2)(s) =1- H2 = beta(1) /2 . These analytical results are verified by numerical simulations.
Listening to the noise: random fluctuations reveal gene network parameters
Energy Technology Data Exchange (ETDEWEB)
Munsky, Brian [Los Alamos National Laboratory; Khammash, Mustafa [UCSB
2009-01-01
The cellular environment is abuzz with noise. The origin of this noise is attributed to the inherent random motion of reacting molecules that take part in gene expression and post expression interactions. In this noisy environment, clonal populations of cells exhibit cell-to-cell variability that frequently manifests as significant phenotypic differences within the cellular population. The stochastic fluctuations in cellular constituents induced by noise can be measured and their statistics quantified. We show that these random fluctuations carry within them valuable information about the underlying genetic network. Far from being a nuisance, the ever-present cellular noise acts as a rich source of excitation that, when processed through a gene network, carries its distinctive fingerprint that encodes a wealth of information about that network. We demonstrate that in some cases the analysis of these random fluctuations enables the full identification of network parameters, including those that may otherwise be difficult to measure. This establishes a potentially powerful approach for the identification of gene networks and offers a new window into the workings of these networks.
Scattering from randomly oriented scatterers with strong permittivity fluctuations
Yueh, S. H.; Kong, J. A.; Shin, R. T.
1990-01-01
Strong permittivity fluctuation theory is used to solve the problem of scattering from a medium composed of completely randomly oriented scatterers under a low frequency limit. Gaussian statistics are not assumed for the renormalized scattering sources. Numerical results on effective permittivity are illustrated for oblate and prolate spheroidal scatterers and compared with the results for spherical scatterers. The results are consistent with discrete scatterer theory. The effective permittivity of a random medium embedded with nonspherical scatterers shows a higher imaginary part than the spherical scatterer case with equal correlation volume. Under the distorted Born approximation, the polarimetric covariance matrix for the backscattered electric field is calculated for half-space randomly oriented scatterers. The nonspherical geometry of the scatterers shows significant effects on the cross-polarized backscattering returns, and the correlation coefficient between HH and VV returns. The polarimetric backscattering coefficients can provide useful information in distinguishing the geometry of scatterers.
Random fluctuation leads to forbidden escape of particles.
Rodrigues, Christian S; de Moura, Alessandro P S; Grebogi, Celso
2010-08-01
A great number of physical processes are described within the context of Hamiltonian scattering. Previous studies have rather been focused on trajectories starting outside invariant structures, since the ones starting inside are expected to stay trapped there forever. This is true though only for the deterministic case. We show however that, under finitely small random fluctuations of the field, trajectories starting inside Kolmogorov-Arnold-Moser (KAM) islands escape within finite time. The nonhyperbolic dynamics gains then hyperbolic characteristics due to the effect of the random perturbed field. As a consequence, trajectories which are started inside KAM curves escape with hyperboliclike time decay distribution, and the fractal dimension of a set of particles that remain in the scattering region approaches that for hyperbolic systems. We show a universal quadratic power law relating the exponential decay to the amplitude of noise. We present a random walk model to relate this distribution to the amplitude of noise, and investigate these phenomena with a numerical study applying random maps.
Intensity approximation of random fluctuation in complex systems
Yulmetyev, R. M.; Gafarov, F. M.; Yulmetyeva, D. G.; Emeljanova, N. A.
2002-01-01
The Markov and non-Markov processes in complex systems are examined with the help of dynamical information Shannon entropy method. Here we consider the essential role of two mutually independent channels of entropy involving creation of correlation and annihilation of correlation. The developed method has been used to analyze the intensity fluctuation of the complex systems of various nature: in psychology (to analyze numerical and pattern short-time human memory, to study the effect of stress on the parameters of the dynamical taping-test) and in cardiology (to analyze the random dynamics of RR-intervals in human ECG's and to diagnose various diseases of human cardiovascular systems). The received results show that the application of intensity approximation allows to improve essentially the diagnostics of parameters in the evolution of human dynamic states.
Kim, Y H; Kaur, N; Atkins, B M; Dalal, N S; Takano, Y
2009-12-11
At a quantum critical point (QCP)--a zero-temperature singularity in which a line of continuous phase transition terminates--quantum fluctuations diverge in space and time, leading to exotic phenomena that can be observed at nonzero temperatures. Using a quantum antiferromagnet, we present calorimetric evidence that nuclear spins frozen in a high-temperature nonequilibrium state by temperature quenching are annealed by quantum fluctuations near the QCP. This phenomenon, with readily detectable heat release from the nuclear spins as they are annealed, serves as an excellent marker of a quantum critical region around the QCP and provides a probe of the dynamics of the divergent quantum fluctuations.
Variance of phase fluctuations of waves propagating through a random medium
Chu, Nelson C.; Kong, Jin AU; Yueh, Simon H.; Nghiem, Son V.; Fleischman, Jack G.; Ayasli, Serpil; Shin, Robert T.
1992-01-01
As an electromagnetic wave propagates through a random scattering medium, such as a forest, its energy is attenuated and random phase fluctuations are induced. The magnitude of the random phase fluctuations induced is important in estimating how well a Synthetic Aperture Radar (SAR) can image objects within the scattering medium. The two-layer random medium model, consisting of a scattering layer between free space and ground, is used to calculate the variance of the phase fluctuations induced between a transmitter located above the random medium and a receiver located below the random medium. The scattering properties of the random medium are characterized by a correlation function of the random permittivity fluctuations. The effective permittivity of the random medium is first calculated using the strong fluctuation theory, which accounts for large permittivity fluctuations of the scatterers. The distorted Born approximation is used to calculate the first-order scattered field. A perturbation series for the phase of the received field in the Rytov approximation is then introduced and the variance of the phase fluctuations is also calculated assuming that the transmitter and receiver are in the paraxial limit of the random medium, which allows an analytic solution to be obtained. Results are compared using the paraxial approximation, scalar Green's function formulation, and dyadic Green's function formulation. The effects studied are the dependence of the variance of the phase fluctuations on receiver location in lossy and lossless regions, medium thickness, correlation length and fractional volume of scatterers, depolarization of the incident wave, ground layer permittivity, angle of incidence, and polarization.
Limit Shapes and Fluctuations of Bounded Random Partitions
DEFF Research Database (Denmark)
Beltoft, Dan
Young diagrams confined to a rectangle. When the rectangle grows, and diagrams are rescaled, the probability measure degenerates to a delta measure on a continuous curve, the limit shape. In the intermediate scaling, the fluctuations around the limit shape turn out to be governed by an Ornstein...
DEFF Research Database (Denmark)
Denning, Emil Vosmar; Iles-Smith, Jake; McCutcheon, Dara P. S.
2017-01-01
Multiphoton entangled states are a crucial resource for many applications inquantum information science. Semiconductor quantum dots offer a promising route to generate such states by mediating photon-photon correlations via a confinedelectron spin, but dephasing caused by the host nuclear spin...... environment typically limits coherence (and hence entanglement) between photons to the spin T2* time of a few nanoseconds. We propose a protocol for the deterministic generation of multiphoton entangled states that is inherently robust against the dominating slow nuclear spin environment fluctuations, meaning...... or nuclear spin calming techniques....
Directory of Open Access Journals (Sweden)
ISHIKAWA, M.
2008-04-01
Full Text Available We often observe some kind or another of random fluctuations in physical, chemical and social phenomena to a greater or lesser extent. The analysis of influence of such fluctuations on phenomena is very important as a basic problem in various fields including design and planning of controlled systems in control engineering and analysis of option pricing in economics. In this paper, focusing on biological communities, we study the influence of the random fluctuations on predator-prey systems with diffusion. Noting that interaction of phytoplankton and zooplankton is the basis of a food chain in the lake and the ocean, we consider the two-species predator-prey systems consists of phytoplankton and zooplankton. We analyze the influence of the random fluctuations on the spatio-temporal patterns generated by phytoplankton and zooplankton by the numerical simulations.
Random-matrix-theory approach to mesoscopic fluctuations of heat current
Schmidt, Martin; Kottos, Tsampikos; Shapiro, Boris
2013-08-01
We consider an ensemble of fully connected networks of N oscillators coupled harmonically with random springs and show, using random-matrix-theory considerations, that both the average phonon heat current and its variance are scale invariant and take universal values in the large N limit. These anomalous mesoscopic fluctuations is the hallmark of strong correlations between normal modes.
Random Matrix Approach to Fluctuations and Scaling in Complex Systems
Santhanam, M. S.
The study of fluctuations, self-similarity and scaling in physical and socioeconomic sciences in the last several years has brought in new insights and new ideas for modelling them. For instance, one of the important empirical results of the market dynamics is that the probability distribution of price returns r in a typical market displays a power-law, i.e, (P|r| > x) ˜ r -α , where α ˜ 3.0 [1]. In fact, this "inverse cube law" is known to hold good for volume of stocks traded in stock exchanges, though the exponent in this case is α ˜ 1.5 [1]. Similar power laws appear for the cumulative frequency distribution of earth quake magnitudes, often called the Gutenberg-Richter relation [2]. Infect, anything from size distribution of cities and wealth distributions, display power law. These apparently universal power laws pertain to the distribution of actual values taken by some quantity of interest, say, a stock market index and these distributions reveal scaling with certain parameters.
Denning, Emil V.; Iles-Smith, Jake; McCutcheon, Dara P. S.; Mork, Jesper
2017-12-01
Multiphoton entangled states are a crucial resource for many applications in quantum information science. Semiconductor quantum dots offer a promising route to generate such states by mediating photon-photon correlations via a confined electron spin, but dephasing caused by the host nuclear spin environment typically limits coherence (and hence entanglement) between photons to the spin T2* time of a few nanoseconds. We propose a protocol for the deterministic generation of multiphoton entangled states that is inherently robust against the dominating slow nuclear spin environment fluctuations, meaning that coherence and entanglement is instead limited only by the much longer spin T2 time of microseconds. Unlike previous protocols, the present scheme allows for the generation of very low error probability polarization encoded three-photon GHZ states and larger entangled states, without the need for spin echo or nuclear spin calming techniques.
Quantum fluctuation of electronic wave-packet dynamics coupled with classical nuclear motions.
Amano, Michiko; Takatsuka, Kazuo
2005-02-22
An ab initio electronic wave-packet dynamics coupled with the simultaneous classical dynamics of nuclear motions in a molecule is studied. We first survey the dynamical equations of motion for the individual components. Reflecting the nonadiabatic dynamics that electrons can respond to nuclear motions only with a finite speed, the equations of motion for nuclei include a force arising from the kinematic (nuclear momentum) coupling from electron cloud. To materialize these quantum effects in the actual ab initio calculations, we study practical implementation of relevant electronic matrix elements that are related to the derivatives with respect to the nuclear coordinates. Applications of the present scheme are performed in terms of the configuration state functions (CSF) using the canonical molecular orbitals as basis functions without transformation to particular diabatic basis. In the CSF representation, the nonadiabatic interaction due to the kinematic coupling is anticipated to be rather small, and instead it should be well taken into account through the off-diagonal elements of the electronic Hamiltonian matrix. Therefore it is expected that the nonadiabatic dynamics based on this CSF basis neglecting the kinematic coupling may work. To verify this anticipation and to quantify the actual effects of the kinematic coupling, we compare the dynamics with and without the kinematic-coupling terms using the same CSF set. Applications up to the fifth electronically excited states in a nonadiabatic collision between H(2) and B(+) shows that the overall behaviors of these two calculations are surprisingly similar to each other in an average sense except for a fast fluctuation reflecting the electronic time scale. However, at the same time, qualitative differences in the collision events are sometimes observed. Therefore it turns out after all that the kinematic-coupling terms cannot be neglected in the CSF-basis representation. The present applications also demonstrate
Huang, Liang; Yang, Rui; Lai, Ying-Cheng; Ferry, David K
2013-02-27
Quantum interference causes a wavefunction to have sensitive spatial dependence, and this has a significant effect on quantum transport. For example, in a quantum-dot system, the conductance can depend on the lead positions. We investigate, for graphene quantum dots, the conductance variations with the lead positions. Since for graphene the types of boundaries, e.g., zigzag and armchair, can fundamentally affect the quantum transport characteristics, we focus on rectangular graphene quantum dots, for which the effects of boundaries can be systematically studied. For both zigzag and armchair horizontal boundaries, we find that changing the positions of the leads can induce significant conductance variations. Depending on the Fermi energy, the variations can be either regular oscillations or random conductance fluctuations. We develop a physical theory to elucidate the origin of the conductance oscillation/fluctuation patterns. In particular, quantum interference leads to standing-wave-like-patterns in the quantum dot which, in the absence of leads, are regulated by the energy-band structure of the corresponding vertical graphene ribbon. The observed 'coexistence' of regular oscillations and random fluctuations in the conductance can be exploited for the development of graphene-based nanodevices.
Energy Technology Data Exchange (ETDEWEB)
Braun-Munzinger, P., E-mail: p.braun-munzinger@gsi.de [Extreme Matter Institute EMMI, GSI, Darmstadt (Germany); Physikalisches Institut, Universität Heidelberg, Heidelberg (Germany); Rustamov, A., E-mail: a.rustamov@cern.ch [Physikalisches Institut, Universität Heidelberg, Heidelberg (Germany); National Nuclear Research Center, Baku (Azerbaijan); Stachel, J., E-mail: stachel@physi.uni-heidelberg.de [Physikalisches Institut, Universität Heidelberg, Heidelberg (Germany)
2017-04-15
We develop methods to deal with non-dynamical contributions to event-by-event fluctuation measurements of net-particle numbers in relativistic nuclear collisions. These contributions arise from impact parameter fluctuations and from the requirement of overall net-baryon number or net-charge conservation and may mask the dynamical fluctuations of interest, such as those due to critical endpoints in the QCD phase diagram. Within a model of independent particle sources we derive formulae for net-particle fluctuations and develop a rigorous approach to take into account contributions from participant fluctuations in realistic experimental environments and at any cumulant order. Interestingly, contributions from participant fluctuations to the second and third cumulants of net-baryon distributions are found to vanish at mid-rapidity for LHC energies while higher cumulants of even order are non-zero even when the net-baryon number at mid-rapidity is zero. At lower beam energies the effect of participant fluctuations increases and induces spurious higher moments. The necessary corrections become large and need to be carefully taken into account before comparison to theory. We also provide a procedure for selecting the optimal phase–space coverage of particles for fluctuation analyses and discuss quantitatively the necessary correction due to global charge conservation.
Energy Technology Data Exchange (ETDEWEB)
Muramatsu, Toshiharu [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center
1998-03-01
Thermal striping phenomena characterized by stationary random temperature fluctuations are observed in the region immediately above the core exit of liquid-metal-cooled fast breeder reactors (LMFBRs) due to the interactions of cold sodium flowing out of a control rod (C/R) assembly and hot sodium flowing out of adjacent fuel assemblies (F/As). Therefore the in-vessel components located in the core outlet region, such as upper core structure (UCS), flow guide tube, C/R upper guide tube, etc., must be protected against the stationary random thermal process which might induce high-cycle fatigue. In this study, frequency characteristics of stationary random temperature fluctuations were investigated by the use of the time-series data from parallel impinging jet experiments, TIFFSS-I. (J.P.N.)
Bhaduri, Anirban; Bhaduri, Susmita; Ghosh, Dipak
2017-07-01
Various works on multiplicity fluctuation have investigated the dynamics of particle production process and eventually have tried to reveal a signature of phase transition in ultra-relativistic nuclear collisions. Analysis of fluctuations of spatial patterns has been conducted in terms of conventional approach. However, analysis with fractal dynamics on the scaling behavior of the void has not been explored yet. In this work we have attempted to analyze pion fluctuation in terms of the scaling behavior of the void probability distribution in azimuthal space in ultra-relativistic nuclear collisions in the light of complex networks. A radically different and rigorous method viz. Visibility Graph was applied on the data of 32S-Ag/Br interaction at an incident energy of 200 GeV per nucleon. The analysis reveals strong scaling behavior of void probability distributions in azimuthal space and a strong centrality dependence.
Energy Technology Data Exchange (ETDEWEB)
Benhassine, B. [Nantes Univ., 44 (France)
1994-01-14
At intermediate energies the heavy ion collisions can be studied within the framework of a semi-classical approach based on the Vlasov-Uehling-Uhlenbeck (VUU) equation. Such an approach reduces the N-body problem to its description in terms of the one-body distribution function and constitutes the basis of several successful simulation models. Our aim in this work is to extend these average approaches to treat fluctuations. Within the framework of a linear approximation, we derived a Fokker-Planck transport equation in the one-body phase space. When it is reduced to its first moments, one recovers the VUU equation for the average dynamics together with the time evolution equation for the correlations. The collective transport coefficients are then obtained by projection on the one-body collective space. Independently, using a projection method introduced by Van Kampen, based on the constants of motion, we deduce the stationary expressions for the covariance matrix in phase space. We extract then, the equilibrium dispersions of one-body observables in a homogeneous case and in a spherical symmetric one. These results are compared with two types of simulation models in a relaxation time approximation. In the first one which is of Lagrangian type, the collective transport coefficients are directly extracted from the simulation and consequently the numerical fluctuations are washed out. The second model, due to its Eulerian character, allows us to make a microscopical comparison. (author) 58 refs.
Faria, Alex Carvalho; Barcellos, Karin Spat Albino; Andrade, Luis Eduardo Coelho
2005-07-01
To examine the appearance, persistence, and disappearance of anti-extractable nuclear antigen (ENA, Sm, U1-RNP, Ro/SSA, and La/SSB) and anti-native DNA (dsDNA) antibodies during systemic lupus erythematosus (SLE) followup. One hundred and thirty patients who fulfilled American College of Rheumatology classification criteria for SLE with at least 5 yearly anti-ENA and dsDNA tests between 1987-2002 were retrospectively selected. Four longitudinal antibody data patterns were considered for each antibody: always absent, always present, absent at diagnosis with positive seroconversion, and present at diagnosis with negative seroconversion. Antibodies to Ro/SSA were present in 47%, U1-RNP in 36%, DNA in 32%, Sm in 23%, and La/SSB in 7% of patients. Among patients ever positive for a given autoantibody, the frequency of the "always present" pattern was 52% for anti-Ro/SSA, 38% for U1-RNP, 17% for Sm, 11% for La/SSB, and 9% for DNA antibodies; the frequency of positive seroconversion was 56% for anti-La/SSB, 33% for DNA, 26% for Sm, 21% for U1-RNP, and 15% for Ro/SSA. Time to positive seroconversion varied from 1 to 8 years after diagnosis. Among patients with a positive test at diagnosis the frequency of those remaining positive between the 2nd and 4th year of followup decreased to 39-78%, depending upon autoantibody specificity; between the 5th and 10th years this rate was 20-75%. Antibody data pattern frequency differed significantly among autoantibody specificities except between anti-U1-RNP and Ro/SSA (p = 0.15) and between anti-DNA and Sm antibodies (p = 0.29). The high frequency of longitudinal fluctuation in anti-ENA antibodies suggests that a periodic reappraisal may be appropriate in seronegative patients with a suspect diagnosis of SLE. The clinical significance of such fluctuation deserves future study.
Asenov, Asen; Slavcheva, G.; Brown, A. R.; Davies, J. H.; Saini, Subhash
1999-01-01
A detailed study of the influence of quantum effects in the inversion layer on the random dopant induced threshold voltage fluctuations and lowering in sub 0.1 micron MOSFETs has been performed. This has been achieved using a full 3D implementation of the density gradient (DG) formalism incorporated in our previously published 3D 'atomistic' simulation approach. This results in a consistent, fully 3D, quantum mechanical picture which implies not only the vertical inversion layer quantisation but also the lateral confinement effects manifested by current filamentation in the 'valleys' of the random potential fluctuations. We have shown that the net result of including quantum mechanical effects, while considering statistical fluctuations, is an increase in both threshold voltage fluctuations and lowering.
When human walking becomes random walking: fractal analysis and modeling of gait rhythm fluctuations
Hausdorff, Jeffrey M.; Ashkenazy, Yosef; Peng, Chang-K.; Ivanov, Plamen Ch.; Stanley, H. Eugene; Goldberger, Ary L.
2001-12-01
We present a random walk, fractal analysis of the stride-to-stride fluctuations in the human gait rhythm. The gait of healthy young adults is scale-free with long-range correlations extending over hundreds of strides. This fractal scaling changes characteristically with maturation in children and older adults and becomes almost completely uncorrelated with certain neurologic diseases. Stochastic modeling of the gait rhythm dynamics, based on transitions between different “neural centers”, reproduces distinctive statistical properties of the gait pattern. By tuning one model parameter, the hopping (transition) range, the model can describe alterations in gait dynamics from childhood to adulthood - including a decrease in the correlation and volatility exponents with maturation.
Random fluctuations of snow accumulation over antarctica and their relation to sea level change
Energy Technology Data Exchange (ETDEWEB)
Remy, F.; Testut, L.; Legresy, B. [LEGOS (CNRS-CNES-UPS), Toulouse (France)
2002-07-01
Short-term changes in the volume of ice sheets as analyzed by radar altimetry may not be related to long-term climatic change. Indeed, the large relaxation time of an ice sheet induces a low-frequency response to random fluctuations of snow accumulation. However, the time scale of the response is big compared to the average human lifetime and the effect of these random fluctuations on sea level change may be important even if they are not linked to climatic change. In this study, the relaxation time of an ice sheet is expressed with respect to the ice thickness, surface slope and ice velocity. These parameters are deduced from the precise topography derived from the geodetic cycle of the ERS1 radar altimeter. The variance of the induced effect on ice elevation is found to be around 3 m over a 30-year scale and with a maximum of 10 m in Wilkes Land and in the western part of the West Antarctic ice sheet. Near the coast, this effect can mask a climatic signal and thus be critical for altimetric mass balance surveys. The estimated changes in Antarctica's elevation between the Seasat (1978) and ERS (1993) epochs could be explained at least partially by such processes. In terms of sea level change over the 30-year scale, the standard deviation of the induced effect is 8 {+-} 2.8 cm. Finally, we show that the probability of a present-day, induced sea level rise of between 0.5 and 1 mm/year over a 30-year time scale is estimated at 10% {+-} 10%, with coastal areas accounting for half of this signal. (orig.)
Applications of Random Matrix Ensembles in Nuclear Systems
Duras, Maciej M.
2003-01-01
The random matrix ensembles (RME), especially Gaussian RME and Ginibre RME, are applied to nuclear systems, molecular systems, and two-dimensional electron systems (Wigner-Dyson electrostatic analogy). Measures of quantum chaos and quantum integrability with respect to eigenergies of quantum systems are defined and calculated.
Transverse Momentum Fluctuations in Nuclear Collisions at 158 AGeV
Anticic, T.; Barna, D.; Bartke, J.; Behler, M.; Betev, L.; Bialkowska, H.; Billmeier, A.; Blume, C.; Boimska, B.; Botje, M.; Bracinik, J.; Bramm, R.; Brun, R.; Buncic, P.; Cerny, V.; Christakoglou, P.; Chvala, O.; Cramer, J.G.; Csato, P.; Darmenov, N.; Dimitrov, A.; Dinkelaker, P.; Eckardt, V.; Filip, P.; Flierl, D.; Fodor, Z.; Foka, P.; Freund, P.; Friese, V.; Gal, J.; Gazdzicki, M.; Georgopoulos, G.; Gladysz, E.; Hegyi, S.; Hohne, C.; Kadija, K.; Karev, A.; Kolesnikov, V.I.; Kollegger, T.; Korus, R.; Kowalski, M.; Kraus, I.; Kreps, M.; van Leeuwen, M.; Levai, P.; Litov, L.; Makariev, M.; Malakhov, A.I.; Markert, C.; Mateev, M.; Mayes, B.W.; Melkumov, G.L.; Meurer, C.; Mischke, A.; Mitrovski, M.; Molnar, J.; Mrowczynski, S.; Palla, G.; Panagiotou, A.D.; Panayotov, D.; Perl, K.; Petridis, A.; Pikna, M.; Pinsky, Lawrence S.; Puhlhofer, F.; Reid, J.G.; Renfordt, R.; Retyk, W.; Roland, C.; Roland, G.; Rybczynski, M.; Rybicki, A.; Sandoval, A.; Sann, H.; Schmitz, N.; Seyboth, P.; Sikler, F.; Sitar, B.; Skrzypczak, E.; Stefanek, G.; Stock, R.; Strobele, H.; Susa, T.; Szentpetery, I.; Sziklai, J.; Trainor, T.A.; Varga, D.; Vassiliou, M.; Veres, G.I.; Vesztergombi, G.; Vranic, D.; Wetzler, A.; Wlodarczyk, Z.; Yoo, I.K.; Zaranek, J.; Zimanyi, J.
2004-01-01
Results are presented on event-by-event fluctuations in transverse momentum of charged particles, produced at forward rapidities in p+p, C+C, Si+Si and Pb+Pb collisions at 158 AGeV. Three different characteristics are discussed: the average transverse momentum of the event, the Phi_pT fluctuation measure and two-particle transverse momentum correlations. In the kinematic region explored, the dynamical fluctuations are found to be small. However, a significant system size dependence of Phi_pT is observed, with the largest value measured in peripheral Pb+Pb interactions. The data are compared with predictions of several models.
Random matrix theory in biological nuclear magnetic resonance spectroscopy.
Lacelle, S
1984-01-01
The statistical theory of energy levels or random matrix theory is presented in the context of the analysis of chemical shifts of nuclear magnetic resonance (NMR) spectra of large biological systems. Distribution functions for the spacing between nearest-neighbor energy levels are discussed for uncorrelated, correlated, and random superposition of correlated energy levels. Application of this approach to the NMR spectra of a vitamin, an antibiotic, and a protein demonstrates the state of correlation of an ensemble of energy levels that characterizes each system. The detection of coherent and dissipative structures in proteins becomes feasible with this statistical spectroscopic technique. PMID:6478032
Transverse eV Ion Heating by Random Electric Field Fluctuations in the Plasmasphere
Artemyev, A. V.; Mourenas, D.; Agapitov, O. V.; Blum, L.
2017-01-01
Charged particle acceleration in the Earth inner magnetosphere is believed to be mainly due to the local resonant wave-particle interaction or particle transport processes. However, the Van Allen Probes have recently provided interesting evidence of a relatively slow transverse heating of eV ions at distances about 2-3 Earth radii during quiet times. Waves that are able to resonantly interact with such very cold ions are generally rare in this region of space, called the plasmasphere. Thus, non-resonant wave-particle interactions are expected to play an important role in the observed ion heating. We demonstrate that stochastic heating by random transverse electric field fluctuations of whistler (and possibly electromagnetic ion cyclotron) waves could explain this weak and slow transverse heating of H+ and O+ ions in the inner magnetosphere. The essential element of the proposed model of ion heating is the presence of trains of random whistler (hiss) wave packets, with significant amplitude modulations produced by strong wave damping, rapid wave growth, or a superposition of wave packets of different frequencies, phases, and amplitudes. Such characteristics correspond to measured characteristics of hiss waves in this region. Using test particle simulations with typical wave and plasma parameters, we demonstrate that the corresponding stochastic transverse ion heating reaches 0.07-0.2 eV/h for protons and 0.007-0.015 eV/h for O+ ions. This global temperature increase of the Maxwellian ion population from an initial Ti approx. 0.3 eV could potentially explain the observations.
Transverse eV ion heating by random electric field fluctuations in the plasmasphere
Artemyev, A. V.; Mourenas, D.; Agapitov, O. V.; Blum, L.
2017-02-01
Charged particle acceleration in the Earth inner magnetosphere is believed to be mainly due to the local resonant wave-particle interaction or particle transport processes. However, the Van Allen Probes have recently provided interesting evidence of a relatively slow transverse heating of eV ions at distances about 2-3 Earth radii during quiet times. Waves that are able to resonantly interact with such very cold ions are generally rare in this region of space, called the plasmasphere. Thus, non-resonant wave-particle interactions are expected to play an important role in the observed ion heating. We demonstrate that stochastic heating by random transverse electric field fluctuations of whistler (and possibly electromagnetic ion cyclotron) waves could explain this weak and slow transverse heating of H+ and O+ ions in the inner magnetosphere. The essential element of the proposed model of ion heating is the presence of trains of random whistler (hiss) wave packets, with significant amplitude modulations produced by strong wave damping, rapid wave growth, or a superposition of wave packets of different frequencies, phases, and amplitudes. Such characteristics correspond to measured characteristics of hiss waves in this region. Using test particle simulations with typical wave and plasma parameters, we demonstrate that the corresponding stochastic transverse ion heating reaches 0.07-0.2 eV/h for protons and 0.007-0.015 eV/h for O+ ions. This global temperature increase of the Maxwellian ion population from an initial Ti˜0.3 eV could potentially explain the observations.
Can log-periodic power law structures arise from random fluctuations?
Wosnitza, Jan Henrik; Leker, Jens
2014-05-01
Recent research has established log-periodic power law (LPPL) patterns prior to the detonation of the German stock index (DAX) bubble in 1998. The purpose of this article is to explore whether a Langevin equation extracted from real world data can generate synthetic time series with comparable LPPL structures. To this end, we first estimate the stochastic process underlying the DAX log-returns during the period from mid-1997 until end-2003. The employed data set contains about 3.93ṡ106 intraday DAX quotes at a sampling rate of 15 s. Our results indicate that the DAX log-returns can be described as a Markov process. As a consequence, a Langevin equation is derived. Based on this model equation, we run extensive simulations in order to generate 100 synthetic DAX trajectories each covering 3000 trading days. We find LPPL behavior in ten artificial time series. Moreover, we can establish a link between LPPL patterns and ensuing bubble bursts in seven synthetic 600-week windows. However, the LPPL components in most synthetic trajectories differ fundamentally from those LPPL structures that have previously been detected in real financial time series. Summarized, this paper demonstrates that LPPL structures are not necessarily the signature of imitative behavior among investors but can also stem from noise, even though the likelihood of this is extremely low. Thus, our findings confirm with high statistical confidence that the LPPL structures in the DAX development are rooted deeper than only in the random fluctuations of the German stock market.
Solvent fluctuations and nuclear quantum effects modulate the molecular hyperpolarizability of water
Liang, Chungwen; Tocci, Gabriele; Wilkins, David M.; Grisafi, Andrea; Roke, Sylvie; Ceriotti, Michele
2017-07-01
Second-harmonic scattering (SHS) experiments provide a unique approach to probe noncentrosymmetric environments in aqueous media, from bulk solutions to interfaces, living cells, and tissue. A central assumption made in analyzing SHS experiments is that each molecule scatters light according to a constant molecular hyperpolarizability tensor β(2 ). Here, we investigate the dependence of the molecular hyperpolarizability of water on its environment and internal geometric distortions, in order to test the hypothesis of constant β(2 ). We use quantum chemistry calculations of the hyperpolarizability of a molecule embedded in point-charge environments obtained from simulations of bulk water. We demonstrate that both the heterogeneity of the solvent configurations and the quantum mechanical fluctuations of the molecular geometry introduce large variations in the nonlinear optical response of water. This finding has the potential to change the way SHS experiments are interpreted: In particular, isotopic differences between H2O and D2O could explain recent SHS observations. Finally, we show that a machine-learning framework can predict accurately the fluctuations of the molecular hyperpolarizability. This model accounts for the microscopic inhomogeneity of the solvent and represents a step towards quantitative modeling of SHS experiments.
Energy Technology Data Exchange (ETDEWEB)
Yang, Yang [Department of Chemistry, Duke University, Durham, North Carolina 27708 (United States); Aggelen, Helen van [Department of Chemistry, Duke University, Durham, North Carolina 27708 (United States); Department of Inorganic and Physical Chemistry, Ghent University, 9000 Ghent (Belgium); Yang, Weitao, E-mail: weitao.yang@duke.edu [Department of Chemistry and Department of Physics, Duke University, Durham, North Carolina 27708 (United States)
2013-12-14
Double, Rydberg, and charge transfer (CT) excitations have been great challenges for time-dependent density functional theory (TDDFT). Starting from an (N ± 2)-electron single-determinant reference, we investigate excitations for the N-electron system through the pairing matrix fluctuation, which contains information on two-electron addition/removal processes. We adopt the particle-particle random phase approximation (pp-RPA) and the particle-particle Tamm-Dancoff approximation (pp-TDA) to approximate the pairing matrix fluctuation and then determine excitation energies by the differences of two-electron addition/removal energies. This approach captures all types of interesting excitations: single and double excitations are described accurately, Rydberg excitations are in good agreement with experimental data and CT excitations display correct 1/R dependence. Furthermore, the pp-RPA and the pp-TDA have a computational cost similar to TDDFT and consequently are promising for practical calculations.
Beamforming in sparse, random, 3D array antennas with fluctuating element locations
Bentum, Marinus Jan; Lager, Ioan E.; Bosma, Sjoerd; Bruinsma, Wessel P.; Hes, Robin P.
2015-01-01
The impact of the fluctuations in the locations of elementary radiators on the radiation properties of three dimensional(3D) array antennas is studied. The principal radiation features (sidelobes level, beam squint) are examined based on illustrative examples. Some atypical behaviours, that are
Quantum random number generator based on quantum nature of vacuum fluctuations
Ivanova, A. E.; Chivilikhin, S. A.; Gleim, A. V.
2017-11-01
Quantum random number generator (QRNG) allows obtaining true random bit sequences. In QRNG based on quantum nature of vacuum, optical beam splitter with two inputs and two outputs is normally used. We compare mathematical descriptions of spatial beam splitter and fiber Y-splitter in the quantum model for QRNG, based on homodyne detection. These descriptions were identical, that allows to use fiber Y-splitters in practical QRNG schemes, simplifying the setup. Also we receive relations between the input radiation and the resulting differential current in homodyne detector. We experimentally demonstrate possibility of true random bits generation by using QRNG based on homodyne detection with Y-splitter.
Gustavsson, K.; Meneguz, E.; Reeks, M.; Mehlig, B.
2012-11-01
We have performed numerical simulations of inertial particles in random model flows in the white-noise limit (at zero Kubo number, Ku = 0) and at finite Kubo numbers. Our results for the moments of relative inertial-particle velocities are in good agreement with recent theoretical results (Gustavsson and Mehlig 2011a) based on the formation of phase-space singularities in the inertial-particle dynamics (caustics). We discuss the relation between three recent approaches describing the dynamics and spatial distribution of inertial particles suspended in turbulent flows: caustic formation, real-space singularities of the deformation tensor and random uncorrelated motion. We discuss how the phase- and real-space singularities are related. Their formation is well understood in terms of a local theory. We summarise the implications for random uncorrelated motion.
Tsang, L.; Kong, J. A.
1981-01-01
By taking into account the singularity of the dyadic Green's function in the renormalization method, a theory is derived for vector electromagnetic wave propagation in a random medium with large permittivity fluctuations and with anisotropic correlation function. The strong fluctuation theory is then applied to a discrete scatterer problem in which the permittivity can assume only two values. The results are found to be consistent with those derived from discrete scatterer theory for all values of dielectric constants of the scatterers.
Photodissociation in quantum chaotic systems: Random-matrix theory of cross-section fluctuations
Energy Technology Data Exchange (ETDEWEB)
Fyodorov, Y.V. [Fachbereich Physik, Universitaet-GH Essen, D-45117 Essen (Germany); Alhassid, Y. [Center for Theoretical Physics, Sloane Physics Laboratory, Yale University, New Haven, Connecticut 06520 (United States)
1998-11-01
Using the random matrix description of open quantum chaotic systems we calculate in closed form the universal autocorrelation function and the probability distribution of the total photodissociation cross section in the regime of quantum chaos. {copyright} {ital 1998} {ital The American Physical Society}
Experimental validation of the stochastic model of a randomly fluctuating transmission-line
Sy, O.O.; Vaessen, J.A.H.M.; Beurden, M.C. van; Michielsen, B.L.; Tijhuis, A.G.; Zwamborn, A.P.M.; Groot, J.S.
2008-01-01
A modeling method is proposed to quantify uncertainties affecting electromagnetic interactions. This method considers the uncertainties as random and measures them thanks to probability theory. A practical application is considered through the case of a transmission-line of varying geometry,
Nagaso, M; Moysan, J; Benjeddou, S; Massacret, N; Ploix, M A; Komatitsch, D; Lhuillier, C
2016-05-01
We study the development potential of ultrasonic thermometry in a liquid fluctuating sodium environment similar to that present in a Sodium-cooled Fast Reactor, and thus investigate if and how ultrasonic thermometry could be used to monitor the sodium flow at the outlet of the reactor core. In particular we study if small temperature variations in the sodium flow of e.g. about 1% of the sodium temperature, i.e., about 5°C, can have a reliably-measurable acoustic signature. Since to our knowledge no experimental setups are available for such a study, and considering the practical difficulties of experimentation in sodium, we resort to a numerical technique for full wave propagation called the spectral-element method, which is a highly accurate finite-element method owing to the high-degree basis functions it uses. We obtain clear time-of-flight variations in the case of a small temperature difference of one percent in the case of a static temperature gradient as well as in the presence of a random fluctuation of the temperature field in the turbulent flow. The numerical simulations underline the potential of ultrasonic thermometry in such a context. Copyright © 2016 Elsevier B.V. All rights reserved.
Tsang, L.; Newton, R. W.; Kong, J. A.
1982-01-01
The strong fluctuation random medium theory is applied to calculate scattering from a half-space of dielectric mixture. The first and second moments of the fields are calculated, respectively, by using the bilocal and the distorted Born approximations, and the low frequency limit is taken. The singularity of the dyadic Green's function is taken into account. Expressions for the effective permittivity for the full space case are derived. It is shown that the derived result of the effect permittivity is identical to that of the Polder and van Santern mixing formula. The correlation function of the random medium is obtained by using simple physical arguments and is expressed in terms of the fractional volumes and particle sizes of the constituents of the mixture. Backscattering coefficients of a half-space dielectric mixture are also calculated. Numerical results of the effective permittivity and backscattering coefficients are illustrated using typical parameters encountered in microwave remote sensing of dry and wet snow. It is also shown that experimental data can be matched with the theory by using physical parameters of the medium as obtained from ground truth measurements.
DEFF Research Database (Denmark)
Timofeev, V.B.; Larionov, A.V.; Ioselevich, A.S.
1999-01-01
The interwell luminescence (PL) of spatially separated e-h pairs exhibits systematic narrowing with temperature increase which are explained in terms of lateral thermo-activated tunneling of e-h pairs localized by random potential fluctuations (RPF). At critical temperatures the quasi-equilibrium...
Energy Technology Data Exchange (ETDEWEB)
Bhaduri, Susmita; Bhaduri, Anirban; Ghosh, Dipak [Deepa Ghosh Research Foundation, Kolkata (India)
2017-06-15
In the endeavour to study fluctuation and a signature of phase transition in ultrarelativistic nuclear collision during the process of particle production, an approach based on chaos and complex network is proposed. In this work we have attempted an exhaustive study of pion fluctuation in η space, φ space, their cross-correlation and finally two-dimensional fluctuation in terms of scaling of void probability distribution. The analysis is done on the η values and their corresponding φ values extracted from the {sup 32}S-Ag/Br interaction at an incident energy of 200 GeV per nucleon. The methods used are Multifractal Detrended Cross-Correlation Analysis (MF-DXA) and a chaos-based rigorous complex network method -Visibility Graph. The analysis reveals that the highest degree of cross-correlation between pseudorapidity and azimuthal angles exists in the most central region of the interaction. The analysis further shows that two-dimensional void distribution corresponding to the η-φ space reveals a strong scaling behaviour. Both cross-correlation coefficients of MF-DXA and PSVG (Power of the Scale-freeness in Visibility Graph, which is implicitly connected with the Hurst exponent) can be effectively used for the quantitative assessment of pion fluctuation in a very precise manner and have the capability to assess the tendency of approaching criticality for phase transitions. (orig.)
Lees, Andrew J; Ferreira, Joaquim; Rascol, Olivier; Poewe, Werner; Rocha, José-Francisco; McCrory, Michelle; Soares-da-Silva, Patricio
2017-02-01
Catechol O-methyltransferase (COMT) inhibitors are an established treatment for end-of-dose motor fluctuations associated with levodopa therapy in patients with Parkinson disease (PD). Current COMT inhibitors carry a high risk for toxic effects to hepatic cells or show moderate improvement. Opicapone was designed to be effective without the adverse effects. To evaluate the efficacy and safety of 25- and 50-mg/d dosages of opicapone compared with placebo as adjunct to levodopa therapy in patients with PD experiencing end-of-dose motor fluctuations. This phase 3 international, multicenter outpatient study evaluated a 25- and a 50-mg/d dosage of opicapone in a randomized, double-blind, 14- to 15-week, placebo-controlled clinical trial, followed by a 1-year open-label phase during which all patients received active treatment with opicapone. Patients with PD who experienced signs of end-of-dose deterioration and had a mean total awake off-time (state of akinesia or decreased mobility) of at least 1.5 hours, not including morning akinesia, were enrolled. Data were collected from March 18, 2011, through June 25, 2013. Data from the evaluable population were analyzed from July 31, 2013, to July 31, 2014. The primary efficacy outcome of the double-blind phase was the change from baseline in absolute off-time vs placebo based on patient diaries. The open-label phase focused on maintenance of treatment effect in off-time. A total of 427 patients (258 men [60.4%] and 169 women [39.6%]; mean [SD] age, 63.1 [8.8] years) were randomized to a 25-mg/d (n = 129) or a 50-mg/d (n = 154) dosage of opicapone or to placebo (n = 144). Of these, 376 patients completed the double-blind phase and entered the open-label phase, of whom 286 completed 1 year of open-label treatment. At the end of the double-blind phase, the least squares mean change (SE) in off-time was -64.5 (14.4) minutes for the placebo group, -101.7 (14.9) minutes for the 25-mg/d opicapone group, and -118.8
Jin, Y. Q.; Kong, J. A.
1984-01-01
The strong fluctuation theory is applied to the study of electromagnetic wave scattering from a layer of random discrete scatterers. The singularity of the dyadic Green's function is taken into account in the calculation of the effective permittivity functions. The correlation functions for the random medium with different scatterer constituents and size distributions are derived. Applying the dyadic Green's function for a two-layer medium and using the bilocal and distorted Born approximations, the first and the second moments of the fields are then calculated. Both the backscattering and bistatic scattering coefficients are obtained, and the former is shown to match favorably with experimental data obtained from snow fields.
Open problems in applying random-matrix theory to nuclear reactions
Weidenmüller, H. A.
2014-09-01
Problems in applying random-matrix theory (RMT) to nuclear reactions arise in two domains. To justify the approach, statistical properties of isolated resonances observed experimentally must agree with RMT predictions. That agreement is less striking than would be desirable. In the implementation of the approach, the range of theoretically predicted observables is too narrow.
Directory of Open Access Journals (Sweden)
Masanobu Ishida
Full Text Available Radioactive contamination in the Tokyo metropolitan area in the immediate aftermath of the Fukushima Daiichi Nuclear Power Plant (FDNPP accident was analyzed via surface soil sampled during a two-month period after the accident. 131I, 134Cs, and 137Cs were detected in these soil samples. The activity and inventory of radioactive material in the eastern part of Tokyo tended to be high. The 134Cs/137Cs activity ratio in soil was 0.978 ± 0.053. The 131I/137Cs ratio fluctuated widely, and was 19.7 ± 9.0 (weighted average 18.71 ± 0.13, n = 14 in the Tokyo metropolitan area. The radioactive plume with high 131I activity spread into the Tokyo metropolitan area and was higher than the weighted average of 6.07 ± 0.04 (n = 26 in other areas. The radiocesium activity and inventory surveyed in soil from a garden in Chiyoda Ward in the center of Tokyo, fell approximately 85% in the four months after the accident, and subsequently tended to rise slightly while fluctuating widely. It is possible that migration and redistribution of radiocesium occurred. The behavior of radiocesium in Tokyo was analyzed via monitoring of radiocesium in sludge incineration ash. The radiocesium activity in the incineration ash was high at wastewater treatment centers that had catchment areas in eastern Tokyo and low at those with catchment areas in western Tokyo. Similar to the case of the garden soil, even in incineration ash, the radiocesium activity dropped rapidly immediately after the accident. The radiocesium activity in the incineration ash fell steadily from the tenth month after the accident until December 2016, and its half-life was about 500 days. According to frequency analysis, in central Tokyo, the cycles of fluctuation of radiocesium activity in incineration ash and rainfall conformed, clearly showing that radiocesium deposited in urban areas was resuspended and transported by rainfall run-off.
Braun-Munzinger, Peter; Redlich, Krzysztof; Stachel, Johanna
2015-01-01
We construct net baryon number and strangeness susceptibilities as well as correlations between electric charge and strangeness from experimental data of the ALICE Collaboration at the CERN LHC. The data were taken in Pb-Pb collisions at $\\sqrt{s_{NN}}$=2.76 TeV. The resulting fluctuations and correlations are consistent with Lattice QCD results at the chiral crossover pseudocritical temperature $T_c\\simeq 155$ MeV. This agreement lends strong support to the assumption that the fireball created in these collisions is of thermal origin and exhibits characteristic properties expected in QCD at the transition from the quark gluon plasma to the hadronic phase. The volume of the fireball for one unit of rapidity at $T_c$ is found to exceed 4000 fm$^3$. A detailed discussion on uncertainties in the temperature and volume of the fireball is presented. The results are linked to pion interferometry measurements and predictions from percolation theory.
Directory of Open Access Journals (Sweden)
P. Braun-Munzinger
2015-07-01
Full Text Available We construct net baryon number and strangeness susceptibilities as well as correlations between electric charge, strangeness and baryon number from experimental data at midrapidity of the ALICE Collaboration at CERN. The data were taken in central Pb–Pb collisions at sNN=2.76 TeV and cover one unit of rapidity. The resulting fluctuations and correlations are consistent with Lattice QCD results at the chiral crossover pseudocritical temperature Tc≃155 MeV. This agreement lends strong support to the assumption that the fireball created in these collisions is of thermal origin and exhibits characteristic properties expected in QCD at the transition from the quark gluon plasma to the hadronic phase. The volume of the fireball for one unit of rapidity at Tc is found to exceed 3000 fm3. A detailed discussion on uncertainties in the temperature and volume of the fireball is presented. The results are linked to pion interferometry measurements and predictions from percolation theory.
Braun-Munzinger, P.; Redlich, K.; Stachel, J.
2016-01-01
We construct net baryon number and strangeness susceptibilities as well as correlations between electric charge, strangeness and baryon number from experimental data on the particle production yields at midrapidity of the ALICE Collaboration at CERN. The data were taken in central Pb-Pb collisions at $\\sqrt{s_{\\rm NN}}$~=~2.76~TeV and cover one unit of rapidity. We show that the resulting fluctuations and correlations are consistent with Lattice QCD results at the chiral crossover pseudocritical temperature $T_{c} \\simeq$ 155 MeV. This agreement lends strong support to the assumption that the fireball created in these collisions is of thermal origin and exhibits characteristic properties expected in QCD at the transition from the quark gluon plasma to the hadronic phase. Since Lattice QCD calculations are performed at a baryochemical potential of $\\mu_{B}$ = 0, the comparisons with LHC data are the most direct due to the vanishing baryon transport to midrapidity at these high energies.
Miller, B.; Blin, A. H.; Dworzecka, M.; Griffin, J. J.
1984-08-01
The correspondence between a random walk process, comprising discrete steps on the integer values of ( N, Z) and the Markovian discrete master equation which it uniquely specifies is reviewed. Differences between the random walk distribution calculated at integral values of the step count q and that of its Markovian master equation at corresponding values of the (continuous) time parameter ( are studied for a certain soluble two-dimensional example. The mean values of N and Z calculated from the random walk and Markovian master equation agree precisely. The second and higher moments which are also linear in the distribution function agree in leading order. But in this case, the N, Z correlation width vanishes identically for the master equation, and is finite in general for the random walk, while the widths of the distributions (which are bilinear in the distribution function) may differ even in leading order. The relevance of these differences to data measured against some independent variable (e.g. total kinetic energy loss in a heavyion collision), which is in fact uniquely related neither to q nor to t, is discussed. Since both random walk and master equations are currently used to analyze the phenomenology of nuclear heavy-ion collisions, the fact that they offer different predictions, and that depending upon the physical circumstances either (or neither) may be the correct description, recommends the development of a more rational basis for choosing between them.
Directory of Open Access Journals (Sweden)
Ankita D. Jain
2016-08-01
Full Text Available Wide area acoustic remote sensing often involves the use of coherent receiver arrays to determine the spatial distribution of sources and scatterers at any instant. The resulting acoustic intensity images are typically corrupted by signal-dependent noise from Gaussian random field fluctuations arising from the central limit theorem and have a spatial resolution that depends on the incident direction, sensing array aperture and wavelength. Here, we use the maximum likelihood method to deconvolve the intensity distribution measured on a coherent line array assuming a discrete angular distribution of incident plane waves. Instantaneous wide area population density images of fish aggregations measured with Ocean Acoustic Waveguide Remote Sensing (OAWRS are deconvolved to illustrate the effectiveness of this approach in improving angular resolution over conventional planewave beamforming.
Sample-to-sample fluctuations of power spectrum of a random motion in a periodic Sinai model
Dean, David S.; Iorio, Antonio; Marinari, Enzo; Oshanin, Gleb
2016-09-01
The Sinai model of a tracer diffusing in a quenched Brownian potential is a much-studied problem exhibiting a logarithmically slow anomalous diffusion due to the growth of energy barriers with the system size. However, if the potential is random but periodic, the regime of anomalous diffusion crosses over to one of normal diffusion once a tracer has diffused over a few periods of the system. Here we consider a system in which the potential is given by a Brownian bridge on a finite interval (0 ,L ) and then periodically repeated over the whole real line and study the power spectrum S (f ) of the diffusive process x (t ) in such a potential. We show that for most of realizations of x (t ) in a given realization of the potential, the low-frequency behavior is S (f ) ˜A /f2 , i.e., the same as for standard Brownian motion, and the amplitude A is a disorder-dependent random variable with a finite support. Focusing on the statistical properties of this random variable, we determine the moments of A of arbitrary, negative, or positive order k and demonstrate that they exhibit a multifractal dependence on k and a rather unusual dependence on the temperature and on the periodicity L , which are supported by atypical realizations of the periodic disorder. We finally show that the distribution of A has a log-normal left tail and exhibits an essential singularity close to the right edge of the support, which is related to the Lifshitz singularity. Our findings are based both on analytic results and on extensive numerical simulations of the process x (t ) .
Particle swarm optimization with random keys applied to the nuclear reactor reload problem
Energy Technology Data Exchange (ETDEWEB)
Meneses, Anderson Alvarenga de Moura [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Programa de Engenharia Nuclear; Fundacao Educacional de Macae (FUNEMAC), RJ (Brazil). Faculdade Professor Miguel Angelo da Silva Santos; Machado, Marcelo Dornellas; Medeiros, Jose Antonio Carlos Canedo; Schirru, Roberto [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Programa de Engenharia Nuclear]. E-mails: ameneses@con.ufrj.br; marcelo@lmp.ufrj.br; canedo@lmp.ufrj.br; schirru@lmp.ufrj.br
2007-07-01
In 1995, Kennedy and Eberhart presented the Particle Swarm Optimization (PSO), an Artificial Intelligence metaheuristic technique to optimize non-linear continuous functions. The concept of Swarm Intelligence is based on the socials aspects of intelligence, it means, the ability of individuals to learn with their own experience in a group as well as to take advantage of the performance of other individuals. Some PSO models for discrete search spaces have been developed for combinatorial optimization, although none of them presented satisfactory results to optimize a combinatorial problem as the nuclear reactor fuel reloading problem (NRFRP). In this sense, we developed the Particle Swarm Optimization with Random Keys (PSORK) in previous research to solve Combinatorial Problems. Experiences demonstrated that PSORK performed comparable to or better than other techniques. Thus, PSORK metaheuristic is being applied in optimization studies of the NRFRP for Angra 1 Nuclear Power Plant. Results will be compared with Genetic Algorithms and the manual method provided by a specialist. In this experience, the problem is being modeled for an eight-core symmetry and three-dimensional geometry, aiming at the minimization of the Nuclear Enthalpy Power Peaking Factor as well as the maximization of the cycle length. (author)
Interactions between mitochondrial and nuclear DNA in mammalian cells are non-random.
Doynova, M D; Berretta, A; Jones, M B; Jasoni, C L; Vickers, M H; O'Sullivan, J M
2016-09-01
Chromosome Conformation Capture techniques regularly detect physical interactions between mitochondrial and nuclear DNA (i.e. mito-nDNA interactions) in mammalian cells. We have evaluated mito-nDNA interactions captured by HiC and Circular Chromosome Conformation Capture (4C). We show that these mito-nDNA interactions are statistically significant and shared between biological and technical replicates. The most frequent interactions occur with repetitive DNA sequences, including centromeres in human cell lines and the 18S rDNA in mouse cortical astrocytes. Our results demonstrate a degree of selective regulation in the identity of the interacting mitochondrial partners confirming that mito-nDNA interactions in mammalian cells are not random. Copyright © 2016 Elsevier B.V. and Mitochondria Research Society. All rights reserved.
Kinouchi, H; Mukuda, H; Yashima, M; Kitaoka, Y; Shirage, P M; Eisaki, H; Iyo, A
2011-07-22
We report 75As nuclear quadrupole resonance studies on (Ca4Al2O(6-y))(Fe2As2) with T(c) = 27 K. Measurement of nuclear-spin-relaxation rate 1/T1 has revealed a significant development of two-dimensional antiferromagnetic spin fluctuations down to T(c) in association with the smallest As-Fe-As bond angle. Below T(c), the temperature dependence of 1/T1 without any trace of the coherence peak is well accounted for by a nodeless s(±)-wave multiple-gaps model. From the fact that its T(c) is comparable to T(c) = 28 K in the optimally doped LaFeAsO(1-y) in which antiferromagnetic spin fluctuations are not dominant, we remark that antiferromagnetic spin fluctuations are not a unique factor for enhancing T(c) among Fe-based superconductors, but a condition for optimizing superconductivity should be addressed from the lattice structure point of view.
