Sample records for random wave propagation

  1. Wave propagation and scattering in random media

    CERN Document Server

    Ishimaru, Akira


    Wave Propagation and Scattering in Random Media, Volume 2, presents the fundamental formulations of wave propagation and scattering in random media in a unified and systematic manner. The topics covered in this book may be grouped into three categories: waves in random scatterers, waves in random continua, and rough surface scattering. Random scatterers are random distributions of many particles. Examples are rain, fog, smog, hail, ocean particles, red blood cells, polymers, and other particles in a state of Brownian motion. Random continua are the media whose characteristics vary randomly an

  2. Wave Propagation inside Random Media (United States)

    Cheng, Xiaojun

    =-x/l where l is the transport mean free path. The result does not depend on the sample length, which is counterintuitive yet remarkably simple. More supprisingly, the linear fall-off of energy profile holds for totally disordered random 1D layered samples in simulations where the LDOS is uniform as well as for single mode random waveguide experiments and 1D nearly periodic samples where the LDOS is suppressed in the middle of the sample. The generalization of the transmission matrix to the interior of quasi-1D random samples, which is defined as the field matrix, and its eigenvalues statistics are also discussed. The maximum energy deposition at a location is not the intensity of the first transmission eigenchannel but the eigenvalue of the first energy density eigenchannels at that cross section, which can be much greater than the average value. The contrast, which is the ratio of the intensity at the focused point to the background intensity, in optimal focusing is determined by the participation number of the energy density eigenvalues and its inverse gives the variance of the energy density at that cross section in a single configuration. We have also studied topological states in photonic structures. We have demonstrated robust propagation of electromagnetic waves along reconfigurable pathways within a topological photonic metacrystal. Since the wave is confined within the domain wall, which is the boundary between two distinct topological insulating systems, we can freely steer the wave by reconstructing the photonic structure. Other topics, such as speckle pattern evolutions and the effects of boundary conditions on the statistics of transmission eigenvalues and energy profiles are also discussed.

  3. Electromagnetic Wave Propagation in Random Media

    DEFF Research Database (Denmark)

    Pécseli, Hans


    The propagation of a narrow frequency band beam of electromagnetic waves in a medium with randomly varying index of refraction is considered. A novel formulation of the governing equation is proposed. An equation for the average Green function (or transition probability) can then be derived....... A Fokker-Planck type equation is contained as a limiting case. The results are readily generalized to include the features of the random coupling model and it is argued that the present problem is particularly suited for an analysis of this type....

  4. A functional renormalization method for wave propagation in random media (United States)

    Lamagna, Federico; Calzetta, Esteban


    We develop the exact renormalization group approach as a way to evaluate the effective speed of the propagation of a scalar wave in a medium with random inhomogeneities. We use the Martin-Siggia-Rose formalism to translate the problem into a non equilibrium field theory one, and then consider a sequence of models with a progressively lower infrared cutoff; in the limit where the cutoff is removed we recover the problem of interest. As a test of the formalism, we compute the effective dielectric constant of an homogeneous medium interspersed with randomly located, interpenetrating bubbles. A simple approximation to the renormalization group equations turns out to be equivalent to a self-consistent two-loops evaluation of the effective dielectric constant.

  5. Wave Propagation

    CERN Document Server

    Ferrarese, Giorgio


    Lectures: A. Jeffrey: Lectures on nonlinear wave propagation.- Y. Choquet-Bruhat: Ondes asymptotiques.- G. Boillat: Urti.- Seminars: D. Graffi: Sulla teoria dell'ottica non-lineare.- G. Grioli: Sulla propagazione del calore nei mezzi continui.- T. Manacorda: Onde nei solidi con vincoli interni.- T. Ruggeri: "Entropy principle" and main field for a non linear covariant system.- B. Straughan: Singular surfaces in dipolar materials and possible consequences for continuum mechanics

  6. Random field Ising model swept by propagating magnetic field wave: Athermal nonequilibrium phasediagram (United States)

    Acharyya, Muktish


    The dynamical steady state behaviour of the random field Ising ferromagnet swept by a propagating magnetic field wave is studied at zero temperature by Monte Carlo simulation in two dimensions. The distribution of the random field is bimodal type. For a fixed set of values of the frequency, wavelength and amplitude of propagating magnetic field wave and the strength of the random field, four distinct dynamical steady states or nonequilibrium phases were identified. These four nonequilibrium phases are characterised by different values of structure factors. State or phase of first kind, where all spins are parallel (up). This phase is a frozen or pinned where the propagating field has no effect. The second one is the propagating type, where the sharp strips formed by parallel spins are found to move coherently. The third one is also propagating type, where the boundary of the strips of spins is not very sharp. The fourth kind shows no propagation of strips of magnetic spins, forming a homogeneous distribution of up and down spins. This is disordered phase. The existence of these four dynamical phases or modes depends on the value of the amplitude of propagating magnetic field wave and the strength of random (static) field. A phase diagram has also been drawn, in the plane formed by the amplitude of propagating field and the strength of random field. It is also checked that the existence of these dynamical phases is neither a finite size effect nor a transient phenomenon.

  7. Simulations of ultrasound propagation in random arrangements of elliptic scatterers: occurrence of two longitudinal waves. (United States)

    Mézière, Fabien; Muller, Marie; Dobigny, Blandine; Bossy, Emmanuel; Derode, Arnaud


    Ultrasound propagation in clusters of elliptic (two-dimensional) or ellipsoidal (three-dimensional) scatterers randomly distributed in a fluid is investigated numerically. The essential motivation for the present work is to gain a better understanding of ultrasound propagation in trabecular bone. Bone microstructure exhibits structural anisotropy and multiple wave scattering. Some phenomena remain partially unexplained, such as the propagation of two longitudinal waves. The objective of this study was to shed more light on the occurrence of these two waves, using finite-difference simulations on a model medium simpler than bone. Slabs of anisotropic, scattering media were randomly generated. The coherent wave was obtained through spatial and ensemble-averaging of the transmitted wavefields. When varying relevant medium parameters, four of them appeared to play a significant role for the observation of two waves: (i) the solid fraction, (ii) the direction of propagation relatively to the scatterers orientation, (iii) the ability of scatterers to support shear waves, and (iv) a continuity of the solid matrix along the propagation. These observations are consistent with the hypothesis that fast waves are guided by the locally plate/bar-like solid matrix. If confirmed, this interpretation could significantly help developing approaches for a better understanding of trabecular bone micro-architecture using ultrasound.

  8. Electromagnetic wave propagation in a random distribution of C{sub 60} molecules

    Energy Technology Data Exchange (ETDEWEB)

    Moradi, Afshin, E-mail: [Department of Engineering Physics, Kermanshah University of Technology, Kermanshah, Iran and Department of Nano Sciences, Institute for Studies in Theoretical Physics and Mathematics (IPM), Tehran (Iran, Islamic Republic of)


    Propagation of electromagnetic waves in a random distribution of C{sub 60} molecules are investigated, within the framework of the classical electrodynamics. Electronic excitations over the each C{sub 60} molecule surface are modeled by a spherical layer of electron gas represented by two interacting fluids, which takes into account the different nature of the π and σ electrons. It is found that the present medium supports four modes of electromagnetic waves, where they can be divided into two groups: one group with shorter wavelength than the light waves of the same frequency and the other with longer wavelength than the free-space radiation.

  9. Wave propagation through random media: A local method of small perturbations based on the Helmholtz equation (United States)

    Grosse, Ralf


    Propagation of sound through the turbulent atmosphere is a statistical problem. The randomness of the refractive index field causes sound pressure fluctuations. Although no general theory to predict sound pressure statistics from given refractive index statistics exists, there are several approximate solutions to the problem. The most common approximation is the parabolic equation method. Results obtained by this method are restricted to small refractive index fluctuations and to small wave lengths. While the first condition is generally met in the atmosphere, it is desirable to overcome the second. A generalization of the parabolic equation method with respect to the small wave length restriction is presented.

  10. Viscothermal wave propagation

    NARCIS (Netherlands)

    Nijhof, M.J.J.


    In this work, the accuracy, efficiency and range of applicability of various (approximate) models for viscothermal wave propagation are investigated. Models for viscothermal wave propagation describe thewave behavior of fluids including viscous and thermal effects. Cases where viscothermal effects

  11. Effective medium approximation for effective propagation constant calculation in a dense random medium. [electromagnetic wave scattering (United States)

    Zhu, P. Y.; Fung, A. K.


    The effective medium approximation (EMA) formalism developed for scalar wave calculations in solid state physics is generalized to electromagnetic wave scattering in a dense random medium. Results are applied to compute the effective propagation constant in a dense medium involving discrete spherical scatterers. When compared with a common quasicrystalline approximation (QCA), it is found that EMA accounts for backward scattering and the effect of correlation among three scatterers which are not available in QCA. It is also found that there is not much difference in the calculated normalized phase velocity between the use of these two approximations. However, there is a significant difference in the computed effective loss tangent in a nonabsorptive random medium. The computed effective loss tangent using EMA and measurements from a snow medium are compared, showing good agreement.

  12. Variance of phase fluctuations of waves propagating through a random medium (United States)

    Chu, Nelson C.; Kong, Jin AU; Yueh, Simon H.; Nghiem, Son V.; Fleischman, Jack G.; Ayasli, Serpil; Shin, Robert T.


    As an electromagnetic wave propagates through a random scattering medium, such as a forest, its energy is attenuated and random phase fluctuations are induced. The magnitude of the random phase fluctuations induced is important in estimating how well a Synthetic Aperture Radar (SAR) can image objects within the scattering medium. The two-layer random medium model, consisting of a scattering layer between free space and ground, is used to calculate the variance of the phase fluctuations induced between a transmitter located above the random medium and a receiver located below the random medium. The scattering properties of the random medium are characterized by a correlation function of the random permittivity fluctuations. The effective permittivity of the random medium is first calculated using the strong fluctuation theory, which accounts for large permittivity fluctuations of the scatterers. The distorted Born approximation is used to calculate the first-order scattered field. A perturbation series for the phase of the received field in the Rytov approximation is then introduced and the variance of the phase fluctuations is also calculated assuming that the transmitter and receiver are in the paraxial limit of the random medium, which allows an analytic solution to be obtained. Results are compared using the paraxial approximation, scalar Green's function formulation, and dyadic Green's function formulation. The effects studied are the dependence of the variance of the phase fluctuations on receiver location in lossy and lossless regions, medium thickness, correlation length and fractional volume of scatterers, depolarization of the incident wave, ground layer permittivity, angle of incidence, and polarization.

  13. Propagation of waves

    CERN Document Server

    David, P


    Propagation of Waves focuses on the wave propagation around the earth, which is influenced by its curvature, surface irregularities, and by passage through atmospheric layers that may be refracting, absorbing, or ionized. This book begins by outlining the behavior of waves in the various media and at their interfaces, which simplifies the basic phenomena, such as absorption, refraction, reflection, and interference. Applications to the case of the terrestrial sphere are also discussed as a natural generalization. Following the deliberation on the diffraction of the "ground? wave around the ear

  14. Vector wave propagation method. (United States)

    Fertig, M; Brenner, K-H


    In this paper, we extend the scalar wave propagation method (WPM) to vector fields. The WPM [Appl. Opt.32, 4984 (1993)] was introduced in order to overcome the major limitations of the beam propagation method (BPM). With the WPM, the range of application can be extended from the simulation of waveguides to simulation of other optical elements like lenses, prisms and gratings. In that reference it was demonstrated that the wave propagation scheme provides valid results for propagation angles up to 85 degrees and that it is not limited to small index variations in the axis of propagation. Here, we extend the WPM to three-dimensional vectorial fields (VWPMs) by considering the polarization dependent Fresnel coefficients for transmission in each propagation step. The continuity of the electric field is maintained in all three dimensions by an enhanced propagation vector and the transfer matrix. We verify the validity of the method by transmission through a prism and by comparison with the focal distribution from vectorial Debye theory. Furthermore, a two-dimensional grating is simulated and compared with the results from three-dimensional RCWA. Especially for 3D problems, the runtime of the VWPM exhibits special advantage over the RCWA.

  15. Flood Wave Propagation

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 5. Flood Wave Propagation-The Saint Venant Equations. P P Mujumdar. General Article Volume 6 Issue 5 May 2001 pp 66-73. Fulltext. Click here to view fulltext PDF. Permanent link: ...

  16. Wave propagation scattering theory

    CERN Document Server

    Birman, M Sh


    The papers in this collection were written primarily by members of the St. Petersburg seminar in mathematical physics. The seminar, now run by O. A. Ladyzhenskaya, was initiated in 1947 by V. I. Smirnov, to whose memory this volume is dedicated. The papers in the collection are devoted mainly to wave propagation processes, scattering theory, integrability of nonlinear equations, and related problems of spectral theory of differential and integral operators. The book is of interest to mathematicians working in mathematical physics and differential equations, as well as to physicists studying va

  17. Random matrix theory for underwater sound propagation (United States)

    Hegewisch, K. C.; Tomsovic, S.


    Ocean acoustic propagation can be formulated as a wave guide with a weakly random medium generating multiple scattering. Twenty years ago, this was recognized as a quantum chaos problem, and yet random matrix theory, one pillar of quantum or wave chaos studies, has never been introduced into the subject. The modes of the wave guide provide a representation for the propagation, which in the parabolic approximation is unitary. Scattering induced by the ocean's internal waves leads to a power-law random banded unitary matrix ensemble for long-range deep-ocean acoustic propagation. The ensemble has similarities, but differs, from those introduced for studying the Anderson metal-insulator transition. The resulting long-range propagation ensemble statistics agree well with those of full wave propagation using the parabolic equation.

  18. Wave propagation in elastic solids

    CERN Document Server

    Achenbach, Jan


    The propagation of mechanical disturbances in solids is of interest in many branches of the physical scienses and engineering. This book aims to present an account of the theory of wave propagation in elastic solids. The material is arranged to present an exposition of the basic concepts of mechanical wave propagation within a one-dimensional setting and a discussion of formal aspects of elastodynamic theory in three dimensions, followed by chapters expounding on typical wave propagation phenomena, such as radiation, reflection, refraction, propagation in waveguides, and diffraction. The treat

  19. Wave propagation in electromagnetic media

    CERN Document Server

    Davis, Julian L


    This is the second work of a set of two volumes on the phenomena of wave propagation in nonreacting and reacting media. The first, entitled Wave Propagation in Solids and Fluids (published by Springer-Verlag in 1988), deals with wave phenomena in nonreacting media (solids and fluids). This book is concerned with wave propagation in reacting media-specifically, in electro­ magnetic materials. Since these volumes were designed to be relatively self­ contained, we have taken the liberty of adapting some of the pertinent material, especially in the theory of hyperbolic partial differential equations (concerned with electromagnetic wave propagation), variational methods, and Hamilton-Jacobi theory, to the phenomena of electromagnetic waves. The purpose of this volume is similar to that of the first, except that here we are dealing with electromagnetic waves. We attempt to present a clear and systematic account of the mathematical methods of wave phenomena in electromagnetic materials that will be readily accessi...

  20. Wave propagation in ballistic gelatine. (United States)

    Naarayan, Srinivasan S; Subhash, Ghatu


    Wave propagation characteristics in long cylindrical specimens of ballistic gelatine have been investigated using a high speed digital camera and hyper elastic constitutive models. The induced transient deformation is modelled with strain rate dependent Mooney-Rivlin parameters which are determined by modelling the stress-strain response of gelatine at a range of strain rates. The varying velocity of wave propagation through the gelatine cylinder is derived as a function of prestress or stretch in the gelatine specimen. A finite element analysis is conducted using the above constitutive model by suitably defining the impulse imparted by the polymer bar into the gelatine specimen. The model results are found to capture the experimentally observed wave propagation characteristics in gelatine effectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Wave propagation in thermoelastic saturated porous medium

    Indian Academy of Sciences (India)

    Biot 's theory for wave propagation in saturated porous solid is modified to study the propagation of thermoelastic waves in poroelastic medium. Propagation of plane harmonic waves is considered in isotropic poroelastic medium. Relations are derived among the wave-induced temperature in the medium and the ...

  2. Wave propagation and group velocity

    CERN Document Server

    Brillouin, Léon


    Wave Propagation and Group Velocity contains papers on group velocity which were published during the First World War and are missing in many libraries. It introduces three different definitions of velocities: the group velocity of Lord Rayleigh, the signal velocity of Sommerfeld, and the velocity of energy transfer, which yields the rate of energy flow through a continuous wave and is strongly related to the characteristic impedance. These three velocities are identical for nonabsorbing media, but they differ considerably in an absorption band. Some examples are discussed in the last chapter

  3. Wave equations for pulse propagation

    Energy Technology Data Exchange (ETDEWEB)

    Shore, B.W.


    Theoretical discussions of the propagation of pulses of laser radiation through atomic or molecular vapor rely on a number of traditional approximations for idealizing the radiation and the molecules, and for quantifying their mutual interaction by various equations of propagation (for the radiation) and excitation (for the molecules). In treating short-pulse phenomena it is essential to consider coherent excitation phenomena of the sort that is manifest in Rabi oscillations of atomic or molecular populations. Such processes are not adequately treated by rate equations for excitation nor by rate equations for radiation. As part of a more comprehensive treatment of the coupled equations that describe propagation of short pulses, this memo presents background discussion of the equations that describe the field. This memo discusses the origin, in Maxwell's equations, of the wave equation used in the description of pulse propagation. It notes the separation into lamellar and solenoidal (or longitudinal and transverse) and positive and negative frequency parts. It mentions the possibility of separating the polarization field into linear and nonlinear parts, in order to define a susceptibility or index of refraction and, from these, a phase and group velocity. The memo discusses various ways of characterizing the polarization characteristics of plane waves, that is, of parameterizing a transverse unit vector, such as the Jones vector, the Stokes vector, and the Poincare sphere. It discusses the connection between macroscopically defined quantities, such as the intensity or, more generally, the Stokes parameters, and microscopic field amplitudes. The material presented here is a portion of a more extensive treatment of propagation to be presented separately. The equations presented here have been described in various books and articles. They are collected here as a summary and review of theory needed when treating pulse propagation.

  4. Wave Propagation in Bimodular Geomaterials (United States)

    Kuznetsova, Maria; Pasternak, Elena; Dyskin, Arcady; Pelinovsky, Efim


    Observations and laboratory experiments show that fragmented or layered geomaterials have the mechanical response dependent on the sign of the load. The most adequate model accounting for this effect is the theory of bimodular (bilinear) elasticity - a hyperelastic model with different elastic moduli for tension and compression. For most of geo- and structural materials (cohesionless soils, rocks, concrete, etc.) the difference between elastic moduli is such that their modulus in compression is considerably higher than that in tension. This feature has a profound effect on oscillations [1]; however, its effect on wave propagation has not been comprehensively investigated. It is believed that incorporation of bilinear elastic constitutive equations within theory of wave dynamics will bring a deeper insight to the study of mechanical behaviour of many geomaterials. The aim of this paper is to construct a mathematical model and develop analytical methods and numerical algorithms for analysing wave propagation in bimodular materials. Geophysical and exploration applications and applications in structural engineering are envisaged. The FEM modelling of wave propagation in a 1D semi-infinite bimodular material has been performed with the use of Marlow potential [2]. In the case of the initial load expressed by a harmonic pulse loading strong dependence on the pulse sign is observed: when tension is applied before compression, the phenomenon of disappearance of negative (compressive) strains takes place. References 1. Dyskin, A., Pasternak, E., & Pelinovsky, E. (2012). Periodic motions and resonances of impact oscillators. Journal of Sound and Vibration, 331(12), 2856-2873. 2. Marlow, R. S. (2008). A Second-Invariant Extension of the Marlow Model: Representing Tension and Compression Data Exactly. In ABAQUS Users' Conference.

  5. Wave equations for pulse propagation (United States)

    Shore, B. W.


    Theoretical discussions of the propagation of pulses of laser radiation through atomic or molecular vapor rely on a number of traditional approximations for idealizing the radiation and the molecules, and for quantifying their mutual interaction by various equations of propagation (for the radiation) and excitation (for the molecules). In treating short-pulse phenomena it is essential to consider coherent excitation phenomena of the sort that is manifest in Rabi oscillations of atomic or molecular populations. Such processes are not adequately treated by rate equations for excitation nor by rate equations for radiation. As part of a more comprehensive treatment of the coupled equations that describe propagation of short pulses, this memo presents background discussion of the equations that describe the field. This memo discusses the origin, in Maxwell's equations, of the wave equation used in the description of pulse propagation. It notes the separation into lamellar and solenoidal (or longitudinal and transverse) and positive and negative frequency parts. It mentions the possibility of separating the polarization field into linear and nonlinear parts, in order to define a susceptibility or index of refraction and, from these, a phase and group velocity.

  6. Propagation of sound waves in ducts

    DEFF Research Database (Denmark)

    Jacobsen, Finn


    Plane wave propagation in ducts with rigid walls, radiation from ducts, classical four-pole theory for composite duct systems, and three-dimentional waves in wave guides of various cross-sectional shape are described.......Plane wave propagation in ducts with rigid walls, radiation from ducts, classical four-pole theory for composite duct systems, and three-dimentional waves in wave guides of various cross-sectional shape are described....

  7. Radio wave propagation and parabolic equation modeling

    CERN Document Server

    Apaydin, Gokhan


    A thorough understanding of electromagnetic wave propagation is fundamental to the development of sophisticated communication and detection technologies. The powerful numerical methods described in this book represent a major step forward in our ability to accurately model electromagnetic wave propagation in order to establish and maintain reliable communication links, to detect targets in radar systems, and to maintain robust mobile phone and broadcasting networks. The first new book on guided wave propagation modeling and simulation to appear in nearly two decades, Radio Wave Propagation and Parabolic Equation Modeling addresses the fundamentals of electromagnetic wave propagation generally, with a specific focus on radio wave propagation through various media. The authors explore an array of new applications, and detail various v rtual electromagnetic tools for solving several frequent electromagnetic propagation problems. All of the methods described are presented within the context of real-world scenari...

  8. Observations of Obliquely Propagating Electron Bernstein Waves

    DEFF Research Database (Denmark)

    Armstrong, R. J.; Juul Rasmussen, Jens; Stenzel, R. L.


    Plane electron Bernstein waves propagating obliquely to the magnetic field are investigated. The waves are excited by a plane grid antenna in a large volume magnetoplasma. The observations compare favorably with the predictions of the linear dispersion relation.......Plane electron Bernstein waves propagating obliquely to the magnetic field are investigated. The waves are excited by a plane grid antenna in a large volume magnetoplasma. The observations compare favorably with the predictions of the linear dispersion relation....

  9. Seismic Wave Propagation on the Tablet Computer (United States)

    Emoto, K.


    Tablet computers widely used in recent years. The performance of the tablet computer is improving year by year. Some of them have performance comparable to the personal computer of a few years ago with respect to the calculation speed and the memory size. The convenience and the intuitive operation are the advantage of the tablet computer compared to the desktop PC. I developed the iPad application of the numerical simulation of the seismic wave propagation. The numerical simulation is based on the 2D finite difference method with the staggered-grid scheme. The number of the grid points is 512 x 384 = 196,608. The grid space is 200m in both horizontal and vertical directions. That is the calculation area is 102km x 77km. The time step is 0.01s. In order to reduce the user waiting time, the image of the wave field is drawn simultaneously with the calculation rather than playing the movie after the whole calculation. P and S wave energies are plotted on the screen every 20 steps (0.2s). There is the trade-off between the smooth simulation and the resolution of the wave field image. In the current setting, it takes about 30s to calculate the 10s wave propagation (50 times image updates). The seismogram at the receiver is displayed below of the wave field updated in real time. The default medium structure consists of 3 layers. The layer boundary is defined by 10 movable points with linear interpolation. Users can intuitively change to the arbitrary boundary shape by moving the point. Also users can easily change the source and the receiver positions. The favorite structure can be saved and loaded. For the advance simulation, users can introduce the random velocity fluctuation whose spectrum can be changed to the arbitrary shape. By using this application, everyone can simulate the seismic wave propagation without the special knowledge of the elastic wave equation. So far, the Japanese version of the application is released on the App Store. Now I am preparing the

  10. Topology optimization of wave-propagation problems

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard; Sigmund, Ole


    Topology optimization is demonstrated as a useful tool for systematic design of wave-propagation problems. We illustrate the applicability of the method for optical, acoustic and elastic devices and structures.......Topology optimization is demonstrated as a useful tool for systematic design of wave-propagation problems. We illustrate the applicability of the method for optical, acoustic and elastic devices and structures....

  11. Terrestrial propagation of long electromagnetic waves

    CERN Document Server

    Galejs, Janis; Fock, V A


    Terrestrial Propagation of Long Electromagnetic Waves deals with the propagation of long electromagnetic waves confined principally to the shell between the earth and the ionosphere, known as the terrestrial waveguide. The discussion is limited to steady-state solutions in a waveguide that is uniform in the direction of propagation. Wave propagation is characterized almost exclusively by mode theory. The mathematics are developed only for sources at the ground surface or within the waveguide, including artificial sources as well as lightning discharges. This volume is comprised of nine chapte

  12. Wave propagation and impact in composite materials (United States)

    Moon, F. C.


    Anisotropic waves in composites are considered, taking into account wave speeds, wave surfaces, flexural waves in orthotropic plates, surface waves, edge waves in plates, and waves in coupled composite plates. Aspects of dispersion in composites are discussed, giving attention to pulse propagation and dispersion, dispersion in rods and plates, dispersion in a layered composite, combined material and structural dispersion, continuum theories for composites, and variational methods for periodic composites. The characteristics of attenuation and scattering processes are examined and a description is given of shock waves and impact problems in composites. A number of experiments are also reported.

  13. Pulse Wave Propagation in the Arterial Tree (United States)

    van de Vosse, Frans N.; Stergiopulos, Nikos


    The beating heart creates blood pressure and flow pulsations that propagate as waves through the arterial tree that are reflected at transitions in arterial geometry and elasticity. Waves carry information about the matter in which they propagate. Therefore, modeling of arterial wave propagation extends our knowledge about the functioning of the cardiovascular system and provides a means to diagnose disorders and predict the outcome of medical interventions. In this review we focus on the physical and mathematical modeling of pulse wave propagation, based on general fluid dynamical principles. In addition we present potential applications in cardiovascular research and clinical practice. Models of short- and long-term adaptation of the arterial system and methods that deal with uncertainties in personalized model parameters and boundary conditions are briefly discussed, as they are believed to be major topics for further study and will boost the significance of arterial pulse wave modeling even more.

  14. Behavior of ultrasounds crossing perfluorocarbon liquids and random propagation times. (United States)

    Lacaze, Bernard


    Random propagation times are able to model waves attenuation and velocity. It is true for electromagnetic waves (light, radar, guided propagation) and also for acoustics and ultrasounds (acoustics for high frequencies). About the latter, it can be shown that stable probability laws are well-fitted for frequencies up to dozens of megahertz in numerous cases. Nowadays, medical applications are performed using propagation through perfluorocarbon (PFC). Experiments were done to measure attenuations and phase changes. Using these results, this paper addresses the question to know if stable probability laws can be used to characterize the propagation of ultrasounds through PFC liquids. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Laser beam propagation through random media

    CERN Document Server

    Andrews, Larry C


    Since publication of the first edition of this text in 1998, there have been several new, important developments in the theory of beam wave propagation through a random medium, which have been incorporated into this second edition. Also new to this edition are models for the scintillation index under moderate-to-strong irradiance fluctuations; models for aperture averaging based on ABCD ray matrices; beam wander and its effects on scintillation; theory of partial coherence of the source; models of rough targets for ladar applications; phase fluctuations; analysis of other beam shapes; plus exp

  16. Propagation of SLF/ELF electromagnetic waves

    CERN Document Server

    Pan, Weiyan


    This book deals with the SLF/ELF wave propagation, an important branch of electromagnetic theory. The SLF/ELF wave propagation theory is well applied in earthquake electromagnetic radiation, submarine communication, thunderstorm detection, and geophysical prospecting and diagnostics. The propagation of SLF/ELF electromagnetic waves is introduced in various media like the earth-ionospheric waveguide, ionospheric plasma, sea water, earth, and the boundary between two different media or the stratified media. Applications in the earthquake electromagnetic radiation and the submarine communications are also addressed. This book is intended for scientists and engineers in the fields of radio propagation and EM theory and applications. Prof. Pan is a professor at China Research Institute of Radiowave Propagation in Qingdao (China). Dr. Li is a professor at Zhejiang University in Hangzhou (China).

  17. Coupled seismic and electromagnetic wave propagation

    NARCIS (Netherlands)

    Schakel, M.D.


    Coupled seismic and electromagnetic wave propagation is studied theoretically and experimentally. This coupling arises because of the electrochemical double layer, which exists along the solid-grain/fluid-electrolyte boundaries of porous media. Within the double layer, charge is redistributed,


    Directory of Open Access Journals (Sweden)

    Vorona Yu.V.


    Full Text Available The paper investigates the harmonic axisymmetric wave propagation in poroelastic media. The computational formulas for the study of displacements and stresses that occur during vibrations in a wide frequency range are proposed.

  19. Controls on flood and sediment wave propagation (United States)

    Bakker, Maarten; Lane, Stuart N.; Costa, Anna; Molnar, Peter


    The understanding of flood wave propagation - celerity and transformation - through a fluvial system is of generic importance for flood forecasting/mitigation. In association with flood wave propagation, sediment wave propagation may induce local erosion and sedimentation, which will affect infrastructure and riparian natural habitats. Through analysing flood and sediment wave propagation, we gain insight in temporal changes in transport capacity (the flood wave) and sediment availability and transport (the sediment wave) along the river channel. Heidel (1956) was amongst the first to discuss the progressive lag of sediment concentration behind the corresponding flood wave based on field measurements. Since then this type of hysteresis has been characterized in a number of studies, but these were often based on limited amount of floods and measurement sites, giving insufficient insight into associated forcing mechanisms. Here, as part of a project concerned with the hydrological and geomorphic forcing of sediment transfer processes in alpine environments, we model the downstream propagation of short duration, high frequency releases of water and sediment (purges) from a flow intake in the Borgne d'Arolla River in south-west Switzerland. A total of >50 events were measured at 1 minute time intervals using pressure transducers and turbidity probes at a number of sites along the river. We show that flood and sediment wave propagation can be well represented through simple convection diffusion models. The models are calibrated/validated to describe the set of measured waves and used to explain the observed variation in wave celerity and diffusion. In addition we explore the effects of controlling factors including initial flow depth, flood height, flood duration, bed roughness, bed slope and initial sediment concentration, on the wave propagation processes. We show that the effects of forcing mechanisms on flood and sediment wave propagation will lead to different

  20. Wave Beam Propagation Through Density Fluctuations

    NARCIS (Netherlands)

    Balakin, A. A.; Bertelli, N.; Westerhof, E.


    Perturbations induced by edge density fluctuations on electron cyclotron wave beams propagating in fusion plasmas are studied by means of a quasi-optical code. The effects of such fluctuations are illustrated here by showing the beam propagation in the case of single harmonic perturbations to the

  1. Wave propagation in thermoelastic saturated porous medium

    Indian Academy of Sciences (India)

    playing a crucial role in non-destructive evaluation. (NDE) of composite materials and structures. The studies of ... diffusion type heat equation used in this study predicted infinite speed for propagation of ther- mal signals. ..... the NDE problems involving wave propagation in thermoelastic porous solids. When supported with.

  2. Achieving directional propagation of elastic waves via topology optimization. (United States)

    He, Jingjie; Kang, Zhan


    This paper presents a study on topology optimization of novel material microstructural configurations to achieve directional elastic wave propagation through maximization of partial band gaps. A waveguide incorporating a periodic-microstructure material may exhibit different propagation properties for the plane elastic waves incident from different inlets. A topology optimization problem is formulated to enhance such a property with a gradient-based mathematical programming algorithm. For alleviating the issue of local optimum traps, the random morphology description functions (RMDFs) are introduced to generate random initial designs for the optimization process. The optimized designs finally converge to the orderly material distribution and numerical validation shows improved directional propagation property as expected. The utilization of linear two-dimension phononic crystal with efficient partial band gap is suitable for directional propagation with a broad frequency range. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Radio Wave Propagation in Tunnels

    National Research Council Canada - National Science Library

    Lee, Jeho


    This report examines the radio propagation model for narrow and long tunnels. Modal analysis is used to model the path gain in 2-D and 3-D rectangular tunnels and the coupling loss of L, T and cross tunnels...

  4. Modeling and Simulation of Ultrasound Wave Propagation (United States)

    Isler, Sylvia Kay

    The specific aim of this work is to model diagnostic ultrasound under strong acoustic scattering conditions. This work is divided into three main sub-topics. The first concerns the solution of the Helmholtz integral equation in three-dimensions. The Pade approximant method for accelerating the convergence of the Neumann series, first proposed by Chandra and Thompson for two-dimensional acoustic scattering problems, is extended to three-dimensions. Secondly, the propagation of acoustic pulses through a medium that is characterized by spatial variations in compressibility is considered. The medium is excited using an ideal, bandlimited acoustic transducer having a Gaussian radiation profile. The time response is determined by using a spatial Fourier wavenumber decomposition of the incident and scattered pressure fields. Using the Pade approximant method, the pressure is evaluated for each wavenumber at each spatial grid location. By taking the inverse Fourier transform of the result, the temporal and spatial evolution of the pressure field is obtained. The third part examines acoustic wave propagation in simulated soft tissue. Methods for generating spatially correlated random media are discussed and applied to simulating the structure of soft tissue. Simulated sonograms are constructed and the effects of strong scattering are considered.

  5. Unidirectional propagation of designer surface acoustic waves

    CERN Document Server

    Lu, Jiuyang; Ke, Manzhu; Liu, Zhengyou


    We propose an efficient design route to generate unidirectional propagation of the designer surface acoustic waves. The whole system consists of a periodically corrugated rigid plate combining with a pair of asymmetric narrow slits. The directionality of the structure-induced surface waves stems from the destructive interference between the evanescent waves emitted from the double slits. The theoretical prediction is validated well by simulations and experiments. Promising applications can be anticipated, such as in designing compact acoustic circuits.

  6. Radiation and propagation of electromagnetic waves

    CERN Document Server

    Tyras, George; Declaris, Nicholas


    Radiation and Propagation of Electromagnetic Waves serves as a text in electrical engineering or electrophysics. The book discusses the electromagnetic theory; plane electromagnetic waves in homogenous isotropic and anisotropic media; and plane electromagnetic waves in inhomogenous stratified media. The text also describes the spectral representation of elementary electromagnetic sources; the field of a dipole in a stratified medium; and radiation in anisotropic plasma. The properties and the procedures of Green's function method of solution, axial currents, as well as cylindrical boundaries a

  7. Modeling acoustic wave propagation in isotropic medium (United States)

    Krasnoveikin, V. A.; Druzhinin, N. V.; Derusova, D. A.; Tarasov, S. Yu.


    The paper carries out the graphical analysis of acoustic wave propagation in plates of different thickness to reveal the surface wave patterns formed on the plate surfaces. The results of the analysis allowed explaining the non-uniform distribution of the surface wave pattern nodes formed on the PMMA plate by a point oscillator. The wave pattern reconstruction made it possible to reveal fundamental and reflected waves as well as their interference patterns with node distributions on the surfaces of the plate. These results may be useful for defect detection in composite materials such as delamination, impact damage, gaps, etc.

  8. Propagation of polarized millimeter waves through falling snow. (United States)

    Brien, S G; Goedecke, G H


    Propagation of coherent linearly polarized waves through falling snow is calculated for two monodisperse and one polydisperse model snowstorms for fixed orientation and for random orientation of the snow crystals, at a 10-mm wavelength, utilizing a theoretical model based on the Foldy-Lax model. Results for linearly polarized waves incident on oriented monodispersions and polydispersions exhibit a marked damped oscillatory behavior as a function of propagation distance for the copolarized and cross-polarized intensities. For the polydispersion, a simple approximation for the dependence of the forward scattering matrix elements on snow crystal size is also obtained.

  9. Acoustical Wave Propagation in Sonic Composites

    Directory of Open Access Journals (Sweden)

    Iulian Girip


    Full Text Available The goal of this paper is to discuss the technique of controlling the mechanical properties of sonic composites. The idea is to architecture the scatterers and material from which they are made, their number and geometry in order to obtain special features in their response to external waves. We refer to perfectly reflecting of acoustical waves over a desired range of frequencies or to prohibit their propagation in certain directions, or confining the waves within specified volumes. The internal structure of the material has to be chosen in such a way that to avoid the scattering of acoustical waves inside the material. This is possible if certain band-gaps of frequencies can be generated for which the waves are forbidden to propagate in certain directions. These bandgaps can be extended to cover all possible directions of propagation by resulting a full band-gap. If the band-gaps are not wide enough, their frequency ranges do not overlap. These band-gaps can overlap due to reflections on the surface of thick scatterers, as well as due to wave propagation inside them. growth.

  10. Wave Propagation Across Muddy Seafloors (United States)


    cm thick layer of yogurt -like mud (density about 1.6 g/l [G. Kineke and S. Bentley]) that caused significant dissipation of the wave field, as shown...time series and processed data products for their studies. For example, NCEX observations are being used in collaboration with modeling studies and as

  11. Wave Propagation in Smart Materials

    DEFF Research Database (Denmark)

    Pedersen, Michael


    In this paper we deal with the behavior of solutions to hyperbolic equations such as the wave equation: \\begin{equation}\\label{waveeq1} \\frac{\\partial^2}{\\partial t^2}u-\\Delta u=f, \\end{equation} or the equations of linear elasticity for an isotropic medium: \\begin{equation}\\label{elasteq1} \\frac...

  12. Wave Propagation in Smart Materials

    DEFF Research Database (Denmark)

    Pedersen, Michael


    In this paper we deal with the behavior of solutions to hyperbolicequations such as the wave equation:\\begin{equation}\\label{waveeq1}\\frac{\\partial^2}{\\partial t^2}u-\\Delta u=f,\\end{equation}or the equations of linear elasticity for an isotropic medium:\\begin{equation}\\label{elasteq1}\\frac...

  13. Stress wave propagation in rock

    Energy Technology Data Exchange (ETDEWEB)

    Grady, D.E


    Earth penetration, design and hardening of structures to explosive or earthquake-induced ground shock effects, rapid excavation, and in situ preparation of coal, shale, or geothermal deposits are representative problems in which accurate constitutive descriptions of the geological medium are required to provide meaningful predictions. The rock or rock masses involved undergo complex, finite amplitude deformation during the process of transient dynamic loading, and quasi-static experimental compression techniques are normally used to provide much of the necessary data base. Strain rates typically range between 10/sup 1//s and 10/sup 5//s in the problems of interest, however, and further studies are required to determine the importance of rate dependence in the mechanical constitutive behavior of rock. Material response at the higher strain rates can be investigated with impact generated stress waves where controlled strain rates between about 10/sup 4//s to 10/sup 7//s can be achieved. Experimental methods have been developed to conduct and analyze impact-induced shock wave, ramp wave, and tensile fracture studies. Experimental results on some select crustal silicate and carbonate rocks show that strain rate dependence and the processes of phase transformation, compressive yielding, and fracture are important features in the dynamic constitutive response.

  14. Mechanical Wave Propagation within Nanogold Granular Crystals


    Zheng, Bowen; Xu, Jun


    We computationally investigate the wave propagation characteristics of nanoscopic granular crystals composed of one-dimensionally arrayed gold nanoparticles using molecular dynamics simulation. We examine two basic configurations, i.e. homogeneous lattices and diatomic lattices with mass-mismatch. We discover that homogeneous lattices of gold nanospheres support weakly dissipative and highly localized solitary wave at 300 K, while diatomic lattices have a good tuning ability of transmittance ...

  15. On modeling internal gravity wave dynamics from infrasound propagation (United States)

    Ribstein, Bruno; Millet, Christophe; Lott, Francois


    Low frequency acoustic waves (infrasounds) are generally used to remotely detect strong explosions, using their possibility of long-distance and coherent propagation. Numerical prediction of infrasounds is a complex issue due to constantly changing atmospheric conditions and to the random nature of small-scale flows. Although it is well-known that part of the upward propagating wave is refracted at stratospheric levels, where gravity waves significantly affect both the temperature and the wind, yet the process by which the gravity wave field changes some infrasound arrivals remains not well understood. In the present work, we use a stochastic parameterization to model the subgrid scale gravity wave field from atmospheric states provided by ECMWF. Numerical evidence are presented showing that regardless of whether the superimposed gravity wave field possesses relatively small or large features the sensitivity of ground-based infrasound signals can be significantly different. A version of the gravity wave parameterization previously tuned by co-authors for climate modeling purpose is shown to not retrieve the duration of recorded acoustic signals. A new version of the wave-parameterization is here proposed which more accurately predict the small scale content of gravity wave fields, especially in the middle atmosphere. Compare to other semi-empirical approaches one value of this new parameterization is that the gravity wave drag obtained is in agreement with observations.

  16. A Numerical Study of the Regimes of Weak Fluctuation Theory for Ocean Acoustic Propagation through Random Internal Wave Sound Speed Fields (United States)


    applied to a radio wave propagation problem in the atmosphere ( Jensen , Kuperman, Porter & Schmidt, 2000). The parabolic equation (PE) method has found...wide application in the field of underwater acoustics after Hardin and Tappert (1973) devised an efficient model based on Fourier transforms. The PE...equation follows the treatment by Jensen , Kuperman, Porter & Schmidt (2000). There are different kinds of parabolic equations, but this thesis

  17. Domain Wall Propagation through Spin Wave Emission

    NARCIS (Netherlands)

    Wang, X.S.; Yan, P.; Shen, Y.H.; Bauer, G.E.W.; Wang, X.R.


    We theoretically study field-induced domain wall motion in an electrically insulating ferromagnet with hard- and easy-axis anisotropies. Domain walls can propagate along a dissipationless wire through spin wave emission locked into the known soliton velocity at low fields. In the presence of

  18. Electromagnetic wave propagations in conjugate metamaterials. (United States)

    Xu, Yadong; Fu, Yangyang; Chen, Huanyang


    In this work, by employing field transformation optics, we deduce a special kind of materials called conjugate metamaterials, which can support intriguing electromagnetic wave propagations, such as negative refractions and lasing phenomena. These materials could also serve as substrates for making a subwavelength-resolution lens, and the so-called "perfect lens" is demonstrated to be a limiting case.

  19. Apparent superluminal behavior in wave propagation

    NARCIS (Netherlands)

    Jackson, AD; Lande, A; Lautrup, B


    The apparent superluminal propagation of electromagnetic signals seen in recent experiments is shown to be the result of simple and robust properties of relativistic field equations. Although the wave front of a signal passing through a classically forbidden region can never move faster than light,

  20. Wave propagation retrieval method for chiral metamaterials

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Malureanu, Radu; Lavrinenko, Andrei


    In this paper we present the wave propagation method for the retrieving of effective properties of media with circularly polarized eigenwaves, in particularly for chiral metamaterials. The method is applied for thick slabs and provides bulk effective parameters. Its strong sides are the absence...

  1. Wave propagation in axially moving periodic strings

    DEFF Research Database (Denmark)

    Sorokin, Vladislav S.; Thomsen, Jon Juel


    The paper deals with analytically studying transverse waves propagation in an axially moving string with periodically modulated cross section. The structure effectively models various relevant technological systems, e.g. belts, thread lines, band saws, etc., and, in particular, roller chain drive...

  2. Topology Optimization for Transient Wave Propagation Problems

    DEFF Research Database (Denmark)

    Matzen, René

    as for vectorial elastic wave propagation problems using finite element analysis [P2], [P4]. The concept is implemented in a parallel computing code that includes efficient techniques for performing gradient based topology optimization. Using the developed computational framework the thesis considers four...

  3. Antenna Construction and Propagation of Radio Waves. (United States)

    Marine Corps Inst., Washington, DC.

    Developed as part of the Marine Corps Institute (MCI) correspondence training program, this course on antenna construction and propagation of radio waves is designed to provide communicators with instructions in the selection and/or construction of the proper antenna(s) for use with current field radio equipment. Introductory materials include…

  4. Shallow water sound propagation with surface waves. (United States)

    Tindle, Chris T; Deane, Grant B


    The theory of wavefront modeling in underwater acoustics is extended to allow rapid range dependence of the boundaries such as occurs in shallow water with surface waves. The theory allows for multiple reflections at surface and bottom as well as focusing and defocusing due to reflection from surface waves. The phase and amplitude of the field are calculated directly and used to model pulse propagation in the time domain. Pulse waveforms are obtained directly for all wavefront arrivals including both insonified and shadow regions near caustics. Calculated waveforms agree well with a reference solution and data obtained in a near-shore shallow water experiment with surface waves over a sloping bottom.

  5. S wave propagation in acoustic anisotropic media (United States)

    Stovas, Alexey


    The acoustic anisotropic medium can be defined in two ways. The first one is known as a pseudo-acoustic approximation (Alkhalifah, 1998) that is based on the fact that in TI media, P wave propagation is weakly dependent on parameter known as "vertical S-wave velocity" (Thomsen, 1986). The standard way to define the pseudo-acoustic approximation is to set this parameter to zero. However, as it was shown later (Grechka et al., 2004), there is "S wave artifact" in such a medium. Another way is to define the stack of horizontal solid-fluid layers and perform an upscaling based on the Backus (1962) averaging. The stiffness coefficient that responds to "vertical S wave velocity" turns to zero if any of layers has zero vertical S wave velocity. In this abstract, I analyze the S wave propagation is acoustic anisotropic medium and define important kinematic properties such as the group velocity surface and Dix-type equations. The kinematic properties can easily be defined from the slowness surface. In elastic transversely isotropic medium, the equations for P and SV wave slowness surfaces are coupled. Setting "vertical S wave velocity" to zero, results in decoupling of equations. I show that the S wave group velocity surface is given by quasi-astroidal form with the reference astroid defined by vertical and horizontal projections of group velocity. I show that there are cusps attached to both vertical and horizontal symmetry axes. The new S wave parameters include vertical, horizontal and normal moveout velocities. With the help of new parameterization, suitable for S wave, I also derived the Dix-type of equations to define the effective kinematical properties of S waves in multi-layered acoustic anisotropic medium. I have shown that effective media defined from P and S waves have different parameters. I also show that there are certain symmetries between P and S waves parameters and equations. The proposed method can be used for analysis of S waves in acoustic anisotropic

  6. Wave propagation in transversely impacted composite laminates (United States)

    Daniel, I. M.; Liber, T.; Labedz, R. H.


    An experimental study was conducted to determine the wave-propagation characteristics, transient strains and residual properties of unidirectional and angle-ply boron/epoxy and graphite/epoxy laminates impacted with silicon-rubber projectiles at velocities up to 250 m/sec. Results include the following: (1) the predominant wave is the flexural wave propagating at different velocities in different directions; (2) peak strains and strain rates in the transverse to the (outer) fiber direction are much higher than those in the direction of the fibers; (3) strain rates up to 640/sec were measured; and (4) unidirectional laminates under impact showed appreciable modulus and strength degradation in the direction transverse to fibers.

  7. Wave propagation in transversely impacted composite laminates

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, I.M.; Liber, T.; Labedz, R.H.


    An experimental study was conducted to determine the wave-propagation characteristics, transient strains and residual properties of unidirectional and angle-ply boron/epoxy and graphite/epoxy laminates impacted with silicon-rubber projectiles at velocities up to 250 m/sec. Results include the following: (1) the predominant wave is the flexural wave propagating at different velocities in different directions (2) peak strains and strain rates in the transverse to the (outer) fiber direction are much higher than those in the direction of the fibers (3) strain rates up to 640/sec were measured and (4) unidirectional laminates under impact showed appreciable modulus and strength degradation in the direction transverse to fibers.

  8. Surface-plasmon-assisted electromagnetic wave propagation. (United States)

    Yang, Wenbo; Reed, Jennifer M; Wang, Haining; Zou, Shengli


    Using electrodynamics tools, we investigated the effect of surface plasmons on the propagation direction of electromagnetic waves around a spherical silver nanoparticle and nano-structured silver film. The studies showed that the calculated effective index of refraction of a spherical silver nanoparticle from the Kramers-Kronig transformation method may not represent the index of refraction of the system but is consistent with the Poynting vector (the energy flow) direction at the microscopic scale. Using a silver film composed of periodic triangular prisms, we numerically demonstrated that electromagnetic waves may propagate along different directions depending on the incident polarization direction. When the incident polarization is in the plane of incidence and the surface plasmons are excited, the refracted light ray propagates along the same side of the surface normal as the incident wave. When the incident polarization is perpendicular to the plane of incidence, the refracted light ray always propagates on the opposite side of the surface normal. The results show that a silver film composed of periodic nano-sized triangular prisms may be used as a filter to simultaneously generate two polarized light rays of orthogonal polarizations from one light source.

  9. Surface acoustic wave propagation in graphene film

    Energy Technology Data Exchange (ETDEWEB)

    Roshchupkin, Dmitry, E-mail:; Plotitcyna, Olga; Matveev, Viktor; Kononenko, Oleg; Emelin, Evgenii; Irzhak, Dmitry [Institute of Microelectronics Technology and High-Purity Materials Russian Academy of Sciences, Chernogolovka 142432 (Russian Federation); Ortega, Luc [Laboratoire de Physique des Solides, Univ. Paris-Sud, CNRS, UMR 8502, 91405 Orsay Cedex (France); Zizak, Ivo; Erko, Alexei [Institute for Nanometre Optics and Technology, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein Strasse 15, 12489 Berlin (Germany); Tynyshtykbayev, Kurbangali; Insepov, Zinetula [Nazarbayev University Research and Innovation System, 53 Kabanbay Batyr St., Astana 010000 (Kazakhstan)


    Surface acoustic wave (SAW) propagation in a graphene film on the surface of piezoelectric crystals was studied at the BESSY II synchrotron radiation source. Talbot effect enabled the visualization of the SAW propagation on the crystal surface with the graphene film in a real time mode, and high-resolution x-ray diffraction permitted the determination of the SAW amplitude in the graphene/piezoelectric crystal system. The influence of the SAW on the electrical properties of the graphene film was examined. It was shown that the changing of the SAW amplitude enables controlling the magnitude and direction of current in graphene film on the surface of piezoelectric crystals.

  10. Large-scale Globally Propagating Coronal Waves

    Directory of Open Access Journals (Sweden)

    Alexander Warmuth


    Full Text Available Large-scale, globally propagating wave-like disturbances have been observed in the solar chromosphere and by inference in the corona since the 1960s. However, detailed analysis of these phenomena has only been conducted since the late 1990s. This was prompted by the availability of high-cadence coronal imaging data from numerous spaced-based instruments, which routinely show spectacular globally propagating bright fronts. Coronal waves, as these perturbations are usually referred to, have now been observed in a wide range of spectral channels, yielding a wealth of information. Many findings have supported the “classical” interpretation of the disturbances: fast-mode MHD waves or shocks that are propagating in the solar corona. However, observations that seemed inconsistent with this picture have stimulated the development of alternative models in which “pseudo waves” are generated by magnetic reconfiguration in the framework of an expanding coronal mass ejection. This has resulted in a vigorous debate on the physical nature of these disturbances. This review focuses on demonstrating how the numerous observational findings of the last one and a half decades can be used to constrain our models of large-scale coronal waves, and how a coherent physical understanding of these disturbances is finally emerging.

  11. COMSTAR Millimeter-Wave Propagation Measurements, (United States)


    downlink frequency. 2,3 In addition, NASA collected some simultan- eous 15- and 32-GHz attenuation data at the Rosman , North Carolina site. ATS-6...moving in azimuth and elevation when using suntrackers. Two NASA research satellites, ATS-5 and ATS-6, offered the first opportunity to utilize...communications, Proceedings of IEEE 63:1308-1331. 2. Ippolito, L.J. (1970) Millimeter-Wave Propagation Experiments Utilizing the ATS-5 Satellite, NASA

  12. Wave propagation in the magnetosphere of Jupiter (United States)

    Liemohn, H. B.


    A systematic procedure is developed for identifying the spatial regimes of various modes of wave propagation in the Jupiter magnetosphere that may be encountered by flyby missions. The Clemmow-Mullaly-Allis (CMA) diagram of plasma physics is utilized to identify the frequency regimes in which different modes of propagation occur in the magnetoplasma. The Gledhill model and the Ioannidis and Brice model of the magnetoplasma are summarized, and configuration-space CMA diagrams are constructed for each model for frequencies from 10 Hz to 1 MHz. The distinctive propagation features, the radio noise regimes, and the wave-particle interactions are discussed. It is concluded that the concentration of plasma in the equatorial plane makes this region of vital importance for radio observations with flyby missions. Local radio noise around the electron cyclotron frequency will probably differ appreciably from its terrestrial counterpart due to the lack of field-line guidance. Hydromagnetic wave properties at frequencies near the ion cyclotron frequency and below will probably be similar to the terrestrial case.

  13. Simulations of Seismic Wave Propagation on Mars (United States)

    Bozdağ, Ebru; Ruan, Youyi; Metthez, Nathan; Khan, Amir; Leng, Kuangdai; van Driel, Martin; Wieczorek, Mark; Rivoldini, Attilio; Larmat, Carène S.; Giardini, Domenico; Tromp, Jeroen; Lognonné, Philippe; Banerdt, Bruce W.


