WorldWideScience

Sample records for random voronoi tessellations

  1. Voronoi Tessellations and Their Application to Climate and Global Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Lili [University of South Carolina; Ringler, Todd [Los Alamos National Laboratory; Gunzburger, Max [Florida State University

    2011-01-01

    We review the use of Voronoi tessellations for grid generation, especially on the whole sphere or in regions on the sphere. Voronoi tessellations and the corresponding Delaunay tessellations in regions and surfaces on Euclidean space are defined and properties they possess that make them well-suited for grid generation purposes are discussed, as are algorithms for their construction. This is followed by a more detailed look at one very special type of Voronoi tessellation, the centroidal Voronoi tessellation (CVT). After defining them, discussing some of their properties, and presenting algorithms for their construction, we illustrate the use of CVTs for producing both quasi-uniform and variable resolution meshes in the plane and on the sphere. Finally, we briefly discuss the computational solution of model equations based on CVTs on the sphere.

  2. Bernoulli cluster field: Voronoi tessellations

    Czech Academy of Sciences Publication Activity Database

    Saxl, Ivan; Ponížil, P.

    2002-01-01

    Roč. 47, č. 2 (2002), s. 157-167 ISSN 0862-7940. [Programs and Algorithms of Numerical Mathematics (PANMď00). Lázně Libverda, 12.06.2000-16.06.2000] R&D Projects: GA ČR GA201/99/0269; GA MŠk PG96108 Keywords : cluster point process%Voronoi tessellation%induced tessellation Subject RIV: BE - Theoretical Physics

  3. Three-Dimensional Random Voronoi Tessellations: From Cubic Crystal Lattices to Poisson Point Processes

    Science.gov (United States)

    Lucarini, Valerio

    2009-01-01

    We perturb the simple cubic (SC), body-centered cubic (BCC), and face-centered cubic (FCC) structures with a spatial Gaussian noise whose adimensional strength is controlled by the parameter α and analyze the statistical properties of the cells of the resulting Voronoi tessellations using an ensemble approach. We concentrate on topological properties of the cells, such as the number of faces, and on metric properties of the cells, such as the area, volume and the isoperimetric quotient. The topological properties of the Voronoi tessellations of the SC and FCC crystals are unstable with respect to the introduction of noise, because the corresponding polyhedra are geometrically degenerate, whereas the tessellation of the BCC crystal is topologically stable even against noise of small but finite intensity. Whereas the average volume of the cells is the intensity parameter of the system and does not depend on the noise, the average area of the cells has a rather interesting behavior with respect to noise intensity. For weak noise, the mean area of the Voronoi tessellations corresponding to perturbed BCC and FCC perturbed increases quadratically with the noise intensity. In the case of perturbed SCC crystals, there is an optimal amount of noise that minimizes the mean area of the cells. Already for a moderate amount of noise ( α>0.5), the statistical properties of the three perturbed tessellations are indistinguishable, and for intense noise ( α>2), results converge to those of the Poisson-Voronoi tessellation. Notably, 2-parameter gamma distributions constitute an excellent model for the empirical pdf of all considered topological and metric properties. By analyzing jointly the statistical properties of the area and of the volume of the cells, we discover that also the cells shape, measured by the isoperimetric quotient, fluctuates. The Voronoi tessellations of the BCC and of the FCC structures result to be local maxima for the isoperimetric quotient among space

  4. Using the Voronoi tessellation for grouping words and multipart symbols in documents

    Science.gov (United States)

    Burge, Mark J.; Monagan, Gladys

    1995-08-01

    We examine the importance of the definition of neighbors and neighborhoods for grouping in document understanding and list some previous definitions. We present a number of benefits to using the Voronoi neighborhood definition; however, we argue that definitions based upon the point Voronoi diagrams are insufficient in the general case (e.g. for grouping image elements in line drawings). We give the definition of a generalized (Euclidean distance measure, 2D Cartesian space, and an area based generator set) Voronoi tessellation and then present our algorithm for approximating this generalized tessellation. The algorithm is constructed from a normal point Voronoi tessellation algorithm. A parameterized Voronoi neighborhood graph (VNG) which can be derived from the tessellation is defined. A graph algorithm for grouping based on the VNG, its image elements, and Voronoi cell descriptors can then be easily derived. We show some results of how this algorithm was used in a map understanding system.

  5. Three-dimensional Random Voronoi Tessellations: From Cubic Crystal Lattices to Poisson Point Processes

    OpenAIRE

    Lucarini, Valerio

    2008-01-01

    We perturb the SC, BCC, and FCC crystal structures with a spatial Gaussian noise whose adimensional strength is controlled by the parameter a, and analyze the topological and metrical properties of the resulting Voronoi Tessellations (VT). The topological properties of the VT of the SC and FCC crystals are unstable with respect to the introduction of noise, because the corresponding polyhedra are geometrically degenerate, whereas the tessellation of the BCC crystal is topologically stable eve...

  6. Non-obtuse Remeshing with Centroidal Voronoi Tessellation

    KAUST Repository

    Yan, Dongming; Wonka, Peter

    2015-01-01

    We present a novel remeshing algorithm that avoids triangles with small and triangles with large (obtuse) angles. Our solution is based on an extension to Centroidal Voronoi Tesselation (CVT). We augment the original CVT formulation by a penalty term that penalizes short Voronoi edges, while the CVT term helps to avoid small angles. Our results show significant improvements of the remeshing quality over the state of the art.

  7. Non-obtuse Remeshing with Centroidal Voronoi Tessellation

    KAUST Repository

    Yan, Dongming

    2015-12-03

    We present a novel remeshing algorithm that avoids triangles with small and triangles with large (obtuse) angles. Our solution is based on an extension to Centroidal Voronoi Tesselation (CVT). We augment the original CVT formulation by a penalty term that penalizes short Voronoi edges, while the CVT term helps to avoid small angles. Our results show significant improvements of the remeshing quality over the state of the art.

  8. Simulating the pervasive fracture and fragmentation of materials and structures using randomly close-packed Voronoi tessellations.

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, Joseph E.

    2008-09-01

    Under extreme loading conditions most often the extent of material and structural fracture is pervasive in the sense that a multitude of cracks are nucleating, propagating in arbitrary directions, coalescing, and branching. Pervasive fracture is a highly nonlinear process involving complex material constitutive behavior, material softening, localization, surface generation, and ubiquitous contact. Two primary applications in which pervasive fracture is encountered are (1) weapons effects on structures and (2) geomechanics of highly jointed and faulted reservoirs. A pure Lagrangian computational method based on randomly close-packed Voronoi tessellations is proposed as a rational approach for simulating the pervasive fracture of materials and structures. Each Voronoi cell is formulated as a finite element using the reproducing kernel method. Fracture surfaces are allowed to nucleate only at the intercell faces. The randomly seeded Voronoi cells provide an unbiased network for representing cracks. In this initial study two approaches for allowing the new surfaces to initiate are studied: (1) dynamic mesh connectivity and the instantaneous insertion of a cohesive traction when localization is detected, and (2) a discontinuous Galerkin approach in which the interelement tractions are an integral part of the variational formulation, but only become active once localization is detected. Pervasive fracture problems are extremely sensitive to initial conditions and system parameters. Dynamic problems exhibit a form of transient chaos. The primary numerical challenge for this class of problems is the demonstration of model objectivity and, in particular, the identification and demonstration of a measure of convergence for engineering quantities of interest.

  9. Voronoi-Tessellated Graphite Produced by Low-Temperature Catalytic Graphitization from Renewable Resources.

    Science.gov (United States)

    Zhao, Leyi; Zhao, Xiuyun; Burke, Luke T; Bennett, J Craig; Dunlap, Richard A; Obrovac, Mark N

    2017-09-11

    A highly crystalline graphite powder was prepared from the low temperature (800-1000 °C) graphitization of renewable hard carbon precursors using a magnesium catalyst. The resulting graphite particles are composed of Voronoi-tessellated regions comprising irregular sheets; each Voronoi-tessellated region having a small "seed" particle located near their centroid on the surface. This suggests nucleated outward growth of graphitic carbon, which has not been previously observed. Each seed particle consists of a spheroidal graphite shell on the inside of which hexagonal graphite platelets are perpendicularly affixed. This results in a unique high surface area graphite with a high degree of graphitization that is made with renewable feedstocks at temperatures far below that conventionally used for artificial graphites. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Identifying Phase Space Boundaries with Voronoi Tessellations

    CERN Document Server

    Debnath, Dipsikha; Kilic, Can; Kim, Doojin; Matchev, Konstantin T.; Yang, Yuan-Pao

    2016-11-24

    Determining the masses of new physics particles appearing in decay chains is an important and longstanding problem in high energy phenomenology. Recently it has been shown that these mass measurements can be improved by utilizing the boundary of the allowed region in the fully differentiable phase space in its full dimensionality. Here we show that the practical challenge of identifying this boundary can be solved using techniques based on the geometric properties of the cells resulting from Voronoi tessellations of the relevant data. The robust detection of such phase space boundaries in the data could also be used to corroborate a new physics discovery based on a cut-and-count analysis.

  11. Identifying phase-space boundaries with Voronoi tessellations

    International Nuclear Information System (INIS)

    Debnath, Dipsikha; Matchev, Konstantin T.; Gainer, James S.; Kilic, Can; Yang, Yuan-Pao; Kim, Doojin

    2016-01-01

    Determining the masses of new physics particles appearing in decay chains is an important and longstanding problem in high energy phenomenology. Recently it has been shown that these mass measurements can be improved by utilizing the boundary of the allowed region in the fully differentiable phase space in its full dimensionality. Here we show that the practical challenge of identifying this boundary can be solved using techniques based on the geometric properties of the cells resulting from Voronoi tessellations of the relevant data. The robust detection of such phase-space boundaries in the data could also be used to corroborate a new physics discovery based on a cut-and-count analysis. (orig.)

  12. Identifying phase-space boundaries with Voronoi tessellations

    Energy Technology Data Exchange (ETDEWEB)

    Debnath, Dipsikha; Matchev, Konstantin T. [University of Florida, Physics Department, Gainesville, FL (United States); Gainer, James S. [University of Hawaii, Department of Physics and Astronomy, Honolulu, HI (United States); Kilic, Can; Yang, Yuan-Pao [The University of Texas at Austin, Theory Group, Department of Physics and Texas Cosmology Center, Austin, TX (United States); Kim, Doojin [University of Florida, Physics Department, Gainesville, FL (United States); CERN, Theory Division, Geneva 23 (Switzerland)

    2016-11-15

    Determining the masses of new physics particles appearing in decay chains is an important and longstanding problem in high energy phenomenology. Recently it has been shown that these mass measurements can be improved by utilizing the boundary of the allowed region in the fully differentiable phase space in its full dimensionality. Here we show that the practical challenge of identifying this boundary can be solved using techniques based on the geometric properties of the cells resulting from Voronoi tessellations of the relevant data. The robust detection of such phase-space boundaries in the data could also be used to corroborate a new physics discovery based on a cut-and-count analysis. (orig.)