Fluctuating Selection in the Moran.
Dean, Antony M; Lehman, Clarence; Yi, Xiao
2017-03-01
Contrary to classical population genetics theory, experiments demonstrate that fluctuating selection can protect a haploid polymorphism in the absence of frequency dependent effects on fitness. Using forward simulations with the Moran model, we confirm our analytical results showing that a fluctuating selection regime, with a mean selection coefficient of zero, promotes polymorphism. We find that increases in heterozygosity over neutral expectations are especially pronounced when fluctuations are rapid, mutation is weak, the population size is large, and the variance in selection is big. Lowering the frequency of fluctuations makes selection more directional, and so heterozygosity declines. We also show that fluctuating selection raises dn /ds ratios for polymorphism, not only by sweeping selected alleles into the population, but also by purging the neutral variants of selected alleles as they undergo repeated bottlenecks. Our analysis shows that randomly fluctuating selection increases the rate of evolution by increasing the probability of fixation. The impact is especially noticeable when the selection is strong and mutation is weak. Simulations show the increase in the rate of evolution declines as the rate of new mutations entering the population increases, an effect attributable to clonal interference. Intriguingly, fluctuating selection increases the dn /ds ratios for divergence more than for polymorphism, a pattern commonly seen in comparative genomics. Our model, which extends the classical neutral model of molecular evolution by incorporating random fluctuations in selection, accommodates a wide variety of observations, both neutral and selected, with economy. Copyright © 2017 by the Genetics Society of America.
A nuclear reload optimization approach using a real coded genetic algorithm with random keys
Energy Technology Data Exchange (ETDEWEB)
Lima, Alan M.M. de; Schirru, Roberto; Medeiros, Jose A.C.C., E-mail: alan@lmp.ufrj.b, E-mail: schirru@lmp.ufrj.b, E-mail: canedo@lmp.ufrj.b [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia. Programa de Engenharia Nuclear
2009-07-01
The fuel reload of a Pressurized Water Reactor is made whenever the burn up of the fuel assemblies in the nucleus of the reactor reaches a certain value such that it is not more possible to maintain a critical reactor producing energy at nominal power. The problem of fuel reload optimization consists on determining the positioning of the fuel assemblies within the nucleus of the reactor in an optimized way to minimize the cost benefit relationship of fuel assemblies cost per maximum burn up, and also satisfying symmetry and safety restrictions. The fuel reload optimization problem difficulty grows exponentially with the number of fuel assemblies in the nucleus of the reactor. During decades the fuel reload optimization problem was solved manually by experts that used their knowledge and experience to build configurations of the reactor nucleus, and testing them to verify if safety restrictions of the plant are satisfied. To reduce this burden, several optimization techniques have been used, included the binary code genetic algorithm. In this work we show the use of a real valued coded approach of the genetic algorithm, with different recombination methods, together with a transformation mechanism called random keys, to transform the real values of the genes of each chromosome in a combination of discrete fuel assemblies for evaluation of the reload optimization. Four different recombination methods were tested: discrete recombination, intermediate recombination, linear recombination and extended linear recombination. For each of the 4 recombination methods 10 different tests using different seeds for the random number generator were conducted 10 generating, totaling 40 tests. The results of the application of the genetic algorithm are shown with formulation of real numbers for the problem of the nuclear reload of the plant Angra 1 type PWR. Since the best results in the literature for this problem were found by the parallel PSO we will it use for comparison
Gambling with Superconducting Fluctuations
Foltyn, Marek; Zgirski, Maciej
2015-08-01
Josephson junctions and superconducting nanowires, when biased close to superconducting critical current, can switch to a nonzero voltage state by thermal or quantum fluctuations. The process is understood as an escape of a Brownian particle from a metastable state. Since this effect is fully stochastic, we propose to use it for generating random numbers. We present protocol for obtaining random numbers and test the experimentally harvested data for their fidelity. Our work is prerequisite for using the Josephson junction as a tool for stochastic (probabilistic) determination of physical parameters such as magnetic flux, temperature, and current.
Molecular evolution under fitness fluctuations.
Mustonen, Ville; Lässig, Michael
2008-03-14
Molecular evolution is a stochastic process governed by fitness, mutations, and reproductive fluctuations in a population. Here, we study evolution where fitness itself is stochastic, with random switches in the direction of selection at individual genomic loci. As the correlation time of these fluctuations becomes larger than the diffusion time of mutations within the population, fitness changes from an annealed to a quenched random variable. We show that the rate of evolution has its maximum in the crossover regime, where both time scales are comparable. Adaptive evolution emerges in the quenched fitness regime (evidence for such fitness fluctuations has recently been found in genomic data). The joint statistical theory of reproductive and fitness fluctuations establishes a conceptual connection between evolutionary genetics and statistical physics of disordered systems.
Pairing fluctuations in trapped Fermi gases
DEFF Research Database (Denmark)
Bruun, Georg Morten; Minguzzi, Anna; Rosario, F.
2004-01-01
A0530F- Fermion-systems-and-electron-gas-quantum-statistical-mechanics; A0540-Fluctuation-phenomena-random-processes-and-Brownian-motion......A0530F- Fermion-systems-and-electron-gas-quantum-statistical-mechanics; A0540-Fluctuation-phenomena-random-processes-and-Brownian-motion...
Gaussian fluctuations in chaotic eigenstates
Srednicki, M A; Srednicki, Mark; Stiernelof, Frank
1996-01-01
We study the fluctuations that are predicted in the autocorrelation function of an energy eigenstate of a chaotic, two-dimensional billiard by the conjecture (due to Berry) that the eigenfunction is a gaussian random variable. We find an explicit formula for the root-mean-square amplitude of the expected fluctuations in the autocorrelation function. These fluctuations turn out to be O(\\hbar^{1/2}) in the small \\hbar (high energy) limit. For comparison, any corrections due to scars from isolated periodic orbits would also be O(\\hbar^{1/2}). The fluctuations take on a particularly simple form if the autocorrelation function is averaged over the direction of the separation vector. We compare our various predictions with recent numerical computations of Li and Robnik for the Robnik billiard, and find good agreement. We indicate how our results generalize to higher dimensions.
Modeling fluctuations in scattered waves
Jakeman, E
2006-01-01
Fluctuations in scattered waves limit the performance of imaging and remote sensing systems that operate on all wavelengths of the electromagnetic spectrum. To better understand these fluctuations, Modeling Fluctuations in Scattered Waves provides a practical guide to the phenomenology, mathematics, and simulation of non-Gaussian noise models and discusses how they can be used to characterize the statistics of scattered waves.Through their discussion of mathematical models, the authors demonstrate the development of new sensing techniques as well as offer intelligent choices that can be made for system analysis. Using experimental results and numerical simulation, the book illustrates the properties and applications of these models. The first two chapters introduce statistical tools and the properties of Gaussian noise, including results on phase statistics. The following chapters describe Gaussian processes and the random walk model, address multiple scattering effects and propagation through an extended med...
Muzy, Jean-François; Baïle, Rachel; Bacry, Emmanuel
2013-04-01
In this paper we propose a new model for volatility fluctuations in financial time series. This model relies on a nonstationary Gaussian process that exhibits aging behavior. It turns out that its properties, over any finite time interval, are very close to continuous cascade models. These latter models are indeed well known to reproduce faithfully the main stylized facts of financial time series. However, it involves a large-scale parameter (the so-called “integral scale” where the cascade is initiated) that is hard to interpret in finance. Moreover, the empirical value of the integral scale is in general deeply correlated to the overall length of the sample. This feature is precisely predicted by our model, which, as illustrated by various examples from daily stock index data, quantitatively reproduces the empirical observations.
Facchi, Paolo; Garnero, Giancarlo; Ligabò, Marilena
2017-01-01
We present here a set of lecture notes on exact fluctuation relations. We prove the Jarzynski equality and the Crooks fluctuation theorem, two paradigmatic examples of classical fluctuation relations. Finally we consider their quantum versions, and analyze analogies and differences with the classical case.
Nechaev, S
2003-01-01
We investigate the statistical properties of random walks on the simplest nontrivial braid group B sub 3 , and on related hyperbolic groups. We provide a method using Cayley graphs of groups allowing us to compute explicitly the probability distribution of the basic statistical characteristics of random trajectories - the drift and the return probability. The action of the groups under consideration in the hyperbolic plane is investigated, and the distribution of a geometric invariant - the hyperbolic distance - is analysed. It is shown that a random walk on B sub 3 can be viewed as a 'magnetic random walk' on the group PSL(2, Z).
Energy Technology Data Exchange (ETDEWEB)
Nechaev, Sergei [Laboratoire de Physique Theorique et Modeles Statistiques, Universite Paris Sud, 91405 Orsay Cedex (France); Voituriez, Raphael [Laboratoire de Physique Theorique et Modeles Statistiques, Universite Paris Sud, 91405 Orsay Cedex (France)
2003-01-10
We investigate the statistical properties of random walks on the simplest nontrivial braid group B{sub 3}, and on related hyperbolic groups. We provide a method using Cayley graphs of groups allowing us to compute explicitly the probability distribution of the basic statistical characteristics of random trajectories - the drift and the return probability. The action of the groups under consideration in the hyperbolic plane is investigated, and the distribution of a geometric invariant - the hyperbolic distance - is analysed. It is shown that a random walk on B{sub 3} can be viewed as a 'magnetic random walk' on the group PSL(2, Z)
Directory of Open Access Journals (Sweden)
Longjun Dong
2014-01-01
Full Text Available The discrimination of seismic event and nuclear explosion is a complex and nonlinear system. The nonlinear methodologies including Random Forests (RF, Support Vector Machines (SVM, and Naïve Bayes Classifier (NBC were applied to discriminant seismic events. Twenty earthquakes and twenty-seven explosions with nine ratios of the energies contained within predetermined “velocity windows” and calculated distance are used in discriminators. Based on the one out cross-validation, ROC curve, calculated accuracy of training and test samples, and discriminating performances of RF, SVM, and NBC were discussed and compared. The result of RF method clearly shows the best predictive power with a maximum area of 0.975 under the ROC among RF, SVM, and NBC. The discriminant accuracies of RF, SVM, and NBC for test samples are 92.86%, 85.71%, and 92.86%, respectively. It has been demonstrated that the presented RF model can not only identify seismic event automatically with high accuracy, but also can sort the discriminant indicators according to calculated values of weights.
Energy Technology Data Exchange (ETDEWEB)
Yamamoto, A; Iemura, S; Wada, S [Department of Physics, Graduate School of Science, Kobe University, Kobe 657-8501 (Japan); Ishida, K [Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502 (Japan); Shirotani, I; Sekine, C [Faculty of Engineering, Muroran Institute of Technology, Mizumoto, Muroran 050-8585 (Japan)
2008-05-14
We have elucidated low-energy spin fluctuations in the new filled skutterudites YbFe{sub 4}Sb{sub 12} and LaFe{sub 4}Sb{sub 12} synthesized at high pressures, through {sup 121}Sb nuclear quadrupole resonance (NQR) and {sup 139}La nuclear magnetic resonance (NMR) measurements. The longitudinal spin-lattice relaxation rate 1/T{sub 1} of {sup 121}Sb in YbFe{sub 4}Sb{sub 12} provides evidence that upon cooling below {approx}20 K, the compound transforms from the localized 4f electron state of Yb{sup 3+} ions to a nonmagnetic heavy Fermi liquid state, originating from the mixing of 4f electrons with conduction electrons. Whereas, the Curie-Weiss type behaviour of the {sup 139}La Knight shift and {sup 121}Sb- 1/T{sub 1} in LaFe{sub 4}Sb{sub 12} indicate that the compound remains in the localized electron state down to 1.4 K, it in fact originates from 3d electrons of Fe in [Fe{sub 4}Sb{sub 12} ] anions. In both compounds, the transversal nuclear spin-spin relaxation rate 1/T{sub 2} exhibits a clear peak at T*{approx_equal}32 and {approx_equal}23K respectively. The origin of the 1/T{sub 2} peak is discussed in terms of the freezing of the thermal vibration of Sb cages or rare-earth ions filled in each Sb cage. By comparing the experimental results of the present study with those previously reported for the compounds synthesized at ambient pressure, it is pointed out that both the strongly correlated electron properties and the thermal vibrations are greatly modified with the increase of rare-earth atom deficiency.
Energy Technology Data Exchange (ETDEWEB)
Aggarwal, M.M.; Ahammed, Z.; Angelis, A.L.S.; Antonenko, V.; Arefiev, V.; Astakhov, V.; Avdeitchikov, V.; Awes, T.C.; Baba, P.V.K.S.; Badyal, S.K.; Bathe, S.; Batiounia, B.; Bernier, T.; Bhalla, K.B.; Bhatia, V.S.; Blume, C.; Bucher, D.; Buesching, H.; Carlen, L.; Chattopadhyay, S.; Das, A.C.; Decowski, M.P.; Donni, P.; Dubey, A.K.; Dutta Majumdar, M.R.; Enosawa, K.; Fokin, S.; Frolov, V.; Ganti, M.S.; Garpman, S.; Gavrishcuk, O.; Geurts, F.J.M.; Glasow, R.; Guskov, B.; Gustafsson, H.A.; Gutbrod, H.H.; Hrivnacova, I.; Ippolitov, M.; Kalechofsky, H.; Kamermans, R.; Karadjev, K.; Karpio, K.; Kolb, B.W.; Kosarev, I.; Koutcheryaev, I.; Kugler, A.; Kulinich, P.; Kurata, M.; Lebedev, A.; Loehner, H.; Mahapatra, D.P.; Manko, V.; Martin, M.; Miake, Y.; Mishra, G.C.; Mohanty, B.; Morrison, D.; Mukhopadhayay, D.S.; Naef, H.; Nandi, B.K.; Nayak, S.K.; Nayak, T.K.; Nianine, A.; Nikitine, V.; Nikolaev, S.; Nishimura, S.; Nomokov, P.; Petracek, V.; Plasil, F.; Purschke, M.L.; Rak, J.; Raniwala, R.; Raniwala, S.; Rao, N.K.; Retiere, F.; Reygers, K.; Roland, G.; Rosselet, L.; Roufanov, I.; Rubio, J.M.; Sambyal, S.S.; Santo, R.; Sato, S.; Schlagheck, H.; Schmidt, H.-R.; Schutz, Y.; Shabratova, G.; Sibiriak, I.; Siemiarczuk, T.; Sinha, B.C.; Slavine, N.; Soederstroem, K.; Sood, G.; Soerensen, S.P.; Stankus, P.; Steinberg, P.; Stenlund, E.; Sumbera, M.; Svensson, T.; Trivedi, M.D.; Tsvetkov, A.; Tykarski, L.; Urbahn, J.; Eijinhoven, N. van; Niewenhuizen, G.J. van; Vinogradov, A.; Viyogi, Y.P.; Vodopianov, A.; Voeroes, S.; Wyslouch, B.; Young, G.R
2003-03-10
Event-by-event fluctuations in the multiplicities of charged particles and photons at SPS energies are discussed. Fluctuations are studied by controlling the centrality of the reaction and rapidity acceptance of the detectors. Results are also presented on the event-by-event study of correlations between the multiplicity of charged particles and photons to search for DCC-like signals.
Mohanty, Bedangadas; Ahammed, Z.; Angelis, A.L.S.; Antonenko, V.; Arefev, V.; Astakhov, V.; Avdeitchikov, V.; Awes, T.C.; Baba, P.V.K.S.; Badyal, S.K.; Bathe, S.; Batiounia, B.; Bernier, T.; Bhalla, K.B.; Bhatia, V.S.; Blume, C.; Bucher, D.; Busching, H.; Carlen, L.; Chattopadhyay, S.; Das, A.C.; Decowski, M.P.; Donni, P.; Dubey, A.K.; Dutta Majumdar, M.R.; Enosawa, K.; Fokin, S.; Frolov, V.; Ganti, M.S.; Garpman, S.; Gavrishchuk, O.; Geurts, F.J.M.; Glasow, R.; Guskov, B.; Gustafsson, H.A.; Gutbrod, H.H.; Hrivnacova, I.; Ippolitov, M.; Kalechofsky, H.; Kamermans, R.; Karadjev, K.; Karpio, K.; Kolb, B.W.; Kosarev, I.; Koutcheryaev, I.; Kugler, A.; Kulinich, P.; Kurata, M.; Lebedev, A.; Lohne, H.; Mahapatra, D.P.; Manko, V.; Martin, M.; Miake, Y.; Mishra, G.C.; Morrison, D.; Mukhopadhyay, D.S.; Naef, H.; Nandi, B.K.; Nayak, S.K.; Nayak, T.K.; Nianine, A.; Nikitine, V.; Nikolaev, S.; Nishimura, S.; Nomokov, P.; Nystrand, J.; Oskarsson, A.; Otterlund, I.; Phatak, S.C.; Pavliouk, S.; Peitzmann, T.; Petracek, V.; Plasil, F.; Purschke, M.L.; Rak, J.; Raniwala, R.; Raniwala, S.; Rao, N.K.; Retiere, F.; Reygers, K.; Roland, G.; Rosselet, L.; Roufanov, I.; Rubio, J.M.; Sambyal, S.S.; Santo, R.; Sato, S.; Schlagheck, H.; Schmidt, H.R.; Schutz, Y.; Shabratova, G.; Sibiriak, I.; Siemiarczuk, T.; Sinha, B.C.; Slavine, N.; Soderstrom, K.; Sood, G.; Sorensen, S.P.; Stankus, P.; Stefanek, G.; Steinberg, P.; Stenlund, E.; Sumbera, M.; Svensson, T.; Trivedi, M.D.; Tsvetkov, A.; Tykarski, L.; Urbahn, J.; van Eijndhoven, N.; van Nieuwenhuizen, G.J.; Vinogradov, A.; Viyogi, Y.P.; Vodopianov, A.S.; Voros, S.; Wyslouch, B.; Young, G.R.; Mohanty, Bedangadas
2003-01-01
Event-by-event fluctuations in the multiplicities of charged particles and photons at SPS energies are discussed. Fluctuations are studied by controlling the centrality of the reaction and rapidity acceptance of the detectors. Results are also presented on the event-by-event study of correlations between the multiplicity of charged particles and photons to search for DCC-like signals.
Noise and fluctuations an introduction
MacDonald, D K C
2006-01-01
An understanding of fluctuations and their role is both useful and fundamental to the study of physics. This concise study of random processes offers graduate students and research physicists a survey that encompasses both the relationship of Brownian Movement with statistical mechanics and the problem of irreversible processes. It outlines the basics of the physics involved, without the strictures of mathematical rigor.The three-part treatment starts with a general survey of Brownian Movement, including electrical Brownian Movement and ""shot-noise,"" Part two explores correlation, frequency
Fluctuating Asymmetry of Human Populations: A Review
Directory of Open Access Journals (Sweden)
John H. Graham
2016-12-01
Full Text Available Fluctuating asymmetry, the random deviation from perfect symmetry, is a widely used population-level index of developmental instability, developmental noise, and robustness. It reflects a population’s state of adaptation and genomic coadaptation. Here, we review the literature on fluctuating asymmetry of human populations. The most widely used bilateral traits include skeletal, dental, and facial dimensions; dermatoglyphic patterns and ridge counts; and facial shape. Each trait has its advantages and disadvantages, but results are most robust when multiple traits are combined into a composite index of fluctuating asymmetry (CFA. Both environmental (diet, climate, toxins and genetic (aneuploidy, heterozygosity, inbreeding stressors have been linked to population-level variation in fluctuating asymmetry. In general, these stressors increase average fluctuating asymmetry. Nevertheless, there have been many conflicting results, in part because (1 fluctuating asymmetry is a weak signal in a sea of noise; and (2 studies of human fluctuating asymmetry have not always followed best practices. The most serious concerns are insensitive asymmetry indices (correlation coefficient and coefficient of indetermination, inappropriate size scaling, unrecognized mixture distributions, inappropriate corrections for directional asymmetry, failure to use composite indices, and inattention to measurement error. Consequently, it is often difficult (or impossible to compare results across traits, and across studies.
Fluctuating Asymmetry: Methods, Theory, and Applications
Directory of Open Access Journals (Sweden)
John H. Graham
2010-03-01
Full Text Available Fluctuating asymmetry consists of random deviations from perfect symmetry in populations of organisms. It is a measure of developmental noise, which reflects a population’s average state of adaptation and coadaptation. Moreover, it increases under both environmental and genetic stress, though responses are often inconsistent. Researchers base studies of fluctuating asymmetry upon deviations from bilateral, radial, rotational, dihedral, translational, helical, and fractal symmetries. Here, we review old and new methods of measuring fluctuating asymmetry, including measures of dispersion, landmark methods for shape asymmetry, and continuous symmetry measures. We also review the theory, developmental origins, and applications of fluctuating asymmetry, and attempt to explain conflicting results. In the process, we present examples from the literature, and from our own research at “Evolution Canyon” and elsewhere.
Continuous information flow fluctuations
Rosinberg, Martin Luc; Horowitz, Jordan M.
2016-10-01
Information plays a pivotal role in the thermodynamics of nonequilibrium processes with feedback. However, much remains to be learned about the nature of information fluctuations in small-scale devices and their relation with fluctuations in other thermodynamics quantities, like heat and work. Here we derive a series of fluctuation theorems for information flow and partial entropy production in a Brownian particle model of feedback cooling and extend them to arbitrary driven diffusion processes. We then analyze the long-time behavior of the feedback-cooling model in detail. Our results provide insights into the structure and origin of large deviations of information and thermodynamic quantities in autonomous Maxwell's demons.
Guo, Zhouchao; Lu, Tao; Liu, Bo
2017-04-01
Turbulent penetration can occur when hot and cold fluids mix in a horizontal T-junction pipe at nuclear plants. Caused by the unstable turbulent penetration, temperature fluctuations with large amplitude and high frequency can lead to time-varying wall thermal stress and even thermal fatigue on the inner wall. Numerous cases, however, exist where inner wall temperatures cannot be measured and only outer wall temperature measurements are feasible. Therefore, it is one of the popular research areas in nuclear science and engineering to estimate temperature fluctuations on the inner wall from measurements of outer wall temperatures without damaging the structure of the pipe. In this study, both the one-dimensional (1D) and the two-dimensional (2D) inverse heat conduction problem (IHCP) were solved to estimate the temperature fluctuations on the inner wall. First, numerical models of both the 1D and the 2D direct heat conduction problem (DHCP) were structured in MATLAB, based on the finite difference method with an implicit scheme. Second, both the 1D IHCP and the 2D IHCP were solved by the steepest descent method (SDM), and the DHCP results of temperatures on the outer wall were used to estimate the temperature fluctuations on the inner wall. Third, we compared the temperature fluctuations on the inner wall estimated by the 1D IHCP with those estimated by the 2D IHCP in four cases: (1) when the maximum disturbance of temperature of fluid inside the pipe was 3°C, (2) when the maximum disturbance of temperature of fluid inside the pipe was 30°C, (3) when the maximum disturbance of temperature of fluid inside the pipe was 160°C, and (4) when the fluid temperatures inside the pipe were random from 50°C to 210°C.
Scaling metabolic rate fluctuations
Labra, Fabio A.; Marquet, Pablo A.; Bozinovic, Francisco
2007-01-01
Complex ecological and economic systems show fluctuations in macroscopic quantities such as exchange rates, size of companies or populations that follow non-Gaussian tent-shaped probability distributions of growth rates with power-law decay, which suggests that fluctuations in complex systems may be governed by universal mechanisms, independent of particular details and idiosyncrasies. We propose here that metabolic rate within individual organisms may be considered as an example of an emerge...
Multiscale temporal integrators for fluctuating hydrodynamics
Delong, Steven; Sun, Yifei; Griffith, Boyce E.; Vanden-Eijnden, Eric; Donev, Aleksandar
2014-12-01
Following on our previous work [S. Delong, B. E. Griffith, E. Vanden-Eijnden, and A. Donev, Phys. Rev. E 87, 033302 (2013), 10.1103/PhysRevE.87.033302], we develop temporal integrators for solving Langevin stochastic differential equations that arise in fluctuating hydrodynamics. Our simple predictor-corrector schemes add fluctuations to standard second-order deterministic solvers in a way that maintains second-order weak accuracy for linearized fluctuating hydrodynamics. We construct a general class of schemes and recommend two specific schemes: an explicit midpoint method and an implicit trapezoidal method. We also construct predictor-corrector methods for integrating the overdamped limit of systems of equations with a fast and slow variable in the limit of infinite separation of the fast and slow time scales. We propose using random finite differences to approximate some of the stochastic drift terms that arise because of the kinetic multiplicative noise in the limiting dynamics. We illustrate our integrators on two applications involving the development of giant nonequilibrium concentration fluctuations in diffusively mixing fluids. We first study the development of giant fluctuations in recent experiments performed in microgravity using an overdamped integrator. We then include the effects of gravity and find that we also need to include the effects of fluid inertia, which affects the dynamics of the concentration fluctuations greatly at small wave numbers.
Fluctuating shells under pressure
Paulose, Jayson; Vliegenthart, Gerard A.; Gompper, Gerhard; Nelson, David R.
2012-01-01
Thermal fluctuations strongly modify the large length-scale elastic behavior of cross-linked membranes, giving rise to scale-dependent elastic moduli. Whereas thermal effects in flat membranes are well understood, many natural and artificial microstructures are modeled as thin elastic shells. Shells are distinguished from flat membranes by their nonzero curvature, which provides a size-dependent coupling between the in-plane stretching modes and the out-of-plane undulations. In addition, a shell can support a pressure difference between its interior and its exterior. Little is known about the effect of thermal fluctuations on the elastic properties of shells. Here, we study the statistical mechanics of shape fluctuations in a pressurized spherical shell, using perturbation theory and Monte Carlo computer simulations, explicitly including the effects of curvature and an inward pressure. We predict novel properties of fluctuating thin shells under point indentations and pressure-induced deformations. The contribution due to thermal fluctuations increases with increasing ratio of shell radius to thickness and dominates the response when the product of this ratio and the thermal energy becomes large compared with the bending rigidity of the shell. Thermal effects are enhanced when a large uniform inward pressure acts on the shell and diverge as this pressure approaches the classical buckling transition of the shell. Our results are relevant for the elasticity and osmotic collapse of microcapsules. PMID:23150558
Fluctuations in solidification
Energy Technology Data Exchange (ETDEWEB)
Karma, A. (Physics Department, Northeastern University, Boston, Massachusetts 02115 (United States))
1993-11-01
We present an analytical treatment of (i) the incorporation of thermal noise in the basic continuum models of solidification, (ii) fluctuations about nonequilibrium steady states, and (iii) the amplification of noise near the onset of morphological instability. In (i), we find that the proper Langevin formalism, consistent with both bulk and interfacial equilibrium fluctuations, consists of the usual bulk forces and an extra stochastic force on the interface associated with its local kinetics. At sufficiently large solidification rate, this force affects interfacial fluctuations on scales where they are macroscopically amplified and, thus, becomes relevant. An estimate of this rate is given. In (ii), we extend the Langevin formalism outside of equilibrium to characterize the fluctuations of a stationary and a directionally solidified planar interface in a temperature gradient. Finally, in (iii), we derive an analytic expression for the linear growth of the mean-square amplitude of fluctuations slightly above the onset of morphological instability. The amplitude of the noise is found to be determined by the small parameter [ital k][sub [ital B]T[ital E]d0][sup [ital c]l][sub [ital T
Directory of Open Access Journals (Sweden)
V.M. Loktev
2008-09-01
Full Text Available We analyze the spectral properties of a phenomenological model for a weakly doped two-dimensional antiferromagnet, in which the carriers move within one of the two sublattices where they were introduced. Such a constraint results in the free carrier spectra with the maxima at k=(± π/2 , ± π/2 observed in some cuprates. We consider the spectral properties of the model by taking into account fluctuations of the spins in the antiferromagnetic background. We show that such fluctuations lead to a non-pole-like structure of the single-hole Green's function and these fluctuations can be responsible for some anomalous "strange metal" properties of underdoped cuprates in the nonsuperconducting regime.
Protrusion Fluctuations Direct Cell Motion
Caballero, David; Voituriez, Raphaël; Riveline, Daniel
2014-01-01
Many physiological phenomena involve directional cell migration. It is usually attributed to chemical gradients in vivo. Recently, other cues have been shown to guide cells in vitro, including stiffness/adhesion gradients or micropatterned adhesive motifs. However, the cellular mechanism leading to these biased migrations remains unknown, and, often, even the direction of motion is unpredictable. In this study, we show the key role of fluctuating protrusions on ratchet-like structures in driving NIH3T3 cell migration. We identified the concept of efficient protrusion and an associated direction index. Our analysis of the protrusion statistics facilitated the quantitative prediction of cell trajectories in all investigated conditions. We varied the external cues by changing the adhesive patterns. We also modified the internal cues using drug treatments, which modified the protrusion activity. Stochasticity affects the short- and long-term steps. We developed a theoretical model showing that an asymmetry in the protrusion fluctuations is sufficient for predicting all measures associated with the long-term motion, which can be described as a biased persistent random walk. PMID:24988339
Overdispersion in nuclear statistics
Energy Technology Data Exchange (ETDEWEB)
Semkow, Thomas M. [State University of New York, Albany, NY (United States)
1999-02-11
The modern statistical distribution theory is applied to the development of the overdispersion theory in ionizing-radiation statistics for the first time. The physical nuclear system is treated as a sequence of binomial processes, each depending on a characteristic probability, such as probability of decay, detection, etc. The probabilities fluctuate in the course of a measurement, and the physical reasons for that are discussed. If the average values of the probabilities change from measurement to measurement, which originates from the random Lexis binomial sampling scheme, then the resulting distribution is overdispersed. The generating functions and probability distribution functions are derived, followed by a moment analysis. The Poisson and Gaussian limits are also given. The distribution functions belong to a family of generalized hypergeometric factorial moment distributions by Kemp and Kemp, and can serve as likelihood functions for the statistical estimations. An application to radioactive decay with detection is described and working formulae are given, including a procedure for testing the counting data for overdispersion. More complex experiments in nuclear physics (such as solar neutrino) can be handled by this model, as well as distinguishing between the source and background.
Faraday polarization fluctuations of satellite beacon signals
Lee, M. C.; Klobuchar, J. A.
1988-01-01
The anisotropic effects of random density irregularities in causing Faraday polarization fluctuations of VHF radio signals are examined, taking both rod-like and sheet-like irregularities into consideration. It is found that the variance of Faraday polarization fluctuations depends on the ratio of perpendicular to parallel correlation lengths. The anisotropic effect of rod-like ionospheric irregularities are shown to be most appreciable for longitudinal propagation. The anisotropic effect of sheet-like ionospheric irregularities, however, is not strongly dependent on the radio propagation angle. During transionospheric propagation at large angles with respect to the geomagnetic field, sheet-like irregularities may cause greater Faraday polarization fluctuations than rod-like irregularities.
Fluctuation microscopy analysis of amorphous silicon models
Energy Technology Data Exchange (ETDEWEB)
Gibson, J.M., E-mail: jmgibson@fsu.edu [Northeastern University, Department of Physics, Boston MA 02115 (United States); FAMU/FSU Joint College of Engineering, 225 Pottsdamer Street, Tallahassee, FL 32310 (United States); Treacy, M.M.J. [Arizona State University, Department of Physics, Tempe AZ 85287 (United States)
2017-05-15
Highlights: • Studied competing computer models for amorphous silicon and simulated fluctuation microscopy data. • Show that only paracrystalline/random network composite can fit published data. • Specifically show that pure random network or random network with void models do not fit available data. • Identify a new means to measure volume fraction of ordered material. • Identify unreported limitations of the Debye model for simulating fluctuation microscopy data. - Abstract: Using computer-generated models we discuss the use of fluctuation electron microscopy (FEM) to identify the structure of amorphous silicon. We show that a combination of variable resolution FEM to measure the correlation length, with correlograph analysis to obtain the structural motif, can pin down structural correlations. We introduce the method of correlograph variance as a promising means of independently measuring the volume fraction of a paracrystalline composite. From comparisons with published data, we affirm that only a composite material of paracrystalline and continuous random network that is substantially paracrystalline could explain the existing experimental data, and point the way to more precise measurements on amorphous semiconductors. The results are of general interest for other classes of disordered materials.
Microcanonical quantum fluctuation theorems.
Talkner, Peter; Hänggi, Peter; Morillo, Manuel
2008-05-01
Previously derived expressions for the characteristic function of work performed on a quantum system by a classical external force are generalized to arbitrary initial states of the considered system and to Hamiltonians with degenerate spectra. In the particular case of microcanonical initial states, explicit expressions for the characteristic function and the corresponding probability density of work are formulated. Their classical limit as well as their relations to the corresponding canonical expressions are discussed. A fluctuation theorem is derived that expresses the ratio of probabilities of work for a process and its time reversal to the ratio of densities of states of the microcanonical equilibrium systems with corresponding initial and final Hamiltonians. From this Crooks-type fluctuation theorem a relation between entropies of different systems can be derived which does not involve the time-reversed process. This entropy-from-work theorem provides an experimentally accessible way to measure entropies.
Mathematical and computational methods in nuclear physics
Energy Technology Data Exchange (ETDEWEB)
Dehesa, J.S.; Gomez, J.M.G.; Polls, A.
1983-01-01
The lectures, covering various aspects of the many-body problem in nuclei, review present knowledge and include some unpublished material as well. Bohigas and Giannoni discuss the fluctuation properties of spectra of many-body systems by means of random matrix theories, and the attempts to search for quantum mechanical manifestations of classical chaotic motion. The role of spectral distributions (expressed as explicit functions of the microscopic matrix elements of the Hamiltonian) in the statistical spectroscopy of nuclear systems is analyzed by French. Zucker, after a brief review of the theoretical basis of the shell model, discusses a reformulation of the theory of effective interactions and gives a survey of the linked cluster theory. Goeke's lectures center on the mean-field methods, particularly TDHF, used in the investigation of the large-amplitude nuclear collective motion, pointing out both the successes and failures of the theory.
Random frequency modulation of a superconducting qubit
Silveri, Matti; Li, Jian; Sampath, Karthikeyan; Pirkkalainen, Juha-Matti; Vepsäläinen, Antti; Chien, Wei-Cheng; Tuorila, Jani; Sillanpää, Mika; Hakonen, Pertti; Thuneberg, Erkki; Paraoanu, Gheorghe
2013-03-01
Superconducting circuits with Josephson junctions are a promising platform not only for developing quantum technologies, but, importantly, also for the study of effects that typically occur in complex condensed-matter systems. Here, we employ a transmon qubit to conduct an analog simulation of motional averaging, a phenomenon initially observed in nuclear magnetic resonance spectroscopy. To realize this effect, the flux bias of the transmon is modulated by a controllable pseudo-random telegraph noise, which results in stochastic jumping of the energy separation (frequency) between two discrete values. This can also be seen as a simulated fast-fluctuation environment under direct experimental control. Additionally, we discuss the population dynamics using an analytical master equation, and apply the motional averaging analysis on phenomena where the fluctuation of the energy is due to quasiparticles or to photon shot noise.
Fluctuation relations for anisotropic systems
Villavicencio-Sanchez, R.; Harris, R. J.; Touchette, H.
2014-02-01
Currents of particles or energy in driven non-equilibrium steady states are known to satisfy certain symmetries, referred to as fluctuation relations, determining the ratio of the probabilities of positive fluctuations to negative ones. A generalization of these fluctuation relations has been proposed recently for extended non-equilibrium systems of dimension greater than one, assuming, crucially, that they are isotropic (Hurtado P. I., Pérez-Espigares C., del Pozo J. J. and Garrido P. L., Proc. Natl. Acad. Sci. U.S.A., 108 (2011) 7704). Here we relax this assumption and derive a fluctuation relation for d-dimensional systems having anisotropic bulk driving rates. We test the validity of this anisotropic fluctuation relation by calculating the particle current fluctuations in the 2d anisotropic zero-range process, using both exact and fluctuating hydrodynamic approaches.
Chang, Zhiwei; Halle, Bertil
2013-10-01
In complex biological or colloidal samples, magnetic relaxation dispersion (MRD) experiments using the field-cycling technique can characterize molecular motions on time scales ranging from nanoseconds to microseconds, provided that a rigorous theory of nuclear spin relaxation is available. In gels, cross-linked proteins, and biological tissues, where an immobilized macromolecular component coexists with a mobile solvent phase, nuclear spins residing in solvent (or cosolvent) species relax predominantly via exchange-mediated orientational randomization (EMOR) of anisotropic nuclear (electric quadrupole or magnetic dipole) couplings. The physical or chemical exchange processes that dominate the MRD typically occur on a time scale of microseconds or longer, where the conventional perturbation theory of spin relaxation breaks down. There is thus a need for a more general relaxation theory. Such a theory, based on the stochastic Liouville equation (SLE) for the EMOR mechanism, is available for a single quadrupolar spin I = 1. Here, we present the corresponding theory for a dipole-coupled spin-1/2 pair. To our knowledge, this is the first treatment of dipolar MRD outside the motional-narrowing regime. Based on an analytical solution of the spatial part of the SLE, we show how the integral longitudinal relaxation rate can be computed efficiently. Both like and unlike spins, with selective or non-selective excitation, are treated. For the experimentally important dilute regime, where only a small fraction of the spin pairs are immobilized, we obtain simple analytical expressions for the auto-relaxation and cross-relaxation rates which generalize the well-known Solomon equations. These generalized results will be useful in biophysical studies, e.g., of intermittent protein dynamics. In addition, they represent a first step towards a rigorous theory of water 1H relaxation in biological tissues, which is a prerequisite for unravelling the molecular basis of soft
Constructing stochastic models for dipole fluctuations from paleomagnetic observations
Buffett, B; Puranam, A
2017-01-01
© 2017 Elsevier B.V. Records of relative paleointensity are subject to several sources of error. Temporal averaging due to gradual acquisition of magnetization removes high-frequency fluctuations, whereas random errors introduce fluctuations at high frequency. Both sources of error limit our ability to construct stochastic models from paleomagnetic observations. We partially circumvent these difficulties by recognizing that the largest affects occur at high frequency. To illustrate we constru...
Constructing Stochastic Models for Dipole Fluctuations from Paleomagnetic Observations
Buffett, Bruce; Puranam, Abhijit
2017-01-01
Records of relative paleointensity are subject to several sources of error. Temporal averaging due to gradual acquisition of magnetization removes high-frequency fluctuations, whereas random errors introduce fluctuations at high frequency. Both sources of error limit our ability to construct stochastic models from paleomagnetic observations. We partially circumvent these difficulties by recognizing that the largest affects occur at high frequency. To illustrate we construct a stochastic model...
The scaling properties of dynamical fluctuations in temporal networks
Chi, Liping
2015-01-01
The factorial moments analyses are performed to study the scaling properties of the dynamical fluctuations of contacts and nodes in temporal networks based on empirical data sets. The intermittent behaviors are observed in the fluctuations for all orders of the moments. It indicates that the interaction has self-similarity structure in time interval and the fluctuations are not purely random but dynamical and correlated. The scaling exponents for contacts in Prostitution data and nodes in Conference data are very close to that for 2D Ising model undergoing a second-order phase transition.
Quantitative assessment of target dependence of pion fluctuation in ...
Indian Academy of Sciences (India)
Quantitative assessment of target dependence of pion fluctuation in hadronic interactions – estimation through erraticity. DIPAK GHOSH1, ARGHA DEB1, MITALI MONDAL2,∗,. ARINDAM MONDAL3 and SITARAM PAL4. 1Nuclear and Particle Physics Research Centre, Department of Physics,. Jadavpur University, Kolkata ...
Nuclear expansion with excitation
Energy Technology Data Exchange (ETDEWEB)
De, J.N. [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India); Departament d' Estructura i Constituents de la Materia, Facultat de Fisica, Universitat de Barcelona, Diagonal 647, 08028 Barcelona (Spain); Samaddar, S.K. [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India); Vinas, X. [Departament d' Estructura i Constituents de la Materia, Facultat de Fisica, Universitat de Barcelona, Diagonal 647, 08028 Barcelona (Spain); Centelles, M. [Departament d' Estructura i Constituents de la Materia, Facultat de Fisica, Universitat de Barcelona, Diagonal 647, 08028 Barcelona (Spain)]. E-mail: mario@ecm.ub.es
2006-07-06
The expansion of an isolated hot spherical nucleus with excitation energy and its caloric curve are studied in a thermodynamic model with the SkM{sup *} force as the nuclear effective two-body interaction. The calted results are shown to compare well with the recent experimental data from energetic nuclear collisions. The fluctuations in temperature and density are also studied. They are seen to build up very rapidly beyond an excitation energy of {approx}9 MeV/u. Volume-conserving quadrupole deformation in addition to expansion indicates, however, nuclear disassembly above an excitation energy of {approx}4 MeV/u.
Biomolecules: Fluctuations and relaxations
Parak, F.; Ostermann, A.; Gassmann, A.; Scherk, C.; Chong, S.-H.; Kidera, A.; Go, N.
1999-10-01
The normal-mode refinement of X-ray crystallographic data opened a new possibility to analyze the mean-square displacements in a protein molecule. A comparison of the X-ray structure of myoglobin at several temperatures with Mössbauer data is performed. In the low-temperature regime below 180 K the iron mean-square displacements obtained by Mössbauer spectroscopy are in good agreement with a normal-mode analysis. The X-ray mean-square displacements at the position of the iron, after the motion originated from the external degrees of freedom are subtracted, have practically the same temperature dependence as those from Mössbauer spectroscopy. The difference between the X-ray mean-square displacements and those predicted by normal-mode analysis measures the distribution of molecules into conformational substates. Above 180 K the Mössbauer effect indicates fluctuations between conformational substates. The relaxation from a Fe(III) conformation to a Fe(II) conformation is shown for superoxide dismutase of Propionibacterium shermanii.
Fluctuating attention in Parkinson's disease
DEFF Research Database (Denmark)
Starrfelt, Randi; Aarsland, Dag; Janvin, Carmen
2001-01-01
Lewy body dementia (DLB), which share many clinical and pathological features with Parkinson’s disease (PD), is charac- terised by marked fluctuations in cognition and consciousness. Fluctuating cognition has not been formally studied in PD, although some studies indicate that PD patients show...
Quantum Correction of Fluctuation Theorem
Monnai, T.; Tasaki, S.
2003-01-01
Quantum analogues of the transient fluctuation theorem(TFT) and steady-state fluctuation theorem(SSFT) are investigated for a harmonic oscillator linearly coupled with a harmonic reservoir. The probability distribution for the work done externally is derived and quantum correction for TFT and SSFT are calculated.
Fluctuation conductivity in cuprate superconductors
Indian Academy of Sciences (India)
superconducting layers in each unit cell is also not adequate. We suggest the fluctuation conductivity to be reduced due to the reduction in the density of states (DOS) of the quasiparticles which results due to the formation of Cooper pairs at the onset of the fluctuations. The data agrees with the theory proposed by Dorin et al ...
Pressure Fluctuations in Nonideal Plasma
Lankin, A.; Norman, G.; Saitov, I.
Fluctuations of pressure of singly ionized nonideal plasma are studied using the fluctuation approach which provides the self-consistent joint description of free and weakly bound electron states. The classical molecular dynamics method is used. The electron-ion interaction is described by the
Nonmotor Fluctuations in Parkinson's Disease.
Franke, Christiana; Storch, Alexander
2017-01-01
The advanced stage of Parkinson's disease (PD) is characterized by motor complications such as motor fluctuations and dyskinesias induced by long-term levodopa treatment. Recent clinical research provides growing evidence that various nonmotor symptoms such as neuropsychiatric, autonomic, and sensory symptoms (particularly pain) also show fluctuations in patients with motor fluctuations (called nonmotor fluctuations or NMF). However, NMF have not yet been adequately considered in routine care of advanced PD patients and only few therapeutic studies are available. Since the pathophysiology of NMF remains largely unknown, innovative therapeutic concepts are largely missing. The close connection of NMF and motor fluctuations, however, strongly suggests that the strategies used to treat motor complications-namely continuous dopaminergic stimulation-also apply for the therapy of NMF. Future controlled clinical trials specifically addressing NMF are urgently warranted. © 2017 Elsevier Inc. All rights reserved.
Staggered Schemes for Fluctuating Hydrodynamics
Balboa, F; Delgado-Buscalioni, R; Donev, A; Fai, T; Griffith, B; Peskin, C S
2011-01-01
We develop numerical schemes for solving the isothermal compressible and incompressible equations of fluctuating hydrodynamics on a grid with staggered momenta. We develop a second-order accurate spatial discretization of the diffusive, advective and stochastic fluxes that satisfies a discrete fluctuation-dissipation balance, and construct temporal discretizations that are at least second-order accurate in time deterministically and in a weak sense. Specifically, the methods reproduce the correct equilibrium covariances of the fluctuating fields to third (compressible) and second (incompressible) order in the time step, as we verify numerically. We apply our techniques to model recent experimental measurements of giant fluctuations in diffusively mixing fluids in a micro-gravity environment [A. Vailati et. al., Nature Communications 2:290, 2011]. Numerical results for the static spectrum of non-equilibrium concentration fluctuations are in excellent agreement between the compressible and incompressible simula...
Fluctuations in catalytic surface reactions
Imbihl, R
2003-01-01
The internal reaction-induced fluctuations which occur in catalytic CO oxidation on a Pt field emitter tip have been studied using field electron microscopy (FEM) as a spatially resolving method. The structurally heterogeneous Pt tip consists of facets of different orientations with nanoscale dimensions. The FEM resolution of roughly 2 nm corresponds to a few hundred reacting adsorbed particles whose variations in the density are imaged as brightness fluctuations. In the bistable range of the reaction one finds fluctuation-induced transitions between the two stable branches of the reaction kinetics. The fluctuations exhibit a behaviour similar to that of an equilibrium phase transition, i.e. the amplitude diverges upon approaching the bifurcation point terminating the bistable range of the reaction. Simulations with a hybrid Monte Carlo/mean-field model reproduce the experimental observations. Fluctuations on different facets are typically uncorrelated but within a single facet a high degree of spatial cohere...
Fluctuations of wavefunctions about their classical average
Bénet, L; Hernandez-Saldana, H; Izrailev, F M; Leyvraz, F; Seligman, T H
2003-01-01
Quantum-classical correspondence for the average shape of eigenfunctions and the local spectral density of states are well-known facts. In this paper, the fluctuations of the quantum wavefunctions around the classical value are discussed. A simple random matrix model leads to a Gaussian distribution of the amplitudes whose width is determined by the classical shape of the eigenfunction. To compare this prediction with numerical calculations in chaotic models of coupled quartic oscillators, we develop a rescaling method for the components. The expectations are broadly confirmed, but deviations due to scars are observed. This effect is much reduced when both Hamiltonians have chaotic dynamics.
Classical fluctuations in quantum field theory
Morikawa, M.
The question as to whether quantum fluctuations can induce the spontaneous breaking of translational invariance (SBTI) in the extreme cosmic expansion that occurs during any type of inflation is considered. Attention is given to the unstable field, thermofield dynamic, and cosmic anisotropic relaxation quantum systems, defining the appropriate order parameters for each and discussing their properties. A mechanism for SBTI is presented which possesses both generality and applicability to various problems; a complex effective potential can, for example, be obtained for a nonconvex potential, so that a random force arises and stochastically agitates order parameters.
Curvature of fluctuation geometry and its implications on Riemannian fluctuation theory
Velazquez, L.
2013-08-01
Fluctuation geometry was recently proposed as a counterpart approach of the Riemannian geometry of inference theory (widely known as information geometry). This theory describes the geometric features of the statistical manifold {M} of random events that are described by a family of continuous distributions dp(x|θ). A main goal of this work is to clarify the statistical relevance of the Levi-Civita curvature tensor Rijkl(x|θ) of the statistical manifold {M}. For this purpose, the notion of irreducible statistical correlations is introduced. Specifically, a distribution dp(x|θ) exhibits irreducible statistical correlations if every distribution dp(\\check{x}|\\theta ) obtained from dp(x|θ) by considering a coordinate change \\check{x}=\\phi (x) cannot be factorized into independent distributions as dp(\\check{x}|\\theta )=\\prod _{i}dp^{(i)}(\\check{x}^{i}|\\theta ). It is shown that the curvature tensor Rijkl(x|θ) arises as a direct indicator about the existence of irreducible statistical correlations. Moreover, the curvature scalar R(x|θ) allows us to introduce a criterium for the applicability of the Gaussian approximation of a given distribution function. This type of asymptotic result is obtained in the framework of the second-order geometric expansion of the distribution family dp(x|θ), which appears as a counterpart development of the high-order asymptotic theory of statistical estimation. In physics, fluctuation geometry represents the mathematical apparatus of a Riemannian extension for Einstein’s fluctuation theory of statistical mechanics. Some exact results of fluctuation geometry are now employed to derive the invariant fluctuation theorems. Moreover, the curvature scalar allows us to express some asymptotic formulae that account for the system fluctuating behavior beyond the Gaussian approximation, e.g.: it appears as a second-order correction of the Legendre transformation between thermodynamic potentials, P(\\theta )=\\theta _{i
Quantum fluctuations from thermal fluctuations in Jacobson formalism
Energy Technology Data Exchange (ETDEWEB)
Faizal, Mir [University of British Columbia-Okanagan, Irving K. Barber School of Arts and Sciences, Kelowna, BC (Canada); University of Lethbridge, Department of Physics and Astronomy, Lethbridge, AB (Canada); Ashour, Amani; Alcheikh, Mohammad [Damascus University, Mathematics Department, Faculty of Science, Damascus (Syrian Arab Republic); Alasfar, Lina [Universite Clermont Auvergne, Laboratoire de Physique Corpusculaire de Clermont-Ferrand, Aubiere (France); Alsaleh, Salwa; Mahroussah, Ahmed [King Saud University, Department of Physics and Astronomy, Riyadh (Saudi Arabia)
2017-09-15
In the Jacobson formalism general relativity is obtained from thermodynamics. This is done by using the Bekenstein-Hawking entropy-area relation. However, as a black hole gets smaller, its temperature will increase. This will cause the thermal fluctuations to also increase, and these will in turn correct the Bekenstein-Hawking entropy-area relation. Furthermore, with the reduction in the size of the black hole, quantum effects will also start to dominate. Just as the general relativity can be obtained from thermodynamics in the Jacobson formalism, we propose that the quantum fluctuations to the geometry can be obtained from thermal fluctuations. (orig.)
Motion of Euglena gracilis: Active fluctuations and velocity distribution
Romanczuk, P.; Romensky, M.; Scholz, D.; Lobaskin, V.; Schimansky-Geier, L.
2015-07-01
We study the velocity distribution of unicellular swimming algae Euglena gracilis using optical microscopy and active Brownian particle theory. To characterize a peculiar feature of the experimentally observed distribution at small velocities we use the concept of active fluctuations, which was recently proposed for the description of stochastically self-propelled particles [Romanczuk, P. and Schimansky-Geier, L., Phys. Rev. Lett. 106, 230601 (2011)]. In this concept, the fluctuating forces arise due to internal random performance of the propulsive motor. The fluctuating forces are directed in parallel to the heading direction, in which the propulsion acts. In the theory, we introduce the active motion via the depot model [Schweitzer, et al., Phys. Rev. Lett. 80(23), 5044 (1998)]. We demonstrate that the theoretical predictions based on the depot model with active fluctuations are consistent with the experimentally observed velocity distributions. In addition to the model with additive active noise, we obtain theoretical results for a constant propulsion with multiplicative noise.
Skewness of elliptic flow fluctuations
Giacalone, Giuliano; Yan, Li; Noronha-Hostler, Jacquelyn; Ollitrault, Jean-Yves
2017-01-01
Using event-by-event hydrodynamic calculations, we find that the fluctuations of the elliptic flow (v2) in the reaction plane have a negative skew. We compare the skewness of v2 fluctuations to that of initial eccentricity fluctuations. We show that skewness is the main effect lifting the degeneracy between higher-order cumulants, with negative skew corresponding to the hierarchy v2{4 } >v2{6 } observed in Pb+Pb collisions at the CERN Large Hadron Collider. We describe how the skewness can be measured experimentally and show that hydrodynamics naturally reproduces its magnitude and centrality dependence.
Fluctuation theorem: A critical review
Malek Mansour, M.; Baras, F.
2017-10-01
Fluctuation theorem for entropy production is revisited in the framework of stochastic processes. The applicability of the fluctuation theorem to physico-chemical systems and the resulting stochastic thermodynamics were analyzed. Some unexpected limitations are highlighted in the context of jump Markov processes. We have shown that these limitations handicap the ability of the resulting stochastic thermodynamics to correctly describe the state of non-equilibrium systems in terms of the thermodynamic properties of individual processes therein. Finally, we considered the case of diffusion processes and proved that the fluctuation theorem for entropy production becomes irrelevant at the stationary state in the case of one variable systems.
Density fluctuations in traffic flow
Yukawa, S
1996-01-01
Density fluctuations in traffic current are studied by computer simulations using the deterministic coupled map lattice model on a closed single-lane circuit. By calculating a power spectral density of temporal density fluctuations at a local section, we find a power-law behavior, \\sim 1/f^{1.8}, on the frequency f, in non-congested flow phase. The distribution of the headway distance h also shows the power law like \\sim 1/h^{3.0} at the same time. The power law fluctuations are destroyed by the occurence of the traffic jam.