    We present global and regional synthetic seismograms computed for 1D and 3D Mars models based on the spectral-element method. For global simulations, we implemented a radially-symmetric Mars model with a 110 km thick crust (Sohl and Spohn in J. Geophys. Res., Planets 102(E1):1613-1635, 1997). For this 1D model, we successfully benchmarked the 3D seismic wave propagation solver SPECFEM3D_GLOBE (Komatitsch and Tromp in Geophys. J. Int. 149(2):390-412, 2002a; 150(1):303-318, 2002b) against the 2D axisymmetric wave propagation solver AxiSEM (Nissen-Meyer et al. in Solid Earth 5(1):425-445, 2014) at periods down to 10 s. We also present higher-resolution body-wave simulations with AxiSEM down to 1 s in a model with a more complex 1D crust, revealing wave propagation effects that would have been difficult to interpret based on ray theory. For 3D global simulations based on SPECFEM3D_GLOBE, we superimposed 3D crustal thickness variations capturing the distinct crustal dichotomy between Mars' northern and southern hemispheres, as well as topography, ellipticity, gravity, and rotation. The global simulations clearly indicate that the 3D crust speeds up body waves compared to the reference 1D model, whereas it significantly changes surface waveforms and their dispersive character depending on its thickness. We also perform regional simulations with the solver SES3D (Fichtner et al. Geophys. J. Int. 179:1703-1725, 2009) based on 3D crustal models derived from surface composition, thereby addressing the effects of various distinct crustal features down to 2 s. The regional simulations confirm the strong effects of crustal variations on waveforms. We conclude that the numerical tools are ready for examining more scenarios, including various other seismic models and sources.

  14. Efficient Rasterization for Outdoor Radio Wave Propagation. (United States)

    Schmitz, A; Rick, T; Karolski, T; Kuhlen, T; Kobbelt, L


    Conventional beam tracing can be used for solving global illumination problems. It is an efficient algorithm and performs very well when implemented on the GPU. This allows us to apply the algorithm in a novel way to the problem of radio wave propagation. The simulation of radio waves is conceptually analogous to the problem of light transport. We use a custom, parallel rasterization pipeline for creation and evaluation of the beams. We implement a subset of a standard 3D rasterization pipeline entirely on the GPU, supporting 2D and 3D frame buffers for output. Our algorithm can provide a detailed description of complex radio channel characteristics like propagation losses and the spread of arriving signals over time (delay spread). Those are essential for the planning of communication systems required by mobile network operators. For validation, we compare our simulation results with measurements from a real-world network. Furthermore, we account for characteristics of different propagation environments and estimate the influence of unknown components like traffic or vegetation by adapting model parameters to measurements.

  15. Torsional wave propagation in solar tornadoes (United States)

    Vasheghani Farahani, S.; Ghanbari, E.; Ghaffari, G.; Safari, H.


    Aims: We investigate the propagation of torsional waves in coronal structures together with their collimation effects in the context of magnetohydrodynamic (MHD) theory. The interplay of the equilibrium twist and rotation of the structure, e.g. jet or tornado, together with the density contrast of its internal and external media is studied to shed light on the nature of torsional waves. Methods: We consider a rotating magnetic cylinder embedded in a plasma with a straight magnetic field. This resembles a solar tornado. In order to express the dispersion relations and phase speeds of the axisymmetric magnetohydrodynamic waves, the second-order thin flux tube approximation is implemented for the internal medium and the ideal MHD equations are implemented for the external medium. Results: The explicit expressions for the phase speed of the torsional wave show the modification of the torsional wave speed due to the equilibrium twist, rotation, and density contrast of the tornado. The speeds could be either sub-Alfvénic or ultra-Alfvénic depending on whether the equilibrium twist or rotation is dominant. The equilibrium twist increases the phase speed while the equilibrium rotation decreases it. The good agreement between the explicit versions for the phase speed and that obtained numerically proves adequate for the robustness of the model and method. The density ratio of the internal and external media also play a significant role in the speed and dispersion. Conclusions: The dispersion of the torsional wave is an indication of the compressibility of the oscillations. When the cylinder is rotating or twisted, in contrast to when it only possesses a straight magnetic field, the torsional wave is a collective mode. In this case its phase speed is determined by the Alfvén waves inside and outside the tornado.

  16. Enhancing propagation characteristics of truncated localized waves in silica

    KAUST Repository

    Salem, Mohamed


    The spectral characteristics of truncated Localized Waves propagating in dispersive silica are analyzed. Numerical experiments show that the immunity of the truncated Localized Waves propagating in dispersive silica to decay and distortion is enhanced as the non-linearity of the relation between the transverse spatial spectral components and the wave vector gets stronger, in contrast to free-space propagating waves, which suffer from early decay and distortion. © 2011 IEEE.

  17. Investigation into stress wave propagation in metal foams

    Directory of Open Access Journals (Sweden)

    Li Lang


    Full Text Available The aim of this study is to investigate stress wave propagation in metal foams under high-speed impact loading. Three-dimensional Voronoi model is established to represent real closed-cell foam. Based on the one-dimensional stress wave theory and Voronoi model, a numerical model is developed to calculate the velocity of elastic wave and shock wave in metal foam. The effects of impact velocity and relative density of metal foam on the stress wave propagation in metal foams are explored respectively. The results show that both elastic wave and shock wave propagate faster in metal foams with larger relative density; with increasing the impact velocity, the shock wave propagation velocity increase, but the elastic wave propagation is not sensitive to the impact velocity.

  18. Wave propagation through an electron cyclotron resonance layer

    NARCIS (Netherlands)

    Westerhof, E.


    The propagation of a wave beam through an electron cyclotron resonance layer is analysed in two-dimensional slab geometry in order to assess the deviation from cold plasma propagation due to resonant, warm plasma changes in wave dispersion. For quasi-perpendicular propagation, N-parallel to x

  19. Propagation of waves in a gravitating and rotating anisotropic heat ...

    African Journals Online (AJOL)


    propagations become anti-symmetric. It is illustrated that the phase speed of the forward propagating mode increases with increasing drift and the backward propagating mode decreases with increasing drift. In this particular direction of propagation and axis of rotation, this wave mode is also independent of rotation ...

  20. WAVE: Interactive Wave-based Sound Propagation for Virtual Environments. (United States)

    Mehra, Ravish; Rungta, Atul; Golas, Abhinav; Ming Lin; Manocha, Dinesh


    We present an interactive wave-based sound propagation system that generates accurate, realistic sound in virtual environments for dynamic (moving) sources and listeners. We propose a novel algorithm to accurately solve the wave equation for dynamic sources and listeners using a combination of precomputation techniques and GPU-based runtime evaluation. Our system can handle large environments typically used in VR applications, compute spatial sound corresponding to listener's motion (including head tracking) and handle both omnidirectional and directional sources, all at interactive rates. As compared to prior wave-based techniques applied to large scenes with moving sources, we observe significant improvement in runtime memory. The overall sound-propagation and rendering system has been integrated with the Half-Life 2 game engine, Oculus-Rift head-mounted display, and the Xbox game controller to enable users to experience high-quality acoustic effects (e.g., amplification, diffraction low-passing, high-order scattering) and spatial audio, based on their interactions in the VR application. We provide the results of preliminary user evaluations, conducted to study the impact of wave-based acoustic effects and spatial audio on users' navigation performance in virtual environments.

  1. Viscothermal wave propagation including acousto-elastic interaction

    NARCIS (Netherlands)

    Beltman, W.M.


    This research deals with pressure waves in a gas trapped in thin layers or narrow tubes. In these cases viscous and thermal effects can have a significant effect on the propagation of waves. This so-called viscothermal wave propagation is governed by a number of dimensionless parameters. The two

  2. Wave propagation in sandwich panels with a poroelastic core. (United States)

    Liu, Hao; Finnveden, Svante; Barbagallo, Mathias; Arteaga, Ines Lopez


    Wave propagation in sandwich panels with a poroelastic core, which is modeled by Biot's theory, is investigated using the waveguide finite element method. A waveguide poroelastic element is developed based on a displacement-pressure weak form. The dispersion curves of the sandwich panel are first identified as propagating or evanescent waves by varying the damping in the panel, and wave characteristics are analyzed by examining their motions. The energy distributions are calculated to identify the dominant motions. Simplified analytical models are also devised to show the main physics of the corresponding waves. This wave propagation analysis provides insight into the vibro-acoustic behavior of sandwich panels lined with elastic porous materials.

  3. Wave Propagation Characteristics in Functionally Graded Double-Beams

    Directory of Open Access Journals (Sweden)

    Fatih Karacam


    Full Text Available The wave propagation characteristics of functionally graded (FG double-beams are investigated by use of Euler-Bernoulli beam theory. Two beams are connected by a Winkler foundation. The wave propagation characteristics like frequency, phase and group velocities are obtained for different wave numbers and material properties. Four frequencies are obtained for functionally graded double-beam system. It is obtained that flexural and axial waves are coupled for FG double-beams.

  4. Mathematical problems in wave propagation theory

    CERN Document Server


    The papers comprising this collection are directly or indirectly related to an important branch of mathematical physics - the mathematical theory of wave propagation and diffraction. The paper by V. M. Babich is concerned with the application of the parabolic-equation method (of Academician V. A. Fok and M. A, Leontovich) to the problem of the asymptotic behavior of eigenfunc­ tions concentrated in a neighborhood of a closed geodesie in a Riemannian space. The techniques used in this paper have been föund useful in solving certain problems in the theory of open resonators. The topic of G. P. Astrakhantsev's paper is similar to that of the paper by V. M. Babich. Here also the parabolic-equation method is used to find the asymptotic solution of the elasticity equations which describes Love waves concentrated in a neighborhood of some surface ray. The paper of T. F. Pankratova is concerned with finding the asymptotic behavior of th~ eigenfunc­ tions of the Laplace operator from the exact solution for the surf...

  5. Effect of Resolution on Propagating Detonation Wave

    Energy Technology Data Exchange (ETDEWEB)

    Menikoff, Ralph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    Simulations of the cylinder test are used to illustrate the effect of mesh resolution on a propagating detonation wave. For this study we use the xRage code with the SURF burn model for PBX 9501. The adaptive mesh capability of xRage is used to vary the resolution of the reaction zone. We focus on two key properties: the detonation speed and the cylinder wall velocity. The latter is related to the release isentrope behind the detonation wave. As the reaction zone is refined (2 to 15 cells for cell size of 62 to 8μm), both the detonation speed and final wall velocity change by a small amount; less than 1 per cent. The detonation speed decreases with coarser resolution. Even when the reaction zone is grossly under-resolved (cell size twice the reaction-zone width of the burn model) the wall velocity is within a per cent and the detonation speed is low by only 2 per cent.

  6. Wave Packet Propagation and Electric Conductivity of Nanowires

    NARCIS (Netherlands)

    Maeda, Munehiko; Saito, Keiji; Miyashita, Seiji; Raedt, Hans De


    We compute the electric conductivity of nanowires in the presence of magnetic domain walls by the method of wave packet propagation. We demonstrate that the propagation through the wire depends on the initial state used in the wave packet simulation. We propose a procedure, based on the Landauer

  7. Models for seismic wave propagation in periodically layered porous media

    NARCIS (Netherlands)

    Kudarova, A.; Van Dalen, K.N.; Drijkoningen, G.G.


    Several models are discussed for seismic wave propagation in periodically layered poroelastic media where layers represent mesoscopic-scale heterogeneities that are larger than the pore and grain sizes but smaller than the wavelength. The layers behave according to Biot’s theory. Wave propagation

  8. Sound wave propagation in weakly polydisperse granular materials

    NARCIS (Netherlands)

    Mouraille, O.J.P.; Luding, Stefan


    Dynamic simulations of wave propagation are performed in dense granular media with a narrow polydisperse size-distribution and a linear contact-force law. A small perturbation is created on one side of a static packing and its propagation, for both P- and S-waves, is examined. A size variation

  9. Propagation of waves in a multicomponent plasma having charged ...

    Indian Academy of Sciences (India)

    Abstract. Propagation of both low and high frequency waves in a plasma consisting of electrons, ions, positrons and charged dust particles have been theoretically studied. The characteristics of dust acoustic wave propagating through the plasma has been analysed and the dispersion relation deduced is a generalization of ...

  10. Topology optimization for transient wave propagation problems in one dimension

    DEFF Research Database (Denmark)

    Dahl, Jonas; Jensen, Jakob Søndergaard; Sigmund, Ole


    Structures exhibiting band gap properties, i.e., having frequency ranges for which the structure attenuates propagating waves, have applications in damping of acoustic and elastic wave propagation and in optical communication. A topology optimization method for synthesis of such structures......, employing a time domain formulation, is developed. The method is extended to synthesis of pulse converting structures with possible applications in optical communication....

  11. Topology Optimization in wave-propagation and flow problems

    DEFF Research Database (Denmark)

    Sigmund, Ole; Jensen, Jakob Søndergaard; Gersborg-Hansen, A.


    We discuss recent extensions of the topology optimization method to wave-propagation and flow problems. More specifically, we optimize material distribution in scalar wave propagation problems modelled by Helmholtz equation. Moreover, we investigate the influence of the inertia term on the optimal...

  12. Nonlinear wave propagation through a ferromagnet with damping in ...

    Indian Academy of Sciences (India)

    We investigate how dissipation and nonlinearity can affect the electromagnetic wave propagating through a saturated ferromagnet in the presence of an external magnetic field in (2+1) dimensions. The propagation of electromagnetic waves through a ferromagnet under an external magnetic field in the presence of ...

  13. Analysis of flexural wave propagation in poroelastic composite ...

    African Journals Online (AJOL)

    Wave propagation in an infinitely long poroelastic composite hollow cylinder in is examined by employing Biot's theory of wave propagation in poroelastic media. A poroelastic composite hollow cylinder consists of two concentric poroelastic cylindrical layers both of which are made of different poroelastic materials with each ...

  14. Properties, Propagation, and Excitation of EMIC Waves Properties, Propagation, and Excitation of EMIC Waves (United States)

    Zhang, Jichun; Coffey, Victoria N.; Chandler, Michael O.; Boardsen, Scott A.; Saikin, Anthony A.; Mello, Emily M.; Russell, Christopher T.; Torbert, Roy B.; Fuselier, Stephen A.; Giles, Barbara L.; hide


    Electromagnetic ion cyclotron (EMIC) waves (0.1-5 Hz) play an important role in particle dynamics in the Earth's magnetosphere. EMIC waves are preferentially excited in regions where hot anisotropic ions and cold dense plasma populations spatially overlap. While the generation region of EMIC waves is usually on or near the magnetic equatorial plane in the inner magnetosphere, EMIC waves have both equatorial and off-equator source regions on the dayside in the compressed outer magnetosphere. Using field and plasma measurements from the Magnetospheric Multiscale (MMS) mission, we perform a case study of EMIC waves and associated local plasma conditions observed on 19 October 2015. From 0315 to 0810 UT, before crossing the magnetopause into the magnetosheath, all four MMS spacecraft detected long-lasting He(exp +)-band EMIC wave emissions around local noon (MLT = 12.7 - 14.0) at high L-shells (L = 8.8 - 15.2) and low magnetic latitudes (MLAT = -21.8deg - -30.3deg). Energetic (greater than 1 keV) and anisotropic ions were present throughout this event that was in the recovery phase of a weak geomagnetic storm (min. Dst = -48 nT at 1000 UT on 18 October 2015). The testing of linear theory suggests that the EMIC waves were excited locally. Although the wave event is dominated by small normal angles, its polarization is mixed with right- and left-handedness and its propagation is bi-directional with regard to the background magnetic field. The short inter-spacecraft distances (as low as 15 km) of the MMS mission make it possible to accurately determine the k vector of the waves using the phase difference technique. Preliminary analysis finds that the k vector magnitude, phase speed, and wavelength of the 0.3-Hz wave packet at 0453:55 UT are 0.005 km(exp -1), 372.9 km/s, and 1242.9 km, respectively.

  15. Electromagnetic wave propagation and wave-vector diagram in space-time periodic media. (United States)

    Elachi, C.


    Analysis of TE and TM wave propagation in space-time periodic media such as dielectrics, isotropic plasmas and uniaxial plasmas. A numerical solution is obtained for media with sinusoidal periodicity. Wave-vector diagrams are plotted to facilitate studies of dipole radiation, wave propagation in waveguides and wave interactions with a half-space.

  16. Propagation of ionization waves during ignition of fluorescent lamps (United States)

    Langer, R.; Garner, R.; Hilscher, A.; Tidecks, R.; Horn, S.


    The propagation of the first ionization wave in a compact fluorescent lamp (T4 tube with standard electrodes) during ignition was investigated for various initial dc-voltages (both polarities measured against ground) and gas compositions (with and without mercury). In addition the effect of the presence of a fluorescent powder coating was studied. The propagation velocity of the initial wave was measured by an assembly of photomultipliers installed along the tube, which detected the light emitted by the wave head. The propagation was found to be faster for positive than for negative polarity. This effect is explained involving processes in the electrode region as well as in the wave head. Waves propagate faster in the presence of a fluorescent powder coating than without it and gases of lighter mass show a faster propagation than gases with higher mass.

  17. Propagation of ionization waves during ignition of fluorescent lamps

    Energy Technology Data Exchange (ETDEWEB)

    Langer, R; Tidecks, R; Horn, S [Institute of Physics, Chair for Experimental Physics II, University of Augsburg, Universitaetsstrasse 1, D-86159 Augsburg (Germany); Garner, R [Central Research and Services Laboratory, OSRAM SYLVANIA Inc., 71 Cherry Hill Drive, Beverly, MA 01915 (United States); Hilscher, A [OSRAM GmbH, Berliner Allee 65, D-86136 Augsburg (Germany)], E-mail:


    The propagation of the first ionization wave in a compact fluorescent lamp (T4 tube with standard electrodes) during ignition was investigated for various initial dc-voltages (both polarities measured against ground) and gas compositions (with and without mercury). In addition the effect of the presence of a fluorescent powder coating was studied. The propagation velocity of the initial wave was measured by an assembly of photomultipliers installed along the tube, which detected the light emitted by the wave head. The propagation was found to be faster for positive than for negative polarity. This effect is explained involving processes in the electrode region as well as in the wave head. Waves propagate faster in the presence of a fluorescent powder coating than without it and gases of lighter mass show a faster propagation than gases with higher mass.

  18. Wave propagation, scattering and emission in complex media (United States)

    Jin, Ya-Qiu

    I. Polarimetric scattering and SAR imagery. EM wave propagation and scattering in polarimetric SAR interferometry / S. R. Cloude. Terrain topographic inversion from single-pass polarimetric SAR image data by using polarimetric stokes parameters and morphological algorithm / Y. Q. Jin, L. Luo. Road detection in forested area using polarimetric SAR / G. W. Dong ... [et al.]. Research on some problems about SAR radiometric resolution / G. Dong ... [et al.]. A fast image matching algorithm for remote sensing applications / Z. Q. Hou ... [et al.]. A new algorithm of noised remote sensing image fusion based on steerable filters / X. Kang ... [et al.]. Adaptive noise reduction of InSAR data based on anisotropic diffusion models and their applications to phase unwrapping / C. Wang, X. Gao, H. Zhang -- II. Scattering from randomly rough surfaces. Modeling tools for backscattering from rough surfaces / A. K. Fung, K. S. Chen. Pseudo-nondiffracting beams from rough surface scattering / E. R. Méndez, T. A. Leskova, A. A. Maradudin. Surface roughness clutter effects in GPR modeling and detection / C. Rappaport. Scattering from rough surfaces with small slopes / M. Saillard, G. Soriano. Polarization and spectral characteristics of radar signals reflected by sea-surface / V. A. Butko, V. A. Khlusov, L. I. Sharygina. Simulation of microwave scattering from wind-driven ocean surfaces / M. Y. Xia ... [et al.]. HF surface wave radar tests at the Eastern China Sea / X. B. Wu ... [et al.] -- III. Electromagnetics of complex materials. Wave propagation in plane-parallel metamaterial and constitutive relations / A. Ishimaru ... [et al.]. Two dimensional periodic approach for the study of left-handed metamaterials / T. M. Grzegorczyk ... [et al.]. Numerical analysis of the effective constitutive parameters of a random medium containing small chiral spheres / Y. Nanbu, T. Matsuoka, M. Tateiba. Wave propagation in inhomogeneous media: from the Helmholtz to the Ginzburg -Landau equation / M

  19. Wave propagation in nanostructures nonlocal continuum mechanics formulations

    CERN Document Server

    Gopalakrishnan, Srinivasan


    Wave Propagation in Nanostructures describes the fundamental and advanced concepts of waves propagating in structures that have dimensions of the order of nanometers. The book is fundamentally based on non-local elasticity theory, which includes scale effects in the continuum model. The book predominantly addresses wave behavior in carbon nanotubes and graphene structures, although the methods of analysis provided in this text are equally applicable to other nanostructures. The book takes the reader from the fundamentals of wave propagation in nanotubes to more advanced topics such as rotating nanotubes, coupled nanotubes, and nanotubes with magnetic field and surface effects. The first few chapters cover the basics of wave propagation, different modeling schemes for nanostructures and introduce non-local elasticity theories, which form the building blocks for understanding the material provided in later chapters. A number of interesting examples are provided to illustrate the important features of wave behav...

  20. The Green-function transform and wave propagation

    Directory of Open Access Journals (Sweden)

    Colin eSheppard


    Full Text Available Fourier methods well known in signal processing are applied to three-dimensional wave propagation problems. The Fourier transform of the Green function, when written explicitly in terms of a real-valued spatial frequency, consists of homogeneous and inhomogeneous components. Both parts are necessary to result in a pure out-going wave that satisfies causality. The homogeneous component consists only of propagating waves, but the inhomogeneous component contains both evanescent and propagating terms. Thus we make a distinction between inhomogeneous waves and evanescent waves. The evanescent component is completely contained in the region of the inhomogeneous component outside the k-space sphere. Further, propagating waves in the Weyl expansion contain both homogeneous and inhomogeneous components. The connection between the Whittaker and Weyl expansions is discussed. A list of relevant spherically symmetric Fourier transforms is given.

  1. Superluminal propagation of solitary kinklike waves in amplifying media. (United States)

    Janowicz, Maciej; Mostowski, Jan


    It is shown that solitary-wave, kinklike structures can propagate superluminally in two- and four-level amplifying media with strongly damped oscillations of coherences. This is done by solving analytically the Maxwell-Bloch equations in the kinetic limit. It is also shown that the true wave fronts--unlike the pseudo wave fronts of the kinks--must propagate with velocity c, so that no violation of special relativity is possible. The conditions of experimental verification are discussed.

  2. On the propagation of truncated localized waves in dispersive silica

    KAUST Repository

    Salem, Mohamed


    Propagation characteristics of truncated Localized Waves propagating in dispersive silica and free space are numerically analyzed. It is shown that those characteristics are affected by the changes in the relation between the transverse spatial spectral components and the wave vector. Numerical experiments demonstrate that as the non-linearity of this relation gets stronger, the pulses propagating in silica become more immune to decay and distortion whereas the pulses propagating in free-space suffer from early decay and distortion. © 2010 Optical Society of America.

  3. Electromagnetic Wave Propagation Models for Multiple-Diffraction Scenarios

    Directory of Open Access Journals (Sweden)

    Mehmet Barış TABAKCIOĞLU


    Full Text Available Electromagnetic wave propagation models have been used for coverage estimation and field prediction at the receiver to make more reliable and efficient digital broadcasting systems. Propagation models can be classified into two groups as numerical and ray tracing based models. There is a tradeoff between computation time and accuracy of field prediction among electromagnetic wave propagation models. Although numerical models predict accurately, it requires more computation times. Ray tracing based models predicts the field strength less accurately with lower computation time. Many propagation models have been developed to provide optimum solution for accuracy and computation time

  4. Ionization wave propagation on a micro cavity plasma array

    Energy Technology Data Exchange (ETDEWEB)

    Wollny, Alexander; Hemke, Torben; Gebhardt, Markus; Peter Brinkmann, Ralf; Mussenbrock, Thomas [Institute of Theoretical Electrical Engineering, Ruhr University Bochum, D-44780 Bochum (Germany); Boettner, Henrik; Winter, Joerg; Schulz-von der Gathen, Volker [Institute for Experimental Physics II, Ruhr University Bochum, D-44780 Bochum (Germany); Xiong, Zhongmin; Kushner, Mark J. [Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Ave., Ann Arbor, Michigan 48109 (United States)


    Microcavity plasma arrays of inverse pyramidal cavities fabricated on p-Si wafers act as localized dielectric barrier discharges. When operated at atmospheric pressure in argon and excited with high voltage at 10 kHz, a strong interaction between individual cavities is observed leading to wave-like optical emission propagating along the surface of the array. This phenomenon is numerically investigated. The computed ionization wave propagates with a speed of 5 km/s, which agrees well with experiments. The wave propagation is due to the sequential drift of electrons followed by drift of ions between cavities seeded by photoemission of electrons by the plasma in adjacent cavities.

  5. Propagation and dispersion of shock waves in magnetoelastic materials (United States)

    Crum, R. S.; Domann, J. P.; Carman, G. P.; Gupta, V.


    Previous studies examining the response of magnetoelastic materials to shock waves have predominantly focused on applications involving pulsed power generation, with limited attention given to the actual wave propagation characteristics. This study provides detailed magnetic and mechanical measurements of magnetoelastic shock wave propagation and dispersion. Laser generated rarefacted shock waves exceeding 3 GPa with rise times of 10 ns were introduced to samples of the magnetoelastic material Galfenol. The resulting mechanical measurements reveal the evolution of the shock into a compressive acoustic front with lateral release waves. Importantly, the wave continues to disperse even after it has decayed into an acoustic wave, due in large part to magnetoelastic coupling. The magnetic data reveal predominantly shear wave mediated magnetoelastic coupling, and were also used to noninvasively measure the wave speed. The external magnetic field controlled a 30% increase in wave propagation speed, attributed to a 70% increase in average stiffness. Finally, magnetic signals propagating along the sample over 20× faster than the mechanical wave were measured, indicating these materials can act as passive antennas that transmit information in response to mechanical stimuli.

  6. Local principles of wave propagation in inhomogeneous media (United States)

    Gingold, Harry; She, Jianming; Zorumski, William E.


    Four local principles are proven for waves propagating in a layered medium with a variable wave speed. These principles are (1) that inhomogeneities increase the amplitude of waves generated by a source of fixed strength, (2) that inhomogeneities reduce spatial oscillation, or increase the wavelength, (3) that inhomogeneities decrease transmission, or increase reflection, and (4) that transmission increases monotonically with frequency. Definitions of inhomogeneity, local wave function, and local reflection and transmission coefficients are made as a basis for stating these principles.

  7. Whistler Wave Propagation Through the Ionosphere of Venus (United States)

    Pérez-Invernón, F. J.; Lehtinen, N. G.; Gordillo-Vázquez, F. J.; Luque, A.


    We investigate the attenuation of whistler waves generated by hypotetical Venusian lightning occurring at the altitude of the cloud layer under different ionospheric conditions. We use the Stanford full-wave method for stratified media of Lehtinen and Inan (2008) to model wave propagation through the ionosphere of Venus. This method calculates the electromagnetic field created by an arbitrary source in a plane-stratified medium (i.e., uniform in the horizontal direction). We see that the existence of holes in electronic densities and the magnetic field configuration caused by solar wind play an important role in the propagation of electromagnetic waves through the Venusian ionosphere.

  8. Theoretical Studies of Stress Wave Propagation in Laterally Confined Soils

    National Research Council Canada - National Science Library

    Rohani, Behzad


    .... A considerable body of scientific literature on one-dimensional stress wave propagation for such models has been published in recent years by various researchers, both in the United States and abroad...

  9. Sound wave propagation in weakly polydisperse granular materials. (United States)

    Mouraille, O; Luding, S


    Dynamic simulations of wave propagation are performed in dense granular media with a narrow polydisperse size-distribution and a linear contact-force law. A small perturbation is created on one side of a static packing and its propagation, for both P- and S-waves, is examined. A size variation comparable to the typical contact deformation already changes sound propagation considerably. The transmission spectrum becomes discontinuous, i.e., a lower frequency band is transmitted well, while higher frequencies are not, possibly due to attenuation and scattering. This behaviour is qualitatively reproduced for (i) Hertz non-linear contacts, for (ii) frictional contacts, (iii) for a range of smaller amplitudes, or (iv) for larger systems. This proves that the observed wave propagation and dispersion behaviour is intrinsic and not just an artifact of (i) a linear model, (ii) a frictionless packing, (iii) a large amplitude non-linear wave, or (iv) a finite size effect.

  10. Wave propagation in channels and cracks with elastic walls (United States)

    Sukhinin, S. V.; Yurkovskiy, V. S.; Konstantinov, A. P.; Trilis, A. V.


    In this paper wave propagation in the uniform and nonuniform elastic channels filled with fluid or gas is investigated. The weak discontinuities theory approach is proposed to determine the criteria of gradient catastrophe phenomena to occur for the cases of uniform and nonuniform channels. The results of the paper can be applied to studying of the nonlinear wave propagation phenomena in elastic pores, cracks and channels filled with fluid or gas.

  11. Topology optimization of vibration and wave propagation problems

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard


    The method of topology optimization is a versatile method to determine optimal material layouts in mechanical structures. The method relies on, in principle, unlimited design freedom that can be used to design materials, structures and devices with significantly improved performance and sometimes...... novel functionality. This paper addresses basic issues in simulation and topology design of vibration and wave propagation problems. Steady-state and transient wave propagation problems are addressed and application examples for both cases are presented....

  12. Wave propagation in a general anisotropic poroelastic medium ...

    Indian Academy of Sciences (India)

    The medium considered is a general anisotropic poroelastic (APE) solid with a viscous fluid saturating its pores of anisotropic permeability. The wave propagation phenomenon in a saturated porous medium is explained through two relations. One defines modified Christoffel equations for the propagation of plane harmonic ...

  13. Wave Propagation: Odd is Better, but Three is Best

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 7. Wave Propagation: Odd is Better, but Three is Best - Propagation in Spaces of Different Dimensions. V Balakrishnan. General Article Volume 9 Issue 7 July 2004 pp 8-17 ...

  14. Vertical propagation of baroclinic Kelvin waves along the west coast ...

    Indian Academy of Sciences (India)

    A linear, continuously stratified ocean model is used to investigate vertical propagation of remotely forced, baroclinic Kelvin waves along the Indian west coast. The extent of vertical propagation over the length of the coast is found to be an increasing function of the forcing frequency. Simulations show that, over the length of ...

  15. Characteristic wave diversity in Near Vertical Incidence Skywave propagation

    NARCIS (Netherlands)

    Witvliet, Ben A.; van Maanen, Erik; Petersen, George J.; Westenberg, Albert J.; Bentum, Marinus Jan; Slump, Cornelis H.; Schiphorst, Roelof


    In Near Vertical Incidence Skywave (NVIS) propagation, effective diversity reception can be realized using a dual channel receiver and a dual polarization antenna with polarization matched to the (left hand and right hand) circular polarization of the characteristic waves propagating in the

  16. Wave propagation of spectral energy content in a granular chain

    Directory of Open Access Journals (Sweden)

    Shrivastava Rohit Kumar


    Full Text Available A mechanical wave is propagation of vibration with transfer of energy and momentum. Understanding the spectral energy characteristics of a propagating wave through disordered granular media can assist in understanding the overall properties of wave propagation through inhomogeneous materials like soil. The study of these properties is aimed at modeling wave propagation for oil, mineral or gas exploration (seismic prospecting or non-destructive testing of the internal structure of solids. The focus is on the total energy content of a pulse propagating through an idealized one-dimensional discrete particle system like a mass disordered granular chain, which allows understanding the energy attenuation due to disorder since it isolates the longitudinal P-wave from shear or rotational modes. It is observed from the signal that stronger disorder leads to faster attenuation of the signal. An ordered granular chain exhibits ballistic propagation of energy whereas, a disordered granular chain exhibits more diffusive like propagation, which eventually becomes localized at long time periods. For obtaining mean-field macroscopic/continuum properties, ensemble averaging has been used, however, such an ensemble averaged spectral energy response does not resolve multiple scattering, leading to loss of information, indicating the need for a different framework for micro-macro averaging.

  17. Time dependent wave envelope finite difference analysis of sound propagation (United States)

    Baumeister, K. J.


    A transient finite difference wave envelope formulation is presented for sound propagation, without steady flow. Before the finite difference equations are formulated, the governing wave equation is first transformed to a form whose solution tends not to oscillate along the propagation direction. This transformation reduces the required number of grid points by an order of magnitude. Physically, the transformed pressure represents the amplitude of the conventional sound wave. The derivation for the wave envelope transient wave equation and appropriate boundary conditions are presented as well as the difference equations and stability requirements. To illustrate the method, example solutions are presented for sound propagation in a straight hard wall duct and in a two dimensional straight soft wall duct. The numerical results are in good agreement with exact analytical results.

  18. All electrical propagating spin wave spectroscopy with broadband wavevector capability

    Energy Technology Data Exchange (ETDEWEB)

    Ciubotaru, F., E-mail: [imec, Kapeldreef 75, B-3001 Leuven (Belgium); KU Leuven, Departement Electrotechniek (ESAT), Kasteelpark Arenberg 10, B-3001 Leuven (Belgium); Devolder, T. [Centre de Nanosciences et de Nanotechnologies, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay (France); Manfrini, M.; Adelmann, C.; Radu, I. P. [imec, Kapeldreef 75, B-3001 Leuven (Belgium)


    We developed an all electrical experiment to perform the broadband phase-resolved spectroscopy of propagating spin waves in micrometer sized thin magnetic stripes. The magnetostatic surface spin waves are excited and detected by scaled down to 125 nm wide inductive antennas, which award ultra broadband wavevector capability. The wavevector selection can be done by applying an excitation frequency above the ferromagnetic resonance. Wavevector demultiplexing is done at the spin wave detector thanks to the rotation of the spin wave phase upon propagation. A simple model accounts for the main features of the apparatus transfer functions. Our approach opens an avenue for the all electrical study of wavevector-dependent spin wave properties including dispersion spectra or non-reciprocal propagation.

  19. Self-propagating waves of crystallization in metallic glasses (United States)

    Rogachev, A. S.; Vadchenko, S. G.; Aronin, A. S.; Rouvimov, S.; Nepapushev, A. A.; Kovalev, I. D.; Baras, F.; Politano, O.; Rogachev, S. A.; Mukasyan, A. S.


    Self-propagating thermal waves of the amorphous-crystalline transformation in Fe-based metallic glasses, obtained by melt spinning, were observed using a high-speed infrared camera and reported here. Some experimental results are also reported concerning oscillating waves in the CuTi glassy foils. The thermal characteristics and wave propagating velocities, as well as the microstructure and atomic structure transformations, were studied. A comparison of the results with exothermic reaction waves and explosive crystallization shows that the self-propagating waves in metallic glasses are slower and less violent than classical explosive crystallization in deposited films; thus, we suggest naming this phenomenon "soft explosive crystallization." The experimental data were confirmed by molecular dynamics simulation of the crystallization phenomenon.

  20. Propagation of gravitational waves in the nonperturbative spinor vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Dzhunushaliev, Vladimir [Al-Farabi Kazakh National University, Department of Theoretical and Nuclear Physics, Almaty (Kazakhstan); Al-Farabi Kazakh National University, Institute of Experimental and Theoretical Physics, Almaty (Kazakhstan); Eurasian National University, Institute for Basic Research, Astana (Kazakhstan); Institute of Physicotechnical Problems and Material Science of the NAS of the Kyrgyz Republic, Bishkek (Kyrgyzstan); Folomeev, Vladimir [Institute of Physicotechnical Problems and Material Science of the NAS of the Kyrgyz Republic, Bishkek (Kyrgyzstan)


    The propagation of gravitational waves on the background of a nonperturbative vacuum of a spinor field is considered. It is shown that there are several distinctive features in comparison with the propagation of plane gravitational waves through empty space: there exists a fixed phase difference between the h{sub yy,zz} and h{sub yz} components of the wave; the phase and group velocities of gravitational waves are not equal to the velocity of light; the group velocity is always less than the velocity of light; under some conditions the gravitational waves are either damped or absent; for given frequency, there exist two waves with different wave vectors. We also discuss the possibility of an experimental verification of the obtained effects as a tool to investigate nonperturbative quantum field theories. (orig.)

  1. Wave Propagation: Odd is Better, but Three is Best

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 6. Wave Propagation: Odd is Better, but Three is Best - The Formal Solution of the Wave Equation. V Balakrishnan. General Article Volume 9 Issue 6 June 2004 pp 30-38 ...

  2. Surface wave propagation in a fluid-saturated incompressible ...

    Indian Academy of Sciences (India)

    Keywords. Incompressible porous medium; volume fractions; frequency equation; phase velocity; wave number; attenuation coefficient. ... and discussed. As a particular case, the propagation of Rayleigh type surface waves at the free surface of an incompressible porous half-space is also deduced and discussed.

  3. Stress Wave Propagation in Larch Plantation Trees-Numerical Simulation (United States)

    Fenglu Liu; Fang Jiang; Xiping Wang; Houjiang Zhang; Wenhua Yu


    In this paper, we attempted to simulate stress wave propagation in virtual tree trunks and construct two dimensional (2D) wave-front maps in the longitudinal-radial section of the trunk. A tree trunk was modeled as an orthotropic cylinder in which wood properties along the fiber and in each of the two perpendicular directions were different. We used the COMSOL...

  4. Nonlinear propagation of short wavelength drift-Alfven waves

    DEFF Research Database (Denmark)

    Shukla, P. K.; Pecseli, H. L.; Juul Rasmussen, Jens


    Making use of a kinetic ion and a hydrodynamic electron description together with the Maxwell equation, the authors derive a set of nonlinear equations which governs the dynamics of short wavelength ion drift-Alfven waves. It is shown that the nonlinear drift-Alfven waves can propagate as two...

  5. Statistical Characterization of Electromagnetic Wave Propagation in Mine Environments

    KAUST Repository

    Yucel, Abdulkadir C.


    A computational framework for statistically characterizing electromagnetic (EM) wave propagation through mine tunnels and galleries is presented. The framework combines a multi-element probabilistic collocation method with a full-wave fast Fourier transform and fast multipole method accelerated surface integral equation-based EM simulator to statistically characterize fields from wireless transmitters in complex mine environments. 1536-1225 © 2013 IEEE.

  6. Propagation of Rayleigh surface waves with small wavelengths in ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    MS received 23 November 2001. Abstract. This paper investigates Rayleigh waves, propagating on the surface of a visco-elastic solid under the linear theory of nonlocal elasticity. Dispersion relations are obtained. It is observed that the waves are dispersive in nature for small wavelengths. Numerical calculations and ...

  7. Stress Wave Propagation Through Heterogeneous Media

    National Research Council Canada - National Science Library


    .... In this work the influence of interface scattering on finite-amplitude shock waves was experimentally investigated by impacting flyer plates onto periodically layered polycarbonate/6061 aluminum...

  8. Propagation of Electromagnetic Waves in Extremely Dense Media

    CERN Document Server

    Masood, Samina


    We study the propagation of electromagnetic (EM) waves in extremely dense exotic systems with very unique properties. These EM waves develop a longitudinal component due to its interaction with the medium. Renormalization scheme of QED is used to understand the propagation of EM waves in both longitudinal and transverse directions. The propagation of EM waves in a quantum statistically treatable medium affects the properties of the medium itself. The electric permittivity and the magnetic permeability of the medium are modified and influence the related behavior of the medium. All the electromagnetic properties of a medium become a function of temperature and chemical potential of the medium. We study in detail the modifications of electric permittivity and magnetic permeability and other related properties of a medium in the superdense stellar objects.

  9. Functional reentrant waves propagate outwardly in cardiac tissue

    Energy Technology Data Exchange (ETDEWEB)

    Gong Yunfan [Department of Medicine, Division of Cardiology, Weill Medical College of Cornell University, New York, NY 10021 (United States)]. E-mail:; Christini, David J. [Department of Medicine, Division of Cardiology, Weill Medical College of Cornell University, New York, NY 10021 (United States) and Department of Physiology and Biophysics, Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10021 (United States)]. E-mail:


    The dynamical nature of cardiac arrhythmias has been investigated for decades by researchers from a wide range of disciplines. One long-standing unsettled issue involves whether the mechanism of functional reentry should be described by the 'leading-circle' hypothesis or the 'spiral-wave' hypothesis, which rely on inward and outward wave propagation, respectively. To address this issue, we investigated two-dimensional FitzHugh-Nagumo type models and found that inwardly propagating waves could occur in the spontaneous oscillatory mode, but not the excitable mode. However, such spontaneous oscillatory behavior is characterized by small-amplitude, sinusoidal oscillations that are fundamentally different from the stimulus-driven, excitable behavior of cardiac myocytes. This finding suggests that inward wave propagation, which is posited by the leading-circle hypothesis for the purpose of maintaining functional reentry, is unlikely to occur in cardiac tissue.

  10. Wakefield and wave propagation at non-linear dispersion

    CERN Document Server

    Smirnov, A V


    Synchronous wakefield excitation and wave propagation along a dispersive slow-wave structure is considered. An explicit form for wakefields is obtained for a single bunch in the second and third approximations of dispersion while taking into account the effect of substantial group velocity with respect to charge velocity. Generalized differential equations describing diffused fields induced by a beam current or generated by an external source are derived. Field excitation and propagation near the cut-off is considered including trapped modes in the stopband. This theory can be applied to the fields induced by single bunch and bunch train in Standing Wave and Traveling Wave devices operating near pi-mode, self-consistent beam break-up simulations, RF-generation, pulse propagation, and breakdown study in waveguides as well as some of new methods of acceleration in a dispersive medium.

  11. Plasma wave propagation with a plasma density gradient (United States)

    Cho, Guangsup; Choi, Eun-Ha; Uhm, Han Sup


    Plasma waves with the plasma diffusion velocity un due to a plasma density gradient are described in a positive column plasma. The ion wave is generated by the perturbation of the operating frequency 106 s-1 and it propagates with the group velocity ug˜cs2/un˜(105-106) m/s, where cs is the acoustic velocity in a fine tube fluorescent lamp, while the electron wave cannot be generated with a turbulence of low frequency less than the electron oscillation frequency ωpe. The propagation of the lighting signal observed in long tube fluorescent lamps is well understood with the propagation of ion waves occurring along the plasma density gradient.

  12. Millimeter Wave Radio Frequency Propagation Model Development (United States)


    Anechoic Chamber .................................. 47  3.4.1  10 GHz Transmitting System...Propagation Losses ............................................................. 67  4.2  Experiment 2 - Quantifying Model Accuracy in an Anechoic Chamber ...44  Figure 20. Actual Footage of the Experiment at 10, 20, 30, and 40 GHz within the Anechoic Chamber

  13. Real solution of monochromatic wave propagation in ...

    Indian Academy of Sciences (India)

    concept of the signal structure propagating in inhomogeneous media and the method of inhomogeneous basic modes ... agating in an isotropic, inhomogeneous, linear media parallel to the gradient of the one- dimensional ..... neous half-spaces and in every place where Z¼ has local extremum the derivatives. dZ¼/dx = 0.

  14. Propagation of waves in shear flows

    CERN Document Server

    Fabrikant, A L


    The state of the art in a theory of oscillatory and wave phenomena in hydrodynamical flows is presented in this book. A unified approach is used for waves of different physical origins. A characteristic feature of this approach is that hydrodynamical phenomena are considered in terms of physics; that is, the complement of the conventionally employed formal mathematical approach. Some physical concepts such as wave energy and momentum in a moving fluid are analysed, taking into account induced mean flow. The physical mechanisms responsible for hydrodynamic instability of shear flows are conside

  15. Effect of environment on the propagation of electromagnetic waves in GRC 408E digital radiorelay devices

    Directory of Open Access Journals (Sweden)

    Vojkan M. Radonjić


    receiver in different ways, and such EMW propagation is known as multiple EM wave propagation in the literature. The result of multiple propagation can be the reduction of the EM field intensity or its complete disappearance. This phenomenon is called fading. Fading Fading is caused by short-term weakening of electromagnetic waves at the reception. During EMW propagation, the interaction between EM waves and objects occurs resulting in multiple copies of useful signals of different amplitude and delay values at the reception point, thus making the resulting EM field unstable. A large number of copies of the useful signal at the reception are caused by the effects of environmental impacts on the propagation of electromagnetic waves along the route, such as reflection, refraction, diffraction, and their combination. The total loss is equal to the sum of propagation weakening and fading weakening. Fading is divided into propagation fading and interference fading. Propagation fading is generally slow and does not depend on frequency. Interference fading occurs due to the appearance of multiple EM wave propagation and it can be flat or selective. Flat fading is the same in the entire frequency range. In selective fading there is degradation of basic signals, i.e. Intersymbol interference which is present at RR devices operating at higher frequencies with the data flow around 34 MBit/s and over. Model of the radio-relay system and the results of modeling The paper deals with a model as the one given in Fig. 2 The GRC 408E RR devices are supposed to be built into mobile call centers. The following phenomena are modeled: attenuation due to propagation, diffraction, reflection and fading. Each phenomenon is modeled for typical cases. The input signal in the GRC RR 408E device is a random binary sequence, modulated by a modulation device provided by the RR. Such a signal propagates through the particular medium towards the RR device receiving antenna. At the reception point, the

  16. Nonlinear multi-frequency electromagnetic wave propagation phenomena (United States)

    Valovik, Dmitry V.


    A generalisation of the concept of monochromatic electromagnetic waves guided by layered waveguide structures filled with non-linear medium is introduced. This generalisation leads to guided waves of a novel type: a non-linear multi-frequency guided wave. The existence of such waves, in particular guide structures, is proven using the perturbation method. Numerical experiments are presented for non-linear 1- and 2-frequency guided waves in plane and cylindrical (with a circular cross-section) waveguides. Numerically, a novel non-linear effect is found for particular cases of non-linear multi-frequency guided waves. The suggested generalisation gives not only a unified approach to treat various electromagnetic wave propagation problems but also paves the way to study non-linear interactions of guided waves.

  17. On Boussinesq's paradigm in nonlinear wave propagation (United States)

    Christov, Christo I.; Maugin, Gérard A.; Porubov, Alexey V.


    Boussinesq's original derivation of his celebrated equation for surface waves on a fluid layer opened up new horizons that were to yield the concept of the soliton. The present contribution concerns the set of Boussinesq-like equations under the general title of 'Boussinesq's paradigm'. These are true bi-directional wave equations occurring in many physical instances and sharing analogous properties. The emphasis is placed: (i) on generalized Boussinesq systems that involve higher-order linear dispersion through either additional space derivatives or additional wave operators (so-called double-dispersion equations); and (ii) on the 'mechanics' of the most representative localized nonlinear wave solutions. Dissipative cases and two-dimensional generalizations are also considered. To cite this article: C.I. Christov et al., C. R. Mecanique 335 (2007).

  18. Nonlinear ultrasound wave propagation in thermoviscous fluids

    DEFF Research Database (Denmark)

    Sørensen, Mads Peter

    Traditional ultrasound theory is based on linear theory, however, for strongly focused sound beams, the pressure levels are sufficiently high to generate nonlinear waves. In thermoviscous fluids nonlinearity arises as a result of a nonlinear equation of state together with nonlinear advection...... is interpreted as a shock wave formation, similar in nature to those of the simple Burgers equation. The results are relevant for medical ultrasound imaging....

  19. Wave propagation in fiber composite laminates, part 2 (United States)

    Daniel, I. M.; Liber, T.


    An experimental investigation was conducted to determine the wave propagation characteristics, transient strains and residual properties in unidirectional and angle-ply boron/epoxy and graphite/epoxy laminates impacted with silicone rubber projectiles at velocities up to 250 MS-1. The predominant wave is flexural, propagating at different velocities in different directions. In general, measured wave velocities were higher than theoretically predicted values. The amplitude of the in-plane wave is less than ten percent of that of the flexural wave. Peak strains and strain rates in the transverse to the (outer) fiber direction are much higher than those in the direction of the fibers. The dynamics of impact were also studied with high speed photography.

  20. Wave propagation in metamaterials and effective parameters retrieving

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Ha, S.; Sukhorukov, A.


    as handsome for implementation. We set a goal to develop a method which is unambiguous but at the same time simple and straightforward. We assume that this can be done by observing the wave propagation inside a metamaterial slab thick enough to avoid transient effects. First, we formulated a retrieval method...... with a plane wave incident from vacuum. Then we determine the effective refractive index from the propagation constant of the dominating (fundamental) Bloch mode. The Bloch and wave impedances are determined by definition as the proportionality coefficient between the electric and magnetic fields...... complex wave effective parameters. Extending the method further we developed the approach to determine both wave and material effective parameters through the Bloch-mode analysis [3]. The idea is to perform the Bloch mode expansion [4] of the field inside the metamaterial slab when it is illuminated...

  1. Spatial damping of propagating sausage waves in coronal cylinders (United States)

    Guo, Ming-Zhe; Chen, Shao-Xia; Li, Bo; Xia, Li-Dong; Yu, Hui


    Context. Sausage modes are important in coronal seismology. Spatially damped propagating sausage waves were recently observed in the solar atmosphere. Aims: We examine how wave leakage influences the spatial damping of sausage waves propagating along coronal structures modeled by a cylindrical density enhancement embedded in a uniform magnetic field. Methods: Working in the framework of cold magnetohydrodynamics, we solve the dispersion relation (DR) governing sausage waves for complex-valued, longitudinal wavenumber k at given real angular frequencies ω. For validation purposes, we also provide analytical approximations to the DR in the low-frequency limit and in the vicinity of ωc, the critical angular frequency separating trapped from leaky waves. Results: In contrast to the standing case, propagating sausage waves are allowed for ω much lower than ωc. However, while able to direct their energy upward, these low-frequency waves are subject to substantial spatial attenuation. The spatial damping length shows little dependence on the density contrast between the cylinder and its surroundings, and depends only weakly on frequency. This spatial damping length is of the order of the cylinder radius for ω ≲ 1.5vAi/a, where a and vAi are the cylinder radius and the Alfvén speed in the cylinder, respectively. Conclusions: If a coronal cylinder is perturbed by symmetric boundary drivers (e.g., granular motions) with a broadband spectrum, wave leakage efficiently filters out the low-frequency components.

  2. Wave fields in real media wave propagation in anisotropic, anelastic, porous and electromagnetic media

    CERN Document Server

    Carcione, José M


    Authored by the internationally renowned José M. Carcione, Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media examines the differences between an ideal and a real description of wave propagation, starting with the introduction of relevant stress-strain relations. The combination of this relation and the equations of momentum conservation lead to the equation of motion. The differential formulation is written in terms of memory variables, and Biot's theory is used to describe wave propagation in porous media. For each rheology, a plane-wave analysis is performed in order to understand the physics of wave propagation. This book contains a review of the main direct numerical methods for solving the equation of motion in the time and space domains. The emphasis is on geophysical applications for seismic exploration, but researchers in the fields of earthquake seismology, rock acoustics, and material science - including many branches of acoustics of fluids and ...

  3. Special Course on Acoustic Wave Propagation (United States)


    silence a cotia- tique at balistique. DepuiS la econde guerre mondiale de tres nombreux travaux Sur la propagation acoustique dans les fluides et das...sous-marins [83, -le second , li4 Z l’acoustiqua des canons et des projectiles [9]. Ce dernier ouvrage (rdfdrence [9]) nous intdreaaa au plus haut chef...anplitude motion of a Stokesian fluid about an equilibrium rest state. Second , ,he fiuid motion, through the coefficients involving the velocity vi

  4. Acoustic precursor wave propagation in viscoelastic media. (United States)

    Zhu, Guangran Kevin; Mojahedi, Mohammad; Sarris, Costas D


    Precursor field theory has been developed to describe the dynamics of electromagnetic field evolution in causally attenuative and dispersive media. In Debye dielectrics, the so-called Brillouin precursor exhibits an algebraic attenuation rate that makes it an ideal pulse waveform for communication, sensing, and imaging applications. Inspired by these studies in the electromagnetic domain, the present paper explores the propagation of acoustic precursors in dispersive media, with emphasis on biological media. To this end, a recently proposed causal dispersive model is employed, based on its interpretation as the acoustic counterpart of the Cole¿Cole model for dielectrics. The model stems from the fractional stress¿strain relation, which is consistent with the empirically known frequency power-law attenuation in viscoelastic media. It is shown that viscoelastic media described by this model, including human blood, support the formation and propagation of Brillouin precursors. The amplitude of these precursors exhibits a sub-exponential attenuation rate as a function of distance, actually being proportional to z(-p), where z is the distance traveled within the medium and 0.5

    propagation in complex media, creating new possibilities for acoustic-pulse-based communication and imaging systems.

  5. Nonlinearities of waves propagating over a mild-slope beach: laboratory and numerical results (United States)

    Rocha, Mariana V. L.; Michallet, Hervé; Silva, Paulo A.; Cienfuegos, Rodrigo


    As surface gravity waves propagate from deeper waters to the shore, their shape changes, primarily due to nonlinear wave interactions and further on due to breaking. The nonlinear effects amplify the higher harmonics and cause the oscillatory flow to transform from nearly sinusoidal in deep water, through velocity-skewed in the shoaling zone, to velocity asymmetric in the inner-surf and swash zones. In addition to short-wave nonlinearities, the presence of long waves and wave groups also results in a supplementary wave-induced velocity and influences the short-waves. Further, long waves can themselves contribute to velocity skewness and asymmetry at low frequencies, particularly for very dissipative mild-slope beach profiles, where long wave shoaling and breaking can also occur. The Hydralab-IV GLOBEX experiments were performed in a 110-m-long flume, with a 1/80 rigid-bottom slope and allowed the acquisition of high-resolution free-surface elevation and velocity data, obtained during 90-min long simulations of random and bichromatic wave conditions, and also of a monochromatic long wave (Ruessink et al., Proc. Coastal Dynamics, 2013). The measurements are compared to numerical results obtained with the SERR-1D Boussinesq-type model, which is designed to reproduce the complex dynamics of high-frequency wave propagation, including the energy transfer mechanisms that enhance infragravity-wave generation. The evolution of skewness and asymmetry along the beach profile until the swash zone is analyzed, relatively to that of the wave groupiness and long wave propagation. Some particularities of bichromatic wave groups are further investigated, such as partially-standing long-wave patterns and short-wave reformation after the first breakpoint, which is seen to influence particularly the skewness trends. Decreased spectral width (for random waves) and increased modulation (for bichromatic wave groups) are shown to enhance energy transfers between super- and sub

  6. Detecting electromagnetic cloaks using backward-propagating waves

    KAUST Repository

    Salem, Mohamed


    A novel approach for detecting transformation-optics invisibility cloaks is proposed. The detection method takes advantage of the unusual backward-propagation characteristics of recently reported beams and pulses to induce electromagnetic scattering from the cloak. Even though waves with backward-propagating energy flux cannot penetrate the cloaking shell and interact with the cloaked objects (i.e., they do not make the cloaked object visible), they provide a mechanism for detecting the presence of cloaks. © 2011 IEEE.