  13. Voronoi tessellations and the cosmic web : Spatial patterns and clustering across the universe

    NARCIS (Netherlands)

    van de Weygaert, Rien; Gold, CM

    2007-01-01

    The spatial cosmic matter distribution on scales of a few up to more than a hundred Megaparsec(1) displays a salient and pervasive foamlike pattern. Voronoi tessellations are a versatile and flexible mathematical model for such weblike spatial patterns. They would be the natural result of an

  14. Finding Clusters of Galaxies in the Sloan Digital Sky Survey using Voronoi Tessellation

    International Nuclear Information System (INIS)

    Rita S.J., Kim

    2001-01-01

    The Sloan Digital Sky Survey has obtained 450 square degrees of photometric scan data, in five bands (u', g', r', i', z'), which the authors use to identify clusters of galaxies. They illustrate how they do star-galaxy separation, and present a simple and elegant method of detecting over-densities in the galaxy distribution, using the Voronoi Tessellation

  15. Comparison of pure and 'Latinized' centroidal Voronoi tessellation against various other statistical sampling methods

    International Nuclear Information System (INIS)

    Romero, Vicente J.; Burkardt, John V.; Gunzburger, Max D.; Peterson, Janet S.

    2006-01-01

    A recently developed centroidal Voronoi tessellation (CVT) sampling method is investigated here to assess its suitability for use in statistical sampling applications. CVT efficiently generates a highly uniform distribution of sample points over arbitrarily shaped M-dimensional parameter spaces. On several 2-D test problems CVT has recently been found to provide exceedingly effective and efficient point distributions for response surface generation. Additionally, for statistical function integration and estimation of response statistics associated with uniformly distributed random-variable inputs (uncorrelated), CVT has been found in initial investigations to provide superior points sets when compared against latin-hypercube and simple-random Monte Carlo methods and Halton and Hammersley quasi-random sequence methods. In this paper, the performance of all these sampling methods and a new variant ('Latinized' CVT) are further compared for non-uniform input distributions. Specifically, given uncorrelated normal inputs in a 2-D test problem, statistical sampling efficiencies are compared for resolving various statistics of response: mean, variance, and exceedence probabilities

  16. Phase transformation kinetics of Voronoi cells in space tessellation governed by the Kolmogorov–Johnson–Mehl–Avrami model

    Energy Technology Data Exchange (ETDEWEB)

    Tomellini, Massimo, E-mail: tomellini@uniroma2.it

    2017-03-26

    On the basis of the Kolmogorov–Johnson–Mehl–Avrami (KJMA) method for space tessellation the kinetics of Voronoi cell filling, by central grain growth, has been studied as a function of the cell size. This is done by solving an integral equation for which a class of solutions is obtained in closed form, where the cell-size probability density is the Gamma distribution function. The computation gives the time evolution of the mean grain size, as a function of cell volume, which is further employed for describing the grain-size probability density function. The present approach is applied to determine, analytically, the exact grain-size distribution function in 1D and the size distributions in 2D and 3D through approximation. - Highlights: • The kinetics of cell filling is determined for Poisson–Voronoi tessellation in dD. • The kinetics is obtained in closed form by solving an integral equation. • Connection between the evolution of the mean grain and the size distribution is studied. • The exact grain-size distribution function is determined, analytically, in 1D.

  17. Modeling spreading of oil slicks based on random walk methods and Voronoi diagrams

    International Nuclear Information System (INIS)

    Durgut, İsmail; Reed, Mark

    2017-01-01

    We introduce a methodology for representation of a surface oil slick using a Voronoi diagram updated at each time step. The Voronoi cells scale the Gaussian random walk procedure representing the spreading process by individual particle stepping. The step length of stochastically moving particles is based on a theoretical model of the spreading process, establishing a relationship between the step length of diffusive spreading and the thickness of the slick at the particle locations. The Voronoi tessellation provides the areal extent of the slick particles and in turn the thicknesses of the slick and the diffusive-type spreading length for all particles. The algorithm successfully simulates the spreading process and results show very good agreement with the analytical solution. Moreover, the results are robust for a wide range of values for computational time step and total number of particles. - Highlights: • A methodology for representation of a surface oil slick using a Voronoi diagram • An algorithm simulating the spreading of oil slick with the Voronoi diagram representation • The algorithm employs the Gaussian random walk method through individual particle stepping. • The diffusive spreading is based on a theoretical model of the spreading process. • Algorithm is computationally robust and successfully reproduces analytical solutions to the spreading process.

  18. 3D random Voronoi grain-based models for simulation of brittle rock damage and fabric-guided micro-fracturing

    Directory of Open Access Journals (Sweden)

    E. Ghazvinian

    2014-12-01

    Full Text Available A grain-based distinct element model featuring three-dimensional (3D Voronoi tessellations (random poly-crystals is proposed for simulation of crack damage development in brittle rocks. The grain boundaries in poly-crystal structure produced by Voronoi tessellations can represent flaws in intact rock and allow for numerical replication of crack damage progression through initiation and propagation of micro-fractures along grain boundaries. The Voronoi modelling scheme has been used widely in the past for brittle fracture simulation of rock materials. However the difficulty of generating 3D Voronoi models has limited its application to two-dimensional (2D codes. The proposed approach is implemented in Neper, an open-source engine for generation of 3D Voronoi grains, to generate block geometry files that can be read directly into 3DEC. A series of Unconfined Compressive Strength (UCS tests are simulated in 3DEC to verify the proposed methodology for 3D simulation of brittle fractures and to investigate the relationship between each micro-parameter and the model's macro-response. The possibility of numerical replication of the classical U-shape strength curve for anisotropic rocks is also investigated in numerical UCS tests by using complex-shaped (elongated grains that are cemented to one another along their adjoining sides. A micro-parameter calibration procedure is established for 3D Voronoi models for accurate replication of the mechanical behaviour of isotropic and anisotropic (containing a fabric rocks.

  19. Efficient computation of clipped Voronoi diagram for mesh generation

    KAUST Repository

    Yan, Dongming

    2013-04-01

    The Voronoi diagram is a fundamental geometric structure widely used in various fields, especially in computer graphics and geometry computing. For a set of points in a compact domain (i.e. a bounded and closed 2D region or a 3D volume), some Voronoi cells of their Voronoi diagram are infinite or partially outside of the domain, but in practice only the parts of the cells inside the domain are needed, as when computing the centroidal Voronoi tessellation. Such a Voronoi diagram confined to a compact domain is called a clipped Voronoi diagram. We present an efficient algorithm to compute the clipped Voronoi diagram for a set of sites with respect to a compact 2D region or a 3D volume. We also apply the proposed method to optimal mesh generation based on the centroidal Voronoi tessellation. Crown Copyright © 2011 Published by Elsevier Ltd. All rights reserved.

  20. Efficient computation of clipped Voronoi diagram for mesh generation

    KAUST Repository

    Yan, Dongming; Wang, Wen Ping; Lé vy, Bruno L.; Liu, Yang

    2013-01-01

    The Voronoi diagram is a fundamental geometric structure widely used in various fields, especially in computer graphics and geometry computing. For a set of points in a compact domain (i.e. a bounded and closed 2D region or a 3D volume), some Voronoi cells of their Voronoi diagram are infinite or partially outside of the domain, but in practice only the parts of the cells inside the domain are needed, as when computing the centroidal Voronoi tessellation. Such a Voronoi diagram confined to a compact domain is called a clipped Voronoi diagram. We present an efficient algorithm to compute the clipped Voronoi diagram for a set of sites with respect to a compact 2D region or a 3D volume. We also apply the proposed method to optimal mesh generation based on the centroidal Voronoi tessellation. Crown Copyright © 2011 Published by Elsevier Ltd. All rights reserved.

  1. Bayesian analysis of spatial point processes in the neighbourhood of Voronoi networks

    DEFF Research Database (Denmark)

    Skare, Øivind; Møller, Jesper; Jensen, Eva Bjørn Vedel

    2007-01-01

    A model for an inhomogeneous Poisson process with high intensity near the edges of a Voronoi tessellation in 2D or 3D is proposed. The model is analysed in a Bayesian setting with priors on nuclei of the Voronoi tessellation and other model parameters. An MCMC algorithm is constructed to sample...

  2. Bayesian analysis of spatial point processes in the neighbourhood of Voronoi networks

    DEFF Research Database (Denmark)

    Skare, Øivind; Møller, Jesper; Vedel Jensen, Eva B.

    A model for an inhomogeneous Poisson process with high intensity near the edges of a Voronoi tessellation in 2D or 3D is proposed. The model is analysed in a Bayesian setting with priors on nuclei of the Voronoi tessellation and other model parameters. An MCMC algorithm is constructed to sample...

  3. Application of Tessellation in Architectural Geometry Design

    Science.gov (United States)

    Chang, Wei

    2018-06-01

    Tessellation plays a significant role in architectural geometry design, which is widely used both through history of architecture and in modern architectural design with the help of computer technology. Tessellation has been found since the birth of civilization. In terms of dimensions, there are two- dimensional tessellations and three-dimensional tessellations; in terms of symmetry, there are periodic tessellations and aperiodic tessellations. Besides, some special types of tessellations such as Voronoi Tessellation and Delaunay Triangles are also included. Both Geometry and Crystallography, the latter of which is the basic theory of three-dimensional tessellations, need to be studied. In history, tessellation was applied into skins or decorations in architecture. The development of Computer technology enables tessellation to be more powerful, as seen in surface control, surface display and structure design, etc. Therefore, research on the application of tessellation in architectural geometry design is of great necessity in architecture studies.

  4. The Voronoi Tessellation cluster finder in 2+1 dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Soares-Santos, Marcelle; /Fermilab /Sao Paulo U.; de Carvalho, Reinaldo R.; /Sao Jose, INPE; Annis, James; /Fermilab; Gal, Roy R.; /Hawaii U.; La Barbera, Francesco; /Capodimonte Observ.; Lopes, Paulo A.A.; /Valongo Observ.; Wechsler, Risa H.; Busha, Michael T.; Gerke, Brian F.; /SLAC /KIPAC, Menlo Park

    2010-11-01

    We present a detailed description of the Voronoi Tessellation (VT) cluster finder algorithm in 2+1 dimensions, which improves on past implementations of this technique. The need for cluster finder algorithms able to produce reliable cluster catalogs up to redshift 1 or beyond and down to 10{sup 13.5} solar masses is paramount especially in light of upcoming surveys aiming at cosmological constraints from galaxy cluster number counts. We build the VT in photometric redshift shells and use the two-point correlation function of the galaxies in the field to both determine the density threshold for detection of cluster candidates and to establish their significance. This allows us to detect clusters in a self-consistent way without any assumptions about their astrophysical properties. We apply the VT to mock catalogs which extend to redshift 1.4 reproducing the {Lambda}CDM cosmology and the clustering properties observed in the Sloan Digital Sky Survey data. An objective estimate of the cluster selection function in terms of the completeness and purity as a function of mass and redshift is as important as having a reliable cluster finder. We measure these quantities by matching the VT cluster catalog with the mock truth table. We show that the VT can produce a cluster catalog with completeness and purity >80% for the redshift range up to {approx}1 and mass range down to {approx}10{sup 13.5} solar masses.

