WorldWideScience

Sample records for random voronoi tessellations

  1. Bernoulli cluster field: Voronoi tessellations

    Czech Academy of Sciences Publication Activity Database

    Saxl, Ivan; Ponížil, P.

    2002-01-01

    Roč. 47, č. 2 (2002), s. 157-167 ISSN 0862-7940. [Programs and Algorithms of Numerical Mathematics (PANMď00). Lázně Libverda, 12.06.2000-16.06.2000] R&D Projects: GA ČR GA201/99/0269; GA MŠk PG96108 Keywords : cluster point process%Voronoi tessellation%induced tessellation Subject RIV: BE - Theoretical Physics

  2. Three-dimensional Random Voronoi Tessellations: From Cubic Crystal Lattices to Poisson Point Processes

    OpenAIRE

    Lucarini, Valerio

    2008-01-01

    We perturb the SC, BCC, and FCC crystal structures with a spatial Gaussian noise whose adimensional strength is controlled by the parameter a, and analyze the topological and metrical properties of the resulting Voronoi Tessellations (VT). The topological properties of the VT of the SC and FCC crystals are unstable with respect to the introduction of noise, because the corresponding polyhedra are geometrically degenerate, whereas the tessellation of the BCC crystal is topologically stable eve...

  3. Three-Dimensional Random Voronoi Tessellations: From Cubic Crystal Lattices to Poisson Point Processes

    Science.gov (United States)

    Lucarini, Valerio

    2009-01-01

    We perturb the simple cubic (SC), body-centered cubic (BCC), and face-centered cubic (FCC) structures with a spatial Gaussian noise whose adimensional strength is controlled by the parameter α and analyze the statistical properties of the cells of the resulting Voronoi tessellations using an ensemble approach. We concentrate on topological properties of the cells, such as the number of faces, and on metric properties of the cells, such as the area, volume and the isoperimetric quotient. The topological properties of the Voronoi tessellations of the SC and FCC crystals are unstable with respect to the introduction of noise, because the corresponding polyhedra are geometrically degenerate, whereas the tessellation of the BCC crystal is topologically stable even against noise of small but finite intensity. Whereas the average volume of the cells is the intensity parameter of the system and does not depend on the noise, the average area of the cells has a rather interesting behavior with respect to noise intensity. For weak noise, the mean area of the Voronoi tessellations corresponding to perturbed BCC and FCC perturbed increases quadratically with the noise intensity. In the case of perturbed SCC crystals, there is an optimal amount of noise that minimizes the mean area of the cells. Already for a moderate amount of noise ( α>0.5), the statistical properties of the three perturbed tessellations are indistinguishable, and for intense noise ( α>2), results converge to those of the Poisson-Voronoi tessellation. Notably, 2-parameter gamma distributions constitute an excellent model for the empirical pdf of all considered topological and metric properties. By analyzing jointly the statistical properties of the area and of the volume of the cells, we discover that also the cells shape, measured by the isoperimetric quotient, fluctuates. The Voronoi tessellations of the BCC and of the FCC structures result to be local maxima for the isoperimetric quotient among space

  4. Simulating the pervasive fracture and fragmentation of materials and structures using randomly close-packed Voronoi tessellations.

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, Joseph E.

    2008-09-01

    Under extreme loading conditions most often the extent of material and structural fracture is pervasive in the sense that a multitude of cracks are nucleating, propagating in arbitrary directions, coalescing, and branching. Pervasive fracture is a highly nonlinear process involving complex material constitutive behavior, material softening, localization, surface generation, and ubiquitous contact. Two primary applications in which pervasive fracture is encountered are (1) weapons effects on structures and (2) geomechanics of highly jointed and faulted reservoirs. A pure Lagrangian computational method based on randomly close-packed Voronoi tessellations is proposed as a rational approach for simulating the pervasive fracture of materials and structures. Each Voronoi cell is formulated as a finite element using the reproducing kernel method. Fracture surfaces are allowed to nucleate only at the intercell faces. The randomly seeded Voronoi cells provide an unbiased network for representing cracks. In this initial study two approaches for allowing the new surfaces to initiate are studied: (1) dynamic mesh connectivity and the instantaneous insertion of a cohesive traction when localization is detected, and (2) a discontinuous Galerkin approach in which the interelement tractions are an integral part of the variational formulation, but only become active once localization is detected. Pervasive fracture problems are extremely sensitive to initial conditions and system parameters. Dynamic problems exhibit a form of transient chaos. The primary numerical challenge for this class of problems is the demonstration of model objectivity and, in particular, the identification and demonstration of a measure of convergence for engineering quantities of interest.

  5. Identifying Phase Space Boundaries with Voronoi Tessellations

    CERN Document Server

    Debnath, Dipsikha; Kilic, Can; Kim, Doojin; Matchev, Konstantin T.; Yang, Yuan-Pao

    2016-11-24

    Determining the masses of new physics particles appearing in decay chains is an important and longstanding problem in high energy phenomenology. Recently it has been shown that these mass measurements can be improved by utilizing the boundary of the allowed region in the fully differentiable phase space in its full dimensionality. Here we show that the practical challenge of identifying this boundary can be solved using techniques based on the geometric properties of the cells resulting from Voronoi tessellations of the relevant data. The robust detection of such phase space boundaries in the data could also be used to corroborate a new physics discovery based on a cut-and-count analysis.

  6. Voronoi Tessellations and Their Application to Climate and Global Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Lili [University of South Carolina; Ringler, Todd [Los Alamos National Laboratory; Gunzburger, Max [Florida State University

    2011-01-01

    We review the use of Voronoi tessellations for grid generation, especially on the whole sphere or in regions on the sphere. Voronoi tessellations and the corresponding Delaunay tessellations in regions and surfaces on Euclidean space are defined and properties they possess that make them well-suited for grid generation purposes are discussed, as are algorithms for their construction. This is followed by a more detailed look at one very special type of Voronoi tessellation, the centroidal Voronoi tessellation (CVT). After defining them, discussing some of their properties, and presenting algorithms for their construction, we illustrate the use of CVTs for producing both quasi-uniform and variable resolution meshes in the plane and on the sphere. Finally, we briefly discuss the computational solution of model equations based on CVTs on the sphere.

  7. Non-obtuse Remeshing with Centroidal Voronoi Tessellation

    KAUST Repository

    Yan, Dongming; Wonka, Peter

    2015-01-01

    We present a novel remeshing algorithm that avoids triangles with small and triangles with large (obtuse) angles. Our solution is based on an extension to Centroidal Voronoi Tesselation (CVT). We augment the original CVT formulation by a penalty term that penalizes short Voronoi edges, while the CVT term helps to avoid small angles. Our results show significant improvements of the remeshing quality over the state of the art.

  8. Non-obtuse Remeshing with Centroidal Voronoi Tessellation

    KAUST Repository

    Yan, Dongming

    2015-12-03

    We present a novel remeshing algorithm that avoids triangles with small and triangles with large (obtuse) angles. Our solution is based on an extension to Centroidal Voronoi Tesselation (CVT). We augment the original CVT formulation by a penalty term that penalizes short Voronoi edges, while the CVT term helps to avoid small angles. Our results show significant improvements of the remeshing quality over the state of the art.

  9. Using the Voronoi tessellation for grouping words and multipart symbols in documents

    Science.gov (United States)

    Burge, Mark J.; Monagan, Gladys

    1995-08-01

    We examine the importance of the definition of neighbors and neighborhoods for grouping in document understanding and list some previous definitions. We present a number of benefits to using the Voronoi neighborhood definition; however, we argue that definitions based upon the point Voronoi diagrams are insufficient in the general case (e.g. for grouping image elements in line drawings). We give the definition of a generalized (Euclidean distance measure, 2D Cartesian space, and an area based generator set) Voronoi tessellation and then present our algorithm for approximating this generalized tessellation. The algorithm is constructed from a normal point Voronoi tessellation algorithm. A parameterized Voronoi neighborhood graph (VNG) which can be derived from the tessellation is defined. A graph algorithm for grouping based on the VNG, its image elements, and Voronoi cell descriptors can then be easily derived. We show some results of how this algorithm was used in a map understanding system.

  10. Identifying phase-space boundaries with Voronoi tessellations

    International Nuclear Information System (INIS)

    Debnath, Dipsikha; Matchev, Konstantin T.; Gainer, James S.; Kilic, Can; Yang, Yuan-Pao; Kim, Doojin

    2016-01-01

    Determining the masses of new physics particles appearing in decay chains is an important and longstanding problem in high energy phenomenology. Recently it has been shown that these mass measurements can be improved by utilizing the boundary of the allowed region in the fully differentiable phase space in its full dimensionality. Here we show that the practical challenge of identifying this boundary can be solved using techniques based on the geometric properties of the cells resulting from Voronoi tessellations of the relevant data. The robust detection of such phase-space boundaries in the data could also be used to corroborate a new physics discovery based on a cut-and-count analysis. (orig.)

  11. Identifying phase-space boundaries with Voronoi tessellations

    Energy Technology Data Exchange (ETDEWEB)

    Debnath, Dipsikha; Matchev, Konstantin T. [University of Florida, Physics Department, Gainesville, FL (United States); Gainer, James S. [University of Hawaii, Department of Physics and Astronomy, Honolulu, HI (United States); Kilic, Can; Yang, Yuan-Pao [The University of Texas at Austin, Theory Group, Department of Physics and Texas Cosmology Center, Austin, TX (United States); Kim, Doojin [University of Florida, Physics Department, Gainesville, FL (United States); CERN, Theory Division, Geneva 23 (Switzerland)

    2016-11-15

    Determining the masses of new physics particles appearing in decay chains is an important and longstanding problem in high energy phenomenology. Recently it has been shown that these mass measurements can be improved by utilizing the boundary of the allowed region in the fully differentiable phase space in its full dimensionality. Here we show that the practical challenge of identifying this boundary can be solved using techniques based on the geometric properties of the cells resulting from Voronoi tessellations of the relevant data. The robust detection of such phase-space boundaries in the data could also be used to corroborate a new physics discovery based on a cut-and-count analysis. (orig.)

  12. The Voronoi Tessellation cluster finder in 2+1 dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Soares-Santos, Marcelle; /Fermilab /Sao Paulo U.; de Carvalho, Reinaldo R.; /Sao Jose, INPE; Annis, James; /Fermilab; Gal, Roy R.; /Hawaii U.; La Barbera, Francesco; /Capodimonte Observ.; Lopes, Paulo A.A.; /Valongo Observ.; Wechsler, Risa H.; Busha, Michael T.; Gerke, Brian F.; /SLAC /KIPAC, Menlo Park

    2010-11-01

    We present a detailed description of the Voronoi Tessellation (VT) cluster finder algorithm in 2+1 dimensions, which improves on past implementations of this technique. The need for cluster finder algorithms able to produce reliable cluster catalogs up to redshift 1 or beyond and down to 10{sup 13.5} solar masses is paramount especially in light of upcoming surveys aiming at cosmological constraints from galaxy cluster number counts. We build the VT in photometric redshift shells and use the two-point correlation function of the galaxies in the field to both determine the density threshold for detection of cluster candidates and to establish their significance. This allows us to detect clusters in a self-consistent way without any assumptions about their astrophysical properties. We apply the VT to mock catalogs which extend to redshift 1.4 reproducing the {Lambda}CDM cosmology and the clustering properties observed in the Sloan Digital Sky Survey data. An objective estimate of the cluster selection function in terms of the completeness and purity as a function of mass and redshift is as important as having a reliable cluster finder. We measure these quantities by matching the VT cluster catalog with the mock truth table. We show that the VT can produce a cluster catalog with completeness and purity >80% for the redshift range up to {approx}1 and mass range down to {approx}10{sup 13.5} solar masses.

  13. The Voronoi Tessellation Cluster Finder in 2 1 Dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Soares-Santos, Marcelle; /Fermilab /Sao Paulo U.; de Carvalho, Reinaldo R.; /Sao Jose, INPE; Annis, James; /Fermilab; Gal, Roy R.; /Hawaii U.; La Barbera, Francesco; /Capodimonte Observ.; Lopes, Paulo A.A.; /Valongo Observ.; Wechsler, Risa H.; Busha, Michael T.; Gerke, Brian F.; /SLAC /KIPAC, Menlo Park

    2011-06-23

    We present a detailed description of the Voronoi Tessellation (VT) cluster finder algorithm in 2+1 dimensions, which improves on past implementations of this technique. The need for cluster finder algorithms able to produce reliable cluster catalogs up to redshift 1 or beyond and down to 10{sup 13.5} solar masses is paramount especially in light of upcoming surveys aiming at cosmological constraints from galaxy cluster number counts. We build the VT in photometric redshift shells and use the two-point correlation function of the galaxies in the field to both determine the density threshold for detection of cluster candidates and to establish their significance. This allows us to detect clusters in a self-consistent way without any assumptions about their astrophysical properties. We apply the VT to mock catalogs which extend to redshift 1.4 reproducing the ?CDM cosmology and the clustering properties observed in the Sloan Digital Sky Survey data. An objective estimate of the cluster selection function in terms of the completeness and purity as a function of mass and redshift is as important as having a reliable cluster finder. We measure these quantities by matching the VT cluster catalog with the mock truth table. We show that the VT can produce a cluster catalog with completeness and purity >80% for the redshift range up to {approx}1 and mass range down to {approx}10{sup 13.5} solar masses.

  14. THE VORONOI TESSELLATION CLUSTER FINDER IN 2+1 DIMENSIONS

    International Nuclear Information System (INIS)

    Soares-Santos, Marcelle; Annis, James; De Carvalho, Reinaldo R.; Gal, Roy R.; La Barbera, Francesco; Lopes, Paulo A. A.; Wechsler, Risa H.; Busha, Michael T.; Gerke, Brian F.

    2011-01-01

    We present a detailed description of the Voronoi Tessellation (VT) cluster finder algorithm in 2+1 dimensions, which improves on past implementations of this technique. The need for cluster finder algorithms able to produce reliable cluster catalogs up to redshift 1 or beyond and down to 10 13.5 solar masses is paramount especially in light of upcoming surveys aiming at cosmological constraints from galaxy cluster number counts. We build the VT in photometric redshift shells and use the two-point correlation function of the galaxies in the field to both determine the density threshold for detection of cluster candidates and to establish their significance. This allows us to detect clusters in a self-consistent way without any assumptions about their astrophysical properties. We apply the VT to mock catalogs which extend to redshift 1.4 reproducing the ΛCDM cosmology and the clustering properties observed in the Sloan Digital Sky Survey data. An objective estimate of the cluster selection function in terms of the completeness and purity as a function of mass and redshift is as important as having a reliable cluster finder. We measure these quantities by matching the VT cluster catalog with the mock truth table. We show that the VT can produce a cluster catalog with completeness and purity >80% for the redshift range up to ∼1 and mass range down to ∼10 13.5 solar masses.

  15. Finding Clusters of Galaxies in the Sloan Digital Sky Survey using Voronoi Tessellation

    International Nuclear Information System (INIS)

    Rita S.J., Kim

    2001-01-01

    The Sloan Digital Sky Survey has obtained 450 square degrees of photometric scan data, in five bands (u', g', r', i', z'), which the authors use to identify clusters of galaxies. They illustrate how they do star-galaxy separation, and present a simple and elegant method of detecting over-densities in the galaxy distribution, using the Voronoi Tessellation

  16. Voronoi tessellations and the cosmic web : Spatial patterns and clustering across the universe

    NARCIS (Netherlands)

    van de Weygaert, Rien; Gold, CM

    2007-01-01

    The spatial cosmic matter distribution on scales of a few up to more than a hundred Megaparsec(1) displays a salient and pervasive foamlike pattern. Voronoi tessellations are a versatile and flexible mathematical model for such weblike spatial patterns. They would be the natural result of an

  17. Voronoi-Tessellated Graphite Produced by Low-Temperature Catalytic Graphitization from Renewable Resources.

    Science.gov (United States)

    Zhao, Leyi; Zhao, Xiuyun; Burke, Luke T; Bennett, J Craig; Dunlap, Richard A; Obrovac, Mark N

    2017-09-11

    A highly crystalline graphite powder was prepared from the low temperature (800-1000 °C) graphitization of renewable hard carbon precursors using a magnesium catalyst. The resulting graphite particles are composed of Voronoi-tessellated regions comprising irregular sheets; each Voronoi-tessellated region having a small "seed" particle located near their centroid on the surface. This suggests nucleated outward growth of graphitic carbon, which has not been previously observed. Each seed particle consists of a spheroidal graphite shell on the inside of which hexagonal graphite platelets are perpendicularly affixed. This results in a unique high surface area graphite with a high degree of graphitization that is made with renewable feedstocks at temperatures far below that conventionally used for artificial graphites. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Comparison of pure and 'Latinized' centroidal Voronoi tessellation against various other statistical sampling methods

    International Nuclear Information System (INIS)

    Romero, Vicente J.; Burkardt, John V.; Gunzburger, Max D.; Peterson, Janet S.

    2006-01-01

    A recently developed centroidal Voronoi tessellation (CVT) sampling method is investigated here to assess its suitability for use in statistical sampling applications. CVT efficiently generates a highly uniform distribution of sample points over arbitrarily shaped M-dimensional parameter spaces. On several 2-D test problems CVT has recently been found to provide exceedingly effective and efficient point distributions for response surface generation. Additionally, for statistical function integration and estimation of response statistics associated with uniformly distributed random-variable inputs (uncorrelated), CVT has been found in initial investigations to provide superior points sets when compared against latin-hypercube and simple-random Monte Carlo methods and Halton and Hammersley quasi-random sequence methods. In this paper, the performance of all these sampling methods and a new variant ('Latinized' CVT) are further compared for non-uniform input distributions. Specifically, given uncorrelated normal inputs in a 2-D test problem, statistical sampling efficiencies are compared for resolving various statistics of response: mean, variance, and exceedence probabilities

  19. Stochastic Geometry and Random Tessellations

    DEFF Research Database (Denmark)

    Møller, Jesper; Stoyan, Dietrich

    This paper is to appear in "Tessellations in the Sciences": Virtues, Techniques and Applications of Geometric Tilings", eds. R. van de Weijgaert, G. Vegter, V. Icke and J. Ritzerveld. Springer Verlag....

  20. Including crystal structure attributes in machine learning models of formation energies via Voronoi tessellations

    Science.gov (United States)

    Ward, Logan; Liu, Ruoqian; Krishna, Amar; Hegde, Vinay I.; Agrawal, Ankit; Choudhary, Alok; Wolverton, Chris

    2017-07-01

    While high-throughput density functional theory (DFT) has become a prevalent tool for materials discovery, it is limited by the relatively large computational cost. In this paper, we explore using DFT data from high-throughput calculations to create faster, surrogate models with machine learning (ML) that can be used to guide new searches. Our method works by using decision tree models to map DFT-calculated formation enthalpies to a set of attributes consisting of two distinct types: (i) composition-dependent attributes of elemental properties (as have been used in previous ML models of DFT formation energies), combined with (ii) attributes derived from the Voronoi tessellation of the compound's crystal structure. The ML models created using this method have half the cross-validation error and similar training and evaluation speeds to models created with the Coulomb matrix and partial radial distribution function methods. For a dataset of 435 000 formation energies taken from the Open Quantum Materials Database (OQMD), our model achieves a mean absolute error of 80 meV/atom in cross validation, which is lower than the approximate error between DFT-computed and experimentally measured formation enthalpies and below 15% of the mean absolute deviation of the training set. We also demonstrate that our method can accurately estimate the formation energy of materials outside of the training set and be used to identify materials with especially large formation enthalpies. We propose that our models can be used to accelerate the discovery of new materials by identifying the most promising materials to study with DFT at little additional computational cost.

  1. Phase transformation kinetics of Voronoi cells in space tessellation governed by the Kolmogorov–Johnson–Mehl–Avrami model

    Energy Technology Data Exchange (ETDEWEB)

    Tomellini, Massimo, E-mail: tomellini@uniroma2.it

    2017-03-26

    On the basis of the Kolmogorov–Johnson–Mehl–Avrami (KJMA) method for space tessellation the kinetics of Voronoi cell filling, by central grain growth, has been studied as a function of the cell size. This is done by solving an integral equation for which a class of solutions is obtained in closed form, where the cell-size probability density is the Gamma distribution function. The computation gives the time evolution of the mean grain size, as a function of cell volume, which is further employed for describing the grain-size probability density function. The present approach is applied to determine, analytically, the exact grain-size distribution function in 1D and the size distributions in 2D and 3D through approximation. - Highlights: • The kinetics of cell filling is determined for Poisson–Voronoi tessellation in dD. • The kinetics is obtained in closed form by solving an integral equation. • Connection between the evolution of the mean grain and the size distribution is studied. • The exact grain-size distribution function is determined, analytically, in 1D.

  2. Modeling spreading of oil slicks based on random walk methods and Voronoi diagrams

    International Nuclear Information System (INIS)

    Durgut, İsmail; Reed, Mark

    2017-01-01

    We introduce a methodology for representation of a surface oil slick using a Voronoi diagram updated at each time step. The Voronoi cells scale the Gaussian random walk procedure representing the spreading process by individual particle stepping. The step length of stochastically moving particles is based on a theoretical model of the spreading process, establishing a relationship between the step length of diffusive spreading and the thickness of the slick at the particle locations. The Voronoi tessellation provides the areal extent of the slick particles and in turn the thicknesses of the slick and the diffusive-type spreading length for all particles. The algorithm successfully simulates the spreading process and results show very good agreement with the analytical solution. Moreover, the results are robust for a wide range of values for computational time step and total number of particles. - Highlights: • A methodology for representation of a surface oil slick using a Voronoi diagram • An algorithm simulating the spreading of oil slick with the Voronoi diagram representation • The algorithm employs the Gaussian random walk method through individual particle stepping. • The diffusive spreading is based on a theoretical model of the spreading process. • Algorithm is computationally robust and successfully reproduces analytical solutions to the spreading process.

  3. Stochastic transformation of points in polygons according to the Voronoi tessellation: microstructural description.

    Science.gov (United States)

    Di Vito, Alessia; Fanfoni, Massimo; Tomellini, Massimo

    2010-12-01

    Starting from a stochastic two-dimensional process we studied the transformation of points in disks and squares following a protocol according to which at any step the island size increases proportionally to the corresponding Voronoi tessera. Two interaction mechanisms among islands have been dealt with: coalescence and impingement. We studied the evolution of the island density and of the island size distribution functions, in dependence on island collision mechanisms for both Poissonian and correlated spatial distributions of points. The island size distribution functions have been found to be invariant with the fraction of transformed phase for a given stochastic process. The n(Θ) curve describing the island decay has been found to be independent of the shape (apart from high correlation degrees) and interaction mechanism.

  4. 3D random Voronoi grain-based models for simulation of brittle rock damage and fabric-guided micro-fracturing

    Directory of Open Access Journals (Sweden)

    E. Ghazvinian

    2014-12-01

    Full Text Available A grain-based distinct element model featuring three-dimensional (3D Voronoi tessellations (random poly-crystals is proposed for simulation of crack damage development in brittle rocks. The grain boundaries in poly-crystal structure produced by Voronoi tessellations can represent flaws in intact rock and allow for numerical replication of crack damage progression through initiation and propagation of micro-fractures along grain boundaries. The Voronoi modelling scheme has been used widely in the past for brittle fracture simulation of rock materials. However the difficulty of generating 3D Voronoi models has limited its application to two-dimensional (2D codes. The proposed approach is implemented in Neper, an open-source engine for generation of 3D Voronoi grains, to generate block geometry files that can be read directly into 3DEC. A series of Unconfined Compressive Strength (UCS tests are simulated in 3DEC to verify the proposed methodology for 3D simulation of brittle fractures and to investigate the relationship between each micro-parameter and the model's macro-response. The possibility of numerical replication of the classical U-shape strength curve for anisotropic rocks is also investigated in numerical UCS tests by using complex-shaped (elongated grains that are cemented to one another along their adjoining sides. A micro-parameter calibration procedure is established for 3D Voronoi models for accurate replication of the mechanical behaviour of isotropic and anisotropic (containing a fabric rocks.

  5. Structural characterization of a magnetic granular system under a time-dependent magnetic field: Voronoi tessellation and multifractal analysis

    Science.gov (United States)

    Moctezuma, R. E.; Arauz-Lara, J. L.; Donado, F.

    2018-04-01

    The structure of a two-dimensional magnetic granular system was determined by multifractal and Voronoi polygon analysis for a wide range of particle concentrations. Randomizing of the particle motions are produced by applying to the system a time-dependent sinusoidal magnetic field directed along the vertical direction. Both repulsive and attractive short-range interactions between the particles are induced. A direct observation of such system shows qualitatively that, as particle concentration increases, the structure evolves from being liquid-like at low particle concentrations to solid-like at high concentrations. We observe the formation of clusters which are small and weakly bonded and short-lived at low concentrations. Above a threshold particle concentration, clusters grow larger and are more strongly attached. In the system, one can distinguish the mobile particles from the immobile particles belonging to clusters, they can be considered separately as two different phases, a fluid and a solid. We determined the information entropy of the system as a whole and separately from each phase as particle concentration increases. The distribution of the Voronoi polygon areas are well fitted by a two-parameter gamma distribution and we have found that the regularity factor shows a notable change when pieces of the solid phase start to form. The methods we use here show that they can use even when the system is heterogeneous and they provide information when changes start.

  6. Weak-Lensing Calibration of a Stellar Mass-Based Mass Proxy for redMaPPer and Voronoi Tessellation Clusters in SDSS Stripe 82

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Maria E.S. [Rio de Janeiro, CBPF; Soares-Santos, Marcelle [Fermilab; Makler, Martin [Rio de Janeiro, CBPF; Annis, James [Fermilab; Lin, Huan [Fermilab; Palmese, Antonella [Fermilab; Vitorelli, André Z. [Sao Paulo, Inst. Astron. Geofis.; Welch, Brian [Fermilab; Caminha, Gabriel B. [Bologna Observ.; Erben, Thomas [Argelander Inst. Astron.; Moraes, Bruno [University Coll. London; Shan, Huanyuan [Argelander Inst. Astron.

    2017-08-10

    We present the first weak lensing calibration of $\\mu_{\\star}$, a new galaxy cluster mass proxy corresponding to the total stellar mass of red and blue members, in two cluster samples selected from the SDSS Stripe 82 data: 230 redMaPPer clusters at redshift $0.1\\leq z<0.33$ and 136 Voronoi Tessellation (VT) clusters at $0.1 \\leq z < 0.6$. We use the CS82 shear catalog and stack the clusters in $\\mu_{\\star}$ bins to measure a mass-observable power law relation. For redMaPPer clusters we obtain $M_0 = (1.77 \\pm 0.36) \\times 10^{14}h^{-1} M_{\\odot}$, $\\alpha = 1.74 \\pm 0.62$. For VT clusters, we find $M_0 = (4.31 \\pm 0.89) \\times 10^{14}h^{-1} M_{\\odot}$, $\\alpha = 0.59 \\pm 0.54$ and $M_0 = (3.67 \\pm 0.56) \\times 10^{14}h^{-1} M_{\\odot}$, $\\alpha = 0.68 \\pm 0.49$ for a low and a high redshift bin, respectively. Our results are consistent, internally and with the literature, indicating that our method can be applied to any cluster finding algorithm. In particular, we recommend that $\\mu_{\\star}$ be used as the mass proxy for VT clusters. Catalogs including $\\mu_{\\star}$ measurements will enable its use in studies of galaxy evolution in clusters and cluster cosmology.

  7. Application of Tessellation in Architectural Geometry Design

    Science.gov (United States)

    Chang, Wei

    2018-06-01

    Tessellation plays a significant role in architectural geometry design, which is widely used both through history of architecture and in modern architectural design with the help of computer technology. Tessellation has been found since the birth of civilization. In terms of dimensions, there are two- dimensional tessellations and three-dimensional tessellations; in terms of symmetry, there are periodic tessellations and aperiodic tessellations. Besides, some special types of tessellations such as Voronoi Tessellation and Delaunay Triangles are also included. Both Geometry and Crystallography, the latter of which is the basic theory of three-dimensional tessellations, need to be studied. In history, tessellation was applied into skins or decorations in architecture. The development of Computer technology enables tessellation to be more powerful, as seen in surface control, surface display and structure design, etc. Therefore, research on the application of tessellation in architectural geometry design is of great necessity in architecture studies.

  8. Nonequilibrium phase transition in directed small-world-Voronoi-Delaunay random lattices

    International Nuclear Information System (INIS)

    Lima, F.W.S.

    2016-01-01

    On directed small-world-Voronoi-Delaunay random lattices in two dimensions with quenched connectivity disorder we study the critical properties of the dynamics evolution of public opinion in social influence networks using a simple spin-like model. The system is treated by applying Monte Carlo simulations. We show that directed links on these random lattices may lead to phase diagram with first- and second-order social phase transitions out of equilibrium. (paper)

  9. Efficient computation of clipped Voronoi diagram for mesh generation

    KAUST Repository

    Yan, Dongming

    2013-04-01

    The Voronoi diagram is a fundamental geometric structure widely used in various fields, especially in computer graphics and geometry computing. For a set of points in a compact domain (i.e. a bounded and closed 2D region or a 3D volume), some Voronoi cells of their Voronoi diagram are infinite or partially outside of the domain, but in practice only the parts of the cells inside the domain are needed, as when computing the centroidal Voronoi tessellation. Such a Voronoi diagram confined to a compact domain is called a clipped Voronoi diagram. We present an efficient algorithm to compute the clipped Voronoi diagram for a set of sites with respect to a compact 2D region or a 3D volume. We also apply the proposed method to optimal mesh generation based on the centroidal Voronoi tessellation. Crown Copyright © 2011 Published by Elsevier Ltd. All rights reserved.

  10. Efficient computation of clipped Voronoi diagram for mesh generation

    KAUST Repository

    Yan, Dongming; Wang, Wen Ping; Lé vy, Bruno L.; Liu, Yang

    2013-01-01

    The Voronoi diagram is a fundamental geometric structure widely used in various fields, especially in computer graphics and geometry computing. For a set of points in a compact domain (i.e. a bounded and closed 2D region or a 3D volume), some Voronoi cells of their Voronoi diagram are infinite or partially outside of the domain, but in practice only the parts of the cells inside the domain are needed, as when computing the centroidal Voronoi tessellation. Such a Voronoi diagram confined to a compact domain is called a clipped Voronoi diagram. We present an efficient algorithm to compute the clipped Voronoi diagram for a set of sites with respect to a compact 2D region or a 3D volume. We also apply the proposed method to optimal mesh generation based on the centroidal Voronoi tessellation. Crown Copyright © 2011 Published by Elsevier Ltd. All rights reserved.

  11. Bayesian analysis of spatial point processes in the neighbourhood of Voronoi networks

    DEFF Research Database (Denmark)

    Skare, Øivind; Møller, Jesper; Jensen, Eva Bjørn Vedel

    2007-01-01

    A model for an inhomogeneous Poisson process with high intensity near the edges of a Voronoi tessellation in 2D or 3D is proposed. The model is analysed in a Bayesian setting with priors on nuclei of the Voronoi tessellation and other model parameters. An MCMC algorithm is constructed to sample...

  12. Bayesian analysis of spatial point processes in the neighbourhood of Voronoi networks

    DEFF Research Database (Denmark)

    Skare, Øivind; Møller, Jesper; Vedel Jensen, Eva B.

    A model for an inhomogeneous Poisson process with high intensity near the edges of a Voronoi tessellation in 2D or 3D is proposed. The model is analysed in a Bayesian setting with priors on nuclei of the Voronoi tessellation and other model parameters. An MCMC algorithm is constructed to sample...

  13. Voronoi polygons and self-consistent technique used to compute the airflow resistivity of randomly placed fibers in glass wool

    DEFF Research Database (Denmark)

    Tarnow, Viggo

    2002-01-01

    is constant, and equal to the constant current value. A computation of resistivity from fiber density and diameter will be presented for a model of glass wool that consists of parallel randomly placed fibers with equal diameters. The computation is based on Voronoi polygons, and the results will be compared...

  14. Detecting and extracting clusters in atom probe data: A simple, automated method using Voronoi cells

    International Nuclear Information System (INIS)

    Felfer, P.; Ceguerra, A.V.; Ringer, S.P.; Cairney, J.M.

    2015-01-01

    The analysis of the formation of clusters in solid solutions is one of the most common uses of atom probe tomography. Here, we present a method where we use the Voronoi tessellation of the solute atoms and its geometric dual, the Delaunay triangulation to test for spatial/chemical randomness of the solid solution as well as extracting the clusters themselves. We show how the parameters necessary for cluster extraction can be determined automatically, i.e. without user interaction, making it an ideal tool for the screening of datasets and the pre-filtering of structures for other spatial analysis techniques. Since the Voronoi volumes are closely related to atomic concentrations, the parameters resulting from this analysis can also be used for other concentration based methods such as iso-surfaces. - Highlights: • Cluster analysis of atom probe data can be significantly simplified by using the Voronoi cell volumes of the atomic distribution. • Concentration fields are defined on a single atomic basis using Voronoi cells. • All parameters for the analysis are determined by optimizing the separation probability of bulk atoms vs clustered atoms

  15. Turtles for tessellations

    NARCIS (Netherlands)

    Feijs, L.M.G.; Hu, J.

    2013-01-01

    We developed an approach to creating vector graphics representations of tessellations for purposes of teaching creative programming and laser cutting. The approach is based on turtle graphics. The lines of the turtle’s trail define the tiles of the tessellation. The turtle is defined in an

  16. TESS: A RELATIVISTIC HYDRODYNAMICS CODE ON A MOVING VORONOI MESH

    International Nuclear Information System (INIS)

    Duffell, Paul C.; MacFadyen, Andrew I.

    2011-01-01

    We have generalized a method for the numerical solution of hyperbolic systems of equations using a dynamic Voronoi tessellation of the computational domain. The Voronoi tessellation is used to generate moving computational meshes for the solution of multidimensional systems of conservation laws in finite-volume form. The mesh-generating points are free to move with arbitrary velocity, with the choice of zero velocity resulting in an Eulerian formulation. Moving the points at the local fluid velocity makes the formulation effectively Lagrangian. We have written the TESS code to solve the equations of compressible hydrodynamics and magnetohydrodynamics for both relativistic and non-relativistic fluids on a dynamic Voronoi mesh. When run in Lagrangian mode, TESS is significantly less diffusive than fixed mesh codes and thus preserves contact discontinuities to high precision while also accurately capturing strong shock waves. TESS is written for Cartesian, spherical, and cylindrical coordinates and is modular so that auxiliary physics solvers are readily integrated into the TESS framework and so that this can be readily adapted to solve general systems of equations. We present results from a series of test problems to demonstrate the performance of TESS and to highlight some of the advantages of the dynamic tessellation method for solving challenging problems in astrophysical fluid dynamics.

  17. Low-resolution remeshing using the localized restricted voronoi diagram

    KAUST Repository

    Yan, Dongming; Bao, Guanbo; Zhang, Xiaopeng; Wonka, Peter

    2014-01-01

    A big problem in triangular remeshing is to generate meshes when the triangle size approaches the feature size in the mesh. The main obstacle for Centroidal Voronoi Tessellation (CVT)-based remeshing is to compute a suitable Voronoi diagram. In this paper, we introduce the localized restricted Voronoi diagram (LRVD) on mesh surfaces. The LRVD is an extension of the restricted Voronoi diagram (RVD), but it addresses the problem that the RVD can contain Voronoi regions that consist of multiple disjoint surface patches. Our definition ensures that each Voronoi cell in the LRVD is a single connected region. We show that the LRVD is a useful extension to improve several existing mesh-processing techniques, most importantly surface remeshing with a low number of vertices. While the LRVD and RVD are identical in most simple configurations, the LRVD is essential when sampling a mesh with a small number of points and for sampling surface areas that are in close proximity to other surface areas, e.g., nearby sheets. To compute the LRVD, we combine local discrete clustering with a global exact computation. © 1995-2012 IEEE.

  18. Low-resolution remeshing using the localized restricted voronoi diagram

    KAUST Repository

    Yan, Dongming

    2014-10-01

    A big problem in triangular remeshing is to generate meshes when the triangle size approaches the feature size in the mesh. The main obstacle for Centroidal Voronoi Tessellation (CVT)-based remeshing is to compute a suitable Voronoi diagram. In this paper, we introduce the localized restricted Voronoi diagram (LRVD) on mesh surfaces. The LRVD is an extension of the restricted Voronoi diagram (RVD), but it addresses the problem that the RVD can contain Voronoi regions that consist of multiple disjoint surface patches. Our definition ensures that each Voronoi cell in the LRVD is a single connected region. We show that the LRVD is a useful extension to improve several existing mesh-processing techniques, most importantly surface remeshing with a low number of vertices. While the LRVD and RVD are identical in most simple configurations, the LRVD is essential when sampling a mesh with a small number of points and for sampling surface areas that are in close proximity to other surface areas, e.g., nearby sheets. To compute the LRVD, we combine local discrete clustering with a global exact computation. © 1995-2012 IEEE.

  19. The Voronoi spatio-temporal data structure

    Science.gov (United States)

    Mioc, Darka

    2002-04-01

    Current GIS models cannot integrate the temporal dimension of spatial data easily. Indeed, current GISs do not support incremental (local) addition and deletion of spatial objects, and they can not support the temporal evolution of spatial data. Spatio-temporal facilities would be very useful in many GIS applications: harvesting and forest planning, cadastre, urban and regional planning, and emergency planning. The spatio-temporal model that can overcome these problems is based on a topological model---the Voronoi data structure. Voronoi diagrams are irregular tessellations of space, that adapt to spatial objects and therefore they are a synthesis of raster and vector spatial data models. The main advantage of the Voronoi data structure is its local and sequential map updates, which allows us to automatically record each event and performed map updates within the system. These map updates are executed through map construction commands that are composed of atomic actions (geometric algorithms for addition, deletion, and motion of spatial objects) on the dynamic Voronoi data structure. The formalization of map commands led to the development of a spatial language comprising a set of atomic operations or constructs on spatial primitives (points and lines), powerful enough to define the complex operations. This resulted in a new formal model for spatio-temporal change representation, where each update is uniquely characterized by the numbers of newly created and inactivated Voronoi regions. This is used for the extension of the model towards the hierarchical Voronoi data structure. In this model, spatio-temporal changes induced by map updates are preserved in a hierarchical data structure that combines events and corresponding changes in topology. This hierarchical Voronoi data structure has an implicit time ordering of events visible through changes in topology, and it is equivalent to an event structure that can support temporal data without precise temporal

  20. Voro++: a three-dimensional Voronoi cell library in C++

    Energy Technology Data Exchange (ETDEWEB)

    Rycroft, Chris

    2009-01-15

    Voro++ is a free software library for the computation of three dimensional Voronoi cells. It is primarily designed for applications in physics and materials science, where the Voronoi tessellation can be a useful tool in the analysis of densely-packed particle systems, such as granular materials or glasses. The software comprises of several C++ classes that can be modified and incorporated into other programs. A command-line utility is also provided that can use most features of the code. Voro++ makes use of a direct cell-by-cell construction, which is particularly suited to handling special boundary conditions and walls. It employs algorithms which are tolerant for numerical precision errors, and it has been successfully employed on very large particle systems.

  1. A physics-motivated Centroidal Voronoi Particle domain decomposition method

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Lin, E-mail: lin.fu@tum.de; Hu, Xiangyu Y., E-mail: xiangyu.hu@tum.de; Adams, Nikolaus A., E-mail: nikolaus.adams@tum.de

    2017-04-15

    In this paper, we propose a novel domain decomposition method for large-scale simulations in continuum mechanics by merging the concepts of Centroidal Voronoi Tessellation (CVT) and Voronoi Particle dynamics (VP). The CVT is introduced to achieve a high-level compactness of the partitioning subdomains by the Lloyd algorithm which monotonically decreases the CVT energy. The number of computational elements between neighboring partitioning subdomains, which scales the communication effort for parallel simulations, is optimized implicitly as the generated partitioning subdomains are convex and simply connected with small aspect-ratios. Moreover, Voronoi Particle dynamics employing physical analogy with a tailored equation of state is developed, which relaxes the particle system towards the target partition with good load balance. Since the equilibrium is computed by an iterative approach, the partitioning subdomains exhibit locality and the incremental property. Numerical experiments reveal that the proposed Centroidal Voronoi Particle (CVP) based algorithm produces high-quality partitioning with high efficiency, independently of computational-element types. Thus it can be used for a wide range of applications in computational science and engineering.

  2. Limits of Voronoi Diagrams

    NARCIS (Netherlands)

    Lindenbergh, R.C.

    2002-01-01

    The classic Voronoi diagram of a configuration of distinct points in the plane associates to each point that part of the plane that is closer to the point than to any other point in the configuration. In this thesis we no longer require all points to be distinct. After the introduction in

  3. 3D RECONSTRUCTION OF A MULTISCALE MICROSTRUCTURE BY ANISOTROPIC TESSELLATION MODELS

    Directory of Open Access Journals (Sweden)

    Hellen Altendorf

    2014-05-01

    Full Text Available In the area of tessellation models, there is an intense activity to fully understand the classical models of Voronoi, Laguerre and Johnson-Mehl. Still, these models are all simulations of isotropic growth and are therefore limited to very simple and partly convex cell shapes. The here considered microstructure of martensitic steel has a much more complex and highly non convex cell shape, requiring new tessellation models. This paper presents a new approach for anisotropic tessellation models that resolve to the well-studied cases of Laguerre and Johnson-Mehl for spherical germs. Much better reconstructions can be achieved with these models and thus more realistic microstructure simulations can be produced for materials widely used in industry like martensitic and bainitic steels.

  4. Vesicle computers: Approximating a Voronoi diagram using Voronoi automata

    International Nuclear Information System (INIS)

    Adamatzky, Andrew; De Lacy Costello, Ben; Holley, Julian; Gorecki, Jerzy; Bull, Larry

    2011-01-01

    Highlights: → We model irregular arrangements of vesicles filled with chemical systems. → We examine influence of precipitation threshold on the system's computational potential. → We demonstrate computation of Voronoi diagram and skeleton. - Abstract: Irregular arrangements of vesicles filled with excitable and precipitating chemical systems are imitated by Voronoi automata - finite-state machines defined on a planar Voronoi diagram. Every Voronoi cell takes four states: resting, excited, refractory and precipitate. A resting cell excites if it has at least one neighbour in an excited state. The cell precipitates if the ratio of excited cells in its neighbourhood versus the number of neighbours exceeds a certain threshold. To approximate a Voronoi diagram on Voronoi automata we project a planar set onto the automaton lattice, thus cells corresponding to data-points are excited. Excitation waves propagate across the Voronoi automaton, interact with each other and form precipitate at the points of interaction. The configuration of the precipitate represents the edges of an approximated Voronoi diagram. We discover the relationship between the quality of the Voronoi diagram approximation and the precipitation threshold, and demonstrate the feasibility of our model in approximating Voronoi diagrams of arbitrary-shaped objects and in constructing a skeleton of a planar shape.

  5. Fitting polynomial surfaces to triangular meshes with Voronoi squared distance minimization

    KAUST Repository

    Nivoliers, Vincent

    2012-11-06

    This paper introduces Voronoi squared distance minimization (VSDM), an algorithm that fits a surface to an input mesh. VSDM minimizes an objective function that corresponds to a Voronoi-based approximation of the overall squared distance function between the surface and the input mesh (SDM). This objective function is a generalization of the one minimized by centroidal Voronoi tessellation, and can be minimized by a quasi-Newton solver. VSDM naturally adapts the orientation of the mesh elements to best approximate the input, without estimating any differential quantities. Therefore, it can be applied to triangle soups or surfaces with degenerate triangles, topological noise and sharp features. Applications of fitting quad meshes and polynomial surfaces to input triangular meshes are demonstrated. © 2012 Springer-Verlag London.

  6. Tessellating the Sphere with Regular Polygons

    Science.gov (United States)

    Soto-Johnson, Hortensia; Bechthold, Dawn

    2004-01-01

    Tessellations in the Euclidean plane and regular polygons that tessellate the sphere are reviewed. The regular polygons that can possibly tesellate the sphere are spherical triangles, squares and pentagons.

  7. Rigidly foldable origami gadgets and tessellations

    Science.gov (United States)

    Evans, Thomas A.; Lang, Robert J.; Magleby, Spencer P.; Howell, Larry L.

    2015-01-01

    Rigidly foldable origami allows for motion where all deflection occurs at the crease lines and facilitates the application of origami in materials other than paper. In this paper, we use a recently discovered method for determining rigid foldability to identify existing flat-foldable rigidly foldable tessellations, which are also categorized. We introduce rigidly foldable origami gadgets which may be used to modify existing tessellations or to create new tessellations. Several modified and new rigidly foldable tessellations are presented. PMID:26473037

  8. A TESSELLATION MODEL FOR CRACK PATTERNS ON SURFACES

    Directory of Open Access Journals (Sweden)

    Werner Nagel

    2011-05-01

    Full Text Available This paper presents a model of random tessellations that reflect several features of crack pattern. There are already several theoretical results derivedwhich indicate that thismodel can be an appropriate referencemodel. Some potential applications are presented in a tentative statistical study.

  9. Voronoi Diagrams Without Bounding Boxes

    Science.gov (United States)

    Sang, E. T. K.

    2015-10-01

    We present a technique for presenting geographic data in Voronoi diagrams without having to specify a bounding box. The method restricts Voronoi cells to points within a user-defined distance of the data points. The mathematical foundation of the approach is presented as well. The cell clipping method is particularly useful for presenting geographic data that is spread in an irregular way over a map, as for example the Dutch dialect data displayed in Figure 2. The automatic generation of reasonable cell boundaries also makes redundant a frequently used solution to this problem that requires data owners to specify region boundaries, as in Goebl (2010) and Nerbonne et al (2011).

  10. Quasi interpolation with Voronoi splines.

    Science.gov (United States)

    Mirzargar, Mahsa; Entezari, Alireza

    2011-12-01

    We present a quasi interpolation framework that attains the optimal approximation-order of Voronoi splines for reconstruction of volumetric data sampled on general lattices. The quasi interpolation framework of Voronoi splines provides an unbiased reconstruction method across various lattices. Therefore this framework allows us to analyze and contrast the sampling-theoretic performance of general lattices, using signal reconstruction, in an unbiased manner. Our quasi interpolation methodology is implemented as an efficient FIR filter that can be applied online or as a preprocessing step. We present visual and numerical experiments that demonstrate the improved accuracy of reconstruction across lattices, using the quasi interpolation framework. © 2011 IEEE

  11. Asymptotic statistics of the n-sided planar Poisson–Voronoi cell: II. Heuristics

    International Nuclear Information System (INIS)

    Hilhorst, H J

    2009-01-01

    We develop a set of heuristic arguments to explain several results on planar Poisson–Voronoi tessellations that were derived earlier at the cost of considerable mathematical effort. The results concern Voronoi cells having a large number n of sides. The arguments start from an entropy balance applied to the arrangement of n neighbors around a central cell. This is followed by a simplified evaluation of the phase space integral for the probability p n that an arbitrary cell be n-sided. The limitations of the arguments are indicated. As a new application we calculate the expected number of Gabriel (or full) neighbors of an n-sided cell in the large-n limit

  12. 3D Voronoi grid dedicated software for modeling gas migration in deep layered sedimentary formations with TOUGH2-TMGAS

    Science.gov (United States)

    Bonduà, Stefano; Battistelli, Alfredo; Berry, Paolo; Bortolotti, Villiam; Consonni, Alberto; Cormio, Carlo; Geloni, Claudio; Vasini, Ester Maria

    2017-11-01

    As is known, a full three-dimensional (3D) unstructured grid permits a great degree of flexibility when performing accurate numerical reservoir simulations. However, when the Integral Finite Difference Method (IFDM) is used for spatial discretization, constraints (arising from the required orthogonality between the segment connecting the blocks nodes and the interface area between blocks) pose difficulties in the creation of grids with irregular shaped blocks. The full 3D Voronoi approach guarantees the respect of IFDM constraints and allows generation of grids conforming to geological formations and structural objects and at the same time higher grid resolution in volumes of interest. In this work, we present dedicated pre- and post-processing gridding software tools for the TOUGH family of numerical reservoir simulators, developed by the Geothermal Research Group of the DICAM Department, University of Bologna. VORO2MESH is a new software coded in C++, based on the voro++ library, allowing computation of the 3D Voronoi tessellation for a given domain and the creation of a ready to use TOUGH2 MESH file. If a set of geological surfaces is available, the software can directly generate the set of Voronoi seed points used for tessellation. In order to reduce the number of connections and so to decrease computation time, VORO2MESH can produce a mixed grid with regular blocks (orthogonal prisms) and irregular blocks (polyhedron Voronoi blocks) at the point of contact between different geological formations. In order to visualize 3D Voronoi grids together with the results of numerical simulations, the functionality of the TOUGH2Viewer post-processor has been extended. We describe an application of VORO2MESH and TOUGH2Viewer to validate the two tools. The case study deals with the simulation of the migration of gases in deep layered sedimentary formations at basin scale using TOUGH2-TMGAS. A comparison between the simulation performances of unstructured and structured

  13. VORONOI DIAGRAMS WITHOUT BOUNDING BOXES

    Directory of Open Access Journals (Sweden)

    E. T. K. Sang

    2015-10-01

    Full Text Available We present a technique for presenting geographic data in Voronoi diagrams without having to specify a bounding box. The method restricts Voronoi cells to points within a user-defined distance of the data points. The mathematical foundation of the approach is presented as well. The cell clipping method is particularly useful for presenting geographic data that is spread in an irregular way over a map, as for example the Dutch dialect data displayed in Figure 2. The automatic generation of reasonable cell boundaries also makes redundant a frequently used solution to this problem that requires data owners to specify region boundaries, as in Goebl (2010 and Nerbonne et al (2011.

  14. Voronoi diagram and microstructure of weldment

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jung Ho [Chungbuk National University, Cheongju (Korea, Republic of)

    2015-01-15

    Voronoi diagram, one of the well-known space decomposition algorithms has been applied to express the microstructure of a weldment for the first time due to the superficial analogy between a Voronoi cell and a metal's grain. The area of the Voronoi cells can be controlled by location and the number of the seed points. This can be correlated to the grain size in the microstructure and the number of nuclei formed. The feasibility of representing coarse and fine grain structures were tested through Voronoi diagrams and it is applied to expression of cross-sectional bead shape of a typical laser welding. As result, it successfully described coarsened grain size of heat affected zone and columnar crystals in fusion zone. Although Voronoi diagram showed potential as a microstructure prediction tool through this feasible trial but direct correlation control variable of Voronoi diagram to solidification process parameter is still remained as further works.

  15. Classification of Noisy Data: An Approach Based on Genetic Algorithms and Voronoi Tessellation

    DEFF Research Database (Denmark)

    Khan, Abdul Rauf; Schiøler, Henrik; Knudsen, Torben

    Classification is one of the major constituents of the data-mining toolkit. The well-known methods for classification are built on either the principle of logic or statistical/mathematical reasoning for classification. In this article we propose: (1) a different strategy, which is based on the po......Classification is one of the major constituents of the data-mining toolkit. The well-known methods for classification are built on either the principle of logic or statistical/mathematical reasoning for classification. In this article we propose: (1) a different strategy, which is based...

  16. User Manual and Supporting Information for Library of Codes for Centroidal Voronoi Point Placement and Associated Zeroth, First, and Second Moment Determination; TOPICAL

    International Nuclear Information System (INIS)

    BURKARDT, JOHN; GUNZBURGER, MAX; PETERSON, JANET; BRANNON, REBECCA M.

    2002-01-01

    The theory, numerical algorithm, and user documentation are provided for a new ''Centroidal Voronoi Tessellation (CVT)'' method of filling a region of space (2D or 3D) with particles at any desired particle density. ''Clumping'' is entirely avoided and the boundary is optimally resolved. This particle placement capability is needed for any so-called ''mesh-free'' method in which physical fields are discretized via arbitrary-connectivity discrete points. CVT exploits efficient statistical methods to avoid expensive generation of Voronoi diagrams. Nevertheless, if a CVT particle's Voronoi cell were to be explicitly computed, then it would have a centroid that coincides with the particle itself and a minimized rotational moment. The CVT code provides each particle's volume and centroid, and also the rotational moment matrix needed to approximate a particle by an ellipsoid (instead of a simple sphere). DIATOM region specification is supported

  17. Voronoi Cell Patterns: Application of the size distribution to societal systems

    Science.gov (United States)

    Sathiyanarayanan, Rajesh; González, Diego Luis; Pimpinelli, Alberto; Einstein, T. L.

