WorldWideScience

Sample records for randomly encoded aperture

  1. Comparison between different encoding schemes for synthetic aperture imaging

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Jensen, Jørgen Arendt

    2002-01-01

    and spatio-temporal encoding was investigated. Experiments on wire phantom in water were carried out to quantify the gain from the different encodings. The gain in SNR using an FM modulated pulse is 12 dB. The penetration depth of the images was studied using tissue mimicking phantom with frequency dependent......Synthetic transmit aperture ultrasound (STAU) imaging can create images with as low as 2 emissions, making it attractive for 3D real-time imaging. Two are the major problems to be solved: (1) complexity of the hardware involved, and (2) poor image quality due to low signal to noise ratio (SNR). We...... attenuation of 0.5 dB/(cm MHz). The combination of spatial and temporal encoding have highest penetration depth. Images to a depth of 110 mm, can successfully be made with contrast resolution comparable to that of a linear array image. The in-vivo scans show that the motion artifacts do not significantly...

  2. Design studies of a depth encoding large aperture PET camera

    International Nuclear Information System (INIS)

    Moisan, C.; Rogers, J.G.; Buckley, K.R.; Ruth, T.J.; Stazyk, M.W.; Tsang, G.

    1994-10-01

    The feasibility of a wholebody PET tomograph with the capacity to correct for the parallax error induced by the Depth-Of-Interaction of γ-rays is assessed through simulation. The experimental energy, depth, and transverse position resolutions of BGO block detector candidates are the main inputs to a simulation that predicts the point source resolution of the Depth Encoding Large Aperture Camera (DELAC). The results indicate that a measured depth resolution of 7 mm (FWHM) is sufficient to correct a substantial part of the parallax error for a point source at the edge of the Field-Of-View. A search for the block specifications and camera ring radius that would optimize the spatial resolution and its uniformity across the Field-Of-View is also presented. (author). 10 refs., 1 tab., 5 figs

  3. Single exposure optically compressed imaging and visualization using random aperture coding

    Energy Technology Data Exchange (ETDEWEB)

    Stern, A [Electro Optical Unit, Ben Gurion University of the Negev, Beer-Sheva 84105 (Israel); Rivenson, Yair [Department of Electrical and Computer Engineering, Ben Gurion University of the Negev, Beer-Sheva 84105 (Israel); Javidi, Bahrain [Department of Electrical and Computer Engineering, University of Connecticut, Storrs, Connecticut 06269-1157 (United States)], E-mail: stern@bgu.ac.il

    2008-11-01

    The common approach in digital imaging follows the sample-then-compress framework. According to this approach, in the first step as many pixels as possible are captured and in the second step the captured image is compressed by digital means. The recently introduced theory of compressed sensing provides the mathematical foundation necessary to combine these two steps in a single one, that is, to compress the information optically before it is recorded. In this paper we overview and extend an optical implementation of compressed sensing theory that we have recently proposed. With this new imaging approach the compression is accomplished inherently in the optical acquisition step. The primary feature of this imaging approach is a randomly encoded aperture realized by means of a random phase screen. The randomly encoded aperture implements random projection of the object field in the image plane. Using a single exposure, a randomly encoded image is captured which can be decoded by proper decoding algorithm.

  4. Multielement Synthetic Transmit Aperture Imaging Using Temporal Encoding

    DEFF Research Database (Denmark)

    Gammelmark, Kim; Jensen, Jørgen Arendt

    2003-01-01

    A new method to increase the signal-to-noise ratio (SNR) of synthetic transmit aperture imaging is investigated. The approach utilizes multiple elements to emulate a spherical wave, and the conventional short excitation pulse is replaced by a linear frequency-modulated (FM) signal. The approach i...

  5. Apertures

    CERN Document Server

    Hansen, R C

    2014-01-01

    Microwave Scanning Antennas, Volume I: Apertures is a comprehensive account of phased arrays, multiple beam arrays, time domain and synthetic apertures, and adaptive antennas. Advances in continuous apertures and near field theory are discussed. Low noise and monopulse apertures, optical scanners, and large radomes are also covered, along with radio astronomy instruments and associated theory.Comprised of five chapters, this volume begins with an overview of aperture theory as well as aperture distributions and near field theory. The second and third chapters deal with mechanically steered and

  6. Random mask optimization for fast neutron coded aperture imaging

    Energy Technology Data Exchange (ETDEWEB)

    McMillan, Kyle [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Univ. of California, Los Angeles, CA (United States); Marleau, Peter [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Brubaker, Erik [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2015-05-01

    In coded aperture imaging, one of the most important factors determining the quality of reconstructed images is the choice of mask/aperture pattern. In many applications, uniformly redundant arrays (URAs) are widely accepted as the optimal mask pattern. Under ideal conditions, thin and highly opaque masks, URA patterns are mathematically constructed to provide artifact-free reconstruction however, the number of URAs for a chosen number of mask elements is limited and when highly penetrating particles such as fast neutrons and high-energy gamma-rays are being imaged, the optimum is seldom achieved. In this case more robust mask patterns that provide better reconstructed image quality may exist. Through the use of heuristic optimization methods and maximum likelihood expectation maximization (MLEM) image reconstruction, we show that for both point and extended neutron sources a random mask pattern can be optimized to provide better image quality than that of a URA.

  7. Spatio-temporal encoding using narrow-band linear frequency modulated signals in synthetic aperture ultrasound imaging

    DEFF Research Database (Denmark)

    Gran, Fredrik; Jensen, Jørgen Arendt

    2005-01-01

    In this paper a method for spatio-temporal encoding is presented for synthetic transmit aperture ultrasound imaging (STA). The purpose is to excite several transmitters at the same time in order to transmit more acoustic energy in every single transmission. When increasing the transmitted acousti...

  8. Review of Random Phase Encoding in Volume Holographic Storage

    Directory of Open Access Journals (Sweden)

    Wei-Chia Su

    2012-09-01

    Full Text Available Random phase encoding is a unique technique for volume hologram which can be applied to various applications such as holographic multiplexing storage, image encryption, and optical sensing. In this review article, we first review and discuss diffraction selectivity of random phase encoding in volume holograms, which is the most important parameter related to multiplexing capacity of volume holographic storage. We then review an image encryption system based on random phase encoding. The alignment of phase key for decryption of the encoded image stored in holographic memory is analyzed and discussed. In the latter part of the review, an all-optical sensing system implemented by random phase encoding and holographic interconnection is presented.

  9. Encoding plaintext by Fourier transform hologram in double random phase encoding using fingerprint keys

    Science.gov (United States)

    Takeda, Masafumi; Nakano, Kazuya; Suzuki, Hiroyuki; Yamaguchi, Masahiro

    2012-09-01

    It has been shown that biometric information can be used as a cipher key for binary data encryption by applying double random phase encoding. In such methods, binary data are encoded in a bit pattern image, and the decrypted image becomes a plain image when the key is genuine; otherwise, decrypted images become random images. In some cases, images decrypted by imposters may not be fully random, such that the blurred bit pattern can be partially observed. In this paper, we propose a novel bit coding method based on a Fourier transform hologram, which makes images decrypted by imposters more random. Computer experiments confirm that the method increases the randomness of images decrypted by imposters while keeping the false rejection rate as low as in the conventional method.

  10. Encoding plaintext by Fourier transform hologram in double random phase encoding using fingerprint keys

    International Nuclear Information System (INIS)

    Takeda, Masafumi; Nakano, Kazuya; Suzuki, Hiroyuki; Yamaguchi, Masahiro

    2012-01-01

    It has been shown that biometric information can be used as a cipher key for binary data encryption by applying double random phase encoding. In such methods, binary data are encoded in a bit pattern image, and the decrypted image becomes a plain image when the key is genuine; otherwise, decrypted images become random images. In some cases, images decrypted by imposters may not be fully random, such that the blurred bit pattern can be partially observed. In this paper, we propose a novel bit coding method based on a Fourier transform hologram, which makes images decrypted by imposters more random. Computer experiments confirm that the method increases the randomness of images decrypted by imposters while keeping the false rejection rate as low as in the conventional method. (paper)

  11. Pseudo-random tool paths for CNC sub-aperture polishing and other applications.

    Science.gov (United States)

    Dunn, Christina R; Walker, David D

    2008-11-10

    In this paper we first contrast classical and CNC polishing techniques in regard to the repetitiveness of the machine motions. We then present a pseudo-random tool path for use with CNC sub-aperture polishing techniques and report polishing results from equivalent random and raster tool-paths. The random tool-path used - the unicursal random tool-path - employs a random seed to generate a pattern which never crosses itself. Because of this property, this tool-path is directly compatible with dwell time maps for corrective polishing. The tool-path can be used to polish any continuous area of any boundary shape, including surfaces with interior perforations.

  12. Latency Performance of Encoding with Random Linear Network Coding

    DEFF Research Database (Denmark)

    Nielsen, Lars; Hansen, René Rydhof; Lucani Rötter, Daniel Enrique

    2018-01-01

    the encoding process can be parallelized based on system requirements to reduce data access time within the system. Using a counting argument, we focus on predicting the effect of changes of generation (number of original packets) and symbol size (number of bytes per data packet) configurations on the encoding...... latency on full vector and on-the-fly algorithms. We show that the encoding latency doubles when either the generation size or the symbol size double and confirm this via extensive simulations. Although we show that the theoretical speed gain of on-the-fly over full vector is two, our measurements show...

  13. Enhancing Security of Double Random Phase Encoding Based on Random S-Box

    Science.gov (United States)

    Girija, R.; Singh, Hukum

    2018-06-01

    In this paper, we propose a novel asymmetric cryptosystem for double random phase encoding (DRPE) using random S-Box. While utilising S-Box separately is not reliable and DRPE does not support non-linearity, so, our system unites the effectiveness of S-Box with an asymmetric system of DRPE (through Fourier transform). The uniqueness of proposed cryptosystem lies on employing high sensitivity dynamic S-Box for our DRPE system. The randomness and scalability achieved due to applied technique is an additional feature of the proposed solution. The firmness of random S-Box is investigated in terms of performance parameters such as non-linearity, strict avalanche criterion, bit independence criterion, linear and differential approximation probabilities etc. S-Boxes convey nonlinearity to cryptosystems which is a significant parameter and very essential for DRPE. The strength of proposed cryptosystem has been analysed using various parameters such as MSE, PSNR, correlation coefficient analysis, noise analysis, SVD analysis, etc. Experimental results are conferred in detail to exhibit proposed cryptosystem is highly secure.

  14. Key management of the double random-phase-encoding method using public-key encryption

    Science.gov (United States)

    Saini, Nirmala; Sinha, Aloka

    2010-03-01

    Public-key encryption has been used to encode the key of the encryption process. In the proposed technique, an input image has been encrypted by using the double random-phase-encoding method using extended fractional Fourier transform. The key of the encryption process have been encoded by using the Rivest-Shamir-Adelman (RSA) public-key encryption algorithm. The encoded key has then been transmitted to the receiver side along with the encrypted image. In the decryption process, first the encoded key has been decrypted using the secret key and then the encrypted image has been decrypted by using the retrieved key parameters. The proposed technique has advantage over double random-phase-encoding method because the problem associated with the transmission of the key has been eliminated by using public-key encryption. Computer simulation has been carried out to validate the proposed technique.

  15. 3D Multisource Full‐Waveform Inversion using Dynamic Random Phase Encoding

    KAUST Repository

    Boonyasiriwat, Chaiwoot; Schuster, Gerard T.

    2010-01-01

    We have developed a multisource full‐waveform inversion algorithm using a dynamic phase encoding strategy with dual‐randomization—both the position and polarity of simultaneous sources are randomized and changed every iteration. The dynamic dual

  16. Encoding Sequential Information in Semantic Space Models: Comparing Holographic Reduced Representation and Random Permutation

    Directory of Open Access Journals (Sweden)

    Gabriel Recchia

    2015-01-01

    Full Text Available Circular convolution and random permutation have each been proposed as neurally plausible binding operators capable of encoding sequential information in semantic memory. We perform several controlled comparisons of circular convolution and random permutation as means of encoding paired associates as well as encoding sequential information. Random permutations outperformed convolution with respect to the number of paired associates that can be reliably stored in a single memory trace. Performance was equal on semantic tasks when using a small corpus, but random permutations were ultimately capable of achieving superior performance due to their higher scalability to large corpora. Finally, “noisy” permutations in which units are mapped to other units arbitrarily (no one-to-one mapping perform nearly as well as true permutations. These findings increase the neurological plausibility of random permutations and highlight their utility in vector space models of semantics.

  17. Security of BB84 with weak randomness and imperfect qubit encoding

    Science.gov (United States)

    Zhao, Liang-Yuan; Yin, Zhen-Qiang; Li, Hong-Wei; Chen, Wei; Fang, Xi; Han, Zheng-Fu; Huang, Wei

    2018-03-01

    The main threats for the well-known Bennett-Brassard 1984 (BB84) practical quantum key distribution (QKD) systems are that its encoding is inaccurate and measurement device may be vulnerable to particular attacks. Thus, a general physical model or security proof to tackle these loopholes simultaneously and quantitatively is highly desired. Here we give a framework on the security of BB84 when imperfect qubit encoding and vulnerability of measurement device are both considered. In our analysis, the potential attacks to measurement device are generalized by the recently proposed weak randomness model which assumes the input random numbers are partially biased depending on a hidden variable planted by an eavesdropper. And the inevitable encoding inaccuracy is also introduced here. From a fundamental view, our work reveals the potential information leakage due to encoding inaccuracy and weak randomness input. For applications, our result can be viewed as a useful tool to quantitatively evaluate the security of a practical QKD system.

  18. A novel attack method about double-random-phase-encoding-based image hiding method

    Science.gov (United States)

    Xu, Hongsheng; Xiao, Zhijun; Zhu, Xianchen

    2018-03-01

    By using optical image processing techniques, a novel text encryption and hiding method applied by double-random phase-encoding technique is proposed in the paper. The first step is that the secret message is transformed into a 2-dimension array. The higher bits of the elements in the array are used to fill with the bit stream of the secret text, while the lower bits are stored specific values. Then, the transformed array is encoded by double random phase encoding technique. Last, the encoded array is embedded on a public host image to obtain the image embedded with hidden text. The performance of the proposed technique is tested via analytical modeling and test data stream. Experimental results show that the secret text can be recovered either accurately or almost accurately, while maintaining the quality of the host image embedded with hidden data by properly selecting the method of transforming the secret text into an array and the superimposition coefficient.

  19. 3D Multisource Full‐Waveform Inversion using Dynamic Random Phase Encoding

    KAUST Repository

    Boonyasiriwat, Chaiwoot

    2010-10-17

    We have developed a multisource full‐waveform inversion algorithm using a dynamic phase encoding strategy with dual‐randomization—both the position and polarity of simultaneous sources are randomized and changed every iteration. The dynamic dual‐randomization is used to promote the destructive interference of crosstalk noise resulting from blending a large number of common shot gathers into a supergather. We compare our multisource algorithm with various algorithms in a numerical experiment using the 3D SEG/EAGE overthrust model and show that our algorithm provides a higher‐quality velocity tomogram than the other methods that use only monorandomization. This suggests that increasing the degree of randomness in phase encoding should improve the quality of the inversion result.

  20. Efficient Text Encryption and Hiding with Double-Random Phase-Encoding

    Directory of Open Access Journals (Sweden)

    Mohammad S. Alam

    2012-10-01

    Full Text Available In this paper, a double-random phase-encoding technique-based text encryption and hiding method is proposed. First, the secret text is transformed into a 2-dimensional array and the higher bits of the elements in the transformed array are used to store the bit stream of the secret text, while the lower bits are filled with specific values. Then, the transformed array is encoded with double-random phase-encoding technique. Finally, the encoded array is superimposed on an expanded host image to obtain the image embedded with hidden data. The performance of the proposed technique, including the hiding capacity, the recovery accuracy of the secret text, and the quality of the image embedded with hidden data, is tested via analytical modeling and test data stream. Experimental results show that the secret text can be recovered either accurately or almost accurately, while maintaining the quality of the host image embedded with hidden data by properly selecting the method of transforming the secret text into an array and the superimposition coefficient. By using optical information processing techniques, the proposed method has been found to significantly improve the security of text information transmission, while ensuring hiding capacity at a prescribed level.

  1. Biometrics based key management of double random phase encoding scheme using error control codes

    Science.gov (United States)

    Saini, Nirmala; Sinha, Aloka

    2013-08-01

    In this paper, an optical security system has been proposed in which key of the double random phase encoding technique is linked to the biometrics of the user to make it user specific. The error in recognition due to the biometric variation is corrected by encoding the key using the BCH code. A user specific shuffling key is used to increase the separation between genuine and impostor Hamming distance distribution. This shuffling key is then further secured using the RSA public key encryption to enhance the security of the system. XOR operation is performed between the encoded key and the feature vector obtained from the biometrics. The RSA encoded shuffling key and the data obtained from the XOR operation are stored into a token. The main advantage of the present technique is that the key retrieval is possible only in the simultaneous presence of the token and the biometrics of the user which not only authenticates the presence of the original input but also secures the key of the system. Computational experiments showed the effectiveness of the proposed technique for key retrieval in the decryption process by using the live biometrics of the user.

  2. Doppler Aliasing Reduction in Wide-Angle Synthetic Aperture Radar Using Phase Modulated Random Stepped-Frequency Waveforms

    National Research Council Canada - National Science Library

    Hyatt, Andrew W

    2006-01-01

    ...) waveforms in a Wide-Angle Synthetic Aperture Radar (WA-SAR) scenario. RSF waveforms have been demonstrated to have desirable properties which allow for cancelling of Doppler aliased scatterers in WA-SAR images...

  3. Generalized Encoding CRDSA: Maximizing Throughput in Enhanced Random Access Schemes for Satellite

    Directory of Open Access Journals (Sweden)

    Manlio Bacco

    2014-12-01

    Full Text Available This work starts from the analysis of the literature about the Random Access protocols with contention resolution, such as Contention Resolution Diversity Slotted Aloha (CRDSA, and introduces a possible enhancement, named Generalized Encoding Contention Resolution Diversity Slotted Aloha (GE-CRDSA. The GE-CRDSA aims at improving the aggregated throughput when the system load is less than 50%, playing on the opportunity of transmitting an optimal combination of information and parity packets frame by frame. This paper shows the improvement in terms of throughput, by performing traffic estimation and adaptive choice of information and parity rates, when a satellite network undergoes a variable traffic load profile.

  4. Security enhancement of double random phase encoding using rear-mounted phase masking

    Science.gov (United States)

    Chen, Junxin; Zhang, Yu; Li, Jinchang; Zhang, Li-bo

    2018-02-01

    In this paper, a security enhancement for double random phase encoding (DRPE) by introducing a rear-mounted phase masking procedure is presented. Based on exhaustively studying the cryptanalysis achievements of DRPE and its variants, invalidation of the second lens, which plays a critical role in cryptanalyzing processes, is concluded. The improved system can exploit the security potential of the second lens and consequently strengthen the security of DRPE. Experimental results and security analyses are presented in detail to demonstrate the security potential of the proposed cryptosystem.

  5. Information hiding based on double random-phase encoding and public-key cryptography.

    Science.gov (United States)

    Sheng, Yuan; Xin, Zhou; Alam, Mohammed S; Xi, Lu; Xiao-Feng, Li

    2009-03-02

    A novel information hiding method based on double random-phase encoding (DRPE) and Rivest-Shamir-Adleman (RSA) public-key cryptosystem is proposed. In the proposed technique, the inherent diffusion property of DRPE is cleverly utilized to make up the diffusion insufficiency of RSA public-key cryptography, while the RSA cryptosystem is utilized for simultaneous transmission of the cipher text and the two phase-masks, which is not possible under the DRPE technique. This technique combines the complementary advantages of the DPRE and RSA encryption techniques and brings security and convenience for efficient information transmission. Extensive numerical simulation results are presented to verify the performance of the proposed technique.

  6. Encoding atlases by randomized classification forests for efficient multi-atlas label propagation.

    Science.gov (United States)

    Zikic, D; Glocker, B; Criminisi, A

    2014-12-01

    We propose a method for multi-atlas label propagation (MALP) based on encoding the individual atlases by randomized classification forests. Most current approaches perform a non-linear registration between all atlases and the target image, followed by a sophisticated fusion scheme. While these approaches can achieve high accuracy, in general they do so at high computational cost. This might negatively affect the scalability to large databases and experimentation. To tackle this issue, we propose to use a small and deep classification forest to encode each atlas individually in reference to an aligned probabilistic atlas, resulting in an Atlas Forest (AF). Our classifier-based encoding differs from current MALP approaches, which represent each point in the atlas either directly as a single image/label value pair, or by a set of corresponding patches. At test time, each AF produces one probabilistic label estimate, and their fusion is done by averaging. Our scheme performs only one registration per target image, achieves good results with a simple fusion scheme, and allows for efficient experimentation. In contrast to standard forest schemes, in which each tree would be trained on all atlases, our approach retains the advantages of the standard MALP framework. The target-specific selection of atlases remains possible, and incorporation of new scans is straightforward without retraining. The evaluation on four different databases shows accuracy within the range of the state of the art at a significantly lower running time. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Stimulus number, duration and intensity encoding in randomly connected attractor networks with synaptic depression

    Directory of Open Access Journals (Sweden)

    Paul eMiller

    2013-05-01

    Full Text Available Randomly connected recurrent networks of excitatory groups of neurons can possess a multitude of attractor states. When the internal excitatory synapses of these networks are depressing, the attractor states can be destabilized with increasing input. This leads to an itinerancy, where with either repeated transient stimuli, or increasing duration of a single stimulus, the network activity advances through sequences of attractor states. We find that the resulting network state, which persists beyond stimulus offset, can encode the number of stimuli presented via a distributed representation of neural activity with non-monotonic tuning curves for most neurons. Increased duration of a single stimulus is encoded via different distributed representations, so unlike an integrator, the network distinguishes separate successive presentations of a short stimulus from a single presentation of a longer stimulus with equal total duration. Moreover, different amplitudes of stimulus cause new, distinct activity patterns, such that changes in stimulus number, duration and amplitude can be distinguished from each other. These properties of the network depend on dynamic depressing synapses, as they disappear if synapses are static. Thus short-term synaptic depression allows a network to store separately the different dynamic properties of a spatially constant stimulus.

  8. Collaborative Random Faces-Guided Encoders for Pose-Invariant Face Representation Learning.

    Science.gov (United States)

    Shao, Ming; Zhang, Yizhe; Fu, Yun

    2018-04-01

    Learning discriminant face representation for pose-invariant face recognition has been identified as a critical issue in visual learning systems. The challenge lies in the drastic changes of facial appearances between the test face and the registered face. To that end, we propose a high-level feature learning framework called "collaborative random faces (RFs)-guided encoders" toward this problem. The contributions of this paper are three fold. First, we propose a novel supervised autoencoder that is able to capture the high-level identity feature despite of pose variations. Second, we enrich the identity features by replacing the target values of conventional autoencoders with random signals (RFs in this paper), which are unique for each subject under different poses. Third, we further improve the performance of the framework by incorporating deep convolutional neural network facial descriptors and linking discriminative identity features from different RFs for the augmented identity features. Finally, we conduct face identification experiments on Multi-PIE database, and face verification experiments on labeled faces in the wild and YouTube Face databases, where face recognition rate and verification accuracy with Receiver Operating Characteristic curves are rendered. In addition, discussions of model parameters and connections with the existing methods are provided. These experiments demonstrate that our learning system works fairly well on handling pose variations.

  9. A multispectral photon-counting double random phase encoding scheme for image authentication.

    Science.gov (United States)

    Yi, Faliu; Moon, Inkyu; Lee, Yeon H

    2014-05-20

    In this paper, we propose a new method for color image-based authentication that combines multispectral photon-counting imaging (MPCI) and double random phase encoding (DRPE) schemes. The sparsely distributed information from MPCI and the stationary white noise signal from DRPE make intruder attacks difficult. In this authentication method, the original multispectral RGB color image is down-sampled into a Bayer image. The three types of color samples (red, green and blue color) in the Bayer image are encrypted with DRPE and the amplitude part of the resulting image is photon counted. The corresponding phase information that has nonzero amplitude after photon counting is then kept for decryption. Experimental results show that the retrieved images from the proposed method do not visually resemble their original counterparts. Nevertheless, the original color image can be efficiently verified with statistical nonlinear correlations. Our experimental results also show that different interpolation algorithms applied to Bayer images result in different verification effects for multispectral RGB color images.

  10. Steganographic optical image encryption system based on reversible data hiding and double random phase encoding

    Science.gov (United States)

    Chuang, Cheng-Hung; Chen, Yen-Lin

    2013-02-01

    This study presents a steganographic optical image encryption system based on reversible data hiding and double random phase encoding (DRPE) techniques. Conventional optical image encryption systems can securely transmit valuable images using an encryption method for possible application in optical transmission systems. The steganographic optical image encryption system based on the DRPE technique has been investigated to hide secret data in encrypted images. However, the DRPE techniques vulnerable to attacks and many of the data hiding methods in the DRPE system can distort the decrypted images. The proposed system, based on reversible data hiding, uses a JBIG2 compression scheme to achieve lossless decrypted image quality and perform a prior encryption process. Thus, the DRPE technique enables a more secured optical encryption process. The proposed method extracts and compresses the bit planes of the original image using the lossless JBIG2 technique. The secret data are embedded in the remaining storage space. The RSA algorithm can cipher the compressed binary bits and secret data for advanced security. Experimental results show that the proposed system achieves a high data embedding capacity and lossless reconstruction of the original images.

  11. A Multispectral Photon-Counting Double Random Phase Encoding Scheme for Image Authentication

    Directory of Open Access Journals (Sweden)

    Faliu Yi

    2014-05-01

    Full Text Available In this paper, we propose a new method for color image-based authentication that combines multispectral photon-counting imaging (MPCI and double random phase encoding (DRPE schemes. The sparsely distributed information from MPCI and the stationary white noise signal from DRPE make intruder attacks difficult. In this authentication method, the original multispectral RGB color image is down-sampled into a Bayer image. The three types of color samples (red, green and blue color in the Bayer image are encrypted with DRPE and the amplitude part of the resulting image is photon counted. The corresponding phase information that has nonzero amplitude after photon counting is then kept for decryption. Experimental results show that the retrieved images from the proposed method do not visually resemble their original counterparts. Nevertheless, the original color image can be efficiently verified with statistical nonlinear correlations. Our experimental results also show that different interpolation algorithms applied to Bayer images result in different verification effects for multispectral RGB color images.

  12. Optical image transformation and encryption by phase-retrieval-based double random-phase encoding and compressive ghost imaging

    Science.gov (United States)

    Yuan, Sheng; Yang, Yangrui; Liu, Xuemei; Zhou, Xin; Wei, Zhenzhuo

    2018-01-01

    An optical image transformation and encryption scheme is proposed based on double random-phase encoding (DRPE) and compressive ghost imaging (CGI) techniques. In this scheme, a secret image is first transformed into a binary image with the phase-retrieval-based DRPE technique, and then encoded by a series of random amplitude patterns according to the ghost imaging (GI) principle. Compressive sensing, corrosion and expansion operations are implemented to retrieve the secret image in the decryption process. This encryption scheme takes the advantage of complementary capabilities offered by the phase-retrieval-based DRPE and GI-based encryption techniques. That is the phase-retrieval-based DRPE is used to overcome the blurring defect of the decrypted image in the GI-based encryption, and the CGI not only reduces the data amount of the ciphertext, but also enhances the security of DRPE. Computer simulation results are presented to verify the performance of the proposed encryption scheme.

  13. Aperture area measurement facility

    Data.gov (United States)

    Federal Laboratory Consortium — NIST has established an absolute aperture area measurement facility for circular and near-circular apertures use in radiometric instruments. The facility consists of...

  14. The chaotic dynamical aperture

    International Nuclear Information System (INIS)

    Lee, S.Y.; Tepikian, S.

    1985-01-01

    Nonlinear magnetic forces become more important for particles in the modern large accelerators. These nonlinear elements are introduced either intentionally to control beam dynamics or by uncontrollable random errors. Equations of motion in the nonlinear Hamiltonian are usually non-integrable. Because of the nonlinear part of the Hamiltonian, the tune diagram of accelerators is a jungle. Nonlinear magnet multipoles are important in keeping the accelerator operation point in the safe quarter of the hostile jungle of resonant tunes. Indeed, all the modern accelerator design have taken advantages of nonlinear mechanics. On the other hand, the effect of the uncontrollable random multipoles should be evaluated carefully. A powerful method of studying the effect of these nonlinear multipoles is using a particle tracking calculation, where a group of test particles are tracing through these magnetic multipoles in the accelerator hundreds to millions of turns in order to test the dynamical aperture of the machine. These methods are extremely useful in the design of a large accelerator such as SSC, LEP, HERA and RHIC. These calculations unfortunately take tremendous amount of computing time. In this paper, we try to apply the existing method in the nonlinear dynamics to study the possible alternative solution. When the Hamiltonian motion becomes chaotic, the tune of the machine becomes undefined. The aperture related to the chaotic orbit can be identified as chaotic dynamical aperture. We review the method of determining chaotic orbit and apply the method to nonlinear problems in accelerator physics. We then discuss the scaling properties and effect of random sextupoles

  15. Reduced randomness in quantum cryptography with sequences of qubits encoded in the same basis

    International Nuclear Information System (INIS)

    Lamoureux, L.-P.; Cerf, N. J.; Bechmann-Pasquinucci, H.; Gisin, N.; Macchiavello, C.

    2006-01-01

    We consider the cloning of sequences of qubits prepared in the states used in the BB84 or six-state quantum cryptography protocol, and show that the single-qubit fidelity is unaffected even if entire sequences of qubits are prepared in the same basis. This result is only valid provided that the sequences are much shorter than the total key. It is of great importance for practical quantum cryptosystems because it reduces the need for high-speed random number generation without impairing on the security against finite-size cloning attacks

  16. Fractional Fourier domain optical image hiding using phase retrieval algorithm based on iterative nonlinear double random phase encoding.

    Science.gov (United States)

    Wang, Xiaogang; Chen, Wen; Chen, Xudong

    2014-09-22

    We present a novel image hiding method based on phase retrieval algorithm under the framework of nonlinear double random phase encoding in fractional Fourier domain. Two phase-only masks (POMs) are efficiently determined by using the phase retrieval algorithm, in which two cascaded phase-truncated fractional Fourier transforms (FrFTs) are involved. No undesired information disclosure, post-processing of the POMs or digital inverse computation appears in our proposed method. In order to achieve the reduction in key transmission, a modified image hiding method based on the modified phase retrieval algorithm and logistic map is further proposed in this paper, in which the fractional orders and the parameters with respect to the logistic map are regarded as encryption keys. Numerical results have demonstrated the feasibility and effectiveness of the proposed algorithms.

  17. Cryptanalysis and improvement of an optical image encryption scheme using a chaotic Baker map and double random phase encoding

    International Nuclear Information System (INIS)

    Chen, Jun-Xin; Fu, Chong; Zhu, Zhi-Liang; Zhang, Li-Bo; Zhang, Yushu

    2014-01-01

    In this paper, we evaluate the security of an enhanced double random phase encoding (DRPE) image encryption scheme (2013 J. Lightwave Technol. 31 2533). The original system employs a chaotic Baker map prior to DRPE to provide more protection to the plain image and hence promote the security level of DRPE, as claimed. However, cryptanalysis shows that this scheme is vulnerable to a chosen-plaintext attack, and the ciphertext can be precisely recovered. The corresponding improvement is subsequently reported upon the basic premise that no extra equipment or computational complexity is required. The simulation results and security analyses prove its effectiveness and security. The proposed achievements are suitable for all cryptosystems under permutation and, following that, the DRPE architecture, and we hope that our work can motivate the further research on optical image encryption. (paper)

  18. Cryptanalysis and improvement of an optical image encryption scheme using a chaotic Baker map and double random phase encoding

    Science.gov (United States)

    Chen, Jun-Xin; Zhu, Zhi-Liang; Fu, Chong; Zhang, Li-Bo; Zhang, Yushu

    2014-12-01

    In this paper, we evaluate the security of an enhanced double random phase encoding (DRPE) image encryption scheme (2013 J. Lightwave Technol. 31 2533). The original system employs a chaotic Baker map prior to DRPE to provide more protection to the plain image and hence promote the security level of DRPE, as claimed. However, cryptanalysis shows that this scheme is vulnerable to a chosen-plaintext attack, and the ciphertext can be precisely recovered. The corresponding improvement is subsequently reported upon the basic premise that no extra equipment or computational complexity is required. The simulation results and security analyses prove its effectiveness and security. The proposed achievements are suitable for all cryptosystems under permutation and, following that, the DRPE architecture, and we hope that our work can motivate the further research on optical image encryption.

  19. Information verification cryptosystem using one-time keys based on double random phase encoding and public-key cryptography

    Science.gov (United States)

    Zhao, Tieyu; Ran, Qiwen; Yuan, Lin; Chi, Yingying; Ma, Jing

    2016-08-01

    A novel image encryption system based on double random phase encoding (DRPE) and RSA public-key algorithm is proposed. The main characteristic of the system is that each encryption process produces a new decryption key (even for the same plaintext), thus the encryption system conforms to the feature of the one-time pad (OTP) cryptography. The other characteristic of the system is the use of fingerprint key. Only with the rightful authorization will the true decryption be obtained, otherwise the decryption will result in noisy images. So the proposed system can be used to determine whether the ciphertext is falsified by attackers. In addition, the system conforms to the basic agreement of asymmetric cryptosystem (ACS) due to the combination with the RSA public-key algorithm. The simulation results show that the encryption scheme has high robustness against the existing attacks.

  20. A random-key encoded harmony search approach for energy-efficient production scheduling with shared resources

    Science.gov (United States)

    Garcia-Santiago, C. A.; Del Ser, J.; Upton, C.; Quilligan, F.; Gil-Lopez, S.; Salcedo-Sanz, S.

    2015-11-01

    When seeking near-optimal solutions for complex scheduling problems, meta-heuristics demonstrate good performance with affordable computational effort. This has resulted in a gravitation towards these approaches when researching industrial use-cases such as energy-efficient production planning. However, much of the previous research makes assumptions about softer constraints that affect planning strategies and about how human planners interact with the algorithm in a live production environment. This article describes a job-shop problem that focuses on minimizing energy consumption across a production facility of shared resources. The application scenario is based on real facilities made available by the Irish Center for Manufacturing Research. The formulated problem is tackled via harmony search heuristics with random keys encoding. Simulation results are compared to a genetic algorithm, a simulated annealing approach and a first-come-first-served scheduling. The superior performance obtained by the proposed scheduler paves the way towards its practical implementation over industrial production chains.

  1. Mastering Apple Aperture

    CERN Document Server

    Fitzgerald, Thomas

    2013-01-01

    Written in a conversational style, the author will share his knowledge on advanced Aperture topics with detailed discussions of advanced topics, the theory behind some of those topics and lots of hints and tips for ways to improve your workflow.Photographer's who have a basic understanding of Aperture

  2. Class of near-perfect coded apertures

    International Nuclear Information System (INIS)

    Cannon, T.M.; Fenimore, E.E.

    1978-01-01

    The encoding/decoding method produces artifacts, which even in the absence of quantum noise, restrict the quality of the reconstructed image. This is true of most correlation-type methods. If the decoding procedure is of the deconvolution variety, small terms in the transfer function of the aperture can lead to excessive noise in the reconstructed image. The authors propose to circumvent both of these problems by use of a uniformly redundant array (URA) as the coded aperture in conjunction with a special correlation decoding method. The correlation of the decoding array with the aperture results in a delta function with deterministically zero sidelobes. It is shown that the reconstructed image in the URA system contains virtually uniform noise regardless of the structure in the original source. Therefore, the improvement over a single pinhole camera will be relatively larger for the brighter points in the source than for the low intensity points. 12 refs

  3. Utilisation of ISA Reverse Genetics and Large-Scale Random Codon Re-Encoding to Produce Attenuated Strains of Tick-Borne Encephalitis Virus within Days.

    Science.gov (United States)

    de Fabritus, Lauriane; Nougairède, Antoine; Aubry, Fabien; Gould, Ernest A; de Lamballerie, Xavier

    2016-01-01

    Large-scale codon re-encoding is a new method of attenuating RNA viruses. However, the use of infectious clones to generate attenuated viruses has inherent technical problems. We previously developed a bacterium-free reverse genetics protocol, designated ISA, and now combined it with large-scale random codon-re-encoding method to produce attenuated tick-borne encephalitis virus (TBEV), a pathogenic flavivirus which causes febrile illness and encephalitis in humans. We produced wild-type (WT) and two re-encoded TBEVs, containing 273 or 273+284 synonymous mutations in the NS5 and NS5+NS3 coding regions respectively. Both re-encoded viruses were attenuated when compared with WT virus using a laboratory mouse model and the relative level of attenuation increased with the degree of re-encoding. Moreover, all infected animals produced neutralizing antibodies. This novel, rapid and efficient approach to engineering attenuated viruses could potentially expedite the development of safe and effective new-generation live attenuated vaccines.

  4. APT: Aperture Photometry Tool

    Science.gov (United States)

    Laher, Russ

    2012-08-01

    Aperture Photometry Tool (APT) is software for astronomers and students interested in manually exploring the photometric qualities of astronomical images. It has a graphical user interface (GUI) which allows the image data associated with aperture photometry calculations for point and extended sources to be visualized and, therefore, more effectively analyzed. Mouse-clicking on a source in the displayed image draws a circular or elliptical aperture and sky annulus around the source and computes the source intensity and its uncertainty, along with several commonly used measures of the local sky background and its variability. The results are displayed and can be optionally saved to an aperture-photometry-table file and plotted on graphs in various ways using functions available in the software. APT is geared toward processing sources in a small number of images and is not suitable for bulk processing a large number of images, unlike other aperture photometry packages (e.g., SExtractor). However, APT does have a convenient source-list tool that enables calculations for a large number of detections in a given image. The source-list tool can be run either in automatic mode to generate an aperture photometry table quickly or in manual mode to permit inspection and adjustment of the calculation for each individual detection. APT displays a variety of useful graphs, including image histogram, and aperture slices, source scatter plot, sky scatter plot, sky histogram, radial profile, curve of growth, and aperture-photometry-table scatter plots and histograms. APT has functions for customizing calculations, including outlier rejection, pixel “picking” and “zapping,” and a selection of source and sky models. The radial-profile-interpolation source model, accessed via the radial-profile-plot panel, allows recovery of source intensity from pixels with missing data and can be especially beneficial in crowded fields.

  5. Detailed IR aperture measurements

    CERN Document Server

    Bruce, Roderik; Garcia Morales, Hector; Giovannozzi, Massimo; Hermes, Pascal Dominik; Mirarchi, Daniele; Quaranta, Elena; Redaelli, Stefano; Rossi, Carlo; Skowronski, Piotr Krzysztof; Wretborn, Sven Joel; CERN. Geneva. ATS Department

    2016-01-01

    MD 1673 was carried out on October 5 2016, in order to investigate in more detail the available aperture in the LHC high-luminosity insertions at 6.5 TeV and β∗=40 cm. Previous aperture measurements in 2016 during commissioning had shown that the available aperture is at the edge of protection, and that the aperture bottleneck at β∗=40 cm in certain cases is found in the separation plane instead of in the crossing plane. Furthermore, the bottlenecks were consistently found in close to the upstream end of Q3 on the side of the incoming beam, and not in Q2 on the outgoing beam as expected from calculations. Therefore, this MD aimed at measuring IR1 and IR5 separately (at 6.5 TeV and β∗=40 cm, for 185 µrad half crossing angle), to further localize the bottlenecks longitudinally using newly installed BLMs, investigate the difference in aperture between Q2 and Q3, and to see if any aperture can be gained using special orbit bumps.

  6. Imaging with rotating slit apertures and rotating collimators

    International Nuclear Information System (INIS)

    Gindi, G.R.; Arendt, J.; Barrett, H.H.; Chiu, M.Y.; Ervin, A.; Giles, C.L.; Kujoory, M.A.; Miller, E.L.; Simpson, R.G.

    1982-01-01

    The statistical quality of conventional nuclear medical imagery is limited by the small signal collect through low-efficiency conventional apertures. Coded-aperture imaging overcomes this by employing a two-step process in which the object is first efficiently detected as an ''encoded'' form which does not resemble the object, and then filtered (or ''decoded'') to form an image. We present here the imaging properties of a class of time-modulated coded apertures which, unlike most coded apertures, encode projections of the object rather than the object itself. These coded apertures can reconstruct a volume object nontomographically, tomographically (one plane focused), or three-dimensionally. We describe a new decoding algorithm that reconstructs the object from its planar projections. Results of noise calculations are given, and the noise performance of these coded-aperture systems is compared to that of conventional counterparts. A hybrid slit-pinhole system which combines the imaging advantages of a rotating slit and a pinhole is described. A new scintillation detector which accurately measures the position of an event in one dimension only is presented, and its use in our coded-aperture system is outlined. Finally, results of imaging test objects and animals are given

  7. Imaging with rotating slit apertures and rotating collimators

    International Nuclear Information System (INIS)

    Gindi, G.R.; Arendt, J.; Barrett, H.H.; Chiu, M.Y.; Ervin, A.; Giles, C.L.; Kujoory, M.A.; Miller, E.L.; Simpson, R.G.

    1982-01-01

    The statistical quality of conventional nuclear medical imagery is limited by the small signal collected through low-efficiency conventional apertures. Coded-aperture imaging overcomes this by employing a two-step process in which the object is first efficiently detected as an encoded form which does not resemble the object, and then filtered (or decoded) to form an image. We present here the imaging properties of a class of time-modulated coded apertures which, unlike most coded apertures, encode projections of the object rather than the object itself. These coded apertures can reconstruct a volume object nontomographically, tomographically (one plane focused), or three-dimensionally. We describe a new decoding algorithm that reconstructs the object from its planar projections. Results of noise calculations are given, and the noise performance of these coded-aperture systems is compared to that of conventional counterparts. A hybrid slit-pinhole system which combines the imaging advantages of a rotating slit and a pinhole is described. A new scintillation detector which accurately measures the position of an event in one dimension only is presented, and its use in our coded-aperture system is outlined. Finally, results of imaging test objects and animals are given

  8. Aperture Photometry Tool

    Science.gov (United States)

    Laher, Russ R.; Gorjian, Varoujan; Rebull, Luisa M.; Masci, Frank J.; Fowler, John W.; Helou, George; Kulkarni, Shrinivas R.; Law, Nicholas M.

    2012-07-01

    Aperture Photometry Tool (APT) is software for astronomers and students interested in manually exploring the photometric qualities of astronomical images. It is a graphical user interface (GUI) designed to allow the image data associated with aperture photometry calculations for point and extended sources to be visualized and, therefore, more effectively analyzed. The finely tuned layout of the GUI, along with judicious use of color-coding and alerting, is intended to give maximal user utility and convenience. Simply mouse-clicking on a source in the displayed image will instantly draw a circular or elliptical aperture and sky annulus around the source and will compute the source intensity and its uncertainty, along with several commonly used measures of the local sky background and its variability. The results are displayed and can be optionally saved to an aperture-photometry-table file and plotted on graphs in various ways using functions available in the software. APT is geared toward processing sources in a small number of images and is not suitable for bulk processing a large number of images, unlike other aperture photometry packages (e.g., SExtractor). However, APT does have a convenient source-list tool that enables calculations for a large number of detections in a given image. The source-list tool can be run either in automatic mode to generate an aperture photometry table quickly or in manual mode to permit inspection and adjustment of the calculation for each individual detection. APT displays a variety of useful graphs with just the push of a button, including image histogram, x and y aperture slices, source scatter plot, sky scatter plot, sky histogram, radial profile, curve of growth, and aperture-photometry-table scatter plots and histograms. APT has many functions for customizing the calculations, including outlier rejection, pixel “picking” and “zapping,” and a selection of source and sky models. The radial-profile-interpolation source

  9. The LHC dynamic aperture

    CERN Document Server

    Koutchouk, Jean-Pierre

    1999-01-01

    In 1996, the expected field errors in the dipoles and quadrupoles yielded a long-term dynamic aperture of some 8sigma at injection. The target was set to 12sigma to account for the limitations of our model (imperfections and dynamics). From scaling laws and tracking, a specification for the field imperfections yielding the target dynamic aperture was deduced. The gap between specification and expected errors is being bridged by i) an improvement of the dipole field quality, ii) a balance between geometric and persistent current errors, iii) additional correction circuits (a3 ,b4 ). With the goal in view, the emphasis has now turned to the sensitivity of the dynamic aperture to the optical parameters.The distortion of the dynamics at the lower amplitudes effectively reached by the particles is minimized by optimizing the distribution of the betatron phase advance. At collision energy, the dynamic aperture is limited by the field imperfections of the low-beta triplets, enhanced by the crossing angle. With corre...

  10. Synthetic Aperture Sequential Beamforming

    DEFF Research Database (Denmark)

    Kortbek, Jacob; Jensen, Jørgen Arendt; Gammelmark, Kim Løkke

    2008-01-01

    A synthetic aperture focusing (SAF) technique denoted Synthetic Aperture Sequential Beamforming (SASB) suitable for 2D and 3D imaging is presented. The technique differ from prior art of SAF in the sense that SAF is performed on pre-beamformed data contrary to channel data. The objective is to im......A synthetic aperture focusing (SAF) technique denoted Synthetic Aperture Sequential Beamforming (SASB) suitable for 2D and 3D imaging is presented. The technique differ from prior art of SAF in the sense that SAF is performed on pre-beamformed data contrary to channel data. The objective...... is to improve and obtain a more range independent lateral resolution compared to conventional dynamic receive focusing (DRF) without compromising frame rate. SASB is a two-stage procedure using two separate beamformers. First a set of Bmode image lines using a single focal point in both transmit and receive...... is stored. The second stage applies the focused image lines from the first stage as input data. The SASB method has been investigated using simulations in Field II and by off-line processing of data acquired with a commercial scanner. The performance of SASB with a static image object is compared with DRF...

  11. Dynamic metamaterial aperture for microwave imaging

    International Nuclear Information System (INIS)

    Sleasman, Timothy; Imani, Mohammadreza F.; Gollub, Jonah N.; Smith, David R.

    2015-01-01

    We present a dynamic metamaterial aperture for use in computational imaging schemes at microwave frequencies. The aperture consists of an array of complementary, resonant metamaterial elements patterned into the upper conductor of a microstrip line. Each metamaterial element contains two diodes connected to an external control circuit such that the resonance of the metamaterial element can be damped by application of a bias voltage. Through applying different voltages to the control circuit, select subsets of the elements can be switched on to create unique radiation patterns that illuminate the scene. Spatial information of an imaging domain can thus be encoded onto this set of radiation patterns, or measurements, which can be processed to reconstruct the targets in the scene using compressive sensing algorithms. We discuss the design and operation of a metamaterial imaging system and demonstrate reconstructed images with a 10:1 compression ratio. Dynamic metamaterial apertures can potentially be of benefit in microwave or millimeter wave systems such as those used in security screening and through-wall imaging. In addition, feature-specific or adaptive imaging can be facilitated through the use of the dynamic aperture

  12. Dynamic metamaterial aperture for microwave imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sleasman, Timothy; Imani, Mohammadreza F.; Gollub, Jonah N.; Smith, David R. [Center for Metamaterials and Integrated Plasmonics, Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina, 27708 (United States)

    2015-11-16

    We present a dynamic metamaterial aperture for use in computational imaging schemes at microwave frequencies. The aperture consists of an array of complementary, resonant metamaterial elements patterned into the upper conductor of a microstrip line. Each metamaterial element contains two diodes connected to an external control circuit such that the resonance of the metamaterial element can be damped by application of a bias voltage. Through applying different voltages to the control circuit, select subsets of the elements can be switched on to create unique radiation patterns that illuminate the scene. Spatial information of an imaging domain can thus be encoded onto this set of radiation patterns, or measurements, which can be processed to reconstruct the targets in the scene using compressive sensing algorithms. We discuss the design and operation of a metamaterial imaging system and demonstrate reconstructed images with a 10:1 compression ratio. Dynamic metamaterial apertures can potentially be of benefit in microwave or millimeter wave systems such as those used in security screening and through-wall imaging. In addition, feature-specific or adaptive imaging can be facilitated through the use of the dynamic aperture.

  13. Survey of coded aperture imaging

    International Nuclear Information System (INIS)

    Barrett, H.H.

    1975-01-01

    The basic principle and limitations of coded aperture imaging for x-ray and gamma cameras are discussed. Current trends include (1) use of time varying apertures, (2) use of ''dilute'' apertures with transmission much less than 50%, and (3) attempts to derive transverse tomographic sections, unblurred by other planes, from coded images

  14. Congenital pyriform aperture stenosis

    International Nuclear Information System (INIS)

    Osovsky, Micky; Aizer-Danon, Anat; Horev, Gadi; Sirota, Lea

    2007-01-01

    Nasal airway obstruction is a potentially life-threatening condition in the newborn. Neonates are obligatory nasal breathers. The pyriform aperture is the narrowest, most anterior bony portion of the nasal airway, and a decrease in its cross-sectional area will significantly increase nasal airway resistance. Congenital nasal pyriform aperture stenosis (CNPAS) is a rare, unusual form of nasal obstruction. It should be considered in the differential diagnosis of any neonate or infant with signs and symptoms of upper airway compromise. It is important to differentiate this level of obstruction from the more common posterior choanal stenosis or atresia. CNPAS presents with symptoms of nasal airway obstruction, which are often characterized by episodic apnea and cyclical cyanosis. (orig.)

  15. Integrated electrochromic aperture diaphragm

    Science.gov (United States)

    Deutschmann, T.; Oesterschulze, E.

    2014-05-01

    In the last years, the triumphal march of handheld electronics with integrated cameras has opened amazing fields for small high performing optical systems. For this purpose miniaturized iris apertures are of practical importance because they are essential to control both the dynamic range of the imaging system and the depth of focus. Therefore, we invented a micro optical iris based on an electrochromic (EC) material. This material changes its absorption in response to an applied voltage. A coaxial arrangement of annular rings of the EC material is used to establish an iris aperture without need of any mechanical moving parts. The advantages of this device do not only arise from the space-saving design with a thickness of the device layer of 50μm. But it also benefits from low power consumption. In fact, its transmission state is stable in an open circuit, phrased memory effect. Only changes of the absorption require a voltage of up to 2 V. In contrast to mechanical iris apertures the absorption may be controlled on an analog scale offering the opportunity for apodization. These properties make our device the ideal candidate for battery powered and space-saving systems. We present optical measurements concerning control of the transmitted intensity and depth of focus, and studies dealing with switching times, light scattering, and stability. While the EC polymer used in this study still has limitations concerning color and contrast, the presented device features all functions of an iris aperture. In contrast to conventional devices it offers some special features. Owing to the variable chemistry of the EC material, its spectral response may be adjusted to certain applications like color filtering in different spectral regimes (UV, optical range, infrared). Furthermore, all segments may be switched individually to establish functions like spatial Fourier filtering or lateral tunable intensity filters.

  16. Performance analysis of spectral-phase-encoded optical code-division multiple-access system regarding the incorrectly decoded signal as a nonstationary random process

    Science.gov (United States)

    Yan, Meng; Yao, Minyu; Zhang, Hongming

    2005-11-01

    The performance of a spectral-phase-encoded (SPE) optical code-division multiple-access (OCDMA) system is analyzed. Regarding the incorrectly decoded signal (IDS) as a nonstationary random process, we derive a novel probability distribution for it. The probability distribution of the IDS is considered a chi-squared distribution with degrees of freedom r=1, which is more reasonable and accurate than in previous work. The bit error rate (BER) of an SPE OCDMA system under multiple-access interference is evaluated. Numerical results show that the system can sustain very low BER even when there are multiple simultaneous users, and as the code length becomes longer or the initial pulse becomes shorter, the system performs better.

  17. Phase-Image Encryption Based on 3D-Lorenz Chaotic System and Double Random Phase Encoding

    Science.gov (United States)

    Sharma, Neha; Saini, Indu; Yadav, AK; Singh, Phool

    2017-12-01

    In this paper, an encryption scheme for phase-images based on 3D-Lorenz chaotic system in Fourier domain under the 4f optical system is presented. The encryption scheme uses a random amplitude mask in the spatial domain and a random phase mask in the frequency domain. Its inputs are phase-images, which are relatively more secure as compared to the intensity images because of non-linearity. The proposed scheme further derives its strength from the use of 3D-Lorenz transform in the frequency domain. Although the experimental setup for optical realization of the proposed scheme has been provided, the results presented here are based on simulations on MATLAB. It has been validated for grayscale images, and is found to be sensitive to the encryption parameters of the Lorenz system. The attacks analysis shows that the key-space is large enough to resist brute-force attack, and the scheme is also resistant to the noise and occlusion attacks. Statistical analysis and the analysis based on correlation distribution of adjacent pixels have been performed to test the efficacy of the encryption scheme. The results have indicated that the proposed encryption scheme possesses a high level of security.

  18. Synthetic Aperture Ultrasound Imaging

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Nikolov, Svetoslav; Gammelmark, Kim Løkke

    2006-01-01

    The paper describes the use of synthetic aperture (SA) imaging in medical ultrasound. SA imaging is a radical break with today's commercial systems, where the image is acquired sequentially one image line at a time. This puts a strict limit on the frame rate and the possibility of acquiring...... a sufficient amount of data for high precision flow estimation. These constrictions can be lifted by employing SA imaging. Here data is acquired simultaneously from all directions over a number of emissions, and the full image can be reconstructed from this data. The talk will demonstrate the many benefits...

  19. Class of near-perfect coded apertures

    International Nuclear Information System (INIS)

    Cannon, T.M.; Fenimore, E.E.

    1977-01-01

    Coded aperture imaging of gamma ray sources has long promised an improvement in the sensitivity of various detector systems. The promise has remained largely unfulfilled, however, for either one of two reasons. First, the encoding/decoding method produces artifacts, which even in the absence of quantum noise, restrict the quality of the reconstructed image. This is true of most correlation-type methods. Second, if the decoding procedure is of the deconvolution variety, small terms in the transfer function of the aperture can lead to excessive noise in the reconstructed image. It is proposed to circumvent both of these problems by use of a uniformly redundant array (URA) as the coded aperture in conjunction with a special correlation decoding method. It is shown that the reconstructed image in the URA system contains virtually uniform noise regardless of the structure in the original source. Therefore, the improvement over a single pinhole camera will be relatively larger for the brighter points in the source than for the low intensity points. In the case of a large detector background noise the URA will always do much better than the single pinhole regardless of the structure of the object. In the case of a low detector background noise, the improvement of the URA over the single pinhole will have a lower limit of approximately (1/2f)/sup 1 / 2 / where f is the fraction of the field of view which is uniformly filled by the object

  20. Tibial valgus aperture osteotomy

    International Nuclear Information System (INIS)

    De los Rios G, Adolfo Leon; Saavedra Abadia, Adolfo Leon; Palacios, Julio

    2005-01-01

    This study is based on work carried out a The knee clinic at the arthroscopic surgery unit of the Institute of osteo-articular diseases, Imbanaco Medical Centre, The University Hospital of the Valle (Cali-Colombia) and The Fractures Clinic Ltd. (Palmira-Valle). This is a descriptive study, which demonstrates very positive outcomes for aperture osteotomy, without detracting from the importance of, and the progress made in uni-compartmental and total joint articular replacements of the knee. 10 patients were treated with a highs tibial open osteotomy between November 1988 and December 2002: 3 had post-traumatic deformities, without arthrosic alterations; 1 had pseudo-arthrosis caused by a failed corrective procedure; 1 had complex instability of the knee with osseous varus; 6 had a degenerative lesion of the medial meniscus with medial condral alterations. Follow-up was form 12 to 54 months. Treatment involved a tibial valgus aperture osteotomy and osteo-synthesis. Evaluation was carried out using the International Knee Documentation Committee (IKDC) scale, the For Special Surgery and The Knee Society Score

  1. Tissue Harmonic Synthetic Aperture Imaging

    DEFF Research Database (Denmark)

    Rasmussen, Joachim

    The main purpose of this PhD project is to develop an ultrasonic method for tissue harmonic synthetic aperture imaging. The motivation is to advance the field of synthetic aperture imaging in ultrasound, which has shown great potentials in the clinic. Suggestions for synthetic aperture tissue...... system complexity compared to conventional synthetic aperture techniques. In this project, SASB is sought combined with a pulse inversion technique for 2nd harmonic tissue harmonic imaging. The advantages in tissue harmonic imaging (THI) are expected to further improve the image quality of SASB...

  2. Synthetic Aperture Compound Imaging

    DEFF Research Database (Denmark)

    Hansen, Jens Munk

    and the limiting factor is the amount of memory IO resources available. An equally high demand for memory throughput is found in the computer gaming industry, where a large part of the processing takes place on the graphics processing unit (GPU). Using the GPU, a framework for synthetic aperture imaging......Medical ultrasound imaging is used for many purposes, e.g. for localizing and classifying cysts, lesions, and other processes. Almost any mass is first observed using B-mode imaging and later classified using e.g. color flow, strain, or attenuation imaging. It is therefore important that the B......-mode images have high contrast. Like all imaging modalities, ultrasound is subject to a number of inherent artifacts that compromise image quality. The most prominent artifact is the degradation by coherent wave interference, known as “speckle”, which gives a granular appearance to an otherwise homogeneous...

  3. Transionospheric synthetic aperture imaging

    CERN Document Server

    Gilman, Mikhail; Tsynkov, Semyon

    2017-01-01

    This landmark monograph presents the most recent mathematical developments in the analysis of ionospheric distortions of SAR images and offers innovative new strategies for their mitigation. As a prerequisite to addressing these topics, the book also discusses the radar ambiguity theory as it applies to synthetic aperture imaging and the propagation of radio waves through the ionospheric plasma, including the anisotropic and turbulent cases. In addition, it covers a host of related subjects, such as the mathematical modeling of extended radar targets (as opposed to point-wise targets) and the scattering of radio waves off those targets, as well as the theoretical analysis of the start-stop approximation, which is used routinely in SAR signal processing but often without proper justification. The mathematics in this volume is clean and rigorous – no assumptions are hidden or ambiguously stated. The resulting work is truly interdisciplinary, providing both a comprehensive and thorough exposition of the field,...

  4. Displacement encoder

    International Nuclear Information System (INIS)

    Hesketh, T.G.

    1983-01-01

    In an optical encoder, light from an optical fibre input A is encoded by means of the encoding disc and is subsequently collected for transmission via optical fibre B. At some point in the optical path between the fibres A and B, the light is separated into component form by means of a filtering or dispersive system and each colour component is associated with a respective one of the coding channels of the disc. In this way, the significance of each bit of the coded information is represented by a respective colour thereby enabling the components to be re-combined for transmission by the fibre B without loss of information. (author)

  5. Range Compressed Holographic Aperture Ladar

    Science.gov (United States)

    2017-06-01

    entropy saturation behavior of the estimator is analytically described. Simultaneous range-compression and aperture synthesis is experimentally...4 2.1 Circular and Inverse -Circular HAL...2.3 Single Aperture, Multi-λ Imaging ...................................................................................... 14 2.4 Simultaneous Range

  6. Coded aperture tomography revisited

    International Nuclear Information System (INIS)

    Bizais, Y.; Rowe, R.W.; Zubal, I.G.; Bennett, G.W.; Brill, A.B.

    1983-01-01

    Coded aperture (CA) Tomography never achieved wide spread use in Nuclear Medicine, except for the degenerate case of Seven Pinhole tomagraphy (7PHT). However it enjoys several attractive features (high sensitivity and tomographic ability with a statis detector). On the other hand, resolution is usually poor especially along the depth axis and the reconstructed volume is rather limited. Arguments are presented justifying the position that CA tomography can be useful for imaging time-varying 3D structures, if its major drawbacks (poor longitudinal resolution and difficulty in quantification) are overcome. Poor results obtained with 7PHT can be explained by both a very limited angular range sampled and a crude modelling of the image formation process. Therefore improvements can be expected by the use of a dual-detector system, along with a better understanding of its sampling properties and the use of more powerful reconstruction algorithms. Non overlapping multipinhole plates, because they do not involve a decoding procedure, should be considered first for practical applications. Use of real CA should be considered for cases in which non overlapping multipinhole plates do not lead to satisfactory solutions. We have been and currently are carrying out theoretical and experimental works, in order to define the factors which limit CA imaging and to propose satisfactory solutions for Dynamic Emission Tomography

  7. Aperture modulated arc therapy

    International Nuclear Information System (INIS)

    Crooks, S M; Wu, Xiaodong; Takita, C; Watzich, M; Xing Lei

    2003-01-01

    We show that it is possible to translate an intensity modulated radiation therapy (IMRT) treatment plan and deliver it as a single arc. This technique is referred to in this paper as aperture modulation arc therapy (AMAT). During this arc, the MLC leaves do not conform to the projection of the target PTV and the machine output of the accelerator has a constant value. Dose was calculated using the CORVUS 4.0 IMRT system, which uses a pencil beam dose algorithm, and treatments were delivered using a Varian 2100C/D Clinac. Results are presented for a head and neck and a prostate case, showing the equivalence of the IMRT and the translated AMAT delivery. For a prostate AMAT delivery, coronal plane film dose for the IMRT and AMAT deliveries agreed within 7.19 ± 6.62%. For a meningioma the coronal plane dose distributions were similar to a value of 4.6 ± 6.62%. Dose to the isocentre was measured as being within 2% of the planned value in both cases

  8. Large aperture optical switching devices

    International Nuclear Information System (INIS)

    Goldhar, J.; Henesian, M.A.