Controllable effects of quantum fluctuations on spin free-induction decay at room temperature
Liu, Gang-Qin; Pan, Xin-Yu; Jiang, Zhan-Feng; Zhao, Nan; Liu, Ren-Bao
2012-01-01
Fluctuations of local fields cause decoherence of quantum objects. Usually at high temperatures, thermal noises are much stronger than quantum fluctuations unless the thermal effects are suppressed by certain techniques such as spin echo. Here we report the discovery of strong quantum-fluctuation effects of nuclear spin baths on free-induction decay of single electron spins in solids at room temperature. We find that the competition between the quantum and thermal fluctuations is controllable by an external magnetic field. These findings are based on Ramsey interference measurement of single nitrogen-vacancy center spins in diamond and numerical simulation of the decoherence, which are in excellent agreement. PMID:22666535
Fluctuations and Instability in Sedimentation
Guazzelli, Élisabeth
2011-01-21
This review concentrates on the fluctuations of the velocities of sedimenting spheres, and on the structural instability of a suspension of settling fibers. For many years, theoretical estimates and numerical simulations predicted the fluctuations of the velocities of spheres to increase with the size of the container, whereas experiments found no such variation. Two ideas have increased our understanding. First, the correlation length of the velocity fluctuations was found experimentally to be 20 interparticle separations. Second, in dilute suspensions, a vertical variation in the concentration due to the spreading of the front with the clear fluid can inhibit the velocity fluctuations. In a very dilute regime, a homogeneous suspension of fibers suffers a spontaneous instability in which fast descending fiber-rich columns are separated by rising fiber-sparse columns. In a semidilute regime, the settling is hindered, more so than for spheres. © 2011 by Annual Reviews. All rights reserved.
Quantum entanglement and temperature fluctuations.
Ourabah, Kamel; Tribeche, Mouloud
2017-04-01
In this paper, we consider entanglement in a system out of equilibrium, adopting the viewpoint given by the formalism of superstatistics. Such an approach yields a good effective description for a system in a slowly fluctuating environment within a weak interaction between the system and the environment. For this purpose, we introduce an alternative version of the formalism within a quantum mechanical picture and use it to study entanglement in the Heisenberg XY model, subject to temperature fluctuations. We consider both isotropic and anisotropic cases and explore the effect of different temperature fluctuations (χ^{2}, log-normal, and F distributions). Our results suggest that particular fluctuations may enhance entanglement and prevent it from vanishing at higher temperatures than those predicted for the same system at thermal equilibrium.
Brandt, E. H.
1990-01-01
The levitation of high-T(sub c) superconductors is quite conspicuous: Above magnets of low symmetry a disk of these ceramics floats motionless, without vibration or rotation; it has a continuous range of stable positions and orientations as if it were stuck in sand. Some specimens may even be suspended above or below the same magnet. This fascinating stability, inherent to no other type of levitation, is caused by the pinning of magnetic flux lines by inhomogeneities inside these extreme type-2 superconductors. The talk deals with pinning of magnetic flux in these materials, with flux flow, flux creep, thermally activated depinning, and the thermal fluctuation of the vortex positions in the flux line lattice (often called flux lattice melting). Also discussed are the fluctuations of the (nearly periodic) magnetic field inside these superconductors which are caused by random pinning sites and by the finite temperature. These fluctuations broaden the van-Hove singularities observed in the density of the magnetic field by nuclear magnetic resonance and by muon spin rotation.
... Parents/Teachers Resource Links for Students Glossary Nuclear Medicine What is nuclear medicine? What are radioactive tracers? ... funded researchers advancing nuclear medicine? What is nuclear medicine? Nuclear medicine is a medical specialty that uses ...
Absolute nuclear material assay
Prasad, Manoj K [Pleasanton, CA; Snyderman, Neal J [Berkeley, CA; Rowland, Mark S [Alamo, CA
2012-05-15
A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.
Absolute nuclear material assay
Prasad, Manoj K [Pleasanton, CA; Snyderman, Neal J [Berkeley, CA; Rowland, Mark S [Alamo, CA
2010-07-13
A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.
Energy Technology Data Exchange (ETDEWEB)
Dotsenko, Viktor S [Landau Institute for Theoretical Physics, Russian Academy of Sciences, Moscow (Russian Federation)
2011-03-31
In the last two decades, it has been established that a single universal probability distribution function, known as the Tracy-Widom (TW) distribution, in many cases provides a macroscopic-level description of the statistical properties of microscopically different systems, including both purely mathematical ones, such as increasing subsequences in random permutations, and quite physical ones, such as directed polymers in random media or polynuclear crystal growth. In the first part of this review, we use a number of models to examine this phenomenon at a simple qualitative level and then consider the exact solution for one-dimensional directed polymers in a random environment, showing that free energy fluctuations in such a system are described by the universal TW distribution. The second part provides detailed appendix material containing the necessary mathematical background for the first part. (reviews of topical problems)
Force fluctuations and polymerization dynamics of intracellular microtubules
Brangwynne, Clifford
2008-03-01
Microtubules are dynamic biopolymers within the cytoskeleton of living cells. They play a central role in many biological processes including cell division, migration, and cargo transport. Microtubules are significantly more rigid than other cytoskeletal biopolymers, such as actin filaments, and are insensitive to thermal fluctuations on cellular length scales. However, we show that intracellular microtubules exhibit bending amplitudes with a surprisingly thermal-like wavevector dependence, but with an apparent persistence length about 100 times smaller than that measured in vitro. By studying the time-dependent bending fluctuations of individual filaments, we find that the thermal-like bends are fluctuating significantly only on short length scales, while they are frozen-in on longer length scales [1], reminiscent of non-ergodic behavior seen in systems far from equilibrium. Long wavelength bends are suppressed by the surrounding elastic cytoskeleton, which confines bending to short length scales on the order of a few microns [2]. These short wavelength bending fluctuations naturally cause fluctuations in the orientation of the microtubule tip. Tip fluctuations result in a persistent random walk trajectory of microtubule growth, but with a small non-equilibrium persistence length, explaining the origin of quenched thermal-like bends. These results suggest that intracellular motor activity has a highly fluctuating character that dominates over thermal fluctuations, with important consequences for fundamental biological processes. [1] CP Brangwynne, FC MacKintosh, DA Weitz, PNAS, 104:16128 (2007). [2] CP Brangwynne, FC MacKintosh, S Kumar, NA Geisse, J Talbot, L. Mahadevan, KK Parker, DE Ingber, DA Weitz, JCB, 173:733 (2006).
Fluctuation relations with intermittent non-Gaussian variables.
Budini, Adrián A
2011-12-01
Nonequilibrium stationary fluctuations may exhibit a special symmetry called fluctuation relations (FRs). Here, we show that this property is always satisfied by the subtraction of two random and independent variables related by a thermodynamiclike change of measure. Taking one of them as a modulated Poisson process, it is demonstrated that intermittence and FRs are compatible properties that may coexist naturally. Strong non-Gaussian features characterize the probability distribution and its generating function. Their associated large deviation functions develop a "kink" at the origin and a plateau regime respectively. Application of this model in different stationary nonequilibrium situations is discussed.
Quantum spectrum as a time series: fluctuation measures.
Santhanam, M S; Bandyopadhyay, Jayendra N; Angom, Dilip
2006-01-01
The fluctuations in the quantum spectrum could be treated like a time series. In this framework, we explore the statistical self-similarity in the quantum spectrum using the detrended fluctuation analysis (DFA) and random matrix theory (RMT). We calculate the Hausdorff measure for the spectra of atoms and Gaussian ensembles and study their self-affine properties. We show that DFA is equivalent to the Delta3 statistics of RMT, unifying two different approaches. We exploit this connection to obtain theoretical estimates for the Hausdorff measure.
Planck's Radiation Law: Thermal Excitations of Vacuum Induced Fluctuations
Directory of Open Access Journals (Sweden)
Ogiba F.
2015-04-01
Full Text Available The second Planck’s radiation law is derived considering that “resonators” induced by the vacuum absorb thermal excitations as additional fluctuations. The maximum energy transfer, as required by the maximum entropy equilibrium, occurs when the frequencies of these two kind of vibrations are equal. The motion resembles that of the coherent states of the quantum oscillator, as originally pointed by Schrödinger [1]. The resulting variance, due to random phases, coincides with that used by Einstein to reproduce the first Planck’s radiation law from his thermal fluctuation equation [2].
Phase transitions in polypeptides: analysis of energy fluctuations
DEFF Research Database (Denmark)
Yakubovich, Alexander V.; Solov'yov, Ilia; Solov'yov, Andrey V.
2009-01-01
The helix random coil transition in alanine, valine, and leucine polypeptides consisting of 30 amino acids is studied in vacuo using the Langevin molecular dynamics approach. The influence of side chain radicals on internal energy and heat capacity of the polypeptides is discussed. The heat...... capacity of these polypeptides is calculated as a function of temperature using two different methods, namely, as the derivative of the energy with respect to temperature, and on the basis of energy fluctuations in the system. The convergence of the fluctuations based approach is analyzed as a function...... of simulation time. This study provides a comparison of methods for the description of structural transitions in polypeptides....
Thermodynamic constraints on fluctuation phenomena
Maroney, O. J. E.
2009-12-01
The relationships among reversible Carnot cycles, the absence of perpetual motion machines, and the existence of a nondecreasing globally unique entropy function form the starting point of many textbook presentations of the foundations of thermodynamics. However, the thermal fluctuation phenomena associated with statistical mechanics has been argued to restrict the domain of validity of this basis of the second law of thermodynamics. Here we demonstrate that fluctuation phenomena can be incorporated into the traditional presentation, extending rather than restricting the domain of validity of the phenomenologically motivated second law. Consistency conditions lead to constraints upon the possible spectrum of thermal fluctuations. In a special case this uniquely selects the Gibbs canonical distribution and more generally incorporates the Tsallis distributions. No particular model of microscopic dynamics need be assumed.
Fluctuation theorems for quantum processes.
Albash, Tameem; Lidar, Daniel A; Marvian, Milad; Zanardi, Paolo
2013-09-01
We present fluctuation theorems and moment generating function equalities for generalized thermodynamic observables and quantum dynamics described by completely positive trace preserving maps, with and without feedback control. Our results include the quantum Jarzynski equality and Crooks fluctuation theorem, and clarify the special role played by the thermodynamic work and thermal equilibrium states in previous studies. We show that for a specific class of generalized measurements, which include projective measurements, unitality replaces microreversibility as the condition for the physicality of the reverse process in our fluctuation theorems. We present an experimental application of our theory to the problem of extracting the system-bath coupling magnitude, which we do for a system of pairs of coupled superconducting flux qubits undergoing quantum annealing.
Fluctuation theorems for stochastic dynamics
Harris, R. J.; Schütz, G. M.
2007-07-01
Fluctuation theorems make use of time reversal to make predictions about entropy production in many-body systems far from thermal equilibrium. Here we review the wide variety of distinct, but interconnected, relations that have been derived and investigated theoretically and experimentally. Significantly, we demonstrate, in the context of Markovian stochastic dynamics, how these different fluctuation theorems arise from a simple fundamental time-reversal symmetry of a certain class of observables. Appealing to the notion of Gibbs entropy allows for a microscopic definition of entropy production in terms of these observables. We work with the master equation approach, which leads to a mathematically straightforward proof and provides direct insight into the probabilistic meaning of the quantities involved. Finally, we point to some experiments that elucidate the practical significance of fluctuation relations.
Fluctuation theorems for quantum processes
Albash, Tameem; Lidar, Daniel A.; Marvian, Milad; Zanardi, Paolo
2013-09-01
We present fluctuation theorems and moment generating function equalities for generalized thermodynamic observables and quantum dynamics described by completely positive trace preserving maps, with and without feedback control. Our results include the quantum Jarzynski equality and Crooks fluctuation theorem, and clarify the special role played by the thermodynamic work and thermal equilibrium states in previous studies. We show that for a specific class of generalized measurements, which include projective measurements, unitality replaces microreversibility as the condition for the physicality of the reverse process in our fluctuation theorems. We present an experimental application of our theory to the problem of extracting the system-bath coupling magnitude, which we do for a system of pairs of coupled superconducting flux qubits undergoing quantum annealing.
Chromodynamic Fluctuations in Quark-Gluon Plasma
Mrowczynski, Stanislaw
2008-01-01
Fluctuations of chromodynamic fields in the collisionless quark-gluon plasma are found as a solution of the initial value linearized problem. The plasma initial state is on average colorless, stationary and homogeneous. When the state is stable, the initial fluctuations decay exponentially and in the long-time limit a stationary spectrum of fluctuations is established. For the equilibrium plasma it reproduces the spectrum which is provided by the fluctuation-dissipation relation. Fluctuations...
Grebe, J.J.
1959-07-14
High temperature reactors which are uniquely adapted to serve as the heat source for nuclear pcwered rockets are described. The reactor is comprised essentially of an outer tubular heat resistant casing which provides the main coolant passageway to and away from the reactor core within the casing and in which the working fluid is preferably hydrogen or helium gas which is permitted to vaporize from a liquid storage tank. The reactor core has a generally spherical shape formed entirely of an active material comprised of fissile material and a moderator material which serves as a diluent. The active material is fabricated as a gas permeable porous material and is interlaced in a random manner with very small inter-connecting bores or capillary tubes through which the coolant gas may flow. The entire reactor is divided into successive sections along the direction of the temperature gradient or coolant flow, each section utilizing materials of construction which are most advantageous from a nuclear standpoint and which at the same time can withstand the operating temperature of that particular zone. This design results in a nuclear reactor characterized simultaneously by a minimum critiral size and mass and by the ability to heat a working fluid to an extremely high temperature.
Vélez, Alejandro; Bee, Mark A
2013-05-01
This study tested three hypotheses about the ability of female frogs to exploit temporal fluctuations in the level of background noise to overcome the problem of recognizing male advertisement calls in noisy breeding choruses. Phonotaxis tests with green treefrogs (Hyla cinerea) and Cope's gray treefrogs (Hyla chrysoscelis) were used to measure thresholds for recognizing calls in the presence of noise maskers with (a) no level fluctuations, (b) random fluctuations, or level fluctuations characteristic of (c) conspecific choruses and (d) heterospecific choruses. The dip-listening hypothesis predicted lower signal recognition thresholds in the presence of fluctuating maskers compared with nonfluctuating maskers. Support for the dip-listening hypothesis was weak; only Cope's gray treefrogs experienced dip listening and only in the presence of randomly fluctuating maskers. The natural soundscapes advantage hypothesis predicted lower recognition thresholds when level fluctuations resembled those of natural soundscapes compared with artificial fluctuations. This hypothesis was rejected. In noise backgrounds with natural fluctuations, the species-specific advantage hypothesis predicted lower recognition thresholds when fluctuations resembled species-specific patterns of conspecific soundscapes. No evidence was found to support this hypothesis. These results corroborate previous findings showing that Cope's gray treefrogs, but not green treefrogs, experience dip listening under some noise conditions. Together, the results suggest level fluctuations in the soundscape of natural breeding choruses may present few dip-listening opportunities. The findings of this study provide little support for the hypothesis that receivers are adapted to exploit level fluctuations of natural soundscapes in recognizing communication signals.
Fluctuating Asymmetry and Steroid Hormones: A Review
Directory of Open Access Journals (Sweden)
Zeynep Benderlioglu
2010-04-01
Full Text Available Fluctuating asymmetry (FA represents random, minor deviations from perfect symmetry in paired traits. Because the development of the left and right sides of a paired trait is presumably controlled by an identical set of genetic instructions, these small imperfections are considered to reflect genetic and environmental perturbations experienced during ontogeny. The current paper aims to identify possible neuroendocrine mechanisms, namely the actions of steroid hormones that may impact the development of asymmetrical characters as a response to various stressors. In doing so, it provides a review of the published studies on the influences of glucocorticoids, androgens, and estrogens on FA and concomitant changes in other health and fitness indicators. It follows the premise that hormonal measures may provide direct, non-invasive indicators of how individuals cope with adverse life conditions, strengthening the associations between FA and health, fitness, and behavior.
Detrended Fluctuation Analysis of multifractional Brownian motion
Setty, Venkat; Sharma, Surjalal
2013-03-01
Multifractional Brownian Motion (mBm) is a generalization of Fractional Brownian motion (fBm) with a time varying Hurst exponent, H (t) . Detrended Fluctuation Analysis (DFA) is a technique used to study the scaling behavior representing long term correlations in various dynamical systems. In our work, we apply DFA to calculate a time averaged Hurst exponent, in mBm data. The accuracy of estimation of was shown to depend on the range and variability of H (t) . Furthermore, the effect of uniform random noise in H (t) on the nature of scaling observed in DFA is studied. Our research focusses on the robustness and applicability of the DFA technique for studying long term correlations in systems with time varying Hurst exponents akin to mBm .
Fluctuation theorem in driven nonthermal systems with quenched disorder
Energy Technology Data Exchange (ETDEWEB)
Reichhardt, Charles [Los Alamos National Laboratory; Reichhardt, C J [Los Alamos National Laboratory; Drocco, J A [PRINCETON UNIV.
2009-01-01
We demonstrate that the fluctuation theorem of Evans and Searles can be used to characterize the class of dynamics that arises in nonthermal systems of collectively interacting particles driven over random quenched disorder. By observing the frequency of entropy-destroying trajectories, we show that there are specific dynamical regimes near depinning in which this theorem holds. Hence the fluctuation theorem can be used to characterize a significantly wider class of non-equilibrium systems than previously considered. We discuss how the fluctuation theorem could be tested in specific systems where noisy dynamics appear at the transition from a pinned to a moving phase such as in vortices in type-II superconductors, magnetic domain walls, and dislocation dynamics.
Resistance Fluctuations in GaAs Nanowire Grids
Directory of Open Access Journals (Sweden)
Ivan Marasović
2014-01-01
Full Text Available We present a numerical study on resistance fluctuations in a series of nanowire-based grids. Each grid is made of GaAs nanowires arranged in parallel with metallic contacts crossing all nanowires perpendicularly. Electrical properties of GaAs nanowires known from previous experimental research are used as input parameters in the simulation procedure. Due to the nonhomogeneous doping, the resistivity changes along nanowire. Allowing two possible nanowire orientations (“upwards” or “downwards”, the resulting grid is partially disordered in vertical direction which causes resistance fluctuations. The system is modeled using a two-dimensional random resistor network. Transfer-matrix computation algorithm is used to calculate the total network resistance. It is found that probability density function (PDF of resistance fluctuations for a series of nanowire grids changes from Gaussian behavior towards the Bramwell-Holdsworth-Pinton distribution when both nanowire orientations are equally represented in the grid.
Linear modeling of glacier fluctuations
Oerlemans, J.|info:eu-repo/dai/nl/06833656X
2012-01-01
In this contribution a linear first-order differential equation is used to model glacier length fluctuations. This equation has two parameters describing the physical characteristics of a glacier: the climate sensitivity, expressing how the equilibrium glacier length depends on the climatic state,
Fluctuating hydrodynamics for ionic liquids
Energy Technology Data Exchange (ETDEWEB)
Lazaridis, Konstantinos [Department of Mathematics and Statistics, Washington State University, Pullman, 99163 (United States); Wickham, Logan [Department of Computer Science, Washington State University, Richland, 99354 (United States); Voulgarakis, Nikolaos, E-mail: n.voulgarakis@wsu.edu [Department of Mathematics and Statistics, Washington State University, Pullman, 99163 (United States)
2017-04-25
We present a mean-field fluctuating hydrodynamics (FHD) method for studying the structural and transport properties of ionic liquids in bulk and near electrified surfaces. The free energy of the system consists of two competing terms: (1) a Landau–Lifshitz functional that models the spontaneous separation of the ionic groups, and (2) the standard mean-field electrostatic interaction between the ions in the liquid. The numerical approach used to solve the resulting FHD-Poisson equations is very efficient and models thermal fluctuations with remarkable accuracy. Such density fluctuations are sufficiently strong to excite the experimentally observed spontaneous formation of liquid nano-domains. Statistical analysis of our simulations provides quantitative information about the properties of ionic liquids, such as the mixing quality, stability, and the size of the nano-domains. Our model, thus, can be adequately parameterized by directly comparing our prediction with experimental measurements and all-atom simulations. Conclusively, this work can serve as a practical mathematical tool for testing various theories and designing more efficient mixtures of ionic liquids. - Highlights: • A new fluctuating hydrodynamics method for ionic liquids. • Description of ionic liquid morphology in bulk and near electrified surfaces. • Direct comparison with experimental measurements.
Reaction rates when barriers fluctuate
Reimann, Peter
1999-01-01
Reaction rates when barriers fluctuate : a path integral approach / P. Hänggi and P. Reimann. - In: International Conference on Path Integrals from peV to TeV : Proceedings of the ... / eds.: R. Casalbuoni ... - Singapore u.a. : World Scientific, 1999. - S. 407-409
Fluctuation scaling in the visual cortex at threshold
Medina, José M.; Díaz, José A.
2016-05-01
Fluctuation scaling relates trial-to-trial variability to the average response by a power function in many physical processes. Here we address whether fluctuation scaling holds in sensory psychophysics and its functional role in visual processing. We report experimental evidence of fluctuation scaling in human color vision and form perception at threshold. Subjects detected thresholds in a psychophysical masking experiment that is considered a standard reference for studying suppression between neurons in the visual cortex. For all subjects, the analysis of threshold variability that results from the masking task indicates that fluctuation scaling is a global property that modulates detection thresholds with a scaling exponent that departs from 2, β =2.48 ±0.07 . We also examine a generalized version of fluctuation scaling between the sample kurtosis K and the sample skewness S of threshold distributions. We find that K and S are related and follow a unique quadratic form K =(1.19 ±0.04 ) S2+(2.68 ±0.06 ) that departs from the expected 4/3 power function regime. A random multiplicative process with weak additive noise is proposed based on a Langevin-type equation. The multiplicative process provides a unifying description of fluctuation scaling and the quadratic S -K relation and is related to on-off intermittency in sensory perception. Our findings provide an insight into how the human visual system interacts with the external environment. The theoretical methods open perspectives for investigating fluctuation scaling and intermittency effects in a wide variety of natural, economic, and cognitive phenomena.
Parity fluctuations in stellar dynamos
Moss, D. L.; Sokoloff, D. D.
2017-10-01
Observations of the solar butterfly diagram from sunspot records suggest persistent fluctuations in parity, away from the overall, approximately dipolar pattern. A simple mean-field dynamo model is used with a solar-like rotation law and perturbed α effect. The parity of the magnetic field relative to the rotational equator can demonstrate can be described as resonance behavior, while the magnetic energy behaves in a more or less expected way. Possible applications of this effect are discussed in the context of various deviations of the solar magnetic field from dipolar symmetry, as reported from analyses of archival sunspot data. The model produces fluctuations in field parity, and hence in the butterfly diagram, that are consistent with observed fluctuaions in solar behavior.
Fuel Temperature Fluctuations During Storage
Levitin, R. E.; Zemenkov, Yu D.
2016-10-01
When oil and petroleum products are stored, their temperature significantly impacts how their properties change. The paper covers the problem of determining temperature fluctuations of hydrocarbons during storage. It provides results of the authors’ investigations of the stored product temperature variations relative to the ambient temperature. Closeness and correlation coefficients between these values are given. Temperature variations equations for oil and petroleum products stored in tanks are deduced.
Theory of overdispersion in counting statistics caused by fluctuating probabilities
Energy Technology Data Exchange (ETDEWEB)
Semkow, Thomas M. E-mail: semkow@wadsworth.org
1999-11-01
It is shown that the random Lexis fluctuations of probabilities such as probability of decay or detection cause the counting statistics to be overdispersed with respect to the classical binomial, Poisson, or Gaussian distributions. The generating and the distribution functions for the overdispersed counting statistics are derived. Applications to radioactive decay with detection and more complex experiments are given, as well as distinguishing between the source and background, in the presence of overdispersion. Monte-Carlo verifications are provided.
Theory of overdispersion in counting statistics caused by fluctuating probabilities
Semkow, T M
1999-01-01
It is shown that the random Lexis fluctuations of probabilities such as probability of decay or detection cause the counting statistics to be overdispersed with respect to the classical binomial, Poisson, or Gaussian distributions. The generating and the distribution functions for the overdispersed counting statistics are derived. Applications to radioactive decay with detection and more complex experiments are given, as well as distinguishing between the source and background, in the presence of overdispersion. Monte-Carlo verifications are provided.
Fluctuation-Induced Pattern Formation in a Surface Reaction
DEFF Research Database (Denmark)
Starke, Jens; Reichert, Christian; Eiswirth, Markus
2006-01-01
Spontaneous nucleation, pulse formation, and propagation failure have been observed experimentally in CO oxidation on Pt(110) at intermediate pressures ($\\approx 10^{-2}$mbar). This phenomenon can be reproduced with a stochastic model which includes temperature effects. Nucleation occurs randomly...... due to fluctuations in the reaction processes, whereas the subsequent damping out essentially follows the deterministic path. Conditions for the occurence of stochastic effects in the pattern formation during CO oxidation on Pt are discussed....
Relationship among phenotypic plasticity, phenotypic fluctuations ...
Indian Academy of Sciences (India)
Prakash
These results provide quantitative formulation on canalization and genetic assimilation, in terms of fluctuations of gene expression levels. [Kaneko K 2009 Relationship among phenotypic plasticity, phenotypic fluctuations, robustness, and evolvability; Waddington's legacy revisited under the spirit of Einstein; J. Biosci.
Some comments to the quantum fluctuation theorems
Kuzovlev, Yu. E.
2011-01-01
It is demonstrated that today's quantum fluctuation theorems are component part of old quantum fluctuation-dissipation relations [Sov.Phys.-JETP 45, 125 (1977)], and typical misunderstandings in this area are pointed out.
Correlated interaction fluctuations in photosynthetic complexes
Vlaming, Sebastiaan M
2011-01-01
The functioning and efficiency of natural photosynthetic complexes is strongly influenced by their embedding in a noisy protein environment, which can even serve to enhance the transport efficiency. Interactions with the environment induce fluctuations of the transition energies of and interactions between the chlorophyll molecules, and due to the fact that different fluctuations will partially be caused by the same environmental factors, correlations between the various fluctuations will occur. We argue that fluctuations of the interactions should in general not be neglected, as these have a considerable impact on population transfer rates, decoherence rates and the efficiency of photosynthetic complexes. Furthermore, while correlations between transition energy fluctuations have been studied, we provide the first quantitative study of the effect of correlations between interaction fluctuations and transition energy fluctuations, and of correlations between the various interaction fluctuations. It is shown t...
Hill, R. J.; Clifford, S. F.; Lawrence, R. S.
1980-10-01
The dependence of fluctuations in atmospheric absorption and refraction upon fluctuations in temperature, humidity, and pressure is found for infrared frequencies. This dependence has contributions from line and continuum absorption and from anomalous refraction by water vapor. The functions that relate these fluctuations are necessary for evaluating degradation of electromagnetic radiation by turbulence. They are computed for a given choice of mean atmospheric conditions and graphed as functions of frequency in the wavelength range 5.7 microns to radio waves. It is found that turbulent fluctuations in total pressure give a negligible contribution to absorption and refraction fluctuations. Humidity fluctuations dominate absorption fluctuations, but contributions by temperature and humidity affect refraction fluctuations. Sufficiently strong humidity fluctuations can dominate the refraction fluctuations for some infrared frequencies but not for visible frequencies. The variance of log amplitude is examined for scintillation of infrared light to determine whether absorption or refraction fluctuations dominate under several conditions.
A Generalization of Electromagnetic Fluctuation-Induced Casimir Energy
Directory of Open Access Journals (Sweden)
Yi Zheng
2015-01-01
Full Text Available Intermolecular forces responsible for adhesion and cohesion can be classified according to their origins; interactions between charges, ions, random dipole—random dipole (Keesom, random dipole—induced dipole (Debye are due to electrostatic effects; covalent bonding, London dispersion forces between fluctuating dipoles, and Lewis acid-base interactions are due to quantum mechanical effects; pressure and osmotic forces are of entropic origin. Of all these interactions, the London dispersion interaction is universal and exists between all types of atoms as well as macroscopic objects. The dispersion force between macroscopic objects is called Casimir/van der Waals force. It results from alteration of the quantum and thermal fluctuations of the electrodynamic field due to the presence of interfaces and plays a significant role in the interaction between macroscopic objects at micrometer and nanometer length scales. This paper discusses how fluctuational electrodynamics can be used to determine the Casimir energy/pressure between planar multilayer objects. Though it is confirmation of the famous work of Dzyaloshinskii, Lifshitz, and Pitaevskii (DLP, we have solved the problem without having to use methods from quantum field theory that DLP resorted to. Because of this new approach, we have been able to clarify the contributions of propagating and evanescent waves to Casimir energy/pressure in dissipative media.
Fluctuation theory of luminance and chromaticity discrimination
Bouman, M.A.; Vos, J.J.; Walraven, P.L.
1963-01-01
An attempt has been made to describe brightness and color discrimination in the framework of a fluctuation theory. The fluctuation theory states that a difference between two stimuli will be just noticeable if it exceeds, by some factor, the average of the fluctuations in the stimuli. If the
General framework for fluctuating dynamic density functional theory
Durán-Olivencia, Miguel A.; Yatsyshin, Peter; Goddard, Benjamin D.; Kalliadasis, Serafim
2017-12-01
We introduce a versatile bottom-up derivation of a formal theoretical framework to describe (passive) soft-matter systems out of equilibrium subject to fluctuations. We provide a unique connection between the constituent-particle dynamics of real systems and the time evolution equation of their measurable (coarse-grained) quantities, such as local density and velocity. The starting point is the full Hamiltonian description of a system of colloidal particles immersed in a fluid of identical bath particles. Then, we average out the bath via Zwanzig’s projection-operator techniques and obtain the stochastic Langevin equations governing the colloidal-particle dynamics. Introducing the appropriate definition of the local number and momentum density fields yields a generalisation of the Dean–Kawasaki (DK) model, which resembles the stochastic Navier–Stokes description of a fluid. Nevertheless, the DK equation still contains all the microscopic information and, for that reason, does not represent the dynamical law of observable quantities. We address this controversial feature of the DK description by carrying out a nonequilibrium ensemble average. Adopting a natural decomposition into local-equilibrium and nonequilibrium contribution, where the former is related to a generalised version of the canonical distribution, we finally obtain the fluctuating-hydrodynamic equation governing the time-evolution of the mesoscopic density and momentum fields. Along the way, we outline the connection between the ad hoc energy functional introduced in previous DK derivations and the free-energy functional from classical density-functional theory. The resultant equation has the structure of a dynamical density-functional theory (DDFT) with an additional fluctuating force coming from the random interactions with the bath. We show that our fluctuating DDFT formalism corresponds to a particular version of the fluctuating Navier–Stokes equations, originally derived by Landau and
The Behavior of Endangered Populations in a Randomly Fluctuating Environment
Lee, Tim
2002-01-01
Frequently wildlife managers must decide how to allocate limited resources amongst a plurality of threatened salmon stocks. In the absence of adequate abundance data, knowledge of stocks life histories might be used to rank risk of extinction thereby allowing more efficient allocation of resources. In Chapter one I assess how differences in life histories contribute to relative risk of extinction using Pacific salmon as an example. Using simulations of coho and chinook salmon. I find increase...
Chaotic fluctuations in mathematical economics
Energy Technology Data Exchange (ETDEWEB)
Yoshida, Hiroyuki, E-mail: yoshida.hiroyuki@nihon-u.ac.jp [College of Economics, Nihon University, Chiyoda-ku, Tokyo 101-8360 (Japan)
2011-03-01
In this paper we examine a Cournot duopoly model, which expresses the strategic interaction between two firms. We formulate the dynamic adjustment process and investigate the dynamic properties of the stationary point. By introducing a memory mechanism characterized by distributed lag functions, we presuppose that each firm makes production decisions in a cautious manner. This implies that we have to deal with the system of integro-differential equations. By means of numerical simulations we show the occurrence of chaotic fluctuations in the case of fixed delays.
Electrostatic fluctuations in soap films.
Dean, D S; Horgan, R R
2002-06-01
A field theory to describe electrostatic interactions in soap films, described by electric multilayers with a generalized thermodynamic surface-charging mechanism, is studied. In the limit where the electrostatic interactions are weak, this theory is exactly soluble. The theory incorporates in a consistent way, the surface-charging mechanism and the fluctuations in the electrostatic field that correspond to the zero-frequency component of the van der Waals force. It is shown that these terms lead to a Casimir-like attraction that can be sufficiently large to explain the transition between the common black film to a Newton black film.
An objective fluctuation score for Parkinson's disease.
Directory of Open Access Journals (Sweden)
Malcolm K Horne
Full Text Available Establishing the presence and severity of fluctuations is important in managing Parkinson's Disease yet there is no reliable, objective means of doing this. In this study we have evaluated a Fluctuation Score derived from variations in dyskinesia and bradykinesia scores produced by an accelerometry based system.The Fluctuation Score was produced by summing the interquartile range of bradykinesia scores and dyskinesia scores produced every 2 minutes between 0900-1800 for at least 6 days by the accelerometry based system and expressing it as an algorithm.This Score could distinguish between fluctuating and non-fluctuating patients with high sensitivity and selectivity and was significant lower following activation of deep brain stimulators. The scores following deep brain stimulation lay in a band just above the score separating fluctuators from non-fluctuators, suggesting a range representing adequate motor control. When compared with control subjects the score of newly diagnosed patients show a loss of fluctuation with onset of PD. The score was calculated in subjects whose duration of disease was known and this showed that newly diagnosed patients soon develop higher scores which either fall under or within the range representing adequate motor control or instead go on to develop more severe fluctuations.The Fluctuation Score described here promises to be a useful tool for identifying patients whose fluctuations are progressing and may require therapeutic changes. It also shows promise as a useful research tool. Further studies are required to more accurately identify therapeutic targets and ranges.
Effects of stochastic population fluctuations in two models of biological macroevolution
Murase, Yohsuke; Shimada, Takashi; Ito, Nobuyasu; Rikvold, Per Arne
Two mathematical models of macroevolution are studied. These models have population dynamics at the species level, and mutations and extinction of species are also included. The population dynamics are updated by difference equations with stochastic noise terms that characterize population fluctuations. The effects of the stochastic population fluctuations on diversity and total population sizes on evolutionary time scales are studied. In one model, species can make either predator-prey, mutualistic, or competitive interactions, while the other model allows only predator-prey interactions. When the noise in the population dynamics is strong enough, both models show intermittent behavior and their power spectral densities show approximate 1/f fluctuations. In the noiseless limit, the two models have different power spectral densities. For the predator-prey model, 1/f2 fluctuations appears, indicating random-walk like behavior, while the other model still shows 1/f noise. These results indicate that stochastic population fluctuations may significantly affect long-time evolutionary dynamics.
Multifractal conductance fluctuations in graphene
Bid, Aveek; Rafsanjani Amin, Kazi; Pal, Nairita; Sankar Ray, Samriddhi; Pandit, Rahul
A multifractal (MF) system is characterized by scaling laws involving an infinite number of exponents. In condensed-matter systems, signatures of multifractality have typically been found in the structure of the critical wave functions at localization delocalization (LD) transitions. We report here the first experimental observation of MF statistics in the transport coefficients of a quantum-condensed matter system. We unearth this through a careful investigation of the magneto-conductance fluctuations in ultra-high mobility single layer graphene at ultra-low temperatures. We obtain the MF spectra over a wide range of temperature and doping levels and show that the multifractality decreases as the temperature increases or as the doping moves the system away from the Dirac point. We show that the fractal exponents are a universal function of the phase coherence length of the carriers. We propose that a probable origin of the MF magneto-conductance fluctuations observed by us is an incipient Anderson LD transition in graphene near the charge neutrality point - a phenomenon predicted but never observed in single layer graphene. We also explore alternate possibilities of the origin of the multifractality namely relativistic quantum scars. AB acknowledges funding from Nanomission, DST, Govt. of India and SERB, DST, Govt. of India.
Entropic fluctuations in DNA sequences
Thanos, Dimitrios; Li, Wentian; Provata, Astero
2018-03-01
The Local Shannon Entropy (LSE) in blocks is used as a complexity measure to study the information fluctuations along DNA sequences. The LSE of a DNA block maps the local base arrangement information to a single numerical value. It is shown that despite this reduction of information, LSE allows to extract meaningful information related to the detection of repetitive sequences in whole chromosomes and is useful in finding evolutionary differences between organisms. More specifically, large regions of tandem repeats, such as centromeres, can be detected based on their low LSE fluctuations along the chromosome. Furthermore, an empirical investigation of the appropriate block sizes is provided and the relationship of LSE properties with the structure of the underlying repetitive units is revealed by using both computational and mathematical methods. Sequence similarity between the genomic DNA of closely related species also leads to similar LSE values at the orthologous regions. As an application, the LSE covariance function is used to measure the evolutionary distance between several primate genomes.
Consistency of detrended fluctuation analysis
Løvsletten, O.
2017-07-01
The scaling function F (s ) in detrended fluctuation analysis (DFA) scales as F (s ) ˜sH for stochastic processes with Hurst exponent H . This scaling law is proven for stationary stochastic processes with 0 DFA is equal in expectation to (i) a weighted sum of the ACF and (ii) a weighted sum of the second-order structure function. These results enable us to compute the exact finite-size bias for signals that are scaling and to employ DFA in a meaningful sense for signals that do not exhibit power-law statistics. The usefulness is illustrated by examples where it is demonstrated that a previous suggested modified DFA will increase the bias for signals with Hurst exponents 1 application of these developments, an estimator F ̂(s ) is proposed. This estimator can handle missing data in regularly sampled time series without the need of interpolation schemes. Under mild regularity conditions, F ̂(s ) is equal in expectation to the fluctuation function F (s ) in the gap-free case.
Fluctuations in Ultra-Relativistic Heavy Ion Collisions
Mazeliauskas, Aleksas
Fluctuations are one of the main probes of the physics of the new state of hot and dense nuclear matter called the Quark Gluon Plasma (QGP) which is created in the ultra-relativistic heavy ion collisions. In this dissertation we extend and improve upon the existing descriptions of heavy ion collisions in three different directions: we study the new signatures of initial state fluctuations, the propagation of perturbations in the early stages of the collision, and the effect of thermal fluctuations on the hydrodynamic expansion of the QGP. First, in Chapter 3 we study initial state fluctuations by examining the complete statistical information contained in the two-particle correlation measurements in hydrodynamic simulations of Pb+Pb collisions at the CERN Large Hadron Collider (√sNN = 2.76 TeV). We use Principal Component Analysis (PCA) to decompose the spectrum of harmonic flow, v_n(p_T) for n = 0-5, into dominant components. The leading component is identified with the standard event plane vn(pT), while the subleading component describes additional fluctuations in the two-particle correlation function. We find good geometric predictors for the orientation and the magnitude of the leading and the subleading flows. The subleading v 0, v1, and v3 flow harmonics are shown to be a response to the radial excitation of the corresponding eccentricity epsilonn. In contrast, for v2 the subleading flow in peripheral collisions is dominated by the nonlinear mixing between the leading elliptic flow and radial flow fluctuations. Nonlinear mixing also plays a significant role in generating subleading v4 and v 5 harmonics. The PCA gives a systematic way of studying the full information of the two-particle correlation matrix and identifying the subleading flows, which we show are responsible for factorization breaking in hydrodynamics. Second, in Chapter 4 we study the thermalization and hydrodynamization of fluctuations at the early stages of heavy ion collisions. We use
Modified Feynman ratchet with velocity-dependent fluctuations
Directory of Open Access Journals (Sweden)
Jack Denur
2004-03-01
Full Text Available Abstract: The randomness of Brownian motion at thermodynamic equilibrium can be spontaneously broken by velocity-dependence of fluctuations, i.e., by dependence of values or probability distributions of fluctuating properties on Brownian-motional velocity. Such randomness-breaking can spontaneously obtain via interaction between Brownian-motional Doppler effects --- which manifest the required velocity-dependence --- and system geometrical asymmetry. A non random walk is thereby spontaneously superposed on Brownian motion, resulting in a systematic net drift velocity despite thermodynamic equilibrium. The time evolution of this systematic net drift velocity --- and of velocity probability density, force, and power output --- is derived for a velocity-dependent modification of Feynman's ratchet. We show that said spontaneous randomness-breaking, and consequent systematic net drift velocity, imply: bias from the Maxwellian of the system's velocity probability density, the force that tends to accelerate it, and its power output. Maximization, especially of power output, is discussed. Uncompensated decreases in total entropy, challenging the second law of thermodynamics, are thereby implied.
Enhancement of conductance fluctuations in a mesoscopic system of strong scatterers
Marinyuk, V. V.; Rogozkin, D. B.
2017-10-01
We study how the conductance fluctuations change in a disordered ensemble of strongly scattering (non-Born) centers. Diagrammatic calculations of the conductance variance are carried out beyond the standard Born definition for the Hikami vertex. For a system of strong pointlike scatterers, the enhancement of the conductance fluctuations is found in the crossover between ballistic and diffusive regimes. The incoherent contribution arising from random spatial variations in the scatterer concentration is primarily responsible for the enhancement of fluctuations. In the limit of resonant scatterers, the coherent contribution to the conductance variance also peaks in the crossover regime and its maximum exceeds the UCF value.
Electric field fluctuations in liquid tellurium alloys a hint to bond character
Paulick, C.A.; Brinkmann, R.; Elwenspoek, Michael Curt; von Hartrott, M.; Kiehl, M.; Maxim, P.; Quitmann, D.
1985-01-01
Atomic scale electric field fluctuations in liquid tellurium alloys are detected as they induce nuclear spin relaxation rate RQ in noble gas impurity atoms, via quadrupolar interaction. Results for Xe in liquid Ag, Ga, In, Tl, Ge, Sn---Te alloys are discussed, assuming that bonding in these alloys
Time fluctuation analysis of forest fire sequences
Vega Orozco, Carmen D.; Kanevski, Mikhaïl; Tonini, Marj; Golay, Jean; Pereira, Mário J. G.
2013-04-01
Forest fires are complex events involving both space and time fluctuations. Understanding of their dynamics and pattern distribution is of great importance in order to improve the resource allocation and support fire management actions at local and global levels. This study aims at characterizing the temporal fluctuations of forest fire sequences observed in Portugal, which is the country that holds the largest wildfire land dataset in Europe. This research applies several exploratory data analysis measures to 302,000 forest fires occurred from 1980 to 2007. The applied clustering measures are: Morisita clustering index, fractal and multifractal dimensions (box-counting), Ripley's K-function, Allan Factor, and variography. These algorithms enable a global time structural analysis describing the degree of clustering of a point pattern and defining whether the observed events occur randomly, in clusters or in a regular pattern. The considered methods are of general importance and can be used for other spatio-temporal events (i.e. crime, epidemiology, biodiversity, geomarketing, etc.). An important contribution of this research deals with the analysis and estimation of local measures of clustering that helps understanding their temporal structure. Each measure is described and executed for the raw data (forest fires geo-database) and results are compared to reference patterns generated under the null hypothesis of randomness (Poisson processes) embedded in the same time period of the raw data. This comparison enables estimating the degree of the deviation of the real data from a Poisson process. Generalizations to functional measures of these clustering methods, taking into account the phenomena, were also applied and adapted to detect time dependences in a measured variable (i.e. burned area). The time clustering of the raw data is compared several times with the Poisson processes at different thresholds of the measured function. Then, the clustering measure value
Bet Hedging against Demographic Fluctuations
Xue, BingKan; Leibler, Stanislas
2017-09-01
Biological organisms have to cope with stochastic variations in both the external environment and the internal population dynamics. Theoretical studies and laboratory experiments suggest that population diversification could be an effective bet-hedging strategy for adaptation to varying environments. Here we show that bet hedging can also be effective against demographic fluctuations that pose a trade-off between growth and survival for populations even in a constant environment. A species can maximize its overall abundance in the long term by diversifying into coexisting subpopulations of both "fast-growing" and "better-surviving" individuals. Our model generalizes statistical physics models of birth-death processes to incorporate dispersal, during which new populations are founded, and can further incorporate variations of local environments. In this way, we unify different bet-hedging strategies against demographic and environmental variations as a general means of adaptation to both types of uncertainties in population growth.
Fluctuations in strongly coupled cosmologies
Energy Technology Data Exchange (ETDEWEB)
Bonometto, Silvio A. [Department of Physics, Astronomy Unit, Trieste University, Via Tiepolo 11, I 34143 Trieste (Italy); Mainini, Roberto, E-mail: bonometto@oats.inaf.it, E-mail: mainini@mib.infn.it [Department of Physics G. Occhialini, Milano-Bicocca University, Piazza della Scienza 3, I 20126 Milano (Italy)
2014-03-01
In the early Universe, a dual component made of coupled CDM and a scalar field Φ, if their coupling β > (3){sup 1/2}/2, owns an attractor solution, making them a stationary fraction of cosmic energy during the radiation dominated era. Along the attractor, both such components expand ∝a{sup −4} and have early density parameters Ω{sub d} = 1/(4β{sup 2}) and Ω{sub c} = 2 Ω{sub d} (field and CDM, respectively). In a previous paper it was shown that, if a further component, expanding ∝a{sup −3}, breaks such stationary expansion at z ∼ 3–5 × 10{sup 3}, cosmic components gradually acquire densities consistent with observations. This paper, first of all, considers the case that this component is warm. However, its main topic is the analysis of fluctuation evolution: out of horizon modes are then determined; their entry into horizon is numerically evaluated as well as the dependence of Meszaros effect on the coupling β; finally, we compute: (i) transfer function and linear spectral function; (ii) CMB C{sub l} spectra. Both are close to standard ΛCDM models; in particular, the former one can be so down to a scale smaller than Milky Way, in spite of its main DM component being made of particles of mass < 1 keV. The previously coupled CDM component, whose present density parameter is O(10{sup −3}), exhibits wider fluctuations δρ/ρ, but approximately β-independent δρ values. We discuss how lower scale features of these cosmologies might ease quite a few problems that ΛCDM does not easily solve.
Large Fluctuations and Rare-Events in Complex Networks
Hindes, Jason; Schwartz, Ira
Networks form the backbone of complex systems ranging from ecological food-webs to computer and social networks, and sustain a variety of important dynamical behaviors necessary for some function or task. However, many networks of interest often operate in noisy environments and fluctuate due to random internal interactions, both of which can cause sudden transitions from one network state to another. These noise induced events can be associated with desirable outcomes, such as the extinction of an epidemic, or undesirable, such as a drastic change in network consensus. In this talk, we discuss a general theory of rare-events occurring in complex networks, including extinction and rare-opinion switches, that captures the transition pathway through a network between states and predicts the characteristic time-scale for switching. Lastly, using the formalism, we demonstrate how to design optimal controls that leverage fluctuations in order to enhance or inhibit rare switches in networks. office of naval research, national research council.
Following protein association in vivo with fluorescence fluctuation spectroscopy
Muller, Joachim D.
2003-07-01
The combination of fluorescence correlation spectroscopy and two-photon excitation provides us with a powerful spectroscopic technique. Its submicron resolution and single molecule sensitivity make it an attractive technique for in vivo applications. Experiments have demonstrated that quantitative in vivo fluorescence fluctuation measurements are feasible, despite the presence of autofluorescence and the heterogeneity of the cellular environment. I will demonstrate that molecular brightness of proteins tagged with green fluorescent protein (GFP) is a useful and robust parameter for in vivo studies. Knowledge of photon statistics is crucial for the interpretation of fluorescence fluctuation experiments. I will describe photon counting histogram (PCH) analysis, which determines the molecular brightness and complements autocorrelation analysis. Non-ideal detector effects and their influence on the photon statistics will be discussed. The goal of in vivo fluorescence fluctuation experiments is to address functional properties of biomolecules. We will focus on retinoid X receptor (RXR), a nuclear receptor, which is crucial for the regulation of gene expression. The fluorescence brightness of RXR tagged with EGFP will be used to probe the oligomerization state of RXR.
Probing protein interactions in cells by fluorescence fluctuation spectroscopy
Mueller, Joachim
2003-03-01
The combination of fluorescence correlation spectroscopy and two-photon excitation provides us with a powerful spectroscopic technique. Its submicron resolution and single molecule sensitivity make it an attractive technique for in vivo applications. Experiments have demonstrated that quantitative in vivo fluorescence fluctuation measurements are feasible, despite the presence of autofluorescence and the heterogeneity of the cellular environment. I will demonstrate that molecular brightness of proteins tagged with green fluorescent protein (GFP) is a useful and robust parameter for in vivo studies. Knowledge of photon statistics is crucial for the interpretation of fluorescence fluctuation experiments. I will describe photon counting histogram (PCH) analysis, which determines the molecular brightness and complements autocorrelation analysis. Non-ideal detector effects and their influence on the photon statistics will be discussed. The goal of in vivo fluorescence fluctuation experiments is to address functional properties of biomolecules. We will focus on retinoid X receptor (RXR), a nuclear receptor, which is crucial for the regulation of gene expression. The fluorescence brightness of RXR tagged with EGFP will be used to probe the oligomerization state of RXR.
Wind fluctuations over the North Sea
DEFF Research Database (Denmark)
Vincent, Claire Louise; Pinson, Pierre; Giebel, Gregor
2011-01-01
Climatological patterns in wind speed fluctuations with periods of 1 min to 10 h are analysed using data from a meteorological mast in the Danish North Sea. Fluctuations on these time scales are of particular relevance to the effective management of the power supply from large wind farms. The Hil......Climatological patterns in wind speed fluctuations with periods of 1 min to 10 h are analysed using data from a meteorological mast in the Danish North Sea. Fluctuations on these time scales are of particular relevance to the effective management of the power supply from large wind farms...
Mathematical and computational methods in nuclear physics. Proceedings
Energy Technology Data Exchange (ETDEWEB)
Dehesa, J.S.; Gomez, J.M.G.; Polls, A.
1984-01-01
The present proceedings contain the talks given at the Sixth International Granada Workshop on ''Mathematical and Computational Methods in Nuclear Physics'', held in Granada (Spain), October 3rd-8th, 1983. The lectures covering various aspects of the many-body problem in nuclei, review present knowledge and include some unpublished material as well. Bohigas and Giannoni discuss the fluctuation properties of spectra of many-body systems by means of random matrix theories, and the attempts to search for quantum mechanical manifestations of classical chaotic motion. The role of spectral distributions (expressed as explicit functions of the microscopic matrix elements of the Hamiltonian) in the statistical spectroscopy of nuclear systems is analyzed by French. Zuker, after a brief review of the theoretical basis of the shell model, discusses a reformulation of the theory of effective interactions and gives a survey of the linked cluster theory. Goeke's lectures center on the mean-field methods, particularly TDHF, used in the investigation of the large-amplitude nuclear collective motion, pointing out both the successes and failures of the theory. In addition the present volume also contains the seminars on related topics.
Chemical and Engineering News, 1979
1979-01-01
Provides a brief review of the latest developments in nuclear chemistry. Nuclear research today is directed toward increased activity in radiopharmaceuticals and formation of new isotopes by high-energy, heavy-ion collisions. (Author/BB)
Nuclear scans use radioactive substances to see structures and functions inside your body. They use a special ... images. Most scans take 20 to 45 minutes. Nuclear scans can help doctors diagnose many conditions, including ...
Random Young diagrams in a Rectangular Box
DEFF Research Database (Denmark)
Beltoft, Dan; Boutillier, Cédric; Enriquez, Nathanaël
We exhibit the limit shape of random Young diagrams having a distribution proportional to the exponential of their area, and confined in a rectangular box. The Ornstein-Uhlenbeck bridge arises from the fluctuations around the limit shape.......We exhibit the limit shape of random Young diagrams having a distribution proportional to the exponential of their area, and confined in a rectangular box. The Ornstein-Uhlenbeck bridge arises from the fluctuations around the limit shape....
Fluctuations in Urban Traffic Networks
Chen, Yu-Dong; Li, Li; Zhang, Yi; Hu, Jian-Ming; Jin, Xue-Xiang
Urban traffic network is a typical complex system, in which movements of tremendous microscopic traffic participants (pedestrians, bicyclists and vehicles) form complicated spatial and temporal dynamics. We collected flow volumes data on the time-dependent activity of a typical urban traffic network, finding that the coupling between the average flux and the fluctuation on individual links obeys a certain scaling law, with a wide variety of scaling exponents between 1/2 and 1. These scaling phenomena can explain the interaction between the nodes' internal dynamics (i.e. queuing at intersections, car-following in driving) and changes in the external (network-wide) traffic demand (i.e. the every day increase of traffic amount during peak hours and shocking caused by traffic accidents), allowing us to further understand the mechanisms governing the transportation system's collective behavior. Multiscaling and hotspot features are observed in the traffic flow data as well. But the reason why the separated internal dynamics are comparable to the external dynamics in magnitude is still unclear and needs further investigations.
Wave Beam Propagation Through Density Fluctuations
Balakin, A. A.; Bertelli, N.; Westerhof, E.
2011-01-01
Perturbations induced by edge density fluctuations on electron cyclotron wave beams propagating in fusion plasmas are studied by means of a quasi-optical code. The effects of such fluctuations are illustrated here by showing the beam propagation in the case of single harmonic perturbations to the
temperature fluctuation inside inert atmosphere silos
African Journals Online (AJOL)
This research was conducted to study temperature fluctuation inside the inert atmosphere silos loaded with wheat, compare the temperature fluctuation across the top, middle and bottom part of the silo in relation to the ambient temperature. Temperature readings of the ambient and at the top, middle and bottom part of the ...
Nonconformal Fluctuations in Radiation Dominated Anisotropic ...
Indian Academy of Sciences (India)
tribpo
the non-conformal quantum fluctuations (of expansion and shear) and axisymmetric singularity case in radiation dominated anisotropic cosmology. We show that near the classical singularity the quantum fluctuations tend to diverge. Key words. Quantum Cosmology—Anisotropic universes. 1. Introduction. It has been ...
A data set of worldwide glacier fluctuations
Leclercq, P.W.|info:eu-repo/dai/nl/339579951; Oerlemans, J.|info:eu-repo/dai/nl/06833656X; Basagic, H.J.; Bushueva, I.; Cook, A.J.; Le Bris, R.