    2012-02-01

    In studying the growth of islands on a surface subjected to a particle flux, we found it useful to characterize the distribution of the areas of associated Voronoi (proximity or Wigner-Seitz) cells in terms of the generalized Wigner surmiseootnotetextAP & TLE, PRL 99 (2007) 226102; PRL 104 (2010) 149602 and the gamma distributions. Here we show that the same concepts and distributions are useful in analyzing several problems arising in society.ootnotetextDLG et al., arXiv 1109.3994; RS, Ph.D. dissertation; RS et al., preprint We analyze the 1D problem of the distribution of gaps between parked cars, assuming that successive cars park in the middle of vacant spaces, and compare with published data. We study the formation of second-level administrative divisions, e.g. French arrondissements. We study the actual distribution of arrondissements and the Voronoi tessellation associated with the chief town in each. While generally applicable, there are subtleties in some cases. Lastly, we consider the pattern formed by Paris M'etro stations and show that near the central area, the associated Voronoi construction also has this sort of distribution.

  18. Kinetic Line Voronoi Operations and Their Reversibility

    DEFF Research Database (Denmark)

    Mioc, Darka; Anton, François; Gold, Christopher

    2010-01-01

    In Geographic Information Systems the reversibility of map update operations has not been explored yet. In this paper we are using the Voronoi based Quad-edge data structure to define reversible map update operations. The reversibility of the map operations has been formalised at the lowest level...... mechanisms and dynamic map visualisations. In order to use the reversibility within the kinetic Voronoi diagram of points and open oriented line segments, we need to assure that reversing the map commands will produce exactly the changes in the map equivalent to the previous map states. To prove...... that reversing the map update operations produces the exact reverse changes, we show an isomorphism between the set of complex operations on the kinetic Voronoi diagram of points and open oriented line segments and the sets of numbers of new / deleted Voronoi regions induced by these operations, and its...

  19. A hybrid Lagrangian Voronoi-SPH scheme

    Science.gov (United States)

    Fernandez-Gutierrez, D.; Souto-Iglesias, A.; Zohdi, T. I.

    2017-11-01

    A hybrid Lagrangian Voronoi-SPH scheme, with an explicit weakly compressible formulation for both the Voronoi and SPH sub-domains, has been developed. The SPH discretization is substituted by Voronoi elements close to solid boundaries, where SPH consistency and boundary conditions implementation become problematic. A buffer zone to couple the dynamics of both sub-domains is used. This zone is formed by a set of particles where fields are interpolated taking into account SPH particles and Voronoi elements. A particle may move in or out of the buffer zone depending on its proximity to a solid boundary. The accuracy of the coupled scheme is discussed by means of a set of well-known verification benchmarks.

  20. MCTS Experiments on the Voronoi Game

    OpenAIRE

    Bouzy , Bruno; Métivier , Marc; Pellier , Damien

    2011-01-01

    International audience; Monte-Carlo Tree Search (MCTS) is a powerful tool in games with a finite branching factor. This paper describes an artificial player playing the Voronoi game, a game with an infi- nite branching factor. First, this paper shows how to use MCTS on a discretization of the Voronoi game, and the effects of en- hancements such as RAVE and Gaussian processes (GP). A first set of experimental results shows that MCTS with UCB+RAVE or with UCB+GP are first good solutions for pla...

  1. Escher's Tessellations in Understanding Group Theory

    Science.gov (United States)

    Konyalioglu, Serpil

    2009-01-01

    In this study, it is explained how to use Escher's tessellations in teaching group concept which is one of the most abstract concepts in mathematics. MC Escher's monohedral tessellations provide detailed study in an undergraduate course in abstract algebra. This study attempts to provide useful visual references for the students on learning some…

  2. The art and science of hyperbolic tessellations.

    Science.gov (United States)

    Van Dusen, B; Taylor, R P

    2013-04-01

    The visual impact of hyperbolic tessellations has captured artists' imaginations ever since M.C. Escher generated his Circle Limit series in the 1950s. The scaling properties generated by hyperbolic geometry are different to the fractal scaling properties found in nature's scenery. Consequently, prevalent interpretations of Escher's art emphasize the lack of connection with nature's patterns. However, a recent collaboration between the two authors proposed that Escher's motivation for using hyperbolic geometry was as a method to deliberately distort nature's rules. Inspired by this hypothesis, this year's cover artist, Ben Van Dusen, embeds natural fractals such as trees, clouds and lightning into a hyperbolic scaling grid. The resulting interplay of visual structure at multiple size scales suggests that hybridizations of fractal and hyperbolic geometries provide a rich compositional tool for artists.

  3. Voronoi cell patterns: Theoretical model and applications

    Science.gov (United States)

    González, Diego Luis; Einstein, T. L.

    2011-11-01

    We use a simple fragmentation model to describe the statistical behavior of the Voronoi cell patterns generated by a homogeneous and isotropic set of points in 1D and in 2D. In particular, we are interested in the distribution of sizes of these Voronoi cells. Our model is completely defined by two probability distributions in 1D and again in 2D, the probability to add a new point inside an existing cell and the probability that this new point is at a particular position relative to the preexisting point inside this cell. In 1D the first distribution depends on a single parameter while the second distribution is defined through a fragmentation kernel; in 2D both distributions depend on a single parameter. The fragmentation kernel and the control parameters are closely related to the physical properties of the specific system under study. We use our model to describe the Voronoi cell patterns of several systems. Specifically, we study the island nucleation with irreversible attachment, the 1D car-parking problem, the formation of second-level administrative divisions, and the pattern formed by the Paris Métro stations.

  4. On the size distribution of one-, two- and three-dimensional Voronoi cells

    International Nuclear Information System (INIS)

    Marthinsen, K.

    1994-03-01

    The present report gives a presentation of the different cell size distribution obtained by computer simulations of random Voronoi cell structures in one-, two- and three-dimensional space. The random Voronoi cells are constructed from cell centroids randomly distributed along a string, in the plane and in three-dimensional space, respectively. The size distributions are based on 2-3 · 10 4 cells. For the spacial polyhedra both the distribution of volumes, areas and radii are presented, and the two latter quantities are compared to the distributions of areas and radii from a planar section through the three-dimensional structure as well as to the corresponding distributions obtained from a pure two-dimensional cell structure. 11 refs., 11 figs

  5. Moment analysis of the Delaunay tessellation field estimator

    NARCIS (Netherlands)

    Lieshout, van M.N.M.

    2009-01-01

    The Campbell–Mecke theorem is used to derive explicit expressions for the mean and variance of Schaap and Van de Weygaert’s Delaunay tessellation field estimator. Special attention is paid to Poisson processes.

  6. Accuracy tests of the tessellated SLBM model

    International Nuclear Information System (INIS)

    Ramirez, A L; Myers, S C

    2007-01-01

    We have compared the Seismic Location Base Model (SLBM) tessellated model (version 2.0 Beta, posted July 3, 2007) with the GNEMRE Unified Model. The comparison is done on a layer/depth-by-layer/depth and layer/velocity-by-layer/velocity comparison. The SLBM earth model is defined on a tessellation that spans the globe at a constant resolution of about 1 degree (Ballard, 2007). For the tests, we used the earth model in file ''unified( ) iasp.grid''. This model contains the top 8 layers of the Unified Model (UM) embedded in a global IASP91 grid. Our test queried the same set of nodes included in the UM model file. To query the model stored in memory, we used some of the functionality built into the SLBMInterface object. We used the method get InterpolatedPoint() to return desired values for each layer at user-specified points. The values returned include: depth to the top of each layer, layer velocity, layer thickness and (for the upper-mantle layer) velocity gradient. The SLBM earth model has an extra middle crust layer whose values are used when Pg/Lg phases are being calculated. This extra layer was not accessed by our tests. Figures 1 to 8 compare the layer depths, P velocities and P gradients in the UM and SLBM models. The figures show results for the three sediment layers, three crustal layers and the upper mantle layer defined in the UM model. Each layer in the models (sediment1, sediment2, sediment3, upper crust, middle crust, lower crust and upper mantle) is shown on a separate figure. The upper mantle P velocity and gradient distribution are shown on Figures 7 and 8. The left and center images in the top row of each figure is the rendering of depth to the top of the specified layer for the UM and SLBM models. When a layer has zero thickness, its depth is the same as that of the layer above. The right image in the top row is the difference between in layer depth for the UM and SLBM renderings. The left and center images in the bottom row of the figures are

  7. The review on tessellation origami inspired folded structure

    Science.gov (United States)

    Chu, Chai Chen; Keong, Choong Kok

    2017-10-01

    Existence of folds enhances the load carrying capacity of a folded structure which makes it suitable to be used for application where large open space is required such as large span roof structures and façade. Folded structure is closely related to origami especially the tessellation origami. Tessellation origami provides a folded configuration with facetted surface as a result from repeated folding pattern. Besides that, tessellation origami has flexible folding mechanism that produced a variety of 3-dimensional folded configurations. Despite the direct relationship between fold in origami and folded structure, the idea of origami inspired folded structure is not properly reviewed in the relevant engineering field. Hence, this paper aims to present the current studies from related discipline which has direct relation with application of tessellation origami in folded structure. First, tessellation origami is properly introduced and defined. Then, the review covers the topic on the origami tessellation design suitable for folded structure, its modeling and simulation method, and existing studies and applications of origami as folded structure is presented. The paper also includes the discussion on the current issues related to each topic.

  8. Community detection by graph Voronoi diagrams

    Science.gov (United States)

    Deritei, Dávid; Lázár, Zsolt I.; Papp, István; Járai-Szabó, Ferenc; Sumi, Róbert; Varga, Levente; Ravasz Regan, Erzsébet; Ercsey-Ravasz, Mária

    2014-06-01

    Accurate and efficient community detection in networks is a key challenge for complex network theory and its applications. The problem is analogous to cluster analysis in data mining, a field rich in metric space-based methods. Common to these methods is a geometric, distance-based definition of clusters or communities. Here we propose a new geometric approach to graph community detection based on graph Voronoi diagrams. Our method serves as proof of principle that the definition of appropriate distance metrics on graphs can bring a rich set of metric space-based clustering methods to network science. We employ a simple edge metric that reflects the intra- or inter-community character of edges, and a graph density-based rule to identify seed nodes of Voronoi cells. Our algorithm outperforms most network community detection methods applicable to large networks on benchmark as well as real-world networks. In addition to offering a computationally efficient alternative for community detection, our method opens new avenues for adapting a wide range of data mining algorithms to complex networks from the class of centroid- and density-based clustering methods.

  9. Investigation of the Rock Fragmentation Process by a Single TBM Cutter Using a Voronoi Element-Based Numerical Manifold Method

    Science.gov (United States)

    Liu, Quansheng; Jiang, Yalong; Wu, Zhijun; Xu, Xiangyu; Liu, Qi

    2018-04-01

    In this study, a two-dimensional Voronoi element-based numerical manifold method (VE-NMM) is developed to analyze the granite fragmentation process by a single tunnel boring machine (TBM) cutter under different confining stresses. A Voronoi tessellation technique is adopted to generate the polygonal grain assemblage to approximate the microstructure of granite sample from the Gubei colliery of Huainan mining area in China. A modified interface contact model with cohesion and tensile strength is embedded into the numerical manifold method (NMM) to interpret the interactions between the rock grains. Numerical uniaxial compression and Brazilian splitting tests are first conducted to calibrate and validate the VE-NMM models based on the laboratory experiment results using a trial-and-error method. On this basis, numerical simulations of rock fragmentation by a single TBM cutter are conducted. The simulated crack initiation and propagation process as well as the indentation load-penetration depth behaviors in the numerical models accurately predict the laboratory indentation test results. The influence of confining stress on rock fragmentation is also investigated. Simulation results show that radial tensile cracks are more likely to be generated under a low confining stress, eventually coalescing into a major fracture along the loading axis. However, with the increase in confining stress, more side cracks initiate and coalesce, resulting in the formation of rock chips at the upper surface of the model. In addition, the peak indentation load also increases with the increasing confining stress, indicating that a higher thrust force is usually needed during the TBM boring process in deep tunnels.

  10. Efficient Delaunay Tessellation through K-D Tree Decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Morozov, Dmitriy; Peterka, Tom

    2017-08-21

    Delaunay tessellations are fundamental data structures in computational geometry. They are important in data analysis, where they can represent the geometry of a point set or approximate its density. The algorithms for computing these tessellations at scale perform poorly when the input data is unbalanced. We investigate the use of k-d trees to evenly distribute points among processes and compare two strategies for picking split points between domain regions. Because resulting point distributions no longer satisfy the assumptions of existing parallel Delaunay algorithms, we develop a new parallel algorithm that adapts to its input and prove its correctness. We evaluate the new algorithm using two late-stage cosmology datasets. The new running times are up to 50 times faster using k-d tree compared with regular grid decomposition. Moreover, in the unbalanced data sets, decomposing the domain into a k-d tree is up to five times faster than decomposing it into a regular grid.

  11. Fitting polynomial surfaces to triangular meshes with Voronoi Squared Distance Minimization

    KAUST Repository

    Nivoliers, Vincent; Yan, Dongming; Lé vy, Bruno L.

    2011-01-01

    This paper introduces Voronoi Squared Distance Minimization (VSDM), an algorithm that fits a surface to an input mesh. VSDM minimizes an objective function that corresponds to a Voronoi-based approximation of the overall squared distance function

  12. Fitting polynomial surfaces to triangular meshes with Voronoi squared distance minimization

    KAUST Repository

    Nivoliers, Vincent; Yan, Dongming; Lé vy, Bruno L.

    2012-01-01

    This paper introduces Voronoi squared distance minimization (VSDM), an algorithm that fits a surface to an input mesh. VSDM minimizes an objective function that corresponds to a Voronoi-based approximation of the overall squared distance function

  13. Relationships between residue Voronoi volume and sequence conservation in proteins.

    Science.gov (United States)

    Liu, Jen-Wei; Cheng, Chih-Wen; Lin, Yu-Feng; Chen, Shao-Yu; Hwang, Jenn-Kang; Yen, Shih-Chung

    2018-02-01

    Functional and biophysical constraints can cause different levels of sequence conservation in proteins. Previously, structural properties, e.g., relative solvent accessibility (RSA) and packing density of the weighted contact number (WCN), have been found to be related to protein sequence conservation (CS). The Voronoi volume has recently been recognized as a new structural property of the local protein structural environment reflecting CS. However, for surface residues, it is sensitive to water molecules surrounding the protein structure. Herein, we present a simple structural determinant termed the relative space of Voronoi volume (RSV); it uses the Voronoi volume and the van der Waals volume of particular residues to quantify the local structural environment. RSV (range, 0-1) is defined as (Voronoi volume-van der Waals volume)/Voronoi volume of the target residue. The concept of RSV describes the extent of available space for every protein residue. RSV and Voronoi profiles with and without water molecules (RSVw, RSV, VOw, and VO) were compared for 554 non-homologous proteins. RSV (without water) showed better Pearson's correlations with CS than did RSVw, VO, or VOw values. The mean correlation coefficient between RSV and CS was 0.51, which is comparable to the correlation between RSA and CS (0.49) and that between WCN and CS (0.56). RSV is a robust structural descriptor with and without water molecules and can quantitatively reflect evolutionary information in a single protein structure. Therefore, it may represent a practical structural determinant to study protein sequence, structure, and function relationships. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Map updates in a dynamic Voronoi data structure

    DEFF Research Database (Denmark)

    Mioc, Darka; Antón Castro, Francesc/François; Gold, C. M.

    2006-01-01

    In this paper we are using local and sequential map updates in the Voronoi data structure, which allows us to automatically record each event and performed map updates within the system. These map updates are executed through map construction commands that are composed of atomic actions (geometric...... algorithms for addition, deletion, and motion of spatial objects) on the dynamic Voronoi data structure. The formalization of map commands led to the development of a spatial language comprising a set of atomic operations or constructs on spatial primitives (points and lines), powerful enough to define...

  15. MeshVoro: A Three-Dimensional Voronoi Mesh Building Tool for the TOUGH Family of Codes

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, C. M.; Boyle, K. L.; Reagan, M.; Johnson, J.; Rycroft, C.; Moridis, G. J.

    2013-09-30

    Few tools exist for creating and visualizing complex three-dimensional simulation meshes, and these have limitations that restrict their application to particular geometries and circumstances. Mesh generation needs to trend toward ever more general applications. To that end, we have developed MeshVoro, a tool that is based on the Voro (Rycroft 2009) library and is capable of generating complex threedimensional Voronoi tessellation-based (unstructured) meshes for the solution of problems of flow and transport in subsurface geologic media that are addressed by the TOUGH (Pruess et al. 1999) family of codes. MeshVoro, which includes built-in data visualization routines, is a particularly useful tool because it extends the applicability of the TOUGH family of codes by enabling the scientifically robust and relatively easy discretization of systems with challenging 3D geometries. We describe several applications of MeshVoro. We illustrate the ability of the tool to straightforwardly transform a complex geological grid into a simulation mesh that conforms to the specifications of the TOUGH family of codes. We demonstrate how MeshVoro can describe complex system geometries with a relatively small number of grid blocks, and we construct meshes for geometries that would have been practically intractable with a standard Cartesian grid approach. We also discuss the limitations and appropriate applications of this new technology.

  16. Lagrangian fluid dynamics using the Voronoi-Delauanay mesh

    International Nuclear Information System (INIS)

    Dukowicz, J.K.

    1981-01-01

    A Lagrangian technique for numerical fluid dynamics is described. This technique makes use of the Voronoi mesh to efficiently locate new neighbors, and it uses the dual (Delaunay) triangulation to define computational cells. This removes all topological restrictions and facilitates the solution of problems containing interfaces and multiple materials. To improve computational accuracy a mesh smoothing procedure is employed

  17. Voronoi Cell Patterns: theoretical model and application to submonolayer growth

    Science.gov (United States)

    González, Diego Luis; Einstein, T. L.

    2012-02-01

    We use a simple fragmentation model to describe the statistical behavior of the Voronoi cell patterns generated by a homogeneous and isotropic set of points in 1D and in 2D. In particular, we are interested in the distribution of sizes of these Voronoi cells. Our model is completely defined by two probability distributions in 1D and again in 2D, the probability to add a new point inside an existing cell and the probability that this new point is at a particular position relative to the preexisting point inside this cell. In 1D the first distribution depends on a single parameter while the second distribution is defined through a fragmentation kernel; in 2D both distributions depend on a single parameter. The fragmentation kernel and the control parameters are closely related to the physical properties of the specific system under study. We apply our model to describe the Voronoi cell patterns of island nucleation for critical island sizes i=0,1,2,3. Experimental results for the Voronoi cells of InAs/GaAs quantum dots are also described by our model.

  18. Canaliculi in the tessellated skeleton of cartilaginous fishes

    Energy Technology Data Exchange (ETDEWEB)

    Dean, M.N.; Socha, J.J.; Hall, B.K.; Summers, A.P. (UCI); (Dalhousie U.); (VPI-SU)

    2010-08-04

    The endoskeletal elements of sharks and rays are comprised of an uncalcified, hyaline cartilage-like core overlain by a thin fibro-ceramic layer of mineralized hexagonal tiles (tesserae) adjoined by intertesseral fibers. The basic spatial relationships of the constituent tissues (unmineralized cartilage, mineralized cartilage, fibrous tissue) are well-known - endoskeletal tessellation is a long-recognized synapomorphy of elasmobranch fishes - but a high-resolution and three-dimensional (3D) understanding of their interactions has been hampered by difficulties in sample preparation and lack of technologies adequate for visualizing microstructure and microassociations. We used cryo-electron microscopy and synchrotron radiation tomography to investigate tessellated skeleton ultrastructure but without damage to the delicate relationships between constituent tissues or to the tesserae themselves. The combination of these techniques allowed visualization of never before appreciated internal structures, namely passages connecting the lacunar spaces within tesserae. These intratesseral 'canaliculi' link consecutive lacunar spaces into long lacunar strings, radiating outward from the center of tesserae. The continuity of extracellular matrix throughout the canalicular network may explain how chondrocytes in tesserae remain vital despite encasement in mineral. Extracellular fluid exchange may also permit transmission of nutrients, and mechanical and mineralization signals among chondrocytes, in a manner similar to the canalicular network in bone. These co-adapted mechanisms for the facilitated exchange of extracellular material suggest a level of parallelism in early chondrocyte and osteocyte evolution.

  19. The mechanics of tessellations - bioinspired strategies for fracture resistance.

    Science.gov (United States)

    Fratzl, Peter; Kolednik, Otmar; Fischer, F Dieter; Dean, Mason N

    2016-01-21

    Faced with a comparatively limited palette of minerals and organic polymers as building materials, evolution has arrived repeatedly on structural solutions that rely on clever geometric arrangements to avoid mechanical trade-offs in stiffness, strength and flexibility. In this tutorial review, we highlight the concept of tessellation, a structural motif that involves periodic soft and hard elements arranged in series and that appears in a vast array of invertebrate and vertebrate animal biomaterials. We start from basic mechanics principles on the effects of material heterogeneities in hypothetical structures, to derive common concepts from a diversity of natural examples of one-, two- and three-dimensional tilings/layerings. We show that the tessellation of a hard, continuous surface - its atomization into discrete elements connected by a softer phase - can theoretically result in maximization of material toughness, with little expense to stiffness or strength. Moreover, the arrangement of soft/flexible and hard/stiff elements into particular geometries can permit surprising functions, such as signal filtering or 'stretch and catch' responses, where the constrained flexibility of systems allows a built-in safety mechanism for ensuring that both compressive and tensile loads are managed well. Our analysis unites examples ranging from exoskeletal materials (fish scales, arthropod cuticle, turtle shell) to endoskeletal materials (bone, shark cartilage, sponge spicules) to attachment devices (mussel byssal threads), from both invertebrate and vertebrate animals, while spotlighting success and potential for bio-inspired manmade applications.

  20. Designing a supply chain of ready-mix concrete using Voronoi diagrams

    Science.gov (United States)

    Kozniewski, E.; Orlowski, M.; Orlowski, Z.

    2017-10-01

    Voronoi diagrams are used to solve scientific and practical problems in many fields. In this paper Voronoi diagrams have been applied to logistic problems in construction, more specifically in the design of the ready-mix concrete supply chain. Apart from the Voronoi diagram, the so-called time-distance circle (circle of range), which in metric space terminology is simply a sphere, appears useful. It was introduced to solve the problem of supplying concrete-related goods.

  1. The cosmic spiderweb: equivalence of cosmic, architectural and origami tessellations

    Science.gov (United States)

    Neyrinck, Mark C.; Hidding, Johan; Konstantatou, Marina; van de Weygaert, Rien

    2018-04-01

    For over 20 years, the term `cosmic web' has guided our understanding of the large-scale arrangement of matter in the cosmos, accurately evoking the concept of a network of galaxies linked by filaments. But the physical correspondence between the cosmic web and structural engineering or textile `spiderwebs' is even deeper than previously known, and also extends to origami tessellations. Here, we explain that in a good structure-formation approximation known as the adhesion model, threads of the cosmic web form a spiderweb, i.e. can be strung up to be entirely in tension. The correspondence is exact if nodes sampling voids are included, and if structure is excluded within collapsed regions (walls, filaments and haloes), where dark-matter multistreaming and baryonic physics affect the structure. We also suggest how concepts arising from this link might be used to test cosmological models: for example, to test for large-scale anisotropy and rotational flows in the cosmos.

  2. The cosmic spiderweb: equivalence of cosmic, architectural and origami tessellations.

    Science.gov (United States)

    Neyrinck, Mark C; Hidding, Johan; Konstantatou, Marina; van de Weygaert, Rien

    2018-04-01

    For over 20 years, the term 'cosmic web' has guided our understanding of the large-scale arrangement of matter in the cosmos, accurately evoking the concept of a network of galaxies linked by filaments. But the physical correspondence between the cosmic web and structural engineering or textile 'spiderwebs' is even deeper than previously known, and also extends to origami tessellations. Here, we explain that in a good structure-formation approximation known as the adhesion model, threads of the cosmic web form a spiderweb, i.e. can be strung up to be entirely in tension. The correspondence is exact if nodes sampling voids are included, and if structure is excluded within collapsed regions (walls, filaments and haloes), where dark-matter multistreaming and baryonic physics affect the structure. We also suggest how concepts arising from this link might be used to test cosmological models: for example, to test for large-scale anisotropy and rotational flows in the cosmos.

  3. Fractional Dynamics of Genetic Algorithms Using Hexagonal Space Tessellation

    Directory of Open Access Journals (Sweden)

    J. A. Tenreiro Machado

    2013-01-01

    Full Text Available The paper formulates a genetic algorithm that evolves two types of objects in a plane. The fitness function promotes a relationship between the objects that is optimal when some kind of interface between them occurs. Furthermore, the algorithm adopts an hexagonal tessellation of the two-dimensional space for promoting an efficient method of the neighbour modelling. The genetic algorithm produces special patterns with resemblances to those revealed in percolation phenomena or in the symbiosis found in lichens. Besides the analysis of the spacial layout, a modelling of the time evolution is performed by adopting a distance measure and the modelling in the Fourier domain in the perspective of fractional calculus. The results reveal a consistent, and easy to interpret, set of model parameters for distinct operating conditions.

  4. Weak-lensing calibration of a stellar mass-based mass proxy for redMaPPer and Voronoi Tessellation clusters in SDSS Stripe 82

    Science.gov (United States)

    Pereira, Maria E. S.; Soares-Santos, Marcelle; Makler, Martin; Annis, James; Lin, Huan; Palmese, Antonella; Vitorelli, André Z.; Welch, Brian; Caminha, Gabriel B.; Erben, Thomas; Moraes, Bruno; Shan, Huanyuan

    2018-02-01

    We present the first weak lensing calibration of μ⋆, a new galaxy cluster mass proxy corresponding to the total stellar mass of red and blue members, in two cluster samples selected from the SDSS Stripe 82 data: 230 red-sequence Matched-filter Probabilistic Percolation (redMaPPer) clusters at redshift 0.1 ≤ z proxy for VT clusters. Catalogues including μ⋆ measurements will enable its use in studies of galaxy evolution in clusters and cluster cosmology.

  5. The cosmic spiderweb: equivalence of cosmic, architectural and origami tessellations

    Science.gov (United States)

    Hidding, Johan; Konstantatou, Marina; van de Weygaert, Rien

    2018-01-01

    For over 20 years, the term ‘cosmic web’ has guided our understanding of the large-scale arrangement of matter in the cosmos, accurately evoking the concept of a network of galaxies linked by filaments. But the physical correspondence between the cosmic web and structural engineering or textile ‘spiderwebs’ is even deeper than previously known, and also extends to origami tessellations. Here, we explain that in a good structure-formation approximation known as the adhesion model, threads of the cosmic web form a spiderweb, i.e. can be strung up to be entirely in tension. The correspondence is exact if nodes sampling voids are included, and if structure is excluded within collapsed regions (walls, filaments and haloes), where dark-matter multistreaming and baryonic physics affect the structure. We also suggest how concepts arising from this link might be used to test cosmological models: for example, to test for large-scale anisotropy and rotational flows in the cosmos. PMID:29765637

  6. Ajuste de particiones planas mediante diagramas de Voronoi discretos

    OpenAIRE

    García Bernal, Daniel

    2017-01-01

    La geometría computacional se centra en el diseño y análisis de algoritmos para problemas geométricos. En la última decada, esta disciplina ha atraído un enorme interés. Pero ha sido en los últimos a~nos cuando se ha incrementado el interés en una estructura geométrica, concretamente los diagramas de Voronoi. No solo por sus características y propiedades matemáticas, sino también por aparecer ampliamente relacionados con fenómenos y procesos físicos que se dan en la naturale...

  7. Development and application of α-hull and Voronoi diagrams in the assessment of roundness error

    International Nuclear Information System (INIS)

    Li, Xiuming; Liu, Hongqi; Li, Wei

    2011-01-01

    Computational geometry has been used to select effective data points from the measured data points for evaluating the roundness error to improve the computational complexity. However, for precision parts most of the measured points are on the vertices of the convex hull; it cannot have any effect on improving the computational complexity with the Voronoi diagrams. In this paper the roundness error is evaluated with α-hull and the Voronoi diagram instead of convex hull. An approach for constructing α-hull with the minimum radius separation is presented to determine the vertices of the Voronoi diagram. The experimental results showed that the roundness error of the minimum zone circle could be solved efficiently with α-hull and the Voronoi diagram

  8. MOMENTS OF THE LENGTH OF LINE SEGMENTS IN HOMOGENEOUS PLANAR STIT TESSELLATIONS

    Directory of Open Access Journals (Sweden)

    Christoph Thäle

    2011-05-01

    Full Text Available Homogeneous planar tessellations stable under iteration (STIT tessellations are considered. Using recent results about the joint distribution of direction and length of the typical I-, K- and J-segment we prove closed formulas for the first, second and higher moments of the length of these segments given their direction. This especially leads to themean values and variances of these quantities andmean value relations as well as general moment relationships. Moreover, the relation between these mean values and certain conditional mean values (and also higher moments is discussed. The results are also illustrated for several examples.

  9. The Voronoi volume and molecular representation of molar volume: equilibrium simple fluids.

    Science.gov (United States)

    Hunjan, Jagtar Singh; Eu, Byung Chan

    2010-04-07

    The Voronoi volume of simple fluids was previously made use of in connection with volume transport phenomena in nonequilibrium simple fluids. To investigate volume transport phenomena, it is important to develop a method to compute the Voronoi volume of fluids in nonequilibrium. In this work, as a first step to this goal, we investigate the equilibrium limit of the nonequilibrium Voronoi volume together with its attendant related molar (molal) and specific volumes. It is proved that the equilibrium Voronoi volume is equivalent to the molar (molal) volume. The latter, in turn, is proved equivalent to the specific volume. This chain of equivalences provides an alternative procedure of computing the equilibrium Voronoi volume from the molar volume/specific volume. We also show approximate methods of computing the Voronoi and molar volumes from the information on the pair correlation function. These methods may be employed for their quick estimation, but also provide some aspects of the fluid structure and its relation to the Voronoi volume. The Voronoi volume obtained from computer simulations is fitted to a function of temperature and pressure in the region above the triple point but below the critical point. Since the fitting function is given in terms of reduced variables for the Lennard-Jones (LJ) model and the kindred volumes (i.e., specific and molar volumes) are in essence equivalent to the equation of state, the formula obtained is a reduced equation state for simple fluids obeying the LJ model potential in the range of temperature and pressure examined and hence can be used for other simple fluids.

  10. Dynamic load balancing algorithm for molecular dynamics based on Voronoi cells domain decompositions

    Energy Technology Data Exchange (ETDEWEB)

    Fattebert, J.-L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Richards, D.F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Glosli, J.N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2012-12-01

    We present a new algorithm for automatic parallel load balancing in classical molecular dynamics. It assumes a spatial domain decomposition of particles into Voronoi cells. It is a gradient method which attempts to minimize a cost function by displacing Voronoi sites associated with each processor/sub-domain along steepest descent directions. Excellent load balance has been obtained for quasi-2D and 3D practical applications, with up to 440·106 particles on 65,536 MPI tasks.

  11. Interactive Land-Use Optimization Using Laguerre Voronoi Diagram with Dynamic Generating Point Allocation

    Science.gov (United States)

    Chaidee, S.; Pakawanwong, P.; Suppakitpaisarn, V.; Teerasawat, P.

    2017-09-01

    In this work, we devise an efficient method for the land-use optimization problem based on Laguerre Voronoi diagram. Previous Voronoi diagram-based methods are more efficient and more suitable for interactive design than discrete optimization-based method, but, in many cases, their outputs do not satisfy area constraints. To cope with the problem, we propose a force-directed graph drawing algorithm, which automatically allocates generating points of Voronoi diagram to appropriate positions. Then, we construct a Laguerre Voronoi diagram based on these generating points, use linear programs to adjust each cell, and reconstruct the diagram based on the adjustment. We adopt the proposed method to the practical case study of Chiang Mai University's allocated land for a mixed-use complex. For this case study, compared to other Voronoi diagram-based method, we decrease the land allocation error by 62.557 %. Although our computation time is larger than the previous Voronoi-diagram-based method, it is still suitable for interactive design.

  12. Distributed Algorithm for Voronoi Partition of Wireless Sensor Networks with a Limited Sensing Range.

    Science.gov (United States)

    He, Chenlong; Feng, Zuren; Ren, Zhigang

    2018-02-03

    For Wireless Sensor Networks (WSNs), the Voronoi partition of a region is a challenging problem owing to the limited sensing ability of each sensor and the distributed organization of the network. In this paper, an algorithm is proposed for each sensor having a limited sensing range to compute its limited Voronoi cell autonomously, so that the limited Voronoi partition of the entire WSN is generated in a distributed manner. Inspired by Graham's Scan (GS) algorithm used to compute the convex hull of a point set, the limited Voronoi cell of each sensor is obtained by sequentially scanning two consecutive bisectors between the sensor and its neighbors. The proposed algorithm called the Boundary Scan (BS) algorithm has a lower computational complexity than the existing Range-Constrained Voronoi Cell (RCVC) algorithm and reaches the lower bound of the computational complexity of the algorithms used to solve the problem of this kind. Moreover, it also improves the time efficiency of a key step in the Adjust-Sensing-Radius (ASR) algorithm used to compute the exact Voronoi cell. Extensive numerical simulations are performed to demonstrate the correctness and effectiveness of the BS algorithm. The distributed realization of the BS combined with a localization algorithm in WSNs is used to justify the WSN nature of the proposed algorithm.

  13. Seamless Heterogeneous 3D Tessellation via DWT Domain Smoothing and Mosaicking

    Directory of Open Access Journals (Sweden)

    Gilles Gesquière

    2010-01-01

    Full Text Available With todays geobrowsers, the tessellations are far from being smooth due to a variety of reasons: the principal being the light difference and resolution heterogeneity. Whilst the former has been extensively dealt with in the literature through classic mosaicking techniques, the latter has got little attention. We focus on this latter aspect and present two DWT domain methods to seamlessly stitch tiles of heterogeneous resolutions. The first method is local in that each of the tiles that constitute the view, is subjected to one of the three context-based smoothing functions proposed for horizontal, vertical, and radial smoothing, depending on its localization in the tessellation. These functions are applied at the DWT subband level and followed by an inverse DWT to give a smoothened tile. In the second method, though we assume the same tessellation scenario, the view field is thought to be of a sliding window which may contain parts of the tiles from the heterogeneous tessellation. The window is refined in the DWT domain through mosaicking and smoothing followed by a global inverse DWT. Rather than the traditional sense, the mosaicking employed over here targets the heterogeneous resolution. Perceptually, this second method has shown better results than the first one. The methods have been successfully applied to practical examples of both the texture and its corresponding DEM for seamless 3D terrain visualization.

  14. Ancient dragon fish, Rhinoceroses and Bird Rosettas : tessellations in laser cut wood

    NARCIS (Netherlands)

    2013-01-01

    The art works proposed are examples of results of a yearly workshop for industrial design students at TU/e. The workshop serves to teach mathematical principles to design students. The students defined tessellations in turtle graphics using the new Oogway library for Processing and the classical

  15. Reaction Diffusion Voronoi Diagrams: From Sensors Data to Computing

    Directory of Open Access Journals (Sweden)

    Alejandro Vázquez-Otero

    2015-05-01

    Full Text Available In this paper, a new method to solve computational problems using reaction diffusion (RD systems is presented. The novelty relies on the use of a model configuration that tailors its spatiotemporal dynamics to develop Voronoi diagrams (VD as a part of the system’s natural evolution. The proposed framework is deployed in a solution of related robotic problems, where the generalized VD are used to identify topological places in a grid map of the environment that is created from sensor measurements. The ability of the RD-based computation to integrate external information, like a grid map representing the environment in the model computational grid, permits a direct integration of sensor data into the model dynamics. The experimental results indicate that this method exhibits significantly less sensitivity to noisy data than the standard algorithms for determining VD in a grid. In addition, previous drawbacks of the computational algorithms based on RD models, like the generation of volatile solutions by means of excitable waves, are now overcome by final stable states.

  16. Incremental Construction of Generalized Voronoi Diagrams on Pointerless Quadtrees

    Directory of Open Access Journals (Sweden)

    Quanjun Yin

    2014-01-01

    Full Text Available In robotics, Generalized Voronoi Diagrams (GVDs are widely used by mobile robots to represent the spatial topologies of their surrounding area. In this paper we consider the problem of constructing GVDs on discrete environments. Several algorithms that solve this problem exist in the literature, notably the Brushfire algorithm and its improved versions which possess local repair mechanism. However, when the area to be processed is very large or is of high resolution, the size of the metric matrices used by these algorithms to compute GVDs can be prohibitive. To address this issue, we propose an improvement on the current algorithms, using pointerless quadtrees in place of metric matrices to compute and maintain GVDs. Beyond the construction and reconstruction of a GVD, our algorithm further provides a method to approximate roadmaps in multiple granularities from the quadtree based GVD. Simulation tests in representative scenarios demonstrate that, compared with the current algorithms, our algorithm generally makes an order of magnitude improvement regarding memory cost when the area is larger than 210×210. We also demonstrate the usefulness of the approximated roadmaps for coarse-to-fine pathfinding tasks.

  17. A 3D Voronoi+Gapper Galaxy Cluster Finder in Redshift Space to z ∼ 0.2 I: an Algorithm Optimized for the 2dFGRS

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Sebastián; Campusano, Luis E.; Hitschfeld-Kahler, Nancy; Pizarro, Daniel; Haines, Christopher P. [Universidad de Chile, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago (Chile); Clowes, Roger G.; Marinello, Gabriel [Jeremiah Horrocks Institute, University of Central Lancashire, Preston PR1 2HE (United Kingdom); Söchting, Ilona K., E-mail: luis@das.uchile.cl [University of Oxford, Astrophysics, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom)

    2017-04-01

    This paper is the first in a series, presenting a new galaxy cluster finder based on a three-dimensional Voronoi Tesselation plus a maximum likelihood estimator, followed by gapping-filtering in radial velocity(VoML+G). The scientific aim of the series is a reassessment of the diversity of optical clusters in the local universe. A mock galaxy database mimicking the southern strip of the magnitude(blue)-limited 2dF Galaxy Redshift Survey (2dFGRS), for the redshift range 0.009 < z < 0.22, is built on the basis of the Millennium Simulation of the LCDM cosmology and a reference catalog of “Millennium clusters,” spannning across the 1.0 × 10{sup 12}–1.0 × 10{sup 15} M {sub ⊙} h {sup −1} dark matter (DM) halo mass range, is recorded. The validation of VoML+G is performed through its application to the mock data and the ensuing determination of the completeness and purity of the cluster detections by comparison with the reference catalog. The execution of VoML+G over the 2dFGRS mock data identified 1614 clusters, 22% with N {sub g} ≥ 10, 64 percent with 10 > N {sub g} ≥ 5, and 14% with N {sub g} < 5. The ensemble of VoML+G clusters has a ∼59% completeness and a ∼66% purity, whereas the subsample with N {sub g} ≥ 10, to z ∼ 0.14, has greatly improved mean rates of ∼75% and ∼90%, respectively. The VoML+G cluster velocity dispersions are found to be compatible with those corresponding to “Millennium clusters” over the 300–1000 km s{sup −1} interval, i.e., for cluster halo masses in excess of ∼3.0 × 10{sup 13} M {sub ⊙} h {sup −1}.

  18. Adaptive acoustic energy delivery to near and far fields using foldable, tessellated star transducers

    Science.gov (United States)

    Zou, Chengzhe; Harne, Ryan L.

    2017-05-01

    Methods of guiding acoustic energy arbitrarily through space have long relied on digital controls to meet performance needs. Yet, more recent attention to adaptive structures with unique spatial configurations has motivated mechanical signal processing (MSP) concepts that may not be subjected to the same functional and performance limitations as digital acoustic beamforming counterparts. The periodicity of repeatable structural reconfiguration enabled by origami-inspired tessellated architectures turns attention to foldable platforms as frameworks for MSP development. This research harnesses principles of MSP to study a tessellated, star-shaped acoustic transducer constituent that provides on-demand control of acoustic energy guiding via folding-induced shape reconfiguration. An analytical framework is established to probe the roles of mechanical and acoustic geometry on the far field directivity and near field focusing of sound energy. Following validation by experiments and verification by simulations, parametric studies are undertaken to uncover relations between constituent topology and acoustic energy delivery to arbitrary points in the free field. The adaptations enabled by folding of the star-shaped transducer reveal capability for restricting sound energy to angular regions in the far field while also introducing means to modulate sound energy by three orders-of-magnitude to locations near to the transducer surface. In addition, the modeling philosophy devised here provides a valuable approach to solve general sound radiation problems for foldable, tessellated acoustic transducer constituents of arbitrary geometry.

  19. Curvature, metric and parametrization of origami tessellations: theory and application to the eggbox pattern

    Science.gov (United States)

    Nassar, H.; Lebée, A.; Monasse, L.

    2017-01-01

    Origami tessellations are particular textured morphing shell structures. Their unique folding and unfolding mechanisms on a local scale aggregate and bring on large changes in shape, curvature and elongation on a global scale. The existence of these global deformation modes allows for origami tessellations to fit non-trivial surfaces thus inspiring applications across a wide range of domains including structural engineering, architectural design and aerospace engineering. The present paper suggests a homogenization-type two-scale asymptotic method which, combined with standard tools from differential geometry of surfaces, yields a macroscopic continuous characterization of the global deformation modes of origami tessellations and other similar periodic pin-jointed trusses. The outcome of the method is a set of nonlinear differential equations governing the parametrization, metric and curvature of surfaces that the initially discrete structure can fit. The theory is presented through a case study of a fairly generic example: the eggbox pattern. The proposed continuous model predicts correctly the existence of various fittings that are subsequently constructed and illustrated.

  20. Curvature, metric and parametrization of origami tessellations: theory and application to the eggbox pattern.

    Science.gov (United States)

    Nassar, H; Lebée, A; Monasse, L

    2017-01-01

    Origami tessellations are particular textured morphing shell structures. Their unique folding and unfolding mechanisms on a local scale aggregate and bring on large changes in shape, curvature and elongation on a global scale. The existence of these global deformation modes allows for origami tessellations to fit non-trivial surfaces thus inspiring applications across a wide range of domains including structural engineering, architectural design and aerospace engineering. The present paper suggests a homogenization-type two-scale asymptotic method which, combined with standard tools from differential geometry of surfaces, yields a macroscopic continuous characterization of the global deformation modes of origami tessellations and other similar periodic pin-jointed trusses. The outcome of the method is a set of nonlinear differential equations governing the parametrization, metric and curvature of surfaces that the initially discrete structure can fit. The theory is presented through a case study of a fairly generic example: the eggbox pattern. The proposed continuous model predicts correctly the existence of various fittings that are subsequently constructed and illustrated.

  1. Ontogeny, morphology and mechanics of the tessellated skeleton of cartilaginous fishes

    Science.gov (United States)

    Dean, Mason N.

    2009-12-01

    The members of the successful and diverse lineage of elasmobranch fishes (sharks, rays and relatives) possess endoskeletons fashioned entirely of cartilage. This is counterintuitive because cartilage, unlike bone, lacks a major blood supply and has limited capacity for repair; yet these fishes exhibit particularly dynamic lifestyles and high levels of performance. The functionality of this skeletal tissue is likely due to its mineralization: in most skeletal elements, the soft cartilage core is tiled (tessellated) with an outer rind of abutting hydroxyapatite blocks called tesserae, joined together by intertesseral fibers and overlain by the fibrous perichondrium. This basic composite arrangement of tissues has been appreciated for over a century, but available techniques have limited the ability to examine elasmobranch cartilage adequately---without artifacts, in 3-dimensions and at high resolution---so that its development, mechanics and phylogeny might be contextualized among vertebrate skeletal tissues. I summarize the history, nomenclature and challenges relating to study of tessellated cartilage (Chapter 1) and present a low temperature microscopy technique to facilitate visualization of all tissue components in situ (Chapter 2). I use that technique in tandem with synchrotron microtomography to examine the ultrastructure of tesserae (Chapter 3) and the development of tessellated cartilage across ontogeny (Chapter 4). Finally, I examine the ways in which selection acts on skeletal morphology by examining cranial anatomy across 40 species of batoid fishes (rays and relatives) in the contexts of ecology and phylogeny (Chapter 5). There are some similarities between mineralizing bone and elasmobranch cartilage (e.g. the flattening of peripheral cells in the unmineralized phase, decreases in cellular density with mineralization, the presence of canaliculi connecting entombed cells). However, the ability for tessellated cartilage to grow (through enlargement of

  2. Spatio-temporal map generalizations with the hierarchical Voronoi data structure

    DEFF Research Database (Denmark)

    Mioc, Darka; Anton, François; Gold, Christopher M.

    implemented in commercial GIS systems. In this research, we used the Voronoi spatial data model for map generalizations. We were able to demonstrate that the map generalization does not affect only spatial objects (points, lines or polygons), but also the events corresponding to the creation and modification...... their spatio-temporal characteristics and their dynamic behaviour....

  3. Point Cluster Analysis Using a 3D Voronoi Diagram with Applications in Point Cloud Segmentation

    Directory of Open Access Journals (Sweden)

    Shen Ying

    2015-08-01

    Full Text Available Three-dimensional (3D point analysis and visualization is one of the most effective methods of point cluster detection and segmentation in geospatial datasets. However, serious scattering and clotting characteristics interfere with the visual detection of 3D point clusters. To overcome this problem, this study proposes the use of 3D Voronoi diagrams to analyze and visualize 3D points instead of the original data item. The proposed algorithm computes the cluster of 3D points by applying a set of 3D Voronoi cells to describe and quantify 3D points. The decompositions of point cloud of 3D models are guided by the 3D Voronoi cell parameters. The parameter values are mapped from the Voronoi cells to 3D points to show the spatial pattern and relationships; thus, a 3D point cluster pattern can be highlighted and easily recognized. To capture different cluster patterns, continuous progressive clusters and segmentations are tested. The 3D spatial relationship is shown to facilitate cluster detection. Furthermore, the generated segmentations of real 3D data cases are exploited to demonstrate the feasibility of our approach in detecting different spatial clusters for continuous point cloud segmentation.

  4. ColDICE: A parallel Vlasov–Poisson solver using moving adaptive simplicial tessellation

    International Nuclear Information System (INIS)

    Sousbie, Thierry; Colombi, Stéphane

    2016-01-01

    Resolving numerically Vlasov–Poisson equations for initially cold systems can be reduced to following the evolution of a three-dimensional sheet evolving in six-dimensional phase-space. We describe a public parallel numerical algorithm consisting in representing the phase-space sheet with a conforming, self-adaptive simplicial tessellation of which the vertices follow the Lagrangian equations of motion. The algorithm is implemented both in six- and four-dimensional phase-space. Refinement of the tessellation mesh is performed using the bisection method and a local representation of the phase-space sheet at second order relying on additional tracers created when needed at runtime. In order to preserve in the best way the Hamiltonian nature of the system, refinement is anisotropic and constrained by measurements of local Poincaré invariants. Resolution of Poisson equation is performed using the fast Fourier method on a regular rectangular grid, similarly to particle in cells codes. To compute the density projected onto this grid, the intersection of the tessellation and the grid is calculated using the method of Franklin and Kankanhalli [65–67] generalised to linear order. As preliminary tests of the code, we study in four dimensional phase-space the evolution of an initially small patch in a chaotic potential and the cosmological collapse of a fluctuation composed of two sinusoidal waves. We also perform a “warm” dark matter simulation in six-dimensional phase-space that we use to check the parallel scaling of the code.

  5. ColDICE: A parallel Vlasov–Poisson solver using moving adaptive simplicial tessellation

    Energy Technology Data Exchange (ETDEWEB)

    Sousbie, Thierry, E-mail: tsousbie@gmail.com [Institut d' Astrophysique de Paris, CNRS UMR 7095 and UPMC, 98bis, bd Arago, F-75014 Paris (France); Department of Physics, The University of Tokyo, Tokyo 113-0033 (Japan); Research Center for the Early Universe, School of Science, The University of Tokyo, Tokyo 113-0033 (Japan); Colombi, Stéphane, E-mail: colombi@iap.fr [Institut d' Astrophysique de Paris, CNRS UMR 7095 and UPMC, 98bis, bd Arago, F-75014 Paris (France); Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan)

    2016-09-15

    Resolving numerically Vlasov–Poisson equations for initially cold systems can be reduced to following the evolution of a three-dimensional sheet evolving in six-dimensional phase-space. We describe a public parallel numerical algorithm consisting in representing the phase-space sheet with a conforming, self-adaptive simplicial tessellation of which the vertices follow the Lagrangian equations of motion. The algorithm is implemented both in six- and four-dimensional phase-space. Refinement of the tessellation mesh is performed using the bisection method and a local representation of the phase-space sheet at second order relying on additional tracers created when needed at runtime. In order to preserve in the best way the Hamiltonian nature of the system, refinement is anisotropic and constrained by measurements of local Poincaré invariants. Resolution of Poisson equation is performed using the fast Fourier method on a regular rectangular grid, similarly to particle in cells codes. To compute the density projected onto this grid, the intersection of the tessellation and the grid is calculated using the method of Franklin and Kankanhalli [65–67] generalised to linear order. As preliminary tests of the code, we study in four dimensional phase-space the evolution of an initially small patch in a chaotic potential and the cosmological collapse of a fluctuation composed of two sinusoidal waves. We also perform a “warm” dark matter simulation in six-dimensional phase-space that we use to check the parallel scaling of the code.

  6. Exact computation of the Voronoi Diagram of spheres in 3D, its topology and its geometric invariants

    DEFF Research Database (Denmark)

    Anton, François; Mioc, Darka; Santos, Marcelo

    2011-01-01

    In this paper, we are addressing the exact computation of the Delaunay graph (or quasi-triangulation) and the Voronoi diagram of spheres using Wu’s algorithm. Our main contribution is first a methodology for automated derivation of invariants of the Delaunay empty circumcircle predicate for spheres...... and the Voronoi vertex of four spheres, then the application of this methodology to get all geometrical invariants that intervene in this problem and the exact computation of the Delaunay graph and the Voronoi diagram of spheres. To the best of our knowledge, there does not exist a comprehensive treatment...... of the exact computation with geometrical invariants of the Delaunay graph and the Voronoi diagram of spheres. Starting from the system of equations defining the zero-dimensional algebraic set of the problem, we are following Wu’s algorithm to transform the initial system into an equivalent Wu characteristic...

  7. Application of Delaunay tessellation for the characterization of solute-rich clusters in atom probe tomography

    International Nuclear Information System (INIS)

    Lefebvre, W.; Philippe, T.; Vurpillot, F.

    2011-01-01

    This work presents an original method for cluster selection in Atom Probe Tomography designed to be applied to large datasets. It is based on the calculation of the Delaunay tessellation generated by the distribution of atoms of a selected element. It requires a single input parameter from the user. Furthermore, no prior knowledge of the material is needed. The sensitivity of the proposed Delaunay cluster selection is demonstrated by its application on simulated APT datasets. A strong advantage of the proposed methodology is that it is reinforced by the availability of an analytical model for the distribution of Delaunay cells circumspheres, which is used to control the accuracy of the cluster selection procedure. Another advantage of the Delaunay cluster selection is the direct calculation of a sharp envelope for each identified cluster or precipitate, which leads to the more appropriate morphology of the objects as they are reconstructed in the APT dataset. -- Research Highligthts: →Original method for cluster selection in Atom Probe Tomography. →Delaunay tessellation generated by the distribution of solute atoms. →Direct calculation of a sharp envelope for each identified cluster or precipitate. →Delaunay cluster selection demonstrated by its application on simulated APT datasets.

  8. APPLICATION OF VORONOI DIAGRAM TO MASK-BASED INTERCEPTING PHASE-SPACE MEASUREMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Halavanau, A. [Fermilab; Ha, G. [POSTECH

    2017-05-19

    Intercepting multi-aperture masks (e.g. pepper pot or multislit mask) combined with a downstream transversedensity diagnostics (e.g. based on optical transition radiation or employing scintillating media) are commonly used for characterizing the phase space of charged particle beams and the associated emittances. The required data analysis relies on precise calculation of the RMS sizes and positions of the beamlets originated from the mask which drifted up to the analyzing diagnostics. Voronoi diagram is an efficient method for splitting a plane into subsets according to the distances between given vortices. The application of the method to analyze data from pepper pot and multislit mask based measurement is validated via numerical simulation and applied to experimental data acquired at the Argonne Wakefield Accelerator (AWA) facility. We also discuss the application of the Voronoi diagrams to quantify transverselymodulated beams distortion.