    1983-01-01

    We have developed a new approach to constructing large aperture optical switches for next generation inertial confinement fusion lasers. A transparent plasma electrode formed in low pressure ionized gas acts as a conductive coating to allow the uniform charging of the optical faces of an electro-optic material. In this manner large electric fields can be applied longitudinally to large aperture, high aspect ratio Pockels cells. We propose a four-electrode geometry to create the necessary high conductivity plasma sheets, and have demonstrated fast (less than 10 nsec) switching in a 5x5 cm aperture KD*P Pockels cell with such a design. Detaid modelling of Pockels cell performance with plasma electrodes has been carried out for 15 and 30 cm aperture designs

  9. Quantitative model of transport-aperture coordination during reach-to-grasp movements.

    Science.gov (United States)

    Rand, Miya K; Shimansky, Y P; Hossain, Abul B M I; Stelmach, George E

    2008-06-01

    It has been found in our previous studies that the initiation of aperture closure during reach-to-grasp movements occurs when the hand distance to target crosses a threshold that is a function of peak aperture amplitude, hand velocity, and hand acceleration. Thus, a stable relationship between those four movement parameters is observed at the moment of aperture closure initiation. Based on the concept of optimal control of movements (Naslin 1969) and its application for reach-to-grasp movement regulation (Hoff and Arbib 1993), it was hypothesized that the mathematical equation expressing that relationship can be generalized to describe coordination between hand transport and finger aperture during the entire reach-to-grasp movement by adding aperture velocity and acceleration to the above four movement parameters. The present study examines whether this hypothesis is supported by the data obtained in experiments in which young adults performed reach-to-grasp movements in eight combinations of two reach-amplitude conditions and four movement-speed conditions. It was found that linear approximation of the mathematical model described the relationship among the six movement parameters for the entire aperture-closure phase with very high precision for each condition, thus supporting the hypothesis for that phase. Testing whether one mathematical model could approximate the data across all the experimental conditions revealed that it was possible to achieve the same high level of data-fitting precision only by including in the model two additional, condition-encoding parameters and using a nonlinear, artificial neural network-based approximator with two hidden layers comprising three and two neurons, respectively. This result indicates that transport-aperture coordination, as a specific relationship between the parameters of hand transport and finger aperture, significantly depends on the condition-encoding variables. The data from the aperture-opening phase also fit a

  10. Imaging with Synthetic Aperture Radar

    CERN Document Server

    Massonnet, Didier

    2008-01-01

    Describing a field that has been transformed by the recent availability of data from a new generation of space and airborne systems, the authors offer a synthetic geometrical approach to the description of synthetic aperture radar, one that addresses physicists, radar specialists, as well as experts in image processing.  

  11. Aperture measurements with AC dipole

    CERN Document Server

    Fuster Martinez, Nuria; Dilly, Joschua Werner; Nevay, Laurence James; Bruce, Roderik; Tomas Garcia, Rogelio; Redaelli, Stefano; Persson, Tobias Hakan Bjorn; CERN. Geneva. ATS Department

    2018-01-01

    During the MDs performed on the 15th of September and 29th of November 2017, we measured the LHC global aperture at injection with a new AC dipole method as well as using the Transverse Damper (ADT) blow-up method used during the 2017 LHC commissioning for benchmarking. In this note, the MD procedure is presented as well as the analysis of the comparison between the two methods. The possible benefits of the new method are discussed.

  12. Synthetic Aperture Vector Flow Imaging

    DEFF Research Database (Denmark)

    Villagómez Hoyos, Carlos Armando

    The main objective of this project was to continue the development of a synthetic aperture vector flow estimator. This type of estimator is capable of overcoming two of the major limitations in conventional ultrasound systems: 1) the inability to scan large region of interest with high temporal......, this thesis showed that novel information can be obtained with vector velocity methods providing quantitative estimates of blood flow and insight into the complexity of the hemodynamics dynamics. This could give the clinician a new tool in assessment and treatment of a broad range of diseases....

  13. Slit aperture technique for mammography

    International Nuclear Information System (INIS)

    Friedrich, M.

    1984-01-01

    Following a discussion of various principles used in the elimination of scatter, the prototype of a simple slit aperture mammography apparatus is described (modified Mammomat, Siemens). The main advantage of this technique compared with grid mammography is a halving of the radiation dose for identical image quality, using an identical film system. The technical requirements (heavy duty tube, new generator) are, however, considerable. If the film-screen systems currently in use are to remain the common systems for the future, then the development of a multi-lamellar slit diaphragm technique carries much promise for mammography. (orig.) [de

  14. Polarizing aperture stereoscopic cinema camera

    Science.gov (United States)

    Lipton, Lenny

    2012-07-01

    The art of stereoscopic cinematography has been held back because of the lack of a convenient way to reduce the stereo camera lenses' interaxial to less than the distance between the eyes. This article describes a unified stereoscopic camera and lens design that allows for varying the interaxial separation to small values using a unique electro-optical polarizing aperture design for imaging left and right perspective views onto a large single digital sensor, the size of the standard 35 mm frame, with the means to select left and right image information. Even with the added stereoscopic capability, the appearance of existing camera bodies will be unaltered.

  15. Low aperture magnetic elements measurements

    International Nuclear Information System (INIS)

    Aleksandrov, V.A.; Mikhajlichenko, A.A.; Parkhomchuk, V.V.; Seryj, A.A.; Shil'tsev, V.D.

    1991-01-01

    Two new methods of magnetic field measurements in low aperture elements are discussed. The first method uses thin magnetoresistive bismuth wire and the second-strained wire with AC. Principles of measuring used in the last technique are different from well known SLAC method of vibrating wire. Results of testing 0.38 T/mm quadrupole and VLEPP final focus test 3 T/mm lens are presented. Brief comparing of the lens axis determination precision of these methods is also discussed. 4 refs.; 8 figs

  16. 5cm aperture dipole studies

    International Nuclear Information System (INIS)

    McInturff, A.D.; Bossert, R.; Carson, J.; Fisk, H.E.; Hanft, R.; Kuchnir, M.; Lundy, R.; Mantech, P.; Strait, J.

    1986-01-01

    The results obtained during the evolution of the design, construction, and testing program of the design ''B'' dipole are presented here. Design ''B'' is one of the original three competing designs for the Superconducting Super Collider ''SSC'' arc dipoles. The final design parameters were as follows: air cored (less than a few percent of the magnetic field derived from any iron present), aluminum collared, two layered winding, 5.5T maximum operating field, and a 5 cm cold aperture. There have been fourteen 64 cm long 5 cm aperture model dipoles cold tested (at 4.3K and less) in this program so far. There was a half length full size (6m) mechanical analog (M-10) built and tested to check the cryostat's mechanical design under ramping and quench conditions. Several deviations from the ''Tevatron'' dipole fabrication technique were incorporated, for example the use of aluminum collars instead of stainless steel. The winding technique variations explored were ''dry welding,'' a technique with the cable covered with Kapton insulation only and ''wet winding'' where the Kapton was covered with a light coat of ''B'' stage epoxy. Test data include quench currents, field quality (Fourier multipole co-efficients), coil magnetization, conductor current performance, and coil loading. Quench current, loss per cycle, and harmonics were measured as a function of the magnitude and rate of change of the magnetic field, and helium bath temperature

  17. Hand aperture patterns in prehension.

    Science.gov (United States)

    Bongers, Raoul M; Zaal, Frank T J M; Jeannerod, Marc

    2012-06-01

    Although variations in the standard prehensile pattern can be found in the literature, these alternative patterns have never been studied systematically. This was the goal of the current paper. Ten participants picked up objects with a pincer grip. Objects (3, 5, or 7cm in diameter) were placed at 30, 60, 90, or 120cm from the hands' starting location. Usually the hand was opened gradually to a maximum immediately followed by hand closing, called the standard hand opening pattern. In the alternative opening patterns the hand opening was bumpy, or the hand aperture stayed at a plateau before closing started. Two participants in particular delayed the start of grasping with respect to start of reaching, with the delay time increasing with object distance. For larger object distances and smaller object sizes, the bumpy and plateau hand opening patterns were used more often. We tentatively concluded that the alternative hand opening patterns extended the hand opening phase, to arrive at the appropriate hand aperture at the appropriate time to close the hand for grasping the object. Variations in hand opening patterns deserve attention because this might lead to new insights into the coordination of reaching and grasping. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Aperture averaging in strong oceanic turbulence

    Science.gov (United States)

    Gökçe, Muhsin Caner; Baykal, Yahya

    2018-04-01

    Receiver aperture averaging technique is employed in underwater wireless optical communication (UWOC) systems to mitigate the effects of oceanic turbulence, thus to improve the system performance. The irradiance flux variance is a measure of the intensity fluctuations on a lens of the receiver aperture. Using the modified Rytov theory which uses the small-scale and large-scale spatial filters, and our previously presented expression that shows the atmospheric structure constant in terms of oceanic turbulence parameters, we evaluate the irradiance flux variance and the aperture averaging factor of a spherical wave in strong oceanic turbulence. Irradiance flux variance variations are examined versus the oceanic turbulence parameters and the receiver aperture diameter are examined in strong oceanic turbulence. Also, the effect of the receiver aperture diameter on the aperture averaging factor is presented in strong oceanic turbulence.

  19. Fast decoding algorithms for geometric coded apertures

    International Nuclear Information System (INIS)

    Byard, Kevin

    2015-01-01

    Fast decoding algorithms are described for the class of coded aperture designs known as geometric coded apertures which were introduced by Gourlay and Stephen. When compared to the direct decoding method, the algorithms significantly reduce the number of calculations required when performing the decoding for these apertures and hence speed up the decoding process. Experimental tests confirm the efficacy of these fast algorithms, demonstrating a speed up of approximately two to three orders of magnitude over direct decoding.

  20. Ion mobility spectrometer with virtual aperture grid

    Science.gov (United States)

    Pfeifer, Kent B.; Rumpf, Arthur N.

    2010-11-23

    An ion mobility spectrometer does not require a physical aperture grid to prevent premature ion detector response. The last electrodes adjacent to the ion collector (typically the last four or five) have an electrode pitch that is less than the width of the ion swarm and each of the adjacent electrodes is connected to a source of free charge, thereby providing a virtual aperture grid at the end of the drift region that shields the ion collector from the mirror current of the approaching ion swarm. The virtual aperture grid is less complex in assembly and function and is less sensitive to vibrations than the physical aperture grid.

  1. Synthetic aperture radar: principles and applications

    International Nuclear Information System (INIS)

    Khan, N.A.; Yahya, K.M.

    2003-01-01

    In this paper an introduction to synthetic aperture radar is presented. Synthetic aperture radar is a relatively new remote sensing platform and the technology has matured a lot in the last two decades. This paper introduces the concepts behind SAR principles as well as the major areas where this new technology has shown additional information. (author)

  2. PTBS segmentation scheme for synthetic aperture radar

    Science.gov (United States)

    Friedland, Noah S.; Rothwell, Brian J.

    1995-07-01

    The Image Understanding Group at Martin Marietta Technologies in Denver, Colorado has developed a model-based synthetic aperture radar (SAR) automatic target recognition (ATR) system using an integrated resource architecture (IRA). IRA, an adaptive Markov random field (MRF) environment, utilizes information from image, model, and neighborhood resources to create a discrete, 2D feature-based world description (FBWD). The IRA FBWD features are peak, target, background and shadow (PTBS). These features have been shown to be very useful for target discrimination. The FBWD is used to accrue evidence over a model hypothesis set. This paper presents the PTBS segmentation process utilizing two IRA resources. The image resource (IR) provides generic (the physics of image formation) and specific (the given image input) information. The neighborhood resource (NR) provides domain knowledge of localized FBWD site behaviors. A simulated annealing optimization algorithm is used to construct a `most likely' PTBS state. Results on simulated imagery illustrate the power of this technique to correctly segment PTBS features, even when vehicle signatures are immersed in heavy background clutter. These segmentations also suppress sidelobe effects and delineate shadows.

  3. Least-squares reverse time migration of marine data with frequency-selection encoding

    KAUST Repository

    Dai, Wei; Huang, Yunsong; Schuster, Gerard T.

    2013-01-01

    The phase-encoding technique can sometimes increase the efficiency of the least-squares reverse time migration (LSRTM) by more than one order of magnitude. However, traditional random encoding functions require all the encoded shots to share

  4. Aperture meter for the Large Hadron Collider

    International Nuclear Information System (INIS)

    Mueller, G.J.; Fuchsberger, K.; Redaelli, S.

    2012-01-01

    The control of the high intensity beams of the CERN Large Hadron Collider (LHC) is particular challenging and requires a good modeling of the machine and monitoring of various machine parameters. During operation it is crucial to ensure a minimal distance between the beam edge and the aperture of sensitive equipment, e.g. the superconducting magnets, which in all cases must be in the shadow of the collimator's that protect the machine. Possible dangerous situations must be detected as soon as possible. In order to provide the operator with information about the current machine bottlenecks an aperture meter application was developed based on the LHC online modeling tool-chain. The calculation of available free aperture takes into account the best available optics and aperture model as well as the relevant beam measurements. This paper describes the design and integration of this application into the control environment and presents results of the usage in daily operation and from validation measurements. (authors)

  5. Beam aperture modifier design with acoustic metasurfaces

    Science.gov (United States)

    Tang, Weipeng; Ren, Chunyu

    2017-10-01

    In this paper, we present a design concept of acoustic beam aperture modifier using two metasurface-based planar lenses. By appropriately designing the phase gradient profile along the metasurface, we obtain a class of acoustic convex lenses and concave lenses, which can focus the incoming plane waves and collimate the converging waves, respectively. On the basis of the high converging and diverging capability of these lenses, two kinds of lens combination scheme, including the convex-concave type and convex-convex type, are proposed to tune up the incoming beam aperture as needed. To be specific, the aperture of the acoustic beam can be shrunk or expanded through adjusting the phase gradient of the pair of lenses and the spacing between them. These lenses and the corresponding aperture modifiers are constructed by the stacking ultrathin labyrinthine structures, which are obtained by the geometry optimization procedure and exhibit high transmission coefficient and a full range of phase shift. The simulation results demonstrate the effectiveness of our proposed beam aperture modifiers. Due to the flexibility in aperture controlling and the simplicity in fabrication, the proposed modifiers have promising potential in applications, such as acoustic imaging, nondestructive evaluation, and communication.

  6. Calibration of the TUD Ku-band Synthetic Aperture Radiometer

    DEFF Research Database (Denmark)

    Laursen, Brian; Skou, Niels

    1995-01-01

    The TUD Synthetic Aperture Radiometer is a 2-channel demonstration model that can simulate a thinned aperture radiometer having an unfilled aperture consisting of several small antenna elements. Aperture synthesis obtained by interferometric measurements using the antenna elements in pairs, follo...

  7. A randomized phase II study of immunization with dendritic cells modified with poxvectors encoding CEA and MUC1 compared with the same poxvectors plus GM-CSF for resected metastatic colorectal cancer.

    Science.gov (United States)

    Morse, Michael A; Niedzwiecki, Donna; Marshall, John L; Garrett, Christopher; Chang, David Z; Aklilu, Mebea; Crocenzi, Todd S; Cole, David J; Dessureault, Sophie; Hobeika, Amy C; Osada, Takuya; Onaitis, Mark; Clary, Bryan M; Hsu, David; Devi, Gayathri R; Bulusu, Anuradha; Annechiarico, Robert P; Chadaram, Vijaya; Clay, Timothy M; Lyerly, H Kim

    2013-12-01

    To determine whether 1 of 2 vaccines based on dendritic cells (DCs) and poxvectors encoding CEA (carcinoembryonic antigen) and MUC1 (PANVAC) would lengthen survival in patients with resected metastases of colorectal cancer (CRC). Recurrences after complete resections of metastatic CRC remain frequent. Immune responses to CRC are associated with fewer recurrences, suggesting a role for cancer vaccines as adjuvant therapy. Both DCs and poxvectors are potent stimulators of immune responses against cancer antigens. Patients, disease-free after CRC metastasectomy and perioperative chemotherapy (n = 74), were randomized to injections of autologous DCs modified with PANVAC (DC/PANVAC) or PANVAC with per injection GM-CSF (granulocyte-macrophage colony-stimulating factor). Endpoints were recurrence-free survival overall survival, and rate of CEA-specific immune responses. Clinical outcome was compared with that of an unvaccinated, contemporary group of patients who had undergone CRC metastasectomy, received similar perioperative therapy, and would have otherwise been eligible for the study. Recurrence-free survival at 2 years was similar (47% and 55% for DC/PANVAC and PANVAC/GM-CSF, respectively) (χ P = 0.48). At a median follow-up of 35.7 months, there were 2 of 37 deaths in the DC/PANVAC arm and 5 of 37 deaths in the PANVAC/GM-CSF arm. The rate and magnitude of T-cell responses against CEA was statistically similar between study arms. As a group, vaccinated patients had superior survival compared with the contemporary unvaccinated group. Both DC and poxvector vaccines have similar activity. Survival was longer for vaccinated patients than for a contemporary unvaccinated group, suggesting that a randomized trial of poxvector vaccinations compared with standard follow-up after metastasectomy is warranted. (NCT00103142).

  8. Scale-dependent Patterns in One-dimensional Fracture Spacing and Aperture Data

    Science.gov (United States)

    Roy, A.; Perfect, E.

    2013-12-01

    One-dimensional scanline data about fracture spacing and size attributes such as aperture or length are mostly considered in separate studies that compute the cumulative frequency of these attributes without regard to their actual spatial sequence. In a previous study, we showed that spacing data can be analyzed using lacunarity to identify whether fractures occur in clusters. However, to determine if such clusters also contain the largest fractures in terms of a size attribute such as aperture, it is imperative that data about the size attribute be integrated with information about fracture spacing. While for example, some researchers have considered aperture in conjunction with spacing, their analyses were either applicable only to a specific type of data (e.g. multifractal) or failed to characterize the data at different scales. Lacunarity is a technique for analyzing multi-scale non-binary data and is ideally-suited for characterizing scanline data with spacing and aperture values. We present a technique that can statistically delineate the relationship between size attributes and spatial clustering. We begin by building a model scanline that has complete partitioning of fractures with small and large apertures between the intercluster regions and clusters. We demonstrate that the ratio of lacunarity for this model to that of its counterpart for a completely randomized sequence of apertures can be used to determine whether large-aperture fractures preferentially occur next to each other. The technique is then applied to two natural fracture scanline datasets, one with most of the large apertures occurring in fracture clusters, and the other with more randomly-spaced fractures, without any specific ordering of aperture values. The lacunarity ratio clearly discriminates between these two datasets and, in the case of the first example, it is also able to identify the range of scales over which the widest fractures are clustered. The technique thus developed for

  9. Determination of the linear aperture of the SSC [Superconducting Supercollider] clustered lattice used for the conceptual design report

    International Nuclear Information System (INIS)

    Dell, G.F.

    1986-01-01

    A study is made of the linear aperture for the clustered lattice used for the SSC Conceptual Design Report. Random multipole errors are included in all magnetic elements including the insertion dipoles and quadrupoles. Based on the concept of smear, the linear aperture is equal to the dynamic aperture in the range -0.1 ≤ ΔP/P ≤ 0.03%. Strong coupling for ΔP/P > 0% produces large smears. A variation of the smear parameter that is insensitive to coupling is proposed. A comparison is made with results reported in the SSC Conceptual Design Report

  10. Solar energy apparatus with apertured shield

    Science.gov (United States)

    Collings, Roger J. (Inventor); Bannon, David G. (Inventor)

    1989-01-01

    A protective apertured shield for use about an inlet to a solar apparatus which includesd a cavity receiver for absorbing concentrated solar energy. A rigid support truss assembly is fixed to the periphery of the inlet and projects radially inwardly therefrom to define a generally central aperture area through which solar radiation can pass into the cavity receiver. A non-structural, laminated blanket is spread over the rigid support truss in such a manner as to define an outer surface area and an inner surface area diverging radially outwardly from the central aperture area toward the periphery of the inlet. The outer surface area faces away from the inlet and the inner surface area faces toward the cavity receiver. The laminated blanket includes at least one layer of material, such as ceramic fiber fabric, having high infra-red emittance and low solar absorption properties, and another layer, such as metallic foil, of low infra-red emittance properties.

  11. Limited aperture effects on ultrasonic image reconstruction

    International Nuclear Information System (INIS)

    Kogan, V.G.; Rose, J.H.

    1985-01-01

    In the inverse Born approximation the shape of a weak scatterer can be determined from a knowledge of the backscattered ultrasonic amplitude for all directions of incidence and all frequencies. Two questions are considered. First, what information on the scatterer shape is preserved and what is degraded if the scattering data are available only within a limited set of incident directions (limited aperture). This problem is addressed for a spherical weakly scattering uniform flaw. It is shown that the problem of a general uniform ellipsoidal flaw can be reduced to the spherical case by a scale transformation; however, the apertures in these two cases must be related by the same transformation. Second, limited aperture and finite bandwidth Born inversions were performed for strongly scattering flaws (voids and cracks) using numerically generated scattering amplitudes. These inversions were then compared with the weak scattering analytic results, which show many common features

  12. Synthetic aperture tissue and flow ultrasound imaging

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav

    imaging applied to medical ultrasound. It is divided into two major parts: tissue and blood flow imaging. Tissue imaging using synthetic aperture algorithms has been investigated for about two decades, but has not been implemented in medical scanners yet. Among the other reasons, the conventional scanning...... and beamformation methods are adequate for the imaging modalities in clinical use - the B-mode imaging of tissue structures, and the color mapping of blood flow. The acquisition time, however, is too long, and these methods fail to perform real-time three-dimensional scans. The synthetic transmit aperture......, on the other hand, can create a Bmode image with as little as 2 emissions, thus significantly speeding-up the scan procedure. The first part of the dissertation describes the synthetic aperture tissue imaging. It starts with an overview of the efforts previously made by other research groups. A classification...

  13. Fast decoding algorithms for coded aperture systems

    International Nuclear Information System (INIS)

    Byard, Kevin

    2014-01-01

    Fast decoding algorithms are described for a number of established coded aperture systems. The fast decoding algorithms for all these systems offer significant reductions in the number of calculations required when reconstructing images formed by a coded aperture system and hence require less computation time to produce the images. The algorithms may therefore be of use in applications that require fast image reconstruction, such as near real-time nuclear medicine and location of hazardous radioactive spillage. Experimental tests confirm the efficacy of the fast decoding techniques

  14. Aperture and optics–measurements and conclusions

    CERN Document Server

    Redaelli, S; Bruce, R; Buffat, X; Giovannozzi, M; Lamont, M; Miyamoto, R; Müller, G; Tomás, R; Vanbavinckhove, G; Wenninger, J

    2012-01-01

    In 2011, the LHC has delivered collisions with different optics configurations in the four interaction points, at an operating energy of 3.5 TeV. The performance has been pushed during the year until a final configuration with 3 IPs squeezed to 1 m was achieved. Correspondingly, the machine aperture has been measured in the different configurations at injection and at top energy, to ensure a safe operation in all conditions of $\\beta^*$ and crossing angle configuration. In this paper, the 2011 commissioning experience of LHC optics is reviewed and the results of aperture measurements are presented. Measurement requirements for 2012 and possible improvements are also discussed.

  15. Synthetic aperture radar capabilities in development

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    The Imaging and Detection Program (IDP) within the Laser Program is currently developing an X-band Synthetic Aperture Radar (SAR) to support the Joint US/UK Radar Ocean Imaging Program. The radar system will be mounted in the program`s Airborne Experimental Test-Bed (AETB), where the initial mission is to image ocean surfaces and better understand the physics of low grazing angle backscatter. The Synthetic Aperture Radar presentation will discuss its overall functionality and a brief discussion on the AETB`s capabilities. Vital subsystems including radar, computer, navigation, antenna stabilization, and SAR focusing algorithms will be examined in more detail.

  16. Multi-antenna synthetic aperture radar

    CERN Document Server

    Wang, Wen-Qin

    2013-01-01

    Synthetic aperture radar (SAR) is a well-known remote sensing technique, but conventional single-antenna SAR is inherently limited by the minimum antenna area constraint. Although there are still technical issues to overcome, multi-antenna SAR offers many benefits, from improved system gain to increased degrees-of-freedom and system flexibility. Multi-Antenna Synthetic Aperture Radar explores the potential and challenges of using multi-antenna SAR in microwave remote sensing applications. These applications include high-resolution imaging, wide-swath remote sensing, ground moving target indica

  17. Electromagnetic field scattering by a triangular aperture.

    Science.gov (United States)

    Harrison, R E; Hyman, E

    1979-03-15

    The multiple Laplace transform has been applied to analysis and computation of scattering by a double triangular aperture. Results are obtained which match far-field intensity distributions observed in experiments. Arbitrary polarization components, as well as in-phase and quadrature-phase components, may be determined, in the transform domain, as a continuous function of distance from near to far-field for any orientation, aperture, and transformable waveform. Numerical results are obtained by application of numerical multiple inversions of the fully transformed solution.

  18. Calibration of circular aperture area using vision probe at inmetro

    Directory of Open Access Journals (Sweden)

    Costa Pedro Bastos

    2016-01-01

    Full Text Available Circular aperture areas are standards of high importance for the realization of photometric and radiometric measurements, where the accuracy of these measures is related to the accuracy of the circular aperture area calibrations. In order to attend the requirement for traceability was developed in Brazilian metrology institute, a methodology for circular aperture area measurement as requirements from the radiometric and photometric measurements. In the developed methodology apertures are measured by non-contact measurement through images of the aperture edges captured by a camera. These images are processed using computer vision techniques and then the values of the circular aperture area are determined.

  19. Dynamic Aperture Studies for SPEAR 3

    International Nuclear Information System (INIS)

    Nosochkov, Yuri

    1999-01-01

    The SSRL is investigating an accelerator upgrade project to replace the present 130 nm.rad FODO lattice with an 18 nm.rad double bend achromat lattice: SPEAR 3. In this paper, we review the methods used to maximize the SPEAR 3 dynamic aperture including optimization of linear optics, betatron tune, chromaticity and coupling correction, and effects of machine errors and insertion devices

  20. Diffraction contrast imaging using virtual apertures

    International Nuclear Information System (INIS)

    Gammer, Christoph; Burak Ozdol, V.; Liebscher, Christian H.; Minor, Andrew M.

    2015-01-01

    Two methods on how to obtain the full diffraction information from a sample region and the associated reconstruction of images or diffraction patterns using virtual apertures are demonstrated. In a STEM-based approach, diffraction patterns are recorded for each beam position using a small probe convergence angle. Similarly, a tilt series of TEM dark-field images is acquired. The resulting datasets allow the reconstruction of either electron diffraction patterns, or bright-, dark- or annular dark-field images using virtual apertures. The experimental procedures of both methods are presented in the paper and are applied to a precipitation strengthened and creep deformed ferritic alloy with a complex microstructure. The reconstructed virtual images are compared with conventional TEM images. The major advantage is that arbitrarily shaped virtual apertures generated with image processing software can be designed without facing any physical limitations. In addition, any virtual detector that is specifically designed according to the underlying crystal structure can be created to optimize image contrast. - Highlights: • A dataset containing all structural information of a given position is recorded. • The dataset allows reconstruction of virtual diffraction patterns or images. • Specific virtual apertures are designed to image precipitates in a complex alloy. • Virtual diffraction patterns from arbitrarily small regions can be established. • Using STEM diffraction to record the dataset is more efficient than TEM dark-field

  1. Optimization of Synthetic Aperture Image Quality

    DEFF Research Database (Denmark)

    Moshavegh, Ramin; Jensen, Jonas; Villagómez Hoyos, Carlos Armando

    2016-01-01

    Synthetic Aperture (SA) imaging produces high-quality images and velocity estimates of both slow and fast flow at high frame rates. However, grating lobe artifacts can appear both in transmission and reception. These affect the image quality and the frame rate. Therefore optimization of parameter...

  2. Parametric Transverse Patterns in Broad Aperture Lasers

    DEFF Research Database (Denmark)

    Grigorieva, E.V.; Kashchenko, S.A.; Mosekilde, Erik

    1998-01-01

    Parametrically generated optical patterns are investigated for finite and large-scale transverse aperture lasers. Standing and rotating patterns as well as periodic and chaotic pattern alternations are described in the framework of the amplitude equation formalism. Sensitive dependence...... on the geometrical size of the system is demonstrated even in the case of large-scale systems....

  3. Sonar path correction in synthetic aperture processing

    NARCIS (Netherlands)

    Groen, J.; Hansen, R.E.; Sabel, J.C.

    2003-01-01

    In the next generation of mine hunting sonars, in particular on Autonomous Underwater Vehicles (AUVs), Synthetic Aperture Sonar (SAS) will play an important role. The benefit of SAS is to increase resolution and signal-tonoise ratio by coherent processing of successive pings. A challenge in SAS is

  4. Synthetic Aperture Beamformation using the GPU

    DEFF Research Database (Denmark)

    Hansen, Jens Munk; Schaa, Dana; Jensen, Jørgen Arendt

    2011-01-01

    A synthetic aperture ultrasound beamformer is implemented for a GPU using the OpenCL framework. The implementation supports beamformation of either RF signals or complex baseband signals. Transmit and receive apodization can be either parametric or dynamic using a fixed F-number, a reference...

  5. Wind energy applications of synthetic aperture radar

    DEFF Research Database (Denmark)

    Badger, Merete

    Synthetic aperture radars (SAR), mounted on satellites or aircraft, have proven useful for ocean wind mapping. Wind speeds at the height 10 m may be retrieved from measurements of radar backscatter using empirical model functions. The resulting windfields are valuable in offshore wind energy plan...

  6. MD2725: 16L2 aperture measurement

    CERN Document Server

    Mirarchi, Daniele; Rossi, Roberto; CERN. Geneva. ATS Department

    2018-01-01

    Dumps induced by sudden increase of losses in the half-cell 16L2 have been a serious machine limitation during the 2017 run. The aim of this MD was to perform local aperture measurements in order to assess differences after the beam screen regeneration, compared to first measurements in 2017.

  7. Landscape encodings enhance optimization.

    Directory of Open Access Journals (Sweden)

    Konstantin Klemm

    Full Text Available Hard combinatorial optimization problems deal with the search for the minimum cost solutions (ground states of discrete systems under strong constraints. A transformation of state variables may enhance computational tractability. It has been argued that these state encodings are to be chosen invertible to retain the original size of the state space. Here we show how redundant non-invertible encodings enhance optimization by enriching the density of low-energy states. In addition, smooth landscapes may be established on encoded state spaces to guide local search dynamics towards the ground state.

  8. Landscape Encodings Enhance Optimization

    Science.gov (United States)

    Klemm, Konstantin; Mehta, Anita; Stadler, Peter F.

    2012-01-01

    Hard combinatorial optimization problems deal with the search for the minimum cost solutions (ground states) of discrete systems under strong constraints. A transformation of state variables may enhance computational tractability. It has been argued that these state encodings are to be chosen invertible to retain the original size of the state space. Here we show how redundant non-invertible encodings enhance optimization by enriching the density of low-energy states. In addition, smooth landscapes may be established on encoded state spaces to guide local search dynamics towards the ground state. PMID:22496860

  9. Comparisons of coded aperture imaging using various apertures and decoding methods

    International Nuclear Information System (INIS)

    Chang, L.T.; Macdonald, B.; Perez-Mendez, V.

    1976-07-01

    The utility of coded aperture γ camera imaging of radioisotope distributions in Nuclear Medicine is in its ability to give depth information about a three dimensional source. We have calculated imaging with Fresnel zone plate and multiple pinhole apertures to produce coded shadows and reconstruction of these shadows using correlation, Fresnel diffraction, and Fourier transform deconvolution. Comparisons of the coded apertures and decoding methods are made by evaluating their point response functions both for in-focus and out-of-focus image planes. Background averages and standard deviations were calculated. In some cases, background subtraction was made using combinations of two complementary apertures. Results using deconvolution reconstruction for finite numbers of events are also given

  10. Ships as salient objects in synthetic aperture radar imaginary

    CSIR Research Space (South Africa)

    Schwegmann, Colin P

    2016-07-01

    Full Text Available The widespread access to Synthetic Aperture Radar data has created a need for more precise ship extraction, specifically in low-to-medium resolution imagery. While Synthetic Aperture Radar pixel resolution is improving for a large swaths...

  11. Blind encoding into qudits

    International Nuclear Information System (INIS)

    Shaari, J.S.; Wahiddin, M.R.B.; Mancini, S.

    2008-01-01

    We consider the problem of encoding classical information into unknown qudit states belonging to any basis, of a maximal set of mutually unbiased bases, by one party and then decoding by another party who has perfect knowledge of the basis. Working with qudits of prime dimensions, we point out a no-go theorem that forbids 'shift' operations on arbitrary unknown states. We then provide the necessary conditions for reliable encoding/decoding

  12. An encoding device and a method of encoding

    DEFF Research Database (Denmark)

    2012-01-01

    The present invention relates to an encoding device, such as an optical position encoder, for encoding input from an object, and a method for encoding input from an object, for determining a position of an object that interferes with light of the device. The encoding device comprises a light source...... in the area in the space and may interfere with the light, which interference may be encoded into a position or activation....

  13. Fast-neutron, coded-aperture imager

    Science.gov (United States)

    Woolf, Richard S.; Phlips, Bernard F.; Hutcheson, Anthony L.; Wulf, Eric A.

    2015-06-01

    This work discusses a large-scale, coded-aperture imager for fast neutrons, building off a proof-of concept instrument developed at the U.S. Naval Research Laboratory (NRL). The Space Science Division at the NRL has a heritage of developing large-scale, mobile systems, using coded-aperture imaging, for long-range γ-ray detection and localization. The fast-neutron, coded-aperture imaging instrument, designed for a mobile unit (20 ft. ISO container), consists of a 32-element array of 15 cm×15 cm×15 cm liquid scintillation detectors (EJ-309) mounted behind a 12×12 pseudorandom coded aperture. The elements of the aperture are composed of 15 cm×15 cm×10 cm blocks of high-density polyethylene (HDPE). The arrangement of the aperture elements produces a shadow pattern on the detector array behind the mask. By measuring of the number of neutron counts per masked and unmasked detector, and with knowledge of the mask pattern, a source image can be deconvolved to obtain a 2-d location. The number of neutrons per detector was obtained by processing the fast signal from each PMT in flash digitizing electronics. Digital pulse shape discrimination (PSD) was performed to filter out the fast-neutron signal from the γ background. The prototype instrument was tested at an indoor facility at the NRL with a 1.8-μCi and 13-μCi 252Cf neutron/γ source at three standoff distances of 9, 15 and 26 m (maximum allowed in the facility) over a 15-min integration time. The imaging and detection capabilities of the instrument were tested by moving the source in half- and one-pixel increments across the image plane. We show a representative sample of the results obtained at one-pixel increments for a standoff distance of 9 m. The 1.8-μCi source was not detected at the 26-m standoff. In order to increase the sensitivity of the instrument, we reduced the fastneutron background by shielding the top, sides and back of the detector array with 10-cm-thick HDPE. This shielding configuration led

  14. High-resolution coded-aperture design for compressive X-ray tomography using low resolution detectors

    Science.gov (United States)

    Mojica, Edson; Pertuz, Said; Arguello, Henry

    2017-12-01

    One of the main challenges in Computed Tomography (CT) is obtaining accurate reconstructions of the imaged object while keeping a low radiation dose in the acquisition process. In order to solve this problem, several researchers have proposed the use of compressed sensing for reducing the amount of measurements required to perform CT. This paper tackles the problem of designing high-resolution coded apertures for compressed sensing computed tomography. In contrast to previous approaches, we aim at designing apertures to be used with low-resolution detectors in order to achieve super-resolution. The proposed method iteratively improves random coded apertures using a gradient descent algorithm subject to constraints in the coherence and homogeneity of the compressive sensing matrix induced by the coded aperture. Experiments with different test sets show consistent results for different transmittances, number of shots and super-resolution factors.

  15. Dual aperture dipole magnet with second harmonic component

    Science.gov (United States)

    Praeg, Walter F.

    1985-01-01

    An improved dual aperture dipole electromagnet includes a second-harmonic frequency magnetic guide field winding which surrounds first harmonic frequency magnetic guide field windings associated with each aperture. The second harmonic winding and the first harmonic windings cooperate to produce resultant magnetic waveforms in the apertures which have extended acceleration and shortened reset portions of electromagnet operation.

  16. Fractal characteristics of fracture roughness and aperture data

    International Nuclear Information System (INIS)

    Kumar, S.; Boernge, J.

    1991-05-01

    In this study mathematical expressions are developed for the characteristics of apertures between rough surfaces. It has shown that the correlation between the opposite surfaces influences the aperture properties and different models are presented for these different surface correlations. Fracture and apertures profiles measured from intact fractures are evaluated and it is found that they qualitatively follow the mathematically predicted trends

  17. Dynamic Aperture Studies for SPEAR 3

    International Nuclear Information System (INIS)

    Corbett, William

    1998-01-01

    The Stanford Synchrotron Radiation Laboratory is investigating an accelerator upgrade project that would replace the present 130 nm rad FODO lattice with an 18 nm rad double bend achromat (DBA) lattice: SPEAR 3. The low emittance design yields a high brightness beam, but the stronger focusing in the DBA lattice increases chromaticity and beam sensitivity to machine errors. To ensure efficient injection and long Touschek lifetime, an optimization of the design lattice and dynamic aperture has been performed. In this paper, we review the methods used to maximize the SPEAR 3 dynamic aperture including necessary optics modifications, choice of tune and phase advance, optimization of sextupole and coupling correction, and modeling effects of machine errors, wigglers and lattice periodicity

  18. Dynamic aperture studies for SPEAR 3

    International Nuclear Information System (INIS)

    Nosochkov, Y.; Corbett, J.

    1999-01-01

    The Stanford Synchrotron Radiation Laboratory is investigating an accelerator upgrade project that would replace the present 130 nm·rad FODO lattice with an 18 nm·rad double bend achromat (DBA) lattice: SPEAR 3. The low emittance design yields a high brightness beam, but the stronger focusing in the DBA lattice increases chromaticity and beam sensitivity to machine errors. To ensure efficient injection and long Touschek lifetime, an optimization of the design lattice and dynamic aperture has been performed. In this paper, we review the methods used to maximize the SPEAR 3 dynamic aperture including necessary optics modifications, choice of tune and phase advance, optimization of sextupole and coupling correction, and modeling effects of machine errors, wigglers and lattice periodicity

  19. High frame rate synthetic aperture duplex imaging

    DEFF Research Database (Denmark)

    Stuart, Matthias Bo; Tomov, Borislav Gueorguiev; Pihl, Michael Johannes

    2013-01-01

    aperture flow imaging as demonstrated in this paper. Synthetic aperture, directional beamforming, and cross-correlation are used to produce B-mode and vector velocity images at high frame rates. The frame rate equals the effective pulse repetition frequency of each imaging mode. Emissions for making the B...... estimation is −1.8% and the relative standard deviation 5.4%. The approach can thus estimate both high and low velocities with equal accuracy and thereby makes it possible to present vector flow images with a high dynamic range. Measurements are made using the SARUS research scanner, a linear array......Conventional color flow images are limited in velocity range and can either show the high velocities in systole or be optimized for the lower diastolic velocities. The full dynamics of the flow is, thus, hard to visualize. The dynamic range can be significantly increased by employing synthetic...

  20. Large-aperture hybrid photo-detector

    International Nuclear Information System (INIS)

    Kawai, Y.; Nakayama, H.; Kusaka, A.; Kakuno, H.; Abe, T.; Iwasaki, M.; Aihara, H.; Tanaka, M.; Shiozawa, M.; Kyushima, H.; Suyama, M.

    2007-01-01

    We have developed the first complete large-aperture (13-inch diameter) hybrid photo-detector (HPD). The withstanding voltage problem has been overcome and we were able to attain an HPD operating voltage of +20 kV. Adoption of our newly developed backside illumination avalanche diode (AD) was also critical in successfully countering the additional problem of an increase in AD leakage after the activation process. We observed single photon signal timing jitter of under 450 ps in FWHM, electron transit time of ∼12 ns, and clear pulse height separation up to several photoelectron peaks, all greatly superior to the performance of any conventional large-aperture photomultiplier tubes (PMTs). In addition, our HPD has a much simpler structure than conventional large-aperture PMTs, which simplifies mass production and lowers manufacturing cost. We believe that these attributes position our HPD as the most suitable photo-detector for the next generation mega-ton class water-Cherenkov detector, which is expected to be more than 20x larger than the Super-Kamiokande (SK) detector

  1. Biomineral repair of abalone shell apertures.

    Science.gov (United States)

    Cusack, Maggie; Guo, Dujiao; Chung, Peter; Kamenos, Nicholas A

    2013-08-01

    The shell of the gastropod mollusc, abalone, is comprised of nacre with an outer prismatic layer that is composed of either calcite or aragonite or both, depending on the species. A striking characteristic of the abalone shell is the row of apertures along the dorsal margin. As the organism and shell grow, new apertures are formed and the preceding ones are filled in. Detailed investigations, using electron backscatter diffraction, of the infill in three species of abalone: Haliotis asinina, Haliotis gigantea and Haliotis rufescens reveals that, like the shell, the infill is composed mainly of nacre with an outer prismatic layer. The infill prismatic layer has identical mineralogy as the original shell prismatic layer. In H. asinina and H. gigantea, the prismatic layer of the shell and infill are made of aragonite while in H. rufescens both are composed of calcite. Abalone builds the infill material with the same high level of biological control, replicating the structure, mineralogy and crystallographic orientation as for the shell. The infill of abalone apertures presents us with insight into what is, effectively, shell repair. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Full aperture imaging with stereoscopic properties in nuclear medicine

    International Nuclear Information System (INIS)

    Strocovsky, Sergio G.; Otero, D.

    2011-01-01

    The imaging techniques based on gamma camera (CG) and used in nuclear medicine have low spatial resolution and low sensitivity due to the use of the collimator. However, this element is essential for the formation of images in CG. The aim of this work is to show the principles of a new technique to overcome the limitations of existing techniques based on CG. Here, we present a Full Aperture Imaging (FAI) technique which is based on the edge-encoding of gamma radiation and differential detection. It takes advantage of the fact that gamma radiation is spatially incoherent. The mathematical principles and the method of images reconstruction with the new proposed technique are explained in detail. The FAI technique is tested by means of Monte Carlo simulations with filiform and spherical sources. The results show that FAI technique has greater sensitivity (>100 times) and greater spatial resolution (>2.6 times) than that of GC with LEHR collimator, in both cases, with and without attenuating material and long and short-distance configurations. The FAI decoding algorithm reconstructs simultaneously four different projections which are located in separate image fields on the detector plane, while GC produces only one projection per acquisition. Simulations have allowed comparison of both techniques under ideal identical conditions. Our results show it is possible to apply an extremely simple encoded imaging technique, and get three-dimensional radioactivity information for simplistic geometry sources. The results are promising enough to evaluate the possibility of future research with more complex sources typical of nuclear medicine imaging. (author)

  3. Multichannel compressive sensing MRI using noiselet encoding.

    Directory of Open Access Journals (Sweden)

    Kamlesh Pawar

    Full Text Available The incoherence between measurement and sparsifying transform matrices and the restricted isometry property (RIP of measurement matrix are two of the key factors in determining the performance of compressive sensing (CS. In CS-MRI, the randomly under-sampled Fourier matrix is used as the measurement matrix and the wavelet transform is usually used as sparsifying transform matrix. However, the incoherence between the randomly under-sampled Fourier matrix and the wavelet matrix is not optimal, which can deteriorate the performance of CS-MRI. Using the mathematical result that noiselets are maximally incoherent with wavelets, this paper introduces the noiselet unitary bases as the measurement matrix to improve the incoherence and RIP in CS-MRI. Based on an empirical RIP analysis that compares the multichannel noiselet and multichannel Fourier measurement matrices in CS-MRI, we propose a multichannel compressive sensing (MCS framework to take the advantage of multichannel data acquisition used in MRI scanners. Simulations are presented in the MCS framework to compare the performance of noiselet encoding reconstructions and Fourier encoding reconstructions at different acceleration factors. The comparisons indicate that multichannel noiselet measurement matrix has better RIP than that of its Fourier counterpart, and that noiselet encoded MCS-MRI outperforms Fourier encoded MCS-MRI in preserving image resolution and can achieve higher acceleration factors. To demonstrate the feasibility of the proposed noiselet encoding scheme, a pulse sequences with tailored spatially selective RF excitation pulses was designed and implemented on a 3T scanner to acquire the data in the noiselet domain from a phantom and a human brain. The results indicate that noislet encoding preserves image resolution better than Fouirer encoding.

  4. Parameters for HL-LHC aperture calculations and comparison with aperture measurements

    CERN Document Server

    Bruce, R; Fartoukh, S; Giovannozzi, M; Redaelli, S; Tomas, R; Wenninger, J

    2014-01-01

    When β∗ is squeezed to smaller values in the LHC, the beam size in the inner triplet increases so that the aperture risks to be exposed to unwanted beam losses. A 2D calculation model was used during the design stage to study the aperture margins, both there and at other potential bottlenecks. Based on assumptions on orbit and optics errors, as well as mechanical tolerances, it gives the available aperture in units of the RMS beam size, which can be compared with what can be protected by the collimation system. During the LHC Run I in 2010-2013, several of the error tolerances have been found smaller than the design assumptions. Furthermore, the aperture has been measured with beam several times and the results are compatible with a very well aligned machine, with results close to the design values. In this report, we therefore review the assumptions in the model and propose an updated set of input parameters to be used for aperture calculations at top energy in HL-LHC. The new parameter set is based on th...

  5. Filled aperture concepts for the Terrestrial Planet Finder

    Science.gov (United States)

    Ridgway, Stephen T.

    2003-02-01

    Filled aperture telescopes can deliver a real, high Strehl image which is well suited for discrimination of faint planets in the vicinity of bright stars and against an extended exo-zodiacal light. A filled aperture offers a rich variety of PSF control and diffraction suppression techniques. Filled apertures are under consideration for a wide spectral range, including visible and thermal-IR, each of which offers a significant selection of biomarker molecular bands. A filled aperture visible TPF may be simpler in several respects than a thermal-IR nuller. The required aperture size (or baseline) is much smaller, and no cryogenic systems are required. A filled aperture TPF would look and act like a normal telescope - vendors and users alike would be comfortable with its design and operation. Filled aperture telescopes pose significant challenges in production of large primary mirrors, and in very stringent wavefront requirements. Stability of the wavefront control, and hence of the PSF, is a major issue for filled aperture systems. Several groups have concluded that these and other issues can be resolved, and that filled aperture options are competitive for a TPF precursor and/or for the full TPF mission. Ball, Boeing-SVS and TRW have recently returned architecture reviews on filled aperture TPF concepts. In this paper, I will review some of the major considerations underlying these filled aperture concepts, and suggest key issues in a TPF Buyers Guide.

  6. Fast-neutron, coded-aperture imager

    International Nuclear Information System (INIS)

    Woolf, Richard S.; Phlips, Bernard F.; Hutcheson, Anthony L.; Wulf, Eric A.

    2015-01-01

    This work discusses a large-scale, coded-aperture imager for fast neutrons, building off a proof-of concept instrument developed at the U.S. Naval Research Laboratory (NRL). The Space Science Division at the NRL has a heritage of developing large-scale, mobile systems, using coded-aperture imaging, for long-range γ-ray detection and localization. The fast-neutron, coded-aperture imaging instrument, designed for a mobile unit (20 ft. ISO container), consists of a 32-element array of 15 cm×15 cm×15 cm liquid scintillation detectors (EJ-309) mounted behind a 12×12 pseudorandom coded aperture. The elements of the aperture are composed of 15 cm×15 cm×10 cm blocks of high-density polyethylene (HDPE). The arrangement of the aperture elements produces a shadow pattern on the detector array behind the mask. By measuring of the number of neutron counts per masked and unmasked detector, and with knowledge of the mask pattern, a source image can be deconvolved to obtain a 2-d location. The number of neutrons per detector was obtained by processing the fast signal from each PMT in flash digitizing electronics. Digital pulse shape discrimination (PSD) was performed to filter out the fast-neutron signal from the γ background. The prototype instrument was tested at an indoor facility at the NRL with a 1.8-μCi and 13-μCi 252Cf neutron/γ source at three standoff distances of 9, 15 and 26 m (maximum allowed in the facility) over a 15-min integration time. The imaging and detection capabilities of the instrument were tested by moving the source in half- and one-pixel increments across the image plane. We show a representative sample of the results obtained at one-pixel increments for a standoff distance of 9 m. The 1.8-μCi source was not detected at the 26-m standoff. In order to increase the sensitivity of the instrument, we reduced the fastneutron background by shielding the top, sides and back of the detector array with 10-cm-thick HDPE. This shielding configuration led

  7. Fast-neutron, coded-aperture imager

    Energy Technology Data Exchange (ETDEWEB)

    Woolf, Richard S., E-mail: richard.woolf@nrl.navy.mil; Phlips, Bernard F., E-mail: bernard.phlips@nrl.navy.mil; Hutcheson, Anthony L., E-mail: anthony.hutcheson@nrl.navy.mil; Wulf, Eric A., E-mail: eric.wulf@nrl.navy.mil

    2015-06-01

    This work discusses a large-scale, coded-aperture imager for fast neutrons, building off a proof-of concept instrument developed at the U.S. Naval Research Laboratory (NRL). The Space Science Division at the NRL has a heritage of developing large-scale, mobile systems, using coded-aperture imaging, for long-range γ-ray detection and localization. The fast-neutron, coded-aperture imaging instrument, designed for a mobile unit (20 ft. ISO container), consists of a 32-element array of 15 cm×15 cm×15 cm liquid scintillation detectors (EJ-309) mounted behind a 12×12 pseudorandom coded aperture. The elements of the aperture are composed of 15 cm×15 cm×10 cm blocks of high-density polyethylene (HDPE). The arrangement of the aperture elements produces a shadow pattern on the detector array behind the mask. By measuring of the number of neutron counts per masked and unmasked detector, and with knowledge of the mask pattern, a source image can be deconvolved to obtain a 2-d location. The number of neutrons per detector was obtained by processing the fast signal from each PMT in flash digitizing electronics. Digital pulse shape discrimination (PSD) was performed to filter out the fast-neutron signal from the γ background. The prototype instrument was tested at an indoor facility at the NRL with a 1.8-μCi and 13-μCi 252Cf neutron/γ source at three standoff distances of 9, 15 and 26 m (maximum allowed in the facility) over a 15-min integration time. The imaging and detection capabilities of the instrument were tested by moving the source in half- and one-pixel increments across the image plane. We show a representative sample of the results obtained at one-pixel increments for a standoff distance of 9 m. The 1.8-μCi source was not detected at the 26-m standoff. In order to increase the sensitivity of the instrument, we reduced the fastneutron background by shielding the top, sides and back of the detector array with 10-cm-thick HDPE. This shielding configuration led

  8. Designing waveforms for temporal encoding using a frequency sampling method

    DEFF Research Database (Denmark)

    Gran, Fredrik; Jensen, Jørgen Arendt

    2007-01-01

    was compared to a linear frequency modulated signal with amplitude tapering, previously used in clinical studies for synthetic transmit aperture imaging. The latter had a relatively flat spectrum which implied that the waveform tried to excite all frequencies including ones with low amplification. The proposed......In this paper a method for designing waveforms for temporal encoding in medical ultrasound imaging is described. The method is based on least squares optimization and is used to design nonlinear frequency modulated signals for synthetic transmit aperture imaging. By using the proposed design method...... waveform, on the other hand, was designed so that only frequencies where the transducer had a large amplification were excited. Hereby, unnecessary heating of the transducer could be avoided and the signal-tonoise ratio could be increased. The experimental ultrasound scanner RASMUS was used to evaluate...

  9. RTS noise and dark current white defects reduction using selective averaging based on a multi-aperture system.

    Science.gov (United States)

    Zhang, Bo; Kagawa, Keiichiro; Takasawa, Taishi; Seo, Min Woong; Yasutomi, Keita; Kawahito, Shoji

    2014-01-16

    In extremely low-light conditions, random telegraph signal (RTS) noise and dark current white defects become visible. In this paper, a multi-aperture imaging system and selective averaging method which removes the RTS noise and the dark current white defects by minimizing the synthetic sensor noise at every pixel is proposed. In the multi-aperture imaging system, a very small synthetic F-number which is much smaller than 1.0 is achieved by increasing optical gain with multiple lenses. It is verified by simulation that the effective noise normalized by optical gain in the peak of noise histogram is reduced from 1.38e⁻ to 0.48 e⁻ in a 3 × 3-aperture system using low-noise CMOS image sensors based on folding-integration and cyclic column ADCs. In the experiment, a prototype 3 × 3-aperture camera, where each aperture has 200 × 200 pixels and an imaging lens with a focal length of 3.0 mm and F-number of 3.0, is developed. Under a low-light condition, in which the maximum average signal is 11e⁻ per aperture, the RTS and dark current white defects are removed and the peak signal-to-noise ratio (PSNR) of the image is increased by 6.3 dB.

  10. A new approach to dynamic aperture problems

    International Nuclear Information System (INIS)

    Schonfeld, J.F.

    1986-01-01

    We develop the theory of a passive magnetic system intended to suppress nonlinear orbit distortion in high-energy proton storage rings. The system is designed to immediately reduce 'Collins distortion functions,' which describe the size of nonlinear orbit distortion in first-order perturbation theory. Such a scheme could permit one significantly to decrease the physical aperture of a storage ring over most - but not necessarily all -of its length. This work was motivated by design needs of the proposed Superconducting Super Collider (SSC). (author)

  11. Sea Ice Movements from Synthetic Aperture Radar

    Science.gov (United States)

    1981-12-01

    correlating these components. B-l8 These correlations are also plotted in figure l1. 5.3.3.2 AUlications of the space correlation. The spatial...aperture radar. To appear in J. of Geophys. Res. Hastings, A. D. Jr., 1971. Surface climate of the Arctic Basin. Report ETL- TR-71-5, Earth Sciences Division...Administration Grant NA50-AA-D-00015, which was funded in part by the Global Atmospheric Research Program and the Office of Climate Dynarics, Divisic

  12. Parametric Beamformer for Synthetic Aperture Ultrasound Imaging

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Tomov, Borislav Gueorguiev; Jensen, Jørgen Arendt

    2006-01-01

    . The beamformer consists of a number of identical beamforming blocks, each processing data from several channels and producing part of the image. A number of these blocks can be accommodated in a modern field-programmable gate array device (FPGA), and a whole synthetic aperture system can be implemented using...... with 255 levels. A beamforming block uses input data from 4 elements and produces a set of 10 lines. Linear interpolation is used to implement sub-sample delays. The VHDL code for the beamformer has been synthesized for a Xilinx V4FX100 speed grade 11 FPGA, where it can operate at a maximum clock frequency...

  13. Noise level and MPEG-2 encoder statistics

    Science.gov (United States)

    Lee, Jungwoo

    1997-01-01

    Most software in the movie and broadcasting industries are still in analog film or tape format, which typically contains random noise that originated from film, CCD camera, and tape recording. The performance of the MPEG-2 encoder may be significantly degraded by the noise. It is also affected by the scene type that includes spatial and temporal activity. The statistical property of noise originating from camera and tape player is analyzed and the models for the two types of noise are developed. The relationship between the noise, the scene type, and encoder statistics of a number of MPEG-2 parameters such as motion vector magnitude, prediction error, and quant scale are discussed. This analysis is intended to be a tool for designing robust MPEG encoding algorithms such as preprocessing and rate control.

  14. Coded aperture optimization using Monte Carlo simulations

    International Nuclear Information System (INIS)

    Martineau, A.; Rocchisani, J.M.; Moretti, J.L.

    2010-01-01

    Coded apertures using Uniformly Redundant Arrays (URA) have been unsuccessfully evaluated for two-dimensional and three-dimensional imaging in Nuclear Medicine. The images reconstructed from coded projections contain artifacts and suffer from poor spatial resolution in the longitudinal direction. We introduce a Maximum-Likelihood Expectation-Maximization (MLEM) algorithm for three-dimensional coded aperture imaging which uses a projection matrix calculated by Monte Carlo simulations. The aim of the algorithm is to reduce artifacts and improve the three-dimensional spatial resolution in the reconstructed images. Firstly, we present the validation of GATE (Geant4 Application for Emission Tomography) for Monte Carlo simulations of a coded mask installed on a clinical gamma camera. The coded mask modelling was validated by comparison between experimental and simulated data in terms of energy spectra, sensitivity and spatial resolution. In the second part of the study, we use the validated model to calculate the projection matrix with Monte Carlo simulations. A three-dimensional thyroid phantom study was performed to compare the performance of the three-dimensional MLEM reconstruction with conventional correlation method. The results indicate that the artifacts are reduced and three-dimensional spatial resolution is improved with the Monte Carlo-based MLEM reconstruction.

  15. Beam focusing by aperture displacement in multiampere ion sources

    International Nuclear Information System (INIS)

    Stewart, L.D.; Kim, J.; Matsuda, S.

    1975-05-01

    Results are given of an experimental study of beam focusing by aperture displacement (Δx) in duoPIGatron ion sources. Measurements with a single aperture, accel-decel electrode geometry show that the beam deflection angle is linear with Δx/z for the round aperture and with Δx/z* 2 for the slit aperture where z and z* are respectively the extraction gap distance and the effective gap distance. Applying the result of the single aperture study to the multiaperture, duoPIGatron sources, it was possible to increase the neutral beam injection power to the ORMAK plasma by approximately 40 percent. Also presented are discussion and comparison of other work on the effect of aperture displacement on beam deflection. (U.S.)

  16. Measurements of pore-scale flow through apertures

    Energy Technology Data Exchange (ETDEWEB)

    Chojnicki, Kirsten [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    Pore-scale aperture effects on flow in pore networks was studied in the laboratory to provide a parameterization for use in transport models. Four cases were considered: regular and irregular pillar/pore alignment with and without an aperture. The velocity field of each case was measured and simulated, providing quantitatively comparable results. Two aperture effect parameterizations were considered: permeability and transmission. Permeability values varied by an order of magnitude between the cases with and without apertures. However, transmission did not correlate with permeability. Despite having much greater permeability the regular aperture case permitted less transmission than the regular case. Moreover, both irregular cases had greater transmission than the regular cases, a difference not supported by the permeabilities. Overall, these findings suggest that pore-scale aperture effects on flow though a pore-network may not be adequately captured by properties such as permeability for applications that are interested in determining particle transport volume and timing.

  17. Field measurements for low-aperture magnetic elements

    International Nuclear Information System (INIS)

    Mikhajlichenko, A.A.

    1989-01-01

    The method of the field measurements with help of bismuth wire in low aperture magnetic elements is revised. The quadrupole with permanent magnets was tested. It has aperture diameter about 4 mm and length 40 mm. Gradient about 38 kOe/cm was measured. The accuracy of the magnetic axis position definition is better than 1 μm. This method is a good kandidate for linear colider low aperture magnetic elements measurements. 7 refs.; 6 figs

  18. a permutation encoding te algorithm solution of reso tation encoding

    African Journals Online (AJOL)

    eobe

    Keywords: Genetic algorithm, resource constrained. 1. INTRODUCTION. 1. .... Nigerian Journal of Technology. Vol. 34, No. 1, January 2015. 128 ... 4. ENCODING OF CHROMOSOME. ENCODING OF CHROMOSOME .... International Multi conference of Engineers and ... method”, Naval Research Logistics, vol 48, issue 2,.

  19. Tracking studies on the effects of magnet multipoles on the aperture of the RHIC heavy ion collider

    International Nuclear Information System (INIS)

    Dell, G.F.; Parzen, G.

    1985-01-01

    Tracking studies including the effects of random multipoles resulting from construction errors have been made for RHIC with two independent tracking programs at three different tunes. The studies were made using ten different sets of random errors for each of the programs. The aperture was defined as the worst case, and the results of the two programs are in good agreement. A second set of studies was made for which the number of dipoles was doubled to determine whether doubling the number of independent random errors results in a reduction of the effects or random multipoles. The results for the two cases, one dipole per half cell and two dipoles per half cell, indicate there is little difference in dynamic aperture. 3 refs., 3 figs

  20. Extended Aperture Photometry of K2 RR Lyrae stars

    Directory of Open Access Journals (Sweden)

    Plachy Emese

    2017-01-01

    Full Text Available We present the method of the Extended Aperture Photometry (EAP that we applied on K2 RR Lyrae stars. Our aim is to minimize the instrumental variations of attitude control maneuvers by using apertures that cover the positional changes in the field of view thus contain the stars during the whole observation. We present example light curves that we compared to the light curves from the K2 Systematics Correction (K2SC pipeline applied on the automated Single Aperture Photometry (SAP and on the Pre-search Data Conditioning Simple Aperture Photometry (PDCSAP data.

  1. Extended Aperture Photometry of K2 RR Lyrae stars

    Science.gov (United States)

    Plachy, Emese; Klagyivik, Péter; Molnár, László; Sódor, Ádám; Szabó, Róbert

    2017-10-01

    We present the method of the Extended Aperture Photometry (EAP) that we applied on K2 RR Lyrae stars. Our aim is to minimize the instrumental variations of attitude control maneuvers by using apertures that cover the positional changes in the field of view thus contain the stars during the whole observation. We present example light curves that we compared to the light curves from the K2 Systematics Correction (K2SC) pipeline applied on the automated Single Aperture Photometry (SAP) and on the Pre-search Data Conditioning Simple Aperture Photometry (PDCSAP) data.

  2. Parallel encoders for pixel detectors

    International Nuclear Information System (INIS)

    Nikityuk, N.M.