  5. The Voronoi Tessellation Cluster Finder in 2 1 Dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Soares-Santos, Marcelle; /Fermilab /Sao Paulo U.; de Carvalho, Reinaldo R.; /Sao Jose, INPE; Annis, James; /Fermilab; Gal, Roy R.; /Hawaii U.; La Barbera, Francesco; /Capodimonte Observ.; Lopes, Paulo A.A.; /Valongo Observ.; Wechsler, Risa H.; Busha, Michael T.; Gerke, Brian F.; /SLAC /KIPAC, Menlo Park

    2011-06-23

    We present a detailed description of the Voronoi Tessellation (VT) cluster finder algorithm in 2+1 dimensions, which improves on past implementations of this technique. The need for cluster finder algorithms able to produce reliable cluster catalogs up to redshift 1 or beyond and down to 10{sup 13.5} solar masses is paramount especially in light of upcoming surveys aiming at cosmological constraints from galaxy cluster number counts. We build the VT in photometric redshift shells and use the two-point correlation function of the galaxies in the field to both determine the density threshold for detection of cluster candidates and to establish their significance. This allows us to detect clusters in a self-consistent way without any assumptions about their astrophysical properties. We apply the VT to mock catalogs which extend to redshift 1.4 reproducing the ?CDM cosmology and the clustering properties observed in the Sloan Digital Sky Survey data. An objective estimate of the cluster selection function in terms of the completeness and purity as a function of mass and redshift is as important as having a reliable cluster finder. We measure these quantities by matching the VT cluster catalog with the mock truth table. We show that the VT can produce a cluster catalog with completeness and purity >80% for the redshift range up to {approx}1 and mass range down to {approx}10{sup 13.5} solar masses.

  6. THE VORONOI TESSELLATION CLUSTER FINDER IN 2+1 DIMENSIONS

    International Nuclear Information System (INIS)

    Soares-Santos, Marcelle; Annis, James; De Carvalho, Reinaldo R.; Gal, Roy R.; La Barbera, Francesco; Lopes, Paulo A. A.; Wechsler, Risa H.; Busha, Michael T.; Gerke, Brian F.

    2011-01-01

    We present a detailed description of the Voronoi Tessellation (VT) cluster finder algorithm in 2+1 dimensions, which improves on past implementations of this technique. The need for cluster finder algorithms able to produce reliable cluster catalogs up to redshift 1 or beyond and down to 10 13.5 solar masses is paramount especially in light of upcoming surveys aiming at cosmological constraints from galaxy cluster number counts. We build the VT in photometric redshift shells and use the two-point correlation function of the galaxies in the field to both determine the density threshold for detection of cluster candidates and to establish their significance. This allows us to detect clusters in a self-consistent way without any assumptions about their astrophysical properties. We apply the VT to mock catalogs which extend to redshift 1.4 reproducing the ΛCDM cosmology and the clustering properties observed in the Sloan Digital Sky Survey data. An objective estimate of the cluster selection function in terms of the completeness and purity as a function of mass and redshift is as important as having a reliable cluster finder. We measure these quantities by matching the VT cluster catalog with the mock truth table. We show that the VT can produce a cluster catalog with completeness and purity >80% for the redshift range up to ∼1 and mass range down to ∼10 13.5 solar masses.

  7. TESS: A RELATIVISTIC HYDRODYNAMICS CODE ON A MOVING VORONOI MESH

    International Nuclear Information System (INIS)

    Duffell, Paul C.; MacFadyen, Andrew I.

    2011-01-01

    We have generalized a method for the numerical solution of hyperbolic systems of equations using a dynamic Voronoi tessellation of the computational domain. The Voronoi tessellation is used to generate moving computational meshes for the solution of multidimensional systems of conservation laws in finite-volume form. The mesh-generating points are free to move with arbitrary velocity, with the choice of zero velocity resulting in an Eulerian formulation. Moving the points at the local fluid velocity makes the formulation effectively Lagrangian. We have written the TESS code to solve the equations of compressible hydrodynamics and magnetohydrodynamics for both relativistic and non-relativistic fluids on a dynamic Voronoi mesh. When run in Lagrangian mode, TESS is significantly less diffusive than fixed mesh codes and thus preserves contact discontinuities to high precision while also accurately capturing strong shock waves. TESS is written for Cartesian, spherical, and cylindrical coordinates and is modular so that auxiliary physics solvers are readily integrated into the TESS framework and so that this can be readily adapted to solve general systems of equations. We present results from a series of test problems to demonstrate the performance of TESS and to highlight some of the advantages of the dynamic tessellation method for solving challenging problems in astrophysical fluid dynamics.

  8. Detecting and extracting clusters in atom probe data: A simple, automated method using Voronoi cells

    International Nuclear Information System (INIS)

    Felfer, P.; Ceguerra, A.V.; Ringer, S.P.; Cairney, J.M.

    2015-01-01

    The analysis of the formation of clusters in solid solutions is one of the most common uses of atom probe tomography. Here, we present a method where we use the Voronoi tessellation of the solute atoms and its geometric dual, the Delaunay triangulation to test for spatial/chemical randomness of the solid solution as well as extracting the clusters themselves. We show how the parameters necessary for cluster extraction can be determined automatically, i.e. without user interaction, making it an ideal tool for the screening of datasets and the pre-filtering of structures for other spatial analysis techniques. Since the Voronoi volumes are closely related to atomic concentrations, the parameters resulting from this analysis can also be used for other concentration based methods such as iso-surfaces. - Highlights: • Cluster analysis of atom probe data can be significantly simplified by using the Voronoi cell volumes of the atomic distribution. • Concentration fields are defined on a single atomic basis using Voronoi cells. • All parameters for the analysis are determined by optimizing the separation probability of bulk atoms vs clustered atoms

  9. Low-resolution remeshing using the localized restricted voronoi diagram

    KAUST Repository

    Yan, Dongming; Bao, Guanbo; Zhang, Xiaopeng; Wonka, Peter

    2014-01-01

    A big problem in triangular remeshing is to generate meshes when the triangle size approaches the feature size in the mesh. The main obstacle for Centroidal Voronoi Tessellation (CVT)-based remeshing is to compute a suitable Voronoi diagram. In this paper, we introduce the localized restricted Voronoi diagram (LRVD) on mesh surfaces. The LRVD is an extension of the restricted Voronoi diagram (RVD), but it addresses the problem that the RVD can contain Voronoi regions that consist of multiple disjoint surface patches. Our definition ensures that each Voronoi cell in the LRVD is a single connected region. We show that the LRVD is a useful extension to improve several existing mesh-processing techniques, most importantly surface remeshing with a low number of vertices. While the LRVD and RVD are identical in most simple configurations, the LRVD is essential when sampling a mesh with a small number of points and for sampling surface areas that are in close proximity to other surface areas, e.g., nearby sheets. To compute the LRVD, we combine local discrete clustering with a global exact computation. © 1995-2012 IEEE.

  10. Low-resolution remeshing using the localized restricted voronoi diagram

    KAUST Repository

    Yan, Dongming

    2014-10-01

    A big problem in triangular remeshing is to generate meshes when the triangle size approaches the feature size in the mesh. The main obstacle for Centroidal Voronoi Tessellation (CVT)-based remeshing is to compute a suitable Voronoi diagram. In this paper, we introduce the localized restricted Voronoi diagram (LRVD) on mesh surfaces. The LRVD is an extension of the restricted Voronoi diagram (RVD), but it addresses the problem that the RVD can contain Voronoi regions that consist of multiple disjoint surface patches. Our definition ensures that each Voronoi cell in the LRVD is a single connected region. We show that the LRVD is a useful extension to improve several existing mesh-processing techniques, most importantly surface remeshing with a low number of vertices. While the LRVD and RVD are identical in most simple configurations, the LRVD is essential when sampling a mesh with a small number of points and for sampling surface areas that are in close proximity to other surface areas, e.g., nearby sheets. To compute the LRVD, we combine local discrete clustering with a global exact computation. © 1995-2012 IEEE.

  11. 3D RECONSTRUCTION OF A MULTISCALE MICROSTRUCTURE BY ANISOTROPIC TESSELLATION MODELS

    Directory of Open Access Journals (Sweden)

    Hellen Altendorf

    2014-05-01

    Full Text Available In the area of tessellation models, there is an intense activity to fully understand the classical models of Voronoi, Laguerre and Johnson-Mehl. Still, these models are all simulations of isotropic growth and are therefore limited to very simple and partly convex cell shapes. The here considered microstructure of martensitic steel has a much more complex and highly non convex cell shape, requiring new tessellation models. This paper presents a new approach for anisotropic tessellation models that resolve to the well-studied cases of Laguerre and Johnson-Mehl for spherical germs. Much better reconstructions can be achieved with these models and thus more realistic microstructure simulations can be produced for materials widely used in industry like martensitic and bainitic steels.

  12. Fitting polynomial surfaces to triangular meshes with Voronoi squared distance minimization

    KAUST Repository

    Nivoliers, Vincent

    2012-11-06

    This paper introduces Voronoi squared distance minimization (VSDM), an algorithm that fits a surface to an input mesh. VSDM minimizes an objective function that corresponds to a Voronoi-based approximation of the overall squared distance function between the surface and the input mesh (SDM). This objective function is a generalization of the one minimized by centroidal Voronoi tessellation, and can be minimized by a quasi-Newton solver. VSDM naturally adapts the orientation of the mesh elements to best approximate the input, without estimating any differential quantities. Therefore, it can be applied to triangle soups or surfaces with degenerate triangles, topological noise and sharp features. Applications of fitting quad meshes and polynomial surfaces to input triangular meshes are demonstrated. © 2012 Springer-Verlag London.

  13. Including crystal structure attributes in machine learning models of formation energies via Voronoi tessellations

    Science.gov (United States)

    Ward, Logan; Liu, Ruoqian; Krishna, Amar; Hegde, Vinay I.; Agrawal, Ankit; Choudhary, Alok; Wolverton, Chris

    2017-07-01

    While high-throughput density functional theory (DFT) has become a prevalent tool for materials discovery, it is limited by the relatively large computational cost. In this paper, we explore using DFT data from high-throughput calculations to create faster, surrogate models with machine learning (ML) that can be used to guide new searches. Our method works by using decision tree models to map DFT-calculated formation enthalpies to a set of attributes consisting of two distinct types: (i) composition-dependent attributes of elemental properties (as have been used in previous ML models of DFT formation energies), combined with (ii) attributes derived from the Voronoi tessellation of the compound's crystal structure. The ML models created using this method have half the cross-validation error and similar training and evaluation speeds to models created with the Coulomb matrix and partial radial distribution function methods. For a dataset of 435 000 formation energies taken from the Open Quantum Materials Database (OQMD), our model achieves a mean absolute error of 80 meV/atom in cross validation, which is lower than the approximate error between DFT-computed and experimentally measured formation enthalpies and below 15% of the mean absolute deviation of the training set. We also demonstrate that our method can accurately estimate the formation energy of materials outside of the training set and be used to identify materials with especially large formation enthalpies. We propose that our models can be used to accelerate the discovery of new materials by identifying the most promising materials to study with DFT at little additional computational cost.