  9. A three-dimensional electrostatic particle-in-cell methodology on unstructured Delaunay-Voronoi grids

    International Nuclear Information System (INIS)

    Gatsonis, Nikolaos A.; Spirkin, Anton

    2009-01-01

    The mathematical formulation and computational implementation of a three-dimensional particle-in-cell methodology on unstructured Delaunay-Voronoi tetrahedral grids is presented. The method allows simulation of plasmas in complex domains and incorporates the duality of the Delaunay-Voronoi in all aspects of the particle-in-cell cycle. Charge assignment and field interpolation weighting schemes of zero- and first-order are formulated based on the theory of long-range constraints. Electric potential and fields are derived from a finite-volume formulation of Gauss' law using the Voronoi-Delaunay dual. Boundary conditions and the algorithms for injection, particle loading, particle motion, and particle tracking are implemented for unstructured Delaunay grids. Error and sensitivity analysis examines the effects of particles/cell, grid scaling, and timestep on the numerical heating, the slowing-down time, and the deflection times. The problem of current collection by cylindrical Langmuir probes in collisionless plasmas is used for validation. Numerical results compare favorably with previous numerical and analytical solutions for a wide range of probe radius to Debye length ratios, probe potentials, and electron to ion temperature ratios. The versatility of the methodology is demonstrated with the simulation of a complex plasma microsensor, a directional micro-retarding potential analyzer that includes a low transparency micro-grid.

  10. Computational analysis of RNA-protein interaction interfaces via the Voronoi diagram.

    Science.gov (United States)

    Mahdavi, Sedigheh; Mohades, Ali; Salehzadeh Yazdi, Ali; Jahandideh, Samad; Masoudi-Nejad, Ali

    2012-01-21

    Cellular functions are mediated by various biological processes including biomolecular interactions, such as protein-protein, DNA-protein and RNA-protein interactions in which RNA-Protein interactions are indispensable for many biological processes like cell development and viral replication. Unlike the protein-protein and protein-DNA interactions, accurate mechanisms and structures of the RNA-Protein complexes are not fully understood. A large amount of theoretical evidence have shown during the past several years that computational geometry is the first pace in understanding the binding profiles and plays a key role in the study of intricate biological structures, interactions and complexes. In this paper, RNA-Protein interaction interface surface is computed via the weighted Voronoi diagram of atoms. Using two filter operations provides a natural definition for interface atoms as classic methods. Unbounded parts of Voronoi facets that are far from the complex are trimmed using modified convex hull of atom centers. This algorithm is implemented to a database with different RNA-Protein complexes extracted from Protein Data Bank (PDB). Afterward, the features of interfaces have been computed and compared with classic method. The results show high correlation coefficients between interface size in the Voronoi model and the classical model based on solvent accessibility, as well as high accuracy and precision in comparison to classical model. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Applications of Voronoi and Delaunay Diagrams in the solution of the geodetic boundary value problem

    Directory of Open Access Journals (Sweden)

    C. A. B. Quintero

    Full Text Available Voronoi and Delaunay structures are presented as discretization tools to be used in numerical surface integration aiming the computation of geodetic problems solutions, when under the integral there is a non-analytical function (e. g., gravity anomaly and height. In the Voronoi approach, the target area is partitioned into polygons which contain the observed point and no interpolation is necessary, only the original data is used. In the Delaunay approach, the observed points are vertices of triangular cells and the value for a cell is interpolated for its barycenter. If the amount and distribution of the observed points are adequate, gridding operation is not required and the numerical surface integration is carried out by point-wise. Even when the amount and distribution of the observed points are not enough, the structures of Voronoi and Delaunay can combine grid with observed points in order to preserve the integrity of the original information. Both schemes are applied to the computation of the Stokes' integral, the terrain correction, the indirect effect and the gradient of the gravity anomaly, in the State of Rio de Janeiro, Brazil area.

  12. A Hybrid Vector Quantization Combining a Tree Structure and a Voronoi Diagram

    Directory of Open Access Journals (Sweden)

    Yeou-Jiunn Chen

    2014-01-01

    Full Text Available Multimedia data is a popular communication medium, but requires substantial storage space and network bandwidth. Vector quantization (VQ is suitable for multimedia data applications because of its simple architecture, fast decoding ability, and high compression rate. Full-search VQ can typically be used to determine optimal codewords, but requires considerable computational time and resources. In this study, a hybrid VQ combining a tree structure and a Voronoi diagram is proposed to improve VQ efficiency. To efficiently reduce the search space, a tree structure integrated with principal component analysis is proposed, to rapidly determine an initial codeword in low-dimensional space. To increase accuracy, a Voronoi diagram is applied to precisely enlarge the search space by modeling relations between each codeword. This enables an optimal codeword to be efficiently identified by rippling an optimal neighbor from parts of neighboring Voronoi regions. The experimental results demonstrated that the proposed approach improved VQ performance, outperforming other approaches. The proposed approach also satisfies the requirements of handheld device application, namely, the use of limited memory and network bandwidth, when a suitable number of dimensions in principal component analysis is selected.

  13. Tessellated permanent magnet circuits for flow-through, open gradient separations of weakly magnetic materials

    International Nuclear Information System (INIS)

    Moore, Lee R.; Williams, P. Stephen; Chalmers, Jeffrey J.; Zborowski, Maciej

    2017-01-01

    Emerging microfluidic-based cell assays favor label-free red blood cell (RBC) depletion. Magnetic separation of RBC is possible because of the paramagnetism of deoxygenated hemoglobin but the process is slow for open-gradient field configurations. In order to increase the throughput, periodic arrangements of the unit magnets were considered, consisting of commercially available Nd-Fe-B permanent magnets and soft steel flux return pieces. The magnet design is uniquely suitable for multiplexing by magnet tessellation, here meaning the tiling of the magnet assembly cross-sectional plane by periodic repetition of the magnet and the flow channel shapes. The periodic pattern of magnet magnetizations allows a reduction of the magnetic material per channel with minimal distortion of the field cylindrical symmetry inside the magnet apertures. A number of such magnet patterns are investigated for separator performance, size and economy with the goal of designing an open-gradient magnetic separator capable of reducing the RBC number concentration a hundred-fold in 1 mL whole blood per hour. - Highlights: • Simple geometry of commercial, off-the-shelf NdFeB magnet blocks is amenable to generate high fields and open gradients. • Periodic pattern of permanent magnet blocks (tessellation) reduces the number of blocks per separation channel and improves the efficiency of separator design. • Split-flow lateral transport thin (SPLITT) fractionation model predicts 100-fold reduction of red blood cells from 1 mL whole blood sample in 1 h, suitable for laboratory medicine applications.

  14. Tessellated permanent magnet circuits for flow-through, open gradient separations of weakly magnetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Lee R. [Department of Biomedical Engineering, Cleveland Clinic, 9500 Euclid Ave., Cleveland OH 44195 (United States); Williams, P. Stephen [Cambrian Technologies, Inc., Cleveland, OH (United States); Chalmers, Jeffrey J. [William G. Lowrie Department of Chemical and Biomedical Engineering, The Ohio State University, Columbus 151 W. Woodruff Avenue, OH 43210 (United States); Zborowski, Maciej, E-mail: zborowm@ccf.org [Department of Biomedical Engineering, Cleveland Clinic, 9500 Euclid Ave., Cleveland OH 44195 (United States)

    2017-04-01

    Emerging microfluidic-based cell assays favor label-free red blood cell (RBC) depletion. Magnetic separation of RBC is possible because of the paramagnetism of deoxygenated hemoglobin but the process is slow for open-gradient field configurations. In order to increase the throughput, periodic arrangements of the unit magnets were considered, consisting of commercially available Nd-Fe-B permanent magnets and soft steel flux return pieces. The magnet design is uniquely suitable for multiplexing by magnet tessellation, here meaning the tiling of the magnet assembly cross-sectional plane by periodic repetition of the magnet and the flow channel shapes. The periodic pattern of magnet magnetizations allows a reduction of the magnetic material per channel with minimal distortion of the field cylindrical symmetry inside the magnet apertures. A number of such magnet patterns are investigated for separator performance, size and economy with the goal of designing an open-gradient magnetic separator capable of reducing the RBC number concentration a hundred-fold in 1 mL whole blood per hour. - Highlights: • Simple geometry of commercial, off-the-shelf NdFeB magnet blocks is amenable to generate high fields and open gradients. • Periodic pattern of permanent magnet blocks (tessellation) reduces the number of blocks per separation channel and improves the efficiency of separator design. • Split-flow lateral transport thin (SPLITT) fractionation model predicts 100-fold reduction of red blood cells from 1 mL whole blood sample in 1 h, suitable for laboratory medicine applications.

  15. A methodology for automated cartographic data input, drawing and editing using kinetic Delaunay/Voronoi diagrams

    DEFF Research Database (Denmark)

    Gold, Christopher M.; Mioc, Darka; Anton, François

    2008-01-01

    This chapter presents a methodology for automated cartographic data in- put, drawing and editing. This methodology is based on kinematic algorithms for point and line Delaunay triangulation and the Voronoi diagram. It allows one to automate some parts of the manual digitization process......-oriented algorithm for large data sets, and all our algorithms are based on local operations (except for basic point location). Because the deletion of individual points or line segments is a necessary part of the manual editing process, incremental insertion and deletion is used. The original concept used here...

  16. Study by XRD and ion beams of tessels of a turquoises disc of the Templo Mayor de Tenochtitlan

    International Nuclear Information System (INIS)

    Ruvalcaba S, J.L.; Bucio, L.; Marin, M.E.; Velasquez, A.

    2005-01-01

    For the study of minerals and semiprecious stones, such as turquoise, it is necessary to use a combined analysis in order to determine crystalline minerals phases and elemental com- position. In this way, it is possible to identify mineralogical substitutions in the crystals and to perform sourcing by trace elemental analysis. In this work, the analysis focused on the study of surface alterations of tessels from a disc found in the 99 offering from Templo Mayor of Tenochtitlan. Rutherford Backscattering Spectrometry and Particle Induced X-ray Emission (PIXE) Spectrometries using protons and alpha particles were applied to determine surface elemental analysis of tessels of different colours (blue, green, white). For mineralogical identification, standard X-ray Diffraction was used. (Author)

  17. Cooperation among cancer cells as public goods games on Voronoi networks.

    Science.gov (United States)

    Archetti, Marco

    2016-05-07

    Cancer cells produce growth factors that diffuse and sustain tumour proliferation, a form of cooperation that can be studied using mathematical models of public goods in the framework of evolutionary game theory. Cell populations, however, form heterogeneous networks that cannot be described by regular lattices or scale-free networks, the types of graphs generally used in the study of cooperation. To describe the dynamics of growth factor production in populations of cancer cells, I study public goods games on Voronoi networks, using a range of non-linear benefits that account for the known properties of growth factors, and different types of diffusion gradients. The results are surprisingly similar to those obtained on regular graphs and different from results on scale-free networks, revealing that network heterogeneity per se does not promote cooperation when public goods diffuse beyond one-step neighbours. The exact shape of the diffusion gradient is not crucial, however, whereas the type of non-linear benefit is an essential determinant of the dynamics. Public goods games on Voronoi networks can shed light on intra-tumour heterogeneity, the evolution of resistance to therapies that target growth factors, and new types of cell therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. A Time-constrained Network Voronoi Construction and Accessibility Analysis in Location-based Service Technology

    Science.gov (United States)

    Yu, W.; Ai, T.

    2014-11-01

    Accessibility analysis usually requires special models of spatial location analysis based on some geometric constructions, such as Voronoi diagram (abbreviated to VD). There are many achievements in classic Voronoi model research, however suffering from the following limitations for location-based services (LBS) applications. (1) It is difficult to objectively reflect the actual service areas of facilities by using traditional planar VDs, because human activities in LBS are usually constrained only to the network portion of the planar space. (2) Although some researchers have adopted network distance to construct VDs, their approaches are used in a static environment, where unrealistic measures of shortest path distance based on assumptions about constant travel speeds through the network were often used. (3) Due to the computational complexity of the shortest-path distance calculating, previous researches tend to be very time consuming, especially for large datasets and if multiple runs are required. To solve the above problems, a novel algorithm is developed in this paper. We apply network-based quadrat system and 1-D sequential expansion to find the corresponding subnetwork for each focus. The idea is inspired by the natural phenomenon that water flow extends along certain linear channels until meets others or arrives at the end of route. In order to accommodate the changes in traffic conditions, the length of network-quadrat is set upon the traffic condition of the corresponding street. The method has the advantage over Dijkstra's algorithm in that the time cost is avoided, and replaced with a linear time operation.

  19. Calcified cartilage or bone? Collagens in the tessellated endoskeletons of cartilaginous fish (sharks and rays).

    Science.gov (United States)

    Seidel, Ronald; Blumer, Michael; Pechriggl, Elisabeth-Judith; Lyons, Kady; Hall, Brian K; Fratzl, Peter; Weaver, James C; Dean, Mason N

    2017-10-01

    The primary skeletal tissue in elasmobranchs -sharks, rays and relatives- is cartilage, forming both embryonic and adult endoskeletons. Only the skeletal surface calcifies, exhibiting mineralized tiles (tesserae) sandwiched between a cartilage core and overlying fibrous perichondrium. These two tissues are based on different collagens (Coll II and I, respectively), fueling a long-standing debate as to whether tesserae are more like calcified cartilage or bone (Coll 1-based) in their matrix composition. We demonstrate that stingray (Urobatis halleri) tesserae are bipartite, having an upper Coll I-based 'cap' that merges into a lower Coll II-based 'body' zone, although tesserae are surrounded by cartilage. We identify a 'supratesseral' unmineralized cartilage layer, between tesserae and perichondrium, distinguished from the cartilage core in containing Coll I and X (a common marker for mammalian mineralization), in addition to Coll II. Chondrocytes within tesserae appear intact and sit in lacunae filled with Coll II-based matrix, suggesting tesserae originate in cartilage, despite comprising a diversity of collagens. Intertesseral joints are also complex in their collagenous composition, being similar to supratesseral cartilage closer to the perichondrium, but containing unidentified fibrils nearer the cartilage core. Our results indicate a unique potential for tessellated cartilage in skeletal biology research, since it lacks features believed diagnostic for vertebrate cartilage mineralization (e.g. hypertrophic and apoptotic chondrocytes), while offering morphologies amenable for investigating the regulation of complex mineralized ultrastructure and tissues patterned on multiple collagens. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. A tesselation-based model for intensity estimation and laser plasma interactions calculations in three dimensions

    Science.gov (United States)

    Colaïtis, A.; Chapman, T.; Strozzi, D.; Divol, L.; Michel, P.

    2018-03-01

    A three-dimensional laser propagation model for computation of laser-plasma interactions is presented. It is focused on indirect drive geometries in inertial confinement fusion and formulated for use at large temporal and spatial scales. A modified tesselation-based estimator and a relaxation scheme are used to estimate the intensity distribution in plasma from geometrical optics rays. Comparisons with reference solutions show that this approach is well-suited to reproduce realistic 3D intensity field distributions of beams smoothed by phase plates. It is shown that the method requires a reduced number of rays compared to traditional rigid-scale intensity estimation. Using this field estimator, we have implemented laser refraction, inverse-bremsstrahlung absorption, and steady-state crossed-beam energy transfer with a linear kinetic model in the numerical code Vampire. Probe beam amplification and laser spot shapes are compared with experimental results and pf3d paraxial simulations. These results are promising for the efficient and accurate computation of laser intensity distributions in holhraums, which is of importance for determining the capsule implosion shape and risks of laser-plasma instabilities such as hot electron generation and backscatter in multi-beam configurations.

  1. A Voronoi interior adjacency-based approach for generating a contour tree

    Science.gov (United States)

    Chen, Jun; Qiao, Chaofei; Zhao, Renliang

    2004-05-01

    A contour tree is a good graphical tool for representing the spatial relations of contour lines and has found many applications in map generalization, map annotation, terrain analysis, etc. A new approach for generating contour trees by introducing a Voronoi-based interior adjacency set concept is proposed in this paper. The immediate interior adjacency set is employed to identify all of the children contours of each contour without contour elevations. It has advantages over existing methods such as the point-in-polygon method and the region growing-based method. This new approach can be used for spatial data mining and knowledge discovering, such as the automatic extraction of terrain features and construction of multi-resolution digital elevation model.

  2. Voronoi-based spatial analysis reveals selective interneuron changes in the cortex of FALS mice.

    Science.gov (United States)

    Minciacchi, Diego; Kassa, Roman M; Del Tongo, Claudia; Mariotti, Raffaella; Bentivoglio, Marina

    2009-01-01

    The neurodegenerative disease amyotrophic lateral sclerosis affects lower motoneurons and corticospinal cells. Mice expressing human mutant superoxide dismutase (SOD)1 provide widely investigated models of the familial form of disease, but information on cortical changes in these mice is still limited. We here analyzed the spatial organization of interneurons characterized by parvalbumin immunoreactivity in the motor, somatosensory, and visual cortical areas of SOD1(G93A) mice. Cell number and sociological spatial behavior were assessed by digital charts of cell location in cortical samples, cell counts, and generation of two-dimensional Voronoi diagrams. In end-stage SOD1-mutant mice, an increase of parvalbumin-containing cortical interneurons was found in the motor and somatosensory areas (about 35% and 20%, respectively) with respect to wild-type littermates. Changes in cell spatial distribution, as documented by Voronoi-derived coefficients of variation, indicated increased tendency of parvalbumin cells to aggregate into clusters in the same areas of the SOD1-mutant cortex. Counts and coefficients of variation of parvalbumin cells in the visual cortex gave instead similar results in SOD1-mutant and wild-type mice. Analyses of motor and somatosensory areas in presymptomatic SOD1-mutant mice provided findings very similar to those obtained at end-stage, indicating early changes of interneurons in these cortical areas during the pathology. Altogether the data reveal in the SOD1-mutant mouse cortex an altered architectonic pattern of interneurons, which selectively affects areas involved in motor control. The findings, which can be interpreted as pathogenic factors or early disease-related adaptations, point to changes in the cortical regulation and modulation of the motor circuit during motoneuron disease.

  3. Brownian Dynamics of a Suspension of Particles with Constrained Voronoi Cell Volumes

    KAUST Repository

    Singh, John P.; Walsh, Stuart D. C.; Koch, Donald L.

    2015-01-01

    © 2015 American Chemical Society. Solvent-free polymer-grafted nanoparticle fluids consist of inorganic core particles fluidized by polymers tethered to their surfaces. The attachment of the suspending fluid to the particle surface creates a strong penalty for local variations in the fluid volume surrounding the particles. As a model of such a suspension we perform Brownian dynamics of an equilibrium system consisting of hard spheres which experience a many-particle potential proportional to the variance of the Voronoi volumes surrounding each particle (E = α(Vi-V0)2). The coefficient of proportionality α can be varied such that pure hard sphere dynamics is recovered as α → 0, while an incompressible array of hairy particles is obtained as α →. As α is increased the distribution of Voronoi volumes becomes narrower, the mean coordination number of the particle increases and the variance in the number of nearest neighbors decreases. The nearest neighbor peaks in the pair distribution function are suppressed and shifted to larger radial separations as the constraint acts to maintain relatively uniform interstitial regions. The structure factor of the model suspension satisfies S(k=0) → 0 as α → in accordance with expectation for a single component (particle plus tethered fluid) incompressible system. The tracer diffusivity of the particles is reduced by the volume constraint and goes to zero at φ 0.52, indicating an earlier glass transition than has been observed in hard sphere suspensions. The total pressure of the suspension grows in proportion to (αkBT)1/2 as the strength of the volume-constraint potential grows. This stress arises primarily from the interparticle potential forces, while the hard-sphere collisional contribution to the stress is suppressed by the volume constraint.

  4. Brownian Dynamics of a Suspension of Particles with Constrained Voronoi Cell Volumes

    KAUST Repository

    Singh, John P.

    2015-06-23

    © 2015 American Chemical Society. Solvent-free polymer-grafted nanoparticle fluids consist of inorganic core particles fluidized by polymers tethered to their surfaces. The attachment of the suspending fluid to the particle surface creates a strong penalty for local variations in the fluid volume surrounding the particles. As a model of such a suspension we perform Brownian dynamics of an equilibrium system consisting of hard spheres which experience a many-particle potential proportional to the variance of the Voronoi volumes surrounding each particle (E = α(Vi-V0)2). The coefficient of proportionality α can be varied such that pure hard sphere dynamics is recovered as α → 0, while an incompressible array of hairy particles is obtained as α →. As α is increased the distribution of Voronoi volumes becomes narrower, the mean coordination number of the particle increases and the variance in the number of nearest neighbors decreases. The nearest neighbor peaks in the pair distribution function are suppressed and shifted to larger radial separations as the constraint acts to maintain relatively uniform interstitial regions. The structure factor of the model suspension satisfies S(k=0) → 0 as α → in accordance with expectation for a single component (particle plus tethered fluid) incompressible system. The tracer diffusivity of the particles is reduced by the volume constraint and goes to zero at φ 0.52, indicating an earlier glass transition than has been observed in hard sphere suspensions. The total pressure of the suspension grows in proportion to (αkBT)1/2 as the strength of the volume-constraint potential grows. This stress arises primarily from the interparticle potential forces, while the hard-sphere collisional contribution to the stress is suppressed by the volume constraint.

  5. On some limitations of reaction-diffusion chemical computers in relation to Voronoi diagram and its inversion

    International Nuclear Information System (INIS)

    Adamatzky, Andrew; Lacy Costello, Benjamin de

    2003-01-01

    A reaction-diffusion chemical computer in this context is a planar uniform chemical reactor, where data and results of a computation are represented by concentration profiles of reactants and the computation itself is implemented via the spreading and interaction of diffusive and phase waves. This class of chemical computers are efficient at solving problems with a 'natural' parallelism where data sets are decomposable onto a large number of geographically neighboring domains which are then processed in parallel. Typical problems of this type include image processing, geometrical transformations and optimisation. When chemical based devices are used to solve such problems questions regarding their reproducible, efficiency and the accuracy of their computations arise. In addition to these questions what are the limitations of reaction-diffusion chemical processors--what type of problems cannot currently and are unlikely ever to be solved? To answer the questions we study how a Voronoi diagram is constructed and how it is inverted in a planar chemical processor. We demonstrate that a Voronoi diagram is computed only partially in the chemical processor. We also prove that given a specific Voronoi diagram it is impossible to reconstruct the planar set (from which diagram was computed) in the reaction-diffusion chemical processor. In the Letter we open the first ever line of enquiry into the computational inability of reaction-diffusion chemical computers

  6. The Minkowski sum of a zonotope and the Voronoi polytope of the root lattice E7

    International Nuclear Information System (INIS)

    Grishukhin, Vyacheslav P

    2012-01-01

    We show that the Minkowski sum P V (E 7 )+Z(U) of the Voronoi polytope P V (E 7 ) of the root lattice E 7 and the zonotope Z(U) is a 7-dimensional parallelohedron if and only if the set U consists of minimal vectors of the dual lattice E 7 * up to scalar multiplication, and U does not contain forbidden sets. The minimal vectors of E 7 are the vectors r of the classical root system E 7 . If the r 2 -norm of the roots is set equal to 2, then the scalar products of minimal vectors from the dual lattice only take the values ±1/2. A set of minimal vectors is referred to as forbidden if it consists of six vectors, and the directions of some of these vectors can be changed so as to obtain a set of six vectors with all the pairwise scalar products equal to 1/2. Bibliography: 11 titles.

  7. Classification of Voronoi and Delone tiles of quasicrystals: III. Decagonal acceptance window of any size

    International Nuclear Information System (INIS)

    Masakova, Z; Patera, J; Zich, J

    2005-01-01

    This paper is the last of a series of three articles presenting a classification of Vornoi and Delone tilings determined by point sets Σ(Ω) ('quasicrystals'), built by the standard projection of the root lattice of type A 4 to a two-dimensional plane spanned by the roots of the Coxeter group H 2 (dihedral group of order 10). The acceptance window Ω for Σ(Ω) in the present paper is a regular decagon of any radius 0 k , τ = 1/2(1+√5) and k element of Z. The number of Voronoi tiles in different quasicrystal tilings varies between 3 and 12. Similarly, the number of Delone tiles is varying between 4 and 6. There are 7 VT sets of the 'generic' type and 7 of the 'singular' type. The latter occur for seven precise values of the radius of the acceptance window. Quasicrystals with acceptance windows with radii in between these values have constant VT sets, only the relative densities and arrangement of the tiles in the tilings change. Similarly, we distinguish singular and generic sets DT of Delone tiles

  8. The DEEP2 Galaxy Redshift Survey: The Voronoi-Delaunay Method Catalog of Galaxy Groups

    Energy Technology Data Exchange (ETDEWEB)

    Gerke, Brian F.; /UC, Berkeley; Newman, Jeffrey A.; /LBNL, NSD; Davis, Marc; /UC, Berkeley /UC, Berkeley, Astron.Dept.; Marinoni, Christian; /Brera Observ.; Yan, Renbin; Coil, Alison L.; Conroy, Charlie; Cooper, Michael C.; /UC, Berkeley, Astron.Dept.; Faber, S.M.; /Lick Observ.; Finkbeiner, Douglas P.; /Princeton U. Observ.; Guhathakurta, Puragra; /Lick Observ.; Kaiser, Nick; /Hawaii U.; Koo, David C.; Phillips, Andrew C.; /Lick Observ.; Weiner, Benjamin J.; /Maryland U.

    2012-02-14

    We use the first 25% of the DEEP2 Galaxy Redshift Survey spectroscopic data to identify groups and clusters of galaxies in redshift space. The data set contains 8370 galaxies with confirmed redshifts in the range 0.7 {<=} z {<=} 1.4, over one square degree on the sky. Groups are identified using an algorithm (the Voronoi-Delaunay Method) that has been shown to accurately reproduce the statistics of groups in simulated DEEP2-like samples. We optimize this algorithm for the DEEP2 survey by applying it to realistic mock galaxy catalogs and assessing the results using a stringent set of criteria for measuring group-finding success, which we develop and describe in detail here. We find in particular that the group-finder can successfully identify {approx}78% of real groups and that {approx}79% of the galaxies that are true members of groups can be identified as such. Conversely, we estimate that {approx}55% of the groups we find can be definitively identified with real groups and that {approx}46% of the galaxies we place into groups are interloper field galaxies. Most importantly, we find that it is possible to measure the distribution of groups in redshift and velocity dispersion, n({sigma}, z), to an accuracy limited by cosmic variance, for dispersions greater than 350 km s{sup -1}. We anticipate that such measurements will allow strong constraints to be placed on the equation of state of the dark energy in the future. Finally, we present the first DEEP2 group catalog, which assigns 32% of the galaxies to 899 distinct groups with two or more members, 153 of which have velocity dispersions above 350 km s{sup -1}. We provide locations, redshifts and properties for this high-dispersion subsample. This catalog represents the largest sample to date of spectroscopically detected groups at z {approx} 1.

  9. Invariants of the Dirichlet/Voronoi Tilings of Hyperspheres in Rn and their Dual Delone/Delaunay Graphs

    DEFF Research Database (Denmark)

    Antón Castro, Francesc/François

    2015-01-01

    In this paper, we are addressing the geometric and topological invariants that arise in the exact computation of the Delone (Delaunay) graph and the Dirichlet/Voronoi tiling of N-dimensional hyperspheres using Ritt-Wu's algorithm. Our main contribution is a methodology for automated derivation...... of geometric and topological invariants of the Dirichlet tiling of N + 1-dimenional hyperspheres and its dual Delone graph from the invariants of the Dirichlet tiling of N-dimensional hyperspheres and its dual Delone graph (starting from N = 3)....

  10. Invariants of the dirichlet/voronoi tilings of hyperspheres in RN and their dual delone/delaunay graphs

    DEFF Research Database (Denmark)

    Anton, François

    In this paper, we are addressing the geometric and topological invariants that arise in the exact computation of the Delone (Delaunay) graph and the Dirichlet/Voronoi tiling of n-dimensional hyperspheres using Ritt-Wu's algorithm. Our main contribution is a methodology for automated derivation...... of geometric and topological invariants of the Dirichlet tiling of N + 1-dimenional hyperspheres and its dual Delone graph from the invariants of the Dirichlet tiling of N-dimensional hyperspheres and its dual Delone graph (starting from N = 3)....

  11. Capacity constrained blue-noise sampling on surfaces

    KAUST Repository

    Zhang, Sen; Guo, Jianwei; Zhang, Hui; Jia, Xiaohong; Yan, Dongming; Yong, Junhai; Wonka, Peter

    2015-01-01

    regularizer of the Centroidal Voronoi Tessellation (CVT) energy, our approach enforces an exact capacity constraint using the restricted power tessellation on surfaces. Our approach is a generalization of the previous 2D blue noise sampling technique using

  12. THE DEEP2 GALAXY REDSHIFT SURVEY: THE VORONOI-DELAUNAY METHOD CATALOG OF GALAXY GROUPS

    Energy Technology Data Exchange (ETDEWEB)

    Gerke, Brian F. [KIPAC, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, MS 29, Menlo Park, CA 94725 (United States); Newman, Jeffrey A. [Department of Physics and Astronomy, 3941 O' Hara Street, Pittsburgh, PA 15260 (United States); Davis, Marc [Department of Physics and Department of Astronomy, Campbell Hall, University of California-Berkeley, Berkeley, CA 94720 (United States); Coil, Alison L. [Center for Astrophysics and Space Sciences, University of California, San Diego, 9500 Gilman Drive, MC 0424, La Jolla, CA 92093 (United States); Cooper, Michael C. [Center for Galaxy Evolution, Department of Physics and Astronomy, University of California-Irvine, Irvine, CA 92697 (United States); Dutton, Aaron A. [Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2 (Canada); Faber, S. M.; Guhathakurta, Puragra; Koo, David C.; Phillips, Andrew C. [UCO/Lick Observatory, University of California-Santa Cruz, Santa Cruz, CA 95064 (United States); Konidaris, Nicholas; Lin, Lihwai [Astronomy Department, Caltech 249-17, Pasadena, CA 91125 (United States); Noeske, Kai [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Rosario, David J. [Max Planck Institute for Extraterrestrial Physics, Giessenbachstr. 1, 85748 Garching bei Muenchen (Germany); Weiner, Benjamin J.; Willmer, Christopher N. A. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Yan, Renbin [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada)

    2012-05-20

    We present a public catalog of galaxy groups constructed from the spectroscopic sample of galaxies in the fourth data release from the Deep Extragalactic Evolutionary Probe 2 (DEEP2) Galaxy Redshift Survey, including the Extended Groth Strip (EGS). The catalog contains 1165 groups with two or more members in the EGS over the redshift range 0 < z < 1.5 and 1295 groups at z > 0.6 in the rest of DEEP2. Twenty-five percent of EGS galaxies and fourteen percent of high-z DEEP2 galaxies are assigned to galaxy groups. The groups were detected using the Voronoi-Delaunay method (VDM) after it has been optimized on mock DEEP2 catalogs following similar methods to those employed in Gerke et al. In the optimization effort, we have taken particular care to ensure that the mock catalogs resemble the data as closely as possible, and we have fine-tuned our methods separately on mocks constructed for the EGS and the rest of DEEP2. We have also probed the effect of the assumed cosmology on our inferred group-finding efficiency by performing our optimization on three different mock catalogs with different background cosmologies, finding large differences in the group-finding success we can achieve for these different mocks. Using the mock catalog whose background cosmology is most consistent with current data, we estimate that the DEEP2 group catalog is 72% complete and 61% pure (74% and 67% for the EGS) and that the group finder correctly classifies 70% of galaxies that truly belong to groups, with an additional 46% of interloper galaxies contaminating the catalog (66% and 43% for the EGS). We also confirm that the VDM catalog reconstructs the abundance of galaxy groups with velocity dispersions above {approx}300 km s{sup -1} to an accuracy better than the sample variance, and this successful reconstruction is not strongly dependent on cosmology. This makes the DEEP2 group catalog a promising probe of the growth of cosmic structure that can potentially be used for cosmological tests.

  13. THE DEEP2 GALAXY REDSHIFT SURVEY: THE VORONOI-DELAUNAY METHOD CATALOG OF GALAXY GROUPS

    International Nuclear Information System (INIS)

    Gerke, Brian F.; Newman, Jeffrey A.; Davis, Marc; Coil, Alison L.; Cooper, Michael C.; Dutton, Aaron A.; Faber, S. M.; Guhathakurta, Puragra; Koo, David C.; Phillips, Andrew C.; Konidaris, Nicholas; Lin, Lihwai; Noeske, Kai; Rosario, David J.; Weiner, Benjamin J.; Willmer, Christopher N. A.; Yan, Renbin

    2012-01-01

    We present a public catalog of galaxy groups constructed from the spectroscopic sample of galaxies in the fourth data release from the Deep Extragalactic Evolutionary Probe 2 (DEEP2) Galaxy Redshift Survey, including the Extended Groth Strip (EGS). The catalog contains 1165 groups with two or more members in the EGS over the redshift range 0 0.6 in the rest of DEEP2. Twenty-five percent of EGS galaxies and fourteen percent of high-z DEEP2 galaxies are assigned to galaxy groups. The groups were detected using the Voronoi-Delaunay method (VDM) after it has been optimized on mock DEEP2 catalogs following similar methods to those employed in Gerke et al. In the optimization effort, we have taken particular care to ensure that the mock catalogs resemble the data as closely as possible, and we have fine-tuned our methods separately on mocks constructed for the EGS and the rest of DEEP2. We have also probed the effect of the assumed cosmology on our inferred group-finding efficiency by performing our optimization on three different mock catalogs with different background cosmologies, finding large differences in the group-finding success we can achieve for these different mocks. Using the mock catalog whose background cosmology is most consistent with current data, we estimate that the DEEP2 group catalog is 72% complete and 61% pure (74% and 67% for the EGS) and that the group finder correctly classifies 70% of galaxies that truly belong to groups, with an additional 46% of interloper galaxies contaminating the catalog (66% and 43% for the EGS). We also confirm that the VDM catalog reconstructs the abundance of galaxy groups with velocity dispersions above ∼300 km s –1 to an accuracy better than the sample variance, and this successful reconstruction is not strongly dependent on cosmology. This makes the DEEP2 group catalog a promising probe of the growth of cosmic structure that can potentially be used for cosmological tests.

  14. A Novel Spatial-Temporal Voronoi Diagram-Based Heuristic Approach for Large-Scale Vehicle Routing Optimization with Time Constraints

    Directory of Open Access Journals (Sweden)

    Wei Tu

    2015-10-01

    Full Text Available Vehicle routing optimization (VRO designs the best routes to reduce travel cost, energy consumption, and carbon emission. Due to non-deterministic polynomial-time hard (NP-hard complexity, many VROs involved in real-world applications require too much computing effort. Shortening computing time for VRO is a great challenge for state-of-the-art spatial optimization algorithms. From a spatial-temporal perspective, this paper presents a spatial-temporal Voronoi diagram-based heuristic approach for large-scale vehicle routing problems with time windows (VRPTW. Considering time constraints, a spatial-temporal Voronoi distance is derived from the spatial-temporal Voronoi diagram to find near neighbors in the space-time searching context. A Voronoi distance decay strategy that integrates a time warp operation is proposed to accelerate local search procedures. A spatial-temporal feature-guided search is developed to improve unpromising micro route structures. Experiments on VRPTW benchmarks and real-world instances are conducted to verify performance. The results demonstrate that the proposed approach is competitive with state-of-the-art heuristics and achieves high-quality solutions for large-scale instances of VRPTWs in a short time. This novel approach will contribute to spatial decision support community by developing an effective vehicle routing optimization method for large transportation applications in both public and private sectors.

  15. GENUS STATISTICS USING THE DELAUNAY TESSELLATION FIELD ESTIMATION METHOD. I. TESTS WITH THE MILLENNIUM SIMULATION AND THE SDSS DR7

    International Nuclear Information System (INIS)

    Zhang Youcai; Yang Xiaohu; Springel, Volker

    2010-01-01

    We study the topology of cosmic large-scale structure through the genus statistics, using galaxy catalogs generated from the Millennium Simulation and observational data from the latest Sloan Digital Sky Survey Data Release (SDSS DR7). We introduce a new method for constructing galaxy density fields and for measuring the genus statistics of its isodensity surfaces. It is based on a Delaunay tessellation field estimation (DTFE) technique that allows the definition of a piece-wise continuous density field and the exact computation of the topology of its polygonal isodensity contours, without introducing any free numerical parameter. Besides this new approach, we also employ the traditional approaches of smoothing the galaxy distribution with a Gaussian of fixed width, or by adaptively smoothing with a kernel that encloses a constant number of neighboring galaxies. Our results show that the Delaunay-based method extracts the largest amount of topological information. Unlike the traditional approach for genus statistics, it is able to discriminate between the different theoretical galaxy catalogs analyzed here, both in real space and in redshift space, even though they are based on the same underlying simulation model. In particular, the DTFE approach detects with high confidence a discrepancy of one of the semi-analytic models studied here compared with the SDSS data, while the other models are found to be consistent.

  16. High helmintic infection of the European grass snake, Natrix natrix and the dice snake, Natrix tessellate (Serpentes: Colubridae from Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Yossefi

    2014-02-01

    Full Text Available Objective: To determine the helminth parasites of Natrix natrix Linnaeus, 1758 (N. natrix and Natrix tessellata Laurenti, 1768 (N. tessellate in north of Iran. Methods: Eighteen snakes including nine N. natrix and nine N. tessellata from Mazandaran Province, north of Iran were collected and examined during March 2011 to October 2011 for helminth parasites. The collected specimens were fixed and preserved in 70% ethanol. Results: All of the examined snakes (100% were infected with parasitic helminth. The list of extracted helminths both in N. natrix and N. tessellata includes one Nematode: Rhabdias fuscovenosa (larva, one Digenea: Telorchis assula and one Cestoda: Ophiotaenia europaea. The infection rate of Ophiotaenia europaea, Telorchis assula and Rhabdias fuscovenosa (larva from collected snakes were 100%, 83.3% and 61.1%, respectively. Moreover, in the current investigation the morphological characteristics of the collected helminths were described elaborately. Conclusions: This is the first survey on helminth parasites from N. tessellata in Iran and the helminthes are reported for the first time from this host in Iran.

  17. Comparative investigation of micro-flaw models for the simulation of brittle fracture in rock

    CSIR Research Space (South Africa)

    Sellers, E

    1997-07-01

    Full Text Available can be covered by a set of Voronoi polygons or Delaunay tri- angles (Napier and Peirce 1995). A subset of the edges of these polygons is selected and designated as pre-existing ?aws with assigned strength an friction sliding properties. A speci?ed load... of incre- mental displacements were applied to the surface of a rectangular block to simulate compression tests have been performed to study the fracture mechanisms induced in random Voronoi and Delaunay tessellation patterns (Napier and Peirce 1995; Napier...

  18. Quantification of the myocardial area at risk using coronary CT angiography and Voronoi algorithm-based myocardial segmentation

    Energy Technology Data Exchange (ETDEWEB)

    Kurata, Akira; Kono, Atsushi; Coenen, Adriaan; Saru-Chelu, Raluca G.; Krestin, Gabriel P. [Erasmus University Medical Center, Department of Radiology, Rotterdam (Netherlands); Sakamoto, Tsuyoshi [AZE inc, Development Division, Chiyoda, Tokyo (Japan); Kido, Teruhito; Mochizuki, Teruhito [Ehime University Graduate School of Medicine, Department of Radiology, Toon, Ehime (Japan); Higashino, Hiroshi [Yotsuba Circulation Clinic, Department of Radiology, Matsuyama, Ehime (Japan); Abe, Mitsunori [Yotsuba Circulation Clinic, Department of Cardiology, Matsuyama, Ehime (Japan); Feyter, Pim J. de; Nieman, Koen [Erasmus University Medical Center, Department of Radiology, Rotterdam (Netherlands); Erasmus University Medical Center, Department of Cardiology, Rotterdam (Netherlands)

    2015-01-15

    The purpose of this study was to estimate the myocardial area at risk (MAAR) using coronary computed tomography angiography (CTA) and Voronoi algorithm-based myocardial segmentation in comparison with single-photon emission computed tomography (SPECT). Thirty-four patients with coronary artery disease underwent 128-slice coronary CTA, stress/rest thallium-201 SPECT, and coronary angiography (CAG). CTA-based MAAR was defined as the sum of all CAG stenosis (>50 %) related territories (the ratio of the left ventricular volume). Using automated quantification software (17-segment model, 5-point scale), SPECT-based MAAR was defined as the number of segments with a score above zero as compared to the total 17 segments by summed stress score (SSS), difference (SDS) score map, and comprehensive SPECT interpretation with either SSS or SDS best correlating CAG findings (SSS/SDS). Results were compared using Pearson's correlation coefficient. Forty-nine stenoses were observed in 102 major coronary territories. Mean value of CTA-based MAAR was 28.3 ± 14.0 %. SSS-based, SDS-based, and SSS/SDS-based MAAR was 30.1 ± 6.1 %, 20.1 ± 15.8 %, and 26.8 ± 15.7 %, respectively. CTA-based MAAR was significantly related to SPECT-based MAAR (r = 0.531 for SSS; r = 0.494 for SDS; r = 0.814 for SSS/SDS; P < 0.05 in each). CTA-based Voronoi algorithm myocardial segmentation reliably quantifies SPECT-based MAAR. (orig.)

  19. Quantification of the myocardial area at risk using coronary CT angiography and Voronoi algorithm-based myocardial segmentation

    International Nuclear Information System (INIS)

    Kurata, Akira; Kono, Atsushi; Coenen, Adriaan; Saru-Chelu, Raluca G.; Krestin, Gabriel P.; Sakamoto, Tsuyoshi; Kido, Teruhito; Mochizuki, Teruhito; Higashino, Hiroshi; Abe, Mitsunori; Feyter, Pim J. de; Nieman, Koen

    2015-01-01

    The purpose of this study was to estimate the myocardial area at risk (MAAR) using coronary computed tomography angiography (CTA) and Voronoi algorithm-based myocardial segmentation in comparison with single-photon emission computed tomography (SPECT). Thirty-four patients with coronary artery disease underwent 128-slice coronary CTA, stress/rest thallium-201 SPECT, and coronary angiography (CAG). CTA-based MAAR was defined as the sum of all CAG stenosis (>50 %) related territories (the ratio of the left ventricular volume). Using automated quantification software (17-segment model, 5-point scale), SPECT-based MAAR was defined as the number of segments with a score above zero as compared to the total 17 segments by summed stress score (SSS), difference (SDS) score map, and comprehensive SPECT interpretation with either SSS or SDS best correlating CAG findings (SSS/SDS). Results were compared using Pearson's correlation coefficient. Forty-nine stenoses were observed in 102 major coronary territories. Mean value of CTA-based MAAR was 28.3 ± 14.0 %. SSS-based, SDS-based, and SSS/SDS-based MAAR was 30.1 ± 6.1 %, 20.1 ± 15.8 %, and 26.8 ± 15.7 %, respectively. CTA-based MAAR was significantly related to SPECT-based MAAR (r = 0.531 for SSS; r = 0.494 for SDS; r = 0.814 for SSS/SDS; P < 0.05 in each). CTA-based Voronoi algorithm myocardial segmentation reliably quantifies SPECT-based MAAR. (orig.)

  20. Structural characterization of the packings of granular regular polygons.

    Science.gov (United States)

    Wang, Chuncheng; Dong, Kejun; Yu, Aibing

    2015-12-01

    By using a recently developed method for discrete modeling of nonspherical particles, we simulate the random packings of granular regular polygons with three to 11 edges under gravity. The effects of shape and friction on the packing structures are investigated by various structural parameters, including packing fraction, the radial distribution function, coordination number, Voronoi tessellation, and bond-orientational order. We find that packing fraction is generally higher for geometrically nonfrustrated regular polygons, and can be increased by the increase of edge number and decrease of friction. The changes of packing fraction are linked with those of the microstructures, such as the variations of the translational and orientational orders and local configurations. In particular, the free areas of Voronoi tessellations (which are related to local packing fractions) can be described by log-normal distributions for all polygons. The quantitative analyses establish a clearer picture for the packings of regular polygons.

  1. Integrating Spatial and Attribute Characteristics of Extended Voronoi Diagrams in Spatial Patterning Research: A Case Study of Wuhan City in China

    Directory of Open Access Journals (Sweden)

    Zuohua Miao

    2016-07-01

    Full Text Available Rapid urbanization has caused numerous problems, and the urban spatial structure has been a hot topic in sustainable development management. Urban spatial structure is affected by a series of factors. Thus, the research model should synthetically consider the spatial and non-spatial relationship of every element. Here, we propose an extended Voronoi diagram for exploring the urban land spatial pattern. In essence, we first used a principal component analysis method to construct attribute evaluation indicators and obtained the attribute distance for each indicator. Second, we integrated spatial and attribute distances to extend the comparison distance for Voronoi diagrams, and then, we constructed the Voronoi aggregative homogeneous map of the study area. Finally, we make a spatial autocorrelation analysis by using GeoDA and SPSS software. Results show that: (1 the residential land cover aggregation is not significant, but spatial diffusion is obvious; (2 the commercial land cover aggregation is considerable; and (3 the spatial agglomeration degree of the industrial land cover is increased and mainly located in urban fringes. According to the neo-Marxist theory, we briefly analyzed the driving forces for shaping the urban spatial structure. To summarize, our approach yields important insights into the urban spatial structure characterized by attribute similarity with geospatial proximity, which contributes to a better understanding of the urban growth mechanism. In addition, it explicitly identifies ongoing urban transformations, potentially supporting the planning for sustainable urban land use and protection.

  2. Diagramas de Voronoi para a definição de áreas de abrangência de hospitais públicos no Município do Rio de Janeiro Defining catchment areas for public hospitals in the Municipality of Rio de Janeiro through Weighted Voronoi Diagrams

    Directory of Open Access Journals (Sweden)

    Flavio Astolpho Vieira Souto Rezende

    2000-06-01

    Full Text Available No planejamento de recursos em saúde é importante o conhecimento da área de abrangência de uma unidade. Os Diagramas de Voronoi constituem uma técnica para tal; são polígonos construídos de tal forma que as bordas de polígonos adjacentes encontram-se eqüidistantes de seus respectivos pontos geradores. Uma modificação nas áreas de abrangência assim definidas é sua ponderação (Diagramas de Voronoi ponderados, representando a capacidade da unidade de forma mais real. No presente trabalho foram utilizados, como pontos geradores, 21 hospitais gerais públicos no Rio de Janeiro, RJ. Inicialmente foram criados os Diagramas de Voronoi sem ponderação, e, a partir destes, os diagramas ponderados, empregando-se como variável de ponderação as estimativas de internação anual para cada unidade. Na divisão clássica, áreas de abrangência similares foram atribuídas a hospitais com características diferenciadas, problema esse contornado no método ponderado. O método é de simples implementação e visualização, utiliza dados de fácil acesso e independe de parâmetros arbitrários ou geopolíticos. Portanto, esses diagramas podem fornecer, a gerentes de saúde, uma visão mais realista para o planejamento da demanda de suas unidades.One of the most important pieces of information for health resources planning is the definition of catchment areas for health units. Voronoi Diagrams are a potential technique for this purpose. They are polygons with the property whereby adjacent polygons have their borders located within the same distance of the respective generator points. One possible adjustment to the catchment areas thus defined is the use of weighted Voronoi Diagrams, which result in an improved representation of a health unit's actual capacity. In this study, the 21 public general hospitals in the city of Rio de Janeiro, Brazil, were used as generator points for Voronoi Diagrams. Non-weighted Voronoi Diagrams were initially

  3. A forest simulation approach using weighted Voronoi diagrams. An application to Mediterranean fir Abies pinsapo Boiss stands

    Energy Technology Data Exchange (ETDEWEB)

    Abellanas, B.; Abellanas, M.; Pommerening, A.; Lodares, D.; Cuadros, S.

    2016-07-01

    Aim of the study. a) To present a new version of the forest simulator Vorest, an individual-based spatially explicit model that uses weighted Voronoi diagrams to simulate the natural dynamics of forest stands with closed canopies. b) To apply the model to the current dynamics of a Grazalema pinsapo stand to identify the nature of its competition regime and the stagnation risks it is currently facing. Area of study: Sierra del Pinar de Grazalema (S Spain) Material and methods: Two large plots representative of Grazalema pinsapo stands were used to fit and validate the model (plus 6 accesory plots to increase the availability of mortality data). Two inventories were carried out in 1998 and 2007 producing tree size and location data. We developed a forest simulator based on three submodels: growth, competition and mortality. The model was fitted, evaluated and validated for Grazalema plots. The simulation outputs were used to infer the expected evolution of structural diversity of forest stands. Main results: Vorest has proved to be a good tool for simulating dynamics of natural closed stands. The application to Grazalema pinsapo stands has allowed assessing the nature of the main processes that are driving its development pathway. We have found that the prevailing size-asymmetric competition dominates the self-thinning process in small-sized trees. At the same time, there is an active tree-size differentiation process. Research highlights: Vorest has proved to be a good tool for simulating natural stands with closed canopies. The Grazalema pinsapo stand under consideration is currently undergoing a natural process of differentiation, avoiding long-term stagnation. (Author)

  4. Effect of inter-species selective interactions on the thermodynamics and nucleation free-energy barriers of a tessellating polyhedral compound

    International Nuclear Information System (INIS)

    Escobedo, Fernando A.

    2016-01-01

    The phase behavior and the homogeneous nucleation of an equimolar mixture of octahedra and cuboctahedra are studied using thermodynamic integration, Gibbs-Duhem integration, and umbrella sampling simulations. The components of this mixture are modeled as polybead objects of equal edge lengths so that they can assemble into a space-filling compound with the CsCl crystal structure. Taking as reference the hard-core system where the compound crystal does not spontaneously nucleate, we quantified the effect of inter-species selective interactions on facilitating the disorder-to-order transition. Facet selective and facet non-selective inter-species attractions were considered, and while the former was expectedly more favorable toward the target tessellating structure, the latter was found to be similarly effective in nucleating the crystal compound. Ranges for the strength of attractions and degree of supersaturation were identified where the nucleation free-energy barrier was small enough to foretell a fast process but large enough to prevent spinodal fluctuations that can trap the system in dense metastable states lacking long-range order. At those favorable conditions, the tendency toward the local orientational order favored by packing entropy is amplified and found to play a key role seeding nuclei with the CsCl structure.

  5. First shark from the Late Devonian (Frasnian) Gogo Formation, Western Australia sheds new light on the development of tessellated calcified cartilage.

    Science.gov (United States)

    Long, John A; Burrow, Carole J; Ginter, Michal; Maisey, John G; Trinajstic, Kate M; Coates, Michael I; Young, Gavin C; Senden, Tim J

    2015-01-01

    as a transitional step toward the tessellated prismatic calcified cartilage that is recognized as the main diagnostic character of the chondrichthyans.

  6. First shark from the Late Devonian (Frasnian Gogo Formation, Western Australia sheds new light on the development of tessellated calcified cartilage.

    Directory of Open Access Journals (Sweden)

    John A Long

    , interpreted as a transitional step toward the tessellated prismatic calcified cartilage that is recognized as the main diagnostic character of the chondrichthyans.

  7. Cell packing structures

    KAUST Repository

    Pottmann, Helmut; Jiang, Caigui; Hö binger, Mathias; Wang, Jun; Bompas, Philippe; Wallner, Johannes

    2015-01-01

    optimization schemes for the computation of quad-based support structures. Hex-dominant structures may be designed via Voronoi tessellations, power diagrams, sphere packings and various extensions of these concepts. Apart from the obvious application as load

  8. Random lattice structures. Modelling, manufacture and FEA of their mechanical response

    Science.gov (United States)

    Maliaris, G.; Sarafis, I. T.; Lazaridis, T.; Varoutoglou, A.; Tsakataras, G.