    1991-01-01

    A new method of fast encoding and determining the multiplicity and coordinates of fired pixels is described. A specific example construction of parallel encodes and MCC for n=49 and t=2 is given. 16 refs.; 6 figs.; 2 tabs

  3. Three-Dimensional Terahertz Coded-Aperture Imaging Based on Single Input Multiple Output Technology

    Directory of Open Access Journals (Sweden)

    Shuo Chen

    2018-01-01

    Full Text Available As a promising radar imaging technique, terahertz coded-aperture imaging (TCAI can achieve high-resolution, forward-looking, and staring imaging by producing spatiotemporal independent signals with coded apertures. In this paper, we propose a three-dimensional (3D TCAI architecture based on single input multiple output (SIMO technology, which can reduce the coding and sampling times sharply. The coded aperture applied in the proposed TCAI architecture loads either purposive or random phase modulation factor. In the transmitting process, the purposive phase modulation factor drives the terahertz beam to scan the divided 3D imaging cells. In the receiving process, the random phase modulation factor is adopted to modulate the terahertz wave to be spatiotemporally independent for high resolution. Considering human-scale targets, images of each 3D imaging cell are reconstructed one by one to decompose the global computational complexity, and then are synthesized together to obtain the complete high-resolution image. As for each imaging cell, the multi-resolution imaging method helps to reduce the computational burden on a large-scale reference-signal matrix. The experimental results demonstrate that the proposed architecture can achieve high-resolution imaging with much less time for 3D targets and has great potential in applications such as security screening, nondestructive detection, medical diagnosis, etc.

  4. Clinical evaluation of synthetic aperture sequential beamforming

    DEFF Research Database (Denmark)

    Hansen, Peter Møller; Hemmsen, Martin Christian; Lange, Theis

    2012-01-01

    In this study clinically relevant ultrasound images generated with synthetic aperture sequential beamforming (SASB) is compared to images generated with a conventional technique. The advantage of SASB is the ability to produce high resolution ultrasound images with a high frame rate and at the same...... time massively reduce the amount of generated data. SASB was implemented in a system consisting of a conventional ultrasound scanner connected to a PC via a research interface. This setup enables simultaneous recording with both SASB and conventional technique. Eighteen volunteers were ultrasound...... scanned abdominally, and 84 sequence pairs were recorded. Each sequence pair consists of two simultaneous recordings of the same anatomical location with SASB and conventional B-mode imaging. The images were evaluated in terms of spatial resolution, contrast, unwanted artifacts, and penetration depth...

  5. Optimization of Spatiotemporal Apertures in Channel Sounding

    DEFF Research Database (Denmark)

    Pedersen, Troels; Pedersen, Claus; Yin, Xuefeng

    2008-01-01

    a spatiotemporal model which can describe parallel as well as switched sounding systems. The proposed model is applicable for arbitrary layouts of the spatial arrays. To simplify the derivations we investigate the special case of linear spatial arrays. However, the results obtained for linear arrays can......In this paper we investigate the impact of the spatio-temporal aperture of a channel sounding system equipped with antenna arrays at the transmitter and receiver on the accuracy of joint estimation of Doppler frequency and bi-direction. The contribution of this work is three-fold. Firstly, we state...... be generalized to arbitrary arrays. Secondly, we give the necessary and sufficient conditions for a spatio-temporal array to yield the minimum Cramér-Rao lower bound in the single-path case and Bayesian Cramér-Rao Lower Bound in the multipath case. The obtained conditions amount to an orthogonality condition...

  6. Tissue Harmonic Synthetic Aperture Ultrasound Imaging

    DEFF Research Database (Denmark)

    Hemmsen, Martin Christian; Rasmussen, Joachim; Jensen, Jørgen Arendt

    2014-01-01

    Synthetic aperture sequential beamforming (SASB) and tissue har- monic imaging (THI) are combined to improve the image quality of medical ultrasound imaging. The technique is evaluated in a compar- ative study against dynamic receive focusing (DRF). The objective is to investigate if SASB combined...... with THI improves the image qual- ity compared to DRF-THI. The major benet of SASB is a reduced bandwidth between the probe and processing unit. A BK Medical 2202 Ultraview ultrasound scanner was used to acquire beamformed RF data for oine evaluation. The acquisition was made interleaved between methods......, and data were recorded with and without pulse inversion for tissue harmonic imaging. Data were acquired using a Sound Technol- ogy 192 element convex array transducer from both a wire phantom and a tissue mimicking phantom to investigate spatial resolution and pen- etration. In-vivo scans were also...

  7. Defocus morphing in real aperture images.

    Science.gov (United States)

    Chaudhuri, Subhasis

    2005-11-01

    A new concept called defocus morphing in real aperture images is introduced. View morphing is an existing example of shape-preserving image morphing based on the motion cue. It is proved that images can also be morphed based on the depth-related defocus cue. This illustrates that the morphing operation is not necessarily a geometric process alone; one can also perform a photometry-based morphing wherein the shape information is implicitly buried in the image intensity field. A theoretical understanding of the defocus morphing process is presented. It is shown mathematically that, given two observations of a three-dimensional scene for different camera parameter settings, we can obtain a virtual observation for any camera parameter setting through a simple nonlinear combination of these observations.

  8. Common aperture multispectral spotter camera: Spectro XR

    Science.gov (United States)

    Petrushevsky, Vladimir; Freiman, Dov; Diamant, Idan; Giladi, Shira; Leibovich, Maor

    2017-10-01

    The Spectro XRTM is an advanced color/NIR/SWIR/MWIR 16'' payload recently developed by Elbit Systems / ELOP. The payload's primary sensor is a spotter camera with common 7'' aperture. The sensor suite includes also MWIR zoom, EO zoom, laser designator or rangefinder, laser pointer / illuminator and laser spot tracker. Rigid structure, vibration damping and 4-axes gimbals enable high level of line-of-sight stabilization. The payload's list of features include multi-target video tracker, precise boresight, strap-on IMU, embedded moving map, geodetic calculations suite, and image fusion. The paper describes main technical characteristics of the spotter camera. Visible-quality, all-metal front catadioptric telescope maintains optical performance in wide range of environmental conditions. High-efficiency coatings separate the incoming light into EO, SWIR and MWIR band channels. Both EO and SWIR bands have dual FOV and 3 spectral filters each. Several variants of focal plane array formats are supported. The common aperture design facilitates superior DRI performance in EO and SWIR, in comparison to the conventionally configured payloads. Special spectral calibration and color correction extend the effective range of color imaging. An advanced CMOS FPA and low F-number of the optics facilitate low light performance. SWIR band provides further atmospheric penetration, as well as see-spot capability at especially long ranges, due to asynchronous pulse detection. MWIR band has good sharpness in the entire field-of-view and (with full HD FPA) delivers amount of detail far exceeding one of VGA-equipped FLIRs. The Spectro XR offers level of performance typically associated with larger and heavier payloads.

  9. The development of large-aperture test system of infrared camera and visible CCD camera

    Science.gov (United States)

    Li, Yingwen; Geng, Anbing; Wang, Bo; Wang, Haitao; Wu, Yanying

    2015-10-01

    Infrared camera and CCD camera dual-band imaging system is used in many equipment and application widely. If it is tested using the traditional infrared camera test system and visible CCD test system, 2 times of installation and alignment are needed in the test procedure. The large-aperture test system of infrared camera and visible CCD camera uses the common large-aperture reflection collimator, target wheel, frame-grabber, computer which reduces the cost and the time of installation and alignment. Multiple-frame averaging algorithm is used to reduce the influence of random noise. Athermal optical design is adopted to reduce the change of focal length location change of collimator when the environmental temperature is changing, and the image quality of the collimator of large field of view and test accuracy are also improved. Its performance is the same as that of the exotic congener and is much cheaper. It will have a good market.

  10. Synthetic aperture design for increased SAR image rate

    Science.gov (United States)

    Bielek, Timothy P [Albuquerque, NM; Thompson, Douglas G [Albuqerque, NM; Walker, Bruce C [Albuquerque, NM

    2009-03-03

    High resolution SAR images of a target scene at near video rates can be produced by using overlapped, but nevertheless, full-size synthetic apertures. The SAR images, which respectively correspond to the apertures, can be analyzed in sequence to permit detection of movement in the target scene.

  11. Joint synthetic aperture radar plus ground moving target indicator from single-channel radar using compressive sensing

    Science.gov (United States)

    Thompson, Douglas; Hallquist, Aaron; Anderson, Hyrum

    2017-10-17

    The various embodiments presented herein relate to utilizing an operational single-channel radar to collect and process synthetic aperture radar (SAR) and ground moving target indicator (GMTI) imagery from a same set of radar returns. In an embodiment, data is collected by randomly staggering a slow-time pulse repetition interval (PRI) over a SAR aperture such that a number of transmitted pulses in the SAR aperture is preserved with respect to standard SAR, but many of the pulses are spaced very closely enabling movers (e.g., targets) to be resolved, wherein a relative velocity of the movers places them outside of the SAR ground patch. The various embodiments of image reconstruction can be based on compressed sensing inversion from undersampled data, which can be solved efficiently using such techniques as Bregman iteration. The various embodiments enable high-quality SAR reconstruction, and high-quality GMTI reconstruction from the same set of radar returns.

  12. Microfabricated high-bandpass foucault aperture for electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Glaeser, Robert; Cambie, Rossana; Jin, Jian

    2014-08-26

    A variant of the Foucault (knife-edge) aperture is disclosed that is designed to provide single-sideband (SSB) contrast at low spatial frequencies but retain conventional double-sideband (DSB) contrast at high spatial frequencies in transmission electron microscopy. The aperture includes a plate with an inner open area, a support extending from the plate at an edge of the open area, a half-circle feature mounted on the support and located at the center of the aperture open area. The radius of the half-circle portion of reciprocal space that is blocked by the aperture can be varied to suit the needs of electron microscopy investigation. The aperture is fabricated from conductive material which is preferably non-oxidizing, such as gold, for example.

  13. Genetic algorithm enhanced by machine learning in dynamic aperture optimization

    Science.gov (United States)

    Li, Yongjun; Cheng, Weixing; Yu, Li Hua; Rainer, Robert

    2018-05-01

    With the aid of machine learning techniques, the genetic algorithm has been enhanced and applied to the multi-objective optimization problem presented by the dynamic aperture of the National Synchrotron Light Source II (NSLS-II) Storage Ring. During the evolution processes employed by the genetic algorithm, the population is classified into different clusters in the search space. The clusters with top average fitness are given "elite" status. Intervention on the population is implemented by repopulating some potentially competitive candidates based on the experience learned from the accumulated data. These candidates replace randomly selected candidates among the original data pool. The average fitness of the population is therefore improved while diversity is not lost. Maintaining diversity ensures that the optimization is global rather than local. The quality of the population increases and produces more competitive descendants accelerating the evolution process significantly. When identifying the distribution of optimal candidates, they appear to be located in isolated islands within the search space. Some of these optimal candidates have been experimentally confirmed at the NSLS-II storage ring. The machine learning techniques that exploit the genetic algorithm can also be used in other population-based optimization problems such as particle swarm algorithm.

  14. 47 CFR 25.134 - Licensing provisions of Very Small Aperture Terminal (VSAT) and C-band Small Aperture Terminal...

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Licensing provisions of Very Small Aperture Terminal (VSAT) and C-band Small Aperture Terminal (CSAT) networks. 25.134 Section 25.134 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS...

  15. X-ray lenses with large aperture

    International Nuclear Information System (INIS)

    Simon, Markus

    2010-01-01

    Up to now, most X-ray imaging setups are based on absorption contrast imaging. There is a demand for focused X-rays in many X-ray analysis applications, either to increase the resolution of an imaging system, or, to reduce the time effort of an experiment through higher photon flux. For photon energies higher than 15 keV refractive X-ray optics are more efficient in comparison to non-refractive X-ray optics. The aim of this work was to develop X-ray lenses with large apertures and high transparency. By increasing the number of refracting surfaces while removing unnecessary lens material such lenses have been developed. Utilizing this approach the overall beam deflection angle is large with respect to the lens material it propagates through and so the transparency of the lens is increased. Within this work, X-ray lenses consisting of several thousands of prisms with an edge length in the range of micrometers have been developed and fabricated by deep X-ray lithography. Deep X-ray lithography enables high precision microstrucures with smooth sidewalls and large aspect ratios. The aperture of high-transparency X-ray lenses made this way is greater than 1 mm. They are suitable for photon energies in the range of 8 keV to 24 keV and offer a focal width of smaller than 10 μm at a transparency of around 40%. Furthermore, rolled X-ray lenses have been developed, that are made out of a microstructured polyimide film, which is cut according to the requirements regarding focal length and photon energy. The microstructured film is fabricated by molding, using an anisotropically etched silicon wafer as molding tool. Its mean roughness is in the range of nanometers. The film features prismatic structures, its surface topology is similar to an asparagus field. The measured diameter of the point focus was 18 μm to 31 μm, the calculated opticla efficiency was 37%. Future work will concentrate on increasing the aspect ratio of Prism Lenses and on increasing the rolling accuracy

  16. Motion measurement for synthetic aperture radar

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-01-01

    Synthetic Aperture Radar (SAR) measures radar soundings from a set of locations typically along the flight path of a radar platform vehicle. Optimal focusing requires precise knowledge of the sounding source locations in 3-D space with respect to the target scene. Even data driven focusing techniques (i.e. autofocus) requires some degree of initial fidelity in the measurements of the motion of the radar. These requirements may be quite stringent especially for fine resolution, long ranges, and low velocities. The principal instrument for measuring motion is typically an Inertial Measurement Unit (IMU), but these instruments have inherent limi ted precision and accuracy. The question is %22How good does an IMU need to be for a SAR across its performance space?%22 This report analytically relates IMU specifications to parametric requirements for SAR. - 4 - Acknowledgements Th e preparation of this report is the result of a n unfunded research and development activity . Although this report is an independent effort, it draws heavily from limited - release documentation generated under a CRADA with General Atomics - Aeronautical System, Inc. (GA - ASI), and under the Joint DoD/DOE Munitions Program Memorandum of Understanding. Sandia National Laboratories is a multi - program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of En ergy's National Nuclear Security Administration under contract AC04-94AL85000.

  17. Selecting Operations for Assembler Encoding

    Directory of Open Access Journals (Sweden)

    Tomasz Praczyk

    2010-04-01

    Full Text Available Assembler Encoding is a neuro-evolutionary method in which a neural network is represented in the form of a simple program called Assembler Encoding Program. The task of the program is to create the so-called Network Definition Matrix which maintains all the information necessary to construct the network. To generate Assembler Encoding Programs and the subsequent neural networks evolutionary techniques are used.
    The performance of Assembler Encoding strongly depends on operations used in Assembler Encoding Programs. To select the most effective operations, experiments in the optimization and the predator-prey problem were carried out. In the experiments, Assembler Encoding Programs equipped with different types of operations were tested. The results of the tests are presented at the end of the paper.

  18. Dynamic Aperture Measurements at the Advanced Light Source

    International Nuclear Information System (INIS)

    Decking, W.; Robin, D.

    1999-01-01

    A large dynamic aperture for a storage ring is of importance for long lifetimes and a high injection efficiency. Measurements of the dynamic aperture of the third generation synchrotron light source Advanced Light Source (ALS) using beam excitation with kicker magnets are presented. The experiments were done for various accelerator conditions, allowing us to investigate the influence of different working points, chromaticities, insertion devices, etc.. The results are compared both with tracking calculations and a simple model for the dynamic aperture yielding good agreements. This gives us confidence in the predictability of the nonlinear accelerator model. This is especially important for future ALS upgrades as well as new storage ring designs

  19. Electromagnetic Formation Flight (EMFF) for Sparse Aperture Arrays

    Science.gov (United States)

    Kwon, Daniel W.; Miller, David W.; Sedwick, Raymond J.

    2004-01-01

    Traditional methods of actuating spacecraft in sparse aperture arrays use propellant as a reaction mass. For formation flying systems, propellant becomes a critical consumable which can be quickly exhausted while maintaining relative orientation. Additional problems posed by propellant include optical contamination, plume impingement, thermal emission, and vibration excitation. For these missions where control of relative degrees of freedom is important, we consider using a system of electromagnets, in concert with reaction wheels, to replace the consumables. Electromagnetic Formation Flight sparse apertures, powered by solar energy, are designed differently from traditional propulsion systems, which are based on V. This paper investigates the design of sparse apertures both inside and outside the Earth's gravity field.

  20. MD1405: Demonstration of forced dynamic aperture measurements at injection

    CERN Document Server

    Carlier, Felix Simon; Persson, Tobias Hakan Bjorn; Tomas Garcia, Rogelio; CERN. Geneva. ATS Department

    2017-01-01

    Accurate measurements of dynamic aperture become more important for the LHC as it advances into increasingly nonlinear regimes of operations, as well as for the High Luminosity LHC where machine nonlinearities will have a significantly larger impact. Direct dynamic aperture measurements at top energy in the LHC are challenging, and conventional single kick methods are not viable. Dynamic aperture measurements under forced oscillation of AC dipoles have been proposed as s possible alternative observable. A first demonstration of forced DA measurements at injections energy is presented.

  1. Complementary bowtie aperture for localizing and enhancing optical magnetic field

    Science.gov (United States)

    Zhou, Nan; Kinzel, Edward C.; Xu, Xianfan

    2011-08-01

    Nanoscale bowtie antenna and bowtie aperture antenna have been shown to generate strongly enhanced and localized electric fields below the diffraction limit in the optical frequency range. According to Babinet's principle, their complements will be efficient for concentrating and enhancing magnetic fields. In this Letter, we discuss the enhancement of magnetic field intensity of nanoscale complementary bowtie aperture as well as complementary bowtie aperture antenna, or diabolo nanoantenna. We show that the complementary bowtie antenna resonates at a smaller wavelength and thus is more suitable for applications near visible wavelengths. The near-field magnetic intensity can be further enhanced by the addition of groove structures that scatter surface plasmon.

  2. High-contrast imaging with an arbitrary aperture: Active compensation of aperture discontinuities

    International Nuclear Information System (INIS)

    Pueyo, Laurent; Norman, Colin

    2013-01-01

    We present a new method to achieve high-contrast images using segmented and/or on-axis telescopes. Our approach relies on using two sequential deformable mirrors (DMs) to compensate for the large amplitude excursions in the telescope aperture due to secondary support structures and/or segment gaps. In this configuration the parameter landscape of DM surfaces that yield high-contrast point-spread functions is not linear, and nonlinear methods are needed to find the true minimum in the optimization topology. We solve the highly nonlinear Monge-Ampere equation that is the fundamental equation describing the physics of phase-induced amplitude modulation. We determine the optimum configuration for our two sequential DM system and show that high-throughput and high-contrast solutions can be achieved using realistic surface deformations that are accessible using existing technologies. We name this process Active Compensation of Aperture Discontinuities (ACAD). We show that for geometries similar to the James Webb Space Telescope, ACAD can attain at least 10 –7 in contrast and an order of magnitude higher for both the future extremely large telescopes and on-axis architectures reminiscent of the Hubble Space Telescope. We show that the converging nonlinear mappings resulting from our DM shapes actually damp near-field diffraction artifacts in the vicinity of the discontinuities. Thus, ACAD actually lowers the chromatic ringing due to diffraction by segment gaps and struts while not amplifying the diffraction at the aperture edges beyond the Fresnel regime. This outer Fresnel ringing can be mitigated by properly designing the optical system. Consequently, ACAD is a true broadband solution to the problem of high-contrast imaging with segmented and/or on-axis apertures. We finally show that once the nonlinear solution is found, fine tuning with linear methods used in wavefront control can be applied to further contrast by another order of magnitude. Generally speaking, the

  3. Coherent Performance Analysis of the HJ-1-C Synthetic Aperture Radar

    Directory of Open Access Journals (Sweden)

    Li Hai-ying

    2014-06-01

    Full Text Available Synthetic Aperture Radar (SAR is a coherent imaging radar. Hence, coherence is critical in SAR imaging. In a coherent system, several sources can degrade performance. Based on the HJ-1-C SAR system implementation and sensor characteristics, this study evaluates the effect of frequency stability and pulse-to-pulse timing jitter on the SAR coherent performance. A stable crystal oscillator with short-term stability of 10×1.0−10 / 5 ms is used to generate the reference frequency by using a direct multiplier and divider. Azimuth ISLR degradation owing to the crystal oscillator phase noise is negligible. The standard deviation of the pulse-to-pulse timing jitter of HJ-1-C SAR is lower than 2ns (rms and the azimuth random phase error in the synthetic aperture time slightly degrades the side lobe of the azimuth impulse response. The mathematical expressions and simulation results are presented and suggest that the coherent performance of the HJ-1-C SAR system meets the requirements of synthetic aperture radar imaging.

  4. Blood velocity estimation using spatio-temporal encoding based on frequency division approach

    DEFF Research Database (Denmark)

    Gran, Fredrik; Nikolov, Svetoslav; Jensen, Jørgen Arendt

    2005-01-01

    In this paper a feasibility study of using a spatial encoding technique based on frequency division for blood flow estimation is presented. The spatial encoding is carried out by dividing the available bandwidth of the transducer into a number of narrow frequency bands with approximately disjoint...... spectral support. By assigning one band to one virtual source, all virtual sources can be excited simultaneously. The received echoes are beamformed using Synthetic Transmit Aperture beamforming. The velocity of the moving blood is estimated using a cross- correlation estimator. The simulation tool Field...

  5. The LASS [Larger Aperture Superconducting Solenoid] spectrometer

    International Nuclear Information System (INIS)

    Aston, D.; Awaji, N.; Barnett, B.

    1986-04-01

    LASS is the acronym for the Large Aperture Superconducting Solenoid spectrometer which is located in an rf-separated hadron beam at the Stanford Linear Accelerator Center. This spectrometer was constructed in order to perform high statistics studies of multiparticle final states produced in hadron reactions. Such reactions are frequently characterized by events having complicated topologies and/or relatively high particle multiplicity. Their detailed study requires a spectrometer which can provide good resolution in momentum and position over almost the entire solid angle subtended by the production point. In addition, good final state particle identification must be available so that separation of the many kinematically-overlapping final states can be achieved. Precise analyses of the individual reaction channels require high statistics, so that the spectrometer must be capable of high data-taking rates in order that such samples can be acquired in a reasonable running time. Finally, the spectrometer must be complemented by a sophisticated off-line analysis package which efficiently finds tracks, recognizes and fits event topologies and correctly associates the available particle identification information. This, together with complicated programs which perform specific analysis tasks such as partial wave analysis, requires a great deal of software effort allied to a very large computing capacity. This paper describes the construction and performance of the LASS spectrometer, which is an attempt to realize the features just discussed. The configuration of the spectrometer corresponds to the data-taking on K + and K - interactions in hydrogen at 11 GeV/c which took place in 1981 and 1982. This constitutes a major upgrade of the configuration used to acquire lower statistics data on 11 GeV/c K - p interactions during 1977 and 1978, which is also described briefly

  6. RADARSAT-1 synthetic aperture radar analysis

    Energy Technology Data Exchange (ETDEWEB)

    Simecek-Beatty, D. [National Oceanic and Atmospheric Adminstration, National Ocean Service, Seattle, WA (United States). Office of Response and Restoration; Pichel, W.G. [National Oceanic and Atmospheric Administration, National Environmental Satellite, Data and Information Service, Camp Springs, MD (United States). Office of Research and Applications

    2006-07-01

    The M/V Selendang Ayu grounded off Unalaska Island in Alaska on December 8, 2004, and spilled over 1270 m{sup 3} of oil and an unknown quantity of soybeans. The freighter grounded nearshore in a high-wave energy zone along a remote and rugged coastline, a terrain which can cause difficulties for remote sensors in detecting oil slicks. In addition, guano, kelp beds, whale and fish sperm, and releases from fishing activities generated biogenic films on the sea surface that had a signature similar to that of petroleum films. RADARSAT-1 synthetic aperture radar (SAR) imagery was used as part of the response effort to assist in the pollution monitoring effort. This paper described the methodology and results of the RADARSAT-1 analysis. Detailed information on the spill response was reported daily, and provided an opportunity to compare field observations with RADARSAT-1 SAR imagery. Observers recorded observations onto electronic maps during 35 aerial surveillance flights. Fifty-seven incident reports describing the vessel status were also used for comparison. Using screening criteria for the favorable wind and wave conditions, 37 images were available for viewing the wreck, and 22 images were acceptable for oil slick viewing. Image analysis for the wreck suggested that the sensor has the resolution and capability to monitor a grounded freighter. Visual inspection of the images showed that SAR can capture changes in vessel status, such as the gradual sinking of the bow. However, SAR's oil slick detection capability was disappointing due to the significant number of biogenic films in the nearshore areas of Alaska. It was concluded that future work should concentrate on developing a ranking system to indicate analysis confidence that a particular image does in fact contain a petroleum pocket. 25 refs., 2 tabs., 10 figs.

  7. The LASS (Larger Aperture Superconducting Solenoid) spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Aston, D.; Awaji, N.; Barnett, B.; Bienz, T.; Bierce, R.; Bird, F.; Bird, L.; Blockus, D.; Carnegie, R.K.; Chien, C.Y.

    1986-04-01

    LASS is the acronym for the Large Aperture Superconducting Solenoid spectrometer which is located in an rf-separated hadron beam at the Stanford Linear Accelerator Center. This spectrometer was constructed in order to perform high statistics studies of multiparticle final states produced in hadron reactions. Such reactions are frequently characterized by events having complicated topologies and/or relatively high particle multiplicity. Their detailed study requires a spectrometer which can provide good resolution in momentum and position over almost the entire solid angle subtended by the production point. In addition, good final state particle identification must be available so that separation of the many kinematically-overlapping final states can be achieved. Precise analyses of the individual reaction channels require high statistics, so that the spectrometer must be capable of high data-taking rates in order that such samples can be acquired in a reasonable running time. Finally, the spectrometer must be complemented by a sophisticated off-line analysis package which efficiently finds tracks, recognizes and fits event topologies and correctly associates the available particle identification information. This, together with complicated programs which perform specific analysis tasks such as partial wave analysis, requires a great deal of software effort allied to a very large computing capacity. This paper describes the construction and performance of the LASS spectrometer, which is an attempt to realize the features just discussed. The configuration of the spectrometer corresponds to the data-taking on K and K interactions in hydrogen at 11 GeV/c which took place in 1981 and 1982. This constitutes a major upgrade of the configuration used to acquire lower statistics data on 11 GeV/c K p interactions during 1977 and 1978, which is also described briefly.

  8. Mathematical Problems in Synthetic Aperture Radar

    Science.gov (United States)

    Klein, Jens

    2010-10-01

    This thesis is concerned with problems related to Synthetic Aperture Radar (SAR). The thesis is structured as follows: The first chapter explains what SAR is, and the physical and mathematical background is illuminated. The following chapter points out a problem with a divergent integral in a common approach and proposes an improvement. Numerical comparisons are shown that indicate that the improvements allow for a superior image quality. Thereafter the problem of limited data is analyzed. In a realistic SAR-measurement the data gathered from the electromagnetic waves reflected from the surface can only be collected from a limited area. However the reconstruction formula requires data from an infinite distance. The chapter gives an analysis of the artifacts which can obscure the reconstructed images due to this problem. Additionally, some numerical examples are shown that point to the severity of the problem. In chapter 4 the fact that data is available only from a limited area is used to propose a new inversion formula. This inversion formula has the potential to make it easier to suppress artifacts due to limited data and, depending on the application, can be refined to a fast reconstruction formula. In the penultimate chapter a solution to the problem of left-right ambiguity is presented. This problem exists since the invention of SAR and is caused by the geometry of the measurements. This leads to the fact that only symmetric images can be obtained. With the solution from this chapter it is possible to reconstruct not only the even part of the reflectivity function, but also the odd part, thus making it possible to reconstruct asymmetric images. Numerical simulations are shown to demonstrate that this solution is not affected by stability problems as other approaches have been. The final chapter develops some continuative ideas that could be pursued in the future.

  9. Autofocus algorithm for synthetic aperture radar imaging with large curvilinear apertures

    Science.gov (United States)

    Bleszynski, E.; Bleszynski, M.; Jaroszewicz, T.

    2013-05-01

    An approach to autofocusing for large curved synthetic aperture radar (SAR) apertures is presented. Its essential feature is that phase corrections are being extracted not directly from SAR images, but rather from reconstructed SAR phase-history data representing windowed patches of the scene, of sizes sufficiently small to allow the linearization of the forward- and back-projection formulae. The algorithm processes data associated with each patch independently and in two steps. The first step employs a phase-gradient-type method in which phase correction compensating (possibly rapid) trajectory perturbations are estimated from the reconstructed phase history for the dominant scattering point on the patch. The second step uses phase-gradient-corrected data and extracts the absolute phase value, removing in this way phase ambiguities and reducing possible imperfections of the first stage, and providing the distances between the sensor and the scattering point with accuracy comparable to the wavelength. The features of the proposed autofocusing method are illustrated in its applications to intentionally corrupted small-scene 2006 Gotcha data. The examples include the extraction of absolute phases (ranges) for selected prominent point targets. They are then used to focus the scene and determine relative target-target distances.

  10. Highly uniform parallel microfabrication using a large numerical aperture system

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zi-Yu; Su, Ya-Hui, E-mail: ustcsyh@ahu.edu.cn, E-mail: dongwu@ustc.edu.cn [School of Electrical Engineering and Automation, Anhui University, Hefei 230601 (China); Zhang, Chen-Chu; Hu, Yan-Lei; Wang, Chao-Wei; Li, Jia-Wen; Chu, Jia-Ru; Wu, Dong, E-mail: ustcsyh@ahu.edu.cn, E-mail: dongwu@ustc.edu.cn [CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026 (China)

    2016-07-11

    In this letter, we report an improved algorithm to produce accurate phase patterns for generating highly uniform diffraction-limited multifocal arrays in a large numerical aperture objective system. It is shown that based on the original diffraction integral, the uniformity of the diffraction-limited focal arrays can be improved from ∼75% to >97%, owing to the critical consideration of the aperture function and apodization effect associated with a large numerical aperture objective. The experimental results, e.g., 3 × 3 arrays of square and triangle, seven microlens arrays with high uniformity, further verify the advantage of the improved algorithm. This algorithm enables the laser parallel processing technology to realize uniform microstructures and functional devices in the microfabrication system with a large numerical aperture objective.

  11. Thermal front propagation in variable aperture fracture–matrix system

    Indian Academy of Sciences (India)

    Abstract. A numerical study on the effect of complex fracture aperture geometry .... have revealed that natural porous media exhibit self-similarity up to a certain scale (Feder 1988) ...... Handbook of terrestrial heat-flow density determination.

  12. The development of deep learning in synthetic aperture radar imagery

    CSIR Research Space (South Africa)

    Schwegmann, Colin P

    2017-05-01

    Full Text Available sensing techniques but comes at the price of additional complexities. To adequately cope with these, researchers have begun to employ advanced machine learning techniques known as deep learning to Synthetic Aperture Radar data. Deep learning represents...

  13. Ambiguity Of Doppler Centroid In Synthetic-Aperture Radar

    Science.gov (United States)

    Chang, Chi-Yung; Curlander, John C.

    1991-01-01

    Paper discusses performances of two algorithms for resolution of ambiguity in estimated Doppler centroid frequency of echoes in synthetic-aperture radar. One based on range-cross-correlation technique, other based on multiple-pulse-repetition-frequency technique.

  14. Ultra-Lightweight Large Aperture Support Structures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Ultra-lightweight membranes may prove to be very attractive for large aperture systems, but their value will be fully realized only if they are mated with equally...

  15. Foamed Antenna Support for Very Large Apertures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed Phase I program will demonstrate the feasibility of the in-space production of large aperture antenna structures. The use of a novel open cell foam,...

  16. Stellwagen Bank National Marine Sanctuary - Synthetic Aperture Radar (SAR) Imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This geodatabase contains Synthetic Aperture Radar images (SAR), which consist of a fine resolution (12.5-50m), two-dimensional radar backscatter map of the...

  17. Scaling Laws for Dynamic Aperture due to Chromatic Sextupoles

    CERN Document Server

    Scandale, Walter

    1997-01-01

    Scaling laws for the dynamic aperture due to chromatic sextupoles are investigated. The problem is addressed in a simplified lattice model containing 4 N identical cells and one linear betatron phase shifter to break the overall cell-lattice symmetry. Two families of chromatic sextupoles are used to compensate the natural chromaticity. Analytical formulae for the dynamic apertur as a function of the number of cells and of the cell length are found and confirmed through computer tracking.

  18. Transmission of high-power electron beams through small apertures

    International Nuclear Information System (INIS)

    Tschalär, C.; Alarcon, R.; Balascuta, S.; Benson, S.V.; Bertozzi, W.; Boyce, J.R.; Cowan, R.; Douglas, D.; Evtushenko, P.; Fisher, P.; Ihloff, E.; Kalantarians, N.; Kelleher, A.; Legg, R.; Milner, R.G.; Neil, G.R.; Ou, L.; Schmookler, B.; Tennant, C.; Williams, G.P.

    2013-01-01

    Tests were performed to pass a 100 MeV, 430 kWatt c.w. electron beam from the energy-recovery linac at the Jefferson Laboratory's FEL facility through a set of small apertures in a 127 mm long aluminum block. Beam transmission losses of 3 p.p.m. through a 2 mm diameter aperture were maintained during a 7 h continuous run

  19. Phase Centers of Subapertures in a Tapered Aperture Array.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin W. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Bickel, Douglas L. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    Antenna apertures that are tapered for sidelobe control can also be parsed into subapertures for Direction of Arrival (DOA) measurements. However, the aperture tapering complicates phase center location for the subapertures, knowledge of which is critical for proper DOA calculation. In addition, tapering affects subaperture gains, making gain dependent on subaperture position. Techniques are presented to calculate subaperture phase center locations, and algorithms are given for equalizing subapertures’ gains. Sidelobe characteristics and mitigation are also discussed.

  20. Apodised aperture using rotation of plane of polarization

    International Nuclear Information System (INIS)

    Simmons, W.W.; Leppelmeier, G.W.; Johnson, B.C.

    1975-01-01

    An apodised aperture based on the rotation of plane of polarization producing desirable characteristics on a transmitted light beam such as beam profiling in high flux laser amplifier chains is described. The apodised aperture is made with a lossless element by using one or more polarizers and/or analyzers and magneto-optical Faraday means for selectively rotating the plane of polarized radiation over the cross section to effect the desired apodisation

  1. Preliminary In-vivo Results For Spatially Coded Synthetic Transmit Aperture Ultrasound Based On Frequency Division

    DEFF Research Database (Denmark)

    Gran, Fredrik; Hansen, Kristoffer Lindskov; Jensen, Jørgen Arendt

    2006-01-01

    This paper investigates the possibility of using spatial coding based on frequency division for in-vivo synthetic transmit aperture (STA) ultrasound imaging. When using spatial encoding for STA, it is possible to use several transmitters simultaneously and separate the signals at the receiver....... This increases the maximum transmit power compared to conventional STA, where only one transmitter can be active. The signal-to-noise-ratio can therefore he increased and better penetration can be obtained. For frequency division, the coding is achieved by designing a number of transmit waveforms with disjoint...... spectral support, spanning the passband of the ultrasound transducer. The signals can therefore he separated at the receiver using matched filtering. The method is tested using a commercial linear array transducer with a center frequency of 9 MHz and 68% fractional bandwidth. In this paper, the transmit...

  2. Transport of Particle Swarms Through Variable Aperture Fractures

    Science.gov (United States)

    Boomsma, E.; Pyrak-Nolte, L. J.

    2012-12-01

    Particle transport through fractured rock is a key concern with the increased use of micro- and nano-size particles in consumer products as well as from other activities in the sub- and near surface (e.g. mining, industrial waste, hydraulic fracturing, etc.). While particle transport is often studied as the transport of emulsions or dispersions, particles may also enter the subsurface from leaks or seepage that lead to particle swarms. Swarms are drop-like collections of millions of colloidal-sized particles that exhibit a number of unique characteristics when compared to dispersions and emulsions. Any contaminant or engineered particle that forms a swarm can be transported farther, faster, and more cohesively in fractures than would be expected from a traditional dispersion model. In this study, the effects of several variable aperture fractures on colloidal swarm cohesiveness and evolution were studied as a swarm fell under gravity and interacted with the fracture walls. Transparent acrylic was used to fabricate synthetic fracture samples with (1) a uniform aperture, (2) a converging region followed by a uniform region (funnel shaped), (3) a uniform region followed by a diverging region (inverted funnel), and (4) a cast of a an induced fracture from a carbonate rock. All of the samples consisted of two blocks that measured 100 x 100 x 50 mm. The minimum separation between these blocks determined the nominal aperture (0.5 mm to 20 mm). During experiments a fracture was fully submerged in water and swarms were released into it. The swarms consisted of a dilute suspension of 3 micron polystyrene fluorescent beads (1% by mass) with an initial volume of 5μL. The swarms were illuminated with a green (525 nm) LED array and imaged optically with a CCD camera. The variation in fracture aperture controlled swarm behavior. Diverging apertures caused a sudden loss of confinement that resulted in a rapid change in the swarm's shape as well as a sharp increase in its velocity

  3. Oil Slick Characterization Using Synthetic Aperture Radar

    Science.gov (United States)

    Jones, C. E.; Breivik, O.; Brekke, C.; Skrunes, S.; Holt, B.

    2015-12-01

    Oil spills are a hazard worldwide with potential of causing high impact disasters, and require an active oil spill response capability to protect personnel, the ecosystem, and the energy supply. As the amount of oil in traditionally accessible reserves decline, there will be increasing oil extraction from the Arctic and deep-water wells, both new sources with high risk and high cost for monitoring and response. Although radar has long been used for mapping the spatial extent of oil slicks, it is only since the Deepwater Horizon spill that synthetic aperture radar (SAR) has been shown capable of characterizing oil properties within a slick, and therefore useful for directing response to the recoverable thicker slicks or emulsions. Here we discuss a 2015 Norwegian oil-on-water spill experiment in which emulsions of known quantity and water-to-oil ratio along with a look-alike slick of plant oil were released in the North Sea and imaged with polarimetric SAR (PolSAR) by NASA's UAVSAR instrument for several hours following release. During the experiment, extensive in situ measurements were made from ship or aircraft with meteorological instruments, released drift buoys, and optical/IR imagers. The experiment was designed to provide validation data for development of a physical model relating polarization-dependent electromagnetic scattering to the dielectric properties of oil mixed with ocean water, which is the basis for oil characterization with SAR. Data were acquired with X-, C-, and L-band satellite-based SARs to enable multi-frequency comparison of characterization capabilities. In addition, the data are used to develop methods to differentiate mineral slicks from biogenic look-alikes, and to better understand slick weathering and dispersion. The results will provide a basis for modeling oil-in-ice spills, currently a high priority for nations involved in Arctic oil exploration. Here we discuss the Norwegian experiment, the validation data, and the results of

  4. Wind energy applications of synthetic aperture radar

    Energy Technology Data Exchange (ETDEWEB)

    Bruun Christiansen, M.

    2006-11-15

    Synthetic aperture radars (SAR), mounted on satellites or aircraft, have proven useful for ocean wind mapping. Wind speeds at the height 10 m may be retrieved from measurements of radar backscatter using empirical model functions. The resulting wind fields are valuable in offshore wind energy planning as a supplement to on site measurements, which are costly and sparse, and model wind fields, which are not fully validated. Two applications of SAR measurements in offshore wind energy planning are addressed here: the study of wind farm wake effects and the potential of using SAR winds in offshore wind resource assessment. Firstly, wind wakes behind two large offshore wind farms in Denmark Horns Rev and Nysted are identified. A region of reduced wind speed is found downstream of both wind farms from the SAR wind fields. The wake extent and magnitude depends on the wind speed, the atmospheric stability, and the fraction of turbines operating. Wind farm wake effects are detected up to 20 km downwind of the last turbine. This distance is longer than predicted by state-of-the art wake models. Wake losses are typically 10-20% near the wind farms. Secondly, the potential of using SAR wind maps in offshore wind resource assessment is investigated. The resource assessment is made through Weibull fitting to frequency observations of wind speed and requires at least 100 satellite observations per year for a given site of interest. Predictions of the energy density are very sensitive to the wind speed and the highest possible accuracy on SAR wind retrievals is therefore sought. A 1.1 m s{sup -1} deviation on the mean wind speed is found through comparison with mast measurements at Horns Rev. The accuracy on mean wind speeds and energy densities found from satellite measurements varies with different empirical model functions. Additional uncertainties are introduced by the infrequent satellite sampling at fixed times of the day. The accuracy on satellite based wind resource

  5. Encoded low swing for ultra low power interconnect

    NARCIS (Netherlands)

    Krishnan, R.; Pineda de Gyvez, J.

    2003-01-01

    We present a novel encoded-low swing technique for ultra low power interconnect. Using this technique and an efficient circuit implementation, we achieve an average of 45.7% improvement in the power-delay product over the schemes utilizing low swing techniques alone, for random bit streams. Also, we

  6. Adjustable liquid aperture to eliminate undesirable light in holographic projection.

    Science.gov (United States)

    Wang, Di; Liu, Chao; Li, Lei; Zhou, Xin; Wang, Qiong-Hua

    2016-02-08

    In this paper, we propose an adjustable liquid aperture to eliminate the undesirable light in a holographic projection. The aperture is based on hydrodynamic actuation. A chamber is formed with a cylindrical tube. A black droplet is filled in the sidewall of the cylinder tube and the outside space is the transparent oil which is immiscible with the black droplet. An ultrathin glass sheet is attached on the bottom substrate of the device and a black shading film is secured to the central area of the glass sheet. By changing the volume of the black droplet, the black droplet will move to the middle or sidewall due to hydrodynamic actuation, so the device can be used as an adjustable aperture. A divergent spherical wave and a solid lens are used to separate the focus planes of the reconstructed image and diffraction beams induced by the liquid crystal on silicon in the holographic projection. Then the aperture is used to eliminate the diffraction beams by adjusting the size of the liquid aperture and the holographic projection does not have undesirable light.

  7. Aperture referral in dioptric systems with stigmatic elements

    Directory of Open Access Journals (Sweden)

    W. F. Harris

    2012-12-01

    Full Text Available A previous paper develops the general theory of aperture referral in linear optics and shows how several ostensibly distinct concepts, including the blur patch on the retina, the effective corneal patch, the projective field and the field of view, are now unified as particular applications of the general theory.  The theory allows for astigmatism and heterocentricity.  Symplecticity and the generality of the approach, however, make it difficult to gain insight and mean that the material is not accessible to readers unfamiliar with matrices and linear algebra. The purpose of this paper is to examine whatis, perhaps, the most important special case, that in which astigmatism is ignored.  Symplecticity and, hence, the mathematics become greatly simplified. The mathematics reduces largely to elementary vector algebra and, in some places, simple scalar algebra and yet retains the mathematical form of the general approach.  As a result the paper allows insight into and provides a stepping stone to the general theory.  Under referral an aperture under-goes simple scalar magnification and transverse translation.  The paper pays particular attention to referral to transverse planes in the neighbourhood of a focal point where the magnification may be positive, zero or negative.  Circular apertures are treated as special cases of elliptical apertures and the meaning of referred apertures of negative radius is explained briefly. (S Afr Optom 2012 71(1 3-11

  8. Analysing and Comparing Encodability Criteria

    Directory of Open Access Journals (Sweden)

    Kirstin Peters

    2015-08-01

    Full Text Available Encodings or the proof of their absence are the main way to compare process calculi. To analyse the quality of encodings and to rule out trivial or meaningless encodings, they are augmented with quality criteria. There exists a bunch of different criteria and different variants of criteria in order to reason in different settings. This leads to incomparable results. Moreover it is not always clear whether the criteria used to obtain a result in a particular setting do indeed fit to this setting. We show how to formally reason about and compare encodability criteria by mapping them on requirements on a relation between source and target terms that is induced by the encoding function. In particular we analyse the common criteria full abstraction, operational correspondence, divergence reflection, success sensitiveness, and respect of barbs; e.g. we analyse the exact nature of the simulation relation (coupled simulation versus bisimulation that is induced by different variants of operational correspondence. This way we reduce the problem of analysing or comparing encodability criteria to the better understood problem of comparing relations on processes.

  9. Permeability and dispersivity of variable-aperture fracture systems

    International Nuclear Information System (INIS)

    Tsang, Y.W.; Tsang, C.F.

    1990-01-01

    A number of recent experiments have pointed out the need of including the effects of aperture variation within each fracture in predicting flow and transport properties of fractured media. This paper introduces a new approach in which medium properties, such as the permeability to flow and dispersivity in tracer transport, are correlated to only three statistical parameters describing the fracture aperture probability distribution and the aperture spatial correlation. We demonstrate how saturated permeability and relative permeabilities for flow, as well as dispersion for solute transport in fractures may be calculated. We are in the process of examining the applicability of these concepts to field problems. Results from the evaluation and analysis of the recent Stripa-3D field data are presented. 13 refs., 10 figs

  10. Variable aperture-based ptychographical iterative engine method.

    Science.gov (United States)

    Sun, Aihui; Kong, Yan; Meng, Xin; He, Xiaoliang; Du, Ruijun; Jiang, Zhilong; Liu, Fei; Xue, Liang; Wang, Shouyu; Liu, Cheng

    2018-02-01

    A variable aperture-based ptychographical iterative engine (vaPIE) is demonstrated both numerically and experimentally to reconstruct the sample phase and amplitude rapidly. By adjusting the size of a tiny aperture under the illumination of a parallel light beam to change the illumination on the sample step by step and recording the corresponding diffraction patterns sequentially, both the sample phase and amplitude can be faithfully reconstructed with a modified ptychographical iterative engine (PIE) algorithm. Since many fewer diffraction patterns are required than in common PIE and the shape, the size, and the position of the aperture need not to be known exactly, this proposed vaPIE method remarkably reduces the data acquisition time and makes PIE less dependent on the mechanical accuracy of the translation stage; therefore, the proposed technique can be potentially applied for various scientific researches. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  11. Variable aperture-based ptychographical iterative engine method

    Science.gov (United States)

    Sun, Aihui; Kong, Yan; Meng, Xin; He, Xiaoliang; Du, Ruijun; Jiang, Zhilong; Liu, Fei; Xue, Liang; Wang, Shouyu; Liu, Cheng

    2018-02-01

    A variable aperture-based ptychographical iterative engine (vaPIE) is demonstrated both numerically and experimentally to reconstruct the sample phase and amplitude rapidly. By adjusting the size of a tiny aperture under the illumination of a parallel light beam to change the illumination on the sample step by step and recording the corresponding diffraction patterns sequentially, both the sample phase and amplitude can be faithfully reconstructed with a modified ptychographical iterative engine (PIE) algorithm. Since many fewer diffraction patterns are required than in common PIE and the shape, the size, and the position of the aperture need not to be known exactly, this proposed vaPIE method remarkably reduces the data acquisition time and makes PIE less dependent on the mechanical accuracy of the translation stage; therefore, the proposed technique can be potentially applied for various scientific researches.

  12. Synthetic aperture integration (SAI) algorithm for SAR imaging

    Science.gov (United States)

    Chambers, David H; Mast, Jeffrey E; Paglieroni, David W; Beer, N. Reginald

    2013-07-09

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.

  13. Central obscuration effects on optical synthetic aperture imaging

    Science.gov (United States)

    Wang, Xue-wen; Luo, Xiao; Zheng, Li-gong; Zhang, Xue-jun

    2014-02-01

    Due to the central obscuration problem exists in most optical synthetic aperture systems, it is necessary to analyze its effects on their image performance. Based on the incoherent diffraction limited imaging theory, a Golay-3 type synthetic aperture system was used to study the central obscuration effects on the point spread function (PSF) and the modulation transfer function (MTF). It was found that the central obscuration does not affect the width of the central peak of the PSF and the cutoff spatial frequency of the MTF, but attenuate the first sidelobe of the PSF and the midfrequency of the MTF. The imaging simulation of a Golay-3 type synthetic aperture system with central obscuration proved this conclusion. At last, a Wiener Filter restoration algorithm was used to restore the image of this system, the images were obviously better.

  14. The roles of frequency and aperture in linac accelerator design

    International Nuclear Information System (INIS)

    Farkas, Z.D.

    1989-01-01

    Expressions for accelerating structure parameters, including those that determine the peak and average power inputs required to attain a given gradient, are given as functions of aperture to wavelength ratio for a 2π/3 mode disk-loaded guide. The value of the wavelength to aperture ratio varies over a large range, corresponding to group velocities that vary from nearly zero to nearly the speed of light. The parameters exhibit proper asymptotic behavior in both limits. These parameters are benchmark values to which parameters for other modes and for other structure shapes can be compared. For example, it will be shown that the increased peak surface field to accelerating field ratio due to increased aperture to wavelength ratio can be reduced by shaping the iris profile. Structure shapes are varied not only to show possible improvement of structure parameters, but also to improve ease of mechanical fabrication and temperature control. 4 refs., 7 figs., 1 tab

  15. Dynamic aperture and transverse proton diffusion in HERA

    International Nuclear Information System (INIS)

    Zimmermann, F.

    1994-04-01

    The dynamic aperture caused by persistent-current nonlinear field errors is an important concern in the design of superconducting hadron storage rings. The HERA proton ring is the second superconducting accelerator in operation. In this lecture note, its measured dynamic aperture is compared with that inferred from comprehensive trackig studies. To understand the difference between prediction and measurement, a semi-analytical method is developed for evaluating transverse diffusion rates due to various processes, such as modulational diffusion or sweeping diffusion this analysis makes use of parameters for high-order resonances in the transverse phase space, which are obtained by normal-form algorithms using differential-algebra software. This semi-analytical results are consistent wit the measurements, and suggest that the actual dynamic aperture is caused by an interplay of tune modulation and nonlinear magnetic fields

  16. X-ray lenses with large aperture; Roentgenlinsen mit grosser Apertur

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Markus

    2010-07-01

    Up to now, most X-ray imaging setups are based on absorption contrast imaging. There is a demand for focused X-rays in many X-ray analysis applications, either to increase the resolution of an imaging system, or, to reduce the time effort of an experiment through higher photon flux. For photon energies higher than 15 keV refractive X-ray optics are more efficient in comparison to non-refractive X-ray optics. The aim of this work was to develop X-ray lenses with large apertures and high transparency. By increasing the number of refracting surfaces while removing unnecessary lens material such lenses have been developed. Utilizing this approach the overall beam deflection angle is large with respect to the lens material it propagates through and so the transparency of the lens is increased. Within this work, X-ray lenses consisting of several thousands of prisms with an edge length in the range of micrometers have been developed and fabricated by deep X-ray lithography. Deep X-ray lithography enables high precision microstrucures with smooth sidewalls and large aspect ratios. The aperture of high-transparency X-ray lenses made this way is greater than 1 mm. They are suitable for photon energies in the range of 8 keV to 24 keV and offer a focal width of smaller than 10 {mu}m at a transparency of around 40%. Furthermore, rolled X-ray lenses have been developed, that are made out of a microstructured polyimide film, which is cut according to the requirements regarding focal length and photon energy. The microstructured film is fabricated by molding, using an anisotropically etched silicon wafer as molding tool. Its mean roughness is in the range of nanometers. The film features prismatic structures, its surface topology is similar to an asparagus field. The measured diameter of the point focus was 18 {mu}m to 31 {mu}m, the calculated opticla efficiency was 37%. Future work will concentrate on increasing the aspect ratio of Prism Lenses and on increasing the rolling

  17. Parameter Optimization of Multi-Element Synthetic Aperture Imaging Systems

    Directory of Open Access Journals (Sweden)

    Vera Behar

    2007-03-01

    Full Text Available In conventional ultrasound imaging systems with phased arrays, the further improvement of lateral resolution requires enlarging of the number of array elements that in turn increases both, the complexity and the cost, of imaging systems. Multi-element synthetic aperture focusing (MSAF systems are a very good alternative to conventional systems with phased arrays. The benefit of the synthetic aperture is in reduction of the system complexity, cost and acquisition time. In a MSAF system considered in the paper, a group of elements transmit and receive signals simultaneously, and the transmit beam is defocused to emulate a single element response. The echo received at each element of a receive sub-aperture is recorded in the computer memory. The process of transmission/reception is repeated for all positions of a transmit sub-aperture. All the data recordings associated with each corresponding pair "transmit-receive sub-aperture" are then focused synthetically producing a low-resolution image. The final high-resolution image is formed by summing of the all low-resolution images associated with transmit/receive sub-apertures. A problem of parameter optimization of a MSAF system is considered in this paper. The quality of imaging (lateral resolution and contrast is expressed in terms of the beam characteristics - beam width and side lobe level. The comparison between the MSAF system described in the paper and an equivalent conventional phased array system shows that the MSAF system acquires images of equivalent quality much faster using only a small part of the power per image.

  18. Three dimensional fracture aperture and porosity distribution using computerized tomography

    Science.gov (United States)

    Wenning, Q.; Madonna, C.; Joss, L.; Pini, R.

    2017-12-01

    A wide range of geologic processes and geo-engineered applications are governed by coupled hydromechanical properties in the subsurface. In geothermal energy reservoirs, quantifying the rate of heat transfer is directly linked with the transport properties of fractures, underscoring the importance of fracture aperture characterization for achieving optimal heat production. In this context, coupled core-flooding experiments with non-invasive imaging techniques (e.g., X-Ray Computed Tomography - X-Ray CT) provide a powerful method to make observations of these properties under representative geologic conditions. This study focuses on quantifying fracture aperture distribution in a fractured westerly granite core by using a recently developed calibration-free method [Huo et al., 2016]. Porosity is also estimated with the X-ray saturation technique using helium and krypton gases as saturating fluids, chosen for their high transmissibility and high CT contrast [e.g., Vega et al., 2014]. The westerly granite sample (diameter: 5 cm, length: 10 cm) with a single through-going rough-walled fracture was mounted in a high-pressure aluminum core-holder and placed inside a medical CT scanner for imaging. During scanning the pore fluid pressure was undrained and constant, and the confining pressure was regulated to have the desired effective pressure (0.5, 5, 7 and 10 MPa) under loading and unloading conditions. 3D reconstructions of the sample have been prepared in terms of fracture aperture and porosity at a maximum resolution of (0.24×0.24×1) mm3. Fracture aperture maps obtained independently using helium and krypton for the whole core depict a similar heterogeneous aperture field, which is also dependent on confining pressure. Estimates of the average hydraulic aperture from CT scans are in quantitative agreement with results from fluid flow experiments. However, the latter lack of the level of observational detail achieved through imaging, which further evidence the

  19. Analytical estimation of the dynamic apertures of circular accelerators

    International Nuclear Information System (INIS)

    Gao, J.

    2000-02-01

    By considering delta function sextupole, octupole, and deca-pole perturbations and using difference action-angle variable equations, we find some useful analytical formulae for the estimation of the dynamic apertures of circular accelerators due to single sextupole, single octupole, single deca-pole (single 2 m pole in general). Their combined effects are derived based on the Chirikov criterion of the onset of stochastic motions. Comparisons with numerical simulations are made, and the agreement is quite satisfactory. These formulae have been applied to determine the beam-beam limited dynamic aperture in a circular collider. (author)

  20. Metrology measurements for large-aperture VPH gratings

    Science.gov (United States)

    Zheng, Jessica R.; Gers, Luke; Heijmans, Jeroen

    2013-09-01

    The High Efficiency and Resolution Multi Element Spectrograph (HERMES) for the Australian Astronomical Observatory (AAO) uses four large aperture, high angle of incidence volume phase holographic gratings (VPHG) for high resolution `Galactic archaeology' spectroscopy. The large clear aperture, the high diffraction efficiency, the line frequency homogeneity, and mosaic alignment made manufacturing and testing challenging. We developed new metrology systems at the AAO to verify the performance of these VPH gratings. The measured diffraction efficiencies and line frequency of the VPH gratings received so far meet the vendor's provided data. The wavefront quality for the Blue VPH grating is good but the Green and Red VPH gratings need to be post polishing.

  1. Synthetic Aperture Sequential Beamformation applied to medical imaging

    DEFF Research Database (Denmark)

    Hemmsen, Martin Christian; Hansen, Jens Munk; Jensen, Jørgen Arendt

    2012-01-01

    Synthetic Aperture Sequential Beamforming (SASB) is applied to medical ultrasound imaging using a multi element convex array transducer. The main motivation for SASB is to apply synthetic aperture techniques without the need for storing RF-data for a number of elements and hereby devise a system...... with a reduced system complexity. Using a 192 element, 3.5 MHz, λ-pitch transducer, it is demonstrated using tissue-phantom and wire-phantom measurements, how the speckle size and the detail resolution is improved compared to conventional imaging....

  2. Multidimensionally encoded magnetic resonance imaging.

    Science.gov (United States)

    Lin, Fa-Hsuan

    2013-07-01

    Magnetic resonance imaging (MRI) typically achieves spatial encoding by measuring the projection of a q-dimensional object over q-dimensional spatial bases created by linear spatial encoding magnetic fields (SEMs). Recently, imaging strategies using nonlinear SEMs have demonstrated potential advantages for reconstructing images with higher spatiotemporal resolution and reducing peripheral nerve stimulation. In practice, nonlinear SEMs and linear SEMs can be used jointly to further improve the image reconstruction performance. Here, we propose the multidimensionally encoded (MDE) MRI to map a q-dimensional object onto a p-dimensional encoding space where p > q. MDE MRI is a theoretical framework linking imaging strategies using linear and nonlinear SEMs. Using a system of eight surface SEM coils with an eight-channel radiofrequency coil array, we demonstrate the five-dimensional MDE MRI for a two-dimensional object as a further generalization of PatLoc imaging and O-space imaging. We also present a method of optimizing spatial bases in MDE MRI. Results show that MDE MRI with a higher dimensional encoding space can reconstruct images more efficiently and with a smaller reconstruction error when the k-space sampling distribution and the number of samples are controlled. Copyright © 2012 Wiley Periodicals, Inc.

  3. Comparison of PSF maxima and minima of multiple annuli coded aperture (MACA) and complementary multiple annuli coded aperture (CMACA) systems

    Science.gov (United States)

    Ratnam, Challa; Lakshmana Rao, Vadlamudi; Lachaa Goud, Sivagouni

    2006-10-01

    In the present paper, and a series of papers to follow, the Fourier analytical properties of multiple annuli coded aperture (MACA) and complementary multiple annuli coded aperture (CMACA) systems are investigated. First, the transmission function for MACA and CMACA is derived using Fourier methods and, based on the Fresnel-Kirchoff diffraction theory, the formulae for the point spread function are formulated. The PSF maxima and minima are calculated for both the MACA and CMACA systems. The dependence of these properties on the number of zones is studied and reported in this paper.

  4. Comparison of PSF maxima and minima of multiple annuli coded aperture (MACA) and complementary multiple annuli coded aperture (CMACA) systems

    International Nuclear Information System (INIS)

    Ratnam, Challa; Rao, Vadlamudi Lakshmana; Goud, Sivagouni Lachaa

    2006-01-01

    In the present paper, and a series of papers to follow, the Fourier analytical properties of multiple annuli coded aperture (MACA) and complementary multiple annuli coded aperture (CMACA) systems are investigated. First, the transmission function for MACA and CMACA is derived using Fourier methods and, based on the Fresnel-Kirchoff diffraction theory, the formulae for the point spread function are formulated. The PSF maxima and minima are calculated for both the MACA and CMACA systems. The dependence of these properties on the number of zones is studied and reported in this paper

  5. Terahertz near-field imaging using subwavelength plasmonic apertures and a quantum cascade laser source.

    Science.gov (United States)

    Baragwanath, Adam J; Freeman, Joshua R; Gallant, Andrew J; Zeitler, J Axel; Beere, Harvey E; Ritchie, David A; Chamberlain, J Martyn

    2011-07-01

    The first demonstration, to our knowledge, of near-field imaging using subwavelength plasmonic apertures with a terahertz quantum cascade laser source is presented. "Bull's-eye" apertures, featuring subwavelength circular apertures flanked by periodic annular corrugations were created using a novel fabrication method. A fivefold increase in intensity was observed for plasmonic apertures over plain apertures of the same diameter. Detailed studies of the transmitted beam profiles were undertaken for apertures with both planarized and corrugated exit facets, with the former producing spatially uniform intensity profiles and subwavelength spatial resolution. Finally, a proof-of-concept imaging experiment is presented, where an inhomogeneous pharmaceutical drug coating is investigated.

  6. Virally encoded 7TM receptors

    DEFF Research Database (Denmark)

    Rosenkilde, M M; Waldhoer, M; Lüttichau, H R

    2001-01-01

    expression of this single gene in certain lymphocyte cell lineages leads to the development of lesions which are remarkably similar to Kaposi's sarcoma, a human herpesvirus 8 associated disease. Thus, this and other virally encoded 7TM receptors appear to be attractive future drug targets.......A number of herpes- and poxviruses encode 7TM G-protein coupled receptors most of which clearly are derived from their host chemokine system as well as induce high expression of certain 7TM receptors in the infected cells. The receptors appear to be exploited by the virus for either immune evasion...

  7. Large aperture components for solid state laser fusion systems

    International Nuclear Information System (INIS)

    Simmons, W.W.