  14. A physics-motivated Centroidal Voronoi Particle domain decomposition method

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Lin, E-mail: lin.fu@tum.de; Hu, Xiangyu Y., E-mail: xiangyu.hu@tum.de; Adams, Nikolaus A., E-mail: nikolaus.adams@tum.de

    2017-04-15

    In this paper, we propose a novel domain decomposition method for large-scale simulations in continuum mechanics by merging the concepts of Centroidal Voronoi Tessellation (CVT) and Voronoi Particle dynamics (VP). The CVT is introduced to achieve a high-level compactness of the partitioning subdomains by the Lloyd algorithm which monotonically decreases the CVT energy. The number of computational elements between neighboring partitioning subdomains, which scales the communication effort for parallel simulations, is optimized implicitly as the generated partitioning subdomains are convex and simply connected with small aspect-ratios. Moreover, Voronoi Particle dynamics employing physical analogy with a tailored equation of state is developed, which relaxes the particle system towards the target partition with good load balance. Since the equilibrium is computed by an iterative approach, the partitioning subdomains exhibit locality and the incremental property. Numerical experiments reveal that the proposed Centroidal Voronoi Particle (CVP) based algorithm produces high-quality partitioning with high efficiency, independently of computational-element types. Thus it can be used for a wide range of applications in computational science and engineering.

  15. Voro++: a three-dimensional Voronoi cell library in C++

    Energy Technology Data Exchange (ETDEWEB)

    Rycroft, Chris

    2009-01-15

    Voro++ is a free software library for the computation of three dimensional Voronoi cells. It is primarily designed for applications in physics and materials science, where the Voronoi tessellation can be a useful tool in the analysis of densely-packed particle systems, such as granular materials or glasses. The software comprises of several C++ classes that can be modified and incorporated into other programs. A command-line utility is also provided that can use most features of the code. Voro++ makes use of a direct cell-by-cell construction, which is particularly suited to handling special boundary conditions and walls. It employs algorithms which are tolerant for numerical precision errors, and it has been successfully employed on very large particle systems.

  16. Asymptotic statistics of the n-sided planar Poisson–Voronoi cell: II. Heuristics

    International Nuclear Information System (INIS)

    Hilhorst, H J

    2009-01-01

    We develop a set of heuristic arguments to explain several results on planar Poisson–Voronoi tessellations that were derived earlier at the cost of considerable mathematical effort. The results concern Voronoi cells having a large number n of sides. The arguments start from an entropy balance applied to the arrangement of n neighbors around a central cell. This is followed by a simplified evaluation of the phase space integral for the probability p n that an arbitrary cell be n-sided. The limitations of the arguments are indicated. As a new application we calculate the expected number of Gabriel (or full) neighbors of an n-sided cell in the large-n limit

  17. The Voronoi spatio-temporal data structure

    Science.gov (United States)

    Mioc, Darka

    2002-04-01

    Current GIS models cannot integrate the temporal dimension of spatial data easily. Indeed, current GISs do not support incremental (local) addition and deletion of spatial objects, and they can not support the temporal evolution of spatial data. Spatio-temporal facilities would be very useful in many GIS applications: harvesting and forest planning, cadastre, urban and regional planning, and emergency planning. The spatio-temporal model that can overcome these problems is based on a topological model---the Voronoi data structure. Voronoi diagrams are irregular tessellations of space, that adapt to spatial objects and therefore they are a synthesis of raster and vector spatial data models. The main advantage of the Voronoi data structure is its local and sequential map updates, which allows us to automatically record each event and performed map updates within the system. These map updates are executed through map construction commands that are composed of atomic actions (geometric algorithms for addition, deletion, and motion of spatial objects) on the dynamic Voronoi data structure. The formalization of map commands led to the development of a spatial language comprising a set of atomic operations or constructs on spatial primitives (points and lines), powerful enough to define the complex operations. This resulted in a new formal model for spatio-temporal change representation, where each update is uniquely characterized by the numbers of newly created and inactivated Voronoi regions. This is used for the extension of the model towards the hierarchical Voronoi data structure. In this model, spatio-temporal changes induced by map updates are preserved in a hierarchical data structure that combines events and corresponding changes in topology. This hierarchical Voronoi data structure has an implicit time ordering of events visible through changes in topology, and it is equivalent to an event structure that can support temporal data without precise temporal

  18. Stochastic Geometry and Random Tessellations

    DEFF Research Database (Denmark)

    Møller, Jesper; Stoyan, Dietrich

    This paper is to appear in "Tessellations in the Sciences": Virtues, Techniques and Applications of Geometric Tilings", eds. R. van de Weijgaert, G. Vegter, V. Icke and J. Ritzerveld. Springer Verlag....

  19. Voronoi Cell Patterns: Application of the size distribution to societal systems

    Science.gov (United States)

    Sathiyanarayanan, Rajesh; González, Diego Luis; Pimpinelli, Alberto; Einstein, T. L.

    2012-02-01

    In studying the growth of islands on a surface subjected to a particle flux, we found it useful to characterize the distribution of the areas of associated Voronoi (proximity or Wigner-Seitz) cells in terms of the generalized Wigner surmiseootnotetextAP & TLE, PRL 99 (2007) 226102; PRL 104 (2010) 149602 and the gamma distributions. Here we show that the same concepts and distributions are useful in analyzing several problems arising in society.ootnotetextDLG et al., arXiv 1109.3994; RS, Ph.D. dissertation; RS et al., preprint We analyze the 1D problem of the distribution of gaps between parked cars, assuming that successive cars park in the middle of vacant spaces, and compare with published data. We study the formation of second-level administrative divisions, e.g. French arrondissements. We study the actual distribution of arrondissements and the Voronoi tessellation associated with the chief town in each. While generally applicable, there are subtleties in some cases. Lastly, we consider the pattern formed by Paris M'etro stations and show that near the central area, the associated Voronoi construction also has this sort of distribution.

  20. Nonequilibrium phase transition in directed small-world-Voronoi-Delaunay random lattices

    International Nuclear Information System (INIS)

    Lima, F.W.S.

    2016-01-01

    On directed small-world-Voronoi-Delaunay random lattices in two dimensions with quenched connectivity disorder we study the critical properties of the dynamics evolution of public opinion in social influence networks using a simple spin-like model. The system is treated by applying Monte Carlo simulations. We show that directed links on these random lattices may lead to phase diagram with first- and second-order social phase transitions out of equilibrium. (paper)

  1. Weak-Lensing Calibration of a Stellar Mass-Based Mass Proxy for redMaPPer and Voronoi Tessellation Clusters in SDSS Stripe 82

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Maria E.S. [Rio de Janeiro, CBPF; Soares-Santos, Marcelle [Fermilab; Makler, Martin [Rio de Janeiro, CBPF; Annis, James [Fermilab; Lin, Huan [Fermilab; Palmese, Antonella [Fermilab; Vitorelli, André Z. [Sao Paulo, Inst. Astron. Geofis.; Welch, Brian [Fermilab; Caminha, Gabriel B. [Bologna Observ.; Erben, Thomas [Argelander Inst. Astron.; Moraes, Bruno [University Coll. London; Shan, Huanyuan [Argelander Inst. Astron.

    2017-08-10

    We present the first weak lensing calibration of $\\mu_{\\star}$, a new galaxy cluster mass proxy corresponding to the total stellar mass of red and blue members, in two cluster samples selected from the SDSS Stripe 82 data: 230 redMaPPer clusters at redshift $0.1\\leq z<0.33$ and 136 Voronoi Tessellation (VT) clusters at $0.1 \\leq z < 0.6$. We use the CS82 shear catalog and stack the clusters in $\\mu_{\\star}$ bins to measure a mass-observable power law relation. For redMaPPer clusters we obtain $M_0 = (1.77 \\pm 0.36) \\times 10^{14}h^{-1} M_{\\odot}$, $\\alpha = 1.74 \\pm 0.62$. For VT clusters, we find $M_0 = (4.31 \\pm 0.89) \\times 10^{14}h^{-1} M_{\\odot}$, $\\alpha = 0.59 \\pm 0.54$ and $M_0 = (3.67 \\pm 0.56) \\times 10^{14}h^{-1} M_{\\odot}$, $\\alpha = 0.68 \\pm 0.49$ for a low and a high redshift bin, respectively. Our results are consistent, internally and with the literature, indicating that our method can be applied to any cluster finding algorithm. In particular, we recommend that $\\mu_{\\star}$ be used as the mass proxy for VT clusters. Catalogs including $\\mu_{\\star}$ measurements will enable its use in studies of galaxy evolution in clusters and cluster cosmology.

  2. Structural characterization of a magnetic granular system under a time-dependent magnetic field: Voronoi tessellation and multifractal analysis

    Science.gov (United States)

    Moctezuma, R. E.; Arauz-Lara, J. L.; Donado, F.

    2018-04-01

    The structure of a two-dimensional magnetic granular system was determined by multifractal and Voronoi polygon analysis for a wide range of particle concentrations. Randomizing of the particle motions are produced by applying to the system a time-dependent sinusoidal magnetic field directed along the vertical direction. Both repulsive and attractive short-range interactions between the particles are induced. A direct observation of such system shows qualitatively that, as particle concentration increases, the structure evolves from being liquid-like at low particle concentrations to solid-like at high concentrations. We observe the formation of clusters which are small and weakly bonded and short-lived at low concentrations. Above a threshold particle concentration, clusters grow larger and are more strongly attached. In the system, one can distinguish the mobile particles from the immobile particles belonging to clusters, they can be considered separately as two different phases, a fluid and a solid. We determined the information entropy of the system as a whole and separately from each phase as particle concentration increases. The distribution of the Voronoi polygon areas are well fitted by a two-parameter gamma distribution and we have found that the regularity factor shows a notable change when pieces of the solid phase start to form. The methods we use here show that they can use even when the system is heterogeneous and they provide information when changes start.