    2016-11-01

    The implementation of lightweight structures in various applications, especially in Aerospace/ Automotive industries and Orthopaedics, has become a necessity due to their exceptional mechanical properties with respect to reduced weight. In this work we present a Voronoi tessellation based algorithm, which has been developed for modelling stochastic lattice structures. With the proposed algorithm, is possible to generate CAD geometry with controllable structural parameters, such as porosity, cell number and strut thickness. The digital structures were transformed into physical objects through the combination of 3D printing technics and investment casting. This process was applied to check the mechanical behaviour of generated digital models. Until now, the only way to materialize such structures into physical objects, was feasible through 3D printing methods such as Selective Laser Sintering/ Melting (SLS/ SLM). Investment casting possesses numerous advantages against SLS or SLA, with the major one being the material variety. On the other hand, several trials are required in order to calibrate the process parameters to have successful castings, which is the major drawback of investment casting. The manufactured specimens were subjected to compression tests, where their mechanical response was registered in the form of compressive load - displacement curves. Also, a finite element model was developed, using the specimens’ CAD data and compression test parameters. The FE assisted calculation of specimen plastic deformation is identical with the one of the physical object, which validates the conclusions drawn from the simulation results. As it was observed, strut contact is initiated when specimen deformation is approximately 5mm. Although FE calculated compressive force follows the same trend for the first 3mm of compression, then diverges because of the elasto-plastic FE model type definition and the occurred remeshing steps.

  9. Three-Dimensional Network Model for Coupling of Fracture and Mass Transport in Quasi-Brittle Geomaterials

    Directory of Open Access Journals (Sweden)

    Peter Grassl

    2016-09-01

    Full Text Available Dual three-dimensional networks of structural and transport elements were combined to model the effect of fracture on mass transport in quasi-brittle geomaterials. Element connectivity of the structural network, representing elasticity and fracture, was defined by the Delaunay tessellation of a random set of points. The connectivity of transport elements within the transport network was defined by the Voronoi tessellation of the same set of points. A new discretisation strategy for domain boundaries was developed to apply boundary conditions for the coupled analyses. The properties of transport elements were chosen to evolve with the crack opening values of neighbouring structural elements. Through benchmark comparisons involving non-stationary transport and fracture, the proposed dual network approach was shown to be objective with respect to element size and orientation.

  10. Angular Distribution of GRBs

    Directory of Open Access Journals (Sweden)

    L. G. Balázs

    2012-01-01

    Full Text Available We studied the complete randomness of the angular distribution of BATSE gamma-ray bursts (GRBs. Based on their durations and peak fluxes, we divided the BATSE sample into 5 subsamples (short1, short2, intermediate, long1, long2 and studied the angular distributions separately. We used three methods to search for non-randomness in the subsamples: Voronoi tesselation, minimal spanning tree, and multifractal spectra. To study any non-randomness in the subsamples we defined 13 test-variables (9 from Voronoi tesselation, 3 from the minimal spanning tree and one from the multifractal spectrum. We made Monte Carlo simulations taking into account the BATSE’s sky-exposure function. We tested therandomness by introducing squared Euclidean distances in the parameter space of the test-variables. We recognized that the short1, short2 groups deviate significantly (99.90%, 99.98% from the fully random case in the distribution of the squared Euclidean distances but this is not true for the long samples. In the intermediate group, the squared Euclidean distances also give significant deviation (98.51%.

  11. Diagramas de Voronoi para a definição de áreas de abrangência de hospitais públicos no Município do Rio de Janeiro

    Directory of Open Access Journals (Sweden)

    Flavio Astolpho Vieira Souto Rezende

    2000-06-01

    Full Text Available No planejamento de recursos em saúde é importante o conhecimento da área de abrangência de uma unidade. Os Diagramas de Voronoi constituem uma técnica para tal; são polígonos construídos de tal forma que as bordas de polígonos adjacentes encontram-se eqüidistantes de seus respectivos pontos geradores. Uma modificação nas áreas de abrangência assim definidas é sua ponderação (Diagramas de Voronoi ponderados, representando a capacidade da unidade de forma mais real. No presente trabalho foram utilizados, como pontos geradores, 21 hospitais gerais públicos no Rio de Janeiro, RJ. Inicialmente foram criados os Diagramas de Voronoi sem ponderação, e, a partir destes, os diagramas ponderados, empregando-se como variável de ponderação as estimativas de internação anual para cada unidade. Na divisão clássica, áreas de abrangência similares foram atribuídas a hospitais com características diferenciadas, problema esse contornado no método ponderado. O método é de simples implementação e visualização, utiliza dados de fácil acesso e independe de parâmetros arbitrários ou geopolíticos. Portanto, esses diagramas podem fornecer, a gerentes de saúde, uma visão mais realista para o planejamento da demanda de suas unidades.

  12. Randomization tests

    CERN Document Server

    Edgington, Eugene

    2007-01-01

    Statistical Tests That Do Not Require Random Sampling Randomization Tests Numerical Examples Randomization Tests and Nonrandom Samples The Prevalence of Nonrandom Samples in Experiments The Irrelevance of Random Samples for the Typical Experiment Generalizing from Nonrandom Samples Intelligibility Respect for the Validity of Randomization Tests Versatility Practicality Precursors of Randomization Tests Other Applications of Permutation Tests Questions and Exercises Notes References Randomized Experiments Unique Benefits of Experiments Experimentation without Mani

  13. Soft-sphere simulations of a planar shock interaction with a granular bed

    Science.gov (United States)

    Stewart, Cameron; Balachandar, S.; McGrath, Thomas P.

    2018-03-01

    Here we consider the problem of shock propagation through a layer of spherical particles. A point particle force model is used to capture the shock-induced aerodynamic force acting upon the particles. The discrete element method (DEM) code liggghts is used to implement the shock-induced force as well as to capture the collisional forces within the system. A volume-fraction-dependent drag correction is applied using Voronoi tessellation to calculate the volume of fluid around each individual particle. A statistically stationary frame is chosen so that spatial and temporal averaging can be performed to calculate ensemble-averaged macroscopic quantities, such as the granular temperature. A parametric study is carried out by varying the coefficient of restitution for three sets of multiphase shock conditions. A self-similar profile is obtained for the granular temperature that is dependent on the coefficient of restitution. A traveling wave structure is observed in the particle concentration downstream of the shock and this instability arises from the volume-fraction-dependent drag force. The intensity of the traveling wave increases significantly as inelastic collisions are introduced. Downstream of the shock, the variance in Voronoi volume fraction is shown to have a strong dependence upon the coefficient of restitution, indicating clustering of particles induced by collisional dissipation. Statistics of the Voronoi volume are computed upstream and downstream of the shock and compared to theoretical results for randomly distributed hard spheres.

  14. Random walk on random walks

    NARCIS (Netherlands)

    Hilário, M.; Hollander, den W.Th.F.; Sidoravicius, V.; Soares dos Santos, R.; Teixeira, A.

    2014-01-01

    In this paper we study a random walk in a one-dimensional dynamic random environment consisting of a collection of independent particles performing simple symmetric random walks in a Poisson equilibrium with density ¿¿(0,8). At each step the random walk performs a nearest-neighbour jump, moving to

  15. Homogeneity and EPR metrics for assessment of regular grids used in CW EPR powder simulations.

    Science.gov (United States)

    Crăciun, Cora

    2014-08-01

    CW EPR powder spectra may be approximated numerically using a spherical grid and a Voronoi tessellation-based cubature. For a given spin system, the quality of simulated EPR spectra depends on the grid type, size, and orientation in the molecular frame. In previous work, the grids used in CW EPR powder simulations have been compared mainly from geometric perspective. However, some grids with similar homogeneity degree generate different quality simulated spectra. This paper evaluates the grids from EPR perspective, by defining two metrics depending on the spin system characteristics and the grid Voronoi tessellation. The first metric determines if the grid points are EPR-centred in their Voronoi cells, based on the resonance magnetic field variations inside these cells. The second metric verifies if the adjacent Voronoi cells of the tessellation are EPR-overlapping, by computing the common range of their resonance magnetic field intervals. Beside a series of well known regular grids, the paper investigates a modified ZCW grid and a Fibonacci spherical code, which are new in the context of EPR simulations. For the investigated grids, the EPR metrics bring more information than the homogeneity quantities and are better related to the grids' EPR behaviour, for different spin system symmetries. The metrics' efficiency and limits are finally verified for grids generated from the initial ones, by using the original or magnetic field-constraint variants of the Spherical Centroidal Voronoi Tessellation method. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Homogeneity and EPR metrics for assessment of regular grids used in CW EPR powder simulations

    Science.gov (United States)

    Crăciun, Cora

    2014-08-01

    CW EPR powder spectra may be approximated numerically using a spherical grid and a Voronoi tessellation-based cubature. For a given spin system, the quality of simulated EPR spectra depends on the grid type, size, and orientation in the molecular frame. In previous work, the grids used in CW EPR powder simulations have been compared mainly from geometric perspective. However, some grids with similar homogeneity degree generate different quality simulated spectra. This paper evaluates the grids from EPR perspective, by defining two metrics depending on the spin system characteristics and the grid Voronoi tessellation. The first metric determines if the grid points are EPR-centred in their Voronoi cells, based on the resonance magnetic field variations inside these cells. The second metric verifies if the adjacent Voronoi cells of the tessellation are EPR-overlapping, by computing the common range of their resonance magnetic field intervals. Beside a series of well known regular grids, the paper investigates a modified ZCW grid and a Fibonacci spherical code, which are new in the context of EPR simulations. For the investigated grids, the EPR metrics bring more information than the homogeneity quantities and are better related to the grids’ EPR behaviour, for different spin system symmetries. The metrics’ efficiency and limits are finally verified for grids generated from the initial ones, by using the original or magnetic field-constraint variants of the Spherical Centroidal Voronoi Tessellation method.

  17. Random magnetism

    International Nuclear Information System (INIS)

    Tahir-Kheli, R.A.

    1975-01-01

    A few simple problems relating to random magnetic systems are presented. Translational symmetry, only on the macroscopic scale, is assumed for these systems. A random set of parameters, on the microscopic scale, for the various regions of these systems is also assumed. A probability distribution for randomness is obeyed. Knowledge of the form of these probability distributions, is assumed in all cases [pt

  18. Randomized random walk on a random walk

    International Nuclear Information System (INIS)

    Lee, P.A.

    1983-06-01

    This paper discusses generalizations of the model introduced by Kehr and Kunter of the random walk of a particle on a one-dimensional chain which in turn has been constructed by a random walk procedure. The superimposed random walk is randomised in time according to the occurrences of a stochastic point process. The probability of finding the particle in a particular position at a certain instant is obtained explicitly in the transform domain. It is found that the asymptotic behaviour for large time of the mean-square displacement of the particle depends critically on the assumed structure of the basic random walk, giving a diffusion-like term for an asymmetric walk or a square root law if the walk is symmetric. Many results are obtained in closed form for the Poisson process case, and these agree with those given previously by Kehr and Kunter. (author)

  19. Tessellation of SoHO Magnetograms

    Indian Academy of Sciences (India)

    tribpo

    R. Srikant* & Jagdev Singh,Indian Institute of Astrophysi cs, Bangalore 560034, India. *e mail: srik@iiap.ernet.in. Abstract. A gradient based algorithm which divides arbitrary images into non overlapping surface filling tiles of opposite polarity is used to study the flux and size distributions of large scale magnetic flux concen.

  20. Random Fields

    Science.gov (United States)

    Vanmarcke, Erik

    1983-03-01

    Random variation over space and time is one of the few attributes that might safely be predicted as characterizing almost any given complex system. Random fields or "distributed disorder systems" confront astronomers, physicists, geologists, meteorologists, biologists, and other natural scientists. They appear in the artifacts developed by electrical, mechanical, civil, and other engineers. They even underlie the processes of social and economic change. The purpose of this book is to bring together existing and new methodologies of random field theory and indicate how they can be applied to these diverse areas where a "deterministic treatment is inefficient and conventional statistics insufficient." Many new results and methods are included. After outlining the extent and characteristics of the random field approach, the book reviews the classical theory of multidimensional random processes and introduces basic probability concepts and methods in the random field context. It next gives a concise amount of the second-order analysis of homogeneous random fields, in both the space-time domain and the wave number-frequency domain. This is followed by a chapter on spectral moments and related measures of disorder and on level excursions and extremes of Gaussian and related random fields. After developing a new framework of analysis based on local averages of one-, two-, and n-dimensional processes, the book concludes with a chapter discussing ramifications in the important areas of estimation, prediction, and control. The mathematical prerequisite has been held to basic college-level calculus.

  1. Regional SAR Image Segmentation Based on Fuzzy Clustering with Gamma Mixture Model

    Science.gov (United States)

    Li, X. L.; Zhao, Q. H.; Li, Y.

    2017-09-01

    Most of stochastic based fuzzy clustering algorithms are pixel-based, which can not effectively overcome the inherent speckle noise in SAR images. In order to deal with the problem, a regional SAR image segmentation algorithm based on fuzzy clustering with Gamma mixture model is proposed in this paper. First, initialize some generating points randomly on the image, the image domain is divided into many sub-regions using Voronoi tessellation technique. Each sub-region is regarded as a homogeneous area in which the pixels share the same cluster label. Then, assume the probability of the pixel to be a Gamma mixture model with the parameters respecting to the cluster which the pixel belongs to. The negative logarithm of the probability represents the dissimilarity measure between the pixel and the cluster. The regional dissimilarity measure of one sub-region is defined as the sum of the measures of pixels in the region. Furthermore, the Markov Random Field (MRF) model is extended from pixels level to Voronoi sub-regions, and then the regional objective function is established under the framework of fuzzy clustering. The optimal segmentation results can be obtained by the solution of model parameters and generating points. Finally, the effectiveness of the proposed algorithm can be proved by the qualitative and quantitative analysis from the segmentation results of the simulated and real SAR images.

  2. Geoplotlib: a Python Toolbox for Visualizing Geographical Data

    OpenAIRE

    Cuttone, Andrea; Lehmann, Sune; Larsen, Jakob Eg

    2016-01-01

    We introduce geoplotlib, an open-source python toolbox for visualizing geographical data. geoplotlib supports the development of hardware-accelerated interactive visualizations in pure python, and provides implementations of dot maps, kernel density estimation, spatial graphs, Voronoi tesselation, shapefiles and many more common spatial visualizations. We describe geoplotlib design, functionalities and use cases.

  3. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... The two tools of the Poisson Voronoi Tessellation (PVT) and the luminosity function for galaxies allow building a new version of the local cosmological principle. ... This means that each accepted article is being published immediately online with DOI and article citation ID with starting page number 1.

  4. Random magnetism

    International Nuclear Information System (INIS)

    Tsallis, C.

    1980-03-01

    The 'ingredients' which control a phase transition in well defined system as well as in random ones (e.g. random magnetic systems) are listed and discussed within a somehow unifying perspective. Among these 'ingredients' we find the couplings and elements responsible for the cooperative phenomenon, the topological connectivity as well as possible topological incompatibilities, the influence of new degrees of freedom, the order parameter dimensionality, the ground state degeneracy and finally the 'quanticity' of the system. The general trends, though illustrated in magnetic systems, essentially hold for all phase transitions, and give a basis for connection of this area with Field theory, Theory of dynamical systems, etc. (Author) [pt

  5. Random magnetism

    International Nuclear Information System (INIS)

    Tsallis, C.

    1981-01-01

    The 'ingredients' which control a phase transition in well defined systems as well as in random ones (e.q. random magnetic systems) are listed and discussed within a somehow unifying perspective. Among these 'ingredients' the couplings and elements responsible for the cooperative phenomenon, the topological connectivity as well as possible topological incompatibilities, the influence of new degrees of freedom, the order parameter dimensionality, the ground state degeneracy and finally the 'quanticity' of the system are found. The general trends, though illustrated in magnetic systems, essentially hold for all phase transitions, and give a basis for connection of this area with Field theory, Theory of dynamical systems, etc. (Author) [pt

  6. Random Decrement

    DEFF Research Database (Denmark)

    Asmussen, J.C.; Ibrahim, S.R.; Brincker, Rune

    Abstraet Thispaper demansirates how to use the Random Decrement (RD) technique for identification o flinear structures subjected to ambient excitation. The theory behind the technique will be presented and guidelines how to choose the different variables will be given. This is done by introducing...

  7. Random Decrement

    DEFF Research Database (Denmark)

    Asmussen, J. C.; Ibrahim, S. R.; Brincker, Rune

    This paper demonstrates how to use the Random Decrement (RD) technique for identification of linear structures subjected to ambient excitation. The theory behind the technique will be presented and guidelines how to choose the different variables will be given. This is done by introducing a new...

  8. Random Decrement

    DEFF Research Database (Denmark)

    Asmussen, J. C.; Ibrahim, R.; Brincker, Rune

    1998-01-01

    This paper demonstrates how to use the Random Decrement (RD) technique for identification of linear structures subjected to ambient excitation. The theory behind the technique will be presented and guidelines how to choose the different variables will be given. This is done by introducing a new...

  9. Random dynamics

    International Nuclear Information System (INIS)

    Bennett, D.L.; Brene, N.; Nielsen, H.B.

    1986-06-01

    The goal of random dynamics is the derivation of the laws of Nature as we know them (standard model) from inessential assumptions. The inessential assumptions made here are expressed as sets of general models at extremely high energies: gauge glass and spacetime foam. Both sets of models lead tentatively to the standard model. (orig.)

  10. Random dynamics

    International Nuclear Information System (INIS)

    Bennett, D.L.

    1987-01-01

    The goal of random dynamics is the derivation of the laws of Nature as we know them (standard model) from inessential assumptions. The inessential assumptions made here are expressed as sets of general models at extremely high energies: Gauge glass and spacetime foam. Both sets of models lead tentatively to the standard model. (orig.)

  11. Random Dynamics

    Science.gov (United States)

    Bennett, D. L.; Brene, N.; Nielsen, H. B.

    1987-01-01

    The goal of random dynamics is the derivation of the laws of Nature as we know them (standard model) from inessential assumptions. The inessential assumptions made here are expressed as sets of general models at extremely high energies: gauge glass and spacetime foam. Both sets of models lead tentatively to the standard model.

  12. Simulation of Semi-Solid Material Mechanical Behavior Using a Combined Discrete/Finite Element Method

    Science.gov (United States)

    Sistaninia, M.; Phillion, A. B.; Drezet, J.-M.; Rappaz, M.

    2011-01-01

    As a necessary step toward the quantitative prediction of hot tearing defects, a three-dimensional stress-strain simulation based on a combined finite element (FE)/discrete element method (DEM) has been developed that is capable of predicting the mechanical behavior of semisolid metallic alloys during solidification. The solidification model used for generating the initial solid-liquid structure is based on a Voronoi tessellation of randomly distributed nucleation centers and a solute diffusion model for each element of this tessellation. At a given fraction of solid, the deformation is then simulated with the solid grains being modeled using an elastoviscoplastic constitutive law, whereas the remaining liquid layers at grain boundaries are approximated by flexible connectors, each consisting of a spring element and a damper element acting in parallel. The model predictions have been validated against Al-Cu alloy experimental data from the literature. The results show that a combined FE/DEM approach is able to express the overall mechanical behavior of semisolid alloys at the macroscale based on the morphology of the grain structure. For the first time, the localization of strain in the intergranular regions is taken into account. Thus, this approach constitutes an indispensible step towards the development of a comprehensive model of hot tearing.

  13. A 3D coupled hydro-mechanical granular model for the prediction of hot tearing formation

    International Nuclear Information System (INIS)

    Sistaninia, M; Drezet, J-M; Rappaz, M; Phillion, A B

    2012-01-01

    A new 3D coupled hydro-mechanical granular model that simulates hot tearing formation in metallic alloys is presented. The hydro-mechanical model consists of four separate 3D modules. (I) The Solidification Module (SM) is used for generating the initial solid-liquid geometry. Based on a Voronoi tessellation of randomly distributed nucleation centers, this module computes solidification within each polyhedron using a finite element based solute diffusion calculation for each element within the tessellation. (II) The Fluid Flow Module (FFM) calculates the solidification shrinkage and deformation-induced pressure drop within the intergranular liquid. (III) The Semi-solid Deformation Module (SDM) is used to simulate deformation of the granular structure via a combined finite element / discrete element method. In this module, deformation of the solid grains is modeled using an elasto-viscoplastic constitutive law. (IV) The Failure Module (FM) is used to simulate crack initiation and propagation with the fracture criterion estimated from the overpressure required to overcome the capillary forces at the liquid-gas interface. The FFM, SDM, and FM are coupled processes since solid deformation, intergranular flow, and crack initiation are deeply linked together. The granular model predictions have been validated against bulk data measured experimentally and calculated with averaging techniques.

  14. Further Developments in Characterizing Capture Zone Distributions (CZD) in Island Growth

    Science.gov (United States)

    Einstein, T. L.; Pimpinelli, Alberto; González, Diego Luis

    2014-03-01

    As argued previously, analysis of the distribution of the areas of capture zones (i.e. proximity polygons [or Voronoi tesselations] with respect to island centers) is often the best way to extract the critical nucleus size in studies of epitaxial growth. For non-Poisson deposition (i.e. when island nucleation is not fully random) the areas of these Voronoi cells can be well described by the generalized Wigner distribution (GWD), particularly in the central region around the mean area where the distribution is largest. We discuss several recent applications to experimental systems, catelogued in a recent minireview,[2] showing how this perspective leads to insights about the critical nucleus size. In contrast, several (but not all) studies have shown that the GWD may not describe the numerical data from painstaking simulations in both tails.2 We discuss some refinements that have been proposed, as well as scaling forms. Finally, we comment on applications to social phenomena. Emphasis is on very recent developments. Work at UMD supported by NSF CHE 13-05892 & NSF MRSEC DMR 05-20471.

  15. Progress in characterizing submonolayer island growth: Capture-zone distributions, growth exponents, & hot precursors

    Science.gov (United States)

    Einstein, Theodore L.; Pimpinelli, Alberto; González, Diego Luis; Morales-Cifuentes, Josue R.

    2015-09-01

    In studies of epitaxial growth, analysis of the distribution of the areas of capture zones (i.e. proximity polygons or Voronoi tessellations with respect to island centers) is often the best way to extract the critical nucleus size i. For non-random nucleation the normalized areas s of these Voronoi cells are well described by the generalized Wigner distribution (GWD) Pβ(s) = asβ exp(-bs2), particularly in the central region 0.5 < s < 2 where data are least noisy. Extensive Monte Carlo simulations reveal inadequacies of our earlier mean field analysis, suggesting β = i + 2 for diffusion-limited aggregation (DLA). Since simulations generate orders of magnitude more data than experiments, they permit close examination of the tails of the distribution, which differ from the simple GWD form. One refinement is based on a fragmentation model. We also compare island-size distributions. We compare analysis by island-size distribution and by scaling of island density with flux. Modifications appear for attach-limited aggregation (ALA). We focus on the experimental system para-hexaphenyl on amorphous mica, comparing the results of the three analysis techniques and reconciling their results via a novel model of hot precursors based on rate equations, pointing out the existence of intermediate scaling regimes between DLA and ALA.

  16. Random tensors

    CERN Document Server

    Gurau, Razvan

    2017-01-01

    Written by the creator of the modern theory of random tensors, this book is the first self-contained introductory text to this rapidly developing theory. Starting from notions familiar to the average researcher or PhD student in mathematical or theoretical physics, the book presents in detail the theory and its applications to physics. The recent detections of the Higgs boson at the LHC and gravitational waves at LIGO mark new milestones in Physics confirming long standing predictions of Quantum Field Theory and General Relativity. These two experimental results only reinforce today the need to find an underlying common framework of the two: the elusive theory of Quantum Gravity. Over the past thirty years, several alternatives have been proposed as theories of Quantum Gravity, chief among them String Theory. While these theories are yet to be tested experimentally, key lessons have already been learned. Whatever the theory of Quantum Gravity may be, it must incorporate random geometry in one form or another....

  17. Random pulse generator

    International Nuclear Information System (INIS)

    Guo Ya'nan; Jin Dapeng; Zhao Dixin; Liu Zhen'an; Qiao Qiao; Chinese Academy of Sciences, Beijing

    2007-01-01

    Due to the randomness of radioactive decay and nuclear reaction, the signals from detectors are random in time. But normal pulse generator generates periodical pulses. To measure the performances of nuclear electronic devices under random inputs, a random generator is necessary. Types of random pulse generator are reviewed, 2 digital random pulse generators are introduced. (authors)

  18. Random matrices and random difference equations

    International Nuclear Information System (INIS)

    Uppuluri, V.R.R.

    1975-01-01

    Mathematical models leading to products of random matrices and random difference equations are discussed. A one-compartment model with random behavior is introduced, and it is shown how the average concentration in the discrete time model converges to the exponential function. This is of relevance to understanding how radioactivity gets trapped in bone structure in blood--bone systems. The ideas are then generalized to two-compartment models and mammillary systems, where products of random matrices appear in a natural way. The appearance of products of random matrices in applications in demography and control theory is considered. Then random sequences motivated from the following problems are studied: constant pulsing and random decay models, random pulsing and constant decay models, and random pulsing and random decay models

  19. Morphology and linear-elastic moduli of random network solids.

    Science.gov (United States)

    Nachtrab, Susan; Kapfer, Sebastian C; Arns, Christoph H; Madadi, Mahyar; Mecke, Klaus; Schröder-Turk, Gerd E

    2011-06-17

    The effective linear-elastic moduli of disordered network solids are analyzed by voxel-based finite element calculations. We analyze network solids given by Poisson-Voronoi processes and by the structure of collagen fiber networks imaged by confocal microscopy. The solid volume fraction ϕ is varied by adjusting the fiber radius, while keeping the structural mesh or pore size of the underlying network fixed. For intermediate ϕ, the bulk and shear modulus are approximated by empirical power-laws K(phi)proptophin and G(phi)proptophim with n≈1.4 and m≈1.7. The exponents for the collagen and the Poisson-Voronoi network solids are similar, and are close to the values n=1.22 and m=2.11 found in a previous voxel-based finite element study of Poisson-Voronoi systems with different boundary conditions. However, the exponents of these empirical power-laws are at odds with the analytic values of n=1 and m=2, valid for low-density cellular structures in the limit of thin beams. We propose a functional form for K(ϕ) that models the cross-over from a power-law at low densities to a porous solid at high densities; a fit of the data to this functional form yields the asymptotic exponent n≈1.00, as expected. Further, both the intensity of the Poisson-Voronoi process and the collagen concentration in the samples, both of which alter the typical pore or mesh size, affect the effective moduli only by the resulting change of the solid volume fraction. These findings suggest that a network solid with the structure of the collagen networks can be modeled in quantitative agreement by a Poisson-Voronoi process. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Topics in random walks in random environment

    International Nuclear Information System (INIS)

    Sznitman, A.-S.

    2004-01-01

    Over the last twenty-five years random motions in random media have been intensively investigated and some new general methods and paradigms have by now emerged. Random walks in random environment constitute one of the canonical models of the field. However in dimension bigger than one they are still poorly understood and many of the basic issues remain to this day unresolved. The present series of lectures attempt to give an account of the progresses which have been made over the last few years, especially in the study of multi-dimensional random walks in random environment with ballistic behavior. (author)

  1. Numerical modelling of fracture initiation and propagation in biaxial tests on rock samples

    CSIR Research Space (South Africa)

    Van de Steen, B

    2001-03-01

    Full Text Available and Peirce, 1995). Additional edges can be obtained in the Voronoi tessellation, by connecting the geometric centre of the Voronoi polygons with the vertices of the polygons. These last elements are further referred to as the internal fracture paths, while... samples without flaws therefore display a very brittle behaviour (Napier and Peirce, 1995). To obtain a more plastic behaviour, it may be necessary to adjust the flaw density as well (D0 to D0b, Table 2). The brittleness of the simulated biaxial tests...

  2. Random broadcast on random geometric graphs

    Energy Technology Data Exchange (ETDEWEB)

    Bradonjic, Milan [Los Alamos National Laboratory; Elsasser, Robert [UNIV OF PADERBORN; Friedrich, Tobias [ICSI/BERKELEY; Sauerwald, Tomas [ICSI/BERKELEY

    2009-01-01

    In this work, we consider the random broadcast time on random geometric graphs (RGGs). The classic random broadcast model, also known as push algorithm, is defined as: starting with one informed node, in each succeeding round every informed node chooses one of its neighbors uniformly at random and informs it. We consider the random broadcast time on RGGs, when with high probability: (i) RGG is connected, (ii) when there exists the giant component in RGG. We show that the random broadcast time is bounded by {Omicron}({radical} n + diam(component)), where diam(component) is a diameter of the entire graph, or the giant component, for the regimes (i), or (ii), respectively. In other words, for both regimes, we derive the broadcast time to be {Theta}(diam(G)), which is asymptotically optimal.

  3. Quantumness, Randomness and Computability

    International Nuclear Information System (INIS)

    Solis, Aldo; Hirsch, Jorge G

    2015-01-01

    Randomness plays a central role in the quantum mechanical description of our interactions. We review the relationship between the violation of Bell inequalities, non signaling and randomness. We discuss the challenge in defining a random string, and show that algorithmic information theory provides a necessary condition for randomness using Borel normality. We close with a view on incomputablity and its implications in physics. (paper)

  4. How random is a random vector?

    Science.gov (United States)

    Eliazar, Iddo

    2015-12-01

    Over 80 years ago Samuel Wilks proposed that the "generalized variance" of a random vector is the determinant of its covariance matrix. To date, the notion and use of the generalized variance is confined only to very specific niches in statistics. In this paper we establish that the "Wilks standard deviation" -the square root of the generalized variance-is indeed the standard deviation of a random vector. We further establish that the "uncorrelation index" -a derivative of the Wilks standard deviation-is a measure of the overall correlation between the components of a random vector. Both the Wilks standard deviation and the uncorrelation index are, respectively, special cases of two general notions that we introduce: "randomness measures" and "independence indices" of random vectors. In turn, these general notions give rise to "randomness diagrams"-tangible planar visualizations that answer the question: How random is a random vector? The notion of "independence indices" yields a novel measure of correlation for Lévy laws. In general, the concepts and results presented in this paper are applicable to any field of science and engineering with random-vectors empirical data.

  5. How random is a random vector?

    International Nuclear Information System (INIS)

    Eliazar, Iddo

    2015-01-01

    Over 80 years ago Samuel Wilks proposed that the “generalized variance” of a random vector is the determinant of its covariance matrix. To date, the notion and use of the generalized variance is confined only to very specific niches in statistics. In this paper we establish that the “Wilks standard deviation” –the square root of the generalized variance–is indeed the standard deviation of a random vector. We further establish that the “uncorrelation index” –a derivative of the Wilks standard deviation–is a measure of the overall correlation between the components of a random vector. Both the Wilks standard deviation and the uncorrelation index are, respectively, special cases of two general notions that we introduce: “randomness measures” and “independence indices” of random vectors. In turn, these general notions give rise to “randomness diagrams”—tangible planar visualizations that answer the question: How random is a random vector? The notion of “independence indices” yields a novel measure of correlation for Lévy laws. In general, the concepts and results presented in this paper are applicable to any field of science and engineering with random-vectors empirical data.

  6. Definition and properties of ideal amorphous structures

    International Nuclear Information System (INIS)

    Stachurski, Z.H.

    2002-01-01

    Full text: Amorphous structure is usually defined by what it is not (ie, no crystalline peaks in XRS, no bond correlation in NMR), rather than by what it is. The interest in defining the structure of non-crystalline materials is long standing; packing geometry of spheres, molecular structure of glassy SiO 2 , or the structure of atactic polymers are prime examples. The earliest definitions of amorphous structure were in terms of a microcrystallite model of Valenkov, or continuous random network by Zachariasen. The random close packing of spheres of equal size, and an amorphous structure, composed of freely jointed linear chains of hard spheres, has been described mathematically in terms of a linear homogeneous Poisson process. This paper aims to describe some geometrical, kinematic, and topological properties of these two ideal amorphous structures, which belong to the same amorphous class. The geometry of packing is elucidated, and the use of Voronoi tessellation method for measuring the structures is described. The ideal amorphous solid has no symmetry elements; its volume can not be divided into identical unit cells. However, there is a volume element small enough to allow the distinction of its nanoscopic inhomogeneities, and sufficiently large enough to represent, accurately the overall behaviour. We define this volume element, the representative volume element. Suitable boundary conditions must be prescribed for a choice of RVE, and satisfy certain requirements. Topologically, a catchment region on the Born-Oppenheimer potential energy surface over nuclear configuration space, is defined by Mezey and Bader as an energetically stable geometry of the open region of R 3 traversed by all the trajectories which terminate at a local maximum. Two topological properties will be described: (i) the boundaries of the catchment region as a direct geometrical correspondence to the Voronoi polyhedron for a given atom in a given structure, and (ii) the constriction points

  7. Anisotropy of the monomer random walk in a polymer melt: local-order and connectivity effects

    International Nuclear Information System (INIS)

    Bernini, S; Leporini, D

    2016-01-01

    The random walk of a bonded monomer in a polymer melt is anisotropic due to local order and bond connectivity. We investigate both effects by molecular-dynamics simulations on melts of fully-flexible linear chains ranging from dimers (M  =  2) up to entangled polymers (M  =  200). The corresponding atomic liquid is also considered a reference system. To disentangle the influence of the local geometry and the bond arrangements, and to reveal their interplay, we define suitable measures of the anisotropy emphasising either the former or the latter aspect. Connectivity anisotropy, as measured by the correlation between the initial bond orientation and the direction of the subsequent monomer displacement, shows a slight enhancement due to the local order at times shorter than the structural relaxation time. At intermediate times—when the monomer displacement is comparable to the bond length—a pronounced peak and then decays slowly as t −1/2 , becoming negligible when the displacement is as large as about five bond lengths, i.e. about four monomer diameters or three Kuhn lengths. Local-geometry anisotropy, as measured by the correlation between the initial orientation of a characteristic axis of the Voronoi cell and the subsequent monomer dynamics, is affected at shorter times than the structural relaxation time by the cage shape with antagonistic disturbance by the connectivity. Differently, at longer times, the connectivity favours the persistence of the local-geometry anisotropy, which vanishes when the monomer displacement exceeds the bond length. Our results strongly suggest that the sole consideration of the local order is not enough to understand the microscopic origin of the rattling amplitude of the trapped monomer in the cage of the neighbours. (paper)

  8. Competition on the rocks: community growth and tessellation.

    Directory of Open Access Journals (Sweden)

    Espen Jettestuen

    Full Text Available Crustose lichen communities on rocks exhibit fascinating spatial mosaics resembling political maps of nations or municipalities. Although the establishment and development of biological populations are important themes in ecology, our understanding of the formation of such patterns on the rocks is still in its infancy. Here, we present a novel model of the concurrent growth, establishment and interaction of lichens. We introduce an inverse technique based on Monte Carlo simulations to test our model on field samples of lichen communities. We derive an expression for the time needed for a community to cover a surface and predict the historical spatial dynamics of field samples. Lichens are frequently used for dating the time of exposure of rocks in glacial deposits, lake retreats or rock falls. We suggest our method as a way to improve the dating.

  9. View-Dependent Tessellation and Simulation of Ocean Surfaces

    Directory of Open Access Journals (Sweden)

    Anna Puig-Centelles

    2014-01-01

    Full Text Available Modeling and rendering realistic ocean scenes have been thoroughly investigated for many years. Its appearance has been studied and it is possible to find very detailed simulations where a high degree of realism is achieved. Nevertheless, among the solutions to ocean rendering, real-time management of the huge heightmaps that are necessary for rendering an ocean scene is still not solved. We propose a new technique for simulating the ocean surface on GPU. This technique is capable of offering view-dependent approximations of the mesh while maintaining coherence among the extracted approximations. This feature is very important as most solutions previously presented must retessellate from the initial mesh. Our solution is able to use the latest extracted approximation when refining or coarsening the mesh.

  10. Mesoscopic approach to modeling elastic-plastic polycrystalline material behaviour

    International Nuclear Information System (INIS)

    Kovac, M.; Cizelj, L.

    2001-01-01

    Extreme loadings during severe accident conditions might cause failure or rupture of the pressure boundary of a reactor coolant system. Reliable estimation of the extreme deformations can be crucial to determine the consequences of such an accident. One of important drawbacks of classical continuum mechanics is idealization of inhomogenous microstructure of materials. This paper discusses the mesoscopic approach to modeling the elastic-plastic behavior of a polycrystalline material. The main idea is to divide the continuum (e.g., polycrystalline aggregate) into a set of sub-continua (grains). The overall properties of the polycrystalline aggregate are therefore determined by the number of grains in the aggregate and properties of randomly shaped and oriented grains. The random grain structure is modeled with Voronoi tessellation and random orientations of crystal lattices are assumed. The elastic behavior of monocrystal grains is assumed to be anisotropic. Crystal plasticity is used to describe plastic response of monocrystal grains. Finite element method is used to obtain numerical solutions of strain and stress fields. The analysis is limited to two-dimensional models.(author)

  11. On a randomly imperfect spherical cap pressurized by a random ...

    African Journals Online (AJOL)

    On a randomly imperfect spherical cap pressurized by a random dynamic load. ... In this paper, we investigate a dynamical system in a random setting of dual ... characterization of the random process for determining the dynamic buckling load ...

  12. Blocked Randomization with Randomly Selected Block Sizes

    Directory of Open Access Journals (Sweden)

    Jimmy Efird

    2010-12-01

    Full Text Available When planning a randomized clinical trial, careful consideration must be given to how participants are selected for various arms of a study. Selection and accidental bias may occur when participants are not assigned to study groups with equal probability. A simple random allocation scheme is a process by which each participant has equal likelihood of being assigned to treatment versus referent groups. However, by chance an unequal number of individuals may be assigned to each arm of the study and thus decrease the power to detect statistically significant differences between groups. Block randomization is a commonly used technique in clinical trial design to reduce bias and achieve balance in the allocation of participants to treatment arms, especially when the sample size is small. This method increases the probability that each arm will contain an equal number of individuals by sequencing participant assignments by block. Yet still, the allocation process may be predictable, for example, when the investigator is not blind and the block size is fixed. This paper provides an overview of blocked randomization and illustrates how to avoid selection bias by using random block sizes.

  13. Random walks, random fields, and disordered systems

    CERN Document Server

    Černý, Jiří; Kotecký, Roman

    2015-01-01

    Focusing on the mathematics that lies at the intersection of probability theory, statistical physics, combinatorics and computer science, this volume collects together lecture notes on recent developments in the area. The common ground of these subjects is perhaps best described by the three terms in the title: Random Walks, Random Fields and Disordered Systems. The specific topics covered include a study of Branching Brownian Motion from the perspective of disordered (spin-glass) systems, a detailed analysis of weakly self-avoiding random walks in four spatial dimensions via methods of field theory and the renormalization group, a study of phase transitions in disordered discrete structures using a rigorous version of the cavity method, a survey of recent work on interacting polymers in the ballisticity regime and, finally, a treatise on two-dimensional loop-soup models and their connection to conformally invariant systems and the Gaussian Free Field. The notes are aimed at early graduate students with a mod...

  14. Misuse of randomization

    DEFF Research Database (Denmark)

    Liu, Jianping; Kjaergard, Lise Lotte; Gluud, Christian

    2002-01-01

    The quality of randomization of Chinese randomized trials on herbal medicines for hepatitis B was assessed. Search strategy and inclusion criteria were based on the published protocol. One hundred and seventy-six randomized clinical trials (RCTs) involving 20,452 patients with chronic hepatitis B...... virus (HBV) infection were identified that tested Chinese medicinal herbs. They were published in 49 Chinese journals. Only 10% (18/176) of the studies reported the method by which they randomized patients. Only two reported allocation concealment and were considered as adequate. Twenty percent (30...

  15. Capacity constrained blue-noise sampling on surfaces

    KAUST Repository

    Zhang, Sen

    2015-11-27

    We present a novel method for high-quality blue-noise sampling on mesh surfaces with prescribed cell-sizes for the underlying tessellation (capacity constraint). Unlike the previous surface sampling approach that only uses capacity constraints as a regularizer of the Centroidal Voronoi Tessellation (CVT) energy, our approach enforces an exact capacity constraint using the restricted power tessellation on surfaces. Our approach is a generalization of the previous 2D blue noise sampling technique using an interleaving optimization framework. We further extend this framework to handle multi-capacity constraints. We compare our approach with several state-of-the-art methods and demonstrate that our results are superior to previous work in terms of preserving the capacity constraints.

  16. Estimating minimum polycrystalline aggregate size for macroscopic material homogeneity

    International Nuclear Information System (INIS)

    Kovac, M.; Simonovski, I.; Cizelj, L.

    2002-01-01

    During severe accidents the pressure boundary of reactor coolant system can be subjected to extreme loadings, which might cause failure. Reliable estimation of the extreme deformations can be crucial to determine the consequences of severe accidents. Important drawback of classical continuum mechanics is idealization of inhomogenous microstructure of materials. Classical continuum mechanics therefore cannot predict accurately the differences between measured responses of specimens, which are different in size but geometrical similar (size effect). A numerical approach, which models elastic-plastic behavior on mesoscopic level, is proposed to estimate minimum size of polycrystalline aggregate above which it can be considered macroscopically homogeneous. The main idea is to divide continuum into a set of sub-continua. Analysis of macroscopic element is divided into modeling the random grain structure (using Voronoi tessellation and random orientation of crystal lattice) and calculation of strain/stress field. Finite element method is used to obtain numerical solutions of strain and stress fields. The analysis is limited to 2D models.(author)

  17. Random surfaces and strings

    International Nuclear Information System (INIS)

    Ambjoern, J.

    1987-08-01

    The theory of strings is the theory of random surfaces. I review the present attempts to regularize the world sheet of the string by triangulation. The corresponding statistical theory of triangulated random surfaces has a surprising rich structure, but the connection to conventional string theory seems non-trivial. (orig.)

  18. Derandomizing from random strings

    NARCIS (Netherlands)

    Buhrman, H.; Fortnow, L.; Koucký, M.; Loff, B.

    2010-01-01

    In this paper we show that BPP is truth-table reducible to the set of Kolmogorov random strings R(K). It was previously known that PSPACE, and hence BPP is Turing-reducible to R(K). The earlier proof relied on the adaptivity of the Turing-reduction to find a Kolmogorov-random string of polynomial

  19. Quantum random number generator

    Science.gov (United States)

    Soubusta, Jan; Haderka, Ondrej; Hendrych, Martin

    2001-03-01

    Since reflection or transmission of a quantum particle on a beamsplitter is inherently random quantum process, a device built on this principle does not suffer from drawbacks of neither pseudo-random computer generators or classical noise sources. Nevertheless, a number of physical conditions necessary for high quality random numbers generation must be satisfied. Luckily, in quantum optics realization they can be well controlled. We present an easy random number generator based on the division of weak light pulses on a beamsplitter. The randomness of the generated bit stream is supported by passing the data through series of 15 statistical test. The device generates at a rate of 109.7 kbit/s.

  20. Quantum random number generator

    Science.gov (United States)

    Pooser, Raphael C.

    2016-05-10

    A quantum random number generator (QRNG) and a photon generator for a QRNG are provided. The photon generator may be operated in a spontaneous mode below a lasing threshold to emit photons. Photons emitted from the photon generator may have at least one random characteristic, which may be monitored by the QRNG to generate a random number. In one embodiment, the photon generator may include a photon emitter and an amplifier coupled to the photon emitter. The amplifier may enable the photon generator to be used in the QRNG without introducing significant bias in the random number and may enable multiplexing of multiple random numbers. The amplifier may also desensitize the photon generator to fluctuations in power supplied thereto while operating in the spontaneous mode. In one embodiment, the photon emitter and amplifier may be a tapered diode amplifier.

  1. Autonomous Byte Stream Randomizer

    Science.gov (United States)

    Paloulian, George K.; Woo, Simon S.; Chow, Edward T.

    2013-01-01

    Net-centric networking environments are often faced with limited resources and must utilize bandwidth as efficiently as possible. In networking environments that span wide areas, the data transmission has to be efficient without any redundant or exuberant metadata. The Autonomous Byte Stream Randomizer software provides an extra level of security on top of existing data encryption methods. Randomizing the data s byte stream adds an extra layer to existing data protection methods, thus making it harder for an attacker to decrypt protected data. Based on a generated crypto-graphically secure random seed, a random sequence of numbers is used to intelligently and efficiently swap the organization of bytes in data using the unbiased and memory-efficient in-place Fisher-Yates shuffle method. Swapping bytes and reorganizing the crucial structure of the byte data renders the data file unreadable and leaves the data in a deconstructed state. This deconstruction adds an extra level of security requiring the byte stream to be reconstructed with the random seed in order to be readable. Once the data byte stream has been randomized, the software enables the data to be distributed to N nodes in an environment. Each piece of the data in randomized and distributed form is a separate entity unreadable on its own right, but when combined with all N pieces, is able to be reconstructed back to one. Reconstruction requires possession of the key used for randomizing the bytes, leading to the generation of the same cryptographically secure random sequence of numbers used to randomize the data. This software is a cornerstone capability possessing the ability to generate the same cryptographically secure sequence on different machines and time intervals, thus allowing this software to be used more heavily in net-centric environments where data transfer bandwidth is limited.

  2. Random number generation

    International Nuclear Information System (INIS)

    Coveyou, R.R.

    1974-01-01

    The subject of random number generation is currently controversial. Differing opinions on this subject seem to stem from implicit or explicit differences in philosophy; in particular, from differing ideas concerning the role of probability in the real world of physical processes, electronic computers, and Monte Carlo calculations. An attempt is made here to reconcile these views. The role of stochastic ideas in mathematical models is discussed. In illustration of these ideas, a mathematical model of the use of random number generators in Monte Carlo calculations is constructed. This model is used to set up criteria for the comparison and evaluation of random number generators. (U.S.)

  3. Quantum random access memory

    OpenAIRE

    Giovannetti, Vittorio; Lloyd, Seth; Maccone, Lorenzo

    2007-01-01

    A random access memory (RAM) uses n bits to randomly address N=2^n distinct memory cells. A quantum random access memory (qRAM) uses n qubits to address any quantum superposition of N memory cells. We present an architecture that exponentially reduces the requirements for a memory call: O(log N) switches need be thrown instead of the N used in conventional (classical or quantum) RAM designs. This yields a more robust qRAM algorithm, as it in general requires entanglement among exponentially l...

  4. Randomization of inspections

    International Nuclear Information System (INIS)

    Markin, J.T.

    1989-01-01

    As the numbers and complexity of nuclear facilities increase, limitations on resources for international safeguards may restrict attainment of safeguards goals. One option for improving the efficiency of limited resources is to expand the current inspection regime to include random allocation of the amount and frequency of inspection effort to material strata or to facilities. This paper identifies the changes in safeguards policy, administrative procedures, and operational procedures that would be necessary to accommodate randomized inspections and identifies those situations where randomization can improve inspection efficiency and those situations where the current nonrandom inspections should be maintained. 9 refs., 1 tab

  5. Random phenomena; Phenomenes aleatoires

    Energy Technology Data Exchange (ETDEWEB)

    Bonnet, G. [Commissariat a l' energie atomique et aux energies alternatives - CEA, C.E.N.G., Service d' Electronique, Section d' Electronique, Grenoble (France)

    1963-07-01

    This document gathers a set of conferences presented in 1962. A first one proposes a mathematical introduction to the analysis of random phenomena. The second one presents an axiomatic of probability calculation. The third one proposes an overview of one-dimensional random variables. The fourth one addresses random pairs, and presents basic theorems regarding the algebra of mathematical expectations. The fifth conference discusses some probability laws: binomial distribution, the Poisson distribution, and the Laplace-Gauss distribution. The last one deals with the issues of stochastic convergence and asymptotic distributions.

  6. Tunable random packings

    International Nuclear Information System (INIS)

    Lumay, G; Vandewalle, N

    2007-01-01

    We present an experimental protocol that allows one to tune the packing fraction η of a random pile of ferromagnetic spheres from a value close to the lower limit of random loose packing η RLP ≅0.56 to the upper limit of random close packing η RCP ≅0.64. This broad range of packing fraction values is obtained under normal gravity in air, by adjusting a magnetic cohesion between the grains during the formation of the pile. Attractive and repulsive magnetic interactions are found to affect stongly the internal structure and the stability of sphere packing. After the formation of the pile, the induced cohesion is decreased continuously along a linear decreasing ramp. The controlled collapse of the pile is found to generate various and reproducible values of the random packing fraction η

  7. Random maintenance policies

    CERN Document Server

    Nakagawa, Toshio

    2014-01-01

    Exploring random maintenance models, this book provides an introduction to the implementation of random maintenance, and it is one of the first books to be written on this subject.  It aims to help readers learn new techniques for applying random policies to actual reliability models, and it provides new theoretical analyses of various models including classical replacement, preventive maintenance and inspection policies. These policies are applied to scheduling problems, backup policies of database systems, maintenance policies of cumulative damage models, and reliability of random redundant systems. Reliability theory is a major concern for engineers and managers, and in light of Japan’s recent earthquake, the reliability of large-scale systems has increased in importance. This also highlights the need for a new notion of maintenance and reliability theory, and how this can practically be applied to systems. Providing an essential guide for engineers and managers specializing in reliability maintenance a...

  8. Theory of random sets

    CERN Document Server

    Molchanov, Ilya

    2017-01-01

    This monograph, now in a thoroughly revised second edition, offers the latest research on random sets. It has been extended to include substantial developments achieved since 2005, some of them motivated by applications of random sets to econometrics and finance. The present volume builds on the foundations laid by Matheron and others, including the vast advances in stochastic geometry, probability theory, set-valued analysis, and statistical inference. It shows the various interdisciplinary relationships of random set theory within other parts of mathematics, and at the same time fixes terminology and notation that often vary in the literature, establishing it as a natural part of modern probability theory and providing a platform for future development. It is completely self-contained, systematic and exhaustive, with the full proofs that are necessary to gain insight. Aimed at research level, Theory of Random Sets will be an invaluable reference for probabilists; mathematicians working in convex and integ...

  9. Quantum randomness and unpredictability

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, Gregg [Quantum Communication and Measurement Laboratory, Department of Electrical and Computer Engineering and Division of Natural Science and Mathematics, Boston University, Boston, MA (United States)

    2017-06-15

    Quantum mechanics is a physical theory supplying probabilities corresponding to expectation values for measurement outcomes. Indeed, its formalism can be constructed with measurement as a fundamental process, as was done by Schwinger, provided that individual measurements outcomes occur in a random way. The randomness appearing in quantum mechanics, as with other forms of randomness, has often been considered equivalent to a form of indeterminism. Here, it is argued that quantum randomness should instead be understood as a form of unpredictability because, amongst other things, indeterminism is not a necessary condition for randomness. For concreteness, an explication of the randomness of quantum mechanics as the unpredictability of quantum measurement outcomes is provided. Finally, it is shown how this view can be combined with the recently introduced view that the very appearance of individual quantum measurement outcomes can be grounded in the Plenitude principle of Leibniz, a principle variants of which have been utilized in physics by Dirac and Gell-Mann in relation to the fundamental processes. This move provides further support to Schwinger's ''symbolic'' derivation of quantum mechanics from measurement. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Evaluation of local stress and local hydrogen concentration at grain boundary using three-dimensional polycrystalline model

    International Nuclear Information System (INIS)

    Ebihara, Ken-ichi; Itakura, Mitsuhiro; Yamaguchi, Masatake; Kaburaki, Hideo; Suzudo, Tomoaki

    2010-01-01

    The decohesion model in which hydrogen segregating at grain boundaries reduces cohesive energy is considered to explain hydrogen embrittlement. Although there are several experimental and theoretical supports of this model, its total process is still unclear. In order to understand hydrogen embrittlement in terms of the decohesion model, therefore, it is necessary to evaluate stress and hydrogen concentration at grain boundaries under experimental conditions and to verify the grain boundary decohesion process. Under this consideration, we evaluated the stress and the hydrogen concentration at grain boundaries in the three-dimensional polycrystalline model which was generated by the random Voronoi tessellation. The crystallographic anisotropy was given to each grain. As the boundary conditions of the calculations, data extracted from the results calculated in the notched round-bar specimen model under the tensile test condition in which fracture of the steel specimen is observed was given to the polycrystalline model. As a result, it was found that the evaluated stress does not reach the fracture stress which was estimated under the condition of the evaluated hydrogen concentration by first principles calculations. Therefore, it was considered that the initiation of grain boundary fracture needs other factors except the stress concentration due to the crystallographic anisotropy. (author)

  11. VIDE: The Void IDentification and Examination toolkit

    Science.gov (United States)

    Sutter, P. M.; Lavaux, G.; Hamaus, N.; Pisani, A.; Wandelt, B. D.; Warren, M.; Villaescusa-Navarro, F.; Zivick, P.; Mao, Q.; Thompson, B. B.