    1978-01-01

    Solid state lasers for fusion experiments must reliably deliver maximum power to small (approximately .5 mm) targets from stand-off focal distances of 1 m or more. This requirement places stringent limits upon the optical quality, resistance to damage, and overall performance of the several major components--amplifiers, Faraday isolators, spatial filters--in each amplifier train. Component development centers about achieving (1) highest functional material figure of merit, (2) best optical quality, and (3) maximum resistance to optical damage. Specific examples of the performance of large aperture components will be presented within the context of the Argus and Shiva laser systems, which are presently operational at Lawrence Livermore Laboratory. Shiva comprises twenty amplifiers, each of 20 cm output clear aperture. Terawatt beams from these amplifiers are focused through two opposed, nested clusters of f/6 lenses onto such targets. Design requirements upon the larger aperture Nova laser components, up to 35 cm in clear aperture, will also be discussed; these pose a significant challenge to the optical industry

  8. Towards Inverse Synthetic Aperture Radar (ISAR) for small sea vessels

    CSIR Research Space (South Africa)

    Abdul Gaffar, MY

    2006-12-01

    Full Text Available Aperture Radar (ISAR) for Small Sea Vessels M.Y. Abdul Gaffar Council for Scientific and Industrial Research University of Cape Town Slide 2 © CSIR 2006 www.csir.co.za What is ISAR? • Technique that produces cross range...

  9. Millimeter-wave Imaging Systems with Aperture Synthesis Techniques

    DEFF Research Database (Denmark)

    Löffler, Torsten; Krozer, Viktor; Zhurbenko, Vitaliy

    2010-01-01

    The paper describes development of a millimetre-wave imaging system using multi-element aperture filling techniques [1]. Such imaging systems are increasingly demonstrated for security applications and in particular standoff imaging of persons and bonding flaw and defect detection [2]. The major ...

  10. In Vivo Evaluation of Synthetic Aperture Sequential Beamforming

    DEFF Research Database (Denmark)

    Hemmsen, Martin Christian; Hansen, Peter Møller; Lange, Theis

    2012-01-01

    Ultrasound in vivo imaging using synthetic aperture sequential beamformation (SASB) is compared with conventional imaging in a double blinded study using side-by-side comparisons. The objective is to evaluate if the image quality in terms of penetration depth, spatial resolution, contrast...

  11. In-vivo evaluation of convex array synthetic aperture imaging

    DEFF Research Database (Denmark)

    Pedersen, Morten Høgholm; Gammelmark, Kim Løkke; Jensen, Jørgen Arendt

    2007-01-01

    This paper presents an in-vivo study of synthetic transmit aperture (STA) imaging in comparison to conventional imaging, evaluating whether STA imaging is feasible in-vivo, and whether the image quality obtained is comparable to traditional scanned imaging in terms of penetration depth, spatial...

  12. Velocity estimation using synthetic aperture imaging [blood flow

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Jensen, Jørgen Arendt

    2001-01-01

    Presented an approach for synthetic aperture blood flow ultrasound imaging. Estimates with a low bias and standard deviation can be obtained with as few as eight emissions. The performance of the new estimator is verified using both simulations and measurements. The results demonstrate that a fully...

  13. Aperture Valve for the Mars Organic Molecule Analyzer (MOMA)

    Science.gov (United States)

    Hakun, Claef F.; Engler, Charles D.; Barber, Willie E.; Canham, John S.

    2014-01-01

    NASA's participation in the multi-nation ExoMars 2018 Rover mission includes a critical astrobiology Mass Spectrometer Instrument on the Rover called the Mars Organic Molecule Analyzer (MOMA). The Aperture Valve is a critical electromechanical valve used by the Mass Spectrometer to facilitate the transfer of ions from Martian soil to the Mass Spectrometer for analysis. The MOMA Aperture Valve development program will be discussed in terms of the Initial valve design and subsequent improvements that resulted from prototype testing. The Initial Aperture Valve concept seemed promising, based on calculations and perceived merits. However, performance results of this design were disappointing, due to delamination of TiN and DLC coatings applied to the Titanium base metals, causing debris from the coatings to seize the valve. While peer reviews and design trade studies are important forums to vet a concept design, results from testing should not be underestimated.Despite the lack of development progress to meet requirements, valuable information from weakness discovered in the Initial Valve design was used to develop a second, more robust Aperture valve. Based on a check-ball design, the ETU flight valve design resulted in significantly less surface area to create the seal. Moreover, PVD coatings were eliminated in favor of hardened, nonmagnetic corrosion resistant alloys. Test results were impressive, with the valve achieving five orders of magnitude better sealing leak rate over end of life requirements. Cycle life was equally impressive, achieving 280,000 cycles without failure.

  14. Synthetic tracked aperture ultrasound imaging: design, simulation, and experimental evaluation.

    Science.gov (United States)

    Zhang, Haichong K; Cheng, Alexis; Bottenus, Nick; Guo, Xiaoyu; Trahey, Gregg E; Boctor, Emad M

    2016-04-01

    Ultrasonography is a widely used imaging modality to visualize anatomical structures due to its low cost and ease of use; however, it is challenging to acquire acceptable image quality in deep tissue. Synthetic aperture (SA) is a technique used to increase image resolution by synthesizing information from multiple subapertures, but the resolution improvement is limited by the physical size of the array transducer. With a large F-number, it is difficult to achieve high resolution in deep regions without extending the effective aperture size. We propose a method to extend the available aperture size for SA-called synthetic tracked aperture ultrasound (STRATUS) imaging-by sweeping an ultrasound transducer while tracking its orientation and location. Tracking information of the ultrasound probe is used to synthesize the signals received at different positions. Considering the practical implementation, we estimated the effect of tracking and ultrasound calibration error to the quality of the final beamformed image through simulation. In addition, to experimentally validate this approach, a 6 degree-of-freedom robot arm was used as a mechanical tracker to hold an ultrasound transducer and to apply in-plane lateral translational motion. Results indicate that STRATUS imaging with robotic tracking has the potential to improve ultrasound image quality.

  15. Simulation of an aperture-based antihydrogen gravity experiment

    Directory of Open Access Journals (Sweden)

    C. A. Ordonez

    2012-03-01

    Full Text Available A Monte Carlo simulation is presented of an experiment that could potentially determine whether antihydrogen accelerates vertically up or down as a result of earth's gravity. The experiment would rely on methods developed by existing antihydrogen research collaborations and would employ a Penning trap for the production of antihydrogen within a uniform magnetic field. The axis of symmetry of the cylindrical trap wall would be oriented horizontally, and an axisymmetric aperture (with an inner radius that is smaller than the cylindrical trap wall radius would be present a short distance away from the antihydrogen production region. Antihydrogen annihilations that occur along the cylindrical trap wall would be detected by the experiment. The distribution of annihilations along the wall would vary near the aperture, because some antihydrogen that would otherwise annihilate at the wall would instead annihilate on the aperture. That is, a shadow region forms behind the aperture, and the distribution of annihilations near the boundary of the shadow region is not azimuthally symmetric when the effect of gravity is significant. The Monte Carlo simulation is used together with analytical modeling to determine conditions under which the annihilation distribution would indicate the direction of the acceleration of antihydrogen due to gravity.

  16. Development of procedures for programmable proximity aperture lithography

    Energy Technology Data Exchange (ETDEWEB)

    Whitlow, H.J., E-mail: harry.whitlow@he-arc.ch [Institut des Microtechnologies Appliquées Arc, Haute Ecole Arc Ingénierie, Eplatures-Grise 17, CH-2300 La Chaux-de-Fonds (Switzerland); Department of Physics, University of Jyväskylä, P.O. Box 35 (YFL), FI-40014 Jyväskylä (Finland); Gorelick, S. [VTT Technical Research Centre of Finland, P.O. Box 1000, Tietotie 3, Espoo, FI-02044 VTT (Finland); Puttaraksa, N. [Department of Physics, University of Jyväskylä, P.O. Box 35 (YFL), FI-40014 Jyväskylä (Finland); Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Napari, M.; Hokkanen, M.J.; Norarat, R. [Department of Physics, University of Jyväskylä, P.O. Box 35 (YFL), FI-40014 Jyväskylä (Finland)

    2013-07-01

    Programmable proximity aperture lithography (PPAL) with MeV ions has been used in Jyväskylä and Chiang Mai universities for a number of years. Here we describe a number of innovations and procedures that have been incorporated into the LabView-based software. The basic operation involves the coordination of the beam blanker and five motor-actuated translators with high accuracy, close to the minimum step size with proper anti-collision algorithms. By using special approaches, such writing calibration patterns, linearisation of position and careful backlash correction the absolute accuracy of the aperture size and position, can be improved beyond the standard afforded by the repeatability of the translator end-point switches. Another area of consideration has been the fluence control procedures. These involve control of the uniformity of the beam where different approaches for fluence measurement such as simultaneous aperture current and the ion current passing through the aperture using a Faraday cup are used. Microfluidic patterns may contain many elements that make-up mixing sections, reaction chambers, separation columns and fluid reservoirs. To facilitate conception and planning we have implemented a .svg file interpreter, that allows the use of scalable vector graphics files produced by standard drawing software for generation of patterns made up of rectangular elements.

  17. Optimization of Dynamic Aperture of PEP-X Baseline Design

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Min-Huey; /SLAC; Cai, Yunhai; /SLAC; Nosochkov, Yuri; /SLAC

    2010-08-23

    SLAC is developing a long-range plan to transfer the evolving scientific programs at SSRL from the SPEAR3 light source to a much higher performing photon source. Storage ring design is one of the possibilities that would be housed in the 2.2-km PEP-II tunnel. The design goal of PEPX storage ring is to approach an optimal light source design with horizontal emittance less than 100 pm and vertical emittance of 8 pm to reach the diffraction limit of 1-{angstrom} x-ray. The low emittance design requires a lattice with strong focusing leading to high natural chromaticity and therefore to strong sextupoles. The latter caused reduction of dynamic aperture. The dynamic aperture requirement for horizontal injection at injection point is about 10 mm. In order to achieve the desired dynamic aperture the transverse non-linearity of PEP-X is studied. The program LEGO is used to simulate the particle motion. The technique of frequency map is used to analyze the nonlinear behavior. The effect of the non-linearity is tried to minimize at the given constrains of limited space. The details and results of dynamic aperture optimization are discussed in this paper.

  18. Wind retrieval from synthetic aperture radar - an overview

    DEFF Research Database (Denmark)

    Dagestad, Knut-Frode; Horstmann, Jochen; Mouche, Alexis

    2013-01-01

    This paper represents a consensus on the state-of-the-art in wind retrieval using synthetic aperture radar (SAR), after the SEASAR 2012 workshop “Advances in SAR Oceanography” hosted by the European Space Agency (ESA) and the Norwegian Space Centre in Tromsø, Norway 18–22 June 2012. We document...

  19. Optimization of Dynamic Aperture of PEP-X Baseline Design

    International Nuclear Information System (INIS)

    Wang, Min-Huey

    2010-01-01

    SLAC is developing a long-range plan to transfer the evolving scientific programs at SSRL from the SPEAR3 light source to a much higher performing photon source. Storage ring design is one of the possibilities that would be housed in the 2.2-km PEP-II tunnel. The design goal of PEPX storage ring is to approach an optimal light source design with horizontal emittance less than 100 pm and vertical emittance of 8 pm to reach the diffraction limit of 1-(angstrom) x-ray. The low emittance design requires a lattice with strong focusing leading to high natural chromaticity and therefore to strong sextupoles. The latter caused reduction of dynamic aperture. The dynamic aperture requirement for horizontal injection at injection point is about 10 mm. In order to achieve the desired dynamic aperture the transverse non-linearity of PEP-X is studied. The program LEGO is used to simulate the particle motion. The technique of frequency map is used to analyze the nonlinear behavior. The effect of the non-linearity is tried to minimize at the given constrains of limited space. The details and results of dynamic aperture optimization are discussed in this paper.

  20. Does the transition to chaos determine the dynamic aperture

    International Nuclear Information System (INIS)

    Jowett, J.M.

    1986-06-01

    We review the important notion of the dynamic aperture of a storage ring with emphasis on its relation to general ideas of dynamical instability, notably the transition to chaos. Practical approaches to the problem are compared. We suggest a somewhat novel quantitative guide to the old problem of choosing machine tunes based on a heuristic blend of KAM theory and resonance selection rules

  1. Maximum nondiffracting propagation distance of aperture-truncated Airy beams

    Science.gov (United States)

    Chu, Xingchun; Zhao, Shanghong; Fang, Yingwu

    2018-05-01

    Airy beams have called attention of many researchers due to their non-diffracting, self-healing and transverse accelerating properties. A key issue in research of Airy beams and its applications is how to evaluate their nondiffracting propagation distance. In this paper, the critical transverse extent of physically realizable Airy beams is analyzed under the local spatial frequency methodology. The maximum nondiffracting propagation distance of aperture-truncated Airy beams is formulated and analyzed based on their local spatial frequency. The validity of the formula is verified by comparing the maximum nondiffracting propagation distance of an aperture-truncated ideal Airy beam, aperture-truncated exponentially decaying Airy beam and exponentially decaying Airy beam. Results show that the formula can be used to evaluate accurately the maximum nondiffracting propagation distance of an aperture-truncated ideal Airy beam. Therefore, it can guide us to select appropriate parameters to generate Airy beams with long nondiffracting propagation distance that have potential application in the fields of laser weapons or optical communications.

  2. Fourier beamformation of multistatic synthetic aperture ultrasound imaging

    DEFF Research Database (Denmark)

    Moghimirad, Elahe; Villagómez Hoyos, Carlos Armando; Mahloojifar, Ali

    2015-01-01

    A new Fourier beamformation (FB) algorithm is presented for multistatic synthetic aperture ultrasound imaging. It can reduce the number of computations by a factor of 20 compared to conventional Delay-and-Sum (DAS) beamformers. The concept is based on the wavenumber algorithm from radar and sonar...

  3. Synthetic aperture ultrasound Fourier beamformation using virtual sources

    DEFF Research Database (Denmark)

    Moghimirad, Elahe; Villagómez Hoyos, Carlos Armando; Mahloojifar, Ali

    2016-01-01

    An efficient Fourier beamformation algorithm is presented for multistatic synthetic aperture ultrasound imaging using virtual sources (FBV). The concept is based on the frequency domain wavenumber algorithm from radar and sonar and is extended to a multi-element transmit/receive configuration using...

  4. Synthetic aperture flow imaging using dual stage beamforming

    DEFF Research Database (Denmark)

    Li, Ye; Jensen, Jørgen Arendt

    2013-01-01

    A method for synthetic aperture flow imaging using dual stage beamforming has been developed. The main motivation is to increase the frame rate and still maintain a beamforming quality sufficient for flow estimation that is possible to implement in a commercial scanner. This method can generate...

  5. Theoretical and numerical treatment of diffraction through a circular aperture

    NARCIS (Netherlands)

    Bouwkamp, C.J.

    1970-01-01

    The three-dimensional diffraction of a scalar plane wave through a circular aperture in an infinite plane screen is analyzed and numerically computed for the case of normal incidence. A modified Babinet's principle is formulated, and this is used to find the diffraction of sound by an acoustically

  6. Directional velocity estimation using a spatio-temporal encoding technique based on frequency division for synthetic transmit aperture ultrasound

    DEFF Research Database (Denmark)

    Gran, Fredrik; Jensen, Jørgen Arendt

    2006-01-01

    be increased. However, to focus the data properly, the signals originating from the different transmitters must be separated. To do so, the pass band of the transducer is divided into a number of subbands with disjoint spectral support. At every transmission, each transmitter is assigned one of the subbands...

  7. A circular aperture array for ultrasonic tomography and quantitative NDE

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, S A

    1998-08-01

    The main topics of this thesis are ultrasonic tomography and ultrasonic determination of elastic stiffness constants. Both issues are based on a synthetic array with transducer elements distributed uniformly along a circular aperture, i.e., a circular aperture array. The issues are treated both theoretically and experimentally by broadband pulse techniques. Ultrasonic tomography, UCT, from a circular aperture is a relatively new imaging technique in Non-destructive Evaluation (NDE) to acquire cross sectional images in bulk materials. A filtered back-projection algorithm is used to reconstruct images in four different experiments and results of attenuation, velocity and reflection tomograms in Plexiglas of AlSi-alloy cylinders are presented. Two kinds of ultrasonic tomography are introduced: bistatic and monostatic imaging. Both techniques are verified experimentally by Plexiglas cylinders. Different reconstruction artifacts are discussed and theoretical resolution constraints are discussed for various configurations of the circular aperture array. The monostatic technique is used in volumetric imaging. In the experimental verification artificial and real discontinuities in a cylindrical AlSi-alloy are compared with similar discontinuities in a Plexiglas specimen. Finally, some limitations to UCT are discussed. The circular aperture array is used to determine five independent elastic stiffness constants of a unidirectional glass/PET (Poly Ethylene Teraphtalate) laminate. Energy flux propagation and attenuation of ultrasonic waves are considered and velocity surfaces are calculated for different planes of interest. Relations between elastic stiffness constants and engineering constants (i.e., Young`s moduli, shear moduli and Poisson`s ratios) are discussed for an orthotropic composite. Six micromechanical theories are reviewed, and expressions predicting the elastic engineering constants are evaluated. The micromechanical predicted elastic stiffness constants for the

  8. MEGARA Optics: Sub-aperture Stitching Interferometry for Large Surfaces

    Science.gov (United States)

    Aguirre-Aguirre, Daniel; Carrasco, Esperanza; Izazaga-Pérez, Rafael; Páez, Gonzalo; Granados-Agustín, Fermín; Percino-Zacarías, Elizabeth; Gil de Paz, Armando; Gallego, Jesús; Iglesias-Páramo, Jorge; Villalobos-Mendoza, Brenda

    2018-04-01

    In this work, we present a detailed analysis of sub-aperture interferogram stitching software to test circular and elliptical clear apertures with diameters and long axes up to 272 and 180 mm, respectively, from the Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía (MEGARA). MEGARA is a new spectrograph for the Gran Telescopio Canarias (GTC). It offers a resolution between 6000 and 20000 via the use of volume phase holographic gratings. It has an integral field unit and a set of robots for multi-object spectroscopy at the telescope focal plane. The output end of the fibers forms the spectrograph pseudo-slit. The fixed geometry of the collimator and camera configuration requires prisms in addition to the flat windows of the volume phase holographic gratings. There are 73 optical elements of large aperture and high precision manufactured in Mexico at the Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE) and the Centro de Investigaciones en Óptica (CIO). The principle of stitching interferometry is to divide the surface being tested into overlapping small sections, which allows an easier analysis (Kim & Wyant 1981). This capability is ideal for non-contact tests for unique and large optics as required by astronomical instruments. We show that the results obtained with our sub-aperture stitching algorithm were consistent with other methods that analyze the entire aperture. We used this method to analyze the 24 MEGARA prisms that could not be tested otherwise. The instrument has been successfully commissioned at GTC in all the spectral configurations. The fulfillment of the irregularity specifications was one of the necessary conditions to comply with the spectral requirements.

  9. Application of Ruze Equation for Inflatable Aperture Antennas

    Science.gov (United States)

    Welch, Bryan W.

    2008-01-01

    Inflatable aperture reflector antennas are an emerging technology that NASA is investigating for potential uses in science and exploration missions. As inflatable aperture antennas have not been proven fully qualified for space missions, they must be characterized properly so that the behavior of the antennas can be known in advance. To properly characterize the inflatable aperture antenna, testing must be performed in a relevant environment, such as a vacuum chamber. Since the capability of having a radiofrequency (RF) test facility inside a vacuum chamber did not exist at NASA Glenn Research Center, a different methodology had to be utilized. The proposal to test an inflatable aperture antenna in a vacuum chamber entailed performing a photogrammetry study of the antenna surface by using laser ranging measurements. A root-mean-square (rms) error term was derived from the photogrammetry study to calculate the antenna surface loss as described by the Ruze equation. However, initial testing showed that problems existed in using the Ruze equation to calculate the loss due to errors on the antenna surface. This study utilized RF measurements obtained in a near-field antenna range and photogrammetry data taken from a laser range scanner to compare the expected performance of the test antenna (via the Ruze equation) with the actual RF patterns and directivity measurements. Results showed that the Ruze equation overstated the degradation in the directivity calculation. Therefore, when the photogrammetry study is performed on the test antennas in the vacuum chamber, a more complex equation must be used in light of the fact that the Ruze theory overstates the loss in directivity for inflatable aperture reflector antennas.

  10. Direct-aperture optimization applied to selection of beam orientations in intensity-modulated radiation therapy

    International Nuclear Information System (INIS)

    Bedford, J L; Webb, S

    2007-01-01

    Direct-aperture optimization (DAO) was applied to iterative beam-orientation selection in intensity-modulated radiation therapy (IMRT), so as to ensure a realistic segmental treatment plan at each iteration. Nested optimization engines dealt separately with gantry angles, couch angles, collimator angles, segment shapes, segment weights and wedge angles. Each optimization engine performed a random search with successively narrowing step sizes. For optimization of segment shapes, the filtered backprojection (FBP) method was first used to determine desired fluence, the fluence map was segmented, and then constrained direct-aperture optimization was used thereafter. Segment shapes were fully optimized when a beam angle was perturbed, and minimally re-optimized otherwise. The algorithm was compared with a previously reported method using FBP alone at each orientation iteration. An example case consisting of a cylindrical phantom with a hemi-annular planning target volume (PTV) showed that for three-field plans, the method performed better than when using FBP alone, but for five or more fields, neither method provided much benefit over equally spaced beams. For a prostate case, improved bladder sparing was achieved through the use of the new algorithm. A plan for partial scalp treatment showed slightly improved PTV coverage and lower irradiated volume of brain with the new method compared to FBP alone. It is concluded that, although the method is computationally intensive and not suitable for searching large unconstrained regions of beam space, it can be used effectively in conjunction with prior class solutions to provide individually optimized IMRT treatment plans

  11. Primary drainage in geological fractures: Effects of aperture variability and wettability

    Science.gov (United States)

    Yang, Z.; Méheust, Y.; Neuweiler, I.

    2017-12-01

    Understanding and controlling fluid-fluid displacement in porous and fractured media is a key asset for many practical applications, such as the geological storage of CO2, hydrocarbon recovery, groundwater remediation, etc. We numerically investigate fluid-fluid displacement in rough-walled fractures with a focus on the combined effect of wettability, the viscous contrast between the two fluids, and fracture surface topography on drainage patterns and interface growth. A model has been developed to simulate the dynamic displacement of one fluid by another immiscible one in a rough geological fracture; the model takes both capillary and viscous forces into account. Capillary pressures at the fluid-fluid interface are calculated based on the Young-Laplace equation using the two principal curvatures (aperture-induced curvature and in-plane curvature) [1], while viscous forces are calculated by continuously solving the fluid pressure field in the fracture. The aperture field of a fracture is represented by a spatially correlated random field, with a power spectral density of the fracture wall topographies scaling as a power law, and a cutoff wave-length above which the Fourier modes of the two walls are identical [2]. We consider flow scenarios with both rectangular and radial configurations. Results show that the model is able to produce displacement patterns of compact displacement, capillary fingering, and viscous fingering, as well as the transitions between them. Both reducing the aperture variability and increasing the contact angle (from drainage to weak imbibition) can stabilize the displacement due to the influence of the in-plane curvature, an effect analogous to that of the cooperative pore filling in porous media. These results suggest that for geometries typical of geological fractures we can extend the phase diagram in the parameter space of capillary number and mobility ratio by another dimension to take into account the combined effect of wettability

  12. A Coded Aperture Compressive Imaging Array and Its Visual Detection and Tracking Algorithms for Surveillance Systems

    Directory of Open Access Journals (Sweden)

    Hanxiao Wu

    2012-10-01

    Full Text Available In this paper, we propose an application of a compressive imaging system to the problem of wide-area video surveillance systems. A parallel coded aperture compressive imaging system is proposed to reduce the needed high resolution coded mask requirements and facilitate the storage of the projection matrix. Random Gaussian, Toeplitz and binary phase coded masks are utilized to obtain the compressive sensing images. The corresponding motion targets detection and tracking algorithms directly using the compressive sampling images are developed. A mixture of Gaussian distribution is applied in the compressive image space to model the background image and for foreground detection. For each motion target in the compressive sampling domain, a compressive feature dictionary spanned by target templates and noises templates is sparsely represented. An l1 optimization algorithm is used to solve the sparse coefficient of templates. Experimental results demonstrate that low dimensional compressed imaging representation is sufficient to determine spatial motion targets. Compared with the random Gaussian and Toeplitz phase mask, motion detection algorithms using a random binary phase mask can yield better detection results. However using random Gaussian and Toeplitz phase mask can achieve high resolution reconstructed image. Our tracking algorithm can achieve a real time speed that is up to 10 times faster than that of the l1 tracker without any optimization.

  13. Dynamic aperture and performance of the SSC low energy booster lattice

    International Nuclear Information System (INIS)

    Pilat, F.; Bourianoff, G.; Cole, B.; Talman, R.; York, R.

    1991-05-01

    A systematic study of lattice designs proposed for the SSC Low Energy Booster has been performed, where the dynamic behavior of high transition gamma lattices is compared with that of a simpler FODO- like machine. After optimization of the transverse tunes, the dynamic aperture is determined by tracking the chromaticity corrected, ''ideal'' lattices, where the only sources on nonlinearity are the chromaticity sextupoles. The robustness of the lattices against misalignment, systematic and random errors is then evaluated and error compensation schemes worked out. The computational speed of the TEAPOT code has been greatly enhanced by porting and running its tracking core on the Intel iPSC/860 parallel computer. 7 refs., 5 figs., 3 tabs

  14. Effects of errors on the dynamic aperture of the Advanced Photon Source storage ring

    International Nuclear Information System (INIS)

    Bizek, H.; Crosbie, E.; Lessner, E.; Teng, L.; Wirsbinski, J.

    1991-01-01

    The individual tolerance limits for alignment errors and magnet fabrication errors in the 7-GeV Advanced Photon Source storage ring are determined by computer-simulated tracking. Limits are established for dipole strength and roll errors, quadrupole strength and alignment errors, sextupole strength and alignment errors, as well as higher order multipole strengths in dipole and quadrupole magnets. The effects of girder misalignments on the dynamic aperture are also studied. Computer simulations are obtained with the tracking program RACETRACK, with errors introduced from a user-defined Gaussian distribution, truncated at ±5 standard deviation units. For each error, the average and rms spread of the stable amplitudes are determined for ten distinct machines, defined as ten different seeds to the random distribution, and for five distinct initial directions of the tracking particle. 4 refs., 4 figs., 1 tab

  15. Coded aperture detector for high precision gamma-ray burst source locations

    International Nuclear Information System (INIS)

    Helmken, H.; Gorenstein, P.

    1977-01-01

    Coded aperture collimators in conjunction with position-sensitive detectors are very useful in the study of transient phenomenon because they combine broad field of view, high sensitivity, and an ability for precise source locations. Since the preceeding conference, a series of computer simulations of various detector designs have been carried out with the aid of a CDC 6400. Particular emphasis was placed on the development of a unit consisting of a one-dimensional random or periodic collimator in conjunction with a two-dimensional position-sensitive Xenon proportional counter. A configuration involving four of these units has been incorporated into the preliminary design study of the Transient Explorer (ATREX) satellite and are applicable to any SAS or HEAO type satellite mission. Results of this study, including detector response, fields of view, and source location precision, will be presented

  16. Extraordinarily Adaptive Properties of the Genetically Encoded Amino Acids

    Science.gov (United States)

    Ilardo, Melissa; Meringer, Markus; Freeland, Stephen; Rasulev, Bakhtiyor; Cleaves II, H. James

    2015-01-01

    Using novel advances in computational chemistry, we demonstrate that the set of 20 genetically encoded amino acids, used nearly universally to construct all coded terrestrial proteins, has been highly influenced by natural selection. We defined an adaptive set of amino acids as one whose members thoroughly cover relevant physico-chemical properties, or “chemistry space.” Using this metric, we compared the encoded amino acid alphabet to random sets of amino acids. These random sets were drawn from a computationally generated compound library containing 1913 alternative amino acids that lie within the molecular weight range of the encoded amino acids. Sets that cover chemistry space better than the genetically encoded alphabet are extremely rare and energetically costly. Further analysis of more adaptive sets reveals common features and anomalies, and we explore their implications for synthetic biology. We present these computations as evidence that the set of 20 amino acids found within the standard genetic code is the result of considerable natural selection. The amino acids used for constructing coded proteins may represent a largely global optimum, such that any aqueous biochemistry would use a very similar set. PMID:25802223

  17. Extraordinarily adaptive properties of the genetically encoded amino acids.

    Science.gov (United States)

    Ilardo, Melissa; Meringer, Markus; Freeland, Stephen; Rasulev, Bakhtiyor; Cleaves, H James

    2015-03-24

    Using novel advances in computational chemistry, we demonstrate that the set of 20 genetically encoded amino acids, used nearly universally to construct all coded terrestrial proteins, has been highly influenced by natural selection. We defined an adaptive set of amino acids as one whose members thoroughly cover relevant physico-chemical properties, or "chemistry space." Using this metric, we compared the encoded amino acid alphabet to random sets of amino acids. These random sets were drawn from a computationally generated compound library containing 1913 alternative amino acids that lie within the molecular weight range of the encoded amino acids. Sets that cover chemistry space better than the genetically encoded alphabet are extremely rare and energetically costly. Further analysis of more adaptive sets reveals common features and anomalies, and we explore their implications for synthetic biology. We present these computations as evidence that the set of 20 amino acids found within the standard genetic code is the result of considerable natural selection. The amino acids used for constructing coded proteins may represent a largely global optimum, such that any aqueous biochemistry would use a very similar set.

  18. Encoding information into precipitation structures

    International Nuclear Information System (INIS)

    Martens, Kirsten; Bena, Ioana; Droz, Michel; Rácz, Zoltan

    2008-01-01

    Material design at submicron scales would be profoundly affected if the formation of precipitation patterns could be easily controlled. It would allow the direct building of bulk structures, in contrast to traditional techniques which consist of removing material in order to create patterns. Here, we discuss an extension of our recent proposal of using electrical currents to control precipitation bands which emerge in the wake of reaction fronts in A + + B – → C reaction–diffusion processes. Our main result, based on simulating the reaction–diffusion–precipitation equations, is that the dynamics of the charged agents can be guided by an appropriately designed time-dependent electric current so that, in addition to the control of the band spacing, the width of the precipitation bands can also be tuned. This makes straightforward the encoding of information into precipitation patterns and, as an amusing example, we demonstrate the feasibility by showing how to encode a musical rhythm

  19. A future large-aperture UVOIR space observatory: reference designs

    Science.gov (United States)

    Rioux, Norman; Thronson, Harley; Feinberg, Lee; Stahl, H. Philip; Redding, Dave; Jones, Andrew; Sturm, James; Collins, Christine; Liu, Alice

    2015-09-01

    Our joint NASA GSFC/JPL/MSFC/STScI study team has used community-provided science goals to derive mission needs, requirements, and candidate mission architectures for a future large-aperture, non-cryogenic UVOIR space observatory. We describe the feasibility assessment of system thermal and dynamic stability for supporting coronagraphy. The observatory is in a Sun-Earth L2 orbit providing a stable thermal environment and excellent field of regard. Reference designs include a 36-segment 9.2 m aperture telescope that stows within a five meter diameter launch vehicle fairing. Performance needs developed under the study are traceable to a variety of reference designs including options for a monolithic primary mirror.

  20. Results from the Coded Aperture Neutron Imaging System (CANIS)

    International Nuclear Information System (INIS)

    Brubaker, Erik; Steele, John T.; Brennan, James S.; Hilton, Nathan R.; Marleau, Peter

    2010-01-01

    Because of their penetrating power, energetic neutrons and gamma rays (∼1 MeV) offer the best possibility of detecting highly shielded or distant special nuclear material (SNM). Of these, fast neutrons offer the greatest advantage due to their very low and well understood natural background. We are investigating a new approach to fast-neutron imaging- a coded aperture neutron imaging system (CANIS). Coded aperture neutron imaging should offer a highly efficient solution for improved detection speed, range, and sensitivity. We have demonstrated fast neutron and gamma ray imaging with several different configurations of coded masks patterns and detectors including an 'active' mask that is composed of neutron detectors. Here we describe our prototype detector and present some initial results from laboratory tests and demonstrations.

  1. Results from the coded aperture neutron imaging system

    International Nuclear Information System (INIS)

    Brubaker, Erik; Steele, John T.; Brennan, James S.; Marleau, Peter

    2010-01-01

    Because of their penetrating power, energetic neutrons and gamma rays (∼1 MeV) offer the best possibility of detecting highly shielded or distant special nuclear material (SNM). Of these, fast neutrons offer the greatest advantage due to their very low and well understood natural background. We are investigating a new approach to fast-neutron imaging - a coded aperture neutron imaging system (CANIS). Coded aperture neutron imaging should offer a highly efficient solution for improved detection speed, range, and sensitivity. We have demonstrated fast neutron and gamma ray imaging with several different configurations of coded masks patterns and detectors including an 'active' mask that is composed of neutron detectors. Here we describe our prototype detector and present some initial results from laboratory tests and demonstrations.

  2. Adaptive aperture for Geiger mode avalanche photodiode flash ladar systems

    Science.gov (United States)

    Wang, Liang; Han, Shaokun; Xia, Wenze; Lei, Jieyu

    2018-02-01

    Although the Geiger-mode avalanche photodiode (GM-APD) flash ladar system offers the advantages of high sensitivity and simple construction, its detection performance is influenced not only by the incoming signal-to-noise ratio but also by the absolute number of noise photons. In this paper, we deduce a hyperbolic approximation to estimate the noise-photon number from the false-firing percentage in a GM-APD flash ladar system under dark conditions. By using this hyperbolic approximation function, we introduce a method to adapt the aperture to reduce the number of incoming background-noise photons. Finally, the simulation results show that the adaptive-aperture method decreases the false probability in all cases, increases the detection probability provided that the signal exceeds the noise, and decreases the average ranging error per frame.

  3. Frequency division transmission imaging and synthetic aperture reconstruction

    DEFF Research Database (Denmark)

    Gran, Fredrik; Jensen, Jørgen Arendt

    2006-01-01

    In synthetic transmit aperture imaging only a few transducer elements are used in every transmission, which limits the signal-to-noise ratio (SNR). The penetration depth can be increased by using all transmitters in every transmission. In this paper, a method for exciting all transmitters in every...... corresponding to the excitation waveforms, the different transmitters can be decoded at the receiver. The matched filter of a specific waveform will allow information only from this waveform to pass through, thereby separating it from the other waveforms. This means that all transmitters can be used in every...... transmission, and the information from the different transmitters can be separated instantaneously. Compared to traditional synthetic transmit aperture (STA) imaging, in which the different transmitters are excited sequentially, more energy is transmitted in every transmission, and a better signal...

  4. Scintillator Based Coded-Aperture Imaging for Neutron Detection

    International Nuclear Information System (INIS)

    Hayes, Sean-C.; Gamage, Kelum-A-A.

    2013-06-01

    In this paper we are going to assess the variations of neutron images using a series of Monte Carlo simulations. We are going to study neutron images of the same neutron source with different source locations, using a scintillator based coded-aperture system. The Monte Carlo simulations have been conducted making use of the EJ-426 neutron scintillator detector. This type of detector has a low sensitivity to gamma rays and is therefore of particular use in a system with a source that emits a mixed radiation field. From the use of different source locations, several neutron images have been produced, compared both qualitatively and quantitatively for each case. This allows conclusions to be drawn on how suited the scintillator based coded-aperture neutron imaging system is to detecting various neutron source locations. This type of neutron imaging system can be easily used to identify and locate nuclear materials precisely. (authors)

  5. Dynamic Aperture Optimization for Low Emittance Light Sources

    CERN Document Server

    Kramer, Stephen L

    2005-01-01

    State of the art low emittance light source lattices, require small bend angle dipole magnets and strong quadrupoles. This in turn creates large chromaticity and small value of dispersion in the lattice. To counter the high chromaticity strong sextupoles are required which limit the dynamic aperture. Traditional methods for expanding the dynamic aperture use harmonic sextupoles to counter the tune shift with amplitude. This has been successful up to now, but is non-deterministic and limited as the sextupole strength increases, driving higher order nonlinearities. We have taken a different approach that makes use of the tune flexibility of a TBA lattice to minimize the lowest order nonlinearities, freeing the harmonic sextupoles to counter the higher order nonlinearities. This procedure is being used to improve the nonlinear dynamics of the NSLS-II lattice.

  6. LHC β*-reach MD: aperture measurements at small β*

    CERN Document Server

    Fuster Martinez, Nuria; Redaelli, Stefano; CERN. Geneva. ATS Department

    2017-01-01

    During this MD, performed on the 25th of July 2017, we measured the LHC aperture at top energy for β*=30 cm using the Transverse Damper (ADT) blow-up method. These measurements are part of the standard commissioning of an optics and have been performed in order to provide early on inputs for a possible change of β* later in 2017, as envisaged previously to fully profit from the additional margins introduced by the rematched phase advance between dump kickers and the TCTs (Target Collimator Tertiary). In addition to the aperture measurements, two other commissioning important tests were performed: loss maps for the nominal TCTs settings and an asynchronous dump validation with tighter TCT gaps.

  7. Evaluation of coded aperture radiation detectors using a Bayesian approach

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Kyle, E-mail: mille856@andrew.cmu.edu [Auton Lab, The Robotics Institute, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States); Huggins, Peter [Auton Lab, The Robotics Institute, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States); Labov, Simon; Nelson, Karl [Lawrence Livermore National Laboratory, Livermore, CA (United States); Dubrawski, Artur [Auton Lab, The Robotics Institute, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States)

    2016-12-11

    We investigate tradeoffs arising from the use of coded aperture gamma-ray spectrometry to detect and localize sources of harmful radiation in the presence of noisy background. Using an example application scenario of area monitoring and search, we empirically evaluate weakly supervised spectral, spatial, and hybrid spatio-spectral algorithms for scoring individual observations, and two alternative methods of fusing evidence obtained from multiple observations. Results of our experiments confirm the intuition that directional information provided by spectrometers masked with coded aperture enables gains in source localization accuracy, but at the expense of reduced probability of detection. Losses in detection performance can however be to a substantial extent reclaimed by using our new spatial and spatio-spectral scoring methods which rely on realistic assumptions regarding masking and its impact on measured photon distributions.

  8. A variable suppressed aperture and Faraday cup system

    International Nuclear Information System (INIS)

    Price, H.G.; Charlesworth, T.R.

    1979-02-01

    The injection system of the NSF accelerator within the high voltage enclosure is illustrated. The optics calls for a waist close to the entrance of the 500 kV accelerator tube. This waist will be the initial diagnostic point on the injection path for determining ion source performance and transmission through the later system. This will be made by determining the beam current after a preliminary mass analysis by the 30 0 magnet. To provide this diagnostic and to enable a waist to be formed at this point, a variable aperture and Faraday cup system is required. The Faraday cup will measure the beam transmitted by the aperture. Maximisation of this beam by adjustment of the preceding optical elements will ensure the waist in the beam at that point. (author)

  9. The new INRIM rotating encoder angle comparator (REAC)

    International Nuclear Information System (INIS)

    Pisani, Marco; Astrua, Milena

    2017-01-01

    A novel angle comparator has been built and tested at INRIM. The device is based on a double air bearing structure embedding a continuously rotating encoder, which is read by two heads: one fixed to the base of the comparator and a second fixed to the upper moving part of the comparator. The phase measurement between the two heads’ signals is proportional to the relative angle suspended between them (and, therefore, the angle between the base and the upper, movable part of the comparator). The advantage of this solution is to reduce the encoder graduation errors and to cancel the cyclic errors due to the interpolation of the encoder lines. By using only two pairs of reading heads, we have achieved an intrinsic accuracy of  ±0.04″ (rectangular distribution) that can be reduced through self-calibration. The residual cyclic errors have shown to be less than 0.01″ peak-to-peak. The random fluctuations are less than 0.01″ rms on a 100 s time interval. A further advantage of the rotating encoder is the intrinsic knowledge of the absolute position without the need of a zeroing procedure. Construction details of the rotating encoder angle comparator (REAC), characterization tests, and examples of practical use are given. (paper)

  10. Feedback-tuned, noise resilient gates for encoded spin qubits

    Science.gov (United States)

    Bluhm, Hendrik

    Spin 1/2 particles form native two level systems and thus lend themselves as a natural qubit implementation. However, encoding a single qubit in several spins entails benefits, such as reducing the resources necessary for qubit control and protection from certain decoherence channels. While several varieties of such encoded spin qubits have been implemented, accurate control remains challenging, and leakage out of the subspace of valid qubit states is a potential issue. Optimal performance typically requires large pulse amplitudes for fast control, which is prone to systematic errors and prohibits standard control approaches based on Rabi flopping. Furthermore, the exchange interaction typically used to electrically manipulate encoded spin qubits is inherently sensitive to charge noise. I will discuss all-electrical, high-fidelity single qubit operations for a spin qubit encoded in two electrons in a GaAs double quantum dot. Starting from a set of numerically optimized control pulses, we employ an iterative tuning procedure based on measured error syndromes to remove systematic errors.Randomized benchmarking yields an average gate fidelity exceeding 98 % and a leakage rate into invalid states of 0.2 %. These gates exhibit a certain degree of resilience to both slow charge and nuclear spin fluctuations due to dynamical correction analogous to a spin echo. Furthermore, the numerical optimization minimizes the impact of fast charge noise. Both types of noise make relevant contributions to gate errors. The general approach is also adaptable to other qubit encodings and exchange based two-qubit gates.

  11. Single-event transient imaging with an ultra-high-speed temporally compressive multi-aperture CMOS image sensor.

    Science.gov (United States)

    Mochizuki, Futa; Kagawa, Keiichiro; Okihara, Shin-ichiro; Seo, Min-Woong; Zhang, Bo; Takasawa, Taishi; Yasutomi, Keita; Kawahito, Shoji

    2016-02-22

    In the work described in this paper, an image reproduction scheme with an ultra-high-speed temporally compressive multi-aperture CMOS image sensor was demonstrated. The sensor captures an object by compressing a sequence of images with focal-plane temporally random-coded shutters, followed by reconstruction of time-resolved images. Because signals are modulated pixel-by-pixel during capturing, the maximum frame rate is defined only by the charge transfer speed and can thus be higher than those of conventional ultra-high-speed cameras. The frame rate and optical efficiency of the multi-aperture scheme are discussed. To demonstrate the proposed imaging method, a 5×3 multi-aperture image sensor was fabricated. The average rising and falling times of the shutters were 1.53 ns and 1.69 ns, respectively. The maximum skew among the shutters was 3 ns. The sensor observed plasma emission by compressing it to 15 frames, and a series of 32 images at 200 Mfps was reconstructed. In the experiment, by correcting disparities and considering temporal pixel responses, artifacts in the reconstructed images were reduced. An improvement in PSNR from 25.8 dB to 30.8 dB was confirmed in simulations.

  12. Coding aperture applied to X-ray imaging

    International Nuclear Information System (INIS)

    Brunol, J.; Sauneuf, R.; Gex, J.P.

    1980-05-01

    We present some X-ray images of grids and plasmas. These images were obtained by using a single circular slit (annular code) as coding aperture and a computer decoding process. The experimental resolution is better than 10μm and it is expected to be in the order of 2 or 3 μm with the same code and an improved decoding process

  13. Granular flow through an aperture: influence of the packing fraction

    OpenAIRE

    Alejandra Aguirre , Maria; De Schant , Rosario; Géminard , Jean-Christophe

    2014-01-01

    For the last 50 years, the flow of a granular material through an aperture has been intensely studied in gravity-driven vertical systems (e.g. silos and hoppers). Nevertheless, in many industrial applications, grains are horizontally transported at constant velocity, lying on conveyor belts or floating on the surface of flowing liquids. Unlike fluid flows, that are controlled by the pressure, granular flow is not sensitive to the local pressure but rather to the local velocity of the grains a...

  14. Implementation of real-time duplex synthetic aperture ultrasonography

    DEFF Research Database (Denmark)

    Hemmsen, Martin Christian; Larsen, Lee; Kjeldsen, Thomas

    2015-01-01

    This paper presents a real-time duplex synthetic aperture imaging system, implemented on a commercially available tablet. This includes real-time wireless reception of ultrasound signals and GPU processing for B-mode and Color Flow Imaging (CFM). The objective of the work is to investigate the im...... and that the required bandwidth between the probe and processing unit is within the current Wi-Fi standards....

  15. Inverse synthetic aperture radar imaging principles, algorithms and applications

    CERN Document Server

    Chen , Victor C

    2014-01-01

    Inverse Synthetic Aperture Radar Imaging: Principles, Algorithms and Applications is based on the latest research on ISAR imaging of moving targets and non-cooperative target recognition (NCTR). With a focus on the advances and applications, this book will provide readers with a working knowledge on various algorithms of ISAR imaging of targets and implementation with MATLAB. These MATLAB algorithms will prove useful in order to visualize and manipulate some simulated ISAR images.

  16. Maximally flat radiation patterns of a circular aperture

    Science.gov (United States)

    Minkovich, B. M.; Mints, M. Ia.

    1989-08-01

    The paper presents an explicit solution to the problems of maximizing the area utilization coefficient and of obtaining the best approximation (on the average) of a sectorial Pi-shaped radiation pattern of an antenna with a circular aperture when Butterworth conditions are imposed on the approximating pattern with the aim of flattening it. Constraints on the choice of admissible minimum and maximum antenna dimensions are determined which make possible the synthesis of maximally flat patterns with small sidelobes.

  17. The LAGO (Large Aperture GRB Observatory) in Peru

    Science.gov (United States)

    Tueros-Cuadros, E.; Otiniano, L.; Chirinos, J.; Soncco, C.; Guevara-Day, W.

    2012-07-01

    The Large Aperture GRBs Observatory is a continental-wide observatory devised to detect high energy (around 100 GeV) component of Gamma Ray Bursts (GRBs), by using the single particle technique in arrays of Water Cherenkov Detectors (WCDs) at high mountain sites of Argentina, Bolivia, Colombia, Guatemala, Mexico, Venezuela and Peru. Details of the instalation and operation of the detectors in Marcapomacocha in Peru at 4550 m.a.s.l. are given. The detector calibration method will also be shown.

  18. Large aperture harmonic conversion experiments at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Linford, G.J.; Johnson, B.C.; Hildum, J.S.; G. J. Linford is now with Max-Planck-Institut fur Quantenoptik, D-8046 Garching, Federal Republic of Germany)

    1982-01-01

    Large aperture harmonic conversion experiments to 2ω (532 nm), 3ω (355 nm), and 4ω (266 nm) on the Argus laser at the Livermore National Laboratory are described. Harmonically converted energies of up to 346 J have been generated at external conversion efficiencies of 83%. A discussion of the harmonic conversion experiments and a brief summary of enhanced 2ω and 3ω inertial confinement fusion target performances are provided

  19. Large aperture harmonic conversion experiments at Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Linford, G.J.; Johnson, B.C.; Hildum, J.S.; Martin, W.E.; Snyder, K.; Boyd, R.D.; Smith, W.L.; Vercimak, C.L.; Eimerle, D.; Hunt, J.T.

    1982-10-15

    Large aperture harmonic conversion experiments to 2..omega.. (532 nm), 3..omega.. (355 nm), and 4..omega.. (266 nm) on the Argus laser at the Livermore National Laboratory are described. Harmonically converted energies of up to 346 J have been generated at external conversion efficiencies of 83%. A discussion of the harmonic conversion experiments and a brief summary of enhanced 2..omega.. and 3..omega.. inertial confinement fusion target performances are provided.

  20. Applications of Adaptive Learning Controller to Synthetic Aperture Radar.

    Science.gov (United States)

    1985-02-01

    TERMS (Continue on retuerse if necessary and identify by block num ber) FIELD YGROUP SUB. GR. Adaptive control, aritificial intelligence , synthetic aetr1...application of Artificial Intelligence methods to Synthetic Aperture Radars (SARs) is investigated. It was shown that the neuron-like Adaptive Learning...wavelength Al SE!RI M RADAR DIVISION REFERENCES 1. Barto, A.G. and R.S. Sutton, Goal Seeking Components for Adaptive Intelligence : An Initial Assessment

  1. Digital filtering and reconstruction of coded aperture images

    International Nuclear Information System (INIS)

    Tobin, K.W. Jr.

    1987-01-01

    The real-time neutron radiography facility at the University of Virginia has been used for both transmission radiography and computed tomography. Recently, a coded aperture system has been developed to permit the extraction of three dimensional information from a low intensity field of radiation scattered by an extended object. Short wave-length radiations (e.g. neutrons) are not easily image because of the difficulties in achieving diffraction and refraction with a conventional lens imaging system. By using a coded aperture approach, an imaging system has been developed that records and reconstructs an object from an intensity distribution. This system has a signal-to-noise ratio that is proportional to the total open area of the aperture making it ideal for imaging with a limiting intensity radiation field. The main goal of this research was to develope and implement the digital methods and theory necessary for the reconstruction process. Several real-time video systems, attached to an Intellect-100 image processor, a DEC PDP-11 micro-computer, and a Convex-1 parallel processing mainframe were employed. This system, coupled with theoretical extensions and improvements, allowed for retrieval of information previously unobtainable by earlier optical methods. The effect of thermal noise, shot noise, and aperture related artifacts were examined so that new digital filtering techniques could be constructed and implemented. Results of image data filtering prior to and following the reconstruction process are reported. Improvements related to the different signal processing methods are emphasized. The application and advantages of this imaging technique to the field of non-destructive testing are also discussed

  2. Limits to Clutter Cancellation in Multi-Aperture GMTI Data

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bickel, Douglas L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    Multi-aperture or multi-subaperture antennas are fundamental to Ground Moving Target Indicator (GMTI) radar systems in order to detect slow-moving targets with Doppler characteristics similar to clutter. Herein we examine the performance of several subaperture architectures for their clutter cancelling performance. Significantly, more antenna phase centers isn’t always better, and in fact is sometimes worse, for detecting targets.

  3. Dynamic Aperture Studies for the FCC-ee

    CERN Document Server

    Medina, L; Tomas, R; Zimmermann, F

    2015-01-01

    Dynamic aperture (DA) studies have been conducted on the latest Future Circular Collider – ee (FCC-ee) lattices as a function of momentum deviation.Two different schemes for the interaction region are used, which are connected to the main arcs: the crab waist approach, developed by BINP, and an update to the CERN design where the use of crab cavities is envisioned. The results presented show an improvement in the performance of both designs.

  4. Strategies used to walk through a moving aperture.

    Science.gov (United States)

    Cinelli, Michael E; Patla, Aftab E; Allard, Fran

    2008-05-01

    The objectives of the study were to determine what strategy (pursuit or interception) individuals used to pass through an oscillating target and to determine if individuals walked towards where they were looking. Kinematic and gaze behaviour data was collected from seven healthy female participants as they started at one of five different starting positions and walked 7 m towards an oscillating target. The target was a two-dimensional 70 cm aperture made by two-76 cm wide doors and oscillated between two end posts that were 300 cm apart. In order to quantify the objectives, target-heading angles [Fajen BR, Warren WH. Behavioral dynamics of steering, obstacle avoidance, and route selection. J Exp Psychol Hum Percept Perform 2003;29(2):343-62; Fajen BR, Warren WH. Visual guidance of intercepting a moving target on foot. Perception 2004;33:689-715] were calculated. Results showed that the participants used neither an interception nor a pursuit strategy to successfully pass through the moving aperture. The participants steered towards the middle of the pathway prior to passing through the middle of the aperture. A cross correlation between the horizontal gaze locations and the medial/lateral (M/L) location of the participants' center of mass (COM) was performed. The results from the cross correlation show that during the final 2s prior to crossing the aperture, the participants walked where they were looking. The findings from this study suggest that individuals simplify a task by decreasing the perceptual load until the final stages. In this way the final stages of this task were visually driven.

  5. Dynamic Aperture Studies for the LHC High Luminosity Lattice

    CERN Document Server

    De Maria, R; Giovannozzi, Massimo; Mcintosh, Eric; Cai, Y; Nosochkov, Y; Wang, M H

    2015-01-01

    Since quite some time, dynamic aperture studies have been undertaken with the aim of specifying the required field quality of the new magnets that will be installed in the LHC ring in the framework of the high-luminosity upgrade. In this paper the latest results concerning the specification work will be presented, taking into account both injection and collision energies and the field quality contribution from all the magnets in the newly designed interaction regions.

  6. Soft apertures to shape high-power laser beams

    International Nuclear Information System (INIS)

    Lukishova, S.G.; Pashinin, P.P.; Batygov, S.K.; Terentiev, B.M.

    1989-01-01

    Soft or apodized apertures with smooth decreasing from center to edges transmission profiles are used in laser physics for beam shaping. This paper gives the results of the studies of four types of these units for UV, visible and IR lasers. They are made of glasses or crystals with the use of one of the following technologies: absorption induced by ionizing radiation; photodestruction of color centers or photooxidation of impurities ions; additive coloration; frustrated total internal reflection. The special feature of such apertures is their high optical damage resistance under the irradiation of single-pulse laser radiation. They are approximately 3-50 mm in diameter by the methods of making them give the possibility to create near-Gaussian and flat-top beams with dimensions less than 1 mm and larger than 200 mm. The results of using them in high-power single-pulse lasers are presented. Damage thresholds of these apertures in such types of lasers have been defined

  7. A panoramic coded aperture gamma camera for radioactive hotspots localization

    Science.gov (United States)

    Paradiso, V.; Amgarou, K.; Blanc De Lanaute, N.; Schoepff, V.; Amoyal, G.; Mahe, C.; Beltramello, O.; Liénard, E.

    2017-11-01

    A known disadvantage of the coded aperture imaging approach is its limited field-of-view (FOV), which often results insufficient when analysing complex dismantling scenes such as post-accidental scenarios, where multiple measurements are needed to fully characterize the scene. In order to overcome this limitation, a panoramic coded aperture γ-camera prototype has been developed. The system is based on a 1 mm thick CdTe detector directly bump-bonded to a Timepix readout chip, developed by the Medipix2 collaboration (256 × 256 pixels, 55 μm pitch, 14.08 × 14.08 mm2 sensitive area). A MURA pattern coded aperture is used, allowing for background subtraction without the use of heavy shielding. Such system is then combined with a USB color camera. The output of each measurement is a semi-spherical image covering a FOV of 360 degrees horizontally and 80 degrees vertically, rendered in spherical coordinates (θ,phi). The geometrical shapes of the radiation-emitting objects are preserved by first registering and stitching the optical images captured by the prototype, and applying, subsequently, the same transformations to their corresponding radiation images. Panoramic gamma images generated by using the technique proposed in this paper are described and discussed, along with the main experimental results obtained in laboratories campaigns.

  8. Coded aperture imaging system for nuclear fuel motion detection

    International Nuclear Information System (INIS)

    Stalker, K.T.; Kelly, J.G.

    1980-01-01

    A Coded Aperature Imaging System (CAIS) has been developed at Sandia National Laboratories to image the motion of nuclear fuel rods undergoing tests simulating accident conditions within a liquid metal fast breeder reactor. The tests require that the motion of the test fuel be monitored while it is immersed in a liquid sodium coolant precluding the use of normal optical means of imaging. However, using the fission gamma rays emitted by the fuel itself and coded aperture techniques, images with 1.5 mm radial and 5 mm axial resolution have been attained. Using an electro-optical detection system coupled to a high speed motion picture camera a time resolution of one millisecond can be achieved. This paper will discuss the application of coded aperture imaging to the problem, including the design of the one-dimensional Fresnel zone plate apertures used and the special problems arising from the reactor environment and use of high energy gamma ray photons to form the coded image. Also to be discussed will be the reconstruction techniques employed and the effect of various noise sources on system performance. Finally, some experimental results obtained using the system will be presented

  9. Coded aperture material motion detection system for the ACPR

    International Nuclear Information System (INIS)

    McArthur, D.A.; Kelly, J.G.

    1975-01-01

    Single LMFBR fuel pins are being irradiated in Sandia's Annular Core Pulsed Reactor (ACPR). In these experiments single fuel pins have been driven well into the melt and vaporization regions in transients with pulse widths of about 5 ms. The ACPR is being upgraded so that it can be used to irradiate bundles of seven LMFBR fuel pins. The coded aperture material motion detection system described is being developed for this upgraded ACPR, and has for its design goals 1 mm transverse resolution (i.e., in the axial and radial directions), depth resolution of a few cm, and time resolution of 0.1 ms. The target date for development of this system is fall 1977. The paper briefly reviews the properties of coded aperture imaging, describes one possible system for the ACPR upgrade, discusses experiments which have been performed to investigate the feasibility of such a system, and describes briefly the further work required to develop such a system. The type of coded aperture to be used has not yet been fixed, but a one-dimensional section of a Fresnel zone plate appears at this time to have significant advantages

  10. Optimized baffle and aperture placement in neutral beamlines

    International Nuclear Information System (INIS)

    Stone, R.; Duffy, T.; Vetrovec, J.

    1983-01-01

    Most neutral beamlines contain an iron-core ion-bending magnet that requires shielding between the end of the neutralizer and this magnet. This shielding allows the gas pressure to drop prior to the beam entering the magnet and therefore reduces beam losses in this drift region. We have found that the beam losses can be reduced even further by eliminating the iron-core magnet and the magnetic shielding altogether. The required bending field can be supplied by current coils without the iron poles. In addition, placement of the baffles and apertures can affect the cold gas entering the plasma region and the losses in the neutral beam due to re-ionization. In our study we varied the placement of the baffles, which determine the amount of pumping in each chamber, and the apertures, which determine the beam loss. Our results indicate that a baffle/aperture configuration can be set for either minimum cold gas into the plasma region or minimum beam losses, but not both

  11. Enhanced transmission of transverse electric waves through periodic arrays of structured subwavelength apertures

    DEFF Research Database (Denmark)

    Xiao, Sanshui; Peng, Liang; Mortensen, Asger

    2010-01-01

    Transmission through sub-wavelength apertures in perfect metals is expected to be strongly suppressed. However, by structural engineering of the apertures, we numerically demonstrate that the transmission of transverse electric waves through periodic arrays of subwavelength apertures in a thin...... metallic film can be significantly enhanced. Based on equivalent circuit theory analysis, periodic arrays of square structured subwavelength apertures are obtained with a 1900-fold transmission enhancement factor when the side length a of the apertures is 10 times smaller than the wavelength (a/λ =0...

  12. Hall effect encoding of brushless dc motors

    Science.gov (United States)

    Berard, C. A.; Furia, T. J.; Goldberg, E. A.; Greene, R. C.

    1970-01-01

    Encoding mechanism integral to the motor and using the permanent magnets embedded in the rotor eliminates the need for external devices to encode information relating the position and velocity of the rotating member.

  13. Influence of coma aberration on aperture averaged scintillations in oceanic turbulence

    Science.gov (United States)

    Luo, Yujuan; Ji, Xiaoling; Yu, Hong

    2018-01-01

    The influence of coma aberration on aperture averaged scintillations in oceanic turbulence is studied in detail by using the numerical simulation method. In general, in weak oceanic turbulence, the aperture averaged scintillation can be effectively suppressed by means of the coma aberration, and the aperture averaged scintillation decreases as the coma aberration coefficient increases. However, in moderate and strong oceanic turbulence the influence of coma aberration on aperture averaged scintillations can be ignored. In addition, the aperture averaged scintillation dominated by salinity-induced turbulence is larger than that dominated by temperature-induced turbulence. In particular, it is shown that for coma-aberrated Gaussian beams, the behavior of aperture averaged scintillation index is quite different from the behavior of point scintillation index, and the aperture averaged scintillation index is more suitable for characterizing scintillations in practice.

  14. Flipped-Adversarial AutoEncoders

    OpenAIRE

    Zhang, Jiyi; Dang, Hung; Lee, Hwee Kuan; Chang, Ee-Chien

    2018-01-01

    We propose a flipped-Adversarial AutoEncoder (FAAE) that simultaneously trains a generative model G that maps an arbitrary latent code distribution to a data distribution and an encoder E that embodies an "inverse mapping" that encodes a data sample into a latent code vector. Unlike previous hybrid approaches that leverage adversarial training criterion in constructing autoencoders, FAAE minimizes re-encoding errors in the latent space and exploits adversarial criterion in the data space. Exp...

  15. Direct aperture optimization for IMRT using Monte Carlo generated beamlets

    International Nuclear Information System (INIS)

    Bergman, Alanah M.; Bush, Karl; Milette, Marie-Pierre; Popescu, I. Antoniu; Otto, Karl; Duzenli, Cheryl

    2006-01-01

    This work introduces an EGSnrc-based Monte Carlo (MC) beamlet does distribution matrix into a direct aperture optimization (DAO) algorithm for IMRT inverse planning. The technique is referred to as Monte Carlo-direct aperture optimization (MC-DAO). The goal is to assess if the combination of accurate Monte Carlo tissue inhomogeneity modeling and DAO inverse planning will improve the dose accuracy and treatment efficiency for treatment planning. Several authors have shown that the presence of small fields and/or inhomogeneous materials in IMRT treatment fields can cause dose calculation errors for algorithms that are unable to accurately model electronic disequilibrium. This issue may also affect the IMRT optimization process because the dose calculation algorithm may not properly model difficult geometries such as targets close to low-density regions (lung, air etc.). A clinical linear accelerator head is simulated using BEAMnrc (NRC, Canada). A novel in-house algorithm subdivides the resulting phase space into 2.5x5.0 mm 2 beamlets. Each beamlet is projected onto a patient-specific phantom. The beamlet dose contribution to each voxel in a structure-of-interest is calculated using DOSXYZnrc. The multileaf collimator (MLC) leaf positions are linked to the location of the beamlet does distributions. The MLC shapes are optimized using direct aperture optimization (DAO). A final Monte Carlo calculation with MLC modeling is used to compute the final dose distribution. Monte Carlo simulation can generate accurate beamlet dose distributions for traditionally difficult-to-calculate geometries, particularly for small fields crossing regions of tissue inhomogeneity. The introduction of DAO results in an additional improvement by increasing the treatment delivery efficiency. For the examples presented in this paper the reduction in the total number of monitor units to deliver is ∼33% compared to fluence-based optimization methods

  16. Chinese very small aperture terminal system for ministries

    Science.gov (United States)

    Dan, Sen

    The objective and technologic approach of the Chinese very small aperture terminal (VSAT) system of data communications is described in this paper. The system is primarily designed for the management business of many governmental ministries and administrations. It consists of a centralized processing and switching facility and a number of groups of remote terminals. The network is constructed in a star configuration because of simplicity and the inherent nature of the management business. Either Intelsat of Chinese domestic communications satellite can be used for the space segment. The system performance has been verified by field trials. Some results of system analysis can be used for traffic design.