  3. 3D Voronoi grid dedicated software for modeling gas migration in deep layered sedimentary formations with TOUGH2-TMGAS

    Science.gov (United States)

    Bonduà, Stefano; Battistelli, Alfredo; Berry, Paolo; Bortolotti, Villiam; Consonni, Alberto; Cormio, Carlo; Geloni, Claudio; Vasini, Ester Maria

    2017-11-01

    As is known, a full three-dimensional (3D) unstructured grid permits a great degree of flexibility when performing accurate numerical reservoir simulations. However, when the Integral Finite Difference Method (IFDM) is used for spatial discretization, constraints (arising from the required orthogonality between the segment connecting the blocks nodes and the interface area between blocks) pose difficulties in the creation of grids with irregular shaped blocks. The full 3D Voronoi approach guarantees the respect of IFDM constraints and allows generation of grids conforming to geological formations and structural objects and at the same time higher grid resolution in volumes of interest. In this work, we present dedicated pre- and post-processing gridding software tools for the TOUGH family of numerical reservoir simulators, developed by the Geothermal Research Group of the DICAM Department, University of Bologna. VORO2MESH is a new software coded in C++, based on the voro++ library, allowing computation of the 3D Voronoi tessellation for a given domain and the creation of a ready to use TOUGH2 MESH file. If a set of geological surfaces is available, the software can directly generate the set of Voronoi seed points used for tessellation. In order to reduce the number of connections and so to decrease computation time, VORO2MESH can produce a mixed grid with regular blocks (orthogonal prisms) and irregular blocks (polyhedron Voronoi blocks) at the point of contact between different geological formations. In order to visualize 3D Voronoi grids together with the results of numerical simulations, the functionality of the TOUGH2Viewer post-processor has been extended. We describe an application of VORO2MESH and TOUGH2Viewer to validate the two tools. The case study deals with the simulation of the migration of gases in deep layered sedimentary formations at basin scale using TOUGH2-TMGAS. A comparison between the simulation performances of unstructured and structured

  4. Vesicle computers: Approximating a Voronoi diagram using Voronoi automata

    International Nuclear Information System (INIS)

    Adamatzky, Andrew; De Lacy Costello, Ben; Holley, Julian; Gorecki, Jerzy; Bull, Larry

    2011-01-01

    Highlights: → We model irregular arrangements of vesicles filled with chemical systems. → We examine influence of precipitation threshold on the system's computational potential. → We demonstrate computation of Voronoi diagram and skeleton. - Abstract: Irregular arrangements of vesicles filled with excitable and precipitating chemical systems are imitated by Voronoi automata - finite-state machines defined on a planar Voronoi diagram. Every Voronoi cell takes four states: resting, excited, refractory and precipitate. A resting cell excites if it has at least one neighbour in an excited state. The cell precipitates if the ratio of excited cells in its neighbourhood versus the number of neighbours exceeds a certain threshold. To approximate a Voronoi diagram on Voronoi automata we project a planar set onto the automaton lattice, thus cells corresponding to data-points are excited. Excitation waves propagate across the Voronoi automaton, interact with each other and form precipitate at the points of interaction. The configuration of the precipitate represents the edges of an approximated Voronoi diagram. We discover the relationship between the quality of the Voronoi diagram approximation and the precipitation threshold, and demonstrate the feasibility of our model in approximating Voronoi diagrams of arbitrary-shaped objects and in constructing a skeleton of a planar shape.

  5. User Manual and Supporting Information for Library of Codes for Centroidal Voronoi Point Placement and Associated Zeroth, First, and Second Moment Determination; TOPICAL

    International Nuclear Information System (INIS)

    BURKARDT, JOHN; GUNZBURGER, MAX; PETERSON, JANET; BRANNON, REBECCA M.

    2002-01-01

    The theory, numerical algorithm, and user documentation are provided for a new ''Centroidal Voronoi Tessellation (CVT)'' method of filling a region of space (2D or 3D) with particles at any desired particle density. ''Clumping'' is entirely avoided and the boundary is optimally resolved. This particle placement capability is needed for any so-called ''mesh-free'' method in which physical fields are discretized via arbitrary-connectivity discrete points. CVT exploits efficient statistical methods to avoid expensive generation of Voronoi diagrams. Nevertheless, if a CVT particle's Voronoi cell were to be explicitly computed, then it would have a centroid that coincides with the particle itself and a minimized rotational moment. The CVT code provides each particle's volume and centroid, and also the rotational moment matrix needed to approximate a particle by an ellipsoid (instead of a simple sphere). DIATOM region specification is supported

  6. Stochastic transformation of points in polygons according to the Voronoi tessellation: microstructural description.

    Science.gov (United States)

    Di Vito, Alessia; Fanfoni, Massimo; Tomellini, Massimo

    2010-12-01

    Starting from a stochastic two-dimensional process we studied the transformation of points in disks and squares following a protocol according to which at any step the island size increases proportionally to the corresponding Voronoi tessera. Two interaction mechanisms among islands have been dealt with: coalescence and impingement. We studied the evolution of the island density and of the island size distribution functions, in dependence on island collision mechanisms for both Poissonian and correlated spatial distributions of points. The island size distribution functions have been found to be invariant with the fraction of transformed phase for a given stochastic process. The n(Θ) curve describing the island decay has been found to be independent of the shape (apart from high correlation degrees) and interaction mechanism.

  7. Turtles for tessellations

    NARCIS (Netherlands)

    Feijs, L.M.G.; Hu, J.

    2013-01-01

    We developed an approach to creating vector graphics representations of tessellations for purposes of teaching creative programming and laser cutting. The approach is based on turtle graphics. The lines of the turtle’s trail define the tiles of the tessellation. The turtle is defined in an

  8. A TESSELLATION MODEL FOR CRACK PATTERNS ON SURFACES

    Directory of Open Access Journals (Sweden)

    Werner Nagel

    2011-05-01

    Full Text Available This paper presents a model of random tessellations that reflect several features of crack pattern. There are already several theoretical results derivedwhich indicate that thismodel can be an appropriate referencemodel. Some potential applications are presented in a tentative statistical study.

  9. Rigidly foldable origami gadgets and tessellations

    Science.gov (United States)

    Evans, Thomas A.; Lang, Robert J.; Magleby, Spencer P.; Howell, Larry L.

    2015-01-01

    Rigidly foldable origami allows for motion where all deflection occurs at the crease lines and facilitates the application of origami in materials other than paper. In this paper, we use a recently discovered method for determining rigid foldability to identify existing flat-foldable rigidly foldable tessellations, which are also categorized. We introduce rigidly foldable origami gadgets which may be used to modify existing tessellations or to create new tessellations. Several modified and new rigidly foldable tessellations are presented. PMID:26473037

  10. Voronoi polygons and self-consistent technique used to compute the airflow resistivity of randomly placed fibers in glass wool

    DEFF Research Database (Denmark)

    Tarnow, Viggo

    2002-01-01

    is constant, and equal to the constant current value. A computation of resistivity from fiber density and diameter will be presented for a model of glass wool that consists of parallel randomly placed fibers with equal diameters. The computation is based on Voronoi polygons, and the results will be compared...

  11. Angular Distribution of GRBs

    Directory of Open Access Journals (Sweden)

    L. G. Balázs

    2012-01-01

    Full Text Available We studied the complete randomness of the angular distribution of BATSE gamma-ray bursts (GRBs. Based on their durations and peak fluxes, we divided the BATSE sample into 5 subsamples (short1, short2, intermediate, long1, long2 and studied the angular distributions separately. We used three methods to search for non-randomness in the subsamples: Voronoi tesselation, minimal spanning tree, and multifractal spectra. To study any non-randomness in the subsamples we defined 13 test-variables (9 from Voronoi tesselation, 3 from the minimal spanning tree and one from the multifractal spectrum. We made Monte Carlo simulations taking into account the BATSE’s sky-exposure function. We tested therandomness by introducing squared Euclidean distances in the parameter space of the test-variables. We recognized that the short1, short2 groups deviate significantly (99.90%, 99.98% from the fully random case in the distribution of the squared Euclidean distances but this is not true for the long samples. In the intermediate group, the squared Euclidean distances also give significant deviation (98.51%.

  12. On the size distribution of one-, two- and three-dimensional Voronoi cells

    International Nuclear Information System (INIS)

    Marthinsen, K.

    1994-03-01

    The present report gives a presentation of the different cell size distribution obtained by computer simulations of random Voronoi cell structures in one-, two- and three-dimensional space. The random Voronoi cells are constructed from cell centroids randomly distributed along a string, in the plane and in three-dimensional space, respectively. The size distributions are based on 2-3 · 10 4 cells. For the spacial polyhedra both the distribution of volumes, areas and radii are presented, and the two latter quantities are compared to the distributions of areas and radii from a planar section through the three-dimensional structure as well as to the corresponding distributions obtained from a pure two-dimensional cell structure. 11 refs., 11 figs

  13. Voronoi diagram and microstructure of weldment

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jung Ho [Chungbuk National University, Cheongju (Korea, Republic of)

    2015-01-15

    Voronoi diagram, one of the well-known space decomposition algorithms has been applied to express the microstructure of a weldment for the first time due to the superficial analogy between a Voronoi cell and a metal's grain. The area of the Voronoi cells can be controlled by location and the number of the seed points. This can be correlated to the grain size in the microstructure and the number of nuclei formed. The feasibility of representing coarse and fine grain structures were tested through Voronoi diagrams and it is applied to expression of cross-sectional bead shape of a typical laser welding. As result, it successfully described coarsened grain size of heat affected zone and columnar crystals in fusion zone. Although Voronoi diagram showed potential as a microstructure prediction tool through this feasible trial but direct correlation control variable of Voronoi diagram to solidification process parameter is still remained as further works.

  14. Tessellating the Sphere with Regular Polygons

    Science.gov (United States)

    Soto-Johnson, Hortensia; Bechthold, Dawn

    2004-01-01

    Tessellations in the Euclidean plane and regular polygons that tessellate the sphere are reviewed. The regular polygons that can possibly tesellate the sphere are spherical triangles, squares and pentagons.

  15. Comparative investigation of micro-flaw models for the simulation of brittle fracture in rock

    CSIR Research Space (South Africa)

    Sellers, E

    1997-07-01

    Full Text Available can be covered by a set of Voronoi polygons or Delaunay tri- angles (Napier and Peirce 1995). A subset of the edges of these polygons is selected and designated as pre-existing ?aws with assigned strength an friction sliding properties. A speci?ed load... of incre- mental displacements were applied to the surface of a rectangular block to simulate compression tests have been performed to study the fracture mechanisms induced in random Voronoi and Delaunay tessellation patterns (Napier and Peirce 1995; Napier...

  16. A hybrid Lagrangian Voronoi-SPH scheme

    Science.gov (United States)

    Fernandez-Gutierrez, D.; Souto-Iglesias, A.; Zohdi, T. I.

    2017-11-01

    A hybrid Lagrangian Voronoi-SPH scheme, with an explicit weakly compressible formulation for both the Voronoi and SPH sub-domains, has been developed. The SPH discretization is substituted by Voronoi elements close to solid boundaries, where SPH consistency and boundary conditions implementation become problematic. A buffer zone to couple the dynamics of both sub-domains is used. This zone is formed by a set of particles where fields are interpolated taking into account SPH particles and Voronoi elements. A particle may move in or out of the buffer zone depending on its proximity to a solid boundary. The accuracy of the coupled scheme is discussed by means of a set of well-known verification benchmarks.

  17. Homogeneity and EPR metrics for assessment of regular grids used in CW EPR powder simulations.

    Science.gov (United States)

    Crăciun, Cora

    2014-08-01

    CW EPR powder spectra may be approximated numerically using a spherical grid and a Voronoi tessellation-based cubature. For a given spin system, the quality of simulated EPR spectra depends on the grid type, size, and orientation in the molecular frame. In previous work, the grids used in CW EPR powder simulations have been compared mainly from geometric perspective. However, some grids with similar homogeneity degree generate different quality simulated spectra. This paper evaluates the grids from EPR perspective, by defining two metrics depending on the spin system characteristics and the grid Voronoi tessellation. The first metric determines if the grid points are EPR-centred in their Voronoi cells, based on the resonance magnetic field variations inside these cells. The second metric verifies if the adjacent Voronoi cells of the tessellation are EPR-overlapping, by computing the common range of their resonance magnetic field intervals. Beside a series of well known regular grids, the paper investigates a modified ZCW grid and a Fibonacci spherical code, which are new in the context of EPR simulations. For the investigated grids, the EPR metrics bring more information than the homogeneity quantities and are better related to the grids' EPR behaviour, for different spin system symmetries. The metrics' efficiency and limits are finally verified for grids generated from the initial ones, by using the original or magnetic field-constraint variants of the Spherical Centroidal Voronoi Tessellation method. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Homogeneity and EPR metrics for assessment of regular grids used in CW EPR powder simulations

    Science.gov (United States)

    Crăciun, Cora

    2014-08-01

    CW EPR powder spectra may be approximated numerically using a spherical grid and a Voronoi tessellation-based cubature. For a given spin system, the quality of simulated EPR spectra depends on the grid type, size, and orientation in the molecular frame. In previous work, the grids used in CW EPR powder simulations have been compared mainly from geometric perspective. However, some grids with similar homogeneity degree generate different quality simulated spectra. This paper evaluates the grids from EPR perspective, by defining two metrics depending on the spin system characteristics and the grid Voronoi tessellation. The first metric determines if the grid points are EPR-centred in their Voronoi cells, based on the resonance magnetic field variations inside these cells. The second metric verifies if the adjacent Voronoi cells of the tessellation are EPR-overlapping, by computing the common range of their resonance magnetic field intervals. Beside a series of well known regular grids, the paper investigates a modified ZCW grid and a Fibonacci spherical code, which are new in the context of EPR simulations. For the investigated grids, the EPR metrics bring more information than the homogeneity quantities and are better related to the grids’ EPR behaviour, for different spin system symmetries. The metrics’ efficiency and limits are finally verified for grids generated from the initial ones, by using the original or magnetic field-constraint variants of the Spherical Centroidal Voronoi Tessellation method.