    2015-03-01

    We present VIDE, the Void IDentification and Examination toolkit, an open-source Python/C++ code for finding cosmic voids in galaxy redshift surveys and N-body simulations, characterizing their properties, and providing a platform for more detailed analysis. At its core, VIDE uses a substantially enhanced version of ZOBOV (Neyinck 2008) to calculate a Voronoi tessellation for estimating the density field and performing a watershed transform to construct voids. Additionally, VIDE provides significant functionality for both pre- and post-processing: for example, VIDE can work with volume- or magnitude-limited galaxy samples with arbitrary survey geometries, or dark matter particles or halo catalogs in a variety of common formats. It can also randomly subsample inputs and includes a Halo Occupation Distribution model for constructing mock galaxy populations. VIDE uses the watershed levels to place voids in a hierarchical tree, outputs a summary of void properties in plain ASCII, and provides a Python API to perform many analysis tasks, such as loading and manipulating void catalogs and particle members, filtering, plotting, computing clustering statistics, stacking, comparing catalogs, and fitting density profiles. While centered around ZOBOV, the toolkit is designed to be as modular as possible and accommodate other void finders. VIDE has been in development for several years and has already been used to produce a wealth of results, which we summarize in this work to highlight the capabilities of the toolkit. VIDE is publicly available at http://bitbucket.org/cosmicvoids/vide_public and http://www.cosmicvoids.net.

  12. Level Sets and Voronoi based Feature Extraction from any Imagery

    DEFF Research Database (Denmark)

    Sharma, O.; Anton, François; Mioc, Darka

    2012-01-01

    Polygon features are of interest in many GEOProcessing applications like shoreline mapping, boundary delineation, change detection, etc. This paper presents a unique new GPU-based methodology to automate feature extraction combining level sets, or mean shift based segmentation together with Voron...

  13. Voronoi Based Nanocrystalline Generation Algorithm for Atomistic Simulations

    Science.gov (United States)

    2016-12-22

    shown by the screen shot in Fig. 4. First, a 10-nm grain structure is created in a 15- × 15- × 15-nm simulation cell. Here, each grain con - tains an...configuration file saved as Cu_NC_centroids.config. The nanocrystal_builder.py script is invoked a second time to demonstrate the Con - fig Mode in the lower...distributionisunlimited. output_name = raw_input(’Input desired output basename:\

  14. Reaction diffusion voronoi diagrams: from sensors data to computing

    Czech Academy of Sciences Publication Activity Database

    Vázquez-Otero, Alejandro (ed.); Faigl, J.; Dormido, R.; Duro, N.

    2015-01-01

    Roč. 15, č. 6 (2015), s. 12736-12764 ISSN 1424-8220 R&D Projects: GA MŠk ED1.1.00/02.0061 Grant - others:ELI Beamlines(XE) CZ.1.05/1.1.00/02.0061 Institutional support: RVO:68378271 Keywords : reaction diffusion * FitzHugh–Nagumo * path planning * navigation * exploration Subject RIV: BD - Theory of Information Impact factor: 2.033, year: 2015

  15. Reconstructing random media

    International Nuclear Information System (INIS)

    Yeong, C.L.; Torquato, S.

    1998-01-01

    We formulate a procedure to reconstruct the structure of general random heterogeneous media from limited morphological information by extending the methodology of Rintoul and Torquato [J. Colloid Interface Sci. 186, 467 (1997)] developed for dispersions. The procedure has the advantages that it is simple to implement and generally applicable to multidimensional, multiphase, and anisotropic structures. Furthermore, an extremely useful feature is that it can incorporate any type and number of correlation functions in order to provide as much morphological information as is necessary for accurate reconstruction. We consider a variety of one- and two-dimensional reconstructions, including periodic and random arrays of rods, various distribution of disks, Debye random media, and a Fontainebleau sandstone sample. We also use our algorithm to construct heterogeneous media from specified hypothetical correlation functions, including an exponentially damped, oscillating function as well as physically unrealizable ones. copyright 1998 The American Physical Society

  16. Evaluation of a novel therapeutic focused ultrasound transducer based on Fermat’s spiral

    Science.gov (United States)

    Ramaekers, P.; de Greef, M.; Berriet, R.; Moonen, C. T. W.; Ries, M.

    2017-06-01

    The purpose of this study was to evaluate a novel phased array transducer design rule for therapeutic focused ultrasound applications. This design rule uses the discretized Fermat’s spiral to determine the positioning of the transducer elements for a given number of elements and f-number. Using this principle, three variations of Fermat’s spiral were generated, aimed at (1) grating lobe minimization, (2) side lobe minimization, and (3) an optimized element packing efficiency. For each spiral, sparse layouts using identical circular elements and fully populated layouts based on additional Voronoi tessellation were evaluated numerically. Evaluation criteria included the element size distribution, beam steering capabilities, focal plane pressure distribution, prefocal pressure distribution, and practical considerations. Finally, one Voronoi-tessellated design with a focal length and aperture diameter of 16 cm and a natural frequency of 1.3 MHz was evaluated experimentally through hydrophone measurements. The numerical evaluation showed that while sparse arrays possess superior beam steering capabilities for a given number of elements, the focal point quality and prefocal pressure distribution is substantially more favorable when using the Voronoi-tessellated designs. Beam steering was shown to be feasible with the tessellated designs for lateral deflections up to 10 mm and axial deflections up to 20 mm. The experimental evaluation showed that such a transducer is capable of inducing 40.00 MPa rarefactional and 237.50 MPa compressional peak pressure levels at 800 W instantaneous acoustic output power under free-field conditions, making the system potentially relevant for thermal ablation therapy, histotripsy applications, and shockwave-enhanced heating.

  17. Intermittency and random matrices

    Science.gov (United States)

    Sokoloff, Dmitry; Illarionov, E. A.

    2015-08-01

    A spectacular phenomenon of intermittency, i.e. a progressive growth of higher statistical moments of a physical field excited by an instability in a random medium, attracted the attention of Zeldovich in the last years of his life. At that time, the mathematical aspects underlying the physical description of this phenomenon were still under development and relations between various findings in the field remained obscure. Contemporary results from the theory of the product of independent random matrices (the Furstenberg theory) allowed the elaboration of the phenomenon of intermittency in a systematic way. We consider applications of the Furstenberg theory to some problems in cosmology and dynamo theory.

  18. Random quantum operations

    International Nuclear Information System (INIS)

    Bruzda, Wojciech; Cappellini, Valerio; Sommers, Hans-Juergen; Zyczkowski, Karol

    2009-01-01

    We define a natural ensemble of trace preserving, completely positive quantum maps and present algorithms to generate them at random. Spectral properties of the superoperator Φ associated with a given quantum map are investigated and a quantum analogue of the Frobenius-Perron theorem is proved. We derive a general formula for the density of eigenvalues of Φ and show the connection with the Ginibre ensemble of real non-symmetric random matrices. Numerical investigations of the spectral gap imply that a generic state of the system iterated several times by a fixed generic map converges exponentially to an invariant state

  19. Random a-adic groups and random net fractals

    Energy Technology Data Exchange (ETDEWEB)

    Li Yin [Department of Mathematics, Nanjing University, Nanjing 210093 (China)], E-mail: Lyjerry7788@hotmail.com; Su Weiyi [Department of Mathematics, Nanjing University, Nanjing 210093 (China)], E-mail: suqiu@nju.edu.cn

    2008-08-15

    Based on random a-adic groups, this paper investigates the relationship between the existence conditions of a positive flow in a random network and the estimation of the Hausdorff dimension of a proper random net fractal. Subsequently we describe some particular random fractals for which our results can be applied. Finally the Mauldin and Williams theorem is shown to be very important example for a random Cantor set with application in physics as shown in E-infinity theory.

  20. [Intel random number generator-based true random number generator].

    Science.gov (United States)

    Huang, Feng; Shen, Hong

    2004-09-01

    To establish a true random number generator on the basis of certain Intel chips. The random numbers were acquired by programming using Microsoft Visual C++ 6.0 via register reading from the random number generator (RNG) unit of an Intel 815 chipset-based computer with Intel Security Driver (ISD). We tested the generator with 500 random numbers in NIST FIPS 140-1 and X(2) R-Squared test, and the result showed that the random number it generated satisfied the demand of independence and uniform distribution. We also compared the random numbers generated by Intel RNG-based true random number generator and those from the random number table statistically, by using the same amount of 7500 random numbers in the same value domain, which showed that the SD, SE and CV of Intel RNG-based random number generator were less than those of the random number table. The result of u test of two CVs revealed no significant difference between the two methods. Intel RNG-based random number generator can produce high-quality random numbers with good independence and uniform distribution, and solves some problems with random number table in acquisition of the random numbers.

  1. On Random Numbers and Design

    Science.gov (United States)

    Ben-Ari, Morechai

    2004-01-01

    The term "random" is frequently used in discussion of the theory of evolution, even though the mathematical concept of randomness is problematic and of little relevance in the theory. Therefore, since the core concept of the theory of evolution is the non-random process of natural selection, the term random should not be used in teaching the…

  2. Uniform random number generators

    Science.gov (United States)

    Farr, W. R.

    1971-01-01

    Methods are presented for the generation of random numbers with uniform and normal distributions. Subprogram listings of Fortran generators for the Univac 1108, SDS 930, and CDC 3200 digital computers are also included. The generators are of the mixed multiplicative type, and the mathematical method employed is that of Marsaglia and Bray.

  3. On randomly interrupted diffusion

    International Nuclear Information System (INIS)

    Luczka, J.

    1993-01-01

    Processes driven by randomly interrupted Gaussian white noise are considered. An evolution equation for single-event probability distributions in presented. Stationary states are considered as a solution of a second-order ordinary differential equation with two imposed conditions. A linear model is analyzed and its stationary distributions are explicitly given. (author). 10 refs

  4. Coded Random Access

    DEFF Research Database (Denmark)

    Paolini, Enrico; Stefanovic, Cedomir; Liva, Gianluigi

    2015-01-01

    The rise of machine-to-machine communications has rekindled the interest in random access protocols as a support for a massive number of uncoordinatedly transmitting devices. The legacy ALOHA approach is developed under a collision model, where slots containing collided packets are considered as ...

  5. Random eigenvalue problems revisited

    Indian Academy of Sciences (India)

    statistical distributions; linear stochastic systems. 1. ... dimensional multivariate Gaussian random vector with mean µ ∈ Rm and covariance ... 5, the proposed analytical methods are applied to a three degree-of-freedom system and the ...... The joint pdf ofω1 andω3 is however close to a bivariate Gaussian density function.

  6. Alzheimer random walk

    Science.gov (United States)

    Odagaki, Takashi; Kasuya, Keisuke

    2017-09-01

    Using the Monte Carlo simulation, we investigate a memory-impaired self-avoiding walk on a square lattice in which a random walker marks each of sites visited with a given probability p and makes a random walk avoiding the marked sites. Namely, p = 0 and p = 1 correspond to the simple random walk and the self-avoiding walk, respectively. When p> 0, there is a finite probability that the walker is trapped. We show that the trap time distribution can well be fitted by Stacy's Weibull distribution b(a/b){a+1}/{b}[Γ({a+1}/{b})]-1x^a\\exp(-a/bx^b)} where a and b are fitting parameters depending on p. We also find that the mean trap time diverges at p = 0 as p- α with α = 1.89. In order to produce sufficient number of long walks, we exploit the pivot algorithm and obtain the mean square displacement and its Flory exponent ν(p) as functions of p. We find that the exponent determined for 1000 step walks interpolates both limits ν(0) for the simple random walk and ν(1) for the self-avoiding walk as [ ν(p) - ν(0) ] / [ ν(1) - ν(0) ] = pβ with β = 0.388 when p ≪ 0.1 and β = 0.0822 when p ≫ 0.1. Contribution to the Topical Issue "Continuous Time Random Walk Still Trendy: Fifty-year History, Current State and Outlook", edited by Ryszard Kutner and Jaume Masoliver.

  7. Random vibrations theory and practice

    CERN Document Server

    Wirsching, Paul H; Ortiz, Keith

    1995-01-01

    Random Vibrations: Theory and Practice covers the theory and analysis of mechanical and structural systems undergoing random oscillations due to any number of phenomena— from engine noise, turbulent flow, and acoustic noise to wind, ocean waves, earthquakes, and rough pavement. For systems operating in such environments, a random vibration analysis is essential to the safety and reliability of the system. By far the most comprehensive text available on random vibrations, Random Vibrations: Theory and Practice is designed for readers who are new to the subject as well as those who are familiar with the fundamentals and wish to study a particular topic or use the text as an authoritative reference. It is divided into three major sections: fundamental background, random vibration development and applications to design, and random signal analysis. Introductory chapters cover topics in probability, statistics, and random processes that prepare the reader for the development of the theory of random vibrations a...

  8. Free random variables

    CERN Document Server

    Voiculescu, Dan; Nica, Alexandru

    1992-01-01

    This book presents the first comprehensive introduction to free probability theory, a highly noncommutative probability theory with independence based on free products instead of tensor products. Basic examples of this kind of theory are provided by convolution operators on free groups and by the asymptotic behavior of large Gaussian random matrices. The probabilistic approach to free products has led to a recent surge of new results on the von Neumann algebras of free groups. The book is ideally suited as a textbook for an advanced graduate course and could also provide material for a seminar. In addition to researchers and graduate students in mathematics, this book will be of interest to physicists and others who use random matrices.

  9. Independent random sampling methods

    CERN Document Server

    Martino, Luca; Míguez, Joaquín

    2018-01-01

    This book systematically addresses the design and analysis of efficient techniques for independent random sampling. Both general-purpose approaches, which can be used to generate samples from arbitrary probability distributions, and tailored techniques, designed to efficiently address common real-world practical problems, are introduced and discussed in detail. In turn, the monograph presents fundamental results and methodologies in the field, elaborating and developing them into the latest techniques. The theory and methods are illustrated with a varied collection of examples, which are discussed in detail in the text and supplemented with ready-to-run computer code. The main problem addressed in the book is how to generate independent random samples from an arbitrary probability distribution with the weakest possible constraints or assumptions in a form suitable for practical implementation. The authors review the fundamental results and methods in the field, address the latest methods, and emphasize the li...

  10. On Complex Random Variables

    Directory of Open Access Journals (Sweden)

    Anwer Khurshid

    2012-07-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE In this paper, it is shown that a complex multivariate random variable  is a complex multivariate normal random variable of dimensionality if and only if all nondegenerate complex linear combinations of  have a complex univariate normal distribution. The characteristic function of  has been derived, and simpler forms of some theorems have been given using this characterization theorem without assuming that the variance-covariance matrix of the vector  is Hermitian positive definite. Marginal distributions of  have been given. In addition, a complex multivariate t-distribution has been defined and the density derived. A characterization of the complex multivariate t-distribution is given. A few possible uses of this distribution have been suggested.

  11. A Campbell random process

    International Nuclear Information System (INIS)

    Reuss, J.D.; Misguich, J.H.

    1993-02-01

    The Campbell process is a stationary random process which can have various correlation functions, according to the choice of an elementary response function. The statistical properties of this process are presented. A numerical algorithm and a subroutine for generating such a process is built up and tested, for the physically interesting case of a Campbell process with Gaussian correlations. The (non-Gaussian) probability distribution appears to be similar to the Gamma distribution

  12. Certified randomness in quantum physics.

    Science.gov (United States)

    Acín, Antonio; Masanes, Lluis

    2016-12-07

    The concept of randomness plays an important part in many disciplines. On the one hand, the question of whether random processes exist is fundamental for our understanding of nature. On the other, randomness is a resource for cryptography, algorithms and simulations. Standard methods for generating randomness rely on assumptions about the devices that are often not valid in practice. However, quantum technologies enable new methods for generating certified randomness, based on the violation of Bell inequalities. These methods are referred to as device-independent because they do not rely on any modelling of the devices. Here we review efforts to design device-independent randomness generators and the associated challenges.

  13. Cross over of recurrence networks to random graphs and random ...

    Indian Academy of Sciences (India)

    2017-01-27

    Jan 27, 2017 ... that all recurrence networks can cross over to random geometric graphs by adding sufficient amount of noise to .... municative [19] or social [20], deviate from the random ..... He has shown that the spatial effects become.

  14. The RANDOM computer program: A linear congruential random number generator

    Science.gov (United States)

    Miles, R. F., Jr.

    1986-01-01

    The RANDOM Computer Program is a FORTRAN program for generating random number sequences and testing linear congruential random number generators (LCGs). The linear congruential form of random number generator is discussed, and the selection of parameters of an LCG for a microcomputer described. This document describes the following: (1) The RANDOM Computer Program; (2) RANDOM.MOD, the computer code needed to implement an LCG in a FORTRAN program; and (3) The RANCYCLE and the ARITH Computer Programs that provide computational assistance in the selection of parameters for an LCG. The RANDOM, RANCYCLE, and ARITH Computer Programs are written in Microsoft FORTRAN for the IBM PC microcomputer and its compatibles. With only minor modifications, the RANDOM Computer Program and its LCG can be run on most micromputers or mainframe computers.

  15. A random number generator for continuous random variables

    Science.gov (United States)

    Guerra, V. M.; Tapia, R. A.; Thompson, J. R.

    1972-01-01

    A FORTRAN 4 routine is given which may be used to generate random observations of a continuous real valued random variable. Normal distribution of F(x), X, E(akimas), and E(linear) is presented in tabular form.

  16. On a randomly imperfect spherical cap pressurized by a random ...

    African Journals Online (AJOL)

    In this paper, we investigate a dynamical system in a random setting of dual randomness in space and time variables in which both the imperfection of the structure and the load function are considered random , each with a statistical zero-mean .The auto- covariance of the load is correlated as an exponentially decaying ...

  17. Randomizing Roaches: Exploring the "Bugs" of Randomization in Experimental Design

    Science.gov (United States)

    Wagler, Amy; Wagler, Ron

    2014-01-01

    Understanding the roles of random selection and random assignment in experimental design is a central learning objective in most introductory statistics courses. This article describes an activity, appropriate for a high school or introductory statistics course, designed to teach the concepts, values and pitfalls of random selection and assignment…

  18. A comparison of random walks in dependent random environments

    NARCIS (Netherlands)

    Scheinhardt, Willem R.W.; Kroese, Dirk

    We provide exact computations for the drift of random walks in dependent random environments, including $k$-dependent and moving average environments. We show how the drift can be characterized and evaluated using Perron–Frobenius theory. Comparing random walks in various dependent environments, we

  19. Random numbers from vacuum fluctuations

    International Nuclear Information System (INIS)

    Shi, Yicheng; Kurtsiefer, Christian; Chng, Brenda

    2016-01-01

    We implement a quantum random number generator based on a balanced homodyne measurement of vacuum fluctuations of the electromagnetic field. The digitized signal is directly processed with a fast randomness extraction scheme based on a linear feedback shift register. The random bit stream is continuously read in a computer at a rate of about 480 Mbit/s and passes an extended test suite for random numbers.

  20. Random numbers from vacuum fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yicheng; Kurtsiefer, Christian, E-mail: christian.kurtsiefer@gmail.com [Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore); Center for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543 (Singapore); Chng, Brenda [Center for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543 (Singapore)

    2016-07-25

    We implement a quantum random number generator based on a balanced homodyne measurement of vacuum fluctuations of the electromagnetic field. The digitized signal is directly processed with a fast randomness extraction scheme based on a linear feedback shift register. The random bit stream is continuously read in a computer at a rate of about 480 Mbit/s and passes an extended test suite for random numbers.

  1. Randomness at the root of things 1: Random walks

    Science.gov (United States)

    Ogborn, Jon; Collins, Simon; Brown, Mick

    2003-09-01

    This is the first of a pair of articles about randomness in physics. In this article, we use some variations on the idea of a `random walk' to consider first the path of a particle in Brownian motion, and then the random variation to be expected in radioactive decay. The arguments are set in the context of the general importance of randomness both in physics and in everyday life. We think that the ideas could usefully form part of students' A-level work on random decay and quantum phenomena, as well as being good for their general education. In the second article we offer a novel and simple approach to Poisson sequences.

  2. Investigating the Randomness of Numbers

    Science.gov (United States)

    Pendleton, Kenn L.

    2009-01-01

    The use of random numbers is pervasive in today's world. Random numbers have practical applications in such far-flung arenas as computer simulations, cryptography, gambling, the legal system, statistical sampling, and even the war on terrorism. Evaluating the randomness of extremely large samples is a complex, intricate process. However, the…

  3. Strong Decomposition of Random Variables

    DEFF Research Database (Denmark)

    Hoffmann-Jørgensen, Jørgen; Kagan, Abram M.; Pitt, Loren D.

    2007-01-01

    A random variable X is stongly decomposable if X=Y+Z where Y=Φ(X) and Z=X-Φ(X) are independent non-degenerated random variables (called the components). It is shown that at least one of the components is singular, and we derive a necessary and sufficient condition for strong decomposability...... of a discrete random variable....

  4. Random Numbers and Quantum Computers

    Science.gov (United States)

    McCartney, Mark; Glass, David

    2002-01-01

    The topic of random numbers is investigated in such a way as to illustrate links between mathematics, physics and computer science. First, the generation of random numbers by a classical computer using the linear congruential generator and logistic map is considered. It is noted that these procedures yield only pseudo-random numbers since…

  5. Random walk loop soup

    OpenAIRE

    Lawler, Gregory F.; Ferreras, José A. Trujillo

    2004-01-01

    The Brownian loop soup introduced in Lawler and Werner (2004) is a Poissonian realization from a sigma-finite measure on unrooted loops. This measure satisfies both conformal invariance and a restriction property. In this paper, we define a random walk loop soup and show that it converges to the Brownian loop soup. In fact, we give a strong approximation result making use of the strong approximation result of Koml\\'os, Major, and Tusn\\'ady. To make the paper self-contained, we include a proof...

  6. Random matrix theory

    CERN Document Server

    Deift, Percy

    2009-01-01

    This book features a unified derivation of the mathematical theory of the three classical types of invariant random matrix ensembles-orthogonal, unitary, and symplectic. The authors follow the approach of Tracy and Widom, but the exposition here contains a substantial amount of additional material, in particular, facts from functional analysis and the theory of Pfaffians. The main result in the book is a proof of universality for orthogonal and symplectic ensembles corresponding to generalized Gaussian type weights following the authors' prior work. New, quantitative error estimates are derive

  7. On random unitary channels

    International Nuclear Information System (INIS)

    Audenaert, Koenraad M R; Scheel, Stefan

    2008-01-01

    In this paper, we provide necessary and sufficient conditions for a completely positive trace-preserving (CPT) map to be decomposable into a convex combination of unitary maps. Additionally, we set out to define a proper distance measure between a given CPT map and the set of random unitary maps, and methods for calculating it. In this way one could determine whether non-classical error mechanisms such as spontaneous decay or photon loss dominate over classical uncertainties, for example, in a phase parameter. The present paper is a step towards achieving this goal

  8. Drawing a random number

    DEFF Research Database (Denmark)

    Wanscher, Jørgen Bundgaard; Sørensen, Majken Vildrik

    2006-01-01

    Random numbers are used for a great variety of applications in almost any field of computer and economic sciences today. Examples ranges from stock market forecasting in economics, through stochastic traffic modelling in operations research to photon and ray tracing in graphics. The construction...... distributions into others with most of the required characteristics. In essence, a uniform sequence which is transformed into a new sequence with the required distribution. The subject of this article is to consider the well known highly uniform Halton sequence and modifications to it. The intent is to generate...

  9. Fragmentation of random trees

    International Nuclear Information System (INIS)

    Kalay, Z; Ben-Naim, E

    2015-01-01

    We study fragmentation of a random recursive tree into a forest by repeated removal of nodes. The initial tree consists of N nodes and it is generated by sequential addition of nodes with each new node attaching to a randomly-selected existing node. As nodes are removed from the tree, one at a time, the tree dissolves into an ensemble of separate trees, namely, a forest. We study statistical properties of trees and nodes in this heterogeneous forest, and find that the fraction of remaining nodes m characterizes the system in the limit N→∞. We obtain analytically the size density ϕ s of trees of size s. The size density has power-law tail ϕ s ∼s −α with exponent α=1+(1/m). Therefore, the tail becomes steeper as further nodes are removed, and the fragmentation process is unusual in that exponent α increases continuously with time. We also extend our analysis to the case where nodes are added as well as removed, and obtain the asymptotic size density for growing trees. (paper)

  10. Random-walk enzymes

    Science.gov (United States)

    Mak, Chi H.; Pham, Phuong; Afif, Samir A.; Goodman, Myron F.

    2015-09-01

    Enzymes that rely on random walk to search for substrate targets in a heterogeneously dispersed medium can leave behind complex spatial profiles of their catalyzed conversions. The catalytic signatures of these random-walk enzymes are the result of two coupled stochastic processes: scanning and catalysis. Here we develop analytical models to understand the conversion profiles produced by these enzymes, comparing an intrusive model, in which scanning and catalysis are tightly coupled, against a loosely coupled passive model. Diagrammatic theory and path-integral solutions of these models revealed clearly distinct predictions. Comparison to experimental data from catalyzed deaminations deposited on single-stranded DNA by the enzyme activation-induced deoxycytidine deaminase (AID) demonstrates that catalysis and diffusion are strongly intertwined, where the chemical conversions give rise to new stochastic trajectories that were absent if the substrate DNA was homogeneous. The C →U deamination profiles in both analytical predictions and experiments exhibit a strong contextual dependence, where the conversion rate of each target site is strongly contingent on the identities of other surrounding targets, with the intrusive model showing an excellent fit to the data. These methods can be applied to deduce sequence-dependent catalytic signatures of other DNA modification enzymes, with potential applications to cancer, gene regulation, and epigenetics.

  11. Random ancestor trees

    International Nuclear Information System (INIS)

    Ben-Naim, E; Krapivsky, P L

    2010-01-01

    We investigate a network growth model in which the genealogy controls the evolution. In this model, a new node selects a random target node and links either to this target node, or to its parent, or to its grandparent, etc; all nodes from the target node to its most ancient ancestor are equiprobable destinations. The emerging random ancestor tree is very shallow: the fraction g n of nodes at distance n from the root decreases super-exponentially with n, g n = e −1 /(n − 1)!. We find that a macroscopic hub at the root coexists with highly connected nodes at higher generations. The maximal degree of a node at the nth generation grows algebraically as N 1/β n , where N is the system size. We obtain the series of nontrivial exponents which are roots of transcendental equations: β 1 ≅1.351 746, β 2 ≅1.682 201, etc. As a consequence, the fraction p k of nodes with degree k has an algebraic tail, p k ∼ k −γ , with γ = β 1 + 1 = 2.351 746

  12. Lectures on random interfaces

    CERN Document Server

    Funaki, Tadahisa

    2016-01-01

    Interfaces are created to separate two distinct phases in a situation in which phase coexistence occurs. This book discusses randomly fluctuating interfaces in several different settings and from several points of view: discrete/continuum, microscopic/macroscopic, and static/dynamic theories. The following four topics in particular are dealt with in the book. Assuming that the interface is represented as a height function measured from a fixed-reference discretized hyperplane, the system is governed by the Hamiltonian of gradient of the height functions. This is a kind of effective interface model called ∇φ-interface model. The scaling limits are studied for Gaussian (or non-Gaussian) random fields with a pinning effect under a situation in which the rate functional of the corresponding large deviation principle has non-unique minimizers. Young diagrams determine decreasing interfaces, and their dynamics are introduced. The large-scale behavior of such dynamics is studied from the points of view of the hyd...

  13. Random catalytic reaction networks

    Science.gov (United States)

    Stadler, Peter F.; Fontana, Walter; Miller, John H.

    1993-03-01

    We study networks that are a generalization of replicator (or Lotka-Volterra) equations. They model the dynamics of a population of object types whose binary interactions determine the specific type of interaction product. Such a system always reduces its dimension to a subset that contains production pathways for all of its members. The network equation can be rewritten at a level of collectives in terms of two basic interaction patterns: replicator sets and cyclic transformation pathways among sets. Although the system contains well-known cases that exhibit very complicated dynamics, the generic behavior of randomly generated systems is found (numerically) to be extremely robust: convergence to a globally stable rest point. It is easy to tailor networks that display replicator interactions where the replicators are entire self-sustaining subsystems, rather than structureless units. A numerical scan of random systems highlights the special properties of elementary replicators: they reduce the effective interconnectedness of the system, resulting in enhanced competition, and strong correlations between the concentrations.

  14. Quincke random walkers

    Science.gov (United States)

    Pradillo, Gerardo; Heintz, Aneesh; Vlahovska, Petia

    2017-11-01

    The spontaneous rotation of a sphere in an applied uniform DC electric field (Quincke effect) has been utilized to engineer self-propelled particles: if the sphere is initially resting on a surface, it rolls. The Quincke rollers have been widely used as a model system to study collective behavior in ``active'' suspensions. If the applied field is DC, an isolated Quincke roller follows a straight line trajectory. In this talk, we discuss the design of a Quincke roller that executes a random-walk-like behavior. We utilize AC field - upon reversal of the field direction a fluctuation in the axis of rotation (which is degenerate in the plane perpendicular to the field and parallel to the surface) introduces randomness in the direction of motion. The MSD of an isolated Quincke walker depends on frequency, amplitude, and waveform of the electric field. Experiment and theory are compared. We also investigate the collective behavior of Quincke walkers,the transport of inert particles in a bath of Quincke walkers, and the spontaneous motion of a drop containing Quincke active particle. supported by NSF Grant CBET 1437545.

  15. Subjective randomness as statistical inference.

    Science.gov (United States)

    Griffiths, Thomas L; Daniels, Dylan; Austerweil, Joseph L; Tenenbaum, Joshua B

    2018-06-01

    Some events seem more random than others. For example, when tossing a coin, a sequence of eight heads in a row does not seem very random. Where do these intuitions about randomness come from? We argue that subjective randomness can be understood as the result of a statistical inference assessing the evidence that an event provides for having been produced by a random generating process. We show how this account provides a link to previous work relating randomness to algorithmic complexity, in which random events are those that cannot be described by short computer programs. Algorithmic complexity is both incomputable and too general to capture the regularities that people can recognize, but viewing randomness as statistical inference provides two paths to addressing these problems: considering regularities generated by simpler computing machines, and restricting the set of probability distributions that characterize regularity. Building on previous work exploring these different routes to a more restricted notion of randomness, we define strong quantitative models of human randomness judgments that apply not just to binary sequences - which have been the focus of much of the previous work on subjective randomness - but also to binary matrices and spatial clustering. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Solid-State Random Lasers

    CERN Document Server

    Noginov, Mikhail A

    2005-01-01

    Random lasers are the simplest sources of stimulated emission without cavity, with the feedback provided by scattering in a gain medium. First proposed in the late 60’s, random lasers have grown to a large research field. This book reviews the history and the state of the art of random lasers, provides an outline of the basic models describing their behavior, and describes the recent advances in the field. The major focus of the book is on solid-state random lasers. However, it also briefly describes random lasers based on liquid dyes with scatterers. The chapters of the book are almost independent of each other. So, the scientists or engineers interested in any particular aspect of random lasers can read directly the relevant section. Researchers entering the field of random lasers will find in the book an overview of the field of study. Scientists working in the field can use the book as a reference source.

  17. How random are random numbers generated using photons?

    International Nuclear Information System (INIS)

    Solis, Aldo; Angulo Martínez, Alí M; Ramírez Alarcón, Roberto; Cruz Ramírez, Hector; U’Ren, Alfred B; Hirsch, Jorge G

    2015-01-01

    Randomness is fundamental in quantum theory, with many philosophical and practical implications. In this paper we discuss the concept of algorithmic randomness, which provides a quantitative method to assess the Borel normality of a given sequence of numbers, a necessary condition for it to be considered random. We use Borel normality as a tool to investigate the randomness of ten sequences of bits generated from the differences between detection times of photon pairs generated by spontaneous parametric downconversion. These sequences are shown to fulfil the randomness criteria without difficulties. As deviations from Borel normality for photon-generated random number sequences have been reported in previous work, a strategy to understand these diverging findings is outlined. (paper)

  18. Tailored Random Graph Ensembles

    International Nuclear Information System (INIS)

    Roberts, E S; Annibale, A; Coolen, A C C

    2013-01-01

    Tailored graph ensembles are a developing bridge between biological networks and statistical mechanics. The aim is to use this concept to generate a suite of rigorous tools that can be used to quantify and compare the topology of cellular signalling networks, such as protein-protein interaction networks and gene regulation networks. We calculate exact and explicit formulae for the leading orders in the system size of the Shannon entropies of random graph ensembles constrained with degree distribution and degree-degree correlation. We also construct an ergodic detailed balance Markov chain with non-trivial acceptance probabilities which converges to a strictly uniform measure and is based on edge swaps that conserve all degrees. The acceptance probabilities can be generalized to define Markov chains that target any alternative desired measure on the space of directed or undirected graphs, in order to generate graphs with more sophisticated topological features.

  19. Gossip in Random Networks

    Science.gov (United States)

    Malarz, K.; Szvetelszky, Z.; Szekf, B.; Kulakowski, K.

    2006-11-01

    We consider the average probability X of being informed on a gossip in a given social network. The network is modeled within the random graph theory of Erd{õ}s and Rényi. In this theory, a network is characterized by two parameters: the size N and the link probability p. Our experimental data suggest three levels of social inclusion of friendship. The critical value pc, for which half of agents are informed, scales with the system size as N-gamma with gamma approx 0.68. Computer simulations show that the probability X varies with p as a sigmoidal curve. Influence of the correlations between neighbors is also evaluated: with increasing clustering coefficient C, X decreases.

  20. The random projection method

    CERN Document Server

    Vempala, Santosh S

    2005-01-01

    Random projection is a simple geometric technique for reducing the dimensionality of a set of points in Euclidean space while preserving pairwise distances approximately. The technique plays a key role in several breakthrough developments in the field of algorithms. In other cases, it provides elegant alternative proofs. The book begins with an elementary description of the technique and its basic properties. Then it develops the method in the context of applications, which are divided into three groups. The first group consists of combinatorial optimization problems such as maxcut, graph coloring, minimum multicut, graph bandwidth and VLSI layout. Presented in this context is the theory of Euclidean embeddings of graphs. The next group is machine learning problems, specifically, learning intersections of halfspaces and learning large margin hypotheses. The projection method is further refined for the latter application. The last set consists of problems inspired by information retrieval, namely, nearest neig...

  1. Random volumes from matrices

    Energy Technology Data Exchange (ETDEWEB)

    Fukuma, Masafumi; Sugishita, Sotaro; Umeda, Naoya [Department of Physics, Kyoto University,Kitashirakawa Oiwake-cho, Kyoto 606-8502 (Japan)

    2015-07-17

    We propose a class of models which generate three-dimensional random volumes, where each configuration consists of triangles glued together along multiple hinges. The models have matrices as the dynamical variables and are characterized by semisimple associative algebras A. Although most of the diagrams represent configurations which are not manifolds, we show that the set of possible diagrams can be drastically reduced such that only (and all of the) three-dimensional manifolds with tetrahedral decompositions appear, by introducing a color structure and taking an appropriate large N limit. We examine the analytic properties when A is a matrix ring or a group ring, and show that the models with matrix ring have a novel strong-weak duality which interchanges the roles of triangles and hinges. We also give a brief comment on the relationship of our models with the colored tensor models.

  2. Random Intercept and Random Slope 2-Level Multilevel Models

    Directory of Open Access Journals (Sweden)

    Rehan Ahmad Khan

    2012-11-01

    Full Text Available Random intercept model and random intercept & random slope model carrying two-levels of hierarchy in the population are presented and compared with the traditional regression approach. The impact of students’ satisfaction on their grade point average (GPA was explored with and without controlling teachers influence. The variation at level-1 can be controlled by introducing the higher levels of hierarchy in the model. The fanny movement of the fitted lines proves variation of student grades around teachers.

  3. Random walk of passive tracers among randomly moving obstacles

    OpenAIRE

    Gori, Matteo; Donato, Irene; Floriani, Elena; Nardecchia, Ilaria; Pettini, Marco

    2016-01-01

    Background: This study is mainly motivated by the need of understanding how the diffusion behaviour of a biomolecule (or even of a larger object) is affected by other moving macromolecules, organelles, and so on, inside a living cell, whence the possibility of understanding whether or not a randomly walking biomolecule is also subject to a long-range force field driving it to its target. Method: By means of the Continuous Time Random Walk (CTRW) technique the topic of random walk in random en...

  4. Random lasing in human tissues

    International Nuclear Information System (INIS)

    Polson, Randal C.; Vardeny, Z. Valy

    2004-01-01

    A random collection of scatterers in a gain medium can produce coherent laser emission lines dubbed 'random lasing'. We show that biological tissues, including human tissues, can support coherent random lasing when infiltrated with a concentrated laser dye solution. To extract a typical random resonator size within the tissue we average the power Fourier transform of random laser spectra collected from many excitation locations in the tissue; we verified this procedure by a computer simulation. Surprisingly, we found that malignant tissues show many more laser lines compared to healthy tissues taken from the same organ. Consequently, the obtained typical random resonator was found to be different for healthy and cancerous tissues, and this may lead to a technique for separating malignant from healthy tissues for diagnostic imaging

  5. Groupies in multitype random graphs

    OpenAIRE

    Shang, Yilun

    2016-01-01

    A groupie in a graph is a vertex whose degree is not less than the average degree of its neighbors. Under some mild conditions, we show that the proportion of groupies is very close to 1/2 in multitype random graphs (such as stochastic block models), which include Erd?s-R?nyi random graphs, random bipartite, and multipartite graphs as special examples. Numerical examples are provided to illustrate the theoretical results.

  6. Groupies in multitype random graphs.

    Science.gov (United States)

    Shang, Yilun

    2016-01-01

    A groupie in a graph is a vertex whose degree is not less than the average degree of its neighbors. Under some mild conditions, we show that the proportion of groupies is very close to 1/2 in multitype random graphs (such as stochastic block models), which include Erdős-Rényi random graphs, random bipartite, and multipartite graphs as special examples. Numerical examples are provided to illustrate the theoretical results.

  7. Random number generation and creativity.

    Science.gov (United States)

    Bains, William

    2008-01-01

    A previous paper suggested that humans can generate genuinely random numbers. I tested this hypothesis by repeating the experiment with a larger number of highly numerate subjects, asking them to call out a sequence of digits selected from 0 through 9. The resulting sequences were substantially non-random, with an excess of sequential pairs of numbers and a deficit of repeats of the same number, in line with previous literature. However, the previous literature suggests that humans generate random numbers with substantial conscious effort, and distractions which reduce that effort reduce the randomness of the numbers. I reduced my subjects' concentration by asking them to call out in another language, and with alcohol - neither affected the randomness of their responses. This suggests that the ability to generate random numbers is a 'basic' function of the human mind, even if those numbers are not mathematically 'random'. I hypothesise that there is a 'creativity' mechanism, while not truly random, provides novelty as part of the mind's defence against closed programming loops, and that testing for the effects seen here in people more or less familiar with numbers or with spontaneous creativity could identify more features of this process. It is possible that training to perform better at simple random generation tasks could help to increase creativity, through training people to reduce the conscious mind's suppression of the 'spontaneous', creative response to new questions.

  8. Dissecting the circle, at random*

    Directory of Open Access Journals (Sweden)

    Curien Nicolas

    2014-01-01

    Full Text Available Random laminations of the disk are the continuous limits of random non-crossing configurations of regular polygons. We provide an expository account on this subject. Initiated by the work of Aldous on the Brownian triangulation, this field now possesses many characters such as the random recursive triangulation, the stable laminations and the Markovian hyperbolic triangulation of the disk. We will review the properties and constructions of these objects as well as the close relationships they enjoy with the theory of continuous random trees. Some open questions are scattered along the text.

  9. Random Decrement Based FRF Estimation

    DEFF Research Database (Denmark)

    Brincker, Rune; Asmussen, J. C.

    to speed and quality. The basis of the new method is the Fourier transformation of the Random Decrement functions which can be used to estimate the frequency response functions. The investigations are based on load and response measurements of a laboratory model of a 3 span bridge. By applying both methods...... that the Random Decrement technique is based on a simple controlled averaging of time segments of the load and response processes. Furthermore, the Random Decrement technique is expected to produce reliable results. The Random Decrement technique will reduce leakage, since the Fourier transformation...

  10. Random Decrement Based FRF Estimation

    DEFF Research Database (Denmark)

    Brincker, Rune; Asmussen, J. C.

    1997-01-01

    to speed and quality. The basis of the new method is the Fourier transformation of the Random Decrement functions which can be used to estimate the frequency response functions. The investigations are based on load and response measurements of a laboratory model of a 3 span bridge. By applying both methods...... that the Random Decrement technique is based on a simple controlled averaging of time segments of the load and response processes. Furthermore, the Random Decrement technique is expected to produce reliable results. The Random Decrement technique will reduce leakage, since the Fourier transformation...

  11. A comparison of random walks in dependent random environments

    NARCIS (Netherlands)

    Scheinhardt, Willem R.W.; Kroese, Dirk

    2015-01-01

    Although the theoretical behavior of one-dimensional random walks in random environments is well understood, the actual evaluation of various characteristics of such processes has received relatively little attention. This paper develops new methodology for the exact computation of the drift in such

  12. Random matrix ensembles with random interactions: Results for ...

    Indian Academy of Sciences (India)

    ... Public Lectures · Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Pramana – Journal of Physics; Volume 73; Issue 3. Random matrix ensembles with random interactions: Results for EGUE(2)-(4). Manan Vyas Manan Vyas. Volume 73 Issue 3 September 2009 pp 521-531 ...

  13. Pseudo-random number generator based on asymptotic deterministic randomness

    Science.gov (United States)

    Wang, Kai; Pei, Wenjiang; Xia, Haishan; Cheung, Yiu-ming

    2008-06-01

    A novel approach to generate the pseudorandom-bit sequence from the asymptotic deterministic randomness system is proposed in this Letter. We study the characteristic of multi-value correspondence of the asymptotic deterministic randomness constructed by the piecewise linear map and the noninvertible nonlinearity transform, and then give the discretized systems in the finite digitized state space. The statistic characteristics of the asymptotic deterministic randomness are investigated numerically, such as stationary probability density function and random-like behavior. Furthermore, we analyze the dynamics of the symbolic sequence. Both theoretical and experimental results show that the symbolic sequence of the asymptotic deterministic randomness possesses very good cryptographic properties, which improve the security of chaos based PRBGs and increase the resistance against entropy attacks and symbolic dynamics attacks.

  14. Pseudo-random number generator based on asymptotic deterministic randomness

    International Nuclear Information System (INIS)

    Wang Kai; Pei Wenjiang; Xia Haishan; Cheung Yiuming

    2008-01-01

    A novel approach to generate the pseudorandom-bit sequence from the asymptotic deterministic randomness system is proposed in this Letter. We study the characteristic of multi-value correspondence of the asymptotic deterministic randomness constructed by the piecewise linear map and the noninvertible nonlinearity transform, and then give the discretized systems in the finite digitized state space. The statistic characteristics of the asymptotic deterministic randomness are investigated numerically, such as stationary probability density function and random-like behavior. Furthermore, we analyze the dynamics of the symbolic sequence. Both theoretical and experimental results show that the symbolic sequence of the asymptotic deterministic randomness possesses very good cryptographic properties, which improve the security of chaos based PRBGs and increase the resistance against entropy attacks and symbolic dynamics attacks

  15. Random walk of passive tracers among randomly moving obstacles.

    Science.gov (United States)

    Gori, Matteo; Donato, Irene; Floriani, Elena; Nardecchia, Ilaria; Pettini, Marco

    2016-04-14

    This study is mainly motivated by the need of understanding how the diffusion behavior of a biomolecule (or even of a larger object) is affected by other moving macromolecules, organelles, and so on, inside a living cell, whence the possibility of understanding whether or not a randomly walking biomolecule is also subject to a long-range force field driving it to its target. By means of the Continuous Time Random Walk (CTRW) technique the topic of random walk in random environment is here considered in the case of a passively diffusing particle among randomly moving and interacting obstacles. The relevant physical quantity which is worked out is the diffusion coefficient of the passive tracer which is computed as a function of the average inter-obstacles distance. The results reported here suggest that if a biomolecule, let us call it a test molecule, moves towards its target in the presence of other independently interacting molecules, its motion can be considerably slowed down.

  16. Random distributed feedback fibre lasers

    Energy Technology Data Exchange (ETDEWEB)

    Turitsyn, Sergei K., E-mail: s.k.turitsyn@aston.ac.uk [Aston Institute of Photonic Technologies, Aston University, Birmingham B4 7ET (United Kingdom); Novosibirsk State University, 2 Pirogova str., 630090, Novosibirsk (Russian Federation); Babin, Sergey A. [Novosibirsk State University, 2 Pirogova str., 630090, Novosibirsk (Russian Federation); Institute of Automation and Electrometry SB RAS, 1 Ac. Koptug. ave., 630090, Novosibirsk (Russian Federation); Churkin, Dmitry V. [Aston Institute of Photonic Technologies, Aston University, Birmingham B4 7ET (United Kingdom); Novosibirsk State University, 2 Pirogova str., 630090, Novosibirsk (Russian Federation); Institute of Automation and Electrometry SB RAS, 1 Ac. Koptug. ave., 630090, Novosibirsk (Russian Federation); Vatnik, Ilya D.; Nikulin, Maxim [Institute of Automation and Electrometry SB RAS, 1 Ac. Koptug. ave., 630090, Novosibirsk (Russian Federation); Podivilov, Evgenii V. [Novosibirsk State University, 2 Pirogova str., 630090, Novosibirsk (Russian Federation); Institute of Automation and Electrometry SB RAS, 1 Ac. Koptug. ave., 630090, Novosibirsk (Russian Federation)

    2014-09-10

    The concept of random lasers exploiting multiple scattering of photons in an amplifying disordered medium in order to generate coherent light without a traditional laser resonator has attracted a great deal of attention in recent years. This research area lies at the interface of the fundamental theory of disordered systems and laser science. The idea was originally proposed in the context of astrophysics in the 1960s by V.S. Letokhov, who studied scattering with “negative absorption” of the interstellar molecular clouds. Research on random lasers has since developed into a mature experimental and theoretical field. A simple design of such lasers would be promising for potential applications. However, in traditional random lasers the properties of the output radiation are typically characterized by complex features in the spatial, spectral and time domains, making them less attractive than standard laser systems in terms of practical applications. Recently, an interesting and novel type of one-dimensional random laser that operates in a conventional telecommunication fibre without any pre-designed resonator mirrors–random distributed feedback fibre laser–was demonstrated. The positive feedback required for laser generation in random fibre lasers is provided by the Rayleigh scattering from the inhomogeneities of the refractive index that are naturally present in silica glass. In the proposed laser concept, the randomly backscattered light is amplified through the Raman effect, providing distributed gain over distances up to 100 km. Although an effective reflection due to the Rayleigh scattering is extremely small (∼0.1%), the lasing threshold may be exceeded when a sufficiently large distributed Raman gain is provided. Such a random distributed feedback fibre laser has a number of interesting and attractive features. The fibre waveguide geometry provides transverse confinement, and effectively one-dimensional random distributed feedback leads to the

  17. Random distributed feedback fibre lasers

    International Nuclear Information System (INIS)

    Turitsyn, Sergei K.; Babin, Sergey A.; Churkin, Dmitry V.; Vatnik, Ilya D.; Nikulin, Maxim; Podivilov, Evgenii V.

    2014-01-01

    The concept of random lasers exploiting multiple scattering of photons in an amplifying disordered medium in order to generate coherent light without a traditional laser resonator has attracted a great deal of attention in recent years. This research area lies at the interface of the fundamental theory of disordered systems and laser science. The idea was originally proposed in the context of astrophysics in the 1960s by V.S. Letokhov, who studied scattering with “negative absorption” of the interstellar molecular clouds. Research on random lasers has since developed into a mature experimental and theoretical field. A simple design of such lasers would be promising for potential applications. However, in traditional random lasers the properties of the output radiation are typically characterized by complex features in the spatial, spectral and time domains, making them less attractive than standard laser systems in terms of practical applications. Recently, an interesting and novel type of one-dimensional random laser that operates in a conventional telecommunication fibre without any pre-designed resonator mirrors–random distributed feedback fibre laser–was demonstrated. The positive feedback required for laser generation in random fibre lasers is provided by the Rayleigh scattering from the inhomogeneities of the refractive index that are naturally present in silica glass. In the proposed laser concept, the randomly backscattered light is amplified through the Raman effect, providing distributed gain over distances up to 100 km. Although an effective reflection due to the Rayleigh scattering is extremely small (∼0.1%), the lasing threshold may be exceeded when a sufficiently large distributed Raman gain is provided. Such a random distributed feedback fibre laser has a number of interesting and attractive features. The fibre waveguide geometry provides transverse confinement, and effectively one-dimensional random distributed feedback leads to the

  18. The random continued fraction transformation

    Science.gov (United States)

    Kalle, Charlene; Kempton, Tom; Verbitskiy, Evgeny

    2017-03-01

    We introduce a random dynamical system related to continued fraction expansions. It uses random combinations of the Gauss map and the Rényi (or backwards) continued fraction map. We explore the continued fraction expansions that this system produces, as well as the dynamical properties of the system.

  19. Bell inequalities for random fields

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, Peter [Physics Department, Yale University, CT 06520 (United States)

    2006-06-09

    The assumptions required for the derivation of Bell inequalities are not satisfied for random field models in which there are any thermal or quantum fluctuations, in contrast to the general satisfaction of the assumptions for classical two point particle models. Classical random field models that explicitly include the effects of quantum fluctuations on measurement are possible for experiments that violate Bell inequalities.

  20. Bell inequalities for random fields

    OpenAIRE

    Morgan, Peter

    2004-01-01

    The assumptions required for the derivation of Bell inequalities are not usually satisfied for random fields in which there are any thermal or quantum fluctuations, in contrast to the general satisfaction of the assumptions for classical two point particle models. Classical random field models that explicitly include the effects of quantum fluctuations on measurement are possible for experiments that violate Bell inequalities.

  1. Object grammars and random generation

    Directory of Open Access Journals (Sweden)

    I. Dutour

    1998-12-01

    Full Text Available This paper presents a new systematic approach for the uniform random generation of combinatorial objects. The method is based on the notion of object grammars which give recursive descriptions of objects and generalize context-freegrammars. The application of particular valuations to these grammars leads to enumeration and random generation of objects according to non algebraic parameters.

  2. Fields on a random lattice

    International Nuclear Information System (INIS)

    Itzykson, C.

    1983-10-01

    We review the formulation of field theory and statistical mechanics on a Poissonian random lattice. Topics discussed include random geometry, the construction of field equations for arbitrary spin, the free field spectrum and the question of localization illustrated in the one dimensional case

  3. a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    MS Yıldırım

    2016-02-01

    Full Text Available The aim of this study was to compare the effects of static stretching, proprioceptive neuromuscular facilitation (PNF stretching and Mulligan technique on hip flexion range of motion (ROM in subjects with bilateral hamstring tightness. A total of 40 students (mean age: 21.5±1.3 years, mean body height: 172.8±8.2 cm, mean body mass index: 21.9±3.0 kg • m-2 with bilateral hamstring tightness were enrolled in this randomized trial, of whom 26 completed the study. Subjects were divided into 4 groups performing (I typical static stretching, (II PNF stretching, (III Mulligan traction straight leg raise (TSLR technique, (IV no intervention. Hip flexion ROM was measured using a digital goniometer with the passive straight leg raise test before and after 4 weeks by two physiotherapists blinded to the groups. 52 extremities of 26 subjects were analyzed. Hip flexion ROM increased in all three intervention groups (p<0.05 but not in the no-intervention group after 4 weeks. A statistically significant change in initial–final assessment differences of hip flexion ROM was found between groups (p<0.001 in favour of PNF stretching and Mulligan TSLR technique in comparison to typical static stretching (p=0.016 and p=0.02, respectively. No significant difference was found between Mulligan TSLR technique and PNF stretching (p=0.920. The initial–final assessment difference of hip flexion ROM was similar in typical static stretching and no intervention (p=0.491. A 4-week stretching intervention is beneficial for increasing hip flexion ROM in bilateral hamstring tightness. However, PNF stretching and Mulligan TSLR technique are superior to typical static stretching. These two interventions can be alternatively used for stretching in hamstring tightness.