  7. A local-ether model of propagation of electromagnetic wave

    Energy Technology Data Exchange (ETDEWEB)

    Su, C.C. [Dept. of Electrical Engineering, National Tsinghua University, Hsinchu (Taiwan)


    It is pointed out that the classical propagation model can be in accord with the Sagnac effect due to earth's rotational and orbital motions in the high-precision GPS (global positioning system) and interplanetary radar, if the reference frame of the classical propagation medium is endowed with a switchability according to the location of the wave. Accordingly, it is postulated that, as in the obsolete theory, electromagnetic waves propagate via a medium like the ether. However, the ether is not universal. It is proposed that in the region under sufficient influence of the gravity due to the earth, the sun, or another celestial body, there forms a local ether, which in turn is stationary with respect to the gravitational potential of the respective body. For earthbound and interplanetary propagation, the medium is stationary in a geocentric and a heliocentric inertial frame, respectively. An electromagnetic wave propagates at a constant speed with respect to the associated local ether, independent of the motions of source and receiver. Based on this local-ether model of wave propagation, a wide variety of earthbound, interplanetary, and interstellar propagation phenomena are accounted for. Strong evidence of this new classical model is its consistent account of the Sagnac effect due to earth's motions among GPS, the intercontinental microwave link, and the interplanetary radar. Moreover, as examined within the present precision, this model is still in accord with the Michelson-Morley experiment. To test the local-ether propagation model, a one-way-link rotor experiment is proposed. (orig.)

  8. Prediction of propagated wave profiles based on point measurement

    Directory of Open Access Journals (Sweden)

    Sang-Beom Lee


    Full Text Available This study presents the prediction of propagated wave profiles using the wave information at a fixed point. The fixed points can be fixed in either space or time. Wave information based on the linear wave theory can be expressed by Fredholm integral equation of the first kinds. The discretized matrix equation is usually an ill-conditioned system. Tikhonov regularization was applied to the ill-conditioned system to overcome instability of the system. The regularization parameter is calculated by using the L-curve method. The numerical results are compared with the experimental results. The analysis of the numerical computation shows that the Tikhonov regularization method is useful.

  9. Topology Optimization for Wave Propagation Problems with Experimental Validation

    DEFF Research Database (Denmark)

    Christiansen, Rasmus Ellebæk

    from acoustics, however problems for TE or TM polarized electromagnetic waves and shear waves in solids in two dimensions may be treated using the proposed methods with minor modifications. A brief introduction to wave problems and to density-based topology optimizationis included, as is a brief......This Thesis treats the development and experimental validation of density-based topology optimization methods for wave propagation problems. Problems in the frequency regime where design dimensions are between approximately one fourth and ten wavelengths are considered. All examples treat problems...

  10. Transient Aspects of Wave Propagation Connected with Spatial Coherence

    Directory of Open Access Journals (Sweden)

    Ezzat G. Bakhoum


    Full Text Available This study presents transient aspects of light wave propagation connected with spatial coherence. It is shown that reflection and refraction phenomena involve spatial patterns which are created within a certain transient time interval. After this transient time interval, these patterns act like a memory, determining the wave vector for subsequent sets of reflected/refracted waves. The validity of this model is based on intuitive aspects regarding phase conservation of energy for waves reflected/refracted by multiple centers in a certain material medium.

  11. Radio Wave Propagation Scene Partitioning for High-Speed Rails

    Directory of Open Access Journals (Sweden)

    Bo Ai


    Full Text Available Radio wave propagation scene partitioning is necessary for wireless channel modeling. As far as we know, there are no standards of scene partitioning for high-speed rail (HSR scenarios, and therefore we propose the radio wave propagation scene partitioning scheme for HSR scenarios in this paper. Based on our measurements along the Wuhan-Guangzhou HSR, Zhengzhou-Xian passenger-dedicated line, Shijiazhuang-Taiyuan passenger-dedicated line, and Beijing-Tianjin intercity line in China, whose operation speeds are above 300 km/h, and based on the investigations on Beijing South Railway Station, Zhengzhou Railway Station, Wuhan Railway Station, Changsha Railway Station, Xian North Railway Station, Shijiazhuang North Railway Station, Taiyuan Railway Station, and Tianjin Railway Station, we obtain an overview of HSR propagation channels and record many valuable measurement data for HSR scenarios. On the basis of these measurements and investigations, we partitioned the HSR scene into twelve scenarios. Further work on theoretical analysis based on radio wave propagation mechanisms, such as reflection and diffraction, may lead us to develop the standard of radio wave propagation scene partitioning for HSR. Our work can also be used as a basis for the wireless channel modeling and the selection of some key techniques for HSR systems.

  12. Wave propagation in elastic layers with damping

    DEFF Research Database (Denmark)

    Sorokin, Sergey; Darula, Radoslav


    The conventional concepts of a loss factor and complex-valued elastic moduli are used to study wave attenuation in a visco-elastic layer. The hierarchy of reduced-order models is employed to assess attenuation levels in various situations. For the forcing problem, the attenuation levels are found...

  13. In Situ Observations of Seismic Wave Propagation (United States)

    Hudson, Kenneth Stewart

    Instrumented geotechnical field sites are designed to capture the infrequent but critically important in situ case histories of ground response, deformation, and liquefaction during significant earthquakes that generate high intensity ground shaking and large strains. The University of California at Santa Barbara has been monitoring densely instrumented geotechnical array field sites for almost three decades, with continuous recording now for more than a decade. When seismic waves travel into soil with sufficiently large ground motions, the soil behaves nonlinearly meaning the shear modulus of the material decreases from the linear value observed during weak ground motions. The degraded shear modulus can continue to affect a site for a period of time by changing the soil response during smaller ground motions after the large event. Decreased shear modulus is inferred when a decrease of shear wave velocity between two sensors in a vertical downhole array is observed. This velocity is calculated by measuring the difference in shear wave arrival times between the sensors using normalized cross correlation. The trend of decreasing shear wave velocity with increasing peak ground acceleration is observed at multiple geotechnical array field sites. The length of time the decreased velocity remains following stronger shaking is analyzed using more than 450 events over more than a decade at the Wildlife Liquefaction Array (WLA). Using both monthly and yearly velocity averages between sensors, there is evidence that suggests the shear wave velocity remains low over a period of months following larger significant shaking events at the site. In addition, at WLA there is evidence that the decrease in shear wave velocity can be detected at ground motion levels as low as 20 cm/s2. Additionally at the Garner Valley Downhole Array, a permanent cross-hole experiment is used to measure velocity changes in the soil with changing water table height. An underground hammer source swings

  14. High frequency guided wave propagation in monocrystalline silicon wafers (United States)

    Pizzolato, Marco; Masserey, Bernard; Robyr, Jean-Luc; Fromme, Paul


    Monocrystalline silicon wafers are widely used in the photovoltaic industry for solar panels with high conversion efficiency. The cutting process can introduce micro-cracks in the thin wafers and lead to varying thickness. High frequency guided ultrasonic waves are considered for the structural monitoring of the wafers. The anisotropy of the monocrystalline silicon leads to variations of the wave characteristics, depending on the propagation direction relative to the crystal orientation. Full three-dimensional Finite Element simulations of the guided wave propagation were conducted to visualize and quantify these effects for a line source. The phase velocity (slowness) and skew angle of the two fundamental Lamb wave modes (first anti-symmetric mode A0 and first symmetric mode S0) for varying propagation directions relative to the crystal orientation were measured experimentally. Selective mode excitation was achieved using a contact piezoelectric transducer with a custom-made wedge and holder to achieve a controlled contact pressure. The out-of-plane component of the guided wave propagation was measured using a noncontact laser interferometer. Good agreement was found with the simulation results and theoretical predictions based on nominal material properties of the silicon wafer.

  15. Propagation of sound waves in tubes of noncircular cross section (United States)

    Richards, W. B.


    Plane-acoustic-wave propagation in small tubes with a cross section in the shape of a flattened oval is described. Theoretical descriptions of a plane wave propagating in a tube with circular cross section and between a pair of infinite parallel plates, including viscous and thermal damping, are expressed in similar form. For a wide range of useful duct sizes, the propagation constant (whose real and imaginary parts are the amplitude attenuation rate and the wave number, respectively) is very nearly the same function of frequency for both cases if the radius of the circular tube is the same as the distance between the parallel plates. This suggests that either a circular-cross-section model or a flat-plate model can be used to calculate wave propagation in flat-oval tubing, or any other shape tubing, if its size is expressed in terms of an equivalent radius, given by g = 2 x (cross-sectional area)/(length of perimeter). Measurements of the frequency response of two sections of flat-oval tubing agree with calculations based on this idea. Flat-plate formulas are derived, the use of transmission-line matrices for calculations of plane waves in compound systems of ducts is described, and examples of computer programs written to carry out the calculations are shown.

  16. Energy Content & Spectral Energy Representation of Wave Propagation in a Granular Chain (United States)

    Shrivastava, Rohit; Luding, Stefan


    A mechanical wave is propagation of vibration with transfer of energy and momentum. Studying the energy as well as spectral energy characteristics of a propagating wave through disordered granular media can assist in understanding the overall properties of wave propagation through materials like soil. The study of these properties is aimed at modeling wave propagation for oil, mineral or gas exploration (seismic prospecting) or non-destructive testing for the study of internal structure of solids. Wave propagation through granular materials is often accompanied by energy attenuation which is quantified by Quality factor and this parameter has often been used to characterize material properties, hence, determining the Quality factor (energy attenuation parameter) can also help in determining the properties of the material [3], studied experimentally in [2]. The study of Energy content (Kinetic, Potential and Total Energy) of a pulse propagating through an idealized one-dimensional discrete particle system like a mass disordered granular chain can assist in understanding the energy attenuation due to disorder as a function of propagation distance. The spectral analysis of the energy signal can assist in understanding dispersion as well as attenuation due to scattering in different frequencies (scattering attenuation). The selection of one-dimensional granular chain also helps in studying only the P-wave attributes of the wave and removing the influence of shear or rotational waves. Granular chains with different mass distributions have been studied, by randomly selecting masses from normal, binary and uniform distributions and the standard deviation of the distribution is considered as the disorder parameter, higher standard deviation means higher disorder and lower standard deviation means lower disorder [1]. For obtaining macroscopic/continuum properties, ensemble averaging has been invoked. Instead of analyzing deformation-, velocity- or stress

  17. Estimation of surface wave propagation in mouse cornea (United States)

    Manapuram, Ravi Kiran; Menodiado, Floredes M.; Truong, Phiet; Aglyamov, Salavat; Emelianov, Stanislav; Twa, Michael; Larin, Kirill V.


    In this paper, we report the use of phase stabilized swept source optical coherence tomography (PhSSSOCT) for the measurement of surface mechanical wave propagation in ocular tissue in-situ. Mechanical wave propagation was measured in the mouse cornea for both young and older mice to assess tissue properties as a function of age. The measurements were performed by inducing low amplitude (cornea and 0.37 μm/mm for 9 month old mice (and presumably of different stiffness for 1 month and 9 months old). Results also suggest that PhS-SSOCT is capable of measuring the changes in the wave amplitude as small as 0.03 μm (limited by the phase stability of the system) that allowed the measurements with a very low amplitude excitation wave, thus making the method minimally invasive. Therefore, this method could potentially be used to assess tissue biomechanical properties and to reconstruct stiffness maps of the cornea.


    Directory of Open Access Journals (Sweden)

    Lorand Catalin STOENESCU


    Full Text Available The study presented in this article describes a modern modeling methodology of the propagation of accidental flood waves in case a dam break; this methodology is applied in Romania for the first time for the pilot project „Breaking scenarios of Poiana Uzului dam”. The calculation programs used help us obtain a bidimensional calculation (2D of the propagation of flood waves, taking into consideration the diminishing of the flood wave on a normal direction to the main direction; this diminishing of the flood wave is important in the case of sinuous courses of water or with urban settlements very close to the minor river bed. In the case of Poiana Uzului dam, 2 scenarios were simulated with the help of Ph.D. Eng. Dan Stematiu, plausible scenarios but with very little chances of actually producing. The results were presented as animations with flooded surfaces at certain time steps successively.

  19. Wave propagation in a strongly coupled magnetized plasma (United States)

    Reynolds, Alexi; Kählert, Hanno; Bonitz, Michael


    Strongly coupled plasmas play a growing role in many fields of physics--from dusty plasmas to compact stars and the quark-gluon plasma, e.g.. In many cases these plasmas are subject to a strong magnetic field. The one-component plasma (OCP) model is often used to theoretically analyze strong plasma correlations. Here the wave propagation in a strongly coupled OCP subject to an external magnetic field is investigated by means of the quasi- localized charge approximation. The dispersion relation and the wave polarization are studied for wave propagation across and along the magnetic field as well as for arbitrary directions of the wave vector. Support by the Deutsche Forschungsgemeinschaft via SFB-TR 24 and DAAD via the RISE program is acknowledged.

  20. Parallel Irregular Software for Wave Propagation Simulation


    Guidec, Frédéric; Calégari, Patrice; Kuonen, Pierre


    Extended version of a paper presented at the High Performance Computing and Networking Europe conference (HPCN, Vienna, Austria, April 1997); International audience; The objective of the European project STORMS (Software Tools for the Optimization of Resources in Mobile Systems) is to develop a software tool to be used for the design and the planning of the future Universal Mobile Telecommunication System (UMTS). In this context the ParFlow method permits the simulation of outdoor radio wave ...

  1. Electromagnetic wave propagation in alternating material-metamaterial layered structures

    CERN Document Server

    Carrera-Escobedo, V H


    Using the transfer matrix method, we examine the parametric behavior of the transmittance of an electromagnetic plane wave propagating in the lossless regime through a periodic multilayered system as a function of the frequency and angle of incidence of the electromagnetic wave for the case in which the periodic structure comprises alternating material-metamaterial layers. A specific example of high transmittance at any angle of incidence in the visible region of the spectrum is identified

  2. Unified interpretation of superluminal behaviors in wave propagation

    Energy Technology Data Exchange (ETDEWEB)

    Ranfagni, A. [Istituto di Fisica Applicata ' Nello Carrara' , Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze (Italy); Viliani, G. [Dipartimento di Fisica, Universita di Trento, 38050 Povo, Trento (Italy); Ranfagni, C. [Facolta di Scienze Matematiche Fisiche e Naturali, Corso di Laurea in Fisica dell' Universita di Firenze, Firenze (Italy); Mignani, R. [Dipartimento di Fisica ' Edoardo Amaldi' , Universita degli Studi di Roma ' Roma Tre' , Via della Vasca Navale 84, 00146 Roma (Italy); Ruggeri, R. [Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sezione di Firenze, Firenze (Italy)], E-mail:; Ricci, A.M. [Istituto per le Telecomunicazioni e l' Elettronica della Marina Militare ' Giancarlo Vallauri' (Mariteleradar), Viale Italia 72, 57100 Livorno (Italy)


    By using two approaches, we demonstrate that superluminal behaviors in wave propagation can be attributed to mechanisms acting in the near-field limit. One approach is based on complex waves, while the other relies on a path-integral treatment of stochastic motion. The results of the two approaches are comparable, and suitable for interpreting the data obtained in microwave experiments; these experiments, over a wide range of distances, show a time advance which, in any case, is limited to nanoseconds.

  3. Transient Topology Optimization of Two-Dimensional Elastic Wave Propagation

    DEFF Research Database (Denmark)

    Matzen, René; Jensen, Jakob Søndergaard; Sigmund, Ole


    A tapering device coupling two monomodal waveguides is designed with the topology optimization method based on transient wave propagation. The gradient-based optimization technique is applied to predict the material distribution in the tapering area such that the squared output displacement (a...... measure for transmission) in the taper is maximized. High transmission in a large frequency range is gained by use of incident wave packets. To avoid nondiscrete properties in the design domain a density filtering technique is employed....

  4. Accelerating wave propagation modeling in the frequency domain using Python (United States)

    Jo, Sang Hoon; Park, Min Jun; Ha, Wan Soo


    Python is a dynamic programming language adopted in many science and engineering areas. We used Python to simulate wave propagation in the frequency domain. We used the Pardiso matrix solver to solve the impedance matrix of the wave equation. Numerical examples shows that Python with numpy consumes longer time to construct the impedance matrix using the finite element method when compared with Fortran; however we could reduce the time significantly to be comparable to that of Fortran using a simple Numba decorator.

  5. Solitary wave propagation in surface stabilized ferroelectric liquid crystal cells




    PUBLISHED Solitary wave propagation in surface stabilized ferroelectric liquid crystal cells controlled by surface anchoring of the alignment layers is investigated for different conditions of alignment on the two opposite surfaces. We show that the critical field Ec, where the speed of the solitary wave becomes zero, is finite for asymmetric alignment on two surfaces. We also show that the polar anchoring energy difference (Deltawp) between the alignment layers can be calculated by measur...

  6. Observations of apparent superslow wave propagation in solar prominences (United States)

    Raes, J. O.; Van Doorsselaere, T.; Baes, M.; Wright, A. N.


    Context. Phase mixing of standing continuum Alfvén waves and/or continuum slow waves in atmospheric magnetic structures such as coronal arcades can create the apparent effect of a wave propagating across the magnetic field. Aims: We observe a prominence with SDO/AIA on 2015 March 15 and find the presence of oscillatory motion. We aim to demonstrate that interpreting this motion as a magneto hydrodynamic (MHD) wave is faulty. We also connect the decrease of the apparent velocity over time with the phase mixing process, which depends on the curvature of the magnetic field lines. Methods: By measuring the displacement of the prominence at different heights to calculate the apparent velocity, we show that the propagation slows down over time, in accordance with the theoretical work of Kaneko et al. We also show that this propagation speed drops below what is to be expected for even slow MHD waves for those circumstances. We use a modified Kippenhahn-Schlüter prominence model to calculate the curvature of the magnetic field and fit our observations accordingly. Results: Measuring three of the apparent waves, we get apparent velocities of 14, 8, and 4 km s-1. Fitting a simple model for the magnetic field configuration, we obtain that the filament is located 103 Mm below the magnetic centre. We also obtain that the scale of the magnetic field strength in the vertical direction plays no role in the concept of apparent superslow waves and that the moment of excitation of the waves happened roughly one oscillation period before the end of the eruption that excited the oscillation. Conclusions: Some of the observed phase velocities are lower than expected for slow modes for the circumstances, showing that they rather fit with the concept of apparent superslow propagation. A fit with our magnetic field model allows for inferring the magnetic geometry of the prominence. The movie attached to Fig. 1 is available at

  7. Wave Propagation in Pipe-like Structures

    DEFF Research Database (Denmark)

    Morsbøl, Jonas

    . In the curved beam regime the waveguide properties of the pipe can be approximated by classical curved beam theory while in the cylinder regime they can be approximated by cylindrical shell theory. In the torus regime none of the two other regimes apply, and a full-blown shell model is needed. For the straight...... pipe with changing radius, which is known as the shell of revolution, it is found that classical rod and beam theory, to some extent, can be used to approximate the fundamental modes of the torsional, axial, and breathing wave. However, by means of the shell model some remarkable effects are predicted...

  8. An Operator Method for Field Moments from the Extended Parabolic Wave Equation and Analytical Solutions of the First and Second Moments for Atmospheric Electromagnetic Wave Propagation (United States)

    Manning, Robert M.


    The extended wide-angle parabolic wave equation applied to electromagnetic wave propagation in random media is considered. A general operator equation is derived which gives the statistical moments of an electric field of a propagating wave. This expression is used to obtain the first and second order moments of the wave field and solutions are found that transcend those which incorporate the full paraxial approximation at the outset. Although these equations can be applied to any propagation scenario that satisfies the conditions of application of the extended parabolic wave equation, the example of propagation through atmospheric turbulence is used. It is shown that in the case of atmospheric wave propagation and under the Markov approximation (i.e., the delta-correlation of the fluctuations in the direction of propagation), the usual parabolic equation in the paraxial approximation is accurate even at millimeter wavelengths. The comprehensive operator solution also allows one to obtain expressions for the longitudinal (generalized) second order moment. This is also considered and the solution for the atmospheric case is obtained and discussed. The methodology developed here can be applied to any qualifying situation involving random propagation through turbid or plasma environments that can be represented by a spectral density of permittivity fluctuations.

  9. Plane-Wave Propagation in Extreme Magnetoelectric (EME) Media

    CERN Document Server

    Lindell, I V; Favaro, A


    The extreme magnetoelectric medium (EME medium) is defined in terms of two medium dyadics, $\\alpha$, producing electric polarization by the magnetic field and $\\beta$, producing magnetic polarization by the electric field. Plane-wave propagation of time-harmonic fields of fixed finite frequency in the EME medium is studied. It is shown that (if $\\omega\

  10. Shock wave propagation in soda lime glass using optical ...

    Indian Academy of Sciences (India)

    Propagation of shock waves in soda lime glass, which is a transparent material, has been studied using the optical shadowgraphy technique. The time-resolved shock velocity information has been obtained (1) in single shot, using the chirped pulse shadowgraphy technique, with a temporal resolution of tens of picoseconds ...

  11. Shock wave propagation in soda lime glass using optical ...

    Indian Academy of Sciences (India)


    Jun 16, 2016 ... ties, they create a near discontinuity in material prop- erties like pressure, temperature, and density across the shock front. These material properties, before and after the shock wave propagation, are related to each other through the well-known Rankine–Hugoniot equations. [10]. ρ0Us = ρ1(Us − Up),. (1).

  12. Chiral metamaterials characterisation using the wave propagation retrieval method

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Lavrinenko, Andrei; Malureanu, Radu


    In this presentation we extend the wave propagation method for the retrieval of the effective properties to the case of chiral metamaterials with circularly polarised eigenwaves. The method is unambiguous, simple and provides bulk effective parameters. Advantages and constraints are discussed...

  13. Analysis of flexural wave propagation in poroelastic composite ...

    African Journals Online (AJOL)

    DR OKE

    and Tajuddin (2010) studied axially symmetric vibrations of composite poroelastic cylinders. Sharma and Sharma (2010) analyzed free vibration in a homogeneous transradially isotropic thermoelastic sphere. Flexural wave propagation in coated poroelastic cylinders is presented by Ahmed shah (2011). Tajuddin (2011) et ...

  14. Directional bending wave propagation in periodically perforated plates

    DEFF Research Database (Denmark)

    Andreassen, Erik; Manktelow, Kevin; Ruzzene, Massimo


    We report on the investigation of wave propagation in a periodically perforated plate. A unit cell with double-C perforations is selected as a test article suitable to investigate two-dimensional dispersion characteristics, group velocities, and internal resonances. A numerical model, formulated ...

  15. Seismic wave propagation in fractured media: A discontinuous Galerkin approach

    KAUST Repository

    De Basabe, Jonás D.


    We formulate and implement a discontinuous Galekin method for elastic wave propagation that allows for discontinuities in the displacement field to simulate fractures or faults using the linear- slip model. We show numerical results using a 2D model with one linear- slip discontinuity and different frequencies. The results show a good agreement with analytic solutions. © 2011 Society of Exploration Geophysicists.

  16. Modelling Acoustic Wave Propagation in Axisymmetric Varying-Radius Waveguides

    DEFF Research Database (Denmark)

    Bæk, David; Willatzen, Morten


    A computationally fast and accurate model (a set of coupled ordinary differential equations) for fluid sound-wave propagation in infinite axisymmetric waveguides of varying radius is proposed. The model accounts for fluid heat conduction and fluid irrotational viscosity. The model problem is solved...

  17. Electromagnetic wave propagation in rain and polarization effects (United States)

    OKAMURA, Sogo; OGUCHI, Tomohiro


    This paper summarizes our study on microwave and millimeter-wave propagation in rain with special emphasis on the effects of polarization. Starting from a recount of our past findings, we will discuss developments with these and how they are connected with subsequent research. PMID:20551593

  18. Oblique Propagation and Dissipation of Alfven Waves in Coronal ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy; Volume 28; Issue 1 ... Sun: Alfvén waves; coronal holes; solar wind. ... For any propagation angle, the energy flux density and damping length scale also show a decrement in the source region of the solar wind (< 1.05 R⊙) where these may be one of the primary ...

  19. Statistical characterization of wave propagation in mine environments

    KAUST Repository

    Bakir, Onur


    A computational framework for statistically characterizing electromagnetic (EM) wave propagation through mine tunnels and galleries is presented. The framework combines a multi-element probabilistic collocation (ME-PC) method with a novel domain-decomposition (DD) integral equation-based EM simulator to obtain statistics of electric fields due to wireless transmitters in realistic mine environments. © 2012 IEEE.

  20. Wave propagation in a general anisotropic poroelastic medium ...

    Indian Academy of Sciences (India)

    Anisotropic wave propagation is studied in a fluid-saturated porous medium, using two differ- ent approaches. One is the dynamic approach of Biot's theories. The other approach known as homogenisation theory, is based on the averaging process to derive macroscopic equations from the microscopic equations of motion.

  1. Propagation of electromagnetic waves in stochastic helical media. (United States)

    Mendez, David; Reyes, J Adrian


    We have developed a model for studying the axial propagation of elliptically polarized electromagnetic waves in a spatially random helical media. We start by writing Maxwell equations for a structurally chiral medium whose dielectric permittivities, polar, and helical angles contain both a stochastic contribution and a deterministic one. We write the electromagnetic equations into a Marcuvitz-Schwigner representation to transform them afterward in a simpler expression by using the Oseen transformation. We exhibit that in the Oseen frame the Marcuvitz-Schwigner equations turns out to be a linear vector stochastic system of differential equations with multiplicative noise. Applying to the resulting equation a formalism for treating stochastic differential equations, we find the governing equations for the first moments of the electromagnetic field amplitudes for a general autocorrelation function for the system diffractive indexes, and calculate their corresponding band structure for a particular spectral noise density. We have shown that the average resulting electromagnetic fields exhibit a decaying exponential dependence which stems from by dissipation and the presence of qualitative modifications in the band structure including a considerable widening of the band gap and the existence of new local maxima for the modes without a band gap.

  2. Skewon field and cosmic wave propagation

    CERN Document Server

    Ni, Wei-Tou


    For the study of the gravitational coupling of electromagnetism and the equivalence principle, we have used the spacetime constitutive tensor density {chi}ijkl, and discovered the nonmetric (axion) part (A){chi}ijkl (equal to {phi}eijkl) of {chi}ijkl worthy investigation. Since we have used Lagrangian formalism, {chi}ijkl is effectively symmetric under the interchange of index pairs, ij and kl, and has 21 independent degrees of freedom. Hehl, Obukhov and Rubilar have started from charge-flux formalism to study electromagnetism, discovered the antisymmetric part (Sk){chi}ijkl (15 degrees of freedom) of {chi}ijkl under the interchange of index pairs ij and kl worthy investigation, and called it skewon field. In this paper, we study the propagation of the Hehl-Obukhov-Rubilar skewon field in weak gravity field/dilute matter or with weak violation of the Einstein Equivalence Principle (EEP), and further classify it into Type I and Type II skewons. From the dispersion relation we show that no dissipation/no amplif...

  3. Acoustic wave propagation in an axisymmetric swirling jet. (United States)

    Yu, J. C.; Mungur, P.


    An analysis has been developed to study the acoustic wave propagation in an axisymmetric swirling subsonic jet flow. The governing convected wave equation derived in the spherical coordinates includes mean shears, shear gradients and pressure gradients. The directivity patterns for various spinning and non-spinning modes due to the influence of the mean jet swirl were obtained by numerically integrating the governing wave equation. The mean flow field used in the computation was that obtained semiempirically for subsonic swirling turbulent jet and is completely specified once the degree of swirl is known. The dependence of sound directivity on jet Mach number, swirl ratio and frequency are discussed.

  4. Modulation instability of wave packets propagating in inhomogeneous nonlinear fiber (United States)

    Lapin, V. A.; Fotiadi, A. A.


    The formation conditions and the effective gain of frequency-modulated soliton wave packets in a non-uniform along the length of active optical fibers were investigated. For packets modulated wave propagating in the nonlinear dependence of the fibers with the dispersion of the fiber length, the power of the generated pulses can be considerably increased in comparison with the homogeneous fibers. Due to the constant growth of the spectral width of the generated pulse sequence can no longer return to the state of the modulated continuous wave. As a result, the pulse duration with some fluctuations steadily declining. The amplitude and period of these oscillations are also reduced.

  5. Structural and energetic considerations of wave propagation in DNA

    Energy Technology Data Exchange (ETDEWEB)

    Sobell, H.M.; Lozansky, E.D.; Lessen, M.


    An important dynamic aspect of DNA in solution is the presence of coupled motions in its structure that involve bending, stretching, unwinding, and shearing components. It is postulated that these motions arise from wave propagation in the polymer, excited through impulses generated by the random and continuous bombardment of DNA by solvent molecules along its length. This gives rise to travelling structural distortions in DNA that result in DNA breathing and in drug intercalation. These distortions can be thought of as premelting conformational changes in DNA, and, in this respect, could have important implications in understanding the structure of DNA active in RNA transcription, DNA replication, and genetic recombination. The nature of these distortions is further documented and their relationship to DNA breathing and to drug intercalation is discussed.A key intermediate in these processes is the multiply kinked structure, ..beta.. kinked DNA. This structure has both B and A characteristics, and it is postulated that this structure is a conformational intermediated in the B ..-->.. A polymorphic transition. In addition, a class of intercalators known as the bis functional intercalators, molecules that have two intercalative chromophores separated by about 10.2 A is discussed. These bifunctional intercalators appear to bind DNA in a neighbor exclusion mode, and could, therefore, be probes to detect the migratory ..beta.. kinked DNA structure that has been postulated. The nature of the excitation force due to Brownian motion of solvent molecules that gives rise to wave motion in DNA is examined. This force is temperature dependent and one would therefore expect the average energy density along the DNA molecule to reflect this. As one raises the temperature of DNA in solution, additional localized regions of DNA premelting could arise. Events such as these could have important implications in understanding the mechanism of DNA melting.

  6. Characterization of wedge waves propagating along wedge tips with defects. (United States)

    Chen, Ming-I; Tesng, Seng-Po; Lo, Pei-Yuan; Yang, Che-Hua


    Wedge waves are guided acoustic waves propagating along the tip of a wedge with the energy tightly confined near the wedge. Anti-symmetric flexural (ASF) modes are wedge waves with their particle motion anti-symmetric with the apex mid-plane. This study investigates the behaviors of ASF modes propagation along wedge tips with perfect and imperfect rectangular defects. Numerical finite element simulations and experimental measurements using a laser ultrasound technique are employed to explore the behaviors of ASF modes interacting with defects. Complex reflections and transmissions involved with direct reflections and transmissions as well as the newly discovered mode conversions will be explored and quantified in numerical as well as experimental ways. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Superluminal X-wave propagation: energy localization and velocity. (United States)

    Mugnai, D; Mochi, I


    The electromagnetic propagation of a Bessel-X wave is analyzed on the basis of a vectorial treatment in order to obtain information about the propagation of energy flux and the velocity of the energy. Knowledge of these quantities is of great interest since they are connected to the production of localized electromagnetic energy and to the topic of superluminality, respectively. The electric and magnetic fields are obtained in the far-field approximation by considering a realistic situation able to generate a Bessel-X wave. The vectorial treatment confirms the capability of this kind of wave to localize energy, while, quite surprisingly, even if the group velocity is superluminal, the energy velocity is equal to the light speed.

  8. Torsional wave propagation in multiwalled carbon nanotubes using nonlocal elasticity (United States)

    Arda, Mustafa; Aydogdu, Metin


    Torsional wave propagation in multiwalled carbon nanotubes is studied in the present work. Governing equation of motion of multiwalled carbon nanotube is obtained using Eringen's nonlocal elasticity theory. The effect of van der Waals interaction coefficient is considered between inner and outer nanotubes. Dispersion relations are obtained and discussed in detail. Effect of nonlocal parameter and van der Waals interaction to the torsional wave propagation behavior of multiwalled carbon nanotubes is investigated. It is obtained that torsional van der Waals interaction between adjacent tubes can change the rotational direction of multiwalled carbon nanotube as in-phase or anti-phase. The group and escape velocity of the waves converge to a limit value in the nonlocal elasticity approach.

  9. Obliquely propagating magnetosonic waves in multicomponent quantum magnetoplasma

    Energy Technology Data Exchange (ETDEWEB)

    Masood, W. [Theoretical Plasma Physics Division, PO Nilore, Islamabad (Pakistan)], E-mail:; Mushtaq, A. [Theoretical Plasma Physics Division, PO Nilore, Islamabad (Pakistan)


    Linear properties of obliquely propagating magnetosonic waves (both fast and slow) in multicomponent (electron-positron-ion (e-p-i) and dust-electron-ion (d-e-i)) quantum magnetoplasma are studied. It is found that the quantum Bohm potential term significantly changes the propagation of fast and slow magnetosonic waves in both e-p-i and d-e-i quantum plasmas. The variation of the dispersion characteristics with the increase/decrease of positron concentration in e-p-i and dust concentration in d-e-i quantum magnetoplasma is explored. Finally, the effect of angle {theta} (that the ambient magnetic field makes with the x-axis) on the dispersion properties of magnetosonic waves in multicomponent quantum magnetoplasma is investigated. The relevance of the present investigation to the dense astrophysical environments and microelectronic devices is also pointed out.

  10. Experimental study of Lamb wave propagation in composite laminates (United States)

    Wang, Lei; Yuan, F. G.


    This paper focuses on the existence of higher-order Lamb wave modes that can be observed from piezoelectric sensors by the excitation of ultrasonic frequencies from piezoelectric actuators. Using three-dimensional (3-D) elasticity theory, the exact dispersion relations governed by transcendental equations are numerically solved for an infinite number of possible wave modes. For symmetric laminates, a robust method by imposing boundary conditions on mid-plane and top surface is developed to separate wave modes. Then both phase and group velocity dispersions of Lamb waves in composites are obtained. Meanwhile three characteristic wave curves including velocity, slowness, and wave curves are introduced to analyze the angular dependency of Lamb wave propagation at a given frequency. In the experiments, two surface-mounted piezoelectric actuators are operated corporately to excite either symmetric or anti-symmetric wave modes with narrow banded excitation signals, and a Gabor wavelet transform is used to extract group velocities from arrival times of Lamb wave received by a piezoelectric sensor. In comparison with the results from the theory and experiment, it is confirmed that the higher-order Lamb waves can be excited from piezoelectric actuators and the measured group velocities agree well with those from 3-D elasticity theory.

  11. Obliquely Propagating Electromagnetic Waves in Magnetized Kappa Plasmas (United States)

    Gaelzer, R.


    The effects of velocity distribution functions (VDFs) that exhibit a power-law dependence on the high-energy tail have been the subjectof intense research by the space plasma community. Such functions, known as kappa or superthermal distributions, have beenfound to provide a better fitting to the VDF measured by spacecraft in the solar wind. One of the problems that is being addressed on this new light is the temperature anisotropy of solar wind protons and electrons. An anisotropic kappa VDF contains a large amount of free energy that can excite waves in the solar wind. Conversely, the wave-particle interaction is important to determine the shape of theobserved particle distributions.In the literature, the general treatment for waves excited by (bi-)Maxwellian plasmas is well-established. However, for kappa distributions, either isotropic or anisotropic, the wave characteristics have been studied mostly for the limiting cases of purely parallel or perpendicular propagation. Contributions for the general case of obliquely-propagating electromagnetic waves have been scarcely reported so far. The absence of a general treatment prevents a complete analysis of the wave-particle interaction in kappa plasmas, since some instabilities, such as the firehose, can operate simultaneously both in the parallel and oblique directions.In a recent work [1], we have obtained expressions for the dielectric tensor and dispersion relations for the low-frequency, quasi-perpendicular dispersive Alfvén waves resulting from a kappa VDF. In the present work, we generalize the formalism introduced by [1] for the general case of electrostatic and/or electromagnetic waves propagating in a kappa plasma in any frequency range and for arbitrary angles.We employ an isotropic distribution, but the methods used here can be easily applied to more general anisotropic distributions,such as the bi-kappa or product-bi-kappa. [1] R. Gaelzer and L. F. Ziebell, Journal of Geophysical Research 119, 9334

  12. Modal analysis of wave propagation in dispersive media (United States)

    Abdelrahman, M. Ismail; Gralak, B.


    Surveys on wave propagation in dispersive media have been limited since the pioneering work of Sommerfeld [Ann. Phys. 349, 177 (1914), 10.1002/andp.19143491002] by the presence of branches in the integral expression of the wave function. In this article a method is proposed to eliminate these critical branches and hence to establish a modal expansion of the time-dependent wave function. The different components of the transient waves are physically interpreted as the contributions of distinct sets of modes and characterized accordingly. Then, the modal expansion is used to derive a modified analytical expression of the Sommerfeld precursor improving significantly the description of the amplitude and the oscillating period up to the arrival of the Brillouin precursor. The proposed method and results apply to all waves governed by the Helmholtz equations.

  13. Investigation on the propagation process of rotating detonation wave (United States)

    Deng, Li; Ma, Hu; Xu, Can; Zhou, Changsheng; Liu, Xiao


    Effects of mass flow rate and equivalence ratio on the wave speed performance and instantaneous pressure characteristics of rotating detonation wave are investigated using hydrogen and air mixtures. The interaction between air and fuel manifolds and combustion chamber is also identified. The results show that the rotating detonation waves are able to adapt themselves to the changes of equivalence ratio during the run, the rotating detonation waves decayed gradually and then quenched after the shutdown of reactants supply. The wave speed performance is closely related to the mass flow rate and the pressure ratio of the fuel to air manifolds at different equivalence ratios. The blockage ratio of the air manifold increases with the increasing of the wave speed due to high-pressure detonation products, while increasing of the equivalence ratios will reduce the blockage ratio of the hydrogen manifold. Higher equivalence ratio can enhance the stabilization of the rotating detonation wave and lower equivalence ratio will lead to the large fluctuations of the lap time and instantaneous pressure magnitude. The overpressure of rotating detonation wave is determined by the combination of mass flow rate and equivalence ratio, which increases with the increasing of mass flow rate in the equivalence ratio ranges that the rotating detonation wave propagates stably. The secondary spike in the instantaneous pressure and ionization signals indicates that a shocked mixing zone exists near the fuel injection holes and the reflection of shock in the mixing zone induces the reaction.

  14. Electron plasma wave propagation in external-electrode fluorescent lamps (United States)

    Cho, Guangsup; Kim, Jung-Hyun; Jeong, Jong-Mun; Hong, Byoung-Hee; Koo, Je-Huan; Choi, Eun-Ha; Verboncoeur, John P.; Uhm, Han Sup


    The optical propagation observed along the positive column of external electrode fluorescent lamps is shown to be an electron plasma wave propagating with the electron thermal speed of (kTe/m)1/2. When the luminance of the lamp is 10000-20000cd/m2, the electron plasma temperature and the plasma density in the positive column are determined to be kTe˜1.26-2.12eV and no˜(1.28-1.69)×1017m-3, respectively.

  15. Spectral-element seismic wave propagation on emerging HPC architectures (United States)

    Peter, Daniel; Liu, Qiancheng; Komatitsch, Dimitri


    Seismic tomography is the most prominent approach to infer physical properties of Earth's internal structures such as compressional- and shear-wave speeds, anisotropy and attenuation. Using seismic signals from ground-motion records, recent advances in full-waveform inversions require increasingly accurate simulations of seismic wave propagation in complex 3D media to provide access to the complete 3D seismic wavefield. However, such numerical simulations are computationally expensive and need high-performance computing (HPC) facilities for further improving the current state of knowledge. During recent years, new multi- and many-core architectures such as graphics processing units (GPUs) have been added to available large HPC systems. GPU-accelerated computing together with advances in multi-core central processing units (CPUs) can greatly accelerate scientific applications. To employ a wide variety of hardware accelerators for seismic wave propagation simulations, we incorporated a code generation tool BOAST into an existing spectral-element code package SPECFEM3D_GLOBE. This allows us to use meta-programming of computational kernels and generate optimized source code for both CUDA and OpenCL languages, running simulations on either CUDA or OpenCL hardware accelerators. We show here benchmark applications of seismic wave propagation on GPUs and CPUs, comparing performances on emerging hardware architectures.

  16. Propagation of radio frequency waves through density fluctuations (United States)

    Valvis, S. I.; Papagiannis, P.; Papadopoulos, A.; Hizanidis, K.; Glytsis, E.; Bairaktaris, F.; Zisis, A.; Tigelis, I.; Ram, A. K.


    On their way to the core of a tokamak plasma, radio frequency (RF) waves, excited in the vacuum region, have to propagate through a variety of density fluctuations in the edge region. These fluctuations include coherent structures, like blobs that can be field aligned or not, as well as turbulent and filamentary structures. We have been studying the effect of fluctuations on RF propagation using both theoretical (analytical) and computational models. The theoretical results are being compared with those obtained by two different numerical codes ``a Finite Difference Frequency Domain code and the commercial COMSOL package. For plasmas with arbitrary distribution of coherent and turbulent fluctuations, we have formulated an effective dielectric permittivity of the edge plasma. This permittivity tensor is then used in numerical simulations to study the effect of multi-scale turbulence on RF waves. We not only consider plane waves but also Gaussian beams in the electron cyclotron and lower hybrid range of frequencies. The analytical theory and results from simulations on the propagation of RF waves will be presented. Supported in part by the Hellenic National Programme on Controlled Thermonuclear Fusion associated with the EUROfusion Consortium and by DoE Grant DE-FG02-91ER-54109.

  17. Propagation of Love waves in an elastic layer with void pores

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    of longitudinal and shear waves in void media and came to the conclusion that there may be two wave fronts for longitudinal waves. Deyet al(1993) discussed the propagation of torsional surface waves in an elastic medium with void pores. The influence of local irregularities on propagation of Love waves has been studied ...

  18. Boussinesq Modeling of Wave Propagation and Runup over Fringing Coral Reefs, Model Evaluation Report

    National Research Council Canada - National Science Library

    Demirbilek, Zeki; Nwogu, Okey G


    ..., for waves propagating over fringing reefs. The model evaluation had two goals: (a) investigate differences between laboratory and field characteristics of wave transformation processes over reefs, and (b...

  19. Wavefront Correction of Ionospherically Propagated HF Radio Waves Using Covariance Matching Techniques

    Directory of Open Access Journals (Sweden)

    Y. Zhu


    Full Text Available High Frequency (HF radio waves propagating in the ionospheric random inhomogeneous media exhibit a spatial nonlinearity wavefront which may limit the performance of conventional high-resolution methods for HF sky wave radar systems. In this paper, the spatial correlation function of wavefront is theoretically derived on condition that the radio waves propagate through the ionospheric structure containing irregularities. With this function, the influence of wavefront distortions on the array covariance matrix can be quantitatively described with the spatial coherence matrix, which is characterized with the coherence loss parameter. Therefore, the problem of wavefront correction is recast as the determination of coherence loss parameter and this is solved by the covariance matching (CM technique. The effectiveness of the proposed method is evaluated both by the simulated and real radar data. It is shown numerically that an improved direction of arrival (DOA estimation performance can be achieved with the corrected array covariance matrix.

  20. The energy transport by the propagation of sound waves in wave guides with a moving medium

    NARCIS (Netherlands)

    le Grand, P.


    The problem of the propagation of sound waves radiated by a source in a fluid moving with subsonic velocity between two parallel walls or inside a cylindrical tube is considered in [2], The most interesting thing of this problem is that waves may occur with constant amplitude coming from infinity.

  1. Prediction of propagated wave profiles based on point measurement

    Directory of Open Access Journals (Sweden)

    Lee Sang-Beom


    Full Text Available This study presents the prediction of propagated wave profiles using the wave information at a fixed point. The fixed points can be fixed in either space or time. Wave information based on the linear wave theory can be expressed by Fredholm integral equation of the first kinds. The discretized matrix equation is usually an ill-conditioned system. Tikhonov regularization was applied to the ill-conditioned system to overcome instability of the system. The regularization parameter is calculated by using the L-curve method. The numerical results are compared with the expe¬rimental results. The analysis of the numerical computation shows that the Tikhonov regularization method is useful.

  2. Wave propagation in one-dimensional nonlinear acoustic metamaterials (United States)

    Fang, Xin; Wen, Jihong; Bonello, Bernard; Yin, Jianfei; Yu, Dianlong


    The propagation of waves in nonlinear acoustic metamaterial (NAM) is fundamentally different from that in conventional linear ones. In this article we consider two one-dimensional (1D) NAM systems featuring respectively a diatomic and a tetratomic meta unit-cell. We investigate the attenuation of waves, band structures, and bifurcations to demonstrate novel nonlinear effects, which can significantly expand the bandwidth for elastic wave suppression and cause nonlinear wave phenomena. The harmonic averaging approach, continuation algorithm, and Lyapunov exponents (LEs) are combined to study the frequency responses, nonlinear modes, bifurcations of periodic solutions, and chaos. The nonlinear resonances are studied, and the influence of damping on hyperchaotic attractors is evaluated. Moreover, a ‘quantum’ behavior is found between the low-energy and high-energy orbits. This work provides a theoretical base for furthering understandings and applications of NAMs.

  3. Modeling anomalous surface - wave propagation across the Southern Caspian basin

    Energy Technology Data Exchange (ETDEWEB)

    Priestly, K.F.; Patton, H.J.; Schultz, C.A.


    The crust of the south Caspian basin consists of 15-25 km of low velocity, highly attenuating sediment overlying high velocity crystalline crust. The Moho depth beneath the basin is about 30 km as compared to about 50 km in the surrounding region. Preliminary modeling of the phase velocity curves shows that this thick sediments of the south Caspian basin are also under-lain by a 30-35 km thick crystalline crust and not by typical oceanic crust. This analysis also suggest that if the effect of the over-pressuring of the sediments is to reduce Poissons` ratio, the over-pressured sediments observed to approximately 5 km do not persist to great depths. It has been shown since 1960`s that the south Caspian basin blocks the regional phase Lg. Intermediate frequency (0.02-0.04 Hz) fundamental mode Raleigh waves propagating across the basin are also severely attenuated, but the low frequency surface waves are largely unaffected. This attenuation is observed along the both east-to-west and west-to-east great circle paths across the basin, and therefore it cannot be related to a seismograph site effect. We have modeled the response of surface waves in an idealized rendition of the south Caspian basin model using a hybrid normal mode / 2-D finite difference approach. To gain insight into the features of the basin which cause the anomalous surface wave propagation, we have varied parameters of the basin model and computed synthetic record sections to compare with the observed seismograms. We varied the amount of mantel up-warp, the shape of the boundaries, the thickness and shear wave Q of the sediments and mantle, and the depth of the water layer. Of these parameters, the intermediate frequency surface waves are most severely affected by the sediments thickness and shear wave attenuation. fundamental mode Raleigh wave phase velocities measure for paths crossing the basin are extremely low.

  4. Wave fields in real media wave propagation in anisotropic, anelastic, porous and electromagnetic media

    CERN Document Server

    Carcione, José M


    This book examines the differences between an ideal and a real description of wave propagation, where ideal means an elastic (lossless), isotropic and single-phase medium, and real means an anelastic, anisotropic and multi-phase medium. The analysis starts by introducing the relevant stress-strain relation. This relation and the equations of momentum conservation are combined to give the equation of motion. The differential formulation is written in terms of memory variables, and Biot's theory is used to describe wave propagation in porous media. For each rheology, a plane-wave analysis is performed in order to understand the physics of wave propagation. The book contains a review of the main direct numerical methods for solving the equation of motion in the time and space domains. The emphasis is on geophysical applications for seismic exploration, but researchers in the fields of earthquake seismology, rock acoustics, and material science - including many branches of acoustics of fluids and solids - may als...

  5. Numerical modelling of nonlinear full-wave acoustic propagation

    Energy Technology Data Exchange (ETDEWEB)

    Velasco-Segura, Roberto, E-mail:; Rendón, Pablo L., E-mail: [Grupo de Acústica y Vibraciones, Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70-186, C.P. 04510, México D.F., México (Mexico)


    The various model equations of nonlinear acoustics are arrived at by making assumptions which permit the observation of the interaction with propagation of either single or joint effects. We present here a form of the conservation equations of fluid dynamics which are deduced using slightly less restrictive hypothesis than those necessary to obtain the well known Westervelt equation. This formulation accounts for full wave diffraction, nonlinearity, and thermoviscous dissipative effects. A two-dimensional, finite-volume method using Roe’s linearisation has been implemented to obtain numerically the solution of the proposed equations. This code, which has been written for parallel execution on a GPU, can be used to describe moderate nonlinear phenomena, at low Mach numbers, in domains as large as 100 wave lengths. Applications range from models of diagnostic and therapeutic HIFU, to parametric acoustic arrays and nonlinear propagation in acoustic waveguides. Examples related to these applications are shown and discussed.

  6. VLF Radio Wave Propagation Across the Day/Night Terminator (United States)

    Burch, H.; Moore, R. C.


    In May 2016, a new array of VLF radio receivers was deployed spanning the East Coast of the United States. We present preliminary observations from the array, which was designed in part to track the propagation of the narrowband VLF transmitter signal, NAA (24.0 kHz), down the coast from Cutler, Maine. Amplitude, phase, and polarization observations are compared over multiple days and at different times of year to investigate the dependence of VLF propagation characteristics on solar zenith angle. Measurements are compared to simulations using the Long Wave Propagation Capability code (LWPC) in order to evaluate the accuracy of LWPC's built-in ionosphere model. Efforts to improve the ionosphere model based on observations are discussed.

  7. Wave propagation in fluids models and numerical techniques

    CERN Document Server

    Guinot, Vincent


    This second edition with four additional chapters presents the physical principles and solution techniques for transient propagation in fluid mechanics and hydraulics. The application domains vary including contaminant transport with or without sorption, the motion of immiscible hydrocarbons in aquifers, pipe transients, open channel and shallow water flow, and compressible gas dynamics. The mathematical formulation is covered from the angle of conservation laws, with an emphasis on multidimensional problems and discontinuous flows, such as steep fronts and shock waves. Finite

  8. Passive models of viscothermal wave propagation in acoustic tubes. (United States)

    Bilbao, Stefan; Harrison, Reginald; Kergomard, Jean; Lombard, Bruno; Vergez, Christophe


    A continued fraction expansion to the immittances defining viscothermal wave propagation in a cylindrical tube has been presented recently in this journal, intended as a starting point for time domain numerical method design. Though the approximation has the great benefit of passivity, or positive realness under truncation, its convergence is slow leading to approximations of high order in practice. Other passive structures, when combined with optimisation methods, can lead to good accuracy over a wide frequency range, and for relatively low order.

  9. Monograph on propagation of sound waves in curved ducts (United States)

    Rostafinski, Wojciech


    After reviewing and evaluating the existing material on sound propagation in curved ducts without flow, it seems strange that, except for Lord Rayleigh in 1878, no book on acoustics has treated the case of wave motion in bends. This monograph reviews the available analytical and experimental material, nearly 30 papers published on this subject so far, and concisely summarizes what has been learned about the motion of sound in hard-wall and acoustically lined cylindrical bends.

  10. 24 GHz cmWave Radio Propagation Through Vegetation

    DEFF Research Database (Denmark)

    Rodriguez, Ignacio; Abreu, Renato Barbosa; Portela Lopes de Almeida, Erika


    This paper presents a measurement-based analysis of cm-wave radio propagation through vegetation at 24 GHz. A set of dedicated directional measurements were performed with horn antennas located close to street level inside a densely-vegetated area illuminated from above. The full azimuth...... along the paper are useful for simulation and radio network planning of future wireless systems operating at 24 GHz in presence of vegetation....

  11. Elastic Wave Propagation Mechanisms in Underwater Acoustic Environments (United States)


    Collis, and Robert I. Odom. Elastic parabolic equation solutions for oceanic T -wave generation and propagation from deep seismic sources. J. Acoust...navigation under Arctic ice. In Oceans , 2012, pages 1–8. IEEE, October 2012. 10.1109/ OCEANS .2012.6405005. PUBLICATIONS • Published in refereed journal...or elastic ice cover. OBJECTIVES To apply EPE solutions to scenarios that include fluid-elastic boundaries, either at the ocean floor, or at the

  12. Wave propagation in layered anisotropic media with application to composites

    CERN Document Server

    Nayfeh, AH


    Recent advances in the study of the dynamic behavior of layered materials in general, and laminated fibrous composites in particular, are presented in this book. The need to understand the microstructural behavior of such classes of materials has brought a new challenge to existing analytical tools. This book explores the fundamental question of how mechanical waves propagate and interact with layered anisotropic media. The chapters are organized in a logical sequence depending upon the complexity of the physical model and its mathematical treatment.

  13. Radio Wave Propagation Handbook for Communication on and Around Mars (United States)

    Ho, Christian; Golshan, Nasser; Kliore, Arvydas


    This handbook examines the effects of the Martian environment on radio wave propagation on Mars and in the space near the planet. The environmental effects include these from the Martian atmosphere, ionosphere, global dust storms, aerosols, clouds, and geomorphologic features. Relevant Martian environmental parameters were extracted from the measurements of Mars missions during the past 30 years, especially from Mars Pathfinder and Mars Global Surveyor. The results derived from measurements and analyses have been reviewed through an extensive literature search. The updated parameters have been theoretically analyzed to study their effects on radio propagation. This handbook also provides basic information about the entire telecommunications environment on and around Mars for propagation researchers, system engineers, and link analysts. Based on these original analyses, some important recommendations have been made, including the use of the Martian ionosphere as a reflector for Mars global or trans-horizon communication between future Martian colonies, reducing dust storm scattering effects, etc. These results have extended our wave propagation knowledge to a planet other than Earth; and the tables, models, and graphics included in this handbook will benefit telecommunication system engineers and scientific researchers.