  19. Structural characterization of the packings of granular regular polygons.

    Science.gov (United States)

    Wang, Chuncheng; Dong, Kejun; Yu, Aibing

    2015-12-01

    By using a recently developed method for discrete modeling of nonspherical particles, we simulate the random packings of granular regular polygons with three to 11 edges under gravity. The effects of shape and friction on the packing structures are investigated by various structural parameters, including packing fraction, the radial distribution function, coordination number, Voronoi tessellation, and bond-orientational order. We find that packing fraction is generally higher for geometrically nonfrustrated regular polygons, and can be increased by the increase of edge number and decrease of friction. The changes of packing fraction are linked with those of the microstructures, such as the variations of the translational and orientational orders and local configurations. In particular, the free areas of Voronoi tessellations (which are related to local packing fractions) can be described by log-normal distributions for all polygons. The quantitative analyses establish a clearer picture for the packings of regular polygons.

  20. The review on tessellation origami inspired folded structure

    Science.gov (United States)

    Chu, Chai Chen; Keong, Choong Kok

    2017-10-01

    Existence of folds enhances the load carrying capacity of a folded structure which makes it suitable to be used for application where large open space is required such as large span roof structures and façade. Folded structure is closely related to origami especially the tessellation origami. Tessellation origami provides a folded configuration with facetted surface as a result from repeated folding pattern. Besides that, tessellation origami has flexible folding mechanism that produced a variety of 3-dimensional folded configurations. Despite the direct relationship between fold in origami and folded structure, the idea of origami inspired folded structure is not properly reviewed in the relevant engineering field. Hence, this paper aims to present the current studies from related discipline which has direct relation with application of tessellation origami in folded structure. First, tessellation origami is properly introduced and defined. Then, the review covers the topic on the origami tessellation design suitable for folded structure, its modeling and simulation method, and existing studies and applications of origami as folded structure is presented. The paper also includes the discussion on the current issues related to each topic.

  1. Capacity constrained blue-noise sampling on surfaces

    KAUST Repository

    Zhang, Sen; Guo, Jianwei; Zhang, Hui; Jia, Xiaohong; Yan, Dongming; Yong, Junhai; Wonka, Peter

    2015-01-01

    regularizer of the Centroidal Voronoi Tessellation (CVT) energy, our approach enforces an exact capacity constraint using the restricted power tessellation on surfaces. Our approach is a generalization of the previous 2D blue noise sampling technique using

  2. Kinetic Line Voronoi Operations and Their Reversibility

    DEFF Research Database (Denmark)

    Mioc, Darka; Anton, François; Gold, Christopher

    2010-01-01

    In Geographic Information Systems the reversibility of map update operations has not been explored yet. In this paper we are using the Voronoi based Quad-edge data structure to define reversible map update operations. The reversibility of the map operations has been formalised at the lowest level...... mechanisms and dynamic map visualisations. In order to use the reversibility within the kinetic Voronoi diagram of points and open oriented line segments, we need to assure that reversing the map commands will produce exactly the changes in the map equivalent to the previous map states. To prove...... that reversing the map update operations produces the exact reverse changes, we show an isomorphism between the set of complex operations on the kinetic Voronoi diagram of points and open oriented line segments and the sets of numbers of new / deleted Voronoi regions induced by these operations, and its...

  3. Escher's Tessellations in Understanding Group Theory

    Science.gov (United States)

    Konyalioglu, Serpil

    2009-01-01

    In this study, it is explained how to use Escher's tessellations in teaching group concept which is one of the most abstract concepts in mathematics. MC Escher's monohedral tessellations provide detailed study in an undergraduate course in abstract algebra. This study attempts to provide useful visual references for the students on learning some…

  4. Voronoi Diagrams Without Bounding Boxes

    Science.gov (United States)

    Sang, E. T. K.

    2015-10-01

    We present a technique for presenting geographic data in Voronoi diagrams without having to specify a bounding box. The method restricts Voronoi cells to points within a user-defined distance of the data points. The mathematical foundation of the approach is presented as well. The cell clipping method is particularly useful for presenting geographic data that is spread in an irregular way over a map, as for example the Dutch dialect data displayed in Figure 2. The automatic generation of reasonable cell boundaries also makes redundant a frequently used solution to this problem that requires data owners to specify region boundaries, as in Goebl (2010) and Nerbonne et al (2011).

  5. Quasi interpolation with Voronoi splines.

    Science.gov (United States)

    Mirzargar, Mahsa; Entezari, Alireza

    2011-12-01

    We present a quasi interpolation framework that attains the optimal approximation-order of Voronoi splines for reconstruction of volumetric data sampled on general lattices. The quasi interpolation framework of Voronoi splines provides an unbiased reconstruction method across various lattices. Therefore this framework allows us to analyze and contrast the sampling-theoretic performance of general lattices, using signal reconstruction, in an unbiased manner. Our quasi interpolation methodology is implemented as an efficient FIR filter that can be applied online or as a preprocessing step. We present visual and numerical experiments that demonstrate the improved accuracy of reconstruction across lattices, using the quasi interpolation framework. © 2011 IEEE

  6. MCTS Experiments on the Voronoi Game

    OpenAIRE

    Bouzy , Bruno; Métivier , Marc; Pellier , Damien

    2011-01-01

    International audience; Monte-Carlo Tree Search (MCTS) is a powerful tool in games with a finite branching factor. This paper describes an artificial player playing the Voronoi game, a game with an infi- nite branching factor. First, this paper shows how to use MCTS on a discretization of the Voronoi game, and the effects of en- hancements such as RAVE and Gaussian processes (GP). A first set of experimental results shows that MCTS with UCB+RAVE or with UCB+GP are first good solutions for pla...

  7. Investigation of the Rock Fragmentation Process by a Single TBM Cutter Using a Voronoi Element-Based Numerical Manifold Method

    Science.gov (United States)

    Liu, Quansheng; Jiang, Yalong; Wu, Zhijun; Xu, Xiangyu; Liu, Qi

    2018-04-01

    In this study, a two-dimensional Voronoi element-based numerical manifold method (VE-NMM) is developed to analyze the granite fragmentation process by a single tunnel boring machine (TBM) cutter under different confining stresses. A Voronoi tessellation technique is adopted to generate the polygonal grain assemblage to approximate the microstructure of granite sample from the Gubei colliery of Huainan mining area in China. A modified interface contact model with cohesion and tensile strength is embedded into the numerical manifold method (NMM) to interpret the interactions between the rock grains. Numerical uniaxial compression and Brazilian splitting tests are first conducted to calibrate and validate the VE-NMM models based on the laboratory experiment results using a trial-and-error method. On this basis, numerical simulations of rock fragmentation by a single TBM cutter are conducted. The simulated crack initiation and propagation process as well as the indentation load-penetration depth behaviors in the numerical models accurately predict the laboratory indentation test results. The influence of confining stress on rock fragmentation is also investigated. Simulation results show that radial tensile cracks are more likely to be generated under a low confining stress, eventually coalescing into a major fracture along the loading axis. However, with the increase in confining stress, more side cracks initiate and coalesce, resulting in the formation of rock chips at the upper surface of the model. In addition, the peak indentation load also increases with the increasing confining stress, indicating that a higher thrust force is usually needed during the TBM boring process in deep tunnels.

  8. VORONOI DIAGRAMS WITHOUT BOUNDING BOXES

    Directory of Open Access Journals (Sweden)

    E. T. K. Sang

    2015-10-01

    Full Text Available We present a technique for presenting geographic data in Voronoi diagrams without having to specify a bounding box. The method restricts Voronoi cells to points within a user-defined distance of the data points. The mathematical foundation of the approach is presented as well. The cell clipping method is particularly useful for presenting geographic data that is spread in an irregular way over a map, as for example the Dutch dialect data displayed in Figure 2. The automatic generation of reasonable cell boundaries also makes redundant a frequently used solution to this problem that requires data owners to specify region boundaries, as in Goebl (2010 and Nerbonne et al (2011.

  9. The Voronoi volume and molecular representation of molar volume: equilibrium simple fluids.

    Science.gov (United States)

    Hunjan, Jagtar Singh; Eu, Byung Chan

    2010-04-07

    The Voronoi volume of simple fluids was previously made use of in connection with volume transport phenomena in nonequilibrium simple fluids. To investigate volume transport phenomena, it is important to develop a method to compute the Voronoi volume of fluids in nonequilibrium. In this work, as a first step to this goal, we investigate the equilibrium limit of the nonequilibrium Voronoi volume together with its attendant related molar (molal) and specific volumes. It is proved that the equilibrium Voronoi volume is equivalent to the molar (molal) volume. The latter, in turn, is proved equivalent to the specific volume. This chain of equivalences provides an alternative procedure of computing the equilibrium Voronoi volume from the molar volume/specific volume. We also show approximate methods of computing the Voronoi and molar volumes from the information on the pair correlation function. These methods may be employed for their quick estimation, but also provide some aspects of the fluid structure and its relation to the Voronoi volume. The Voronoi volume obtained from computer simulations is fitted to a function of temperature and pressure in the region above the triple point but below the critical point. Since the fitting function is given in terms of reduced variables for the Lennard-Jones (LJ) model and the kindred volumes (i.e., specific and molar volumes) are in essence equivalent to the equation of state, the formula obtained is a reduced equation state for simple fluids obeying the LJ model potential in the range of temperature and pressure examined and hence can be used for other simple fluids.

  10. Designing a supply chain of ready-mix concrete using Voronoi diagrams

    Science.gov (United States)

    Kozniewski, E.; Orlowski, M.; Orlowski, Z.

    2017-10-01

    Voronoi diagrams are used to solve scientific and practical problems in many fields. In this paper Voronoi diagrams have been applied to logistic problems in construction, more specifically in the design of the ready-mix concrete supply chain. Apart from the Voronoi diagram, the so-called time-distance circle (circle of range), which in metric space terminology is simply a sphere, appears useful. It was introduced to solve the problem of supplying concrete-related goods.