  4. Levy flights and random searches

    Energy Technology Data Exchange (ETDEWEB)

    Raposo, E P [Laboratorio de Fisica Teorica e Computacional, Departamento de Fisica, Universidade Federal de Pernambuco, Recife-PE, 50670-901 (Brazil); Buldyrev, S V [Department of Physics, Yeshiva University, New York, 10033 (United States); Da Luz, M G E [Departamento de Fisica, Universidade Federal do Parana, Curitiba-PR, 81531-990 (Brazil); Viswanathan, G M [Instituto de Fisica, Universidade Federal de Alagoas, Maceio-AL, 57072-970 (Brazil); Stanley, H E [Center for Polymer Studies and Department of Physics, Boston University, Boston, MA 02215 (United States)

    2009-10-30

    In this work we discuss some recent contributions to the random search problem. Our analysis includes superdiffusive Levy processes and correlated random walks in several regimes of target site density, mobility and revisitability. We present results in the context of mean-field-like and closed-form average calculations, as well as numerical simulations. We then consider random searches performed in regular lattices and lattices with defects, and we discuss a necessary criterion for distinguishing true superdiffusion from correlated random walk processes. We invoke energy considerations in relation to critical survival states on the edge of extinction, and we analyze the emergence of Levy behavior in deterministic search walks. Finally, we comment on the random search problem in the context of biological foraging.

  5. Computer generation of random deviates

    International Nuclear Information System (INIS)

    Cormack, John

    1991-01-01

    The need for random deviates arises in many scientific applications. In medical physics, Monte Carlo simulations have been used in radiology, radiation therapy and nuclear medicine. Specific instances include the modelling of x-ray scattering processes and the addition of random noise to images or curves in order to assess the effects of various processing procedures. Reliable sources of random deviates with statistical properties indistinguishable from true random deviates are a fundamental necessity for such tasks. This paper provides a review of computer algorithms which can be used to generate uniform random deviates and other distributions of interest to medical physicists, along with a few caveats relating to various problems and pitfalls which can occur. Source code listings for the generators discussed (in FORTRAN, Turbo-PASCAL and Data General ASSEMBLER) are available on request from the authors. 27 refs., 3 tabs., 5 figs

  6. Coupled continuous time-random walks in quenched random environment

    Science.gov (United States)

    Magdziarz, M.; Szczotka, W.

    2018-02-01

    We introduce a coupled continuous-time random walk with coupling which is characteristic for Lévy walks. Additionally we assume that the walker moves in a quenched random environment, i.e. the site disorder at each lattice point is fixed in time. We analyze the scaling limit of such a random walk. We show that for large times the behaviour of the analyzed process is exactly the same as in the case of uncoupled quenched trap model for Lévy flights.

  7. Evolution of local atomic structure during solidification of Al2Au liquid: An ab initio study

    International Nuclear Information System (INIS)

    Xiong, L.H.; Lou, H.B.; Wang, X.D.; Debela, T.T.; Cao, Q.P.; Zhang, D.X.; Wang, S.Y.; Wang, C.Z.; Jiang, J.Z.

    2014-01-01

    The local atomic structure evolution in Al 2 Au alloy during solidification from 2000 K to 400 K was studied by ab initio molecular dynamics simulations and analyzed using the structure factor, pair correlation functions, bond angle distributions, the Honeycutt–Anderson (HA) index and Voronoi tessellation methods. It was found that the icosahedral-like clusters are negligible in the Al 2 Au stable liquid and supercooled liquid states, and the most abundant clusters are those having HA indices of 131 and 120 or Voronoi indices of 〈0, 4, 4, 0〉, 〈0, 3, 6, 0〉 and 〈0, 4, 4, 2〉 with coordination numbers of 8, 9 and 10, respectively. These clusters are similar to the local atomic structures in the CaF 2 -type Al 2 Au crystal, revealing the existence of structure heredity between liquid and crystalline phase in Al 2 Au alloy

  8. Evolution of local atomic structure during solidification of Al2Au liquid: An ab initio study

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, L H; Lou, H B; Wang, X D; Debela, T T; Cao, Q P; Zhang, D X; Wang, S Y; Wang, C Z; Jiang, J Z

    2014-04-01

    The local atomic structure evolution in Al2Au alloy during solidification from 2000 K to 400 K was studied by ab initio molecular dynamics simulations and analyzed using the structure factor, pair correlation functions, bond angle distributions, the Honeycutt-Anderson (HA) index and Voronoi tessellation methods. It was found that the icosahedral-like clusters are negligible in the Al2Au stable liquid and supercooled liquid states, and the most abundant clusters are those having HA indices of 131 and 120 or Voronoi indices of < 0,4,4,0 >, < 0,3, 6,0 > and < 0,4,4,2 > with coordination numbers of 8, 9 and 10, respectively. These clusters are similar to the local atomic structures in the CaF2-type Al2Au crystal, revealing the existence of structure heredity between liquid and crystalline phase in Al2Au alloy. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. The motion of discs and spherical fuel particles in combustion burners based on Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Granada, E.; Patino, D.; Porteiro, J.; Collazo, J.; Miguez, J.L.; Moran, J. [University of Vigo, E.T.S. Ingenieros Industriales, Lagoas-Marcosende s/n, 36200-Vigo (Spain)

    2010-04-15

    The position of pellet fuel particles in a burner largely determines their combustion behaviour. This paper addresses the simulated motion of circles and spheres, equivalent to pellet, and their final position in a packed bed subject to a gravitational field confined inside rigid cylindrical walls. A simplified Monte Carlo statistical technique has been described and applied with the standard Metropolis method for the simulation of movement. This simplification provides an easier understanding of the method when applied to solid fuels in granular form, provided that they are only under gravitational forces. Not only have we contrasted one parameter, as other authors, but three, which are radial, bulk and local porosities, via Voronoi tessellation. Our simulations reveal a structural order near the walls, which declines towards the centre of the container, and no pattern was found in local porosity via Voronoi. Results with this simplified method are in agreement with more complex previously published studies. (author)

  10. The motion of discs and spherical fuel particles in combustion burners based on Monte Carlo simulation

    International Nuclear Information System (INIS)

    Granada, E.; Patino, D.; Porteiro, J.; Collazo, J.; Miguez, J.L.; Moran, J.

    2010-01-01

    The position of pellet fuel particles in a burner largely determines their combustion behaviour. This paper addresses the simulated motion of circles and spheres, equivalent to pellet, and their final position in a packed bed subject to a gravitational field confined inside rigid cylindrical walls. A simplified Monte Carlo statistical technique has been described and applied with the standard Metropolis method for the simulation of movement. This simplification provides an easier understanding of the method when applied to solid fuels in granular form, provided that they are only under gravitational forces. Not only have we contrasted one parameter, as other authors, but three, which are radial, bulk and local porosities, via Voronoi tessellation. Our simulations reveal a structural order near the walls, which declines towards the centre of the container, and no pattern was found in local porosity via Voronoi. Results with this simplified method are in agreement with more complex previously published studies.

  11. Use of three-dimensional parameters in the analysis of crystal structures under compression

    DEFF Research Database (Denmark)

    Balic Zunic, Tonci

    2007-01-01

    . For a complete understanding of structural changes, the behaviour of all coordination polyhedra plus the voids that separate them must be investigated. The structural voids in a framework are identified by a Voronoi tessellation. It can be performed e.g. on the anionic framework alone to find the centres...... information. Accurate determination of atomic coordinations is difficult in cases where a clear bond gap does not exist. In such instances the most reliable existing method is the determination of atomic domains in electron density, which can be performed even for experimental high-pressure crystal structure...

  12. Predictive Manufacturing: A Classification Strategy to Predict Product Failures

    DEFF Research Database (Denmark)

    Khan, Abdul Rauf; Schiøler, Henrik; Kulahci, Murat

    2018-01-01

    manufacturing analytics model that employs a big data approach to predicting product failures; third, we illustrate the issue of high dimensionality, along with statistically redundant information; and, finally, our proposed method will be compared against the well-known classification methods (SVM, K......-nearest neighbor, artificial neural networks). The results from real data show that our predictive manufacturing analytics approach, using genetic algorithms and Voronoi tessellations, is capable of predicting product failure with reasonable accuracy. The potential application of this method contributes...... to accurately predicting product failures, which would enable manufacturers to reduce production costs without compromising product quality....

  13. Simulating the influence of crop spatial patterns on canola yield

    DEFF Research Database (Denmark)

    Griepentrog, H.W.; Nielsen, J.; Olsen, Jannie Maj

    2011-01-01

    plant uniformity on the yield of oil seed rape. Voronoi polygons (tessellations) which define the area closer to an individual than to any other individual were used as a measure of the area available to each plant, and corrections were included for extreme polygon shape and eccentricity of the plant...... location within the polygon. These adjusted polygon areas were used to investigate the potential influence of two of the most important determinants of crop sowing spatial uniformity: row width and longitudinal spacing accuracy, on yield per unit area, and to ask how changes in seeding technology would...

  14. An introduction to random sets

    CERN Document Server

    Nguyen, Hung T

    2006-01-01

    The study of random sets is a large and rapidly growing area with connections to many areas of mathematics and applications in widely varying disciplines, from economics and decision theory to biostatistics and image analysis. The drawback to such diversity is that the research reports are scattered throughout the literature, with the result that in science and engineering, and even in the statistics community, the topic is not well known and much of the enormous potential of random sets remains untapped.An Introduction to Random Sets provides a friendly but solid initiation into the theory of random sets. It builds the foundation for studying random set data, which, viewed as imprecise or incomplete observations, are ubiquitous in today''s technological society. The author, widely known for his best-selling A First Course in Fuzzy Logic text as well as his pioneering work in random sets, explores motivations, such as coarse data analysis and uncertainty analysis in intelligent systems, for studying random s...

  15. Quantifiers for randomness of chaotic pseudo-random number generators.

    Science.gov (United States)

    De Micco, L; Larrondo, H A; Plastino, A; Rosso, O A

    2009-08-28

    We deal with randomness quantifiers and concentrate on their ability to discern the hallmark of chaos in time series used in connection with pseudo-random number generators (PRNGs). Workers in the field are motivated to use chaotic maps for generating PRNGs because of the simplicity of their implementation. Although there exist very efficient general-purpose benchmarks for testing PRNGs, we feel that the analysis provided here sheds additional didactic light on the importance of the main statistical characteristics of a chaotic map, namely (i) its invariant measure and (ii) the mixing constant. This is of help in answering two questions that arise in applications: (i) which is the best PRNG among the available ones? and (ii) if a given PRNG turns out not to be good enough and a randomization procedure must still be applied to it, which is the best applicable randomization procedure? Our answer provides a comparative analysis of several quantifiers advanced in the extant literature.

  16. Random linear codes in steganography

    Directory of Open Access Journals (Sweden)

    Kamil Kaczyński

    2016-12-01

    Full Text Available Syndrome coding using linear codes is a technique that allows improvement in the steganographic algorithms parameters. The use of random linear codes gives a great flexibility in choosing the parameters of the linear code. In parallel, it offers easy generation of parity check matrix. In this paper, the modification of LSB algorithm is presented. A random linear code [8, 2] was used as a base for algorithm modification. The implementation of the proposed algorithm, along with practical evaluation of algorithms’ parameters based on the test images was made.[b]Keywords:[/b] steganography, random linear codes, RLC, LSB

  17. Orthogonal polynomials and random matrices

    CERN Document Server

    Deift, Percy

    2000-01-01

    This volume expands on a set of lectures held at the Courant Institute on Riemann-Hilbert problems, orthogonal polynomials, and random matrix theory. The goal of the course was to prove universality for a variety of statistical quantities arising in the theory of random matrix models. The central question was the following: Why do very general ensembles of random n {\\times} n matrices exhibit universal behavior as n {\\rightarrow} {\\infty}? The main ingredient in the proof is the steepest descent method for oscillatory Riemann-Hilbert problems.

  18. Random processes in nuclear reactors

    CERN Document Server

    Williams, M M R

    1974-01-01

    Random Processes in Nuclear Reactors describes the problems that a nuclear engineer may meet which involve random fluctuations and sets out in detail how they may be interpreted in terms of various models of the reactor system. Chapters set out to discuss topics on the origins of random processes and sources; the general technique to zero-power problems and bring out the basic effect of fission, and fluctuations in the lifetime of neutrons, on the measured response; the interpretation of power reactor noise; and associated problems connected with mechanical, hydraulic and thermal noise sources

  19. Curvature of random walks and random polygons in confinement

    International Nuclear Information System (INIS)

    Diao, Y; Ernst, C; Montemayor, A; Ziegler, U

    2013-01-01

    The purpose of this paper is to study the curvature of equilateral random walks and polygons that are confined in a sphere. Curvature is one of several basic geometric properties that can be used to describe random walks and polygons. We show that confinement affects curvature quite strongly, and in the limit case where the confinement diameter equals the edge length the unconfined expected curvature value doubles from π/2 to π. To study curvature a simple model of an equilateral random walk in spherical confinement in dimensions 2 and 3 is introduced. For this simple model we derive explicit integral expressions for the expected value of the total curvature in both dimensions. These expressions are functions that depend only on the radius R of the confinement sphere. We then show that the values obtained by numeric integration of these expressions agrees with numerical average curvature estimates obtained from simulations of random walks. Finally, we compare the confinement effect on curvature of random walks with random polygons. (paper)

  20. The area-of-interest problem in eyetracking research: A noise-robust solution for face and sparse stimuli.

    Science.gov (United States)

    Hessels, Roy S; Kemner, Chantal; van den Boomen, Carlijn; Hooge, Ignace T C

    2016-12-01

    A problem in eyetracking research is choosing areas of interest (AOIs): Researchers in the same field often use widely varying AOIs for similar stimuli, making cross-study comparisons difficult or even impossible. Subjective choices while choosing AOIs cause differences in AOI shape, size, and location. On the other hand, not many guidelines for constructing AOIs, or comparisons between AOI-production methods, are available. In the present study, we addressed this gap by comparing AOI-production methods in face stimuli, using data collected with infants and adults (with autism spectrum disorder [ASD] and matched controls). Specifically, we report that the attention-attracting and attention-maintaining capacities of AOIs differ between AOI-production methods, and that this matters for statistical comparisons in one of three groups investigated (the ASD group). In addition, we investigated the relation between AOI size and an AOI's attention-attracting and attention-maintaining capacities, as well as the consequences for statistical analyses, and report that adopting large AOIs solves the problem of statistical differences between the AOI methods. Finally, we tested AOI-production methods for their robustness to noise, and report that large AOIs-using the Voronoi tessellation method or the limited-radius Voronoi tessellation method with large radii-are most robust to noise. We conclude that large AOIs are a noise-robust solution in face stimuli and, when implemented using the Voronoi method, are the most objective of the researcher-defined AOIs. Adopting Voronoi AOIs in face-scanning research should allow better between-group and cross-study comparisons.

  1. Local randomness: Examples and application

    Science.gov (United States)

    Fu, Honghao; Miller, Carl A.

    2018-03-01

    When two players achieve a superclassical score at a nonlocal game, their outputs must contain intrinsic randomness. This fact has many useful implications for quantum cryptography. Recently it has been observed [C. Miller and Y. Shi, Quantum Inf. Computat. 17, 0595 (2017)] that such scores also imply the existence of local randomness—that is, randomness known to one player but not to the other. This has potential implications for cryptographic tasks between two cooperating but mistrustful players. In the current paper we bring this notion toward practical realization, by offering near-optimal bounds on local randomness for the CHSH game, and also proving the security of a cryptographic application of local randomness (single-bit certified deletion).

  2. Random walks on reductive groups

    CERN Document Server

    Benoist, Yves

    2016-01-01

    The classical theory of Random Walks describes the asymptotic behavior of sums of independent identically distributed random real variables. This book explains the generalization of this theory to products of independent identically distributed random matrices with real coefficients. Under the assumption that the action of the matrices is semisimple – or, equivalently, that the Zariski closure of the group generated by these matrices is reductive - and under suitable moment assumptions, it is shown that the norm of the products of such random matrices satisfies a number of classical probabilistic laws. This book includes necessary background on the theory of reductive algebraic groups, probability theory and operator theory, thereby providing a modern introduction to the topic.

  3. Microcomputer Unit: Generating Random Numbers.

    Science.gov (United States)

    Haigh, William E.

    1986-01-01

    Presents an activity, suitable for students in grades 6-12, on generating random numbers. Objectives, equipment needed, list of prerequisite experiences, instructional strategies, and ready-to-copy student worksheets are included. (JN)

  4. Chaotic systems are dynamically random

    International Nuclear Information System (INIS)

    Svozil, K.

    1988-01-01

    The idea is put forward that the significant route to chaos is driven by recursive iterations of suitable evolution functions. The corresponding formal notion of randomness is not based on dynamic complexity rather than on static complexity. 24 refs. (Author)

  5. A Randomized Central Limit Theorem

    International Nuclear Information System (INIS)

    Eliazar, Iddo; Klafter, Joseph

    2010-01-01

    The Central Limit Theorem (CLT), one of the most elemental pillars of Probability Theory and Statistical Physics, asserts that: the universal probability law of large aggregates of independent and identically distributed random summands with zero mean and finite variance, scaled by the square root of the aggregate-size (√(n)), is Gaussian. The scaling scheme of the CLT is deterministic and uniform - scaling all aggregate-summands by the common and deterministic factor √(n). This Letter considers scaling schemes which are stochastic and non-uniform, and presents a 'Randomized Central Limit Theorem' (RCLT): we establish a class of random scaling schemes which yields universal probability laws of large aggregates of independent and identically distributed random summands. The RCLT universal probability laws, in turn, are the one-sided and the symmetric Levy laws.

  6. Electromagnetic scattering from random media

    CERN Document Server

    Field, Timothy R

    2009-01-01

    - ;The book develops the dynamical theory of scattering from random media from first principles. Its key findings are to characterize the time evolution of the scattered field in terms of stochastic differential equations, and to illustrate this framework

  7. Cluster randomization and political philosophy.

    Science.gov (United States)

    Chwang, Eric

    2012-11-01

    In this paper, I will argue that, while the ethical issues raised by cluster randomization can be challenging, they are not new. My thesis divides neatly into two parts. In the first, easier part I argue that many of the ethical challenges posed by cluster randomized human subjects research are clearly present in other types of human subjects research, and so are not novel. In the second, more difficult part I discuss the thorniest ethical challenge for cluster randomized research--cases where consent is genuinely impractical to obtain. I argue that once again these cases require no new analytic insight; instead, we should look to political philosophy for guidance. In other words, the most serious ethical problem that arises in cluster randomized research also arises in political philosophy. © 2011 Blackwell Publishing Ltd.

  8. Quantum-noise randomized ciphers

    International Nuclear Information System (INIS)

    Nair, Ranjith; Yuen, Horace P.; Kumar, Prem; Corndorf, Eric; Eguchi, Takami

    2006-01-01

    We review the notion of a classical random cipher and its advantages. We sharpen the usual description of random ciphers to a particular mathematical characterization suggested by the salient feature responsible for their increased security. We describe a concrete system known as αη and show that it is equivalent to a random cipher in which the required randomization is affected by coherent-state quantum noise. We describe the currently known security features of αη and similar systems, including lower bounds on the unicity distances against ciphertext-only and known-plaintext attacks. We show how αη used in conjunction with any standard stream cipher such as the Advanced Encryption Standard provides an additional, qualitatively different layer of security from physical encryption against known-plaintext attacks on the key. We refute some claims in the literature that αη is equivalent to a nonrandom stream cipher

  9. Random matrix improved subspace clustering

    KAUST Repository

    Couillet, Romain; Kammoun, Abla

    2017-01-01

    This article introduces a spectral method for statistical subspace clustering. The method is built upon standard kernel spectral clustering techniques, however carefully tuned by theoretical understanding arising from random matrix findings. We show

  10. Random sequential adsorption of cubes

    Science.gov (United States)

    Cieśla, Michał; Kubala, Piotr

    2018-01-01

    Random packings built of cubes are studied numerically using a random sequential adsorption algorithm. To compare the obtained results with previous reports, three different models of cube orientation sampling were used. Also, three different cube-cube intersection algorithms were tested to find the most efficient one. The study focuses on the mean saturated packing fraction as well as kinetics of packing growth. Microstructural properties of packings were analyzed using density autocorrelation function.

  11. Random walk through fractal environments

    OpenAIRE

    Isliker, H.; Vlahos, L.

    2002-01-01

    We analyze random walk through fractal environments, embedded in 3-dimensional, permeable space. Particles travel freely and are scattered off into random directions when they hit the fractal. The statistical distribution of the flight increments (i.e. of the displacements between two consecutive hittings) is analytically derived from a common, practical definition of fractal dimension, and it turns out to approximate quite well a power-law in the case where the dimension D of the fractal is ...

  12. Randomness in Contemporary Graphic Art

    OpenAIRE

    Zavřelová, Veronika

    2016-01-01

    Veronika Zavřelová Bachelor thesis Charles University in Prague, Faculty of Education, Department of Art Education Randomness in contemporary graphic art imaginative picture card game ANNOTATION This (bachelor) thesis concerns itself with a connection between verbal and visual character system within the topic of Randomness in contemporary graphic art - imaginative picture card game. The thesis is mainly based on the practical part - exclusively created card game Piktim. The card game uses as...

  13. Staggered chiral random matrix theory

    International Nuclear Information System (INIS)

    Osborn, James C.

    2011-01-01

    We present a random matrix theory for the staggered lattice QCD Dirac operator. The staggered random matrix theory is equivalent to the zero-momentum limit of the staggered chiral Lagrangian and includes all taste breaking terms at their leading order. This is an extension of previous work which only included some of the taste breaking terms. We will also present some results for the taste breaking contributions to the partition function and the Dirac eigenvalues.

  14. Digital random-number generator

    Science.gov (United States)

    Brocker, D. H.

    1973-01-01

    For binary digit array of N bits, use N noise sources to feed N nonlinear operators; each flip-flop in digit array is set by nonlinear operator to reflect whether amplitude of generator which feeds it is above or below mean value of generated noise. Fixed-point uniform distribution random number generation method can also be used to generate random numbers with other than uniform distribution.

  15. An introduction to random interlacements

    CERN Document Server

    Drewitz, Alexander; Sapozhnikov, Artëm

    2014-01-01

    This book gives a self-contained introduction to the theory of random interlacements. The intended reader of the book is a graduate student with a background in probability theory who wants to learn about the fundamental results and methods of this rapidly emerging field of research. The model was introduced by Sznitman in 2007 in order to describe the local picture left by the trace of a random walk on a large discrete torus when it runs up to times proportional to the volume of the torus. Random interlacements is a new percolation model on the d-dimensional lattice. The main results covered by the book include the full proof of the local convergence of random walk trace on the torus to random interlacements and the full proof of the percolation phase transition of the vacant set of random interlacements in all dimensions. The reader will become familiar with the techniques relevant to working with the underlying Poisson Process and the method of multi-scale renormalization, which helps in overcoming the ch...

  16. The MIXMAX random number generator

    Science.gov (United States)

    Savvidy, Konstantin G.

    2015-11-01

    In this paper, we study the randomness properties of unimodular matrix random number generators. Under well-known conditions, these discrete-time dynamical systems have the highly desirable K-mixing properties which guarantee high quality random numbers. It is found that some widely used random number generators have poor Kolmogorov entropy and consequently fail in empirical tests of randomness. These tests show that the lowest acceptable value of the Kolmogorov entropy is around 50. Next, we provide a solution to the problem of determining the maximal period of unimodular matrix generators of pseudo-random numbers. We formulate the necessary and sufficient condition to attain the maximum period and present a family of specific generators in the MIXMAX family with superior performance and excellent statistical properties. Finally, we construct three efficient algorithms for operations with the MIXMAX matrix which is a multi-dimensional generalization of the famous cat-map. First, allowing to compute the multiplication by the MIXMAX matrix with O(N) operations. Second, to recursively compute its characteristic polynomial with O(N2) operations, and third, to apply skips of large number of steps S to the sequence in O(N2 log(S)) operations.

  17. Perceptions of randomized security schedules.

    Science.gov (United States)

    Scurich, Nicholas; John, Richard S

    2014-04-01

    Security of infrastructure is a major concern. Traditional security schedules are unable to provide omnipresent coverage; consequently, adversaries can exploit predictable vulnerabilities to their advantage. Randomized security schedules, which randomly deploy security measures, overcome these limitations, but public perceptions of such schedules have not been examined. In this experiment, participants were asked to make a choice between attending a venue that employed a traditional (i.e., search everyone) or a random (i.e., a probability of being searched) security schedule. The absolute probability of detecting contraband was manipulated (i.e., 1/10, 1/4, 1/2) but equivalent between the two schedule types. In general, participants were indifferent to either security schedule, regardless of the probability of detection. The randomized schedule was deemed more convenient, but the traditional schedule was considered fairer and safer. There were no differences between traditional and random schedule in terms of perceived effectiveness or deterrence. Policy implications for the implementation and utilization of randomized schedules are discussed. © 2013 Society for Risk Analysis.

  18. Virial expansion for almost diagonal random matrices

    Science.gov (United States)

    Yevtushenko, Oleg; Kravtsov, Vladimir E.

    2003-08-01

    Energy level statistics of Hermitian random matrices hat H with Gaussian independent random entries Higeqj is studied for a generic ensemble of almost diagonal random matrices with langle|Hii|2rangle ~ 1 and langle|Hi\

  19. Non-compact random generalized games and random quasi-variational inequalities

    OpenAIRE

    Yuan, Xian-Zhi

    1994-01-01

    In this paper, existence theorems of random maximal elements, random equilibria for the random one-person game and random generalized game with a countable number of players are given as applications of random fixed point theorems. By employing existence theorems of random generalized games, we deduce the existence of solutions for non-compact random quasi-variational inequalities. These in turn are used to establish several existence theorems of noncompact generalized random ...

  20. Wave propagation and scattering in random media

    CERN Document Server

    Ishimaru, Akira

    1978-01-01

    Wave Propagation and Scattering in Random Media, Volume 2, presents the fundamental formulations of wave propagation and scattering in random media in a unified and systematic manner. The topics covered in this book may be grouped into three categories: waves in random scatterers, waves in random continua, and rough surface scattering. Random scatterers are random distributions of many particles. Examples are rain, fog, smog, hail, ocean particles, red blood cells, polymers, and other particles in a state of Brownian motion. Random continua are the media whose characteristics vary randomly an

  1. Random walk through fractal environments

    International Nuclear Information System (INIS)

    Isliker, H.; Vlahos, L.

    2003-01-01

    We analyze random walk through fractal environments, embedded in three-dimensional, permeable space. Particles travel freely and are scattered off into random directions when they hit the fractal. The statistical distribution of the flight increments (i.e., of the displacements between two consecutive hittings) is analytically derived from a common, practical definition of fractal dimension, and it turns out to approximate quite well a power-law in the case where the dimension D F of the fractal is less than 2, there is though, always a finite rate of unaffected escape. Random walks through fractal sets with D F ≤2 can thus be considered as defective Levy walks. The distribution of jump increments for D F >2 is decaying exponentially. The diffusive behavior of the random walk is analyzed in the frame of continuous time random walk, which we generalize to include the case of defective distributions of walk increments. It is shown that the particles undergo anomalous, enhanced diffusion for D F F >2 is normal for large times, enhanced though for small and intermediate times. In particular, it follows that fractals generated by a particular class of self-organized criticality models give rise to enhanced diffusion. The analytical results are illustrated by Monte Carlo simulations

  2. Advances in randomized parallel computing

    CERN Document Server

    Rajasekaran, Sanguthevar

    1999-01-01

    The technique of randomization has been employed to solve numerous prob­ lems of computing both sequentially and in parallel. Examples of randomized algorithms that are asymptotically better than their deterministic counterparts in solving various fundamental problems abound. Randomized algorithms have the advantages of simplicity and better performance both in theory and often in practice. This book is a collection of articles written by renowned experts in the area of randomized parallel computing. A brief introduction to randomized algorithms In the aflalysis of algorithms, at least three different measures of performance can be used: the best case, the worst case, and the average case. Often, the average case run time of an algorithm is much smaller than the worst case. 2 For instance, the worst case run time of Hoare's quicksort is O(n ), whereas its average case run time is only O( n log n). The average case analysis is conducted with an assumption on the input space. The assumption made to arrive at t...

  3. Cover times of random searches

    Science.gov (United States)

    Chupeau, Marie; Bénichou, Olivier; Voituriez, Raphaël

    2015-10-01

    How long must one undertake a random search to visit all sites of a given domain? This time, known as the cover time, is a key observable to quantify the efficiency of exhaustive searches, which require a complete exploration of an area and not only the discovery of a single target. Examples range from immune-system cells chasing pathogens to animals harvesting resources, from robotic exploration for cleaning or demining to the task of improving search algorithms. Despite its broad relevance, the cover time has remained elusive and so far explicit results have been scarce and mostly limited to regular random walks. Here we determine the full distribution of the cover time for a broad range of random search processes, including Lévy strategies, intermittent strategies, persistent random walks and random walks on complex networks, and reveal its universal features. We show that for all these examples the mean cover time can be minimized, and that the corresponding optimal strategies also minimize the mean search time for a single target, unambiguously pointing towards their robustness.

  4. Free probability and random matrices

    CERN Document Server

    Mingo, James A

    2017-01-01

    This volume opens the world of free probability to a wide variety of readers. From its roots in the theory of operator algebras, free probability has intertwined with non-crossing partitions, random matrices, applications in wireless communications, representation theory of large groups, quantum groups, the invariant subspace problem, large deviations, subfactors, and beyond. This book puts a special emphasis on the relation of free probability to random matrices, but also touches upon the operator algebraic, combinatorial, and analytic aspects of the theory. The book serves as a combination textbook/research monograph, with self-contained chapters, exercises scattered throughout the text, and coverage of important ongoing progress of the theory. It will appeal to graduate students and all mathematicians interested in random matrices and free probability from the point of view of operator algebras, combinatorics, analytic functions, or applications in engineering and statistical physics.

  5. Generating random networks and graphs

    CERN Document Server

    Coolen, Ton; Roberts, Ekaterina

    2017-01-01

    This book supports researchers who need to generate random networks, or who are interested in the theoretical study of random graphs. The coverage includes exponential random graphs (where the targeted probability of each network appearing in the ensemble is specified), growth algorithms (i.e. preferential attachment and the stub-joining configuration model), special constructions (e.g. geometric graphs and Watts Strogatz models) and graphs on structured spaces (e.g. multiplex networks). The presentation aims to be a complete starting point, including details of both theory and implementation, as well as discussions of the main strengths and weaknesses of each approach. It includes extensive references for readers wishing to go further. The material is carefully structured to be accessible to researchers from all disciplines while also containing rigorous mathematical analysis (largely based on the techniques of statistical mechanics) to support those wishing to further develop or implement the theory of rand...

  6. LPTAU, Quasi Random Sequence Generator

    International Nuclear Information System (INIS)

    Sobol, Ilya M.

    1993-01-01

    1 - Description of program or function: LPTAU generates quasi random sequences. These are uniformly distributed sets of L=M N points in the N-dimensional unit cube: I N =[0,1]x...x[0,1]. These sequences are used as nodes for multidimensional integration; as searching points in global optimization; as trial points in multi-criteria decision making; as quasi-random points for quasi Monte Carlo algorithms. 2 - Method of solution: Uses LP-TAU sequence generation (see references). 3 - Restrictions on the complexity of the problem: The number of points that can be generated is L 30 . The dimension of the space cannot exceed 51

  7. Random walks in Euclidean space

    OpenAIRE

    Varjú, Péter Pál

    2012-01-01

    Consider a sequence of independent random isometries of Euclidean space with a previously fixed probability law. Apply these isometries successively to the origin and consider the sequence of random points that we obtain this way. We prove a local limit theorem under a suitable moment condition and a necessary non-degeneracy condition. Under stronger hypothesis, we prove a limit theorem on a wide range of scales: between e^(-cl^(1/4)) and l^(1/2), where l is the number of steps.

  8. Aprendizaje supervisado mediante random forests

    OpenAIRE

    Molero del Río, María Cristina

    2017-01-01

    Muchos problemas de la vida real pueden modelarse como problemas de clasificación, tales como la detección temprana de enfermedades o la concesión de crédito a un cierto individuo. La Clasificación Supervisada se encarga de este tipo de problemas: aprende de una muestra con el objetivo final de inferir observaciones futuras. Hoy en día, existe una amplia gama de técnicas de Clasificación Supervisada. En este trabajo nos centramos en los bosques aleatorios (Random Forests). El Random Forests e...

  9. Algebraic polynomials with random coefficients

    Directory of Open Access Journals (Sweden)

    K. Farahmand

    2002-01-01

    Full Text Available This paper provides an asymptotic value for the mathematical expected number of points of inflections of a random polynomial of the form a0(ω+a1(ω(n11/2x+a2(ω(n21/2x2+…an(ω(nn1/2xn when n is large. The coefficients {aj(w}j=0n, w∈Ω are assumed to be a sequence of independent normally distributed random variables with means zero and variance one, each defined on a fixed probability space (A,Ω,Pr. A special case of dependent coefficients is also studied.

  10. Reserves Represented by Random Walks

    International Nuclear Information System (INIS)

    Filipe, J A; Ferreira, M A M; Andrade, M

    2012-01-01

    The reserves problem is studied through models based on Random Walks. Random walks are a classical particular case in the analysis of stochastic processes. They do not appear only to study reserves evolution models. They are also used to build more complex systems and as analysis instruments, in a theoretical feature, of other kind of systems. In this work by studying the reserves, the main objective is to see and guarantee that pensions funds get sustainable. Being the use of these models considering this goal a classical approach in the study of pensions funds, this work concluded about the problematic of reserves. A concrete example is presented.

  11. The Wasteland of Random Supergravities

    OpenAIRE

    Marsh, David; McAllister, Liam; Wrase, Timm

    2011-01-01

    We show that in a general \\cal{N} = 1 supergravity with N \\gg 1 scalar fields, an exponentially small fraction of the de Sitter critical points are metastable vacua. Taking the superpotential and Kahler potential to be random functions, we construct a random matrix model for the Hessian matrix, which is well-approximated by the sum of a Wigner matrix and two Wishart matrices. We compute the eigenvalue spectrum analytically from the free convolution of the constituent spectra and find that in ...

  12. Multipartite nonlocality and random measurements

    Science.gov (United States)

    de Rosier, Anna; Gruca, Jacek; Parisio, Fernando; Vértesi, Tamás; Laskowski, Wiesław

    2017-07-01

    We present an exhaustive numerical analysis of violations of local realism by families of multipartite quantum states. As an indicator of nonclassicality we employ the probability of violation for randomly sampled observables. Surprisingly, it rapidly increases with the number of parties or settings and even for relatively small values local realism is violated for almost all observables. We have observed this effect to be typical in the sense that it emerged for all investigated states including some with randomly drawn coefficients. We also present the probability of violation as a witness of genuine multipartite entanglement.

  13. Bose condensation in (random traps

    Directory of Open Access Journals (Sweden)

    V.A. Zagrebnov

    2009-01-01

    Full Text Available We study a non-interacting (perfect Bose-gas in random external potentials (traps. It is shown that a generalized Bose-Einstein condensation in the random eigenstates manifests if and only if the same occurs in the one-particle kinetic-energy eigenstates, which corresponds to the generalized condensation of the free Bose-gas. Moreover, we prove that the amounts of both condensate densities are equal. This statement is relevant for justification of the Bogoliubov approximation} in the theory of disordered boson systems.

  14. Random photonic crystal optical memory

    International Nuclear Information System (INIS)

    Wirth Lima Jr, A; Sombra, A S B

    2012-01-01

    Currently, optical cross-connects working on wavelength division multiplexing systems are based on optical fiber delay lines buffering. We designed and analyzed a novel photonic crystal optical memory, which replaces the fiber delay lines of the current optical cross-connect buffer. Optical buffering systems based on random photonic crystal optical memory have similar behavior to the electronic buffering systems based on electronic RAM memory. In this paper, we show that OXCs working with optical buffering based on random photonic crystal optical memories provides better performance than the current optical cross-connects. (paper)

  15. Groupies in random bipartite graphs

    OpenAIRE

    Yilun Shang

    2010-01-01

    A vertex $v$ of a graph $G$ is called a groupie if its degree is notless than the average of the degrees of its neighbors. In thispaper we study the influence of bipartition $(B_1,B_2)$ on groupiesin random bipartite graphs $G(B_1,B_2,p)$ with both fixed $p$ and$p$ tending to zero.

  16. Stalled ERP at Random Textiles

    Science.gov (United States)

    Brumberg, Robert; Kops, Eric; Little, Elizabeth; Gamble, George; Underbakke, Jesse; Havelka, Douglas

    2016-01-01

    Andre Raymond, Executive Vice President of Sales and Marketing for Random Textiles Co. Inc. (RTC), stood in front of the podium to address his team of 70 sales consultants in Las Vegas, NV. The organization had increased market share and achieved record sales over the past three years; however, in the shadow of this success lurked an obstacle that…

  17. Fatigue Reliability under Random Loads

    DEFF Research Database (Denmark)

    Talreja, R.

    1979-01-01

    We consider the problem of estimating the probability of survival (non-failure) and the probability of safe operation (strength greater than a limiting value) of structures subjected to random loads. These probabilities are formulated in terms of the probability distributions of the loads...... propagation stage. The consequences of this behaviour on the fatigue reliability are discussed....

  18. Privacy preserving randomized gossip algorithms

    KAUST Repository

    Hanzely, Filip; Konečný , Jakub; Loizou, Nicolas; Richtarik, Peter; Grishchenko, Dmitry

    2017-01-01

    In this work we present three different randomized gossip algorithms for solving the average consensus problem while at the same time protecting the information about the initial private values stored at the nodes. We give iteration complexity bounds for all methods, and perform extensive numerical experiments.

  19. Pseudo-Random Number Generators

    Science.gov (United States)

    Howell, L. W.; Rheinfurth, M. H.

    1984-01-01

    Package features comprehensive selection of probabilistic distributions. Monte Carlo simulations resorted to whenever systems studied not amenable to deterministic analyses or when direct experimentation not feasible. Random numbers having certain specified distribution characteristic integral part of simulations. Package consists of collector of "pseudorandom" number generators for use in Monte Carlo simulations.

  20. Randomizer for High Data Rates

    Science.gov (United States)

    Garon, Howard; Sank, Victor J.

    2018-01-01

    NASA as well as a number of other space agencies now recognize that the current recommended CCSDS randomizer used for telemetry (TM) is too short. When multiple applications of the PN8 Maximal Length Sequence (MLS) are required in order to fully cover a channel access data unit (CADU), spectral problems in the form of elevated spurious discretes (spurs) appear. Originally the randomizer was called a bit transition generator (BTG) precisely because it was thought that its primary value was to insure sufficient bit transitions to allow the bit/symbol synchronizer to lock and remain locked. We, NASA, have shown that the old BTG concept is a limited view of the real value of the randomizer sequence and that the randomizer also aids in signal acquisition as well as minimizing the potential for false decoder lock. Under the guidelines we considered here there are multiple maximal length sequences under GF(2) which appear attractive in this application. Although there may be mitigating reasons why another MLS sequence could be selected, one sequence in particular possesses a combination of desired properties which offsets it from the others.

  1. High Entropy Random Selection Protocols

    NARCIS (Netherlands)

    H. Buhrman (Harry); M. Christandl (Matthias); M. Koucky (Michal); Z. Lotker (Zvi); B. Patt-Shamir; M. Charikar; K. Jansen; O. Reingold; J. Rolim

    2007-01-01

    textabstractIn this paper, we construct protocols for two parties that do not trust each other, to generate random variables with high Shannon entropy. We improve known bounds for the trade off between the number of rounds, length of communication and the entropy of the outcome.

  2. Random packing of digitized particles

    NARCIS (Netherlands)

    Korte, de A.C.J.; Brouwers, H.J.H.

    2013-01-01

    The random packing of regularly and irregularly shaped particles has been studied extensively. Within this paper, packing is studied from the perspective of digitized particles. These digitized particles are developed for and used in cellular automata systems, which are employed for the simple

  3. Alternative model of random surfaces

    International Nuclear Information System (INIS)

    Ambartzumian, R.V.; Sukiasian, G.S.; Savvidy, G.K.; Savvidy, K.G.

    1992-01-01

    We analyse models of triangulated random surfaces and demand that geometrically nearby configurations of these surfaces must have close actions. The inclusion of this principle drives us to suggest a new action, which is a modified Steiner functional. General arguments, based on the Minkowski inequality, shows that the maximal distribution to the partition function comes from surfaces close to the sphere. (orig.)

  4. Chaos, complexity, and random matrices

    Science.gov (United States)

    Cotler, Jordan; Hunter-Jones, Nicholas; Liu, Junyu; Yoshida, Beni

    2017-11-01

    Chaos and complexity entail an entropic and computational obstruction to describing a system, and thus are intrinsically difficult to characterize. In this paper, we consider time evolution by Gaussian Unitary Ensemble (GUE) Hamiltonians and analytically compute out-of-time-ordered correlation functions (OTOCs) and frame potentials to quantify scrambling, Haar-randomness, and circuit complexity. While our random matrix analysis gives a qualitatively correct prediction of the late-time behavior of chaotic systems, we find unphysical behavior at early times including an O(1) scrambling time and the apparent breakdown of spatial and temporal locality. The salient feature of GUE Hamiltonians which gives us computational traction is the Haar-invariance of the ensemble, meaning that the ensemble-averaged dynamics look the same in any basis. Motivated by this property of the GUE, we introduce k-invariance as a precise definition of what it means for the dynamics of a quantum system to be described by random matrix theory. We envision that the dynamical onset of approximate k-invariance will be a useful tool for capturing the transition from early-time chaos, as seen by OTOCs, to late-time chaos, as seen by random matrix theory.

  5. Random packing of digitized particles

    NARCIS (Netherlands)

    de Korte, A.C.J.; Brouwers, Jos

    2012-01-01

    The random packing of regularly and irregularly shaped particles has been studied extensively. Within this paper, packing is studied from the perspective of digitized particles. These digitized particles are developed for and used in cellular automata systems, which are employed for the simple

  6. Thermophoresis as persistent random walk

    International Nuclear Information System (INIS)

    Plyukhin, A.V.

    2009-01-01

    In a simple model of a continuous random walk a particle moves in one dimension with the velocity fluctuating between +v and -v. If v is associated with the thermal velocity of a Brownian particle and allowed to be position dependent, the model accounts readily for the particle's drift along the temperature gradient and recovers basic results of the conventional thermophoresis theory.

  7. Randomized Item Response Theory Models

    NARCIS (Netherlands)

    Fox, Gerardus J.A.

    2005-01-01

    The randomized response (RR) technique is often used to obtain answers on sensitive questions. A new method is developed to measure latent variables using the RR technique because direct questioning leads to biased results. Within the RR technique is the probability of the true response modeled by

  8. Qubits in a random environment

    International Nuclear Information System (INIS)

    Akhalwaya, I; Fannes, M; Petruccione, F

    2007-01-01

    Decoherence phenomena in a small quantum system coupled to a complex environment can be modelled with random matrices. We propose a simple deterministic model in the limit of a high dimensional environment. The model is investigated numerically and some analytically addressable questions are singled out

  9. Survey of random surface theory

    International Nuclear Information System (INIS)

    Froehlich, J.

    1985-01-01

    The author describes some recent results in random surface theory. Attention is focused on those developments which are relevant for a quantum theory of strings. Some general remarks on the status of mathematical quantum field theory are included at the beginning. (orig.)

  10. Privacy preserving randomized gossip algorithms

    KAUST Repository

    Hanzely, Filip

    2017-06-23

    In this work we present three different randomized gossip algorithms for solving the average consensus problem while at the same time protecting the information about the initial private values stored at the nodes. We give iteration complexity bounds for all methods, and perform extensive numerical experiments.

  11. Algorithmic randomness and physical entropy

    International Nuclear Information System (INIS)

    Zurek, W.H.

    1989-01-01

    Algorithmic randomness provides a rigorous, entropylike measure of disorder of an individual, microscopic, definite state of a physical system. It is defined by the size (in binary digits) of the shortest message specifying the microstate uniquely up to the assumed resolution. Equivalently, algorithmic randomness can be expressed as the number of bits in the smallest program for a universal computer that can reproduce the state in question (for instance, by plotting it with the assumed accuracy). In contrast to the traditional definitions of entropy, algorithmic randomness can be used to measure disorder without any recourse to probabilities. Algorithmic randomness is typically very difficult to calculate exactly but relatively easy to estimate. In large systems, probabilistic ensemble definitions of entropy (e.g., coarse-grained entropy of Gibbs and Boltzmann's entropy H=lnW, as well as Shannon's information-theoretic entropy) provide accurate estimates of the algorithmic entropy of an individual system or its average value for an ensemble. One is thus able to rederive much of thermodynamics and statistical mechanics in a setting very different from the usual. Physical entropy, I suggest, is a sum of (i) the missing information measured by Shannon's formula and (ii) of the algorithmic information content---algorithmic randomness---present in the available data about the system. This definition of entropy is essential in describing the operation of thermodynamic engines from the viewpoint of information gathering and using systems. These Maxwell demon-type entities are capable of acquiring and processing information and therefore can ''decide'' on the basis of the results of their measurements and computations the best strategy for extracting energy from their surroundings. From their internal point of view the outcome of each measurement is definite

  12. Random scalar fields and hyperuniformity

    Science.gov (United States)

    Ma, Zheng; Torquato, Salvatore

    2017-06-01

    Disordered many-particle hyperuniform systems are exotic amorphous states of matter that lie between crystals and liquids. Hyperuniform systems have attracted recent attention because they are endowed with novel transport and optical properties. Recently, the hyperuniformity concept has been generalized to characterize two-phase media, scalar fields, and random vector fields. In this paper, we devise methods to explicitly construct hyperuniform scalar fields. Specifically, we analyze spatial patterns generated from Gaussian random fields, which have been used to model the microwave background radiation and heterogeneous materials, the Cahn-Hilliard equation for spinodal decomposition, and Swift-Hohenberg equations that have been used to model emergent pattern formation, including Rayleigh-Bénard convection. We show that the Gaussian random scalar fields can be constructed to be hyperuniform. We also numerically study the time evolution of spinodal decomposition patterns and demonstrate that they are hyperuniform in the scaling regime. Moreover, we find that labyrinth-like patterns generated by the Swift-Hohenberg equation are effectively hyperuniform. We show that thresholding (level-cutting) a hyperuniform Gaussian random field to produce a two-phase random medium tends to destroy the hyperuniformity of the progenitor scalar field. We then propose guidelines to achieve effectively hyperuniform two-phase media derived from thresholded non-Gaussian fields. Our investigation paves the way for new research directions to characterize the large-structure spatial patterns that arise in physics, chemistry, biology, and ecology. Moreover, our theoretical results are expected to guide experimentalists to synthesize new classes of hyperuniform materials with novel physical properties via coarsening processes and using state-of-the-art techniques, such as stereolithography and 3D printing.

  13. Logical independence and quantum randomness

    International Nuclear Information System (INIS)

    Paterek, T; Kofler, J; Aspelmeyer, M; Zeilinger, A; Brukner, C; Prevedel, R; Klimek, P

    2010-01-01

    We propose a link between logical independence and quantum physics. We demonstrate that quantum systems in the eigenstates of Pauli group operators are capable of encoding mathematical axioms and show that Pauli group quantum measurements are capable of revealing whether or not a given proposition is logically dependent on the axiomatic system. Whenever a mathematical proposition is logically independent of the axioms encoded in the measured state, the measurement associated with the proposition gives random outcomes. This allows for an experimental test of logical independence. Conversely, it also allows for an explanation of the probabilities of random outcomes observed in Pauli group measurements from logical independence without invoking quantum theory. The axiomatic systems we study can be completed and are therefore not subject to Goedel's incompleteness theorem.

  14. Logical independence and quantum randomness

    Energy Technology Data Exchange (ETDEWEB)

    Paterek, T; Kofler, J; Aspelmeyer, M; Zeilinger, A; Brukner, C [Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, Boltzmanngasse 3, A-1090 Vienna (Austria); Prevedel, R; Klimek, P [Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna (Austria)], E-mail: tomasz.paterek@univie.ac.at

    2010-01-15

    We propose a link between logical independence and quantum physics. We demonstrate that quantum systems in the eigenstates of Pauli group operators are capable of encoding mathematical axioms and show that Pauli group quantum measurements are capable of revealing whether or not a given proposition is logically dependent on the axiomatic system. Whenever a mathematical proposition is logically independent of the axioms encoded in the measured state, the measurement associated with the proposition gives random outcomes. This allows for an experimental test of logical independence. Conversely, it also allows for an explanation of the probabilities of random outcomes observed in Pauli group measurements from logical independence without invoking quantum theory. The axiomatic systems we study can be completed and are therefore not subject to Goedel's incompleteness theorem.

  15. Groups, graphs and random walks

    CERN Document Server

    Salvatori, Maura; Sava-Huss, Ecaterina

    2017-01-01

    An accessible and panoramic account of the theory of random walks on groups and graphs, stressing the strong connections of the theory with other branches of mathematics, including geometric and combinatorial group theory, potential analysis, and theoretical computer science. This volume brings together original surveys and research-expository papers from renowned and leading experts, many of whom spoke at the workshop 'Groups, Graphs and Random Walks' celebrating the sixtieth birthday of Wolfgang Woess in Cortona, Italy. Topics include: growth and amenability of groups; Schrödinger operators and symbolic dynamics; ergodic theorems; Thompson's group F; Poisson boundaries; probability theory on buildings and groups of Lie type; structure trees for edge cuts in networks; and mathematical crystallography. In what is currently a fast-growing area of mathematics, this book provides an up-to-date and valuable reference for both researchers and graduate students, from which future research activities will undoubted...

  16. Nonlinear Pricing with Random Participation

    OpenAIRE

    Jean-Charles Rochet; Lars A. Stole

    2002-01-01

    The canonical selection contracting programme takes the agent's participation decision as deterministic and finds the optimal contract, typically satisfying this constraint for the worst type. Upon weakening this assumption of known reservation values by introducing independent randomness into the agents' outside options, we find that some of the received wisdom from mechanism design and nonlinear pricing is not robust and the richer model which allows for stochastic participation affords a m...

  17. Correlated randomness and switching phenomena

    Science.gov (United States)

    Stanley, H. E.; Buldyrev, S. V.; Franzese, G.; Havlin, S.; Mallamace, F.; Kumar, P.; Plerou, V.; Preis, T.

    2010-08-01

    One challenge of biology, medicine, and economics is that the systems treated by these serious scientific disciplines have no perfect metronome in time and no perfect spatial architecture-crystalline or otherwise. Nonetheless, as if by magic, out of nothing but randomness one finds remarkably fine-tuned processes in time and remarkably fine-tuned structures in space. Further, many of these processes and structures have the remarkable feature of “switching” from one behavior to another as if by magic. The past century has, philosophically, been concerned with placing aside the human tendency to see the universe as a fine-tuned machine. Here we will address the challenge of uncovering how, through randomness (albeit, as we shall see, strongly correlated randomness), one can arrive at some of the many spatial and temporal patterns in biology, medicine, and economics and even begin to characterize the switching phenomena that enables a system to pass from one state to another. Inspired by principles developed by A. Nihat Berker and scores of other statistical physicists in recent years, we discuss some applications of correlated randomness to understand switching phenomena in various fields. Specifically, we present evidence from experiments and from computer simulations supporting the hypothesis that water’s anomalies are related to a switching point (which is not unlike the “tipping point” immortalized by Malcolm Gladwell), and that the bubbles in economic phenomena that occur on all scales are not “outliers” (another Gladwell immortalization). Though more speculative, we support the idea of disease as arising from some kind of yet-to-be-understood complex switching phenomenon, by discussing data on selected examples, including heart disease and Alzheimer disease.

  18. Random matrix improved subspace clustering

    KAUST Repository

    Couillet, Romain

    2017-03-06

    This article introduces a spectral method for statistical subspace clustering. The method is built upon standard kernel spectral clustering techniques, however carefully tuned by theoretical understanding arising from random matrix findings. We show in particular that our method provides high clustering performance while standard kernel choices provably fail. An application to user grouping based on vector channel observations in the context of massive MIMO wireless communication networks is provided.