  14. Propagation characteristics of acoustic emission wave in reinforced concrete

    Directory of Open Access Journals (Sweden)

    Haoxiong Feng

    Full Text Available Due to the complexity of components and damage mechanism of reinforced concrete, the wave propagation characteristics in reinforced concrete are always complicated and difficult to determine. The objective of this article is to study the failure process of reinforced concrete structure under the damage caused by pencil-broken. A new method on the basis of the acoustic emission technique and the Hilbert-Huang transform theory is proposed in this work. By using acoustic emission technique, the acoustic emission wave signal is generating while the real-time damage information and the strain field of the reinforced concrete structure is receiving simultaneously. Based on the Hilbert-Huang transform (HHT theory, the peak frequency characteristics of the acoustic emission signals were extracted to identify the damage modes of the reinforced concrete structure. The results demonstrate that this method can quantitatively investigate the acoustic emission wave propagation characteristic in reinforced concrete structures and might also be promising in other civil constructions. Keywords: Acoustic emission, Reinforced concrete structure, Hilbert-Huang transform (HHT, Propagation characteristics

  15. Equivalent Continuum Modeling for Shock Wave Propagation in Jointed Media

    Energy Technology Data Exchange (ETDEWEB)

    Vorobiev, O; Antoun, T


    This study presents discrete and continuum simulations of shock wave propagating through jointed media. The simulations were performed using the Lagrangian hydrocode GEODYN-L with joints treated explicitly using an advanced contact algorithm. They studied both isotropic and anisotropic joint representations. For an isotropically jointed geologic medium, the results show that the properties of the joints can be combined with the properties of the intact rock to develop an equivalent continuum model suitable for analyzing wave propagation through the jointed medium. For an anisotropically jointed geologic medium, they found it difficult to develop an equivalent continuum (EC) model that matches the response derived from mesoscopic simulation. They also performed simulations of wave propagation through jointed media. Two appraoches are suggested for modeling the rock mass. In one approach, jointed are modeled explicitly in a Lagrangian framework with appropriate contact algorithms used to track motion along the interfaces. In the other approach, the effect of joints is taken into account using a constitutive model derived from mesoscopic simulations.

  16. Theoretical Model of Acoustic Wave Propagation in Shallow Water

    Directory of Open Access Journals (Sweden)

    Kozaczka Eugeniusz


    Full Text Available The work is devoted to the propagation of low frequency waves in a shallow sea. As a source of acoustic waves, underwater disturbances generated by ships were adopted. A specific feature of the propagation of acoustic waves in shallow water is the proximity of boundaries of the limiting media characterised by different impedance properties, which affects the acoustic field coming from a source situated in the water layer “deformed” by different phenomena. The acoustic field distribution in the real shallow sea is affected not only by multiple reflections, but also by stochastic changes in the free surface shape, and statistical changes in the seabed shape and impedance. The paper discusses fundamental problems of modal sound propagation in the water layer over different types of bottom sediments. The basic task in this case was to determine the acoustic pressure level as a function of distance and depth. The results of the conducted investigation can be useful in indirect determination of the type of bottom.

  17. Study on the electromagnetic waves propagation characteristics in partially ionized plasma slabs

    Directory of Open Access Journals (Sweden)

    Zhi-Bin Wang


    Full Text Available Propagation characteristics of electromagnetic (EM waves in partially ionized plasma slabs are studied in this paper. Such features are significant to applications in plasma antennas, blackout of re-entry flying vehicles, wave energy injection to plasmas, and etc. We in this paper developed a theoretical model of EM wave propagation perpendicular to a plasma slab with a one-dimensional density inhomogeneity along propagation direction to investigate essential characteristics of EM wave propagation in nonuniform plasmas. Particularly, the EM wave propagation in sub-wavelength plasma slabs, where the geometric optics approximation fails, is studied and in comparison with thicker slabs where the geometric optics approximation applies. The influences of both plasma and collisional frequencies, as well as the width of the plasma slab, on the EM wave propagation characteristics are discussed. The results can help the further understanding of propagation behaviours of EM waves in nonuniform plasma, and applications of the interactions between EM waves and plasmas.

  18. Guided wave propagation in porous unidirectional carbon fiber reinforced plastic (United States)

    Dobmann, Nicolas; Bach, Martin


    Networks of piezoelectric transducers mounted on aircraft structures for Acousto Ultrasonics (AU) purposes are designed to be applied during the service life of the aircraft. The approach to integrate these sensor networks already during the manufacture of carbon fiber reinforced plastic (CFRP) host structures prompts ideas to achieve an additional benefit by their application for cure monitoring, thus extending their use to the manufacturing chain. This benefit could be extended even further if guided waves generated by AU sensor networks could be used for porosity testing extensively applied for CFRP aircraft structures. In light of this, an experimental study was conducted to investigate effects of porosity on the propagation of guided waves in a basic configuration of unidirectional CFRP. Several samples were manufactured at different porosity levels by variation of the processing pressure. Wave fields were acquired using an ultrasonic scanning device. In the present work, phase velocities are chosen as best measurable and quantifiable propagation feature and the approach for the analysis of phase velocities in porosity samples is outlined. First results are presented and discussed regarding the influence of porosity on guided wave phase velocity and basic applicability for porosity testing of aircraft structures.

  19. Low frequency piezoresonance defined dynamic control of terahertz wave propagation. (United States)

    Dutta, Moumita; Betal, Soutik; Peralta, Xomalin G; Bhalla, Amar S; Guo, Ruyan


    Phase modulators are one of the key components of many applications in electromagnetic and opto-electric wave propagations. Phase-shifters play an integral role in communications, imaging and in coherent material excitations. In order to realize the terahertz (THz) electromagnetic spectrum as a fully-functional bandwidth, the development of a family of efficient THz phase modulators is needed. Although there have been quite a few attempts to implement THz phase modulators based on quantum-well structures, liquid crystals, or meta-materials, significantly improved sensitivity and dynamic control for phase modulation, as we believe can be enabled by piezoelectric-resonance devices, is yet to be investigated. In this article we provide an experimental demonstration of phase modulation of THz beam by operating a ferroelectric single crystal LiNbO3 film device at the piezo-resonance. The piezo-resonance, excited by an external a.c. electric field, develops a coupling between electromagnetic and lattice-wave and this coupling governs the wave propagation of the incident THz beam by modulating its phase transfer function. We report the understanding developed in this work can facilitate the design and fabrication of a family of resonance-defined highly sensitive and extremely low energy sub-millimeter wave sensors and modulators.

  20. Instabilities and propagation of neutrino magnetohydrodynamic waves in arbitrary direction (United States)

    Haas, Fernando; Pascoal, Kellen Alves


    In a previous work [Haas et al., Phys. Plasmas 23, 012104 (2016)], a new model was introduced, taking into account the role of the Fermi weak force due to neutrinos coupled to magnetohydrodynamic plasmas. The resulting neutrino-magnetohydrodynamics was investigated in a particular geometry associated with the magnetosonic wave, where the ambient magnetic field and the wavevector are perpendicular. The corresponding fast, short wavelength neutrino beam instability was then obtained in the context of supernova parameters. The present communication generalizes these results, allowing for arbitrary direction of wave propagation, including fast and slow magnetohydrodynamic waves and the intermediate cases of oblique angles. The numerical estimates of the neutrino-plasma instabilities are derived in extreme astrophysical environments where dense neutrino beams exist.

  1. Wave propagation phenomena in metamaterials for retrieving of effective parameters

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Malureanu, Radu; Ha, S.


    into account propagation of eigen-waves in multilayered structures (thicknesses 10-100 unit cells). Thus, the question of pa-rameters convergence is naturally resolved in our approach. The method has been tested on complex three-dimensional structures like a split-cube-in-carcass and with circular polarized...... waves on chiral MMs [1, 2]. Elaborating our approach the new method has been established, where the unit-cell volume and face field averaging procedures define wave and input (Bloch) impedances correspond-ingly. The first part of the method involves the extraction of the dominating (fundamental) Bloch...... between constitutive elements, multipoles resonances, multimode or photonic crystal (diffraction type) regimes. There are also technical limitations of the retrieval methods connected with very strong losses, branching ambiguity, convergence to bulk parameters, etc. Moreover, most of the simple methods...

  2. Modelling of wave propagation over a submerged sand bar using SWASH

    Digital Repository Service at National Institute of Oceanography (India)

    Jishad, M.; Vu, T.T.T.; JayaKumar, S.

    A non-hydrostatic numerical model "SWASH" (Simulating WAves till SHore) is used to study the wave propagation over a submerged sand bar in a wave flume The SWASH model is calibrated and further used to validate the wave propagation for two different...


    Energy Technology Data Exchange (ETDEWEB)

    Goossens, M.; Van Doorsselaere, T. [Centre for mathematical Plasma Astrophysics, Mathematics Department, Celestijnenlaan 200B bus 2400, B-3001 Heverlee (Belgium); Soler, R. [Solar Physics Group, Departament de Fisica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Verth, G., E-mail: [Solar Physics and Space Plasma Research Centre (SP2RC), School of Mathematics and Statistics, University of Sheffield, Hounsfield Road, Hicks Building, Sheffield S3 7RH (United Kingdom)


    Recently, a significant amount of transverse wave energy has been estimated propagating along solar atmospheric magnetic fields. However, these estimates have been made with the classic bulk Alfven wave model which assumes a homogeneous plasma. In this paper, the kinetic, magnetic, and total energy densities and the flux of energy are computed for transverse MHD waves in one-dimensional cylindrical flux tube models with a piecewise constant or continuous radial density profile. There are fundamental deviations from the properties for classic bulk Alfven waves. (1) There is no local equipartition between kinetic and magnetic energy. (2) The flux of energy and the velocity of energy transfer have, in addition to a component parallel to the magnetic field, components in the planes normal to the magnetic field. (3) The energy densities and the flux of energy vary spatially, contrary to the case of classic bulk Alfven waves. This last property has the important consequence that the energy flux computed with the well known expression for bulk Alfven waves could overestimate the real flux by a factor in the range 10-50, depending on the flux tube equilibrium properties.

  4. Wave energy converter effects on wave propagation: A sensitivity study in Monterey Bay, CA (United States)

    Chang, G.; Jones, C. A.; Roberts, J.; Magalen, J.; Ruehl, K.; Chartrand, C.


    The development of renewable offshore energy in the United States is growing rapidly and wave energy is one of the largest resources currently being evaluated. The deployment of wave energy converter (WEC) arrays required to harness this resource could feasibly number in the hundreds of individual devices. The WEC arrays have the potential to alter nearshore wave propagation and circulation patterns and ecosystem processes. As the industry progresses from pilot- to commercial-scale it is important to understand and quantify the effects of WECs on the natural nearshore processes that support a local, healthy ecosystem. To help accelerate the realization of commercial-scale wave power, predictive modeling tools have been developed and utilized to evaluate the likelihood of environmental impact. At present, direct measurements of the effects of different types of WEC arrays on nearshore wave propagation are not available; therefore wave model simulations provide the groundwork for investigations of the sensitivity of model results to prescribed WEC characteristics over a range of anticipated wave conditions. The present study incorporates a modified version of an industry standard wave modeling tool, SWAN (Simulating WAves Nearshore), to simulate wave propagation through a hypothetical WEC array deployment site on the California coast. The modified SWAN, referred to as SNL-SWAN, incorporates device-specific WEC power take-off characteristics to more accurately evaluate a WEC device's effects on wave propagation. The primary objectives were to investigate the effects of a range of WEC devices and device and array characteristics (e.g., device spacing, number of WECs in an array) on nearshore wave propagation using SNL-SWAN model simulations. Results showed that significant wave height was most sensitive to variations in WEC device type and size and the number of WEC devices in an array. Locations in the lee centerline of the arrays in each modeled scenario showed the

  5. Deep vertical propagation of mountain waves above Scandinavia (United States)

    Dörnbrack, Andreas; Gisinger, Sonja; Rapp, Markus; Witschas, Benjamin; Ehard, Benedikt; Wagner, Johannes; Achtert, Peggy; Stober, Gunter; Kivi, Rigel; Gumbel, Jörg


    The project "Investigation of the life cycle of gravity waves (GW-LCYCLE) is part of the German research initiative ROMIC (Role of the Middle atmosphere In Climate) funded by the ministry of research. In close cooperation with Scandinavian partners as the Stockholm University and the Finnish Meteorological Institute a first field phase was conducted in November/December 2013. The field program combined ground-based observations of tropospheric and lower stratospheric flow and stratospheric and mesospheric temperature by lidars and radars at Alomar (N) and at Esrange (S) with airborne and balloonborne observations. Northern Scandinavia was chosen since the westerly flow across the mountains is often aligned with the polar night jet permitting gravity waves (GWs) to propagate into the middle atmosphere. From 2 until 14 December 2013, 24 hours of the DLR Falcon flown in four intensive observing periods (IOPs) provided in-situ and remote-sensing observations of atmospheric wind, temperature, water vapour and other trace gases (e.g. CO, N2O, O3) in the vicinity of the tropopause. During three IOPs, the airborne observations were supported by 3 hourly simultaneous radiosonde launches from Andøya (N), Esrange(S) and Sodankylä (FIN). Additionally, 1.5 hourly high-frequency radiosonde launches were conducted from the Arena Arctica at Kiruna airport with two systems (Väisälä and GRAW)and different balloon fillings to obtain different ascent rates. During GW-LCYCLE, the atmospheric flow above the Scandinavian mountains was observed under distinct meteorological conditions enabling or attenuating the deep vertical propagation of mountain-induced gravity waves. The presentation juxtaposes two different cases and analyses the associated meteorological conditions. The unique combination of airborne tropospheric wind lidar measurements, flight level data, high-frequency radiosonde profiles and the ground-based lidar observations allow a comprehensive study of deeply

  6. Evaluation of an energy-propagation wave refraction model (United States)

    Vincent, C. E.; Carrie, A.


    over simple "control' bathymetries. These were (a) the irreversibility of the algorithm which results in different refraction rates over opposite sides of a linear bank, (b) edge influences which propagate into the middle of the domain and (c) the steady energy loss which occurs as energy leaks into directions beyond the range of the model. However, if the model is used with care, avoiding regions where diffraction and reflection may be important and selecting a friction factor appropriate to the area, it can be a useful tool for predicting wave heights and directions.

  7. Electromagnetic wave scattering in a two-layer anisotropic random medium (United States)

    Lee, J. K.; Kong, J. A.


    For electromagnetic wave propagation and scattering in an anisotropic random medium, the Dyson equation for the mean field and the Bethe-Salpeter equation for the correlation or the covariance of the field were derived. With the random permittivity expressed in a general anisotropic form, the bilocal and the nonlinear approximations are employed to solve the Dyson equation, and the ladder approximation to solve the Bethe-Salpeter equation. The mean dyadic Green's function for a two-layer anisotropic random medium with arbitrary three-dimensional correlation functions has been investigated with the zeroth-order solutions to the Dyson equation under the nonlinear approximation. The effective propagation constants are calculated for the four characteristic waves associated with the coherent vector fields, propagating in an anisotropic random-medium layer, which are the ordinary and extraordinary waves with upward- and downward-propagating vectors.

  8. Propagation of gravity waves through non-uniform stratification (United States)

    Pütz, Christopher; Klein, Rupert


    We present a method to compute the transmission of gravity waves through a finite region of a non-uniformly stratified atmosphere. It is based on an approximate solution of the Taylor-Goldstein equation. With the method, we are able to compute a transmission coefficient for gravity waves, which is defined as the ratio of the vertical wave energy fluxes below and above the region of non-uniform stratification. It makes use of the fact that plane wave solutions exist in uniform stratification and models the atmosphere as a multi-layer fluid where each layer is uniformly stratified. The solutions are matched at the interfaces in a way that the continuity of pressure and vertical wind is ensured, so that we are finally able to relate incident and transmitted wave amplitudes. Further, the limit of increasing number of layers is investigated and we obtain a reformulation of the Taylor-Goldstein equation. This equation can not be solved analytically, but numerically, giving a solution in which it is possible to distinguish between the two branches of the gravity wave dispersion relation, namely upward and downward travelling waves. Hence, we are also able to compute a transmission coefficient from this procedure. Moreover, it can be shown that the multi-layer solution converges to the limit solution quadratically with increasing number of layers. The results we obtain for some test cases are in accordance with several existing results, but provide more general insights into the interaction of gravity waves propagating through non-uniform stratification. Also, the multi-layer method can be extended to give an approximate solution to the Taylor-Goldstein equation without using any numerical integration.

  9. Effects of internal waves on sound propagation in the shallow waters of the continental shelves


    Ong, Ming Yi


    Approved for public release; distribution is unlimited Sound waves propagating through the oceans are refracted by internal waves. In the shallow waters of the continental shelves, an additional downward refraction of sound waves due to internal waves can cause them to interact more often with the seabed, resulting in additional energy from the sound waves being dissipated into the seabed. This study investigates how internal waves affect sound propagation on the continental shelves. It fi...

  10. Evaluation of a wave-vector-frequency-domain method for nonlinear wave propagation (United States)

    Jing, Yun; Tao, Molei; Clement, Greg T.


    A wave-vector-frequency-domain method is presented to describe one-directional forward or backward acoustic wave propagation in a nonlinear homogeneous medium. Starting from a frequency-domain representation of the second-order nonlinear acoustic wave equation, an implicit solution for the nonlinear term is proposed by employing the Green’s function. Its approximation, which is more suitable for numerical implementation, is used. An error study is carried out to test the efficiency of the model by comparing the results with the Fubini solution. It is shown that the error grows as the propagation distance and step-size increase. However, for the specific case tested, even at a step size as large as one wavelength, sufficient accuracy for plane-wave propagation is observed. A two-dimensional steered transducer problem is explored to verify the nonlinear acoustic field directional independence of the model. A three-dimensional single-element transducer problem is solved to verify the forward model by comparing it with an existing nonlinear wave propagation code. Finally, backward-projection behavior is examined. The sound field over a plane in an absorptive medium is backward projected to the source and compared with the initial field, where good agreement is observed. PMID:21302985

  11. Evaluation of a wave-vector-frequency-domain method for nonlinear wave propagation. (United States)

    Jing, Yun; Tao, Molei; Clement, Greg T


    A wave-vector-frequency-domain method is presented to describe one-directional forward or backward acoustic wave propagation in a nonlinear homogeneous medium. Starting from a frequency-domain representation of the second-order nonlinear acoustic wave equation, an implicit solution for the nonlinear term is proposed by employing the Green's function. Its approximation, which is more suitable for numerical implementation, is used. An error study is carried out to test the efficiency of the model by comparing the results with the Fubini solution. It is shown that the error grows as the propagation distance and step-size increase. However, for the specific case tested, even at a step size as large as one wavelength, sufficient accuracy for plane-wave propagation is observed. A two-dimensional steered transducer problem is explored to verify the nonlinear acoustic field directional independence of the model. A three-dimensional single-element transducer problem is solved to verify the forward model by comparing it with an existing nonlinear wave propagation code. Finally, backward-projection behavior is examined. The sound field over a plane in an absorptive medium is backward projected to the source and compared with the initial field, where good agreement is observed.

  12. Shock wave propagation along constant sloped ocean bottoms. (United States)

    Maestas, Joseph T; Taylor, Larissa F; Collis, Jon M


    The nonlinear progressive wave equation (NPE) is a time-domain model used to calculate long-range shock propagation using a wave-following computational domain. Current models are capable of treating smoothly spatially varying medium properties, and fluid-fluid interfaces that align horizontally with a computational grid that can be handled by enforcing appropriate interface conditions. However, sloping interfaces that do not align with a horizontal grid present a computational challenge as application of interface conditions to vertical contacts is non-trivial. In this work, range-dependent environments, characterized by sloping bathymetry, are treated using a rotated coordinate system approach where the irregular interface is aligned with the coordinate axes. The coordinate rotation does not change the governing equation due to the narrow-angle assumption adopted in its derivation, but care is taken with applying initial, interface, and boundary conditions. Additionally, sound pressure level influences on nonlinear steepening for range-independent and range-dependent domains are used to quantify the pressures for which linear acoustic models suffice. A study is also performed to investigate the effects of thin sediment layers on the propagation of blast waves generated by explosives buried beneath mud line.


    Energy Technology Data Exchange (ETDEWEB)

    Mochol, Iwona; Kirk, John G., E-mail:, E-mail: [Max-Planck-Institut fuer Kernphysik, Postfach 10 39 80, D-69029 Heidelberg (Germany)


    Nonlinear electromagnetic waves with superluminal phase velocity can propagate in the winds around isolated pulsars, and around some pulsars in binary systems. Using a short-wavelength approximation, we find and analyze an integrable system of equations that govern their evolution in spherical geometry. A confined mode is identified that stagnates to finite pressure at large radius and can form a precursor to the termination shock. Using a simplified criterion, we find this mode is stable for most isolated pulsars, but may be unstable if the external pressure is high, such as in the pulsar wind nebulae in starburst galaxies and in W44. Pulsar winds in eccentric binary systems, such as PSR 1259-63, may go through phases with stable and unstable electromagnetic precursors, as well as phases in which the density is too high for these modes to propagate.

  14. Electromagnetic waves propagation through a stochastic anisotropic medium

    Energy Technology Data Exchange (ETDEWEB)

    Ledinegg, E.


    Electromagnetic waves propagating through a stochastic medium are disturbed by field fluctuations. These can be treated by use of multiple scattering theories in order to get realistic results. In this paper, the multiple scattering theory developed by B.J. Uscinski is employed for anisotropic media and first and second-order field moments are calculated. Extending an earlier paper, the author considers primary fields with an arbitrary angle of incidence in order to investigate problems of practical interest (i.e.: radio propagation through the ionosphere between satellite and ground stations). As a result, it is shown that the attenuation factor of the first order field moment depends strongly on the angle of incidence due to media fluctuations.

  15. Snow Slab Failure Due to Biot-Type Acoustic Wave Propagation


    Sidler Rolf


    Even though seismic methods are among the most used geophysical methods today their application in snow has been sparse. This might be related to the fact that commonly observed wave velocity attenuation and reflection coefficients can not be well explained by the widely used elastic or visco elastic models for wave propagation. Biot's well established model of wave propagation in porous media instead is much better suited to describe acoustic wave propagation in snow. This model predicts als...

  16. Radio Wave Propagation Simulation on the Cray T3D


    Guidec, Frédéric; Kuonen, Pierre; Calégari, Patrice


    International audience; The ParFlow method permits the simulation of outdoor wave propagation in urban environment, describing the physical system in terms of the motion of fictitious particles over a lattice. This paper begins with a brief introduction to the ParFlow method. It then reports the design, the implementation in C++, and the experimentation on a Cray T3D of ParFlow++, an object-oriented parallel irregular implementation of the ParFlow method, primarily targeted at MIMD-DM platforms.

  17. Nonlinear propagation of lower hybrid waves in a plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kaw, P.K.; Cheng, C.Z.; Chen, L.


    A model equation was used to investigate the competition between the electron E x B/sub o/ nonlinearities (which lead to parametric instabilities and anomalous absorption) and the electron polarization drift and ion nonlinearities (which induce filamentation and self-focusing effects) in the propagation of a large amplitude lower hybrid wave in a plasma. The conclusion is that the former dominates for plasma regions with 2//sub pi/ > 2//sub ci/ (i.e., everywhere except in a thin skin region).

  18. Wave propagation in reconfigurable broadband gain metamaterials at microwave frequencies (United States)

    Fan, Yifeng; Nagarkoti, Deepak S.; Rajab, Khalid Z.; Hao, Yang; Zhang, Hao Chi; Cui, Tie Jun


    The wave dispersion characteristics for loop array-based metamaterials were analyzed, based on the general transmission line model of a one-dimensional host medium interacting with a chain of coupled loops. By relating the wave propagation constant and the effective parameters of the coupled host medium, we showed that an active medium embedded with non-Foster loaded loop array can be designed to exhibit broadband negative material parameters with positive gain. Accounting for all interactions, the stability of the active medium was investigated, further yielding necessary design specifications for the non-Foster loads. Subsequently, an experimental demonstration was provided to verify the theoretical analysis, showing that stable reconfigurable broadband gain metamaterials at microwave frequencies can be obtained with proper negative impedance converter design.

  19. Wave speed in excitable random networks with spatially constrained connections.

    Directory of Open Access Journals (Sweden)

    Nikita Vladimirov

    Full Text Available Very fast oscillations (VFO in neocortex are widely observed before epileptic seizures, and there is growing evidence that they are caused by networks of pyramidal neurons connected by gap junctions between their axons. We are motivated by the spatio-temporal waves of activity recorded using electrocorticography (ECoG, and study the speed of activity propagation through a network of neurons axonally coupled by gap junctions. We simulate wave propagation by excitable cellular automata (CA on random (Erdös-Rényi networks of special type, with spatially constrained connections. From the cellular automaton model, we derive a mean field theory to predict wave propagation. The governing equation resolved by the Fisher-Kolmogorov PDE fails to describe wave speed. A new (hyperbolic PDE is suggested, which provides adequate wave speed v( that saturates with network degree , in agreement with intuitive expectations and CA simulations. We further show that the maximum length of connection is a much better predictor of the wave speed than the mean length. When tested in networks with various degree distributions, wave speeds are found to strongly depend on the ratio of network moments / rather than on mean degree , which is explained by general network theory. The wave speeds are strikingly similar in a diverse set of networks, including regular, Poisson, exponential and power law distributions, supporting our theory for various network topologies. Our results suggest practical predictions for networks of electrically coupled neurons, and our mean field method can be readily applied for a wide class of similar problems, such as spread of epidemics through spatial networks.

  20. Propagation Modeling of Point Source Excited Magnetoinductive Waves Based on a New Plane Wave Expansion Approach

    Directory of Open Access Journals (Sweden)

    Feng Liu


    Full Text Available The signal fading in wireless underground sensor networks (WUSNs, which is caused by lossy media such as soil and sand, can be reduced by applying technology of magnetoinductive (MI propagation. This technology can effectively establish a communication at very low frequency (VLF. In contrast to the previous studies in the literature, which mostly focus on the propagation of plane waves, we propose a new approach based on the plane wave expansion (PWE to model the near field MI waves. The proposed approach is based on excitation of a point source, which is a common case in a practical WUSN. The frequent usage of square lattice MI structure is investigated. To verify the mathematical derivation, the simulation of time domain based on the fourth-order Runge-Kutta (RK method is carried out. Simulation results show that the new model can provide a precise prediction to the MI wave’s propagation, with the computation load being one-tenth of that of the time domain simulation. The characteristics of the propagation of the MI waves are presented and discussed. Finally, the reflection on the edge of the MI structure is reduced by analysing the terminal matching conditions and calculating a method for matching impedances.

  1. Propagation characteristics of ultrasonic guided waves in continuously welded rail (United States)

    Yao, Wenqing; Sheng, Fuwei; Wei, Xiaoyuan; Zhang, Lei; Yang, Yuan


    Rail defects cause numerous railway accidents. Trains are derailed and serious consequences often occur. Compared to traditional bulk wave testing, ultrasonic guided waves (UGWs) can provide larger monitoring ranges and complete coverage of the waveguide cross-section. These advantages are of significant importance for the non-destructive testing (NDT) of the continuously welded rail, and the technique is therefore widely used in high-speed railways. UGWs in continuous welded rail (CWR) and their propagation characteristics have been discussed in this paper. Finite element methods (FEMs) were used to accomplish a vibration modal analysis, which is extended by a subsequent dispersion analysis. Wave structure features were illustrated by displacement profiles. It was concluded that guided waves have the ability to detect defects in the rail via choice of proper mode and frequency. Additionally, thermal conduction that is caused by temperature variation in the rail is added into modeling and simulation. The results indicated that unbalanced thermal distribution may lead to the attenuation of UGWs in the rail.

  2. Plasma and radio waves from Neptune: Source mechanisms and propagation (United States)

    Wong, H. K.


    This report summarizes results obtained through the support of NASA Grant NAGW-2412. The objective of this project is to conduct a comprehensive investigation of the radio wave emission observed by the planetary radio astronomy (PRA) instrument on board Voyager 2 as if flew by Neptune. This study has included data analysis, theoretical and numerical calculations, ray tracing, and modeling to determine the possible source mechanism(s) and locations of the Neptune radio emissions. We have completed four papers, which are included in the appendix. The paper 'Modeling of Whistler Ray Paths in the Magnetosphere of Neptune' investigated the propagation and dispersion of lighting-generated whistler in the magnetosphere of Neptune by using three dimensional ray tracing. The two papers 'Numerical Simulations of Bursty Radio Emissions from Planetary Magnetospheres' and 'Numerical Simulations of Bursty Planetary Radio Emissions' employed numerical simulations to investigate an alternate source mechanism of bursty radio emissions in addition to the cyclotron maser instability. We have also studied the possible generation of Z and whistler mode waves by the temperature anisotropic beam instability and the result was published in 'Electron Cyclotron Wave Generation by Relativistic Electrons.' Besides the aforementioned studies, we have also collaborated with members of the PRA team to investigate various aspects of the radio wave data. Two papers have been submitted for publication and the abstracts of these papers are also listed in the appendix.

  3. Fully resolved simulations of expansion waves propagating into particle beds (United States)

    Marjanovic, Goran; Hackl, Jason; Annamalai, Subramanian; Jackson, Thomas; Balachandar, S.


    There is a tremendous amount of research that has been done on compression waves and shock waves moving over particles but very little concerning expansion waves. Using 3-D direct numerical simulations, this study will explore expansion waves propagating into fully resolved particle beds of varying volume fractions and geometric arrangements. The objectives of these simulations are as follows: 1) To fully resolve all (1-way coupled) forces on the particles in a time varying flow and 2) to verify state-of-the-art drag models for such complex flows. We will explore a range of volume fractions, from very low ones that are similar to single particle flows, to higher ones where nozzling effects are observed between neighboring particles. Further, we will explore two geometric arrangements: body centered cubic and face centered cubic. We will quantify the effects that volume fraction and geometric arrangement plays on the drag forces and flow fields experienced by the particles. These results will then be compared to theoretical predictions from a model based on the generalized Faxen's theorem. This work was supported in part by the U.S. Department of Energy under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378.

  4. Numerical Homogenization of Jointed Rock Masses Using Wave Propagation Simulation (United States)

    Gasmi, Hatem; Hamdi, Essaïeb; Bouden Romdhane, Nejla


    Homogenization in fractured rock analyses is essentially based on the calculation of equivalent elastic parameters. In this paper, a new numerical homogenization method that was programmed by means of a MATLAB code, called HLA-Dissim, is presented. The developed approach simulates a discontinuity network of real rock masses based on the International Society of Rock Mechanics (ISRM) scanline field mapping methodology. Then, it evaluates a series of classic joint parameters to characterize density (RQD, specific length of discontinuities). A pulse wave, characterized by its amplitude, central frequency, and duration, is propagated from a source point to a receiver point of the simulated jointed rock mass using a complex recursive method for evaluating the transmission and reflection coefficient for each simulated discontinuity. The seismic parameters, such as delay, velocity, and attenuation, are then calculated. Finally, the equivalent medium model parameters of the rock mass are computed numerically while taking into account the natural discontinuity distribution. This methodology was applied to 17 bench fronts from six aggregate quarries located in Tunisia, Spain, Austria, and Sweden. It allowed characterizing the rock mass discontinuity network, the resulting seismic performance, and the equivalent medium stiffness. The relationship between the equivalent Young's modulus and rock discontinuity parameters was also analyzed. For these different bench fronts, the proposed numerical approach was also compared to several empirical formulas, based on RQD and fracture density values, published in previous research studies, showing its usefulness and efficiency in estimating rapidly the Young's modulus of equivalent medium for wave propagation analysis.

  5. Obliquely propagating large amplitude solitary waves in charge neutral plasmas

    Directory of Open Access Journals (Sweden)

    F. Verheest


    Full Text Available This paper deals in a consistent way with the implications, for the existence of large amplitude stationary structures in general plasmas, of assuming strict charge neutrality between electrons and ions. With the limit of pair plasmas in mind, electron inertia is retained. Combining in a fluid dynamic treatment the conservation of mass, momentum and energy with strict charge neutrality has indicated that nonlinear solitary waves (as e.g. oscillitons cannot exist in electron-ion plasmas, at no angle of propagation with respect to the static magnetic field. Specifically for oblique propagation, the proof has turned out to be more involved than for parallel or perpendicular modes. The only exception is pair plasmas that are able to support large charge neutral solitons, owing to the high degree of symmetry naturally inherent in such plasmas. The nonexistence, in particular, of oscillitons is attributed to the breakdown of the plasma approximation in dealing with Poisson's law, rather than to relativistic effects. It is hoped that future space observations will allow to discriminate between oscillitons and large wave packets, by focusing on the time variability (or not of the phase, since the amplitude or envelope graphs look very similar.

  6. Wave Propagation in Lossy and Superconducting Circular Waveguides

    Directory of Open Access Journals (Sweden)

    K. H. Yeap


    Full Text Available We present an accurate approach to compute the attenuation of waves, propagating in circular waveguides with lossy and superconducting walls. A set of transcendental equation is developed by matching the fields at the surface of the wall with the electrical properties of the wall material. The propagation constant kz is found by numerically solving for the root of the equation. The complex conductivity of the superconductor is obtained from the Mattis-Bardeen equations. We have compared the loss of TE11 mode computed using our technique with that using the perturbation and Stratton’s methods. The results from the three methods agree very well at a reasonable range of frequencies above the cutoff. The curves, however, deviate below cutoff and at millimeter wave frequencies. We attribute the discrepancies to the dispersive effect and the presence of the longitudinal fields in a lossy waveguide. At frequencies below the gap, the superconducting waveguide exhibits lossless transmission behavior. Above the gap frequency, Cooper-pair breaking becomes dominant and the loss increases significantly.

  7. Surface Waves Propagating on Grounded Anisotropic Dielectric Slab

    Directory of Open Access Journals (Sweden)

    Zhuozhu Chen


    Full Text Available This paper investigates the characteristics of surface waves propagating on a grounded anisotropic dielectric slab. Distinct from the existing analyses that generally assume that the fields of surface wave uniformly distribute along the transverse direction of the infinitely large grounded slab, our method takes into account the field variations along the transverse direction of a finite-width slab. By solving Maxwell’s equations in closed-form, it is revealed that no pure transverse magnetic (TM or transverse electric (TE mode exists if the fields are non-uniformly distributed along the transverse direction of the grounded slab. Instead, two hybrid modes, namely quasi-TM and quasi-TE modes, are supported. In addition, the propagation characteristics of two hybrid modes supported by the grounded anisotropic slab are analyzed in terms of the slab thickness, slab width, as well as the relative permittivity tensor of the anisotropic slab. Furthermore, different methods are employed to compare the analyses, as well as to validate our derivations. The proposed method is very suitable for practical engineering applications.

  8. Propagation of nonlinear, radiatively damped longitudinal waves along magnetic flux tubes in the solar atmosphere (United States)

    Herbold, G.; Ulmschneider, P.; Spruit, H. C.; Rosner, R.


    For solar magnetic flux tubes three types of waves are compared: longitudinal MHD tube waves, acoustic tube waves propagating in the same tube geometry but with rigid walls and ordinary acoustic waves in plane geometry. It is found that the effect of the distensibility of the tube is small and that longitudinal waves are essentially acoustic tube waves. Due to the tube geometry there is considerable difference between longitudinal waves or acoustic tube waves and ordinary acoustic waves. Longitudinal waves as well as acoustic tube waves show a smaller amplitude growth, larger shock formation heights, smaller mean chromospheric temperature but a steeper dependence of the temperature gradient on wave period.

  9. Modelling Mechanical Wave Propagation: Guidelines and Experimentation of a Teaching-Learning Sequence (United States)

    Fazio, Claudio; Guastella, Ivan; Sperandeo-Mineo, Rosa Maria; Tarantino, Giovanni


    The present paper reports the design process and the experimentation of a teaching-learning sequence about the concept of mechanical wave propagation and the role played by media where waves are propagating. The sequence focuses on the central issue of the relationships between observable phenomena, like macroscopic behaviours of waves, and their…

  10. Viscothermal wave propagation including acousto-elastic interaction, part I: theory

    NARCIS (Netherlands)

    Beltman, W.M.


    This research deals with pressure waves in a gas trapped in thin layers or narrow tubes. In these cases viscous and thermal effects can have a significant effect on the propagation of waves. This so-called viscothermal wave propagation is governed by a number of dimensionless parameters. The two

  11. Transverse wave propagation in photonic crystal based on holographic polymer-dispersed liquid crystal. (United States)

    Fuh, Andy Ying-Guey; Li, Ming Shian; Wu, Shing Trong


    This study investigates the transversely propagating waves in a body-centered tetragonal photonic crystal based on a holographic polymer-dispersed liquid crystal film. Rotating the film reveals three different transverse propagating waves. Degeneracy of optical Bloch waves from reciprocal lattice vectors explains their symmetrical distribution.

  12. Ultrasound shear wave simulation based on nonlinear wave propagation and Wigner-Ville Distribution analysis (United States)

    Bidari, Pooya Sobhe; Alirezaie, Javad; Tavakkoli, Jahan


    This paper presents a method for modeling and simulation of shear wave generation from a nonlinear Acoustic Radiation Force Impulse (ARFI) that is considered as a distributed force applied at the focal region of a HIFU transducer radiating in nonlinear regime. The shear wave propagation is simulated by solving the Navier's equation from the distributed nonlinear ARFI as the source of the shear wave. Then, the Wigner-Ville Distribution (WVD) as a time-frequency analysis method is used to detect the shear wave at different local points in the region of interest. The WVD results in an estimation of the shear wave time of arrival, its mean frequency and local attenuation which can be utilized to estimate medium's shear modulus and shear viscosity using the Voigt model.

  13. Wave propagation simulation of radio occultations based on ECMWF refractivity profiles

    DEFF Research Database (Denmark)

    von Benzon, Hans-Henrik; Høeg, Per


    of radio occultations. The output from the wave propagator simulator is used as input to a Full Spectrum Inversion retrieval module which calculates geophysical parameters. These parameters can be compared to the ECMWF atmospheric profiles. The comparison can be used to reveal system errors and get......This paper describes a complete radio occultation simulation environment, including realistic refractivity profiles, wave propagation modeling, instrument modeling, and bending angle retrieval. The wave propagator is used to simulate radio occultation measurements. The radio waves are propagated...... a better understanding of the physics. The wave propagation simulations will in this paper also be compared to real measurements. These radio occultations have been exposed to the same atmospheric conditions as the radio occultations simulated by the wave propagator. This comparison reveals that precise...

  14. Parametric instabilities of circularly polarized large-amplitude dispersive Alfven waves: excitation of parallel-propagating electromagnetic daughter waves

    Energy Technology Data Exchange (ETDEWEB)

    Vinas, A.F.; Goldstein, M.L. (National Aeronautics and Space Administration, Greenbelt, MD (United States). Goddard Space Flight Center)


    The parametric decay and modulational instabilities of a large-amplitude circularly polarized dispersive Alfven wave are investigated. The treatment is more general than that of previous derivations based on the two-fluid equations in that allowance is made for propagation of the unstable daughter waves at arbitrary angles to the background magnetic field, although the main concern is the exploration of new aspects of propagation parallel to the DC magnetic field. In addition to the well-known coupling of pump waves to electrostatic daughter waves, a new parametric channel is found where the pump wave couples directly to electromagnetic daughter waves. The growth rate of the electromagnetic instability increases monotonically with increasing pump wave amplitude. Analysis confirms that, for decay, the dominant process is coupling to electrostatic daughter waves, at least for parallel propagation. For modulation, the coupling to electromagnetic daughter waves usually dominates, suggesting that the parametric modulational instability is really an electromagnetic phenomena. (author).

  15. Experimental research on dust lifting by propagating shock wave (United States)

    Żydak, P.; Oleszczak, P.; Klemens, R.


    The aim of the presented work was to study the dust lifting process from a layer of dust behind a propagating shock wave. The experiments were conducted with the use of a shock tube and a specially constructed, five-channel laser optical device enabling measurements at five positions located in one vertical plane along the height of the tube. The system enabled measurements of the delay in lifting up of the dust from the layer, and the vertical velocity of the dust cloud was calculated from the dust concentration measurements. The research was carried out for various initial conditions and for three fractions of black coal dust. In the presented tests, three shock wave velocities: 450, 490 and 518 m/s and three dust layer thicknesses, equal to 1.0, 1.5 and 2.0 mm, were taken into consideration. On the grounds of the obtained experimental results, it was assumed that the vertical component of the lifted dust velocity is a function of the dust particle diameter, the velocity of the air flow in the channel, the layer thickness and the dust bulk density. It appeared, however, that lifting up of the dust from the thick layers, thicker than 1 mm, is a more complex process than that from thin layers and still requires further research. A possible explanation is that the shock wave action upon the thick layer results in its aggregation in the first stage of the dispersing process, which suppresses the dust lifting process.

  16. ICRF antenna coupling and wave propagation in a tokamak plasma

    Energy Technology Data Exchange (ETDEWEB)

    Greene, G.J.


    A variety of experiments are reported pertaining to the excitation, propagation, and damping of waves in the ion cyclotron range of frequencies (ICRF) in the Caltech Research Tokamak. Complex impedance studies on five different RF antennas addressed the nature of the anomalous density-dependent background loading observed previously in several laboratories. A model proposed successfully explained many of the observed impedance characteristics solely in terms of particle collection and rectification through the plasma sheath surrounding the antenna electrode. The toroidal eigenmodes were studied in detail with magnetic field probes. A surprising result was that all of the antennas, both magnetic and electric in nature, coupled to the eigenmodes with comparable efficiency with respect to the antenna excitation current. Wave damping was investigated and found to be considerably higher than predicted by a variety of physical mechanisms. A numerical model of the wave equations permitting an arbitrary radial density profile was developed, and a possible mechanism for enhanced cyclotron damping due to density perturbations was proposed.

  17. Observational indications of downward-propagating gravity waves in middle atmosphere lidar data (United States)

    Kaifler, N.; Kaifler, B.; Ehard, B.; Gisinger, S.; Dörnbrack, A.; Rapp, M.; Kivi, R.; Kozlovsky, A.; Lester, M.; Liley, B.


    Two Rayleigh lidars were employed at a southern-hemisphere mid-latitude site in New Zealand (45°S) and a northern-hemisphere high-latitude site in Finland (67°N) in order to observe gravity waves between 30 and 85 km altitude under wintertime conditions. Two-dimensional wavelet analysis is used to analyze temperature perturbations caused by gravity waves and to determine their vertical wavelengths and phase progression. In both datasets, upward phase progression waves occur frequently between 30 and 85 km altitude. Six cases of large-amplitude wave packets are selected which exhibit upward phase progression in the stratosphere and/or mesosphere. We argue that these wave packets propagate downward and we discuss possible wave generation mechanisms. Spectral analysis reveals that superpositions of two or three wave packets are common. Furthermore, their characteristics often match those of upward-propagating waves which are observed at the same time or earlier. In the dataset means, the contribution of upward phase progression waves to the potential energy density Ep is largest in the lower stratosphere above Finland. There, Ep of upward and downward phase progression waves is comparable. At 85 km one third of the potential energy carried by propagating waves is attributed to upward phase progression waves. In some cases Ep of upward phase progression waves far exceeds Ep of downward phase progression waves. The downward-propagating waves might be generated in situ in the middle atmosphere or arise from reflection of upward-propagating waves.

  18. Propagation of a Strong Shock Over a Random Bed of Spherical Particles

    Energy Technology Data Exchange (ETDEWEB)

    Mehta, Y. [Univ. of Florida, Gainesville, FL (United States); Neal, C. [Univ. of Florida, Gainesville, FL (United States); Salari, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jackson, T. L. [Univ. of Florida, Gainesville, FL (United States); Balachandar, S. [Univ. of Florida, Gainesville, FL (United States); Thakur, S. [Univ. of Florida, Gainesville, FL (United States)


    Propagation of a strong shock through a bed of particles results in complex wave dynamics such as a reflected shock, a transmitted shock, and highly unsteady flow inside the particle bed. In this paper we present three-dimensional numerical simulations of shock propagation in air over a random bed of particles. We assume the flow is inviscid and governed by the Euler equations of gas dynamics. Simulations are carried out by varying the volume fraction of the particle bed at a fixed shock Mach number. We compute the unsteady inviscid streamwise and transverse drag coefficients as a function of time for each particle in the random bed as a function of volume fraction. We show that (i) there are significant variations in the peak drag for the particles in the bed, (ii) the mean peak drag as a function of streamwise distance through the bed decreases with a slope that increases as the volume fraction increases, and (iii) the deviation from the mean peak drag does not correlate with local volume fraction. We also present the local Mach number and pressure contours for the different volume fractions to explain the various observed complex physical mechanisms occurring during the shock-particle interactions. Since the shock interaction with the random bed of particles leads to transmitted and reflected waves, we compute the average flow properties to characterize the strength of the transmitted and reflected shock waves and quantify the energy dissipation inside the particle bed. Finally, to better understand the complex wave dynamics in a random bed, we consider a simpler approximation of a planar shock propagating in a duct with a sudden area change. We obtain Riemann solutions to this problem, which are used to compare with fully resolved numerical simulations.

  19. The influence of the edge density fluctuations on electron cyclotron wave beam propagation in tokamaks

    DEFF Research Database (Denmark)

    Bertelli, N.; Balakin, A.A.; Westerhof, E.


    A numerical analysis of the electron cyclotron (EC) wave beam propagation in the presence of edge density fluctuations by means of a quasi-optical code [Balakin A. A. et al, Nucl. Fusion 48 (2008) 065003] is presented. The effects of the density fluctuations on the wave beam propagation are estim......A numerical analysis of the electron cyclotron (EC) wave beam propagation in the presence of edge density fluctuations by means of a quasi-optical code [Balakin A. A. et al, Nucl. Fusion 48 (2008) 065003] is presented. The effects of the density fluctuations on the wave beam propagation...

  20. Shock wave evolution and discontinuity propagation for relativistic superfluid hydrodynamics with spontaneous symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Sun, E-mail: [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China); Key Laboratory of Dark Matter and Space Astronomy, Chinese Academy of Sciences, Nanjing 210008 (China); Joint Center for Particle, Nuclear Physics and Cosmology (J-CPNPC), PMO-NJU, Nanjing 210008 (China)


    In this Letter, we have studied the shock wave and discontinuity propagation for relativistic superfluid with spontaneous U(1) symmetry breaking in the framework of hydrodynamics. General features of shock waves are provided, the propagation of discontinuity and the sound modes of shock waves are also presented. The first sound and the second sound are identified as the propagation of discontinuity, and the results are in agreement with earlier theoretical studies. Moreover, a differential equation, called the growth equation, is obtained to describe the decay and growth of the discontinuity propagating along its normal trajectory. The solution is in an integral form and special cases of diverging waves are also discussed.

  1. Wave localization of linear gravity waves in shallow water: Global measurements and agreement between random matrix theory and experiments (United States)

    Schmessane, Andrea; Laboratory of matter out equilibrium Team


    Wave localization explains how a perturbation is trapped by the randomness present in a propagation medium. As it propagates, the localized wave amplitude decreases strongly by multiple internal reflections with randomly positioned scatterers, effectively trapping the perturbation inside the random region. The characteristic length where a localized wave is propagated before being extinguish by randomness is called localization length. We carried experiments in a quasi-onedimensional channel with random bottom in a shallow water regime for surface gravity water waves, using a Perfilometry Fourier Transform method, which enables us to obtain global surface measurements. We discuss keys aspects of the control of variables, the experimental setup and the implementation of the measurement method. Thus, we can control, measure and evaluate fundamental variables present in the localization phenomenon such as the type of randomness, scattering intensity and sample length, which allows us to characterize wave localization. We use the scattering matrix method to compare the experimental measurements with theoretical and numerical predictions, using the Lyapunov exponent of the scattering matrix, and discuss their agreement. Conicyt

  2. Two-dimensional wave propagation in layered periodic media

    KAUST Repository

    Quezada de Luna, Manuel


    We study two-dimensional wave propagation in materials whose properties vary periodically in one direction only. High order homogenization is carried out to derive a dispersive effective medium approximation. One-dimensional materials with constant impedance exhibit no effective dispersion. We show that a new kind of effective dispersion may arise in two dimensions, even in materials with constant impedance. This dispersion is a macroscopic effect of microscopic diffraction caused by spatial variation in the sound speed. We analyze this dispersive effect by using highorder homogenization to derive an anisotropic, dispersive effective medium. We generalize to two dimensions a homogenization approach that has been used previously for one-dimensional problems. Pseudospectral solutions of the effective medium equations agree to high accuracy with finite volume direct numerical simulations of the variable-coeffi cient equations.

  3. Electromagnetic wave propagation through a slab of a dispersive medium

    CERN Document Server

    Ismail, Mohamed


    A method is proposed for the analysis of the propagation of electromagnetic waves through a homogeneous slab of a medium with Drude-Lorentz dispersion behavior, and excited by a causal sinusoidal source. An expression of the time dependent field, free from branch-cuts in the plane of complex frequencies, is established. This method provides the complete temporal response in both the steady-state and transient regimes in terms of discrete poles contributions. The Sommerfeld and Brillouin precursors are retrieved and the corresponding set of poles are identified. In addition, the contribution in the transient field of the resonance frequency in the Drude-Lorentz model is exhybited, and the effect of reflections resulting from the refractive index mismatch at the interfaces of the slab are analyzed.

  4. Vibration and wave propagation characteristics of multisegmented elastic beams (United States)

    Nayfeh, Adnan H.; Hawwa, Muhammad A.


    Closed form analytical solutions are derived for the vibration and wave propagation of multisegmented elastic beams. Each segment is modeled as a Timoshenko beam with possible inclusion of material viscosity, elastic foundation and axial forces. Solutions are obtained by using transfer matrix methods. According to these methods formal solutions are first constructed which relate the deflection, slope, moment and shear force of one end of the individual segment to those of the other. By satisfying appropriate continuity conditions at segment junctions, a global 4x4 matrix results which relates the deflection, slope, moment and shear force of one end of the beam to those of the other. If any boundary conditions are subsequently invoked on the ends of the beam one gets the appropriate characteristic equation for the natural frequencies. Furthermore, by invoking appropriate periodicity conditions the dispersion relation for a periodic system is obtained. A variety of numerical examples are included.

  5. Radio-wave propagation for space communications systems (United States)

    Ippolito, L. J.


    The most recent information on the effects of Earth's atmosphere on space communications systems is reviewed. The design and reliable operation of satellite systems that provide the many applications in space which rely on the transmission of radio waves for communications and scientific purposes are dependent on the propagation characteristics of the transmission path. The presence of atmospheric gases, clouds, fog, precipitation, and turbulence causes uncontrolled variations in the signal characteristics. These variations can result in a reduction of the quality and reliability of the transmitted information. Models and other techniques are used in the prediction of atmospheric effects as influenced by frequency, geography, elevation angle, and type of transmission. Recent data on performance characteristics obtained from direct measurements on satellite links operating to above 30 GHz have been reviewed. Particular emphasis has been placed on the effects of precipitation on the Earth/space path, including rain attenuation, and ice particle depolarization. Other factors are sky noise, antenna gain degradation, scintillations, and bandwidth coherence. Each of the various propagation factors has an effect on design criteria for communications systems. These criteria include link reliability, power margins, noise contribution, modulation and polarization factors, channel cross talk, error rate, and bandwidth limitations.

  6. The analysis of optical wave beams propagation in lens systems (United States)

    Kazakov, I.; Mosentsov, S.; Moskaletz, O.


    In this paper some aspects of the formation and propagation of optical wave beams in lens systems were considered. As an example, the two-lens optical information processing system was considered. Analysis of the two-lens optical circuit has been made with a systems approach perspective. As part of the radio-optical analogies had been applied certain provisions of the theory of dynamical systems to the spatial optical system. The lens system is represented as a simple series-connected optical elements with known spatial impulse response. General impulse response of such a system has been received, as well as consider some special cases of the impulse response. The question of the relationship between the parameters and the size of the input aperture lenses for undistorted transmission of the optical signal has been considered. Analysis of the energy loss resulting from the finite aperture of the lens. It's based on an assessment of the fraction of radiation that propagates beyond the lens. Analysis showed that the energy losses depend explicitly on the following parameters: radiation wavelength, distance between input aperture and lens, and ratio of the input aperture and lens aperture. With the computer help simulation the dependence of losses was shown on the above parameters

  7. Lateral variation of Lg wave propagation in southern Mexico (United States)

    Ottemöller, Lars; Shapiro, Nikolai M.; Krishna Singh, Shri; Pacheco, Javier F.


    In this study we investigated lateral variation of Lg wave propagation in southern Mexico from recordings of 92 crustal earthquakes along 591 travel paths. The efficiency of Lg propagation was measured in terms of Lgto Pn spectral ratio. It was found that Lgpropagation is inefficient for travel paths through the Gulf of Mexico coastal plains and the Gulf of Tehuantepec, areas with thick layers of sediments. An average Lg quality factor, QLg, as a function of frequency for southern Mexico was estimated for the efficient Lg travel paths. The relation obtained for QLg in the frequency range 1.6-8 Hz is QLg(f) = 204 f0.85. The lateral variation of QLg-1was solved as a mixed-determined inverse tomography problem, separately for each frequency, in which a spatial smoothness constraint was imposed and a priori information was added in poorly covered regions. The spatial resolution obtained was about 200 km. It was found that the Trans-Mexican Volcanic Belt, the Gulf of Mexico coastal plains, and the area east of 94°W are characterized by lower than average QLgvalues, i.e., higher attenuation. High QLg values were obtained for the Mixteco-Oaxaca terranes, while for the Guerrero terrane, values similar to the average were obtained. The results show a correlation between QLg and crustal structure and provide valuable information on lateral variation of QLg, which is needed for reliable prediction of ground motion during future earthquakes.