2014-01-01
Glacier fluctuations contribute to variations in sea level and historical glacier length fluctuations are natural indicators of past climate change. To study these subjects, longterm information of glacier change is needed. In this paper we present a data set of global long-term glacier length
The Spectrum of Wind Power Fluctuations
Bandi, Mahesh
2016-11-01
Wind is a variable energy source whose fluctuations threaten electrical grid stability and complicate dynamical load balancing. The power generated by a wind turbine fluctuates due to the variable wind speed that blows past the turbine. Indeed, the spectrum of wind power fluctuations is widely believed to reflect the Kolmogorov spectrum; both vary with frequency f as f - 5 / 3. This variability decreases when aggregate power fluctuations from geographically distributed wind farms are averaged at the grid via a mechanism known as geographic smoothing. Neither the f - 5 / 3 wind power fluctuation spectrum nor the mechanism of geographic smoothing are understood. In this work, we explain the wind power fluctuation spectrum from the turbine through grid scales. The f - 5 / 3 wind power fluctuation spectrum results from the largest length scales of atmospheric turbulence of order 200 km influencing the small scales where individual turbines operate. This long-range influence spatially couples geographically distributed wind farms and synchronizes farm outputs over a range of frequencies and decreases with increasing inter-farm distance. Consequently, aggregate grid-scale power fluctuations remain correlated, and are smoothed until they reach a limiting f - 7 / 3 spectrum. This work was funded by the Collective Interactions Unit, OIST Graduate University, Japan.
Computer simulations of phospholipid - membrane thermodynamic fluctuations
DEFF Research Database (Denmark)
Pedersen, U.R.; Peters, Günther H.j.; Schröder, T.B.
2008-01-01
This paper reports all-atom computer simulations of five phospholipid membranes, DMPC, DPPC, DMPG, DMPS, and DMPSH, with a focus on the thermal equilibrium fluctuations of volume, energy, area, thickness, and order parameter. For the slow fluctuations at constant temperature and pressure (defined...
Response of Fusarium solani to Fluctuating Temperatures
Keith F. Jensen; Phillip E. Reynolds; Phillip E. Reynolds
1971-01-01
The purpose of this study was to measure growth under a range of constant temperatures and under a series of fluctuating temperature regimes, and to determine if growth in the fluctuating temperiture regimes could be predicted satisfactorily from the growth data collected in the constant temperature experiments. Growth was measured on both agar and liquid culture to...
Seasonal fluctuations in photochemical efficiency of Symbiodinium ...
African Journals Online (AJOL)
A. formosa and P. verucosa responded significantly to seasonal fluctuation in both solar radiation and sea surface temperature by regulating their Symbiodinium cells densities and photochemical efficiencies except P. cylindrica. However, such seasonal fluctuations in these environmental parameters are not accompanied ...
Nuclear weapons, nuclear effects, nuclear war
Energy Technology Data Exchange (ETDEWEB)
Bing, G.F.
1991-08-20
This paper provides a brief and mostly non-technical description of the militarily important features of nuclear weapons, of the physical phenomena associated with individual explosions, and of the expected or possible results of the use of many weapons in a nuclear war. Most emphasis is on the effects of so-called ``strategic exchanges.``
Multiplicity Distributions and Charged-neutral Fluctuations
Nayak, Tapan K.; Agnihotri, A.; Ahammed, Z.; Angelis, A.L.S.; Antonenko, V.; Arefev, V.; Astakhov, V.; Avdeitchikov, V.; Awes, T.C.; Baba, P.V.K.S.; Badyal, S.K.; Baldine, A.; Barabach, L.; Barlag, C.; Bathe, S.; Batiounia, B.; Bernier, T.; Bhalla, K.B.; Bhatia, V.S.; Blume, C.; Bock, R.; Bohne, E.M.; Bucher, D.; Buijs, A.; Buis, E.J.; Busching, H.; Carlen, L.; Chalyshev, V.; Chattopadhyay, S.; Chenawi, K.E.; Cherbatchev, R.; Chujo, T.; Claussen, A.; Das, A.C.; Decowski, M.P.; Djordjadze, V.; Donni, P.; Doubovik, I.; Dubey, A.K.; Dutta Majumda, M.R.; Eliseev, S.; Enosawa, K.; Feldmann, H.; Foka, P.; Fokin, S.; Frolov, V.; Ganti, M.S.; Garpman, S.; Gavrishchuk, O.; Geurts, F.J.M.; Ghosh, T.K.; Glasow, R.; Gupta, S.K.; Guskov, B.; Gustafsson, H.A.; Gutbrod, H.H.; Higuchi, R.; Hrivnacova, I.; Ippolitov, M.; Kalechofsky, H.; Kamermans, R.; Kampert, K.H.; Karadjev, K.; Karpio, K.; Kato, S.; Kees, S.; Kim, H.; Kolb, B.W.; Kosarev, I.; Koutcheryaev, I.; Kugler, A.; Kulinich, P.; Kumar, V.; Kurata, M.; Kurita, K.; Kuzmin, N.; Langbein, I.; Lebedev, A.; Lee, Y.Y.; Lohner, H.; Mahapatra, D.P.; Manko, V.; Martin, M.; Maximov, A.; Mehdiyev, Rashid R.; Mgebrichvili, G.; Miake, Y.; Mikhalev, D.; Mishra, G.C.; Miyamoto, Y.; Mohanty, B.; Morrison, Douglas R.O.; Mukhopadhyay, D.S.; Myalkovski, V.; Naef, H.; Nandi, B.K.; Nayak, S.K.; Nayak, T.K.; Neumaier, S.; Nianine, A.; Nikitine, V.; Nikolaev, S.; Nishimura, S.; Nomokov, P.; Nystrand, J.; Obenshain, F.E.; Oskarsson, A.; Otterlund, I.; Pachr, M.; Parfenov, A.; Pavliouk, S.; Peitzmann, T.; Petracek, V.; Plasil, F.; Purschke, M.L.; Raeven, B.; Rak, J.; Raniwala, R.; Raniwala, S.; Ramamurthy, V.S.; Rao, N.K.; Retiere, F.; Reygers, K.; Roland, G.; Rosselet, L.; Roufanov, I.; Rubio, J.M.; Sambyal, S.S.; Santo, R.; Sato, S.; Schlagheck, H.; Schmidt, H.R.; Shabratova, G.; Sibiriak, I.; Siemiarczuk, T.; Sinha, B.C.; Slavine, N.; Soderstrom, K.; Solomey, N.; Sood, G.; Sorensen, S.P.; Stankus, P.; Stefanek, G.; Steinberg, P.; Stenlund, E.; Stuken, D.; Sumbera, M.; Svensson, T.; Trivedi, M.D.; Tsvetkov, A.; Twenhofel, C.; Tykarski, L.; Urbahn, J.; van Eijndhoven, N.; van Heeringen, W.H.; van Nieuwenhuizen, G.J.; Vinogradov, A.; Viyogi, Y.P.; Vodopianov, A.S.; Voros, S.; Vos, M.A.; Wyslouch, B.; Yagi, K.; Yokota, Y.; Young, G.R.; Nayak, Tapan K.
2001-01-01
Results from the multiplicity distributions of inclusive photons and charged particles, scaling of particle multiplicities, event-by-event multiplicity fluctuations, and charged-neutral fluctuations in 158$\\cdot A$ GeV Pb+Pb collisions are presented and discussed. A scaling of charged particle multiplicity as $N_{part}^{1.07\\pm 0.05}$ and photons as $N_{part}^{1.12\\pm 0.03}$ have been observed, indicating violation of naive wounded nucleon model. The analysis of localized charged-neutral fluctuation indicates a model-independent demonstration of non-statistical fluctuations in both charged particles and photons in limited azimuthal regions. However, no correlated charged-neutral fluctuations are observed.
JPRS Report, Nuclear Developments
National Research Council Canada - National Science Library
1989-01-01
Partial Contents: Nuclear Weapons, Nuclear Development, Nuclear Power Plant, Uranium, Missiles, Space Firm Protested, Satellite, Rocket Launching, Nuclear Submarine, Environmental, Radioactivity, Nuclear Plant...
Ajzenberg-Selove, Fay
1960-01-01
Nuclear Spectroscopy, Part B focuses on the ways in which experimental data may be analyzed to furnish information about nuclear parameters and nuclear models in terms of which the data are interpreted.This book discusses the elastic and inelastic potential scattering amplitudes, role of beta decay in nuclear physics, and general selection rules for electromagnetic transitions. The nuclear shell model, fundamental coupling procedure, vibrational spectra, and empirical determination of the complex potential are also covered. This publication is suitable for graduate students preparing for exper
Nonlinear dynamical effects on reaction rates in thermally fluctuating environments.
Kawai, Shinnosuke; Komatsuzaki, Tamiki
2010-07-21
A framework to calculate the rate constants of condensed phase chemical reactions of manybody systems is presented without relying on the concept of transition state. The theory is based on a framework we developed recently adopting a multidimensional underdamped Langevin equation in the region of a rank-one saddle. The theory provides a reaction coordinate expressed as an analytical nonlinear functional of the position coordinates and velocities of the system (solute), the friction constants, and the random force of the environment (solvent). Up to moderately high temperature, the sign of the reaction coordinate can determine the final destination of the reaction in a thermally fluctuating media, irrespective of what values the other (nonreactive) coordinates may take. In this paper, it is shown that the reaction probability is analytically derived as the probability of the reaction coordinate being positive, and that the integration with the Boltzmann distribution of the initial conditions leads to the exact reaction rate constant when the local equilibrium holds and the quantum effect is negligible. Because of analytical nature of the theory taking into account all nonlinear effects and their combination with fluctuation and dissipation, the theory naturally provides us with the firm mathematical foundation of the origin of the reactivity of the reaction in a fluctuating media.
Directory of Open Access Journals (Sweden)
Boon Leong Lan
Full Text Available Although heavy-tailed fluctuations are ubiquitous in complex systems, a good understanding of the mechanisms that generate them is still lacking. Optical complex systems are ideal candidates for investigating heavy-tailed fluctuations, as they allow recording large datasets under controllable experimental conditions. A dynamical regime that has attracted a lot of attention over the years is the so-called low-frequency fluctuations (LFFs of semiconductor lasers with optical feedback. In this regime, the laser output intensity is characterized by abrupt and apparently random dropouts. The statistical analysis of the inter-dropout-intervals (IDIs has provided many useful insights into the underlying dynamics. However, the presence of large temporal fluctuations in the IDI sequence has not yet been investigated. Here, by applying fluctuation analysis we show that the experimental distribution of IDI fluctuations is heavy-tailed, and specifically, is well-modeled by a non-Gaussian stable distribution. We find a good qualitative agreement with simulations of the Lang-Kobayashi model. Moreover, we uncover a transition from a less-heavy-tailed state at low pump current to a more-heavy-tailed state at higher pump current. Our results indicate that fluctuation analysis can be a useful tool for investigating the output signals of complex optical systems; it can be used for detecting underlying regime shifts, for model validation and parameter estimation.
Impact of pitch angle fluctuations on airborne lidar forward sensing along the flight direction
Sergeevich Gurvich, Alexander; Alexeevich Kulikov, Victor
2017-10-01
Airborne lidar forward sensing along the flight direction can serve for notification of clear air turbulence (CAT) and help to prevent injuries or fatal air accidents. The validation of this concept was presented in the framework of the DELICAT (DEmonstration of LIdar-based CAT detection) project. However, the strong variations in signal level, which were observed during the DELICAT measurements but not explained, sometimes indicated the need of a better understanding the observational errors due to geometrical factors. In this paper, we discuss possible error sources pertinent to this technique, related to fluctuations of the flight parameters, which may lead to strong signal variations caused by the random deviations of the sensing beam from the forward flight trajectory. We analyze the variations in backscattered lidar signal caused by fluctuations of the most important forward-sensing flight parameter, the pitch angle. The fluctuation values considered in the paper correspond to the error limits of the compensational gyro platform used in civil aviation. The part of the pitch angle fluctuations not compensated for by the beam-steering device in the presence of aerosol concentration variations can lead to noticeable signal variations that can be mistakenly attributed to wind shear, turbulence, or fast evolution of the aerosol layer. We formulate the criteria that allow the recognition of signal variations caused by pitch angle fluctuations. Influence of these fluctuations is shown to be stronger for aerosol variations on smaller vertical scales. An example of DELICAT observations indicating a noticeable pitch angle fluctuation impact is presented.
Xie, Wei; Burke, Brian
2017-07-04
Nuclear lamins are intermediate filament proteins that represent important structural components of metazoan nuclear envelopes (NEs). By combining proteomics and superresolution microscopy, we recently reported that both A- and B-type nuclear lamins form spatially distinct filament networks at the nuclear periphery of mouse fibroblasts. In particular, A-type lamins exhibit differential association with nuclear pore complexes (NPCs). Our studies reveal that the nuclear lamina network in mammalian somatic cells is less ordered and more complex than that of amphibian oocytes, the only other system in which the lamina has been visualized at high resolution. In addition, the NPC component Tpr likely links NPCs to the A-type lamin network, an association that appears to be regulated by C-terminal modification of various A-type lamin isoforms. Many questions remain, however, concerning the structure and assembly of lamin filaments, as well as with their mode of association with other nuclear components such as peripheral chromatin.
Qu, Chunhong; Li, Huishang; Hao, Shuai; Zhang, Xuebiao; Yang, Wei
2017-10-01
Taking Shanghai as an example, the influence of the vegetable price insurance on the fluctuation of prices was analyzed in the article. It was found that the sequence of seasonal fluctuations characteristics of leafy vegetable prices was changed by the vegetable cost-price insurance, the period of price fluctuation was elongated from 12-to-18 months to 37 months, and the influence of random factors on the price fluctuations was reduced in some degree. There was still great space for innovation of the vegetable prices insurance system in Shanghai. Some countermeasures would be suggested to develop the insurance system to better to play the role of insurance and promote the market running more smoothly in Shanghai such as prolonging the insurance cycle, improving the price information monitoring mechanism and innovating income insurance products and so on.
Transient fluctuation of the prosperity of firms in a network economy
Maeno, Yoshiharu
2013-08-01
The transient fluctuation of the prosperity of firms in a network economy is investigated with an abstract stochastic model. The model describes the profit which firms make when they sell materials to a firm which produces a product and the fixed cost expense to the firms to produce those materials and product. The formulas for this model are parallel to those for population dynamics. The swinging changes in the fluctuation in the transient state from the initial growth to the final steady state are the consequence of a topology-dependent time trial competition between the profitable interactions and expense. The firm in a sparse random network economy is more likely to go bankrupt than expected from the value of the limit of the fluctuation in the steady state, and there is a risk of failing to reach by far the less fluctuating steady state.
Research on the Voltage Fluctuation Rules of Power System Containing Wind Farms
Chen, Yixi; Xu, Guchao; Ma, Gang; Li, Feng; Ju, Rong
2017-05-01
The global energy shortage and environmental problems have contributed to the rapid development of wind power. However, due to the randomness and volatility of wind power, large-scale access may cause voltage fluctuation in power grid. Therefore, the reactive power control of power system containing wind farms has become a hot research topic in recent years, in which finding key nodes of voltage fluctuation is a foundation work. In this paper, the power model of wind farm is established first. Then, the influence on nodes voltage when wind farms access simple power system is analysed, and promoted to complex power systems in order to reveal the fluctuation rules of nodes voltage, and to summarize the distribution characteristics of key nodes of voltage fluctuation, which can provide the basis for reactive power optimization. At last, the conclusions are verified by IEEE 30-node system.
Directory of Open Access Journals (Sweden)
Li Wang
2017-02-01
Full Text Available The ability to obtain appropriate parameters for an advanced pressurized water reactor (PWR unit model is of great significance for power system analysis. The attributes of that ability include the following: nonlinear relationships, long transition time, intercoupled parameters and difficult obtainment from practical test, posed complexity and difficult parameter identification. In this paper, a model and a parameter identification method for the PWR primary loop system were investigated. A parameter identification process was proposed, using a particle swarm optimization (PSO algorithm that is based on random perturbation (RP-PSO. The identification process included model variable initialization based on the differential equations of each sub-module and program setting method, parameter obtainment through sub-module identification in the Matlab/Simulink Software (Math Works Inc., Natick, MA, USA as well as adaptation analysis for an integrated model. A lot of parameter identification work was carried out, the results of which verified the effectiveness of the method. It was found that the change of some parameters, like the fuel temperature and coolant temperature feedback coefficients, changed the model gain, of which the trajectory sensitivities were not zero. Thus, obtaining their appropriate values had significant effects on the simulation results. The trajectory sensitivities of some parameters in the core neutron dynamic module were interrelated, causing the parameters to be difficult to identify. The model parameter sensitivity could be different, which would be influenced by the model input conditions, reflecting the parameter identifiability difficulty degree for various input conditions.
Spin-fluctuation theory beyond Gaussian approximation
Energy Technology Data Exchange (ETDEWEB)
Melnikov, N B [Moscow State University, 119992 Moscow (Russian Federation); Reser, B I; Grebennikov, V I, E-mail: melnikov@cs.msu.s, E-mail: reser@imp.uran.r, E-mail: greben@imp.uran.r [Institute of Metal Physics, Ural Branch of the Russian Academy of Sciences, 620041 Ekaterinburg (Russian Federation)
2010-05-14
A characteristic feature of the Gaussian approximation in the functional-integral approach to the spin-fluctuation theory is the jump phase transition to the paramagnetic state. We eliminate the jump and obtain a continuous second-order phase transition by taking into account high-order terms in the expansion of the free energy in powers of the fluctuating exchange field. The third-order term of the free energy renormalizes the mean field, and the fourth-order term, responsible for the interaction of the fluctuations, renormalizes the spin susceptibility. The extended theory is applied to the calculation of magnetic properties of Fe-Ni Invar.
Fluctuation theorems for quantum master equations.
Esposito, Massimiliano; Mukamel, Shaul
2006-04-01
A quantum fluctuation theorem for a driven quantum subsystem interacting with its environment is derived based solely on the assumption that its reduced density matrix obeys a closed evolution equation--i.e., a quantum master equation (QME). Quantum trajectories and their associated entropy, heat, and work appear naturally by transforming the QME to a time-dependent Liouville space basis that diagonalizes the instantaneous reduced density matrix of the subsystem. A quantum integral fluctuation theorem, a steady-state fluctuation theorem, and the Jarzynski relation are derived in a similar way as for classical stochastic dynamics.
Population Genetics with Fluctuating Population Sizes
Chotibut, Thiparat; Nelson, David R.
2017-05-01
Standard neutral population genetics theory with a strictly fixed population size has important limitations. An alternative model that allows independently fluctuating population sizes and reproduces the standard neutral evolution is reviewed. We then study a situation such that the competing species are neutral at the equilibrium population size but population size fluctuations nevertheless favor fixation of one species over the other. In this case, a separation of timescales emerges naturally and allows adiabatic elimination of a fast population size variable to deduce the fluctuation-induced selection dynamics near the equilibrium population size. The results highlight the incompleteness of the standard population genetics with a strictly fixed population size.
Thickness fluctuations in turbulent soap films.
Greffier, O; Amarouchene, Y; Kellay, H
2002-05-13
Rapidly flowing soap films provide a simple and attractive system to study two-dimensional hydrodynamics and turbulence. By measuring the rapid fluctuations of the thickness of the film in the turbulent regime, we find that the statistics of these fluctuations closely resemble those of a passive scalar field in a turbulent flow. The scalar spectra are well described by Kolmogorov-like scaling while the high-order moments show clear deviations from regular scaling just like dye or temperature fluctuations in 3D turbulent flows.
Spin-current noise from fluctuation relations
Energy Technology Data Exchange (ETDEWEB)
Lim, Jong Soo [Institut de Fisica Interdisciplinària i Sistemes Complexos IFISC (UIB-CSIC), E-07122 Palma de Mallorca (Spain); Sánchez, David; López, Rosa [Institut de Fisica Interdisciplinària i Sistemes Complexos IFISC (UIB-CSIC), E-07122 Palma de Mallorca, Spain and Departement de Fisica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain)
2013-12-04
We present fluctuation relations that connect spin-polarized current and noise in mesoscopic conductors. In linear response, these relations are equivalent to the fluctuation-dissipation theorem that relates equilibrium current-current correlations to the linear conductance. More interestingly, in the weakly nonlinear regime of transport, these relations establish a connection between the leading-order rectification spin conductance, the spin noise susceptibility and the third cumulant of spin current fluctuations at equilibrium. Our results are valid even for systems in the presence of magnetic fields and coupled to ferromagnetic electrodes.
Probability distribution of vertical longitudinal shear fluctuations.
Fichtl, G. H.
1972-01-01
This paper discusses some recent measurements of third and fourth moments of vertical differences (shears) of longitudinal velocity fluctuations obtained in unstable air at the NASA 150 m meteorological tower site at Cape Kennedy, Fla. Each set of measurements consisted of longitudinal velocity fluctuation time histories obtained at the 18, 30, 60, 90, 120 and 150 m levels, so that 15 wind-shear time histories were obtained from each set of measurements. It appears that the distribution function of the longitudinal wind fluctuations at two levels is not bivariate Gaussian. The implications of the results relative to the design and operation of aerospace vehicles are discussed.-
Macroscopic realism of quantum work fluctuations
Blattmann, Ralf; Mølmer, Klaus
2017-07-01
We study the fluctuations of the work performed on a driven quantum system, defined as the difference between subsequent measurements of energy eigenvalues. These work fluctuations are governed by statistical theorems with similar expressions in classical and quantum physics. We show that we can distinguish quantum and classical work fluctuations, as the latter can be described by a macrorealistic theory and hence obey Leggett-Garg inequalities. We show that these inequalities are violated by quantum processes in a driven two-level system and in a harmonic oscillator subject to a squeezing transformation.
Robustness of scale-free networks to cascading failures induced by fluctuating loads.
Mizutaka, Shogo; Yakubo, Kousuke
2015-07-01
Taking into account the fact that overload failures in real-world functional networks are usually caused by extreme values of temporally fluctuating loads that exceed the allowable range, we study the robustness of scale-free networks against cascading overload failures induced by fluctuating loads. In our model, loads are described by random walkers moving on a network and a node fails when the number of walkers on the node is beyond the node capacity. Our results obtained by using the generating function method show that scale-free networks are more robust against cascading overload failures than Erdős-Rényi random graphs with homogeneous degree distributions. This conclusion is contrary to that predicted by previous works, which neglect the effect of fluctuations of loads.
Role of protein fluctuation correlations in electron transfer in photosynthetic complexes
Nesterov, Alexander I.; Berman, Gennady P.
2015-04-01
We consider the dependence of the electron transfer in photosynthetic complexes on correlation properties of random fluctuations of the protein environment. The electron subsystem is modeled by a finite network of connected electron (exciton) sites. The fluctuations of the protein environment are modeled by random telegraph processes, which act either collectively (correlated) or independently (uncorrelated) on the electron sites. We derived an exact closed system of first-order linear differential equations with constant coefficients, for the average density matrix elements and for their first moments. Under some conditions, we obtained analytic expressions for the electron transfer rates and found the range of parameters for their applicability by comparing with the exact numerical simulations. We also compared the correlated and uncorrelated regimes and demonstrated numerically that the uncorrelated fluctuations of the protein environment can, under some conditions, either increase or decrease the electron transfer rates.
Detrended fluctuation analysis of the magnetic and electric field variations that precede rupture
Varotsos, P. A.; Sarlis, N. V.; Skordas, E. S.
2009-01-01
Magnetic field variations are detected before rupture in the form of `spikes' of alternating sign. The distinction of these `spikes' from random noise is of major practical importance, since it is easier to conduct magnetic field measurements than electric field ones. Applying detrended fluctuation analysis (DFA), these `spikes' look to be random at short time-lags. On the other hand, long range correlations prevail at time-lags larger than the average time interval between consecutive `spike...
Energy Technology Data Exchange (ETDEWEB)
Haxton, W.C.
1992-01-01
The problem of core-collapse supernovae is used to illustrate the many connections between nuclear astrophysics and the problems nuclear physicists study in terrestrial laboratories. Efforts to better understand the collapse and mantle ejection are also motivated by a variety of interdisciplinary issues in nuclear, particle, and astrophysics, including galactic chemical evolution, neutrino masses and mixing, and stellar cooling by the emission of new particles. The current status of theory and observations is summarized.
Energy Technology Data Exchange (ETDEWEB)
Haxton, W.C.
1992-12-31
The problem of core-collapse supernovae is used to illustrate the many connections between nuclear astrophysics and the problems nuclear physicists study in terrestrial laboratories. Efforts to better understand the collapse and mantle ejection are also motivated by a variety of interdisciplinary issues in nuclear, particle, and astrophysics, including galactic chemical evolution, neutrino masses and mixing, and stellar cooling by the emission of new particles. The current status of theory and observations is summarized.
temperature fluctuation inside inert atmosphere silos
African Journals Online (AJOL)
user
This research was conducted to study temperature fluctuation inside the inert atmosphere silos loaded with wheat, compare ... gases most especially carbondioxide (CO2) is due to safety of ... even to agriculture and resistance of pests to some.
Fluctuations, Environment, Mutations Accumulation and Ageing
Biecek, Przemysław; Cebrat, Stanisław
We present a model of evolution of the age structured population based on the Monte Carlo method. We have assumed that the health status of an individual is described by variance of its fluctuations. Each expressed deleterious mutation increases the fluctuations. Additionally, the fluctuations of the environment are superimposed on the fluctuations of individuals in the population. An individual dies if the combination of both stochastic processes trespass the limit (level of homeostasis) set as the model parameter. The genes are switched on chronologically, what leads to accumulating defective genes expressed during the late periods of life in the genetic pool of the population. That results in the specific age structured population, in accordance with the predictions of Medawar's hypothesis of ageing and the results of the Penna model simulations. A decrease of the variation of the environmental noise increases the average expected lifespan of individuals.
Fluctuations of Intensive Quantities in Statistical Thermodynamics
Directory of Open Access Journals (Sweden)
Artur E. Ruuge
2013-11-01
Full Text Available In phenomenological thermodynamics, the canonical coordinates of a physical system split in pairs, with each pair consisting of an extensive quantity and an intensive one. In the present paper, the quasithermodynamic fluctuation theory of a model system of a large number of oscillators is extended to statistical thermodynamics based on the idea of perceiving the fluctuations of intensive variables as the fluctuations of specific extensive ones in a “thermodynamically dual” system. The extension is motivated by the symmetry of the problem in the context of an analogy with quantum mechanics, which is stated in terms of a generalized Pauli problem for the thermodynamic fluctuations. The doubled Boltzmann constant divided by the number of particles plays a similar role as the Planck constant.
A stochastic model of river discharge fluctuations
Livina, V.; Ashkenazy, Y.; Kizner, Z.; Strygin, V.; Bunde, A.; Havlin, S.
2003-12-01
We study the daily river flow fluctuations of 30 international rivers. Using the detrended fluctuation analysis, we study the correlations in the magnitudes of river flow increments (volatilities), and find power-law correlations in volatilities for time scales less than 1 year; these correlations almost disappear for time scales larger than 1 year. Using surrogate data test for nonlinearity, we show that correlations in the magnitudes of river flow fluctuations are a measure for nonlinearity. We propose a simple nonlinear stochastic model for river flow fluctuations that reproduces the main scaling properties of the river flow series as well as the correlations and periodicities in the magnitudes of river flow increments. According to our model, the source of nonlinearity observed in the data is an interaction between a long-term correlated process and the river discharge itself.
Genetics of fluctuating asymmetry in pupal traits of the speckled wood butterfly (Pararge aegeria)
Windig, J.J.; Nylin, S.
2002-01-01
Fluctuating asymmetry (FA), small random differences between left and right, has been extensively used as a measure of individual quality, though its usefulness in that respect is controversial. Whether FA is heritable has implications for sexual selection theory and for its usefulness as an
Ambiguity Aversion, Asset Prices, and the Welfare Costs of Aggregate Fluctuations
DEFF Research Database (Denmark)
Alonso, Irasema; Prado, Mauricio
2015-01-01
Under the hypothesis that aggregate U.S. consumption is random and, more importantly, viewed as ambiguous by consumers, we examine the implications for asset prices and for how consumption fluctuations influence consumer welfare. We consider a simple, Mehra–Prescott-style endowment economy...
Fluctuations of the Self-Normalized Sum in the Curie-Weiss Model of SOC
Gorny, Matthias; Varadhan, S. R. S.
2015-08-01
We extend the main theorem of Cerf and Gorny (Ann Probab, 2015) about the fluctuations in the Curie-Weiss model of SOC in the symmetric case. We present a short proof using the Hubbard-Stratonovich transformation with the self-normalized sum of the random variables.
Equilibrium & Nonequilibrium Fluctuation Effects in Biopolymer Networks
Kachan, Devin Michael
speculate that cells take advantage of this equilibrium effect by tuning near the transition point, where small changes in free cross-linker density will affect large structural rearrangements between free filament networks and networks of bundles. Cells are naturally found far from equilibrium, where the active influx of energy from ATP consumption controls the dynamics. Motor proteins actively generate forces within biopolymer networks, and one may ask how these differ from the random stresses characteristic of equilibrium fluctuations. Besides the trivial observation that the magnitude is independent of temperature, I find that the processive nature of the motors creates a temporally correlated, or colored, noise spectrum. I model the network with a nonlinear scalar elastic theory in the presence of active driving, and study the long distance and large scale properties of the system with renormalization group techniques. I find that there is a new critical point associated with diverging correlation time, and that the colored noise produces novel frequency dependence in the renormalized transport coefficients. Finally, I study marginally elastic solids which have vanishing shear modulus due to the presence of soft modes, modes with zero deformation cost. Although network coordination is a useful metric for determining the mechanical response of random spring networks in mechanical equilibrium, it is insufficient for describing networks under external stress. In particular, under-constrained networks which are fluid-like at zero load will dynamically stiffen at a critical strain, as observed in numerical simulations and experimentally in many biopolymer networks. Drawing upon analogies to the stress induced unjamming of emulsions, I develop a kinetic theory to explain the rigidity transition in spring and filament networks. Describing the dynamic evolution of non-affine deformation via a simple mechanistic picture, I recover the emergent nonlinear strain
Energy Technology Data Exchange (ETDEWEB)
Silver, E G [ed.
1989-01-01
This document is a review journal that covers significant developments in the field of nuclear safety. Its scope includes the analysis and control of hazards associated with nuclear energy, operations involving fissionable materials, and the products of nuclear fission and their effects on the environment. Primary emphasis is on safety in reactor design, construction, and operation; however, the safety aspects of the entire fuel cycle, including fuel fabrication, spent-fuel processing, nuclear waste disposal, handling of radioisotopes, and environmental effects of these operations, are also treated.
Fluctuation Diamagnetism in Two-Band Superconductors
Adachi, Kyosuke; Ikeda, Ryusuke
2016-01-01
Anomalously large fluctuation diamagnetism around the superconducting critical temperature has been recently observed on iron selenide (FeSe) [S. Kasahara et al., unpublished]. This indicates that superconducting fluctuations (SCFs) play a more significant role in FeSe, which supposedly has two-band structure, than in the familiar single-band superconductors. Motivated by the data in FeSe, SCF-induced diamagnetism is examined in a two-band system, on the basis of a phenomenological approach w...
Fluorescence fluctuation spectroscopy (FFS), part A
Tetin, Sergey
2013-01-01
This new volume of Methods in Enzymology continues the legacy of this premier serial by containing quality chapters authored by leaders in the field. This volume covers Fluorescence Fluctuation SpectroscopyContains chapters on such topics as Time-integrated fluorescence cumulant analysis, Pulsed Interleaved Excitation, and raster image correlation spectroscopy and number and brightness analysis.Continues the legacy of this premier serial with quality chapters authored by leaders in the fieldCovers fluorescence fluctuation spectroscopyContains chapte
Quantum fluctuations of the superconducting cosmic string
Zhang, Shoucheng
1987-01-01
Quantum fluctuations of the proposed superconducting string with Bose charge carriers are studied in terms of the vortices on the string world sheet. In the thermodynamical limit, it is found that they appear in the form of free vortices rather than as bound pairs. This fluctuation mode violates the topological conservation law on which superconductivity is based. However, this limit may not be reached. The critical size of the superconducting string is estimated as a function of the coupling constants involved.
Thermal Fluctuations in Electroweak Phase Transition
Shiromizu, T.; Morikawa, M.; Yokoyama, J.
1995-11-01
We estimate the amplitude of thermal fluctuations by calculating the typical size of subcritical bubbles in cosmological electroweak phase transition and show that this thermal fluctuation effect drastically changes dynamics of the phase transition from the ordinary first order type with supercooling. From this fact, we conclude that the standard electroweak baryogenesis scenario associated with such a first order transition does not work in the minimal standard model in certain conditions.
Kink fluctuation asymptotics and zero modes
Energy Technology Data Exchange (ETDEWEB)
Izquierdo, A.A. [Universidad de Salamanca, Departamento de Matematica Aplicada and IUFFyM, Salamanca (Spain); Guilarte, J.M. [Universidad de Salamanca, Departamento de Fisica Fundamental and IUFFyM, Salamanca (Spain)
2012-10-15
In this paper we propose a refinement of the heat-kernel/zeta function treatment of kink quantum fluctuations in scalar field theory, further analyzing the existence and implications of a zero-energy fluctuation mode. Improved understanding of the interplay between zero modes and the kink heat-kernel expansion delivers asymptotic estimations of one-loop kink mass shifts with remarkably higher precision than previously obtained by means of the standard Gilkey-DeWitt heat-kernel expansion. (orig.)
Molecular thermodynamics using fluctuation solution theory
DEFF Research Database (Denmark)
Ellegaard, Martin Dela
to relevant experimental data is limited. This thesis addresses the issue of generating and using simple thermodynamic models within a rigorous statistical mechanical framework, the so-called fluctuation solution theory, from which relations connecting properties and phase equilibria can be obtained....... The framework relates thermodynamic variables to molecular pair correlation functions of liquid mixtures. In this thesis, application of the framework is illustrated using two approaches: 1. Solubilities of solid solutes in mixed solvent systems are determined from fluctuation solution theory application...
Semiclassical form factor of matrix element fluctuations
Eckhardt, B; Eckhardt, Bruno; Main, Joerg
1995-01-01
We analyze within a semiclassical approximation the form factor for the fluctuations of quantum matrix elements around their classical average. We find two contributions: one is proportional to the form factor for the density of states, with an amplitude determined by the squared average of the matrix elements. The other is constant and related to the fluctuations of finite time classical trajectory segments around the phase space average. The results are illustrated for an observable in the quadratic Zeeman effect.
Modeling multiphase flow using fluctuating hydrodynamics.
Chaudhri, Anuj; Bell, John B; Garcia, Alejandro L; Donev, Aleksandar
2014-09-01
Fluctuating hydrodynamics provides a model for fluids at mesoscopic scales where thermal fluctuations can have a significant impact on the behavior of the system. Here we investigate a model for fluctuating hydrodynamics of a single-component, multiphase flow in the neighborhood of the critical point. The system is modeled using a compressible flow formulation with a van der Waals equation of state, incorporating a Korteweg stress term to treat interfacial tension. We present a numerical algorithm for modeling this system based on an extension of algorithms developed for fluctuating hydrodynamics for ideal fluids. The scheme is validated by comparison of measured structure factors and capillary wave spectra with equilibrium theory. We also present several nonequilibrium examples to illustrate the capability of the algorithm to model multiphase fluid phenomena in a neighborhood of the critical point. These examples include a study of the impact of fluctuations on the spinodal decomposition following a rapid quench, as well as the piston effect in a cavity with supercooled walls. The conclusion in both cases is that thermal fluctuations affect the size and growth of the domains in off-critical quenches.
Hydrodynamic fluctuations in thermostatted multiparticle collision dynamics.
Híjar, Humberto; Sutmann, Godehard
2011-04-01
In this work we study the behavior of mesoscopic fluctuations of a fluid simulated by Multiparticle Collision Dynamics when this is applied together with a local thermostatting procedure that constrains the strength of temperature fluctuations. We consider procedures in which the thermostat interacts with the fluid at every simulation step as well as cases in which the thermostat is applied only at regular time intervals. Due to the application of the thermostat temperature fluctuations are forced to relax to equilibrium faster than they do in the nonthermostatted, constant-energy case. Depending on the interval of application of the thermostat, it is demonstrated that the thermodynamic state changes gradually from isothermal to adiabatic conditions. In order to exhibit this effect we compute from simulations diverse correlation functions of the hydrodynamic fluctuating fields. These correlation functions are compared with those predicted by a linearized hydrodynamic theory of a simple fluid in which a thermostat is applied locally. We find a good agreement between the model and the numerical results, which confirms that hydrodynamic fluctuations in Multiparticle Collision Dynamics in the presence of the thermostat have the properties expected for spontaneous fluctuations in fluids in contact with a heat reservoir.
Longitudinal fluctuations and decorrelation of anisotropic flow
Energy Technology Data Exchange (ETDEWEB)
Pang, Long-Gang [Frankfurt Institute for Advanced Studies, Ruth-Moufang-Strasse 1, 60438 Frankfurt am Main (Germany); Petersen, Hannah [Frankfurt Institute for Advanced Studies, Ruth-Moufang-Strasse 1, 60438 Frankfurt am Main (Germany); Institute for Theoretical Physics, Goethe University, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main (Germany); GSI Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, 64291 Darmstadt (Germany); Qin, Guang-You [Key Laboratory of Quark & Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079 (China); Roy, Victor [Institute for Theoretical Physics, Goethe University, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main (Germany); Wang, Xin-Nian [Key Laboratory of Quark & Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079 (China); Nuclear Science Division MS70R0319, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)
2016-12-15
We investigate the decorrelation of 2nd and 3rd order anisotropic flow for charged particles in two different pseudo rapidity (η) windows by varying the pseudo rapidity gap, in an event-by-event (3+1)D ideal hydrodynamic model, with fluctuating initial conditions from A Multi-Phase Transport (AMPT) model. We visualize the parton distribution at initial state for Pb+Pb collisions at LHC and Au+Au collisions at RHIC, and demonstrate the longitudinal fluctuations originating from the asymmetry between forward and backward going participants, the fluctuations of the string length and the fluctuations due to finite number of partons at different beam energies. The decorrelation of anisotropic flow of final hadrons with large η gaps is found to originate from the spatial decorrelation along the longitudinal direction in the AMPT initial conditions through hydrodynamic evolution. The agreement between our results and recent CMS data in most centralities suggests that the string-like mechanism of initial parton production in AMPT model captures the initial longitudinal fluctuation that is responsible for the measured decorrelation of anisotropic flow in Pb+Pb collisions at LHC. Our predictions for Au+Au collisions at the highest RHIC energy show stronger longitudinal decorrelation than at LHC, indicating larger longitudinal fluctuations at lower beam energies.
Neutron fluctuations a treatise on the physics of branching processes
Pazsit, Imre; Pzsit, Imre
2007-01-01
The transport of neutrons in a multiplying system is an area of branching processes with a clear formalism. This book presents an account of the mathematical tools used in describing branching processes, which are then used to derive a large number of properties of the neutron distribution in multiplying systems with or without an external source. In the second part of the book, the theory is applied to the description of the neutron fluctuations in nuclear reactor cores as well as in small samples of fissile material. The question of how to extract information about the system under study is discussed. In particular the measurement of the reactivity of subcritical cores, driven with various Poisson and non-Poisson (pulsed) sources, and the identification of fissile material samples, is illustrated. The book gives pragmatic information for those planning and executing and evaluating experiments on such systems. - Gives a complete treatise of the mathematics of branching particle processes, and in particular n...
Quantitative Brightness Analysis of Fluorescence Intensity Fluctuations in E. Coli.
Directory of Open Access Journals (Sweden)
Kwang-Ho Hur
Full Text Available The brightness measured by fluorescence fluctuation spectroscopy specifies the average stoichiometry of a labeled protein in a sample. Here we extended brightness analysis, which has been mainly applied in eukaryotic cells, to prokaryotic cells with E. coli serving as a model system. The small size of the E. coli cell introduces unique challenges for applying brightness analysis that are addressed in this work. Photobleaching leads to a depletion of fluorophores and a reduction of the brightness of protein complexes. In addition, the E. coli cell and the point spread function of the instrument only partially overlap, which influences intensity fluctuations. To address these challenges we developed MSQ analysis, which is based on the mean Q-value of segmented photon count data, and combined it with the analysis of axial scans through the E. coli cell. The MSQ method recovers brightness, concentration, and diffusion time of soluble proteins in E. coli. We applied MSQ to measure the brightness of EGFP in E. coli and compared it to solution measurements. We further used MSQ analysis to determine the oligomeric state of nuclear transport factor 2 labeled with EGFP expressed in E. coli cells. The results obtained demonstrate the feasibility of quantifying the stoichiometry of proteins by brightness analysis in a prokaryotic cell.
Relativistic Chiral Theory of Nuclear Matter and QCD Constraints
Chanfray, G
2009-01-01
We present a relativistic chiral theory of nuclear matter which includes the effect of confinement. Nuclear binding is obtained with a chiral invariant scalar background field associated with the radial fluctuations of the chiral condensate Nuclear matter stability is ensured once the scalar response of the nucleon depending on the quark confinement mechanism is properly incorporated. All the parameters are fixed or constrained by hadron phenomenology and lattice data. A good description of nuclear saturation is reached, which includes the effect of in-medium pion loops. Asymmetry properties of nuclear matter are also well described once the full rho meson exchange and Fock terms are included.
Drago, Alessandro
2005-04-01
The activity of the Italian nuclear physicists community in the field of Nuclear Astrophysics is reported. The researches here described have been performed within the project "Fisica teorica del nucleo e dei sistemi a multi corpi", supported by the Ministero dell'Istruzione, dell'Università e della Ricerca.
Langanke, K
1999-01-01
The manuscript reviews progress achieved in recent years in various aspects of nuclear astrophysics, including stellar nucleosynthesis, nuclear aspects of supernova collapse and explosion, neutrino-induced reactions and their possible role in the supernova mechanism and nucleosynthesis, explosive hydrogen burning in binary systems, and finally the observation of gamma-rays from supernova remnants.
A reversible mesoscopic model of diffusion in liquids: from giant fluctuations to Fick’s law
Donev, Aleksandar; Fai, Thomas G.; Vanden-Eijnden, Eric
2014-04-01
We study diffusive mixing in the presence of thermal fluctuations under the assumption of large Schmidt number. In this regime we obtain a limiting equation that contains a diffusive stochastic drift term with diffusion coefficient obeying a Stokes-Einstein relation, in addition to the expected advection by a random velocity. The overdamped limit correctly reproduces both the enhanced diffusion in the ensemble-averaged mean and the long-range correlated giant fluctuations in individual realizations of the mixing process, and is amenable to efficient numerical solution. Through a combination of Eulerian and Lagrangian numerical methods we demonstrate that diffusion in liquids is not most fundamentally described by Fick’s irreversible law; rather, diffusion is better modeled as reversible random advection by thermal velocity fluctuations. We find that the diffusion coefficient is effectively renormalized to a value that depends on the scale of observation. Our work reveals somewhat unexpected connections between flows at small scales, dominated by thermal fluctuations, and flows at large scales, dominated by turbulent fluctuations.
Directory of Open Access Journals (Sweden)
Huan Chen
2017-04-01
Full Text Available Heating oil is an extremely important heating fuel to consumers in northeastern United States. This paper studies the fluctuations law and dynamic behavior of heating oil spot and futures prices by setting up their complex network models based on the data of America in recent 30 years. Firstly, modes are defined by the method of coarse graining, the spot price fluctuation network of heating oil (HSPFN and its futures price fluctuation network (HFPFN in different periods are established to analyze the transformation characteristics between the modes. Secondly, several indicators are investigated: average path length, node strength and strength distribution, betweeness, etc. In addition, a function is established to measure and analyze the network similarity. The results show the cumulative time of new nodes appearing in either spot or futures price network is not random but exhibits a growth trend of straight line. Meanwhile, the power law distributions of spot and futures price fluctuations in different periods present regularity and complexity. Moreover, these prices are strongly correlated in stable fluctuation period but weak in the phase of sharp fluctuation. Finally, the time distribution characteristics of important modes in the networks and the evolution results of the topological properties mentioned above are obtained.
Effect of static porosity fluctuations on reactive transport in a porous medium
L'Heureux, Ivan
2018-02-01
Reaction-diffusive transport phenomena in porous media are ubiquitous in engineering applications, biological and geochemical systems. The porosity field is usually random in space, but most models consider the porosity field as a well-defined deterministic function of space and time and ignore the porosity fluctuations. They use a reaction-diffusion equation written in terms of an average porosity and average concentration fields. In this contribution, we treat explicitly the effect of spatial porosity fluctuations on the dynamics of a concentration field for the case of a one-dimensional reaction-transport system with nonlinear kinetics. Three basic assumptions are considered. (i) The porosity fluctuations are assumed to have Gaussian properties and an arbitrary variance; (ii) we assume that the noise correlation length is small compared to the relevant macroscopic length scale; (iii) and we assume that the kinetics of the reactive term in the equations for the fluctuations is a self-consistently determined constant. Elimination of the fluctuating part of the concentration field from the dynamics leads to a renormalized equation involving the average concentration field. It is shown that the noise leads to a renormalized (generally smaller) diffusion coefficient and renormalized kinetics. Within the framework of the approximations used, numerical simulations are in agreement with our theory. We show that the porosity fluctuations may have a significant effect on the transport of a reactive species, even in the case of a homogeneous average porosity.
... Persantine stress test; Thallium stress test; Stress test - nuclear; Adenosine stress test; Regadenoson stress test; CAD - nuclear stress; Coronary artery disease - nuclear stress; Angina - nuclear ...
Batalhão, Tiago B; Souza, Alexandre M; Mazzola, Laura; Auccaise, Ruben; Sarthour, Roberto S; Oliveira, Ivan S; Goold, John; De Chiara, Gabriele; Paternostro, Mauro; Serra, Roberto M
2014-10-03
We report the experimental reconstruction of the nonequilibrium work probability distribution in a closed quantum system, and the study of the corresponding quantum fluctuation relations. The experiment uses a liquid-state nuclear magnetic resonance platform that offers full control on the preparation and dynamics of the system. Our endeavors enable the characterization of the out-of-equilibrium dynamics of a quantum spin from a finite-time thermodynamics viewpoint.
Energy Technology Data Exchange (ETDEWEB)
Durrani, M. [Physics World (United Kingdom)
2006-01-01
The future of nuclear power has returned to centre stage. Freezing weather on both sides of the Atlantic and last month's climate-change talks in Montreal have helped to put energy and the future of nuclear power right back on the political agenda. The issue is particularly pressing for those countries where existing nuclear stations are reaching the end of their lives. In the UK, prime minister Tony Blair has commissioned a review of energy, with a view to deciding later this year whether to build new nuclear power plants. The review comes just four years after the Labour government published a White Paper on energy that said the country should keep the nuclear option open but did not follow this up with any concrete action. In Germany, new chancellor and former physicist Angela Merkel is a fan of nuclear energy and had said she would extend the lifetime of its nuclear plants beyond 2020, when they are due to close. However, that commitment has had to be abandoned, at least for the time being, following negotiations with her left-wing coalition partners. The arguments in favour of nuclear power will be familiar to all physicists - it emits almost no carbon dioxide and can play a vital role in maintaining a diverse energy supply. To over-rely on imported supplies of oil and gas can leave a nation hostage to fortune. The arguments against are equally easy to list - the public is scared of nuclear power, it generates dangerous waste with potentially huge clean-up costs, and it is not necessarily cheap. Nuclear plants could also be a target for terrorist attacks. Given political will, many of these problems can be resolved, or at least tackled. China certainly sees the benefits of nuclear power, as does Finland, which is building a new 1600 MW station - the world's most powerful - that is set to open in 2009. Physicists, of course, are essential to such developments. They play a vital role in ensuring the safety of such plants and developing new types of
Energy Technology Data Exchange (ETDEWEB)
Segal, G.; Moreton, E.; Freedman, L.; Baylis, J.
1983-01-01
This book is an in-depth examination of East-West tactical and strategic nuclear weapons policy. The contributors explore such issues as the history and implications of tactical weapons in Europe, the general conflicts that have characterized US and Soviet interaction, the development of British nuclear weapons policy, and arms control including SALT I and II and the START talks.
Correlation length of magnetosheath fluctuations: Cluster statistics
Directory of Open Access Journals (Sweden)
O. Gutynska
2008-09-01
Full Text Available Magnetosheath parameters are usually described by gasdynamic or magnetohydrodynamic (MHD models but these models cannot account for one of the most important sources of magnetosheath fluctuations – the foreshock. Earlier statistical processing of a large amount of magnetosheath observations has shown that the magnetosheath magnetic field and plasma flow fluctuations downstream of the quasiparallel shock are much larger than those at the opposite flank. These studies were based on the observations of a single spacecraft and thus they could not provide full information on propagation of the fluctuations through the magnetosheath. We present the results of a statistical survey of the magnetosheath magnetic field fluctuations using two years of Cluster observations. We discuss the dependence of the cross-correlation coefficients between different spacecraft pairs on the orientation of the separation vector with respect to the average magnetic field and plasma flow vectors and other parameters. We have found that the correlation length does not exceed ~1 RE in the analyzed frequency range (0.001–0.125 Hz and does not depend significantly on the magnetic field or plasma flow direction. A close connection of cross-correlation coefficients computed in the magnetosheath with the cross-correlation coefficients between a solar wind monitor and a magnetosheath spacecraft suggests that solar wind structures persist on the background of magnetosheath fluctuations.
Fluctuating asymmetry in Menidia beryllina before and after the 2010 Deepwater Horizon oil spill.
Michaelsen, Savannah; Schaefer, Jacob; Peterson, Mark S
2015-01-01
Assessing the impacts of the Deepwater Horizon oil spill with a dependable baseline comparison can provide reliable insight into environmental stressors on organisms that were potentially affected by the spill. Fluctuating asymmetry (small, non-random deviations from perfect bilateral symmetry) is an informative metric sensitive to contaminants that can be used to assess environmental stress levels. For this study, the well-studied and common Gulf of Mexico estuarine fish, Menidia beryllina, was used with pre and post-oil spill collections. Comparisons of fluctuating asymmetry in three traits (eye diameter, pectoral fin length, and pelvic fin length) were made pre and post-oil spill across two sites (Old Fort Bayou and the Pascagoula River), as well as between years of collection (2011, 2012)--one and two years, respectfully, after the spill in 2010. We hypothesized that fluctuating asymmetry would be higher in post-Deepwater Horizon samples, and that this will be replicated in both study areas along the Mississippi Gulf coast. We also predicted that fluctuating asymmetry would decrease through time after the oil spill as the oil decomposed and/or was removed. Analyses performed on 1135 fish (220 pre and 915 post Deepwater Horizon) showed significantly higher post spill fluctuating asymmetry in the eye but no difference for the pectoral or pelvic fins. There was also higher fluctuating asymmetry in one of the two sites both pre and post-spill, indicating observed asymmetry may be the product of multiple stressors. Fluctuating asymmetry decreased in 2012 compared to 2011. Fluctuating asymmetry is a sensitive measure of sub lethal stress, and the observed variability in this study (pre vs. post-spill or between sites) could be due to a combination of oil, dispersants, or other unknown stressors.
Fluctuating asymmetry in Menidia beryllina before and after the 2010 Deepwater Horizon oil spill.
Directory of Open Access Journals (Sweden)
Savannah Michaelsen
Full Text Available Assessing the impacts of the Deepwater Horizon oil spill with a dependable baseline comparison can provide reliable insight into environmental stressors on organisms that were potentially affected by the spill. Fluctuating asymmetry (small, non-random deviations from perfect bilateral symmetry is an informative metric sensitive to contaminants that can be used to assess environmental stress levels. For this study, the well-studied and common Gulf of Mexico estuarine fish, Menidia beryllina, was used with pre and post-oil spill collections. Comparisons of fluctuating asymmetry in three traits (eye diameter, pectoral fin length, and pelvic fin length were made pre and post-oil spill across two sites (Old Fort Bayou and the Pascagoula River, as well as between years of collection (2011, 2012--one and two years, respectfully, after the spill in 2010. We hypothesized that fluctuating asymmetry would be higher in post-Deepwater Horizon samples, and that this will be replicated in both study areas along the Mississippi Gulf coast. We also predicted that fluctuating asymmetry would decrease through time after the oil spill as the oil decomposed and/or was removed. Analyses performed on 1135 fish (220 pre and 915 post Deepwater Horizon showed significantly higher post spill fluctuating asymmetry in the eye but no difference for the pectoral or pelvic fins. There was also higher fluctuating asymmetry in one of the two sites both pre and post-spill, indicating observed asymmetry may be the product of multiple stressors. Fluctuating asymmetry decreased in 2012 compared to 2011. Fluctuating asymmetry is a sensitive measure of sub lethal stress, and the observed variability in this study (pre vs. post-spill or between sites could be due to a combination of oil, dispersants, or other unknown stressors.
Improved confinement and edge plasma fluctuations in the STOR-M tokamak
Zhang, W.; Xiao, C.; Conway, G. D.; Mitarai, O.; Sarkissian, A.; Skarsgard, H. M.; Zhang, L.; Hirose, A.
1992-10-01
An improved Ohmic confinement phase has been observed in the STOR-M tokamak [Plasma Physics and Controlled Nuclear Fusion Research, 1988 (International Atomic Energy Agency, Vienna, 1989), Vol. 1, p. 323] after application of a turbulent heating (TH) pulse. This improved Ohmic confinement phase is characterized by (a) increased n¯e, (b) reduced Hα radiation from the edge, (c) reduced density and magnetic fluctuations at the edge, (d) a steeper density profile at the edge, and (e) a more negative radial electric field. Almost complete suppression of sawtooth oscillations during the improved confinement phase has also been observed. A linear dispersion relation describes the density and magnetic fluctuations in the frequency range up to 350 kHz. In the region rfluctuations is in the electron (ion) diamagnetic direction. The reduction of rms density and magnetic fluctuations after the TH pulse is largely due to suppression of relatively high frequency (≤500 kHz) components. The density fluctuations (ñ/ne) in the scrape-off layer remain intact after the pulse.
Savage, Martin J
2016-01-01
Lattice QCD is making good progress toward calculating the structure and properties of light nuclei and the forces between nucleons. These calculations will ultimately refine the nuclear forces, particularly in the three- and four-nucleon sector and the short-distance interactions of nucleons with electroweak currents, and allow for a reduction of uncertainties in nuclear many-body calculations of nuclei and their reactions. After highlighting their importance, particularly to the Nuclear Physics and High-Energy Physics experimental programs, I discuss the progress that has been made toward achieving these goals and the challenges that remain.
Delay time for fine particle ignition within gas with fluctuating temperature
Derevich, I. V.; Galdina, D. D.