  19. Coherence protection by random coding

    International Nuclear Information System (INIS)

    Brion, E; Akulin, V M; Dumer, I; Harel, G; Kurizki, G

    2005-01-01

    We show that the multidimensional Zeno effect combined with non-holonomic control allows one to efficiently protect quantum systems from decoherence by a method similar to classical random coding. The method is applicable to arbitrary error-inducing Hamiltonians and general quantum systems. The quantum encoding approaches the Hamming upper bound for large dimension increases. Applicability of the method is demonstrated with a seven-qubit toy computer

  20. Electrical conductivity in random alloys

    International Nuclear Information System (INIS)

    Mookerjee, A.; Thakur, P.K.; Yussouff, M.

    1984-12-01

    Based on the augmented space formalism introduced by one of us and the use of the Ward identity and the Bethe-Sapeter equation, a formalism has been developed for the calculation of electrical conductivity for random alloys. A simple application is made to a model case, and it is argued that the formalism enables us to carry out viable calculations on more realistic models of alloys. (author)

  1. Electrical conductivity in random alloys

    International Nuclear Information System (INIS)

    Mookerjee, A.; Yussouff, M.

    1983-06-01

    Starting from the augmented space formalism by one of us, and the use of the Ward identity and Bethe Salpeter equation, a complete formalism for the calculation of the electrical conductivity in tight-binding models of random binary alloys has been developed. The formalism is practical in the sense that viable calculations may be carried out with its help for realistics models of alloy systems. (author)

  2. Human action analysis with randomized trees

    CERN Document Server

    Yu, Gang; Liu, Zicheng

    2014-01-01

    This book will provide a comprehensive overview on human action analysis with randomized trees. It will cover both the supervised random trees and the unsupervised random trees. When there are sufficient amount of labeled data available, supervised random trees provides a fast method for space-time interest point matching. When labeled data is minimal as in the case of example-based action search, unsupervised random trees is used to leverage the unlabelled data. We describe how the randomized trees can be used for action classification, action detection, action search, and action prediction.

  3. Permutation Entropy for Random Binary Sequences

    Directory of Open Access Journals (Sweden)

    Lingfeng Liu

    2015-12-01

    Full Text Available In this paper, we generalize the permutation entropy (PE measure to binary sequences, which is based on Shannon’s entropy, and theoretically analyze this measure for random binary sequences. We deduce the theoretical value of PE for random binary sequences, which can be used to measure the randomness of binary sequences. We also reveal the relationship between this PE measure with other randomness measures, such as Shannon’s entropy and Lempel–Ziv complexity. The results show that PE is consistent with these two measures. Furthermore, we use PE as one of the randomness measures to evaluate the randomness of chaotic binary sequences.

  4. Random SU(2) invariant tensors

    Science.gov (United States)

    Li, Youning; Han, Muxin; Ruan, Dong; Zeng, Bei

    2018-04-01

    SU(2) invariant tensors are states in the (local) SU(2) tensor product representation but invariant under the global group action. They are of importance in the study of loop quantum gravity. A random tensor is an ensemble of tensor states. An average over the ensemble is carried out when computing any physical quantities. The random tensor exhibits a phenomenon known as ‘concentration of measure’, which states that for any bipartition the average value of entanglement entropy of its reduced density matrix is asymptotically the maximal possible as the local dimensions go to infinity. We show that this phenomenon is also true when the average is over the SU(2) invariant subspace instead of the entire space for rank-n tensors in general. It is shown in our earlier work Li et al (2017 New J. Phys. 19 063029) that the subleading correction of the entanglement entropy has a mild logarithmic divergence when n  =  4. In this paper, we show that for n  >  4 the subleading correction is not divergent but a finite number. In some special situation, the number could be even smaller than 1/2, which is the subleading correction of random state over the entire Hilbert space of tensors.

  5. Black holes and random matrices

    Energy Technology Data Exchange (ETDEWEB)

    Cotler, Jordan S.; Gur-Ari, Guy [Stanford Institute for Theoretical Physics, Stanford University,Stanford, CA 94305 (United States); Hanada, Masanori [Stanford Institute for Theoretical Physics, Stanford University,Stanford, CA 94305 (United States); Yukawa Institute for Theoretical Physics, Kyoto University,Kyoto 606-8502 (Japan); The Hakubi Center for Advanced Research, Kyoto University,Kyoto 606-8502 (Japan); Polchinski, Joseph [Department of Physics, University of California,Santa Barbara, CA 93106 (United States); Kavli Institute for Theoretical Physics, University of California,Santa Barbara, CA 93106 (United States); Saad, Phil; Shenker, Stephen H. [Stanford Institute for Theoretical Physics, Stanford University,Stanford, CA 94305 (United States); Stanford, Douglas [Institute for Advanced Study,Princeton, NJ 08540 (United States); Streicher, Alexandre [Stanford Institute for Theoretical Physics, Stanford University,Stanford, CA 94305 (United States); Department of Physics, University of California,Santa Barbara, CA 93106 (United States); Tezuka, Masaki [Department of Physics, Kyoto University,Kyoto 606-8501 (Japan)

    2017-05-22

    We argue that the late time behavior of horizon fluctuations in large anti-de Sitter (AdS) black holes is governed by the random matrix dynamics characteristic of quantum chaotic systems. Our main tool is the Sachdev-Ye-Kitaev (SYK) model, which we use as a simple model of a black hole. We use an analytically continued partition function |Z(β+it)|{sup 2} as well as correlation functions as diagnostics. Using numerical techniques we establish random matrix behavior at late times. We determine the early time behavior exactly in a double scaling limit, giving us a plausible estimate for the crossover time to random matrix behavior. We use these ideas to formulate a conjecture about general large AdS black holes, like those dual to 4D super-Yang-Mills theory, giving a provisional estimate of the crossover time. We make some preliminary comments about challenges to understanding the late time dynamics from a bulk point of view.

  6. Spectra of sparse random matrices

    International Nuclear Information System (INIS)

    Kuehn, Reimer

    2008-01-01

    We compute the spectral density for ensembles of sparse symmetric random matrices using replica. Our formulation of the replica-symmetric ansatz shares the symmetries of that suggested in a seminal paper by Rodgers and Bray (symmetry with respect to permutation of replica and rotation symmetry in the space of replica), but uses a different representation in terms of superpositions of Gaussians. It gives rise to a pair of integral equations which can be solved by a stochastic population-dynamics algorithm. Remarkably our representation allows us to identify pure-point contributions to the spectral density related to the existence of normalizable eigenstates. Our approach is not restricted to matrices defined on graphs with Poissonian degree distribution. Matrices defined on regular random graphs or on scale-free graphs, are easily handled. We also look at matrices with row constraints such as discrete graph Laplacians. Our approach naturally allows us to unfold the total density of states into contributions coming from vertices of different local coordinations and an example of such an unfolding is presented. Our results are well corroborated by numerical diagonalization studies of large finite random matrices

  7. Detecting kinematic boundary surfaces in phase space: particle mass measurements in SUSY-like events

    Science.gov (United States)

    Debnath, Dipsikha; Gainer, James S.; Kilic, Can; Kim, Doojin; Matchev, Konstantin T.; Yang, Yuan-Pao

    2017-06-01

    We critically examine the classic endpoint method for particle mass determination, focusing on difficult corners of parameter space, where some of the measurements are not independent, while others are adversely affected by the experimental resolution. In such scenarios, mass differences can be measured relatively well, but the overall mass scale remains poorly constrained. Using the example of the standard SUSY decay chain \\tilde{q}\\to {\\tilde{χ}}_2^0\\to \\tilde{ℓ}\\to {\\tilde{χ}}_1^0 , we demonstrate that sensitivity to the remaining mass scale parameter can be recovered by measuring the two-dimensional kinematical boundary in the relevant three-dimensional phase space of invariant masses squared. We develop an algorithm for detecting this boundary, which uses the geometric properties of the Voronoi tessellation of the data, and in particular, the relative standard deviation (RSD) of the volumes of the neighbors for each Voronoi cell in the tessellation. We propose a new observable, \\overline{Σ} , which is the average RSD per unit area, calculated over the hypothesized boundary. We show that the location of the \\overline{Σ} maximum correlates very well with the true values of the new particle masses. Our approach represents the natural extension of the one-dimensional kinematic endpoint method to the relevant three dimensions of invariant mass phase space.

  8. Detecting kinematic boundary surfaces in phase space and particle mass measurements in SUSY-like events

    CERN Document Server

    Debnath, Dipsikha; Kilic, Can; Kim, Doojin; Matchev, Konstantin T.; Yang, Yuan-Pao

    2017-06-19

    We critically examine the classic endpoint method for particle mass determination, focusing on difficult corners of parameter space, where some of the measurements are not independent, while others are adversely affected by the experimental resolution. In such scenarios, mass differences can be measured relatively well, but the overall mass scale remains poorly constrained. Using the example of the standard SUSY decay chain $\\tilde q\\to \\tilde\\chi^0_2\\to \\tilde \\ell \\to \\tilde \\chi^0_1$, we demonstrate that sensitivity to the remaining mass scale parameter can be recovered by measuring the two-dimensional kinematical boundary in the relevant three-dimensional phase space of invariant masses squared. We develop an algorithm for detecting this boundary, which uses the geometric properties of the Voronoi tessellation of the data, and in particular, the relative standard deviation (RSD) of the volumes of the neighbors for each Voronoi cell in the tessellation. We propose a new observable, $\\bar\\Sigma$, which is ...

  9. Random walk on a population of random walkers

    International Nuclear Information System (INIS)

    Agliari, E; Burioni, R; Cassi, D; Neri, F M

    2008-01-01

    We consider a population of N labelled random walkers moving on a substrate, and an excitation jumping among the walkers upon contact. The label X(t) of the walker carrying the excitation at time t can be viewed as a stochastic process, where the transition probabilities are a stochastic process themselves. Upon mapping onto two simpler processes, the quantities characterizing X(t) can be calculated in the limit of long times and low walkers density. The results are compared with numerical simulations. Several different topologies for the substrate underlying diffusion are considered

  10. Generation of pseudo-random numbers

    Science.gov (United States)

    Howell, L. W.; Rheinfurth, M. H.

    1982-01-01

    Practical methods for generating acceptable random numbers from a variety of probability distributions which are frequently encountered in engineering applications are described. The speed, accuracy, and guarantee of statistical randomness of the various methods are discussed.

  11. Microcomputer-Assisted Discoveries: Random Numbers.

    Science.gov (United States)

    Kimberling, Clark

    1983-01-01

    A programing contest was designed to promote interest in mathematical randomness. Student-developed programs making clever uses of random numbers are presented. Modifications users might make are suggested. (MNS)

  12. Self-correcting random number generator

    Science.gov (United States)

    Humble, Travis S.; Pooser, Raphael C.

    2016-09-06

    A system and method for generating random numbers. The system may include a random number generator (RNG), such as a quantum random number generator (QRNG) configured to self-correct or adapt in order to substantially achieve randomness from the output of the RNG. By adapting, the RNG may generate a random number that may be considered random regardless of whether the random number itself is tested as such. As an example, the RNG may include components to monitor one or more characteristics of the RNG during operation, and may use the monitored characteristics as a basis for adapting, or self-correcting, to provide a random number according to one or more performance criteria.

  13. Fast integration using quasi-random numbers

    International Nuclear Information System (INIS)

    Bossert, J.; Feindt, M.; Kerzel, U.

    2006-01-01

    Quasi-random numbers are specially constructed series of numbers optimised to evenly sample a given s-dimensional volume. Using quasi-random numbers in numerical integration converges faster with a higher accuracy compared to the case of pseudo-random numbers. The basic properties of quasi-random numbers are introduced, various generators are discussed and the achieved gain is illustrated by examples

  14. Analysis of android random number generator

    OpenAIRE

    Sarıtaş, Serkan

    2013-01-01

    Ankara : The Department of Computer Engineering and the Graduate School of Engineering and Science of Bilkent University, 2013. Thesis (Master's) -- Bilkent University, 2013. Includes bibliographical references leaves 61-65. Randomness is a crucial resource for cryptography, and random number generators are critical building blocks of almost all cryptographic systems. Therefore, random number generation is one of the key parts of secure communication. Random number generatio...

  15. Fast integration using quasi-random numbers

    Science.gov (United States)

    Bossert, J.; Feindt, M.; Kerzel, U.

    2006-04-01

    Quasi-random numbers are specially constructed series of numbers optimised to evenly sample a given s-dimensional volume. Using quasi-random numbers in numerical integration converges faster with a higher accuracy compared to the case of pseudo-random numbers. The basic properties of quasi-random numbers are introduced, various generators are discussed and the achieved gain is illustrated by examples.

  16. Quantum random flip-flop and its applications in random frequency synthesis and true random number generation

    Energy Technology Data Exchange (ETDEWEB)

    Stipčević, Mario, E-mail: mario.stipcevic@irb.hr [Photonics and Quantum Optics Research Unit, Center of Excellence for Advanced Materials and Sensing Devices, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb (Croatia)

    2016-03-15

    In this work, a new type of elementary logic circuit, named random flip-flop (RFF), is proposed, experimentally realized, and studied. Unlike conventional Boolean logic circuits whose action is deterministic and highly reproducible, the action of a RFF is intentionally made maximally unpredictable and, in the proposed realization, derived from a fundamentally random process of emission and detection of light quanta. We demonstrate novel applications of RFF in randomness preserving frequency division, random frequency synthesis, and random number generation. Possible usages of these applications in the information and communication technology, cryptographic hardware, and testing equipment are discussed.

  17. Random packing of colloids and granular matter

    NARCIS (Netherlands)

    Wouterse, A.

    2008-01-01

    This thesis deals with the random packing of colloids and granular matter. A random packing is a stable disordered collection of touching particles, without long-range positional and orientational order. Experimental random packings of particles with the same shape but made of different materials

  18. Variational Infinite Hidden Conditional Random Fields

    NARCIS (Netherlands)

    Bousmalis, Konstantinos; Zafeiriou, Stefanos; Morency, Louis-Philippe; Pantic, Maja; Ghahramani, Zoubin

    2015-01-01

    Hidden conditional random fields (HCRFs) are discriminative latent variable models which have been shown to successfully learn the hidden structure of a given classification problem. An Infinite hidden conditional random field is a hidden conditional random field with a countably infinite number of

  19. Ordered random variables theory and applications

    CERN Document Server

    Shahbaz, Muhammad Qaiser; Hanif Shahbaz, Saman; Al-Zahrani, Bander M

    2016-01-01

    Ordered Random Variables have attracted several authors. The basic building block of Ordered Random Variables is Order Statistics which has several applications in extreme value theory and ordered estimation. The general model for ordered random variables, known as Generalized Order Statistics has been introduced relatively recently by Kamps (1995).

  20. Dynamics and bifurcations of random circle diffeomorphisms

    NARCIS (Netherlands)

    Zmarrou, H.; Homburg, A.J.

    2008-01-01

    We discuss iterates of random circle diffeomorphisms with identically distributed noise, where the noise is bounded and absolutely continuous. Using arguments of B. Deroin, V.A. Kleptsyn and A. Navas, we provide precise conditions under which random attracting fixed points or random attracting

  1. Demonstrating quantum random with single photons

    International Nuclear Information System (INIS)

    Bronner, Patrick; Strunz, Andreas; Meyn, Jan-Peter; Silberhorn, Christine

    2009-01-01

    We present an experiment for education which demonstrates random transmission or reflection of heralded single photons on beam splitters. With our set-up, we can realize different quantum random experiments by appropriate settings of polarization rotators. The concept of entanglement is motivated by correlated randomness. The experiments are suitable for undergraduate education and are available as interactive screen experiments.

  2. Average beta-beating from random errors

    CERN Document Server

    Tomas Garcia, Rogelio; Langner, Andy Sven; Malina, Lukas; Franchi, Andrea; CERN. Geneva. ATS Department

    2018-01-01

    The impact of random errors on average β-beating is studied via analytical derivations and simulations. A systematic positive β-beating is expected from random errors quadratic with the sources or, equivalently, with the rms β-beating. However, random errors do not have a systematic effect on the tune.

  3. Source-Independent Quantum Random Number Generation

    Science.gov (United States)

    Cao, Zhu; Zhou, Hongyi; Yuan, Xiao; Ma, Xiongfeng

    2016-01-01

    Quantum random number generators can provide genuine randomness by appealing to the fundamental principles of quantum mechanics. In general, a physical generator contains two parts—a randomness source and its readout. The source is essential to the quality of the resulting random numbers; hence, it needs to be carefully calibrated and modeled to achieve information-theoretical provable randomness. However, in practice, the source is a complicated physical system, such as a light source or an atomic ensemble, and any deviations in the real-life implementation from the theoretical model may affect the randomness of the output. To close this gap, we propose a source-independent scheme for quantum random number generation in which output randomness can be certified, even when the source is uncharacterized and untrusted. In our randomness analysis, we make no assumptions about the dimension of the source. For instance, multiphoton emissions are allowed in optical implementations. Our analysis takes into account the finite-key effect with the composable security definition. In the limit of large data size, the length of the input random seed is exponentially small compared to that of the output random bit. In addition, by modifying a quantum key distribution system, we experimentally demonstrate our scheme and achieve a randomness generation rate of over 5 ×103 bit /s .

  4. Source-Independent Quantum Random Number Generation

    Directory of Open Access Journals (Sweden)

    Zhu Cao

    2016-02-01

    Full Text Available Quantum random number generators can provide genuine randomness by appealing to the fundamental principles of quantum mechanics. In general, a physical generator contains two parts—a randomness source and its readout. The source is essential to the quality of the resulting random numbers; hence, it needs to be carefully calibrated and modeled to achieve information-theoretical provable randomness. However, in practice, the source is a complicated physical system, such as a light source or an atomic ensemble, and any deviations in the real-life implementation from the theoretical model may affect the randomness of the output. To close this gap, we propose a source-independent scheme for quantum random number generation in which output randomness can be certified, even when the source is uncharacterized and untrusted. In our randomness analysis, we make no assumptions about the dimension of the source. For instance, multiphoton emissions are allowed in optical implementations. Our analysis takes into account the finite-key effect with the composable security definition. In the limit of large data size, the length of the input random seed is exponentially small compared to that of the output random bit. In addition, by modifying a quantum key distribution system, we experimentally demonstrate our scheme and achieve a randomness generation rate of over 5×10^{3}  bit/s.

  5. a randomized, placebo- controlled study

    OpenAIRE

    Hall, Franziska van

    2012-01-01

    Introduction: Repetitive transcranial magnetic stimulation (rTMS) is a well-tolerated non-invasive method, which has also been proved to have mild antidepressant effects and is used as “add-on“-therapy in treating pharmaco-resistant major depression. Objective: The efficacy of an escitalopram plus rTMS-combination-treatment was evaluated and compared to escitalopram plus sham rTMS. Methods: We designed a four week-, randomized, rater-blinded, and controlled add-on study with two trea...

  6. Ring correlations in random networks.

    Science.gov (United States)

    Sadjadi, Mahdi; Thorpe, M F

    2016-12-01

    We examine the correlations between rings in random network glasses in two dimensions as a function of their separation. Initially, we use the topological separation (measured by the number of intervening rings), but this leads to pseudo-long-range correlations due to a lack of topological charge neutrality in the shells surrounding a central ring. This effect is associated with the noncircular nature of the shells. It is, therefore, necessary to use the geometrical distance between ring centers. Hence we find a generalization of the Aboav-Weaire law out to larger distances, with the correlations between rings decaying away when two rings are more than about three rings apart.

  7. Random Generators and Normal Numbers

    OpenAIRE

    Bailey, David H.; Crandall, Richard E.

    2002-01-01

    Pursuant to the authors' previous chaotic-dynamical model for random digits of fundamental constants, we investigate a complementary, statistical picture in which pseudorandom number generators (PRNGs) are central. Some rigorous results are achieved: We establish b-normality for constants of the form $\\sum_i 1/(b^{m_i} c^{n_i})$ for certain sequences $(m_i), (n_i)$ of integers. This work unifies and extends previously known classes of explicit normals. We prove that for coprime $b,c>1$ the...

  8. Random measures, theory and applications

    CERN Document Server

    Kallenberg, Olav

    2017-01-01

    Offering the first comprehensive treatment of the theory of random measures, this book has a very broad scope, ranging from basic properties of Poisson and related processes to the modern theories of convergence, stationarity, Palm measures, conditioning, and compensation. The three large final chapters focus on applications within the areas of stochastic geometry, excursion theory, and branching processes. Although this theory plays a fundamental role in most areas of modern probability, much of it, including the most basic material, has previously been available only in scores of journal articles. The book is primarily directed towards researchers and advanced graduate students in stochastic processes and related areas.

  9. Random Matrix Theory and Econophysics

    Science.gov (United States)

    Rosenow, Bernd

    2000-03-01

    Random Matrix Theory (RMT) [1] is used in many branches of physics as a ``zero information hypothesis''. It describes generic behavior of different classes of systems, while deviations from its universal predictions allow to identify system specific properties. We use methods of RMT to analyze the cross-correlation matrix C of stock price changes [2] of the largest 1000 US companies. In addition to its scientific interest, the study of correlations between the returns of different stocks is also of practical relevance in quantifying the risk of a given stock portfolio. We find [3,4] that the statistics of most of the eigenvalues of the spectrum of C agree with the predictions of RMT, while there are deviations for some of the largest eigenvalues. We interpret these deviations as a system specific property, e.g. containing genuine information about correlations in the stock market. We demonstrate that C shares universal properties with the Gaussian orthogonal ensemble of random matrices. Furthermore, we analyze the eigenvectors of C through their inverse participation ratio and find eigenvectors with large ratios at both edges of the eigenvalue spectrum - a situation reminiscent of localization theory results. This work was done in collaboration with V. Plerou, P. Gopikrishnan, T. Guhr, L.A.N. Amaral, and H.E Stanley and is related to recent work of Laloux et al.. 1. T. Guhr, A. Müller Groeling, and H.A. Weidenmüller, ``Random Matrix Theories in Quantum Physics: Common Concepts'', Phys. Rep. 299, 190 (1998). 2. See, e.g. R.N. Mantegna and H.E. Stanley, Econophysics: Correlations and Complexity in Finance (Cambridge University Press, Cambridge, England, 1999). 3. V. Plerou, P. Gopikrishnan, B. Rosenow, L.A.N. Amaral, and H.E. Stanley, ``Universal and Nonuniversal Properties of Cross Correlations in Financial Time Series'', Phys. Rev. Lett. 83, 1471 (1999). 4. V. Plerou, P. Gopikrishnan, T. Guhr, B. Rosenow, L.A.N. Amaral, and H.E. Stanley, ``Random Matrix Theory

  10. DICE/ColDICE: 6D collisionless phase space hydrodynamics using a lagrangian tesselation

    Science.gov (United States)

    Sousbie, Thierry

    2018-01-01

    DICE is a C++ template library designed to solve collisionless fluid dynamics in 6D phase space using massively parallel supercomputers via an hybrid OpenMP/MPI parallelization. ColDICE, based on DICE, implements a cosmological and physical VLASOV-POISSON solver for cold systems such as dark matter (CDM) dynamics.

  11. Decompounding random sums: A nonparametric approach

    DEFF Research Database (Denmark)

    Hansen, Martin Bøgsted; Pitts, Susan M.

    Observations from sums of random variables with a random number of summands, known as random, compound or stopped sums arise within many areas of engineering and science. Quite often it is desirable to infer properties of the distribution of the terms in the random sum. In the present paper we...... review a number of applications and consider the nonlinear inverse problem of inferring the cumulative distribution function of the components in the random sum. We review the existing literature on non-parametric approaches to the problem. The models amenable to the analysis are generalized considerably...

  12. Chaos and random matrices in supersymmetric SYK

    Science.gov (United States)

    Hunter-Jones, Nicholas; Liu, Junyu

    2018-05-01

    We use random matrix theory to explore late-time chaos in supersymmetric quantum mechanical systems. Motivated by the recent study of supersymmetric SYK models and their random matrix classification, we consider the Wishart-Laguerre unitary ensemble and compute the spectral form factors and frame potentials to quantify chaos and randomness. Compared to the Gaussian ensembles, we observe the absence of a dip regime in the form factor and a slower approach to Haar-random dynamics. We find agreement between our random matrix analysis and predictions from the supersymmetric SYK model, and discuss the implications for supersymmetric chaotic systems.

  13. Random motion and Brownian rotation

    International Nuclear Information System (INIS)

    Wyllie, G.

    1980-01-01

    The course is centred on the Brownian motion - the random movement of molecules arising from thermal fluctuations of the surrounding medium - and starts with the classical theory of A. Einstein, M.v. Smoluchowski and P. Langevin. The first part of this article is quite elementary, and several of the questions raised in it have been instructively treated in a much more sophisticated way in recent reviews by Pomeau and Resibois and by Fox. This simple material may nevertheless be helpful to some readers whose main interest lies in approaching the work on Brownian rotation reviewed in the latter part of the present article. The simplest, and most brutally idealised, problem in our field of interest is that of the random walk in one dimension of space. Its solution leads on, through the diffusivity-mobility relation of Einstein, to Langevin's treatment of the Brownian motion. The application of these ideas to the movement of a molecule in a medium of similar molecules is clearly unrealistic, and much energy has been devoted to finding a suitable generalisation. We shall discuss in particular ideas due to Green, Zwanzig and Mori. (orig./WL)

  14. What Randomized Benchmarking Actually Measures

    International Nuclear Information System (INIS)

    Proctor, Timothy; Rudinger, Kenneth; Young, Kevin; Sarovar, Mohan; Blume-Kohout, Robin

    2017-01-01

    Randomized benchmarking (RB) is widely used to measure an error rate of a set of quantum gates, by performing random circuits that would do nothing if the gates were perfect. In the limit of no finite-sampling error, the exponential decay rate of the observable survival probabilities, versus circuit length, yields a single error metric r. For Clifford gates with arbitrary small errors described by process matrices, r was believed to reliably correspond to the mean, over all Clifford gates, of the average gate infidelity between the imperfect gates and their ideal counterparts. We show that this quantity is not a well-defined property of a physical gate set. It depends on the representations used for the imperfect and ideal gates, and the variant typically computed in the literature can differ from r by orders of magnitude. We present new theories of the RB decay that are accurate for all small errors describable by process matrices, and show that the RB decay curve is a simple exponential for all such errors. Here, these theories allow explicit computation of the error rate that RB measures (r), but as far as we can tell it does not correspond to the infidelity of a physically allowed (completely positive) representation of the imperfect gates.

  15. Random Interchange of Magnetic Connectivity

    Science.gov (United States)

    Matthaeus, W. H.; Ruffolo, D. J.; Servidio, S.; Wan, M.; Rappazzo, A. F.

    2015-12-01

    Magnetic connectivity, the connection between two points along a magnetic field line, has a stochastic character associated with field lines random walking in space due to magnetic fluctuations, but connectivity can also change in time due to dynamical activity [1]. For fluctuations transverse to a strong mean field, this connectivity change be caused by stochastic interchange due to component reconnection. The process may be understood approximately by formulating a diffusion-like Fokker-Planck coefficient [2] that is asymptotically related to standard field line random walk. Quantitative estimates are provided, for transverse magnetic field models and anisotropic models such as reduced magnetohydrodynamics. In heliospheric applications, these estimates may be useful for understanding mixing between open and close field line regions near coronal hole boundaries, and large latitude excursions of connectivity associated with turbulence. [1] A. F. Rappazzo, W. H. Matthaeus, D. Ruffolo, S. Servidio & M. Velli, ApJL, 758, L14 (2012) [2] D. Ruffolo & W. Matthaeus, ApJ, 806, 233 (2015)

  16. Chromatic polynomials of random graphs

    International Nuclear Information System (INIS)

    Van Bussel, Frank; Fliegner, Denny; Timme, Marc; Ehrlich, Christoph; Stolzenberg, Sebastian

    2010-01-01

    Chromatic polynomials and related graph invariants are central objects in both graph theory and statistical physics. Computational difficulties, however, have so far restricted studies of such polynomials to graphs that were either very small, very sparse or highly structured. Recent algorithmic advances (Timme et al 2009 New J. Phys. 11 023001) now make it possible to compute chromatic polynomials for moderately sized graphs of arbitrary structure and number of edges. Here we present chromatic polynomials of ensembles of random graphs with up to 30 vertices, over the entire range of edge density. We specifically focus on the locations of the zeros of the polynomial in the complex plane. The results indicate that the chromatic zeros of random graphs have a very consistent layout. In particular, the crossing point, the point at which the chromatic zeros with non-zero imaginary part approach the real axis, scales linearly with the average degree over most of the density range. While the scaling laws obtained are purely empirical, if they continue to hold in general there are significant implications: the crossing points of chromatic zeros in the thermodynamic limit separate systems with zero ground state entropy from systems with positive ground state entropy, the latter an exception to the third law of thermodynamics.

  17. Classical randomness in quantum measurements

    International Nuclear Information System (INIS)

    D'Ariano, Giacomo Mauro; Presti, Paoloplacido Lo; Perinotti, Paolo

    2005-01-01

    Similarly to quantum states, also quantum measurements can be 'mixed', corresponding to a random choice within an ensemble of measuring apparatuses. Such mixing is equivalent to a sort of hidden variable, which produces a noise of purely classical nature. It is then natural to ask which apparatuses are indecomposable, i.e. do not correspond to any random choice of apparatuses. This problem is interesting not only for foundations, but also for applications, since most optimization strategies give optimal apparatuses that are indecomposable. Mathematically the problem is posed describing each measuring apparatus by a positive operator-valued measure (POVM), which gives the statistics of the outcomes for any input state. The POVMs form a convex set, and in this language the indecomposable apparatuses are represented by extremal points-the analogous of 'pure states' in the convex set of states. Differently from the case of states, however, indecomposable POVMs are not necessarily rank-one, e.g. von Neumann measurements. In this paper we give a complete classification of indecomposable apparatuses (for discrete spectrum), by providing different necessary and sufficient conditions for extremality of POVMs, along with a simple general algorithm for the decomposition of a POVM into extremals. As an interesting application, 'informationally complete' measurements are analysed in this respect. The convex set of POVMs is fully characterized by determining its border in terms of simple algebraic properties of the corresponding POVMs

  18. Drop Spreading with Random Viscosity

    Science.gov (United States)

    Xu, Feng; Jensen, Oliver

    2016-11-01

    Airway mucus acts as a barrier to protect the lung. However as a biological material, its physical properties are known imperfectly and can be spatially heterogeneous. In this study we assess the impact of these uncertainties on the rate of spreading of a drop (representing an inhaled aerosol) over a mucus film. We model the film as Newtonian, having a viscosity that depends linearly on the concentration of a passive solute (a crude proxy for mucin proteins). Given an initial random solute (and hence viscosity) distribution, described as a Gaussian random field with a given correlation structure, we seek to quantify the uncertainties in outcomes as the drop spreads. Using lubrication theory, we describe the spreading of the drop in terms of a system of coupled nonlinear PDEs governing the evolution of film height and the vertically-averaged solute concentration. We perform Monte Carlo simulations to predict the variability in the drop centre location and width (1D) or area (2D). We show how simulation results are well described (at much lower computational cost) by a low-order model using a weak disorder expansion. Our results show for example how variability in the drop location is a non-monotonic function of the solute correlation length increases. Engineering and Physical Sciences Research Council.

  19. Entanglement dynamics in random media

    Science.gov (United States)

    Menezes, G.; Svaiter, N. F.; Zarro, C. A. D.

    2017-12-01

    We study how the entanglement dynamics between two-level atoms is impacted by random fluctuations of the light cone. In our model the two-atom system is envisaged as an open system coupled with an electromagnetic field in the vacuum state. We employ the quantum master equation in the Born-Markov approximation in order to describe the completely positive time evolution of the atomic system. We restrict our investigations to the situation in which the atoms are coupled individually to two spatially separated cavities, one of which displays the emergence of light-cone fluctuations. In such a disordered cavity, we assume that the coefficients of the Klein-Gordon equation are random functions of the spatial coordinates. The disordered medium is modeled by a centered, stationary, and Gaussian process. We demonstrate that disorder has the effect of slowing down the entanglement decay. We conjecture that in a strong-disorder environment the mean life of entangled states can be enhanced in such a way as to almost completely suppress quantum nonlocal decoherence.

  20. Dielectric polarization in random media

    International Nuclear Information System (INIS)

    Ramshaw, J.D.

    1984-01-01

    The theory of dielectric polarization in random media is systematically formulated in terms of response kernels. The primary response kernel K(12) governs the mean dielectric response at the point r 1 to the external electric field at the point r 2 in an infinite system. The inverse of K(12) is denoted by L(12);. it is simpler and more fundamental than K(12) itself. Rigorous expressions are obtained for the effective dielectric constant epsilon( in terms of L(12) and K(12). The latter expression involves the Onsger-Kirkwood function (epsilon(-epsilon 0 (2epsilon(+epsilon 0 )/epsilon 0 epsilon( (where epsilon 0 is an arbitrary reference value), and appears to be new to the random medium context. A wide variety of series representations for epsilon( are generated by means of general perturbation expansions for K(12) and L(12). A discussion is given of certain pitfalls in the theory, most of which are related to the fact that the response kernels are long ranged. It is shown how the dielectric behavior of nonpolar molecular fluids may be treated as a special case of the general theory. The present results for epsilon( apply equally well to other effective phenomenological coefficients of the same generic type, such as thermal and electrical conductivity, magnetic susceptibility, and diffusion coefficients

  1. Randomized Block Cubic Newton Method

    KAUST Repository

    Doikov, Nikita; Richtarik, Peter

    2018-01-01

    We study the problem of minimizing the sum of three convex functions: a differentiable, twice-differentiable and a non-smooth term in a high dimensional setting. To this effect we propose and analyze a randomized block cubic Newton (RBCN) method, which in each iteration builds a model of the objective function formed as the sum of the natural models of its three components: a linear model with a quadratic regularizer for the differentiable term, a quadratic model with a cubic regularizer for the twice differentiable term, and perfect (proximal) model for the nonsmooth term. Our method in each iteration minimizes the model over a random subset of blocks of the search variable. RBCN is the first algorithm with these properties, generalizing several existing methods, matching the best known bounds in all special cases. We establish ${\\cal O}(1/\\epsilon)$, ${\\cal O}(1/\\sqrt{\\epsilon})$ and ${\\cal O}(\\log (1/\\epsilon))$ rates under different assumptions on the component functions. Lastly, we show numerically that our method outperforms the state-of-the-art on a variety of machine learning problems, including cubically regularized least-squares, logistic regression with constraints, and Poisson regression.

  2. Randomized Block Cubic Newton Method

    KAUST Repository

    Doikov, Nikita

    2018-02-12

    We study the problem of minimizing the sum of three convex functions: a differentiable, twice-differentiable and a non-smooth term in a high dimensional setting. To this effect we propose and analyze a randomized block cubic Newton (RBCN) method, which in each iteration builds a model of the objective function formed as the sum of the natural models of its three components: a linear model with a quadratic regularizer for the differentiable term, a quadratic model with a cubic regularizer for the twice differentiable term, and perfect (proximal) model for the nonsmooth term. Our method in each iteration minimizes the model over a random subset of blocks of the search variable. RBCN is the first algorithm with these properties, generalizing several existing methods, matching the best known bounds in all special cases. We establish ${\\\\cal O}(1/\\\\epsilon)$, ${\\\\cal O}(1/\\\\sqrt{\\\\epsilon})$ and ${\\\\cal O}(\\\\log (1/\\\\epsilon))$ rates under different assumptions on the component functions. Lastly, we show numerically that our method outperforms the state-of-the-art on a variety of machine learning problems, including cubically regularized least-squares, logistic regression with constraints, and Poisson regression.

  3. Random walks and diffusion on networks

    Science.gov (United States)

    Masuda, Naoki; Porter, Mason A.; Lambiotte, Renaud

    2017-11-01

    Random walks are ubiquitous in the sciences, and they are interesting from both theoretical and practical perspectives. They are one of the most fundamental types of stochastic processes; can be used to model numerous phenomena, including diffusion, interactions, and opinions among humans and animals; and can be used to extract information about important entities or dense groups of entities in a network. Random walks have been studied for many decades on both regular lattices and (especially in the last couple of decades) on networks with a variety of structures. In the present article, we survey the theory and applications of random walks on networks, restricting ourselves to simple cases of single and non-adaptive random walkers. We distinguish three main types of random walks: discrete-time random walks, node-centric continuous-time random walks, and edge-centric continuous-time random walks. We first briefly survey random walks on a line, and then we consider random walks on various types of networks. We extensively discuss applications of random walks, including ranking of nodes (e.g., PageRank), community detection, respondent-driven sampling, and opinion models such as voter models.

  4. Tukey g-and-h Random Fields

    KAUST Repository

    Xu, Ganggang; Genton, Marc G.

    2016-01-01

    We propose a new class of trans-Gaussian random fields named Tukey g-and-h (TGH) random fields to model non-Gaussian spatial data. The proposed TGH random fields have extremely flexible marginal distributions, possibly skewed and/or heavy-tailed, and, therefore, have a wide range of applications. The special formulation of the TGH random field enables an automatic search for the most suitable transformation for the dataset of interest while estimating model parameters. Asymptotic properties of the maximum likelihood estimator and the probabilistic properties of the TGH random fields are investigated. An efficient estimation procedure, based on maximum approximated likelihood, is proposed and an extreme spatial outlier detection algorithm is formulated. Kriging and probabilistic prediction with TGH random fields are developed along with prediction confidence intervals. The predictive performance of TGH random fields is demonstrated through extensive simulation studies and an application to a dataset of total precipitation in the south east of the United States.

  5. Tukey g-and-h Random Fields

    KAUST Repository

    Xu, Ganggang

    2016-07-15

    We propose a new class of trans-Gaussian random fields named Tukey g-and-h (TGH) random fields to model non-Gaussian spatial data. The proposed TGH random fields have extremely flexible marginal distributions, possibly skewed and/or heavy-tailed, and, therefore, have a wide range of applications. The special formulation of the TGH random field enables an automatic search for the most suitable transformation for the dataset of interest while estimating model parameters. Asymptotic properties of the maximum likelihood estimator and the probabilistic properties of the TGH random fields are investigated. An efficient estimation procedure, based on maximum approximated likelihood, is proposed and an extreme spatial outlier detection algorithm is formulated. Kriging and probabilistic prediction with TGH random fields are developed along with prediction confidence intervals. The predictive performance of TGH random fields is demonstrated through extensive simulation studies and an application to a dataset of total precipitation in the south east of the United States.

  6. Systematic versus random sampling in stereological studies.

    Science.gov (United States)

    West, Mark J

    2012-12-01

    The sampling that takes place at all levels of an experimental design must be random if the estimate is to be unbiased in a statistical sense. There are two fundamental ways by which one can make a random sample of the sections and positions to be probed on the sections. Using a card-sampling analogy, one can pick any card at all out of a deck of cards. This is referred to as independent random sampling because the sampling of any one card is made without reference to the position of the other cards. The other approach to obtaining a random sample would be to pick a card within a set number of cards and others at equal intervals within the deck. Systematic sampling along one axis of many biological structures is more efficient than random sampling, because most biological structures are not randomly organized. This article discusses the merits of systematic versus random sampling in stereological studies.

  7. Probability, random variables, and random processes theory and signal processing applications

    CERN Document Server

    Shynk, John J

    2012-01-01

    Probability, Random Variables, and Random Processes is a comprehensive textbook on probability theory for engineers that provides a more rigorous mathematical framework than is usually encountered in undergraduate courses. It is intended for first-year graduate students who have some familiarity with probability and random variables, though not necessarily of random processes and systems that operate on random signals. It is also appropriate for advanced undergraduate students who have a strong mathematical background. The book has the following features: Several app

  8. Minimization over randomly selected lines

    Directory of Open Access Journals (Sweden)

    Ismet Sahin

    2013-07-01

    Full Text Available This paper presents a population-based evolutionary optimization method for minimizing a given cost function. The mutation operator of this method selects randomly oriented lines in the cost function domain, constructs quadratic functions interpolating the cost function at three different points over each line, and uses extrema of the quadratics as mutated points. The crossover operator modifies each mutated point based on components of two points in population, instead of one point as is usually performed in other evolutionary algorithms. The stopping criterion of this method depends on the number of almost degenerate quadratics. We demonstrate that the proposed method with these mutation and crossover operations achieves faster and more robust convergence than the well-known Differential Evolution and Particle Swarm algorithms.

  9. Inflation in random Gaussian landscapes

    Energy Technology Data Exchange (ETDEWEB)

    Masoumi, Ali; Vilenkin, Alexander; Yamada, Masaki, E-mail: ali@cosmos.phy.tufts.edu, E-mail: vilenkin@cosmos.phy.tufts.edu, E-mail: Masaki.Yamada@tufts.edu [Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States)

    2017-05-01

    We develop analytic and numerical techniques for studying the statistics of slow-roll inflation in random Gaussian landscapes. As an illustration of these techniques, we analyze small-field inflation in a one-dimensional landscape. We calculate the probability distributions for the maximal number of e-folds and for the spectral index of density fluctuations n {sub s} and its running α {sub s} . These distributions have a universal form, insensitive to the correlation function of the Gaussian ensemble. We outline possible extensions of our methods to a large number of fields and to models of large-field inflation. These methods do not suffer from potential inconsistencies inherent in the Brownian motion technique, which has been used in most of the earlier treatments.

  10. Inevitable randomness in discrete mathematics

    CERN Document Server

    Beck, Jozsef

    2009-01-01

    Mathematics has been called the science of order. The subject is remarkably good for generalizing specific cases to create abstract theories. However, mathematics has little to say when faced with highly complex systems, where disorder reigns. This disorder can be found in pure mathematical arenas, such as the distribution of primes, the 3n+1 conjecture, and class field theory. The purpose of this book is to provide examples--and rigorous proofs--of the complexity law: (1) discrete systems are either simple or they exhibit advanced pseudorandomness; (2) a priori probabilities often exist even when there is no intrinsic symmetry. Part of the difficulty in achieving this purpose is in trying to clarify these vague statements. The examples turn out to be fascinating instances of deep or mysterious results in number theory and combinatorics. This book considers randomness and complexity. The traditional approach to complexity--computational complexity theory--is to study very general complexity classes, such as P...

  11. Organization of growing random networks

    International Nuclear Information System (INIS)

    Krapivsky, P. L.; Redner, S.

    2001-01-01

    The organizational development of growing random networks is investigated. These growing networks are built by adding nodes successively, and linking each to an earlier node of degree k with an attachment probability A k . When A k grows more slowly than linearly with k, the number of nodes with k links, N k (t), decays faster than a power law in k, while for A k growing faster than linearly in k, a single node emerges which connects to nearly all other nodes. When A k is asymptotically linear, N k (t)∼tk -ν , with ν dependent on details of the attachment probability, but in the range 2 -2 power-law tail, where s is the component size. The out component has a typical size of order lnt, and it provides basic insights into the genealogy of the network

  12. Beyond the random phase approximation

    DEFF Research Database (Denmark)

    Olsen, Thomas; Thygesen, Kristian S.

    2013-01-01

    We assess the performance of a recently proposed renormalized adiabatic local density approximation (rALDA) for ab initio calculations of electronic correlation energies in solids and molecules. The method is an extension of the random phase approximation (RPA) derived from time-dependent density...... functional theory and the adiabatic connection fluctuation-dissipation theorem and contains no fitted parameters. The new kernel is shown to preserve the accurate description of dispersive interactions from RPA while significantly improving the description of short-range correlation in molecules, insulators......, and metals. For molecular atomization energies, the rALDA is a factor of 7 better than RPA and a factor of 4 better than the Perdew-Burke-Ernzerhof (PBE) functional when compared to experiments, and a factor of 3 (1.5) better than RPA (PBE) for cohesive energies of solids. For transition metals...

  13. Squares of Random Linear Codes

    DEFF Research Database (Denmark)

    Cascudo Pueyo, Ignacio; Cramer, Ronald; Mirandola, Diego

    2015-01-01

    a positive answer, for codes of dimension $k$ and length roughly $\\frac{1}{2}k^2$ or smaller. Moreover, the convergence speed is exponential if the difference $k(k+1)/2-n$ is at least linear in $k$. The proof uses random coding and combinatorial arguments, together with algebraic tools involving the precise......Given a linear code $C$, one can define the $d$-th power of $C$ as the span of all componentwise products of $d$ elements of $C$. A power of $C$ may quickly fill the whole space. Our purpose is to answer the following question: does the square of a code ``typically'' fill the whole space? We give...

  14. Random and cooperative sequential adsorption

    Science.gov (United States)

    Evans, J. W.

    1993-10-01

    Irreversible random sequential adsorption (RSA) on lattices, and continuum "car parking" analogues, have long received attention as models for reactions on polymer chains, chemisorption on single-crystal surfaces, adsorption in colloidal systems, and solid state transformations. Cooperative generalizations of these models (CSA) are sometimes more appropriate, and can exhibit richer kinetics and spatial structure, e.g., autocatalysis and clustering. The distribution of filled or transformed sites in RSA and CSA is not described by an equilibrium Gibbs measure. This is the case even for the saturation "jammed" state of models where the lattice or space cannot fill completely. However exact analysis is often possible in one dimension, and a variety of powerful analytic methods have been developed for higher dimensional models. Here we review the detailed understanding of asymptotic kinetics, spatial correlations, percolative structure, etc., which is emerging for these far-from-equilibrium processes.

  15. Systematic Differences and Random Rates

    DEFF Research Database (Denmark)

    Knudsen, Thorbjørn; Levinthal, Daniel A.; Winter, Sidney G.

    2017-01-01

    evolutionary dynamics of firm entry, and the subsequent consolidation of market share and industry shake-out is considered, then during early epochs of industry evolution, one would tend to observe systematic differences in growth rates associated with firm’s competitive fitness. Thus, it is only......A fundamental premise of the strategy field is the existence of persistent firm level differences in resources and capabilities. This property of heterogeneity should express itself in a variety of empirical “signatures,” such as firm performance and arguably systematic and persistent differences...... component, but for much of an industry’s and firm’s history should have a random pattern consistent with the Gibrat property. The intuition is as follows. In a Cournot equilibrium, firms of better “type” (i.e., lower cost) realize a larger market share, but act with some restraint on their choice...

  16. Chemical Continuous Time Random Walks

    Science.gov (United States)

    Aquino, T.; Dentz, M.

    2017-12-01

    Traditional methods for modeling solute transport through heterogeneous media employ Eulerian schemes to solve for solute concentration. More recently, Lagrangian methods have removed the need for spatial discretization through the use of Monte Carlo implementations of Langevin equations for solute particle motions. While there have been recent advances in modeling chemically reactive transport with recourse to Lagrangian methods, these remain less developed than their Eulerian counterparts, and many open problems such as efficient convergence and reconstruction of the concentration field remain. We explore a different avenue and consider the question: In heterogeneous chemically reactive systems, is it possible to describe the evolution of macroscopic reactant concentrations without explicitly resolving the spatial transport? Traditional Kinetic Monte Carlo methods, such as the Gillespie algorithm, model chemical reactions as random walks in particle number space, without the introduction of spatial coordinates. The inter-reaction times are exponentially distributed under the assumption that the system is well mixed. In real systems, transport limitations lead to incomplete mixing and decreased reaction efficiency. We introduce an arbitrary inter-reaction time distribution, which may account for the impact of incomplete mixing. This process defines an inhomogeneous continuous time random walk in particle number space, from which we derive a generalized chemical Master equation and formulate a generalized Gillespie algorithm. We then determine the modified chemical rate laws for different inter-reaction time distributions. We trace Michaelis-Menten-type kinetics back to finite-mean delay times, and predict time-nonlocal macroscopic reaction kinetics as a consequence of broadly distributed delays. Non-Markovian kinetics exhibit weak ergodicity breaking and show key features of reactions under local non-equilibrium.

  17. Multi-scale coarse-graining of non-conservative interactions in molecular liquids

    International Nuclear Information System (INIS)

    Izvekov, Sergei; Rice, Betsy M.

    2014-01-01

    A new bottom-up procedure for constructing non-conservative (dissipative and stochastic) interactions for dissipative particle dynamics (DPD) models is described and applied to perform hierarchical coarse-graining of a polar molecular liquid (nitromethane). The distant-dependent radial and shear frictions in functional-free form are derived consistently with a chosen form for conservative interactions by matching two-body force-velocity and three-body velocity-velocity correlations along the microscopic trajectories of the centroids of Voronoi cells (clusters), which represent the dissipative particles within the DPD description. The Voronoi tessellation is achieved by application of the K-means clustering algorithm at regular time intervals. Consistently with a notion of many-body DPD, the conservative interactions are determined through the multi-scale coarse-graining (MS-CG) method, which naturally implements a pairwise decomposition of the microscopic free energy. A hierarchy of MS-CG/DPD models starting with one molecule per Voronoi cell and up to 64 molecules per cell is derived. The radial contribution to the friction appears to be dominant for all models. As the Voronoi cell sizes increase, the dissipative forces rapidly become confined to the first coordination shell. For Voronoi cells of two and more molecules the time dependence of the velocity autocorrelation function becomes monotonic and well reproduced by the respective MS-CG/DPD models. A comparative analysis of force and velocity correlations in the atomistic and CG ensembles indicates Markovian behavior with as low as two molecules per dissipative particle. The models with one and two molecules per Voronoi cell yield transport properties (diffusion and shear viscosity) that are in good agreement with the atomistic data. The coarser models produce slower dynamics that can be appreciably attributed to unaccounted dissipation introduced by regular Voronoi re-partitioning as well as by larger

  18. Multi-scale coarse-graining of non-conservative interactions in molecular liquids

    Energy Technology Data Exchange (ETDEWEB)

    Izvekov, Sergei, E-mail: sergiy.izvyekov.civ@mail.mil; Rice, Betsy M. [U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005 (United States)

    2014-03-14

    A new bottom-up procedure for constructing non-conservative (dissipative and stochastic) interactions for dissipative particle dynamics (DPD) models is described and applied to perform hierarchical coarse-graining of a polar molecular liquid (nitromethane). The distant-dependent radial and shear frictions in functional-free form are derived consistently with a chosen form for conservative interactions by matching two-body force-velocity and three-body velocity-velocity correlations along the microscopic trajectories of the centroids of Voronoi cells (clusters), which represent the dissipative particles within the DPD description. The Voronoi tessellation is achieved by application of the K-means clustering algorithm at regular time intervals. Consistently with a notion of many-body DPD, the conservative interactions are determined through the multi-scale coarse-graining (MS-CG) method, which naturally implements a pairwise decomposition of the microscopic free energy. A hierarchy of MS-CG/DPD models starting with one molecule per Voronoi cell and up to 64 molecules per cell is derived. The radial contribution to the friction appears to be dominant for all models. As the Voronoi cell sizes increase, the dissipative forces rapidly become confined to the first coordination shell. For Voronoi cells of two and more molecules the time dependence of the velocity autocorrelation function becomes monotonic and well reproduced by the respective MS-CG/DPD models. A comparative analysis of force and velocity correlations in the atomistic and CG ensembles indicates Markovian behavior with as low as two molecules per dissipative particle. The models with one and two molecules per Voronoi cell yield transport properties (diffusion and shear viscosity) that are in good agreement with the atomistic data. The coarser models produce slower dynamics that can be appreciably attributed to unaccounted dissipation introduced by regular Voronoi re-partitioning as well as by larger

  19. Phase behavior of random copolymers in quenched random media

    International Nuclear Information System (INIS)

    Chakraborty, A.K.; Shakhnovich, E.I.