  8. Backward Surface Wave Propagation and Radiation along a One-Dimensional Folded Cylindrical Helix Array

    Directory of Open Access Journals (Sweden)

    Bin Xu


    Full Text Available Wave propagation along a closely spaced folded cylindrical helix (FCH array is investigated for the purpose of designing compact array for energy transport and antenna radiation. It is found that the height of this surface wave guiding structure can be decreased from 0.24λ0 to 0.06λ0 by replacing the monopole element with the FCH. Both the propagation constant and the mode distribution of the dominant wave mechanism are extracted by ESPRIT algorithm, which indicates that a backward propagating surface wave is supported by the array structure. A compact backfire FCH antenna array is designed and measured based on the identified dominant wave mechanism.

  9. Fidelity of a Finite Element Model for Longitudinal Wave Propagation in Thick Cylindrical Wave Guides

    Energy Technology Data Exchange (ETDEWEB)

    Puckett, Anthony D. [Colorado State Univ., Fort Collins, CO (United States)


    The ability to model wave propagation in circular cylindrical bars of finite length numerically or analytically has many applications. In this thesis the capability of an explicit finite element method to model longitudinal waves in cylindrical rods with circular cross-sections is explored. Dispersion curves for the first four modes are compared to the analytical solution to determine the accuracy of various element sizes and time steps. Values for the time step and element size are determined that retain accuracy while minimizing computational time. The modeling parameters are validated by calculating a signal propagated with a broadband input force. Limitations on the applicability are considered along with modeling parameters that should be applicable to more general geometries.


    This paper is a study of nonlinear phenomena in the propagation of electromagnetic waves in a weakly ionized gas externally biased with a magneto...static field. The present study is restricted to the nonlinear phenomena arising from the interaction of electromagnetic waves in the ionized gas. The...the propagation of electromagnetic waves in the ionized gas, and also on the reflection of waves from an ionized gas semi-infinite extent. (Author)

  11. Modelling viscoacoustic wave propagation with the lattice Boltzmann method. (United States)

    Xia, Muming; Wang, Shucheng; Zhou, Hui; Shan, Xiaowen; Chen, Hanming; Li, Qingqing; Zhang, Qingchen


    In this paper, the lattice Boltzmann method (LBM) is employed to simulate wave propagation in viscous media. LBM is a kind of microscopic method for modelling waves through tracking the evolution states of a large number of discrete particles. By choosing different relaxation times in LBM experiments and using spectrum ratio method, we can reveal the relationship between the quality factor Q and the parameter τ in LBM. A two-dimensional (2D) homogeneous model and a two-layered model are tested in the numerical experiments, and the LBM results are compared against the reference solution of the viscoacoustic equations based on the Kelvin-Voigt model calculated by finite difference method (FDM). The wavefields and amplitude spectra obtained by LBM coincide with those by FDM, which demonstrates the capability of the LBM with one relaxation time. The new scheme is relatively simple and efficient to implement compared with the traditional lattice methods. In addition, through a mass of experiments, we find that the relaxation time of LBM has a quantitative relationship with Q. Such a novel scheme offers an alternative forward modelling kernel for seismic inversion and a new model to describe the underground media.

  12. Wave propagation in a strongly nonlinear locally resonant granular crystal (United States)

    Vorotnikov, K.; Starosvetsky, Y.; Theocharis, G.; Kevrekidis, P. G.


    In this work, we study the wave propagation in a recently proposed acoustic structure, the locally resonant granular crystal. This structure is composed of a one-dimensional granular crystal of hollow spherical particles in contact, containing linear resonators. The relevant model is presented and examined through a combination of analytical approximations (based on ODE and nonlinear map analysis) and of numerical results. The generic dynamics of the system involves a degradation of the well-known traveling pulse of the standard Hertzian chain of elastic beads. Nevertheless, the present system is richer, in that as the primary pulse decays, secondary ones emerge and eventually interfere with it creating modulated wavetrains. Remarkably, upon suitable choices of parameters, this interference "distills" a weakly nonlocal solitary wave (a "nanopteron"). This motivates the consideration of such nonlinear structures through a separate Fourier space technique, whose results suggest the existence of such entities not only with a single-side tail, but also with periodic tails on both ends. These tails are found to oscillate with the intrinsic oscillation frequency of the out-of-phase motion between the outer hollow bead and its internal linear attachment.

  13. Analytical theory of wave propagation through stacked fishnet metamaterials. (United States)

    Marqués, R; Jelinek, L; Mesa, F; Medina, F


    This work analyzes the electromagnetic wave propagation through periodically stacked fishnets from zero frequency to the first Wood's anomaly. It is shown that, apart from Fabry-Perot resonances, these structures support two transmission bands that can be backward under the appropriate conditions. The first band starts at Wood's anomaly and is closely related to the well-known phenomena of extraordinary transmission through a single fishnet. The second band is related to the resonances of the fishnet holes. In both cases, the in-plane periodicity of the fishnet cannot be made electrically small, which prevents any attempt of homogenization of the structure along the fishnet planes. However, along the normal direction, even with very small periodicity transmission is still possible. An homogenization procedure can then be applied along this direction, thus making that the structure can behave as a backward-wave transmission line for such transmission bands. Closed-form design formulas will be provided by the analytical formulation here presented. These formulas have been carefully validated by intensive numerical computations.

  14. Dispersion analysis for waves propagated in fractured media

    Energy Technology Data Exchange (ETDEWEB)

    Lesniak, A.; Niitsuma, H. [Tohoku University, Sendai (Japan). Faculty of Engineering


    Dispersion of velocity is defined as a variation of the phase velocity with frequency. This paper describes the dispersion analysis of compressional body waves propagated in the heterogeneous fractured media. The new method proposed and discussed here permitted the evaluation of the variation in P wave arrival with frequency. For this processing method, any information about the attenuation of the medium are not required, and only an assumption of weak heterogeneity is important. It was shown that different mechanisms of dispersion can be distinguished and its value can be quantitatively estimated. Although the frequency used in this study was lower than those in most previous experiments reported in literature, the evaluated dispersion was large. It was suggested that such a large dispersion may be caused by the velocity structure of the media studied and by frequency dependent processes in a highly fractured zone. It was demonstrated that the present method can be used in the evaluation of subsurface fracture systems or characterization of any kind of heterogeneities. 10 refs., 6 figs.

  15. Surface wave propagation effects on buried segmented pipelines

    Directory of Open Access Journals (Sweden)

    Peixin Shi


    Full Text Available This paper deals with surface wave propagation (WP effects on buried segmented pipelines. Both simplified analytical model and finite element (FE model are developed for estimating the axial joint pullout movement of jointed concrete cylinder pipelines (JCCPs of which the joints have a brittle tensile failure mode under the surface WP effects. The models account for the effects of peak ground velocity (PGV, WP velocity, predominant period of seismic excitation, shear transfer between soil and pipelines, axial stiffness of pipelines, joint characteristics, and cracking strain of concrete mortar. FE simulation of the JCCP interaction with surface waves recorded during the 1985 Michoacan earthquake results in joint pullout movement, which is consistent with the field observations. The models are expanded to estimate the joint axial pullout movement of cast iron (CI pipelines of which the joints have a ductile tensile failure mode. Simplified analytical equation and FE model are developed for estimating the joint pullout movement of CI pipelines. The joint pullout movement of the CI pipelines is mainly affected by the variability of the joint tensile capacity and accumulates at local weak joints in the pipeline.

  16. Propagation of acoustic-gravity waves in arctic zones with elastic ice-sheets (United States)

    Kadri, Usama; Abdolali, Ali; Kirby, James T.


    We present an analytical solution of the boundary value problem of propagating acoustic-gravity waves generated in the ocean by earthquakes or ice-quakes in arctic zones. At the surface, we assume elastic ice-sheets of a variable thickness, and show that the propagating acoustic-gravity modes have different mode shape than originally derived by Ref. [1] for a rigid ice-sheet settings. Computationally, we couple the ice-sheet problem with the free surface model by Ref. [2] representing shrinking ice blocks in realistic sea state, where the randomly oriented ice-sheets cause inter modal transition at the edges and multidirectional reflections. We then derive a depth-integrated equation valid for spatially slowly varying thickness of ice-sheet and water depth. Surprisingly, and unlike the free-surface setting, here it is found that the higher acoustic-gravity modes exhibit a larger contribution. These modes travel at the speed of sound in water carrying information on their source, e.g. ice-sheet motion or submarine earthquake, providing various implications for ocean monitoring and detection of quakes. In addition, we found that the propagating acoustic-gravity modes can result in orbital displacements of fluid parcels sufficiently high that may contribute to deep ocean currents and circulation, as postulated by Refs. [1, 3]. References [1] U. Kadri, 2016. Generation of Hydroacoustic Waves by an Oscillating Ice Block in Arctic Zones. Advances in Acoustics and Vibration, 2016, Article ID 8076108, 7 pages [2] A. Abdolali, J. T. Kirby and G. Bellotti, 2015, Depth-integrated equation for hydro-acoustic waves with bottom damping, J. Fluid Mech., 766, R1 doi:10.1017/jfm.2015.37 [3] U. Kadri, 2014. Deep ocean water transportation by acoustic?gravity waves. J. Geophys. Res. Oceans, 119, doi:10.1002/ 2014JC010234

  17. Waves propagation in turbulent superfluid helium in presence of combined rotation and counterflow


    Peruzza, Rosa Anna; Sciacca, Michele


    A complete study of the propagation of waves (namely longitudinal density and temperature waves, longitudinal and transversal velocity waves and heat waves) in turbulent superfluid helium is made in three situations: a rotating frame, a thermal counterflow, and the simultaneous combination of thermal counterflow and rotation. Our analysis aims to obtain as much as possible information on the tangle of quantized vortices from the wave speed and attenuation factor of these different waves, depe...

  18. Multimodal location algorithm for Lamb waves propagating through anisotropic materials (United States)

    Paget, Christophe A.; Rehman, M. Abdul


    Composite material use in aerospace structures has grown over the last two decades and more recently there has been an increase in the use of anisotropic composite layups. One of the most promising SHM techniques is Acoustic Emission (AE) using Lamb waves. Previous location algorithms, capable of locating damage such as cracks, delamination and debonding, have focused their application to either isotropic or quasi-isotropic structures. Previous work was dedicated to anisotropic structures based on single Lamb wave mode propagations. The scope of this work is to include different modes in the AE location algorithm to improve its location. There are cases where it is likely that different modes trigger different transducers for the same event. The transducer time-of-flight is dependent on the mode velocity, therefore an AE location calculated from single-modal algorithm would expect to have significant location inaccuracy. By considering the possibility of different Lamb wave modes triggering each sensor in the location algorithm, and using certain mathematical and physical assumptions, significant improvements of the AE location can be reached, reducing NDT burden. The multi-modal algorithm also includes the ability to locate AE in anisotropic material based on previous proven single-modal algorithm known as Elliptical algorithm. Such a multi-modal elliptical approach taken in the algorithm discussed in the work is expected to reduce significantly the AE location error for highly anisotropic material. Based on analytical equations, this algorithm processes large amounts of AE data in a condensed period of time, allowing live structural monitoring of large assets.

  19. Manipulating electromagnetic wave propagating non-reciprocally by a chain of ferrite rods. (United States)

    Ju, Cheng; Wu, Rui-Xin; Li, Zhen; Poo, Yin; Liu, Shi-Yang; Lin, Zhi-Fang


    We demonstrated that non-reciprocal wave propagation could be manipulated by a magnetic rod chain under bias DC magnetic fields. Made of ferrite material YIG and designed working in the microwave X-band, the rod chain exhibited almost a total reflection when the incident wave obliquely impinged on the rod chain, but exhibited nearly a total transmission when the wave reversed its propagation direction. The non-reciprocal wave propagation was due to the non-reciprocal diffraction of the rod chain for the orders 0 and ± 1. Further, the non-reciprocal wave propagation was directly observed by using the field mapping technique. The unique non-reciprocal wave property of the magnetic rod chain provides a new way to control the flow of EM waves.

  20. Guided wave propagation as a measure of axial loads in rails

    CSIR Research Space (South Africa)

    Loveday, PW


    Full Text Available Guided wave propagation has been proposed as a means to monitor the axial loads in continuously welded railway rails although no practical system has been developed. In this paper, the influence of axial load on the guided wave propagation...

  1. Effect of fluid viscosity on wave propagation in a cylindrical bore in ...

    Indian Academy of Sciences (India)

    Abstract. Wave propagation in a cylindrical bore filled with viscous liquid and situated in a micropolar elastic medium of infinite extent is studied. Frequency equation for surface wave propagation near the surface of the cylindrical bore is obtained and the effect of viscosity and micropolarity on dispersion curves is observed.

  2. Investigation on Radio Wave Propagation in Shallow Seawater: Simulations and Measurements


    Jimenez, Eugenio; Quintana, Gara; Mena, Pablo; Dorta, Pablo; Perez-Alvarez, Ivan; Zazo, Santiago; Perez, Marina; Quevedo, Eduardo


    The authors present full wave simulations and experimental results of propagation of electromagnetic waves in shallow seawaters. Transmitter and receiver antennas are ten-turns loops placed on the seabed. Some propagation frameworks are presented and simulated. Finally, simulation results are compared with experimental ones.

  3. Propagation of nonlinear waves in bi-inductance nonlinear transmission lines (United States)

    Kengne, Emmanuel; Lakhssassi, Ahmed


    We consider a one-dimensional modified complex Ginzburg-Landau equation, which governs the dynamics of matter waves propagating in a discrete bi-inductance nonlinear transmission line containing a finite number of cells. Employing an extended Jacobi elliptic functions expansion method, we present new exact analytical solutions which describe the propagation of periodic and solitary waves in the considered network.

  4. geometric optics and WKB method for electromagnetic wave propagation in an inhomogeneous plasma near cutoff

    Energy Technology Data Exchange (ETDEWEB)

    Light, Max Eugene [Los Alamos National Laboratory


    This report outlines the theory underlying electromagnetic (EM) wave propagation in an unmagnetized, inhomogeneous plasma. The inhomogeneity is given by a spatially nonuniform plasma electron density ne(r), which will modify the wave propagation in the direction of the gradient rne(r).

  5. Vector-based plane-wave spectrum method for the propagation of cylindrical electromagnetic fields. (United States)

    Shi, S; Prather, D W


    We present a vector-based plane-wave spectrum (VPWS) method for efficient propagation of cylindrical electromagnetic fields. In comparison with electromagnetic propagation integrals, the VPWS method significantly reduces time of propagation. Numerical results that illustrate the utility of this method are presented.

  6. Elastic wave propagation study in copper poly-grain sample using FEM

    Directory of Open Access Journals (Sweden)

    Sudhakar Matle


    Full Text Available The paper presents Voronoi based micro-structure modeling through elastic wave propagation in a poly-crystalline copper using finite element method. The micro-structural parameters studied here are; the grain size and the grain orientation. The poly-crystalline copper is modeled as a randomly oriented Voronoi cells in a fixed 2D computational domain. Tone burst 3-cycle pulse of 1 MHz frequency is used as the line source or point source for testing. Welded contact conditions are used at the interface boundaries of any two mutual cells of the domain. It is reported that wave scattering independent of the shape when the size of the scatterer less than the wavelength. Also, It is concluded that transmission efficiency increases as the cell size decreases.

  7. A finite element propagation model for extracting normal incidence impedance in nonprogressive acoustic wave fields (United States)

    Watson, Willie R.; Jones, Michael G.; Tanner, Sharon E.; Parrott, Tony L.


    A propagation model method for extracting the normal incidence impedance of an acoustic material installed as a finite length segment in a wall of a duct carrying a nonprogressive wave field is presented. The method recasts the determination of the unknown impedance as the minimization of the normalized wall pressure error function. A finite element propagation model is combined with a coarse/fine grid impedance plane search technique to extract the impedance of the material. Results are presented for three different materials for which the impedance is known. For each material, the input data required for the prediction scheme was computed from modal theory and then contaminated by random error. The finite element method reproduces the known impedance of each material almost exactly for random errors typical of those found in many measurement environments. Thus, the method developed here provides a means for determining the impedance of materials in a nonprogressirve wave environment such as that usually encountered in a commercial aircraft engine and most laboratory settings.

  8. Wave propagation in photonic crystals and metamaterials: Surface waves, nonlinearity and chirality

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bingnan [Iowa State Univ., Ames, IA (United States)


    Photonic crystals and metamaterials, both composed of artificial structures, are two interesting areas in electromagnetism and optics. New phenomena in photonic crystals and metamaterials are being discovered, including some not found in natural materials. This thesis presents my research work in the two areas. Photonic crystals are periodically arranged artificial structures, mostly made from dielectric materials, with period on the same order of the wavelength of the working electromagnetic wave. The wave propagation in photonic crystals is determined by the Bragg scattering of the periodic structure. Photonic band-gaps can be present for a properly designed photonic crystal. Electromagnetic waves with frequency within the range of the band-gap are suppressed from propagating in the photonic crystal. With surface defects, a photonic crystal could support surface modes that are localized on the surface of the crystal, with mode frequencies within the band-gap. With line defects, a photonic crystal could allow the propagation of electromagnetic waves along the channels. The study of surface modes and waveguiding properties of a 2D photonic crystal will be presented in Chapter 1. Metamaterials are generally composed of artificial structures with sizes one order smaller than the wavelength and can be approximated as effective media. Effective macroscopic parameters such as electric permittivity ϵ, magnetic permeability μ are used to characterize the wave propagation in metamaterials. The fundamental structures of the metamaterials affect strongly their macroscopic properties. By designing the fundamental structures of the metamaterials, the effective parameters can be tuned and different electromagnetic properties can be achieved. One important aspect of metamaterial research is to get artificial magnetism. Metallic split-ring resonators (SRRs) and variants are widely used to build magnetic metamaterials with effective μ < 1 or even μ < 0. Varactor based

  9. On the propagation of sound waves in a stellar wind traversed by periodic strong shocks


    Pijpers, F. P.


    It has been claimed that in stellar winds traversed by strong shocks the mechanism for driving the wind by sound wave pressure cannot operate because sound waves cannot propagate past the shocks. It is shown here that sound waves can propagate through shocks in one direction and that this is a sufficient condition for the sound wave pressure mechanism to work. A strong shock amplifies a sound wave passing through it and can drag the sound wave away from the star. It is immaterial for the soun...

  10. Simulation and Prediction of Weather Radar Clutter Using a Wave Propagator on High Resolution NWP Data

    DEFF Research Database (Denmark)

    Benzon, Hans-Henrik; Bovith, Thomas


    Weather radars are essential sensors for observation of precipitation in the troposphere and play a major part in weather forecasting and hydrological modelling. Clutter caused by non-standard wave propagation is a common problem in weather radar applications, and in this paper a method...... for prediction of this type of weather radar clutter is presented. The method uses a wave propagator to identify areas of potential non-standard propagation. The wave propagator uses a three dimensional refractivity field derived from the geophysical parameters: temperature, humidity, and pressure obtained from...... a high-resolution Numerical Weather Prediction (NWP) model. The wave propagator is based on the parabolic equation approximation to the electromagnetic wave equation. The parabolic equation is solved using the well-known Fourier split-step method. Finally, the radar clutter prediction technique is used...

  11. Finite element modeling of impulsive excitation and shear wave propagation in an incompressible, transversely isotropic medium. (United States)

    Rouze, Ned C; Wang, Michael H; Palmeri, Mark L; Nightingale, Kathy R


    Elastic properties of materials can be measured by observing shear wave propagation following localized, impulsive excitations and relating the propagation velocity to a model of the material. However, characterization of anisotropic materials is difficult because of the number of elasticity constants in the material model and the complex dependence of propagation velocity relative to the excitation axis, material symmetries, and propagation directions. In this study, we develop a model of wave propagation following impulsive excitation in an incompressible, transversely isotropic (TI) material such as muscle. Wave motion is described in terms of three propagation modes identified by their polarization relative to the material symmetry axis and propagation direction. Phase velocities for these propagation modes are expressed in terms of five elasticity constants needed to describe a general TI material, and also in terms of three constants after the application of two constraints that hold in the limit of an incompressible material. Group propagation velocities are derived from the phase velocities to describe the propagation of wave packets away from the excitation region following localized excitation. The theoretical model is compared to the results of finite element (FE) simulations performed using a nearly incompressible material model with the five elasticity constants chosen to preserve the essential properties of the material in the incompressible limit. Propagation velocities calculated from the FE displacement data show complex structure that agrees quantitatively with the theoretical model and demonstrates the possibility of measuring all three elasticity constants needed to characterize an incompressible, TI material. © 2013 Elsevier Ltd. All rights reserved.

  12. Breather Rogue Waves in Random Seas (United States)

    Wang, J.; Ma, Q. W.; Yan, S.; Chabchoub, A.


    Rogue or freak waves are extreme wave events that have heights exceeding 8 times the standard deviation of surrounding waves and emerge, for instance, in the ocean as well as in other physical dispersive wave guides, such as in optical fibers. One effective and convenient way to model such an extreme dynamics in laboratory environments within a controlled framework as well as for short process time and length scales is provided through the breather formalism. Breathers are pulsating localized structures known to model extreme waves in several nonlinear dispersive media in which the initial underlying process is assumed to be narrow banded. On the other hand, several recent studies suggest that breathers can also persist in more complex environments, such as in random seas, beyond the attributed physical limitations. In this work, we study the robustness of the Peregrine breather (PB) embedded in Joint North Sea Wave Project (JONSWAP) configurations using fully nonlinear hydrodynamic numerical simulations in order to validate its practicalness for ocean engineering applications. We provide a specific range for both the spectral bandwidth of the dynamical process as well as the background wave steepness and, thus, quantify the applicability of the PB in modeling rogue waves in realistic oceanic conditions. Our results may motivate analogous studies in fields of physics such as optics and plasma to quantify the limitations of exact weakly nonlinear models, such as solitons and breathers, within the framework of the fully nonlinear governing equations of the corresponding medium.

  13. Simplifications of a damping model for wave propagation in porous media

    DEFF Research Database (Denmark)

    Darula, Radoslav; Sorokin, Sergey V.


    The wave propagation through porous materials is in general modelled with a classical Biot’s approach. A drawback of this way of modeling is, that it is empirical and very specific experiments are necessary to determine the parameters required. Therefore we do present an alternative approach based...... of wave propagation are identified and the damping is assessed, where only the attenuation of the fluid originated waves was analyzed....

  14. Fractional calculus with applications in mechanics wave propagation, impact and variational principles

    CERN Document Server

    Atanackovic, Teodor M; Stankovic, Bogoljub; Zorica, Du?an


    The books Fractional Calculus with Applications in Mechanics: Vibrations and Diffusion Processes and Fractional Calculus with Applications in Mechanics: Wave Propagation, Impact and Variational Principles contain various applications of fractional calculus to the fields of classical mechanics. Namely, the books study problems in fields such as viscoelasticity of fractional order, lateral vibrations of a rod of fractional order type, lateral vibrations of a rod positioned on fractional order viscoelastic foundations, diffusion-wave phenomena, heat conduction, wave propagation, forced oscillati

  15. Wave Propagation and Dynamic Fracture in Laser Shock-Loaded Solid Materials


    Rességuier, Thibaut de; Cuq-Lelandais, Jean-Paul; Boustie, Michel; LESCOUTE, Emilien; Berthe, Laurent


    Dynamic fracture in shock-loaded materials is governed by the propagation, reflection and interactions of stress waves. Post-shock analyses of the residual damage observed in samples recovered from laser shock experiments, less destructive than more conventional techniques, can provide valuable insight into key aspects of wave propagation prior to fracture, such as the effects of structural anisotropy, the role of lateral waves associated to edge effects, or the influence of polymorphic phase...

  16. Coupling Hydrodynamic and Wave Propagation Codes for Modeling of Seismic Waves recorded at the SPE Test. (United States)

    Larmat, C. S.; Rougier, E.; Delorey, A.; Steedman, D. W.; Bradley, C. R.


    The goal of the Source Physics Experiment (SPE) is to bring empirical and theoretical advances to the problem of detection and identification of underground nuclear explosions. For this, the SPE program includes a strong modeling effort based on first principles calculations with the challenge to capture both the source and near-source processes and those taking place later in time as seismic waves propagate within complex 3D geologic environments. In this paper, we report on results of modeling that uses hydrodynamic simulation codes (Abaqus and CASH) coupled with a 3D full waveform propagation code, SPECFEM3D. For modeling the near source region, we employ a fully-coupled Euler-Lagrange (CEL) modeling capability with a new continuum-based visco-plastic fracture model for simulation of damage processes, called AZ_Frac. These capabilities produce high-fidelity models of various factors believed to be key in the generation of seismic waves: the explosion dynamics, a weak grout-filled borehole, the surrounding jointed rock, and damage creation and deformations happening around the source and the free surface. SPECFEM3D, based on the Spectral Element Method (SEM) is a direct numerical method for full wave modeling with mathematical accuracy. The coupling interface consists of a series of grid points of the SEM mesh situated inside of the hydrodynamic code's domain. Displacement time series at these points are computed using output data from CASH or Abaqus (by interpolation if needed) and fed into the time marching scheme of SPECFEM3D. We will present validation tests with the Sharpe's model and comparisons of waveforms modeled with Rg waves (2-8Hz) that were recorded up to 2 km for SPE. We especially show effects of the local topography, velocity structure and spallation. Our models predict smaller amplitudes of Rg waves for the first five SPE shots compared to pure elastic models such as Denny &Johnson (1991).

  17. Modeling and Analysis of Lateral Propagation of Surface Acoustic Waves Including Coupling Between Different Waves. (United States)

    Zhang, Benfeng; Han, Tao; Tang, Gongbin; Zhang, Qiaozhen; Omori, Tatsuya; Hashimoto, Ken-Ya


    This paper discusses lateral propagation of surface acoustic waves (SAWs) in periodic grating structures when two types of SAWs exist simultaneously and are coupled. The thin plate model proposed by the authors is extended to include the coupling between two different SAW modes. First, lateral SAW propagation in an infinitely long periodic grating is modeled and discussed. Then, the model is applied to the Al-grating/42° YX-LiTaO3 (42-LT) substrate structure, and it is shown that the slowness curve shape changes from concave to convex with the Al grating thickness. The transverse responses are also analyzed on an infinitely long interdigital transducer on the structure, and good agreement is achieved between the present and the finite-element method analyses. Finally, SAW resonators are fabricated on the Cu grating/42-LT substrate structure, and it is experimentally verified that the slowness curve shape of the shear horizontal SAW changes with the Cu thickness.

  18. Research on Maritime Radio Wave Multipath Propagation Based on Stochastic Ray Method

    Directory of Open Access Journals (Sweden)

    Han Wang


    Full Text Available Multipath effect in vessel communication is caused by a combination of reflections from the sea surface and vessels. This paper proposes employing stochastic ray method to analyze maritime multipath propagation properties. The paper begins by modeling maritime propagation environment of radio waves as random lattice grid, by utilizing maximum entropy principle to calculate the probability of stochastic ray undergoing k time(s reflection(s, and by using stochastic process to produce the basic random variables. Then, the paper constructs the multipath channel characteristic parameters, including amplitude gain, time delay, and impulse response, based on the basic random variables. Finally, the paper carries out a digital simulation in two-dimensional specific fishery fleet model environment. The statistical properties of parameters, including amplitude response, probability delay distribution, and power delay profiles, are obtained. Using these parameters, the paper calculates the root-mean-squared (rms delay spread value with the amount of 9.64 μs. It is a good reference for the research of maritime wireless transmission rate of the vessels. It contributes to a better understanding of the causes and effects of multipath effect in vessel communication.

  19. Molecular hydrodynamics: Vortex formation and sound wave propagation. (United States)

    Han, Kyeong Hwan; Kim, Changho; Talkner, Peter; Karniadakis, George Em; Lee, Eok Kyun


    In the present study, quantitative feasibility tests of the hydrodynamic description of a two-dimensional fluid at the molecular level are performed, both with respect to length and time scales. Using high-resolution fluid velocity data obtained from extensive molecular dynamics simulations, we computed the transverse and longitudinal components of the velocity field by the Helmholtz decomposition and compared them with those obtained from the linearized Navier-Stokes (LNS) equations with time-dependent transport coefficients. By investigating the vortex dynamics and the sound wave propagation in terms of these field components, we confirm the validity of the LNS description for times comparable to or larger than several mean collision times. The LNS description still reproduces the transverse velocity field accurately at smaller times, but it fails to predict characteristic patterns of molecular origin visible in the longitudinal velocity field. Based on these observations, we validate the main assumptions of the mode-coupling approach. The assumption that the velocity autocorrelation function can be expressed in terms of the fluid velocity field and the tagged particle distribution is found to be remarkably accurate even for times comparable to or smaller than the mean collision time. This suggests that the hydrodynamic-mode description remains valid down to the molecular scale.

  20. Shock Wave Propagation in Functionally Graded Mineralized Tissue (United States)

    Nelms, Matthew; Hodo, Wayne; Livi, Ken; Browning, Alyssa; Crawford, Bryan; Rajendran, A. M.


    In this investigation, the effects of shock wave propagation in bone-like biomineralized tissue was investigated. The Alligator gar (Atractosteus spatula) exoskeleton is comprised of many disparate scales that provide a biological analog for potential design of flexible protective material systems. The gar scale is identified as a two-phase, (1) hydroxyapatite mineral and (2) collagen protein, biological composite with two distinct layers where a stiff, ceramic-like ganoine overlays a soft, highly ductile ganoid bone. Previous experimentations has shown significant softening under compressive loading and an asymmetrical stress-strain response for analogous mineralized tissues. The structural features, porosity, and elastic modulus were determined from high-resolution scanning electron microscopy, 3D micro-tomography, and dynamic nanoindentation experiments to develop an idealized computational model for FE simulations. The numerical analysis employed Gurson's yield criterion to determine the influence of porosity and pressure on material strength. Functional gradation of elastic moduli and certain structural features, such as the sawtooth interface, are explicitly modeled to study the plate impact shock profile for a full 3-D analysis using ABAQUS finite element software.

  1. Propagation and localization of acoustic waves in Fibonacci phononic circuits

    Energy Technology Data Exchange (ETDEWEB)

    Aynaou, H [Laboratoire de Dynamique et d' Optique des Materiaux, Departement de Physique, Faculte des Sciences, Universite Mohamed Premier, 60000 Oujda (Morocco); Boudouti, E H El [Laboratoire de Dynamique et d' Optique des Materiaux, Departement de Physique, Faculte des Sciences, Universite Mohamed Premier, 60000 Oujda (Morocco); Djafari-Rouhani, B [Laboratoire de Dynamique et Structure des Materiaux Moleculaires, UMR CNRS 8024, UFR de Physique, Universite de Lille 1, F-59655 Villeneuve d' Ascq (France); Akjouj, A [Laboratoire de Dynamique et Structure des Materiaux Moleculaires, UMR CNRS 8024, UFR de Physique, Universite de Lille 1, F-59655 Villeneuve d' Ascq (France); Velasco, V R [Instituto de Ciencia de Materiales de Madrid, CSIC, Sor Juana Ines de la Cruz 3, 28049 Madrid (Spain)


    A theoretical investigation is made of acoustic wave propagation in one-dimensional phononic bandgap structures made of slender tube loops pasted together with slender tubes of finite length according to a Fibonacci sequence. The band structure and transmission spectrum is studied for two particular cases. (i) Symmetric loop structures, which are shown to be equivalent to diameter-modulated slender tubes. In this case, it is found that besides the existence of extended and forbidden modes, some narrow frequency bands appear in the transmission spectra inside the gaps as defect modes. The spatial localization of the modes lying in the middle of the bands and at their edges is examined by means of the local density of states. The dependence of the bandgap structure on the slender tube diameters is presented. An analysis of the transmission phase time enables us to derive the group velocity as well as the density of states in these structures. In particular, the stop bands (localized modes) may give rise to unusual (strong normal) dispersion in the gaps, yielding fast (slow) group velocities above (below) the speed of sound. (ii) Asymmetric tube loop structures, where the loops play the role of resonators that may introduce transmission zeros and hence new gaps unnoticed in the case of simple diameter-modulated slender tubes. The Fibonacci scaling property has been checked for both cases (i) and (ii), and it holds for a periodicity of three or six depending on the nature of the substrates surrounding the structure.

  2. Molecular hydrodynamics: Vortex formation and sound wave propagation (United States)

    Han, Kyeong Hwan; Kim, Changho; Talkner, Peter; Karniadakis, George Em; Lee, Eok Kyun


    In the present study, quantitative feasibility tests of the hydrodynamic description of a two-dimensional fluid at the molecular level are performed, both with respect to length and time scales. Using high-resolution fluid velocity data obtained from extensive molecular dynamics simulations, we computed the transverse and longitudinal components of the velocity field by the Helmholtz decomposition and compared them with those obtained from the linearized Navier-Stokes (LNS) equations with time-dependent transport coefficients. By investigating the vortex dynamics and the sound wave propagation in terms of these field components, we confirm the validity of the LNS description for times comparable to or larger than several mean collision times. The LNS description still reproduces the transverse velocity field accurately at smaller times, but it fails to predict characteristic patterns of molecular origin visible in the longitudinal velocity field. Based on these observations, we validate the main assumptions of the mode-coupling approach. The assumption that the velocity autocorrelation function can be expressed in terms of the fluid velocity field and the tagged particle distribution is found to be remarkably accurate even for times comparable to or smaller than the mean collision time. This suggests that the hydrodynamic-mode description remains valid down to the molecular scale.

  3. Modeling Anisotropic Elastic Wave Propagation in Jointed Rock Masses (United States)

    Hurley, R.; Vorobiev, O.; Ezzedine, S. M.; Antoun, T.


    We present a numerical approach for determining the anisotropic stiffness of materials with nonlinearly-compliant joints capable of sliding. The proposed method extends existing ones for upscaling the behavior of a medium with open cracks and inclusions to cases relevant to natural fractured and jointed rocks, where nonlinearly-compliant joints can undergo plastic slip. The method deviates from existing techniques by incorporating the friction and closure states of the joints, and recovers an anisotropic elastic form in the small-strain limit when joints are not sliding. We present the mathematical formulation of our method and use Representative Volume Element (RVE) simulations to evaluate its accuracy for joint sets with varying complexity. We then apply the formulation to determine anisotropic elastic constants of jointed granite found at the Nevada Nuclear Security Site (NNSS) where the Source Physics Experiments (SPE), a campaign of underground chemical explosions, are performed. Finally, we discuss the implementation of our numerical approach in a massively parallel Lagrangian code Geodyn-L and its use for studying wave propagation from underground explosions. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  4. Effect of near-surface topography on high-frequency Rayleigh-wave propagation (United States)

    Wang, Limin; Xu, Yixian; Xia, Jianghai; Luo, Yinhe


    Rayleigh waves, which are formed due to interference of P- and Sv-waves near the free surface, propagate along the free surface and vanish exponentially in the vertical direction. Their propagation is strongly influenced by surface topography. Due to the high resolution and precision requirements of near-surface investigations, the high-frequency Rayleigh waves are usually used for near-surface structural detecting. Although there are some numerical studies on high-frequency Rayleigh-wave propagation on topographic free surface, detailed analysis of characters of high-frequency Rayleigh-wave propagation on topographic free surface remains untouched. Hence, research of propagation of Rayleigh waves on complex topographic surface becomes critical for Rayleigh-wave methods in near-surface applications. To study the propagation of high-frequency Rayleigh waves on topographic free surface, two main topographic models are designed in this study. One of the models contains a depressed topographic surface, and another contains an uplifted topographic surface. We numerically simulate the propagation of high-frequency Rayleigh waves on these two topographic surfaces by finite-difference method. Soon afterwards, we analyze the propagation character of high-frequency Rayleigh waves on such topographic models, and compare the variations on its energy and frequency before and after passing the topographic region. At last, we discuss the relationship between the variations and topographical steepness of each model. Our numerical results indicate that influence of depressed topography for high-frequency Rayleigh waves is more distinct than influence of uplifted topography. Rayleigh waves produce new scattering body waves during passing the depressed topography with reduction of amplitude and loss of high-frequency components. Moreover, the steeper the depressed topography is, the more energy of Rayleigh waves is lost. The uplifted topography with gentle slope produces similar

  5. Optimal coherence for beam propagation through random media (United States)

    Schulz, Timothy J.; Liu, Baoyong


    In this paper we consider the optimal coherence for beam propagation through random media. First, we demonstrate that a beam that maximizes the average receiver intensity is fully coherent, and that the upper bounds on received intensity are nearly attained by a beam that is focused for clear air. Second, we demonstrate that a beam that maximizes the scintillation index (along with other criteria that trade-off the mean and standard deviation for the received intensity) is, in general, partially coherent. We conclude with an example in which modal intensities are optimized for a beam that is constructed from Hermite-Gaussian modes.

  6. Vertically propagating acoustic waves launched by seismic waves visualized in ionograms (United States)

    Maruyama, Takashi; Shinagawa, Hiroyuki


    After the magnitude 9.0 earthquake off the Pacific coast of Tohoku (near the east coast of Honshu, Japan), which occurred on 11 March 2011, an unusual multiple-cusp signature (MCS) was observed in ionograms at three ionosonde stations across Japan. Similar MCSs in ionograms were identified in 8 of 43 earthquakes with a seismic magnitude of 8.0 or greater for the period from 1957 to 2011. The appearance of MCSs at different epicentral distances exhibited traveling characteristics at a velocity of ~4.0 km/s, which is in the range of Rayleigh waves. There was a ~7 min offset in delay time at each epicentral distance in the travel-time diagram. This offset is consistent with the propagation time of acoustic waves from the ground to the ionosphere. We analyzed vertical structure of electron density perturbation that caused MCSs. The ionosonde technique is essentially radar-based measurement of a reflection at a height where the plasma frequency is equal to the sounding radio frequency and it is possible to obtain an electron density profile by sweeping the frequency. However, this measured height is not a true height because radio waves do not propagate at the speed of light in the ionosphere. The group velocity of radio waves decreases just below the reflection height where the sounding frequency approaches the plasma frequency. The amount of delay is larger when this region is thicker. The vertically propagating acoustic waves modulate the electron density. The radio wave speed greatly delays and a cusp signature appears in the echo trace at a phase of the periodic perturbation of electron density where the density gradient is most gradual. Simulations were conducted how large amplitude of density perturbation produces cusp signatures as observed. First, the real height density profile was obtained by converting the ionogram trace just before the arrival of coseismic disturbances. The electron density profile was then modified by adding a periodic perturbation and the

  7. Electromagnetic Wave Propagation in Two-Dimensional Photonic Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Foteinopoulou, Stavroula [Iowa State Univ., Ames, IA (United States)


    In this dissertation, they have undertaken the challenge to understand the unusual propagation properties of the photonic crystal (PC). The photonic crystal is a medium where the dielectric function is periodically modulated. These types of structures are characterized by bands and gaps. In other words, they are characterized by frequency regions where propagation is prohibited (gaps) and regions where propagation is allowed (bands). In this study they focus on two-dimensional photonic crystals, i.e., structures with periodic dielectric patterns on a plane and translational symmetry in the perpendicular direction. They start by studying a two-dimensional photonic crystal system for frequencies inside the band gap. The inclusion of a line defect introduces allowed states in the otherwise prohibited frequency spectrum. The dependence of the defect resonance state on different parameters such as size of the structure, profile of incoming source, etc., is investigated in detail. For this study, they used two popular computational methods in photonic crystal research, the Finite Difference Time Domain method (FDTD) and the Transfer Matrix Method (TMM). The results for the one-dimensional defect system are analyzed, and the two methods, FDTD and TMM, are compared. Then, they shift their attention only to periodic two-dimensional crystals, concentrate on their band properties, and study their unusual refractive behavior. Anomalous refractive phenomena in photonic crystals included cases where the beam refracts on the ''wrong'' side of the surface normal. The latter phenomenon, is known as negative refraction and was previously observed in materials where the wave vector, the electric field, and the magnetic field form a left-handed set of vectors. These materials are generally called left-handed materials (LHM) or negative index materials (NIM). They investigated the possibility that the photonic crystal behaves as a LHM, and how this behavior relates

  8. A critical survey of wave propagation and impact in composite materials (United States)

    Moon, F. C.


    A review of the field of stress waves in composite materials is presented covering the period up to December 1972. The major properties of waves in composites are discussed and a summary is made of the major experimental results in this field. Various theoretical models for analysis of wave propagation in laminated, fiber and particle reinforced composites are surveyed. The anisotropic, dispersive and dissipative properties of stress pulses and shock waves in such materials are reviewed. A review of the behavior of composites under impact loading is presented along with the application of wave propagation concepts to the determination of impact stresses in composite plates.

  9. Robustness and information propagation in attractors of Random Boolean Networks. (United States)

    Lloyd-Price, Jason; Gupta, Abhishekh; Ribeiro, Andre S


    Attractors represent the long-term behaviors of Random Boolean Networks. We study how the amount of information propagated between the nodes when on an attractor, as quantified by the average pairwise mutual information (I(A)), relates to the robustness of the attractor to perturbations (R(A)). We find that the dynamical regime of the network affects the relationship between I(A) and R(A). In the ordered and chaotic regimes, I(A) is anti-correlated with R(A), implying that attractors that are highly robust to perturbations have necessarily limited information propagation. Between order and chaos (for so-called "critical" networks) these quantities are uncorrelated. Finite size effects cause this behavior to be visible for a range of networks, from having a sensitivity of 1 to the point where I(A) is maximized. In this region, the two quantities are weakly correlated and attractors can be almost arbitrarily robust to perturbations without restricting the propagation of information in the network.

  10. Gravity wave propagation in the realistic atmosphere based on a three-dimensional transfer function model

    Directory of Open Access Journals (Sweden)

    L. Sun


    Full Text Available In order to study the filter effect of the background winds on the propagation of gravity waves, a three-dimensional transfer function model is developed on the basis of the complex dispersion relation of internal gravity waves in a stratified dissipative atmosphere with background winds. Our model has successfully represented the main results of the ray tracing method, e.g. the trend of the gravity waves to travel in the anti-windward direction. Furthermore, some interesting characteristics are manifest as follows: (1 The method provides the distribution characteristic of whole wave fields which propagate in the way of the distorted concentric circles at the same altitude under the control of the winds. (2 Through analyzing the frequency and wave number response curve of the transfer function, we find that the gravity waves in a wave band of about 15–30 min periods and of about 200–400 km horizontal wave lengths are most likely to propagate to the 300-km ionospheric height. Furthermore, there is an obvious frequency deviation for gravity waves propagating with winds in the frequency domain. The maximum power of the transfer function with background winds is smaller than that without background winds. (3 The atmospheric winds may act as a directional filter that will permit gravity wave packets propagating against the winds to reach the ionospheric height with minimum energy loss.

  11. The role of linear wave interaction in facilitating the upward propagation of ducted small-scale gravity waves. (United States)

    Heale, C. J.; Snively, J. B.


    Short-period (~5-15 minute), small-scale (10s of km) gravity waves propagating through the middle atmosphere will encounter and interact with other atmospheric waves and flows, which can vary horizontally, vertically, and temporally across a wide range of scales. Simulations of gravity wave impacts over global scales generally consider vertical propagation and atmospheric variations, and neglect small scale wave reflection and interactions between waves of different scales and the time dependent background atmosphere [e.g., Fritts and Alexander, Rev. Geo., 41, 1, 2003, and references cited therein]. Short period gravity waves , which are often subject to reflection, nevertheless carry significant momentum through the atmosphere [Hines, 1997, J. Atmos. Sol. Terr. Phys., 59].
Prior studies have investigated gravity wave propagation through horizontally sheared winds [e.g., Basovich and Tsimring, J. Fluid. Mech., 142, 1984], or in altitude and time varying backgrounds [e.g., Broutman and Young, J. Fluid. Mech., 166, 1986]. Senf and Achatz [JGR, 116, D24, 2011, and references cited therein] have also considered propagation through vertically, horizontally, and temporally varying background winds, finding significant reduction of dissipation by critical levels. We here use a combination of 2D numerical simulations and ray-tracing to study the effects of medium scale background wave wind fields on the upward propagation of small-scale, short-period waves. In particular, we consider cases where the short-period waves would be classically reflected or ducted in static realistic background temperature and wind structures. Results suggest an important role for medium-scale temporal and spatial atmospheric variability in reducing the strength of reflections and facilitating the upward propagation of small-scale waves.

  12. Laboratory Model of the Cardiovascular System for Experimental Demonstration of Pulse Wave Propagation (United States)

    Stojadinovic, Bojana; Nestorovic, Zorica; Djuric, Biljana; Tenne, Tamar; Zikich, Dragoslav; Žikic, Dejan


    The velocity by which a disturbance moves through the medium is the wave velocity. Pulse wave velocity is among the key parameters in hemodynamics. Investigation of wave propagation through the fluid-filled elastic tube has a great importance for the proper biophysical understanding of the nature of blood flow through the cardiovascular system.…

  13. Fractional White-Noise Limit and Paraxial Approximation for Waves in Random Media (United States)

    Gomez, Christophe; Pinaud, Olivier


    This work is devoted to the asymptotic analysis of high frequency wave propagation in random media with long-range dependence. We are interested in two asymptotic regimes, that we investigate simultaneously: the paraxial approximation, where the wave is collimated and propagates along a privileged direction of propagation, and the white-noise limit, where random fluctuations in the background are well approximated in a statistical sense by a fractional white noise. The fractional nature of the fluctuations is reminiscent of the long-range correlations in the underlying random medium. A typical physical setting is laser beam propagation in turbulent atmosphere. Starting from the high frequency wave equation with fast non-Gaussian random oscillations in the velocity field, we derive the fractional Itô-Schrödinger equation, that is, a Schrödinger equation with potential equal to a fractional white noise. The proof involves a fine analysis of the backscattering and of the coupling between the propagating and evanescent modes. Because of the long-range dependence, classical diffusion-approximation theorems for equations with random coefficients do not apply, and we therefore use moment techniques to study the convergence.

  14. Fractional White-Noise Limit and Paraxial Approximation for Waves in Random Media (United States)

    Gomez, Christophe; Pinaud, Olivier


    This work is devoted to the asymptotic analysis of high frequency wave propagation in random media with long-range dependence. We are interested in two asymptotic regimes, that we investigate simultaneously: the paraxial approximation, where the wave is collimated and propagates along a privileged direction of propagation, and the white-noise limit, where random fluctuations in the background are well approximated in a statistical sense by a fractional white noise. The fractional nature of the fluctuations is reminiscent of the long-range correlations in the underlying random medium. A typical physical setting is laser beam propagation in turbulent atmosphere. Starting from the high frequency wave equation with fast non-Gaussian random oscillations in the velocity field, we derive the fractional Itô-Schrödinger equation, that is, a Schrödinger equation with potential equal to a fractional white noise. The proof involves a fine analysis of the backscattering and of the coupling between the propagating and evanescent modes. Because of the long-range dependence, classical diffusion-approximation theorems for equations with random coefficients do not apply, and we therefore use moment techniques to study the convergence.

  15. Computation of High-Frequency Waves with Random Uncertainty

    KAUST Repository

    Malenova, Gabriela


    We consider the forward propagation of uncertainty in high-frequency waves, described by the second order wave equation with highly oscillatory initial data. The main sources of uncertainty are the wave speed and/or the initial phase and amplitude, described by a finite number of random variables with known joint probability distribution. We propose a stochastic spectral asymptotic method [1] for computing the statistics of uncertain output quantities of interest (QoIs), which are often linear or nonlinear functionals of the wave solution and its spatial/temporal derivatives. The numerical scheme combines two techniques: a high-frequency method based on Gaussian beams [2, 3], a sparse stochastic collocation method [4]. The fast spectral convergence of the proposed method depends crucially on the presence of high stochastic regularity of the QoI independent of the wave frequency. In general, the high-frequency wave solutions to parametric hyperbolic equations are highly oscillatory and non-smooth in both physical and stochastic spaces. Consequently, the stochastic regularity of the QoI, which is a functional of the wave solution, may in principle below and depend on frequency. In the present work, we provide theoretical arguments and numerical evidence that physically motivated QoIs based on local averages of |uE|2 are smooth, with derivatives in the stochastic space uniformly bounded in E, where uE and E denote the highly oscillatory wave solution and the short wavelength, respectively. This observable related regularity makes the proposed approach more efficient than current asymptotic approaches based on Monte Carlo sampling techniques.

  16. Numerical simulation of shock wave propagation in water droplet impact on a rough surface (United States)

    Fujisawa, Kei


    In this work shock wave propagation in water droplet impact on a rough surface is numerically studied. The numerical simulation is carried out utilizing two phase full Eulerian approach based on high resolution finite volume method, which allows for shock wave propagation in multiphase flow. To study the shock wave propagation in water droplet impact on a rough surface, an immersed boundary method is used as wall boundary treatment. The maximum impact pressure is computed as a function of surface roughness, and show that the maximum impact pressure increases with increasing relative roughness.

  17. Nonlinear Wave Propagation and Solitary Wave Formation in Two-Dimensional Heterogeneous Media

    KAUST Repository

    Luna, Manuel


    Solitary wave formation is a well studied nonlinear phenomenon arising in propagation of dispersive nonlinear waves under suitable conditions. In non-homogeneous materials, dispersion may happen due to effective reflections between the material interfaces. This dispersion has been used along with nonlinearities to find solitary wave formation using the one-dimensional p-system. These solitary waves are called stegotons. The main goal in this work is to find two-dimensional stegoton formation. To do so we consider the nonlinear two-dimensional p-system with variable coefficients and solve it using finite volume methods. The second goal is to obtain effective equations that describe the macroscopic behavior of the variable coefficient system by a constant coefficient one. This is done through a homogenization process based on multiple-scale asymptotic expansions. We compare the solution of the effective equations with the finite volume results and find a good agreement. Finally, we study some stability properties of the homogenized equations and find they and one-dimensional versions of them are unstable in general.

  18. Peculiarities of sea wave propagation in the Klaipėda Strait, Lithuania


    Kriaučiūnienė, Jūratė; Gailiušis, Brunonas; Kovalenkovienė, Milda


    During rough weather, navigation in Klaipėda port is risky because of the high wave penetration into the Klaipėda Strait from the Baltic Sea. Objectives of the present paper are to study wind and wave regimes in Klaipėda port water area and to develop the short wave propagation model at wind speeds of 15, 20 and 25 m/s and varying directions. The modelled wave parameters are significant wave height and wave disturbance coefficient. The software MIKE 21 BW (Boussinesq Wave Module) is used for ...

  19. FDTD simulation of EM wave propagation in 3-D media

    Energy Technology Data Exchange (ETDEWEB)

    Wang, T.; Tripp, A.C. [Univ. of Utah, Salt Lake City, UT (United States). Dept. of Geology and Geophysics


    A finite-difference, time-domain solution to Maxwell`s equations has been developed for simulating electromagnetic wave propagation in 3-D media. The algorithm allows arbitrary electrical conductivity and permittivity variations within a model. The staggered grid technique of Yee is used to sample the fields. A new optimized second-order difference scheme is designed to approximate the spatial derivatives. Like the conventional fourth-order difference scheme, the optimized second-order scheme needs four discrete values to calculate a single derivative. However, the optimized scheme is accurate over a wider wavenumber range. Compared to the fourth-order scheme, the optimized scheme imposes stricter limitations on the time step sizes but allows coarser grids. The net effect is that the optimized scheme is more efficient in terms of computation time and memory requirement than the fourth-order scheme. The temporal derivatives are approximated by second-order central differences throughout. The Liao transmitting boundary conditions are used to truncate an open problem. A reflection coefficient analysis shows that this transmitting boundary condition works very well. However, it is subject to instability. A method that can be easily implemented is proposed to stabilize the boundary condition. The finite-difference solution is compared to closed-form solutions for conducting and nonconducting whole spaces and to an integral-equation solution for a 3-D body in a homogeneous half-space. In all cases, the finite-difference solutions are in good agreement with the other solutions. Finally, the use of the algorithm is demonstrated with a 3-D model. Numerical results show that both the magnetic field response and electric field response can be useful for shallow-depth and small-scale investigations.

  20. Two-wave propagation in in vitro swine distal ulna (United States)

    Mano, Isao; Horii, Kaoru; Matsukawa, Mami; Otani, Takahiko


    Ultrasonic transmitted waves were obtained in an in vitro swine distal ulna specimen, which mimics a human distal radius, that consists of interconnected cortical bone and cancellous bone. The transmitted waveforms appeared similar to the fast waves, slow waves, and overlapping fast and slow waves measured in the specimen after removing the surface cortical bone (only cancellous bone). In addition, the circumferential waves in the cortical bone and water did not affect the fast and slow waves. This suggests that the fast-and-slow-wave phenomenon can be observed in an in vivo human distal radius.

  1. Patterns, dynamics and phase transitions in Ising ferromagnet driven by propagating magnetic field wave (United States)

    Acharyya, Muktish


    The nonequilibrium behaviours of kinetic Ising ferromagnet driven by a propagating magnetic field wave have been studied by Monte Carlo simulation. Two types of propagating magnetic field waves are used here. Namely, the plane wave and the spherical wave. For plane propagating wave passing through the Ising ferromagnet, system undergoes a phase transition from a pinned phase to a propagating phase, as the temperature increases. The transition temperature is found to depend on the amplitude of the propagating magnetic field. A phase boundary is drawn in the plane described by the temperature of the system and amplitude of the propagating field. On the other hand, the nonequilibrium behaviours shown by the Ising ferromagnet driven by spherical magnetic field wave, are different. Here, the system exists in three different dynamical phases. The low temperature pinned phase, the intermediate temperature centrally localised breathing phase and the high temperature extended spreading phase. Here also, the transition temperatures are observed to depend upon the amplitude of the propagating magnetic field wave. The phase boundaries are drawn in the plane represented by temperature of the system and the amplitude of the propagating magnetic field wave. The two boundaries merge at the Onsager value of equilibrium critical temperature in the limit of vanishingly small amplitude of the propagating magnetic field. This article is mainly a review of earlier works and is based on the invited lecture delivered in the conference STATPHYSKOLKATAVIII, held at SNBNCBS, Kolkata, India in December 1-5, 2014. This article is dedicated to Prof. H. Nishimori on the occasion of his 60th birthday.