2017-03-01
The Pontryagin equation was applied to calculating the average time for the random process escaping the assign interval: this gives the average delay time for waiting of particle ignition moment in a turbulent flow of gas. A direct numerical simulation method was developed for gas temperature fluctuations with assigned autocorrelation function and particle temperature fluctuations due to exothermal chemical reaction. The method was based on numerical solution of a system of stochastic differential equations. Results of direct simulation were validated through comparing with the analytical solution available for particles without exothermal reaction. Analytical calculations and results of direct numerical simulation for the delay time of particle ignition are in agreement.
Fluctuation diamagnetism in two-band superconductors
Adachi, Kyosuke; Ikeda, Ryusuke
2016-04-01
Anomalously large fluctuation diamagnetism around the superconducting critical temperature has been recently observed in iron selenide (FeSe) [Kasahara et al. (unpublished)]. This indicates that superconducting fluctuations (SCFs) play a more significant role in FeSe, which supposedly has a two-band structure, than in the familiar single-band superconductors. Motivated by the data on FeSe, SCF-induced diamagnetism is examined in a two-band system, on the basis of a phenomenological approach with a Ginzburg-Landau functional. The obtained results indicate that the SCF-induced diamagnetism may be more enhanced than that in a single-band system due to the existence of two distinct fluctuation modes. Such enhancement of diamagnetism unique to a two-band system seems consistent with the large diamagnetism observed in FeSe, though still far from a quantitative agreement.
Exchange fluctuation theorem for correlated quantum systems.
Jevtic, Sania; Rudolph, Terry; Jennings, David; Hirono, Yuji; Nakayama, Shojun; Murao, Mio
2015-10-01
We extend the exchange fluctuation theorem for energy exchange between thermal quantum systems beyond the assumption of molecular chaos, and describe the nonequilibrium exchange dynamics of correlated quantum states. The relation quantifies how the tendency for systems to equilibrate is modified in high-correlation environments. In addition, a more abstract approach leads us to a "correlation fluctuation theorem". Our results elucidate the role of measurement disturbance for such scenarios. We show a simple application by finding a semiclassical maximum work theorem in the presence of correlations. We also present a toy example of qubit-qudit heat exchange, and find that non-classical behaviour such as deterministic energy transfer and anomalous heat flow are reflected in our exchange fluctuation theorem.
Low Mach Number Fluctuating Hydrodynamics for Electrolytes
Péraud, Jean-Philippe; Chaudhri, Anuj; Bell, John B; Donev, Aleksandar; Garcia, Alejandro L
2016-01-01
We formulate and study computationally the low Mach number fluctuating hydrodynamic equations for electrolyte solutions. We are interested in studying transport in mixtures of charged species at the mesoscale, down to scales below the Debye length, where thermal fluctuations have a significant impact on the dynamics. Continuing our previous work on fluctuating hydrodynamics of multicomponent mixtures of incompressible isothermal miscible liquids (A. Donev, et al., Physics of Fluids, 27, 3, 2015), we now include the effect of charged species using a quasielectrostatic approximation. Localized charges create an electric field, which in turn provides additional forcing in the mass and momentum equations. Our low Mach number formulation eliminates sound waves from the fully compressible formulation and leads to a more computationally efficient quasi-incompressible formulation. We demonstrate our ability to model saltwater (NaCl) solutions in both equilibrium and nonequilibrium settings. We show that our algorithm...
Classical and quantum temperature fluctuations via holography
Energy Technology Data Exchange (ETDEWEB)
Balatsky, Alexander V. [KTH Royal Inst. of Technology, Stockholm (Sweden); Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gudnason, Sven Bjarke [KTH Royal Inst. of Technology, Stockholm (Sweden); Thorlacius, Larus [KTH Royal Inst. of Technology, Stockholm (Sweden); University of Iceland, Reykjavik (Iceland); Zarembo, Konstantin [KTH Royal Inst. of Technology, Stockholm (Sweden); Inst. of Theoretical and Experimental Physics (ITEP), Moscow (Russian Federation); Uppsala Univ. (Sweden); Krikun, Alexander [KTH Royal Inst. of Technology, Stockholm (Sweden); Inst. of Theoretical and Experimental Physics (ITEP), Moscow (Russian Federation); Kedem, Yaron [KTH Royal Inst. of Technology, Stockholm (Sweden)
2014-05-27
We study local temperature fluctuations in a 2+1 dimensional CFT on the sphere, dual to a black hole in asymptotically AdS space-time. The fluctuation spectrum is governed by the lowest-lying hydrodynamic sound modes of the system whose frequency and damping rate determine whether temperature fluctuations are thermal or quantum. We calculate numerically the corresponding quasinormal frequencies and match the result with the hydrodynamics of the dual CFT at large temperature. As a by-product of our analysis we determine the appropriate boundary conditions for calculating low-lying quasinormal modes for a four-dimensional Reissner-Nordstrom black hole in global AdS.
Mesoscale wind fluctuations over Danish waters
Energy Technology Data Exchange (ETDEWEB)
Vincent, C.L.
2010-12-15
Mesoscale wind fluctuations affect the large scale integration of wind power because they undermine the day-ahead predictability of wind speed and power production, and because they can result in large fluctuations in power generation that must be balanced using reserve power. Large fluctuations in generated power are a particular problem for offshore wind farms because the typically high concentration of turbines within a limited geographical area means that fluctuations can be correlated across large numbers of turbines. Furthermore, organised mesoscale structures that often form over water, such as convective rolls and cellular convection, have length scales of tens of kilometers, and can cause large wind fluctuations on a time scale of around an hour. This thesis is an exploration of the predictability of mesoscale wind fluctuations using observations from the world's first two large offshore wind farms - Horns Rev I in the North Sea, and Nysted in the Baltic Sea. The thesis begins with a climatological analysis of wind fluctuations on time scales of 1-10 hours at the two sites. A novel method for calculating conditional climatologies of spectral information is proposed, based on binning and averaging the time axis of the Hilbert spectrum. Results reveal clear patterns between wind fluctuations and locally observed meteorological conditions. The analysis is expanded by classifying wind fluctuations on time scales of 1-3 hours according to synoptic patterns, satellite pictures and wind classes. Results indicate that cold air outbreaks and open cellular convection are a significant contributor to mesoscale wind variability at Horns Rev. The predictability of mesoscale wind fluctuations is tested by implementing standard statistical models that relate local wind variability to parameters based on a large scale weather analysis. The models show some skill, but only achieve a 15% improvement on a persistence forecast. The possibility of explicitly modelling
RSA fluctuation in major depressive disorder.
Rottenberg, Jonathan; Clift, April; Bolden, Sarah; Salomon, Kristen
2007-05-01
Cardiac vagal control, as measured by indices of respiratory sinus arrhythmia (RSA), has been investigated as a marker of impaired self-regulation in mental disorders, including depression. Past work in depressed samples has focused on deficits in resting RSA levels, with mixed results. This study tested the hypothesis that depression involves abnormal RSA fluctuation. RSA was measured in depressed and healthy control participants during rest and during two reactivity tasks, each followed by a recovery period. Relative to controls, depressed persons exhibited lower resting RSA levels as well as less RSA fluctuation, primarily evidenced by a lack of task-related vagal suppression. Group differences in RSA fluctuation were not accounted for by differences in physical health or respiration, whereas group differences in resting RSA level did not survive covariate analyses. Depression may involve multiple deficits in cardiac vagal control.
Fernandez, Fernando R.; Malerba, Paola; White, John A.
2015-01-01
The presence of voltage fluctuations arising from synaptic activity is a critical component in models of gain control, neuronal output gating, and spike rate coding. The degree to which individual neuronal input-output functions are modulated by voltage fluctuations, however, is not well established across different cortical areas. Additionally, the extent and mechanisms of input-output modulation through fluctuations have been explored largely in simplified models of spike generation, and with limited consideration for the role of non-linear and voltage-dependent membrane properties. To address these issues, we studied fluctuation-based modulation of input-output responses in medial entorhinal cortical (MEC) stellate cells of rats, which express strong sub-threshold non-linear membrane properties. Using in vitro recordings, dynamic clamp and modeling, we show that the modulation of input-output responses by random voltage fluctuations in stellate cells is significantly limited. In stellate cells, a voltage-dependent increase in membrane resistance at sub-threshold voltages mediated by Na+ conductance activation limits the ability of fluctuations to elicit spikes. Similarly, in exponential leaky integrate-and-fire models using a shallow voltage-dependence for the exponential term that matches stellate cell membrane properties, a low degree of fluctuation-based modulation of input-output responses can be attained. These results demonstrate that fluctuation-based modulation of input-output responses is not a universal feature of neurons and can be significantly limited by subthreshold voltage-gated conductances. PMID:25909971
(Nuclear theory). [Research in nuclear physics
Energy Technology Data Exchange (ETDEWEB)
Haxton, W.
1990-01-01
This report discusses research in nuclear physics. Topics covered in this paper are: symmetry principles; nuclear astrophysics; nuclear structure; quark-gluon plasma; quantum chromodynamics; symmetry breaking; nuclear deformation; and cold fusion. (LSP)
Scale invariance and universality of economic fluctuations
Stanley, H. E.; Amaral, L. A. N.; Gopikrishnan, P.; Plerou, V.
2000-08-01
In recent years, physicists have begun to apply concepts and methods of statistical physics to study economic problems, and the neologism “econophysics” is increasingly used to refer to this work. Much recent work is focused on understanding the statistical properties of time series. One reason for this interest is that economic systems are examples of complex interacting systems for which a huge amount of data exist, and it is possible that economic time series viewed from a different perspective might yield new results. This manuscript is a brief summary of a talk that was designed to address the question of whether two of the pillars of the field of phase transitions and critical phenomena - scale invariance and universality - can be useful in guiding research on economics. We shall see that while scale invariance has been tested for many years, universality is relatively less frequently discussed. This article reviews the results of two recent studies - (i) The probability distribution of stock price fluctuations: Stock price fluctuations occur in all magnitudes, in analogy to earthquakes - from tiny fluctuations to drastic events, such as market crashes. The distribution of price fluctuations decays with a power-law tail well outside the Lévy stable regime and describes fluctuations that differ in size by as much as eight orders of magnitude. (ii) Quantifying business firm fluctuations: We analyze the Computstat database comprising all publicly traded United States manufacturing companies within the years 1974-1993. We find that the distributions of growth rates is different for different bins of firm size, with a width that varies inversely with a power of firm size. Similar variation is found for other complex organizations, including country size, university research budget size, and size of species of bird populations.
Penwarden, C
2001-01-01
At the European Research Organization for Nuclear Research, Nobel laureates delve into the mysteries of particle physics. But when they invited artists from across the continent to visit their site in Geneva, they wanted a new kind of experiment.
National Research Council Canada - National Science Library
Ghoranneviss, Mahmood; Parashar, S. K. S; Aslan, Necdet; Aslaninejad, Morteza; Salar Elahi, A
2014-01-01
... in both inertial and magnetic confinement fusion, with attendees from major fusion energy research centers worldwide. It is one of the most important issues in this field. Nuclear fusion continues t...
Fluctuations and localization in mesoscopic electron
Janssen, Martin
2001-01-01
The quantum phenomena of tunneling and interference show up not only in the microscopic world of atoms and molecules, but also in cold materials of the real world, such as metals and semiconductors. Though not fully macroscopic, such mesoscopic systems contain a huge number of particles, and the holistic nature of quantum mechanics becomes evident already in simple electronic measurements. The measured quantity fluctuates as a function of applied fields in an unpredictable, yet reproducible way. Despite this fingerprint character of fluctuations, their statistical properties are universal, i.e
Chiral edge fluctuations of colloidal membranes
Jia, Leroy; Zakhary, Mark; Dogic, Zvonimir; Pelcovits, Robert; Powers, Thomas
Using experiments and theory we study chiral fluctuations of the edge of a nearly flat colloidal membrane, consisting of rod-like viruses held together by the depletion interaction. Our measurements show an anomalous peak in the power spectrum around 1 inverse micron. Using an effective theory to describe the liquid crystal degrees of freedom by geometric properties of the edge, such as length, geodesic torsion, and curvature, we calculate the spectrum of out-of-plane edge fluctuations. The peak arises for sufficiently strong chirality, and corresponds to the instability of a flat membrane to a shape with helical, rippled edges.
Fluctuation theorems for continuously monitored quantum fluxes.
Campisi, Michele; Talkner, Peter; Hänggi, Peter
2010-10-01
It is shown that quantum fluctuation theorems remain unaffected if measurements of any kind and number of observables are performed during the action of a force protocol. That is, although the backward and forward probabilities entering the fluctuation theorems are both altered by these measurements, their ratio remains unchanged. This observation allows us to describe the measurement of fluxes through interfaces and, in this way, to bridge the gap between the current theory, based on only two measurements performed at the beginning and end of the protocol, and experiments that are based on continuous monitoring.
Inverse scattering problem in turbulent magnetic fluctuations
Directory of Open Access Journals (Sweden)
R. A. Treumann
2016-08-01
Full Text Available We apply a particular form of the inverse scattering theory to turbulent magnetic fluctuations in a plasma. In the present note we develop the theory, formulate the magnetic fluctuation problem in terms of its electrodynamic turbulent response function, and reduce it to the solution of a special form of the famous Gelfand–Levitan–Marchenko equation of quantum mechanical scattering theory. The last of these applies to transmission and reflection in an active medium. The theory of turbulent magnetic fluctuations does not refer to such quantities. It requires a somewhat different formulation. We reduce the theory to the measurement of the low-frequency electromagnetic fluctuation spectrum, which is not the turbulent spectral energy density. The inverse theory in this form enables obtaining information about the turbulent response function of the medium. The dynamic causes of the electromagnetic fluctuations are implicit to it. Thus, it is of vital interest in low-frequency magnetic turbulence. The theory is developed until presentation of the equations in applicable form to observations of turbulent electromagnetic fluctuations as input from measurements. Solution of the final integral equation should be done by standard numerical methods based on iteration. We point to the possibility of treating power law fluctuation spectra as an example. Formulation of the problem to include observations of spectral power densities in turbulence is not attempted. This leads to severe mathematical problems and requires a reformulation of inverse scattering theory. One particular aspect of the present inverse theory of turbulent fluctuations is that its structure naturally leads to spatial information which is obtained from the temporal information that is inherent to the observation of time series. The Taylor assumption is not needed here. This is a consequence of Maxwell's equations, which couple space and time evolution. The inversion procedure takes
Two beam surface fluctuation specular reflection spectroscopy.
Raudsepp, Allan; Fretigny, Christian; Lequeux, François; Talini, Laurence
2012-01-01
In surface fluctuation specular reflection spectroscopy (SFSRS) deflections of a specularly reflected laser beam are used to characterize thermally excited surface waves. Here we report on a new two beam version of SFSRS in which the deflections of two reflected laser beams from separate locations on a surface are correlated. We demonstrate that this new two beam SFSRS technique can be used to determine directly the power spectrum of height fluctuation of thermally excited surface waves over a large range of both frequencies and wavevectors. In addition, we show that the technique is well suited for materials ranging from simple liquids to complex liquids and soft solids, including turbid materials.
Quantum Fluctuation Theorems, Contextuality, and Work Quasiprobabilities
Lostaglio, Matteo
2018-01-01
We discuss the role of contextuality within quantum fluctuation theorems, in the light of a recent no-go result by Perarnau-Llobet et al. We show that any fluctuation theorem reproducing the two-point-measurement scheme for classical states either admits a notion of work quasiprobability or fails to describe protocols exhibiting contextuality. Conversely, we describe a protocol that smoothly interpolates between the two-point-measurement work distribution for projective measurements and Allahverdyan's work quasiprobability for weak measurements, and show that the negativity of the latter is a direct signature of contextuality.
Gargano, Angela
2003-04-01
An account of recent studies in the field of theoretical nuclear structure is reported. These studies concern essentially research activities performed under the Italian project "Fisica Teorica del Nucleo e dei Sistemi a Molti Corpi". Special attention is addressed to results obtained during the last two years as regards the development of new many-body techniques as well as the interpretation of new experimental aspects of nuclear structure.
Energy Technology Data Exchange (ETDEWEB)
White, Morgan C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2014-01-23
PowerPoint presentation targeted for educational use. Nuclear data comes from a variety of sources and in many flavors. Understanding where the data you use comes from and what flavor it is can be essential to understand and interpret your results. This talk will discuss the nuclear data pipeline with particular emphasis on providing links to additional resources that can be used to explore the issues you will encounter.
Energy Technology Data Exchange (ETDEWEB)
NONE
2014-07-01
The Program on Nuclear Safety comprehends Radioprotection, Radioactive Waste Management and Nuclear Material Control. These activities are developed at the Nuclear Safety Directory. The Radioactive Waste Management Department (GRR) was formally created in 1983, to promote research and development, teaching and service activities in the field of radioactive waste. Its mission is to develop and employ technologies to manage safely the radioactive wastes generated at IPEN and at its customer’s facilities all over the country, in order to protect the health and the environment of today's and future generations. The Radioprotection Service (GRP) aims primarily to establish requirements for the protection of people, as workers, contractors, students, members of the general public and the environment from harmful effects of ionizing radiation. Furthermore, it also aims to establish the primary criteria for the safety of radiation sources at IPEN and planning and preparing for response to nuclear and radiological emergencies. The procedures about the management and the control of exposures to ionizing radiation are in compliance with national standards and international recommendations. Research related to the main activities is also performed. The Nuclear Material Control has been performed by the Safeguard Service team, which manages the accountability and the control of nuclear material at IPEN facilities and provides information related to these activities to ABACC and IAEA. (author)
Geometric fluctuation theorem for a spin-boson system.
Watanabe, Kota L; Hayakawa, Hisao
2017-08-01
We derive an extended fluctuation theorem for geometric pumping of a spin-boson system under periodic control of environmental temperatures by using a Markovian quantum master equation. We obtain the current distribution, the average current, and the fluctuation in terms of the Monte Carlo simulation. To explain the results of our simulation we derive an extended fluctuation theorem. This fluctuation theorem leads to the fluctuation dissipation relations but the absence of the conventional reciprocal relation.
Constructing stochastic models for dipole fluctuations from paleomagnetic observations
Buffett, Bruce; Puranam, Abhijit
2017-11-01
Records of relative paleointensity are subject to several sources of error. Temporal averaging due to gradual acquisition of magnetization removes high-frequency fluctuations, whereas random errors introduce fluctuations at high frequency. Both sources of error limit our ability to construct stochastic models from paleomagnetic observations. We partially circumvent these difficulties by recognizing that the largest affects occur at high frequency. To illustrate we construct a stochastic model from two recent inversions of paleomagnetic observations for the axial dipole moment. An estimate of the noise term in the stochastic model is recovered from a high-resolution inversion (CALS10k.2), while the drift term is estimated from the low-frequency part of the power spectrum for a long, but lower-resolution inversion (PADM2M). Realizations of the resulting stochastic model yield a composite, broadband power spectrum that agrees well with the spectra from both PADM2M and CALS10k.2. A simple generalization of the stochastic model permits predictions for the mean rate of magnetic reversals. We show that the reversal rate depends on the time-averaged dipole moment, the variance of the dipole moment and a slow timescale that characterizes the adjustment of the dipole toward the time-averaged value. Predictions of the stochastic model give a mean rate of 4.2 Myr-1, which is in good agreement with observations from marine magnetic anomalies.
Asymmetric noise-induced large fluctuations in coupled systems
Schwartz, Ira B.; Szwaykowska, Klimka; Carr, Thomas W.
2017-10-01
Networks of interacting, communicating subsystems are common in many fields, from ecology, biology, and epidemiology to engineering and robotics. In the presence of noise and uncertainty, interactions between the individual components can lead to unexpected complex system-wide behaviors. In this paper, we consider a generic model of two weakly coupled dynamical systems, and we show how noise in one part of the system is transmitted through the coupling interface. Working synergistically with the coupling, the noise on one system drives a large fluctuation in the other, even when there is no noise in the second system. Moreover, the large fluctuation happens while the first system exhibits only small random oscillations. Uncertainty effects are quantified by showing how characteristic time scales of noise-induced switching scale as a function of the coupling between the two coupled parts of the experiment. In addition, our results show that the probability of switching in the noise-free system scales inversely as the square of reduced noise intensity amplitude, rendering the virtual probability of switching an extremely rare event. Our results showing the interplay between transmitted noise and coupling are also confirmed through simulations, which agree quite well with analytic theory.
Scale-invariant structure of energy fluctuations in real earthquakes
Wang, Ping; Chang, Zhe; Wang, Huanyu; Lu, Hong
2017-11-01
Earthquakes are obviously complex phenomena associated with complicated spatiotemporal correlations, and they are generally characterized by two power laws: the Gutenberg-Richter (GR) and the Omori-Utsu laws. However, an important challenge has been to explain two apparently contrasting features: the GR and Omori-Utsu laws are scale-invariant and unaffected by energy or time scales, whereas earthquakes occasionally exhibit a characteristic energy or time scale, such as with asperity events. In this paper, three high-quality datasets on earthquakes were used to calculate the earthquake energy fluctuations at various spatiotemporal scales, and the results reveal the correlations between seismic events regardless of their critical or characteristic features. The probability density functions (PDFs) of the fluctuations exhibit evidence of another scaling that behaves as a q-Gaussian rather than random process. The scaling behaviors are observed for scales spanning three orders of magnitude. Considering the spatial heterogeneities in a real earthquake fault, we propose an inhomogeneous Olami-Feder-Christensen (OFC) model to describe the statistical properties of real earthquakes. The numerical simulations show that the inhomogeneous OFC model shares the same statistical properties with real earthquakes.
Fluctuations and structure of amphiphilic films; Fluctuations et structure de films d`amphiphiles
Energy Technology Data Exchange (ETDEWEB)
Gourier, CH
1996-07-01
This thesis is divided in three parts.The first part exposes in a theoretical point of view, how the fluctuations spectrum of an amphiphilic film is governed by its properties and its bidimensional characteristics.The measurements of fluctuations spectra of an interface are accessible with the measurement of intensity that interface diffuses out of the specular angle, we present in the second chapter the principles of the X rays diffusion by a real interface and see how the diffuse diffusion experiments allow to determine the fluctuations spectrum of an amphiphilic film. The second part is devoted to the different experimental techniques that have allowed to realize the study of fluctuation as well as the structural study.The third part is devoted to experimental results concerning the measurements of fluctuations spectra and to the study of the structure of amphiphilic films. We show that it is possible by using an intense source of X rays (ESRF: European Synchrotron Radiation Facility) to measure the water and amphiphilic films fluctuations spectra until molecular scales. The last chapter is devoted to the structural study and film fluctuations made of di-acetylenic molecules. (N.C.)
Effect of Stochastic Charge Fluctuations on Dust Dynamics
Matthews, Lorin; Shotorban, Babak; Hyde, Truell
2017-10-01
The charging of particles in a plasma environment occurs through the collection of electrons and ions on the particle surface. Depending on the particle size and the plasma density, the standard deviation of the number of collected elementary charges, which fluctuates due to the randomness in times of collisions with electrons or ions, may be a significant fraction of the equilibrium charge. We use a discrete stochastic charging model to simulate the variations in charge across the dust surface as well as in time. The resultant asymmetric particle potentials, even for spherical grains, has a significant impact on the particle coagulation rate as well as the structure of the resulting aggregates. We compare the effects on particle collisions and growth in typical laboratory and astrophysical plasma environments. This work was supported by the National Science Foundation under Grant PHY-1414523.
Directory of Open Access Journals (Sweden)
T. Turiv
2015-06-01
Full Text Available As recently reported [Turiv T. et al., Science, 2013, Vol. 342, 1351], fluctuations in the orientation of the liquid crystal (LC director can transfer momentum from the LC to a colloid, such that the diffusion of the colloid becomes anomalous on a short time scale. Using video microscopy and single particle tracking, we investigate random thermal motion of colloidal particles in a nematic liquid crystal for the time scales shorter than the expected time of director fluctuations. At long times, compared to the characteristic time of the nematic director relaxation we observe typical anisotropic Brownian motion with the mean square displacement (MSD linear in time τ and inversly proportional to the effective viscosity of the nematic medium. At shorter times, however, the dynamics is markedly nonlinear with MSD growing more slowly (subdiffusion or faster (superdiffusion than τ. These results are discussed in the context of coupling of colloidal particle's dynamics to the director fluctuation dynamics.
The effect of temperature fluctuations of reaction rate constants in turbulent reacting flows
Chinitz, W.; Antaki, P. J.; Kassar, G. M.
1981-01-01
Current models of turbulent reacting flows frequently use Arrhenius reaction rate constants obtained from static or laminar flow theory and/or experiments, or from best fits of static, laminar, and turbulent data. By treating the reaction rate constant as a continuous random variable which is temperature-dependent, the present study assesses the effect of turbulent temperature fluctuations on the reaction rate constant. This model requires that a probability density function (PDF) describing the nature of the fluctuations be specified. Three PDFs are examined: the clipped Gaussian, the beta PDF, and the ramp model. All the models indicate that the reaction rate constant is greater in a turbulent flow field than in an equivalent laminar flow. In addition, an amplification ratio, which is the ratio of the turbulent rate constant to the laminar rate constant, is defined and its behavior as a function of the mean temperature fluctuations is described
Single-cell protein dynamics reproduce universal fluctuations in cell populations
Brenner, Naama; Rotella, James S; Salman, Hanna
2015-01-01
Protein fluctuations in cell populations have recently been shown to exhibit a universal distribution shape under a broad range of biological realizations. Here, measuring protein content in individual bacteria continuously over ~70 generations, we show that single-cell trajectories fluctuate around their average with the same distribution shape as the population, i.e. their relative fluctuations are ergodic. Analysis of these temporal trajectories reveals that one effective random variable, sampled once each cell cycle, suffices to reconstruct the distribution from the trajectory. This in turn implies that cellular microscopic processes are strongly buffered and population-level protein distributions are insensitive to details of the intracellular dynamics. Probing them thus requires searching for novel universality-breaking experimental perturbations.
Children's (Pediatric) Nuclear Medicine
Full Text Available ... News Physician Resources Professions Site Index A-Z Children's (Pediatric) Nuclear Medicine Children’s (pediatric) nuclear medicine imaging ... the limitations of Children's Nuclear Medicine? What is Children's (Pediatric) Nuclear Medicine? Nuclear medicine is a branch ...
Children's (Pediatric) Nuclear Medicine
... Professions Site Index A-Z Children's (Pediatric) Nuclear Medicine Children’s (pediatric) nuclear medicine imaging uses small amounts ... Children's Nuclear Medicine? What is Children's (Pediatric) Nuclear Medicine? Nuclear medicine is a branch of medical imaging ...
Children's (Pediatric) Nuclear Medicine
Full Text Available ... Professions Site Index A-Z Children's (Pediatric) Nuclear Medicine Children’s (pediatric) nuclear medicine imaging uses small amounts ... Children's Nuclear Medicine? What is Children's (Pediatric) Nuclear Medicine? Nuclear medicine is a branch of medical imaging ...
... Resources Professions Site Index A-Z General Nuclear Medicine Nuclear medicine imaging uses small amounts of radioactive ... of General Nuclear Medicine? What is General Nuclear Medicine? Nuclear medicine is a branch of medical imaging ...
Children's (Pediatric) Nuclear Medicine
Full Text Available ... Physician Resources Professions Site Index A-Z Children's (Pediatric) Nuclear Medicine Children’s (pediatric) nuclear medicine imaging uses ... limitations of Children's Nuclear Medicine? What is Children's (Pediatric) Nuclear Medicine? Nuclear medicine is a branch of ...
Children's (Pediatric) Nuclear Medicine
Full Text Available ... Resources Professions Site Index A-Z Children's (Pediatric) Nuclear Medicine Children’s (pediatric) nuclear medicine imaging uses small ... of Children's Nuclear Medicine? What is Children's (Pediatric) Nuclear Medicine? Nuclear medicine is a branch of medical ...
Generalized entropy production fluctuation theorems for quantum ...
Indian Academy of Sciences (India)
Home; Journals; Pramana – Journal of Physics; Volume 80; Issue 2. Generalized entropy ... Based on trajectory-dependent path probability formalism in state space, we derive generalized entropy production fluctuation relations for a quantum system in the presence of measurement and feedback. We have obtained these ...
Magnetic fluctuations in UNi4B
DEFF Research Database (Denmark)
Mentink, S.A.M.; Mason, T.E.; Buyers, W.J.L.
1997-01-01
We investigate the magnetic fluctuation spectrum of the geometrically frustrated antiferromagnetic compound UNi4B, which partially orders below T-N = 20 K. An overdamped spin excitation is observed at the AF wave vector around 2.4 meV. Low-frequency, weakly Q-dependent inelastic scattering...
Relationship among phenotypic plasticity, phenotypic fluctuations ...
Indian Academy of Sciences (India)
2009-09-04
Sep 4, 2009 ... ... and evolution speed is obtained. The correlation between developmental robustness to noise and evolutionary robustness to mutation is analysed by simulations of the gene network model. These results provide quantitative formulation on canalization and genetic assimilation, in terms of fluctuations of ...
temperature fluctuation inside inert atmosphere silos
African Journals Online (AJOL)
user
TEMPERATURE FLUCTUATION INSIDE INERT ATMOSPHERE SILOS. E. S. Ajayi, et al. Nigerian Journal of Technology. Vol. 35, No. 3, July 2016. 643 also resist heat flow from solar radiation from outside. This is usually achieved by painting the silo wall with white paint. Some of the advantages of inert atmosphere storage ...
Critical point fluctuations in supported lipid membranes.
Connell, Simon D; Heath, George; Olmsted, Peter D; Kisil, Anastasia
2013-01-01
In this paper, we demonstrate that it is possible to observe many aspects of critical phenomena in supported lipid bilayers using atomic force microscopy (AFM) with the aid of stable and precise temperature control. The regions of criticality were determined by accurately measuring and calculating phase diagrams for the 2 phase L(d)-L(o) region, and tracking how it moves with temperature, then increasing the sampling density around the estimated critical regions. Compositional fluctuations were observed above the critical temperature (T(c)) and characterised using a spatial correlation function. From this analysis, the phase transition was found to be most closely described by the 2D Ising model, showing it is a critical transition. Below T(c) roughening of the domain boundaries occurred due to the reduction in line tension close to the critical point. Smaller scale density fluctuations were also detected just below T(c). At T(c), we believe we have observed fluctuations on length scales greater than 10 microm. The region of critically fluctuating 10-100 nm nanodomains has been found to extend a considerable distance above T(c) to temperatures within the biological range, and seem to be an ideal candidate for the actual structure of lipid rafts in cell membranes. Although evidence for this idea has recently emerged, this is the first direct evidence for nanoscale domains in the critical region.
Fluctuation scaling, Taylor's law, and crime.
Hanley, Quentin S; Khatun, Suniya; Yosef, Amal; Dyer, Rachel-May
2014-01-01
Fluctuation scaling relationships have been observed in a wide range of processes ranging from internet router traffic to measles cases. Taylor's law is one such scaling relationship and has been widely applied in ecology to understand communities including trees, birds, human populations, and insects. We show that monthly crime reports in the UK show complex fluctuation scaling which can be approximated by Taylor's law relationships corresponding to local policing neighborhoods and larger regional and countrywide scales. Regression models applied to local scale data from Derbyshire and Nottinghamshire found that different categories of crime exhibited different scaling exponents with no significant difference between the two regions. On this scale, violence reports were close to a Poisson distribution (α = 1.057 ± 0.026) while burglary exhibited a greater exponent (α = 1.292 ± 0.029) indicative of temporal clustering. These two regions exhibited significantly different pre-exponential factors for the categories of anti-social behavior and burglary indicating that local variations in crime reports can be assessed using fluctuation scaling methods. At regional and countrywide scales, all categories exhibited scaling behavior indicative of temporal clustering evidenced by Taylor's law exponents from 1.43 ± 0.12 (Drugs) to 2.094 ± 0081 (Other Crimes). Investigating crime behavior via fluctuation scaling gives insight beyond that of raw numbers and is unique in reporting on all processes contributing to the observed variance and is either robust to or exhibits signs of many types of data manipulation.
Fluctuations in doubly scattered laser light
Rijswijk, F.C. van; Smith, U.L.
1975-01-01
Fluctuations in laser light, doubly scattered by brownian particles, were analysed by measuring the spectral noise power of the photodetector current. Scattering took place at two spatially separated systems of spherical particles. Analytic expressions for the field and intensity correlations are
Effect of programmed circadian temperature fluctuations on ...
African Journals Online (AJOL)
Effect of programmed circadian temperature fluctuations on population dynamics of. Biomphalaria pfeifferi (Krauss). K.N. de Kock and J.A. van Eeden. Snail Research Unit, Medical Research Council, Potchefstroom University for Christian Higher Education,. Potchefstroom. Until now all life-table studies on freshwater snails.
Advantages of storage in a fluctuating environment.
Kooi, B.W.; Troost, T.A.
2006-01-01
We will elaborate the evolutionary course of an ecosystem consisting of a population in a chemostat environment with periodically fluctuating nutrient supply. The organisms that make up the population consist of structural biomass and energy storage compartments. In a constant chemostat environment
Quantum and Thermal Fluctuations in Field Theory
Liao, Sen-Ben; Polonyi, Janos; Xu, Dapeng
1994-01-01
Blocking transformation is performed in quantum field theory at finite temperature. It is found that the manner temperature deforms the renormalized trajectories can be used to understand better the role played by the quantum fluctuations. In particular, it is conjectured that domain formation and mass parameter generation can be observed in theories without spontaneous symmetry breaking.
PREDICTION OF VOLTAGE FLUCTUATION IN ELECTRIC GRIDS
Directory of Open Access Journals (Sweden)
V.A. Sapryka
2013-06-01
Full Text Available A mathematical model of voltage fluctuation versus parameters of power quality and power consumption is developed to allow predicting parameters of the power quality in electric grids. Application of the model will result in an electrical complex functioning optimization
Fluctuation scaling, Taylor's law, and crime.
Directory of Open Access Journals (Sweden)
Quentin S Hanley
Full Text Available Fluctuation scaling relationships have been observed in a wide range of processes ranging from internet router traffic to measles cases. Taylor's law is one such scaling relationship and has been widely applied in ecology to understand communities including trees, birds, human populations, and insects. We show that monthly crime reports in the UK show complex fluctuation scaling which can be approximated by Taylor's law relationships corresponding to local policing neighborhoods and larger regional and countrywide scales. Regression models applied to local scale data from Derbyshire and Nottinghamshire found that different categories of crime exhibited different scaling exponents with no significant difference between the two regions. On this scale, violence reports were close to a Poisson distribution (α = 1.057 ± 0.026 while burglary exhibited a greater exponent (α = 1.292 ± 0.029 indicative of temporal clustering. These two regions exhibited significantly different pre-exponential factors for the categories of anti-social behavior and burglary indicating that local variations in crime reports can be assessed using fluctuation scaling methods. At regional and countrywide scales, all categories exhibited scaling behavior indicative of temporal clustering evidenced by Taylor's law exponents from 1.43 ± 0.12 (Drugs to 2.094 ± 0081 (Other Crimes. Investigating crime behavior via fluctuation scaling gives insight beyond that of raw numbers and is unique in reporting on all processes contributing to the observed variance and is either robust to or exhibits signs of many types of data manipulation.
A theory of fluctuations in plasmas
Felderhof, B.U.
A theory of thermal fluctuations in plasmas is developed based on a probability ensemble for one-particle distribution functions ƒ(r, ν). The probability for a specific ƒ(r, ν) is obtained from the canonical ensemble with the aid of the continuum approximation. Subsequently the probability
Macroeconomic fluctuations and mortality in postwar Japan.
Granados, José A Tapia
2008-05-01
Recent research has shown that after long-term declining trends are excluded, mortality rates in industrial countries tend to rise in economic expansions and fall in economic recessions. In the present work, co-movements between economic fluctuations and mortality changes in postwar Japan are investigated by analyzing time series of mortality rates and eight economic indicators. To eliminate spurious associations attributable to trends, series are detrended either via Hodrick-Prescott filtering or through differencing. As previously found in other industrial economies, general mortality and age-specific death rates in Japan tend to increase in expansions and drop in recessions, for both males and females. The effect, which is slightly stronger for males, is particularly noticeable in those aged 45-64. Deaths attributed to heart disease, pneumonia, accidents, liver disease, and senility--making up about 41% of total mortality--tend to fluctuate procyclically, increasing in expansions. Suicides, as well as deaths attributable to diabetes and hypertensive disease, make up about 4% of total mortality and fluctuate countercyclically, increasing in recessions. Deaths attributed to other causes, making up about half of total deaths, don't show a clearly defined relationship with the fluctuations of the economy.
Low Mach number fluctuating hydrodynamics for electrolytes
Péraud, Jean-Philippe; Nonaka, Andy; Chaudhri, Anuj; Bell, John B.; Donev, Aleksandar; Garcia, Alejandro L.
2016-11-01
We formulate and study computationally the low Mach number fluctuating hydrodynamic equations for electrolyte solutions. We are interested in studying transport in mixtures of charged species at the mesoscale, down to scales below the Debye length, where thermal fluctuations have a significant impact on the dynamics. Continuing our previous work on fluctuating hydrodynamics of multicomponent mixtures of incompressible isothermal miscible liquids [A. Donev et al., Phys. Fluids 27, 037103 (2015), 10.1063/1.4913571], we now include the effect of charged species using a quasielectrostatic approximation. Localized charges create an electric field, which in turn provides additional forcing in the mass and momentum equations. Our low Mach number formulation eliminates sound waves from the fully compressible formulation and leads to a more computationally efficient quasi-incompressible formulation. We demonstrate our ability to model saltwater (NaCl) solutions in both equilibrium and nonequilibrium settings. We show that our algorithm is second order in the deterministic setting and for length scales much greater than the Debye length gives results consistent with an electroneutral approximation. In the stochastic setting, our model captures the predicted dynamics of equilibrium and nonequilibrium fluctuations. We also identify and model an instability that appears when diffusive mixing occurs in the presence of an applied electric field.
Quantum fluctuations in FRLW space-time
Rabochaya, Y.
2015-01-01
In this paper we study a quantum field theoretical approach, where a quantum probe is used to investigate the properties of generic non-flat FRLW space time. The fluctuations related to a massless conformal coupled scalar field defined on a space-time with horizon is identified with a probe and the procedure to measure the local temperature is presented.
Critical fluctuations in cortical models near instability
Directory of Open Access Journals (Sweden)
Matthew J. Aburn
2012-08-01
Full Text Available Computational studies often proceed from the premise that cortical dynamics operate in a linearly stable domain, where fluctuations dissipate quickly and show only short memory. Studies of human EEG, however, have shown significant autocorrelation at time lags on the scale of minutes, indicating the need to consider regimes where nonlinearities influence the dynamics. Statistical properties such as increased autocorrelation length, increased variance, power-law scaling and bistable switching have been suggested as generic indicators of the approach to bifurcation in nonlinear dynamical systems. We study temporal fluctuations in a widely-employed computational model (the Jansen-Rit model of cortical activity, examining the statistical signatures that accompany bifurcations. Approaching supercritical Hopf bifurcations through tuning of the background excitatory input, we find a dramatic increase in the autocorrelation length that depends sensitively on the direction in phase space of the input fluctuations and hence on which neuronal subpopulation is stochastically perturbed. Similar dependence on the input direction is found in the distribution of fluctuation size and duration, which show power law scaling that extends over four orders of magnitude at the Hopf bifurcation. We conjecture that the alignment in phase space between the input noise vector and the center manifold of the Hopf bifurcation is directly linked to these changes. These results are consistent with the possibility of statistical indicators of linear instability being detectable in real EEG time series. However, even in a simple cortical model, we find that these indicators may not necessarily be visible even when bifurcations are present because their expression can depend sensitively on the neuronal pathway of incoming fluctuations.
Dou, Wenjie
2016-01-01
We derive an explicit form for the electronic friction as felt by a molecule near a metal surface for the general case that molecule-metal couplings depend on nuclear coordinates. Our work generalizes a previous study by von Oppen et al [Beilstein Journal of Nanotechnology, 3, 144, 2012], where we now go beyond the Condon approximation (i.e. molecule-metal couplings are not held constant). Using a non-equilibrium Green's function formalism in the adiabatic limit, we show that fluctuating metal-molecule couplings lead to new frictional damping terms and random forces, plus a correction to the potential of mean force. Numerical tests are performed and compared with a modified classical master equation; our results indicate that violating the Condon approximation can have a large effect on dynamics.
Effects of temperature fluctuations on cuttlebone formation of cuttlefish Sepia esculenta
Lei, Shuhan; Zhang, Xiumei; Liu, Songlin; Chen, Siqing
2012-07-01
The morphological characteristics and the cuttlebone formation of Sepia esculenta exposed to different water temperature fluctuations were investigated under laboratory conditions. Temperature fluctuation cycles (15 cycles, 60 d in total) consisted of the following three regimes of 4 d duration: keeping water temperature in 26°C for 3 d (Group A), 2 d (Group B), 0 d (Group C, control); then keeping water temperature in 16°C for the next 1, 2, 4 d. No significant difference in the survival rate was observed between the control and temperature fluctuation groups ( P >0.05). Lamellar depositions in a temperature fluctuation cycle were 2.45±0.02 for Group A, 2.00±0.02 for Group B, and 1.78±0.02 for Group C ( P< 0.05). The relationship between age and number of lamellas in the cuttlebone of S. esculenta under each water temperature fluctuation could be described as the linear model and the number of lamellas in the cuttlebone did not correspond to actual age. Group A had the highest cuttlebone growth index (CGI), the lowest locular index (LI), and inter-streak distances comparing with those of control group. However, the number of lamellas and LI or CGI showed a quadratic relationship for each temperature fluctuation group. In addition, temperature fluctuations caused the breakage of cuttlebone dark rings, which was considered a thermal mark. The position of the breakage in the dark rings was random. This thermal mark can be used as supplementary information for marking and releasing techniques.
ATCG nucleotide fluctuation of Deinococcus radiodurans radiation genes
Holden, Todd; Subramaniam, R.; Sullivan, R.; Cheung, E.; Schneider, C.; Tremberger, G., Jr.; Flamholz, A.; Lieberman, D. H.; Cheung, T. D.
2007-09-01
The radiation resistance-repair genes in Deinococcus radiodurans (DR) and E-coli were analyzed in terms of the A, T, C, G nucleotide fluctuations. The studied genes were Rec-A, Rec-Q, and the unique DR PprA gene. In an ATCG sequence, each base was assigned a number equal to its atomic number. The resulting numerical sequence was the basis of the statistical analysis. Fractal analysis using the Higuchi method gave a fractal dimension increase of the Deinococcus radiodurans genes as compared to E-coli, which is comparable to the enhancement observed in the human HAR1 region (HAR1F gene) over that of the chimpanzee. Near neighbor fluctuation was also studied via the Black-Scholes model where the increment sequence was treated as a random walk series. The Deinococcus radiodurans radiation gene standard deviations were consistently higher than that of the E-coli deviations, and agree with the fractal analysis results. The sequence stacking interaction was studied using the published nucleotide-pair melting free energy values and Deinococcus radiodurans radiation genes were shown to possess larger negative free energies. The high sensitivity of the fractal dimension as a biomarker was tested with correlation analysis of the gamma ray dose versus fractal dimension, and the R square values were found to be above 0.9 (N=5). When compared with other nucleotide sequences such as the rRNA sequences, HAR1 and its chimpanzee counterpart, the higher fluctuation (correlated randomness) and larger negative free energy of a DR radiation gene suggested that a radiation resistance-repair sequence exhibited higher complexity. As the HAR1 nucleotide sequence complexity and its transcription activity of co-expressing cortex protein reelin supported a positive selection event in humans, a similar inference of positive selection of coding genes could be drawn for Deinococcus radiodurans when compared to E-coli. The origin of such a positive selection would be consistent with that of a
Energy Technology Data Exchange (ETDEWEB)
Friar, J.L.
1998-12-01
Nuclear scales are discussed from the nuclear physics viewpoint. The conventional nuclear potential is characterized as a black box that interpolates nucleon-nucleon (NN) data, while being constrained by the best possible theoretical input. The latter consists of the longer-range parts of the NN force (e.g., OPEP, TPEP, the {pi}-{gamma} force), which can be calculated using chiral perturbation theory and gauged using modern phase-shift analyses. The shorter-range parts of the force are effectively parameterized by moments of the interaction that are independent of the details of the force model, in analogy to chiral perturbation theory. Results of GFMC calculations in light nuclei are interpreted in terms of fundamental scales, which are in good agreement with expectations from chiral effective field theories. Problems with spin-orbit-type observables are noted.
Penionzhkevich, Yu. E.
2010-08-01
The International Year of Astronomy 2009 (IYA2009) was declared by the 62nd General Assembly of the United Nations and was also endorsed by UNESCO. Investigations in the realms of particle and nuclear physicsmake a large contribution in the development of our ideas of the properties of the Universe. The present article discusses some problems of the evolution of the Universe, nucleosyntheses, and cosmochronology from the point of view of nuclear and particle physics. Processes occurring in the Universe are compared with the mechanisms of the production and decay of nuclei, as well as with the mechanisms of their interaction at high energies. Examples that demonstrate the potential of nuclearphysics methods for studying cosmic objects and the properties of the Universe are given. The results that come from investigations into nuclear reactions induced by beams of radioactive nuclei and which make it possible to take a fresh look at the nucleosynthesis scenario in the range at light nuclei are presented.
Wang, Zuojun; Komatsu, Teppei; Mitsumura, Hidetaka; Nakata, Norio; Ogawa, Takeki; Iguchi, Yasuyuki; Yokoyama, Masayuki
2017-05-01
Sonothrombolysis is one of the most feasible methods for enhancing clot lysis with a recombinant tissue plasminogen activator (rt-PA) in cases of acute ischemic strokes. For safe and efficient clinical practices of sonothrombolysis, accurate estimation of ultrasound transmittance through the human skull is critical. Previously, we reported substantial and periodic fluctuation of ultrasound transmittance through a bone-phantom plate following changes to ultrasound frequency, the thickness of the bone-phantom plate, and the distance between a transducer and the bone-phantom plate. In the present study, we clarify the transmittance behavior of medium-frequency ultrasound (from 400kHz to 600kHz) through the human skull, and examine reduction of the transmittance fluctuation. For the study, we measured transmittance of sinusoidal ultrasound waves at 400kHz, 500kHz, and 600kHz at 13 temple spots on 3 human skulls by changing the distance between a transducer and the skull bone, and found substantial and periodic fluctuation in the transmittance behaviors for these sinusoidal voltage excitations. Degrees of the fluctuation varied depending on the measurement spots. A fluctuation ratio between the maximum transmittance and the minimum transmittance reached 3 in some spots. This large transmittance fluctuation is considered to be a risk factor for sonothrombolysis therapies. We examined a modulated ultrasound wave to reduce the fluctuation, and succeeded in obtaining considerable reduction. The average fluctuation ratios for 400-kHz, 500-kHz, and 600-kHz waves were 2.38, 2.38, and 2.07, respectively. We successfully reduced the ratio to 1.72 by using a periodic selection of random frequency (PSRF)-type of modulation wave. The thus obtained results indicate that attention to the fluctuation in ultrasound transmittance through the skull is necessary for safe and effective sonothrombolysis therapies, and that modulated ultrasound waves constitute a powerful method for reducing
Kobayashi, Tetsuya J.; Sughiyama, Yuki
2017-07-01
Adaptation in a fluctuating environment is a process of fueling environmental information to gain fitness. Living systems have gradually developed strategies for adaptation from random and passive diversification of the phenotype to more proactive decision making, in which environmental information is sensed and exploited more actively and effectively. Understanding the fundamental relation between fitness and information is therefore crucial to clarify the limits and universal properties of adaptation. In this work, we elucidate the underlying stochastic and information-thermodynamic structure in this process, by deriving causal fluctuation relations (FRs) of fitness and information. Combined with a duality between phenotypic and environmental dynamics, the FRs reveal the limit of fitness gain, the relation of time reversibility with the achievability of the limit, and the possibility and condition for gaining excess fitness due to environmental fluctuation. The loss of fitness due to causal constraints and the limited capacity of real organisms is shown to be the difference between time-forward and time-backward path probabilities of phenotypic and environmental dynamics. Furthermore, the FRs generalize the concept of the evolutionary stable state (ESS) for fluctuating environment by giving the probability that the optimal strategy on average can be invaded by a suboptimal one owing to rare environmental fluctuation. These results clarify the information-thermodynamic structures in adaptation and evolution.
Edgington, Eugene
2007-01-01
Statistical Tests That Do Not Require Random Sampling Randomization Tests Numerical Examples Randomization Tests and Nonrandom Samples The Prevalence of Nonrandom Samples in Experiments The Irrelevance of Random Samples for the Typical Experiment Generalizing from Nonrandom Samples Intelligibility Respect for the Validity of Randomization Tests Versatility Practicality Precursors of Randomization Tests Other Applications of Permutation Tests Questions and Exercises Notes References Randomized Experiments Unique Benefits of Experiments Experimentation without Mani
Crisanti, A; Sarracino, A; Zannetti, M
2017-05-01
We study analytically the probability distribution of the heat released by an ensemble of harmonic oscillators to the thermal bath, in the nonequilibrium relaxation process following a temperature quench. We focus on the asymmetry properties of the heat distribution in the nonstationary dynamics, in order to study the forms taken by the fluctuation theorem as the number of degrees of freedom is varied. After analyzing in great detail the cases of one and two oscillators, we consider the limit of a large number of oscillators, where the behavior of fluctuations is enriched by a condensation transition with a nontrivial phase diagram, characterized by reentrant behavior. Numerical simulations confirm our analytical findings. We also discuss and highlight how concepts borrowed from the study of fluctuations in equilibrium under symmetry-breaking conditions [Gaspard, J. Stat. Mech. (2012) P0802110.1088/1742-5468/2012/08/P08021] turn out to be quite useful in understanding the deviations from the standard fluctuation theorem.
Morikawa, M.
Assuming an inflationary phase in the early universe, this paper studies the generation of non-uniformity from an entirely uniform universe where no statistical fluctuations nor structure are present.
Magnetic Resonance and Fluctuations in Porous Media and Quantum Spin Chains.
Mitra, Partha Pratim
The first set of problems studied deal with time domain nuclear magnetic resonance (NMR) experiments on fluids in complex environments. The depolarisation of magnetic moments attached to molecules diffusing in a quenched random magnetic field is studied by means of mappings into statistical mechanical models of self-interacting random walks. At long times, the polarisation in free induction decay or spin echo experiments shows unusual time dependence. The diffusion envelope of fluid molecules confined to the pore space of a porous material is directly probed by pulsed field gradient NMR experiments. In this context, the inverse problem of obtaining geometrical information about the pore space from the measured momentum space propagator is studied. This problem is related to the well known problem of 'Hearing the shape of a drum'. A short time expansion is derived for the time-dependent diffusion coefficient of walkers in a porous medium. At long times, the measured propagator carries information about the connectivity as well as the density-density correlation function of the pore space. NMR diffusion measurements on (i) water confined to the interstices of packed glass spheres, and (ii) a biological porous medium with semipermeable membranes have corroborated the theoretical expectations. The second part of the thesis deals with magnetic fluctuations in the S = 1 quantum antiferromagnetic chain compound NENP. Due to the unusual nature of the ground state of the S = 1 Heisenberg chain, S = 1/2 degrees of freedom are obtained at the ends of a finite chain, and are observable in electron spin resonance measurements. The rapid drop with temperature of the corresponding intensities is shown to be the result of the resonant frequency being shifted out of the observation window by the appearance of even a single excitation on the chain. Far infrared absorption lines obtained at the field shifted gap energies in apparent violation of the momentum selection rule present in
Directory of Open Access Journals (Sweden)
Rozynek Jacek
2015-01-01
Full Text Available Even small departures from a nuclear equilibrium density with constant nucleon masses require an increase of a nucleon enthalpy. This process can be described as volume corrections to a nucleon rest energy, which are proportional to pressure and absent in a standard Relativistic Mean Field (RMF with point-like nucleons. Bag model and RMF calculations show the modifications of nucleon mass, nucleon radius and a Parton Distribution Function (PDF of Nuclear Matter (NM above the saturation point originated from the pressure correction.
Ajzenberg-Selove, Fay
1960-01-01
Nuclear Spectroscopy, Part A deals with the experimental and theoretical techniques involved in nuclear spectroscopy.This book discusses the interactions of charged particles with matter, gaseous ionization detectors, and particular mass attenuation coefficients. The magnetic gamma-ray spectrometers for photo or internal-conversion electrons, general characteristics of cross-section variation with energy, and measurement of fast neutron spectra are also elaborated. This text likewise covers the elastic scattering of photons by nuclei and measurement of widths of gamma-radiating levels.This pub
Barbosa, Marcelo
A review about the nuclear properties, namely the nuclear moments (magnetic dipole moment and electric quadrupole moment) and their interaction with electromagnetic fields external to the nucleus (hyperfine interactions), as well as the angular distribution of radiation produced by $\\gamma$-decay, is presented. A detailed description about the theory of Perturbed Angular Correlations was done, including the comparison between $\\gamma-\\gamma$- correlations and $e^{-}- \\gamma$ correlations. For dynamic nuclear interactions, an introduction to the theory of stochastic states in PAC was performed. We focused on ab-initio implementation of observables for analyzing fluctuating quadrupole hyperfine interactions on time dependent perturbed angular correlations experiments. The development of computacional codes solving the full problem, adapted to fit data obtained on single crystals or polycrystals for two-state transient fields with any axial symmetry and orientation was the main purpose of this work. The final pa...
Fujikura, Kyota; Shimizu, Akira
2016-07-01
For macroscopic quantum systems, we study what is measured when equilibrium fluctuations of macrovariables are measured in an ideal way that mimics classical ideal measurements as closely as possible. We find that the symmetrized time correlation is always obtained for such measurements. As an important consequence, we show that the fluctuation-dissipation theorem is partially violated as a relation between observed quantities in macroscopic quantum systems even if measurements are made in such an ideal way.