  17. Multi element synthetic aperture transmission using a frequency division approach

    DEFF Research Database (Denmark)

    Gran, Fredrik; Jensen, Jørgen Arendt

    2003-01-01

    transmitted into the tissue is low. This paper describes a novel method in which the available spectrum is divided into 2N overlapping subbands. This will assure a smooth broadband high resolution spectrum when combined. The signals are grouped into two subsets in which all signals are fully orthogonal...... can therefore be used for flow imaging, unlike with Hadamard and Golay coding. The frequency division approach increases the SNR by a factor of N2 compared to conventional pulsed synthetic aperture imaging, provided that N transmission centers are used. Simulations and phantom measurements...

  18. Motion compensated beamforming in synthetic aperture vector flow imaging

    DEFF Research Database (Denmark)

    Oddershede, Niels; Jensen, Jørgen Arendt

    2006-01-01

    . In this paper, these motion effects are considered. A number of Field II simulations of a single scatterer moving at different velocities are performed both for axial and lateral velocities from 0 to 1 m/s. Data are simulated at a pulse repetition frequency of 5 kHz. The signal-to-noise ratio (SNR....... Here the SNR is -10 dB compared to the stationary scatterer. A 2D motion compensation method for synthetic aperture vector flow imaging is proposed, where the former vector velocity estimate is used for compensating the beamforming of new data. This method is tested on data from an experimental flow...

  19. Optical Aperture Synthesis Object's Information Extracting Based on Wavelet Denoising

    International Nuclear Information System (INIS)

    Fan, W J; Lu, Y

    2006-01-01

    Wavelet denoising is studied to improve OAS(optical aperture synthesis) object's Fourier information extracting. Translation invariance wavelet denoising based on Donoho wavelet soft threshold denoising is researched to remove Pseudo-Gibbs in wavelet soft threshold image. OAS object's information extracting based on translation invariance wavelet denoising is studied. The study shows that wavelet threshold denoising can improve the precision and the repetition of object's information extracting from interferogram, and the translation invariance wavelet denoising information extracting is better than soft threshold wavelet denoising information extracting

  20. Apodized RFI filtering of synthetic aperture radar images

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter

    2014-02-01

    Fine resolution Synthetic Aperture Radar (SAR) systems necessarily require wide bandwidths that often overlap spectrum utilized by other wireless services. These other emitters pose a source of Radio Frequency Interference (RFI) to the SAR echo signals that degrades SAR image quality. Filtering, or excising, the offending spectral contaminants will mitigate the interference, but at a cost of often degrading the SAR image in other ways, notably by raising offensive sidelobe levels. This report proposes borrowing an idea from nonlinear sidelobe apodization techniques to suppress interference without the attendant increase in sidelobe levels. The simple post-processing technique is termed Apodized RFI Filtering (ARF).

  1. Synthetic Aperture Sequential Beamforming implemented on multi-core platforms

    DEFF Research Database (Denmark)

    Kjeldsen, Thomas; Lassen, Lee; Hemmsen, Martin Christian

    2014-01-01

    This paper compares several computational ap- proaches to Synthetic Aperture Sequential Beamforming (SASB) targeting consumer level parallel processors such as multi-core CPUs and GPUs. The proposed implementations demonstrate that ultrasound imaging using SASB can be executed in real- time with ...... per second) on an Intel Core i7 2600 CPU with an AMD HD7850 and a NVIDIA GTX680 GPU. The fastest CPU and GPU implementations use 14% and 1.3% of the real-time budget of 62 ms/frame, respectively. The maximum achieved processing rate is 1265 frames/s....

  2. Kaleidoscope modes in large aperture Porro prism resonators

    CSIR Research Space (South Africa)

    Burger, L

    2008-08-01

    Full Text Available G == (3) and L aNF λ 2 = . (4) 0 20 40 60 80 100 120 140 160 180 200 0 10 20 30 40 50 60 70 80 90 Porro Angle cancer (degrees) N u m be r o f p et a ls N... ultimately results in the convergence of all starting fields to the petal–like patterns, as shown in Fig. 6 (see also Fig. 3 ‘large aperture mode’ movie). In the presence of gain and hence a limited build–up time, such a convergence would not necessarily...

  3. The COronal Solar Magnetism Observatory (COSMO) Large Aperture Coronagraph

    Science.gov (United States)

    Tomczyk, Steve; Gallagher, Dennis; Wu, Zhen; Zhang, Haiying; Nelson, Pete; Burkepile, Joan; Kolinksi, Don; Sutherland, Lee

    2013-04-01

    The COSMO is a facility dedicated to observing coronal and chromospheric magnetic fields. It will be located on a mountaintop in the Hawaiian Islands and will replace the current Mauna Loa Solar Observatory (MLSO). COSMO will provide unique observations of the global coronal magnetic fields and its environment to enhance the value of data collected by other observatories on the ground (e.g. SOLIS, BBO NST, Gregor, ATST, EST, Chinese Giant Solar Telescope, NLST, FASR) and in space (e.g. SDO, Hinode, SOHO, GOES, STEREO, Solar-C, Solar Probe+, Solar Orbiter). COSMO will employ a fleet of instruments to cover many aspects of measuring magnetic fields in the solar atmosphere. The dynamics and energy flow in the corona are dominated by magnetic fields. To understand the formation of CMEs, their relation to other forms of solar activity, and their progression out into the solar wind requires measurements of coronal magnetic fields. The large aperture coronagraph, the Chromospheric and Prominence Magnetometer and the K-Coronagraph form the COSMO instrument suite to measure magnetic fields and the polarization brightness of the low corona used to infer electron density. The large aperture coronagraph will employ a 1.5 meter fuse silica singlet lens, birefringent filters, and a spectropolarimeter to cover fields of view of up to 1 degree. It will observe the corona over a wide range of emission lines from 530.3 nm through 1083.0 nm allowing for magnetic field measurements over a wide range of coronal temperatures (e.g. FeXIV at 530.3 nm, Fe X at 637.4 nm, Fe XIII at 1074.7 and 1079.8 nm. These lines are faint and require the very large aperture. NCAR and NSF have provided funding to bring the large aperture coronagraph to a preliminary design review state by the end of 2013. As with all data from Mauna Loa, the data products from COSMO will be available to the community via the Mauna Loa website: http://mlso.hao.ucar.edu

  4. A fast autofocus algorithm for synthetic aperture radar processing

    DEFF Research Database (Denmark)

    Dall, Jørgen

    1992-01-01

    High-resolution synthetic aperture radar (SAR) imaging requires the motion of the radar platform to be known very accurately. Otherwise, phase errors are induced in the processing of the raw SAR data, and bad focusing results. In particular, a constant error in the measured along-track velocity o...... of magnitude lower than that of other algorithms providing comparable accuracies is presented. The algorithm has been tested on data from the Danish Airborne SAR, and the performance is compared with that of the traditional map drift algorithm...

  5. Monitoring coastal inundation with Synthetic Aperture Radar satellite data

    Science.gov (United States)

    Suzuoki, Yukihiro; Rangoonwala, Amina; Ramsey, Elijah W.

    2011-01-01

    Maps representing the presence and absence of surface inundation in the Louisiana coastal zone were created from available satellite scenes acquired by the Japanese Aerospace Exploration Agency's Advanced Land Observing Satellite and by the European Space Agency's Envisat from late 2006 through summer 2009. Detection of aboveground surface flooding relied on the well-documented and distinct signature of decreased backscatter in Synthetic Aperture Radar (SAR), which is indicative of inundated marsh in the Gulf of Mexico. Even though decreases in backscatter were distinctive, the multiplicity of possible interactions between changing flood depths and canopy height yielded complex SAR-based representations of the marshes.

  6. Synthetic aperture lidar as a future tool for earth observation

    Science.gov (United States)

    Turbide, Simon; Marchese, Linda; Terroux, Marc; Bergeron, Alain

    2017-11-01

    Synthetic aperture radar (SAR) is a tool of prime importance for Earth observation; it provides day and night capabilities in various weather conditions. State-of-the-art satellite SAR systems are a few meters in height and width and achieve resolutions of less than 1 m with revisit times on the order of days. Today's Earth observation needs demand higher resolution imaging together with timelier data collection within a compact low power consumption payload. Such needs are seen in Earth Observation applications such as disaster management of earthquakes, landslides, forest fires, floods and others. In these applications the availability of timely reliable information is critical to assess the extent of the disaster and to rapidly and safely deploy rescue teams. Synthetic aperture lidar (SAL) is based on the same basic principles as SAR. Both rely on the acquisition of multiple electromagnetic echoes to emulate a large antenna aperture providing the ability to produce high resolution images. However, in SAL, much shorter optical wavelengths (1.5 μm) are used instead of radar ones (wavelengths around 3 cm). Resolution being related to the wavelength, multiple orders of magnitude of improvement could be theoretically expected. Also, the sources, the detector, and the components are much smaller in optical domain than those for radar. The resulting system can thus be made compact opening the door to deployment onboard small satellites, airborne platforms and unmanned air vehicles. This has a strong impact on the time required to develop, deploy and use a payload. Moreover, in combination with airborne deployment, revisit times can be made much smaller and accessibility to the information can become almost in real-time. Over the last decades, studies from different groups have been done to validate the feasibility of a SAL system for 2D imagery and more recently for 3D static target imagery. In this paper, an overview of the advantages of this emerging technology will

  7. In-vivo synthetic aperture flow imaging in medical ultrasound

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Jensen, Jørgen Arendt

    2003-01-01

    A new method for acquiring flow images using synthetic aperture techniques in medical ultrasound is presented. The new approach makes it possible to have a continuous acquisition of flow data throughout the whole image simultaneously, and this can significantly improve blood velocity estimation.......2% and a mean relative bias of 3.4% using 24 pulse emissions at a flow angle of 45 degrees. The 24 emissions can be used for making a full-color flow map image. An in-vivo image of How in the carotid artery for a 29-year-old male also is presented. The full image is acquired using 24 emissions....

  8. Implementation of Synthetic Aperture Imaging in Medical Ultrasound

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Kortbek, Jacob; Nikolov, Svetoslav

    2010-01-01

    The main advantage of medical ultrasound imaging is its real time capability, which makes it possible to visualize dynamic structures in the human body. Real time synthetic aperture imaging puts very high demands on the hardware, which currently cannot be met. A method for reducing the number...... of calculations and still retain the many advantages of SA imaging is described. It consists of a dual stage beamformer, where the first can be a simple fixed focus analog beamformer and the second an ordinary digital ultrasound beamformer. The performance and constrictions of the approach is described....

  9. Design of a hybrid double-sideband/single-sideband (schlieren) objective aperture suitable for electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Buijsse, Bart; Laarhoven, Frank M.H.M. van [FEI Company, PO Box 80066, 5600 KA Eindhoven (Netherlands); Schmid, Andreas K.; Cambie, Rossana; Cabrini, Stefano; Jin, Jian [Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States); Glaeser, Robert M., E-mail: rmglaeser@lbl.gov [Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States)

    2011-12-15

    A novel design is described for an aperture that blocks a half-plane of the electron diffraction pattern out to a desired scattering angle, and then - except for a narrow support beam - transmits all of the scattered electrons beyond that angle. Our proposed tulip-shaped design is thus a hybrid between the single-sideband (ssb) aperture, which blocks a full half-plane of the diffraction pattern, and the conventional (i.e. fully open) double-sideband (dsb) aperture. The benefits of this hybrid design include the fact that such an aperture allows one to obtain high-contrast images of weak-phase objects with the objective lens set to Scherzer defocus. We further demonstrate that such apertures can be fabricated from thin-foil materials by milling with a focused ion beam (FIB), and that such apertures are fully compatible with the requirements of imaging out to a resolution of at least 0.34 nm. As is known from earlier work with single-sideband apertures, however, the edge of such an aperture can introduce unwanted, electrostatic phase shifts due to charging. The principal requirement for using such an aperture in a routine data-collection mode is thus to discover appropriate materials, protocols for fabrication and processing and conditions of use such that the hybrid aperture remains free of charging over long periods of time. -- Highlights: Black-Right-Pointing-Pointer New objective-aperture design is proposed for imaging weak-phase objects. Black-Right-Pointing-Pointer Design produces single-sideband contrast at low spatial frequencies. Black-Right-Pointing-Pointer Design also retains Scherzer-defocus phase contrast at higher resolution. Black-Right-Pointing-Pointer Proof-of-concept results are presented for microfabricated apertures. Black-Right-Pointing-Pointer Charging of such apertures during use remains an experimental challenge.

  10. Tagging, Encoding, and Jones Optimality

    DEFF Research Database (Denmark)

    Danvy, Olivier; Lopez, Pablo E. Martinez

    2003-01-01

    A partial evaluator is said to be Jones-optimal if the result of specializing a self-interpreter with respect to a source program is textually identical to the source program, modulo renaming. Jones optimality has already been obtained if the self-interpreter is untyped. If the selfinterpreter...... is typed, however, residual programs are cluttered with type tags. To obtain the original source program, these tags must be removed. A number of sophisticated solutions have already been proposed. We observe, however, that with a simple representation shift, ordinary partial evaluation is already Jones......-optimal, modulo an encoding. The representation shift amounts to reading the type tags as constructors for higherorder abstract syntax. We substantiate our observation by considering a typed self-interpreter whose input syntax is higher-order. Specializing this interpreter with respect to a source program yields...

  11. Bubble masks for time-encoded imaging of fast neutrons.

    Energy Technology Data Exchange (ETDEWEB)

    Brubaker, Erik; Brennan, James S.; Marleau, Peter; Nowack, Aaron B.; Steele, John T.; Sweany, Melinda; Throckmorton, Daniel J.

    2013-09-01

    Time-encoded imaging is an approach to directional radiation detection that is being developed at SNL with a focus on fast neutron directional detection. In this technique, a time modulation of a detected neutron signal is inducedtypically, a moving mask that attenuates neutrons with a time structure that depends on the source position. An important challenge in time-encoded imaging is to develop high-resolution two-dimensional imaging capabilities; building a mechanically moving high-resolution mask presents challenges both theoretical and technical. We have investigated an alternative to mechanical masks that replaces the solid mask with a liquid such as mineral oil. Instead of fixed blocks of solid material that move in pre-defined patterns, the oil is contained in tubing structures, and carefully introduced air gapsbubblespropagate through the tubing, generating moving patterns of oil mask elements and air apertures. Compared to current moving-mask techniques, the bubble mask is simple, since mechanical motion is replaced by gravity-driven bubble propagation; it is flexible, since arbitrary bubble patterns can be generated by a software-controlled valve actuator; and it is potentially high performance, since the tubing and bubble size can be tuned for high-resolution imaging requirements. We have built and tested various single-tube mask elements, and will present results on bubble introduction and propagation as a function of tubing size and cross-sectional shape; real-time bubble position tracking; neutron source imaging tests; and reconstruction techniques demonstrated on simple test data as well as a simulated full detector system.

  12. Automated Polarimetry with Smaller Aperture Telescopes: The ROVOR Observatory

    Directory of Open Access Journals (Sweden)

    Joseph Moody

    2017-10-01

    Full Text Available To better understand possible blazar jet mechanisms and morphologies, brighter prototypical objects are regularly monitored for variability in optical broad-band light. If the monitoring filters are polarized, the position angles and polarization percentages can be measured and their evolution monitored over time. However, building up a statistically significant time base of polarization parameters requires the arduous task of monitoring sources for months or years to catch and follow interesting events such as flares. Fortunately, monitoring an object is easily done using remotely operated or robotic telescopes. The Remote Observatory for Variable Object Research (ROVOR is a small-aperture telescope that has monitored blazars in broad-band Johnson filters since 2009. Calibration data using a set of four plane-polarized filters suggest that it is suitable for polarimetric monitoring as well. We have successfully collected data on CTA 102 and are encouraged at the prospects of monitoring it and other similar objects. Long-term monitoring campaigns are a scientifically and educationally-effective use of underutilized smaller-aperture telescopes.

  13. Dynamic Aperture Extrapolation in Presence of Tune Modulation

    CERN Document Server

    Giovannozzi, Massimo; Todesco, Ezio

    1998-01-01

    In hadron colliders, such as the Large Hadron Collider (LHC) to be built at CERN, the long-term stability of the single-particle motion is mostly determined by the field-shape quality of the superconducting magnets. The mechanism of particle loss may be largely enhanced by modulation of betatron tunes, induced either by synchro-betatron coupling (via the residual uncorrected chromaticity), or by unavoidable power supply ripple. This harmful effect is investigated in a simple dynamical system model, the Henon map with modulated linear frequencies. Then, a realistic accelerator model describing the injection optics of the LHC lattice is analyzed. Orbital data obtained with long-term tracking simulations ($10^5$-$10^7$ turns) are post-processed to obtain the dynamic aperture. It turns out that the dynamic aperture can be interpolated using a simple mpirical formula, and it decays proportionally to a power of the inverse logarithm of the number of turns. Furthermore, the extrapolation of tracking data at $10^5$ t...

  14. Telescope aperture optimization for spacebased coherent wind lidar

    Science.gov (United States)

    Ge, Xian-ying; Zhu, Jun; Cao, Qipeng; Zhang, Yinchao; Yin, Huan; Dong, Xiaojing; Wang, Chao; Zhang, Yongchao; Zhang, Ning

    2015-08-01

    Many studies have indicated that the optimum measurement approach for winds from space is a pulsed coherent wind lidar, which is an active remote sensing tool with the characteristics that high spatial and temporal resolutions, real-time detection, high mobility, facilitated control and so on. Because of the significant eye safety, efficiency, size, and lifetime advantage, 2μm wavelength solid-state laser lidar systems have attracted much attention in spacebased wind lidar plans. In this paper, the theory of coherent detection is presented and a 2μm wavelength solid-state laser lidar system is introduced, then the ideal aperture is calculated from signal-to-noise(SNR) view at orbit 400km. However, considering real application, even if the lidar hardware is perfectly aligned, the directional jitter of laser beam, the attitude change of the lidar in the long round trip time of the light from the atmosphere and other factors can bring misalignment angle. So the influence of misalignment angle is considered and calculated, and the optimum telescope diameter(0.45m) is obtained as the misalignment angle is 4 μrad. By the analysis of the optimum aperture required for spacebased coherent wind lidar system, we try to present the design guidance for the telescope.

  15. Direct aperture deformation: An interfraction image guidance strategy

    International Nuclear Information System (INIS)

    Feng Yuanming; Castro-Pareja, Carlos; Shekhar, Raj; Yu, Cedric

    2006-01-01

    A new scheme, called direct aperture deformation (DAD), for online correction of interfraction geometric uncertainties under volumetric imaging guidance is presented. Using deformable image registration, the three-dimensional geometric transformation matrix can be derived that associates the planning image set and the images acquired on the day of treatment. Rather than replanning or moving the patient, we use the deformation matrix to morph the treatment apertures as a potential online correction method. A proof-of-principle study using an intensity-modulated radiation therapy plan for a prostate cancer patient was conducted. The method, procedure, and algorithm of DAD are described. The dose-volume histograms from the original plan, reoptimized plan, and rigid-body translation plan are compared with the ones from the DAD plan. The study showed the feasibility of the DAD as a general method for both target dislocation and deformation. As compared with using couch translation to move the patient, DAD is capable of correcting both target dislocation and deformations. As compared with reoptimization, online correction using the DAD scheme could be completed within a few minutes rather than tens of minutes and the speed gain would be at a very small cost of plan quality

  16. Multi-Aperture CMOS Sun Sensor for Microsatellite Attitude Determination

    Directory of Open Access Journals (Sweden)

    Michele Grassi

    2009-06-01

    Full Text Available This paper describes the high precision digital sun sensor under development at the University of Naples. The sensor determines the sun line orientation in the sensor frame from the measurement of the sun position on the focal plane. It exploits CMOS technology and an original optical head design with multiple apertures. This allows simultaneous multiple acquisitions of the sun as spots on the focal plane. The sensor can be operated either with a fixed or a variable number of sun spots, depending on the required field of view and sun-line measurement precision. Multiple acquisitions are averaged by using techniques which minimize the computational load to extract the sun line orientation with high precision. Accuracy and computational efficiency are also improved thanks to an original design of the calibration function relying on neural networks. Extensive test campaigns are carried out using a laboratory test facility reproducing sun spectrum, apparent size and distance, and variable illumination directions. Test results validate the sensor concept, confirming the precision improvement achievable with multiple apertures, and sensor operation with a variable number of sun spots. Specifically, the sensor provides accuracy and precision in the order of 1 arcmin and 1 arcsec, respectively.

  17. Super Unit Cells in Aperture-Based Metamaterials

    Directory of Open Access Journals (Sweden)

    Dragan Tanasković

    2015-01-01

    Full Text Available An important class of electromagnetic metamaterials are aperture-based metasurfaces. Examples include extraordinary optical transmission arrays and double fishnets with negative refractive index. We analyze a generalization of such metamaterials where a simple aperture is now replaced by a compound object formed by superposition of two or more primitive objects (e.g., rectangles, circles, and ellipses. Thus obtained “super unit cell” shows far richer behavior than the subobjects that comprise it. We show that nonlocalities introduced by overlapping simple subobjects can be used to produce large deviations of spectral dispersion even for small additive modifications of the basic geometry. Technologically, some super cells may be fabricated by simple spatial shifting of the existing photolithographic masks. In our investigation we applied analytical calculations and ab initio finite element modeling to prove the possibility to tailor the dispersion including resonances for plasmonic nanocomposites by adjusting the local geometry and exploiting localized interactions at a subwavelength level. Any desired form could be defined using simple primitive objects, making the situation a geometrical analog of the case of series expansion of a function. Thus an additional degree of tunability of metamaterials is obtained. The obtained designer structures can be applied in different fields like waveguiding and sensing.

  18. Medium-sized aperture camera for Earth observation

    Science.gov (United States)

    Kim, Eugene D.; Choi, Young-Wan; Kang, Myung-Seok; Kim, Ee-Eul; Yang, Ho-Soon; Rasheed, Ad. Aziz Ad.; Arshad, Ahmad Sabirin

    2017-11-01

    Satrec Initiative and ATSB have been developing a medium-sized aperture camera (MAC) for an earth observation payload on a small satellite. Developed as a push-broom type high-resolution camera, the camera has one panchromatic and four multispectral channels. The panchromatic channel has 2.5m, and multispectral channels have 5m of ground sampling distances at a nominal altitude of 685km. The 300mm-aperture Cassegrain telescope contains two aspheric mirrors and two spherical correction lenses. With a philosophy of building a simple and cost-effective camera, the mirrors incorporate no light-weighting, and the linear CCDs are mounted on a single PCB with no beam splitters. MAC is the main payload of RazakSAT to be launched in 2005. RazakSAT is a 180kg satellite including MAC, designed to provide high-resolution imagery of 20km swath width on a near equatorial orbit (NEqO). The mission objective is to demonstrate the capability of a high-resolution remote sensing satellite system on a near equatorial orbit. This paper describes the overview of the MAC and RarakSAT programmes, and presents the current development status of MAC focusing on key optical aspects of Qualification Model.

  19. A lattice with no transition and large dynamic aperture

    International Nuclear Information System (INIS)

    Guignard, G.

    1989-01-01

    In the case of a one-ring high-energy scheme for an advanced hadron facility, beam losses can be reduced if the ring lattice accomodates the beam from injection to maximum energy without crossing the transition. Since there is no synchrotron booster in such a scheme and the injection energy is relatively low, this requirement implies a negative compaction factor and an imaginary transition energy. This can be achieved by making the horizontal dispersion negative in some regions of the arcs so that the average value taken in the dipoles is globally also negative. Such a modulation of the dispersion may result in an increasing difficulty to obtain a large enough dynamic aperture in the presence of sextupoles. A careful optimization is therefore necessary and the possibility of modifying the linear lattice in order to include the requirements associated with chromaticity adjustments has to be studied. This paper summarizes the work done along this line and based on previous searches for a race track lattice that can be used in a hadron facility main ring. It describes an alternative lattice design, which tends to minimize the effects of the nonlinear aberrations introduced by sextupoles and to achieve a large dynamic aperture, keeping the betatron amplitudes as low as possible. 7 refs., 6 figs., 1 tab

  20. Aperture-based antihydrogen gravity experiment: Parallel plate geometry

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, J. R.; Hedlof, R. M.; Ordonez, C. A. [Department of Physics, University of North Texas, Denton, Texas 76203 (United States)

    2013-10-15

    An analytical model and a Monte Carlo simulation are presented of an experiment that could be used to determine the direction of the acceleration of antihydrogen due to gravity. The experiment would rely on methods developed by existing antihydrogen research collaborations. The configuration consists of two circular, parallel plates that have an axis of symmetry directed away from the center of the earth. The plates are separated by a small vertical distance, and include one or more pairs of circular barriers that protrude from the upper and lower plates, thereby forming an aperture between the plates. Antihydrogen annihilations that occur just beyond each barrier, within a “shadow” region, are asymmetric on the upper plate relative to the lower plate. The probability for such annihilations is determined for a point, line and spheroidal source of antihydrogen. The production of 100,000 antiatoms is predicted to be necessary for the aperture-based experiment to indicate the direction of free fall acceleration of antimatter, provided that antihydrogen is produced within a sufficiently small antiproton plasma at a temperature of 4 K.

  1. Correlated statistical uncertainties in coded-aperture imaging

    International Nuclear Information System (INIS)

    Fleenor, Matthew C.; Blackston, Matthew A.; Ziock, Klaus P.

    2015-01-01

    In nuclear security applications, coded-aperture imagers can provide a wealth of information regarding the attributes of both the radioactive and nonradioactive components of the objects being imaged. However, for optimum benefit to the community, spatial attributes need to be determined in a quantitative and statistically meaningful manner. To address a deficiency of quantifiable errors in coded-aperture imaging, we present uncertainty matrices containing covariance terms between image pixels for MURA mask patterns. We calculated these correlated uncertainties as functions of variation in mask rank, mask pattern over-sampling, and whether or not anti-mask data are included. Utilizing simulated point source data, we found that correlations arose when two or more image pixels were summed. Furthermore, we found that the presence of correlations was heightened by the process of over-sampling, while correlations were suppressed by the inclusion of anti-mask data and with increased mask rank. As an application of this result, we explored how statistics-based alarming is impacted in a radiological search scenario

  2. Study of Wide Swath Synthetic Aperture Ladar Imaging Techology

    Directory of Open Access Journals (Sweden)

    Zhang Keshu

    2017-02-01

    Full Text Available Combining synthetic-aperture imaging and coherent-light detection technology, the weak signal identification capacity of Synthetic Aperture Ladar (SAL reaches the photo level, and the image resolution exceeds the diffraction limit of the telescope to obtain high-resolution images irrespective to ranges. This paper introduces SAL, including the development path, technology characteristics, and the restriction of imaging swath. On the basis of this, we propose to integrate the SAL technology for extending its swath. By analyzing the scanning-operation mode and the signal model, the paper explicitly proposes that the former mode will be the developmental trend of the SAL technology. This paper also introduces the flight demonstrations of the SAL and the imaging results of remote targets, showing the potential of the SAL in long-range, high-resolution, and scanning-imaging applications. The technology and the theory of the scanning mode of SAL compensates for the defects related to the swath and operation efficiency of the current SAL. It provides scientific foundation for the SAL system applied in wide swath, high resolution earth observation, and the ISAL system applied in space-targets imaging.

  3. Aperture-based antihydrogen gravity experiment: Parallel plate geometry

    Science.gov (United States)

    Rocha, J. R.; Hedlof, R. M.; Ordonez, C. A.

    2013-10-01

    An analytical model and a Monte Carlo simulation are presented of an experiment that could be used to determine the direction of the acceleration of antihydrogen due to gravity. The experiment would rely on methods developed by existing antihydrogen research collaborations. The configuration consists of two circular, parallel plates that have an axis of symmetry directed away from the center of the earth. The plates are separated by a small vertical distance, and include one or more pairs of circular barriers that protrude from the upper and lower plates, thereby forming an aperture between the plates. Antihydrogen annihilations that occur just beyond each barrier, within a "shadow" region, are asymmetric on the upper plate relative to the lower plate. The probability for such annihilations is determined for a point, line and spheroidal source of antihydrogen. The production of 100,000 antiatoms is predicted to be necessary for the aperture-based experiment to indicate the direction of free fall acceleration of antimatter, provided that antihydrogen is produced within a sufficiently small antiproton plasma at a temperature of 4 K.

  4. Coded aperture subreflector array for high resolution radar imaging

    Science.gov (United States)

    Lynch, Jonathan J.; Herrault, Florian; Kona, Keerti; Virbila, Gabriel; McGuire, Chuck; Wetzel, Mike; Fung, Helen; Prophet, Eric

    2017-05-01

    HRL Laboratories has been developing a new approach for high resolution radar imaging on stationary platforms. High angular resolution is achieved by operating at 235 GHz and using a scalable tile phased array architecture that has the potential to realize thousands of elements at an affordable cost. HRL utilizes aperture coding techniques to minimize the size and complexity of the RF electronics needed for beamforming, and wafer level fabrication and integration allow tiles containing 1024 elements to be manufactured with reasonable costs. This paper describes the results of an initial feasibility study for HRL's Coded Aperture Subreflector Array (CASA) approach for a 1024 element micromachined antenna array with integrated single-bit phase shifters. Two candidate electronic device technologies were evaluated over the 170 - 260 GHz range, GaN HEMT transistors and GaAs Schottky diodes. Array structures utilizing silicon micromachining and die bonding were evaluated for etch and alignment accuracy. Finally, the overall array efficiency was estimated to be about 37% (not including spillover losses) using full wave array simulations and measured device performance, which is a reasonable value at 235 GHz. Based on the measured data we selected GaN HEMT devices operated passively with 0V drain bias due to their extremely low DC power dissipation.

  5. Stitching Type Large Aperture Depolarizer for Gas Monitoring Imaging Spectrometer

    Science.gov (United States)

    Liu, X.; Li, M.; An, N.; Zhang, T.; Cao, G.; Cheng, S.

    2018-04-01

    To increase the accuracy of radiation measurement for gas monitoring imaging spectrometer, it is necessary to achieve high levels of depolarization of the incoming beam. The preferred method in space instrument is to introduce the depolarizer into the optical system. It is a combination device of birefringence crystal wedges. Limited to the actual diameter of the crystal, the traditional depolarizer cannot be used in the large aperture imaging spectrometer (greater than 100 mm). In this paper, a stitching type depolarizer is presented. The design theory and numerical calculation model for dual babinet depolarizer were built. As required radiometric accuracies of the imaging spectrometer with 250 mm × 46 mm aperture, a stitching type dual babinet depolarizer was design in detail. Based on designing the optimum structural parmeters the tolerance of wedge angle refractive index, and central thickness were given. The analysis results show that the maximum residual polarization degree of output light from depolarizer is less than 2 %. The design requirements of polarization sensitivity is satisfied.

  6. Magnetic systems for wide-aperture neutron polarizers and analyzers

    Energy Technology Data Exchange (ETDEWEB)

    Gilev, A.G. [Neutron Research Department, Petersburg Nuclear Physics Institute, NRC “Kurchatov Institute”, Orlova Roscha, Gatchina, St. Petersburg 188300 (Russian Federation); Pleshanov, N.K., E-mail: pnk@pnpi.spb.ru [Neutron Research Department, Petersburg Nuclear Physics Institute, NRC “Kurchatov Institute”, Orlova Roscha, Gatchina, St. Petersburg 188300 (Russian Federation); Bazarov, B.A.; Bulkin, A.P.; Schebetov, A.F. [Neutron Research Department, Petersburg Nuclear Physics Institute, NRC “Kurchatov Institute”, Orlova Roscha, Gatchina, St. Petersburg 188300 (Russian Federation); Syromyatnikov, V.G. [Neutron Research Department, Petersburg Nuclear Physics Institute, NRC “Kurchatov Institute”, Orlova Roscha, Gatchina, St. Petersburg 188300 (Russian Federation); Physical Department, St. Petersburg State University, Ulyanovskaya, 1, Petrodvorets, St. Petersburg 198504 (Russian Federation); Tarnavich, V.V.; Ulyanov, V.A. [Neutron Research Department, Petersburg Nuclear Physics Institute, NRC “Kurchatov Institute”, Orlova Roscha, Gatchina, St. Petersburg 188300 (Russian Federation)

    2016-10-11

    Requirements on the field uniformity in neutron polarizers are analyzed in view of the fact that neutron polarizing coatings have been improved during the past decade. The design of magnetic systems that meet new requirements is optimized by numerical simulations. Magnetic systems for wide-aperture multichannel polarizers and analyzers are represented, including (a) the polarizer to be built at channel 4-4′ of the reactor PIK (Gatchina, Russia) for high-flux experiments with a 100×150 mm{sup 2} beam of polarized cold neutrons; (b) the fan analyzer covering a 150×100 mm{sup 2} window of the detector at the Magnetism Reflectometer (SNS, ORNL, USA); (c) the polarizer and (d) the fan analyzer covering a 220×110 mm{sup 2} window of the detector at the reflectometer NERO, which is transferred to PNPI (Russia) from HZG (Germany). Deviations of the field from the vertical did not exceed 2°. The polarizing efficiency of the analyzer at the Magnetism Reflectometer reached 99%, a record level for wide-aperture supermirror analyzers.

  7. Aperture-based antihydrogen gravity experiment: Parallel plate geometry

    Directory of Open Access Journals (Sweden)

    J. R. Rocha

    2013-10-01

    Full Text Available An analytical model and a Monte Carlo simulation are presented of an experiment that could be used to determine the direction of the acceleration of antihydrogen due to gravity. The experiment would rely on methods developed by existing antihydrogen research collaborations. The configuration consists of two circular, parallel plates that have an axis of symmetry directed away from the center of the earth. The plates are separated by a small vertical distance, and include one or more pairs of circular barriers that protrude from the upper and lower plates, thereby forming an aperture between the plates. Antihydrogen annihilations that occur just beyond each barrier, within a “shadow” region, are asymmetric on the upper plate relative to the lower plate. The probability for such annihilations is determined for a point, line and spheroidal source of antihydrogen. The production of 100,000 antiatoms is predicted to be necessary for the aperture-based experiment to indicate the direction of free fall acceleration of antimatter, provided that antihydrogen is produced within a sufficiently small antiproton plasma at a temperature of 4 K.

  8. STITCHING TYPE LARGE APERTURE DEPOLARIZER FOR GAS MONITORING IMAGING SPECTROMETER

    Directory of Open Access Journals (Sweden)

    X. Liu

    2018-04-01

    Full Text Available To increase the accuracy of radiation measurement for gas monitoring imaging spectrometer, it is necessary to achieve high levels of depolarization of the incoming beam. The preferred method in space instrument is to introduce the depolarizer into the optical system. It is a combination device of birefringence crystal wedges. Limited to the actual diameter of the crystal, the traditional depolarizer cannot be used in the large aperture imaging spectrometer (greater than 100 mm. In this paper, a stitching type depolarizer is presented. The design theory and numerical calculation model for dual babinet depolarizer were built. As required radiometric accuracies of the imaging spectrometer with 250 mm × 46 mm aperture, a stitching type dual babinet depolarizer was design in detail. Based on designing the optimum structural parmeters,the tolerance of wedge angle,refractive index, and central thickness were given. The analysis results show that the maximum residual polarization degree of output light from depolarizer is less than 2 %. The design requirements of polarization sensitivity is satisfied.

  9. Correcting false information in memory: manipulating the strength of misinformation encoding and its retraction.

    Science.gov (United States)

    Ecker, Ullrich K H; Lewandowsky, Stephan; Swire, Briony; Chang, Darren

    2011-06-01

    Information that is presumed to be true at encoding but later on turns out to be false (i.e., misinformation) often continues to influence memory and reasoning. In the present study, we investigated how the strength of encoding and the strength of a later retraction of the misinformation affect this continued influence effect. Participants read an event report containing misinformation and a subsequent correction. Encoding strength of the misinformation and correction were orthogonally manipulated either via repetition (Experiment 1) or by imposing a cognitive load during reading (Experiment 2). Results suggest that stronger retractions are effective in reducing the continued influence effects associated with strong misinformation encoding, but that even strong retractions fail to eliminate continued influence effects associated with relatively weak encoding. We present a simple computational model based on random sampling that captures this effect pattern, and conclude that the continued influence effect seems to defy most attempts to eliminate it.

  10. Emotional arousal and memory after deep encoding.

    Science.gov (United States)

    Leventon, Jacqueline S; Camacho, Gabriela L; Ramos Rojas, Maria D; Ruedas, Angelica

    2018-05-22

    Emotion often enhances long-term memory. One mechanism for this enhancement is heightened arousal during encoding. However, reducing arousal, via emotion regulation (ER) instructions, has not been associated with reduced memory. In fact, the opposite pattern has been observed: stronger memory for emotional stimuli encoded with an ER instruction to reduce arousal. This pattern may be due to deeper encoding required by ER instructions. In the current research, we examine the effects of emotional arousal and deep-encoding on memory across three studies. In Study 1, adult participants completed a writing task (deep-encoding) for encoding negative, neutral, and positive picture stimuli, whereby half the emotion stimuli had the ER instruction to reduce the emotion. Memory was strong across conditions, and no memory enhancement was observed for any condition. In Study 2, adult participants completed the same writing task as Study 1, as well as a shallow-encoding task for one-third of negative, neutral, and positive trials. Memory was strongest for deep vs. shallow encoding trials, with no effects of emotion or ER instruction. In Study 3, adult participants completed a shallow-encoding task for negative, neutral, and positive stimuli, with findings indicating enhanced memory for negative emotional stimuli. Findings suggest that deep encoding must be acknowledged as a source of memory enhancement when examining manipulations of emotion-related arousal. Copyright © 2018. Published by Elsevier B.V.

  11. Singer product apertures—A coded aperture system with a fast decoding algorithm

    International Nuclear Information System (INIS)

    Byard, Kevin; Shutler, Paul M.E.

    2017-01-01

    A new type of coded aperture configuration that enables fast decoding of the coded aperture shadowgram data is presented. Based on the products of incidence vectors generated from the Singer difference sets, we call these Singer product apertures. For a range of aperture dimensions, we compare experimentally the performance of three decoding methods: standard decoding, induction decoding and direct vector decoding. In all cases the induction and direct vector methods are several orders of magnitude faster than the standard method, with direct vector decoding being significantly faster than induction decoding. For apertures of the same dimensions the increase in speed offered by direct vector decoding over induction decoding is better for lower throughput apertures.

  12. Singer product apertures—A coded aperture system with a fast decoding algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Byard, Kevin, E-mail: kevin.byard@aut.ac.nz [School of Economics, Faculty of Business, Economics and Law, Auckland University of Technology, Auckland 1142 (New Zealand); Shutler, Paul M.E. [National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616 (Singapore)

    2017-06-01

    A new type of coded aperture configuration that enables fast decoding of the coded aperture shadowgram data is presented. Based on the products of incidence vectors generated from the Singer difference sets, we call these Singer product apertures. For a range of aperture dimensions, we compare experimentally the performance of three decoding methods: standard decoding, induction decoding and direct vector decoding. In all cases the induction and direct vector methods are several orders of magnitude faster than the standard method, with direct vector decoding being significantly faster than induction decoding. For apertures of the same dimensions the increase in speed offered by direct vector decoding over induction decoding is better for lower throughput apertures.

  13. Nonparaxial propagation and focusing properties of azimuthal-variant vector fields diffracted by an annular aperture.

    Science.gov (United States)

    Gu, Bing; Xu, Danfeng; Pan, Yang; Cui, Yiping

    2014-07-01

    Based on the vectorial Rayleigh-Sommerfeld integrals, the analytical expressions for azimuthal-variant vector fields diffracted by an annular aperture are presented. This helps us to investigate the propagation behaviors and the focusing properties of apertured azimuthal-variant vector fields under nonparaxial and paraxial approximations. The diffraction by a circular aperture, a circular disk, or propagation in free space can be treated as special cases of this general result. Simulation results show that the transverse intensity, longitudinal intensity, and far-field divergence angle of nonparaxially apertured azimuthal-variant vector fields depend strongly on the azimuthal index, the outer truncation parameter and the inner truncation parameter of the annular aperture, as well as the ratio of the waist width to the wavelength. Moreover, the multiple-ring-structured intensity pattern of the focused azimuthal-variant vector field, which originates from the diffraction effect caused by an annular aperture, is experimentally demonstrated.

  14. Pattern Synthesis of Dual-band Shared Aperture Interleaved Linear Antenna Arrays

    Directory of Open Access Journals (Sweden)

    H. Guo

    2014-09-01

    Full Text Available This paper presents an approach to improve the efficiency of an array aperture by interleaving two different arrays in the same aperture area. Two sub-arrays working at different frequencies are interleaved in the same linear aperture area. The available aperture area is efficiently used. The element positions of antenna array are optimized by using Invasive Weed Optimization (IWO to reduce the peak side lobe level (PSLL of the radiation pattern. To overcome the shortness of traditional methods which can only fulfill the design of shared aperture antenna array working at the same frequency, this method can achieve the design of dual-band antenna array with wide working frequency range. Simulation results show that the proposed method is feasible and efficient in the synthesis of dual-band shared aperture antenna array.

  15. Multi-aperture digital coherent combining for free-space optical communication receivers.

    Science.gov (United States)

    Geisler, David J; Yarnall, Timothy M; Stevens, Mark L; Schieler, Curt M; Robinson, Bryan S; Hamilton, Scott A

    2016-06-13

    Space-to-ground optical communication systems can benefit from reducing the size, weight, and power profiles of space terminals. One way of reducing the required power-aperture product on a space platform is to implement effective, but costly, single-aperture ground terminals with large collection areas. In contrast, we present a ground terminal receiver architecture in which many small less-expensive apertures are efficiently combined to create a large effective aperture while maintaining excellent receiver sensitivity. This is accomplished via coherent detection behind each aperture followed by digitization. The digitized signals are then combined in a digital signal processing chain. Experimental results demonstrate lossless coherent combining of four lasercom signals, at power levels below 0.1 photons/bit/aperture.

  16. SnoVault and encodeD: A novel object-based storage system and applications to ENCODE metadata.

    Directory of Open Access Journals (Sweden)

    Benjamin C Hitz

    Full Text Available The Encyclopedia of DNA elements (ENCODE project is an ongoing collaborative effort to create a comprehensive catalog of functional elements initiated shortly after the completion of the Human Genome Project. The current database exceeds 6500 experiments across more than 450 cell lines and tissues using a wide array of experimental techniques to study the chromatin structure, regulatory and transcriptional landscape of the H. sapiens and M. musculus genomes. All ENCODE experimental data, metadata, and associated computational analyses are submitted to the ENCODE Data Coordination Center (DCC for validation, tracking, storage, unified processing, and distribution to community resources and the scientific community. As the volume of data increases, the identification and organization of experimental details becomes increasingly intricate and demands careful curation. The ENCODE DCC has created a general purpose software system, known as SnoVault, that supports metadata and file submission, a database used for metadata storage, web pages for displaying the metadata and a robust API for querying the metadata. The software is fully open-source, code and installation instructions can be found at: http://github.com/ENCODE-DCC/snovault/ (for the generic database and http://github.com/ENCODE-DCC/encoded/ to store genomic data in the manner of ENCODE. The core database engine, SnoVault (which is completely independent of ENCODE, genomic data, or bioinformatic data has been released as a separate Python package.

  17. Translation symmetry of the Fraunhofer diffraction pattern from a polygonal aperture

    International Nuclear Information System (INIS)

    Vinogradov, I.R.; Tarlykov, V.A.

    1995-01-01

    The problem of observing the translation symmetry in the Fraunhofer diffraction pattern is treated. The objective of this study is to show that translation symmetry can be observed in the Fraunhofer diffraction pattern if the diffraction aperture can be represented in the form of a set of parallelogram apertures. It is shown that the diffraction field produced by such an aperture can be represented as a system of point sources modulated with an amplitude factor. 10 refs., 2 figs

  18. The Effect of Vibration Characteristics on the Atomization Rate in a Micro-Tapered Aperture Atomizer

    OpenAIRE

    Qiufeng Yan; Jianhui Zhang; Jun Huang; Ying Wang

    2018-01-01

    Because little is known about the atomization theory of a micro-tapered aperture atomizer, we investigated the vibration characteristics of this type of atomizer. The atomization mechanism of a micro-tapered aperture atomizer was described, and the atomization rate equation was deduced. As observed via microscopy, the angle of the micro-tapered aperture changes with the applied voltage, which proved the existence of a dynamic cone angle. The forward and reverse atomization rates were measured...

  19. Local Patch Vectors Encoded by Fisher Vectors for Image Classification

    Directory of Open Access Journals (Sweden)

    Shuangshuang Chen

    2018-02-01

    Full Text Available The objective of this work is image classification, whose purpose is to group images into corresponding semantic categories. Four contributions are made as follows: (i For computational simplicity and efficiency, we directly adopt raw image patch vectors as local descriptors encoded by Fisher vector (FV subsequently; (ii For obtaining representative local features within the FV encoding framework, we compare and analyze three typical sampling strategies: random sampling, saliency-based sampling and dense sampling; (iii In order to embed both global and local spatial information into local features, we construct an improved spatial geometry structure which shows good performance; (iv For reducing the storage and CPU costs of high dimensional vectors, we adopt a new feature selection method based on supervised mutual information (MI, which chooses features by an importance sorting algorithm. We report experimental results on dataset STL-10. It shows very promising performance with this simple and efficient framework compared to conventional methods.

  20. On-axis parallel ion speeds near mechanical and magnetic apertures in a helicon plasma device

    International Nuclear Information System (INIS)

    Sun Xuan; Cohen, S.A.; Scime, Earl E.; Miah, Mahmood

    2005-01-01

    Using laser-induced fluorescence, measurements of parallel ion velocities were made along the axis of a helicon-generated Ar plasma column whose radius was modified by spatially separated mechanical and magnetic apertures. Ion acceleration to supersonic speeds was observed 0.1-5 cm downstream of both aperture types, simultaneously generating two steady-state double layers (DLs) when both apertures were in place. The DL downstream of the mechanical aperture plate had a larger potential drop, Δφ DL =6-9 kT e , compared to the DL downstream of the magnetic aperture, Δφ DL ∼3 kT e . In the presheath region upstream of the mechanical aperture, the convective ion speed increased over a collisional distance; from stagnant at 4 cm from the aperture to the 1.4 times the sound speed at the aperture. The dependence of the free- and trapped-ion-velocity-distribution functions on the magnetic-field strength and mechanical-aperture electrical bias are also presented

  1. 11 T Twin-Aperture Nb$_3$Sn Dipole Development for LHC Upgrades

    CERN Document Server

    Zlobin, A V; Apollinari, G; Auchmann, B; Barzi, E; Izquierdo Bermudez, S; Bossert, R; Buehler, M; Chlachidze, G; DiMarco, J; Karppinen, M; Nobrega, F; Novitski, I; Rossi, L; Smekens, D; Tartaglia, M; Turrioni, D; Velev, Genadi

    2015-01-01

    FNAL and CERN are developing a twin-aperture 11 T Nb$_{3}$Sn dipole suitable for installation in the LHC. This paper describes the design and parameters of the 11 T dipole developed at FNAL for the LHC upgrades in both single-aperture and twin-aperture configurations, and presents details of the constructed dipole models. Results of studies of magnet quench performance, quench protection and magnetic measurements performed using short 1 m long coils in the dipole mirror and single-aperture configurations are reported and discussed.

  2. 11 T Twin-Aperture Nb$_3$Sn Dipole Development for LHC Upgrades

    Energy Technology Data Exchange (ETDEWEB)

    Zlobin, A. V. [Fermilab; Andreev, N. [Fermilab; Apollinari, G. [Fermilab; Auchmann, B. [CERN; Barzi, E. [Fermilab; Izquierdo Bermudez, S. [CERN; Bossert, R. [Fermilab; Buehler, M. [Fermilab; Chlachidze, G. [Fermilab; DiMarco, J. [Fermilab; Karppinen, M. [CERN; Nobrega, F. [Fermilab; Novitski, I. [CERN; Rossi, L. [CERN; Smekens, D. [CERN; Tartaglia, M. [Fermilab; Turrioni, D. [Fermilab; Velev, Genadi [Fermilab

    2015-01-01

    FNAL and CERN are developing a twin-aperture 11 T Nb3Sn dipole suitable for installation in the LHC. This paper describes the design and parameters of the 11 T dipole developed at FNAL for the LHC upgrades in both single-aperture and twin-aperture configurations, and presents details of the constructed dipole models. Results of studies of magnet quench performance, quench protection and magnetic measurements performed using short 1 m long coils in the dipole mirror and single-aperture configurations are reported and discussed.

  3. Plasmonic nanofocusing with a metallic pyramid and an integrated C-shaped aperture

    Science.gov (United States)

    Lindquist, Nathan C.; Johnson, Timothy W.; Nagpal, Prashant; Norris, David J.; Oh, Sang-Hyun

    2013-05-01

    We demonstrate the design, fabrication and characterization of a near-field plasmonic nanofocusing probe with a hybrid tip-plus-aperture design. By combining template stripping with focused ion beam lithography, a variety of aperture-based near-field probes can be fabricated with high optical performance. In particular, the combination of large transmission through a C-shaped aperture aligned to the sharp apex (<10 nm radius) of a template-stripped metallic pyramid allows the efficient delivery of light--via the C-shaped aperture--while providing a nanometric hotspot determined by the sharpness of the tip itself.

  4. Apparatus and method for deterministic control of surface figure during full aperture polishing

    Science.gov (United States)

    Suratwala, Tayyab Ishaq; Feit, Michael Dennis; Steele, William Augustus

    2013-11-19

    A polishing system configured to polish a lap includes a lap configured to contact a workpiece for polishing the workpiece; and a septum configured to contact the lap. The septum has an aperture formed therein. The radius of the aperture and radius the workpiece are substantially the same. The aperture and the workpiece have centers disposed at substantially the same radial distance from a center of the lap. The aperture is disposed along a first radial direction from the center of the lap, and the workpiece is disposed along a second radial direction from the center of the lap. The first and second radial directions may be opposite directions.

  5. Apparatus and method for deterministic control of surface figure during full aperture pad polishing

    Science.gov (United States)

    Suratwala, Tayyab Ishaq; Feit, Michael Douglas; Steele, William Augustus

    2017-10-10

    A polishing system configured to polish a lap includes a lap configured to contact a workpiece for polishing the workpiece; and a septum configured to contact the lap. The septum has an aperture formed therein. The radius of the aperture and radius the workpiece are substantially the same. The aperture and the workpiece have centers disposed at substantially the same radial distance from a center of the lap. The aperture is disposed along a first radial direction from the center of the lap, and the workpiece is disposed along a second radial direction from the center of the lap. The first and second radial directions may be opposite directions.

  6. Determination of the paraxial focal length using Zernike polynomials over different apertures

    Science.gov (United States)

    Binkele, Tobias; Hilbig, David; Henning, Thomas; Fleischmann, Friedrich

    2017-02-01

    The paraxial focal length is still the most important parameter in the design of a lens. As presented at the SPIE Optics + Photonics 2016, the measured focal length is a function of the aperture. The paraxial focal length can be found when the aperture approaches zero. In this work, we investigate the dependency of the Zernike polynomials on the aperture size with respect to 3D space. By this, conventional wavefront measurement systems that apply Zernike polynomial fitting (e.g. Shack-Hartmann-Sensor) can be used to determine the paraxial focal length, too. Since the Zernike polynomials are orthogonal over a unit circle, the aperture used in the measurement has to be normalized. By shrinking the aperture and keeping up with the normalization, the Zernike coefficients change. The relation between these changes and the paraxial focal length are investigated. The dependency of the focal length on the aperture size is derived analytically and evaluated by simulation and measurement of a strong focusing lens. The measurements are performed using experimental ray tracing and a Shack-Hartmann-Sensor. Using experimental ray tracing for the measurements, the aperture can be chosen easily. Regarding the measurements with the Shack-Hartmann- Sensor, the aperture size is fixed. Thus, the Zernike polynomials have to be adapted to use different aperture sizes by the proposed method. By doing this, the paraxial focal length can be determined from the measurements in both cases.

  7. High-contrast visible nulling coronagraph for segmented and arbitrary telescope apertures

    Science.gov (United States)

    Hicks, Brian A.; Lyon, Richard G.; Bolcar, Matthew R.; Clampin, Mark; Petrone, Peter

    2014-08-01

    Exoplanet coronagraphy will be driven by the telescope architectures available and thus the system designer must have available one or more suitable coronagraphic instrument choices that spans the set of telescope apertures, including filled (off-axis), obscured (e.g. with secondary mirror spiders and struts), segmented apertures, such as JWST, and interferometric apertures. In this work we present one such choice of coronagraph, known as the visible nulling coronagraph (VNC), that spans all four types of aperture and also employs differential sensing and control.

  8. Quench Performance of the First Twin-aperture 11 T Dipole for LHC upgrades

    CERN Document Server

    Zlobin, A V; Apollinari, G; Barzi, E; Chlachidze, G; Nobrega, A; Novitski, I; Stoynev, S; Turrioni, D; Auchmann, B; Izquierdo Bermudez, S; Karppinen, M; Rossi, L; Savary, F; Smekens, D

    2015-01-01

    FNAL and CERN are developing a twin-aperture 11 T Nb$_{3}$Sn dipole suitable for installation in the LHC. A single-aperture 2-m long dipole demonstrator and two 1-m long dipole models have been fabricated and tested at FNAL in 2012-2014. The two 1 m long collared coils were then assembled into the first twin-aperture Nb$_{3}$Sn demonstrator dipole and tested. Test results of this twin-aperture Nb$_{3}$Sn dipole model are reported and discussed.

  9. NMDA receptors and memory encoding.

    Science.gov (United States)

    Morris, Richard G M

    2013-11-01

    It is humbling to think that 30 years have passed since the paper by Collingridge, Kehl and McLennan showing that one of Jeff Watkins most interesting compounds, R-2-amino-5-phosphonopentanoate (d-AP5), blocked the induction of long-term potentiation in vitro at synapses from area CA3 of the hippocampus to CA1 without apparent effect on baseline synaptic transmission (Collingridge et al., 1983). This dissociation was one of the key triggers for an explosion of interest in glutamate receptors, and much has been discovered since that collectively contributes to our contemporary understanding of glutamatergic synapses - their biophysics and subunit composition, of the agonists and antagonists acting on them, and their diverse functions in different networks of the brain and spinal cord. It can be fairly said that Collingridge et al.'s (1983) observation was the stimulus that has led, on the one hand, to structural biological work at the atomic scale describing the key features of NMDA receptors that enables their coincidence function to happen; and, on the other, to work with whole animals investigating the contributions that calcium signalling via this receptor can have on rhythmical activities controlled by spinal circuits, memory encoding in the hippocampus (the topic of this article), visual cortical plasticity, sensitization in pain, and other functions. In this article, I lay out how my then interest in long-term potentiation (LTP) as a model of memory enabled me to recognise the importance of Collingridge et al.'s discovery - and how I and my colleagues endeavoured to take things forward in the area of learning and memory. This is in some respects a personal story, and I tell it as such. The idea that NMDA receptor activation is essential for memory encoding, though not for storage, took time to develop and to be accepted. Along the way, there have been confusions, challenges, and surprises surrounding the idea that activation of NMDA receptors can

  10. Electroencephalographic brain dynamics of memory encoding in emotionally arousing context

    Directory of Open Access Journals (Sweden)

    Carlos Enrique eUribe

    2011-06-01

    Full Text Available Emotional content/context enhances declarative memory through modulation of encoding and retrieval mechanisms. At encoding, neurophysiological data have consistently demonstrated the subsequent memory effect in theta and gamma oscillations. Yet, the existing studies were focused on the emotional content effect and let the emotional context effect unexplored. We hypothesized that theta and gamma oscillations show higher evoked/induced activity during the encoding of visual stimuli when delivered in an emotionally arousing context. Twenty-five healthy volunteers underwent evoked potentials recordings using a 21 scalp electrodes montage. They attended to an audiovisual test of emotional declarative memory being randomly assigned to either emotionally arousing or neutral context. Visual stimulus presentation was used as the time-locking event. Grand-averages of the evoked potentials and evoked spectral perturbations were calculated for each volunteer. Evoked potentials showed a higher negative deflection from 80 to 140 ms for the emotional condition. Such effect was observed over central, frontal and prefrontal locations bilaterally. Evoked theta power was higher in left parietal, central, frontal and prefrontal electrodes from -50 to 300 ms in the emotional condition. Evoked gamma power was higher in the emotional condition with a spatial distribution that overlapped at some points with the theta topography. The early theta power increase could be related to expectancy induced by auditory information processing that facilitates visual encoding in emotional contexts. Together, our results suggest that declarative memory enhancement for both emotional content and emotional context are supported by similar neural mechanisms at encoding, and offer new evidence about the brain processing of relevant environmental stimuli.

  11. Encoder designed to work in harsh environments

    Energy Technology Data Exchange (ETDEWEB)

    Toop, L.

    2007-05-15

    Dynapar has developed the Acuro AX71 absolute encoder for use on offshore or land-based oil rig operations. It provides feedback on the operation of automated systems such as draw works, racking systems, rotary tables and top drives. By ensuring that automated systems function properly, this encoder responds to a need by the oil and gas industry to keep workers safe and improve efficiency, particularly for operations in rugged situations. The encoder provides feedback from motor systems to controllers, giving information about position and speed of downhole drill bits. This newly developed encoder is better than commonly used incremental encoders which are not precise in strong electrical noise environments. Rather, the absolute encoder uses a different method of reporting to the controller. A digital signal is transmitted constantly as the device operates. It is less susceptible to noise issues. It is highly accurate, tolerant of noise and is not affected by power outages. However, the absolute encoder is generally more delicate in drilling applications with high ambient temperatures and shock levels. Dynapar addressed this issue by developing compact stainless steel housing that is useful for corrosion resistance in marine applications. The AX71 absolute encoder can withstand up to 100 G of mechanical shock and ambient temperatures of up to 60 degrees C. The encoder is ATEX certified without barriers, and offers the high resolution feedback of 4,000 counts of multiturn rotation and 16,000 counts of position. 1 fig.