  2. Invariant imbedding theory of wave propagation in arbitrarily inhomogeneous stratified bi-isotropic media

    CERN Document Server

    Kim, Seulong


    Bi-isotropic media, which include isotropic chiral media and Tellegen media as special cases, are the most general form of linear isotropic media where the electric displacement and the magnetic induction are related to both the electric field and the magnetic intensity. In inhomogeneous bi-isotropic media, electromagnetic waves of two different polarizations are coupled to each other. In this paper, we develop a generalized version of the invariant imbedding method for the study of wave propagation in arbitrarily-inhomogeneous stratified bi-isotropic media, which can be used to solve the coupled wave propagation problem accurately and efficiently. We verify the validity and usefulness of the method by applying it to several examples, including the wave propagation in a uniform chiral slab, the surface wave excitation in a bilayer system made of a layer of Tellegen medium and a metal layer, and the mode conversion of transverse electromagnetic waves into longitudinal plasma oscillations in inhomogeneous Telle...

  3. Parallel Propagation of Electromagnetic Waves in a Partially Ionized Plasma with Multiple Species (United States)

    Huang, Y.; Song, P.; Tu, J.


    When waves propagate along the magnetic field in a partially ionized plasma with two or more ion species e.g. H+ and O+, such as in the Earth's ionosphere, because of the differences in mass and density, each species responds to the perturbations of electromagnetic fields differently. Furthermore, collisions among the different ions species, between ions and electrons, and between ions and neutrals also affect the wave propagation. With the linear analysis and the assumption of cold plasma, the general dispersion relation of propagation covering all frequencies, from MHD waves to the light propagation, in a medium with arbitrary species of ions, anions and neutrals is derived from the multiple fluids treatment, in combination with Faraday's Law and Ampere's Law including the displacement current. There are several stop bands and characteristic frequencies. For each ion or anion species, there is a resonant frequency at its cyclotron frequency and a cutoff frequency which depends on the mass density of the speciesand and the magnetic field. The waves are strongly damped at the resonant frequencies and become reflective at the cutoff frequencies. With the collisions, the wave propagates slower than the Alfven speed with the frequency below the ion-neutral collision frequency because of an inertia loading process by neutrals. When the collisions are stronger, the resonance is weaker as the cyclotron motion of the ions is disrupted frequently by the collisions. The roles of the collisions played in wave propagation in the stop bands and in wave damping will be discussed.

  4. Full wave simulations of fast wave mode conversion and lower hybrid wave propagation in tokamaks

    DEFF Research Database (Denmark)

    Wright, J.C.; Bonoli, P.T.; Brambilla, M.


    ). Two full wave codes, a massively-parallel-processor (MPP) version of the TORIC-2D finite Larmor radius code [M. Brambilla, Plasma Phys. Controlled Fusion 41, 1 (1999)] and also an all orders spectral code AORSA2D [E. F. Jaeger , Phys. Plasmas 9, 1873 (2002)], have been developed which for the first......Fast wave (FW) studies of mode conversion (MC) processes at the ion-ion hybrid layer in toroidal plasmas must capture the disparate scales of the FW and mode converted ion Bernstein and ion cyclotron waves. Correct modeling of the MC layer requires resolving wavelengths on the order of k...... time are capable of achieving the resolution and speed necessary to address mode conversion phenomena in full two-dimensional (2-D) toroidal geometry. These codes have been used in conjunction with theory and experimental data from the Alcator C-Mod [I. H. Hutchinson , Phys. Plasmas 1, 1511 (1994...

  5. The numerical simulation of Lamb wave propagation in laser welding of stainless steel (United States)

    Zhang, Bo; Liu, Fang; Liu, Chang; Li, Jingming; Zhang, Baojun; Zhou, Qingxiang; Han, Xiaohui; Zhao, Yang


    In order to explore the Lamb wave propagation in laser welding of stainless steel, the numerical simulation is used to show the feature of Lamb wave. In this paper, according to Lamb dispersion equation, excites the Lamb wave on the edge of thin stainless steel plate, and presents the reflection coefficient for quantizing the Lamb wave energy, the results show that the reflection coefficient is increased with the welding width increasing,

  6. Random wave fields and scintillated beams

    CSIR Research Space (South Africa)

    Roux, FS


    Full Text Available fields . Artificial vortex fields CSIR National Laser Centre – p.2/29 Scintillated optical beams When an optical beam propagates through a turbulent atmosphere, the index variations cause random phase modulations that lead to distortions of the optical... beam. CSIR National Laser Centre – p.3/29 Weak scintillation If the scintillation is weak the resulting phase function of the optical beam is still continuous. Such a weakly scintillated beam can be corrected by an adaptive optical system. CSIR National...

  7. Parametric instabilities of large amplitude Alfven waves with obliquely propagating sidebands (United States)

    Vinas, A. F.; Goldstein, M. L.


    This paper presents a brief report on properties of the parametric decay and modulational, filamentation, and magnetoacoustic instabilities of a large amplitude, circularly polarized Alfven wave. We allow the daughter and sideband waves to propagate at an arbitrary angle to the background magnetic field so that the electrostatic and electromagnetic characteristics of these waves are coupled. We investigate the dependance of these instabilities on dispersion, plasma/beta, pump wave amplitude, and propagation angle. Analytical and numerical results are compared with numerical simulations to investigate the full nonlinear evolution of these instabilities.


    Energy Technology Data Exchange (ETDEWEB)

    Goossens, M.; Soler, R. [Centre for Mathematical Plasma Astrophysics, Department of Mathematics, KU Leuven, Celestijnenlaan 200B, B-3001 Leuven (Belgium); Arregui, I. [Instituto de Astrofisica de Canarias, Via Lactea s/n, E-38205 La Laguna, Tenerife (Spain); Terradas, J., E-mail: [Solar Physics Group, Departament de Fisica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain)


    Observations show that propagating magnetohydrodynamic (MHD) waves are ubiquitous in the solar atmosphere. The technique of MHD seismology uses the wave observations combined with MHD wave theory to indirectly infer physical parameters of the solar atmospheric plasma and magnetic field. Here, we present an analytical seismological inversion scheme for propagating MHD waves. This scheme uses the observational information on wavelengths and damping lengths in a consistent manner, along with observed values of periods or phase velocities, and is based on approximate asymptotic expressions for the theoretical values of wavelengths and damping lengths. The applicability of the inversion scheme is discussed and an example is given.

  9. Formation and propagation of Love waves in a surface layer with a P-wave source. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Florence, A.L.; Miller, S.A.


    The objective of this research is to investigate experimentally, and support with theoretical calculations, the formation and propagation of Love waves from a P-wave source due to scattering at material heterogeneities. The P-wave source is a spherical piezoelectric crystal cast in a surface layer of rock simulant overlaying a higher impedance granite substrate. Excitation of the piezoelectric crystal with a known voltage applies a spherical compressional pulse of known amplitude to the surrounding medium. Lateral heterogeneities cast in the surface layer convert incident P-wave energy into shear waves. The horizontally polarized shear waves (SH waves) trapped in the surface layer wave guide are the Love waves we will measure at the surface.

  10. Propagation of Compression Wave in a Long Tunnel with Slab Tracks

    National Research Council Canada - National Science Library

    FUKUDA, Takashi; OZAWA, Satoru; IIDA, Masanobu; TAKASAKI, Toru; WAKABAYASHI, Yusuke; MIYACHI, Tokuzo


    .... In this study, field measurement and numerical simulation were performed to investigate the distortion of the compression wave generated by a train entering a tunnel as it propagated through the tunnel...

  11. Quantifying wave propagation over a corrugated metal using 5 dBi antennas

    CSIR Research Space (South Africa)

    Nkosi, MC


    Full Text Available Understanding radio wave propagation is important for the design and implementation of reliable wireless communication systems. This paper describes transmission coefficient quantification. Measurements were done by using two antennas placed over a...

  12. Propagation of S-waves in a non-homogeneous anisotropic ...

    African Journals Online (AJOL)

    homogeneous anisotropic incompressible and initially stressed medium. Analytical analysis reveals that the velocities of the shear waves depend upon the direction of propagation, the anisotropy, the non-homogeneity of the medium and the initial ...

  13. Modeling of Beam Wave Pulse Propagation in Vegetation Using Transport Theory

    National Research Council Canada - National Science Library

    Whitman, Gerald M; Schwering, Felix K; Yu-Chi Wu, Michael


    The scalar time-dependent equation of radiative transfer in cylindrical coordinates was used to develop several new theories- both rigorous and approximate- for propagation and scattering of beam wave...

  14. Counter-propagating wave interaction for contrast-enhanced ultrasound imaging (United States)

    Renaud, G.; Bosch, J. G.; ten Kate, G. L.; Shamdasani, V.; Entrekin, R.; de Jong, N.; van der Steen, A. F. W.


    Most techniques for contrast-enhanced ultrasound imaging require linear propagation to detect nonlinear scattering of contrast agent microbubbles. Waveform distortion due to nonlinear propagation impairs their ability to distinguish microbubbles from tissue. As a result, tissue can be misclassified as microbubbles, and contrast agent concentration can be overestimated; therefore, these artifacts can significantly impair the quality of medical diagnoses. Contrary to biological tissue, lipid-coated gas microbubbles used as a contrast agent allow the interaction of two acoustic waves propagating in opposite directions (counter-propagation). Based on that principle, we describe a strategy to detect microbubbles that is free from nonlinear propagation artifacts. In vitro images were acquired with an ultrasound scanner in a phantom of tissue-mimicking material with a cavity containing a contrast agent. Unlike the default mode of the scanner using amplitude modulation to detect microbubbles, the pulse sequence exploiting counter-propagating wave interaction creates no pseudoenhancement behind the cavity in the contrast image.

  15. Modeling paraxial wave propagation in free-electron laser oscillators

    NARCIS (Netherlands)

    Karssenberg, J.G.; van der Slot, Petrus J.M.; Volokhine, I.; Verschuur, Jeroen W.J.; Boller, Klaus J.


    Modeling free-electron laser (FEL) oscillators requires calculation of both the light-beam interaction within the undulator and the light propagation outside the undulator. We have developed a paraxial optical propagation code that can be combined with various existing models of gain media, for

  16. Propagation of mechanical waves through a stochastic medium with spherical symmetry (United States)

    Avendaño, Carlos G.; Reyes, J. Adrián


    We theoretically analyze the propagation of outgoing mechanical waves through an infinite isotropic elastic medium possessing spherical symmetry whose Lamé coefficients and density are spatial random functions characterized by well-defined statistical parameters. We derive the differential equation that governs the average displacement for a system whose properties depend on the radial coordinate. We show that such an equation is an extended version of the well-known Bessel differential equation whose perturbative additional terms contain coefficients that depend directly on the squared noise intensities and the autocorrelation lengths in an exponential decay fashion. We numerically solve the second order differential equation for several values of noise intensities and autocorrelation lengths and compare the corresponding displacement profiles with that of the exact analytic solution for the case of absent inhomogeneities.

  17. Bohm potential effect on the propagation of electrostatic surface wave in semi-bounded quantum plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myoung-Jae [Department of Physics, Hanyang University, Seoul 04763 (Korea, Republic of); Research Institute for Natural Sciences, Hanyang University, Seoul 04763 (Korea, Republic of); Jung, Young-Dae, E-mail: [Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588 (Korea, Republic of); Department of Electrical and Computer Engineering, MC 0407, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0407 (United States)


    High frequency electrostatic wave propagation in a dense and semi-bounded electron quantum plasma is investigated with consideration of the Bohm potential. The dispersion relation for the surface mode of quantum plasma is derived and numerically analyzed. We found that the quantum effect enhances the frequency of the wave especially in the high wave number regime. However, the frequency of surface wave is found to be always lower than that of the bulk wave for the same quantum wave number. The group velocity of the surface wave for various quantum wave number is also obtained. - Highlights: • High frequency electrostatic wave propagation is investigated in a dense semi-bounded quantum plasma. • The dispersion relation for the surface mode of quantum plasma is derived and numerically analyzed. • The quantum effect enhances the frequency of the wave especially in the high wave number regime. • The frequency of surface wave is found to be always lower than that of the bulk wave. • The group velocity of the surface wave for various quantum wave number is also obtained.

  18. Simulation of blast wave propagation from source to long distance with topography and atmospheric effects (United States)

    Nguyen-Dinh, Maxime; Gainville, Olaf; Lardjane, Nicolas


    We present new results for the blast wave propagation from strong shock regime to the weak shock limit. For this purpose, we analyse the blast wave propagation using both Direct Numerical Simulation and an acoustic asymptotic model. This approach allows a full numerical study of a realistic pyrotechnic site taking into account for the main physical effects. We also compare simulation results with first measurements. This study is a part of the french ANR-Prolonge project (ANR-12-ASTR-0026).

  19. Orthogonal Wave Propagation of Epileptiform Activity in the Planar Mouse Hippocampus in vitro (United States)

    Kibler, Andrew B; Durand, Dominique M


    Purpose In vitro brain preparations have been used extensively to study the generation and propagation of epileptiform activity. Transverse and longitudinal slices of the rodent hippocampus have revealed various patterns of propagation. Yet intact connections between the transverse and longitudinal pathways should generate orthogonal (both transverse and longitudinal) propagation of seizures involving the entire hippocampus. This study utilizes the planar unfolded mouse hippocampus preparation to reveal simultaneous orthogonal epileptiform propagation and to test a method of arresting propagation. Methods This study utilized an unfolded mouse hippocampus preparation. It was chosen due to its preservation of longitudinal neuronal processes which are thought to play an important role in epileptiform hyper-excitability. 4-aminopyridine (4-AP), micro-electrodes, and voltage sensitive dye imaging were employed to investigate tissue excitability. Key Findings In 50 μM 4-AP, stimulation of the stratum radiatum induced transverse activation of CA3 cells but also induced a longitudinal wave of activity propagating along the CA3 region at a speed of 0.09 m/s. Without stimulation, a wave originated at the temporal CA3 and propagated in a temporal–septal direction and could be suppressed with glutamatergic antagonists. Orthogonal propagation traveled longitudinally along the CA3 pathway, secondarily invading the CA1 region at a velocity of 0.22±0.024 m/s. Moreover, a local lesion restricted to the CA3 region could arrest wave propagation. Significance These results reveal a complex two-dimensional epileptiform wave propagation pattern in the hippocampus that is generated by a combination of synaptic transmission and axonal propagation in the CA3 recurrent network. Epileptiform propagation block via a transverse selective CA3 lesion suggests a potential surgical technique for the treatment of temporal lobe epilepsy. PMID:21668440

  20. Field experiments to determine wave propagation principles and mechanical properties of snow (United States)

    Simioni, Stephan; Gebhard, Felix; Dual, Jürg; Schweizer, Jürg


    To understand the release of snow avalanches by explosions one needs to know how acoustic waves travel above and within the snowpack. Hitherto, wave propagation was investigated in the laboratory with small samples or in the field in the shock wave region. We developed a measurement system and layout to derive wave attenuation in snow, wave speeds and elastic moduli on small-scale (1-2 m) field experiments to close the gap between the lab scale (0.1 m) and the scale of artificial release (10-100 m). We used solid explosives and hammer blows to create the load and accelerometers to measure the resulting wave within the snowpack. The strong attenuation we observed indicates that we measured the second longitudinal wave which propagates through the pore space. The wave speeds, however, corresponded to the speeds of the first longitudinal wave within the ice skeleton. The elastic moduli were high on the order of several tens of MPa for lower densities (150 kg m-3) and agreed well with earlier lab studies, in particular for the higher densities 250-400 kg m-3). However, the scatter was rather large as expected for in-situ experiments in the layered snow cover. In addition, we measured accelerations during propagation saw test experiments. The propagation of cracks during this type of snow instability test has mainly been studied by analysing the bending of the slab (due to the saw cut) using particle tracking velocimetry. We used the accelerometers to measure crack propagation speeds. The wave speeds were slightly higher for most experiments than reported previously. Furthermore, in some experiments, we encountered to different wave types with one propagating at a higher speed. This finding may be interpreted as the actual crack propagation and the settling of the weak layer (collapse wave). Our results show that field measurements of propagation properties are feasible and that crack propagation as observed during propagation saw tests may involve different processes

  1. Coherence theory of electromagnetic wave propagation through stratified N-layer media

    NARCIS (Netherlands)

    Hoenders, B.J.; Bertolotti, M.

    The theory of second-order coherence in connection with wave propagation through a stratified N-layer (SNL) medium is developed. Especially, the influence of the SNL medium on the propagation of the coherence generated by a given state of coherence at the entrance plane of the medium is considered.

  2. Beam propagation of tidal internal waves over a submarine slope of the Mascarene Ridge (United States)

    Morozov, E. G.; Nechvolodov, L. V.; Sabinin, K. D.


    The generation of internal tides over the Mascarene Ridge is studied on the basis of moored measurements and numerical modeling. The beam structure of the internal wave propagation over a submarine ridge is analyzed. The dependence of the beam propagation of the perturbations on the steepness of the slope, the depth of the ridge crest, and the stratification is studied.

  3. Spin-wave propagation in the presence of inhomogeneous Dzyaloshinskii-Moriya interactions (United States)

    Lee, Seung-Jae; Moon, Jung-Hwan; Lee, Hyun-Woo; Lee, Kyung-Jin


    We theoretically investigate spin-wave propagation through a magnetic metamaterial with spatially modulated Dzyaloshinskii-Moriya interaction. We establish an effective Schrödinger equation for spin waves and derive boundary conditions for spin waves passing through the boundary between two regions having different Dzyaloshinskii-Moriya interactions. Based on these boundary conditions, we find that the spin wave can be amplified at the boundary and the spin-wave band gap is tunable either by an external magnetic field or the strength of Dzyaloshinskii-Moriya interaction, which offers a spin-wave analog of the field-effect transistor in traditional electronics.

  4. Propagation of coherent transverse waves: Influence of the translational and rotational subwavelength resonances. (United States)

    Valier-Brasier, Tony; Conoir, Jean-Marc


    The propagation of coherent transverse waves through a homogeneous elastic medium containing a set of spherical dense inclusions is an interesting topic. In such a material, in addition to the coherent longitudinal wave, two coherent transverse waves can propagate. The modeling used is based on the multiple scattering theory, which requires the scattering coefficients of the single scattering problem. These coefficients are calculated for moving rigid particles, leading to approximations of the two subwavelength dipolar resonances, one associated to a translational motion and the other to a rotational motion. Numerical simulations are carried out in order to compare the effective wavenumbers of the coherent elastic waves through the analysis of their phase velocity and attenuation. This comparison is performed for elastic and moving rigid spheres. It is shown that both dipolar resonances may have a great influence on the propagation of coherent transverse waves.

  5. Iterative Computational Scheme of Studying Electromagnetic Wave Propagation through Dielectric Thin Film Medium

    Directory of Open Access Journals (Sweden)

    E Ugwu


    Full Text Available We present an approach to the computation of electromagnetic wave propagation through a dielectric thin film medium using iterative scheme. We used the Green's function technique involving some necessary boundary condition to solve the scalar wave equation. Non-vectorial aspects of the propagating wave through the thin film resulting from the film orientation were considered. The iterative numerical scheme based on the parallel use of Lippmann-Schwinger and Dyson's equations is demonstrated and used judiciously in the computation. The influence of the numerical parameters such as Green's function, thickness of the thin film, dielectric perturbation, Δεp(z and mesh size, Np on the propagating wave for three region of electromagnetic wave were clearly assessed.

  6. Simulation of non-hydrostatic gravity wave propagation in the upper atmosphere

    Directory of Open Access Journals (Sweden)

    Y. Deng


    Full Text Available The high-frequency and small horizontal scale gravity waves may be reflected and ducted in non-hydrostatic simulations, but usually propagate vertically in hydrostatic models. To examine gravity wave propagation, a preliminary study has been conducted with a global ionosphere–thermosphere model (GITM, which is a non-hydrostatic general circulation model for the upper atmosphere. GITM has been run regionally with a horizontal resolution of 0.2° long × 0.2° lat to resolve the gravity wave with wavelength of 250 km. A cosine wave oscillation with amplitude of 30 m s−1 has been applied to the zonal wind at the low boundary, and both high-frequency and low-frequency waves have been tested. In the high-frequency case, the gravity wave stays below 200 km, which indicates that the wave is reflected or ducted in propagation. The results are consistent with the theoretical analysis from the dispersion relationship when the wavelength is larger than the cutoff wavelength for the non-hydrostatic situation. However, the low-frequency wave propagates to the high altitudes during the whole simulation period, and the amplitude increases with height. This study shows that the non-hydrostatic model successfully reproduces the high-frequency gravity wave dissipation.

  7. Modification of wave propagation and wave travel-time by the presence of magnetic fields in the solar network atmosphere (United States)

    Nutto, C.; Steiner, O.; Schaffenberger, W.; Roth, M.


    Context. Observations of waves at frequencies above the acoustic cut-off frequency have revealed vanishing wave travel-times in the vicinity of strong magnetic fields. This detection of apparently evanescent waves, instead of the expected propagating waves, has remained a riddle. Aims: We investigate the influence of a strong magnetic field on the propagation of magneto-acoustic waves in the atmosphere of the solar network. We test whether mode conversion effects can account for the shortening in wave travel-times between different heights in the solar atmosphere. Methods: We carry out numerical simulations of the complex magneto-atmosphere representing the solar magnetic network. In the simulation domain, we artificially excite high frequency waves whose wave travel-times between different height levels we then analyze. Results: The simulations demonstrate that the wave travel-time in the solar magneto-atmosphere is strongly influenced by mode conversion. In a layer enclosing the surface sheet defined by the set of points where the Alfvén speed and the sound speed are equal, called the equipartition level, energy is partially transferred from the fast acoustic mode to the fast magnetic mode. Above the equipartition level, the fast magnetic mode is refracted due to the large gradient of the Alfvén speed. The refractive wave path and the increasing phase speed of the fast mode inside the magnetic canopy significantly reduce the wave travel-time, provided that both observing levels are above the equipartition level. Conclusions: Mode conversion and the resulting excitation and propagation of fast magneto-acoustic waves is responsible for the observation of vanishing wave travel-times in the vicinity of strong magnetic fields. In particular, the wave propagation behavior of the fast mode above the equipartition level may mimic evanescent behavior. The present wave propagation experiments provide an explanation of vanishing wave travel-times as observed with multi

  8. Application of magnetoelastic materials in spatiotemporally modulated phononic crystals for nonreciprocal wave propagation (United States)

    Ansari, M. H.; Attarzadeh, M. A.; Nouh, M.; Karami, M. Amin


    In this paper, a physical platform is proposed to change the properties of phononic crystals in space and time in order to achieve nonreciprocal wave transmission. The utilization of magnetoelastic materials in elastic phononic systems is studied. Material properties of magnetoelastic materials change significantly with an external magnetic field. This property is used to design systems with a desired wave propagation pattern. The properties of the magnetoelastic medium are changed in a traveling wave pattern, which changes in both space and time. A phononic crystal with such a modulation exhibits one-way wave propagation behavior. An extended transfer matrix method (TMM) is developed to model a system with time varying properties. The stop band and the pass band of a reciprocal and a nonreciprocal bar are found using this method. The TMM is used to find the transfer function of a magnetoelastic bar. The obtained results match those obtained via the theoretical Floquet–Bloch approach and numerical simulations. It is shown that the stop band in the transfer function of a system with temporal varying property for the forward wave propagation is different from the same in the backward wave propagation. The proposed configuration enables the physical realization of a class of smart structures that incorporates nonreciprocal wave propagation.


    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, T.; Yokoyama, T. [Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 (Japan); Goossens, M.; Doorsselaere, T. Van [Centre for Mathematical Plasma Astrophysics, Katholieke Universiteit Leuven, Celestijnenlaan 200B, Bus 2400, B-3001 Herverlee (Belgium); Soler, R.; Terradas, J. [Departament de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Wright, A. N., E-mail: [School of Mathematics and Statistics, University of St Andrews, St Andrews, KY16 9SS (United Kingdom)


    In this paper we show that the phase-mixing of continuum Alfvén waves and/or continuum slow waves in the magnetic structures of the solar atmosphere as, e.g., coronal arcades, can create the illusion of wave propagation across the magnetic field. This phenomenon could be erroneously interpreted as fast magnetosonic waves. The cross-field propagation due to the phase-mixing of continuum waves is apparent because there is no real propagation of energy across the magnetic surfaces. We investigate the continuous Alfvén and slow spectra in two-dimensional (2D) Cartesian equilibrium models with a purely poloidal magnetic field. We show that apparent superslow propagation across the magnetic surfaces in solar coronal structures is a consequence of the existence of continuum Alfvén waves and continuum slow waves that naturally live on those structures and phase-mix as time evolves. The apparent cross-field phase velocity is related to the spatial variation of the local Alfvén/slow frequency across the magnetic surfaces and is slower than the Alfvén/sound velocities for typical coronal conditions. Understanding the nature of the apparent cross-field propagation is important for the correct analysis of numerical simulations and the correct interpretation of observations.

  10. Control of Wave Propagation and Effect of Kerr Nonlinearity on Group Index (United States)

    Hazrat, Ali; Ziauddin; Iftikhar, Ahmed


    We use four-level atomic system and control the wave propagation via forbidden decay rate. The Raman gain process becomes dominant on electromagnetically induced transparency (EIT) medium by increasing the forbidden decay rate via increasing the number of atoms [G.S. Agarwal and T.N. Dey, Phys. Rev. A 74 (2006) 043805 and K. Harada, T. Kanbashi, and M. Mitsunaga, Phys. Rev. A 73 (2006) 013803]. The behavior of wave propagation is dramatically changed from normal (subluminal) to anomalous (superluminal) dispersion by increasing the forbidden decay rate. The system can also give a control over the group velocity of the light propagating through the medium via Kerr field.

  11. Consistency of students’ conceptions of wave propagation: Findings from a conceptual survey in mechanical waves

    Directory of Open Access Journals (Sweden)

    Apisit Tongchai


    Full Text Available We recently developed a multiple-choice conceptual survey in mechanical waves. The development, evaluation, and demonstration of the use of the survey were reported elsewhere [A. Tongchai et al., Developing, evaluating and demonstrating the use of a conceptual survey in mechanical waves, Int. J. Sci. Educ. 31, 2437 (2009ISEDEB0950-069310.1080/09500690802389605]. We administered the survey to 902 students from seven different groups ranging from high school to second year university. As an outcome of that analysis we were able to identify several conceptual models which the students seemed to be using when answering the questions in the survey. In this paper we attempt to investigate the strength with which the students were committed to these conceptual models, as evidenced by the consistency with which they answered the questions. For this purpose we focus on the patterns of student responses to questions in one particular subtopic, wave propagation. This study has three main purposes: (1 to investigate the consistency of student conceptions, (2 to explore the relative usefulness of different analysis techniques, and (3 to determine what extra information a study of consistency can give about student understanding of basic concepts. We used two techniques: first, categorizing and counting, which is widely used in the science education community, and second, model analysis, recently introduced into physics education research. The manner in which categorizing and counting is used is very diverse while model analysis has been employed only in prescriptive ways. Research studies have reported that students often use their conceptual models inconsistently when solving a series of questions that test the same idea. Our results support their conclusions. Moreover, our findings suggest that students who have had more experiences in physics learning seem to use the scientifically accepted models more consistently. Further, the two analysis techniques

  12. Enhanced micropolar model for wave propagation in granular materials (United States)

    Merkel, Aurélien; Luding, Stefan


    In the description of material elastic behavior, the classical theory of elasticity consists of a macroscopic material description. The material is not described at the micro-level by considering the displacement of the different particles in interaction, but is described as a continuum by considering macroscopic quantities as stress and strain. The classical elasticity theory can be viewed as first gradient of the displacement field approximation of the solid state theory and is valid in the long wavelength limit. Granular media, due to their micro-inhomogeneous character, are not well described by the standard continuum theory of elasticity. By contrast to classical continua where the sizes of the vibrating particles are assumed to be negligible compared to the distance between the particles, the sizes of the particles in a granular assembly are comparable to the distance between neighbors. In addition, considering the sliding, torsion and rolling resistances at the level of the contacts between the particles, a consistent description of the elasticity of a granular medium needs to take into account the rotational degrees of freedom of each individual particle. The elastic behavior of crystalline structures of monodisperse beads can be efficiently described by a discrete model, where the displacement and rotation of each individual bead are taken into account. Nevertheless, the discrete model can be solved analytically only for well-know regular crystalline structure, the case of a random assembly of beads is too complex for large systems. A continuum formulation is more suitable for random assemblies of beads different from the ideal crystalline case. The generalization of the classical elasticity theory accounting for the rotational degrees of freedom of point bodies is known as the Cosserat or micropolar theory. In this work, the vibration properties of a face-centered cubic structure of monodisperse granular crystal are predicted using a discrete model as

  13. Analytical Time-Domain Solution of Plane Wave Propagation Across a Viscoelastic Rock Joint (United States)

    Zou, Yang; Li, Jianchun; Laloui, Lyesse; Zhao, Jian


    The effects of viscoelastic filled rock joints on wave propagation are of great significance in rock engineering. The solutions in time domain for plane longitudinal ( P-) and transverse ( S-) waves propagation across a viscoelastic rock joint are derived based on Maxwell and Kelvin models which are, respectively, applied to describe the viscoelastic deformational behaviour of the rock joint and incorporated into the displacement discontinuity model (DDM). The proposed solutions are verified by comparing with the previous studies on harmonic waves, which are simulated by sinusoidal incident P- and S-waves. Comparison between the predicted transmitted waves and the experimental data for P-wave propagation across a joint filled with clay is conducted. The Maxwell is found to be more appropriate to describe the filled joint. The parametric studies show that wave propagation is affected by many factors, such as the stiffness and the viscosity of joints, the incident angle and the duration of incident waves. Furthermore, the dependences of the transmission and reflection coefficients on the specific joint stiffness and viscosity are different for the joints with Maxwell and Kelvin behaviours. The alternation of the reflected and transmitted waveforms is discussed, and the application scope of this study is demonstrated by an illustration of the effects of the joint thickness. The solutions are also extended for multiple parallel joints with the virtual wave source method and the time-domain recursive method. For an incident wave with arbitrary waveform, it is convenient to adopt the present approach to directly calculate wave propagation across a viscoelastic rock joint without additional mathematical methods such as the Fourier and inverse Fourier transforms.

  14. Vertical elliptic operator for efficient wave propagation in TTI media

    KAUST Repository

    Waheed, Umair bin


    Elliptic wave extrapolation operators require significantly less computational cost than the ones for transversely isotropic (TI) media. However, it does not provide accurate wavefield representation or imaging for the prevalent TI media. We propose a new vertical elliptically anisotropic (VEA) wave equation by decomposing the acoustic TI pseudo-differential wave equation. The decomposition results in a vertical elliptic differential equation and a scalar operator. The new VEA-like wave equation shares the same dispersion relation as that of the original acoustic TI wave equation. Therefore, the kinematic contents are correctly matched to the original equation. Moreover, the proposed decomposition yields better amplitude properties than the isotropic decomposition without increasing the computational load. Therefore, it exhibits better cost versus accuracy tradeoff compared to the isotropic or the tilted elliptic decompositions. We demonstrate with numerical examples that the proposed methodology is numerically stable for complex models and is free from shear-wave artifacts.

  15. Reverse cochlear propagation in the intact cochlea of the gerbil: Evidence for slow traveling waves

    NARCIS (Netherlands)

    S.W.F. Meenderink; M. van der Heijden (Marcel)


    textabstractThe inner ear can produce sounds, but how these otoacoustic emissions back-propagate through the cochlea is currently debated. Two opposing views exist: fast pressure waves in the cochlear fluids and slow traveling waves involving the basilar membrane. Resolving this issue requires

  16. Propagation of Love waves in an elastic layer with void pores

    Indian Academy of Sciences (India)

    The paper presents a study of propagation of Love waves in a poroelastic layer resting over a poro-elastic half-space. Pores contain nothing of mechanical or energetic significance. The study reveals that such a medium transmits two types of love waves. The first front depends upon the modulus of rigidity of the elastic ...

  17. Improving thermal ablation delineation with electrode vibration elastography using a bidirectional wave propagation assumption. (United States)

    DeWall, Ryan J; Varghese, Tomy


    Thermal ablation procedures are commonly used to treat hepatic cancers and accurate ablation representation on shear wave velocity images is crucial to ensure complete treatment of the malignant target. Electrode vibration elastography is a shear wave imaging technique recently developed to monitor thermal ablation extent during treatment procedures. Previous work has shown good lateral boundary delineation of ablated volumes, but axial delineation was more ambiguous, which may have resulted from the assumption of lateral shear wave propagation. In this work, we assume both lateral and axial wave propagation and compare wave velocity images to those assuming only lateral shear wave propagation in finite element simulations, tissue-mimicking phantoms, and bovine liver tissue. Our results show that assuming bidirectional wave propagation minimizes artifacts above and below ablated volumes, yielding a more accurate representation of the ablated region on shear wave velocity images. Area overestimation was reduced from 13.4% to 3.6% in a stiff-inclusion tissue-mimicking phantom and from 9.1% to 0.8% in a radio-frequency ablation in bovine liver tissue. More accurate ablation representation during ablation procedures increases the likelihood of complete treatment of the malignant target, decreasing tumor recurrence. © 2012 IEEE

  18. Do electromagnetic waves always propagate along null geodesics?

    CERN Document Server

    Asenjo, Felipe A


    We find exact solutions to Maxwell equations written in terms of four-vector potentials in non--rotating, as well as in G\\"odel and Kerr spacetimes. Exact electromagnetic waves solutions are written on given gravitational field backgrounds where they evolve. We find that in non--rotating spherical symmetric spacetimes, electromagnetic plane waves travel along null geodesics. However, electromagnetic plane waves on G\\"odel and Kerr spacetimes do not exhibit that behavior.

  19. Experimental investigation of stress wave propagation in standing trees (United States)

    Houjiang Zhang; Xiping Wang; Juan Su


    The objective of this study was to investigate how a stress wave travels in a standing tree as it is introduced into the tree trunk through a mechanical impact. A series of stress wave time-of-flight (TOF) data were obtained from three freshly-cut red pine (Pinus resinosa Ait.) logs by means of a two-probe stress wave timer. Two-dimensional (2D) and three-dimensional (...

  20. Acoustic Bloch Wave Propagation in a Periodic Waveguide (United States)


    matrix (Ramo, Whinnery, and Van Duzer , 1965). Given the amplitudes of the two travelling waves in a single cell, then, we can find the amplitudes of...harmonics (Ramo, Whinnery, and Van Duzer , 1965). ; is interesting to note that because the range of the sum index n in Eq. 2.53 includ negative integers...34backwar. wave structures" (Ramo, Whinnery, and Van Duzer , 1965). 2.4.3 The Convolution Representation The apparent simplicity of the Bloch wave function

  1. Discrete Element Simulation of Elastoplastic Shock Wave Propagation in Spherical Particles

    Directory of Open Access Journals (Sweden)

    M. Shoaib


    Full Text Available Elastoplastic shock wave propagation in a one-dimensional assembly of spherical metal particles is presented by extending well-established quasistatic compaction models. The compaction process is modeled by a discrete element method while using elastic and plastic loading, elastic unloading, and adhesion at contacts with typical dynamic loading parameters. Of particular interest is to study the development of the elastoplastic shock wave, its propagation, and reflection during entire loading process. Simulation results yield information on contact behavior, velocity, and deformation of particles during dynamic loading. Effects of shock wave propagation on loading parameters are also discussed. The elastoplastic shock propagation in granular material has many practical applications including the high-velocity compaction of particulate material.

  2. A Full-wave Model for Wave Propagation and Dissipation in the Inner Magnetosphere Using the Finite Element Method

    Energy Technology Data Exchange (ETDEWEB)

    Ernest Valeo, Jay R. Johnson, Eun-Hwa and Cynthia Phillips


    A wide variety of plasma waves play an important role in the energization and loss of particles in the inner magnetosphere. Our ability to understand and model wave-particle interactions in this region requires improved knowledge of the spatial distribution and properties of these waves as well as improved understanding of how the waves depend on changes in solar wind forcing and/or geomagnetic activity. To this end, we have developed a two-dimensional, finite element code that solves the full wave equations in global magnetospheric geometry. The code describes three-dimensional wave structure including mode conversion when ULF, EMIC, and whistler waves are launched in a two-dimensional axisymmetric background plasma with general magnetic field topology. We illustrate the capabilities of the code by examining the role of plasmaspheric plumes on magnetosonic wave propagation; mode conversion at the ion-ion and Alfven resonances resulting from external, solar wind compressions; and wave structure and mode conversion of electromagnetic ion cyclotron waves launched in the equatorial magnetosphere, which propagate along the magnetic field lines toward the ionosphere. We also discuss advantages of the finite element method for resolving resonant structures, and how the model may be adapted to include nonlocal kinetic effects.

  3. Spin-wave propagation spectrum in magnetization-modulated cylindrical nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhi-xiong; Wang, Meng-ning; Nie, Yao-zhuang; Wang, Dao-wei; Xia, Qing-lin [School of Physics and Electronics, Central South University, Changsha 410083 (China); Tang, Wei [School of Physics and Electronics, Central South University, Changsha 410083 (China); Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123 (China); Zeng, Zhong-ming [Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123 (China); Guo, Guang-hua, E-mail: [School of Physics and Electronics, Central South University, Changsha 410083 (China)


    Spin-wave propagation in periodic magnetization-modulated cylindrical nanowires is studied by micromagnetic simulation. Spin wave scattering at the interface of two magnetization segments causes a spin-wave band structure, which can be effectively tuned by changing either the magnetization modulation level or the period of the cylindrical nanowire magnonic crystal. The bandgap width is oscillating with either the period or magnetization modulation due to the oscillating variation of the spin wave transmission coefficient through the interface of the two magnetization segments. Analytical calculation based on band theory is used to account for the micromagnetic simulation results. - Highlights: • A magnetization-modulated cylindrical nanowire magnonic crystal is proposed. • Propagating characteristics of spin waves in such magnonic crystal are studied. • Spin-wave spectra can be manipulated by changing modulation level and period.

  4. Strain wave evolution equation for nonlinear propagation in materials with mesoscopic mechanical elements. (United States)

    Gusev, Vitalyi; Aleshin, Vladislav


    Nonlinear wave propagation in materials, where distribution function of mesoscopic mechanical elements has very different scales of variation along and normally to diagonal of Preisach-Mayergoyz space, is analyzed. An evolution equation for strain wave, which takes into account localization of element distribution near the diagonal and its slow variation along the diagonal, is proposed. The evolution equation provides opportunity to model propagation of elastic waves with strain amplitudes comparable to and even higher than characteristic scale of element localization near Preisach-Mayergoyz space diagonal. Analytical solutions of evolution equation predict nonmonotonous dependence of wave absorption on its amplitude in a particular regime. The regime of self-induced absorption for small-amplitude nonlinear waves is followed by the regime of self-induced transparency for high-amplitude waves. The developed theory might be useful in seismology, in high-pressure nonlinear acoustics, and in nonlinear acoustic diagnostics of damaged and fatigued materials.

  5. Self-similar propagation of Hermite-Gauss water-wave pulses. (United States)

    Fu, Shenhe; Tsur, Yuval; Zhou, Jianying; Shemer, Lev; Arie, Ady


    We demonstrate both theoretically and experimentally propagation dynamics of surface gravity water-wave pulses, having Hermite-Gauss envelopes. We show that these waves propagate self-similarly along an 18-m wave tank, preserving their general Hermite-Gauss envelopes in both the linear and the nonlinear regimes. The measured surface elevation wave groups enable observing the envelope phase evolution of both nonchirped and linearly frequency chirped Hermite-Gauss pulses, hence allowing us to measure Gouy phase shifts of high-order Hermite-Gauss pulses for the first time. Finally, when increasing pulse amplitude, nonlinearity becomes essential and the second harmonic of Hermite-Gauss waves was observed. We further show that these generated second harmonic bound waves still exhibit self-similar Hermite-Gauss shapes along the tank.

  6. Full-wave Simulations of LH Wave Propagation in Toroidal Plasma with non-Maxwellian Electron Distributions

    Energy Technology Data Exchange (ETDEWEB)

    E.J. Valeo, C.K. Phillips, P.T. Bonoli, J.C. Wright, M. Brambilla, and the RF SciDAC Team


    Abstract: The generation of energetic tails in the electron distribution function is intrinsic to lower-hybrid (LH) heating and current drive in weakly collisional magnetically confined plasma. The effects of these deformations on the RF deposition profile have previously been examined within the ray approximation. Recently, the calculation of full-wave propagation of LH waves in a thermal plasma has been accomplished using an adaptation of the TORIC code. Here, initial results are presented from TORIC simulations of LH propagation in a toroidal plasma with non-thermal electrons. The required efficient computation of the hot plasma dielectric tensor is accomplished using a technique previously demonstrated in full-wave simulations of ICRF propagation in plasma with non-thermal ions.

  7. Rescaled Local Interaction Simulation Approach for Shear Wave Propagation Modelling in Magnetic Resonance Elastography (United States)

    Packo, P.; Staszewski, W. J.; Uhl, T.


    Properties of soft biological tissues are increasingly used in medical diagnosis to detect various abnormalities, for example, in liver fibrosis or breast tumors. It is well known that mechanical stiffness of human organs can be obtained from organ responses to shear stress waves through Magnetic Resonance Elastography. The Local Interaction Simulation Approach is proposed for effective modelling of shear wave propagation in soft tissues. The results are validated using experimental data from Magnetic Resonance Elastography. These results show the potential of the method for shear wave propagation modelling in soft tissues. The major advantage of the proposed approach is a significant reduction of computational effort. PMID:26884808

  8. Propagation of electromagnetic wave in dusty plasma and the influence of dust size distribution

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hui [Department of Physics, Harbin Institute of Technology, Harbin (China); China Research Institute of Radio Wave Propagation (CRIRP), Beijing (China); Wu, Jian [China Research Institute of Radio Wave Propagation (CRIRP), Beijing (China); Zhou, Zhongxiang; Yuan, Chengxun [Department of Physics, Harbin Institute of Technology, Harbin (China)


    The effect of charged dust particle and their size distribution on the propagation of electromagnetic wave in a dusty plasma is investigated. It is shown that the additional collision mechanism provided by charged dust particles can significantly alter the electromagnetic properties of a plasma, leading to the appearance of attenuation of electromagnetic wave through dusty plasma. The attenuation coefficient mainly depends on the dust density, radius, and the charge numbers on the dust surface. The results described here will be used to enhance understanding of electromagnetic wave propagation processed in space and laboratory dusty plasma.

  9. Rescaled Local Interaction Simulation Approach for Shear Wave Propagation Modelling in Magnetic Resonance Elastography

    Directory of Open Access Journals (Sweden)

    Z. Hashemiyan


    Full Text Available Properties of soft biological tissues are increasingly used in medical diagnosis to detect various abnormalities, for example, in liver fibrosis or breast tumors. It is well known that mechanical stiffness of human organs can be obtained from organ responses to shear stress waves through Magnetic Resonance Elastography. The Local Interaction Simulation Approach is proposed for effective modelling of shear wave propagation in soft tissues. The results are validated using experimental data from Magnetic Resonance Elastography. These results show the potential of the method for shear wave propagation modelling in soft tissues. The major advantage of the proposed approach is a significant reduction of computational effort.

  10. Transient Electromagnetic Wave Propagation in a Plasma Waveguide (United States)


    T. Van Duzer , Fields and Waves in Communication Electronics, 3rd edition, John Wiley & Sons, New York, NY, pp 395-455 (1994). 15. G.F. Miner, Lines...Whinnery, & T. Van Duzer , Fields and Waves in Communication Electronics, 1st edition, John Wiley & Sons, New York, NY, pp 432-434 (1965). 18. Ibid. p

  11. Propagation of electromagnetic waves parallel to the magnetic field in the nightside Venus ionosphere (United States)

    Huba, J. D.; Rowland, H. L.


    The propagation of electromagnetic waves parallel to the magnetic field in the nightside Venus ionosphere is presented in a theoretical and numerical analysis. The model assumes a source of electromagnetic radiation in the Venus atmosphere, such as that produced by lightning. Specifically addressed is wave propagation in the altitude range z = 130-160 km at the four frequencies detectable by the Pioneer Venus Orbiter Electric Field Detector: 100 Hz, 730 Hz, 5.4 kHz, and 30 kHz. Parameterizations of the wave intensities, peak electron density, and Poynting flux as a function of magnetic field are presented. The waves are found to propagate most easily in conditions of low electron density and high magnetic field. The results of the model are consistent with observational data.

  12. Propagation Characteristics of Oblique Incident Terahertz Wave in Nonuniform Dusty Plasma

    Directory of Open Access Journals (Sweden)

    Yunhua Cao


    Full Text Available Propagation characteristics of oblique incident terahertz wave from the nonuniform dusty plasma are studied using the propagation matrix method. Assuming that the electron density distribution of dusty plasma is parabolic model, variations of power reflection, transmission, and absorption coefficients with frequencies of the incident wave are calculated as the wave illuminates the nonuniform dusty plasma from different angles. The effects of incident angles, number density, and radius of the dust particles on propagation characteristics are discussed in detail. Numerical results show that the number density and radius of the dust particles have very little influences on reflection and transmission coefficients and have obvious effects on absorption coefficients. The terahertz wave has good penetrability in dusty plasma.

  13. Wave propagation in double walled carbon nanotubes by using doublet mechanics theory (United States)

    Gul, Ufuk; Aydogdu, Metin


    Flexural and axial wave propagation in double walled carbon nanotubes embedded in an elastic medium and axial wave propagation in single walled carbon nanotubes are investigated. A length scale dependent theory which is called doublet mechanics is used in the analysis. Governing equations are obtained by using Hamilton principle. Doublet mechanics results are compared with classical elasticity and other size dependent continuum theories such as strain gradient theory, nonlocal theory and lattice dynamics. In addition, experimental wave frequencies of graphite are compared with the doublet mechanics theory. It is obtained that doublet mechanics gives accurate results for flexural and axial wave propagation in nanotubes. Thus, doublet mechanics can be used for the design of electro-mechanical nano-devices such as nanomotors, nanosensors and oscillators.

  14. Consistency of students’ conceptions of wave propagation: Findings from a conceptual survey in mechanical waves

    Directory of Open Access Journals (Sweden)

    Chernchok Soankwan


    Full Text Available We recently developed a multiple-choice conceptual survey in mechanical waves. The development, evaluation, and demonstration of the use of the survey were reported elsewhere [ A. Tongchai et al. Int. J. Sci. Educ. 31 2437 (2009]. We administered the survey to 902 students from seven different groups ranging from high school to second year university. As an outcome of that analysis we were able to identify several conceptual models which the students seemed to be using when answering the questions in the survey. In this paper we attempt to investigate the strength with which the students were committed to these conceptual models, as evidenced by the consistency with which they answered the questions. For this purpose we focus on the patterns of student responses to questions in one particular subtopic, wave propagation. This study has three main purposes: (1 to investigate the consistency of student conceptions, (2 to explore the relative usefulness of different analysis techniques, and (3 to determine what extra information a study of consistency can give about student understanding of basic concepts. We used two techniques: first, categorizing and counting, which is widely used in the science education community, and second, model analysis, recently introduced into physics education research. The manner in which categorizing and counting is used is very diverse while model analysis has been employed only in prescriptive ways. Research studies have reported that students often use their conceptual models inconsistently when solving a series of questions that test the same idea. Our results support their conclusions. Moreover, our findings suggest that students who have had more experiences in physics learning seem to use the scientifically accepted models more consistently. Further, the two analysis techniques have different advantages and disadvantages. Our findings show that model analysis can be used in more diverse ways, provides

  15. Parametric decay instability of an obliquely propagating ordinary wave in the electron cyclotron frequency range (United States)

    Gusakov, E. Z.; Popov, A. Yu.


    The possibility of the low-power-threshold parametric decay of an obliquely propagating ordinary wave to an upper hybrid wave and a low-hybrid wave is analysed under conditions of nonmonotonic plasma density profile in a magnetic trap. The instability threshold and growth rate are derived explicitly. The analytical results are illustrated under the conditions typical of the ordinary mode fundamental electron cyclotron resonance heating harmonic experiments at the FTU tokamak.

  16. Effects of ion-atom collisions on the propagation and damping of ion-acoustic waves

    DEFF Research Database (Denmark)

    Andersen, H.K.; D'Angelo, N.; Jensen, Vagn Orla


    Experiments are described on ion-acoustic wave propagation and damping in alkali plasmas of various degrees of ionization. An increase of the ratio Te/Ti from 1 to approximately 3-4, caused by ion-atom collisions, results in a decrease of the (Landau) damping of the waves. At high gas pressure and....../or low wave frequency a "fluid" picture adequately describes the experimental results....

  17. Propagation of a compression shock wave in He II induced by shock impingement


    村上, 正秀; 上田, 康裕; 谷中, 一喜; 永井, 大樹; Masahide, MURAKAMI; Yasuhiro, UETA; Kazuyoshi, YANAKA; Hiroki, NAGAI; Hung Suk, YANG; 筑波大; Institute of Engineering Mechanics and Systems, University of Tsukuba


    The propagation of a compression shock wave in superfluid helium (He II) was experimentally investigated by using the superfluid shock tube facility. A shock wave is generated in He II by the impingement of a gas dynamic shock wave onto vapor-He II interface. In fact, upon the impingement two modes of shock waves, a compression and a thermal shock waves, are induced in He II. Here, we are only interested in the former. One of our research target is the shock-compressed phase transition (He II...

  18. Effect of horizontal wave barriers on ground vibration propagation. (United States)

    Grau, L; Laulagnet, B


    The aim of this article is to introduce a method to mitigate ground surface vibration through a flexural plate coupled to the ground and acting as a horizontal wave barrier. Using the thin plate hypothesis, two flexural plates are coupled to the ground, the first plate being the excited plate and the second plate the horizontal wave barrier. For instance, the first plate may represent a slab track and be excited by the tramway wheels. A solution to the problem can be found using a spatial two-dimensional Fourier transform of the elastodynamics equation for the ground and a modal decomposition for the flexural plate vibration. The authors show that vibration is substantially mitigated by the horizontal wave barrier and depends on its thickness and width. When the top surface wavelength becomes smaller than twice the plate width, the horizontal wave barrier acts as a wave barrier in the frequency range of interest, i.e., from 20 Hz.

  19. The Role of Rossby-Wave Propagation in a North American Extreme Cold Event

    Directory of Open Access Journals (Sweden)

    Chunhua Shi


    Full Text Available The Eliassen–Palm flux and Plumb wave activity flux are calculated using the European Centre for Medium-Range Weather Forecasts interim reanalysis daily dataset to determine the propagation of Rossby waves before a North American cold wave in January 2014. The results show that the upward wave activity fluxes mainly come from planetary waves 1 and 2, which provide a stable circulation background for the influence of the subplanetary-scale waves 3 and 4. The Rossby-wave propagation anomalies between the troposphere and the stratosphere are due to the modulating effects of waves 3 and 4 on waves 1 and 2. During 9–14 January 2014, the modulating effects helped strengthen upward and eastward wave activity fluxes over the Atlantic region and enhance the Pacific high in the stratosphere in its early stage. Later in 19–24 January, the downward wave activity fluxes over the east Pacific due to the modulating effects were beneficial to downward development of the stratospheric high over the Pacific and the formation of a blocking high over the west coast of North America in the troposphere accompanied by a strong adjacent cold low on the east side. These circulations benefit the southward invasion of polar cold air reaching the lower latitudes of east North America, leading to the cold wave outbreak.

  20. Effect of fracture compliance on wave propagation within a fluid-filled fracture. (United States)

    Nakagawa, Seiji; Korneev, Valeri A


    Open and partially closed fractures can trap seismic waves. Waves propagating primarily within fluid in a fracture are sometimes called Krauklis waves, which are strongly dispersive at low frequencies. The behavior of Krauklis waves has previously been examined for an open, fluid-filled channel (fracture), but the impact of finite fracture compliance resulting from contacting asperities and porous fillings in the fracture (e.g., debris, proppants) has not been fully investigated. In this paper, a dispersion equation is derived for Krauklis wave propagation in a fracture with finite fracture compliance, using a modified linear-slip-interface model (seismic displacement-discontinuity model). The resulting equation is formally identical to the dispersion equation for the symmetric fracture interface wave, another type of guided wave along a fracture. The low-frequency solutions of the newly derived dispersion equations are in good agreement with the exact solutions available for an open fracture. The primary effect of finite fracture compliance on Krauklis wave propagation is to increase wave velocity and attenuation at low frequencies. These effects can be used to monitor changes in the mechanical properties of a fracture.

  1. Propagation of S-waves Through the Sediments in the Mississippi Embayment (United States)

    Chiu, S.; Langston, C. A.; Withers, M.


    S body waves from microearthquakes in the New Madrid Seismic Zone (NMSZ) are investigated at selected broadband station sites to understand wave propagation through the Mississippi embayment sediments. Earthquake body waveforms display distinctive features that constrain the nature of the body wave local site response and wave propagation within the unconsolidated Mississippi embayment sediments. S-wave resonance effects may infer near-site conditions. Site resonance effects change between individual receivers because of velocity heterogeneity. Travel times of observed S-phases such as S, Sp, and SsShs (the first S-wave reverberation) can be used to estimate the average S-wave slowness and Poisson's ratio within the embayment sediments. An average Poisson's ratio in the range of 0.34 to 0.45 is obtained for selected sites within the central NMSZ. Use of well log data in wave calculations shows that 1-D heterogeneity can be the first-order influence on seismic wave propagation within the Mississippi embayment sediments.

  2. Laboratory model of the cardiovascular system for experimental demonstration of pulse wave propagation (United States)

    Stojadinović, Bojana; Nestorović, Zorica; Djurić, Biljana; Tenne, Tamar; Zikich, Dragoslav; Žikić, Dejan


    The velocity by which a disturbance moves through the medium is the wave velocity. Pulse wave velocity is among the key parameters in hemodynamics. Investigation of wave propagation through the fluid-filled elastic tube has a great importance for the proper biophysical understanding of the nature of blood flow through the cardiovascular system. Here, we present a laboratory model of the cardiovascular system. We have designed an experimental setup which can help medical and nursing students to properly learn and understand basic fluid hemodynamic principles, pulse wave and the phenomenon of wave propagation in blood vessels. Demonstration of wave propagation allowed a real time observation of the formation of compression and expansion waves by students, thus enabling them to better understand the difference between the two waves, and also to measure the pulse wave velocity for different fluid viscosities. The laboratory model of the cardiovascular system could be useful as an active learning methodology and a complementary tool for understanding basic principles of hemodynamics.