Fujikura, Kyota; Shimizu, Akira
2016-07-01
For macroscopic quantum systems, we study what is measured when equilibrium fluctuations of macrovariables are measured in an ideal way that mimics classical ideal measurements as closely as possible. We find that the symmetrized time correlation is always obtained for such measurements. As an important consequence, we show that the fluctuation-dissipation theorem is partially violated as a relation between observed quantities in macroscopic quantum systems even if measurements are made in such an ideal way.
Effect of thermal fluctuations on a charged dilatonic black Saturn
Directory of Open Access Journals (Sweden)
Behnam Pourhassan
2016-04-01
Full Text Available In this paper, we will analyze the effect of thermal fluctuations on the thermodynamics of a charged dilatonic black Saturn. These thermal fluctuations will correct the thermodynamics of the charged dilatonic black Saturn. We will analyze the corrections to the thermodynamics of this system by first relating the fluctuations in the entropy to the fluctuations in the energy. Then, we will use the relation between entropy and a conformal field theory to analyze the fluctuations in the entropy. We will demonstrate that similar physical results are obtained from both these approaches. We will also study the effect of thermal fluctuations on the phase transition in this charged dilatonic black Saturn.
Effect of thermal fluctuations on a charged dilatonic black Saturn
Energy Technology Data Exchange (ETDEWEB)
Pourhassan, Behnam, E-mail: b.pourhassan@du.ac.ir [School of Physics, Damghan University, Damghan (Iran, Islamic Republic of); Faizal, Mir, E-mail: f2mir@uwaterloo.ca [Department of Physics and Astronomy, University of Lethbridge, Lethbridge, AB T1K 3M4 (Canada)
2016-04-10
In this paper, we will analyze the effect of thermal fluctuations on the thermodynamics of a charged dilatonic black Saturn. These thermal fluctuations will correct the thermodynamics of the charged dilatonic black Saturn. We will analyze the corrections to the thermodynamics of this system by first relating the fluctuations in the entropy to the fluctuations in the energy. Then, we will use the relation between entropy and a conformal field theory to analyze the fluctuations in the entropy. We will demonstrate that similar physical results are obtained from both these approaches. We will also study the effect of thermal fluctuations on the phase transition in this charged dilatonic black Saturn.
Effect of Thermal Fluctuations on a Charged Dilatonic Black Saturn
Pourhassan, Behnam
2016-01-01
In this paper, we will analyze the effect of thermal fluctuations on the thermodynamics of a charged dilatonic black Saturn. These thermal fluctuations will correct the thermodynamics of the charged dilatonic black Saturn. We will analyze the corrections to the thermodynamics of this system by first relating the fluctuations in the entropy to the fluctuations in the energy. Then, we will use the relation between entropy and a conformal field theory to analyze the fluctuations in the entropy. We will demonstrate that similar physical results are obtained from both these approaches. We will also study the effect of thermal fluctuations on the phase transition in this charged dilatonic black Saturn.
Meson's correlation functions in a nuclear medium
Directory of Open Access Journals (Sweden)
Chanyong Park
2016-09-01
Full Text Available We investigate meson's spectrum, decay constant and form factor in a nuclear medium through holographic two- and three-point correlation functions. To describe a nuclear medium composed of protons and neutrons, we consider a hard wall model on the thermal charged AdS geometry and show that due to the isospin interaction with a nuclear medium, there exist splittings of the meson's spectrum, decay constant and form factor relying on the isospin charge. In addition, we show that the ρ-meson's form factor describing an interaction with pseudoscalar fluctuation decreases when the nuclear density increases, while the interaction with a longitudinal part of an axial vector meson increases.
Sarkar, Kingshuk; Banerjee, Sumilan; Mukerjee, Subroto; Ramakrishnan, T. V.
2017-07-01
We study the Nernst effect in fluctuating superconductors by calculating the transport coefficient {α }{xy} in a phenomenological model where the relative importance of phase and amplitude fluctuations of the order parameter is tuned continuously to smoothly evolve from an effective XY model to the more conventional Ginzburg-Landau description. To connect with a concrete experimental realization we choose the model parameters appropriate for cuprate superconductors and calculate {α }{xy} and the magnetization {M} over the entire range of experimentally accessible values of field, temperature and doping. We argue that {α }{xy} and {M} are both determined by the equilibrium properties of the superconducting fluctuations (and not their dynamics) despite the former being a transport quantity. Thus, the experimentally observed correlation between the Nernst signal and the magnetization arises primarily from the correlation between {α }{xy} and {M}. Further, there exists a dimensionless ratio {M}/(T{α }{xy}) that quantifies this correlation. We calculate, for the first time, this ratio over the entire phase diagram of the cuprates and find it agrees with previous results obtained in specific parts of the phase diagram. We conclude that there appears to be no sharp distinction between the regimes dominated by phase fluctuations and Gaussian fluctuations for this ratio in contrast to {α }{xy} and {M} individually. The utility of this ratio is that it can be used to determine the extent to which superconducting fluctuations contribute to the Nernst effect in different parts of the phase diagram given the measured values of magnetization.
Wilson, Peter D
2010-01-01
The technical principles and practices of the civil nuclear industry are described with particular reference to fission and its products, natural and artificial radioactivity elements principally concerned and their relationships, main types of reactor, safety issues, the fuel cycle, waste management, issues related to weapon proliferation, environmental considerations and possible future developments.
Power Spectrum Analyses of Nuclear Decay Rates
Javorsek, D.; Sturrock, P. A.; Lasenby, R. N.; Lasenby, A. N.; Buncher, J. B.; Fischbach, E.; Gruenwald, J. T.; Hoft, A. W.; Horan, T. J.; Jenkins, J. H.; Kerford, J. L.; Lee, R.H.; Longman, A.; Mattes, J. J.; Morreale, B. L.
2010-01-01
We provide the results from a spectral analysis of nuclear decay data displaying annually varying periodic fluctuations. The analyzed data were obtained from three distinct data sets: Si-32 and (CI)-C-36 decays reported by an experiment performed at the Brookhaven National Laboratory (BNL), Mn-56 decay reported by the Children's Nutrition Research Center (CNRC), but also performed at BNL, and Ra-226 decay reported...
Seseña-Rubfiaro, Alberto; Echeverría, Juan Carlos; Godínez-Fernández, Jose Rafael
2014-10-01
We analyzed the voltage fluctuations of the membrane potential manifested along the inter-spike segment of a pacemaker neuron. Time series of intracellular inter-spike voltage fluctuations were obtained in the current-clamp configuration from the F1 neuron of 12 Helix aspersa specimens. To assess the dynamic or stochastic nature of the voltage fluctuations these series were analyzed by Detrended Fluctuation Analysis (DFA), providing the scaling exponent α. The median α result obtained for the inter-spike segments was 0.971 ([0.963, 0.995] lower and upper quartiles). Our results indicate a critical-like dynamic behavior in the inter-spike membrane potential that, far from being random, shows long-term correlations probably linked to the dynamics of the mechanisms involved in the regulation of the membrane potential, thereby endorsing the occurrence of critical-like phenomena at a single-neuron level. Copyright © 2014 Elsevier Ltd. All rights reserved.
Signal fluctuations in crystal-APD systems
Energy Technology Data Exchange (ETDEWEB)
Kocak, F., E-mail: fkocak@uludag.edu.tr [Uludag University, Department of Physics, 16059 Bursa (Turkey); Tapan, I.; Pilicer, E. [Uludag University, Department of Physics, 16059 Bursa (Turkey)
2011-08-21
PbWO{sub 4} and CsI(Tl) crystals are widely used in high energy physics experiments. The photons generated from incident particles in the crystal material are detected by the Avalanche photodiodes (APD) placed at the end of the crystals. In this work, the light generated by 0.1-5 GeV electrons in the crystals has been obtained using with the GEANT4 simulation code. The Single Particle Monte Carlo technique has been used to calculate APD output signals and their fluctuations at a constant avalanche gain value of 50 for both the CsI(Tl) and PbWO{sub 4} crystals emission spectrum. The simulation results are agreed well with the experimental results. CsI(Tl) crystal-APD system has provided a good material-device combination. The high signal values and the low signal fluctuations make this combination an excellent choice for scintillating light detection.
Fluctuation theorem in quantum heat conduction.
Saito, Keiji; Dhar, Abhishek
2007-11-02
We consider steady-state heat conduction across a quantum harmonic chain connected to reservoirs modeled by infinite collection of oscillators. The heat, Q, flowing across the oscillator in a time interval tau is a stochastic variable and we study the probability distribution function P(Q). We compute the exact generating function of Q at large tau and the large deviation function. The generating function has a symmetry satisfying the steady-state fluctuation theorem without any quantum corrections. The distribution P(Q) is non-Gaussian with clear exponential tails. The effect of finite tau and nonlinearity is considered in the classical limit through Langevin simulations. We also obtain the prediction of quantum heat current fluctuations at low temperatures in clean wires.
Trapped Electron Precession Shear Induced Fluctuation Decorrelation
Energy Technology Data Exchange (ETDEWEB)
T.S. Hahm; P.H. Diamond; E.-J. Kim
2002-07-29
We consider the effects of trapped electron precession shear on the microturbulence. In a similar way the strong E x B shear reduces the radial correlation length of ambient fluctuations, the radial variation of the trapped electron precession frequency can reduce the radial correlation length of fluctuations associated with trapped electrons. In reversed shear plasmas, with the explicit dependence of the trapped electron precession shearing rate on B(subscript)theta, the sharp radial gradient of T(subscript)e due to local electron heating inside qmin can make the precession shearing mechanism more effective, and reduce the electron thermal transport constructing a positive feedback loop for the T(subscript)e barrier formation.
Prevention of Employees Fluctuation in IT
Directory of Open Access Journals (Sweden)
Libor Mesicek
2017-10-01
Full Text Available The aim of this paper is to present results of implementation fluctuation preventing counter-measures among other positions in IT department. In 2017 there is still one of the lowest unemployment rates in the history of the Czech Republic (especially in IT and companies are trying to preserve and prevent their key employees from moving to another employer. One of the tools, which could help reduce this risk, is providing additional education, certification and qualification with laying great emphasis on most valuable and essential personnel. The paper present updated results after 6 months since the company started with selection of high risks employees. It has been found that group of employees with high risk of leaving the company has shrunk and overall fluctuation index has also plunged.
Classicalization of Quantum Fluctuation in Inflationary Universe
Kubotani, H.; Uesugi, T.; Morikawa, M.; Sugamoto, A.
1997-11-01
We discuss the classicalization of a quantum state induced by an environment in the inflationary stage of the universe. The classicalization is necessary for the homogeneous ground state to become the inhomogeneous classical one accompanied with statistical fluctuations, which is a plausible candidate for the seeds of structure formation. Using simple models, we show that i) the two classicalization criteria, the classical correlation and quantum decoherence, are simultaneously satisfied by the environment and that ii) the power spectrum of the resultant statistical fluctuations depends upon the details of the classicalization process. In particular, the result ii) means that, taking into account the classicalization process, the inflationary scenario does not necessarily predict the unique spectrum which is usually believed.
Energy utilization in fluctuating biological energy converters
Directory of Open Access Journals (Sweden)
Abraham Szőke
2016-05-01
Full Text Available We have argued previously [Szoke et al., FEBS Lett. 553, 18–20 (2003; Curr. Chem. Biol. 1, 53–57 (2007] that energy utilization and evolution are emergent properties based on a small number of established laws of physics and chemistry. The relevant laws constitute a framework for biology on a level intermediate between quantum chemistry and cell biology. There are legitimate questions whether these concepts are valid at the mesoscopic level. Such systems fluctuate appreciably, so it is not clear what their efficiency is. Advances in fluctuation theorems allow the description of such systems on a molecular level. We attempt to clarify this topic and bridge the biochemical and physical descriptions of mesoscopic systems.
Intermittent character of interplanetary magnetic field fluctuations
Bruno, Roberto; Carbone, Vincenzo; Chapman, Sandra; Hnat, Bogdan; Noullez, Alain; Sorriso-Valvo, Luca
2007-03-01
Interplanetary magnetic field magnitude fluctuations are notoriously more intermittent than velocity fluctuations in both fast and slow wind. This behavior has been interpreted in terms of the anomalous scaling observed in passive scalars in fully developed hydrodynamic turbulence. In this paper, the strong intermittent nature of the interplanetary magnetic field is briefly discussed comparing results performed during different phases of the solar cycle. The scaling properties of the interplanetary magnetic field magnitude show solar cycle variation that can be distinguished in the scaling exponents revealed by structure functions. The scaling exponents observed around the solar maximum coincide, within the errors, to those measured for passive scalars in hydrodynamic turbulence. However, it is also found that the values are not universal in the sense that the solar cycle variation may be reflected in dependence on the structure of the velocity field.
Quantum Fluctuations of a Superconductor Order Parameter.
Arutyunov, K Yu; Lehtinen, J S
2016-12-01
Tunneling I-V characteristics between very narrow titanium nanowires and "massive" superconducting aluminum were measured. The clear trend was observed: the thinner the titanium electrode, the broader the singularity at eV = Δ1(Al) + Δ2(Ti). The phenomenon can be explained by broadening of the gap edge of the quasi-one-dimensional titanium channels due to quantum fluctuations of the order parameter modulus |Δ2|. The range of the nanowire diameters, where the effect is pronounced, correlates with dimensions where the phase fluctuations of the complex superconducting order parameter Δ = |Δ|e(iφ), the quantum phase slips, broadening the R(T) dependencies, have been observed.
Single molecule detection, thermal fluctuation and life
YANAGIDA, Toshio; ISHII, Yoshiharu
2017-01-01
Single molecule detection has contributed to our understanding of the unique mechanisms of life. Unlike artificial man-made machines, biological molecular machines integrate thermal noises rather than avoid them. For example, single molecule detection has demonstrated that myosin motors undergo biased Brownian motion for stepwise movement and that single protein molecules spontaneously change their conformation, for switching to interactions with other proteins, in response to thermal fluctuation. Thus, molecular machines have flexibility and efficiency not seen in artificial machines. PMID:28190869
Climatically driven fluctuations in Southern Ocean ecosystems.
Murphy, Eugene J; Trathan, Philip N; Watkins, Jon L; Reid, Keith; Meredith, Michael P; Forcada, Jaume; Thorpe, Sally E; Johnston, Nadine M; Rothery, Peter
2007-12-22
Determining how climate fluctuations affect ocean ecosystems requires an understanding of how biological and physical processes interact across a wide range of scales. Here we examine the role of physical and biological processes in generating fluctuations in the ecosystem around South Georgia in the South Atlantic sector of the Southern Ocean. Anomalies in sea surface temperature (SST) in the South Pacific sector of the Southern Ocean have previously been shown to be generated through atmospheric teleconnections with El Niño Southern Oscillation (ENSO)-related processes. These SST anomalies are propagated via the Antarctic Circumpolar Current into the South Atlantic (on time scales of more than 1 year), where ENSO and Southern Annular Mode-related atmospheric processes have a direct influence on short (less than six months) time scales. We find that across the South Atlantic sector, these changes in SST, and related fluctuations in winter sea ice extent, affect the recruitment and dispersal of Antarctic krill. This oceanographically driven variation in krill population dynamics and abundance in turn affects the breeding success of seabird and marine mammal predators that depend on krill as food. Such propagating anomalies, mediated through physical and trophic interactions, are likely to be an important component of variation in ocean ecosystems and affect responses to longer term change. Population models derived on the basis of these oceanic fluctuations indicate that plausible rates of regional warming of 1oC over the next 100 years could lead to more than a 95% reduction in the biomass and abundance of krill across the Scotia Sea by the end of the century.
Fluctuation sensitivity of a transcriptional signaling cascade
Pilkiewicz, Kevin R.; Mayo, Michael L.
2016-09-01
The internal biochemical state of a cell is regulated by a vast transcriptional network that kinetically correlates the concentrations of numerous proteins. Fluctuations in protein concentration that encode crucial information about this changing state must compete with fluctuations caused by the noisy cellular environment in order to successfully transmit information across the network. Oftentimes, one protein must regulate another through a sequence of intermediaries, and conventional wisdom, derived from the data processing inequality of information theory, leads us to expect that longer sequences should lose more information to noise. Using the metric of mutual information to characterize the fluctuation sensitivity of transcriptional signaling cascades, we find, counter to this expectation, that longer chains of regulatory interactions can instead lead to enhanced informational efficiency. We derive an analytic expression for the mutual information from a generalized chemical kinetics model that we reduce to simple, mass-action kinetics by linearizing for small fluctuations about the basal biological steady state, and we find that at long times this expression depends only on a simple ratio of protein production to destruction rates and the length of the cascade. We place bounds on the values of these parameters by requiring that the mutual information be at least one bit—otherwise, any received signal would be indistinguishable from noise—and we find not only that nature has devised a way to circumvent the data processing inequality, but that it must be circumvented to attain this one-bit threshold. We demonstrate how this result places informational and biochemical efficiency at odds with one another by correlating high transcription factor binding affinities with low informational output, and we conclude with an analysis of the validity of our assumptions and propose how they might be tested experimentally.
Financial Factors, Rare Disasters and Macroeconomic Fluctuations.
Gruss, Bertrand
2010-01-01
Defense date: 25/10/2010 Examining Board: Prof. Giancarlo Corsetti, EUI, Supervisor Prof. Ramon Marimon, EUI Prof. Enrique Mendoza, University of Maryland Prof. Vincenzo Quadrini, University of Southern California This thesis attempts to shed light on the role of financial factors and vulnerabilities in shaping macroeconomic fluctuations. It contributes to the literature that integrates financial factors into the real business cycle paradigm by introducing asymmetries and di...
Thermodynamics and fluctuations far from equilibrium
Ross, John
2008-01-01
This book deals with the formulation of the thermodynamics of chemical and other systems far from equilibrium, including connections to fluctuations. It contains applications to non-equilibrium stationary states and approaches to such states, systems with multiple stationary states, stability and equi-stability conditions, reaction diffusion systems, transport properties, and electrochemical systems. The theoretical treatment is complemented by experimental results to substantiate the formulation. Dissipation and efficiency are analyzed in autonomous and externally forced reactions, including several biochemical systems.
Fluctuations along supersymmetric flat directions during Inflation
Enqvist, Kari; Figueroa, Daniel G.; Rigopoulos, Gerasimos
2011-01-01
We consider a set of scalar fields, consisting of a single flat direction and one or several non-flat directions. We take our cue from the MSSM, considering separately D-flat and F-flat directions, but our results apply to any supersymmetric scenario containing flat directions. We study the field fluctuations during pure de Sitter Inflation, following the evolution of the infrared modes by numerically solving the appropriate Langevin equations. We demonstrate that for the Standard Model U(1),...
Multiplane 3D superresolution optical fluctuation imaging
Geissbuehler, Stefan; Sharipov, Azat; Godinat, Aurélien; Bocchio, Noelia; Dubikovskaya, Elena; Lasser, Theo; Leutenegger, Marcel
2013-01-01
By switching fluorophores on and off in either a deterministic or a stochastic manner, superresolution microscopy has enabled the imaging of biological structures at resolutions well beyond the diffraction limit. Superresolution optical fluctuation imaging (SOFI) provides an elegant way of overcoming the diffraction limit in all three spatial dimensions by computing higher-order cumulants of image sequences of blinking fluorophores acquired with a conventional widefield microscope. So far, th...
Demographic Fluctuation and Institutional Response in Sparta
DORAN, TIMOTHY DONALD
2011-01-01
AbstractDemographic Fluctuation and Institutional Response in SpartabyTimothy Donald DoranDoctor of Philosophy in Ancient History and Mediterranean ArchaeologyUniversity of California, BerkeleyProfessor Emily Mackil, ChairThe Spartiate population declined from 8000 in the early fifth century to less than 1000 in the mid-fourth, and caused Sparta's political fortunes to drop dramatically from being the unofficial hegemon of the Greek-speaking peoples to a strictly local power in the Hellenisti...
Stress fluctuations in sheared Stokesian suspensions.
Dasan, J; Ramamohan, T R; Singh, Anugrah; Nott, Prabhu R
2002-08-01
We report an analysis, using the tools of nonlinear dynamics and chaos theory, of the fluctuations in the stress determined from simulations of shear flow of Stokesian suspensions. The simulations are for shear between plane parallel walls of a suspension of rigid identical spheres in a Newtonian fluid, over a range of particle concentration. By analyzing the time series of the stress, we find that the dynamics underlying these fluctuations is deterministic, low-dimensional, and chaotic. We use the dynamic and metric invariants of the underlying dynamics as a means of characterizing suspension behavior. The dimension of the chaotic attractor increases with particle concentration, indicating the increasing influence of multiple-body interactions on the rheology of the suspension with rise in particle concentration. We use our analysis to make accurate predictions of the short-term evolution of a stress component from its preceding time series, and predict the evolution of one component of the stress using the time series of another. We comment on the physical origin of the chaotic stress fluctuations, and on the implications of our results on the relation between the microstructure and the stress.
Water-level fluctuations influence sediment porewater ...
Reservoirs typically have elevated fish mercury (Hg) levels compared to natural lakes and rivers. A unique feature of reservoirs is water-level management which can result in sediment exposure to the air. The objective of this study is to identify how reservoir water-level fluctuations impact Hg cycling, particularly the formation of the more toxic and bioaccumulative methylmercury (MeHg). Total-Hg (THg), MeHg, stable isotope methylation rates and several ancillary parameters were measured in reservoir sediments (including some in porewater and overlying water) that are seasonally and permanently inundated. The results showed that sediment and porewater MeHg concentrations were over 3-times higher in areas experiencing water-level fluctuations compared to permanently inundated sediments. Analysis of the data suggest that the enhanced breakdown of organic matter in sediments experiencing water-level fluctuations has a two-fold effect on stimulating Hg methylation: 1) it increases the partitioning of inorganic Hg from the solid phase into the porewater phase (lower log Kd values) where it is more bioavailable for methylation; and 2) it increases dissolved organic carbon (DOC) in the porewater which can stimulate the microbial community that can methylate Hg. Sulfate concentrations and cycling were enhanced in the seasonally inundated sediments and may have also contributed to increased MeHg production. Overall, our results suggest that reservoir management a
Behavior of axisymmetric density fluctuations in TCV
Merlo, Gabriele; Jenko, Frank; Brunner, Stephan; Coda, Stefano; Huang, Zhouji; Villard, Laurent; Goerler, Tobias; Navarro, Alejandro B.; Told, Daniel
2017-10-01
Axisymmetric density fluctuations, either with a radially coherent or dispersive nature, are routinely observed in the TCV tokamak and experimentally interpreted as Geodesic Acoustic Modes (GAMs). We use local and global GENE simulations to investigate their behavior. With a simplified physical model, neglecting impurities and using heavy electrons, simulations reproduce the observed behavior. Simulations allow to conclude that the modification of the safety factor q alone cannot explain the transition between these two different fluctuation regimes, which thus appear as a consequence of variations of other parameters, including collisionality and finite machine size effects. The behavior of the radially coherent GAM is further investigated with high-realism GENE simulations. With this set-up, local simulations reproduce the experimental transport level at different radii while matching the observed GAM frequency at the location where the mode peaks. Global high-realism runs, aiming at reproducing the radial extent of the fluctuations, will be discussed as well. This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under Grant Agreement No 633053.
Detecting long-range correlation with detrended fluctuation analysis: Application to BWR stability
Energy Technology Data Exchange (ETDEWEB)
Espinosa-Paredes, Gilberto [Departamento de Ingenieria de Procesos e Hidraulica, Universidad Autonoma Metropolitana-Iztapalapa, Apartado Postal 55-534, Mexico, DF 09340 (Mexico)]. E-mail: gepe@xanum.uam.mx; Alvarez-Ramirez, Jose [Departamento de Ingenieria de Procesos e Hidraulica, Universidad Autonoma Metropolitana-Iztapalapa, Apartado Postal 55-534, Mexico, DF 09340 (Mexico); Vazquez, Alejandro [Departamento de Ingenieria de Procesos e Hidraulica, Universidad Autonoma Metropolitana-Iztapalapa, Apartado Postal 55-534, Mexico, DF 09340 (Mexico)
2006-11-15
The aim of this paper is to explore the application of detrended fluctuation analysis (DFA) to study boiling water reactor stability. DFA is a scaling method commonly used for detecting long-range correlations in non-stationary time series. This method is based on the random walk theory and was applied to neutronic power signal of Forsmark stability benchmark. Our results shows that the scaling properties breakdown during unstable oscillations.
Jin, Y.-Q.; Kong, J. A.
1985-01-01
The strong fluctuation theory is applied to the study of the atmospheric snowfall which is modeled as a layer of random discrete-scatterers medium. As functions of size distribution, fractional volume, and radius of scatterers, the relationship is illustrated between the reflectivity factor and precipitation rate, the attenuation of the centimeter and millimeter waves, and the line-of-sight transmission of coherent and incoherent wave components. The theoretical results are shown to match favorably with experimental data.
Fluctuation-Noise Model for PEM Fuel Cell
Denisov, E. S.; Salakhova, A. Sh.; Adiutantov, N. A.; Evdokimov, Yu. K.
2017-08-01
The fluctuation-noise model is presented. This model allows to describe the power spectral density of PEM fuel cell electrical fluctuation. The proposed model can be used for diagnostics of PEM fuel cell state of health.
Fluctuation theorems for discrete kinetic models of molecular motors
Faggionato, Alessandra; Silvestri, Vittoria
2017-04-01
Motivated by discrete kinetic models for non-cooperative molecular motors on periodic tracks, we consider random walks (also not Markov) on quasi one dimensional (1d) lattices, obtained by gluing several copies of a fundamental graph in a linear fashion. We show that, for a suitable class of quasi-1d lattices, the large deviation rate function associated to the position of the walker satisfies a Gallavotti-Cohen symmetry for any choice of the dynamical parameters defining the stochastic walk. This class includes the linear model considered in Lacoste et al (2008 Phys. Rev. E 78 011915). We also derive fluctuation theorems for the time-integrated cycle currents and discuss how the matrix approach of Lacoste et al (2008 Phys. Rev. E 78 011915) can be extended to derive the above Gallavotti-Cohen symmetry for any Markov random walk on {Z} with periodic jump rates. Finally, we review in the present context some large deviation results of Faggionato and Silvestri (2017 Ann. Inst. Henri Poincaré 53 46-78) and give some specific examples with explicit computations.
The Origin of the Density Fluctuations in De Sitter Space
Morikawa, M.
1987-05-01
As the origin of the large scale structure in the universe, statistical fluctuations of a c-number scalar field are evaluated on the basis of the double time-contour path integral method. The source of the fluctuation is a backreaction of spontaneous particle production in de Sitter space. The evaluated fluctuations are quite different from the ordinary quantum fluctuations and are proportional to the particle production rate.
Energy Technology Data Exchange (ETDEWEB)
Muramatsu, Toshiharu [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center
2001-09-01
Fluid-structure thermal interaction phenomena characterized by stationary random temperature fluctuations, namely thermal striping are observed in the downstream region such as a T-junction piping system of liquid metal fast reactors (LMFRs). Therefore, the piping wall located in the downstream region must be protected against the stationary random thermal process, which might induce high-cycle fatigue. This paper describes the evaluation system based on numerical simulation methods consisting of three thermohydraulics computer programs AQUA, DINUS-3 and THEMIS and of three thermomechanical computer programs BEMSET, FINAS and CANIS, for the thermal striping developed at Japan Nuclear Cycle Development Institute (JNC). Verification results for each computer code and the system are also introduced based on out-of-pile experimental data using water and sodium as working fluids. (author)
Common Origin of Quantum Regression and Quantum Fluctuation Dissipation Theorems
Shiktorov, P.; Starikov, E.; Gruzinskis, V.; Reggiani, L.; L. Varani; Vaissiere, J. C.
2000-01-01
It is shown that the quantum fluctuation dissipation theorem can be considered as a mathematical formulation in the spectral representation of Onsager hypothesis on the regression of fluctuations in physical systems. It is shown that the quantum fluctuation dissipation theorem can be generalized to an arbitrary stationary state.
Correlations and Fluctuations, A Summary of Quark Matter 2002
Pratt, Scott
2003-01-01
Results for correlations and fluctuations presented at Quark Matter 2002 are summarized. These results include Hanbury-Brown Twiss interferometry of a wide variety of species, large scale fluctuations and correlations in $p_t$ and multiplicity, and charge fluctuations and charge balance functions.
Ranson, John
2009-04-01
The sentiments expressed by Sidney Drell in his forum article "The nuclear threat: a new start" (February pp16-17) are laudable, but it was disappointing to find this almost entirely political story in isolation. The article, which outlined the prospects for reducing weapons stockpiles under the new US administration, would have been more pertinent as an introduction to a series describing the technology used in detecting nuclear-testing activity. It would have been interesting to discuss the specific equipment and methods used, together with the analysis and correlation techniques - along with an indication of how sensitive and reliable they are (if the information is not classified). It is far easier to detect an explosive event than it is to detect and quantify weapons stores, which is a key factor for any negotiated solution. Apart from deductions based on actual inspection and satellite surveillance, are there other techniques that can be applied to this issue?
Children's (Pediatric) Nuclear Medicine
Full Text Available ... are the limitations of Children's Nuclear Medicine? What is Children's (Pediatric) Nuclear Medicine? Nuclear medicine is a ... top of page What are some common uses of the procedure? Children's (pediatric) nuclear medicine imaging is ...
Random organization and plastic depinning
Energy Technology Data Exchange (ETDEWEB)
Reichhardt, Charles [Los Alamos National Laboratory; Reichhardt, Cynthia [Los Alamos National Laboratory
2008-01-01
We provide evidence that the general phenomenon of plastic depinning can be described as an absorbing phase transition, and shows the same features as the random organization which was recently studied in periodically driven particle systems [L. Corte, Nature Phys. 4, 420 (2008)]. In the plastic flow system, the pinned regime corresponds to the absorbing state and the moving state corresponds to the fluctuating state. When an external force is suddenly applied, the system eventually organizes into one of these two states with a time scale that diverges as a power law at a nonequilibrium transition. We propose a simple experiment to test for this transition in systems with random disorder.
Habs, D.; Günther, M. M.; Jentschel, M.; Thirolf, P. G.
2012-07-01
With the planned new γ-beam facilities like MEGa-ray at LLNL (USA) or ELI-NP at Bucharest (Romania) with 1013 γ/s and a band width of ΔEγ/Eγ≈10-3, a new era of γ beams with energies up to 20MeV comes into operation, compared to the present world-leading HIγS facility at Duke University (USA) with 108 γ/s and ΔEγ/Eγ≈3ṡ10-2. In the long run even a seeded quantum FEL for γ beams may become possible, with much higher brilliance and spectral flux. At the same time new exciting possibilities open up for focused γ beams. Here we describe a new experiment at the γ beam of the ILL reactor (Grenoble, France), where we observed for the first time that the index of refraction for γ beams is determined by virtual pair creation. Using a combination of refractive and reflective optics, efficient monochromators for γ beams are being developed. Thus, we have to optimize the total system: the γ-beam facility, the γ-beam optics and γ detectors. We can trade γ intensity for band width, going down to ΔEγ/Eγ≈10-6 and address individual nuclear levels. The term "nuclear photonics" stresses the importance of nuclear applications. We can address with γ-beams individual nuclear isotopes and not just elements like with X-ray beams. Compared to X rays, γ beams can penetrate much deeper into big samples like radioactive waste barrels, motors or batteries. We can perform tomography and microscopy studies by focusing down to μm resolution using Nuclear Resonance Fluorescence (NRF) for detection with eV resolution and high spatial resolution at the same time. We discuss the dominating M1 and E1 excitations like the scissors mode, two-phonon quadrupole octupole excitations, pygmy dipole excitations or giant dipole excitations under the new facet of applications. We find many new applications in biomedicine, green energy, radioactive waste management or homeland security. Also more brilliant secondary beams of neutrons and positrons can be produced.
RAPID FLUCTUATIONS IN THE LOWER SOLAR ATMOSPHERE
Energy Technology Data Exchange (ETDEWEB)
Lawrence, J. K.; Cadavid, A. C.; Christian, D. J. [Department of Physics and Astronomy, California State University, Northridge, Northridge, CA 91330-8268 (United States); Jess, D. B.; Mathioudakis, M., E-mail: john.lawrence@csun.edu [Astrophysics Research Centre, School of Mathematics and Physics, Queen' s University Belfast, Belfast, BT7 1NN (United Kingdom)
2011-12-10
The Rapid Oscillations in the Solar Atmosphere instrument reveals solar atmospheric fluctuations at high frequencies. Spectra of variations of the G-band intensity (I{sub G} ) and Ca II K-line intensity (I{sub K} ) show correlated fluctuations above white noise to frequencies beyond 300 mHz and 50 mHz, respectively. The noise-corrected G-band spectrum for f = 28-326 mHz shows a power law with exponent -1.21 {+-} 0.02, consistent with the presence of turbulent motions. G-band spectral power in the 25-100 mHz ('UHF') range is concentrated at the locations of magnetic bright points in the intergranular lanes and is highly intermittent in time. The intermittence of the UHF G-band fluctuations, shown by a positive kurtosis {kappa}, also suggests turbulence. Combining values of I{sub G} , I{sub K} , UHF power, and {kappa} reveals two distinct states of the solar atmosphere. State 1, including almost all the data, is characterized by low I{sub G} , I{sub K} , and UHF power and {kappa} Almost-Equal-To 6. State 2, including only a very small fraction of the data, is characterized by high I{sub G} , I{sub K} , and UHF power and {kappa} Almost-Equal-To 3. Superposed epoch analysis shows that the UHF power peaks simultaneously with spatio-temporal I{sub G} maxima in either state. For State 1, I{sub K} shows 3.5 minute chromospheric oscillations with maxima occurring 21 s after I{sub G} maxima implying a 150-210 km effective height difference. However, for State 2 the I{sub K} and I{sub G} maxima are simultaneous; in this highly magnetized environment sites of G-band and K-line emission may be spatially close together.
Rapid Fluctuations in the Lower Solar Atmosphere
Lawrence, J. K.; Cadavid, A. C.; Christian, D. J.; Jess, D. B.; Mathioudakis, M.
2011-12-01
The Rapid Oscillations in the Solar Atmosphere instrument reveals solar atmospheric fluctuations at high frequencies. Spectra of variations of the G-band intensity (IG ) and Ca II K-line intensity (IK ) show correlated fluctuations above white noise to frequencies beyond 300 mHz and 50 mHz, respectively. The noise-corrected G-band spectrum for f = 28-326 mHz shows a power law with exponent -1.21 ± 0.02, consistent with the presence of turbulent motions. G-band spectral power in the 25-100 mHz ("UHF") range is concentrated at the locations of magnetic bright points in the intergranular lanes and is highly intermittent in time. The intermittence of the UHF G-band fluctuations, shown by a positive kurtosis κ, also suggests turbulence. Combining values of IG , IK , UHF power, and κ reveals two distinct states of the solar atmosphere. State 1, including almost all the data, is characterized by low IG , IK , and UHF power and κ ≈ 6. State 2, including only a very small fraction of the data, is characterized by high IG , IK , and UHF power and κ ≈ 3. Superposed epoch analysis shows that the UHF power peaks simultaneously with spatio-temporal IG maxima in either state. For State 1, IK shows 3.5 minute chromospheric oscillations with maxima occurring 21 s after IG maxima implying a 150-210 km effective height difference. However, for State 2 the IK and IG maxima are simultaneous; in this highly magnetized environment sites of G-band and K-line emission may be spatially close together.
Photoprotection of photosystems in fluctuating light intensities.
Allahverdiyeva, Yagut; Suorsa, Marjaana; Tikkanen, Mikko; Aro, Eva-Mari
2015-05-01
Oxygenic photosynthetic organisms experience strong fluctuations in light intensity in their natural terrestrial and aquatic growth environments. Recent studies with both plants and cyanobacteria have revealed that Photosystem (PS) I is the potential target of damage upon abrupt changes in light intensity. Photosynthetic organisms have, however, developed powerful mechanisms in order to protect their photosynthetic apparatus against such potentially hazardous light conditions. Although the electron transfer chain has remained relatively unchanged in both plant chloroplasts and their cyanobacterial ancestors, the photoprotective and regulatory mechanisms of photosynthetic light reactions have experienced conspicuous evolutionary changes. In cyanobacteria, the specific flavodiiron proteins (Flv1 and Flv3) are responsible for safeguarding PSI under rapidly fluctuating light intensities, whilst the thylakoid located terminal oxidases are involved in the protection of PSII during 12h diurnal cycles involving abrupt, square-wave, changes from dark to high light. Higher plants such as Arabidopsis thaliana have evolved different protective mechanisms. In particular, the PGR5 protein controls electron flow during sudden changes in light intensity by allowing the regulation mostly via the Cytochrome b6f complex. Besides the function of PGR5, plants have also acquired other dynamic regulatory mechanisms, among them the STN7-related LHCII protein phosphorylation that is similarly responsible for protection against rapid changes in the light environment. The green alga Chlamydomonas reinhardtii, as an evolutionary intermediate between cyanobacteria and higher plants, probably possesses both protective mechanisms. In this review, evolutionarily different photoprotective mechanisms under fluctuating light conditions are described and their contributions to cyanobacterial and plant photosynthesis are discussed. © The Author 2014. Published by Oxford University Press on behalf of
Sources of Economic Fluctuations in Central America
Directory of Open Access Journals (Sweden)
Wilfredo Toledo
2014-06-01
Full Text Available Using panel data from Central America, this paper studies the determining factors of inflation and aggregate output fluctuations by estimating two Structural Vector Autoregressive (SVAR models. Price and output variables are included in one of the models, whereas M2 and the price of oil are additional variables in the other one. Findings of this study suggest that price is determined by the demand, while output seems to be influenced mainly by the supply shocks in that area. It was also evidenced that the price of oil does not have a significant impact on the general price level in that region.
Fluctuation Solution Theory Properties from Molecular Simulation
DEFF Research Database (Denmark)
Abildskov, Jens; Wedberg, R.; O’Connell, John P.
2013-01-01
The thermodynamic properties obtained in the Fluctuation Solution Theory are based on spatial integrals of molecular TCFs between component pairs in the mixture. Molecular simulation, via either MD or MC calculations, can yield these correlation functions for model inter- and intramolecular...... potential functions. However, system-size limitations and statistical noise cause uncertainties in the functions at long range, and thus uncertainties or errors in the integrals. A number of methods such as truncation, distance shifting, long-range modeling, transforms, DCF matching, finite-size scaling...
Sample size determination for the fluctuation experiment.
Zheng, Qi
2017-01-01
The Luria-Delbrück fluctuation experiment protocol is increasingly employed to determine microbial mutation rates in the laboratory. An important question raised at the planning stage is "How many cultures are needed?" For over 70 years sample sizes have been determined either by intuition or by following published examples where sample sizes were chosen intuitively. This paper proposes a practical method for determining the sample size. The proposed method relies on existing algorithms for computing the expected Fisher information under two commonly used mutant distributions. The role of partial plating in reducing sample size is discussed. Copyright © 2016 Elsevier B.V. All rights reserved.
Chaotic Maps Dynamics, Fractals, and Rapid Fluctuations
Chen, Goong
2011-01-01
This book consists of lecture notes for a semester-long introductory graduate course on dynamical systems and chaos taught by the authors at Texas A&M University and Zhongshan University, China. There are ten chapters in the main body of the book, covering an elementary theory of chaotic maps in finite-dimensional spaces. The topics include one-dimensional dynamical systems (interval maps), bifurcations, general topological, symbolic dynamical systems, fractals and a class of infinite-dimensional dynamical systems which are induced by interval maps, plus rapid fluctuations of chaotic maps as a
Universality and Specificity in Protein Fluctuation Dynamics
Copperman, J.; Dinpajooh, M.; Beyerle, E. R.; Guenza, M. G.
2017-10-01
We investigate the universal scaling of protein fluctuation dynamics with a site-specific diffusive model of protein motion, which predicts an initial subdiffusive regime in the configurational relaxation. The long-time dynamics of proteins is controlled by an activated regime. We argue that the hierarchical free energy barriers set the time scales of biological processes and establish an upper limit to the size of single protein domains. We find it compelling that the scaling behavior for the protein dynamics is in close agreement with the Kardar-Parisi-Zhang scaling exponents.
Universal fluctuations the phenomenology of hadronic matter
Botet, Robert
2002-01-01
The main purpose of this book is to present, in a comprehensive and progressive way, the appearance of universal limit probability laws in physics, and their connection with the recently developed scaling theory of fluctuations. Arising from the probability theory and renormalization group methods, this novel approach has been proved recently to provide efficient investigative tools for the collective features that occur in any finite system. The mathematical background is self-contained and is formulated in terms which are easy to apply to the physical context. After illustrating the problem
Detrended fluctuation analysis of multivariate time series
Xiong, Hui; Shang, P.
2017-01-01
In this work, we generalize the detrended fluctuation analysis (DFA) to the multivariate case, named multivariate DFA (MVDFA). The validity of the proposed MVDFA is illustrated by numerical simulations on synthetic multivariate processes, where the cases that initial data are generated independently from the same system and from different systems as well as the correlated variate from one system are considered. Moreover, the proposed MVDFA works well when applied to the multi-scale analysis of the returns of stock indices in Chinese and US stock markets. Generally, connections between the multivariate system and the individual variate are uncovered, showing the solid performances of MVDFA and the multi-scale MVDFA.
Nuclear tele medicine; Telemedicina nuclear
Energy Technology Data Exchange (ETDEWEB)
Vargas, L.; Hernandez, F.; Fernandez, R. [Departamento de Medicina Nuclear, Imagenologia Diagnostica, Xalapa, Veracruz (Mexico)
2005-07-01
The great majority of the digital images of nuclear medicine are susceptible of being sent through internet. This has allowed that the work in diagnosis cabinets by image it can benefit of this modern technology. We have presented in previous congresses works related with tele medicine, however, due to the speed in the evolution of the computer programs and the internet, becomes necessary to make a current position in this modality of work. (Author)
Monte Carlo Simulation of Adiabatic Cooling and Nuclear Magnetism
DEFF Research Database (Denmark)
Lindgård, Per-Anker; Viertiö, H. E.; Mouritsen, Ole G.
1988-01-01
in experimental studies of nuclear magnetism using adiabatic demagnetization methods. It is found that, although fluctuations reduce the transition temperatures by 40%, the isentropes are reduced by less than 10% relative to those calculated by mean-field theory. The dynamics of the ordering process following...
Fluctuation functions in aqueous NaCl and urea.
Siu, David; Koga, Yoshikata
2005-09-08
We earlier devised a set of fluctuation functions that provide relative qualitative differences of the amplitude (intensity) and the wavelength (extensity) of fluctuations in entropy and volume and the entropy-volume cross fluctuations. We discuss the mixing schemes in aqueous NaCl and urea using these fluctuation functions. Our earlier studies by using the second and third derivatives of Gibbs energy indicated that their effects on H2O are qualitatively different. An NaCl hydrates 7.5 molecules of H2O but leaves the bulk H2O away from the hydration shell unperturbed. Urea, on the other hand, connects onto the hydrogen bond network of H2O but retards the degree of fluctuation inherent in H2O. The behavior of the fluctuation functions calculated here are consistent with the above mixing schemes. Furthermore, urea was found to reduce the wavelength of fluctuation more strongly than NaCl.
Turbulence hierarchy in a random fibre laser.
González, Iván R Roa; Lima, Bismarck C; Pincheira, Pablo I R; Brum, Arthur A; Macêdo, Antônio M S; Vasconcelos, Giovani L; de S Menezes, Leonardo; Raposo, Ernesto P; Gomes, Anderson S L; Kashyap, Raman
2017-05-31
Turbulence is a challenging feature common to a wide range of complex phenomena. Random fibre lasers are a special class of lasers in which the feedback arises from multiple scattering in a one-dimensional disordered cavity-less medium. Here we report on statistical signatures of turbulence in the distribution of intensity fluctuations in a continuous-wave-pumped erbium-based random fibre laser, with random Bragg grating scatterers. The distribution of intensity fluctuations in an extensive data set exhibits three qualitatively distinct behaviours: a Gaussian regime below threshold, a mixture of two distributions with exponentially decaying tails near the threshold and a mixture of distributions with stretched-exponential tails above threshold. All distributions are well described by a hierarchical stochastic model that incorporates Kolmogorov's theory of turbulence, which includes energy cascade and the intermittence phenomenon. Our findings have implications for explaining the remarkably challenging turbulent behaviour in photonics, using a random fibre laser as the experimental platform.
Energy Technology Data Exchange (ETDEWEB)
Conte, Elio [Department of Pharmacology and Human Physiology and Tires, Center for Innovative Technologies for Signal Detection and Processing, University of Bari (Italy); School of Advanced International Studies on Theoretical and Nonlinear Methodologies-Bari (Italy)], E-mail: elio.conte@fastwebnet.it; Khrennikov, Andrei [International Center for Mathematical Modelling in Physics and Cognitive Sciences, M.S.I., University of Vaexjoe, S-35195 (Sweden); Federici, Antonio [Department of Pharmacology and Human Physiology and Tires, Center for Innovative Technologies for Signal Detection and Processing, University of Bari (Italy); Zbilut, Joseph P. [Department of Molecular Biophysics and Physiology, Rush University Medical Center, 1653W Congress, Chicago, IL 60612 (United States)
2009-09-15
We develop a new method for analysis of fundamental brain waves as recorded by the EEG. To this purpose we introduce a Fractal Variance Function that is based on the calculation of the variogram. The method is completed by using Random Matrix Theory. Some examples are given. We also discuss the link of such formulation with H. Weiss and V. Weiss golden ratio found in the brain, and with El Naschie fractal Cantorian space-time theory.
Fluctuating, Lorentz-force-like coupling of Langevin equations and heat flux rectification
Sabass, B.
2017-08-01
In a description of physical systems with Langevin equations, interacting degrees of freedom are usually coupled through symmetric parameter matrices. This coupling symmetry is a consequence of time-reversal symmetry of the involved conservative forces. If coupling parameters fluctuate randomly, the resulting noise is called multiplicative. For example, mechanical oscillators can be coupled through a fluctuating, symmetric matrix of spring "constants." Such systems exhibit well-studied instabilities. In this article, we study the complementary case of antisymmetric, time-reversal symmetry-breaking coupling that can be realized with Lorentz forces or various gyrators. We consider the case in which these antisymmetric couplings fluctuate. This type of multiplicative noise does not lead to instabilities in the stationary state but renormalizes the effective nonequilibrium friction. Fluctuating Lorentz-force-like couplings also allow one to control and rectify heat transfer. A noteworthy property of this mechanism of producing asymmetric heat flux is that the controlling couplings do not exchange energy with the system.
SOL width and intermittent fluctuations in KSTAR
Directory of Open Access Journals (Sweden)
O.E. Garcia
2017-08-01
Full Text Available Radial profiles of the ion saturation current and its fluctuation statistics are presented from probe measurements in L-mode, neutral beam heated plasmas at the outboard mid-plane region of KSTAR. The results are consistent with the familiar two-layer structure, seen elsewhere in tokamak L-mode discharges, with a steep near-SOL profile and a broad far-SOL profile. The profile scale length in the far-SOL increases drastically with line-averaged density, thereby enhancing plasma interactions with the main chamber walls. Time series from the far-SOL region are characterised by large-amplitude bursts attributed to the radial motion of blob-like plasma filaments. Analysis of a data time series of several seconds duration under stationary plasma conditions reveals the statistical properties of these fluctuations, including the rate of level crossings and the average duration of periods spent above a given threshold level. This is shown to be in excellent agreement with predictions of a stochastic model, giving novel predictions of plasma–wall interactions due to transient transport events.
5th International Conference on Valence Fluctuations
Malik, S
1987-01-01
During the Koln meeting (August 28-31, 1984), Irdia was chosen as the venue for the next International Conference on Valence Fluctuations. lhis was in recognition ard appreciation of the work done, both experimental ard theoretical, by the Irdian scientists in this area during the last decade. We decided to hold this Conference in the month of January, 1987 at Bangalore. lhe subject of Valence Fluctuations has kept itself alive ard active as it has provided many shocks ard suprises particularly among the Ce- ard U-based intermetallies. lhe richness of many interesting physical phenomena occurring in mixed valent materials, the flexibility of modifying their physical properties (by alloying, for example) ard the possibility of synthesizing a wide variety of new such materials seem to be the key factors in this regard. Barely six months before this Conference, an International Conference on Anomalous Rare Earths and Actinides (ICAREA) had been held at Grenoble (July, 1986) which also focussed on mixed valence a...
SOL width and intermittent fluctuations in KSTAR
Garcia, O E; Theodorsen, A; Bak, J -G; Hong, S -H; Kim, H -S; Pitts, R A
2016-01-01
Radial profiles of the ion saturation current and its fluctuation statistics are presented from probe measurements in L-mode, neutral beam heated plasmas at the outboard mid-plane region of KSTAR. The familiar two-layer structure, seen elsewhere in tokamak L-mode discharges, with a steep near-SOL profile and a broad far-SOL profile, is observed. The profile scale length in the far-SOL increases drastically with line-averaged density, thereby enhancing plasma interactions with the main chamber walls. Time series from the far-SOL region are characterised by large-amplitude bursts attributed to the radial motion of blob-like plasma filaments. Analysis of a data time series of several seconds duration under stationary plasma conditions reveals the statistical properties of these fluctuations, including the rate of level crossings and the average duration of periods spent above a given threshold level. This is shown to be in excellent agreement with predictions of a stochastic model, giving novel predictions of pl...
Turbulent Spot Pressure Fluctuation Wave Packet Model
Energy Technology Data Exchange (ETDEWEB)
Dechant, Lawrence J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-05-01
Wave packet analysis provides a connection between linear small disturbance theory and subsequent nonlinear turbulent spot flow behavior. The traditional association between linear stability analysis and nonlinear wave form is developed via the method of stationary phase whereby asymptotic (simplified) mean flow solutions are used to estimate dispersion behavior and stationary phase approximation are used to invert the associated Fourier transform. The resulting process typically requires nonlinear algebraic equations inversions that can be best performed numerically, which partially mitigates the value of the approximation as compared to a more complete, e.g. DNS or linear/nonlinear adjoint methods. To obtain a simpler, closed-form analytical result, the complete packet solution is modeled via approximate amplitude (linear convected kinematic wave initial value problem) and local sinusoidal (wave equation) expressions. Significantly, the initial value for the kinematic wave transport expression follows from a separable variable coefficient approximation to the linearized pressure fluctuation Poisson expression. The resulting amplitude solution, while approximate in nature, nonetheless, appears to mimic many of the global features, e.g. transitional flow intermittency and pressure fluctuation magnitude behavior. A low wave number wave packet models also recover meaningful auto-correlation and low frequency spectral behaviors.
Cosmic Infrared Background Fluctuations and Zodiacal Light
Arendt, Richard G.; Kashlinsky, A.; Moseley, S. H.; Mather, J.
2017-01-01
We performed a specific observational test to measure the effect that the zodiacal light can have on measurements of the spatial fluctuations of the near-IR (near-infrared)background. Previous estimates of possible fluctuations caused by zodiacal light have often been extrapolated from observations of the thermal emission at longer wavelengths and low angular resolution or from IRAC (Infrared Array Camera) observations of high-latitude fields where zodiacal light is faint and not strongly varying with time. The new observations analyzed here target the COSMOS (Cosmic Evolution Survey) field at low ecliptic latitude where the zodiacal light intensity varies by factors of approximately 2 over the range of solar elongations at which the field can be observed. We find that the white-noise component of the spatial power spectrum of the background is correlated with the modeled zodiacal light intensity. Roughly half of the measured white noise is correlated with the zodiacal light, but a more detailed interpretation of the white noise is hampered by systematic uncertainties that are evident in the zodiacal light model. At large angular scales (greater than or approximately equal to 100 arcseconds) where excess power above the white noise is observed, we find no correlation of the power with the modeled intensity of the zodiacal light. This test clearly indicates that the large-scale power in the infrared background is not being caused by the zodiacal light.
Fluctuations When Driving Between Nonequilibrium Steady States
Riechers, Paul M.; Crutchfield, James P.
2017-08-01
Maintained by environmental fluxes, biological systems are thermodynamic processes that operate far from equilibrium without detailed-balanced dynamics. Yet, they often exhibit well defined nonequilibrium steady states (NESSs). More importantly, critical thermodynamic functionality arises directly from transitions among their NESSs, driven by environmental switching. Here, we identify the constraints on excess heat and dissipated work necessary to control a system that is kept far from equilibrium by background, uncontrolled "housekeeping" forces. We do this by extending the Crooks fluctuation theorem to transitions among NESSs, without invoking an unphysical dual dynamics. This and corresponding integral fluctuation theorems determine how much work must be expended when controlling systems maintained far from equilibrium. This generalizes thermodynamic feedback control theory, showing that Maxwellian Demons can leverage mesoscopic-state information to take advantage of the excess energetics in NESS transitions. We also generalize an approach recently used to determine the work dissipated when driving between functionally relevant configurations of an active energy-consuming complex system. Altogether, these results highlight universal thermodynamic laws that apply to the accessible degrees of freedom within the effective dynamic at any emergent level of hierarchical organization. By way of illustration, we analyze a voltage-gated sodium ion channel whose molecular conformational dynamics play a critical functional role in propagating action potentials in mammalian neuronal membranes.
Quantum fluctuations of voltage in superconducting nanowires
Semenov, Andrew G.; Zaikin, Andrei D.
2017-07-01
At low temperatures non-equilibrium voltage fluctuations can be generated in current-biased superconducting nanowires due to proliferation of quantum phase slips (QPS) or, equivalently, due to quantum tunneling of magnetic flux quanta across the wire. In this paper we review and further extend recent theoretical results related to this phenomenon. Employing the phase-charge duality arguments combined with Keldysh path integral technique we analyze such fluctuations within the two-point and four-point measurement schemes demonstrating that voltage noise detected in such nanowires in general depends on the particular measurement setup. In the low frequency limit we evaluate all cumulants of the voltage operator which turn out to obey Poisson statistics and exhibit a power law dependence on the external bias. We also specifically address a non-trivial frequency dependence of quantum shot noise power spectrum SΩ for both longer and shorter superconducting nanowires. In particular, we demonstrate that SΩ decreases with increasing frequency Ω and vanishes beyond a threshold value of Ω at T → 0. Furthermore, we predict that SΩ may depend non-monotonously on temperature due to quantum coherent nature of QPS noise. The results of our theoretical analysis can be directly tested in future experiments with superconducting nanowires.