  11. Interactive Land-Use Optimization Using Laguerre Voronoi Diagram with Dynamic Generating Point Allocation

    Science.gov (United States)

    Chaidee, S.; Pakawanwong, P.; Suppakitpaisarn, V.; Teerasawat, P.

    2017-09-01

    In this work, we devise an efficient method for the land-use optimization problem based on Laguerre Voronoi diagram. Previous Voronoi diagram-based methods are more efficient and more suitable for interactive design than discrete optimization-based method, but, in many cases, their outputs do not satisfy area constraints. To cope with the problem, we propose a force-directed graph drawing algorithm, which automatically allocates generating points of Voronoi diagram to appropriate positions. Then, we construct a Laguerre Voronoi diagram based on these generating points, use linear programs to adjust each cell, and reconstruct the diagram based on the adjustment. We adopt the proposed method to the practical case study of Chiang Mai University's allocated land for a mixed-use complex. For this case study, compared to other Voronoi diagram-based method, we decrease the land allocation error by 62.557 %. Although our computation time is larger than the previous Voronoi-diagram-based method, it is still suitable for interactive design.

  12. Relationships between residue Voronoi volume and sequence conservation in proteins.

    Science.gov (United States)

    Liu, Jen-Wei; Cheng, Chih-Wen; Lin, Yu-Feng; Chen, Shao-Yu; Hwang, Jenn-Kang; Yen, Shih-Chung

    2018-02-01

    Functional and biophysical constraints can cause different levels of sequence conservation in proteins. Previously, structural properties, e.g., relative solvent accessibility (RSA) and packing density of the weighted contact number (WCN), have been found to be related to protein sequence conservation (CS). The Voronoi volume has recently been recognized as a new structural property of the local protein structural environment reflecting CS. However, for surface residues, it is sensitive to water molecules surrounding the protein structure. Herein, we present a simple structural determinant termed the relative space of Voronoi volume (RSV); it uses the Voronoi volume and the van der Waals volume of particular residues to quantify the local structural environment. RSV (range, 0-1) is defined as (Voronoi volume-van der Waals volume)/Voronoi volume of the target residue. The concept of RSV describes the extent of available space for every protein residue. RSV and Voronoi profiles with and without water molecules (RSVw, RSV, VOw, and VO) were compared for 554 non-homologous proteins. RSV (without water) showed better Pearson's correlations with CS than did RSVw, VO, or VOw values. The mean correlation coefficient between RSV and CS was 0.51, which is comparable to the correlation between RSA and CS (0.49) and that between WCN and CS (0.56). RSV is a robust structural descriptor with and without water molecules and can quantitatively reflect evolutionary information in a single protein structure. Therefore, it may represent a practical structural determinant to study protein sequence, structure, and function relationships. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Limits of Voronoi Diagrams

    NARCIS (Netherlands)

    Lindenbergh, R.C.

    2002-01-01

    The classic Voronoi diagram of a configuration of distinct points in the plane associates to each point that part of the plane that is closer to the point than to any other point in the configuration. In this thesis we no longer require all points to be distinct. After the introduction in

  14. Fitting polynomial surfaces to triangular meshes with Voronoi Squared Distance Minimization

    KAUST Repository

    Nivoliers, Vincent; Yan, Dongming; Lé vy, Bruno L.

    2011-01-01

    This paper introduces Voronoi Squared Distance Minimization (VSDM), an algorithm that fits a surface to an input mesh. VSDM minimizes an objective function that corresponds to a Voronoi-based approximation of the overall squared distance function

  15. Fitting polynomial surfaces to triangular meshes with Voronoi squared distance minimization

    KAUST Repository

    Nivoliers, Vincent; Yan, Dongming; Lé vy, Bruno L.

    2012-01-01

    This paper introduces Voronoi squared distance minimization (VSDM), an algorithm that fits a surface to an input mesh. VSDM minimizes an objective function that corresponds to a Voronoi-based approximation of the overall squared distance function

  16. Three-Dimensional Network Model for Coupling of Fracture and Mass Transport in Quasi-Brittle Geomaterials

    Directory of Open Access Journals (Sweden)

    Peter Grassl

    2016-09-01

    Full Text Available Dual three-dimensional networks of structural and transport elements were combined to model the effect of fracture on mass transport in quasi-brittle geomaterials. Element connectivity of the structural network, representing elasticity and fracture, was defined by the Delaunay tessellation of a random set of points. The connectivity of transport elements within the transport network was defined by the Voronoi tessellation of the same set of points. A new discretisation strategy for domain boundaries was developed to apply boundary conditions for the coupled analyses. The properties of transport elements were chosen to evolve with the crack opening values of neighbouring structural elements. Through benchmark comparisons involving non-stationary transport and fracture, the proposed dual network approach was shown to be objective with respect to element size and orientation.

  17. Evaluation of a novel therapeutic focused ultrasound transducer based on Fermat’s spiral

    Science.gov (United States)

    Ramaekers, P.; de Greef, M.; Berriet, R.; Moonen, C. T. W.; Ries, M.

    2017-06-01

    The purpose of this study was to evaluate a novel phased array transducer design rule for therapeutic focused ultrasound applications. This design rule uses the discretized Fermat’s spiral to determine the positioning of the transducer elements for a given number of elements and f-number. Using this principle, three variations of Fermat’s spiral were generated, aimed at (1) grating lobe minimization, (2) side lobe minimization, and (3) an optimized element packing efficiency. For each spiral, sparse layouts using identical circular elements and fully populated layouts based on additional Voronoi tessellation were evaluated numerically. Evaluation criteria included the element size distribution, beam steering capabilities, focal plane pressure distribution, prefocal pressure distribution, and practical considerations. Finally, one Voronoi-tessellated design with a focal length and aperture diameter of 16 cm and a natural frequency of 1.3 MHz was evaluated experimentally through hydrophone measurements. The numerical evaluation showed that while sparse arrays possess superior beam steering capabilities for a given number of elements, the focal point quality and prefocal pressure distribution is substantially more favorable when using the Voronoi-tessellated designs. Beam steering was shown to be feasible with the tessellated designs for lateral deflections up to 10 mm and axial deflections up to 20 mm. The experimental evaluation showed that such a transducer is capable of inducing 40.00 MPa rarefactional and 237.50 MPa compressional peak pressure levels at 800 W instantaneous acoustic output power under free-field conditions, making the system potentially relevant for thermal ablation therapy, histotripsy applications, and shockwave-enhanced heating.

  18. Voronoi cell patterns: Theoretical model and applications

    Science.gov (United States)

    González, Diego Luis; Einstein, T. L.

    2011-11-01

    We use a simple fragmentation model to describe the statistical behavior of the Voronoi cell patterns generated by a homogeneous and isotropic set of points in 1D and in 2D. In particular, we are interested in the distribution of sizes of these Voronoi cells. Our model is completely defined by two probability distributions in 1D and again in 2D, the probability to add a new point inside an existing cell and the probability that this new point is at a particular position relative to the preexisting point inside this cell. In 1D the first distribution depends on a single parameter while the second distribution is defined through a fragmentation kernel; in 2D both distributions depend on a single parameter. The fragmentation kernel and the control parameters are closely related to the physical properties of the specific system under study. We use our model to describe the Voronoi cell patterns of several systems. Specifically, we study the island nucleation with irreversible attachment, the 1D car-parking problem, the formation of second-level administrative divisions, and the pattern formed by the Paris Métro stations.

  19. Map updates in a dynamic Voronoi data structure

    DEFF Research Database (Denmark)

    Mioc, Darka; Antón Castro, Francesc/François; Gold, C. M.

    2006-01-01

    In this paper we are using local and sequential map updates in the Voronoi data structure, which allows us to automatically record each event and performed map updates within the system. These map updates are executed through map construction commands that are composed of atomic actions (geometric...... algorithms for addition, deletion, and motion of spatial objects) on the dynamic Voronoi data structure. The formalization of map commands led to the development of a spatial language comprising a set of atomic operations or constructs on spatial primitives (points and lines), powerful enough to define...

  20. Voronoi Cell Patterns: theoretical model and application to submonolayer growth

    Science.gov (United States)

    González, Diego Luis; Einstein, T. L.

    2012-02-01

    We use a simple fragmentation model to describe the statistical behavior of the Voronoi cell patterns generated by a homogeneous and isotropic set of points in 1D and in 2D. In particular, we are interested in the distribution of sizes of these Voronoi cells. Our model is completely defined by two probability distributions in 1D and again in 2D, the probability to add a new point inside an existing cell and the probability that this new point is at a particular position relative to the preexisting point inside this cell. In 1D the first distribution depends on a single parameter while the second distribution is defined through a fragmentation kernel; in 2D both distributions depend on a single parameter. The fragmentation kernel and the control parameters are closely related to the physical properties of the specific system under study. We apply our model to describe the Voronoi cell patterns of island nucleation for critical island sizes i=0,1,2,3. Experimental results for the Voronoi cells of InAs/GaAs quantum dots are also described by our model.

  1. MeshVoro: A Three-Dimensional Voronoi Mesh Building Tool for the TOUGH Family of Codes

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, C. M.; Boyle, K. L.; Reagan, M.; Johnson, J.; Rycroft, C.; Moridis, G. J.

    2013-09-30

    Few tools exist for creating and visualizing complex three-dimensional simulation meshes, and these have limitations that restrict their application to particular geometries and circumstances. Mesh generation needs to trend toward ever more general applications. To that end, we have developed MeshVoro, a tool that is based on the Voro (Rycroft 2009) library and is capable of generating complex threedimensional Voronoi tessellation-based (unstructured) meshes for the solution of problems of flow and transport in subsurface geologic media that are addressed by the TOUGH (Pruess et al. 1999) family of codes. MeshVoro, which includes built-in data visualization routines, is a particularly useful tool because it extends the applicability of the TOUGH family of codes by enabling the scientifically robust and relatively easy discretization of systems with challenging 3D geometries. We describe several applications of MeshVoro. We illustrate the ability of the tool to straightforwardly transform a complex geological grid into a simulation mesh that conforms to the specifications of the TOUGH family of codes. We demonstrate how MeshVoro can describe complex system geometries with a relatively small number of grid blocks, and we construct meshes for geometries that would have been practically intractable with a standard Cartesian grid approach. We also discuss the limitations and appropriate applications of this new technology.

  2. Cell packing structures

    KAUST Repository

    Pottmann, Helmut; Jiang, Caigui; Hö binger, Mathias; Wang, Jun; Bompas, Philippe; Wallner, Johannes

    2015-01-01

    optimization schemes for the computation of quad-based support structures. Hex-dominant structures may be designed via Voronoi tessellations, power diagrams, sphere packings and various extensions of these concepts. Apart from the obvious application as load

  3. Moment analysis of the Delaunay tessellation field estimator

    NARCIS (Netherlands)

    Lieshout, van M.N.M.

    2009-01-01

    The Campbell–Mecke theorem is used to derive explicit expressions for the mean and variance of Schaap and Van de Weygaert’s Delaunay tessellation field estimator. Special attention is paid to Poisson processes.