  3. Propagation of electromagnetic waves in a weak collisional and fully ionized dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Jieshu; Yuan, Chengxun, E-mail:; Gao, Ruilin; Wang, Ying; Zhou, Zhong-Xiang [Department of Physics, Harbin Institute of Technology, Harbin 150001 (China); Liu, Sha; Yue, Feng [Shanghai Institute of Spaceflight Control Technology, Shanghai 200233 (China); Wu, Jian [China Research Institute of Radio wave Propagation, Beijing 102206 (China); Li, Hui [Department of Physics, Harbin Institute of Technology, Harbin 150001 (China); China Research Institute of Radio wave Propagation, Beijing 102206 (China)


    The propagation properties of electromagnetic (EM) waves in fully ionized dusty plasmas is the subject of this study. The dielectric relationships for EM waves propagating in a fully ionized dusty plasma was derived from the Boltzmann distribution law, taking into consideration the collision and charging effects of the dust grains. The propagation properties of the EM waves in a dusty plasma were numerically calculated and studied. The study results indicated that the dusty grains with an increased radius and charge were more likely to impede the penetration of EM waves. Dust grains with large radii and high charge cause the attenuation of the EM wave in the dusty plasma. The different density of the dust in the plasma appeared to have no obvious effect on the transmission of the EM waves. The propagation of the EM waves in a weakly ionized dusty plasma varies from that in a fully ionized dusty plasma. The results are helpful to analyze the effects of dust in dusty plasmas and also provide a theoretical basis for future studies.

  4. Numerical Study of Balearic Meteotsunami Generation and Propagation under Synthetic Gravity Wave Forcing (United States)

    Licer, Matjaz; Mourre, Baptiste; Troupin, Charles; Krietemeyer, Andreas; Tintoré, Joaquín


    A high resolution nested ocean modelling system forced by synthetic atmospheric gravity waves is used to investigate meteotsunami generation, amplification and propagation properties over the Mallorca-Menorca shelf (Balearic Islands, Western Mediterranean Sea). We determine how meteotsunami amplitude outside and inside of the Balearic port of Ciutadella depends on forcing gravity wave direction, speed and trajectory. Contributions of Mallorca shelves and Menorca Channel are quantified for different gravity wave forcing angles and speeds. Results indicate that the Channel is the key build-up region and that Northern and Southern Mallorca shelves do not significantly contribute to the amplitude of substantial harbour oscillations in Ciutadella. This fact seriously reduces early-warning alert times in cases of locally generated pressure perturbations. Tracking meteotsunami propagation paths in the Menorca Channel for several forcing velocities, we show that the Channel bathymetry serves as a focusing lens for meteotsunami waves whose paths are constrained by the forcing direction. Faster meteotsunamis are shown to propagate over deeper ocean regions, as required by the Proudman resonance. Meteotsunami speed under sub- and supercritical forcing is estimated and a first order estimate of its magnitude is derived. Meteotsunamis generated by the supercritical gravity waves are found to propagate with a velocity which is equal to an arithmetic mean of the gravity wave speed and local ocean barotropic wave speed.

  5. Guided wave propagation in single and double layer hollow cylinders embedded in infinite media. (United States)

    Jia, Hua; Jing, Mu; Joseph, L Rose


    Millions of miles of pipes are being used for the transportation, distribution, and local use of petroleum products, gas, water, and chemicals. Most of the pipes are buried in soil, leading to the significance of the study on the subject of guided wave propagation in pipes with soil influence. Previous investigations of ultrasonic guided wave propagation in an elastic hollow cylinder and in an elastic hollow cylinder coated with a viscoelastic material have led to the development of inspection techniques for bare and coated pipes. However, the lack of investigation on guided wave propagation in hollow cylinders embedded in infinite media like soil has hindered the development of pipe inspection methods. Therefore the influence of infinite media on wave propagation is explored in this paper. Dispersion curves and wave structures of both axisymmetric and nonaxisymmetric wave modes are developed. Due to the importance of the convergence of numerical calculations, the requirements of thickness and element number of the finite soil layer between hollow cylinder and infinite element layer are discussed, and an optimal combination is obtained in this paper. Wave structures are used for the mode identification in the non-monotonic region caused by the viscoelastic properties of coating and infinite media.

  6. Coupling model for waves propagating over a porous seabed

    Directory of Open Access Journals (Sweden)

    C.C. Liao


    Full Text Available The wave–seabed interaction issue is of great importance for the design of foundation around marine infrastructures. Most previous investigations for such a problem have been limited to uncoupled or one-way coupled methods connecting two separated wave and seabed sub models with the continuity of pressures at the seabed surface. In this study, a strongly coupled model was proposed to realize both wave and seabed processes in a same program and to calculate the wave fields and seabed response simultaneously. The information between wave fields and seabed fields were strongly shared and thus results in a more profound investigation of the mechanism of the wave–seabed interaction. In this letter, the wave and seabed models were validated with previous experimental tests. Then, a set of application of present model were discussed in prediction of the wave-induced seabed response. Numerical results show the wave-induced liquefaction area of coupled model is smaller than that of uncoupled model.

  7. Relativistic nonlinearity and wave-guide propagation of rippled laser ...

    Indian Academy of Sciences (India)

    In the present paper we have investigated the self-focusing behaviour of radially symmetrical rippled Gaussian laser beam propagating in a plasma. Considering the nonlinearity to arise from relativistic phenomena and following the approach of Akhmanov et al, which is based on the WKB and paraxial-ray approximation, ...

  8. Wave Propagation in an Ion Beam-Plasma System

    DEFF Research Database (Denmark)

    Jensen, T. D.; Michelsen, Poul; Juul Rasmussen, Jens


    The spatial evolution of a velocity- or density-modulated ion beam is calculated for stable and unstable ion beam plasma systems, using the linearized Vlasov-Poisson equations. The propagation properties are found to be strongly dependent on the form of modulation. In the case of velocity...

  9. Do electromagnetic waves always propagate along null geodesics? (United States)

    Asenjo, Felipe A.; Hojman, Sergio A.


    We find exact solutions to Maxwell equations written in terms of four-vector potentials in non-rotating, as well as in Gödel and Kerr spacetimes. We show that Maxwell equations can be reduced to two uncoupled second-order differential equations for combinations of the components of the four-vector potential. Exact electromagnetic waves solutions are written on given gravitational field backgrounds where they evolve. We find that in non-rotating spherical symmetric spacetimes, electromagnetic waves travel along null geodesics. However, electromagnetic waves on Gödel and Kerr spacetimes do not exhibit that behavior.

  10. Short Wave Multipolar Antenna for Propagation by NVIS Effect


    Pereira, Igor; Martins, Maria João; Baptista, António; Gonçalves, Mariano


    The objectives of this papper is to design, build and test an antenna resonant at the frequencies of 4, 5, 6, and 7 MHz, in the high frequency band (HF). With this antenna we want to explore and use NVIS (Near Vertical Incidence Sky wave), which consists in using the ionosphere as a reflector layer of sky waves, that reach the ionosphere with angles near vertical incidence. When reflected, these waves achieve distances from dozens to hundreds of kilometers for the established communication. F...

  11. Transient eastward-propagating long-period waves observed over the South Pole

    Directory of Open Access Journals (Sweden)

    S. E. Palo

    Full Text Available Observations of the horizontal wind field over the South Pole were made during 1995 using a meteor radar. These data have revealed the presence of a rich spectrum of waves over the South Pole with a distinct annual occurrence. Included in this spectrum are long-period waves, whose periods are greater than one solar day, which are propagating eastward. These waves exhibit a distinct seasonal occurrence where the envelope of wave periods decreases from a period of 10 days near the fall equinox to a minimum of 2 days near the winter solstice and then progresses towards a period near 10 days at the spring equinox. Computation of the meridional gradient of quasi-geostrophic potential vorticity has revealed a region in the high-latitude upper mesosphere which could support an instability and serve as a source for these waves. Estimation of the wave periods which would be generated from an instability in this region closely resembles the observed seasonal variation in wave periods over the South Pole. These results are consistent with the hypothesis that the observed eastward propagating long-period waves over the South Pole are generated by an instability in the polar upper mesosphere. However, given our limited data set we cannot rule out a stratospheric source. Embedded in this spectrum of eastward propagating waves during the austral winter are a number of distinct wave events. Eight such wave events have been identified and localized using a constant-Q filter bank. The periods of these wave events ranges from 1.7 to 9.8 days and all exist for at least 3 wave periods. Least squares analysis has revealed that a number of these events are inconsistent with a wave propagating zonally around the geographic pole and could be related to waves propagating around a dynamical pole which is offset from the geographic pole. Additionally, one event which was observed appears to be a standing oscillation.

    Key words. Meteorology and atmospheric

  12. Transient eastward-propagating long-period waves observed over the South Pole

    Directory of Open Access Journals (Sweden)

    S. E. Palo


    Full Text Available Observations of the horizontal wind field over the South Pole were made during 1995 using a meteor radar. These data have revealed the presence of a rich spectrum of waves over the South Pole with a distinct annual occurrence. Included in this spectrum are long-period waves, whose periods are greater than one solar day, which are propagating eastward. These waves exhibit a distinct seasonal occurrence where the envelope of wave periods decreases from a period of 10 days near the fall equinox to a minimum of 2 days near the winter solstice and then progresses towards a period near 10 days at the spring equinox. Computation of the meridional gradient of quasi-geostrophic potential vorticity has revealed a region in the high-latitude upper mesosphere which could support an instability and serve as a source for these waves. Estimation of the wave periods which would be generated from an instability in this region closely resembles the observed seasonal variation in wave periods over the South Pole. These results are consistent with the hypothesis that the observed eastward propagating long-period waves over the South Pole are generated by an instability in the polar upper mesosphere. However, given our limited data set we cannot rule out a stratospheric source. Embedded in this spectrum of eastward propagating waves during the austral winter are a number of distinct wave events. Eight such wave events have been identified and localized using a constant-Q filter bank. The periods of these wave events ranges from 1.7 to 9.8 days and all exist for at least 3 wave periods. Least squares analysis has revealed that a number of these events are inconsistent with a wave propagating zonally around the geographic pole and could be related to waves propagating around a dynamical pole which is offset from the geographic pole. Additionally, one event which was observed appears to be a standing oscillation.Key words. Meteorology and atmospheric dynamics (Middle

  13. Experimental and modeling analysis of fast ionization wave discharge propagation in a rectangular geometry

    Energy Technology Data Exchange (ETDEWEB)

    Takashima, Keisuke; Adamovich, Igor V. [Department of Mechanical and Aerospace Engineering, Ohio State University, Columbus, Ohio 43210 (United States); Xiong Zhongmin; Kushner, Mark J. [Department of Electrical Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States); Starikovskaia, Svetlana [Ecole Polytechnique, Paris (France); Czarnetzki, Uwe; Luggenhoelscher, Dirk [Department of Physics and Astronomy, Ruhr University Bochum, Bochum (Germany)


    Fast ionization wave (FIW), nanosecond pulse discharge propagation in nitrogen and helium in a rectangular geometry channel/waveguide is studied experimentally using calibrated capacitive probe measurements. The repetitive nanosecond pulse discharge in the channel was generated using a custom designed pulsed plasma generator (peak voltage 10-40 kV, pulse duration 30-100 ns, and voltage rise time {approx}1 kV/ns), generating a sequence of alternating polarity high-voltage pulses at a pulse repetition rate of 20 Hz. Both negative polarity and positive polarity ionization waves have been studied. Ionization wave speed, as well as time-resolved potential distributions and axial electric field distributions in the propagating discharge are inferred from the capacitive probe data. ICCD images show that at the present conditions the FIW discharge in helium is diffuse and volume-filling, while in nitrogen the discharge propagates along the walls of the channel. FIW discharge propagation has been analyzed numerically using quasi-one-dimensional and two-dimensional kinetic models in a hydrodynamic (drift-diffusion), local ionization approximation. The wave speed and the electric field distribution in the wave front predicted by the model are in good agreement with the experimental results. A self-similar analytic solution of the fast ionization wave propagation equations has also been obtained. The analytic model of the FIW discharge predicts key ionization wave parameters, such as wave speed, peak electric field in the front, potential difference across the wave, and electron density as functions of the waveform on the high voltage electrode, in good agreement with the numerical calculations and the experimental results.

  14. Propagation of Tsunami-like Surface Long Waves in the Bays of a Variable Depth

    Directory of Open Access Journals (Sweden)

    A.Yu. Bazykina


    Full Text Available Within the framework of the nonlinear long wave theory the regularities of solitary long wave propagation in the semi-closed bays of model and real geometry are numerically studied. In the present article the zones of wave amplification in the bay are found. The first one is located near the wave running-up on the beach (in front of the bay entrance and the other one – in the middle part of the sea basin. Wave propagation in these zones is accompanied both by significant rise and considerable fall of the sea level. Narrowing of the bay entrance and increase of the entering wave length result in decrease of the sea level maximum rises and falls. The Feodosiya Gulf in the Black Sea is considered as a real basin. In general the dynamics of the waves in the gulf is similar to wave dynamics in the model bay. Four zones of the strongest wave amplification in the Feodosiya Gulf are revealed in the article. The sea level maximum rises and extreme falls which tend to grow with decrease of the entering wave length are observed in these zones. The distance traveled by the wave before the collapse (due to non-linear effects, was found to reduce with decreasing wavelength of the entrance to the bay (gulf.

  15. Synthetic Seismograms in Heterogeneous Elastic Waveguides and Applications in Investigating LG-Wave Propagation

    National Research Council Canada - National Science Library

    Wu, R


    ... those with small-scale random heterogeneities and random rough interfaces of sedimentary layers. Synthetic seismograms and snapshots are shown to facilitate the study of path effects of Lg waves...

  16. Analysis of pulse thermography using similarities between wave and diffusion propagation (United States)

    Gershenson, M.


    Pulse thermography or thermal wave imaging are commonly used as nondestructive evaluation (NDE) method. While the technical aspect has evolve with time, theoretical interpretation is lagging. Interpretation is still using curved fitting on a log log scale. A new approach based directly on the governing differential equation is introduced. By using relationships between wave propagation and the diffusive propagation of thermal excitation, it is shown that one can transform from solutions in one type of propagation to the other. The method is based on the similarities between the Laplace transforms of the diffusion equation and the wave equation. For diffusive propagation we have the Laplace variable s to the first power, while for the wave propagation similar equations occur with s2. For discrete time the transformation between the domains is performed by multiplying the temperature data vector by a matrix. The transform is local. The performance of the techniques is tested on synthetic data. The application of common back projection techniques used in the processing of wave data is also demonstrated. The combined use of the transform and back projection makes it possible to improve both depth and lateral resolution of transient thermography.

  17. Propagating Waves and Target Patterns in Chemical Systems. (United States)


    known cualitative kinetics of the R7 reaction. The technicues are expected to be of value in reaction- diffusion-convection problems as well. DtC rB...mathematicians alike. Most of it has been experimental, but much computer simulation and mathematical analysis has also been done. Chemical wave activity is...circular front which spreals outward. Since the fronts are very narrow in our analysis , they appear locally as plane waves. Therefore it suffices to treat

  18. Propagation of Nonlinear Surface Waves over Viscoelastic Mud (United States)

    Sharifi-Neyestani, E.; Tahvildari, N.


    Mud is ubiquitous in coastal waters, and it is well known that surface waves dissipate strongly over a muddy seabed. An accurate model for wave evolution requires an accurate characterization of mud rheology. There has been several assumptions for mud rheology. In this study, we incorporate a mud-induced damping mechanism in a frequency-domain phase-resolving nonlinear wave model. The mud layer is assumed to be thin and behave as a viscoelastic medium. First, model results for monochromatic surface waves are compared with laboratory experiments and a good comparison is obtained. It is shown that increasing the mud elasticity results in a decrease in damping and an increase in phase-shift from the case with a purely viscous mud. The validated model is then employed to examine the combined effect of mud viscosity and elasticity on evolution of surface wave spectrum. Two-dimensional simulations demonstrate strong wave dissipation over a mud patch resulting in a significant diffraction in the lee side.

  19. Propagation effect of gravitational wave on detector response

    CERN Document Server

    Chang, Zhe; Zhao, Zhi-Chao


    The response of a detector to gravitational wave is a function of frequency. When the time a photon moving around in the Fabry-Perot cavities is the same order of the period of a gravitational wave, the phase-difference due to the gravitational wave should be an integral along the path. We present a formula description for detector response to gravitational wave with varied frequencies. The LIGO data for GW150914 and GW 151226 are reexamined in this framework. For GW150924, the traveling time of a photon in the LIGO detector is just a bit larger than a half period of the highest frequency of gravitational wave and the similar result is obtained with LIGO and Virgo collaborations. However, we are not always so luck. In the case of GW151226, the time of a photon traveling in the detector is larger than the period of the highest frequency of gravitational wave and the announced signal cannot match well the template with the initial black hole masses 14.2M$_\\odot$ and 7.5M$_\\odot$.

  20. Electromagnetic induction and radiation-induced abnormality of wave propagation in excitable media (United States)

    Ma, Jun; Wu, Fuqiang; Hayat, Tasawar; Zhou, Ping; Tang, Jun


    Continuous wave emitting from sinus node of the heart plays an important role in wave propagating among cardiac tissue, while the heart beating can be terminated when the target wave is broken into turbulent states by electromagnetic radiation. In this investigation, local periodical forcing is applied on the media to induce continuous target wave in the improved cardiac model, which the effect of electromagnetic induction is considered by using magnetic flux, then external electromagnetic radiation is imposed on the media. It is found that target wave propagation can be blocked to stand in a local area and the excitability of media is suppressed to approach quiescent but homogeneous state when electromagnetic radiation is imposed on the media. The sampled time series for membrane potentials decrease to quiescent state due to the electromagnetic radiation. It could accounts for the mechanism of abnormality in heart failure exposed to continuous electromagnetic field.

  1. Second-harmonic generation of cylindrical electromagnetic waves propagating in an inhomogeneous and nonlinear medium. (United States)

    Xiong, Hao; Si, Liu-Gang; Ding, Chunling; Yang, Xiaoxue; Wu, Ying


    A general description of cylindrical electromagnetic waves propagating in nonlinear and inhomogeneous media is given by deducing cylindrical coupled-wave equations. Based on the cylindrical coupled-wave equations, we analyze second-harmonic generation (SHG) of some special cases of inhomogeneity, and find that the inhomogeneity of the first- and second-order polarization can influence the amplitude of the SHG. From a different point of view, exact solutions of cylindrical electromagnetic waves propagating in a nonlinear medium with a special case of inhomogeneity have been obtained previously. We show that cylindrical SHG in an inhomogeneous and nonlinear medium can also be deduced from exact solutions. As verification, we compare the results obtained from the two different methods and find that descriptions of SHG by the coupled-wave equations are in good agreement with the exact solutions.

  2. Guided Wave Propagation Study on Laminated Composites by Frequency-Wavenumber Technique (United States)

    Tian, Zhenhua; Yu, Lingyu; Leckey, Cara A. C.


    Toward the goal of delamination detection and quantification in laminated composites, this paper examines guided wave propagation and wave interaction with delamination damage in laminated carbon fiber reinforced polymer (CFRP) composites using frequency-wavenumber (f-kappa) analysis. Three-dimensional elastodynamic finite integration technique (EFIT) is used to acquire simulated time-space wavefields for a CFRP composite. The time-space wavefields show trapped waves in the delamination region. To unveil the wave propagation physics, the time-space wavefields are further analyzed by using two-dimensional (2D) Fourier transforms (FT). In the analysis results, new f-k components are observed when the incident guided waves interact with the delamination damage. These new f-kappa components in the simulations are experimentally verified through data obtained from scanning laser Doppler vibrometer (SLDV) tests. By filtering the new f-kappa components, delamination damage is detected and quantified.

  3. Analysis of Wave Propagation in Mechanical Continua Using a New Variational Approach (United States)

    Chakraborty, Goutam


    In this paper a new variational principle is presented for studying various wave propagation phenomena without explicitly deriving the equations of motion. The method looks for steady state solutions of linear or non-linear partial differential equations that admit wave-like solutions. Dispersion relations of plane waves propagating in unbounded continuous media, transmission and reflection coefficients of wave incident on the boundary of two semi-infinite media and wave impedance and mobility in an excited medium are studied with the help of the same principle. Numerous examples are given to clarify the method adopted showing distinct advantages over the traditional methods. The scientific insights that this principle provides are also highlighted.

  4. EM wave propagation analysis in plasma covered radar absorbing material

    CERN Document Server

    Singh, Hema; Rawat, Harish Singh


    This book focuses on EM propagation characteristics within multilayered plasma-dielectric-metallic media. The method used for analysis is impedance transformation method. Plasma covered radar absorbing material is approximated as a multi-layered dielectric medium. The plasma is considered to be bounded homogeneous/inhomogeneous medium. The reflection coefficient and hence return loss is analytically derived. The role of plasma parameters, such as electron density, collision frequency, plasma thickness, and plasma density profile in the absorption behavior of multi-layered plasma-RAM structure is described. This book provides a clearer picture of EM propagation within plasma. The reader will get an insight of plasma parameters that play significant role in deciding the absorption characteristics of plasma covered surfaces.

  5. Propagation Dynamics of Nonspreading Cosine-Gauss Water-Wave Pulses. (United States)

    Fu, Shenhe; Tsur, Yuval; Zhou, Jianying; Shemer, Lev; Arie, Ady


    Linear gravity water waves are highly dispersive; therefore, the spreading of initially short wave trains characterizes water surface waves, and is a universal property of a dispersive medium. Only if there is sufficient nonlinearity does this envelope admit solitary solutions which do not spread and remain in fixed forms. Here, in contrast to the nonlinear localized wave packets, we present both theoretically and experimentally a new type of linearly nondispersive water wave, having a cosine-Gauss envelope, as well as its higher-order Hermite cosine-Gauss variations. We show that these waves preserve their width despite the inherent dispersion while propagating in an 18-m wave tank, accompanied by a slowly varying carrier-envelope phase. These wave packets exhibit self-healing; i.e., they are restored after bypassing an obstacle. We further demonstrate that these nondispersive waves are robust to weakly nonlinear perturbations. In the strong nonlinear regime, symmetry breaking of these waves is observed, but their cosine-Gauss shapes are still approximately preserved during propagation.

  6. Low-frequency pressure wave propagation in liquid-filled, flexible tubes. (A)

    DEFF Research Database (Denmark)

    Bjørnø, Leif; Bjelland, C.


    A model has been developed for propagation of low-frequency pressure waves in viscoelastic tubes with distensibility of greater importance than compressibility of the liquid. The dispersion and attenuation are shown to be strongly dependent on the viscoelastic properties of the tube wall...... the model and are compared with results of experimental pressure wave propagation in the liquid-filled, flexible tube. A good agreement between experimental data and theoretical predictions is found........ The complex, frequency-dependent moduli of relevant tube materials have been measured in a series of experiments using three different experimental procedures, and the data obtained are compared. The three procedures were: (1) ultrasonic wave propagation, (2) transversal resonance in bar samples, and (3...

  7. Use of Finite Point Method for Wave Propagation in Nonhomogeneous Unbounded Domains

    Directory of Open Access Journals (Sweden)

    S. Moazam


    Full Text Available Wave propagation in an unbounded domain surrounding the stimulation resource is one of the important issues for engineers. Past literature is mainly concentrated on the modelling and estimation of the wave propagation in partially layered, homogeneous, and unbounded domains with harmonic properties. In this study, a new approach based on the Finite Point Method (FPM has been introduced to analyze and solve the problems of wave propagation in any nonhomogeneous unbounded domain. The proposed method has the ability to use the domain properties by coordinate as an input. Therefore, there is no restriction in the form of the domain properties, such as being periodical as in the case of existing similar numerical methods. The proposed method can model the boundary points between phases with trace of errors and the results of this method satisfy both conditions of decay and radiation.

  8. On the rogue wave propagation in ion pair superthermal plasma

    Energy Technology Data Exchange (ETDEWEB)

    Abdelwahed, H. G., E-mail:, E-mail:; Zahran, M. A. [Physics Department, College of Sciences and Humanities Studies Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj (Saudi Arabia); Theoretical Physics Group, Physics Department, Faculty of Science, Mansoura University, Mansoura (Egypt); El-Shewy, E. K., E-mail:; Elwakil, S. A. [Theoretical Physics Group, Physics Department, Faculty of Science, Mansoura University, Mansoura (Egypt)


    Effects of superthermal electron on the features of nonlinear acoustic waves in unmagnetized collisionless ion pair plasma with superthermal electrons have been examined. The system equations are reduced in the form of the nonlinear Schrodinger equation. The rogue wave characteristics dependences on the ionic density ratio (ν = n{sub –0}/n{sub +0}), ionic mass ratio (Q = m{sub +}/m{sub −}), and superthermality index (κ) are investigated. It is worth mentioning that the results present in this work could be applicable in the Earth's ionosphere plasmas.

  9. Unstructured Spectral Element Model for Dispersive and Nonlinear Wave Propagation

    DEFF Research Database (Denmark)

    Engsig-Karup, Allan Peter; Eskilsson, Claes; Bigoni, Daniele


    ). In the present paper we use a single layer of quadratic (in 2D) and prismatic (in 3D) elements. The model has been stabilized through a combination of over-integration of the Galerkin projections and a mild modal filter. We present numerical tests of nonlinear waves serving as a proof-of-concept validation......We introduce a new stabilized high-order and unstructured numerical model for modeling fully nonlinear and dispersive water waves. The model is based on a nodal spectral element method of arbitrary order in space and a -transformed formulation due to Cai, Langtangen, Nielsen and Tveito (1998...

  10. Propagation of two longitudinal waves in a cancellous bone with the closed pore boundary. (United States)

    Mizuno, Katsunori; Nagatani, Yoshiki; Yamashita, Keisuke; Matsukawa, Mami


    Ultrasound propagation in cancellous bone (porous media) under the condition of closed pore boundaries was investigated. A cancellous bone and two plate-like cortical bones obtained from a racehorse were prepared. A water-immersion ultrasound technique in the MHz range and a three-dimensional elastic finite-difference time-domain (FDTD) method were used to investigate the waves. The experiments and simulations showed a clear separation of the incident longitudinal wave into fast and slow waves. The findings advance the evaluation of bones based on the two-wave phenomenon for in vivo assessment.

  11. SH wave propagation in joined half-spaces composed of elastic metamaterials (United States)

    Shi, Xiaona; Shu, Haisheng; Zhou, Haiyong; Zhao, Lei; Liu, Ru; An, Shuowei; Zhu, Jie


    Based on the effective-medium theory, the propagation of a shear horizontal (SH) wave in joined half-spaces composed of elastic metamaterials (EMMs) is investigated. From the dispersion relations, the effects of negative effective-medium parameters on the properties of a SH wave traveling near the interface are analyzed in detail. It is found that a SH wave can always appear and travel along the interface under specific effective-parameter combinations no matter whether the effective transverse wave velocity is imaginary or real. This is significantly different from the classical case (joined half-spaces composed of natural media), and the existence of these SH interfacial wave modes may have important impacts on EMM-based SH wave manipulation, especially wave isolation and object protection.

  12. Source and listener directivity for interactive wave-based sound propagation. (United States)

    Mehra, Ravish; Antani, Lakulish; Kim, Sujeong; Manocha, Dinesh


    We present an approach to model dynamic, data-driven source and listener directivity for interactive wave-based sound propagation in virtual environments and computer games. Our directional source representation is expressed as a linear combination of elementary spherical harmonic (SH) sources. In the preprocessing stage, we precompute and encode the propagated sound fields due to each SH source. At runtime, we perform the SH decomposition of the varying source directivity interactively and compute the total sound field at the listener position as a weighted sum of precomputed SH sound fields. We propose a novel plane-wave decomposition approach based on higher-order derivatives of the sound field that enables dynamic HRTF-based listener directivity at runtime. We provide a generic framework to incorporate our source and listener directivity in any offline or online frequency-domain wave-based sound propagation algorithm. We have integrated our sound propagation system in Valve's Source game engine and use it to demonstrate realistic acoustic effects such as sound amplification, diffraction low-passing, scattering, localization, externalization, and spatial sound, generated by wave-based propagation of directional sources and listener in complex scenarios. We also present results from our preliminary user study.

  13. Surface wave propagation in a fluid-saturated incompressible ...

    Indian Academy of Sciences (India)

    ... half-space is also deduced and discussed. Keywords. Incompressible porous medium; volume fractions; frequency equation; phase velocity; wave number; attenuation coefficient. 1. Introduction. Porous media theories play an important role in many branches of engineering including materials science, petroleum industry, ...

  14. Ultrasound wave propagation through rough interfaces: Iterative methods

    NARCIS (Netherlands)

    Berkhoff, Arthur P.; Thijssen, J.M.; van den Berg, P.M.

    Two iterative methods for the calculation of acoustic transmission through a rough interface between two media are compared. The methods employ a continuous version of the conjugate gradient technique. One method is based on plane-wave expansions and the other on boundary integral equations and

  15. Nonlinear wave propagation through a ferromagnet with damping in ...

    Indian Academy of Sciences (India)

    Formulation of the problem. We are considering electromagnetic waves in a ferromagnet under an external magnetic field in the presence of dissipative effect in (2 + 1) dimensions. The basic equations relevant to the present problem are the following : V x = 1. Ш. V xА = Ш. (1). The magnetic induction and the magnetic field ...

  16. Simulation of wave propagation through aberrating layers of biological media

    NARCIS (Netherlands)

    Berkhoff, Arthur P.; van den Berg, P.M.; Thijssen, J.M.


    Two iterative methods for the calculation of acoustic reflection and transmission at a rough interface between two media are compared. The methods are based on a continuous version of the conjugate gradient technique. One method is based on plane-wave expansions while the other method is based on

  17. Spherically symmetric inhomogeneous bianisotropic media: Wave propagation and light scattering

    DEFF Research Database (Denmark)

    Novitsky, Andrey; Shalin, Alexander S.; Lavrinenko, Andrei


    We develop a technique for finding closed-form expressions for electromagnetic fields in radially inhomogeneous bianisotropic media, both the solutions of the Maxwell equations and material tensors being defined by the set of auxiliary two-dimensional matrices. The approach is applied to determin...... the scattering cross-sections by spherical particles, the fields inside which correspond to the Airy-exponential waves....

  18. Demonstrating Sound Wave Propagation with Candle Flame and Loudspeaker (United States)

    Hrepic, Zdeslav; Nettles, Corey; Bonilla, Chelsea


    The motion of a candle flame in front of a loudspeaker has been suggested as a productive demonstration of the longitudinal wave nature of sound. The demonstration has been used also as a research tool to investigate students' understanding about sound. The underpinning of both applications is the expectation of a horizontal, back-and-forth…

  19. Nonlinear wave propagation studies, dispersion modeling, and signal parameters correction

    Czech Academy of Sciences Publication Activity Database

    Převorovský, Zdeněk

    ..: ..., 2004, 00. [European Workshop on FP6-AERONEWS /1./. Naples (IT), 13.09.2004-16.09.2004] EU Projects: European Commission(XE) 502927 - AERO-NEWS Institutional research plan: CEZ:AV0Z2076919 Keywords : nodestructive testing * nonlinear elastic wave spectroscopy Subject RIV: BI - Acoustics

  20. Wave propagation in coated cylinders with reference to fretting fatigue

    Indian Academy of Sciences (India)

    Fretting fatigue is the phenomenon of crack initiation due to dynamic contact loading, a situation which is commonly encountered in mechanical couplings subjected to vibration. The study of fretting fatigue in high frequency regime has gained importance in recent years. However the stress wave effects at high frequency y ...

  1. Wave Propagation in Granular Media Including Marine Sediments (United States)


    involves the non-linear properties of the thin film of fluid separating adjacent grains. Intergranular interactions give rise to dissipation and dispersion...Sessarego, Laboratoire de Mecanique et d’Acoustique, C.N.R.S., Marseille, has a laboratory-based experimental program on acoustic waves in sediments. We

  2. Nonlinear propagation of weakly relativistic ion-acoustic waves in ...

    Indian Academy of Sciences (India)


    4], in the polar ... and potentiality in investigating various types of collec- tive processes in astrophysical, space as well as ... Different types of ion-acoustic, dust-acoustic or elec- tron-acoustic waves have been studied [27–31] ...

  3. Propagation of ultrasonic Love waves in nonhomogeneous elastic functionally graded materials. (United States)

    Kiełczyński, P; Szalewski, M; Balcerzak, A; Wieja, K


    This paper presents a theoretical study of the propagation behavior of ultrasonic Love waves in nonhomogeneous functionally graded elastic materials, which is a vital problem in the mechanics of solids. The elastic properties (shear modulus) of a semi-infinite elastic half-space vary monotonically with the depth (distance from the surface of the material). The Direct Sturm-Liouville Problem that describes the propagation of Love waves in nonhomogeneous elastic functionally graded materials is formulated and solved by using two methods: i.e., (1) Finite Difference Method, and (2) Haskell-Thompson Transfer Matrix Method. The dispersion curves of phase and group velocity of surface Love waves in inhomogeneous elastic graded materials are evaluated. The integral formula for the group velocity of Love waves in nonhomogeneous elastic graded materials has been established. The effect of elastic non-homogeneities on the dispersion curves of Love waves is discussed. Two Love wave waveguide structures are analyzed: (1) a nonhomogeneous elastic surface layer deposited on a homogeneous elastic substrate, and (2) a semi-infinite nonhomogeneous elastic half-space. Obtained in this work, the phase and group velocity dispersion curves of Love waves propagating in the considered nonhomogeneous elastic waveguides have not previously been reported in the scientific literature. The results of this paper may give a deeper insight into the nature of Love waves propagation in elastic nonhomogeneous functionally graded materials, and can provide theoretical guidance for the design and optimization of Love wave based devices. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Propagation of Gaussian wave packets in complex media and application to fracture characterization (United States)

    Ding, Yinshuai; Zheng, Yingcai; Zhou, Hua-Wei; Howell, Michael; Hu, Hao; Zhang, Yu


    Knowledge of the subsurface fracture networks is critical in probing the tectonic stress states and flow of fluids in reservoirs containing fractures. We propose to characterize fractures using scattered seismic data, based on the theory of local plane-wave multiple scattering in a fractured medium. We construct a localized directional wave packet using point sources on the surface and propagate it toward the targeted subsurface fractures. The wave packet behaves as a local plane wave when interacting with the fractures. The interaction produces multiple scattering of the wave packet that eventually travels up to the surface receivers. The propagation direction and amplitude of the multiply scattered wave can be used to characterize fracture density, orientation and compliance. Two key aspects in this characterization process are the spatial localization and directionality of the wave packet. Here we first show the physical behaviour of a new localized wave, known as the Gaussian Wave Packet (GWP), by examining its analytical solution originally formulated for a homogenous medium. We then use a numerical finite-difference time-domain (FDTD) method to study its propagation behaviour in heterogeneous media. We find that a GWP can still be localized and directional in space even over a large propagation distance in heterogeneous media. We then propose a method to decompose the recorded seismic wavefield into GWPs based on the reverse-time concept. This method enables us to create a virtually recorded seismic data using field shot gathers, as if the source were an incident GWP. Finally, we demonstrate the feasibility of using GWPs for fracture characterization using three numerical examples. For a medium containing fractures, we can reliably invert for the local parameters of multiple fracture sets. Differing from conventional seismic imaging such as migration methods, our fracture characterization method is less sensitive to errors in the background velocity model

  5. Wound-induced Ca2+wave propagates through a simple release and diffusion mechanism. (United States)

    Handly, L Naomi; Wollman, Roy


    Damage-associated molecular patterns (DAMPs) are critical mediators of information concerning tissue damage from damaged cells to neighboring healthy cells. ATP acts as an effective DAMP when released into extracellular space from damaged cells. Extracellular ATP receptors monitor tissue damage and activate a Ca 2+ wave in the surrounding healthy cells. How the Ca 2+ wave propagates through cells after a wound is unclear. Ca 2+ wave activation can occur extracellularly via external receptors or intracellularly through GAP junctions. Three potential mechanisms to propagate the Ca 2+ wave are source and sink, amplifying wave, and release and diffusion. Both source and sink and amplifying wave regulate ATP levels using hydrolysis or secretion, respectively, whereas release and diffusion relies on dilution. Here we systematically test these hypotheses using a microfluidics assay to mechanically wound an epithelial monolayer in combination with direct manipulation of ATP hydrolysis and release. We show that a release and diffusion model sufficiently explains Ca 2+ -wave propagation after an epithelial wound. A release and diffusion model combines the benefits of fast activation at short length scales with a self-limiting response to prevent unnecessary inflammatory responses harmful to the organism. © 2017 Handly et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (

  6. Fully Noncontact Wave Propagation Imaging in an Immersed Metallic Plate with a Crack

    Directory of Open Access Journals (Sweden)

    Jung-Ryul Lee


    Full Text Available This study presents a noncontact sensing technique with ultrasonic wave propagation imaging algorithm, for damage visualization of liquid-immersed structures. An aluminum plate specimen (400 mm × 400 mm × 3 mm with a 12 mm slit was immersed in water and in glycerin. A 532 nm Q-switched continuous wave laser is used at an energy level of 1.2 mJ to scan an area of 100 mm × 100 mm. A laser Doppler vibrometer is used as a noncontact ultrasonic sensor, which measures guided wave displacement at a fixed point. The tests are performed with two different cases of specimen: without water and filled with water and with glycerin. Lamb wave dispersion curves for the respective cases are calculated, to investigate the velocity-frequency relationship of each wave mode. Experimental propagation velocities of Lamb waves for different cases are compared with the theoretical dispersion curves. This study shows that the dispersion and attenuation of the Lamb wave is affected by the surrounding liquid, and the comparative experimental results are presented to verify it. In addition, it is demonstrated that the developed fully noncontact ultrasonic propagation imaging system is capable of damage sizing in submerged structures.

  7. Oblique propagation of whistler mode waves in the chorus source region (United States)

    Santolík, O.; Gurnett, D. A.; Pickett, J. S.; Chum, J.; Cornilleau-Wehrlin, N.


    Whistler mode chorus has been shown to play a role in the process of local acceleration of electrons in the outer Van Allen radiation belt. Most of the quasi-linear and nonlinear theoretical studies assume that the waves propagate parallel to the terrestrial magnetic field. We show a case where this assumption is invalid. We use data from the Cluster spacecraft to characterize propagation and spectral properties of chorus. The recorded high-resolution waveforms show that chorus in the source region can be formed by a succession of discrete wave packets with decreasing frequency that sometimes change into shapeless hiss. These changes occur at the same time in the entire source region. Multicomponent measurements show that waves in both these regimes can be found at large angles to the terrestrial magnetic field. The hiss intervals contain waves propagating less than one tenth of a degree from the resonance cone. In the regime of discrete wave packets the peak of the wave energy density is found at a few degrees from the resonance cone in a broad interval of azimuth angles. The wave intensity increases with the distance from the magnetic field minimum along a given field line, indicating a gradual amplification of chorus in the source region.

  8. Controlling wave-vector of propagating surface plasmon polaritons on single-crystalline gold nanoplates. (United States)

    Luo, Si; Yang, Hangbo; Yang, Yuanqing; Zhao, Ding; Chen, Xingxing; Qiu, Min; Li, Qiang


    Surface plasmon polaritons (SPPs) propagating at metal nanostructures play an important role in breaking the diffraction limit. Chemically synthesized single-crystalline metal nanoplates with atomically flat surfaces provide favorable features compared with traditional polycrystalline metal films. The excitation and propagation of leaky SPPs on micrometer sized (10-20 μm) and thin (30 nm) gold nanoplates are investigated utilizing leakage radiation microscopy. By varying polarization and excitation positions of incident light on apexes of nanoplates, wave-vector (including propagation constant and propagation direction) distributions of leaky SPPs in Fourier planes can be controlled, indicating tunable SPP propagation. These results hold promise for potential development of chemically synthesized single-crystalline metal nanoplates as plasmonic platforms in future applications.

  9. Analysis of 38 GHz mmWave Propagation Characteristics of Urban Scenarios

    DEFF Research Database (Denmark)

    Rodriguez Larrad, Ignacio; Nguyen, Huan Cong; Sørensen, Troels Bundgaard


    The 38 GHz mm-wave frequency band is a strong candidate for the future deployment of wireless systems. Compared to lower frequency bands, propagation in the 38 GHz band is relatively unexplored for access networks in urban scenarios. This paper presents a detailed measurement-based analysis......, diffraction, transmission, as well as polarization effects. The measurement results confirm that, at this particular frequency, propagation in urban scenarios is mainly driven by line-of-sight and reflection. The proposed models are practical for implementation in system level simulators or ray-tracing tools...... of urban outdoor and outdoor-to-indoor propagation characteristics at 38 GHz. Different sets of measurements were performed in order to understand, quantify and model the behavior of the different underlying propagation mechanisms. The study considers line-of-sight propagation, reflection, scattering...

  10. Space-time topology optimization for one-dimensional wave propagation

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard


    -dimensional transient wave propagation in an elastic rod with time dependent Young's modulus. By two simulation examples it is demonstrated how dynamic structures can display rich dynamic behavior such as wavenumber/frequency shifts and lack of energy conservation. The optimization method's potential for creating...... structures with novel dynamic behavior is illustrated by a simple example; it is shown that an elastic rod in which the optimized stiffness distribution is allowed to vary in time can be much more efficient in prohibiting wave propagation compared to a static bandgap structure. Optimized designs in form...

  11. Wave Propagation From Electrons to Photonic Crystals and Left-Handed Materials

    CERN Document Server

    Markos, Peter


    This textbook offers the first unified treatment of wave propagation in electronic and electromagnetic systems and introduces readers to the essentials of the transfer matrix method, a powerful analytical tool that can be used to model and study an array of problems pertaining to wave propagation in electrons and photons. It is aimed at graduate and advanced undergraduate students in physics, materials science, electrical and computer engineering, and mathematics, and is ideal for researchers in photonic crystals, negative index materials, left-handed materials, plasmonics, nonlinear effects,

  12. Coherence theory of electromagnetic wave propagation through stratified N-layer media. (United States)

    Hoenders, B J; Bertolotti, M


    The theory of second-order coherence in connection with wave propagation through a stratified N-layer (SNL) medium is developed. Especially, the influence of the SNL medium on the propagation of the coherence generated by a given state of coherence at the entrance plane of the medium is considered. The generalization of the van Cittert-Zernike theorem is obtained, and the propagation of the second-order coherence from a quasi-homogeneous surface distribution or a rough surface is calculated. Furthermore, the influence of SNL media on the coherence properties of a pulse is calculated.

  13. [Influence of the brain functional state evoked by spreading depression wave propagation on the recurrent waves properties]. (United States)

    Roshchina, G Ia; Koroleva, V I; Davydov, V I


    EEG aftereffects of spreading depression waves were studied in waking rabbits in chronic experiments by spectral coherence analysis. Experiments were divided in two groups: early (from the first to the third-fourth experiments) and late (fifth-tenth experiments). During the early experimental series, unilateral persistent EEG changes consisting in an increase in the delta- and beta-band power with a simultaneous depression of the gamma-band activity were observed in the ipsilateral to SD hemisphere. In addition, interhemispheric coherence between symmetrical cortical points decreased. During the late experimental series, a generalized bilateral increase in the power of the delta and beta activity was demonstrated with a rise in coherence in the beta band. This generalized activity occurred cyclically and was distinct during a long period of time (2-3 hours) after propagation of a single SD wave. Such kind of cyclical activity blocked the propagation of subsequent SD waves in the neocortex of a waking rabbit and decreased the probability of recurrent wave origin up to a complete cessation of wave generation. Thus, a cortical SD wave provoked the appearance of synchronized beta oscillations in the EEG, which in turn actively influenced the properties of recurrent waves.

  14. Propagation of magnetosonic and whistler-mode waves from the magnetosphere and atmosphere into the ionosphere (United States)

    Santolik, O.; Parrot, M.; Chum, J.; Nemec, F.


    We summarize observations of the DEMETER spacecraft in the top-side ionosphere related to the lightning activity, to the downward propagating magnetospheric chorus emissions and to the magnetosonic harmonic ELF emissions close to the geomagnetic equator. At the 707 km altitude of DEMETER, we have observed 3D electric and magnetic field waveforms of fractional-hop whistlers. We identify corresponding source lightning strokes and we perform multidimensional analysis of the measurements and obtain detailed information on wave polarization characteristics and propagation directions. This allows us for the first time to combine these measurements with ray tracing simulation in order to directly characterize how the radiation penetrates through the ionosphere. We also interpret observations of low-altitude electromagnetic ELF hiss observed on the dayside at subauroral latitudes. These waves propagate with downward directed wave vectors which are slightly equatorward inclined at lower magnetic latitudes and slightly poleward inclined at higher latitudes. Reverse ray tracing indicates a possible source region near the geomagnetic equator at a radial distance between 5 and 7 Earth radii and we find that low-altitude ELF hiss contains discrete time-frequency structures resembling wave packets of whistler mode chorus. The reverse raypaths of ELF hiss are consistent with the hypothesis that the frequently observed dayside ELF hiss is a low-altitude manifestation of natural magnetospheric emissions of whistler mode chorus. Finally, we analyze waves that propagate in the extraordinary magnetosonic mode to the ionosphere from larger radial distances close to the plane of the geomagnetic equator. These waves show a characteristic harmonic structure very similar to previously reported observations of equatorial noise in the magnetosphere. The observed mode structure is influenced by the presence of multiple ions in the plasma of the top-side ionosphere but the spectral and

  15. Selective spatial damping of propagating kink waves due to resonant absorption (United States)

    Terradas, J.; Goossens, M.; Verth, G.


    Context. There is observational evidence of propagating kink waves driven by photospheric motions. These disturbances, interpreted as kink magnetohydrodynamic (MHD) waves are attenuated as they propagate upwards in the solar corona. Aims: We show that resonant absorption provides a simple explanation to the spatial damping of these waves. Methods: Kink MHD waves are studied using a cylindrical model of solar magnetic flux tubes, which includes a non-uniform layer at the tube boundary. Assuming that the frequency is real and the longitudinal wavenumber complex, the damping length and damping per wavelength produced by resonant absorption are analytically calculated in the thin tube (TT) approximation, valid for coronal waves. This assumption is relaxed in the case of chromospheric tube waves and filament thread waves. Results: The damping length of propagating kink waves due to resonant absorption is a monotonically decreasing function of frequency. For kink waves with low frequencies, the damping length is exactly inversely proportional to frequency, and we denote this as the TGV relation. When moving to high frequencies, the TGV relation continues to be an exceptionally good approximation of the actual dependency of the damping length on frequency. This dependency means that resonant absorption is selective as it favours low-frequency waves and can efficiently remove high-frequency waves from a broad band spectrum of kink waves. The efficiency of the damping due to resonant absorption depends on the properties of the equilibrium model, in particular on the width of the non-uniform layer and the steepness of the variation in the local Alfvén speed. Conclusions: Resonant absorption is an effective mechanism for the spatial damping of propagating kink waves. It is selective because the damping length is inversely proportional to frequency so that the damping becomes more severe with increasing frequency. This means that radial inhomogeneity can cause solar

  16. Mapping of spin wave propagation in a one-dimensional magnonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Ordóñez-Romero, César L., E-mail:; Lazcano-Ortiz, Zorayda; Aguilar-Huerta, Melisa; Monsivais, Guillermo [Instituto de Física, Universidad Nacional Autónoma de México, CU, México D.F. 04510 (Mexico); Drozdovskii, Andrey; Kalinikos, Boris [St. Petersburg Electrotechnical University, 197376 St. Petersburg (Russian Federation); International laboratory “MultiferrLab,” ITMO University, 197101 St. Petersburg (Russian Federation); Domínguez-Juárez, J. L. [Cátedras CONACyT, CFATA, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230 (Mexico); Lopez-Maldonado, Guillermo [Universidad Autónoma Metropolitana, Lerma de Villada, 52006 Estado de México (Mexico); Qureshi, Naser; Kolokoltsev, Oleg [CCADET, Universidad Nacional Autónoma de México, CU, México D.F. 04510 (Mexico)


    The formation and evolution of spin wave band gaps in the transmission spectrum of a magnonic crystal have been studied. A time and space resolved magneto inductive probing system has been used to map the spin wave propagation and evolution in a geometrically structured yttrium iron garnet film. Experiments have been carried out using (1) a chemically etched magnonic crystal supporting the propagation of magnetostatic surface spin waves, (2) a short microwave pulsed excitation of the spin waves, and (3) direct spin wave detection using a movable magneto inductive probe connected to a synchronized fast oscilloscope. The results show that the periodic structure not only modifies the spectra of the transmitted spin waves but also influences the distribution of the spin wave energy inside the magnonic crystal as a function of the position and the transmitted frequency. These results comprise an experimental confirmation of Bloch′s theorem in a spin wave system and demonstrate good agreement with theoretical observations in analogue phononic and photonic systems. Theoretical prediction of the structured transmission spectra is achieved using a simple model based on microwave transmission lines theory. Here, a spin wave system illustrates in detail the evolution of a much more general physical concept: the band gap.

  17. Kelvin-Helmholtz billows and their effects on mean state during gravity wave propagation

    Directory of Open Access Journals (Sweden)

    X. Liu


    Full Text Available The Kelvin-Helmholtz (KH billows which appear in the process of gravity wave (GW propagation are simulated directly by using a compressible nonlinear two-dimensional gravity wave model. The differences between our model and others include: the background field has no special initial configuration and there is no initial triggering mechanism needed in the mesosphere and lower thermosphere (MLT region to excite the KH billows. However, the initial triggering mechanism is performed in the lower atmosphere through GW, which then propagate into the MLT region and form billows. The braid structures and overturning of KH billows, caused by nonlinear interactions between GWs and mean flow, can be resolved precisely by the model. These results support the findings in airglow studies that GWs propagating from below into the MLT region are important sources of KH billows. The onset of small scale waves and the wave energy transfer induce the shallower vertical wave number power spectral densities (PSD. However, most of the slopes are steeper than the expected kz−3 power law, which indicates that GWs with 10 km vertical wavelength are still a dominant mode. The results also show that the evolution of mean wind vary substantially between the different processes of GWs propagation. Before the KH billows evolve, the mean wind is accelerated greatly by GWs. By contrast, as the KH billows evolve and mix with mean flow, the mean wind and its peak value decrease.

  18. Visualization of stress wave propagation via air-coupled acoustic emission sensors (United States)

    Rivey, Joshua C.; Lee, Gil-Yong; Yang, Jinkyu; Kim, Youngkey; Kim, Sungchan


    We experimentally demonstrate the feasibility of visualizing stress waves propagating in plates using air-coupled acoustic emission sensors. Specifically, we employ a device that embeds arrays of microphones around an optical lens in a helical pattern. By implementing a beamforming technique, this remote sensing system allows us to record wave propagation events in situ via a single-shot and full-field measurement. This is a significant improvement over the conventional wave propagation tracking approaches based on laser doppler vibrometry or digital image correlation techniques. In this paper, we focus on demonstrating the feasibility and efficacy of this air-coupled acoustic emission technique by using large metallic plates exposed to external impacts. The visualization results of stress wave propagation will be shown under various impact scenarios. The proposed technique can be used to characterize and localize damage by detecting the attenuation, reflection, and scattering of stress waves that occurs at damage locations. This can ultimately lead to the development of new structural health monitoring and nondestructive evaluation methods for identifying hidden cracks or delaminations in metallic or composite plate structures, simultaneously negating the need for mounted contact sensors.

  19. Propagation of electromagnetic waves in a turbulent medium (United States)

    Canuto, V. M.; Hartke, G. J.


    Theoretical modeling of the wealth of experimental data on propagation of electromagnetic radiation through turbulent media has centered on the use of the Heisenberg-Kolmogorov (HK) model, which is, however, valid only for medium to small sized eddies. Ad hoc modifications of the HK model to encompass the large-scale region of the eddy spectrum have been widely used, but a sound physical basis has been lacking. A model for large-scale turbulence that was recently proposed is applied to the above problem. The spectral density of the temperature field is derived and used to calculate the structure function of the index of refraction N. The result is compared with available data, yielding a reasonably good fit. The variance of N is also in accord with the data. The model is also applied to propagation effects. The phase structure function, covariance of the log amplitude, and variance of the log intensity are calculated. The calculated phase structure function is in excellent agreement with available data.

  20. Radio wave propagation through vegetation: Factors influencing signal attenuation (United States)

    Savage, Nick; Ndzi, David; Seville, Andrew; Vilar, Enric; Austin, John


    The paper describes an extensive wideband channel sounding measurement campaign to investigate signal propagation through vegetation. The measurements have been conducted at three frequencies (1.3, 2 and 11.6 GHz) at sites with different measurement geometries and tree species. The data have been used to evaluate current narrowband empirical vegetation attenuation models and study the prevailing propagation mechanisms. Evaluation of the modified exponential decay (MED), maximum attenuation (MA) and nonzero gradient (NZG) models show that on a site by site basis, the NZG model gives the best prediction of excess attenuation due to vegetation. The MA model has been found to be the worst of the three models. The studies have shown that the measurement site used to obtain the NZG model parameter values given in () [2001] is influenced by metal lampposts and passing traffic, and thus was based on corrupted data. The results show that the leaf state, measurement geometry and vegetation density are more important factors influencing signal attenuation than tree species or leaf shape. Generally, the 11.6 GHz signal was attenuated much more than the 1.3 and 2 GHz signals by vegetation in-leaf, but the differences in attenuation were not significant in the out-of-leaf state. A successful excess attenuation model due to vegetation must consider the measurement geometry and vegetation descriptive parameters as well as any contributions from ground reflection and/or diffraction over the top or round edges of the trees.