Energy Technology Data Exchange (ETDEWEB)
1981-01-01
The anticipated personnel needs of the nuclear power industry have varied widely in recent years, in response to both increasing regulatory requirements and declining orders for new plants. Recent employment patterns in the nuclear energy field, with their fluctuations, resemble those of defense industries more than those traditionally associated with electric utilities. Reactions to the accident at Three Mile Island Unit 2 by industry and regulators have increased the demand for trained and experienced personnel, causing salaries to rise. Industry, for example, has established several advisory organizations like the Institute for Nuclear Power Operations (INPO). At the same time, the US Nuclear Regulatory Commission (NRC) has imposed many new construction and operating requirements in an effort to take advantage of lessons learned from the Three Mile Island incident and to respond to the perceived public interest in better regulation of nuclear power. Thus, at present, utilities, architect-engineer firms, reactor vendors, and organizations in the nuclear development community have heavy workloads.
ULTRAFAST ELECTRONIC FLUCTUATION AND SOLVATION IN LIQUIDS
NIBBERING, ETJ; WIERSMA, DA; DUPPEN, K; Nibbering, Erik T.J.
1994-01-01
Solvation and optical dephasing of electronic transitions in molecular liquids are studied over a large range of time scales. It is shown that these optical effects, which are due to coupling of the electronic degrees of freedom with the nuclear motion in the liquid, are closely connected. The
Applications of nuclear physics
Hayes, A. C.
2017-02-01
Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that underlie the physics involved in designs of nuclear explosions, controlled nuclear energy, and nuclear fusion. The review then moves to focus on modern applications of these concepts, including the basic concepts and diagnostics developed for the forensics of nuclear explosions, the nuclear diagnostics at the National Ignition Facility, nuclear reactor safeguards, and the detection of nuclear material production and trafficking. The review also summarizes recent developments in nuclear geophysics and nuclear medicine. The nuclear geophysics areas discussed include geo-chronology, nuclear logging for industry, the Oklo reactor, and geo-neutrinos. The section on nuclear medicine summarizes the critical advances in nuclear imaging, including PET and SPECT imaging, targeted radionuclide therapy, and the nuclear physics of medical isotope production. Each subfield discussed requires a review article unto itself, which is not the intention of the current review; rather, the current review is intended for readers who wish to get a broad understanding of applied nuclear physics.
Applications of nuclear physics.
Hayes, A C
2017-02-01
Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that underlie the physics involved in designs of nuclear explosions, controlled nuclear energy, and nuclear fusion. The review then moves to focus on modern applications of these concepts, including the basic concepts and diagnostics developed for the forensics of nuclear explosions, the nuclear diagnostics at the National Ignition Facility, nuclear reactor safeguards, and the detection of nuclear material production and trafficking. The review also summarizes recent developments in nuclear geophysics and nuclear medicine. The nuclear geophysics areas discussed include geo-chronology, nuclear logging for industry, the Oklo reactor, and geo-neutrinos. The section on nuclear medicine summarizes the critical advances in nuclear imaging, including PET and SPECT imaging, targeted radionuclide therapy, and the nuclear physics of medical isotope production. Each subfield discussed requires a review article unto itself, which is not the intention of the current review; rather, the current review is intended for readers who wish to get a broad understanding of applied nuclear physics.
Voltage quality. Fluctuations and flicker; Qualite de la tension. Fluctuations et flicker
Energy Technology Data Exchange (ETDEWEB)
Ott, R. [Electricite de France (EDF), Recherche et Developpement, 75 - Paris (France)
2002-11-01
Voltage fluctuations can be periodical, irregular or aleatory. If they stay in the normal limits of voltage variation the main effect is the physiological discomfort generated by the flicker of lighting systems. This article presents the causes and effects of voltage variations: 1 - definitions: classification, flicker, bulbs sensitiveness, origin, estimation; 2 - flicker measurement: regular voltage surges, any shape voltage variations: flicker-meter; 3 - isolated variations: determination of the upstream impedance, capacitors interlock, start-up of asynchronous motors; 4 - generators of repetitive or aleatory fluctuations: arc furnace, resistance welding machine, resistance furnace, influence of 175 Hz centralized remote control signals on fluorescent lamps; 5 - propagation; 6 - standards and recommendations: two particularities of flicker, emission levels; 7 - flicker abatement: increase of short-circuit power, abatement of reactive power variations, other solutions; 8 - treatment of a voltage fluctuation problem: diagnosis, voltage variations in the form of distinct rectangular surges, connection of fluctuating resistive loads, voltage variations in the form of non-rectangular surges, connection of an arc furnace. (J.S.)
DEFF Research Database (Denmark)
Sennels, H.; Sørensen, Steen; Østergaard, Mikkel
2008-01-01
OBJECTIVE: To determine whether circulating levels of osteopontin (OPN), osteoprotegerin (OPG), total soluble receptor activator of nuclear factor-kappa B ligand (total sRANKL), and high-sensitivity C-reactive protein (hsCRP) change in patients with rheumatoid arthritis (RA) during immunosuppress......OBJECTIVE: To determine whether circulating levels of osteopontin (OPN), osteoprotegerin (OPG), total soluble receptor activator of nuclear factor-kappa B ligand (total sRANKL), and high-sensitivity C-reactive protein (hsCRP) change in patients with rheumatoid arthritis (RA) during...
Liquid-state nuclear spin comagnetometers
Ledbetter, Micah; Budker, Dmitry; Romalis, Michael; Blanchard, John; Pines, Alex
2012-01-01
We discuss nuclear spin comagnetometers based on ultra-low-field nuclear magnetic resonance in mixtures of miscible solvents, each rich in a different nuclear spin. In one version thereof, Larmor precession of protons and ${\\rm ^{19}F}$ nuclei in a mixture of thermally polarized pentane and hexafluorobenzene is monitored via a sensitive alkali-vapor magnetometer. We realize transverse relaxation times in excess of 20 s and suppression of magnetic field fluctuations by a factor of 3400. We estimate it should be possible to achieve single-shot sensitivity of about $5\\times{\\rm 10^{-9} Hz}$, or about $5\\times 10^{-11} {\\rm Hz}$ in $\\approx 1$ day of integration. In a second version, spin precession of protons and ${\\rm ^{129}Xe}$ nuclei in a mixture of pentane and hyperpolarized liquid xenon is monitored using superconducting quantum interference devices. Application to spin-gravity experiments, electric dipole moment experiments, and sensitive gyroscopes are discussed.
Fluctuations and correlations in nucleus-nucleus collisions within transport approaches
Energy Technology Data Exchange (ETDEWEB)
Konchakovski, Volodymyr P.
2009-10-01
The current thesis is devoted to a systematic study of fluctuations and correlations in heavy-ion collisions, which might be considered as probes for the phase transition and the critical point in the phase diagram, within the Hadron-String- Dynamics (HSD) microscopic transport approach. This is a powerful tool to study nucleus-nucleus collisions and allows to completely simulate experimental collisions on an event-by-event basis. Thus, the transport model has been used to study fluctuations and correlations including the influence of experimental acceptance as well as centrality, system size and collision energy. The comparison to experimental data can separate the effects induced by a phase transition since there is no phase transition in the HSD version used here. Firstly the centrality dependence of multiplicity fluctuations has been studied. Different centrality selections have been performed in the analysis in correspondence to the experimental situation. For the fixed target experiment NA49 events with fixed numbers of the projectile participants have been studied while in the collider experiment PHENIX centrality classes of events have been defined by the multiplicity in certain phase space region. A decrease of participant number fluctuations (and thus volume fluctuations) in more central collisions for both experiments has been obtained. Another area of this work addresses to transport model calculations of multiplicity fluctuations in nucleus-nucleus collisions as a function of colliding energy and system size. This study is in full correspondence to the experimental program of the NA61 Collaboration at the SPS. Central C+C, S+S, In+In, and Pb+Pb nuclear collisions at Elab = 10, 20, 30, 40, 80, 158 AGeV have been investigated. The expected enhanced fluctuations - attributed to the critical point and phase transition - can be observed experimentally on top of a monotonic and smooth 'hadronic background'. These findings should be helpful for the
Dictionary of nuclear engineering
Energy Technology Data Exchange (ETDEWEB)
Sube, R.
1985-01-01
Ralf Sube, an experienced compiler of three wellknown four-language reference works has now prepared this glossary of nuclear engineering terms in English, German, French and Russian. Based on the proven lexicography of the Technik-Worterbuch series, it comprises about 30,000 terms in each language covering the following: Nuclear and Atomic Physics; Nuclear Radiation and Isotopes; Nuclear Materials; Nuclear Facilties; Nuclear Power Industry; Nuclear Weapons.
Applications of Nuclear Physics
Hayes, Anna C.
2017-01-01
Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that und...
Detrended fluctuation analysis made flexible to detect range of cross-correlated fluctuations
Kwapień, Jarosław; Oświecimka, Paweł; DroŻdŻ, Stanisław
2015-11-01
The detrended cross-correlation coefficient ρDCCA has recently been proposed to quantify the strength of cross-correlations on different temporal scales in bivariate, nonstationary time series. It is based on the detrended cross-correlation and detrended fluctuation analyses (DCCA and DFA, respectively) and can be viewed as an analog of the Pearson coefficient in the case of the fluctuation analysis. The coefficient ρDCCA works well in many practical situations but by construction its applicability is limited to detection of whether two signals are generally cross-correlated, without the possibility to obtain information on the amplitude of fluctuations that are responsible for those cross-correlations. In order to introduce some related flexibility, here we propose an extension of ρDCCA that exploits the multifractal versions of DFA and DCCA: multifractal detrended fluctuation analysis and multifractal detrended cross-correlation analysis, respectively. The resulting new coefficient ρq not only is able to quantify the strength of correlations but also allows one to identify the range of detrended fluctuation amplitudes that are correlated in two signals under study. We show how the coefficient ρq works in practical situations by applying it to stochastic time series representing processes with long memory: autoregressive and multiplicative ones. Such processes are often used to model signals recorded from complex systems and complex physical phenomena like turbulence, so we are convinced that this new measure can successfully be applied in time-series analysis. In particular, we present an example of such application to highly complex empirical data from financial markets. The present formulation can straightforwardly be extended to multivariate data in terms of the q -dependent counterpart of the correlation matrices and then to the network representation.
Moffitt, Jeffrey R; Bustamante, Carlos
2014-01-01
Enzyme-catalyzed reactions are naturally stochastic, and precision measurements of these fluctuations, made possible by single-molecule methods, promise to provide fundamentally new constraints on the possible mechanisms underlying these reactions. We review some aspects of statistical kinetics: a new field with the goal of extracting mechanistic information from statistical measures of fluctuations in chemical reactions. We focus on a widespread and important statistical measure known as the randomness parameter. This parameter is remarkably simple in that it is the squared coefficient of variation of the cycle completion times, although it places significant limits on the minimal complexity of possible enzymatic mechanisms. Recently, a general expression has been introduced for the substrate dependence of the randomness parameter that is for rate fluctuations what the Michaelis-Menten expression is for the mean rate of product generation. We discuss the information provided by the new kinetic parameters introduced by this expression and demonstrate that this expression can simplify the vast majority of published models. © 2013 FEBS.
Suppression of alloy fluctuations in GaAs-AlGaAs core-shell nanowires
Energy Technology Data Exchange (ETDEWEB)
Loitsch, Bernhard; Winnerl, Julia; Parzinger, Eric; Matich, Sonja; Wurstbauer, Ursula; Riedl, Hubert; Abstreiter, Gerhard; Finley, Jonathan J.; Koblmüller, Gregor [Walter Schottky Institut and Physik Department, Technische Universität München, 85748 Garching (Germany); Jeon, Nari; Lauhon, Lincoln J. [Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 (United States); Döblinger, Markus [Department of Chemistry, Ludwig-Maximilians-Universität Munich, 81377 München (Germany)
2016-08-29
Probing localized alloy fluctuations and controlling them by growth kinetics have been relatively limited so far in nanoscale structures such as semiconductor nanowires (NWs). Here, we demonstrate the tuning of alloy fluctuations in molecular beam epitaxially grown GaAs-AlGaAs core-shell NWs by modifications of shell growth temperature, as investigated by correlated micro-photoluminescence, scanning transmission electron microscopy, and atom probe tomography. By reducing the shell growth temperature from T > 600 °C to below 400 °C, we find a strong reduction in alloy fluctuation mediated sharp-line luminescence, concurrent with a decrease in the non-randomness of the alloy distribution in the AlGaAs shell. This trend is further characterized by a change in the alloy compositional structure from unintentional quasi-superlattices of Ga- and Al-rich AlGaAs layers at high T to a nearly homogeneous random alloy distribution at low T.
International safeguards: Accounting for nuclear materials
Energy Technology Data Exchange (ETDEWEB)
Fishbone, L.G.
1988-09-28
Nuclear safeguards applied by the International Atomic Energy Agency (IAEA) are one element of the non-proliferation regime'', the collection of measures whose aim is to forestall the spread of nuclear weapons to countries that do not already possess them. Safeguards verifications provide evidence that nuclear materials in peaceful use for nuclear-power production are properly accounted for. Though carried out in cooperation with nuclear facility operators, the verifications can provide assurance because they are designed with the capability to detect diversion, should it occur. Traditional safeguards verification measures conducted by inspectors of the IAEA include book auditing; counting and identifying containers of nuclear material; measuring nuclear material; photographic and video surveillance; and sealing. Novel approaches to achieve greater efficiency and effectiveness in safeguards verifications are under investigation as the number and complexity of nuclear facilities grow. These include the zone approach, which entails carrying out verifications for groups of facilities collectively, and randomization approach, which entails carrying out entire inspection visits some fraction of the time on a random basis. Both approaches show promise in particular situations, but, like traditional measures, must be tested to ensure their practical utility. These approaches are covered on this report. 15 refs., 16 figs., 3 tabs.
Entropic Fluctuations in Thermally Driven Harmonic Networks
Jakšić, V.; Pillet, C.-A.; Shirikyan, A.
2017-02-01
We consider a general network of harmonic oscillators driven out of thermal equilibrium by coupling to several heat reservoirs at different temperatures. The action of the reservoirs is implemented by Langevin forces. Assuming the existence and uniqueness of the steady state of the resulting process, we construct a canonical entropy production functional S^t which satisfies the Gallavotti-Cohen fluctuation theorem. More precisely, we prove that there exists κ _c>1/2 such that the cumulant generating function of S^t has a large-time limit e(α ) which is finite on a closed interval [1/2-κ _c,1/2+κ _c], infinite on its complement and satisfies the Gallavotti-Cohen symmetry e(1-α )=e(α ) for all α in R. Moreover, we show that e(α ) is essentially smooth, i.e., that e'(α )→ ∓ ∞ as α → 1/2 ∓ κ _c. It follows from the Gärtner-Ellis theorem that S^t satisfies a global large deviation principle with a rate function I( s) obeying the Gallavotti-Cohen fluctuation relation I(-s)-I(s)=s for all sin R. We also consider perturbations of S^t by quadratic boundary terms and prove that they satisfy extended fluctuation relations, i.e., a global large deviation principle with a rate function that typically differs from I( s) outside a finite interval. This applies to various physically relevant functionals and, in particular, to the heat dissipation rate of the network. Our approach relies on the properties of the maximal solution of a one-parameter family of algebraic matrix Riccati equations. It turns out that the limiting cumulant generating functions of S^t and its perturbations can be computed in terms of spectral data of a Hamiltonian matrix depending on the harmonic potential of the network and the parameters of the Langevin reservoirs. This approach is well adapted to both analytical and numerical investigations.
Glacier fluctuations during the past 2000 years
Solomina, Olga N.; Bradley, Raymond S.; Jomelli, Vincent; Geirsdottir, Aslaug; Kaufman, Darrell S.; Koch, Johannes; McKay, Nicholas P.; Masiokas, Mariano; Miller, Gifford; Nesje, Atle; Nicolussi, Kurt; Owen, Lewis A.; Putnam, Aaron E.; Wanner, Heinz; Wiles, Gregory; Yang, Bao
2016-10-01
A global compilation of glacier advances and retreats for the past two millennia grouped by 17 regions (excluding Antarctica) highlights the nature of glacier fluctuations during the late Holocene. The dataset includes 275 time series of glacier fluctuations based on historical, tree ring, lake sediment, radiocarbon and terrestrial cosmogenic nuclide data. The most detailed and reliable series for individual glaciers and regional compilations are compared with summer temperature and, when available, winter precipitation reconstructions, the most important parameters for glacier mass balance. In many cases major glacier advances correlate with multi-decadal periods of decreased summer temperature. In a few cases, such as in Arctic Alaska and western Canada, some glacier advances occurred during relatively warm wet times. The timing and scale of glacier fluctuations over the past two millennia varies greatly from region to region. However, the number of glacier advances shows a clear pattern for the high, mid and low latitudes and, hence, points to common forcing factors acting at the global scale. Globally, during the first millennium CE glaciers were smaller than between the advances in 13th to early 20th centuries CE. The precise extent of glacier retreat in the first millennium is not well defined; however, the most conservative estimates indicate that during the 1st and 2nd centuries in some regions glaciers were smaller than at the end of 20th/early 21st centuries. Other periods of glacier retreat are identified regionally during the 5th and 8th centuries in the European Alps, in the 3rd-6th and 9th centuries in Norway, during the 10th-13th centuries in southern Alaska, and in the 18th century in Spitsbergen. However, no single period of common global glacier retreat of centennial duration, except for the past century, has yet been identified. In contrast, the view that the Little Ice Age was a period of global glacier expansion beginning in the 13th century
Schneider, A. S.; Berry, D. K.; Briggs, C. M.; Caplan, M. E.; Horowitz, C. J.
2014-11-01
Background: The dense neutron-rich matter found in supernovae and inside neutron stars is expected to form complex nonuniform phases, often referred to as nuclear pasta. The pasta shapes depend on density, temperature and proton fraction and determine many transport properties in supernovae and neutron star crusts. Purpose: To characterize the topology and compute two observables, the radial distribution function (RDF) g (r ) and the structure factor S (q ) , for systems with proton fractions Yp=0.10 ,0.20 ,0.30 , and 0.40 at about one-third of nuclear saturation density, n =0.050 fm-3 , and temperatures near k T =1 MeV . Methods: We use two recently developed hybrid CPU/GPU codes to perform large scale molecular dynamics (MD) simulations with 51 200 and 409 600 nucleons. From the output of the MD simulations we obtain the two desired observables. Results: We compute and discuss the differences in topology and observables for each simulation. We observe that the two lowest proton fraction systems simulated, Yp=0.10 and 0.20 , equilibrate quickly and form liquidlike structures. Meanwhile, the two higher proton fraction systems, Yp=0.30 and 0.40 , take a longer time to equilibrate and organize themselves in solidlike periodic structures. Furthermore, the Yp=0.40 system is made up of slabs, lasagna phase, interconnected by defects while the Yp=0.30 systems consist of a stack of perforated plates, the nuclear waffle phase. Conclusions: The periodic configurations observed in our MD simulations for proton fractions Yp≥0.30 have important consequences for the structure factors S (q ) of protons and neutrons, which relate to many transport properties of supernovae and neutron star crust. A detailed study of the waffle phase and how its structure depends on temperature, size of the simulation, and the screening length showed that finite-size effects appear to be under control and, also, that the plates in the waffle phase merge at temperatures slightly above 1.0 MeV and
Directory of Open Access Journals (Sweden)
V. Heera
2015-11-01
Full Text Available Silicon films with Ga-rich nanoprecipitates are superconductors or insulators in dependence on their normal state resistance. Even in the insulating state of the film superconducting nanoprecipitates exist below the critical temperature of 7 K and determine its complex transport behavior. In this range sometimes large, random resistance jumps appear that are accompanied by little temperature changes. The resistance fluctuates between a well-defined low-resistance value and a broader band of higher resistances. Jumps to higher resistance are associated with a temperature decrease and vice versa. We present experimental results on these fluctuations and suppose a first order phase transition in the film as probable origin.
Miller, H.I.; Smith, R.C.
1958-01-21
This patent relates to nuclear reactors of the type which use a liquid fuel, such as a solution of uranyl sulfate in ordinary water which acts as the moderator. The reactor is comprised of a spherical vessel having a diameter of about 12 inches substantially surrounded by a reflector of beryllium oxide. Conventionnl control rods and safety rods are operated in slots in the reflector outside the vessel to control the operation of the reactor. An additional means for increasing the safety factor of the reactor by raising the ratio of delayed neutrons to prompt neutrons, is provided and consists of a soluble sulfate salt of beryllium dissolved in the liquid fuel in the proper proportion to obtain the result desired.
Directory of Open Access Journals (Sweden)
Xia Liping
2015-12-01
Full Text Available Nuclear weapons have played an important role in China's national strategy. China’s nuclear doctrine has a very strong continuity. Nevertheless, China has made readjustments in its nuclear doctrine according to the changes of its internal and external situation and its general strategic threat perception. China’s nuclear doctrine has experienced a process of evolution from anti-nuclear blackmail to minimum deterrence. There are five major parts in China's nuclear doctrine: policy of declaration, nuclear development, nuclear deployment, nuclear employment, and nuclear disarmament. Because China is faced with a different situation from other nuclear powers and has its own strategic culture, China has a nuclear doctrine with its own characteristics. China’s nuclear doctrine has been affiliated with and has served the national development strategy, national security strategy, national defense policy and military strategy of China.
The effect of dust charge fluctuations in the near-Enceladus plasma
Yaroshenko, Victoria; Luehr, Hermann
The geologically active moon Enceladus feeds the most extended, Saturns’ E ring by dust particles and creates a specific multispecies plasma environment -the Enceladus plasma torus. The key process of dust-plasma interactions is dust charging. The grain electrostatic potential in space is usually calculated from the so called orbit-motion limited (OML) model [1]. It is valid for a single particle immersed into collisionless plasmas with Maxwellian electron and ion distributions. Such a parameter regime cannot be directly applied to the conditions relevant for the Enceladus plasma environment and especially, for the dense plume region, where the dust density is high, sometimes even exceeding the plasma number density. Generalizing the OML formalism, we examine several new factors that can significantly affect the equilibrium grain charging: (a) multispecies composition of the core plasma, including hot electrons and newborn cold ions; (b) effect of high dust number density (c) the role of dust size distributions. We also focus on such a specific peculiarity of dust charging as charge fluctuations. Since the grain charges are not fixed and can fluctuate, this introduces the crucial difference between ordinary plasma species (electrons and ions) and charged dust particles. There are two reasons for such fluctuations. The charging of the grains depends on the local plasma characteristics, and thus some temporal or spatial variations in the plasma parameters ultimately modify numbers of charges acquired by a grain. Some of these effects related to the near-Enceladus plasma environment have recently been discussed [2]. A second reason for charge fluctuations is the discrete nature of the charge carriers. Electrons and ions are absorbed or emitted by the grain surface randomly thus leading to stochastic fluctuations of the dust net charge. These fluctuations exist always even in a steady-state uniform plasma, and we discuss the statistical characteristics of random dust
Nuclear Binding Near a Quantum Phase Transition.
Elhatisari, Serdar; Li, Ning; Rokash, Alexander; Alarcón, Jose Manuel; Du, Dechuan; Klein, Nico; Lu, Bing-Nan; Meißner, Ulf-G; Epelbaum, Evgeny; Krebs, Hermann; Lähde, Timo A; Lee, Dean; Rupak, Gautam
2016-09-23
How do protons and neutrons bind to form nuclei? This is the central question of ab initio nuclear structure theory. While the answer may seem as simple as the fact that nuclear forces are attractive, the full story is more complex and interesting. In this work we present numerical evidence from ab initio lattice simulations showing that nature is near a quantum phase transition, a zero-temperature transition driven by quantum fluctuations. Using lattice effective field theory, we perform Monte Carlo simulations for systems with up to twenty nucleons. For even and equal numbers of protons and neutrons, we discover a first-order transition at zero temperature from a Bose-condensed gas of alpha particles (^{4}He nuclei) to a nuclear liquid. Whether one has an alpha-particle gas or nuclear liquid is determined by the strength of the alpha-alpha interactions, and we show that the alpha-alpha interactions depend on the strength and locality of the nucleon-nucleon interactions. This insight should be useful in improving calculations of nuclear structure and important astrophysical reactions involving alpha capture on nuclei. Our findings also provide a tool to probe the structure of alpha cluster states such as the Hoyle state responsible for the production of carbon in red giant stars and point to a connection between nuclear states and the universal physics of bosons at large scattering length.
Reconversion of nuclear weapons
Kapitza, Sergei P
1992-01-01
The nuclear predicament or nuclear option. Synopsis of three lectures : 1- The physical basis of nuclear technology. Physics of fission. Chain reaction in reactors and weapons. Fission fragments. Separration of isotopes. Radiochemistry.2- Nuclear reactors with slow and fast neutrons. Power, size, fuel and waste. Plutonium production. Dose rate, shielding and health hazard. The lessons of Chernobyl3- Nuclear weapons. Types, energy, blast and fallout. Fusion and hydrogen bombs. What to do with nuclear weapons when you cannot use them? Testing. Nonmilittary use. Can we get rid of the nuclear weapon? Nuclear proliferation. Is there a nuclear future?
Binary Fingerprints at Fluctuation-Enhanced Sensing
Chang, Hung-Chih; King, Maria D; Kwan, Chiman
2009-01-01
We developed a simple way to generate binary patterns based on spectral slopes in different frequency ranges at fluctuation-enhanced sensing. Such patterns can be considered as binary "fingerprints" of odors. The method has experimentally been demonstrated with a commercial semiconducting metal oxide (Taguchi) sensor exposed to bacterial odors (Escherichia coli and Anthrax-surrogate Bacillus subtilis) and processing their stochastic signals. With a single Taguchi sensor, the situations of empty chamber, tryptic soy agar (TSA) medium, or TSA with bacteria could be distinguished with 100% reproducibility. The bacterium numbers were in the range of 25 thousands to 1 million. To illustrate the relevance for ultra-low power consumption, we show that this new type of signal processing and pattern recognition task can be implemented by a simple analog circuitry and a few logic gates with total power consumption in the microWatts range.
Graviton fluctuations erase the cosmological constant
Wetterich, C.
2017-10-01
Graviton fluctuations induce strong non-perturbative infrared renormalization effects for the cosmological constant. The functional renormalization flow drives a positive cosmological constant towards zero, solving the cosmological constant problem without the need to tune parameters. We propose a simple computation of the graviton contribution to the flow of the effective potential for scalar fields. Within variable gravity, with effective Planck mass proportional to the scalar field, we find that the potential increases asymptotically at most quadratically with the scalar field. The solutions of the derived cosmological equations lead to an asymptotically vanishing cosmological ;constant; in the infinite future, providing for dynamical dark energy in the present cosmological epoch. Beyond a solution of the cosmological constant problem, our simplified computation also entails a sizeable positive graviton-induced anomalous dimension for the quartic Higgs coupling in the ultraviolet regime, substantiating the successful prediction of the Higgs boson mass within the asymptotic safety scenario for quantum gravity.
Probing thermodynamic fluctuations in high temperature superconductors
Vidal, Felix; Veira, J. A.; Maza, J.; Miguélez, F.; Morán, E.; Alario, M. A.
1988-04-01
We probe thermodynamic fluctuations in HTSC by measuring the excess electrical conductivity, Δσ, abovr T c in single-phase (within 4%) Ba 2LnCu 3O 7-δ compounds, with LnY, Ho and Sm. As expected, the measured relative effect, Δσ / σ (300 K), is much more important in HTSC than for low-temperature superconductors (at least one order of magnitude). In the reduced temperature region -5=-0.47 ± 0.06. This result confirms an universal critical behaviour of Δσ in HTSC, and the value of agrees with that predicted by the Aslamazov-Larkin (AL) theory for three-dimensional BCS superconductivity. However, A shows a normal conductivity dependence which is not accounted for by the AL theory.
Fluctuation-enhanced stability of a metapopulation
Energy Technology Data Exchange (ETDEWEB)
Nie Linru [Department of Physics, Yunnan University, Kunming 650091 (China); Science School, Kunming University of Science and Technology, Kunming 650051 (China)], E-mail: nlr@mail.ynu.edu.cn; Mei Dongcheng [Department of Physics, Yunnan University, Kunming 650091 (China)
2007-11-05
The simplified incidence function model with cross-correlated noises was employed to study the stability of a metapopulation perturbed by environments. Through numerically computing the stationary probability distribution function (PDF) and stochastically simulating the extinction time of a metapopulation, we found that: (i) The multiplicative noise intensity D inhibits the fluctuation of dynamic variable while the additive noise intensity {alpha} intensifies it, whether there is a correlation between the multiplicative noise and the additive noise; (ii) As the correlation strength ({lambda}) between them is greater than zero, there is an optimal D in which the PDF curve deviates furthest from the extinction position, and another optimal D which maximally delays the extinction time of a metapopulation; (iii) For the constant D and {alpha}, the increment of {lambda} not only upgrades the probability that patches are occupied by a metapopulation, but also delays the time that a metapopulation goes to extinction.
Probing quantum fluctuation theorems in engineered reservoirs
Elouard, C.; Bernardes, N. K.; Carvalho, A. R. R.; Santos, M. F.; Auffèves, A.
2017-10-01
Fluctuation theorems (FTs) are central in stochastic thermodynamics, as they allow for quantifying the irreversibility of single trajectories. Although they have been experimentally checked in the classical regime, a practical demonstration in the framework of quantum open systems is still to come. Here we propose a realistic platform to probe FTs in the quantum regime. It is based on an effective two-level system coupled to an engineered reservoir, that enables the detection of the photons emitted and absorbed by the system. When the system is coherently driven, a measurable quantum component in the entropy production is evidenced. We quantify the error due to photon detection inefficiency, and show that the missing information can be efficiently corrected, based solely on the detected events. Our findings provide new insights into how the quantum character of a physical system impacts its thermodynamic evolution.
Entangled scalar and tensor fluctuations during inflation
Energy Technology Data Exchange (ETDEWEB)
Collins, Hael; Vardanyan, Tereza [Department of Physics, Carnegie Mellon University,5000 Forbes Avenue, Pittsburgh, Pennsylvania (United States)
2016-11-29
We show how the choice of an inflationary state that entangles scalar and tensor fluctuations affects the angular two-point correlation functions of the T, E, and B modes of the cosmic microwave background. The propagators for a state starting with some general quadratic entanglement are solved exactly, leading to predictions for the primordial scalar-scalar, tensor-tensor, and scalar-tensor power spectra. These power spectra are expressed in terms of general functions that describe the entangling structure of the initial state relative to the standard Bunch-Davies vacuum. We illustrate how such a state would modify the angular correlations in the CMB with a simple example where the initial state is a small perturbation away from the Bunch-Davies state. Because the state breaks some of the rotational symmetries, the angular power spectra no longer need be strictly diagonal.
Dynamical fluctuations in biochemical reactions and cycles
Pressé, S.; Ghosh, K.; Phillips, R.; Dill, K. A.
2010-09-01
We develop theory for the dynamics and fluctuations in some cyclic and linear biochemical reactions. We use the approach of maximum caliber, which computes the ensemble of paths taken by the system, given a few experimental observables. This approach may be useful for interpreting single-molecule or few-particle experiments on molecular motors, enzyme reactions, ion-channels, and phosphorylation-driven biological clocks. We consider cycles where all biochemical states are observable. Our method shows how: (1) the noise in cycles increases with cycle size and decreases with the driving force that spins the cycle and (2) provides a recipe for estimating small-number features, such as probability of backward spin in small cycles, from experimental data. The back-spin probability diminishes exponentially with the deviation from equilibrium. We believe this method may also be useful for other few-particle nonequilibrium biochemical reaction systems.
Quantum Bochkov-Kuzovlev work fluctuation theorems.
Campisi, Michele; Talkner, Peter; Hänggi, Peter
2011-01-28
The quantum version of the Bochkov-Kuzovlev identity is derived on the basis of the appropriate definition of work as the difference of the measured internal energies of a quantum system at the beginning and the end of an external action on the system given by a prescribed protocol. According to the spirit of the original Bochkov-Kuzovlev approach, we adopt the 'exclusive' viewpoint, meaning that the coupling to the external work source is not counted as part of the internal energy. The corresponding canonical and microcanonical quantum fluctuation theorems are derived as well, and are compared with the respective theorems obtained within the 'inclusive' approach. The relations between the quantum inclusive work w, the exclusive work w(0) and the dissipated work w(dis), are discussed and clarified. We show by an explicit example that w(0) and w(dis) are distinct stochastic quantities obeying different statistics.
Multiplane 3D superresolution optical fluctuation imaging
Geissbuehler, Stefan; Godinat, Aurélien; Bocchio, Noelia L; Dubikovskaya, Elena A; Lasser, Theo; Leutenegger, Marcel
2013-01-01
By switching fluorophores on and off in either a deterministic or a stochastic manner, superresolution microscopy has enabled the imaging of biological structures at resolutions well beyond the diffraction limit. Superresolution optical fluctuation imaging (SOFI) provides an elegant way of overcoming the diffraction limit in all three spatial dimensions by computing higher-order cumulants of image sequences of blinking fluorophores acquired with a conventional widefield microscope. So far, three-dimensional (3D) SOFI has only been demonstrated by sequential imaging of multiple depth positions. Here we introduce a versatile imaging scheme which allows for the simultaneous acquisition of multiple focal planes. Using 3D cross-cumulants, we show that the depth sampling can be increased. Consequently, the simultaneous acquisition of multiple focal planes reduces the acquisition time and hence the photo-bleaching of fluorescent markers. We demonstrate multiplane 3D SOFI by imaging the mitochondria network in fixed ...
Fluctuations in Hertz chains at equilibrium.
Przedborski, Michelle; Sen, Surajit; Harroun, Thad A
2017-03-01
We examine the long-term behavior of nonintegrable, energy-conserved, one-dimensional systems of macroscopic grains interacting via a contact-only generalized Hertz potential and held between stationary walls. Such systems can be set up to have no phononic background excitation and represent examples of a sonic vacuum. Existing dynamical studies showed the absence of energy equipartitioning in such systems, hence their long-term dynamics was described as quasiequilibrium. Here we show that these systems do in fact reach thermal equilibrium at sufficiently long times, as indicated by the calculated heat capacity. As a by-product, we show how fluctuations of system quantities, and thus the distribution functions, are influenced by the Hertz potential. In particular, the variance of the system's kinetic energy probability density function is reduced by a factor related to the contact potential.
Outer magnetospheric fluctuations and pulsar timing noise
Energy Technology Data Exchange (ETDEWEB)
Cheng, K.S.
1987-10-01
The Cheng, Ho, and Ruderman (1986) outer-magnetosphere gap model was used to investigate the stability of Crab-type outer magnetosphere gaps for pulsars having the parameter (Omega-square B) similar to that of the Crab pulsar. The Lamb, Pines, and Shaham (1978) fluctuating magnetosphere noise model was applied to the Crab pulsar to examine the type of the equation of state that best describes the structure of the neutron star. The noise model was also applied to other pulsars, and the theoretical results were compared with observational data. The results of the comparison are consistent with the stiff equation of state, as suggested by the vortex creep model of the neutron star interior. The timing-noise observations also contribute to the evidence for the existence of superfluid in the core of the neutron star. 37 references.
Graviton fluctuations erase the cosmological constant
Directory of Open Access Journals (Sweden)
C. Wetterich
2017-10-01
Full Text Available Graviton fluctuations induce strong non-perturbative infrared renormalization effects for the cosmological constant. The functional renormalization flow drives a positive cosmological constant towards zero, solving the cosmological constant problem without the need to tune parameters. We propose a simple computation of the graviton contribution to the flow of the effective potential for scalar fields. Within variable gravity, with effective Planck mass proportional to the scalar field, we find that the potential increases asymptotically at most quadratically with the scalar field. The solutions of the derived cosmological equations lead to an asymptotically vanishing cosmological “constant” in the infinite future, providing for dynamical dark energy in the present cosmological epoch. Beyond a solution of the cosmological constant problem, our simplified computation also entails a sizeable positive graviton-induced anomalous dimension for the quartic Higgs coupling in the ultraviolet regime, substantiating the successful prediction of the Higgs boson mass within the asymptotic safety scenario for quantum gravity.
Cirrus feedback on interannual climate fluctuations
Energy Technology Data Exchange (ETDEWEB)
Zhou, C; Dessler, A E; Zelinka, M D; Yang, P; Wang, T
2014-12-28
Cirrus clouds are not only important in determining the current climate, but also play an important role in climate change and variability. Analysis of satellite observations shows that the amount and altitude of cirrus clouds (optical depth <3.6, cloud top pressure <440 hPa) increase in response to inter-annual surface warming. Thus, cirrus clouds are likely to act as a positive feedback on short-term climate fluctuations, by reducing the planet’s ability to radiate longwave radiation to space in response to planetary surface warming. Using cirrus cloud radiative kernels, the magnitude of cirrus feedback is estimated to be 0.20±0.21W/m_{2}/°C, which is comparable to the surface albedo feedback. Most of the cirrus feedback comes from increasing cloud amount in the tropical tropopause layer (TTL) and subtropical upper troposphere.
Structure, stabilité et fluctuations
Glansdorff, P
1971-01-01
Théorie générale : lois de conservation et bilans ; le second principe de la thermodynamique et le bilan entropique ; thermodynamique linéaire des phénomènes irréversibles ; théorie de la stabilité de l'équilibre thermodynamique par la méthode Gibbs-Duhem ; théorie générale de la stabilité de l'équilibre thermodynamique ; conditions de stabilité thermodynamique et hydrodynamique des syst¿mes hors d'équilibre ; forme explicite des conditions de stablité des processus hors d'équilibre ; stabilité et fluctuations ; le critère général d'évolution.
Fluctuations and Linear Response in Supercooled Liquids
DEFF Research Database (Denmark)
Nielsen, Johannes K.
of the external thermodynamic system parameters. In thermodynamic response theory equivalence between ensembles is broken, but time correlation functions sampled in different ensembles are connected through the Maxwell relations of thermodynamics generalized to the frequency domain. Different applications......Fluctuation dissipation theorems are derived for thermodynamic properties like frequency dependent specific heat and compressibility. First the case where a systems dynamics are restricted by constant volume and energy is considered. The dynamic linear response to a heat pulse and a volume change...... of the theory in the field of supercooled liquids are showed. First the full frequency dependent thermodynamic response matrix is extracted from simulations of a binary Lennard Jones liquid. Secondly some simple stochastic models of supercooled liquids are analysed in the framework of linear thermodynamic...
Gluon Green functions free of quantum fluctuations
Directory of Open Access Journals (Sweden)
A. Athenodorou
2016-09-01
Full Text Available This letter reports on how the Wilson flow technique can efficaciously kill the short-distance quantum fluctuations of 2- and 3-gluon Green functions, remove the ΛQCD scale and destroy the transition from the confining non-perturbative to the asymptotically-free perturbative sector. After the Wilson flow, the behavior of the Green functions with momenta can be described in terms of the quasi-classical instanton background. The same behavior also occurs, before the Wilson flow, at low-momenta. This last result permits applications as, for instance, the detection of instanton phenomenological properties or a determination of the lattice spacing only from the gauge sector of the theory.
Queues and Lévy fluctuation theory
Dębicki, Krzysztof
2015-01-01
The book provides an extensive introduction to queueing models driven by Lévy-processes as well as a systematic account of the literature on Lévy-driven queues. The objective is to make the reader familiar with the wide set of probabilistic techniques that have been developed over the past decades, including transform-based techniques, martingales, rate-conservation arguments, change-of-measure, importance sampling, and large deviations. On the application side, it demonstrates how Lévy traffic models arise when modelling current queueing-type systems (as communication networks) and includes applications to finance. Queues and Lévy Fluctuation Theory will appeal to graduate/postgraduate students and researchers in mathematics, computer science, and electrical engineering. Basic prerequisites are probability theory and stochastic processes.
Renormalization group method for Farley-Buneman fluctuations: basic results
Directory of Open Access Journals (Sweden)
A. M. Hamza
1996-01-01
Full Text Available Sudan and Keskinen in [1979] derived a set of equations governing the nonlinear evolution of density fluctuations in a low-pressure weakly ionized plasma driven unstable by the E x B or gradient-drift instability. This problem is of fundamental importance in ionospheric physics. The nonlinear nature of the equations makes it very hard to write a closed form solution. In this paper we propose to use 'Dynamical Renormalization Group' methods to study the long-- wavelength, long-time behaviour of density correlations generated in this ionospheric plasma stirred by a Gaussian random force characterized by a correlation function (fk fk k. The effect of the small scales on the large scale dynamics in the limit k -> 0 and infinite 'Reynolds' number, can be expressed in the form of renormalized coefficients; in our case renormalized diffusion. If one assumes the power spectra to be given by the kolmogorov argument of cascading of energy, then one can not only derive a subgrid model based on the results of RNG, and this has been done by Hamza and Sudan [1995], but one can also extract the skewness of the spectra as we do in this paper.
Spin jam induced by quantum fluctuations in a frustrated magnet.
Yang, Junjie; Samarakoon, Anjana; Dissanayake, Sachith; Ueda, Hiroaki; Klich, Israel; Iida, Kazuki; Pajerowski, Daniel; Butch, Nicholas P; Huang, Q; Copley, John R D; Lee, Seung-Hun
2015-09-15
Since the discovery of spin glasses in dilute magnetic systems, their study has been largely focused on understanding randomness and defects as the driving mechanism. The same paradigm has also been applied to explain glassy states found in dense frustrated systems. Recently, however, it has been theoretically suggested that different mechanisms, such as quantum fluctuations and topological features, may induce glassy states in defect-free spin systems, far from the conventional dilute limit. Here we report experimental evidence for existence of a glassy state, which we call a spin jam, in the vicinity of the clean limit of a frustrated magnet, which is insensitive to a low concentration of defects. We have studied the effect of impurities on SrCr9pGa12-9pO19 [SCGO(p)], a highly frustrated magnet, in which the magnetic Cr(3+) (s = 3/2) ions form a quasi-2D triangular system of bipyramids. Our experimental data show that as the nonmagnetic Ga(3+) impurity concentration is changed, there are two distinct phases of glassiness: an exotic glassy state, which we call a spin jam, for the high magnetic concentration region (p > 0.8) and a cluster spin glass for lower magnetic concentration (p < 0.8). This observation indicates that a spin jam is a unique vantage point from which the class of glassy states of dense frustrated magnets can be understood.
Fluctuations of Lévy processes with applications introductory lectures
Kyprianou, Andreas E
2014-01-01
Lévy processes are the natural continuous-time analogue of random walks and form a rich class of stochastic processes around which a robust mathematical theory exists. Their application appears in the theory of many areas of classical and modern stochastic processes including storage models, renewal processes, insurance risk models, optimal stopping problems, mathematical finance, continuous-state branching processes and positive self-similar Markov processes. This textbook is based on a series of graduate courses concerning the theory and application of Lévy processes from the perspective of their path fluctuations. Central to the presentation is the decomposition of paths in terms of excursions from the running maximum as well as an understanding of short- and long-term behaviour. The book aims to be mathematically rigorous while still providing an intuitive feel for underlying principles. The results and applications often focus on the case of Lévy processes with jumps in only one direction, for which r...
Energy Technology Data Exchange (ETDEWEB)
Beauvy, M.; Berthoud, G.; Defranceschi, M.; Ducros, G.; Guerin, Y.; Limoge, Y.; Madic, Ch.; Santarini, G.; Seiler, J.M.; Sollogoub, P.; Vernaz, E.; Guillet, J.L.; Ballagny, A.; Bechade, J.L.; Bonin, B.; Brachet, J.Ch.; Delpech, M.; Dubois, S.; Ferry, C.; Freyss, M.; Gilbon, D.; Grouiller, J.P.; Iracane, D.; Lansiart, S.; Lemoine, P.; Lenain, R.; Marsault, Ph.; Michel, B.; Noirot, J.; Parrat, D.; Pelletier, M.; Perrais, Ch.; Phelip, M.; Pillon, S.; Poinssot, Ch.; Vallory, J.; Valot, C.; Pradel, Ph.; Bonin, B.; Bouquin, B.; Dozol, M.; Lecomte, M.; Vallee, A.; Bazile, F.; Parisot, J.F.; Finot, P.; Roberts, J.F
2009-07-01
Fuel is one of the essential components in a reactor. It is within that fuel that nuclear reactions take place, i.e. fission of heavy atoms, uranium and plutonium. Fuel is at the core of the reactor, but equally at the core of the nuclear system as a whole. Fuel design and properties influence reactor behavior, performance, and safety. Even though it only accounts for a small part of the cost per kilowatt-hour of power provided by current nuclear power plants, good utilization of fuel is a major economic issue. Major advances have yet to be achieved, to ensure longer in-reactor dwell-time, thus enabling fuel to yield more energy; and improve ruggedness. Aside from economics, and safety, such strategic issues as use of plutonium, conservation of resources, and nuclear waste management have to be addressed, and true technological challenges arise. This Monograph surveys current knowledge regarding in-reactor behavior, operating limits, and avenues for R and D. It also provides illustrations of ongoing research work, setting out a few noteworthy results recently achieved. Content: 1 - Introduction; 2 - Water reactor fuel: What are the features of water reactor fuel? 9 (What is the purpose of a nuclear fuel?, Ceramic fuel, Fuel rods, PWR fuel assemblies, BWR fuel assemblies); Fabrication of water reactor fuels (Fabrication of UO{sub 2} pellets, Fabrication of MOX (mixed uranium-plutonium oxide) pellets, Fabrication of claddings); In-reactor behavior of UO{sub 2} and MOX fuels (Irradiation conditions during nominal operation, Heat generation, and removal, The processes involved at the start of irradiation, Fission gas behavior, Microstructural changes); Water reactor fuel behavior in loss of tightness conditions (Cladding, the first containment barrier, Causes of failure, Consequences of a failure); Microscopic morphology of fuel ceramic and its evolution under irradiation; Migration and localization of fission products in UOX and MOX matrices (The ceramic under
Convergence and Fluctuations of Regularized Tyler Estimators
Kammoun, Abla; Couillet, Romain; Pascal, Ferderic; Alouini, Mohamed-Slim
2016-02-01
This article studies the behavior of regularized Tyler estimators (RTEs) of scatter matrices. The key advantages of these estimators are twofold. First, they guarantee by construction a good conditioning of the estimate and second, being a derivative of robust Tyler estimators, they inherit their robustness properties, notably their resilience to the presence of outliers. Nevertheless, one major problem that poses the use of RTEs in practice is represented by the question of setting the regularization parameter $\\rho$. While a high value of $\\rho$ is likely to push all the eigenvalues away from zero, it comes at the cost of a larger bias with respect to the population covariance matrix. A deep understanding of the statistics of RTEs is essential to come up with appropriate choices for the regularization parameter. This is not an easy task and might be out of reach, unless one considers asymptotic regimes wherein the number of observations $n$ and/or their size $N$ increase together. First asymptotic results have recently been obtained under the assumption that $N$ and $n$ are large and commensurable. Interestingly, no results concerning the regime of $n$ going to infinity with $N$ fixed exist, even though the investigation of this assumption has usually predated the analysis of the most difficult $N$ and $n$ large case. This motivates our work. In particular, we prove in the present paper that the RTEs converge to a deterministic matrix when $n\\to\\infty$ with $N$ fixed, which is expressed as a function of the theoretical covariance matrix. We also derive the fluctuations of the RTEs around this deterministic matrix and establish that these fluctuations converge in distribution to a multivariate Gaussian distribution with zero mean and a covariance depending on the population covariance and the parameter $\\rho$.
Convergence and fluctuations of Regularized Tyler estimators
Kammoun, Abla
2015-10-26
This article studies the behavior of regularized Tyler estimators (RTEs) of scatter matrices. The key advantages of these estimators are twofold. First, they guarantee by construction a good conditioning of the estimate and second, being a derivative of robust Tyler estimators, they inherit their robustness properties, notably their resilience to the presence of outliers. Nevertheless, one major problem that poses the use of RTEs in practice is represented by the question of setting the regularization parameter p. While a high value of p is likely to push all the eigenvalues away from zero, it comes at the cost of a larger bias with respect to the population covariance matrix. A deep understanding of the statistics of RTEs is essential to come up with appropriate choices for the regularization parameter. This is not an easy task and might be out of reach, unless one considers asymptotic regimes wherein the number of observations n and/or their size N increase together. First asymptotic results have recently been obtained under the assumption that N and n are large and commensurable. Interestingly, no results concerning the regime of n going to infinity with N fixed exist, even though the investigation of this assumption has usually predated the analysis of the most difficult N and n large case. This motivates our work. In particular, we prove in the present paper that the RTEs converge to a deterministic matrix when n → ∞ with N fixed, which is expressed as a function of the theoretical covariance matrix. We also derive the fluctuations of the RTEs around this deterministic matrix and establish that these fluctuations converge in distribution to a multivariate Gaussian distribution with zero mean and a covariance depending on the population covariance and the parameter.
Trends in Nuclear Astrophysics
Schatz, Hendrik
2016-01-01
Nuclear Astrophysics is a vibrant field at the intersection of nuclear physics and astrophysics that encompasses research in nuclear physics, astrophysics, astronomy, and computational science. This paper is not a review. It is intended to provide an incomplete personal perspective on current trends in nuclear astrophysics and the specific role of nuclear physics in this field.
Fluctuation traits of Litchi wholesale price in China
Yan, F. F.; Qi, W. E.; Ouyang, X.
2017-07-01
This paper chose the wholesale price of litchi as research object based on the daily data of 11 main sales markets in China -- Beijing, Chengdu, Guangzhou, Hefei, Jiaxing, Nanjing, Shanghai, Shenyang, Changsha, Zhengzhou and Chongqing from April 1, 2012 to September 30, 2016. After analyzing the fluctuation characteristics with BP filter method and H-P filter method, and the fluctuation trends of litchi wholesale price in China obtained by BP filter are roughly consistent with the trends obtained by H-P filter. The main conclusions are as follows: there is strong cyclicality in the fluctuation of litchi wholesale price; the period of fluctuations of litchi wholesale prices are not repeatable; litchi wholesale price fluctuates asymmetrically in one fluctuation cycle.
Kotegawa, Hisashi; Fukumoto, Kenta; Toyama, Toshihiro; Tou, Hideki; Harima, Hisatomo; Harada, Atsushi; Kitaoka, Yoshio; Haga, Yoshinori; Yamamoto, Etsuji; Ōnuki, Yoshichika; Itoh, Kohei M.; Haller, Eugene E.
2015-05-01
We report on the 73Ge-nuclear magnetic resonance (NMR)/nuclear quadrupole resonance (NQR) results for the ferromagnetic (FM) superconductor URhGe. The magnitude and direction of the internal field, Hint, and the parameters of the electric field gradient at the Ge site were determined experimentally. By using powdered polycrystalline samples oriented by different methods, the field dependences of NMR shift and nuclear spin relaxation rates for H0 || c (easy axis) and H0 || b were obtained. From the NMR shifts for H0 || b, we confirmed a gradual suppression of the Curie temperature and observed a phase separation near the spin reorientation. The observation of the phase separation gives microscopic evidence that the spin reorientation under H0 || b is of first order at low temperatures. The nuclear spin-lattice relaxation rate 1/T1 indicates that the magnetic fluctuations are suppressed for H0 || c, whereas the fluctuations remain strongly for H0 || b. The enhancements of both 1/T1T and the nuclear spin-spin relaxation rate 1/T2 for H0 || b toward the spin reorientation field suggest that the field-induced superconductivity in URhGe emerges under the magnetic fluctuations along the b- and c-axes.
Fluctuation-Driven Transport in Biological Nanopores. A 3D Poisson–Nernst–Planck Study
Directory of Open Access Journals (Sweden)
Marcel Aguilella-Arzo
2017-03-01
Full Text Available Living systems display a variety of situations in which non-equilibrium fluctuations couple to certain protein functions yielding astonishing results. Here we study the bacterial channel OmpF under conditions similar to those met in vivo, where acidic resistance mechanisms are known to yield oscillations in the electric potential across the cell membrane. We use a three-dimensional structure-based theoretical approach to assess the possibility of obtaining fluctuation-driven transport. Our calculations show that remarkably high voltages would be necessary to observe the actual transport of ions against their concentration gradient. The reasons behind this are the mild selectivity of this bacterial pore and the relatively low efficiencies of the oscillating signals characteristic of membrane cells (random telegraph noise and thermal noise.
Messenger RNA Fluctuations and Regulatory RNAs Shape the Dynamics of Negative Feedback Loop
Martínez, María Rodríguez; Tlusty, Tsvi; Pilpel, Yitzhak; Furman, Itay; 10.1103/PhysRevE.81.031924
2010-01-01
Single cell experiments of simple regulatory networks can markedly differ from cell population experiments. Such differences arise from stochastic events in individual cells that are averaged out in cell populations. For instance, while individual cells may show sustained oscillations in the concentrations of some proteins, such oscillations may appear damped in the population average. In this paper we investigate the role of RNA stochastic fluctuations as a leading force to produce a sustained excitatory behavior at the single cell level. Opposed to some previous models, we build a fully stochastic model of a negative feedback loop that explicitly takes into account the RNA stochastic dynamics. We find that messenger RNA random fluctuations can be amplified during translation and produce sustained pulses of protein expression. Motivated by the recent appreciation of the importance of non--coding regulatory RNAs in post--transcription regulation, we also consider the possibility that a regulatory RNA transcri...