  12. Large-Aperture Membrane Active Phased-Array Antennas

    Science.gov (United States)

    Karasik, Boris; McGrath, William; Leduc, Henry

    2009-01-01

    Large-aperture phased-array microwave antennas supported by membranes are being developed for use in spaceborne interferometric synthetic aperture radar systems. There may also be terrestrial uses for such antennas supported on stationary membranes, large balloons, and blimps. These antennas are expected to have areal mass densities of about 2 kg/sq m, satisfying a need for lightweight alternatives to conventional rigid phased-array antennas, which have typical areal mass densities between 8 and 15 kg/sq m. The differences in areal mass densities translate to substantial differences in total mass in contemplated applications involving aperture areas as large as 400 sq m. A membrane phased-array antenna includes patch antenna elements in a repeating pattern. All previously reported membrane antennas were passive antennas; this is the first active membrane antenna that includes transmitting/receiving (T/R) electronic circuits as integral parts. Other integral parts of the antenna include a network of radio-frequency (RF) feed lines (more specifically, a corporate feed network) and of bias and control lines, all in the form of flexible copper strip conductors on flexible polymeric membranes. Each unit cell of a prototype antenna (see Figure 1) contains a patch antenna element and a compact T/R module that is compatible with flexible membrane circuitry. There are two membrane layers separated by a 12.7-mm air gap. Each membrane layer is made from a commercially available flexible circuit material that, as supplied, comprises a 127-micron-thick polyimide dielectric layer clad on both sides with 17.5-micron-thick copper layers. The copper layers are patterned into RF, bias, and control conductors. The T/R module is located on the back side of the ground plane and is RF-coupled to the patch element via a slot. The T/R module is a hybrid multilayer module assembled and packaged independently and attached to the membrane array. At the time of reporting the information for

  13. Optimization of coronagraph design for segmented aperture telescopes

    Science.gov (United States)

    Jewell, Jeffrey; Ruane, Garreth; Shaklan, Stuart; Mawet, Dimitri; Redding, Dave

    2017-09-01

    The goal of directly imaging Earth-like planets in the habitable zone of other stars has motivated the design of coronagraphs for use with large segmented aperture space telescopes. In order to achieve an optimal trade-off between planet light throughput and diffracted starlight suppression, we consider coronagraphs comprised of a stage of phase control implemented with deformable mirrors (or other optical elements), pupil plane apodization masks (gray scale or complex valued), and focal plane masks (either amplitude only or complex-valued, including phase only such as the vector vortex coronagraph). The optimization of these optical elements, with the goal of achieving 10 or more orders of magnitude in the suppression of on-axis (starlight) diffracted light, represents a challenging non-convex optimization problem with a nonlinear dependence on control degrees of freedom. We develop a new algorithmic approach to the design optimization problem, which we call the "Auxiliary Field Optimization" (AFO) algorithm. The central idea of the algorithm is to embed the original optimization problem, for either phase or amplitude (apodization) in various planes of the coronagraph, into a problem containing additional degrees of freedom, specifically fictitious "auxiliary" electric fields which serve as targets to inform the variation of our phase or amplitude parameters leading to good feasible designs. We present the algorithm, discuss details of its numerical implementation, and prove convergence to local minima of the objective function (here taken to be the intensity of the on-axis source in a "dark hole" region in the science focal plane). Finally, we present results showing application of the algorithm to both unobscured off-axis and obscured on-axis segmented telescope aperture designs. The application of the AFO algorithm to the coronagraph design problem has produced solutions which are capable of directly imaging planets in the habitable zone, provided end

  14. Simultaneous beam sampling and aperture shape optimization for SPORT

    International Nuclear Information System (INIS)

    Zarepisheh, Masoud; Li, Ruijiang; Xing, Lei; Ye, Yinyu

    2015-01-01

    Purpose: Station parameter optimized radiation therapy (SPORT) was recently proposed to fully utilize the technical capability of emerging digital linear accelerators, in which the station parameters of a delivery system, such as aperture shape and weight, couch position/angle, gantry/collimator angle, can be optimized simultaneously. SPORT promises to deliver remarkable radiation dose distributions in an efficient manner, yet there exists no optimization algorithm for its implementation. The purpose of this work is to develop an algorithm to simultaneously optimize the beam sampling and aperture shapes. Methods: The authors build a mathematical model with the fundamental station point parameters as the decision variables. To solve the resulting large-scale optimization problem, the authors devise an effective algorithm by integrating three advanced optimization techniques: column generation, subgradient method, and pattern search. Column generation adds the most beneficial stations sequentially until the plan quality improvement saturates and provides a good starting point for the subsequent optimization. It also adds the new stations during the algorithm if beneficial. For each update resulted from column generation, the subgradient method improves the selected stations locally by reshaping the apertures and updating the beam angles toward a descent subgradient direction. The algorithm continues to improve the selected stations locally and globally by a pattern search algorithm to explore the part of search space not reachable by the subgradient method. By combining these three techniques together, all plausible combinations of station parameters are searched efficiently to yield the optimal solution. Results: A SPORT optimization framework with seamlessly integration of three complementary algorithms, column generation, subgradient method, and pattern search, was established. The proposed technique was applied to two previously treated clinical cases: a head and

  15. Simultaneous beam sampling and aperture shape optimization for SPORT

    Energy Technology Data Exchange (ETDEWEB)

    Zarepisheh, Masoud; Li, Ruijiang; Xing, Lei, E-mail: Lei@stanford.edu [Department of Radiation Oncology, Stanford University, Stanford, California 94305 (United States); Ye, Yinyu [Department of Management Science and Engineering, Stanford University, Stanford, California 94305 (United States)

    2015-02-15

    Purpose: Station parameter optimized radiation therapy (SPORT) was recently proposed to fully utilize the technical capability of emerging digital linear accelerators, in which the station parameters of a delivery system, such as aperture shape and weight, couch position/angle, gantry/collimator angle, can be optimized simultaneously. SPORT promises to deliver remarkable radiation dose distributions in an efficient manner, yet there exists no optimization algorithm for its implementation. The purpose of this work is to develop an algorithm to simultaneously optimize the beam sampling and aperture shapes. Methods: The authors build a mathematical model with the fundamental station point parameters as the decision variables. To solve the resulting large-scale optimization problem, the authors devise an effective algorithm by integrating three advanced optimization techniques: column generation, subgradient method, and pattern search. Column generation adds the most beneficial stations sequentially until the plan quality improvement saturates and provides a good starting point for the subsequent optimization. It also adds the new stations during the algorithm if beneficial. For each update resulted from column generation, the subgradient method improves the selected stations locally by reshaping the apertures and updating the beam angles toward a descent subgradient direction. The algorithm continues to improve the selected stations locally and globally by a pattern search algorithm to explore the part of search space not reachable by the subgradient method. By combining these three techniques together, all plausible combinations of station parameters are searched efficiently to yield the optimal solution. Results: A SPORT optimization framework with seamlessly integration of three complementary algorithms, column generation, subgradient method, and pattern search, was established. The proposed technique was applied to two previously treated clinical cases: a head and

  16. Simultaneous beam sampling and aperture shape optimization for SPORT.

    Science.gov (United States)

    Zarepisheh, Masoud; Li, Ruijiang; Ye, Yinyu; Xing, Lei

    2015-02-01

    Station parameter optimized radiation therapy (SPORT) was recently proposed to fully utilize the technical capability of emerging digital linear accelerators, in which the station parameters of a delivery system, such as aperture shape and weight, couch position/angle, gantry/collimator angle, can be optimized simultaneously. SPORT promises to deliver remarkable radiation dose distributions in an efficient manner, yet there exists no optimization algorithm for its implementation. The purpose of this work is to develop an algorithm to simultaneously optimize the beam sampling and aperture shapes. The authors build a mathematical model with the fundamental station point parameters as the decision variables. To solve the resulting large-scale optimization problem, the authors devise an effective algorithm by integrating three advanced optimization techniques: column generation, subgradient method, and pattern search. Column generation adds the most beneficial stations sequentially until the plan quality improvement saturates and provides a good starting point for the subsequent optimization. It also adds the new stations during the algorithm if beneficial. For each update resulted from column generation, the subgradient method improves the selected stations locally by reshaping the apertures and updating the beam angles toward a descent subgradient direction. The algorithm continues to improve the selected stations locally and globally by a pattern search algorithm to explore the part of search space not reachable by the subgradient method. By combining these three techniques together, all plausible combinations of station parameters are searched efficiently to yield the optimal solution. A SPORT optimization framework with seamlessly integration of three complementary algorithms, column generation, subgradient method, and pattern search, was established. The proposed technique was applied to two previously treated clinical cases: a head and neck and a prostate case

  17. Wideband Low Side Lobe Aperture Coupled Patch Phased Array Antennas

    Science.gov (United States)

    Poduval, Dhruva

    Low profile printed antenna arrays with wide bandwidth, high gain, and low Side Lobe Level (SLL) are in great demand for current and future commercial and military communication systems and radar. Aperture coupled patch antennas have been proposed to obtain wide impedance bandwidths in the past. Aperture coupling is preferred particularly for phased arrays because of their advantage of integration to other active devices and circuits, e.g. phase shifters, power amplifiers, low noise amplifiers, mixers etc. However, when designing such arrays, the interplay between array performance characteristics, such as gain, side lobe level, back lobe level, mutual coupling etc. must be understood and optimized under multiple design constraints, e.g. substrate material properties and thicknesses, element to element spacing, and feed lines and their orientation and arrangements with respect to the antenna elements. The focus of this thesis is to investigate, design, and develop an aperture coupled patch array with wide operating bandwidth (30%), high gain (17.5 dBi), low side lobe level (20 dB), and high Forward to Backward (F/B) ratio (21.8 dB). The target frequency range is 2.4 to 3 GHz given its wide application in WLAN, LTE (Long Term Evolution) and other communication systems. Notwithstanding that the design concept can very well be adapted at other frequencies. Specifically, a 16 element, 4 by 4 planar microstrip patch array is designed using HFSS and experimentally developed and tested. Starting from mutual coupling minimization a corporate feeding scheme is designed to achieve the needed performance. To reduce the SLL the corporate feeding network is redesigned to obtain a specific amplitude taper. Studies are conducted to determine the optimum location for a metallic reflector under the feed line to improve the F/B. An experimental prototype of the antenna was built and tested validating and demonstrating the performance levels expected from simulation predictions

  18. Least-squares reverse time migration of marine data with frequency-selection encoding

    KAUST Repository

    Dai, Wei

    2013-06-24

    The phase-encoding technique can sometimes increase the efficiency of the least-squares reverse time migration (LSRTM) by more than one order of magnitude. However, traditional random encoding functions require all the encoded shots to share the same receiver locations, thus limiting the usage to seismic surveys with a fixed spread geometry. We implement a frequency-selection encoding strategy that accommodates data with a marine streamer geometry. The encoding functions are delta functions in the frequency domain, so that all the encoded shots have unique nonoverlapping frequency content, and the receivers can distinguish the wavefield from each shot with a unique frequency band. Because the encoding functions are orthogonal to each other, there will be no crosstalk between different shots during modeling and migration. With the frequency-selection encoding method, the computational efficiency of LSRTM is increased so that its cost is comparable to conventional RTM for the Marmousi2 model and a marine data set recorded in the Gulf of Mexico. With more iterations, the LSRTM image quality is further improved by suppressing migration artifacts, balancing reflector amplitudes, and enhancing the spatial resolution. We conclude that LSRTM with frequency-selection is an efficient migration method that can sometimes produce more focused images than conventional RTM. © 2013 Society of Exploration Geophysicists.

  19. Wounding apertures: violence, affect and photography during and after apartheid

    Directory of Open Access Journals (Sweden)

    Kylie Thomas

    2012-01-01

    Full Text Available Between March and September 2012 there have been sixteen instances of 'necklacing' in the townships just outside of Cape Town. This article argues for understanding these events in relation to the violence of apartheid. It approaches the question of the meanings of the persistence of necklacing through an analysis of photographs of people who had been subject to vigilante violence in the 1980s. The article focuses on the work of Gille de Vlieg, a photographer who, during apartheid, was a member of the Black Sash and of the Afrapix photography collective. I read de Vlieg's photographs as a series of 'wounding apertures' that open a space for affective engagements with the violence of both the past and of the present. The importance of such engagements, the article argues, lies in what political philosopher Hannah Arendt has theorised as the constitutive relation between feeling, thinking and judging.

  20. Equipment and methods for synthetic aperture anatomic and flow imaging

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Nikolov, Svetoslav; Misaridis, Thanassis

    2002-01-01

    Conventional ultrasound imaging is done by sequentially probing in each image direction. The frame rate is, thus, limited by the speed of sound and the number of lines necessary to form an image. This is especially limiting in flow imaging, since multiple lines are used for flow estimation. Another...... problem is that each receiving transducer element must be connected to a receiver, which makes the expansion of the number of receive channels expensive. Synthetic aperture (SA) imaging is a radical change from the sequential image formation. Here ultrasound is emitted in all directions and the image...... is formed in all directions simultaneously over a number of acquisitions. SA images can therefore be perfectly focused in both transmit and receive for all depths, thus significantly improving image quality. A further advantage is that very fast imaging can be done, since only a few emissions are needed...

  1. Design of large aperture, low mass vacuum windows

    International Nuclear Information System (INIS)

    Leonhardt, W.J.; Mapes, M.

    1993-01-01

    Large vacuum vessels are employed downstream of fixed targets in High Energy Physics experiments to provide a long path for particles to traverse without interacting with air molecules. These vessels generally have a large aperture opening known as a vacuum window which employs a thin membrane to preserve the vacuum environment yet allows the particles to pass through with a minimal effect on them. Several large windows have been built using a composite of Kevlar/Mylar including circular windows to a diameter of 96.5 cm and rectangular windows up to 193 cm x 86 cm. This paper describes the design, fabrication, testing and operating experience with these windows and relates the actual performance to theoretical predictions

  2. Logarithmic Laplacian Prior Based Bayesian Inverse Synthetic Aperture Radar Imaging.

    Science.gov (United States)

    Zhang, Shuanghui; Liu, Yongxiang; Li, Xiang; Bi, Guoan

    2016-04-28

    This paper presents a novel Inverse Synthetic Aperture Radar Imaging (ISAR) algorithm based on a new sparse prior, known as the logarithmic Laplacian prior. The newly proposed logarithmic Laplacian prior has a narrower main lobe with higher tail values than the Laplacian prior, which helps to achieve performance improvement on sparse representation. The logarithmic Laplacian prior is used for ISAR imaging within the Bayesian framework to achieve better focused radar image. In the proposed method of ISAR imaging, the phase errors are jointly estimated based on the minimum entropy criterion to accomplish autofocusing. The maximum a posterior (MAP) estimation and the maximum likelihood estimation (MLE) are utilized to estimate the model parameters to avoid manually tuning process. Additionally, the fast Fourier Transform (FFT) and Hadamard product are used to minimize the required computational efficiency. Experimental results based on both simulated and measured data validate that the proposed algorithm outperforms the traditional sparse ISAR imaging algorithms in terms of resolution improvement and noise suppression.

  3. Development of a multispectral autoradiography using a coded aperture

    Science.gov (United States)

    Noto, Daisuke; Takeda, Tohoru; Wu, Jin; Lwin, Thet T.; Yu, Quanwen; Zeniya, Tsutomu; Yuasa, Tetsuya; Hiranaka, Yukio; Itai, Yuji; Akatsuka, Takao

    2000-11-01

    Autoradiography is a useful imaging technique to understand biological functions using tracers including radio isotopes (RI's). However, it is not easy to describe the distribution of different kinds of tracers simultaneously by conventional autoradiography using X-ray film or Imaging plate. Each tracer describes each corresponding biological function. Therefore, if we can simultaneously estimate distribution of different kinds of tracer materials, the multispectral autoradiography must be a quite powerful tool to better understand physiological mechanisms of organs. So we are developing a system using a solid state detector (SSD) with high energy- resolution. Here, we introduce an imaging technique with a coded aperture to get spatial and spectral information more efficiently. In this paper, the imaging principle is described, and its validity and fundamental property are discussed by both simulation and phantom experiments with RI's such as 201Tl, 99mTc, 67Ga, and 123I.

  4. Performance limits for maritime Inverse Synthetic Aperture Radar (ISAR)

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-11-01

    The performance of an Inverse Synthetic Aperture Radar (ISAR) system depends on a variety of factors, many which are interdependent in some manner. In this report we specifically examine ISAR as applied to maritime targets (e.g. ships). It is often difficult to get your arms around the problem of ascertaining achievable performance limits, and yet those limits exist and are dictated by physics. This report identifies and explores those limits, and how they depend on hardware system parameters and environmental conditions. Ultimately, this leads to a characterization of parameters that offer optimum performance for the overall ISAR system. While the information herein is not new to the literature, its collection into a single report hopes to offer some value in reducing the seek time.

  5. Dynamical Aperture Control in Accelerator Lattices With Multipole Potentials

    CERN Document Server

    Morozov, I

    2017-01-01

    We develop tools for symbolic representation of a non-linear accelerator model and analytical methods for description of non-linear dynamics. Information relevant to the dynamic aperture (DA) is then obtained from this model and can be used for indirect DA control or as a complement to direct numerical optimization. We apply two analytical methods and use multipole magnets to satisfy derived analytical constraints. The accelerator model is represented as a product of unperturbed and perturbed exponential operators with the exponent of the perturbed operator given as a power series in the perturbation parameter. Normal forms can be applied to this representation and the lattice parameters are used to control the normal form Hamiltonian and normal form transformation. Hamiltonian control is used to compute a control term or controlled operator. Lattice parameters are then fitted to satisfy the imposed control constraints. Theoretical results, as well as illustrative examples, are presented.

  6. Aperture Synthesis Methods and Applications to Optical Astronomy

    CERN Document Server

    Saha, Swapan Kumar

    2011-01-01

    Over the years long baseline optical interferometry has slowly gained in importance and today it is a powerful tool. This timely book sets out to highlight the basic principles of long baseline optical interferometry. The book addresses the fundamentals of stellar interferometry with emphasis on aperture synthesis using an array of telescopes particularly at optical/IR wavelengths. It discusses the fundamentals of electromagnetic fields, wave optics, interference, diffraction, and imaging at length. There is a chapter dedicated to radio and intensity interferometry corroborating with basic mathematical steps. The basic principle of optical interferometry and its requirements, its limitations and the technical challenges it poses, are also covered in depth. Assisted by illustrations and footnotes, the book examines the basic tricks of the trade, current trends and methods, and it points to the potential of true interferometry both from the ground and space.

  7. INTERFEROMETRIC SYNTHETIC APERTURE RADAR (INSAR TECHNOLOGY AND GEOMORPHOLOGY INTERPRETATION

    Directory of Open Access Journals (Sweden)

    M. Maghsoudi

    2013-09-01

    Full Text Available Geomorphology is briefly the study of landforms and their formative processes on the surface of the planet earth as human habitat. The landforms evolution and the formative processes can best be studied by technologies with main application in study of elevation. Interferometric Synthetic Aperture Radar (InSAR is the appropriate technology for this application. With phase differences calculations in radar waves, the results of this technology can extensively be interpreted for geomorphologic researches. The purpose of the study is to review the geomorphologic studies using InSAR and also the technical studies about InSAR with geomorphologic interpretations. This study states that the InSAR technology can be recommended to be employed as a fundamental for geomorphology researches.

  8. Low-redundancy linear arrays in mirrored interferometric aperture synthesis.

    Science.gov (United States)

    Zhu, Dong; Hu, Fei; Wu, Liang; Li, Jun; Lang, Liang

    2016-01-15

    Mirrored interferometric aperture synthesis (MIAS) is a novel interferometry that can improve spatial resolution compared with that of conventional IAS. In one-dimensional (1-D) MIAS, antenna array with low redundancy has the potential to achieve a high spatial resolution. This Letter presents a technique for the direct construction of low-redundancy linear arrays (LRLAs) in MIAS and derives two regular analytical patterns that can yield various LRLAs in short computation time. Moreover, for a better estimation of the observed scene, a bi-measurement method is proposed to handle the rank defect associated with the transmatrix of those LRLAs. The results of imaging simulation demonstrate the effectiveness of the proposed method.

  9. Dual-camera design for coded aperture snapshot spectral imaging.

    Science.gov (United States)

    Wang, Lizhi; Xiong, Zhiwei; Gao, Dahua; Shi, Guangming; Wu, Feng

    2015-02-01

    Coded aperture snapshot spectral imaging (CASSI) provides an efficient mechanism for recovering 3D spectral data from a single 2D measurement. However, since the reconstruction problem is severely underdetermined, the quality of recovered spectral data is usually limited. In this paper we propose a novel dual-camera design to improve the performance of CASSI while maintaining its snapshot advantage. Specifically, a beam splitter is placed in front of the objective lens of CASSI, which allows the same scene to be simultaneously captured by a grayscale camera. This uncoded grayscale measurement, in conjunction with the coded CASSI measurement, greatly eases the reconstruction problem and yields high-quality 3D spectral data. Both simulation and experimental results demonstrate the effectiveness of the proposed method.

  10. Rocking convex array used for 3D synthetic aperture focusing

    DEFF Research Database (Denmark)

    Andresen, Henrik; Nikolov, Svetoslav; Pedersen, M M

    2008-01-01

    Volumetric imaging can be performed using 1D arrays in combination with mechanical motion. Outside the elevation focus of the array, the resolution and contrast quickly degrade compared to the azimuth plane, because of the fixed transducer focus. The purpose of this paper is to use synthetic...... aperture focusing (SAF) for enhancing the elevation focusing for a convex rocking array, to obtain a more isotropic point spread function. This paper presents further development of the SAF method, which can be used with curved array combined with a rocking motion. The method uses a virtual source (VS...... Kretztechnik, Zipf, Austria). The array has an elevation focus at 60 mm of depth, and the angular rocking velocity is up to 140deg/s. The scan sequence uses an fprf of 4500 - 7000 Hz allowing up to 15 cm of penetration. The full width at half max (FWHM) and main-lobe to side-lobe ratio (MLSL) is used...

  11. Ultrasound beam transmission using a discretely orthogonal Gaussian aperture basis

    Science.gov (United States)

    Roberts, R. A.

    2018-04-01

    Work is reported on development of a computational model for ultrasound beam transmission at an arbitrary geometry transmission interface for generally anisotropic materials. The work addresses problems encountered when the fundamental assumptions of ray theory do not hold, thereby introducing errors into ray-theory-based transmission models. Specifically, problems occur when the asymptotic integral analysis underlying ray theory encounters multiple stationary phase points in close proximity, due to focusing caused by concavity on either the entry surface or a material slowness surface. The approach presented here projects integrands over both the transducer aperture and the entry surface beam footprint onto a Gaussian-derived basis set, thereby distributing the integral over a summation of second-order phase integrals which are amenable to single stationary phase point analysis. Significantly, convergence is assured provided a sufficiently fine distribution of basis functions is used.

  12. Alignment effects on a neutron imaging system using coded apertures

    International Nuclear Information System (INIS)

    Thfoin, Isabelle; Landoas, Olivier; Caillaud, Tony; Vincent, Maxime; Bourgade, Jean-Luc; Rosse, Bertrand; Disdier, Laurent; Sangster, Thomas C.; Glebov, Vladimir Yu.; Pien, Greg; Armstrong, William

    2010-01-01

    A high resolution neutron imaging system is being developed and tested on the OMEGA laser facility for inertial confinement fusion experiments. This diagnostic uses a coded imaging technique with a penumbral or an annular aperture. The sensitiveness of these techniques to misalignment was pointed out with both experiments and simulations. Results obtained during OMEGA shots are in good agreement with calculations performed with the Monte Carlo code GEANT4. Both techniques are sensitive to the relative position of the source in the field of view. The penumbral imaging technique then demonstrates to be less sensitive to misalignment compared to the ring. These results show the necessity to develop a neutron imaging diagnostic for megajoule class lasers taking into account our alignment capabilities on such facilities.

  13. Synthetic Aperture Flow Imaging Using a Dual Beamformer Approach

    DEFF Research Database (Denmark)

    Li, Ye

    Color flow mapping systems have become widely used in clinical applications. It provides an opportunity to visualize the velocity profile over a large region in the vessel, which makes it possible to diagnose, e.g., occlusion of veins, heart valve deficiencies, and other hemodynamic problems....... However, while the conventional ultrasound imaging of making color flow mapping provides useful information in many circumstances, the spatial velocity resolution and frame rate are limited. The entire velocity distribution consists of image lines from different directions, and each image line...... on the current commercial ultrasound scanner. The motivation for this project is to develop a method lowering the amount of calculations and still maintaining beamforming quality sufficient for flow estimation. Synthetic aperture using a dual beamformer approach is investigated using Field II simulations...

  14. Landau damping dynamic aperture and octupole in LHC

    CERN Document Server

    Gareyte, Jacques; Ruggiero, F

    1997-01-01

    Maximization of the dynamic aperture and Landau damping of the collective instabilities are partly conflicting requirements. On the one hand, the non-linearities of the lattice must be minimized at large oscillation amplitude to guarantee the stability of the single particle motion. On the other hand, a spread of the betatron frequencies is necessary to guarantee the stability of the collective motion of bunches of particles; this requires the introduction of non-linearities effective at small amplitudes. We show in this note that the `natural' spread of betatron tunes due to the field imperfections is inadequate or Landau damping. An octupole scheme is required to provide collective stability at high energy. At low energy it may be used to find the optimum between the correction of the octupolar field imperfections and Landau damping. The solution of the stability problem taking into account the two degrees of freedom of the transverse motion allows a significant saving in octupole strength: 144 octupoles wi...

  15. Large-aperture, high-damage-threshold optics for beamlet

    International Nuclear Information System (INIS)

    Campbell, J.H.; Atherton, L.J.; DeYoreo, J.J.; Kozlowski, M.R.; Maney, R.T.; Montesanti, R.C.; Sheehan, L.M.; Barker, C.E.

    1995-01-01

    Beamlet serves as a test bed for the proposed NIF laser design and components. Therefore, its optics are similar in size and quality to those proposed for the NIF. In general, the optics in the main laser cavity and transport section of Beamlet are larger and have higher damage thresholds than the optics manufactured for any of our previous laser systems. In addition, the quality of the Beamlet optical materials is higher, leading to better wavefront quality, higher optical transmission, and lower-intensity modulation of the output laser beam than, for example, that typically achieved on Nova. In this article, we discuss the properties and characteristics of the large-aperture optics used on Beamlet

  16. Segmented Aperture Interferometric Nulling Testbed (SAINT) II: component systems update

    Science.gov (United States)

    Hicks, Brian A.; Bolcar, Matthew R.; Helmbrecht, Michael A.; Petrone, Peter; Burke, Elliot; Corsetti, James; Dillon, Thomas; Lea, Andrew; Pellicori, Samuel; Sheets, Teresa; Shiri, Ron; Agolli, Jack; DeVries, John; Eberhardt, Andrew; McCabe, Tyler

    2017-09-01

    This work presents updates to the coronagraph and telescope components of the Segmented Aperture Interferometric Nulling Testbed (SAINT). The project pairs an actively-controlled macro-scale segmented mirror with the Visible Nulling Coronagraph (VNC) towards demonstrating capabilities for the future space observatories needed to directly detect and characterize a significant sample of Earth-sized worlds around nearby stars in the quest for identifying those which may be habitable and possibly harbor life. Efforts to improve the VNC wavefront control optics and mechanisms towards repeating narrowband results are described. A narrative is provided for the design of new optical components aimed at enabling broadband performance. Initial work with the hardware and software interface for controlling the segmented telescope mirror is also presented.

  17. Hybrid coded aperture and Compton imaging using an active mask

    International Nuclear Information System (INIS)

    Schultz, L.J.; Wallace, M.S.; Galassi, M.C.; Hoover, A.S.; Mocko, M.; Palmer, D.M.; Tornga, S.R.; Kippen, R.M.; Hynes, M.V.; Toolin, M.J.; Harris, B.; McElroy, J.E.; Wakeford, D.; Lanza, R.C.; Horn, B.K.P.; Wehe, D.K.

    2009-01-01

    The trimodal imager (TMI) images gamma-ray sources from a mobile platform using both coded aperture (CA) and Compton imaging (CI) modalities. In this paper we will discuss development and performance of image reconstruction algorithms for the TMI. In order to develop algorithms in parallel with detector hardware we are using a GEANT4 [J. Allison, K. Amako, J. Apostolakis, H. Araujo, P.A. Dubois, M. Asai, G. Barrand, R. Capra, S. Chauvie, R. Chytracek, G. Cirrone, G. Cooperman, G. Cosmo, G. Cuttone, G. Daquino, et al., IEEE Trans. Nucl. Sci. NS-53 (1) (2006) 270] based simulation package to produce realistic data sets for code development. The simulation code incorporates detailed detector modeling, contributions from natural background radiation, and validation of simulation results against measured data. Maximum likelihood algorithms for both imaging methods are discussed, as well as a hybrid imaging algorithm wherein CA and CI information is fused to generate a higher fidelity reconstruction.

  18. Offshore Wind Potential in South India from Synthetic Aperture Radar

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Bingöl, Ferhat; Badger, Merete

    are from Wide Swath Mode and each cover approximately 400 km by 400 km. The ocean wind speed maps are retrieved and processed at Risø DTU. The results show wind energy density from 200 W/m2 to 500 W/m2 at 10 m height above sea level. QuikSCAT ocean winds are included as background information on the 10......The offshore wind energy potential for pre-feasibility in South India in the area from 77° to 80° Eastern longitude and 7° to 10° Northern latitude is observed from a total of 164 ENVISAT Advanced Synthetic Aperture Radar (ASAR) satellite images during the years 2002 to 2011. All satellite scenes......-year mean and a general description of the winds and climate with monsoons in India is presented....

  19. YSAR: a compact low-cost synthetic aperture radar

    Science.gov (United States)

    Thompson, Douglas G.; Arnold, David V.; Long, David G.; Miner, Gayle F.; Karlinsey, Thomas W.; Robertson, Adam E.

    1997-09-01

    The Brigham Young University Synthetic Aperture Radar (YSAR) is a compact, inexpensive SAR system which can be flown on a small aircraft. The system has exhibited a resolution of approximately 0.8 m by 0.8 m in test flights in calm conditions. YSAR has been used to collect data over archeological sites in Israel. Using a relatively low frequency (2.1 GHz), we hope to be able to identify walls or other archeological features to assist in excavation. A large data set of radar and photographic data have been collected over sites at Tel Safi, Qumran, Tel Micnah, and the Zippori National Forest in Israel. We show sample images from the archeological data. We are currently working on improved autofocus algorithms for this data and are developing a small, low-cost interferometric SAR system (YINSAR) for operation from a small aircraft.

  20. Seamless Synthetic Aperture Radar Archive for Interferometry Analysis

    Science.gov (United States)

    Baker, S.; Baru, C.; Bryson, G.; Buechler, B.; Crosby, C.; Fielding, E.; Meertens, C.; Nicoll, J.; Youn, C.

    2014-11-01

    The NASA Advancing Collaborative Connections for Earth System Science (ACCESS) seamless synthetic aperture radar (SAR) archive (SSARA) project is a collaboration between UNAVCO, the Alaska Satellite Facility (ASF), the Jet Propulsion Laboratory (JPL), and OpenTopography at the San Diego Supercomputer Center (SDSC) to design and implement a seamless distributed access system for SAR data and derived interferometric SAR (InSAR) data products. A unified application programming interface (API) has been created to search the SAR archives at ASF and UNAVCO, 30 and 90-m SRTM DEM data available through OpenTopography, and tropospheric data from the NASA OSCAR project at JPL. The federated query service provides users a single access point to search for SAR granules, InSAR pairs, and corresponding DEM and tropospheric data products from the four archives, as well as the ability to search and download pre-processed InSAR products from ASF and UNAVCO.

  1. Design of large aperture, low mass vacuum windows

    International Nuclear Information System (INIS)

    Mapes, M.; Leonhardt, W.J.

    1993-01-01

    Large aperture, low mass, thin vacuum windows are required to minimize beam loss in the beam lines of particle accelerators as the products of nuclear collisions move from upstream targets to downstream detectors. This article describes the design, fabrication, testing, and operating experience of a large rectangular vacuum window, 122 cmx61 cm, and two circular windows of 91.4 and 96.5 cm diam. These window designs utilize a composite Kevlar 29 fabric and Mylar laminate as a window material with a typical combined thickness of 0.35 mm. Data for several material thicknesses are also presented. The windows are usually designed to withstand a pressure differential of two to three atmospheres to achieve the required factor of safety. These windows are typically used in the medium vacuum range of 10 -4 Torr. The equations used to predict the behavior of the window material will also be discussed

  2. Design of large aperture, low mass vacuum windows

    International Nuclear Information System (INIS)

    Leonhardt, W.J.; Mapes, M.

    1993-01-01

    Large vacuum vessels are employed downstream of fixed targets in High Energy Physics experiments to provide a long path for particles to transverse without interacting with air molecules. These vessels generally have a large aperture opening known as a open-quotes vacuum windowclose quotes which employs a thin membrane to preserve the vacuum environment yet allows the particles to pass through with a minimal effect on them. Several large windows have been built using a composite of Kevlar/Mylar including circular windows to a diameter of 96.5 cm and rectangular windows up to 193 cm x 86 cm. This paper describes the design, fabrication, testing and operating experience with these windows and relates the actual performance to theoretical predictions

  3. Offshore wind potential in South India from synthetic aperture radar

    Energy Technology Data Exchange (ETDEWEB)

    Hasager, C.B.; Bingoel, F.; Badger, M.; Karagali, I.; Sreevalsan, E.

    2011-10-15

    The offshore wind energy potential for pre-feasibility in South India in the area from 77 deg. to 80 deg. Eastern longitude and 7 deg. to 10 deg. Northern latitude is observed from a total of 164 ENVISAT Advanced Synthetic Aperture Radar (ASAR) satellite images during the years 2002 to 2011. All satellite scenes are from Wide Swath Mode and each cover approximately 400 km by 400 km. The ocean wind speed maps are retrieved and processed at Risoe DTU. The results show wind energy density from 200 W/m2 to 500 W/m2 at 10 m height above sea level. QuikSCAT ocean winds are included as background information on the 10-year mean and a general description of the winds and climate with monsoons in India is presented. (Author)

  4. The rapid terrain visualization interferometric synthetic aperture radar sensor

    Science.gov (United States)

    Graham, Robert H.; Bickel, Douglas L.; Hensley, William H.

    2003-11-01

    The Rapid Terrain Visualization interferometric synthetic aperture radar was designed and built at Sandia National Laboratories as part of an Advanced Concept Technology Demonstration (ACTD) to "demonstrate the technologies and infrastructure to meet the Army requirement for rapid generation of digital topographic data to support emerging crisis or contingencies." This sensor is currently being operated by Sandia National Laboratories for the Joint Precision Strike Demonstration (JPSD) Project Office to provide highly accurate digital elevation models (DEMs) for military and civilian customers, both inside and outside of the United States. The sensor achieves better than DTED Level IV position accuracy in near real-time. The system is being flown on a deHavilland DHC-7 Army aircraft. This paper outlines some of the technologies used in the design of the system, discusses the performance, and will discuss operational issues. In addition, we will show results from recent flight tests, including high accuracy maps taken of the San Diego area.

  5. In Vivo Real Time Volumetric Synthetic Aperture Ultrasound Imaging

    DEFF Research Database (Denmark)

    Bouzari, Hamed; Rasmussen, Morten Fischer; Brandt, Andreas Hjelm

    2015-01-01

    Synthetic aperture (SA) imaging can be used to achieve real-time volumetric ultrasound imaging using 2-D array transducers. The sensitivity of SA imaging is improved by maximizing the acoustic output, but one must consider the limitations of an ultrasound system, both technical and biological....... This paper investigates the in vivo applicability and sensitivity of volumetric SA imaging. Utilizing the transmit events to generate a set of virtual point sources, a frame rate of 25 Hz for a 90° x 90° field-of-view was achieved. Data were obtained using a 3.5 MHz 32 x 32 elements 2-D phased array...... transducer connected to the experimental scanner (SARUS). Proper scaling is applied to the excitation signal such that intensity levels are in compliance with the U.S. Food and Drug Administration regulations for in vivo ultrasound imaging. The measured Mechanical Index and spatial-peak- temporal...

  6. Direct aperture optimization: A turnkey solution for step-and-shoot IMRT

    International Nuclear Information System (INIS)

    Shepard, D.M.; Earl, M.A.; Li, X.A.; Naqvi, S.; Yu, C.

    2002-01-01

    IMRT treatment plans for step-and-shoot delivery have traditionally been produced through the optimization of intensity distributions (or maps) for each beam angle. The optimization step is followed by the application of a leaf-sequencing algorithm that translates each intensity map into a set of deliverable aperture shapes. In this article, we introduce an automated planning system in which we bypass the traditional intensity optimization, and instead directly optimize the shapes and the weights of the apertures. We call this approach 'direct aperture optimization'. This technique allows the user to specify the maximum number of apertures per beam direction, and hence provides significant control over the complexity of the treatment delivery. This is possible because the machine dependent delivery constraints imposed by the MLC are enforced within the aperture optimization algorithm rather than in a separate leaf-sequencing step. The leaf settings and the aperture intensities are optimized simultaneously using a simulated annealing algorithm. We have tested direct aperture optimization on a variety of patient cases using the EGS4/BEAM Monte Carlo package for our dose calculation engine. The results demonstrate that direct aperture optimization can produce highly conformal step-and-shoot treatment plans using only three to five apertures per beam direction. As compared with traditional optimization strategies, our studies demonstrate that direct aperture optimization can result in a significant reduction in both the number of beam segments and the number of monitor units. Direct aperture optimization therefore produces highly efficient treatment deliveries that maintain the full dosimetric benefits of IMRT

  7. NST: Thermal Modeling for a Large Aperture Solar Telescope

    Science.gov (United States)

    Coulter, Roy

    2011-05-01

    Late in the 1990s the Dutch Open Telescope demonstrated that internal seeing in open, large aperture solar telescopes can be controlled by flushing air across the primary mirror and other telescope structures exposed to sunlight. In that system natural wind provides a uniform air temperature throughout the imaging volume, while efficiently sweeping heated air away from the optics and mechanical structure. Big Bear Solar Observatory's New Solar Telescope (NST) was designed to realize that same performance in an enclosed system by using both natural wind through the dome and forced air circulation around the primary mirror to provide the uniform air temperatures required within the telescope volume. The NST is housed in a conventional, ventilated dome with a circular opening, in place of the standard dome slit, that allows sunlight to fall only on an aperture stop and the primary mirror. The primary mirror is housed deep inside a cylindrical cell with only minimal openings in the side at the level of the mirror. To date, the forced air and cooling systems designed for the NST primary mirror have not been implemented, yet the telescope regularly produces solar images indicative of the absence of mirror seeing. Computational Fluid Dynamics (CFD) analysis of the NST primary mirror system along with measurements of air flows within the dome, around the telescope structure, and internal to the mirror cell are used to explain the origin of this seemingly incongruent result. The CFD analysis is also extended to hypothetical systems of various scales. We will discuss the results of these investigations.

  8. Factors affecting the performance of large-aperture microphone arrays

    Science.gov (United States)

    Silverman, Harvey F.; Patterson, William R.; Sachar, Joshua

    2002-05-01

    Large arrays of microphones have been proposed and studied as a possible means of acquiring data in offices, conference rooms, and auditoria without requiring close-talking microphones. When such an array essentially surrounds all possible sources, it is said to have a large aperture. Large-aperture arrays have attractive properties of spatial resolution and signal-to-noise enhancement. This paper presents a careful comparison of theoretical and measured performance for an array of 256 microphones using simple delay-and-sum beamforming. This is the largest currently functional, all digital-signal-processing array that we know of. The array is wall-mounted in the moderately adverse environment of a general-purpose laboratory (8 m×8 m×3 m). The room has a T60 reverberation time of 550 ms. Reverberation effects in this room severely impact the array's performance. However, the width of the main lobe remains comparable to that of a simplified prediction. Broadband spatial resolution shows a single central peak with 10 dB gain about 0.4 m in diameter at the -3 dB level. Away from that peak, the response is approximately flat over most of the room. Optimal weighting for signal-to-noise enhancement degrades the spatial resolution minimally. Experimentally, we verify that signal-to-noise gain is less than proportional to the square root of the number of microphones probably due to the partial correlation of the noise between channels, to variation of signal intensity with polar angle about the source, and to imperfect correlation of the signal over the array caused by reverberations. We show measurements of the relative importance of each effect in our environment.

  9. The Arabic Diatessaron Project: Digitalizing, Encoding, Lemmatization

    Directory of Open Access Journals (Sweden)

    Giuliano Lancioni

    2016-04-01

    Full Text Available The Arabic Diatessaron Project (henceforth ADP is an international research project in Digital Humanities that aims to collect, digitalise and encode all known manuscripts of the Arabic Diatessaron (henceforth AD, a text that has been relatively neglected in scholarly research. ADP’s final goal is to provide a number of tools that can enable scholars to effectively query, compare and investigate all known variants of the text that will be encoded as far as possible in compliance with the Text Encoding Initiative (TEI guidelines. The paper addresses a number of issues involved in the process of digitalising manuscripts included in the two existing editions (Ciasca 1888 and Marmardji 1935, adding variants in unedited manuscripts, encoding and lemmatising the text. Issues involved in the design of the ADP include presentation of variants, choice of the standard text, applicability of TEI guidelines, automatic translation between different encodings, cross-edition concordances and principles of lemmatisation.

  10. Aperture Determination in the LHC Based on an Emittance Blowup Technique with Collimator Position Scan

    CERN Document Server

    Assmann, R W; del Carmen Alabau, M; Giovannozzi, M; Muller, GJ; Redaelli, S; Schmidt, F; Tomas, R; Wenninger, J; Wollmann, D

    2011-01-01

    A new method to determine the LHC aperture was proposed. The new component is a collimator scan technique that refers the globally measured aperture limit to the shadow of the primary collimator, expressed in sigmas of rms beam size. As a by-product the BLM response to beam loss is quantified. The method is described and LHC measurement results are presented.

  11. Electromagnetic and mechanical design of a 56 mm aperture mode dipole for the LHC

    International Nuclear Information System (INIS)

    Ahlbaeck, J.; Ikaeheimo, J.; Jaervi, J.

    1994-01-01

    The Large Hadron Collider (LHC) project is proposed as the future extension of the CERN accelerator complex. The LHC requires twin aperture superconducting dipoles of highest possible field to guide the proton beams in the existing LEP tunnel of 26.7 km circumference. This paper describes the electromagnetic and mechanical design of a 56 mm aperture model dipole for the LHC

  12. Coded aperture solution for improving the performance of traffic enforcement cameras

    Science.gov (United States)

    Masoudifar, Mina; Pourreza, Hamid Reza

    2016-10-01

    A coded aperture camera is proposed for automatic license plate recognition (ALPR) systems. It captures images using a noncircular aperture. The aperture pattern is designed for the rapid acquisition of high-resolution images while preserving high spatial frequencies of defocused regions. It is obtained by minimizing an objective function, which computes the expected value of perceptual deblurring error. The imaging conditions and camera sensor specifications are also considered in the proposed function. The designed aperture improves the depth of field (DoF) and subsequently ALPR performance. The captured images can be directly analyzed by the ALPR software up to a specific depth, which is 13 m in our case, though it is 11 m for the circular aperture. Moreover, since the deblurring results of images captured by our aperture yield fewer artifacts than those captured by the circular aperture, images can be first deblurred and then analyzed by the ALPR software. In this way, the DoF and recognition rate can be improved at the same time. Our case study shows that the proposed camera can improve the DoF up to 17 m while it is limited to 11 m in the conventional aperture.

  13. Large-aperture plasma-assisted deposition of inertial confinement fusion laser coatings.

    Science.gov (United States)

    Oliver, James B; Kupinski, Pete; Rigatti, Amy L; Schmid, Ansgar W; Lambropoulos, John C; Papernov, Semyon; Kozlov, Alexei; Spaulding, John; Sadowski, Daniel; Chrzan, Z Roman; Hand, Robert D; Gibson, Desmond R; Brinkley, Ian; Placido, Frank

    2011-03-20

    Plasma-assisted electron-beam evaporation leads to changes in the crystallinity, density, and stresses of thin films. A dual-source plasma system provides stress control of large-aperture, high-fluence coatings used in vacuum for substrates 1m in aperture.

  14. A novel approach to correct the coded aperture misalignment for fast neutron imaging

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, F. N.; Hu, H. S., E-mail: huasi-hu@mail.xjtu.edu.cn; Wang, D. M.; Jia, J. [School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Zhang, T. K. [Laser Fusion Research Center, CAEP, Mianyang, 621900 Sichuan (China); Jia, Q. G. [Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China)

    2015-12-15

    Aperture alignment is crucial for the diagnosis of neutron imaging because it has significant impact on the coding imaging and the understanding of the neutron source. In our previous studies on the neutron imaging system with coded aperture for large field of view, “residual watermark,” certain extra information that overlies reconstructed image and has nothing to do with the source is discovered if the peak normalization is employed in genetic algorithms (GA) to reconstruct the source image. Some studies on basic properties of residual watermark indicate that the residual watermark can characterize coded aperture and can thus be used to determine the location of coded aperture relative to the system axis. In this paper, we have further analyzed the essential conditions for the existence of residual watermark and the requirements of the reconstruction algorithm for the emergence of residual watermark. A gamma coded imaging experiment has been performed to verify the existence of residual watermark. Based on the residual watermark, a correction method for the aperture misalignment has been studied. A multiple linear regression model of the position of coded aperture axis, the position of residual watermark center, and the gray barycenter of neutron source with twenty training samples has been set up. Using the regression model and verification samples, we have found the position of the coded aperture axis relative to the system axis with an accuracy of approximately 20 μm. Conclusively, a novel approach has been established to correct the coded aperture misalignment for fast neutron coded imaging.

  15. An examination of the number of required apertures for step-and-shoot IMRT

    International Nuclear Information System (INIS)

    Jiang, Z; Earl, M A; Zhang, G W; Yu, C X; Shepard, D M

    2005-01-01

    We have examined the degree to which step-and-shoot IMRT treatment plans can be simplified (using a small number of apertures) without sacrificing the dosimetric quality of the plans. A key element of this study was the use of direct aperture optimization (DAO), an inverse planning technique where all of the multi-leaf collimator constraints are incorporated into the optimization. For seven cases (1 phantom, 1 prostate, 3 head-and-neck and 2 lung), DAO was used to perform a series of optimizations where the number of apertures per beam direction varied from 1 to 15. In this work, we attempt to provide general guidelines for how many apertures per beam direction are sufficient for various clinical cases using DAO. Analysis of the optimized treatment plans reveals that for most cases, only modest improvements in the objective function and the corresponding DVHs are seen beyond 5 apertures per beam direction. However, for more complex cases, some dosimetric gain can be achieved by increasing the number of apertures per beam direction beyond 5. Even in these cases, however, only modest improvements are observed beyond 9 apertures per beam direction. In our clinical experience, 38 out of the first 40 patients treated using IMRT plans produced using DAO were treated with 9 or fewer apertures per beam direction. The results indicate that many step-and-shoot IMRT treatment plans delivered today are more complex than necessary and can be simplified without sacrificing plan quality

  16. Spaceborne L-band Radiometers: Push-broom or Synthetic Aperture?

    DEFF Research Database (Denmark)

    Skou, Niels

    2004-01-01

    L-band radiometers can measure ocean salinity and soil moisture from space. A synthetic aperture radiometer system, SMOS, is under development by ESA for launch in 2007. A real aperture push-broom system, Aquarius, has been approved by NASA for launch in 2008. Pros et cons of the two fundamentally...

  17. A model for visual memory encoding.

    Directory of Open Access Journals (Sweden)

    Rodolphe Nenert

    Full Text Available Memory encoding engages multiple concurrent and sequential processes. While the individual processes involved in successful encoding have been examined in many studies, a sequence of events and the importance of modules associated with memory encoding has not been established. For this reason, we sought to perform a comprehensive examination of the network for memory encoding using data driven methods and to determine the directionality of the information flow in order to build a viable model of visual memory encoding. Forty healthy controls ages 19-59 performed a visual scene encoding task. FMRI data were preprocessed using SPM8 and then processed using independent component analysis (ICA with the reliability of the identified components confirmed using ICASSO as implemented in GIFT. The directionality of the information flow was examined using Granger causality analyses (GCA. All participants performed the fMRI task well above the chance level (>90% correct on both active and control conditions and the post-fMRI testing recall revealed correct memory encoding at 86.33 ± 5.83%. ICA identified involvement of components of five different networks in the process of memory encoding, and the GCA allowed for the directionality of the information flow to be assessed, from visual cortex via ventral stream to the attention network and then to the default mode network (DMN. Two additional networks involved in this process were the cerebellar and the auditory-insular network. This study provides evidence that successful visual memory encoding is dependent on multiple modules that are part of other networks that are only indirectly related to the main process. This model may help to identify the node(s of the network that are affected by a specific disease processes and explain the presence of memory encoding difficulties in patients in whom focal or global network dysfunction exists.

  18. A model for visual memory encoding.

    Science.gov (United States)

    Nenert, Rodolphe; Allendorfer, Jane B; Szaflarski, Jerzy P

    2014-01-01

    Memory encoding engages multiple concurrent and sequential processes. While the individual processes involved in successful encoding have been examined in many studies, a sequence of events and the importance of modules associated with memory encoding has not been established. For this reason, we sought to perform a comprehensive examination of the network for memory encoding using data driven methods and to determine the directionality of the information flow in order to build a viable model of visual memory encoding. Forty healthy controls ages 19-59 performed a visual scene encoding task. FMRI data were preprocessed using SPM8 and then processed using independent component analysis (ICA) with the reliability of the identified components confirmed using ICASSO as implemented in GIFT. The directionality of the information flow was examined using Granger causality analyses (GCA). All participants performed the fMRI task well above the chance level (>90% correct on both active and control conditions) and the post-fMRI testing recall revealed correct memory encoding at 86.33 ± 5.83%. ICA identified involvement of components of five different networks in the process of memory encoding, and the GCA allowed for the directionality of the information flow to be assessed, from visual cortex via ventral stream to the attention network and then to the default mode network (DMN). Two additional networks involved in this process were the cerebellar and the auditory-insular network. This study provides evidence that successful visual memory encoding is dependent on multiple modules that are part of other networks that are only indirectly related to the main process. This model may help to identify the node(s) of the network that are affected by a specific disease processes and explain the presence of memory encoding difficulties in patients in whom focal or global network dysfunction exists.

  19. Imaging examinations and diagnosis of children's ectopic uretal aperture (with a review of 68 cases)

    International Nuclear Information System (INIS)

    Zhai Jiankun; Liu Liwei

    2004-01-01

    Objective: To discuss the imaging findings and examination methods of ectopic uretal aperture in children. Methods: The clinical data, imaging methods and findings of 68 cases with ectopic uretal aperture were analyzed retrospectively. Results: In 44 cases ectopic uretal aperture were associated with duplex kidneys (DK), and in 24 cases ectopic uretal aperture were associated with dysplasia of kidneys. IVU could display direct or indirect signs of DK in all cases. While it could hardly display dysplastic kidney and ectopic uretal aperture. CT scans were performed in 8 patients, in which DK, dysplastic kidney and the draining ureters could be evaluated. Conclusion: Definitive diagnosis is made in most cases with the integrating the clinical information and IVU findings. However, CT scan is recommended in a few cases

  20. A functional probe with bowtie aperture and bull's eye structure for nanolithograph

    International Nuclear Information System (INIS)

    Wang Shuo; Wang Qiao; Guo Ying-Yan; Pan Shi; Li Xu-Feng

    2012-01-01

    The bowtie aperture surrounded by concentric gratings (the bull's eye structure) integrated on the near-field scanning optical microscopy (NSOM) probe (aluminum coated fiber tip) for nanolithography has been investigated using the finite-difference time domain (FDTD) method. By modifying the parameters of the bowtie aperture and the concentric gratings, a maximal field enhancement factor of 391.69 has been achieved, which is 18 times larger than that obtained from the single bowtie aperture. Additionally, the light spot depends on the gap size of the bowtie aperture and can be confined to sub-wavelength. The superiority of the combination of the bowtie aperture and the bull's eye structure is confirmed, and the mechanism for the electric field enhancement in this derived structure is analyzed

  1. A functional probe with bowtie aperture and bull's eye structure for nanolithograph

    Science.gov (United States)

    Wang, Shuo; Li, Xu-Feng; Wang, Qiao; Guo, Ying-Yan; Pan, Shi

    2012-10-01

    The bowtie aperture surrounded by concentric gratings (the bull's eye structure) integrated on the near-field scanning optical microscopy (NSOM) probe (aluminum coated fiber tip) for nanolithography has been investigated using the finite-difference time domain (FDTD) method. By modifying the parameters of the bowtie aperture and the concentric gratings, a maximal field enhancement factor of 391.69 has been achieved, which is 18 times larger than that obtained from the single bowtie aperture. Additionally, the light spot depends on the gap size of the bowtie aperture and can be confined to sub-wavelength. The superiority of the combination of the bowtie aperture and the bull's eye structure is confirmed, and the mechanism for the electric field enhancement in this derived structure is analyzed.

  2. First Beam Based Aperture Measurements in the Arcs of the CERN Large Hadron Collider

    CERN Document Server

    Redaelli, S; Calaga, R; Dehning, B; Giovannozzi, M; Roncarolo, F; Tomás, R

    2010-01-01

    The LHC injection tests performed in August and early September 2008 in preparation for the circulating beam operation provided the first opportunity to measure with beam the mechanical aperture in two LHC sectors (2-3 and 7- 8). The aperture was probed by exciting free oscillations and local orbit bumps of the injected beam trajectories. Intensities of a few 109 protons were used to remain safely below the quench limit of superconductingmagnets in case of beam losses. The methods used to measure the mechanical aperture, the available on-line tools, and beam measurements for both sectors are presented. Detailed comparisons with the expected results from the as-built aperture models are also presented. It is shown that the measurements results are in good agreement with the LHC design aperture.

  3. Statistical measurement of power spectrum density of large aperture optical component

    International Nuclear Information System (INIS)

    Xu Jiancheng; Xu Qiao; Chai Liqun

    2010-01-01

    According to the requirement of ICF, a method based on statistical theory has been proposed to measure the power spectrum density (PSD) of large aperture optical components. The method breaks the large-aperture wavefront into small regions, and obtains the PSD of the large-aperture wavefront by weighted averaging of the PSDs of the regions, where the weight factor is each region's area. Simulation and experiment demonstrate the effectiveness of the proposed method. They also show that, the obtained PSDs of the large-aperture wavefront by statistical method and sub-aperture stitching method fit well, when the number of small regions is no less than 8 x 8. The statistical method is not sensitive to translation stage's errors and environment instabilities, thus it is appropriate for PSD measurement during the process of optical fabrication. (authors)

  4. Acoustic Source Localization via Subspace Based Method Using Small Aperture MEMS Arrays

    Directory of Open Access Journals (Sweden)

    Xin Zhang

    2014-01-01

    Full Text Available Small aperture microphone arrays provide many advantages for portable devices and hearing aid equipment. In this paper, a subspace based localization method is proposed for acoustic source using small aperture arrays. The effects of array aperture on localization are analyzed by using array response (array manifold. Besides array aperture, the frequency of acoustic source and the variance of signal power are simulated to demonstrate how to optimize localization performance, which is carried out by introducing frequency error with the proposed method. The proposed method for 5 mm array aperture is validated by simulations and experiments with MEMS microphone arrays. Different types of acoustic sources can be localized with the highest precision of 6 degrees even in the presence of wind noise and other noises. Furthermore, the proposed method reduces the computational complexity compared with other methods.

  5. MAP-MRF-Based Super-Resolution Reconstruction Approach for Coded Aperture Compressive Temporal Imaging

    Directory of Open Access Journals (Sweden)

    Tinghua Zhang

    2018-02-01

    Full Text Available Coded Aperture Compressive Temporal Imaging (CACTI can afford low-cost temporal super-resolution (SR, but limits are imposed by noise and compression ratio on reconstruction quality. To utilize inter-frame redundant information from multiple observations and sparsity in multi-transform domains, a robust reconstruction approach based on maximum a posteriori probability and Markov random field (MAP-MRF model for CACTI is proposed. The proposed approach adopts a weighted 3D neighbor system (WNS and the coordinate descent method to perform joint estimation of model parameters, to achieve the robust super-resolution reconstruction. The proposed multi-reconstruction algorithm considers both total variation (TV and ℓ 2 , 1 norm in wavelet domain to address the minimization problem for compressive sensing, and solves it using an accelerated generalized alternating projection algorithm. The weighting coefficient for different regularizations and frames is resolved by the motion characteristics of pixels. The proposed approach can provide high visual quality in the foreground and background of a scene simultaneously and enhance the fidelity of the reconstruction results. Simulation results have verified the efficacy of our new optimization framework and the proposed reconstruction approach.

  6. Single-Pol Synthetic Aperture Radar Terrain Classification using Multiclass Confidence for One-Class Classifiers

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Mark William [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Steinbach, Ryan Matthew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Moya, Mary M [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-10-01

    Except in the most extreme conditions, Synthetic aperture radar (SAR) is a remote sensing technology that can operate day or night. A SAR can provide surveillance over a long time period by making multiple passes over a wide area. For object-based intelligence it is convenient to segment and classify the SAR images into objects that identify various terrains and man-made structures that we call “static features.” In this paper we introduce a novel SAR image product that captures how different regions decorrelate at different rates. Using superpixels and their first two moments we develop a series of one-class classification algorithms using a goodness-of-fit metric. P-value fusion is used to combine the results from different classes. We also show how to combine multiple one-class classifiers to get a confidence about a classification. This can be used by downstream algorithms such as a conditional random field to enforce spatial constraints.

  7. Incoherent digital holograms acquired by interferenceless coded aperture correlation holography system without refractive lenses.

    Science.gov (United States)

    Kumar, Manoj; Vijayakumar, A; Rosen, Joseph

    2017-09-14

    We present a lensless, interferenceless incoherent digital holography technique based on the principle of coded aperture correlation holography. The acquired digital hologram by this technique contains a three-dimensional image of some observed scene. Light diffracted by a point object (pinhole) is modulated using a random-like coded phase mask (CPM) and the intensity pattern is recorded and composed as a point spread hologram (PSH). A library of PSHs is created using the same CPM by moving the pinhole to all possible axial locations. Intensity diffracted through the same CPM from an object placed within the axial limits of the PSH library is recorded by a digital camera. The recorded intensity this time is composed as the object hologram. The image of the object at any axial plane is reconstructed by cross-correlating the object hologram with the corresponding component of the PSH library. The reconstruction noise attached to the image is suppressed by various methods. The reconstruction results of multiplane and thick objects by this technique are compared with regular lens-based imaging.

  8. Encoding of Spatial Attention by Primate Prefrontal Cortex Neuronal Ensembles

    Science.gov (United States)

    Treue, Stefan

    2018-01-01

    Abstract Single neurons in the primate lateral prefrontal cortex (LPFC) encode information about the allocation of visual attention and the features of visual stimuli. However, how this compares to the performance of neuronal ensembles at encoding the same information is poorly understood. Here, we recorded the responses of neuronal ensembles in the LPFC of two macaque monkeys while they performed a task that required attending to one of two moving random dot patterns positioned in different hemifields and ignoring the other pattern. We found single units selective for the location of the attended stimulus as well as for its motion direction. To determine the coding of both variables in the population of recorded units, we used a linear classifier and progressively built neuronal ensembles by iteratively adding units according to their individual performance (best single units), or by iteratively adding units based on their contribution to the ensemble performance (best ensemble). For both methods, ensembles of relatively small sizes (n decoding performance relative to individual single units. However, the decoder reached similar performance using fewer neurons with the best ensemble building method compared with the best single units method. Our results indicate that neuronal ensembles within the LPFC encode more information about the attended spatial and nonspatial features of visual stimuli than individual neurons. They further suggest that efficient coding of attention can be achieved by relatively small neuronal ensembles characterized by a certain relationship between signal and noise correlation structures. PMID:29568798

  9. Randomization tests

    CERN Document Server

    Edgington, Eugene

    2007-01-01

    Statistical Tests That Do Not Require Random Sampling Randomization Tests Numerical Examples Randomization Tests and Nonrandom Samples The Prevalence of Nonrandom Samples in Experiments The Irrelevance of Random Samples for the Typical Experiment Generalizing from Nonrandom Samples Intelligibility Respect for the Validity of Randomization Tests Versatility Practicality Precursors of Randomization Tests Other Applications of Permutation Tests Questions and Exercises Notes References Randomized Experiments Unique Benefits of Experiments Experimentation without Mani

  10. Aperture-Tolerant, Chemical-Based Methods to Reduce Channeling

    Energy Technology Data Exchange (ETDEWEB)

    Randall S. Seright

    2007-09-30

    This final technical progress report describes work performed from October 1, 2004, through May 16, 2007, for the project, 'Aperture-Tolerant, Chemical-Based Methods to Reduce Channeling'. We explored the potential of pore-filling gels for reducing excess water production from both fractured and unfractured production wells. Several gel formulations were identified that met the requirements--i.e., providing water residual resistance factors greater than 2,000 and ultimate oil residual resistance factors (F{sub rro}) of 2 or less. Significant oil throughput was required to achieve low F{sub rro} values, suggesting that gelant penetration into porous rock must be small (a few feet or less) for existing pore-filling gels to provide effective disproportionate permeability reduction. Compared with adsorbed polymers and weak gels, strong pore-filling gels can provide greater reliability and behavior that is insensitive to the initial rock permeability. Guidance is provided on where relative-permeability-modification/disproportionate-permeability-reduction treatments can be successfully applied for use in either oil or gas production wells. When properly designed and executed, these treatments can be successfully applied to a limited range of oilfield excessive-water-production problems. We examined whether gel rheology can explain behavior during extrusion through fractures. The rheology behavior of the gels tested showed a strong parallel to the results obtained from previous gel extrusion experiments. However, for a given aperture (fracture width or plate-plate separation), the pressure gradients measured during the gel extrusion experiments were much higher than anticipated from rheology measurements. Extensive experiments established that wall slip and first normal stress difference were not responsible for the pressure gradient discrepancy. To explain the discrepancy, we noted that the aperture for gel flow (for mobile gel wormholing through concentrated

  11. Encoding of coordination complexes with XML.

    Science.gov (United States)

    Vinoth, P; Sankar, P

    2017-09-01

    An in-silico system to encode structure, bonding and properties of coordination complexes is developed. The encoding is achieved through a semantic XML markup frame. Composition of the coordination complexes is captured in terms of central atom and ligands. Structural information of central atom is detailed in terms of electron status of valence electron orbitals. The ligands are encoded with specific reference to the electron environment of ligand centre atoms. Behaviour of ligands to form low or high spin complexes is accomplished by assigning a Ligand Centre Value to every ligand based on the electronic environment of ligand centre atom. Chemical ontologies are used for categorization purpose and to control different hybridization schemes. Complexes formed by the central atoms of transition metal, non-transition elements belonging to s-block, p-block and f-block are encoded with a generic encoding platform. Complexes of homoleptic, heteroleptic and bridged types are also covered by this encoding system. Utility of the encoded system to predict redox electron transfer reaction in the coordination complexes is demonstrated with a simple application. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. A Monte Carlo study of the acceptance to scattered events in a depth encoding PET camera

    International Nuclear Information System (INIS)

    Moisan, C.; Tupper, P.; Rogers, J.G.; DeJong, J.K.