  1. Structural damage diagnostics via wave propagation-based filtering techniques (United States)

    Ayers, James T., III

    Structural health monitoring (SHM) of aerospace components is a rapidly emerging field due in part to commercial and military transport vehicles remaining in operation beyond their designed life cycles. Damage detection strategies are sought that provide real-time information of the structure's integrity. One approach that has shown promise to accurately identify and quantify structural defects is based on guided ultrasonic wave (GUW) inspections, where low amplitude attenuation properties allow for long range and large specimen evaluation. One drawback to GUWs is that they exhibit a complex multi-modal response, such that each frequency corresponds to at least two excited modes, and thus intelligent signal processing is required for even the simplest of structures. In addition, GUWs are dispersive, whereby the wave velocity is a function of frequency, and the shape of the wave packet changes over the spatial domain, requiring sophisticated detection algorithms. Moreover, existing damage quantification measures are typically formulated as a comparison of the damaged to undamaged response, which has proven to be highly sensitive to changes in environment, and therefore often unreliable. As a response to these challenges inherent to GUW inspections, this research develops techniques to locate and estimate the severity of the damage. Specifically, a phase gradient based localization algorithm is introduced to identify the defect position independent of excitation frequency and damage size. Mode separation through the filtering technique is central in isolating and extracting single mode components, such as reflected, converted, and transmitted modes that may arise from the incident wave impacting a damage. Spatially-integrated single and multiple component mode coefficients are also formulated with the intent to better characterize wave reflections and conversions and to increase the signal to noise ratios. The techniques are applied to damaged isotropic finite

  2. Nonlocal wave propagation in an embedded DWBNNT conveying fluid via strain gradient theory

    Energy Technology Data Exchange (ETDEWEB)

    Ghorbanpour Arani, A., E-mail: [Faculty of Mechanical Engineering, University of Kashan, Kashan (Iran, Islamic Republic of); Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan (Iran, Islamic Republic of); Kolahchi, R.; Vossough, H. [Faculty of Mechanical Engineering, University of Kashan, Kashan (Iran, Islamic Republic of)


    Based on the strain gradient and Eringen's piezoelasticity theories, wave propagation of an embedded double-walled boron nitride nanotube (DWBNNT) conveying fluid is investigated using Euler-Bernoulli beam model. The elastic medium is simulated by the Pasternak foundation. The van der Waals (vdW) forces between the inner and outer nanotubes are taken into account. Since, considering electro-mechanical coupling made the nonlinear motion equations, a numerical procedure is proposed to evaluate the upstream and downstream phase velocities. The results indicate that the effect of nonlinear terms in motion equations on the phase velocity cannot be neglected at lower wave numbers. Furthermore, the effect of fluid-conveying on wave propagation of the DWBNNT is significant at lower wave numbers.

  3. A study of the propagation of compression waves in porous medium filled with steam

    Energy Technology Data Exchange (ETDEWEB)

    Sutrisno; Wintolo, D.; Kamal, S. [Gadjah Mada Univ., Yogyakarta (Indonesia)] [and others


    A preliminary investigation on the propagation of compression waves through a radial system of porous medium filled with steam has been conducted for the case of uniform and non-uniform basic temperature distributions. When a relatively weak pressure disturbance is introduced as a signal source in a uniform temperature system, it is found that the pressure disturbance decays away and smears out as time progresses. However, for the case of a non-uniform basic temperature distribution, the temperature gradient and fluid viscosity give significant effects on the reduction of pressure signal attenuation. The attenuation of the compression waves depends on the wave frequencies. For higher frequencies the strength of the signal decays rapidly, and for lower, frequencies the signal could propagate farther away. It is found also that porosity and permeability distributions gives significant effects on the amplitude and the wave profiles.

  4. A study of the propagation of compression waves in porous medium filled with steam

    Energy Technology Data Exchange (ETDEWEB)

    Sutrisno; Djoko Wintolo; Samsul Kamal; Sudarman, S.


    A preliminary investigation on the propagation of compression waves through a radial system of porous medium filled with steam has been conducted for the case of uniform and non-uniform basic temperature distributions. When a relatively weak pressure disturbance is introduced as a signal source in a uniform temperature system, it is found that the pressure disturbance decays away and smears out as time progresses. However, for the case of a nonuniform basic temperature distribution, the temperature gradient and fluid viscosity give significant effects on the reduction of pressure signal attenuation. The attenuation of the compression waves depends on the wave frequencies. For higher frequencies the strength of the signal decays rapidly, and for lower frequencies the signal could propagate farther away. It is found also that porosity and permeability distributions gives significant effects on the amplitude and the wave profiles.

  5. Experimental observation of electron-acoustic wave propagation in laboratory plasma (United States)

    Chowdhury, Satyajit; Biswas, Subir; Chakrabarti, Nikhil; Pal, Rabindranath


    In the field of fundamental plasma waves, the direct observation of electron-acoustic wave (EAW) propagation in laboratory plasmas remains a challenging problem, mainly because of heavy damping. In the Magnetized Plasma Linear Experimental device, the wave is observed and seen to propagate with the phase velocity ˜ 1.8 times the electron thermal velocity. A small amount of cold, drifting electrons, with the moderate bulk to cold temperature ratio ( ≈ 2 - 3), is present in the device. It plays a crucial role in reducing the damping. Our calculation reveals that the drift relaxes the stringent condition on the temperature ratio for wave destabilization. Growth rate becomes positive above a certain drift velocity even if the temperature ratio is moderate. The observed phase velocity agrees well with the theoretical estimate. Experimental realization of the mode may open up a new avenue in the EAW research.

  6. Atoms in the counter-propagating frequency-modulated waves: splitting, cooling, confinement (United States)

    Romanenko, Victor I.; Kornilovska, Nataliya V.


    We show that the counter-propagating frequency-modulated (FM) waves of the same intensity can split an orthogonal atomic beam into two beams. We calculate the temperature of the atomic ensemble for the case when the atoms are grouped around zero velocity in the direction of the waves propagation. The high-intensity laser radiation with a properly chosen carrier frequency can form a one-dimensional trap for atoms. We carry out the numerical simulation of the atomic motion (two-level model of the atom-field interaction) using parameters appropriate for sodium atoms and show that sub-Doppler cooling can be reached. We suppose that such a cooling is partly based on the cooling without spontaneous emission in polychromatic waves [H. Metcalf, Phys. Rev. A 77, 061401 (2008)]. We calculate the state of the atom in the field by the Monte Carlo wave-function method and describe its mechanical motion by the classical mechanics.

  7. Study on Propagation Characteristics of Ultrasonic Guided Wave for EMAT Sensor

    Directory of Open Access Journals (Sweden)

    Songsong LI


    Full Text Available Guided wave technology using Electromagnetic Acoustic Transducer has the advantages of withstand high sensitivity, low attenuation, quickly and efficiently detection etc. To effectively detect the defects, it is necessary to study the propagation characteristics of guided wave. In this paper, the dispersion and multimode characteristics of guided waves are studied by the disperse simulation software, and the variation rule of propagation is analyzed by the geometric parameters of plate and pipe. The results show that the dispersion characteristics of guided wave are depended on the material, the thickness and inner diameter, and it is better at lower frequencies and smaller thickness. This is helpful to the selection of excitation mode, operating frequency and transducer structure parameter.

  8. A Temporal Millimeter Wave Propagation Model for Tunnels Using Ray Frustum Techniques and FFT

    Directory of Open Access Journals (Sweden)

    Choonghyen Kwon


    Full Text Available A temporal millimeter wave propagation model for tunnels is presented using ray frustum techniques and fast Fourier transform (FFT. To directly estimate or simulate effects of millimeter wave channel properties on the performance of communication services, time domain impulse responses of demodulated signals should be obtained, which needs rather large computation time. To mitigate the computational burden, ray frustum techniques are used to obtain frequency domain transfer function of millimeter wave propagation environment and FFT of equivalent low pass signals are used to retrieve demodulated waveforms. This approach is numerically efficient and helps to directly estimate impact of tunnel structures and surfaces roughness on the performance of millimeter wave communication services.

  9. The instability of counter-propagating kernel gravity waves in a constant shear flow

    CERN Document Server

    Umurhan, O M; Harnik, N; Lott, F


    The mechanism describing the recently developed notion of kernel gravity waves (KGWs) is reviewed and such structures are employed to interpret the unstable dynamics of an example stratified plane parallel shear flow. This flow has constant vertical shear, is infinite in the vertical extent, and characterized by two density jumps of equal magnitude each decreasing successively with height, in which the jumps are located symmetrically away from the midplane of the system. We find that for a suitably defined bulk-Richardson number there exists a band of horizontal wavenumbers which exhibits normal-mode instability. The instability mechanism closely parallels the mechanism responsible for the instability seen in the problem of counter-propagating Rossby waves. In this problem the instability arises out of the interaction of counter-propagating gravity waves. We argue that the instability meets the Hayashi-Young criterion for wave instability. We also argue that the instability is the simplest one that can arise ...

  10. Waves of seed propagation induced by delayed animal dispersion. (United States)

    Kazimierski, Laila D; Kuperman, Marcelo N; Wio, Horacio S; Abramson, Guillermo


    We study a model of seed dispersal that considers the inclusion of an animal disperser moving diffusively, feeding on fruits and transporting the seeds, which are later deposited and capable of germination. The dynamics depends on several population parameters of growth, decay, harvesting, transport, digestion and germination. In particular, the deposition of transported seeds at places away from their collection sites produces a delay in the dynamics, whose effects are the focus of this work. Analytical and numerical solutions of different simplified scenarios show the existence of travelling waves. The effect of zoochory is apparent in the increase of the velocity of these waves. The results support the hypothesis of the relevance of animal mediated seed dispersion when trying to understand the origin of the high rates of vegetable invasion observed in real systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Analysis of strain wave propagation in polymeric materials

    Energy Technology Data Exchange (ETDEWEB)

    Harstad, E.N.; Foster, J.C., Jr; Wilson, L.L.: Maudlin, P.J.; Schreyer, H.L.


    Polymeric materials used as binders in energetic materials exhibit interesting and unique material behavior. These include full geometrical recovery after deformation and a rate dependent stress strain relationship which can be categorized as viscoelastic. Taylor Cylinder Impact Tests have been conducted for adiprene-100 polyurethane. These produce time resolved cylinder profiles from which deformation wave speed can be extracted as a function of strain and strain-rate. Using this information and a set of conservation `Jump` relationships applied across the deformation wave front, stress points as a function of strain and strain rate can be extracted. This discretized information then can be used in the development of a constitutive relationship suitable for use in a three dimensional computer code calculation.

  12. High-Order Wave Propagation Algorithms for Hyperbolic Systems

    KAUST Repository

    Ketcheson, David I.


    We present a finite volume method that is applicable to hyperbolic PDEs including spatially varying and semilinear nonconservative systems. The spatial discretization, like that of the well-known Clawpack software, is based on solving Riemann problems and calculating fluctuations (not fluxes). The implementation employs weighted essentially nonoscillatory reconstruction in space and strong stability preserving Runge--Kutta integration in time. The method can be extended to arbitrarily high order of accuracy and allows a well-balanced implementation for capturing solutions of balance laws near steady state. This well-balancing is achieved through the $f$-wave Riemann solver and a novel wave-slope WENO reconstruction procedure. The wide applicability and advantageous properties of the method are demonstrated through numerical examples, including problems in nonconservative form, problems with spatially varying fluxes, and problems involving near-equilibrium solutions of balance laws.

  13. Wave Propagation: Odd is Better, but Three is Best

    Indian Academy of Sciences (India)

    place - so much so, that 'panglossian' has come to de- scribe a hopelessly idealistic view held in ... other results, he showed that the general solution of the onE7-dimensional wave equation a2uj at2. - (:2 ()2uj ax2 = 0 is of the form n(x, .... The latter is then evaluated by applying Cauchy's. Residue Theorem. Let 0 be a large ...

  14. Ultrasonic wave propagation in cocoa butter during crystallization


    Rigolle, Annelien; Descheemaeker, Jan; Van Den Abeele, Koen; Foubert, Imogen


    In the production of fat containing food products, insight in the crystallization behaviour of fats is of utmost importance to obtain the desired product functionality and product quality. The aim of this research is to study the potential of advanced ultrasonic techniques to monitor fat crystallization. For reasons of sensitivity and signal quality during the entire process, we concentrate on shear wave reflectivity measurements at the interface between a fat sample and ...

  15. Highly Nonlinear Wave Propagation in Elastic Woodpile Periodic Structures (United States)


    called a nanopteron, is not only motivated theoretically and numerically, but are also visualized experimentally by means of a laser Doppler vibrometer...This system can also be useful for manipulating stress waves at will, for example, to achieve strong attenuation and modulation of high-amplitude...electromagnetic counterpart – called woodpile photonic crystals – that successfully demon- strated their efficacy and versatility in manipulating elec

  16. Monitoring and modeling of ultrasonic wave propagation in crystallizing mixtures (United States)

    Marshall, T.; Challis, R. E.; Tebbutt, J. S.


    The utility of ultrasonic compression wave techniques for monitoring crystallization processes is investigated in a study of the seeded crystallization of copper II sulfate pentahydrate from aqueous solution. Simple models are applied to predict crystal yield, crystal size distribution and the changing nature of the continuous phase. A scattering model is used to predict the ultrasonic attenuation as crystallization proceeds. Experiments confirm that modeled attenuation is in agreement with measured results.

  17. Effects of obliquely opposing and following currents on wave propagation in a new 3D wave-current basin (United States)

    Lieske, Mike; Schlurmann, Torsten


    INTRODUCTION & MOTIVATION The design of structures in coastal and offshore areas and their maintenance are key components of coastal protection. Usually, assessments of processes and loads on coastal structures are derived from experiments with flow and wave parameters in separate physical models. However, Peregrin (1976) already points out that processes in natural shallow coastal waters flow and sea state processes do not occur separately, but influence each other nonlinearly. Kemp & Simons (1982) perform 2D laboratory tests and study the interactions between a turbulent flow and following waves. They highlight the significance of wave-induced changes in the current properties, especially in the mean flow profiles, and draw attention to turbulent fluctuations and bottom shear stresses. Kemp & Simons (1983) also study these processes and features with opposing waves. Studies on the wave-current interaction in three-dimensional space for a certain wave height, wave period and water depth were conducted by MacIver et al. (2006). The research focus is set on the investigation of long-crested waves on obliquely opposing and following currents in the new 3D wave-current basin. METHODOLOGY In a first step the flow analysis without waves is carried out and includes measurements of flow profiles in the sweet spot of the basin at predefined measurement positions. Five measuring points in the water column have been delineated in different water depths in order to obtain vertical flow profiles. For the characterization of the undisturbed flow properties in the basin, an uniformly distributed flow was generated in the wave basin. In the second step wave analysis without current, the unidirectional wave propagation and wave height were investigated for long-crested waves in intermediate wave conditions. In the sweet spot of the wave basin waves with three different wave directions, three wave periods and uniform wave steepness were examined. For evaluation, we applied a common

  18. Neural Circuits for Peristaltic Wave Propagation in Crawling Drosophila Larvae: Analysis and Modeling

    Directory of Open Access Journals (Sweden)

    Julijana eGjorgjieva


    Full Text Available Drosophila larvae crawl by peristaltic waves of muscle contractions, which propagate along the animal body and involve the simultaneous contraction of the left and right side of each segment. Coordinated propagation of contraction does not require sensory input, suggesting that movement is generated by a central pattern generator (CPG. We characterized crawling behavior of newly hatched Drosophila larvae by quantifying timing and duration of segmental boundary contractions. We developed a CPG network model that recapitulates these patterns based on segmentally repeated units of excitatory and inhibitory neuronal populations coupled with immediate neighboring segments. A single network with symmetric coupling between neighboring segments succeeded in generating both forward and backward propagation of activity. The CPG network was robust to changes in amplitude and variability of connectivity strength. Introducing sensory feedback via `stretch-sensitive' neurons improved wave propagation properties such as speed of propagation and segmental contraction duration as observed experimentally. Sensory feedback also restored propagating activity patterns when an inappropriately tuned CPG network failed to generate waves. Finally, in a two-sided CPG model we demonstrated that two types of connectivity could synchronize the activity of two independent networks: connections from excitatory neurons on one side to excitatory contralateral neurons (E to E, and connections from inhibitory neurons on one side to excitatory contralateral neurons (I to E. To our knowledge, such I to E connectivity has not yet been found in any experimental system; however, it provides the most robust mechanism to synchronize activity between contralateral CPGs in our model. Our model provides a general framework for studying the conditions under which a single locally coupled network generates bilaterally synchronized and longitudinally propagating waves in either direction.

  19. Propagation of electromagnetic waves in Bose-Einstein condensate of atoms with dipole moments


    Poluektov, Yu. M.; Tanatarov, I. V.


    We study the propagation of electromagnetic waves in the Bose-Einstein condensate of atoms with both intrinsic dipole moments and those induced by the electric field. The modified Gross--Pitaevskii equation is used, which takes into account relaxation and interaction with the electromagnetic field. Two cases are considered: 1) when the dispersion curves of the electromagnetic wave and of the condensate excitations do not intercross and 2) when the condensate excitations' spectrum has a gap an...

  20. Elastic Wave Propagation for Condition Assessment of Steel Bar Embedded in Mortar


    Rucka M.; Zima B.


    This study deals with experimental and numerical investigations of elastic wave propagation in steel bars partially embedded in mortar. The bars with different bonding lengths were tested. Two types of damage were considered: damage of the steel bar and damage of the mortar. Longitudinal waves were excited by a piezoelectric actuator and a vibrometer was used to non-contact measurements of velocity signals. Numerical calculations were performed using the finite elements method. As a result, t...

  1. Electromagnetic Wave Propagation In The Plasma Layer of A Reentry Vehicle


    Kundrapu, Madhusudhan; Loverich, John; Beckwith, Kris; Stoltz, Peter; Shashurin, Alexey; Keidar, Michael


    The ability to simulate a reentry vehicle plasma layer and the radio wave interaction with that layer, is crucial to the design of aerospace vehicles when the analysis of radio communication blackout is required. Results of aerothermal heating, plasma generation and electromagnetic wave propagation over a reentry vehicle are presented in this paper. Simulation of a magnetic window radio communication blackout mitigation method is successfully demonstrated.

  2. Doubly Periodic Propagating Wave Patterns of (2+1)-Dimensional Maccari System (United States)

    Huang, Wen-Hua; Liu, Yu-Lu; Ma, Zheng-Yi


    Using the variable separation approach, we obtain a general exact solution with arbitrary variable separation functions for the (2+1)-dimensional Maccari system. By introducing Jacobi elliptic functions dn and nd in the seed solution, two types of doubly periodic propagating wave patterns are derived. We investigate the wave patterns evolution along with the modulus k increasing, many important and interesting properties are revealed.

  3. Sunward propagating Pc5 waves observed on the post-midnight magnetospheric flank

    Directory of Open Access Journals (Sweden)

    P. T. I. Eriksson


    Full Text Available The overall focus on the driver of toroidal Pc5 waves has been on processes located at or acting on the dayside magnetopause and dayside flanks of the magnetosphere. These processes can generate waves that propagate tailward in the magnetosphere. However, an increasing number of studies, both theoretical and experimental, have looked at waves propagating sunward and that are caused by processes in the magnetotail. Here we present an ultra low frequency (ULF wave observed in the post-midnight/morning sector of the magnetosphere at L=16 RE. The wave has a toroidal mode polarization. We estimate the azimuthal wave number to m=3, consistent with a toroidal mode type pulsation. The positive sign indicates that the wave is propagating sunward and this is confirmed by looking at the Poynting flux of the wave. The frequency of the wave is not constant with time but shows a small increase in the beginning of the event up to over 2.0 mHz. Then the frequency decreases to 1.0 mHz. This decrease coincides with a drop in the total magnetic field strength and we speculate if this is related to an observed reversal of the sign of the interplanetary magnetic field (IMF By-component. This event occurs during relatively quiet magnetospheric conditions with a solar wind speed of approximately 400 km/s. Thus this event is highly likely to be driven by a source in the magnetotail and the change in frequency is an excellent example that the frequency of an ULF wave may be modulated by changes of the plasma parameters on the resonant field line.

  4. On the superluminal propagation of X-shaped localized waves

    Energy Technology Data Exchange (ETDEWEB)

    Shaarawi, Amr M. [School of Science and Engineering, American University in Cairo, Cairo (Egypt); Besieris, Ioannis M. [Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA (United States)


    The generation and propagation of superluminal X-shaped pulses is investigated. We demonstrate that such pulses can be modelled using a spectral approach that produces time-limited Bessel beams. Special attention is given to calculating the velocities of the modelled pulsed Bessel beams. The velocities of the peaks of the resulting pulses depend on the shapes of the spatio-temporal distributions of the applied time-windows. The generation of pulsed Bessel beams is investigated for various set-ups; including circular arrays, annular slits and axicons. It is shown that superluminal pulsed Bessel beams undergo a delayed generation before they are launched; henceforth, the peak of these pulses travels at speeds exceeding that of light. (author)

  5. Nonlinear physics of electrical wave propagation in the heart: a review (United States)

    Alonso, Sergio; Bär, Markus; Echebarria, Blas


    The beating of the heart is a synchronized contraction of muscle cells (myocytes) that is triggered by a periodic sequence of electrical waves (action potentials) originating in the sino-atrial node and propagating over the atria and the ventricles. Cardiac arrhythmias like atrial and ventricular fibrillation (AF,VF) or ventricular tachycardia (VT) are caused by disruptions and instabilities of these electrical excitations, that lead to the emergence of rotating waves (VT) and turbulent wave patterns (AF,VF). Numerous simulation and experimental studies during the last 20 years have addressed these topics. In this review we focus on the nonlinear dynamics of wave propagation in the heart with an emphasis on the theory of pulses, spirals and scroll waves and their instabilities in excitable media with applications to cardiac modeling. After an introduction into electrophysiological models for action potential propagation, the modeling and analysis of spatiotemporal alternans, spiral and scroll meandering, spiral breakup and scroll wave instabilities like negative line tension and sproing are reviewed in depth and discussed with emphasis on their impact for cardiac arrhythmias.

  6. Efficient techniques for wave-based sound propagation in interactive applications (United States)

    Mehra, Ravish

    Sound propagation techniques model the effect of the environment on sound waves and predict their behavior from point of emission at the source to the final point of arrival at the listener. Sound is a pressure wave produced by mechanical vibration of a surface that propagates through a medium such as air or water, and the problem of sound propagation can be formulated mathematically as a second-order partial differential equation called the wave equation. Accurate techniques based on solving the wave equation, also called the wave-based techniques, are too expensive computationally and memory-wise. Therefore, these techniques face many challenges in terms of their applicability in interactive applications including sound propagation in large environments, time-varying source and listener directivity, and high simulation cost for mid-frequencies. In this dissertation, we propose a set of efficient wave-based sound propagation techniques that solve these three challenges and enable the use of wave-based sound propagation in interactive applications. Firstly, we propose a novel equivalent source technique for interactive wave-based sound propagation in large scenes spanning hundreds of meters. It is based on the equivalent source theory used for solving radiation and scattering problems in acoustics and electromagnetics. Instead of using a volumetric or surface-based approach, this technique takes an object-centric approach to sound propagation. The proposed equivalent source technique generates realistic acoustic effects and takes orders of magnitude less runtime memory compared to prior wave-based techniques. Secondly, we present an efficient framework for handling time-varying source and listener directivity for interactive wave-based sound propagation. The source directivity is represented as a linear combination of elementary spherical harmonic sources. This spherical harmonic-based representation of source directivity can support analytical, data

  7. Tsunami wave propagation using a high-order well-balanced finite volume scheme (United States)

    Castro, Cristóbal E.


    In this work we present a new numerical tool suitable for tsunami wave propagation simulations. We developed a finite volume high-order well-balanced numerical method on unstructured meshes based on the ADER-FV scheme [1]. We use the ADER-FV[2,3] scheme to solve with arbitrary accuracy in space and time the shallow water equation with non-constant bathymetry. In order to properly simulate a tsunami wave propagation we introduce the well-balanced or C-property[4] in the high-order numerical solution. In this presentation we address two important issues that appear when one tries to solve a tsunami propagation problem. First, when small gravity waves are propagated for hundred of wave-lengths, the accuracy in space and time of the numerical method is fundamental to preserve the amplitude. In this presentation we study the propagation of small perturbations over long distances, relating the order of accuracy, the mesh dimension and the wave amplitude. Second, as we deal with high-order schemes we can naturally use polynomial representation of the bathymetry. Here we try to understand the influence of the bathymetry representation in the final solution. [1] C. E. Castro et al. "ADER scheme on unstructured meshes for shallow water: simulation of tsunami waves", submitted [2] E. F. Toro et al. "Towards very high order godunov schemes". In E. F. Toro, editor, Godunov methods; Theory and applications, pages 907--940, Oxford, 2001. Kluwer Academic Plenum Publishers. [3] E. F. Toro and V. A. Titarev. "Solution of the generalized Riemann problem for advection-reaction equations". Proc. Roy. Soc. London, pages 271--281, 2002. [4] A. Bermúdez and M. E. Vázquez. "Upwind methods for hyperbolic conservation laws with source terms". Computer and Fluids, 23(8):1049--1071, 1994.

  8. Propagation characteristics of shock waves from a plane carbon-nanotube-coated optoacoustic transducer in water (United States)

    Fan, Xiaofeng; Baek, Yonggeun; Ha, Kanglyeol; Kim, Moojoon; Kim, Jungsoon; Kim, Duckjong; Kang, Hyun Wook; Oh, Junghwan


    An optoacoustic transducer made of light-absorbing and elastomeric materials can generate high-pressure wide-band ultrasound waves in water when it is illuminated by a pulse laser. To generate such waves with high efficiency, carbon nanotubes (CNTs) and poly(dimethylsiloxane) (PDMS) are widely used as the light-absorbing and elastomeric materials, respectively. It was previously reported that an optoacoustic concave transducer made of these materials can produce strong shock waves, namely, blast waves, within its focal zone. In this study, we have shown that these waves can also be generated by a plane optoacoustic transducer fabricated by coating CNTs-PDMS on a poly(methyl methacrylate) (PMMA) plate. Some propagation characteristics of the blast wave generated were measured and compared with the calculated results. It was found that the propagation speed and attenuation of the wave are different from those of usual sounds. From the comparison of the measured and the calculated acoustic fields, it is assumed that every point on the transducer surface produces almost the same blast wave.

  9. Wavelet Spectral Finite Elements for Wave Propagation in Composite Plates (United States)


    ply [0/90]2s. A piezoelectric (PZT) actuator (diameter 13.5 mm and thickness 0.22 mm) is affixed onto the composite plate using epoxy. A National...burst actuates at 15 kHz with 3.5 cycles to generate A0 Lamb waves (Fig. 9). A Scanning Laser Doppler Vibrometer (SLV) is employed to acquire the...cycles) and actuator voltage input. Piezoelectric (PZT) transducers are used as actuators and both PZT and LDV perform sensing. LDV collects

  10. Nonlinear Propagation of Mag Waves Through the Transition Region (United States)

    Jatenco-Pereira, V.; Steinolfson, R. S.; Mahajan, S.; Tajima, T.


    RESUMEN. Una onda de gravitaci5n magneto acustica (GMA), se inicia en el regimen de alta beta cerca de la basa de fot5sfera solar y es segui- da, usando simulaciones numericas, mientras viaja radialmente a traves de la cromosfera, la regi5n de transici6n y dentro de la corona. Se ha' seleccionado parametros iniciales de manera que la beta resulte menor que uno cerca de la parte alta de la regi6n de transici6n. Nuestro interes maximo se concentra en la cantidad y forma del flujo de energia que puede ser llevada por la onda hasta la corona dados una atm6sfera inicial y amplitud de onda especificas. Segun los estudios a la fecha, el flujo de energ1a termico domina, aumentando linealmente con la ampli tud deonda y resulta de aproximadamente i05 ergs/cm2-s en una amplitud de 0.5. El flujo de energia cinetica siempre permanece despreciable, mientras que el flujo de energia magnetica depende de la orientaci5n inicial del campo. Un modo GMA rapido y casi paralelo, el cual es esen- cialmente un modo MHD en la corona se convierte a un modo rapido modificado y a uno lento, cuando la beta atmosferica disminuye a uno. ABSTRACT: A magneto-acoustic-gravity (MAG) wave is initiated in the high-beta regime near the base of the solar photosphere and followed, using numerical siriiulations, as it travels radially through the chromosphere, the transition region, and into the corona. Initial parameters are selected such that beta becomes less than one near the top of the transition region. Our primary interest is in the amount and form of energy flux that can be carried by the wave train into the corona for a specified initial atmosphere and wave amplitude. For the studies conducted to date, the thermal energy flux dominates, it about linearly with wave amplitude and becomes approximately 10 ergs/cm2-s at an amplitude of 0.5. The kinetic energy flux always remains negligible, while the magnetic energy flux depends on the inLtial field orientation. A nearly parallel fast MAG mode, which

  11. High-resolution seismic wave propagation using local time stepping

    KAUST Repository

    Peter, Daniel


    High-resolution seismic wave simulations often require local refinements in numerical meshes to accurately capture e.g. steep topography or complex fault geometry. Together with explicit time schemes, this dramatically reduces the global time step size for ground-motion simulations due to numerical stability conditions. To alleviate this problem, local time stepping (LTS) algorithms allow an explicit time stepping scheme to adapt the time step to the element size, allowing nearoptimal time steps everywhere in the mesh. This can potentially lead to significantly faster simulation runtimes.

  12. Numerical and experimental study on the wave attenuation in bone--FDTD simulation of ultrasound propagation in cancellous bone. (United States)

    Nagatani, Yoshiki; Mizuno, Katsunori; Saeki, Takashi; Matsukawa, Mami; Sakaguchi, Takefumi; Hosoi, Hiroshi


    In cancellous bone, longitudinal waves often separate into fast and slow waves depending on the alignment of bone trabeculae in the propagation path. This interesting phenomenon becomes an effective tool for the diagnosis of osteoporosis because wave propagation behavior depends on the bone structure. Since the fast wave mainly propagates in trabeculae, this wave is considered to reflect the structure of trabeculae. For a new diagnosis method using the information of this fast wave, therefore, it is necessary to understand the generation mechanism and propagation behavior precisely. In this study, the generation process of fast wave was examined by numerical simulations using elastic finite-difference time-domain (FDTD) method and experimental measurements. As simulation models, three-dimensional X-ray computer tomography (CT) data of actual bone samples were used. Simulation and experimental results showed that the attenuation of fast wave was always higher in the early state of propagation, and they gradually decreased as the wave propagated in bone. This phenomenon is supposed to come from the complicated propagating paths of fast waves in cancellous bone.

  13. Wave propagation in magneto-electro-elastic multilayered plates with nonlocal effect (United States)

    Chen, Jiangyi; Guo, Junhong; Pan, Ernian


    In this paper, analytical solutions for propagation of time-harmonic waves in three-dimensional, transversely isotropic, magnetoelectroelastic and multilayered plates with nonlocal effect are derived. We first convert the time-harmonic wave problem into a linear eigenvalue system, from which we obtain the general solutions of the extended displacements and stresses. The solutions are then employed to derive the propagator matrix which connects the field variables at the upper and lower interfaces of each layer. Making use of the continuity conditions of the physical quantities across the interface, the global propagator relation is assembled by propagating the solutions in each layer from the bottom to the top of the layered plate. From the global propagator matrix, the dispersion equation is obtained by imposing the traction-free boundary conditions on both the top and bottom surfaces of the layered plate. Dispersion curves and mode shapes in layered plates made of piezoelectric BaTiO3 and magnetostrictive CoFe2O4 materials are presented to show the influence of the nonlocal parameter, stacking sequence, as well as the orientation of incident wave on the time-harmonic field response.

  14. Some peculiarities of spin-wave propagation in magnonic waveguides

    Directory of Open Access Journals (Sweden)

    Kalinikos B.


    Full Text Available A normal-mode theory for the dipole-exchange spin-wave spectrum in the finite-width ferromagnetic waveguide is presented. The theory takes into account a nonuniform character of the demagnetizing field in the waveguide cross section and, therefore, can be applied to any infinitely long, rectangular rod, even with square cross section. The inhomogeneity of static and dynamic dipole fields is taken into account using the same tensorial Green’s function, obtained from Maxwell equations, this fact allows to simplify the spectrum calculation procedure. According to the elaborated theory the spin-wave spectrum in the finite-width ferromagnetic waveguide can be calculated with simultaneous account of the dipole-dipole and exchange interaction, surface anisotropy, arbitrary direction of the external bias magnetic field and for any possible width-thickness aspect ratio of the magnonic waveguide. It is shown that the previously used analytical methods of the accounting of the finite width of the magnetic waveguides give unsuitable results for nanometer-size waveguides.

  15. Implicit finite-difference simulations of seismic wave propagation

    KAUST Repository

    Chu, Chunlei


    We propose a new finite-difference modeling method, implicit both in space and in time, for the scalar wave equation. We use a three-level implicit splitting time integration method for the temporal derivative and implicit finite-difference operators of arbitrary order for the spatial derivatives. Both the implicit splitting time integration method and the implicit spatial finite-difference operators require solving systems of linear equations. We show that it is possible to merge these two sets of linear systems, one from implicit temporal discretizations and the other from implicit spatial discretizations, to reduce the amount of computations to develop a highly efficient and accurate seismic modeling algorithm. We give the complete derivations of the implicit splitting time integration method and the implicit spatial finite-difference operators, and present the resulting discretized formulas for the scalar wave equation. We conduct a thorough numerical analysis on grid dispersions of this new implicit modeling method. We show that implicit spatial finite-difference operators greatly improve the accuracy of the implicit splitting time integration simulation results with only a slight increase in computational time, compared with explicit spatial finite-difference operators. We further verify this conclusion by both 2D and 3D numerical examples. © 2012 Society of Exploration Geophysicists.

  16. Symplectic Hamiltonian HDG methods for wave propagation phenomena (United States)

    Sánchez, M. A.; Ciuca, C.; Nguyen, N. C.; Peraire, J.; Cockburn, B.


    We devise the first symplectic Hamiltonian hybridizable discontinuous Galerkin (HDG) methods for the acoustic wave equation. We discretize in space by using a Hamiltonian HDG scheme, that is, an HDG method which preserves the Hamiltonian structure of the wave equation, and in time by using symplectic, diagonally implicit and explicit partitioned Runge-Kutta methods. The fundamental feature of the resulting scheme is that the conservation of a discrete energy, which is nothing but a discrete version of the original Hamiltonian, is guaranteed. We present numerical experiments which indicate that the method achieves optimal approximations of order k + 1 in the L2-norm when polynomials of degree k ≥ 0 and Runge-Kutta time-marching methods of order k + 1 are used. In addition, by means of post-processing techniques and by increasing the order of the Runge-Kutta method to k + 2, we obtain superconvergent approximations of order k + 2 in the L2-norm for the displacement and the velocity. We also present numerical examples that corroborate that the methods conserve energy and that they compare favorably with dissipative HDG schemes, of similar accuracy properties, for long-time simulations.

  17. Transferring Data from Smartwatch to Smartphone through Mechanical Wave Propagation

    Directory of Open Access Journals (Sweden)

    Seung-Chan Kim


    Full Text Available Inspired by the mechanisms of bone conduction transmission, we present a novel sensor and actuation system that enables a smartwatch to securely communicate with a peripheral touch device, such as a smartphone. Our system regards hand structures as a mechanical waveguide that transmits particular signals through mechanical waves. As a signal, we used high-frequency vibrations (18.0–20.0 kHz so that users cannot sense the signals either tactually or audibly. To this end, we adopted a commercial surface transducer, which is originally developed as a bone-conduction actuator, for mechanical signal generation. At the receiver side, a piezoelement was adopted for picking up the transferred mechanical signals. Experimental results have shown that the proposed system can successfully transfer data using mechanical waves. We also validate dual-frequency actuations under which high-frequency signals (18.0–20.0 kHz are generated along with low-frequency (up to 250 Hz haptic vibrations. The proposed method has advantages in terms of security in that it does not reveal the signals outside the body, meaning that it is not possible for attackers to eavesdrop on the signals. To further illustrate the possible application spaces, we conclude with explorations of the proposed approach.

  18. Transferring Data from Smartwatch to Smartphone through Mechanical Wave Propagation. (United States)

    Kim, Seung-Chan; Lim, Soo-Chul


    Inspired by the mechanisms of bone conduction transmission, we present a novel sensor and actuation system that enables a smartwatch to securely communicate with a peripheral touch device, such as a smartphone. Our system regards hand structures as a mechanical waveguide that transmits particular signals through mechanical waves. As a signal, we used high-frequency vibrations (18.0-20.0 kHz) so that users cannot sense the signals either tactually or audibly. To this end, we adopted a commercial surface transducer, which is originally developed as a bone-conduction actuator, for mechanical signal generation. At the receiver side, a piezoelement was adopted for picking up the transferred mechanical signals. Experimental results have shown that the proposed system can successfully transfer data using mechanical waves. We also validate dual-frequency actuations under which high-frequency signals (18.0-20.0 kHz) are generated along with low-frequency (up to 250 Hz) haptic vibrations. The proposed method has advantages in terms of security in that it does not reveal the signals outside the body, meaning that it is not possible for attackers to eavesdrop on the signals. To further illustrate the possible application spaces, we conclude with explorations of the proposed approach.

  19. Investigation of wave propagation in double cylindrical rods considering the effect of prestress (United States)

    Li, Chunlei; Han, Qiang; Liu, Yijie; Liu, Xiucheng; Wu, Bin


    This paper presents the investigation of guided wave propagation in prestressed double-cylinder structure. Based on Hertzian contact theory, the interaction between two rods is treated as a plane strain problem and the stress state in the waveguide under the static load is obtained. The stress state is considered as a prestressed configuration for elastic wave propagation analysis in double cylindrical rods. The elastodynamic equation of the prestressed structure is established with the updated Lagrangian formulation and the wave finite element (WFE) method. Firstly, the equation is verified by the application on an aluminum rod compared with the Euler-Bernoulli beam theory. Then, dispersion curves for single rod and double cylindrical rods without prestress are computed. Besides, at the dimensionless frequency 0.25 the propagating modes in double cylindrical rods are identified with mode shapes and displacement vectors. The guided waves in double rods consist of the modes different from single rod. Particularly, there exist two kinds of torsional-like modes, one of which has a twist center and the other has two. The latter changes obviously with the increase of prestress in the waveguide. At low frequencies, torsional-like modes are very sensitive to the variation of prestress; in addition, the prestress configuration has little influence on propagating modes at mid-frequencies but some at high frequencies.

  20. Nonlinear propagation of dust-acoustic solitary waves in a dusty ...

    Indian Academy of Sciences (India)

    ... Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Pramana – Journal of Physics; Volume 80; Issue 6. Nonlinear propagation of dust-acoustic solitary waves in a dusty plasma with arbitrarily charged dust and trapped electrons. O Rahman A A Mamun. Volume 80 Issue 6 June 2013 pp ...

  1. Analysis of Wave Propagation in Stratified Structures Using Circuit Analogues, with Application to Electromagnetic Absorbers (United States)

    Sjoberg, Daniel


    This paper presents an overview of how circuit models can be used for analysing wave propagation in stratified structures. Relatively complex structures can be analysed using models which are accessible to undergraduate students. Homogeneous slabs are modelled as transmission lines, and thin sheets between the slabs are modelled as lumped…

  2. Acoustic wave propagation in Ni3 R (R= Mo, Nb, Ta) compounds

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 76; Issue 4. Acoustic wave propagation in Ni3 ( = Mo, Nb, Ta) compounds. Pramod Kumar Yadawa ... Author Affiliations. Pramod Kumar Yadawa1. Department of Applied Physics, AMITY School of Engineering and Technology, Bijwasan, New Delhi 110 061, India ...

  3. Global sensitivity analysis of a wave propagation model for arm arteries

    NARCIS (Netherlands)

    Leguy, C.A.D.; Bosboom, E.M.H.; Belloum, A.S.Z.; Hoeks, A.P.G.; van de Vosse, F.N.


    Wave propagation models of blood flow and blood pressure in arteries play an important role in cardiovascular research. For application of these models in patient-specific simulations a number of model parameters, that are inherently subject to uncertainties, are required. The goal of this study is

  4. Stress Wave Propagation in Soils Modelled by the Boundary Element Method

    DEFF Research Database (Denmark)

    Rasmussen, K. M.

    This thesis deals with different aspects of the boundary element method (BEM) applied to stress wave propagation problems in soils. Among other things BEM formulations for coupled FEM and BEM, moving loads, direct BEM and indirect BEM are presented. For all the formulations both analytical...

  5. Excitation of Structures Near Railway Tracks-Analysis of the Wave Propagation Path

    DEFF Research Database (Denmark)

    Bucinskas, Paulius; Andersen, Lars Vabbersgaard


    and the building itself. Especially in the densely built urban environment, the wave propagation path can have different features, such as underground infrastructure, roads, pavements or even other nearby buildings. Such features might have a significant effect on the final excitation of the structure in question...

  6. Wave propagation properties in oscillatory chains with cubic nonlinearities via nonlinear map approach

    Energy Technology Data Exchange (ETDEWEB)

    Romeo, Francesco [Dipartimento di Ingegneria Strutturale e Geotecnica, Universita di Roma ' La Sapienza' , Via Gramsci 53, 00197 Rome (Italy)] e-mail:; Rega, Giuseppe [Dipartimento di Ingegneria Strutturale e Geotecnica, Universita di Roma ' La Sapienza' , Via Gramsci 53, 00197 Rome (Italy)] e-mail:


    Free wave propagation properties in one-dimensional chains of nonlinear oscillators are investigated by means of nonlinear maps. In this realm, the governing difference equations are regarded as symplectic nonlinear transformations relating the amplitudes in adjacent chain sites (n, n + 1) thereby considering a dynamical system where the location index n plays the role of the discrete time. Thus, wave propagation becomes synonymous of stability: finding regions of propagating wave solutions is equivalent to finding regions of linearly stable map solutions. Mechanical models of chains of linearly coupled nonlinear oscillators are investigated. Pass- and stop-band regions of the mono-coupled periodic system are analytically determined for period-q orbits as they are governed by the eigenvalues of the linearized 2D map arising from linear stability analysis of periodic orbits. Then, equivalent chains of nonlinear oscillators in complex domain are tackled. Also in this case, where a 4D real map governs the wave transmission, the nonlinear pass- and stop-bands for periodic orbits are analytically determined by extending the 2D map analysis. The analytical findings concerning the propagation properties are then compared with numerical results obtained through nonlinear map iteration.

  7. A semi-analytical solution for viscothermal wave propagation in narrow gaps with arbitrary boundary conditions.

    NARCIS (Netherlands)

    Wijnant, Ysbrand H.; Spiering, R.M.E.J.; Blijderveen, M.; de Boer, Andries


    Previous research has shown that viscothermal wave propagation in narrow gaps can efficiently be described by means of the low reduced frequency model. For simple geometries and boundary conditions, analytical solutions are available. For example, Beltman [4] gives the acoustic pressure in the gap

  8. Viscothermal wave propagation in a circular layer with a partially open and partrally closed boundary

    NARCIS (Netherlands)

    Kampinga, W.R.; Wijnant, Ysbrand H.; de Boer, Andries; Sas, P.; De Munck, M.


    The so called low reduced frequency model has been shown to be both an accurate and a relatively simple description of wave propagation in narrow tubes or layers, under small signal conditions. In this paper, the low reduced frequency model will be applied on a circular layer between a fixed surface

  9. Wave propagation method as an accurate technique for effective refractive index retrieving

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Malureanu, Radu; Lavrinenko, Andrei


    An effective parameters retrieval method based on the wave propagation simulation is proposed and compared with the standard S-parameter procedure. The method is free from possible mistakes originated by the multiple branching of solutions in the S-parameter procedure and shows high accuracy. The...

  10. Impacts of stratospheric ozone depletion and recovery on wave propagation in the boreal winter stratosphere (United States)

    Hu, Dingzhu; Tian, Wenshou; Xie, Fei; Wang, Chunxiao; Zhang, Jiankai


    This paper uses a state-of-the-art general circulation model to study the impacts of the stratospheric ozone depletion from 1980 to 2000 and the expected partial ozone recovery from 2000 to 2020 on the propagation of planetary waves in December, January, and February. In the Southern Hemisphere (SH), the stratospheric ozone depletion leads to a cooler and stronger Antarctic stratosphere, while the stratospheric ozone recovery has the opposite effects. In the Northern Hemisphere (NH), the impacts of the stratospheric ozone depletion on polar stratospheric temperature are not opposite to that of the stratospheric ozone recovery; i.e., the stratospheric ozone depletion causes a weak cooling and the stratospheric ozone recovery causes a statistically significant cooling. The stratospheric ozone depletion leads to a weakening of the Arctic polar vortex, while the stratospheric ozone recovery leads to a strengthening of the Arctic polar vortex. The cooling of the Arctic polar vortex is found to be dynamically induced via modulating the planetary wave activity by stratospheric ozone increases. Particularly interesting is that stratospheric ozone changes have opposite effects on the stationary and transient wave fluxes in the NH stratosphere. The analysis of the wave refractive index and Eliassen-Palm flux in the NH indicates (1) that the wave refraction in the stratosphere cannot fully explain wave flux changes in the Arctic stratosphere and (2) that stratospheric ozone changes can cause changes in wave propagation in the northern midlatitude troposphere which in turn affect wave fluxes in the NH stratosphere. In the SH, the radiative cooling (warming) caused by stratospheric ozone depletion (recovery) produces a larger (smaller) meridional temperature gradient in the midlatitude upper troposphere, accompanied by larger (smaller) zonal wind vertical shear and larger (smaller) vertical gradients of buoyancy frequency. Hence, there are more (fewer) transient waves

  11. Off-great-circle propagation of teleseismic surface waves across AlpArray (United States)

    Kolínský, Petr; Fuchs, Florian; Bokelmann, Götz; AlpArray Working Group


    Distributed across the greater Alpine region in Europe, the AlpArray seismic network stretches hundreds of kilometers in width and more than thousand kilometers in length, with interstation distances around 40 km. AlpArray can thus be used to study heterogeneities in crust and mantle by their influence on long-period surface waves propagating from distant earthquakes to the array. The heterogeneous structure of the orogenic belt may produce characteristic effects on the propagation pattern of surface waves as they pass through the region. We present a mapping of true propagation paths of 20 - 150 s surface waves that deviate from the great-circles as they propagate from the source to the receiver. We utilize array beamforming techniques to investigate (deterministic) surface waves from regional and teleseismic earthquakes. The signal is well-recognized and the fundamental mode for both Love and Rayleigh waves is separated before the beamforming. Instead of searching for energy of all possible signals as used in traditional beamforming, we identify the frequency-dependence of surface wave phase velocity and the true backazimuths of propagation. We consider each AlpArray station as a centre of a subarray of neighboring (6 - 15) stations. This allows us to calculate the local phase velocity dispersion curves for individual subarrays with a diameter of approximately 80 - 100 km. We repeat the procedure for more than 450 stations included in the AlpArray project. By the beamforming, phase velocities are corrected for the true propagation backazimuth, which is slightly frequency-dependent for each event. The local phase velocity dispersion curves for each subarray are inverted for the local 1D velocity model. In addition, the true backazimuths determined for each subarray and plotted for all the subarrays together show the frequency-dependent propagation paths through the whole Alpine region. To benchmark the backazimuths from the array measurement of phase velocities

  12. Abortive and propagating intracellular calcium waves: analysis from a hybrid model.

    Directory of Open Access Journals (Sweden)

    Nara Guisoni

    Full Text Available The functional properties of inositol(1,4,5-triphosphate (IP3 receptors allow a variety of intracellular Ca(2+ phenomena. In this way, global phenomena, such as propagating and abortive Ca(2+ waves, as well as local events such as puffs, have been observed. Several experimental studies suggest that many features of global phenomena (e.g., frequency, amplitude, speed wave depend on the interplay of biophysical processes such as diffusion, buffering, efflux and influx rates, which in turn depend on parameters such as buffer concentration, Ca(2+ pump density, cytosolic IP3 level, and intercluster distance. Besides, it is known that cells are able to modify some of these parameters in order to regulate the Ca(2+ signaling. By using a hybrid model, we analyzed different features of the hierarchy of calcium events as a function of two relevant parameters for the calcium signaling, the intercluster distance and the pump strength or intensity. In the space spanned by these two parameters, we found two modes of calcium dynamics, one dominated by abortive calcium waves and the other by propagating waves. Smaller distances between the release sites promote propagating calcium waves, while the increase of the efflux rate makes the transition from propagating to abortive waves occur at lower values of intercluster distance. We determined the frontier between these two modes, in the parameter space defined by the intercluster distance and the pump strength. Furthermore, we found that the velocity of simulated calcium waves accomplishes Luther's law, and that an effective rate constant for autocatalytic calcium production decays linearly with both the intercluster distance and the pump strength.

  13. Fast integral equation algorithms for the solution of electromagnetic wave propagation over general terrains

    Directory of Open Access Journals (Sweden)

    Ibrahim K. Abu Seif


    Full Text Available In this paper a fast numerical algorithm to solve an integral equation model for wave propagation along a perfectly conducting two-dimensional terrain is suggested. It is applied to different actual terrain profiles and the results indicate very good agreement with published work. In addition, the proposed algorithm has achieved considerable saving in processing time. The formulation is extended to solve the propagation over lossy dielectric surfaces. A combined field integral equation (CFIE for wave propagation over dielectric terrain is solved efficiently by utilizing the method of moments with complex basis functions. The numerical results for different cases of dielectric surfaces are compared with the results of perfectly conducting surface evaluated by the IE conventional algorithm.

  14. Application of advection-diffusion routing model to flood wave propagation: A case study on Big Piney River, Missouri USA (United States)

    Yang Yang; Theodore A. Endreny; David J. Nowak


    Flood wave propagation modeling is of critical importance to advancing water resources management and protecting human life and property. In this study, we investigated how the advection-diffusion routing model performed in flood wave propagation on a 16 km long downstream section of the Big Piney River, MO. Model performance was based on gaging station data at the...

  15. Simulation of sound waves using the Lattice Boltzmann Method for fluid flow: Benchmark cases for outdoor sound propagation

    NARCIS (Netherlands)

    Salomons, E.M.; Lohman, W.J.A.; Zhou, H.


    Propagation of sound waves in air can be considered as a special case of fluid dynamics. Consequently, the lattice Boltzmann method (LBM) for fluid flow can be used for simulating sound propagation. In this article application of the LBM to sound propagation is illustrated for various cases:

  16. Finite element analysis of electromagnetic propagation in an absorbing wave guide (United States)

    Baumeister, Kenneth J.


    Wave guides play a significant role in microwave space communication systems. The attenuation per unit length of the guide depends on its construction and design frequency range. A finite element Galerkin formulation has been developed to study TM electromagnetic propagation in complex two-dimensional absorbing wave guides. The analysis models the electromagnetic absorptive characteristics of a general wave guide which could be used to determine wall losses or simulate resistive terminations fitted into the ends of a guide. It is believed that the general conclusions drawn by using this simpler two-dimensional geometry will be fundamentally the same for other geometries.

  17. Damage localisation in a stiffened plate structure using a propagating wave (United States)

    Radzieński, Maciej; Doliński, Łukasz; Krawczuk, Marek; Palacz, Magdalena


    The paper presents an application of changes in propagating waves for damage detection in a stiffened aluminium plate. The experimental investigation was conducted on an aluminium plate with riveted two L-shape stiffeners. The wave has been excited with a piezoelectric transducer and measured with the Laser Scanning Doppler Vibrometer. Recorded signals were analysed using the special signal processing techniques developed for damage detection. The influence of different wave signals on damage localisation process for various damage scenarios has been tested. The obtained results were presented in a form of numerical maps. It may be concluded that the proposed approach enables damage localisation in a relatively fast and precise manner.

  18. Elastic Wave Propagation for Condition Assessment of Steel Bar Embedded in Mortar (United States)

    Rucka, M.; Zima, B.


    This study deals with experimental and numerical investigations of elastic wave propagation in steel bars partially embedded in mortar. The bars with different bonding lengths were tested. Two types of damage were considered: damage of the steel bar and damage of the mortar. Longitudinal waves were excited by a piezoelectric actuator and a vibrometer was used to non-contact measurements of velocity signals. Numerical calculations were performed using the finite elements method. As a result, this paper discusses the possibility of condition assessment in bars embedded in mortar by means of elastic waves.

  19. Theory and experiment on electromagnetic-wave-propagation velocities in stacked superconducting tunnel structures

    DEFF Research Database (Denmark)

    Sakai, S.; Ustinov, A. V.; Kohlstedt, H.


    focused on. Furthermore, under the assumption that all parameters of the layers are equal, analytic solutions for a generic N-fold stack are presented. The velocities of the waves in two- and three-junction stacks by Nb-Al-AlOx-Nb systems are experimentally obtained by measuring the cavity resonance......Characteristic velocities of the electromagnetic waves propagating in vertically stacked Josephson transmission are theoretically discussed. An equation for solving n velocities of the waves in an n Josephson-junction stack is derived. The solutions of two- and threefold stacks are especially...

  20. Experimental study on relationship between processing parameters and stress wave propagation during automated fiber placement process (United States)

    Fu, H. Y.; Li, W. Q.; Sun, S. Z.; Han, Z. Y.


    Automated fiber placement (AFP) is an important manufacturing method of composites, which has been widely used in the field of aerospace. Unreasonable processing parameters could lead to some manufacturing defects including pores, bubbles and cracks. In this paper, the propagation characteristics of stress waves are believed to be closely related to the defects during AFP process. Experiments are conducted to collect stress wave signal under different processing parameters (pressure, velocity and temperature) during manufacturing process. And the relationship between the processing parameters and the characteristics of stress waves is explored by Control Variate Method (CVM). Finally, the effects of laying parameters on stress amplitude, response speed and duration are summarized.