Aggarwal, S. K.; Lovallo, Michele; Khan, P. K.; Rastogi, B. K.; Telesca, Luciano
2015-05-01
The sequence of magnitudes of the earthquakes occurred in Kachchh area (Gujarat, Western India) from 2003 to 2012, has been analysed by using the multifractal detrended fluctuation analysis. The complete and the aftershock-depleted catalogues with minimum magnitude M3 were investigated. Both seismic catalogues show multifractal characteristics. The aftershock-depleted catalogue is more multifractal and also more persistent than the whole catalogue; this indicates that aftershock magnitudes contribute to increase the homogeneity and the randomness of the magnitude sequence of the whole seismicity. The singularity spectrum of the whole catalogue, however, is more left-skewed than that of the aftershock-depleted one, indicating a stronger dependence of the multifractality on the large magnitude fluctuations.
Energy Technology Data Exchange (ETDEWEB)
Kunz, P.D.
1990-10-01
This report contains small papers on the following topics: ground state correlations of nuclei in relativistic random phase approximation; instability of infinite nuclear matter in the relativistic hartree approximation; charge density differences for nuclei near {sup 208}Pb in relativistic models; meson exchange current corrections to magnetic moments in quantum hadro-dynamics; analysis of the O{sup +} {yields} O{sup {minus}} reaction at intermediate energies; contributions of reaction channels to the {sup 6}Li(p,{gamma}){sup 7}Be Reaction; deformed chiral nucleons; vacuum polarization in a finite system; second order processes in the (e,e{prime}d) reaction; sea contributions in Dirac RPA for finite nuclei; and momentum cutoffs in the sea.
Glacier fluctuations, global temperature and sea-level change
P. W. Leclercq
2012-01-01
The current world-wide glacier retreat is a clear sign of global warming. In addition, glaciers contribute to sea-level rise as a consequence of the current retreat. In this thesis we use records of past glacier fluctuations to reconstruct past climate variations and the glacier contribution to sea-level change. Firstly, a coherent data set of world-wide glacier fluctuations over the past centuries is compiled. Most available information of glacier fluctuations concerns glacier length fluctua...
New Development on Modelling Fluctuations and Fragmentation in Heavy-Ion Collisions
Lin, Hao; Danielewicz, Pawel
2017-09-01
During heavy-ion collisions (HIC), colliding nuclei form an excited composite system. Instabilities present in the system may deform the shape of the system exotically, leading to a break-up into fragments. Many experimental efforts have been devoted to the nuclear multifragmentation phenomenon, while traditional HIC models, lacking in proper treatment of fluctuations, fall short in explaining it. In view of this, we are developing a new model to implement realistic fluctuations into transport simulation. The new model is motivated by the Brownian motion description of colliding particles. The effects of two-body collisions are recast in one-body diffusion processes. Vastly different dynamical paths are sampled by solving Langevin equations in momentum space. It is the stochastic sampling of dynamical paths that leads to a wide spread of exit channels. In addition, the nucleon degree of freedom is used to enhance the fluctuations. The model has been tested in reactions such as 112Sn + 112Sn and 58Ni + 58Ni, where reasonable results are yielded. An exploratory comparison on the 112Sn + 112Sn reaction at 50 MeV/nucleon with two other models, the stochastic mean-field (SMF) and the antisymmetrized molecular dynamics (AMD) models, has also been conducted. Work supported by the NSF Grant No. PHY-1403906.
BoŻek, Piotr; Broniowski, Wojciech
2017-07-01
We analyze the phenomenon of size-flow transmutation in ultrarelativistic nuclear collisions in a model where the initial size fluctuations are driven by the wounded quarks and the collectivity is provided by viscous hydrodynamics. It is found that the model properly reproduces the data for the transverse momentum fluctuations measured for Pb +Pb collisions at √{sN N}=2.76 TeV by the ALICE Collaboration. The agreement holds for a remarkably wide range of centralities, from 0-5 % up to 70-80 %, and displays a departure from a simple scaling with (dNch/d η ) 1 /2 in the form seen in the data. The overall agreement in the model with wounded quarks is significantly better than with nucleon participants. This feature joins the previously found wounded quark multiplicity scaling in the argumentation in favor of subnucleonic degrees of freedom in the early dynamics. We also examine in detail the correlations between measures of the initial size and final average transverse momentum of hadrons. Predictions are made for the transverse momentum fluctuations in p +Pb collisions at √{sN N}=5.02 TeV.
Mader, E.; Van Vierssen, W.; Schwenk, K.
1998-01-01
Genetic variation within a worldwide collection of Potamogeton pectinatus L. was investigated by analyzing randomly amplified polymorphisms of nuclear DNA anti restriction fragment length polymorphisms of chloroplast DNA. Of the 51 plants investigated, 50 exhibited unique multi-locus nuclear
Nonequilibrium fluctuation relations in a quantum coherent conductor.
Nakamura, Shuji; Yamauchi, Yoshiaki; Hashisaka, Masayuki; Chida, Kensaku; Kobayashi, Kensuke; Ono, Teruo; Leturcq, Renaud; Ensslin, Klaus; Saito, Keiji; Utsumi, Yasuhiro; Gossard, Arthur C
2010-02-26
We experimentally demonstrate the validity of nonequilibrium fluctuation relations by using a quantum coherent conductor. In equilibrium the fluctuation-dissipation relation leads to the correlation between current and current noise at the conductor, namely, the Johnson-Nyquist relation. When the conductor is voltage biased so that the nonlinear regime is entered, the fluctuation theorem has predicted similar nonequilibrium fluctuation relations, which hold true even when the Onsager-Casmir relations are broken in magnetic fields. Our experiments qualitatively validate the predictions as the first evidence of this theorem in the nonequilibrium quantum regime.
Spontaneous emission of Alfvénic fluctuations
Yoon, P. H.; López, R. A.; Vafin, S.; Kim, S.; Schlickeiser, R.
2017-09-01
Low-frequency fluctuations are pervasively observed in the solar wind. The present paper theoretically calculates the steady state spectra of low-frequency electromagnetic (EM) fluctuations of the Alfvénic type for thermal equilibrium plasma. The analysis is based upon a recently formulated theory of spontaneously emitted EM fluctuations in magnetized thermal plasmas. It is found that the fluctuations in the magnetosonic mode branch is constant, while the kinetic Alfvénic mode spectrum is dependent on a form factor that is a function of perpendicular wave number. Potential applicability of the present work in the wider context of heliospheric research is also discussed.
Fluctuation-enhanced electric conductivity in electrolyte solutions.
Péraud, Jean-Philippe; Nonaka, Andrew J; Bell, John B; Donev, Aleksandar; Garcia, Alejandro L
2017-10-10
We analyze the effects of an externally applied electric field on thermal fluctuations for a binary electrolyte fluid. We show that the fluctuating Poisson-Nernst-Planck (PNP) equations for charged multispecies diffusion coupled with the fluctuating fluid momentum equation result in enhanced charge transport via a mechanism distinct from the well-known enhancement of mass transport that accompanies giant fluctuations. Although the mass and charge transport occurs by advection by thermal velocity fluctuations, it can macroscopically be represented as electrodiffusion with renormalized electric conductivity and a nonzero cation-anion diffusion coefficient. Specifically, we predict a nonzero cation-anion Maxwell-Stefan coefficient proportional to the square root of the salt concentration, a prediction that agrees quantitatively with experimental measurements. The renormalized or effective macroscopic equations are different from the starting PNP equations, which contain no cross-diffusion terms, even for rather dilute binary electrolytes. At the same time, for infinitely dilute solutions the renormalized electric conductivity and renormalized diffusion coefficients are consistent and the classical PNP equations with renormalized coefficients are recovered, demonstrating the self-consistency of the fluctuating hydrodynamics equations. Our calculations show that the fluctuating hydrodynamics approach recovers the electrophoretic and relaxation corrections obtained by Debye-Huckel-Onsager theory, while elucidating the physical origins of these corrections and generalizing straightforwardly to more complex multispecies electrolytes. Finally, we show that strong applied electric fields result in anisotropically enhanced "giant" velocity fluctuations and reduced fluctuations of salt concentration.
Thermal fluctuations in a hyperscaling-violation background
Energy Technology Data Exchange (ETDEWEB)
Pourhassan, Behnam [Damghan University, School of Physics, Damghan (Iran, Islamic Republic of); Faizal, Mir [University of British Columbia-Okanagan, Irving K. Barber School of Arts and Sciences, Kelowna, BC (Canada); University of Lethbridge, Department of Physics and Astronomy, Lethbridge, AB (Canada); Upadhyay, Sudhaker [Indian Institute of Technology Kharagpur, Centre for Theoretical Studies, Kharagpur (India); Al Asfar, Lina [Universite Blaise Pascal, Laboratoire de Physique Corpusculaire de Clermont-Ferrand, Aubiere (France)
2017-08-15
In this paper, we study the effect of thermal fluctuations on the thermodynamics of a black geometry with hyperscaling violation. These thermal fluctuations in the thermodynamics of this system are produced from quantum corrections of geometry describing this system. We discuss the stability of this system using specific heat and the entire Hessian matrix of the free energy. We will analyze the effects of thermal fluctuations on the stability of this system. We also analyze the effects of thermal fluctuations on the criticality of the hyperscaling-violation background. (orig.)
Rapidly fluctuating anosmia: A clinical sign for unilateral smell impairment.
Negoias, Simona; Friedrich, Hergen; Caversaccio, Marco D; Landis, Basile N
2016-02-01
Reports about fluctuating olfactory deficits are rare, as are reports of unilateral olfactory loss. We present a case of unilateral anosmia with contralateral normosmia, presenting as rapidly fluctuating anosmia. The olfactory fluctuation occurred in sync with the average nasal cycle duration. Examination after nasal decongestion, formal smell testing, and imaging revealed unilateral, left-sided anosmia of sinonasal cause, with right-sided normosmia. We hypothesize that the nasal cycle induced transient anosmia when blocking the normosmic side. Fluctuating olfactory deficits might hide a unilateral olfactory loss and require additional unilateral testing and thorough workup. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.
Power fluctuations from large wind farms - Final report
Energy Technology Data Exchange (ETDEWEB)
Soerensen, Poul; Pinson, P.; Cutululis, N.A.; Madsen, Henrik; Jensen, Leo Enrico; Hjerrild, J.; Heyman Donovan, M.; Vigueras-ROdriguez, A.
2009-08-15
Experience from power system operation with the first large offshore wind farm in Denmark: Horns Rev shows that the power from the wind farm is fluctuating significantly at certain times, and that this fluctuation is seen directly on the power exchange between Denmark and Germany. This report describes different models for simulation and prediction of wind power fluctuations from large wind farms, and data acquired at the two large offshore wind farms in Denmark are applied to validate the models. Finally, the simulation model is further developed to enable simulations of power fluctuations from several wind farms simultaneously in a larger geographical area, corresponding to a power system control area. (au)
Color fluctuations in the nucleon in high-energy scattering.
Frankfurt, L; Strikman, M; Treleani, D; Weiss, C
2008-11-14
We study quantum fluctuations of the nucleon's parton densities by combining QCD factorization for hard processes with the notion of cross section fluctuations in soft diffraction. The fluctuations of the small-x gluon density are related to the ratio of inelastic and elastic vector meson production in ep scattering. A simple dynamical model explains the HERA data and predicts the x and Q2 dependence of the ratio. In pp/p[over ]p scattering, fluctuations enhance multiple hard processes (but cannot explain the Tevatron CDF data), and reduce gap survival in central exclusive diffraction.
Solar cycle dependence of scaling in solar wind fluctuations
Directory of Open Access Journals (Sweden)
S. C. Chapman
2008-06-01
Full Text Available In this review we collate recent results for the statistical scaling properties of fluctuations in the solar wind with a view to synthesizing two descriptions: that of evolving MHD turbulence and that of a scaling signature of coronal origin that passively propagates with the solar wind. The scenario that emerges is that of coexistent signatures which map onto the well known "two component" picture of solar wind magnetic fluctuations. This highlights the need to consider quantities which track Alfvénic fluctuations, and energy and momentum flux densities to obtain a complete description of solar wind fluctuations.
Solar cycle dependence of scaling in solar wind fluctuations
Chapman, S. C.; Hnat, B.; Kiyani, K.
2008-06-01
In this review we collate recent results for the statistical scaling properties of fluctuations in the solar wind with a view to synthesizing two descriptions: that of evolving MHD turbulence and that of a scaling signature of coronal origin that passively propagates with the solar wind. The scenario that emerges is that of coexistent signatures which map onto the well known "two component" picture of solar wind magnetic fluctuations. This highlights the need to consider quantities which track Alfvénic fluctuations, and energy and momentum flux densities to obtain a complete description of solar wind fluctuations.
Children's (Pediatric) Nuclear Medicine
Full Text Available ... What are the limitations of Children's Nuclear Medicine? What is Children's (Pediatric) Nuclear Medicine? Nuclear medicine is ... this time is PET/MRI. top of page What are some common uses of the procedure? Children's ( ...
Children's (Pediatric) Nuclear Medicine
Full Text Available ... previous nuclear medicine exam. top of page What are the limitations of Children's (Pediatric) Nuclear Medicine? Nuclear medicine procedures can be time consuming. It can take several hours to days ...
DEFF Research Database (Denmark)
Mogensen, O.; Sørensen, Flemming Brandt; Bichel, P.
1999-01-01
We evaluated the following nine parameters with respect to their prognostic value in females with endometrial cancer: four stereologic parameters [mean nuclear volume (MNV), nuclear volume fraction, nuclear index and mitotic index], the immunohistochemical expression of cancer antigen (CA125...
Nuclear Quadrupole Moments and Nuclear Shell Structure
Townes, C. H.; Foley, H. M.; Low, W.
1950-06-23
Describes a simple model, based on nuclear shell considerations, which leads to the proper behavior of known nuclear quadrupole moments, although predictions of the magnitudes of some quadrupole moments are seriously in error.
Nuclear data uncertainties: I, Basic concepts of probability
Energy Technology Data Exchange (ETDEWEB)
Smith, D.L.
1988-12-01
Some basic concepts of probability theory are presented from a nuclear-data perspective, in order to provide a foundation for thorough understanding of the role of uncertainties in nuclear data research. Topics included in this report are: events, event spaces, calculus of events, randomness, random variables, random-variable distributions, intuitive and axiomatic probability, calculus of probability, conditional probability and independence, probability distributions, binomial and multinomial probability, Poisson and interval probability, normal probability, the relationships existing between these probability laws, and Bayes' theorem. This treatment emphasizes the practical application of basic mathematical concepts to nuclear data research, and it includes numerous simple examples. 34 refs.
Black holes and random matrices
Cotler, Jordan S.; Gur-Ari, Guy; Hanada, Masanori; Polchinski, Joseph; Saad, Phil; Shenker, Stephen H.; Stanford, Douglas; Streicher, Alexandre; Tezuka, Masaki
2017-05-01
We argue that the late time behavior of horizon fluctuations in large anti-de Sitter (AdS) black holes is governed by the random matrix dynamics characteristic of quantum chaotic systems. Our main tool is the Sachdev-Ye-Kitaev (SYK) model, which we use as a simple model of a black hole. We use an analytically continued partition function | Z( β + it)|2 as well as correlation functions as diagnostics. Using numerical techniques we establish random matrix behavior at late times. We determine the early time behavior exactly in a double scaling limit, giving us a plausible estimate for the crossover time to random matrix behavior. We use these ideas to formulate a conjecture about general large AdS black holes, like those dual to 4D super-Yang-Mills theory, giving a provisional estimate of the crossover time. We make some preliminary comments about challenges to understanding the late time dynamics from a bulk point of view.
Soliton generation from randomly modulated return-to-zero pulses
Derevyanko, Stanislav A.; Prilepsky, Jaroslaw E.
2008-11-01
We consider return-to-zero (RZ) pulses with random phase modulation propagating in a nonlinear channel (modelled by the integrable nonlinear Schrödinger equation, NLSE). We suggest two different models for the phase fluctuations of the optical field: (i) Gaussian short-correlated fluctuations and (ii) generalized telegraph process. Using the rectangular-shaped pulse form we demonstrate that the presence of phase fluctuations of both types strongly influences the number of solitons generated in the channel. It is also shown that increasing the correlation time for the random phase fluctuations affects the coherent content of a pulse in a non-trivial way. The result obtained has potential consequences for all-optical processing and design of optical decision elements.
Detrended fluctuation analysis made flexible to detect range of cross-correlated fluctuations
Kwapien, Jaroslaw; Drozdz, Stanislaw
2015-01-01
The detrended cross-correlation coefficient $\\rho_{\\rm DCCA}$ has recently been proposed to quantify the strength of cross-correlations on different temporal scales in bivariate, non-stationary time series. It is based on the detrended cross-correlation and detrended fluctuation analyses (DCCA and DFA, respectively) and can be viewed as an analogue of the Pearson coefficient in the case of the fluctuation analysis. The coefficient $\\rho_{\\rm DCCA}$ works well in many practical situations but by construction its applicability is limited to detection of whether two signals are generally cross-correlated, without possibility to obtain information on the amplitude of fluctuations that are responsible for those cross-correlations. In order to introduce some related flexibility, here we propose an extension of $\\rho_{\\rm DCCA}$ that exploits the multifractal versions of DFA and DCCA: MFDFA and MFCCA, respectively. The resulting new coefficient $\\rho_q$ not only is able to quantify the strength of correlations, but ...
Fluctuations of work from quantum subensembles: the case against quantum work-fluctuation theorems.
Allahverdyan, A E; Nieuwenhuizen, Th M
2005-06-01
We study how Thomson's formulation of the second law of thermodynamics (no work is extracted from an equilibrium ensemble by a cyclic process) emerges in the quantum situation through the averaging over fluctuations of work. The latter concept is carefully defined for an ensemble of quantum systems, the members of which interact with macroscopic sources of work. The approach is based on splitting a mixed quantum ensemble into pure subensembles, which according to quantum mechanics are maximally complete and irreducible. The splitting is done by filtering the outcomes of a measurement process. The approach is corroborated by comparing to relevant experiments in quantum optics. A critical review is given of two other approaches to fluctuations of work proposed in the literature. It is shown that in contrast to those, the present definition (i) is consistent with the physical meaning of the concept of work as mechanical energy lost by the macroscopic sources, or, equivalently, as the average energy acquired by the ensemble; (ii) applies to an arbitrary nonequilibrium state. There is no direct generalization of the classical work-fluctuation theorem to the proper quantum domain. This implies nonclassical scenarios for the emergence of the second law.
2010-01-01
This 2010 edition of Nuclear Energy Data , the OECD Nuclear Energy Agency's annual compilation of official statistics and country reports on nuclear energy, provides key information on plans for new nuclear plant construction, nuclear fuel cycle developments as well as current and projected nuclear generating capacity to 2035 in OECD member countries. This comprehensive overview provides authoritative information for policy makers, experts and other interested stakeholders.
Nuclear Fuel Cycle & Vulnerabilities
Energy Technology Data Exchange (ETDEWEB)
Boyer, Brian D. [Los Alamos National Laboratory
2012-06-18
The objective of safeguards is the timely detection of diversion of significant quantities of nuclear material from peaceful nuclear activities to the manufacture of nuclear weapons or of other nuclear explosive devices or for purposes unknown, and deterrence of such diversion by the risk of early detection. The safeguards system should be designed to provide credible assurances that there has been no diversion of declared nuclear material and no undeclared nuclear material and activities.
An entropy-based stability analysis of extreme fluctuations in a system featuring a 1/ f spectrum
Skokov, V. N.; Koverda, V. P.
2017-11-01
Extreme fluctuations are modeled by a point system of stochastic equations, in which power spectra inversely proportional to the frequency are produced under the effect of white noise. The distribution of extreme fluctuations corresponds to the maximum of statistical entropy, which points to their stability in nature. By calculating the spectral entropy of random processes, it becomes possible to investigate their stability directly from power spectra without the need to calculate the amplitude distribution functions. The spectral entropy as a function of white noise amplitude has a minimum. The position of the spectral entropy minimum corresponds to the critical state of the system in which the spectra of fluctuating quantities are inversely proportional to the frequency.
Li, Yi; Yin, Kang-Sheng; Zhang, Mei-Yun; Cheng, Long; Lu, Ke; Long, Shi-Bing; Zhou, Yaxiong; Wang, Zhuorui; Xue, Kan-Hao; Liu, Ming; Miao, Xiang-Shui
2017-11-01
Memristors are attracting considerable interest for their prospective applications in nonvolatile memory, neuromorphic computing, and in-memory computing. However, the nature of resistance switching is still under debate, and current fluctuation in memristors is one of the critical concerns for stable performance. In this work, random telegraph noise (RTN) as the indication of current instabilities in distinct resistance states of the Pt/Ti/HfO2/W memristor is thoroughly investigated. Standard two-level digital-like RTN, multilevel current instabilities with non-correlation/correlation defects, and irreversible current transitions are observed and analyzed. The dependence of RTN on the resistance and read bias reveals that the current fluctuation depends strongly on the morphology and evolution of the conductive filament composed of oxygen vacancies. Our results link the current fluctuation behaviors to the evolution of the conductive filament and will guide continuous optimization of memristive devices.
Laser beam propagation through random media
Andrews, Larry C
2005-01-01
Since publication of the first edition of this text in 1998, there have been several new, important developments in the theory of beam wave propagation through a random medium, which have been incorporated into this second edition. Also new to this edition are models for the scintillation index under moderate-to-strong irradiance fluctuations; models for aperture averaging based on ABCD ray matrices; beam wander and its effects on scintillation; theory of partial coherence of the source; models of rough targets for ladar applications; phase fluctuations; analysis of other beam shapes; plus exp
Richardson, W. H.; Yamamoto, Y.
1991-01-01
The photon-number fluctuation of the external field from a semiconductor laser - which was reduced to below the standard quantum limit - is shown to be correlated with the measured junction-voltage noise. The spectral density of the sum of the photon-number fluctuation and junction-voltage fluctuation falls below the squeezed photon-number fluctuation. This confirms the theoretical predictions that this correlation, which originates in the dipole interaction between the internal field and electron-hole pairs, extends into the quantum regime.
Nuclear weapons modernizations
Energy Technology Data Exchange (ETDEWEB)
Kristensen, Hans M. [Federation of American Scientists, Washington, DC (United States)
2014-05-09
This article reviews the nuclear weapons modernization programs underway in the world's nine nuclear weapons states. It concludes that despite significant reductions in overall weapons inventories since the end of the Cold War, the pace of reductions is slowing - four of the nuclear weapons states are even increasing their arsenals, and all the nuclear weapons states are busy modernizing their remaining arsenals in what appears to be a dynamic and counterproductive nuclear competition. The author questions whether perpetual modernization combined with no specific plan for the elimination of nuclear weapons is consistent with the nuclear Non-Proliferation Treaty and concludes that new limits on nuclear modernizations are needed.
2011-01-01
. Nuclear Energy Data, the OECD Nuclear Energy Agency's annual compilation of statistics and country reports on nuclear energy, contains official information provided by OECD member country governments on plans for new nuclear plant construction, nuclear fuel cycle developments as well as current and projected nuclear generating capacity to 2035. For the first time, it includes data for Chile, Estonia, Israel and Slovenia, which recently became OECD members. Key elements of this edition show a 2% increase in nuclear and total electricity production and a 0.5% increase in nuclear generating ca
Tarrab, Leticia; Garcia, Carlos M.; Cantero, Mariano I.; Oberg, Kevin
2012-01-01
This work presents a systematic analysis quantifying the role of the presence of turbulence fluctuations on uncertainties (random errors) of acoustic Doppler current profiler (ADCP) discharge measurements from moving platforms. Data sets of three-dimensional flow velocities with high temporal and spatial resolution were generated from direct numerical simulation (DNS) of turbulent open channel flow. Dimensionless functions relating parameters quantifying the uncertainty in discharge measurements due to flow turbulence (relative variance and relative maximum random error) to sampling configuration were developed from the DNS simulations and then validated with field-scale discharge measurements. The validated functions were used to evaluate the role of the presence of flow turbulence fluctuations on uncertainties in ADCP discharge measurements. The results of this work indicate that random errors due to the flow turbulence are significant when: (a) a low number of transects is used for a discharge measurement, and (b) measurements are made in shallow rivers using high boat velocity (short time for the boat to cross a flow turbulence structure).
Public perspectives of nuclear weapons in the post-cold war environment
Energy Technology Data Exchange (ETDEWEB)
Jenkins-Smith, H.C.; Herron, K.G. [Univ. of New Mexico, Albuquerque, NM (United States). Institute for Public Policy; Barke, R.P. [Georgia Institute of Technology, Atlanta, GA (United States). School of Public Policy
1994-04-01
This report summarizes the findings of a nationwide survey of public perceptions of nuclear weapons in the post-cold war environment. Participants included 1,301 members of the general public, 1,155 randomly selected members of the Union of Concerned Scientists, and 1,226 employees randomly selected from the technical staffs of four DOE national laboratories. A majority of respondents from all three samples perceived the post-cold war security environment to pose increased likelihood of nuclear war, nuclear proliferation, and nuclear terrorism. Public perceptions of nuclear weapons threats, risks, utilities, and benefits were found to systematically affect nuclear weapons policy preferences in predictable ways. Highly significant relationships were also found between public trust and nuclear weapons policy preferences. As public trust and official government information about nuclear weapons increased, perceptions of nuclear weapons management risks decreased and perceptions of nuclear weapons utilities and benefits increased. A majority of respondents favored decreasing funding for: (1) developing and testing new nuclear weapons; (2) maintaining existing nuclear weapons, and (3) maintaining the ability to develop and improve nuclear weapons. Substantial support was found among all three groups for increasing funding for: (1) enhancing nuclear weapons safety; (2) training nuclear weapons personnel; (3) preventing nuclear proliferation; and (4) preventing nuclear terrorism. Most respondents considered nuclear weapons to be a persistent feature of the post-cold war security environment.
Vacuum Fluctuations, Cosmogenesis and Prime Number Gaps
Berezin, Alexander A.
2002-10-01
Starting from E.Tryon (1973), idea of cosmogenesis through quantum tunnelling "from nothing" became popular. Both complimentary streams of it, inflationary models (Guth, Linde) and quantum parallelism (Everett, Deutsch), require some starting point as, e.g., concretisation of Leibnitz Principle (Omnibus ex nihil decendis sufficit unum). This leads to propositional conjecture (axiom?) that (meta)physical "Platonic Pressure" of infinitude of numbers and Cantor "alephs" becomes an engine for self-generation of physical universe directly out of mathematics: inexhaustibility of Number Theory (NT) drives cosmogenesis. While physics in other quantum branches of inflating universe (Megaverse) can be (arbitrary) different from ours, NT is not (it is unique, absolute, immutable and infinitely resourceful). Energy-time uncertainty principle (UP) allows indefinite lifetime provided we start from total zero energy. Analogue of UP in NT is theorem by H.Maier (1981) stating the existence of arbitrary long trails of isolated primes such that each next gap is arbitrary greater than average gap (logN). On physical level these arbitrary large deviations from Prime Number Theorem translate into permissiveness of (arbitrary) large quantum fluctuations.
Quantum fluctuation theorems and power measurements
Prasanna Venkatesh, B.; Watanabe, Gentaro; Talkner, Peter
2015-07-01
Work in the paradigm of the quantum fluctuation theorems of Crooks and Jarzynski is determined by projective measurements of energy at the beginning and end of the force protocol. In analogy to classical systems, we consider an alternative definition of work given by the integral of the supplied power determined by integrating up the results of repeated measurements of the instantaneous power during the force protocol. We observe that such a definition of work, in spite of taking account of the process dependence, has different possible values and statistics from the work determined by the conventional two energy measurement approach (TEMA). In the limit of many projective measurements of power, the system’s dynamics is frozen in the power measurement basis due to the quantum Zeno effect leading to statistics only trivially dependent on the force protocol. In general the Jarzynski relation is not satisfied except for the case when the instantaneous power operator commutes with the total Hamiltonian at all times. We also consider properties of the joint statistics of power-based definition of work and TEMA work in protocols where both values are determined. This allows us to quantify their correlations. Relaxing the projective measurement condition, weak continuous measurements of power are considered within the stochastic master equation formalism. Even in this scenario the power-based work statistics is in general not able to reproduce qualitative features of the TEMA work statistics.
From Brownian motion to power of fluctuations
Directory of Open Access Journals (Sweden)
B. Berche
2012-12-01
Full Text Available The year 2012 marks the 140th birth anniversary of Marian Smoluchowski (28.05.1872-5.09.1917, a man who "made ground-breaking contribution to the theory of Brownian motion, the theory of sedimentation, the statistical nature of the Second Law, the theory and practice of density fluctuations (critical opalescence. During his final years of scientific creativity his pioneering theory of coagulation and diffusion-limited reaction rate appeared. These outstanding achievements present true gems which dominate the description of soft matter physics and chemical physics as well as the related areas up till now!" This quotation was taken from the lecture by Peter Hanggi given at international conference Statistical Physics: Modern Trends and Applications that took place in Lviv, Ukraine on July 3-6, 2012 (see conference web-page for more details and was dedicated to the commemoration of Smoluchowski's work. This and forthcoming issues of the Condensed Matter Physics contain papers presented at this conference.
Love triangles, quantum fluctuations and spin jam
Lee, Seung-Hun
When magnetic moments are interacting with each other in a situation resembling that of complex love triangles, called frustration, a large set of states that are energetically equivalent emerge. This leads to exotic spin states such as spin liquid and spin ice. Recently, we presented evidence for the existence of a topological glassy state, that we call spin jam, induced by quantum fluctuations. The case in point is SrCr9pGa12-9pO19 (SCGO(p)), a highly frustrated magnet, in which the magnetic Cr ions form a quasi-two-dimensional triangular system of bi-pyramids. This system has been an archetype in search for exotic spin states. Understanding the nature of the state has been a great intellectual challenge. Our new experimental data and theoretical spin jam model provide for the first time a coherent understanding of the phenomenon. Furthermore, the findings strongly support the possible existence of purely topological glassy states. Reference:
Detecting IOP Fluctuations in Glaucoma Patients.
Nuyen, Brenda; Mansouri, Kaweh
2016-01-01
Lowering intraocular pressure (IOP) remains the guiding principle of glaucoma management. Although IOP is the only treatable risk factor, its 24-hour behavior is poorly understood. Current glaucoma management usually relies on single IOP measurements during clinic hours, even though IOP is a dynamic parameter with rhythms dependent on individual patients. It has further been shown that most glaucoma patients have their highest IOP measurements outside clinic hours. The fact that these IOP peaks go largely undetected may explain why certain patients progress in their disease despite treatment. Nevertheless, single IOP measurements have determined all major clinical guidelines regarding glaucoma treatment. Other potentially informative parameters, such as fluctuations in IOP and peak IOP, have been neglected, and effects of IOP-lowering interventions on such measures are largely unknown. Continuous 24-hour IOP monitoring has been an interest for more than 50 years, but only recent technological advances have provided clinicians with a device for such an endeavor. This review discusses current uses and shortcomings of current measurement techniques, and provides an overview on current and future methods for 24-hour IOP assessment. It may be possible to incorporate continuous IOP monitoring into clinical practice, potentially to reduce glaucoma-related vision loss.
Charge fluctuations in open chaotic cavities
Büttiker, M.; Polianski, M. L.
2005-12-01
We present a discussion of the charge response and the charge fluctuations of mesoscopic chaotic cavities in terms of a generalized Wigner-Smith matrix. The Wigner-Smith matrix is well known in investigations of time-delay of quantum scattering. It is expressed in terms of the scattering matrix and its derivatives with energy. We consider a similar matrix but instead of an energy derivative, we investigate the derivative with regard to the electric potential. The resulting matrix is then the operator of charge. If this charge operator is combined with a self-consistent treatment of Coulomb interaction, the charge operator determines the capacitance of the system, the non-dissipative ac-linear response, the RC-time with a novel charge relaxation resistance, and in the presence of transport a resistance that governs the displacement currents induced into a nearby conductor. In particular, these capacitances and resistances determine the relaxation rate and dephasing rate of a nearby qubit (a double quantum dot). We discuss the role of screening of mesoscopic chaotic detectors. Coulomb interaction effects in quantum pumping and in photon assisted electron-hole shot noise are treated similarly. For the latter, we present novel results for chaotic cavities with non-ideal leads.
Fluctuations in the Dynamics of Glasses
Energy Technology Data Exchange (ETDEWEB)
Castillo, Horacio E. [Ohio Univ., Athens, OH (United States). Department of Physics and Astronomy
2015-05-06
This research program addressed the question of the presence of dynamical heterogeneities – strong spatial fluctuations in the dynamics – in glass forming liquids and jamming systems near dynamical arrest, with particular emphasis on aging systems, i.e. systems that are in the (non-equilibrium) glass regime. The main goals proposed for this research were: to perform numerical simulations of atomistic structural glass models to characterize dynamical heterogeneities in out of equilibrium (aging) glassy systems; to test the hypothesis that a certain symmetry (“time reparametrization symmetry”) is present in microscopic models of glassy systems and that this symmetry can explain the main features of dynamical heterogeneities; and to test to what extent these phenomena are universal across different glassy/jamming systems. It was found that: most of the important features of dynamical heterogeneities in the aging regime could be described in terms of simple scaling behaviors; that some of the most basic theoretical models of glassy systems indeed have time reparametrization symmetry; that all tests performed in numerical simulation data were consistent with the predictions from time reparametrization symmetry; and that to a large degree, the main features of dynamical heterogeneities were universal across different glassy systems. Most of the findings that came out of this research have been reported in detail in eight papers in high quality journals, two unpublished but publicly accessible manuscripts, and 27 invited and contributed talks.
Adaptive time-varying detrended fluctuation analysis.
Berthouze, Luc; Farmer, Simon F
2012-07-30
Detrended fluctuation analysis (DFA) is a technique commonly used to assess and quantify the presence of long-range temporal correlations (LRTCs) in neurophysiological time series. Convergence of the method is asymptotic only and therefore its application assumes a constant scaling exponent. However, most neurophysiological data are likely to involve either spontaneous or experimentally induced scaling exponent changes. We present a novel extension of the DFA method that permits the characterisation of time-varying scaling exponents. The effectiveness of the methodology in recovering known changes in scaling exponents is demonstrated through its application to synthetic data. The dependence of the method on its free parameters is systematically explored. Finally, application of the methodology to neurophysiological data demonstrates that it provides experimenters with a way to identify previously un-recognised changes in the scaling exponent in the data. We suggest that this methodology will make it possible to go beyond a simple demonstration of the presence of scaling to an appreciation of how it may vary in response to either intrinsic changes or experimental perturbations. Copyright © 2012 Elsevier B.V. All rights reserved.
Nonlinear filtering properties of detrended fluctuation analysis
Kiyono, Ken; Tsujimoto, Yutaka
2016-11-01
Detrended fluctuation analysis (DFA) has been widely used for quantifying long-range correlation and fractal scaling behavior. In DFA, to avoid spurious detection of scaling behavior caused by a nonstationary trend embedded in the analyzed time series, a detrending procedure using piecewise least-squares fitting has been applied. However, it has been pointed out that the nonlinear filtering properties involved with detrending may induce instabilities in the scaling exponent estimation. To understand this issue, we investigate the adverse effects of the DFA detrending procedure on the statistical estimation. We show that the detrending procedure using piecewise least-squares fitting results in the nonuniformly weighted estimation of the root-mean-square deviation and that this property could induce an increase in the estimation error. In addition, for comparison purposes, we investigate the performance of a centered detrending moving average analysis with a linear detrending filter and sliding window DFA and show that these methods have better performance than the standard DFA.
Inefficient employment decisions, entry costs, and the cost of fluctuations
den Haan, W.J.; Sedlacek, P.
2009-01-01
Fluctuations in firms' revenues reduce firms' viability and are costly from a social welfare point of view even when agents are risk neutral if (i) the decision to continue operating a firm is not efficient at the margin so that fluctuations shorten firms' life expectancy (because they increase the
Fluctuation of the electric field in a plasma
Lee, Hee J.
2015-04-01
The theory of electric field fluctuations in a plasma is reviewed. The fluctuations of an electric field can be assumed to be due to the Cerenkov radiation, which is emitted by single particles that satisfy the Landau wave-particle resonance conditions. This view naturally agrees with the picture that a plasma can be considered to be an aggregate of non-interacting dressed particles. A simple classical derivation of the fluctuation-dissipation theorem is presented to show that the fluctuations of the Cerenkov electric field agree with the fluctuation-dissipation theorem. A quasilinear-like solution of the Liouville equation is shown to derive an electric field fluctuation with the same form as that obtained by using the dressed particle approach. We suggest that the fluctuation can be traced to the causality that gives rise to collisionless dissipation (imaginary part of the dielectric function). Therefore, the fluctuation in a plasma has a philosophical implication in that its existence is fundamentally due to the causal principle that the effect cannot be precedent to the cause, thus defining the direction of time.
Fluctuations in the Characteristics of an Important Short Tropical ...
African Journals Online (AJOL)
... de mai a sensiblement corrl avec celle de juillet. Les effets des fluctuations de ces indicateurs au cours de cette priode sche sur les activits agricoles et autres activits diverses dans la rgion sont discutes. Mots cls: intermittence du mois d'aot, incidence, fluctuation, Nigeria (Discovery and innovation: 14(1-2): 92-101) ...
Quantum Fluctuations of Low Dimensional Bose-Einstein ...
African Journals Online (AJOL)
A system of low dimensional condensed ultracold atomic gases inside a field of a laser-driven optical cavity exhibits dispersive optical bistability. During such a process the system also shows quantum fluctuations. Condensate fluctuations are highly manifested particularly in low dimensional systems. In this paper we have ...
Squeezing of thermal and quantum fluctuations: Universal features
DEFF Research Database (Denmark)
Svensmark, Henrik; Flensberg, Karsten
1993-01-01
We study the classical and quantum fluctuations of a general damped forced oscillator close to a bifurcation instability. Near the instability point, the fluctuations are strongly phase correlated and are squeezed. In the limit of low damping, it is shown that the system has universal features when...
Effects of barrier fluctuation on the tunneling dynamics in the ...
Indian Academy of Sciences (India)
Tunneling through fluctuating barrier has received considerable attention because of its potential use for modeling in many branches of physics and chemistry [1–24]. ... fluctuating potential barrier in the presence of both white and multiplicative noises. [20,21]. They have shown that the mean first passage time over the ...
Effect of directional selection for body size on fluctuating asymmetry ...
Indian Academy of Sciences (India)
Madhsudhan
and its relationship with stress. [Vishalakshi C and Singh B N 2009 Effect of directional selection for body size on fluctuating asymmetry in certain morphological traits in. Drosophila ananassae; J. Biosci. 34 275–285]. Keywords. Body size; directional selection; Drosophila ananassae; fluctuating asymmetry; hybridisation; ...
Effect of a fluctuating parameter mismatch and the associated time ...
Indian Academy of Sciences (India)
Abstract. We study the effect of parameter fluctuations and the resultant multiplicative noise on the synchronization of coupled chaotic systems. We introduce a new quantity, the fluctuation rate φ as the number of perturbations occurring to the parameter in unit time. It is shown that φ is the most significant quantity that ...
Baryogenesis via density fluctuations with a second-order ...
Indian Academy of Sciences (India)
fluctuations with length scales smaller than the horizon), resulting in the production of baryon asymmetry. The time-scale of the transition will be governed by the wavelength of fluctuation and, hence, can be ... suppresses the baryon production, though it is still 3-4 orders of magnitude larger than the conventional case of ...
Dynamics of Business Fluctuations in the Leontief-type Economy
Alexei Krouglov
1998-01-01
Presented here is the mathematical model of business fluctuations, which can be observed in the Economy described by the Input-Output Model of Wassily Leontief. These fluctuations are obtained as a solution of the corresponding matrix differential equations, which interrelate commodities' demand, production, and prices.
Under what kind of parametric fluctuations is spatiotemporal ...
Indian Academy of Sciences (India)
a continuous state variable denoted by xn(i), which corresponds to the physical variable of interest. The evolution ... in space but remain frozen in time, i.e. the parameters are spatially fluctuating but temporally invariant. ... bifurcation diagrams with respect to p were obtained under fluctuations in the coupling strength of the ...
Experimental studies of the transient fluctuation theorem using liquid ...
Indian Academy of Sciences (India)
Home; Journals; Pramana – Journal of Physics; Volume 72; Issue 5. Experimental studies of the transient ... Recently a fluctuation theorem, known as the transient fluctuation theorem (TFT), which generalizes the second law of thermodynamics to small systems has been proposed. This theorem has been tested in small ...
Fluctuating asymmetry in waterbirds in relation to mercury exposure
Herring, Garth; Eagles-Smith, Collin A.; Ackerman, Joshua T.
2016-01-01
The dataset includes the bird species, sex, mercury concentration in breast feathers and whole blood, and the composite measure of fluctuating asymmetry. Statistical models were developed for each species to analyze the relationship between mercury exposure in either breast feathers or whole blood and the composite measure of fluctuating asymmetry, while accounting for the sex of each bird.
Fiscal Policy and Regional Business Cycle Fluctuations in Japan
Miyazaki, Tomomi
2013-01-01
This paper examines the relationship between fiscal policy and regional business cycle fluctuations in Japan. In particular, we focus on the effects of “discretionary” changes in public investment, a portion of investment unrelated to the current state of macroeconomic circumstances. The empirical results show that such types of public investment amplify regional business cycle fluctuations.
Fluctuations in the population of southern elephant seals Mirounga ...
African Journals Online (AJOL)
An analysis of census information published for the years 1952, 1958,1960 and 1970 and that obtained during this study in 1977, indicates that both the breeding bull and cow components of this population fluctuated in numbers during the past 25 years. In spite of these fluctuations, the general trend for the cow component ...
Yano, Jun-Ichi; Phillips, Vaughan
2017-04-01
The number of ice fragments generated by break-up of large graupel in collisions with small graupel fluctuates randomly due to fluctuations in relative sizes and densities of colliding graupel particles and the stochastic nature of fracture propagation. This paper investigates an impact of the stochasticity of break-up on ice multiplication. When both the rate of generation of primary ice and the initial number concentration of ice-crystals are low, the system most likely loses all the initial ice and graupel due to a lack of sustaining sources. Even randomness does not change this mean evolution of the system in its phase-space. However, a fluctuation of ice break-up number gives a small but finite chance that substantial ice crystal fragments are generated by break-up of large graupel. That, in turn, generates more large graupel. This multiplicative process due to fluctuations potentially leads to a small but finite chance of explosive growth of ice number. A rigorous stochastic analysis demonstrates this point quantitatively. The randomness considered here belongs to a particular category called "multiplicative" noise, because the noise amplitude is proportional to a given physical state. In order to contrast the multiplicative-noise nature of ice break-up with a standard "additive" noise process, fluctuation of the primary ice generation rate is also considered as an example of the latter. These processes are examined by taking the Fokker-Planck equation that explicitly describes evolution of the probability distribution with time. As an important conclusion, stability in the phase-space of the cloud-microphysical system of break-up in ice-ice collisions is substantially altered by the multiplicative noise.
Work and power fluctuations in a critical heat engine
Holubec, Viktor; Ryabov, Artem
2017-09-01
We investigate fluctuations of output work for a class of Stirling heat engines with working fluid composed of interacting units and compare these fluctuations to an average work output. In particular, we focus on engine performance close to a critical point where Carnot's efficiency may be attained at a finite power as reported by M. Campisi and R. Fazio [Nat. Commun. 7, 11895 (2016), 10.1038/ncomms11895]. We show that the variance of work output per cycle scales with the same critical exponent as the heat capacity of the working fluid. As a consequence, the relative work fluctuation diverges unless the output work obeys a rather strict scaling condition, which would be very hard to fulfill in practice. Even under this condition, the fluctuations of work and power do not vanish in the infinite system size limit. Large fluctuations of output work thus constitute inseparable and dominant element in performance of the macroscopic heat engines close to a critical point.
The effect of primordial fluctuations on neutrino oscillations
Harries, N P
2008-01-01
Recent work has shown that neutrino oscillations in matter can be greatly enhanced by flips between mass eigenstates if the medium is fluctuating with a period equal to the neutrino oscillation length. Here we investigate the effect of the primordial fluctuations on the neutrino oscillations in the early universe. We calculate the oscillation probability in the case of a general power law fluctuation spectrum and for a more realistic spectrum predicted by inflation. We also include the effect of the amplification of fluctuations resulting from the QCD phase transition. We find that there is a region of parameter space where this mechanism would be the dominant mechanism for producing sterile neutrinos. However this conclusion does not take account of the damping of fluctuations on the neutrino oscillation scale when the neutrinos decouple from the plasma. We find that this reduces the probability of flips between the mass eigenstates to an unobservable level.
Fluctuations in a Spin Chain and the Entanglement Hamiltonian
Turner, Ari; Demler, Eugene
2014-03-01
How are quantum fluctuations and thermal fluctuations different in many-body systems? I will compare the variance of the fluctuations of spin in a segment of a spin chain in the ground state and at a finite temperature, showing that fluctuations in the ground state are much more correlated than in the thermal state. The full distribution function of spin can also be determined, and is non-Gaussian. These effects could possibly be measured in a chain of sodium atoms in an optical lattice. The method involves mapping the system to an imaginary thermal system called the ``entanglement Hamiltonian.'' Measuring the ground state fluctuations of the spin chain gives an indirect way of measuring the entanglement Hamiltonian.
Doping dependence of fluctuation diamagnetism in high Tc superconductors
Sarkar, Kingshuk; Banerjee, Sumilan; Mukerjee, Subroto; Ramakrishnan, T. V.
2016-02-01
Using a recently proposed Ginzburg-Landau-like lattice free energy functional due to Banerjee et al. (2011) we calculate the fluctuation diamagnetism of high-Tc superconductors as a function of doping, magnetic field and temperature. We analyse the pairing fluctuations above the superconducting transition temperature in the cuprates, ranging from the strong phase fluctuation dominated underdoped limit to the more conventional amplitude fluctuation dominated overdoped regime. We show that a model where the pairing scale increases and the superfluid density decreases with underdoping produces features of the observed magnetization in the pseudogap region, in good qualitative and reasonable quantitative agreement with the experimental data. In particular, we explicitly show that even when the pseudogap has a pairing origin the magnetization actually tracks the superconducting dome instead of the pseudogap temperature, as seen in experiment. We discuss the doping dependence of the 'onset' temperature for fluctuation diamagnetism and comment on the role of vortex core-energy in our model.
Anomalous stress fluctuations in athermal two-dimensional amorphous solids
Wu, Yegang; Karimi, Kamran; Maloney, Craig E.; Teitel, S.
2017-09-01
We numerically study the local stress distribution within athermal, isotropically stressed, mechanically stable, packings of bidisperse frictionless disks above the jamming transition in two dimensions. Considering the Fourier transform of the local stress, we find evidence for algebraically increasing fluctuations in both isotropic and anisotropic components of the stress tensor at small wave numbers, contrary to recent theoretical predictions. Such increasing fluctuations imply a lack of self-averaging of the stress on large length scales. The crossover to these increasing fluctuations defines a length scale ℓ0, however, it appears that ℓ0 does not vary much with packing fraction ϕ , nor does ℓ0 seem to be diverging as ϕ approaches the jamming ϕJ. We also find similar large length scale fluctuations of stress in the inherent states of a quenched Lennard-Jones liquid, leading us to speculate that such fluctuations may be a general property of amorphous solids in two dimensions.
Freeze-out conditions from net-proton and net-charge fluctuations at RHIC
Energy Technology Data Exchange (ETDEWEB)
Alba, Paolo; Alberico, Wanda [Department of Physics, Torino University and INFN, Sezione di Torino, via P. Giuria 1, 10125 Torino (Italy); Bellwied, Rene [Department of Physics, University of Houston, Houston, TX 77204 (United States); Bluhm, Marcus [Department of Physics, Torino University and INFN, Sezione di Torino, via P. Giuria 1, 10125 Torino (Italy); Department of Physics, North Carolina State University, Raleigh, NC 27695 (United States); Mantovani Sarti, Valentina [Department of Physics, Torino University and INFN, Sezione di Torino, via P. Giuria 1, 10125 Torino (Italy); Nahrgang, Marlene [Department of Physics, Duke University, Durham, NC 27708-0305 (United States); Frankfurt Institute for Advanced Studies (FIAS), Ruth-Moufang-Str. 1, 60438 Frankfurt am Main (Germany); Ratti, Claudia [Department of Physics, Torino University and INFN, Sezione di Torino, via P. Giuria 1, 10125 Torino (Italy)
2014-11-10
We calculate ratios of higher-order susceptibilities quantifying fluctuations in the number of net-protons and in the net-electric charge using the Hadron Resonance Gas (HRG) model. We take into account the effect of resonance decays, the kinematic acceptance cuts in rapidity, pseudo-rapidity and transverse momentum used in the experimental analysis, as well as a randomization of the isospin of nucleons in the hadronic phase. By comparing these results to the latest experimental data from the STAR Collaboration, we determine the freeze-out conditions from net-electric charge and net-proton distributions and discuss their consistency.
Matthaeus, W. H.; Pontius, D. H., Jr.; Gray, P. C.; Bieber, J. W.
1995-01-01
A two-component model for the spectrum of interplanetary magnetic fluctuations was proposed on the basis of ISEE observations, and has found an intriguing level of application in other solar wind studies. The model fluctuations consist of a fraction of 'slab' fluctuations, varying only in the direction parallel to the locally uniform mean magnetic field B(0) and a complement of 2D (two-dimensional) fluctuations that vary in the directions transverse to B(0). We have developed an spectral method computational algorithm for computing the magnetic flux surfaces (flux tubes) associated with the composite model, based upon a precise analogy with equations for ideal transport of a passive scalar in planar two dimensional geometry. Visualization of various composite models will be presented, including the 80 percent 2D/ 20 percent slab model with delta B/B(0) approximately equals 1 and a minus 5/3 spectral law, that is thought to approximately represent a snapshot of solar wind turbulence. Characteristically, the visualizations show that flux tubes, even when defined as regular on some plane, shred and disperse rapidly as they are viewed along the parallel direction. This diffusive process, which generalizes the standard picture of field line random walk, will be discussed in detail. Evidently, the traditional picture that flux tubes randomize like strands of spaghetti with a uniform tangle along the axial direction is in need of modification.
Low-frequency fluctuations in plasma magnetic fields
Energy Technology Data Exchange (ETDEWEB)
Cable, S.; Tajima, T.
1992-02-01
It is shown that even a non-magnetized plasma with temperature T sustains zero-frequency magnetic fluctuations in thermal equilibrium. Fluctuations in electric and magnetic fields, as well as in densities, are computed. Four cases are studied: a cold, gaseous, isotropic, non-magnetized plasma; a cold, gaseous plasma in a uniform magnetic field; a warm, gaseous plasma described by kinetic theory; and a degenerate electron plasma. For the simple gaseous plasma, the fluctuation strength of the magnetic field as a function of frequency and wavenumber is calculated with the aid of the fluctuation-dissipation theorem. This calculation is done for both collisional and collisionless plasmas. The magnetic field fluctuation spectrum of each plasma has a large zero-frequency peak. The peak is a Dirac {delta}-function in the collisionless plasma; it is broadened into a Lorentzian curve in the collisional plasma. The plasma causes a low frequency cutoff in the typical black-body radiation spectrum, and the energy under the discovered peak approximates the energy lost in this cutoff. When the imposed magnetic field is weak, the magnetic field were vector fluctuation spectra of the two lowest modes are independent of the strength of the imposed field. Further, these modes contain finite energy even when the imposed field is zero. It is the energy of these modes which forms the non-magnetized zero-frequency peak of the isotropic plasma. In deriving these results, a simple relationship between the dispersion relation and the fluctuation power spectrum of electromagnetic waves if found. The warm plasma is shown, by kinetic theory, to exhibit a zero-frequency peak in its magnetic field fluctuation spectrum as well. For the degenerate plasma, we find that electric field fluctuations and number density fluctuations vanish at zero frequency; however, the magnetic field power spectrum diverges at zero frequency.
True randomness from an incoherent source
Qi, Bing
2017-11-01
Quantum random number generators (QRNGs) harness the intrinsic randomness in measurement processes: the measurement outputs are truly random, given the input state is a superposition of the eigenstates of the measurement operators. In the case of trusted devices, true randomness could be generated from a mixed state ρ so long as the system entangled with ρ is well protected. We propose a random number generation scheme based on measuring the quadrature fluctuations of a single mode thermal state using an optical homodyne detector. By mixing the output of a broadband amplified spontaneous emission (ASE) source with a single mode local oscillator (LO) at a beam splitter and performing differential photo-detection, we can selectively detect the quadrature fluctuation of a single mode output of the ASE source, thanks to the filtering function of the LO. Experimentally, a quadrature variance about three orders of magnitude larger than the vacuum noise has been observed, suggesting this scheme can tolerate much higher detector noise in comparison with QRNGs based on measuring the vacuum noise. The high quality of this entropy source is evidenced by the small correlation coefficients of the acquired data. A Toeplitz-hashing extractor is applied to generate unbiased random bits from the Gaussian distributed raw data, achieving an efficiency of 5.12 bits per sample. The output of the Toeplitz extractor successfully passes all the NIST statistical tests for random numbers.
Directory of Open Access Journals (Sweden)
Ripani M.
2015-01-01
Full Text Available The main features of nuclear fission as physical phenomenon will be revisited, emphasizing its peculiarities with respect to other nuclear reactions. Some basic concepts underlying the operation of nuclear reactors and the main types of reactors will be illustrated, including fast reactors, showing the most important differences among them. The nuclear cycle and radioactive-nuclear-waste production will be also discussed, along with the perspectives offered by next generation nuclear assemblies being proposed. The current situation of nuclear power in the world, its role in reducing carbon emission and the available resources will be briefly illustrated.
Bobadilla, E
1996-06-01
This official document is statement of the President of the Chilean Nuclear Energy Commission, Dr. Eduardo Bobadilla, about the nuclear policy of the Chilean State, Thanks to the international policy adopted by presidents Aylwin (1990-1994) and his successor Frei Ruiz Tagle (1994-), a nuclear development plan, protected by the Chilean entrance to the nuclear weapons non proliferation treaty and Tlatelolco Denuclearization treaty, has started. Chile will be able to develop without interference, an autonomous nuclear electrical system and other pacific uses of nuclear energy. Chile also supports a new international treaty to ban nuclear weapon tests.