    1995-01-01

    In this paper, we consider the behavior of random heteropolymers in a quenched disordered medium. We develop a field theory and obtain a mean-field solution that allows for replica symmetry breaking. The presence of an external disorder leads to the formation of compact states; a homopolymeric effect. We compute the phase diagram for two classes of problems. First, we consider the situation wherein the bare heteropolymer prefers like segments to segregate, and second, we examine cases where the bare heteropolymer prefers unlike segments to mix. For the first class of systems, we find a phase diagram characterized by a replica symmetry broken phase that exists below a particular temperature. This temperature grows with the strength of the external disorder. In the second class of situations, the phase diagram is much richer. Here we find two replica symmetry broken phases with different patterns separated by a reentrant phase. The reentrant phase and one of the two replica symmetry broken phases are induced by interactions with the external disorder. The dependence of the location of the phase boundaries on the strength of the external disorder are elucidated. We discuss our results from a physical standpoint, and note the testable experimental consequences of our findings. copyright 1995 American Institute of Physics

  20. Private randomness expansion with untrusted devices

    International Nuclear Information System (INIS)

    Colbeck, Roger; Kent, Adrian

    2011-01-01

    Randomness is an important resource for many applications, from gambling to secure communication. However, guaranteeing that the output from a candidate random source could not have been predicted by an outside party is a challenging task, and many supposedly random sources used today provide no such guarantee. Quantum solutions to this problem exist, for example a device which internally sends a photon through a beamsplitter and observes on which side it emerges, but, presently, such solutions require the user to trust the internal workings of the device. Here, we seek to go beyond this limitation by asking whether randomness can be generated using untrusted devices-even ones created by an adversarial agent-while providing a guarantee that no outside party (including the agent) can predict it. Since this is easily seen to be impossible unless the user has an initially private random string, the task we investigate here is private randomness expansion. We introduce a protocol for private randomness expansion with untrusted devices which is designed to take as input an initially private random string and produce as output a longer private random string. We point out that private randomness expansion protocols are generally vulnerable to attacks that can render the initial string partially insecure, even though that string is used only inside a secure laboratory; our protocol is designed to remove this previously unconsidered vulnerability by privacy amplification. We also discuss extensions of our protocol designed to generate an arbitrarily long random string from a finite initially private random string. The security of these protocols against the most general attacks is left as an open question.

  1. All-optical fast random number generator.

    Science.gov (United States)

    Li, Pu; Wang, Yun-Cai; Zhang, Jian-Zhong

    2010-09-13

    We propose a scheme of all-optical random number generator (RNG), which consists of an ultra-wide bandwidth (UWB) chaotic laser, an all-optical sampler and an all-optical comparator. Free from the electric-device bandwidth, it can generate 10Gbit/s random numbers in our simulation. The high-speed bit sequences can pass standard statistical tests for randomness after all-optical exclusive-or (XOR) operation.

  2. Quality pseudo-random number generator

    International Nuclear Information System (INIS)

    Tarasiuk, J.

    1996-01-01

    The pseudo-random number generator (RNG) was written to match needs of nuclear and high-energy physics computation which in some cases require very long and independent random number sequences. In this random number generator the repetition period is about 10 36 what should be sufficient for all computers in the world. In this article the test results of RNG correlation, speed and identity of computations for PC, Sun4 and VAX computer tests are presented

  3. Pseudo random signal processing theory and application

    CERN Document Server

    Zepernick, Hans-Jurgen

    2013-01-01

    In recent years, pseudo random signal processing has proven to be a critical enabler of modern communication, information, security and measurement systems. The signal's pseudo random, noise-like properties make it vitally important as a tool for protecting against interference, alleviating multipath propagation and allowing the potential of sharing bandwidth with other users. Taking a practical approach to the topic, this text provides a comprehensive and systematic guide to understanding and using pseudo random signals. Covering theoretical principles, design methodologies and applications

  4. Micro-Texture Synthesis by Phase Randomization

    Directory of Open Access Journals (Sweden)

    Bruno Galerne

    2011-09-01

    Full Text Available This contribution is concerned with texture synthesis by example, the process of generating new texture images from a given sample. The Random Phase Noise algorithm presented here synthesizes a texture from an original image by simply randomizing its Fourier phase. It is able to reproduce textures which are characterized by their Fourier modulus, namely the random phase textures (or micro-textures.

  5. Nonstationary interference and scattering from random media

    International Nuclear Information System (INIS)

    Nazikian, R.

    1991-12-01

    For the small angle scattering of coherent plane waves from inhomogeneous random media, the three dimensional mean square distribution of random fluctuations may be recovered from the interferometric detection of the nonstationary modulational structure of the scattered field. Modulational properties of coherent waves scattered from random media are related to nonlocal correlations in the double sideband structure of the Fourier transform of the scattering potential. Such correlations may be expressed in terms of a suitability generalized spectral coherence function for analytic fields

  6. Generalization of Random Intercept Multilevel Models

    Directory of Open Access Journals (Sweden)

    Rehan Ahmad Khan

    2013-10-01

    Full Text Available The concept of random intercept models in a multilevel model developed by Goldstein (1986 has been extended for k-levels. The random variation in intercepts at individual level is marginally split into components by incorporating higher levels of hierarchy in the single level model. So, one can control the random variation in intercepts by incorporating the higher levels in the model.

  7. Estimation of Correlation Functions by Random Decrement

    DEFF Research Database (Denmark)

    Asmussen, J. C.; Brincker, Rune

    This paper illustrates how correlation functions can be estimated by the random decrement technique. Several different formulations of the random decrement technique, estimating the correlation functions are considered. The speed and accuracy of the different formulations of the random decrement...... and the length of the correlation functions. The accuracy of the estimates with respect to the theoretical correlation functions and the modal parameters are both investigated. The modal parameters are extracted from the correlation functions using the polyreference time domain technique....

  8. Private randomness expansion with untrusted devices

    Science.gov (United States)

    Colbeck, Roger; Kent, Adrian

    2011-03-01

    Randomness is an important resource for many applications, from gambling to secure communication. However, guaranteeing that the output from a candidate random source could not have been predicted by an outside party is a challenging task, and many supposedly random sources used today provide no such guarantee. Quantum solutions to this problem exist, for example a device which internally sends a photon through a beamsplitter and observes on which side it emerges, but, presently, such solutions require the user to trust the internal workings of the device. Here, we seek to go beyond this limitation by asking whether randomness can be generated using untrusted devices—even ones created by an adversarial agent—while providing a guarantee that no outside party (including the agent) can predict it. Since this is easily seen to be impossible unless the user has an initially private random string, the task we investigate here is private randomness expansion. We introduce a protocol for private randomness expansion with untrusted devices which is designed to take as input an initially private random string and produce as output a longer private random string. We point out that private randomness expansion protocols are generally vulnerable to attacks that can render the initial string partially insecure, even though that string is used only inside a secure laboratory; our protocol is designed to remove this previously unconsidered vulnerability by privacy amplification. We also discuss extensions of our protocol designed to generate an arbitrarily long random string from a finite initially private random string. The security of these protocols against the most general attacks is left as an open question.

  9. Private randomness expansion with untrusted devices

    Energy Technology Data Exchange (ETDEWEB)

    Colbeck, Roger; Kent, Adrian, E-mail: rcolbeck@perimeterinstitute.ca, E-mail: a.p.a.kent@damtp.cam.ac.uk [Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, ON N2L 2Y5 (Canada)

    2011-03-04

    Randomness is an important resource for many applications, from gambling to secure communication. However, guaranteeing that the output from a candidate random source could not have been predicted by an outside party is a challenging task, and many supposedly random sources used today provide no such guarantee. Quantum solutions to this problem exist, for example a device which internally sends a photon through a beamsplitter and observes on which side it emerges, but, presently, such solutions require the user to trust the internal workings of the device. Here, we seek to go beyond this limitation by asking whether randomness can be generated using untrusted devices-even ones created by an adversarial agent-while providing a guarantee that no outside party (including the agent) can predict it. Since this is easily seen to be impossible unless the user has an initially private random string, the task we investigate here is private randomness expansion. We introduce a protocol for private randomness expansion with untrusted devices which is designed to take as input an initially private random string and produce as output a longer private random string. We point out that private randomness expansion protocols are generally vulnerable to attacks that can render the initial string partially insecure, even though that string is used only inside a secure laboratory; our protocol is designed to remove this previously unconsidered vulnerability by privacy amplification. We also discuss extensions of our protocol designed to generate an arbitrarily long random string from a finite initially private random string. The security of these protocols against the most general attacks is left as an open question.

  10. Roughening in random sine-Gordon systems

    International Nuclear Information System (INIS)

    Schwartz, M.; Nattermann, T.

    1991-01-01

    We consider the spatial correlations of the optimal solutions of the random sine-Gordon equation as an example of the usefulness of a very simple ansatz relating the Fourier transforms of certain functions of the field Φ to the Fourier transform of the random fields. The dramatic change in the correlations when going from above to below two dimensions is directly attributed to the transfer from dominance of long range fluctuations of the randomness to the dominance of short range fluctuations. (orig.)

  11. Solution Methods for Structures with Random Properties Subject to Random Excitation

    DEFF Research Database (Denmark)

    Köylüoglu, H. U.; Nielsen, Søren R. K.; Cakmak, A. S.

    This paper deals with the lower order statistical moments of the response of structures with random stiffness and random damping properties subject to random excitation. The arising stochastic differential equations (SDE) with random coefficients are solved by two methods, a second order...... the SDE with random coefficients with deterministic initial conditions to an equivalent nonlinear SDE with deterministic coefficient and random initial conditions. In both methods, the statistical moment equations are used. Hierarchy of statistical moments in the markovian approach is closed...... by the cumulant neglect closure method applied at the fourth order level....

  12. Efficient Training Methods for Conditional Random Fields

    National Research Council Canada - National Science Library

    Sutton, Charles A

    2008-01-01

    .... In this thesis, I investigate efficient training methods for conditional random fields with complex graphical structure, focusing on local methods which avoid propagating information globally along the graph...

  13. Randomized, interventional, prospective, comparative study to ...

    African Journals Online (AJOL)

    Randomized, interventional, prospective, comparative study to evaluate the antihypertensive efficacy and tolerability of ramipril versus telmisartan in stage 1 hypertensive patients with diabetes mellitus.

  14. The Theory of Random Laser Systems

    International Nuclear Information System (INIS)

    Xunya Jiang

    2002-01-01

    Studies of random laser systems are a new direction with promising potential applications and theoretical interest. The research is based on the theories of localization and laser physics. So far, the research shows that there are random lasing modes inside the systems which is quite different from the common laser systems. From the properties of the random lasing modes, they can understand the phenomena observed in the experiments, such as multi-peak and anisotropic spectrum, lasing mode number saturation, mode competition and dynamic processes, etc. To summarize, this dissertation has contributed the following in the study of random laser systems: (1) by comparing the Lamb theory with the Letokhov theory, the general formulas of the threshold length or gain of random laser systems were obtained; (2) they pointed out the vital weakness of previous time-independent methods in random laser research; (3) a new model which includes the FDTD method and the semi-classical laser theory. The solutions of this model provided an explanation of the experimental results of multi-peak and anisotropic emission spectra, predicted the saturation of lasing modes number and the length of localized lasing modes; (4) theoretical (Lamb theory) and numerical (FDTD and transfer-matrix calculation) studies of the origin of localized lasing modes in the random laser systems; and (5) proposal of using random lasing modes as a new path to study wave localization in random systems and prediction of the lasing threshold discontinuity at mobility edge

  15. RANDOM WALK HYPOTHESIS IN FINANCIAL MARKETS

    Directory of Open Access Journals (Sweden)

    Nicolae-Marius JULA

    2017-05-01

    Full Text Available Random walk hypothesis states that the stock market prices do not follow a predictable trajectory, but are simply random. If you are trying to predict a random set of data, one should test for randomness, because, despite the power and complexity of the used models, the results cannot be trustworthy. There are several methods for testing these hypotheses and the use of computational power provided by the R environment makes the work of the researcher easier and with a cost-effective approach. The increasing power of computing and the continuous development of econometric tests should give the potential investors new tools in selecting commodities and investing in efficient markets.

  16. A signal theoretic introduction to random processes

    CERN Document Server

    Howard, Roy M

    2015-01-01

    A fresh introduction to random processes utilizing signal theory By incorporating a signal theory basis, A Signal Theoretic Introduction to Random Processes presents a unique introduction to random processes with an emphasis on the important random phenomena encountered in the electronic and communications engineering field. The strong mathematical and signal theory basis provides clarity and precision in the statement of results. The book also features:  A coherent account of the mathematical fundamentals and signal theory that underpin the presented material Unique, in-depth coverage of

  17. Locally Perturbed Random Walks with Unbounded Jumps

    OpenAIRE

    Paulin, Daniel; Szász, Domokos

    2010-01-01

    In \\cite{SzT}, D. Sz\\'asz and A. Telcs have shown that for the diffusively scaled, simple symmetric random walk, weak convergence to the Brownian motion holds even in the case of local impurities if $d \\ge 2$. The extension of their result to finite range random walks is straightforward. Here, however, we are interested in the situation when the random walk has unbounded range. Concretely we generalize the statement of \\cite{SzT} to unbounded random walks whose jump distribution belongs to th...

  18. CMOS Compressed Imaging by Random Convolution

    OpenAIRE

    Jacques, Laurent; Vandergheynst, Pierre; Bibet, Alexandre; Majidzadeh, Vahid; Schmid, Alexandre; Leblebici, Yusuf

    2009-01-01

    We present a CMOS imager with built-in capability to perform Compressed Sensing. The adopted sensing strategy is the random Convolution due to J. Romberg. It is achieved by a shift register set in a pseudo-random configuration. It acts as a convolutive filter on the imager focal plane, the current issued from each CMOS pixel undergoing a pseudo-random redirection controlled by each component of the filter sequence. A pseudo-random triggering of the ADC reading is finally applied to comp...

  19. QUASI-RANDOM TESTING OF COMPUTER SYSTEMS

    Directory of Open Access Journals (Sweden)

    S. V. Yarmolik

    2013-01-01

    Full Text Available Various modified random testing approaches have been proposed for computer system testing in the black box environment. Their effectiveness has been evaluated on the typical failure patterns by employing three measures, namely, P-measure, E-measure and F-measure. A quasi-random testing, being a modified version of the random testing, has been proposed and analyzed. The quasi-random Sobol sequences and modified Sobol sequences are used as the test patterns. Some new methods for Sobol sequence generation have been proposed and analyzed.

  20. True random numbers from amplified quantum vacuum.

    Science.gov (United States)

    Jofre, M; Curty, M; Steinlechner, F; Anzolin, G; Torres, J P; Mitchell, M W; Pruneri, V

    2011-10-10

    Random numbers are essential for applications ranging from secure communications to numerical simulation and quantitative finance. Algorithms can rapidly produce pseudo-random outcomes, series of numbers that mimic most properties of true random numbers while quantum random number generators (QRNGs) exploit intrinsic quantum randomness to produce true random numbers. Single-photon QRNGs are conceptually simple but produce few random bits per detection. In contrast, vacuum fluctuations are a vast resource for QRNGs: they are broad-band and thus can encode many random bits per second. Direct recording of vacuum fluctuations is possible, but requires shot-noise-limited detectors, at the cost of bandwidth. We demonstrate efficient conversion of vacuum fluctuations to true random bits using optical amplification of vacuum and interferometry. Using commercially-available optical components we demonstrate a QRNG at a bit rate of 1.11 Gbps. The proposed scheme has the potential to be extended to 10 Gbps and even up to 100 Gbps by taking advantage of high speed modulation sources and detectors for optical fiber telecommunication devices.

  1. [Multicenter randomized trial of amnioinfusion].

    Science.gov (United States)

    Fraser, W; Marcoux, S; Prendiville, W; Petrou, S; Hofmeyr, J; Reinharz, D; Goulet, C; Ohlsson, A

    2000-05-01

    Meconium staining of the amniotic fluid in labor is a frequent problem that is associated with an increase in the risk of neonatal and maternal morbidity. Amnioinfusion is a simple technique that is designed to prevent neonatal and maternal morbidity associated with meconium. Preliminary studies indicate that amnioinfusion is a promising approach to the prevention of such complications of labor. However, further research is required. The primary objective of this multi-centre randomized controlled study is to determine if amnioinfusion for thick meconium stained amniotic fluid results in a reduction in perinatal death or moderate to severe meconium aspiration syndrome. We will also assess the effects of amnioinfusion on other indicators of neonatal morbidity and on cesarean section. The study includes an evaluation of womens views on their childbirth experience and an economic evaluation of a policy of amnioinfusion The study will be achieved with the collaboration of approximately 50 obstetrical centres from across Canada, US, Europe, South America and South Africa. This multicentre trial will provide urgently needed information on the efficacy and effectiveness of amniofusion for the indication of meconium stained amniotic fluid.

  2. Smooth random change point models.

    Science.gov (United States)

    van den Hout, Ardo; Muniz-Terrera, Graciela; Matthews, Fiona E

    2011-03-15

    Change point models are used to describe processes over time that show a change in direction. An example of such a process is cognitive ability, where a decline a few years before death is sometimes observed. A broken-stick model consists of two linear parts and a breakpoint where the two lines intersect. Alternatively, models can be formulated that imply a smooth change between the two linear parts. Change point models can be extended by adding random effects to account for variability between subjects. A new smooth change point model is introduced and examples are presented that show how change point models can be estimated using functions in R for mixed-effects models. The Bayesian inference using WinBUGS is also discussed. The methods are illustrated using data from a population-based longitudinal study of ageing, the Cambridge City over 75 Cohort Study. The aim is to identify how many years before death individuals experience a change in the rate of decline of their cognitive ability. Copyright © 2010 John Wiley & Sons, Ltd.

  3. Aggregated recommendation through random forests.

    Science.gov (United States)

    Zhang, Heng-Ru; Min, Fan; He, Xu

    2014-01-01

    Aggregated recommendation refers to the process of suggesting one kind of items to a group of users. Compared to user-oriented or item-oriented approaches, it is more general and, therefore, more appropriate for cold-start recommendation. In this paper, we propose a random forest approach to create aggregated recommender systems. The approach is used to predict the rating of a group of users to a kind of items. In the preprocessing stage, we merge user, item, and rating information to construct an aggregated decision table, where rating information serves as the decision attribute. We also model the data conversion process corresponding to the new user, new item, and both new problems. In the training stage, a forest is built for the aggregated training set, where each leaf is assigned a distribution of discrete rating. In the testing stage, we present four predicting approaches to compute evaluation values based on the distribution of each tree. Experiments results on the well-known MovieLens dataset show that the aggregated approach maintains an acceptable level of accuracy.

  4. Organization of growing random networks

    Energy Technology Data Exchange (ETDEWEB)

    Krapivsky, P. L.; Redner, S.

    2001-06-01

    The organizational development of growing random networks is investigated. These growing networks are built by adding nodes successively, and linking each to an earlier node of degree k with an attachment probability A{sub k}. When A{sub k} grows more slowly than linearly with k, the number of nodes with k links, N{sub k}(t), decays faster than a power law in k, while for A{sub k} growing faster than linearly in k, a single node emerges which connects to nearly all other nodes. When A{sub k} is asymptotically linear, N{sub k}(t){similar_to}tk{sup {minus}{nu}}, with {nu} dependent on details of the attachment probability, but in the range 2{lt}{nu}{lt}{infinity}. The combined age and degree distribution of nodes shows that old nodes typically have a large degree. There is also a significant correlation in the degrees of neighboring nodes, so that nodes of similar degree are more likely to be connected. The size distributions of the in and out components of the network with respect to a given node{emdash}namely, its {open_quotes}descendants{close_quotes} and {open_quotes}ancestors{close_quotes}{emdash}are also determined. The in component exhibits a robust s{sup {minus}2} power-law tail, where s is the component size. The out component has a typical size of order lnt, and it provides basic insights into the genealogy of the network.

  5. Efficient robust conditional random fields.

    Science.gov (United States)

    Song, Dongjin; Liu, Wei; Zhou, Tianyi; Tao, Dacheng; Meyer, David A

    2015-10-01

    Conditional random fields (CRFs) are a flexible yet powerful probabilistic approach and have shown advantages for popular applications in various areas, including text analysis, bioinformatics, and computer vision. Traditional CRF models, however, are incapable of selecting relevant features as well as suppressing noise from noisy original features. Moreover, conventional optimization methods often converge slowly in solving the training procedure of CRFs, and will degrade significantly for tasks with a large number of samples and features. In this paper, we propose robust CRFs (RCRFs) to simultaneously select relevant features. An optimal gradient method (OGM) is further designed to train RCRFs efficiently. Specifically, the proposed RCRFs employ the l1 norm of the model parameters to regularize the objective used by traditional CRFs, therefore enabling discovery of the relevant unary features and pairwise features of CRFs. In each iteration of OGM, the gradient direction is determined jointly by the current gradient together with the historical gradients, and the Lipschitz constant is leveraged to specify the proper step size. We show that an OGM can tackle the RCRF model training very efficiently, achieving the optimal convergence rate [Formula: see text] (where k is the number of iterations). This convergence rate is theoretically superior to the convergence rate O(1/k) of previous first-order optimization methods. Extensive experiments performed on three practical image segmentation tasks demonstrate the efficacy of OGM in training our proposed RCRFs.

  6. Dynamic computing random access memory

    International Nuclear Information System (INIS)

    Traversa, F L; Bonani, F; Pershin, Y V; Di Ventra, M

    2014-01-01

    The present von Neumann computing paradigm involves a significant amount of information transfer between a central processing unit and memory, with concomitant limitations in the actual execution speed. However, it has been recently argued that a different form of computation, dubbed memcomputing (Di Ventra and Pershin 2013 Nat. Phys. 9 200–2) and inspired by the operation of our brain, can resolve the intrinsic limitations of present day architectures by allowing for computing and storing of information on the same physical platform. Here we show a simple and practical realization of memcomputing that utilizes easy-to-build memcapacitive systems. We name this architecture dynamic computing random access memory (DCRAM). We show that DCRAM provides massively-parallel and polymorphic digital logic, namely it allows for different logic operations with the same architecture, by varying only the control signals. In addition, by taking into account realistic parameters, its energy expenditures can be as low as a few fJ per operation. DCRAM is fully compatible with CMOS technology, can be realized with current fabrication facilities, and therefore can really serve as an alternative to the present computing technology. (paper)

  7. Hierarchy in directed random networks.

    Science.gov (United States)

    Mones, Enys

    2013-02-01

    In recent years, the theory and application of complex networks have been quickly developing in a markable way due to the increasing amount of data from real systems and the fruitful application of powerful methods used in statistical physics. Many important characteristics of social or biological systems can be described by the study of their underlying structure of interactions. Hierarchy is one of these features that can be formulated in the language of networks. In this paper we present some (qualitative) analytic results on the hierarchical properties of random network models with zero correlations and also investigate, mainly numerically, the effects of different types of correlations. The behavior of the hierarchy is different in the absence and the presence of giant components. We show that the hierarchical structure can be drastically different if there are one-point correlations in the network. We also show numerical results suggesting that the hierarchy does not change monotonically with the correlations and there is an optimal level of nonzero correlations maximizing the level of hierarchy.

  8. Some common random fixed point theorems for contractive type conditions in cone random metric spaces

    Directory of Open Access Journals (Sweden)

    Saluja Gurucharan S.

    2016-08-01

    Full Text Available In this paper, we establish some common random fixed point theorems for contractive type conditions in the setting of cone random metric spaces. Our results unify, extend and generalize many known results from the current existing literature.

  9. Ising model of a randomly triangulated random surface as a definition of fermionic string theory

    International Nuclear Information System (INIS)

    Bershadsky, M.A.; Migdal, A.A.

    1986-01-01

    Fermionic degrees of freedom are added to randomly triangulated planar random surfaces. It is shown that the Ising model on a fixed graph is equivalent to a certain Majorana fermion theory on the dual graph. (orig.)

  10. The groupies of random multipartite graphs

    OpenAIRE

    Portmann, Marius; Wang, Hongyun

    2012-01-01

    If a vertex $v$ in a graph $G$ has degree larger than the average of the degrees of its neighbors, we call it a groupie in $G$. In the current work, we study the behavior of groupie in random multipartite graphs with the link probability between sets of nodes fixed. Our results extend the previous ones on random (bipartite) graphs.

  11. Color Charts, Esthetics, and Subjective Randomness

    Science.gov (United States)

    Sanderson, Yasmine B.

    2012-01-01

    Color charts, or grids of evenly spaced multicolored dots or squares, appear in the work of modern artists and designers. Often the artist/designer distributes the many colors in a way that could be described as "random," that is, without an obvious pattern. We conduct a statistical analysis of 125 "random-looking" art and design color charts and…

  12. Random queues and risk averse users

    DEFF Research Database (Denmark)

    de Palma, André; Fosgerau, Mogens

    2013-01-01

    We analyze Nash equilibrium in time of use of a congested facility. Users are risk averse with general concave utility. Queues are subject to varying degrees of random sorting, ranging from strict queue priority to a completely random queue. We define the key “no residual queue” property, which...

  13. Direct random insertion mutagenesis of Helicobacter pylori.

    NARCIS (Netherlands)

    Jonge, de R.; Bakker, D.; Vliet, van AH; Kuipers, E.J.; Vandenbroucke-Grauls, C.M.J.E.; Kusters, J.G.

    2003-01-01

    Random insertion mutagenesis is a widely used technique for the identification of bacterial virulence genes. Most strategies for random mutagenesis involve cloning in Escherichia coli for passage of plasmids or for phenotypic selection. This can result in biased selection due to restriction or

  14. Topological properties of random wireless networks

    Indian Academy of Sciences (India)

    Wireless networks in which the node locations are random are best modelled as random geometric graphs (RGGs). In addition to their extensive application in the modelling of wireless networks, RGGs find many new applications and are being studied in their own right. In this paper we first provide a brief introduction to the ...

  15. Fuzziness and randomness in an optimization framework

    International Nuclear Information System (INIS)

    Luhandjula, M.K.

    1994-03-01

    This paper presents a semi-infinite approach for linear programming in the presence of fuzzy random variable coefficients. As a byproduct a way for dealing with optimization problems including both fuzzy and random data is obtained. Numerical examples are provided for the sake of illustration. (author). 13 refs

  16. Random Item Generation Is Affected by Age

    Science.gov (United States)

    Multani, Namita; Rudzicz, Frank; Wong, Wing Yiu Stephanie; Namasivayam, Aravind Kumar; van Lieshout, Pascal

    2016-01-01

    Purpose: Random item generation (RIG) involves central executive functioning. Measuring aspects of random sequences can therefore provide a simple method to complement other tools for cognitive assessment. We examine the extent to which RIG relates to specific measures of cognitive function, and whether those measures can be estimated using RIG…

  17. Direct random insertion mutagenesis of Helicobacter pylori

    NARCIS (Netherlands)

    de Jonge, Ramon; Bakker, Dennis; van Vliet, Arnoud H. M.; Kuipers, Ernst J.; Vandenbroucke-Grauls, Christina M. J. E.; Kusters, Johannes G.

    2003-01-01

    Random insertion mutagenesis is a widely used technique for the identification of bacterial virulence genes. Most strategies for random mutagenesis involve cloning in Escherichia coli for passage of plasmids or for phenotypic selection. This can result in biased selection due to restriction or

  18. Critical Properties of Pure and Random Antiferromagnets

    DEFF Research Database (Denmark)

    Cowley, R. A.; Carneiro, K.

    1980-01-01

    Neutron scattering techniques have been used to study the critical properties of CoF2 and the randomly mixed systems: Co/ZnF2 and KMn/NiF3. The results for CoF2 are in excellent accord with the critical properties of the three-dimensional Ising model. In all of the random crystals studied the tra...

  19. Coverage of space by random sets

    Indian Academy of Sciences (India)

    Consider the non-negative integer line. For each integer point we toss a coin. If the toss at location i is a. Heads we place an interval (of random length) there and move to location i + 1,. Tails we move to location i + 1. Coverage of space by random sets – p. 2/29 ...

  20. Intrinsic intensity fluctuations in random lasers

    International Nuclear Information System (INIS)

    Molen, Karen L. van der; Mosk, Allard P.; Lagendijk, Ad

    2006-01-01

    We present a quantitative experimental and theoretical study of intensity fluctuations in the emitted light of a random laser that has different realizations of disorder for every pump pulse. A model that clarifies these intrinsic fluctuations is developed. We describe the output versus input power graphs of the random laser with an effective spontaneous emission factor (β factor)

  1. k-Means: Random Sampling Procedure

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. k-Means: Random Sampling Procedure. Optimal 1-Mean is. Approximation of Centroid (Inaba et al). S = random sample of size O(1/ ); Centroid of S is a (1+ )-approx centroid of P with constant probability.

  2. Random Assignment: Practical Considerations from Field Experiments.

    Science.gov (United States)

    Dunford, Franklyn W.

    1990-01-01

    Seven qualitative issues associated with randomization that have the potential to weaken or destroy otherwise sound experimental designs are reviewed and illustrated via actual field experiments. Issue areas include ethics and legality, liability risks, manipulation of randomized outcomes, hidden bias, design intrusiveness, case flow, and…

  3. Random geometry and Yang-Mills theory

    International Nuclear Information System (INIS)

    Froehlich, J.

    1981-01-01

    The author states various problems and discusses a very few preliminary rigorous results in a branch of mathematics and mathematical physics which one might call random (or stochastic) geometry. Furthermore, he points out why random geometry is important in the quantization of Yang-Mills theory. (Auth.)

  4. Monte Carlo method for random surfaces

    International Nuclear Information System (INIS)

    Berg, B.

    1985-01-01

    Previously two of the authors proposed a Monte Carlo method for sampling statistical ensembles of random walks and surfaces with a Boltzmann probabilistic weight. In the present paper we work out the details for several models of random surfaces, defined on d-dimensional hypercubic lattices. (orig.)

  5. Perfectly Secure Oblivious RAM without Random Oracles

    DEFF Research Database (Denmark)

    Damgård, Ivan Bjerre; Meldgaard, Sigurd Torkel; Nielsen, Jesper Buus

    2011-01-01

    We present an algorithm for implementing a secure oblivious RAM where the access pattern is perfectly hidden in the information theoretic sense, without assuming that the CPU has access to a random oracle. In addition we prove a lower bound on the amount of randomness needed for implementing...

  6. Probabilistic Signal Recovery and Random Matrices

    Science.gov (United States)

    2016-12-08

    that classical methods for linear regression (such as Lasso) are applicable for non- linear data. This surprising finding has already found several...we studied the complexity of convex sets. In numerical linear algebra , we analyzed the fastest known randomized approximation algorithm for...and perfect matchings In numerical linear algebra , we studied the fastest known randomized approximation algorithm for computing the permanents of

  7. Hamiltonian Cycles on Random Eulerian Triangulations

    DEFF Research Database (Denmark)

    Guitter, E.; Kristjansen, C.; Nielsen, Jakob Langgaard

    1998-01-01

    . Considering the case n -> 0, this implies that the system of random Eulerian triangulations equipped with Hamiltonian cycles describes a c=-1 matter field coupled to 2D quantum gravity as opposed to the system of usual random triangulations equipped with Hamiltonian cycles which has c=-2. Hence, in this case...

  8. Random Walks with Anti-Correlated Steps

    OpenAIRE

    Wagner, Dirk; Noga, John

    2005-01-01

    We conjecture the expected value of random walks with anti-correlated steps to be exactly 1. We support this conjecture with 2 plausibility arguments and experimental data. The experimental analysis includes the computation of the expected values of random walks for steps up to 22. The result shows the expected value asymptotically converging to 1.

  9. Aspects of insertion in random trees

    NARCIS (Netherlands)

    Bagchi, Arunabha; Reingold, E.M.

    1982-01-01

    A method formulated by Yao and used by Brown has yielded bounds on the fraction of nodes with specified properties in trees bult by a sequence of random internal nodes in a random tree built by binary search and insertion, and show that in such a tree about bounds better than those now known. We

  10. Brownian Optimal Stopping and Random Walks

    International Nuclear Information System (INIS)

    Lamberton, D.

    2002-01-01

    One way to compute the value function of an optimal stopping problem along Brownian paths consists of approximating Brownian motion by a random walk. We derive error estimates for this type of approximation under various assumptions on the distribution of the approximating random walk

  11. Infinite Random Graphs as Statistical Mechanical Models

    DEFF Research Database (Denmark)

    Durhuus, Bergfinnur Jøgvan; Napolitano, George Maria

    2011-01-01

    We discuss two examples of infinite random graphs obtained as limits of finite statistical mechanical systems: a model of two-dimensional dis-cretized quantum gravity defined in terms of causal triangulated surfaces, and the Ising model on generic random trees. For the former model we describe a ...

  12. Supersymmetry in random matrix theory

    International Nuclear Information System (INIS)

    Kieburg, Mario

    2010-01-01

    I study the applications of supersymmetry in random matrix theory. I generalize the supersymmetry method and develop three new approaches to calculate eigenvalue correlation functions. These correlation functions are averages over ratios of characteristic polynomials. In the first part of this thesis, I derive a relation between integrals over anti-commuting variables (Grassmann variables) and differential operators with respect to commuting variables. With this relation I rederive Cauchy- like integral theorems. As a new application I trace the supermatrix Bessel function back to a product of two ordinary matrix Bessel functions. In the second part, I apply the generalized Hubbard-Stratonovich transformation to arbitrary rotation invariant ensembles of real symmetric and Hermitian self-dual matrices. This extends the approach for unitarily rotation invariant matrix ensembles. For the k-point correlation functions I derive supersymmetric integral expressions in a unifying way. I prove the equivalence between the generalized Hubbard-Stratonovich transformation and the superbosonization formula. Moreover, I develop an alternative mapping from ordinary space to superspace. After comparing the results of this approach with the other two supersymmetry methods, I obtain explicit functional expressions for the probability densities in superspace. If the probability density of the matrix ensemble factorizes, then the generating functions exhibit determinantal and Pfaffian structures. For some matrix ensembles this was already shown with help of other approaches. I show that these structures appear by a purely algebraic manipulation. In this new approach I use structures naturally appearing in superspace. I derive determinantal and Pfaffian structures for three types of integrals without actually mapping onto superspace. These three types of integrals are quite general and, thus, they are applicable to a broad class of matrix ensembles. (orig.)

  13. Supersymmetry in random matrix theory

    Energy Technology Data Exchange (ETDEWEB)

    Kieburg, Mario

    2010-05-04

    I study the applications of supersymmetry in random matrix theory. I generalize the supersymmetry method and develop three new approaches to calculate eigenvalue correlation functions. These correlation functions are averages over ratios of characteristic polynomials. In the first part of this thesis, I derive a relation between integrals over anti-commuting variables (Grassmann variables) and differential operators with respect to commuting variables. With this relation I rederive Cauchy- like integral theorems. As a new application I trace the supermatrix Bessel function back to a product of two ordinary matrix Bessel functions. In the second part, I apply the generalized Hubbard-Stratonovich transformation to arbitrary rotation invariant ensembles of real symmetric and Hermitian self-dual matrices. This extends the approach for unitarily rotation invariant matrix ensembles. For the k-point correlation functions I derive supersymmetric integral expressions in a unifying way. I prove the equivalence between the generalized Hubbard-Stratonovich transformation and the superbosonization formula. Moreover, I develop an alternative mapping from ordinary space to superspace. After comparing the results of this approach with the other two supersymmetry methods, I obtain explicit functional expressions for the probability densities in superspace. If the probability density of the matrix ensemble factorizes, then the generating functions exhibit determinantal and Pfaffian structures. For some matrix ensembles this was already shown with help of other approaches. I show that these structures appear by a purely algebraic manipulation. In this new approach I use structures naturally appearing in superspace. I derive determinantal and Pfaffian structures for three types of integrals without actually mapping onto superspace. These three types of integrals are quite general and, thus, they are applicable to a broad class of matrix ensembles. (orig.)

  14. Asymptotic Properties of Multistate Random Walks. II. Applications to Inhomogeneous Periodic and Random Lattices

    NARCIS (Netherlands)

    Roerdink, J.B.T.M.; Shuler, K.E.

    1985-01-01

    The previously developed formalism for the calculation of asymptotic properties of multistate random walks is used to study random walks on several inhomogeneous periodic lattices, where the periodically repeated unit cell contains a number of inequivalent sites, as well as on lattices with a random

  15. The randomly renewed general item and the randomly inspected item with exponential life distribution

    International Nuclear Information System (INIS)

    Schneeweiss, W.G.

    1979-01-01

    For a randomly renewed item the probability distributions of the time to failure and of the duration of down time and the expectations of these random variables are determined. Moreover, it is shown that the same theory applies to randomly checked items with exponential probability distribution of life such as electronic items. The case of periodic renewals is treated as an example. (orig.) [de

  16. The random walk model of intrafraction movement

    International Nuclear Information System (INIS)

    Ballhausen, H; Reiner, M; Kantz, S; Belka, C; Söhn, M

    2013-01-01

    The purpose of this paper is to understand intrafraction movement as a stochastic process driven by random external forces. The hypothetically proposed three-dimensional random walk model has significant impact on optimal PTV margins and offers a quantitatively correct explanation of experimental findings. Properties of the random walk are calculated from first principles, in particular fraction-average population density distributions for displacements along the principal axes. When substituted into the established optimal margin recipes these fraction-average distributions yield safety margins about 30% smaller as compared to the suggested values from end-of-fraction Gaussian fits. Stylized facts of a random walk are identified in clinical data, such as the increase of the standard deviation of displacements with the square root of time. Least squares errors in the comparison to experimental results are reduced by about 50% when accounting for non-Gaussian corrections from the random walk model. (paper)

  17. The random walk model of intrafraction movement.

    Science.gov (United States)

    Ballhausen, H; Reiner, M; Kantz, S; Belka, C; Söhn, M

    2013-04-07

    The purpose of this paper is to understand intrafraction movement as a stochastic process driven by random external forces. The hypothetically proposed three-dimensional random walk model has significant impact on optimal PTV margins and offers a quantitatively correct explanation of experimental findings. Properties of the random walk are calculated from first principles, in particular fraction-average population density distributions for displacements along the principal axes. When substituted into the established optimal margin recipes these fraction-average distributions yield safety margins about 30% smaller as compared to the suggested values from end-of-fraction gaussian fits. Stylized facts of a random walk are identified in clinical data, such as the increase of the standard deviation of displacements with the square root of time. Least squares errors in the comparison to experimental results are reduced by about 50% when accounting for non-gaussian corrections from the random walk model.

  18. Application of Vector Triggering Random Decrement

    DEFF Research Database (Denmark)

    Asmussen, J. C.; Ibrahim, S. R.; Brincker, Rune

    result is a Random Decrement function from each measurement. In traditional Random Decrement estimation the triggering condition is a scalar condition, which should only be fulfilled in a single measurement. In vector triggering Random Decrement the triggering condition is a vector condition......This paper deals with applications of the vector triggering Random Decrement technique. This technique is new and developed with the aim of minimizing estimation time and identification errors. The theory behind the technique is discussed in an accompanying paper. The results presented...... in this paper should be regarded as a further documentation of the technique. The key point in Random Decrement estimation is the formulation of a triggering condition. If the triggering condition is fulfilled a time segment from each measurement is picked out and averaged with previous time segments. The final...

  19. Application of Vector Triggering Random Decrement

    DEFF Research Database (Denmark)

    Asmussen, J. C.; Ibrahim, S. R.; Brincker, Rune

    1997-01-01

    result is a Random Decrement function from each measurement. In traditional Random Decrement estimation the triggering condition is a scalar condition, which should only be fulfilled in a single measurement. In vector triggering Random Decrement the triggering condition is a vector condition......This paper deals with applications of the vector triggering Random Decrement technique. This technique is new and developed with the aim of minimizing estimation time and identification errors. The theory behind the technique is discussed in an accompanying paper. The results presented...... in this paper should be regarded as a further documentation of the technique. The key point in Random Decrement estimation is the formulation of a triggering condition. If the triggering condition is fulfilled a time segment from each measurement is picked out and averaged with previous time segments. The final...

  20. Projection correlation between two random vectors.

    Science.gov (United States)

    Zhu, Liping; Xu, Kai; Li, Runze; Zhong, Wei

    2017-12-01

    We propose the use of projection correlation to characterize dependence between two random vectors. Projection correlation has several appealing properties. It equals zero if and only if the two random vectors are independent, it is not sensitive to the dimensions of the two random vectors, it is invariant with respect to the group of orthogonal transformations, and its estimation is free of tuning parameters and does not require moment conditions on the random vectors. We show that the sample estimate of the projection correction is [Formula: see text]-consistent if the two random vectors are independent and root-[Formula: see text]-consistent otherwise. Monte Carlo simulation studies indicate that the projection correlation has higher power than the distance correlation and the ranks of distances in tests of independence, especially when the dimensions are relatively large or the moment conditions required by the distance correlation are violated.

  1. Random nanolasing in the Anderson localized regime

    DEFF Research Database (Denmark)

    Liu, Jin; Garcia, P. D.; Ek, Sara

    2014-01-01

    The development of nanoscale optical devices for classical and quantum photonics is affected by unavoidable fabrication imperfections that often impose performance limitations. However, disorder may also enable new functionalities, for example in random lasers, where lasing relies on random...... multiple scattering. The applicability of random lasers has been limited due to multidirectional emission, lack of tunability, and strong mode competition with chaotic fluctuations due to a weak mode confinement. The regime of Anderson localization of light has been proposed for obtaining stable multimode...... random lasing, and initial work concerned macroscopic one-dimensional layered media. Here, we demonstrate on-chip random nanolasers where the cavity feedback is provided by the intrinsic disorder. The strong confinement achieved by Anderson localization reduces the spatial overlap between lasing modes...

  2. Dynamic Output Feedback Control for Nonlinear Networked Control Systems with Random Packet Dropout and Random Delay

    Directory of Open Access Journals (Sweden)

    Shuiqing Yu

    2013-01-01

    Full Text Available This paper investigates the dynamic output feedback control for nonlinear networked control systems with both random packet dropout and random delay. Random packet dropout and random delay are modeled as two independent random variables. An observer-based dynamic output feedback controller is designed based upon the Lyapunov theory. The quantitative relationship of the dropout rate, transition probability matrix, and nonlinear level is derived by solving a set of linear matrix inequalities. Finally, an example is presented to illustrate the effectiveness of the proposed method.

  3. What is quantum in quantum randomness?

    Science.gov (United States)

    Grangier, P; Auffèves, A

    2018-07-13

    It is often said that quantum and classical randomness are of different nature, the former being ontological and the latter epistemological. However, so far the question of 'What is quantum in quantum randomness?', i.e. what is the impact of quantization and discreteness on the nature of randomness, remains to be answered. In a first part, we make explicit the differences between quantum and classical randomness within a recently proposed ontology for quantum mechanics based on contextual objectivity. In this view, quantum randomness is the result of contextuality and quantization. We show that this approach strongly impacts the purposes of quantum theory as well as its areas of application. In particular, it challenges current programmes inspired by classical reductionism, aiming at the emergence of the classical world from a large number of quantum systems. In a second part, we analyse quantum physics and thermodynamics as theories of randomness, unveiling their mutual influences. We finally consider new technological applications of quantum randomness that have opened up in the emerging field of quantum thermodynamics.This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'. © 2018 The Author(s).

  4. Evolving Random Forest for Preference Learning

    DEFF Research Database (Denmark)

    Abou-Zleikha, Mohamed; Shaker, Noor

    2015-01-01

    This paper introduces a novel approach for pairwise preference learning through a combination of an evolutionary method and random forest. Grammatical evolution is used to describe the structure of the trees in the Random Forest (RF) and to handle the process of evolution. Evolved random forests ...... obtained for predicting pairwise self-reports of users for the three emotional states engagement, frustration and challenge show very promising results that are comparable and in some cases superior to those obtained from state-of-the-art methods....

  5. Wishart and anti-Wishart random matrices

    International Nuclear Information System (INIS)

    Janik, Romuald A; Nowak, Maciej A

    2003-01-01

    We provide a compact exact representation for the distribution of the matrix elements of the Wishart-type random matrices A † A, for any finite number of rows and columns of A, without any large N approximations. In particular, we treat the case when the Wishart-type random matrix contains redundant, non-random information, which is a new result. This representation is of interest for a procedure for reconstructing the redundant information hidden in Wishart matrices, with potential applications to numerous models based on biological, social and artificial intelligence networks

  6. Quantum optics in multiple scattering random media

    DEFF Research Database (Denmark)

    Lodahl, Peter; Lagendijk, Ad

    2005-01-01

    Quantum Optics in Multiple Scattering Random Media Peter Lodahl Research Center COM, Technical University of Denmark, Dk-2800 Lyngby, Denmark. Coherent transport of light in a disordered random medium has attracted enormous attention both from a fundamental and application point of view. Coherent......-tions that should be readily attainable experimentally is devised. Figure 1. Inverse total transmission of shot noise (left) and technical noise (right) as a function of the thickness of the ran-dom medium. The experimental data are well explained by theory (curves). [1] J. Tworzydlo and C.W.J. Beenakker, Phys. Rev...

  7. A New Substitution Cipher - Random-X

    Directory of Open Access Journals (Sweden)

    Falguni Patel

    2015-08-01

    Full Text Available Ciphers are the encryption methods to prepare the algorithm for encryption and decryption. The currently known ciphers are not strong enough to protect the data. A new substitution cipher Random-X that we introduce in this paper can be used for password encryption and data encryption. Random-X cipher is a unique substitution cipher which replaces the units of plaintext with triplets of letters. The beauty of this cipher is that the encrypted string of the same plain text is not always same. This makes it strong and difficult to crack. This paper covers the principle the implementation ideas and testing of Random-X cipher.

  8. Randomness as a resource for design

    DEFF Research Database (Denmark)

    Leong, T.; Vetere, F.; Howard, Steve

    2006-01-01

    is used to engender certain affective responses (such as feeling refreshed) by using various constraining techniques (such as playlists) whilst engaging in everyday activities (such as driving a car). The paper argues that randomness can be used as an innovative design resource for supporting rich...... examining the influence of randomness on the user experience of music listening. 113 instances of self-reporting were collected and analysed according to four themes: listening mode, content organisation, activities during listening, and affective outcomes. The analysis provides insights into how randomness...

  9. Elements of random walk and diffusion processes

    CERN Document Server

    Ibe, Oliver C

    2013-01-01

    Presents an important and unique introduction to random walk theory Random walk is a stochastic process that has proven to be a useful model in understanding discrete-state discrete-time processes across a wide spectrum of scientific disciplines. Elements of Random Walk and Diffusion Processes provides an interdisciplinary approach by including numerous practical examples and exercises with real-world applications in operations research, economics, engineering, and physics. Featuring an introduction to powerful and general techniques that are used in the application of physical and dynamic

  10. Iterated random walks with shape prior

    DEFF Research Database (Denmark)

    Pujadas, Esmeralda Ruiz; Kjer, Hans Martin; Piella, Gemma

    2016-01-01

    the parametric probability density function. Then, random walks is performed iteratively aligning the prior with the current segmentation in every iteration. We tested the proposed approach with natural and medical images and compared it with the latest techniques with random walks and shape priors......We propose a new framework for image segmentation using random walks where a distance shape prior is combined with a region term. The shape prior is weighted by a confidence map to reduce the influence of the prior in high gradient areas and the region term is computed with k-means to estimate....... The experiments suggest that this method gives promising results for medical and natural images....

  11. Randomized Prediction Games for Adversarial Machine Learning.

    Science.gov (United States)

    Rota Bulo, Samuel; Biggio, Battista; Pillai, Ignazio; Pelillo, Marcello; Roli, Fabio

    In spam and malware detection, attackers exploit randomization to obfuscate malicious data and increase their chances of evading detection at test time, e.g., malware code is typically obfuscated using random strings or byte sequences to hide known exploits. Interestingly, randomization has also been proposed to improve security of learning algorithms against evasion attacks, as it results in hiding information about the classifier to the attacker. Recent work has proposed game-theoretical formulations to learn secure classifiers, by simulating different evasion attacks and modifying the classification function accordingly. However, both the classification function and the simulated data manipulations have been modeled in a deterministic manner, without accounting for any form of randomization. In this paper, we overcome this limitation by proposing a randomized prediction game, namely, a noncooperative game-theoretic formulation in which the classifier and the attacker make randomized strategy selections according to some probability distribution defined over the respective strategy set. We show that our approach allows one to improve the tradeoff between attack detection and false alarms with respect to the state-of-the-art secure classifiers, even against attacks that are different from those hypothesized during design, on application examples including handwritten digit recognition, spam, and malware detection.In spam and malware detection, attackers exploit randomization to obfuscate malicious data and increase their chances of evading detection at test time, e.g., malware code is typically obfuscated using random strings or byte sequences to hide known exploits. Interestingly, randomization has also been proposed to improve security of learning algorithms against evasion attacks, as it results in hiding information about the classifier to the attacker. Recent work has proposed game-theoretical formulations to learn secure classifiers, by simulating different

  12. Size effects in two-dimensional Voronoi foams : A comparison between generalized continua and discrete models

    NARCIS (Netherlands)

    Tekoglu, Cihan; Onck, Patrick R.

    2008-01-01

    In view of size effects in cellular solids, we critically compare the analytical results of generalized continuum theories with the computation a I results of discrete models. Representatives are studied from two classes of generalized continuum theories: the strain divergence theory from the class

  13. Percolation Line, Response Functions, and Voronoi Polyhedra Analysis in Supercritical Water

    Czech Academy of Sciences Publication Activity Database

    Škvor, J.; Nezbeda, Ivo

    2012-01-01

    Roč. 15, č. 2 (2012), s. 23301 ISSN 1607-324X R&D Projects: GA AV ČR IAA200760905 Grant - others:GA UJEP(CZ) 53223–15–0010–01 Institutional support: RVO:67985858 Keywords : percolation line * response functions * widom lines Subject RIV: BJ - Thermodynamics Impact factor: 0.757, year: 2012

  14. Connected Components Labeling on the GPU with Generalization to Voronoi Diagrams and Signed Distance Fields

    DEFF Research Database (Denmark)

    Rasmusson, Allan; Sørensen, Thomas Sangild; Ziegler, Gernot

    2013-01-01

    Many image processing problems benefit from a complete solution to connected components labeling. This paper introduces a new data parallel labeling method based on calculation of label propagation sizes from the connectivity between pixels extracted in a pre-processing step and re-usal of establ...

  15. Analyzing the reflections from single ommatidia in the butterfly compound eye with Voronoi diagrams

    NARCIS (Netherlands)

    Vanhoutte, KJA; Michielsen, KFL; Stavenga, DG

    2003-01-01

    This paper presents a robust method for the automated segmentation and quantitative measurement of reflections from single ommatidia in the butterfly compound eye. Digital pictures of the butterfly eye shine recorded with a digital camera are processed to yield binary images from which single facet

  16. Random matrix model for disordered conductors

    Indian Academy of Sciences (India)

    In the interpretation of transport properties of mesoscopic systems, the multichannel ... One defines the random matrix model with N eigenvalues 0. λТ ..... With heuristic arguments, using the ideas pertaining to Dyson Coulomb gas analogy,.

  17. More randomness from the same data

    International Nuclear Information System (INIS)

    Bancal, Jean-Daniel; Sheridan, Lana; Scarani, Valerio

    2014-01-01

    Correlations that cannot be reproduced with local variables certify the generation of private randomness. Usually, the violation of a Bell inequality is used to quantify the amount of randomness produced. Here, we show how private randomness generated during a Bell test can be directly quantified from the observed correlations, without the need to process these data into an inequality. The frequency with which the different measurement settings are used during the Bell test can also be taken into account. This improved analysis turns out to be very relevant for Bell tests performed with a finite collection efficiency. In particular, applying our technique to the data of a recent experiment (Christensen et al 2013 Phys. Rev. Lett. 111 130406), we show that about twice as much randomness as previously reported can be potentially extracted from this setup. (paper)

  18. Criticality and entanglement in random quantum systems

    International Nuclear Information System (INIS)

    Refael, G; Moore, J E

    2009-01-01

    We review studies of entanglement entropy in systems with quenched randomness, concentrating on universal behavior at strongly random quantum critical points. The disorder-averaged entanglement entropy provides insight into the quantum criticality of these systems and an understanding of their relationship to non-random ('pure') quantum criticality. The entanglement near many such critical points in one dimension shows a logarithmic divergence in subsystem size, similar to that in the pure case but with a different universal coefficient. Such universal coefficients are examples of universal critical amplitudes in a random system. Possible measurements are reviewed along with the one-particle entanglement scaling at certain Anderson localization transitions. We also comment briefly on higher dimensions and challenges for the future.

  19. Blinding in randomized clinical trials: imposed impartiality

    DEFF Research Database (Denmark)

    Hróbjartsson, A; Boutron, I

    2011-01-01

    Blinding, or "masking," is a crucial method for reducing bias in randomized clinical trials. In this paper, we review important methodological aspects of blinding, emphasizing terminology, reporting, bias mechanisms, empirical evidence, and the risk of unblinding. Theoretical considerations...

  20. Using Random Numbers in Science Research Activities.

    Science.gov (United States)

    Schlenker, Richard M.; And Others

    1996-01-01

    Discusses the importance of science process skills and describes ways to select sets of random numbers for selection of subjects for a research study in an unbiased manner. Presents an activity appropriate for grades 5-12. (JRH)