    1995-10-01

    We present a Monte Carlo study of acceptance to scattered events in a Depth Encoding Large Aperture Camera (DELAC), a hypothetical PET scanner with the capacity to encode the depth-of-interaction (DOI) of incident γ-rays. The simulation is initially validated against the measured energy resolution and scatter fraction of the ECAT-953B scanner. It is then used to assess the response to scattered events in a PET camera made of position encoding blocks of the EXACT HR PLUS type, modified to have DOI resolution through a variation in the photopeak pulse height. The detection efficiency for 511 keV γ-rays, as well as for those that scattered in the object or left only part of their energy in the block, is studied for several combinations of DOI sensitivities and block thicknesses. The scatter fraction predicted by the simulation for DELACs of various ring radii is compared to that of the ECAT-953B as a function of the energy threshold. The results indicate that the poorer discrimination of object scatters with depth sensitive blocks does not lead to a dramatic increase of the scatter fraction. (author). 10 refs., 1 tab., 5 figs

  13. Encoding entanglement-assisted quantum stabilizer codes

    International Nuclear Information System (INIS)

    Wang Yun-Jiang; Bai Bao-Ming; Li Zhuo; Xiao He-Ling; Peng Jin-Ye

    2012-01-01

    We address the problem of encoding entanglement-assisted (EA) quantum error-correcting codes (QECCs) and of the corresponding complexity. We present an iterative algorithm from which a quantum circuit composed of CNOT, H, and S gates can be derived directly with complexity O(n 2 ) to encode the qubits being sent. Moreover, we derive the number of each gate consumed in our algorithm according to which we can design EA QECCs with low encoding complexity. Another advantage brought by our algorithm is the easiness and efficiency of programming on classical computers. (general)

  14. Tetrahydrocannabinol (THC) impairs encoding but not retrieval of verbal information.

    Science.gov (United States)

    Ranganathan, Mohini; Radhakrishnan, Rajiv; Addy, Peter H; Schnakenberg-Martin, Ashley M; Williams, Ashley H; Carbuto, Michelle; Elander, Jacqueline; Pittman, Brian; Andrew Sewell, R; Skosnik, Patrick D; D'Souza, Deepak Cyril

    2017-10-03

    Cannabis and agonists of the brain cannabinoid receptor (CB 1 R) produce acute memory impairments in humans. However, the extent to which cannabinoids impair the component processes of encoding and retrieval has not been established in humans. The objective of this analysis was to determine whether the administration of Δ 9 -Tetrahydrocannabinol (THC), the principal psychoactive constituent of cannabis, impairs encoding and/or retrieval of verbal information. Healthy subjects were recruited from the community. Subjects were administered the Rey-Auditory Verbal Learning Test (RAVLT) either before administration of THC (experiment #1) (n=38) or while under the influence of THC (experiment #2) (n=57). Immediate and delayed recall on the RAVLT was compared. Subjects received intravenous THC, in a placebo-controlled, double-blind, randomized manner at doses known to produce behavioral and subjective effects consistent with cannabis intoxication. Total immediate recall, short delayed recall, and long delayed recall were reduced in a statistically significant manner only when the RAVLT was administered to subjects while they were under the influence of THC (experiment #2) and not when the RAVLT was administered prior. THC acutely interferes with encoding of verbal memory without interfering with retrieval. These data suggest that learning information prior to the use of cannabis or cannabinoids is not likely to disrupt recall of that information. Future studies will be necessary to determine whether THC impairs encoding of non-verbal information, to what extent THC impairs memory consolidation, and the role of other cannabinoids in the memory-impairing effects of cannabis. Cannabinoids, Neural Synchrony, and Information Processing (THC-Gamma) http://clinicaltrials.gov/ct2/show/study/NCT00708994 NCT00708994 Pharmacogenetics of Cannabinoid Response http://clinicaltrials.gov/ct2/show/NCT00678730 NCT00678730. Copyright © 2017. Published by Elsevier Inc.

  15. A deep auto-encoder model for gene expression prediction.

    Science.gov (United States)

    Xie, Rui; Wen, Jia; Quitadamo, Andrew; Cheng, Jianlin; Shi, Xinghua

    2017-11-17

    Gene expression is a key intermediate level that genotypes lead to a particular trait. Gene expression is affected by various factors including genotypes of genetic variants. With an aim of delineating the genetic impact on gene expression, we build a deep auto-encoder model to assess how good genetic variants will contribute to gene expression changes. This new deep learning model is a regression-based predictive model based on the MultiLayer Perceptron and Stacked Denoising Auto-encoder (MLP-SAE). The model is trained using a stacked denoising auto-encoder for feature selection and a multilayer perceptron framework for backpropagation. We further improve the model by introducing dropout to prevent overfitting and improve performance. To demonstrate the usage of this model, we apply MLP-SAE to a real genomic datasets with genotypes and gene expression profiles measured in yeast. Our results show that the MLP-SAE model with dropout outperforms other models including Lasso, Random Forests and the MLP-SAE model without dropout. Using the MLP-SAE model with dropout, we show that gene expression quantifications predicted by the model solely based on genotypes, align well with true gene expression patterns. We provide a deep auto-encoder model for predicting gene expression from SNP genotypes. This study demonstrates that deep learning is appropriate for tackling another genomic problem, i.e., building predictive models to understand genotypes' contribution to gene expression. With the emerging availability of richer genomic data, we anticipate that deep learning models play a bigger role in modeling and interpreting genomics.

  16. Least-squares reverse time migration of marine data with frequency-selection encoding

    KAUST Repository

    Dai, Wei

    2013-08-20

    The phase-encoding technique can sometimes increase the efficiency of the least-squares reverse time migration (LSRTM) by more than one order of magnitude. However, traditional random encoding functions require all the encoded shots to share the same receiver locations, thus limiting the usage to seismic surveys with a fixed spread geometry. We implement a frequency-selection encoding strategy that accommodates data with a marine streamer geometry. The encoding functions are delta functions in the frequency domain, so that all the en- coded shots have unique non-overlapping frequency content, and the receivers can distinguish the wavefield from each shot with a unique frequency band. Since the encoding functions are orthogonal to each other, there will be no crosstalk between different shots during modeling and migration. With the frequency-selection encoding method, the computational efficiency of LSRTM is increased so that its cost is compara- ble to conventional RTM for both the Marmousi2 model and a marine data set recorded in the Gulf of Mexico. With more iterations, the LSRTM image quality is further improved. We conclude that LSRTM with frequency-selection is an efficient migration method that can sometimes produce more focused images than conventional RTM.

  17. Coded aperture imaging of alpha source spatial distribution

    International Nuclear Information System (INIS)

    Talebitaher, Alireza; Shutler, Paul M.E.; Springham, Stuart V.; Rawat, Rajdeep S.; Lee, Paul

    2012-01-01

    The Coded Aperture Imaging (CAI) technique has been applied with CR-39 nuclear track detectors to image alpha particle source spatial distributions. The experimental setup comprised: a 226 Ra source of alpha particles, a laser-machined CAI mask, and CR-39 detectors, arranged inside a vacuum enclosure. Three different alpha particle source shapes were synthesized by using a linear translator to move the 226 Ra source within the vacuum enclosure. The coded mask pattern used is based on a Singer Cyclic Difference Set, with 400 pixels and 57 open square holes (representing ρ = 1/7 = 14.3% open fraction). After etching of the CR-39 detectors, the area, circularity, mean optical density and positions of all candidate tracks were measured by an automated scanning system. Appropriate criteria were used to select alpha particle tracks, and a decoding algorithm applied to the (x, y) data produced the de-coded image of the source. Signal to Noise Ratio (SNR) values obtained for alpha particle CAI images were found to be substantially better than those for corresponding pinhole images, although the CAI-SNR values were below the predictions of theoretical formulae. Monte Carlo simulations of CAI and pinhole imaging were performed in order to validate the theoretical SNR formulae and also our CAI decoding algorithm. There was found to be good agreement between the theoretical formulae and SNR values obtained from simulations. Possible reasons for the lower SNR obtained for the experimental CAI study are discussed.

  18. Granular flow through an aperture: Influence of the packing fraction

    Science.gov (United States)

    Aguirre, M. A.; De Schant, R.; Géminard, J.-C.

    2014-07-01

    For the last 50 years, the flow of a granular material through an aperture has been intensely studied in gravity-driven vertical systems (e.g., silos and hoppers). Nevertheless, in many industrial applications, grains are horizontally transported at constant velocity, lying on conveyor belts or floating on the surface of flowing liquids. Unlike fluid flows, that are controlled by the pressure, granular flow is not sensitive to the local pressure but rather to the local velocity of the grains at the outlet. We can also expect the flow rate to depend on the local density of the grains. Indeed, vertical systems are packed in dense configurations by gravity, but, in contrast, in horizontal systems the density can take a large range of values, potentially very small, which may significantly alter the flow rate. In the present article, we study, for different initial packing fractions, the discharge through an orifice of monodisperse grains driven at constant velocity by a horizontal conveyor belt. We report how, during the discharge, the packing fraction is modified by the presence of the outlet, and we analyze how changes in the packing fraction induce variations in the flow rate. We observe that variations of packing fraction do not affect the velocity of the grains at the outlet, and, therefore, we establish that flow-rate variations are directly related to changes in the packing fraction.

  19. New formulation for interferometric synthetic aperture radar for terrain mapping

    Science.gov (United States)

    Jakowatz, Charles V., Jr.; Wahl, Daniel E.; Eichel, Paul H.; Thompson, Paul A.

    1994-06-01

    The subject of interferometric synthetic aperture radar (IFSAR) for high-accuracy terrain elevation mapping continues to gain importance in the arena of radar signal processing. Applications to problems in precision terrain-aided guidance and automatic target recognition, as well as a variety of civil applications, are being studied by a number of researchers. Not unlike many other areas of SAR processing, the subject of IFSAR can, at first glance, appear to be somewhat mysterious. In this paper we show how the mathematics of IFSAR for terrain elevation mapping using a pair of spotlight mode SAR collections can be derived in a very straightforward manner. Here, we employ an approach that relies entirely on Fourier transforms, and utilizes no reference to range equations or Doppler concepts. The result is a simplified explanation of the fundamentals of interferometry, including an easily-seen link between image domain phase difference and terrain elevation height. The derivation builds upon previous work by the authors in which a framework for spotlight mode SAR image formation based on an analogy to 3D computerized axial tomography (CAT) was developed. After outlining the major steps in the mathematics, we show how a computer simulator which utilizes 3D Fourier transforms can be constructed that demonstrates all of the major aspects of IFSAR from spotlight mode collections.

  20. Synthetic aperture radar imaging simulator for pulse envelope evaluation

    Science.gov (United States)

    Balster, Eric J.; Scarpino, Frank A.; Kordik, Andrew M.; Hill, Kerry L.

    2017-10-01

    A simulator for spotlight synthetic aperture radar (SAR) image formation is presented. The simulator produces radar returns from a virtual radar positioned at an arbitrary distance and altitude. The radar returns are produced from a source image, where the return is a weighted summation of linear frequency-modulated (LFM) pulse signals delayed by the distance of each pixel in the image to the radar. The imagery is resampled into polar format to ensure consistent range profiles to the position of the radar. The SAR simulator provides a capability enabling the objective analysis of formed SAR imagery, comparing it to an original source image. This capability allows for analysis of various SAR signal processing techniques previously determined by impulse response function (IPF) analysis. The results suggest that IPF analysis provides results that may not be directly related to formed SAR image quality. Instead, the SAR simulator uses image quality metrics, such as peak signal-to-noise ratio (PSNR) and structured similarity index (SSIM), for formed SAR image quality analysis. To showcase the capability of the SAR simulator, it is used to investigate the performance of various envelopes applied to LFM pulses. A power-raised cosine window with a power p=0.35 and roll-off factor of β=0.15 is shown to maximize the quality of the formed SAR images by improving PSNR by 0.84 dB and SSIM by 0.06 from images formed utilizing a rectangular pulse, on average.

  1. Logarithmic Laplacian Prior Based Bayesian Inverse Synthetic Aperture Radar Imaging

    Directory of Open Access Journals (Sweden)

    Shuanghui Zhang

    2016-04-01

    Full Text Available This paper presents a novel Inverse Synthetic Aperture Radar Imaging (ISAR algorithm based on a new sparse prior, known as the logarithmic Laplacian prior. The newly proposed logarithmic Laplacian prior has a narrower main lobe with higher tail values than the Laplacian prior, which helps to achieve performance improvement on sparse representation. The logarithmic Laplacian prior is used for ISAR imaging within the Bayesian framework to achieve better focused radar image. In the proposed method of ISAR imaging, the phase errors are jointly estimated based on the minimum entropy criterion to accomplish autofocusing. The maximum a posterior (MAP estimation and the maximum likelihood estimation (MLE are utilized to estimate the model parameters to avoid manually tuning process. Additionally, the fast Fourier Transform (FFT and Hadamard product are used to minimize the required computational efficiency. Experimental results based on both simulated and measured data validate that the proposed algorithm outperforms the traditional sparse ISAR imaging algorithms in terms of resolution improvement and noise suppression.

  2. Mask design and fabrication in coded aperture imaging

    International Nuclear Information System (INIS)

    Shutler, Paul M.E.; Springham, Stuart V.; Talebitaher, Alireza

    2013-01-01

    We introduce the new concept of a row-spaced mask, where a number of blank rows are interposed between every pair of adjacent rows of holes of a conventional cyclic difference set based coded mask. At the cost of a small loss in signal-to-noise ratio, this can substantially reduce the number of holes required to image extended sources, at the same time increasing mask strength uniformly across the aperture, as well as making the mask automatically self-supporting. We also show that the Finger and Prince construction can be used to wrap any cyclic difference set onto a two-dimensional mask, regardless of the number of its pixels. We use this construction to validate by means of numerical simulations not only the performance of row-spaced masks, but also the pixel padding technique introduced by in ’t Zand. Finally, we provide a computer program CDSGEN.EXE which, on a fast modern computer and for any Singer set of practical size and open fraction, generates the corresponding pattern of holes in seconds

  3. Amplified spontaneous emission measurements on the Aurora large aperture module

    International Nuclear Information System (INIS)

    Oertel, J.A.; Czuchlewski, S.J.; Leland, W.T.; Turner, T.P.

    1990-01-01

    The large aperture module (LAM) of the Aurora KrF laser can be used to address a number of issues that relate to the scaling of KrF amplifiers to larger ICF systems. Perhaps foremost among these are the possible effects of amplified spontaneous emission (ASE) on laser performance. To assess this problem a 3-D computer code has been developed to model these ASE effects. The code uses an iterative procedure to arrive at a self-consistent steady state solution to the 3-D distribution of coherent and incoherent fluxes within the amplifier. Two-pass energy extraction, wall reflectivity, and nonuniform excitation are included in the model. The authors previously reported the effects of ASE on the small signal gains measured in the 1- x 1- x 2-m 3 LAM. The code also makes quantitative predictions of the ASE that should be generated in the amplifier. This paper indicates the radiance expected for a medium of uniform gain in terms of the (g - ν)L product and the parameter g/a. The quantity (g - ν)L is the product of the net gain and the path length along the direction of observation. The present experiments compare values of ASE measured at various locations around the LAM with the code predictions. The impact of ASE on amplifier output, is also discussed

  4. Design considerations for a large aperture high field superconducting dipole

    International Nuclear Information System (INIS)

    Harfoush, F.; Ankenbrandt, C.; Harrison, M.; Kerby, J.; Koepke, K.; Mantsch, P.; Nicol, T.; Riddiford, A.; Theilacker, J.

    1989-03-01

    The final phase of the Fermilab upgrade proposal calls for a new ring of superconducting magnets to be placed in the existing Main Accelerator tunnel. The goal of this design study is to specify a high field dipole (HFD) that is capable of supporting fixed target operation (ramping, resonant extraction) at a field of 6.6T (1.5 Tev) and colliding beam physics at 8.0T (1.8 Tev). The magnetic field quality at high field is set by the large amplitude orbits associated with resonant extraction. The field quality must therefore be at least as good as the existing Tevatron magnets which fulfill these criteria. The high fields and large aperture of this magnet result in large forces on the coil and collar assemblies. Therefore, the cold mass design must be able to sustain these forces while providing sufficient cooling to the coils during 4.2 K fixed target operation, and a minimum heat load during 1.8 K collider operation. The design work is still in progress but a cosine-theta, cold-iron dipole with a 70mm inner diameter coil has been tentatively adopted. This report presents details on the conductor and cable parameters, coil cross-section, projected manufacturing tolerances, iron yoke design, and cold mass assembly. 4 refs., 5 figs., 1 tab

  5. Full aperture backscatter diagnostic for the NIF laser facility (abstract)

    International Nuclear Information System (INIS)

    Sewall, Noel; Lewis, Izzy; Kirkwood, Robert; Moody, John; Celeste, John

    2001-01-01

    The current schemes for achieving ignition on the National Ignition Facility require efficient coupling of energy from 192 laser beams to the deuterium--tritium fuel capsule. Each laser beam must propagate through a long scalelength plasma region before being converted to x rays (indirect drive) or being absorbed on the capsule (direct drive). Laser-plasma instabilities such as stimulated Brillouin and stimulated Raman scattering (SBS and SRS) will scatter a fraction of the incident laser energy out of the target leading to an overall reduction in the coupling efficiency. It is important to measure the character of this scattered light in order to understand it and to develop methods for reducing it to acceptable levels. We are designing a system called the full aperature backscatter diagnostic with the capability to measure the time-dependent amplitude and spectral content of the light which is backscattered through the incident beam focusing optic. The backscattered light will be collected over about 85% of the full beam aperture and separated into the SBS wavelength band (348--354 nm) and the SRS wavelength band (400--700 nm). Spectrometers coupled to streak cameras will provide time-resolved spectra for both scattered light components. The scattered light amplitude will be measured with fast and slow diodes. The entire system will be routinely calibrated. Analysis of the data will provide important information for reducing scattered power, achieving power balance, and finally achieving ignition

  6. Quantitative emission tomography by coded aperture imaging in nuclear medicine

    International Nuclear Information System (INIS)

    Guilhem, J.B.

    1982-06-01

    The coded aperture imaging is applied to nuclear medicine, since ten years. However no satisfactory clinical results have been obtained thus for. The reason is that digital reconstruction methods which have been implemented, in particular the method which use deconvolution filtering are not appropriate for quantification. Indeed these methods which all based on the assumption of shift invariance of the coding procedure, which is contradictory to the geometrical recording conditions giving the best depth resolution, do not take into account gamma rays attenuation by tissues and in most cases give tomograms with artefacts from blurred structures. A method is proposed which has not these limitations and considers the reconstruction problem as the ill-conditioned problem of solving a Fredholm integral equation. The main advantage of this method lies in fact that the transmission kernel of the integral equation is obtained experimentally, and the approximate solution of this equation, close enough to the original 3-D radioactive object, can be obtained in spite of the ill-conditioned nature of the problem, by use of singular values decomposition (S. V. D.) of the kernel [fr

  7. Event localization in bulk scintillator crystals using coded apertures

    Energy Technology Data Exchange (ETDEWEB)

    Ziock, K.P. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Department of Physics and Astronomy, University of Tennessee, Knoxville, TN (United States); Braverman, J.B. [Department of Physics and Astronomy, University of Tennessee, Knoxville, TN (United States); Fabris, L.; Harrison, M.J.; Hornback, D.; Newby, J. [Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    2015-06-01

    The localization of radiation interactions in bulk scintillators is generally limited by the size of the light distribution at the readout surface of the crystal/light-pipe system. By finding the centroid of the light spot, which is typically of order centimeters across, practical single-event localization is limited to ~2 mm/cm of crystal thickness. Similar resolution can also be achieved for the depth of interaction by measuring the size of the light spot. Through the use of near-field coded-aperture techniques applied to the scintillation light, light transport simulations show that for 3-cm-thick crystals, more than a five-fold improvement (millimeter spatial resolution) can be achieved both laterally and in event depth. At the core of the technique is the requirement to resolve the shadow from an optical mask placed in the scintillation light path between the crystal and the readout. In this paper, experimental results are presented that demonstrate the overall concept using a 1D shadow mask, a thin-scintillator crystal and a light pipe of varying thickness to emulate a 2.2-cm-thick crystal. Spatial resolutions of ~1 mm in both depth and transverse to the readout face are obtained over most of the crystal depth.

  8. Event localization in bulk scintillator crystals using coded apertures

    International Nuclear Information System (INIS)

    Ziock, K.P.; Braverman, J.B.; Fabris, L.; Harrison, M.J.; Hornback, D.; Newby, J.

    2015-01-01

    The localization of radiation interactions in bulk scintillators is generally limited by the size of the light distribution at the readout surface of the crystal/light-pipe system. By finding the centroid of the light spot, which is typically of order centimeters across, practical single-event localization is limited to ~2 mm/cm of crystal thickness. Similar resolution can also be achieved for the depth of interaction by measuring the size of the light spot. Through the use of near-field coded-aperture techniques applied to the scintillation light, light transport simulations show that for 3-cm-thick crystals, more than a five-fold improvement (millimeter spatial resolution) can be achieved both laterally and in event depth. At the core of the technique is the requirement to resolve the shadow from an optical mask placed in the scintillation light path between the crystal and the readout. In this paper, experimental results are presented that demonstrate the overall concept using a 1D shadow mask, a thin-scintillator crystal and a light pipe of varying thickness to emulate a 2.2-cm-thick crystal. Spatial resolutions of ~1 mm in both depth and transverse to the readout face are obtained over most of the crystal depth

  9. Feasibility of Using Synthetic Aperture Radar to Aid UAV Navigation.

    Science.gov (United States)

    Nitti, Davide O; Bovenga, Fabio; Chiaradia, Maria T; Greco, Mario; Pinelli, Gianpaolo

    2015-07-28

    This study explores the potential of Synthetic Aperture Radar (SAR) to aid Unmanned Aerial Vehicle (UAV) navigation when Inertial Navigation System (INS) measurements are not accurate enough to eliminate drifts from a planned trajectory. This problem can affect medium-altitude long-endurance (MALE) UAV class, which permits heavy and wide payloads (as required by SAR) and flights for thousands of kilometres accumulating large drifts. The basic idea is to infer position and attitude of an aerial platform by inspecting both amplitude and phase of SAR images acquired onboard. For the amplitude-based approach, the system navigation corrections are obtained by matching the actual coordinates of ground landmarks with those automatically extracted from the SAR image. When the use of SAR amplitude is unfeasible, the phase content can be exploited through SAR interferometry by using a reference Digital Terrain Model (DTM). A feasibility analysis was carried out to derive system requirements by exploring both radiometric and geometric parameters of the acquisition setting. We showed that MALE UAV, specific commercial navigation sensors and SAR systems, typical landmark position accuracy and classes, and available DTMs lead to estimated UAV coordinates with errors bounded within ±12 m, thus making feasible the proposed SAR-based backup system.

  10. Three-dimensional subsurface imaging synthetic aperture radar

    International Nuclear Information System (INIS)

    Moussally, G.J.

    1995-01-01

    The objective of this applied research and development project is to develop a system known as '3-D SISAR'. This system consists of a ground penetrating radar with software algorithms designed for the detection, location, and identification of buried objects in the underground hazardous waste environments found at DOE storage sites. Three-dimensional maps of the object locations will be produced which can assist the development of remediation strategies and the characterization of the digface during remediation operations. It is expected that the 3-D SISAR will also prove useful for monitoring hydrocarbon based contaminant migration after remediation. The underground imaging technique being developed under this contract utilizes a spotlight mode Synthetic Aperture Radar (SAR) approach which, due to its inherent stand-off capability, will permit the rapid survey of a site and achieve a high degree of productivity over large areas. When deployed from an airborne platform, the stand-off techniques is also seen as a way to overcome practical survey limitations encountered at vegetated sites

  11. Shape accuracy requirements on starshades for large and small apertures

    Science.gov (United States)

    Shaklan, Stuart B.; Marchen, Luis; Cady, Eric

    2017-09-01

    Starshades have been designed to work with large and small telescopes alike. With smaller telescopes, the targets tend to be brighter and closer to the Solar System, and their putative planetary systems span angles that require starshades with radii of 10-30 m at distances of 10s of Mm. With larger apertures, the light-collecting power enables studies of more numerous, fainter systems, requiring larger, more distant starshades with radii >50 m at distances of 100s of Mm. Characterization using infrared wavelengths requires even larger starshades. A mitigating approach is to observe planets between the petals, where one can observe regions closer to the star but with reduced throughput and increased instrument scatter. We compare the starshade shape requirements, including petal shape, petal positioning, and other key terms, for the WFIRST 26m starshade and the HABEX 72 m starshade concepts, over a range of working angles and telescope sizes. We also compare starshades having rippled and smooth edges and show that their performance is nearly identical.

  12. Smoothing-Based Relative Navigation and Coded Aperture Imaging

    Science.gov (United States)

    Saenz-Otero, Alvar; Liebe, Carl Christian; Hunter, Roger C.; Baker, Christopher

    2017-01-01

    This project will develop an efficient smoothing software for incremental estimation of the relative poses and velocities between multiple, small spacecraft in a formation, and a small, long range depth sensor based on coded aperture imaging that is capable of identifying other spacecraft in the formation. The smoothing algorithm will obtain the maximum a posteriori estimate of the relative poses between the spacecraft by using all available sensor information in the spacecraft formation.This algorithm will be portable between different satellite platforms that possess different sensor suites and computational capabilities, and will be adaptable in the case that one or more satellites in the formation become inoperable. It will obtain a solution that will approach an exact solution, as opposed to one with linearization approximation that is typical of filtering algorithms. Thus, the algorithms developed and demonstrated as part of this program will enhance the applicability of small spacecraft to multi-platform operations, such as precisely aligned constellations and fractionated satellite systems.

  13. Design Challenges for a Wide-Aperture Insertion Quadrupole Magnet

    CERN Document Server

    Russenschuck, S; Perez, J C; Ramos, D; Fessia, P; Karppinen, M; Kirby, G; Sahner, T; Schwerg, N

    2011-01-01

    The design and development of a superconducting (Nb-Ti) quadrupole with 120 mm aperture, for an upgrade of the LHC insertion region, faces challenges arising from the LHC beam optics requirements and the heat-deposition. The first triggered extensive studies of coil alternatives with four and six coil-blocks in view of field quality and operation margins. The latter requires more porous insulation schemes for both the cables and the ground-plane. This in turn necessitates extensive heatpropagation and quench-velocity studies, as well as more efficient quench heaters. The engineering design of the magnet includes innovative features such as self-locking collars, which will enable the collaring to be performed with the coils on a horizontal assembly bench, a spring-loaded and collapsible assembly mandrel, tuning-shims for field quality, porous collaring-shoes, and coil end-spacer design based on differential geometry methods. The project also initiated code extensions in the quench-simulation and CAD/CAM module...

  14. Low mass large aperture vacuum window development at CEBAF

    International Nuclear Information System (INIS)

    Keppel, C.

    1995-01-01

    Large aperture low mass vacuum windows are being developed for the HMS (High Momentum Spectrometer) and SOS (Short Orbit Spectrometer) spectrometers in Hall C at CEBAF. Because multiple scattering degrades the performance of a spectrometer it is important that the volume be evacuated and that the entrance and exit windows be as low mass as possible. The material used for such windows must be thin and light enough so as to have minimum effect of the beam, and at the same time, be thick and strong enough to operate reliably and safely. To achieve these goals, composite vacuum windows have been constructed of a thin sheet of Mylar with a reinforcing fabric. Reinforcing fabrics such as Kevlar and Spectra are available with tensile strengths significantly greater than that of Mylar. A thin layer of Myler remains necessary since the fabrics cannot achieve any sort of vacuum seal. The design, fabrication, testing, and operating experience with such composite windows for the Hall C spectrometers will be discussed

  15. Synthetic-aperture radar imaging through dispersive media

    International Nuclear Information System (INIS)

    Varslot, Trond; Morales, J Héctor; Cheney, Margaret

    2010-01-01

    In this paper we develop a method for synthetic-aperture radar (SAR) imaging through a dispersive medium. We consider the case when the sensor and scatterers are embedded in a known homogeneous dispersive material, the scene to be imaged lies on a known surface and the radar antenna flight path is an arbitrary but known smooth curve. The scattering is modeled using a linearized (Born) scalar model. We assume that the measurements are polluted with additive noise. Furthermore, we assume that we have prior knowledge about the power-spectral densities of the scene and the noise. This leads us to formulate the problem in a statistical framework. We develop a filtered-back-projection imaging algorithm in which we choose the filter according to the statistical properties of the scene and noise. We present numerical simulations for a case where the scene consists of point-like scatterers located on the ground, and demonstrate how the ability to resolve the targets depends on a quantity which we call the noise-to-target ratio. In our simulations, the dispersive material is modeled with the Fung–Ulaby equations for leafy vegetation. However, the method is also applicable to other dielectric materials where the dispersion is considered relevant in the frequency range of the transmitted signals

  16. Feasibility of Using Synthetic Aperture Radar to Aid UAV Navigation

    Directory of Open Access Journals (Sweden)

    Davide O. Nitti

    2015-07-01

    Full Text Available This study explores the potential of Synthetic Aperture Radar (SAR to aid Unmanned Aerial Vehicle (UAV navigation when Inertial Navigation System (INS measurements are not accurate enough to eliminate drifts from a planned trajectory. This problem can affect medium-altitude long-endurance (MALE UAV class, which permits heavy and wide payloads (as required by SAR and flights for thousands of kilometres accumulating large drifts. The basic idea is to infer position and attitude of an aerial platform by inspecting both amplitude and phase of SAR images acquired onboard. For the amplitude-based approach, the system navigation corrections are obtained by matching the actual coordinates of ground landmarks with those automatically extracted from the SAR image. When the use of SAR amplitude is unfeasible, the phase content can be exploited through SAR interferometry by using a reference Digital Terrain Model (DTM. A feasibility analysis was carried out to derive system requirements by exploring both radiometric and geometric parameters of the acquisition setting. We showed that MALE UAV, specific commercial navigation sensors and SAR systems, typical landmark position accuracy and classes, and available DTMs lead to estimated UAV coordinates with errors bounded within ±12 m, thus making feasible the proposed SAR-based backup system.

  17. Experiment in Onboard Synthetic Aperture Radar Data Processing

    Science.gov (United States)

    Holland, Matthew

    2011-01-01

    Single event upsets (SEUs) are a threat to any computing system running on hardware that has not been physically radiation hardened. In addition to mandating the use of performance-limited, hardened heritage equipment, prior techniques for dealing with the SEU problem often involved hardware-based error detection and correction (EDAC). With limited computing resources, software- based EDAC, or any more elaborate recovery methods, were often not feasible. Synthetic aperture radars (SARs), when operated in the space environment, are interesting due to their relevance to NASAs objectives, but problematic in the sense of producing prodigious amounts of raw data. Prior implementations of the SAR data processing algorithm have been too slow, too computationally intensive, and require too much application memory for onboard execution to be a realistic option when using the type of heritage processing technology described above. This standard C-language implementation of SAR data processing is distributed over many cores of a Tilera Multicore Processor, and employs novel Radiation Hardening by Software (RHBS) techniques designed to protect the component processes (one per core) and their shared application memory from the sort of SEUs expected in the space environment. The source code includes calls to Tilera APIs, and a specialized Tilera compiler is required to produce a Tilera executable. The compiled application reads input data describing the position and orientation of a radar platform, as well as its radar-burst data, over time and writes out processed data in a form that is useful for analysis of the radar observations.

  18. Design considerations for a large aperture high field superconducting dipole

    Energy Technology Data Exchange (ETDEWEB)

    Harfoush, F.; Ankenbrandt, C.; Harrison, M.; Kerby, J.; Koepke, K.; Mantsch, P.; Nicol, T.; Riddiford, A.; Theilacker, J.

    1989-03-01

    The final phase of the Fermilab upgrade proposal calls for a new ring of superconducting magnets to be placed in the existing Main Accelerator tunnel. The goal of this design study is to specify a high field dipole (HFD) that is capable of supporting fixed target operation (ramping, resonant extraction) at a field of 6.6T (1.5 Tev) and colliding beam physics at 8.0T (1.8 Tev). The magnetic field quality at high field is set by the large amplitude orbits associated with resonant extraction. The field quality must therefore be at least as good as the existing Tevatron magnets which fulfill these criteria. The high fields and large aperture of this magnet result in large forces on the coil and collar assemblies. Therefore, the cold mass design must be able to sustain these forces while providing sufficient cooling to the coils during 4.2 K fixed target operation, and a minimum heat load during 1.8 K collider operation. The design work is still in progress but a cosine-theta, cold-iron dipole with a 70mm inner diameter coil has been tentatively adopted. This report presents details on the conductor and cable parameters, coil cross-section, projected manufacturing tolerances, iron yoke design, and cold mass assembly. 4 refs., 5 figs., 1 tab.

  19. Synthetic Aperture Focusing Technique 3D-CAD-SAFT

    International Nuclear Information System (INIS)

    Schmitz, V.; Kroening, M.; Chakhlov, S.; Fischer, W.

    2000-01-01

    Till the 80's ultrasonic holography has been used as an analyzing technique, a procedure which has been replaced by the Synthetic Aperture Focusing Technique 'SAFT'. This technique has been applied on metallic components in different power plants, mostly on pipe systems on pressure vessels or on specimen made of composite or concrete material. SAFT exists in different versions, either in 2D or 3D, for plane or arbitrarily shaped surfaces, for pulse echo or pitch- and catch arrangements. The defect sizes ranged from 100 μm in turbine shafts till fractures of meters in research pressure vessels. The paper covers the latest results of the SAFT-reconstruction technique under Windows NT which has been guided by the experience obtained in the field. It contributes to the currently discussed question of the possible benefit using TOFD-techniques versus pulse echo techniques; the target has been a fatigue crack in a pipe segment which was investigated by different insonification angles, wave modes and probe arrangements. The results are evaluated with respect to signal-to-noise ratio improvement; problems of TOFD are demonstrated using an animation procedure which allows to walk through the weld in three orthogonal directions. A special example will be shown from a bore hole inspection of water power station valves where the reconstruction procedure follows the radial axial insonification planes. The multi-line SAFT images can be cut according to the situation of the crack position and orientation

  20. Airship Sparse Array Antenna Radar Real Aperture Imaging Based on Compressed Sensing and Sparsity in Transform Domain

    Directory of Open Access Journals (Sweden)

    Li Liechen

    2016-02-01

    Full Text Available A conformal sparse array based on combined Barker code is designed for airship platform. The performance of the designed array such as signal-to-noise ratio is analyzed. Using the hovering characteristics of the airship, interferometry operation can be applied on the real aperture imaging results of two pulses, which can eliminate the random backscatter phase and make the image sparse in the transform domain. Building the relationship between echo and transform coefficients, the Compressed Sensing (CS theory can be introduced to solve the formula and achieving imaging. The image quality of the proposed method can reach the image formed by the full array imaging. The simulation results show the effectiveness of the proposed method.

  1. Particle-in-Cell Modeling of Magnetized Argon Plasma Flow Through Small Mechanical Apertures

    Energy Technology Data Exchange (ETDEWEB)

    Adam B. Sefkow and Samuel A. Cohen

    2009-04-09

    Motivated by observations of supersonic argon-ion flow generated by linear helicon-heated plasma devices, a three-dimensional particle-in-cell (PIC) code is used to study whether stationary electrostatic layers form near mechanical apertures intersecting the flow of magnetized plasma. By self-consistently evaluating the temporal evolution of the plasma in the vicinity of the aperture, the PIC simulations characterize the roles of the imposed aperture and applied magnetic field on ion acceleration. The PIC model includes ionization of a background neutral-argon population by thermal and superthermal electrons, the latter found upstream of the aperture. Near the aperture, a transition from a collisional to a collisionless regime occurs. Perturbations of density and potential, with mm wavelengths and consistent with ion acoustic waves, propagate axially. An ion acceleration region of length ~ 200-300 λD,e forms at the location of the aperture and is found to be an electrostatic double layer, with axially-separated regions of net positive and negative charge. Reducing the aperture diameter or increasing its length increases the double layer strength.

  2. New approach for extraordinary transmission through an array of subwavelength apertures using thin ENNZ metamaterial liners.

    Science.gov (United States)

    Baladi, Elham; Pollock, Justin G; Iyer, Ashwin K

    2015-08-10

    Extraordinary transmission (ET) through a periodic array of subwavelength apertures on a perfect metallic screen has been studied extensively in recent years, and has largely been attributed to diffraction effects, for which the periodicity of the apertures, rather than their dimensions, dominates the response. The transmission properties of the apertures at resonance, on the other hand, are not typically considered 'extraordinary' because they may be explained using more conventional aperture-theoretical mechanisms. This work describes a novel approach for achieving ET in which subwavelength apertures are made to resonate by lining them using thin, epsilon-negative and near-zero (ENNZ) metamaterials. The use of ENNZ metamaterials has recently proven successful in miniaturizing circular waveguides by strongly reducing their natural cutoff frequencies, and the theory is adapted here for the design of subwavelength apertures in a metallic screen. We present simulations and proof-of-concept measurements at microwave frequencies that demonstrate ET for apertures measuring one-quarter of a wavelength in diameter and suggest the potential for even more dramatic miniaturization simply by engineering the ENNZ metamaterial dispersion. The results exhibit a fano-like profile whose frequency varies with the properties of the metamaterial liner, but is independent of period. It is suggested that similar behaviour can be obtained at optical frequencies, where ENNZ metamaterials may be realized using appropriately arranged chains of plasmonic nanoparticles.

  3. An analysis of beamed wireless power transfer in the Fresnel zone using a dynamic, metasurface aperture

    Science.gov (United States)

    Smith, David R.; Gowda, Vinay R.; Yurduseven, Okan; Larouche, Stéphane; Lipworth, Guy; Urzhumov, Yaroslav; Reynolds, Matthew S.

    2017-01-01

    Wireless power transfer (WPT) has been an active topic of research, with a number of WPT schemes implemented in the near-field (coupling) and far-field (radiation) regimes. Here, we consider a beamed WPT scheme based on a dynamically reconfigurable source aperture transferring power to receiving devices within the Fresnel region. In this context, the dynamic aperture resembles a reconfigurable lens capable of focusing power to a well-defined spot, whose dimension can be related to a point spread function. The necessary amplitude and phase distribution of the field imposed over the aperture can be determined in a holographic sense, by interfering a hypothetical point source located at the receiver location with a plane wave at the aperture location. While conventional technologies, such as phased arrays, can achieve the required control over phase and amplitude, they typically do so at a high cost; alternatively, metasurface apertures can achieve dynamic focusing with potentially lower cost. We present an initial tradeoff analysis of the Fresnel region WPT concept assuming a metasurface aperture, relating the key parameters such as spot size, aperture size, wavelength, and focal distance, as well as reviewing system considerations such as the availability of sources and power transfer efficiency. We find that approximate design formulas derived from the Gaussian optics approximation provide useful estimates of system performance, including transfer efficiency and coverage volume. The accuracy of these formulas is confirmed through numerical studies.

  4. Self characterization of a coded aperture array for neutron source imaging

    Energy Technology Data Exchange (ETDEWEB)

    Volegov, P. L., E-mail: volegov@lanl.gov; Danly, C. R.; Guler, N.; Merrill, F. E.; Wilde, C. H. [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States); Fittinghoff, D. N. [Livermore National Laboratory, Livermore, California 94550 (United States)

    2014-12-15

    The neutron imaging system at the National Ignition Facility (NIF) is an important diagnostic tool for measuring the two-dimensional size and shape of the neutrons produced in the burning deuterium-tritium plasma during the stagnation stage of inertial confinement fusion implosions. Since the neutron source is small (∼100 μm) and neutrons are deeply penetrating (>3 cm) in all materials, the apertures used to achieve the desired 10-μm resolution are 20-cm long, triangular tapers machined in gold foils. These gold foils are stacked to form an array of 20 apertures for pinhole imaging and three apertures for penumbral imaging. These apertures must be precisely aligned to accurately place the field of view of each aperture at the design location, or the location of the field of view for each aperture must be measured. In this paper we present a new technique that has been developed for the measurement and characterization of the precise location of each aperture in the array. We present the detailed algorithms used for this characterization and the results of reconstructed sources from inertial confinement fusion implosion experiments at NIF.

  5. Performance limits of ion extraction systems with non-circular apertures

    Energy Technology Data Exchange (ETDEWEB)

    Shagayda, A., E-mail: shagayda@gmail.com; Madeev, S. [Keldysh Research Centre, Onezhskaya, 8, 125438 Moscow (Russian Federation)

    2016-04-15

    A three-dimensional computer simulation is used to determine the perveance limitations of ion extraction systems with non-circular apertures. The objective of the study is to analyze the possibilities to improve mechanical strength of the ion optics made of carbon-carbon composite materials. Non-circular grid apertures are better suited to the physical structure of carbon-carbon composite materials, than conventionally used circular holes in a hexagonal pattern, because they allow a fewer number of cut fibers. However, the slit-type accelerating systems, usually regarded as the main alternative to the conventional ion optics, have an intolerably narrow range of operating perveance values at which there is no direct ion impingement on the acceleration grid. This paper presents results of comparative analysis of a number of different ion optical systems with non-circular apertures and conventional ion optical systems with circular apertures. It has been revealed that a relatively wide perveance range without direct ion impingement may be obtained with apertures shaped as a square with rounded corners. Numerical simulations show that this geometry may have equivalent perveance range as the traditional geometry with circular apertures while being more mechanically robust. In addition, such important characteristics, as the effective transparency for both the ions and the neutral atoms, the height of the potential barrier reflecting the downstream plasma electrons and the angular divergence of the beamlet also can be very close to these parameters for the optics with circular apertures.

  6. Performance limits of ion extraction systems with non-circular apertures.

    Science.gov (United States)

    Shagayda, A; Madeev, S

    2016-04-01

    A three-dimensional computer simulation is used to determine the perveance limitations of ion extraction systems with non-circular apertures. The objective of the study is to analyze the possibilities to improve mechanical strength of the ion optics made of carbon-carbon composite materials. Non-circular grid apertures are better suited to the physical structure of carbon-carbon composite materials, than conventionally used circular holes in a hexagonal pattern, because they allow a fewer number of cut fibers. However, the slit-type accelerating systems, usually regarded as the main alternative to the conventional ion optics, have an intolerably narrow range of operating perveance values at which there is no direct ion impingement on the acceleration grid. This paper presents results of comparative analysis of a number of different ion optical systems with non-circular apertures and conventional ion optical systems with circular apertures. It has been revealed that a relatively wide perveance range without direct ion impingement may be obtained with apertures shaped as a square with rounded corners. Numerical simulations show that this geometry may have equivalent perveance range as the traditional geometry with circular apertures while being more mechanically robust. In addition, such important characteristics, as the effective transparency for both the ions and the neutral atoms, the height of the potential barrier reflecting the downstream plasma electrons and the angular divergence of the beamlet also can be very close to these parameters for the optics with circular apertures.

  7. Performance limits of ion extraction systems with non-circular apertures

    Science.gov (United States)

    Shagayda, A.; Madeev, S.

    2016-04-01

    A three-dimensional computer simulation is used to determine the perveance limitations of ion extraction systems with non-circular apertures. The objective of the study is to analyze the possibilities to improve mechanical strength of the ion optics made of carbon-carbon composite materials. Non-circular grid apertures are better suited to the physical structure of carbon-carbon composite materials, than conventionally used circular holes in a hexagonal pattern, because they allow a fewer number of cut fibers. However, the slit-type accelerating systems, usually regarded as the main alternative to the conventional ion optics, have an intolerably narrow range of operating perveance values at which there is no direct ion impingement on the acceleration grid. This paper presents results of comparative analysis of a number of different ion optical systems with non-circular apertures and conventional ion optical systems with circular apertures. It has been revealed that a relatively wide perveance range without direct ion impingement may be obtained with apertures shaped as a square with rounded corners. Numerical simulations show that this geometry may have equivalent perveance range as the traditional geometry with circular apertures while being more mechanically robust. In addition, such important characteristics, as the effective transparency for both the ions and the neutral atoms, the height of the potential barrier reflecting the downstream plasma electrons and the angular divergence of the beamlet also can be very close to these parameters for the optics with circular apertures.

  8. Performance limits of ion extraction systems with non-circular apertures

    International Nuclear Information System (INIS)

    Shagayda, A.; Madeev, S.

    2016-01-01

    A three-dimensional computer simulation is used to determine the perveance limitations of ion extraction systems with non-circular apertures. The objective of the study is to analyze the possibilities to improve mechanical strength of the ion optics made of carbon-carbon composite materials. Non-circular grid apertures are better suited to the physical structure of carbon-carbon composite materials, than conventionally used circular holes in a hexagonal pattern, because they allow a fewer number of cut fibers. However, the slit-type accelerating systems, usually regarded as the main alternative to the conventional ion optics, have an intolerably narrow range of operating perveance values at which there is no direct ion impingement on the acceleration grid. This paper presents results of comparative analysis of a number of different ion optical systems with non-circular apertures and conventional ion optical systems with circular apertures. It has been revealed that a relatively wide perveance range without direct ion impingement may be obtained with apertures shaped as a square with rounded corners. Numerical simulations show that this geometry may have equivalent perveance range as the traditional geometry with circular apertures while being more mechanically robust. In addition, such important characteristics, as the effective transparency for both the ions and the neutral atoms, the height of the potential barrier reflecting the downstream plasma electrons and the angular divergence of the beamlet also can be very close to these parameters for the optics with circular apertures.

  9. Particle-in-Cell Modeling of Magnetized Argon Plasma Flow Through Small Mechanical Apertures

    International Nuclear Information System (INIS)

    Sefkow, Adam B.; Cohen, Samuel A.

    2009-01-01

    Motivated by observations of supersonic argon-ion flow generated by linear helicon-heated plasma devices, a three-dimensional particle-in-cell (PIC) code is used to study whether stationary electrostatic layers form near mechanical apertures intersecting the flow of magnetized plasma. By self-consistently evaluating the temporal evolution of the plasma in the vicinity of the aperture, the PIC simulations characterize the roles of the imposed aperture and applied magnetic field on ion acceleration. The PIC model includes ionization of a background neutral-argon population by thermal and superthermal electrons, the latter found upstream of the aperture. Near the aperture, a transition from a collisional to a collisionless regime occurs. Perturbations of density and potential, with mm wavelengths and consistent with ion acoustic waves, propagate axially. An ion acceleration region of length ∼ 200-300 λ D,e forms at the location of the aperture and is found to be an electrostatic double layer, with axially-separated regions of net positive and negative charge. Reducing the aperture diameter or increasing its length increases the double layer strength

  10. Realization of a video-rate distributed aperture millimeter-wave imaging system using optical upconversion

    Science.gov (United States)

    Schuetz, Christopher; Martin, Richard; Dillon, Thomas; Yao, Peng; Mackrides, Daniel; Harrity, Charles; Zablocki, Alicia; Shreve, Kevin; Bonnett, James; Curt, Petersen; Prather, Dennis

    2013-05-01

    Passive imaging using millimeter waves (mmWs) has many advantages and applications in the defense and security markets. All terrestrial bodies emit mmW radiation and these wavelengths are able to penetrate smoke, fog/clouds/marine layers, and even clothing. One primary obstacle to imaging in this spectrum is that longer wavelengths require larger apertures to achieve the resolutions desired for many applications. Accordingly, lens-based focal plane systems and scanning systems tend to require large aperture optics, which increase the achievable size and weight of such systems to beyond what can be supported by many applications. To overcome this limitation, a distributed aperture detection scheme is used in which the effective aperture size can be increased without the associated volumetric increase in imager size. This distributed aperture system is realized through conversion of the received mmW energy into sidebands on an optical carrier. This conversion serves, in essence, to scale the mmW sparse aperture array signals onto a complementary optical array. The side bands are subsequently stripped from the optical carrier and recombined to provide a real time snapshot of the mmW signal. Using this technique, we have constructed a real-time, video-rate imager operating at 75 GHz. A distributed aperture consisting of 220 upconversion channels is used to realize 2.5k pixels with passive sensitivity. Details of the construction and operation of this imager as well as field testing results will be presented herein.

  11. Chemical Space of DNA-Encoded Libraries.

    Science.gov (United States)

    Franzini, Raphael M; Randolph, Cassie

    2016-07-28

    In recent years, DNA-encoded chemical libraries (DECLs) have attracted considerable attention as a potential discovery tool in drug development. Screening encoded libraries may offer advantages over conventional hit discovery approaches and has the potential to complement such methods in pharmaceutical research. As a result of the increased application of encoded libraries in drug discovery, a growing number of hit compounds are emerging in scientific literature. In this review we evaluate reported encoded library-derived structures and identify general trends of these compounds in relation to library design parameters. We in particular emphasize the combinatorial nature of these libraries. Generally, the reported molecules demonstrate the ability of this technology to afford hits suitable for further lead development, and on the basis of them, we derive guidelines for DECL design.

  12. Encoding information using laguerre gaussian modes

    CSIR Research Space (South Africa)

    Trichili, A

    2015-08-01

    Full Text Available The authors experimentally demonstrate an information encoding protocol using the two degrees of freedom of Laguerre Gaussian modes having different radial and azimuthal components. A novel method, based on digital holography, for information...

  13. Molecular mechanisms for protein-encoded inheritance

    Science.gov (United States)

    Wiltzius, Jed J. W.; Landau, Meytal; Nelson, Rebecca; Sawaya, Michael R.; Apostol, Marcin I.; Goldschmidt, Lukasz; Soriaga, Angela B.; Cascio, Duilio; Rajashankar, Kanagalaghatta; Eisenberg, David

    2013-01-01

    Strains are phenotypic variants, encoded by nucleic acid sequences in chromosomal inheritance and by protein “conformations” in prion inheritance and transmission. But how is a protein “conformation” stable enough to endure transmission between cells or organisms? Here new polymorphic crystal structures of segments of prion and other amyloid proteins offer structural mechanisms for prion strains. In packing polymorphism, prion strains are encoded by alternative packings (polymorphs) of β-sheets formed by the same segment of a protein; in a second mechanism, segmental polymorphism, prion strains are encoded by distinct β-sheets built from different segments of a protein. Both forms of polymorphism can produce enduring “conformations,” capable of encoding strains. These molecular mechanisms for transfer of information into prion strains share features with the familiar mechanism for transfer of information by nucleic acid inheritance, including sequence specificity and recognition by non-covalent bonds. PMID:19684598

  14. Design and analysis of high-numerical-aperture beam shaping systems; Design und Analyse von Strahlformungssystemen hoher numerischer Apertur

    Energy Technology Data Exchange (ETDEWEB)

    Schweitzer, Hagen

    2009-11-24

    The generation of light tailored to measure stands today in the center of many innovative applications. A possibility of the flexible manipulation of light is the laser-beam shaping.Aim is thereby to transform the intensity profile of a laser beam to a wanted profile. The main topic of this thesis is the modeling and propagation of laser light in paraxial and non-paraxial beam-shaping systems as well as the optimization of these systems by means of a generalized projection algorithm. This algorithm is applied for the optimization by means of aspherical formula or polynomials point-by-point parametrized beam shaping surfaces. It is shown that during the optimization a regardment of diffraction, interference, and abberations is possible. The latter can not only be regarded, but directly used for the beam shaping. Finally it is shown that the aberrations of spherical catalogue lenses are already sufficient for some beam-shaping applications. The efficiency of the developed optimization algorithms is demonstrated both on paraxial and on non-paraxial beam-shaping examples with a numerical aperture of up to 0.62. Finally in the present thesis concepts for the achromatization and for the wave-length multiplexing are introduced, which are based on the application of diverse surfaces and materials with different dispersion. While the achromatization aims to make the optical function of a beam-shaping system wave-length independent, the wavelength multiplexing tries directly to realize different optical functions for diverse design wavelengths. [German] Die Erzeugung massgeschneiderten Lichts steht heute im Mittelpunkt vieler innovativer Anwendungen. Eine Moeglichkeit der flexiblen Manipulation von Licht ist die Laserstrahlformung. Ziel ist es dabei, das Intensitaetsprofil eines Laserstrahls in ein gewuenschtes Profil umzuformen. Schwerpunkt dieser Arbeit ist die Modellierung und Ausbreitung von Laserlicht in paraxialen und nicht-paraxialen Strahlformungssystemen sowie die

  15. Quantum Logical Operations on Encoded Qubits

    International Nuclear Information System (INIS)

    Zurek, W.H.; Laflamme, R.

    1996-01-01

    We show how to carry out quantum logical operations (controlled-not and Toffoli gates) on encoded qubits for several encodings which protect against various 1-bit errors. This improves the reliability of these operations by allowing one to correct for 1-bit errors which either preexisted or occurred in the course of operation. The logical operations we consider allow one to carry out the vast majority of the steps in the quantum factoring algorithm. copyright 1996 The American Physical Society

  16. Using XML to encode TMA DES metadata

    Directory of Open Access Journals (Sweden)

    Oliver Lyttleton

    2011-01-01

    Full Text Available Background: The Tissue Microarray Data Exchange Specification (TMA DES is an XML specification for encoding TMA experiment data. While TMA DES data is encoded in XML, the files that describe its syntax, structure, and semantics are not. The DTD format is used to describe the syntax and structure of TMA DES, and the ISO 11179 format is used to define the semantics of TMA DES. However, XML Schema can be used in place of DTDs, and another XML encoded format, RDF, can be used in place of ISO 11179. Encoding all TMA DES data and metadata in XML would simplify the development and usage of programs which validate and parse TMA DES data. XML Schema has advantages over DTDs such as support for data types, and a more powerful means of specifying constraints on data values. An advantage of RDF encoded in XML over ISO 11179 is that XML defines rules for encoding data, whereas ISO 11179 does not. Materials and Methods: We created an XML Schema version of the TMA DES DTD. We wrote a program that converted ISO 11179 definitions to RDF encoded in XML, and used it to convert the TMA DES ISO 11179 definitions to RDF. Results: We validated a sample TMA DES XML file that was supplied with the publication that originally specified TMA DES using our XML Schema. We successfully validated the RDF produced by our ISO 11179 converter with the W3C RDF validation service. Conclusions: All TMA DES data could be encoded using XML, which simplifies its processing. XML Schema allows datatypes and valid value ranges to be specified for CDEs, which enables a wider range of error checking to be performed using XML Schemas than could be performed using DTDs.

  17. Using XML to encode TMA DES metadata.

    Science.gov (United States)

    Lyttleton, Oliver; Wright, Alexander; Treanor, Darren; Lewis, Paul

    2011-01-01

    The Tissue Microarray Data Exchange Specification (TMA DES) is an XML specification for encoding TMA experiment data. While TMA DES data is encoded in XML, the files that describe its syntax, structure, and semantics are not. The DTD format is used to describe the syntax and structure of TMA DES, and the ISO 11179 format is used to define the semantics of TMA DES. However, XML Schema can be used in place of DTDs, and another XML encoded format, RDF, can be used in place of ISO 11179. Encoding all TMA DES data and metadata in XML would simplify the development and usage of programs which validate and parse TMA DES data. XML Schema has advantages over DTDs such as support for data types, and a more powerful means of specifying constraints on data values. An advantage of RDF encoded in XML over ISO 11179 is that XML defines rules for encoding data, whereas ISO 11179 does not. We created an XML Schema version of the TMA DES DTD. We wrote a program that converted ISO 11179 definitions to RDF encoded in XML, and used it to convert the TMA DES ISO 11179 definitions to RDF. We validated a sample TMA DES XML file that was supplied with the publication that originally specified TMA DES using our XML Schema. We successfully validated the RDF produced by our ISO 11179 converter with the W3C RDF validation service. All TMA DES data could be encoded using XML, which simplifies its processing. XML Schema allows datatypes and valid value ranges to be specified for CDEs, which enables a wider range of error checking to be performed using XML Schemas than could be performed using DTDs.

  18. Using XML to encode TMA DES metadata

    Science.gov (United States)

    Lyttleton, Oliver; Wright, Alexander; Treanor, Darren; Lewis, Paul

    2011-01-01

    Background: The Tissue Microarray Data Exchange Specification (TMA DES) is an XML specification for encoding TMA experiment data. While TMA DES data is encoded in XML, the files that describe its syntax, structure, and semantics are not. The DTD format is used to describe the syntax and structure of TMA DES, and the ISO 11179 format is used to define the semantics of TMA DES. However, XML Schema can be used in place of DTDs, and another XML encoded format, RDF, can be used in place of ISO 11179. Encoding all TMA DES data and metadata in XML would simplify the development and usage of programs which validate and parse TMA DES data. XML Schema has advantages over DTDs such as support for data types, and a more powerful means of specifying constraints on data values. An advantage of RDF encoded in XML over ISO 11179 is that XML defines rules for encoding data, whereas ISO 11179 does not. Materials and Methods: We created an XML Schema version of the TMA DES DTD. We wrote a program that converted ISO 11179 definitions to RDF encoded in XML, and used it to convert the TMA DES ISO 11179 definitions to RDF. Results: We validated a sample TMA DES XML file that was supplied with the publication that originally specified TMA DES using our XML Schema. We successfully validated the RDF produced by our ISO 11179 converter with the W3C RDF validation service. Conclusions: All TMA DES data could be encoded using XML, which simplifies its processing. XML Schema allows datatypes and valid value ranges to be specified for CDEs, which enables a wider range of error checking to be performed using XML Schemas than could be performed using DTDs. PMID:21969921

  19. SU-E-J-20: Adaptive Aperture Morphing for Online Correction for Prostate Cancer Radiotherapy

    International Nuclear Information System (INIS)

    Sandhu, R; Qin, A; Yan, D

    2014-01-01

    Purpose: Online adaptive aperture morphing is desirable over translational couch shifts to accommodate not only the target position variation but also anatomic changes (rotation, deformation, and relation of target to organ-atrisks). We proposed quick and reliable method for adapting segment aperture leaves for IMRT treatment of prostate. Methods: The proposed method consists of following steps: (1) delineate the contours of prostate, SV, bladder and rectum on kV-CBCT; (2) determine prostate displacement from the rigid body registration of the contoured prostate manifested on the reference CT and the CBCT; (3) adapt the MLC segment apertures obtained from the pre-treatment IMRT planning to accommodate the shifts as well as anatomic changes. The MLC aperture adaptive algorithm involves two steps; first move the whole aperture according to prostate translational/rotational shifts, and secondly fine-tune the aperture shape to maintain the spatial relationship between the planning target contour and the MLC aperture to the daily target contour. Feasibility of this method was evaluated retrospectively on a seven-field IMRT treatment of prostate cancer patient by comparing dose volume histograms of the original plan and the aperture-adjusted plan, with/without additional segments weight optimization (SWO), on two daily treatment CBCTs selected with relative large motion and rotation. Results: For first daily treatment, the prostate rotation was significant (12degree around lateral-axis). With apertureadjusted plan, the D95 to the target was improved 25% and rectum dose (D30, D40) was reduced 20% relative to original plan on daily volumes. For second treatment-fraction, (lateral shift = 6.7mm), after adjustment target D95 improved by 3% and bladder dose (D30, maximum dose) was reduced by 1%. For both cases, extra SWO did not provide significant improvement. Conclusion: The proposed method of adapting segment apertures is promising in treatment position correction

  20. SU-E-J-20: Adaptive Aperture Morphing for Online Correction for Prostate Cancer Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Sandhu, R; Qin, A; Yan, D [William Beaumont Hospital, Royal Oak, MI (United States)

    2014-06-01

    Purpose: Online adaptive aperture morphing is desirable over translational couch shifts to accommodate not only the target position variation but also anatomic changes (rotation, deformation, and relation of target to organ-atrisks). We proposed quick and reliable method for adapting segment aperture leaves for IMRT treatment of prostate. Methods: The proposed method consists of following steps: (1) delineate the contours of prostate, SV, bladder and rectum on kV-CBCT; (2) determine prostate displacement from the rigid body registration of the contoured prostate manifested on the reference CT and the CBCT; (3) adapt the MLC segment apertures obtained from the pre-treatment IMRT planning to accommodate the shifts as well as anatomic changes. The MLC aperture adaptive algorithm involves two steps; first move the whole aperture according to prostate translational/rotational shifts, and secondly fine-tune the aperture shape to maintain the spatial relationship between the planning target contour and the MLC aperture to the daily target contour. Feasibility of this method was evaluated retrospectively on a seven-field IMRT treatment of prostate cancer patient by comparing dose volume histograms of the original plan and the aperture-adjusted plan, with/without additional segments weight optimization (SWO), on two daily treatment CBCTs selected with relative large motion and rotation. Results: For first daily treatment, the prostate rotation was significant (12degree around lateral-axis). With apertureadjusted plan, the D95 to the target was improved 25% and rectum dose (D30, D40) was reduced 20% relative to original plan on daily volumes. For second treatment-fraction, (lateral shift = 6.7mm), after adjustment target D95 improved by 3% and bladder dose (D30, maximum dose) was reduced by 1%. For both cases, extra SWO did not provide significant improvement. Conclusion: The proposed method of adapting segment apertures is promising in treatment position correction

  1. Coded diffraction system in X-ray crystallography using a boolean phase coded aperture approximation

    Science.gov (United States)

    Pinilla, Samuel; Poveda, Juan; Arguello, Henry

    2018-03-01

    Phase retrieval is a problem present in many applications such as optics, astronomical imaging, computational biology and X-ray crystallography. Recent work has shown that the phase can be better recovered when the acquisition architecture includes a coded aperture, which modulates the signal before diffraction, such that the underlying signal is recovered from coded diffraction patterns. Moreover, this type of modulation effect, before the diffraction operation, can be obtained using a phase coded aperture, just after the sample under study. However, a practical implementation of a phase coded aperture in an X-ray application is not feasible, because it is computationally modeled as a matrix with complex entries which requires changing the phase of the diffracted beams. In fact, changing the phase implies finding a material that allows to deviate the direction of an X-ray beam, which can considerably increase the implementation costs. Hence, this paper describes a low cost coded X-ray diffraction system based on block-unblock coded apertures that enables phase reconstruction. The proposed system approximates the phase coded aperture with a block-unblock coded aperture by using the detour-phase method. Moreover, the SAXS/WAXS X-ray crystallography software was used to simulate the diffraction patterns of a real crystal structure called Rhombic Dodecahedron. Additionally, several simulations were carried out to analyze the performance of block-unblock approximations in recovering the phase, using the simulated diffraction patterns. Furthermore, the quality of the reconstructions was measured in terms of the Peak Signal to Noise Ratio (PSNR). Results show that the performance of the block-unblock phase coded apertures approximation decreases at most 12.5% compared with the phase coded apertures. Moreover, the quality of the reconstructions using the boolean approximations is up to 2.5 dB of PSNR less with respect to the phase coded aperture reconstructions.

  2. Parameter scans and accuracy estimates of the dynamical aperture of the CERN LHC

    CERN Document Server

    Giovannozzi, Massimo

    2006-01-01

    Techniques to make use of large distributed computing facilities allow for denser parameter scans of the dynamic aperture, i.e., the domain in phase space where bounded single-particle motion prevails. Moreover, one can also increase the number of 'seeds' each of which represents a possible realization of multipolar components around the machine. In this paper the dependence of the dynamic aperture on the step size of the grid of initial conditions and on the number of seeds is studied. Estimates on the accuracy of the dynamic aperture are derived and the definition of an improved protocol for numerical simulations is presented.

  3. Forward scattering from square cylinders in the resonance region with application to aperture blockage

    DEFF Research Database (Denmark)

    Rusch, W.; Appel-Hansen, Jørgen; Klein, C

    1976-01-01

    The relationship between the induced field ratio (IFR) of a cylinder and aperture blocking of a constant-phase aperture by cylindrical struts is discussed. An analytical technique is presented whereby the IFR of rectangular cylinders can be calculated using the method-of-moments with internal...... constraint points. An experimental technique using a forward-scattering range is used to measure the IFR's of square and circular cylinders in an anechoic chamber. These experimental results are compared with the theory, and their implications on aperture blocking losses and boresight cross polarization...

  4. Preliminary study of insertion device effect on dynamic aperture using RACETRACK

    International Nuclear Information System (INIS)

    Chae, Yong-chul; Crosbie, E.A.

    1992-01-01

    We studied the effects of an insertion device (ID) on the dynamic aperture using the new version of RACETRACK. We found that the nonlinear effect of the ID is the dominant effect on the dynamic aperture reduction compared to the other multipole errors which exist in the otherwise ideal lattice. The previous study of dynamic aperture was based on the assumption that the effect of the fast oscillating terms in L. Smith's Hamiltonian is small, and hence can be neglected in the simulation. The remarkable agreement between the previous study and the current results using RACETRACK, including all effects of the fast oscillating terms, justified those assumptions at least for the APS ring

  5. Ultrasonic backscatter imaging by shear-wave-induced echo phase encoding of target locations.

    Science.gov (United States)

    McAleavey, Stephen

    2011-01-01

    We present a novel method for ultrasound backscatter image formation wherein lateral resolution of the target is obtained by using traveling shear waves to encode the lateral position of targets in the phase of the received echo. We demonstrate that the phase modulation as a function of shear wavenumber can be expressed in terms of a Fourier transform of the lateral component of the target echogenicity. The inverse transform, obtained by measurements of the phase modulation over a range of shear wave spatial frequencies, yields the lateral scatterer distribution. Range data are recovered from time of flight as in conventional ultrasound, yielding a B-mode-like image. In contrast to conventional ultrasound imaging, where mechanical or electronic focusing is used and lateral resolution is determined by aperture size and wavelength, we demonstrate that lateral resolution using the proposed method is independent of the properties of the aperture. Lateral resolution of the target is achieved using a stationary, unfocused, single-element transducer. We present simulated images of targets of uniform and non-uniform shear modulus. Compounding for speckle reduction is demonstrated. Finally, we demonstrate image formation with an unfocused transducer in gelatin phantoms of uniform shear modulus.

  6. Temporal Decorrelation Effect in Carbon Stocks Estimation Using Polarimetric Interferometry Synthetic Aperture Radar (PolInSAR (Case Study: Southeast Sulawesi Tropical Forest

    Directory of Open Access Journals (Sweden)

    Laode M Golok Jaya

    2017-07-01

    Full Text Available This paper was aimed to analyse the effect of temporal decorrelation in carbon stocks estimation. Estimation of carbon stocks plays important roles particularly to understand the global carbon cycle in the atmosphere regarding with climate change mitigation effort. PolInSAR technique combines the advantages of Polarimetric Synthetic Aperture Radar (PolSAR and Interferometry Synthetic Aperture Radar (InSAR technique, which is evidenced to have significant contribution in radar mapping technology in the last few years. In carbon stocks estimation, PolInSAR provides information about vertical vegetation structure to estimate carbon stocks in the forest layers. Two coherence Synthetic Aperture Radar (SAR images of ALOS PALSAR full-polarimetric with 46 days temporal baseline were used in this research. The study was carried out in Southeast Sulawesi tropical forest. The research method was by comparing three interferometric phase coherence images affected by temporal decorrelation and their impacts on Random Volume over Ground (RvoG model. This research showed that 46 days temporal baseline has a significant impact to estimate tree heights of the forest cover where the accuracy decrease from R2=0.7525 (standard deviation of tree heights is 2.75 meters to R2=0.4435 (standard deviation 4.68 meters and R2=0.3772 (standard deviation 3.15 meters respectively. However, coherence optimisation can provide the best coherence image to produce a good accuracy of carbon stocks.

  7. Multipinhole collimator with 20 apertures for a brain SPECT application

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tzu-Cheng; Ellin, Justin R.; Shrestha, Uttam; Seo, Youngho, E-mail: youngho.seo@ucsf.edu [Physics Research Laboratory, Department of Radiology and Biomedical Imaging, University of California, San Francisco, California 94107 (United States); Huang, Qiu [School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030 (China); Gullberg, Grant T. [Department of Radiotracer Development and Imaging Technology, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94702 (United States)

    2014-11-01

    Purpose: Several new technologies for single photon emission computed tomography (SPECT) instrumentation with parallel-hole collimation have been proposed to improve detector sensitivity and signal collection efficiency. Benefits from improved signal efficiency include shorter acquisition times and lower dose requirements. In this paper, the authors show a possibility of over an order of magnitude enhancement in photon detection efficiency (from 7.6 × 10{sup −5} to 1.6 × 10{sup −3}) for dopamine transporter (DaT) imaging of the striatum over the conventional SPECT parallel-hole collimators by use of custom-designed 20 multipinhole (20-MPH) collimators with apertures of 0.75 cm diameter. Methods: Quantifying specific binding ratio (SBR) of {sup 123}I-ioflupane or {sup 123}I-iometopane’s signal at the striatal region is a common brain imaging method to confirm the diagnosis of the Parkinson’s disease. The authors performed imaging of a striatal phantom filled with aqueous solution of I-123 and compared camera recovery ratios of SBR acquired between low-energy high-resolution (LEHR) parallel-hole collimators and 20-MPH collimators. Results: With only two-thirds of total acquisition time (20 min against 30 min), a comparable camera recovery ratio of SBR was achieved using 20-MPH collimators in comparison to that from the LEHR collimator study. Conclusions: Their systematic analyses showed that the 20-MPH collimator could be a promising alternative for the DaT SPECT imaging for brain over the traditional LEHR collimator, which could give both shorter scan time and improved diagnostic accuracy.

  8. New inverse synthetic aperture radar algorithm for translational motion compensation

    Science.gov (United States)

    Bocker, Richard P.; Henderson, Thomas B.; Jones, Scott A.; Frieden, B. R.

    1991-10-01

    Inverse synthetic aperture radar (ISAR) is an imaging technique that shows real promise in classifying airborne targets in real time under all weather conditions. Over the past few years a large body of ISAR data has been collected and considerable effort has been expended to develop algorithms to form high-resolution images from this data. One important goal of workers in this field is to develop software that will do the best job of imaging under the widest range of conditions. The success of classifying targets using ISAR is predicated upon forming highly focused radar images of these targets. Efforts to develop highly focused imaging computer software have been challenging, mainly because the imaging depends on and is affected by the motion of the target, which in general is not precisely known. Specifically, the target generally has both rotational motion about some axis and translational motion as a whole with respect to the radar. The slant-range translational motion kinematic quantities must be first accurately estimated from the data and compensated before the image can be focused. Following slant-range motion compensation, the image is further focused by determining and correcting for target rotation. The use of the burst derivative measure is proposed as a means to improve the computational efficiency of currently used ISAR algorithms. The use of this measure in motion compensation ISAR algorithms for estimating the slant-range translational motion kinematic quantities of an uncooperative target is described. Preliminary tests have been performed on simulated as well as actual ISAR data using both a Sun 4 workstation and a parallel processing transputer array. Results indicate that the burst derivative measure gives significant improvement in processing speed over the traditional entropy measure now employed.

  9. Coded Aperture Nuclear Scintigraphy: A Novel Small Animal Imaging Technique

    Directory of Open Access Journals (Sweden)

    Dawid Schellingerhout

    2002-10-01

    Full Text Available We introduce and demonstrate the utility of coded aperture (CA nuclear scintigraphy for imaging small animals. CA imaging uses multiple pinholes in a carefully designed mask pattern, mounted on a conventional gamma camera. System performance was assessed using point sources and phantoms, while several animal experiments were performed to test the usefulness of the imaging system in vivo, with commonly used radiopharmaceuticals. The sensitivity of the CA system for 99mTc was 4.2 × 103 cps/Bq (9400 cpm/μCi, compared to 4.4 × 104 cps/Bq (990 cpm/μCi for a conventional collimator system. The system resolution was 1.7 mm, as compared to 4–6 mm for the conventional imaging system (using a high-sensitivity low-energy collimator. Animal imaging demonstrated artifact-free imaging with superior resolution and image quality compared to conventional collimator images in several mouse and rat models. We conclude that: (a CA imaging is a useful nuclear imaging technique for small animal imaging. The advantage in signal-to-noise can be traded to achieve higher resolution, decreased dose or reduced imaging time. (b CA imaging works best for images where activity is concentrated in small volumes; a low count outline may be better demonstrated using conventional collimator imaging. Thus, CA imaging should be viewed as a technique to complement rather than replace traditional nuclear imaging methods. (c CA hardware and software can be readily adapted to existing gamma cameras, making their implementation a relatively inexpensive retrofit to most systems.

  10. Vrancea seismic source analysis using a small-aperture array

    International Nuclear Information System (INIS)

    Popescu, E.; Popa, M.; Radulian, M.; Placinta, A.O.

    2005-01-01

    A small-aperture seismic array (BURAR) was installed in 1999 in the northern part of the Romanian territory (Bucovina area). Since then, the array has been in operation under a joint cooperation programme between Romania and USA. The array consists of 10 stations installed in boreholes (nine short period instruments and one broadband instrument) with enough high sensitivity to properly detect earthquakes generated in Vrancea subcrustal domain (at about 250 km epicentral distance) with magnitude M w below 3. Our main purpose is to investigate and calibrate the source parameters of the Vrancea intermediate-depth earthquakes using specific techniques provided by the BURAR array data. Forty earthquakes with magnitudes between 2.9 and 6.0 were selected, including the recent events of September 27, 2004 (45.70 angle N, 26.45 angle E, h = 166 km, M w = 4.7), October 27, 2004 (45.84 angle N, 26.63 angle E, h = 105 km, M w = 6.0) and May 14, 2005 (45.66 angle N, 26.52 angle E, h = 146 km, M w = 5.1), which are the best ever recorded earthquakes on the Romanian territory: Empirical Green's function deconvolution and spectral ratio methods are applied for pairs of collocated events with similar focal mechanism. Stability tests are performed for the retrieved source time function using the array elements. Empirical scaling and calibration relationships are also determined. Our study shows the capability of the BURAR array to determine the source parameters of the Vrancea intermediate-depth earthquakes as a stand alone station and proves that the recordings of this array alone provides reliable and useful tools to efficiently constrain the source parameters and consequently source scaling properties. (authors)

  11. Imaging of concrete specimens using inverse synthetic aperture radar

    International Nuclear Information System (INIS)

    Rhim, Hong C.; Buyukozturk, Oral

    2000-01-01

    Radar Measurement results of laboratory size concrete specimens are presented in this paper. The purpose of this research work is to study various aspects of the radar method in an effort to develop an improved radar system for nondestructive testing of concrete structures. The radar system used for the study is an Inverse Synthetic Aperture Radar (ISAR), which is capable of transmitting microwaves at three different frequency ranges of 2-3.4, 3.4-5.8, and 8-12 GHz. Radar measurement setup is such that the radar is locates 14.4 m away from a concrete target to satisfy a far-field criterion. The concrete target is rotated for 20 degrees during the measurements for the generation of two-dimensional (cross-range) imagery. Concrete targets used for the measurements have the dimensions of 305 mm (width)x305 mm (height)x92 mm (thickness) with different inside configurations. Comparisons are made for dry and wet specimens, specimens with and without inclusions. Each specimen is made to model various situations that a concrete structure can have in reality. Results show that center frequency, frequency bandwidth, and polarization of the incident wave have different effects on identifying the thickness or inclusions inside concrete specimens. Results also suggest that a certain combination of measurement parameters is suitable for a specific application area. Thus, measurement parameters can be optimized for a specific problem. The findings are presented and discussed in details in the paper. Signal processing schemes implemented for imaging of the specimens are also discussed

  12. A dual-sided coded-aperture radiation detection system

    International Nuclear Information System (INIS)

    Penny, R.D.; Hood, W.E.; Polichar, R.M.; Cardone, F.H.; Chavez, L.G.; Grubbs, S.G.; Huntley, B.P.; Kuharski, R.A.; Shyffer, R.T.; Fabris, L.; Ziock, K.P.; Labov, S.E.; Nelson, K.

    2011-01-01

    We report the development of a large-area, mobile, coded-aperture radiation imaging system for localizing compact radioactive sources in three dimensions while rejecting distributed background. The 3D Stand-Off Radiation Detection System (SORDS-3D) has been tested at speeds up to 95 km/h and has detected and located sources in the millicurie range at distances of over 100 m. Radiation data are imaged to a geospatially mapped world grid with a nominal 1.25- to 2.5-m pixel pitch at distances out to 120 m on either side of the platform. Source elevation is also extracted. Imaged radiation alarms are superimposed on a side-facing video log that can be played back for direct localization of sources in buildings in urban environments. The system utilizes a 37-element array of 5x5x50 cm 3 cesium-iodide (sodium) detectors. Scintillation light is collected by a pair of photomultiplier tubes placed at either end of each detector, with the detectors achieving an energy resolution of 6.15% FWHM (662 keV) and a position resolution along their length of 5 cm FWHM. The imaging system generates a dual-sided two-dimensional image allowing users to efficiently survey a large area. Imaged radiation data and raw spectra are forwarded to the RadioNuclide Analysis Kit (RNAK), developed by our collaborators, for isotope ID. An intuitive real-time display aids users in performing searches. Detector calibration is dynamically maintained by monitoring the potassium-40 peak and digitally adjusting individual detector gains. We have recently realized improvements, both in isotope identification and in distinguishing compact sources from background, through the installation of optimal-filter reconstruction kernels.

  13. ERP Correlates of Encoding Success and Encoding Selectivity in Attention Switching

    Science.gov (United States)

    Yeung, Nick

    2016-01-01

    Long-term memory encoding depends critically on effective processing of incoming information. The degree to which participants engage in effective encoding can be indexed in electroencephalographic (EEG) data by studying event-related potential (ERP) subsequent memory effects. The current study investigated ERP correlates of memory success operationalised with two different measures—memory selectivity and global memory—to assess whether previously observed ERP subsequent memory effects reflect focused encoding of task-relevant information (memory selectivity), general encoding success (global memory), or both. Building on previous work, the present study combined an attention switching paradigm—in which participants were presented with compound object-word stimuli and switched between attending to the object or the word across trials—with a later recognition memory test for those stimuli, while recording their EEG. Our results provided clear evidence that subsequent memory effects resulted from selective attentional focusing and effective top-down control (memory selectivity) in contrast to more general encoding success effects (global memory). Further analyses addressed the question of whether successful encoding depended on similar control mechanisms to those involved in attention switching. Interestingly, differences in the ERP correlates of attention switching and successful encoding, particularly during the poststimulus period, indicated that variability in encoding success occurred independently of prestimulus demands for top-down cognitive control. These results suggest that while effects of selective attention and selective encoding co-occur behaviourally their ERP correlates are at least partly dissociable. PMID:27907075

  14. Coded aperture imagery filtered autocorrelation decoding; Imagerie par ouverture de codage decodage par autocorrelation filtree

    Energy Technology Data Exchange (ETDEWEB)

    Rouyer, A. [CEA Bruyeres-le-Chatel, 91 (France)

    2005-10-15

    Coded aperture imagery is particularly suited for imaging objects emitting penetrating radiation (hard X rays, gamma, neutrons), or for particles with rectilinear trajectories (electrons, protons, alpha particles, etc.). It is used when methods based on classical optical principles (reflection, refraction, diffraction), are invalid, or when the source emission is too weak for the well known pinhole method to give a usable image. The optical system consists in an aperture through an absorbing screen, named coding aperture, whose transmission is calculated in such a way that the spatial resolution is similar to that of a simple pinhole device, but with a far superior radiation collecting efficiency. We present a new decoding method,, called filtered autocorrelation, and illustrate its performances on images obtained with various coding apertures. (author)

  15. Clinical evaluation of synthetic aperture sequential beamforming ultrasound in patients with liver tumors

    DEFF Research Database (Denmark)

    Hansen, Peter Møller; Hemmsen, Martin Christian; Brandt, Andreas Hjelm

    2014-01-01

    Medical ultrasound imaging using synthetic aperture sequential beamforming (SASB) has for the first time been used for clinical patient scanning. Nineteen patients with cancer of the liver (hepatocellular carcinoma or colorectal liver metastases) were scanned simultaneously with conventional...

  16. All-optical switching of the transmission of electromagnetic radiation through subwavelength apertures

    NARCIS (Netherlands)

    Janke, C.; Gómez Rivas, J.; Haring Bolivar, P.; Kurz, H.

    2005-01-01

    Unprecedented optical control of the surface plasmon polariton assisted transmission of terahertz radiation through subwavelength apertures is rendered possible by carrier-induced changes to the dielectric properties of a semiconductor grating. Although the study presented is static, the extension

  17. Subsidence feature discrimination using deep convolutional neral networks in synthetic aperture radar imagery

    CSIR Research Space (South Africa)

    Schwegmann, Colin P

    2017-07-01

    Full Text Available International Geoscience and Remote Sensing Symposium (IGARSS), 23-28 July 2017, Fort Worth, TX, USA SUBSIDENCE FEATURE DISCRIMINATION USING DEEP CONVOLUTIONAL NEURAL NETWORKS IN SYNTHETIC APERTURE RADAR IMAGERY Schwegmann, Colin P Kleynhans, Waldo...

  18. Propagation of Bessel-Gaussian beams through a double-apertured fractional Fourier transform optical system.

    Science.gov (United States)

    Tang, Bin; Jiang, Chun; Zhu, Haibin

    2012-08-01

    Based on the scalar diffraction theory and the fact that a hard-edged aperture function can be expanded into a finite sum of complex Gaussian functions, an approximate analytical solution for Bessel-Gaussian (BG) beams propagating through a double-apertured fractional Fourier transform (FrFT) system is derived in the cylindrical coordinate. By using the approximate analytical formulas, the propagation properties of BG beams passing through a double-apertured FrFT optical system have been studied in detail by some typical numerical examples. The results indicate that the double-apertured FrFT optical system provides a convenient way for controlling the properties of the BG beams by properly choosing the optical parameters.

  19. High numerical aperture imaging by using multimode fibers with micro-fabricated optics

    KAUST Repository

    Bianchi, Silvio; Rajamanickam, V.; Ferrara, Lorenzo; Di Fabrizio, Enzo M.; Di Leonardo, Roberto; Liberale, Carlo

    2014-01-01

    Controlling light propagation into multimode optical fibers through spatial light modulators provides highly miniaturized endoscopes and optical micromanipulation probes. We increase the numerical aperture up to nearly 1 by micro-optics fabricated on the fiber-end.

  20. Forensic Facial Reconstruction: Relationship Between the Alar Cartilage and Piriform Aperture.

    Science.gov (United States)

    Strapasson, Raíssa Ananda Paim; Herrera, Lara Maria; Melani, Rodolfo Francisco Haltenhoff

    2017-11-01

    During forensic facial reconstruction, facial features may be predicted based on the parameters of the skull. This study evaluated the relationships between alar cartilage and piriform aperture and nose morphology and facial typology. Ninety-six cone beam computed tomography images of Brazilian subjects (49 males and 47 females) were used in this study. OsiriX software was used to perform the following measurements: nasal width, distance between alar base insertion points, lower width of the piriform aperture, and upper width of the piriform aperture. Nasal width was associated with the lower width of the piriform aperture, sex, skeletal vertical pattern of the face, and age. The current study contributes to the improvement of forensic facial guides by identifying the relationships between the alar cartilages and characteristics of the biological profile of members of a population that has been little studied thus far. © 2017 American Academy of Forensic Sciences.

  1. Beam loss due to the aperture limitation resulting from intrabeam scattering

    International Nuclear Information System (INIS)

    Lee, S.Y.

    1984-01-01

    Diffusion equation is used to evaluate the beam loss in the presence of aperture limitation resulting from the intrabeam scattering. We discuss the effect of different boundary conditions. Satisfactory beam intensity can be maintained within the proposed RHIC operation time

  2. Design of a neutron penumbral-aperture microscope with 10-μm resolution

    International Nuclear Information System (INIS)

    Ress, D.; Lerche, R.A.; Ellis, R.J.; Lane, S.M.

    1990-05-01

    We are currently designing a 10-μm resolution neutron penumbral-aperture microscope to diagnose high-convergence targets at the Nova laser facility. To achieve such high resolution, the new microscope will require substantial improvements in three areas. First, we have designed thick penumbral apertures with extremely sharp cutoffs over a useful (∼100 μm) field of view; fabrication of such apertures appears feasible using gold electroplating techniques. Second, the limited field of view and required close proximity of the aperture to the target (2 cm) necessitates a durable mounting and alignment system with +25 μm accuracy. Finally, a neutron detector containing 160,000 scintillator elements is required; readout and optimization of this large array are outstanding issues. 5 refs., 3 figs

  3. Nonlinear Correction Schemes for the Phase 1 LHC Insertion Region Upgrade and Dynamic Aperture Studies

    CERN Document Server

    de Maria, R; Tomás, R

    2009-01-01

    The Phase 1 LHC Interaction Region (IR) upgrade aims at increasing the machine luminosity essentially by reducing the beam size at the Interaction Point (IP). This requires a total redesign of the full IR. A large set of options has been proposed with conceptually different designs. This paper reports on a general approach for the compensation of the multipolar errors of the IR magnets in the design phase. The goal is to use the same correction approach for the different designs. The correction algorithm is based on the minimization of the differences between the IR transfer map with errors and the design IR transfer map. Its performance is tested using the dynamic aperture as figure of merit. The relation between map coefficients and resonance terms is also given as a way to target particular resonances by selecting the right map coefficients. The dynamic aperture is studied versus magnet aperture using recently established relations between magnetic errors and magnet aperture.

  4. Effects of imperfections on the dynamic aperture and closed orbit of the IPNS Upgrade synchrotron

    International Nuclear Information System (INIS)

    Lessner, E.; Chae, Y.C.; Kim, S.

    1995-01-01

    Magnet imperfections and misalignments are analyzed in terms of their effects on the dynamic aperture and closed orbit of the IPNS Upgrade synchrotron. The dynamic aperture is limited primarily by the presence of chromaticity-correcting sextupoles. With the sextupoles energized to the values required to adjust the chromaticities to zero, further reductions of the dynamic aperture caused by dipole strength and roll errors, quadrupole strength and alignment errors, and higher-order multipole errors are studied by tracking. Design specifications for the dipole corrector magnets are obtained and the dynamic aperture is studied before and after correction of the closed orbit. The use of harmonic-correcting sextupoles to reduce the amplitude-dependent tune shifts driven by the chromaticity-correcting sextupoles is investigated

  5. Method and apparatus for shadow aperture backscatter radiography (SABR) system and protocol

    Science.gov (United States)

    Shedlock, Daniel (Inventor); Jacobs, Alan M. (Inventor); Jacobs, Sharon Auerback (Inventor); Dugan, Edward (Inventor)

    2010-01-01

    A shadow aperture backscatter radiography (SABR) system includes at least one penetrating radiation source for providing a penetrating radiation field, and at least one partially transmissive radiation detector, wherein the partially transmissive radiation detector is interposed between an object region to be interrogated and the radiation source. The partially transmissive radiation detector transmits a portion of the illumination radiation field. A shadow aperture having a plurality of radiation attenuating regions having apertures therebetween is disposed between the radiation source and the detector. The apertures provide illumination regions for the illumination radiation field to reach the object region, wherein backscattered radiation from the object is detected and generates an image by the detector in regions of the detector that are shadowed by the radiation attenuation regions.

  6. Control of aperture closure during reach-to-grasp movements in Parkinson's disease.

    Science.gov (United States)

    Rand, M K; Smiley-Oyen, A L; Shimansky, Y P; Bloedel, J R; Stelmach, G E

    2006-01-01

    This study examined whether the pattern of coordination between arm-reaching toward an object (hand transport) and the initiation of aperture closure for grasping is different between PD patients and healthy individuals, and whether that pattern is affected by the necessity to quickly adjust the reach-to-grasp movement in response to an unexpected shift of target location. Subjects reached for and grasped a vertical dowel, the location of which was indicated by illuminating one of the three dowels placed on a horizontal plane. In control conditions, target location was fixed during the trial. In perturbation conditions, target location was shifted instantaneously by switching the illumination to a different dowel during the reach. The hand distance from the target at which the subject initiated aperture closure (aperture closure distance) was similar for both the control and perturbation conditions within each group of subjects. However, that distance was significantly closer to the target in the PD group than in the control group. The timing of aperture closure initiation varied considerably across the trials in both groups of subjects. In contrast, aperture closure distance was relatively invariant, suggesting that aperture closure initiation was determined by spatial parameters of arm kinematics rather than temporal parameters. The linear regression analysis of aperture closure distance showed that the distance was highly predictable based on the following three parameters: the amplitude of maximum grip aperture, hand velocity, and hand acceleration. This result implies that a control law, the arguments of which include the above parameters, governs the initiation of aperture closure. Further analysis revealed that the control law was very similar between the subject groups under each condition as well as between the control and perturbation conditions for each group. Consequently, the shorter aperture closure distance observed in PD patients apparently is a

  7. Control of aperture closure during reach-to-grasp movements in parkinson’s disease

    Science.gov (United States)

    Rand, M. K.; Smiley-Oyen, A. L.; Shimansky, Y. P.; Bloedel, J. R.; Stelmach, G. E.

    2007-01-01

    This study examined whether the pattern of coordination between arm-reaching toward an object (hand transport) and the initiation of aperture closure for grasping is different between PD patients and healthy individuals, and whether that pattern is affected by the necessity to quickly adjust the reach-to-grasp movement in response to an unexpected shift of target location. Subjects reached for and grasped a vertical dowel, the location of which was indicated by illuminating one of the three dowels placed on a horizontal plane. In control conditions, target location was fixed during the trial. In perturbation conditions, target location was shifted instantaneously by switching the illumination to a different dowel during the reach. The hand distance from the target at which the subject initiated aperture closure (aperture closure distance) was similar for both the control and perturbation conditions within each group of subjects. However, that distance was significantly closer to the target in the PD group than in the control group. The timing of aperture closure initiation varied considerably across the trials in both groups of subjects. In contrast, aperture closure distance was relatively invariant, suggesting that aperture closure initiation was determined by spatial parameters of arm kinematics rather than temporal parameters. The linear regression analysis of aperture closure distance showed that the distance was highly predictable based on the following three parameters: the amplitude of maximum grip aperture, hand velocity, and hand acceleration. This result implies that a control law, the arguments of which include the above parameters, governs the initiation of aperture closure. Further analysis revealed that the control law was very similar between the subject groups under each condition as well as between the control and perturbation conditions for each group. Consequently, the shorter aperture closure distance observed in PD patients apparently is a

  8. Quench Performance and Field Quality of FNAL Twin-Aperture 11 T Nb$_{3}$Sn Dipole Model for LHC Upgrades

    CERN Document Server

    Stoynev, S; Apollinari, G; Auchmann, B; Barzi, E; Izquierdo Bermudez, S; Bossert, R; Chlachidze, G; DiMarco, J; Karppinen, M; Nobrega, F; Novitski, I; Rossi, F; Savary, F; Smekens, D; Strauss, T; Turrioni, D; Velev, G; Zlobin, A V

    2017-01-01

    A 2 m long single-aperture dipole demonstrator and two 1 m long single-aperture models based on Nb$_{3}$Sn superconductor have been built and tested at FNAL. The two 1 m long collared coils were then assembled in a twin-aperture Nb$_{3}$Sn dipole demonstrator compatible with the LHC main dipole and tested in two thermal cycles. This paper summarizes the quench performance of the FNAL twin-aperture Nb$_{3}$Sn 11 T dipole in the temperature range of 1.9-4.5 K. The results of magnetic measurements for one of the two apertures are also presented. Test results are compared to the performance of coils in a single-aperture configuration. A summary of quench propagation studies in both apertures is given.

  9. Process and device for closing the apertures of a nuclear reactor core baffle formers

    International Nuclear Information System (INIS)

    Chevereau, G.

    1990-01-01

    The blades of at least two sets of blades along a shaft have bearing pads on the apertures of the formers with a length superior at the apertures radius. This device produces a transversal stagger of the shaft in two different directions in two zones of the shaft. It is possible to put in place and fix the closing device by an axial thrust [fr

  10. Wigner distribution function of Hermite-cosine-Gaussian beams through an apertured optical system.

    Science.gov (United States)

    Sun, Dong; Zhao, Daomu

    2005-08-01

    By introducing the hard-aperture function into a finite sum of complex Gaussian functions, the approximate analytical expressions of the Wigner distribution function for Hermite-cosine-Gaussian beams passing through an apertured paraxial ABCD optical system are obtained. The analytical results are compared with the numerically integrated ones, and the absolute errors are also given. It is shown that the analytical results are proper and that the calculation speed for them is much faster than for the numerical results.

  11. Vibrating mirror system suitable for q-switching large-aperture lasers

    Energy Technology Data Exchange (ETDEWEB)

    Beckwith, P.J.

    1977-11-01

    Resonant vibrating mirrors provide a convenient means of Q-switching a laser, but large-aperture versions require careful design if the drive power is not to become excessive. This report outlines the design principles involved in the optimisation of moving-iron galvanometer drivers, and describes a prototype device with an aperture of 40 mm x 80 mm which is capable of beam deflections of + or - 40 mrad at 800 Hz. Some suggestions are made concerning more refined designs.

  12. Electromagnetic pulse coupling through an aperture into a two-parallel-plate region

    Science.gov (United States)

    Rahmat-Samii, Y.

    1978-01-01

    Analysis of electromagnetic-pulse (EMP) penetration via apertures into cavities is an important study in designing hardened systems. In this paper, an integral equation procedure is developed for determining the frequency and consequently the time behavior of the field inside a two-parallel-plate region excited through an aperture by an EMP. Some discussion of the numerical results is also included in the paper for completeness.

  13. Resonance of Superconducting Microstrip Antenna with Aperture in the Ground Plane

    Directory of Open Access Journals (Sweden)

    S. Benkouda

    2013-08-01

    Full Text Available This paper presents a rigorous full-wave analysis of a high Tc superconducting rectangular microstrip antenna with a rectangular aperture in the ground plane. To include the effect of the superconductivity of the microstrip patch in the full-wave analysis, a complex surface impedance is considered. The proposed approach is validated by comparing the computed results with previously published data. Results showing the effect of the aperture on the resonance of the superconducting microstrip antenna are given.

  14. Effects of surface-mapping corrections and synthetic-aperture focusing techniques on ultrasonic imaging

    International Nuclear Information System (INIS)

    Barna, B.A.; Johnson, J.A.

    1981-01-01

    Improvements in ultrasonic imaging that can be obtained using algorithms that map the surface of targets are evaluated. This information is incorporated in the application of synthetic-aperture focusing techniques which also have the potential to improve image resolution. Images obtained using directed-beam (flat) transducers and the focused transducers normally used for synthetic-aperture processing are quantitatively compared by using no processing, synthetic-aperture processing with no corrections for surface variations, and synthetic-aperture processing with surface mapping. The unprocessed images have relatively poor lateral resolutions because echoes from two adjacent reflectors show interference effects which prevent their identification even if the spacing is larger than the single-hole resolution. The synthetic-aperture-processed images show at least a twofold improvement in lateral resolution and greatly reduced interference effects in multiple-hole images compared to directed-beam images. Perhaps more importantly, in images of test blocks with substantial surface variations portions of the image are displaced from their actual positions by several wavelengths. To correct for this effect an algorithm has been developed for calculating the surface variations. The corrected images produced using this algorithm are accurate within the experimental error. In addition, the same algorithm, when applied to the directed-beam data, produced images that are not only accurately positioned, but that also have a resolution comparable to conventional synthetic-aperture-processed images obtained from focused-transducer data. This suggests that using synthetic-aperture processing on the type of data normally collected during directed-beam ultrasonic inspections would eliminate the need to rescan for synthetic-aperture enhancement

  15. Cloud-based uniform ChIP-Seq processing tools for modENCODE and ENCODE.

    Science.gov (United States)

    Trinh, Quang M; Jen, Fei-Yang Arthur; Zhou, Ziru; Chu, Kar Ming; Perry, Marc D; Kephart, Ellen T; Contrino, Sergio; Ruzanov, Peter; Stein, Lincoln D

    2013-07-22

    Funded by the National Institutes of Health (NIH), the aim of the Model Organism ENCyclopedia of DNA Elements (modENCODE) project is to provide the biological research community with a comprehensive encyclopedia of functional genomic elements for both model organisms C. elegans (worm) and D. melanogaster (fly). With a total size of just under 10 terabytes of data collected and released to the public, one of the challenges faced by researchers is to extract biologically meaningful knowledge from this large data set. While the basic quality control, pre-processing, and analysis of the data has already been performed by members of the modENCODE consortium, many researchers will wish to reinterpret the data set using modifications and enhancements of the original protocols, or combine modENCODE data with other data sets. Unfortunately this can be a time consuming and logistically challenging proposition. In recognition of this challenge, the modENCODE DCC has released uniform computing resources for analyzing modENCODE data on Galaxy (https://github.com/modENCODE-DCC/Galaxy), on the public Amazon Cloud (http://aws.amazon.com), and on the private Bionimbus Cloud for genomic research (http://www.bionimbus.org). In particular, we have released Galaxy workflows for interpreting ChIP-seq data which use the same quality control (QC) and peak calling standards adopted by the modENCODE and ENCODE communities. For convenience of use, we have created Amazon and Bionimbus Cloud machine images containing Galaxy along with all the modENCODE data, software and other dependencies. Using these resources provides a framework for running consistent and reproducible analyses on modENCODE data, ultimately allowing researchers to use more of their time using modENCODE data, and less time moving it around.

  16. Random walk on random walks

    NARCIS (Netherlands)

    Hilário, M.; Hollander, den W.Th.F.; Sidoravicius, V.; Soares dos Santos, R.; Teixeira, A.

    2014-01-01

    In this paper we study a random walk in a one-dimensional dynamic random environment consisting of a collection of independent particles performing simple symmetric random walks in a Poisson equilibrium with density ¿¿(0,8). At each step the random walk performs a nearest-neighbour jump, moving to

  17. Design of the polar neutron-imaging aperture for use at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Fatherley, V. E., E-mail: vef@lanl.gov; Martinez, J. I.; Merrill, F. E.; Oertel, J. A.; Schmidt, D. W.; Volegov, P. L.; Wilde, C. H. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Barker, D. A.; Fittinghoff, D. N.; Hibbard, R. L. [Lawrence Livermore National Laboratory, Livermore, California 94551-0808 (United States)

    2016-11-15

    The installation of a neutron imaging diagnostic with a polar view at the National Ignition Facility (NIF) required design of a new aperture, an extended pinhole array (PHA). This PHA is different from the pinhole array for the existing equatorial system due to significant changes in the alignment and recording systems. The complex set of component requirements, as well as significant space constraints in its intended location, makes the design of this aperture challenging. In addition, lessons learned from development of prior apertures mandate careful aperture metrology prior to first use. This paper discusses the PHA requirements, constraints, and the final design. The PHA design is complex due to size constraints, machining precision, assembly tolerances, and design requirements. When fully assembled, the aperture is a 15 mm × 15 mm × 200 mm tungsten and gold assembly. The PHA body is made from 2 layers of tungsten and 11 layers of gold. The gold layers include 4 layers containing penumbral openings, 4 layers containing pinholes and 3 spacer layers. In total, there are 64 individual, triangular pinholes with a field of view (FOV) of 200 μm and 6 penumbral apertures. Each pinhole is pointed to a slightly different location in the target plane, making the effective FOV of this PHA a 700 μm square in the target plane. The large FOV of the PHA reduces the alignment requirements both for the PHA and the target, allowing for alignment with a laser tracking system at NIF.

  18. Deliverable navigation for multicriteria IMRT treatment planning by combining shared and individual apertures

    International Nuclear Information System (INIS)

    Fredriksson, Albin; Bokrantz, Rasmus

    2013-01-01

    We consider the problem of deliverable Pareto surface navigation for step-and-shoot intensity-modulated radiation therapy. This problem amounts to calculation of a collection of treatment plans with the property that convex combinations of plans are directly deliverable. Previous methods for deliverable navigation impose restrictions on the number of apertures of the individual plans, or require that all treatment plans have identical apertures. We introduce simultaneous direct step-and-shoot optimization of multiple plans subject to constraints that some of the apertures must be identical across all plans. This method generalizes previous methods for deliverable navigation to allow for treatment plans with some apertures from a collective pool and some apertures that are individual. The method can also be used as a post-processing step to previous methods for deliverable navigation in order to improve upon their plans. By applying the method to subsets of plans in the collection representing the Pareto set, we show how it can enable convergence toward the unrestricted (non-navigable) Pareto set where all apertures are individual. (paper)

  19. Modulation of hand aperture during reaching in persons with incomplete cervical spinal cord injury.

    Science.gov (United States)

    Stahl, Victoria A; Hayes, Heather B; Buetefisch, Cathrin M; Wolf, Steven L; Trumbower, Randy D

    2015-03-01

    The intact neuromotor system prepares for object grasp by first opening the hand to an aperture that is scaled according to object size and then closing the hand around the object. After cervical spinal cord injury (SCI), hand function is significantly impaired, but the degree to which object-specific hand aperture scaling is affected remains unknown. Here, we hypothesized that persons with incomplete cervical SCI have a reduced maximum hand opening capacity but exhibit novel neuromuscular coordination strategies that permit object-specific hand aperture scaling during reaching. To test this hypothesis, we measured hand kinematics and surface electromyography from seven muscles of the hand and wrist during attempts at maximum hand opening as well as reaching for four balls of different diameters. Our results showed that persons with SCI exhibited significantly reduced maximum hand aperture compared to able-bodied (AB) controls. However, persons with SCI preserved the ability to scale peak hand aperture with ball size during reaching. Persons with SCI also used distinct muscle coordination patterns that included increased co-activity of flexors and extensors at the wrist and hand compared to AB controls. These results suggest that motor planning for aperture modulation is preserved even though execution is limited by constraints on hand opening capacity and altered muscle co-activity. Thus, persons with incomplete cervical SCI may benefit from rehabilitation aimed at increasing hand opening capacity and reducing flexor-extensor co-activity at the wrist and hand.

  20. DESIGN OF MULTILAYER APERTURE COUPLED STACKED MICROSTRIP PATCH ANTENNA FOR WLAN APPLICATIONS

    Directory of Open Access Journals (Sweden)

    P. Jothilakshmi

    2015-10-01

    Full Text Available One of the major drawbacks of microstrip patch antenna is its narrow bandwidth. The solution of this problem is to use aperture coupled stacked micro strip patch antenna. The antenna uses a combination of aperture coupled feeding technique and multi- layer radiating patch in order for the radiating elements are increase the gain bandwidth. The ‘I’ and ‘H’ shaped aperture slots are etched onto the ground plane. It is used to transfer the energy from feed line to stacked patch. A variation of the feed line length controls the selected aperture slots to be active. The waves from the selected activated aperture slots will radiate to particular radiating patch and achieve the desired resonant frequency. The air gap is used to avoid coupling loss between the aperture slots and stacked patches. The observed simulated and measured results show that the proposed antenna structure resonated at 2.51 GHz frequency with reduced return loss and optimum voltage standing wave ratio.

  1. Indirect Encoding in Neuroevolutionary Ship Handling

    Directory of Open Access Journals (Sweden)

    Miroslaw Lacki

    2018-03-01

    Full Text Available In this paper the author compares the efficiency of two encoding schemes for artificial intelligence methods used in the neuroevolutionary ship maneuvering system. This may be also be seen as the ship handling system that simulates a learning process of a group of artificial helmsmen - autonomous control units, created with an artificial neural network. The helmsman observes input signals derived form an enfironment and calculates the values of required parameters of the vessel maneuvering in confined waters. In neuroevolution such units are treated as individuals in population of artificial neural networks, which through environmental sensing and evolutionary algorithms learn to perform given task efficiently. The main task of this project is to evolve a population of helmsmen with indirect encoding and compare results of simulation with direct encoding method.

  2. An Information Theoretic Characterisation of Auditory Encoding

    Science.gov (United States)

    Overath, Tobias; Cusack, Rhodri; Kumar, Sukhbinder; von Kriegstein, Katharina; Warren, Jason D; Grube, Manon; Carlyon, Robert P; Griffiths, Timothy D

    2007-01-01

    The entropy metric derived from information theory provides a means to quantify the amount of information transmitted in acoustic streams like speech or music. By systematically varying the entropy of pitch sequences, we sought brain areas where neural activity and energetic demands increase as a function of entropy. Such a relationship is predicted to occur in an efficient encoding mechanism that uses less computational resource when less information is present in the signal: we specifically tested the hypothesis that such a relationship is present in the planum temporale (PT). In two convergent functional MRI studies, we demonstrated this relationship in PT for encoding, while furthermore showing that a distributed fronto-parietal network for retrieval of acoustic information is independent of entropy. The results establish PT as an efficient neural engine that demands less computational resource to encode redundant signals than those with high information content. PMID:17958472

  3. Surface water classification and monitoring using polarimetric synthetic aperture radar

    Science.gov (United States)

    Irwin, Katherine Elizabeth

    Surface water classification using synthetic aperture radar (SAR) is an established practice for monitoring flood hazards due to the high temporal and spatial resolution it provides. Surface water change is a dynamic process that varies both spatially and temporally, and can occur on various scales resulting in significant impacts on affected areas. Small-scale flooding hazards, caused by beaver dam failure, is an example of surface water change, which can impact nearby infrastructure and ecosystems. Assessing these hazards is essential to transportation and infrastructure maintenance. With current satellite missions operating in multiple polarizations, spatio-temporal resolutions, and frequencies, a comprehensive comparison between SAR products for surface water monitoring is necessary. In this thesis, surface water extent models derived from high resolution single-polarization TerraSAR-X (TSX) data, medium resolution dual-polarization TSX data and low resolution quad-polarization RADARSAT-2 (RS-2) data are compared. There exists a compromise between acquiring SAR data with a high resolution or high information content. Multi-polarization data provides additional phase and intensity information, which makes it possible to better classify areas of flooded vegetation and wetlands. These locations are often where fluctuations in surface water occur and are essential for understanding dynamic underlying processes. However, often multi-polarized data is acquired at a low resolution, which cannot image these zones effectively. High spatial resolution, single-polarization TSX data provides the best model of open water. However, these single-polarization observations have limited information content and are affected by shadow and layover errors. This often hinders the classification of other land cover types. The dual-polarization TSX data allows for the classification of flooded vegetation, but classification is less accurate compared to the quad-polarization RS-2 data

  4. Sources of Artefacts in Synthetic Aperture Radar Interferometry Data Sets

    Science.gov (United States)

    Becek, K.; Borkowski, A.

    2012-07-01

    In recent years, much attention has been devoted to digital elevation models (DEMs) produced using Synthetic Aperture Radar Interferometry (InSAR). This has been triggered by the relative novelty of the InSAR method and its world-famous product—the Shuttle Radar Topography Mission (SRTM) DEM. However, much less attention, if at all, has been paid to sources of artefacts in SRTM. In this work, we focus not on the missing pixels (null pixels) due to shadows or the layover effect, but rather on outliers that were undetected by the SRTM validation process. The aim of this study is to identify some of the causes of the elevation outliers in SRTM. Such knowledge may be helpful to mitigate similar problems in future InSAR DEMs, notably the ones currently being developed from data acquired by the TanDEM-X mission. We analysed many cross-sections derived from SRTM. These cross-sections were extracted over the elevation test areas, which are available from the Global Elevation Data Testing Facility (GEDTF) whose database contains about 8,500 runways with known vertical profiles. Whenever a significant discrepancy between the known runway profile and the SRTM cross-section was detected, a visual interpretation of the high-resolution satellite image was carried out to identify the objects causing the irregularities. A distance and a bearing from the outlier to the object were recorded. Moreover, we considered the SRTM look direction parameter. A comprehensive analysis of the acquired data allows us to establish that large metallic structures, such as hangars or car parking lots, are causing the outliers. Water areas or plain wet terrains may also cause an InSAR outlier. The look direction and the depression angle of the InSAR system in relation to the suspected objects influence the magnitude of the outliers. We hope that these findings will be helpful in designing the error detection routines of future InSAR or, in fact, any microwave aerial- or space-based survey. The

  5. SOURCES OF ARTEFACTS IN SYNTHETIC APERTURE RADAR INTERFEROMETRY DATA SETS

    Directory of Open Access Journals (Sweden)

    K. Becek

    2012-07-01

    Full Text Available In recent years, much attention has been devoted to digital elevation models (DEMs produced using Synthetic Aperture Radar Interferometry (InSAR. This has been triggered by the relative novelty of the InSAR method and its world-famous product—the Shuttle Radar Topography Mission (SRTM DEM. However, much less attention, if at all, has been paid to sources of artefacts in SRTM. In this work, we focus not on the missing pixels (null pixels due to shadows or the layover effect, but rather on outliers that were undetected by the SRTM validation process. The aim of this study is to identify some of the causes of the elevation outliers in SRTM. Such knowledge may be helpful to mitigate similar problems in future InSAR DEMs, notably the ones currently being developed from data acquired by the TanDEM-X mission. We analysed many cross-sections derived from SRTM. These cross-sections were extracted over the elevation test areas, which are available from the Global Elevation Data Testing Facility (GEDTF whose database contains about 8,500 runways with known vertical profiles. Whenever a significant discrepancy between the known runway profile and the SRTM cross-section was detected, a visual interpretation of the high-resolution satellite image was carried out to identify the objects causing the irregularities. A distance and a bearing from the outlier to the object were recorded. Moreover, we considered the SRTM look direction parameter. A comprehensive analysis of the acquired data allows us to establish that large metallic structures, such as hangars or car parking lots, are causing the outliers. Water areas or plain wet terrains may also cause an InSAR outlier. The look direction and the depression angle of the InSAR system in relation to the suspected objects influence the magnitude of the outliers. We hope that these findings will be helpful in designing the error detection routines of future InSAR or, in fact, any microwave aerial- or space

  6. Direct aperture optimization for online adaptive radiation therapy

    International Nuclear Information System (INIS)

    Mestrovic, Ante; Milette, Marie-Pierre; Nichol, Alan; Clark, Brenda G.; Otto, Karl

    2007-01-01

    This paper is the first investigation of using direct aperture optimization (DAO) for online adaptive radiation therapy (ART). A geometrical model representing the anatomy of a typical prostate case was created. To simulate interfractional deformations, four different anatomical deformations were created by systematically deforming the original anatomy by various amounts (0.25, 0.50, 0.75, and 1.00 cm). We describe a series of techniques where the original treatment plan was adapted in order to correct for the deterioration of dose distribution quality caused by the anatomical deformations. We found that the average time needed to adapt the original plan to arrive at a clinically acceptable plan is roughly half of the time needed for a complete plan regeneration, for all four anatomical deformations. Furthermore, through modification of the DAO algorithm the optimization search space was reduced and the plan adaptation was significantly accelerated. For the first anatomical deformation (0.25 cm), the plan adaptation was six times more efficient than the complete plan regeneration. For the 0.50 and 0.75 cm deformations, the optimization efficiency was increased by a factor of roughly 3 compared to the complete plan regeneration. However, for the anatomical deformation of 1.00 cm, the reduction of the optimization search space during plan adaptation did not result in any efficiency improvement over the original (nonmodified) plan adaptation. The anatomical deformation of 1.00 cm demonstrates the limit of this approach. We propose an innovative approach to online ART in which the plan adaptation and radiation delivery are merged together and performed concurrently--adaptive radiation delivery (ARD). A fundamental advantage of ARD is the fact that radiation delivery can start almost immediately after image acquisition and evaluation. Most of the original plan adaptation is done during the radiation delivery, so the time spent adapting the original plan does not

  7. Incremental phonological encoding during unscripted sentence production

    Directory of Open Access Journals (Sweden)

    Florian T Jaeger

    2012-11-01

    Full Text Available We investigate phonological encoding during unscripted sentence production, focusing on the effect of phonological overlap on phonological encoding. Previous work on this question has almost exclusively employed isolated word production or highly scripted multiword production. These studies have led to conflicting results: some studies found that phonological overlap between two words facilitates phonological encoding, while others found inhibitory effects. One worry with many of these paradigms is that they involve processes that are not typical to everyday language use, which calls into question to what extent their findings speak to the architectures and mechanisms underlying language production. We present a paradigm to investigate the consequences of phonological overlap between words in a sentence while leaving speakers much of the lexical and structural choices typical in everyday language use. Adult native speakers of English described events in short video clips. We annotated the presence of disfluencies and the speech rate at various points throughout the sentence, as well as the constituent order. We find that phonological overlap has an inhibitory effect on phonological encoding. Specifically, if adjacent content words share their phonological onset (e.g., hand the hammer, they are preceded by production difficulty, as reflected in fluency and speech rate. We also find that this production difficulty affects speakers’ constituent order preferences during grammatical encoding. We discuss our results and previous works to isolate the properties of other paradigms that resulted in facilitatory or inhibitory results. The data from our paradigm also speak to questions about the scope of phonological planning in unscripted speech and as to whether phonological and grammatical encoding interact.

  8. Optical encoder based on a nondiffractive beam

    International Nuclear Information System (INIS)

    Lutenberg, Ariel; Perez-Quintian, Fernando; Rebollo, Maria A.

    2008-01-01

    Optical encoders are used in industrial and laboratory motion equipment to measure rotations and linear displacements. We introduce a design of an optical encoder based on a nondiffractive beam. We expect that the invariant profile and radial symmetry of the nondiffractive beam provide the design with remarkable tolerance to mechanical perturbations. We experimentally demonstrate that the proposed design generates a suitable output sinusoidal signal with low harmonic distortion. Moreover, we present a numerical model of the system based on the angular spectrum approximation whose predictions are in excellent agreement with the experimental results

  9. Joint-layer encoder optimization for HEVC scalable extensions

    Science.gov (United States)

    Tsai, Chia-Ming; He, Yuwen; Dong, Jie; Ye, Yan; Xiu, Xiaoyu; He, Yong

    2014-09-01

    Scalable video coding provides an efficient solution to support video playback on heterogeneous devices with various channel conditions in heterogeneous networks. SHVC is the latest scalable video coding standard based on the HEVC standard. To improve enhancement layer coding efficiency, inter-layer prediction including texture and motion information generated from the base layer is used for enhancement layer coding. However, the overall performance of the SHVC reference encoder is not fully optimized because rate-distortion optimization (RDO) processes in the base and enhancement layers are independently considered. It is difficult to directly extend the existing joint-layer optimization methods to SHVC due to the complicated coding tree block splitting decisions and in-loop filtering process (e.g., deblocking and sample adaptive offset (SAO) filtering) in HEVC. To solve those problems, a joint-layer optimization method is proposed by adjusting the quantization parameter (QP) to optimally allocate the bit resource between layers. Furthermore, to make more proper resource allocation, the proposed method also considers the viewing probability of base and enhancement layers according to packet loss rate. Based on the viewing probability, a novel joint-layer RD cost function is proposed for joint-layer RDO encoding. The QP values of those coding tree units (CTUs) belonging to lower layers referenced by higher layers are decreased accordingly, and the QP values of those remaining CTUs are increased to keep total bits unchanged. Finally the QP values with minimal joint-layer RD cost are selected to match the viewing probability. The proposed method was applied to the third temporal level (TL-3) pictures in the Random Access configuration. Simulation results demonstrate that the proposed joint-layer optimization method can improve coding performance by 1.3% for these TL-3 pictures compared to the SHVC reference encoder without joint-layer optimization.

  10. Simultaneous transmission for an encrypted image and a double random-phase encryption key

    Science.gov (United States)

    Yuan, Sheng; Zhou, Xin; Li, Da-Hai; Zhou, Ding-Fu

    2007-06-01

    We propose a method to simultaneously transmit double random-phase encryption key and an encrypted image by making use of the fact that an acceptable decryption result can be obtained when only partial data of the encrypted image have been taken in the decryption process. First, the original image data are encoded as an encrypted image by a double random-phase encryption technique. Second, a double random-phase encryption key is encoded as an encoded key by the Rivest-Shamir-Adelman (RSA) public-key encryption algorithm. Then the amplitude of the encrypted image is modulated by the encoded key to form what we call an encoded image. Finally, the encoded image that carries both the encrypted image and the encoded key is delivered to the receiver. Based on such a method, the receiver can have an acceptable result and secure transmission can be guaranteed by the RSA cipher system.

  11. Registered particles onboard identification in the various apertures of GAMMA-400 space gamma-telescope

    Science.gov (United States)

    Arkhangelskaja, Irene

    2016-07-01

    GAMMA-400 (Gamma Astronomical Multifunctional Modular Apparatus) will be the gamma-telescope onboard international satellite gamma-observatory designed for particle registration in the wide energy band. Its parameters are optimized for detection of gamma-quanta with the energy ˜ 100 GeV in the main aperture. The main scientific goals of GAMMA-400 are to investigate fluxes of γ-rays and the electron-positron cosmic ray component possibly generated by dark matter particles decay or annihilation and to search for and study in detail discrete γ-ray sources, to investigate the energy spectra of Galactic and extragalactic diffuse γ-rays, and to study γ-ray bursts and γ-emission from the active Sun. This article presents analysis of detected events identification procedures and energy resolution in three apertures provide particles registration both from upper and lateral directions based on GAMMA-400 modeling due special designed software. Time and segmentation methods are used to reject backsplash (backscattering particles created when high energy γ-rays interact with the calorimeter's matter and move in the opposite direction) in the main aperture while only energy deposition analysis allows to reject this effect in the additional and lateral ones. The main aperture provides the best angular (all strip layers information analysis) and energy (energy deposition in the all detectors studying) resolution in the energy range 0.1 - 3 × 10^{3} GeV. The energy resolution in this band is 1%. Triggers in the main aperture will be formed using information about particle direction provided by time of flight system and presence of charged particle or backsplash signal formed according to analysis of energy deposition in combination of all two-layers anticoincidence systems individual detectors. In the additional aperture gamma-telescope allows to register events in the energy band 10 × 10^{-3} - 3 × 10^{3} GeV. The additional aperture energy resolution provides due to

  12. Novel Intermode Prediction Algorithm for High Efficiency Video Coding Encoder

    Directory of Open Access Journals (Sweden)

    Chan-seob Park

    2014-01-01

    Full Text Available The joint collaborative team on video coding (JCT-VC is developing the next-generation video coding standard which is called high efficiency video coding (HEVC. In the HEVC, there are three units in block structure: coding unit (CU, prediction unit (PU, and transform unit (TU. The CU is the basic unit of region splitting like macroblock (MB. Each CU performs recursive splitting into four blocks with equal size, starting from the tree block. In this paper, we propose a fast CU depth decision algorithm for HEVC technology to reduce its computational complexity. In 2N×2N PU, the proposed method compares the rate-distortion (RD cost and determines the depth using the compared information. Moreover, in order to speed up the encoding time, the efficient merge SKIP detection method is developed additionally based on the contextual mode information of neighboring CUs. Experimental result shows that the proposed algorithm achieves the average time-saving factor of 44.84% in the random access (RA at Main profile configuration with the HEVC test model (HM 10.0 reference software. Compared to HM 10.0 encoder, a small BD-bitrate loss of 0.17% is also observed without significant loss of image quality.

  13. Logical independence and quantum randomness

    International Nuclear Information System (INIS)

    Paterek, T; Kofler, J; Aspelmeyer, M; Zeilinger, A; Brukner, C; Prevedel, R; Klimek, P

    2010-01-01

    We propose a link between logical independence and quantum physics. We demonstrate that quantum systems in the eigenstates of Pauli group operators are capable of encoding mathematical axioms and show that Pauli group quantum measurements are capable of revealing whether or not a given proposition is logically dependent on the axiomatic system. Whenever a mathematical proposition is logically independent of the axioms encoded in the measured state, the measurement associated with the proposition gives random outcomes. This allows for an experimental test of logical independence. Conversely, it also allows for an explanation of the probabilities of random outcomes observed in Pauli group measurements from logical independence without invoking quantum theory. The axiomatic systems we study can be completed and are therefore not subject to Goedel's incompleteness theorem.

  14. Logical independence and quantum randomness

    Energy Technology Data Exchange (ETDEWEB)

    Paterek, T; Kofler, J; Aspelmeyer, M; Zeilinger, A; Brukner, C [Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, Boltzmanngasse 3, A-1090 Vienna (Austria); Prevedel, R; Klimek, P [Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna (Austria)], E-mail: tomasz.paterek@univie.ac.at

    2010-01-15

    We propose a link between logical independence and quantum physics. We demonstrate that quantum systems in the eigenstates of Pauli group operators are capable of encoding mathematical axioms and show that Pauli group quantum measurements are capable of revealing whether or not a given proposition is logically dependent on the axiomatic system. Whenever a mathematical proposition is logically independent of the axioms encoded in the measured state, the measurement associated with the proposition gives random outcomes. This allows for an experimental test of logical independence. Conversely, it also allows for an explanation of the probabilities of random outcomes observed in Pauli group measurements from logical independence without invoking quantum theory. The axiomatic systems we study can be completed and are therefore not subject to Goedel's incompleteness theorem.

  15. Feature-specific encoding flexibility in visual working memory.

    Directory of Open Access Journals (Sweden)

    Aki Kondo

    Full Text Available The current study examined selective encoding in visual working memory by systematically investigating interference from task-irrelevant features. The stimuli were objects defined by three features (color, shape, and location, and during a delay period, any of the features could switch between two objects. Additionally, single- and whole-probe trials were randomized within experimental blocks to investigate effects of memory retrieval. A series of relevant-feature switch detection tasks, where one feature was task-irrelevant, showed that interference from the task-irrelevant feature was only observed in the color-shape task, suggesting that color and shape information could be successfully filtered out, but location information could not, even when location was a task-irrelevant feature. Therefore, although location information is added to object representations independent of task demands in a relatively automatic manner, other features (e.g., color, shape can be flexibly added to object representations.

  16. Feature-specific encoding flexibility in visual working memory.

    Science.gov (United States)

    Kondo, Aki; Saiki, Jun

    2012-01-01

    The current study examined selective encoding in visual working memory by systematically investigating interference from task-irrelevant features. The stimuli were objects defined by three features (color, shape, and location), and during a delay period, any of the features could switch between two objects. Additionally, single- and whole-probe trials were randomized within experimental blocks to investigate effects of memory retrieval. A series of relevant-feature switch detection tasks, where one feature was task-irrelevant, showed that interference from the task-irrelevant feature was only observed in the color-shape task, suggesting that color and shape information could be successfully filtered out, but location information could not, even when location was a task-irrelevant feature. Therefore, although location information is added to object representations independent of task demands in a relatively automatic manner, other features (e.g., color, shape) can be flexibly added to object representations.

  17. Coherence protection by random coding

    International Nuclear Information System (INIS)

    Brion, E; Akulin, V M; Dumer, I; Harel, G; Kurizki, G

    2005-01-01

    We show that the multidimensional Zeno effect combined with non-holonomic control allows one to efficiently protect quantum systems from decoherence by a method similar to classical random coding. The method is applicable to arbitrary error-inducing Hamiltonians and general quantum systems. The quantum encoding approaches the Hamming upper bound for large dimension increases. Applicability of the method is demonstrated with a seven-qubit toy computer

  18. RNAi suppressors encoded by pathogenic human viruses

    NARCIS (Netherlands)

    de Vries, Walter; Berkhout, Ben

    2008-01-01

    RNA silencing or RNAi interference (RNAi) serves as an innate antiviral mechanism in plants, fungi and animals. Human viruses, like plant viruses, encode suppressor proteins or RNAs that block or modulate the RNAi pathway. This review summarizes the mechanisms by which pathogenic human viruses

  19. Visual Memory : The Price of Encoding Details

    NARCIS (Netherlands)

    Nieuwenstein, Mark; Kromm, Maria

    2017-01-01

    Studies on visual long-term memory have shown that we have a tremendous capacity for remembering pictures of objects, even at a highly detailed level. What remains unclear, however, is whether encoding objects at such a detailed level comes at any cost. In the current study, we examined how the

  20. Encoders for block-circulant LDPC codes

    Science.gov (United States)

    Divsalar, Dariush (Inventor); Abbasfar, Aliazam (Inventor); Jones, Christopher R. (Inventor); Dolinar, Samuel J. (Inventor); Thorpe, Jeremy C. (Inventor); Andrews, Kenneth S. (Inventor); Yao, Kung (Inventor)

    2009-01-01

    Methods and apparatus to encode message input symbols in accordance with an accumulate-repeat-accumulate code with repetition three or four are disclosed. Block circulant matrices are used. A first method and apparatus make use of the block-circulant structure of the parity check matrix. A second method and apparatus use block-circulant generator matrices.