  4. Distributed Algorithm for Voronoi Partition of Wireless Sensor Networks with a Limited Sensing Range.

    Science.gov (United States)

    He, Chenlong; Feng, Zuren; Ren, Zhigang

    2018-02-03

    For Wireless Sensor Networks (WSNs), the Voronoi partition of a region is a challenging problem owing to the limited sensing ability of each sensor and the distributed organization of the network. In this paper, an algorithm is proposed for each sensor having a limited sensing range to compute its limited Voronoi cell autonomously, so that the limited Voronoi partition of the entire WSN is generated in a distributed manner. Inspired by Graham's Scan (GS) algorithm used to compute the convex hull of a point set, the limited Voronoi cell of each sensor is obtained by sequentially scanning two consecutive bisectors between the sensor and its neighbors. The proposed algorithm called the Boundary Scan (BS) algorithm has a lower computational complexity than the existing Range-Constrained Voronoi Cell (RCVC) algorithm and reaches the lower bound of the computational complexity of the algorithms used to solve the problem of this kind. Moreover, it also improves the time efficiency of a key step in the Adjust-Sensing-Radius (ASR) algorithm used to compute the exact Voronoi cell. Extensive numerical simulations are performed to demonstrate the correctness and effectiveness of the BS algorithm. The distributed realization of the BS combined with a localization algorithm in WSNs is used to justify the WSN nature of the proposed algorithm.

  5. Seamless Heterogeneous 3D Tessellation via DWT Domain Smoothing and Mosaicking

    Directory of Open Access Journals (Sweden)

    Gilles Gesquière

    2010-01-01

    Full Text Available With todays geobrowsers, the tessellations are far from being smooth due to a variety of reasons: the principal being the light difference and resolution heterogeneity. Whilst the former has been extensively dealt with in the literature through classic mosaicking techniques, the latter has got little attention. We focus on this latter aspect and present two DWT domain methods to seamlessly stitch tiles of heterogeneous resolutions. The first method is local in that each of the tiles that constitute the view, is subjected to one of the three context-based smoothing functions proposed for horizontal, vertical, and radial smoothing, depending on its localization in the tessellation. These functions are applied at the DWT subband level and followed by an inverse DWT to give a smoothened tile. In the second method, though we assume the same tessellation scenario, the view field is thought to be of a sliding window which may contain parts of the tiles from the heterogeneous tessellation. The window is refined in the DWT domain through mosaicking and smoothing followed by a global inverse DWT. Rather than the traditional sense, the mosaicking employed over here targets the heterogeneous resolution. Perceptually, this second method has shown better results than the first one. The methods have been successfully applied to practical examples of both the texture and its corresponding DEM for seamless 3D terrain visualization.

  6. Development and application of α-hull and Voronoi diagrams in the assessment of roundness error

    International Nuclear Information System (INIS)

    Li, Xiuming; Liu, Hongqi; Li, Wei

    2011-01-01

    Computational geometry has been used to select effective data points from the measured data points for evaluating the roundness error to improve the computational complexity. However, for precision parts most of the measured points are on the vertices of the convex hull; it cannot have any effect on improving the computational complexity with the Voronoi diagrams. In this paper the roundness error is evaluated with α-hull and the Voronoi diagram instead of convex hull. An approach for constructing α-hull with the minimum radius separation is presented to determine the vertices of the Voronoi diagram. The experimental results showed that the roundness error of the minimum zone circle could be solved efficiently with α-hull and the Voronoi diagram

  7. Community detection by graph Voronoi diagrams

    Science.gov (United States)

    Deritei, Dávid; Lázár, Zsolt I.; Papp, István; Járai-Szabó, Ferenc; Sumi, Róbert; Varga, Levente; Ravasz Regan, Erzsébet; Ercsey-Ravasz, Mária

    2014-06-01

    Accurate and efficient community detection in networks is a key challenge for complex network theory and its applications. The problem is analogous to cluster analysis in data mining, a field rich in metric space-based methods. Common to these methods is a geometric, distance-based definition of clusters or communities. Here we propose a new geometric approach to graph community detection based on graph Voronoi diagrams. Our method serves as proof of principle that the definition of appropriate distance metrics on graphs can bring a rich set of metric space-based clustering methods to network science. We employ a simple edge metric that reflects the intra- or inter-community character of edges, and a graph density-based rule to identify seed nodes of Voronoi cells. Our algorithm outperforms most network community detection methods applicable to large networks on benchmark as well as real-world networks. In addition to offering a computationally efficient alternative for community detection, our method opens new avenues for adapting a wide range of data mining algorithms to complex networks from the class of centroid- and density-based clustering methods.

  8. Efficient Delaunay Tessellation through K-D Tree Decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Morozov, Dmitriy; Peterka, Tom

    2017-08-21

    Delaunay tessellations are fundamental data structures in computational geometry. They are important in data analysis, where they can represent the geometry of a point set or approximate its density. The algorithms for computing these tessellations at scale perform poorly when the input data is unbalanced. We investigate the use of k-d trees to evenly distribute points among processes and compare two strategies for picking split points between domain regions. Because resulting point distributions no longer satisfy the assumptions of existing parallel Delaunay algorithms, we develop a new parallel algorithm that adapts to its input and prove its correctness. We evaluate the new algorithm using two late-stage cosmology datasets. The new running times are up to 50 times faster using k-d tree compared with regular grid decomposition. Moreover, in the unbalanced data sets, decomposing the domain into a k-d tree is up to five times faster than decomposing it into a regular grid.

  9. Ontogeny, morphology and mechanics of the tessellated skeleton of cartilaginous fishes

    Science.gov (United States)

    Dean, Mason N.

    2009-12-01

    The members of the successful and diverse lineage of elasmobranch fishes (sharks, rays and relatives) possess endoskeletons fashioned entirely of cartilage. This is counterintuitive because cartilage, unlike bone, lacks a major blood supply and has limited capacity for repair; yet these fishes exhibit particularly dynamic lifestyles and high levels of performance. The functionality of this skeletal tissue is likely due to its mineralization: in most skeletal elements, the soft cartilage core is tiled (tessellated) with an outer rind of abutting hydroxyapatite blocks called tesserae, joined together by intertesseral fibers and overlain by the fibrous perichondrium. This basic composite arrangement of tissues has been appreciated for over a century, but available techniques have limited the ability to examine elasmobranch cartilage adequately---without artifacts, in 3-dimensions and at high resolution---so that its development, mechanics and phylogeny might be contextualized among vertebrate skeletal tissues. I summarize the history, nomenclature and challenges relating to study of tessellated cartilage (Chapter 1) and present a low temperature microscopy technique to facilitate visualization of all tissue components in situ (Chapter 2). I use that technique in tandem with synchrotron microtomography to examine the ultrastructure of tesserae (Chapter 3) and the development of tessellated cartilage across ontogeny (Chapter 4). Finally, I examine the ways in which selection acts on skeletal morphology by examining cranial anatomy across 40 species of batoid fishes (rays and relatives) in the contexts of ecology and phylogeny (Chapter 5). There are some similarities between mineralizing bone and elasmobranch cartilage (e.g. the flattening of peripheral cells in the unmineralized phase, decreases in cellular density with mineralization, the presence of canaliculi connecting entombed cells). However, the ability for tessellated cartilage to grow (through enlargement of

  10. Capacity constrained blue-noise sampling on surfaces

    KAUST Repository

    Zhang, Sen

    2015-11-27

    We present a novel method for high-quality blue-noise sampling on mesh surfaces with prescribed cell-sizes for the underlying tessellation (capacity constraint). Unlike the previous surface sampling approach that only uses capacity constraints as a regularizer of the Centroidal Voronoi Tessellation (CVT) energy, our approach enforces an exact capacity constraint using the restricted power tessellation on surfaces. Our approach is a generalization of the previous 2D blue noise sampling technique using an interleaving optimization framework. We further extend this framework to handle multi-capacity constraints. We compare our approach with several state-of-the-art methods and demonstrate that our results are superior to previous work in terms of preserving the capacity constraints.

  11. MOMENTS OF THE LENGTH OF LINE SEGMENTS IN HOMOGENEOUS PLANAR STIT TESSELLATIONS

    Directory of Open Access Journals (Sweden)

    Christoph Thäle

    2011-05-01

    Full Text Available Homogeneous planar tessellations stable under iteration (STIT tessellations are considered. Using recent results about the joint distribution of direction and length of the typical I-, K- and J-segment we prove closed formulas for the first, second and higher moments of the length of these segments given their direction. This especially leads to themean values and variances of these quantities andmean value relations as well as general moment relationships. Moreover, the relation between these mean values and certain conditional mean values (and also higher moments is discussed. The results are also illustrated for several examples.

  12. Detecting kinematic boundary surfaces in phase space and particle mass measurements in SUSY-like events

    CERN Document Server

    Debnath, Dipsikha; Kilic, Can; Kim, Doojin; Matchev, Konstantin T.; Yang, Yuan-Pao

    2017-06-19

    We critically examine the classic endpoint method for particle mass determination, focusing on difficult corners of parameter space, where some of the measurements are not independent, while others are adversely affected by the experimental resolution. In such scenarios, mass differences can be measured relatively well, but the overall mass scale remains poorly constrained. Using the example of the standard SUSY decay chain $\\tilde q\\to \\tilde\\chi^0_2\\to \\tilde \\ell \\to \\tilde \\chi^0_1$, we demonstrate that sensitivity to the remaining mass scale parameter can be recovered by measuring the two-dimensional kinematical boundary in the relevant three-dimensional phase space of invariant masses squared. We develop an algorithm for detecting this boundary, which uses the geometric properties of the Voronoi tessellation of the data, and in particular, the relative standard deviation (RSD) of the volumes of the neighbors for each Voronoi cell in the tessellation. We propose a new observable, $\\bar\\Sigma$, which is ...

  13. Numerical modelling of fracture initiation and propagation in biaxial tests on rock samples

    CSIR Research Space (South Africa)

    Van de Steen, B

    2001-03-01

    Full Text Available and Peirce, 1995). Additional edges can be obtained in the Voronoi tessellation, by connecting the geometric centre of the Voronoi polygons with the vertices of the polygons. These last elements are further referred to as the internal fracture paths, while... samples without flaws therefore display a very brittle behaviour (Napier and Peirce, 1995). To obtain a more plastic behaviour, it may be necessary to adjust the flaw density as well (D0 to D0b, Table 2). The brittleness of the simulated biaxial tests...

  14. Curvature, metric and parametrization of origami tessellations: theory and application to the eggbox pattern

    Science.gov (United States)

    Nassar, H.; Lebée, A.; Monasse, L.

    2017-01-01

    Origami tessellations are particular textured morphing shell structures. Their unique folding and unfolding mechanisms on a local scale aggregate and bring on large changes in shape, curvature and elongation on a global scale. The existence of these global deformation modes allows for origami tessellations to fit non-trivial surfaces thus inspiring applications across a wide range of domains including structural engineering, architectural design and aerospace engineering. The present paper suggests a homogenization-type two-scale asymptotic method which, combined with standard tools from differential geometry of surfaces, yields a macroscopic continuous characterization of the global deformation modes of origami tessellations and other similar periodic pin-jointed trusses. The outcome of the method is a set of nonlinear differential equations governing the parametrization, metric and curvature of surfaces that the initially discrete structure can fit. The theory is presented through a case study of a fairly generic example: the eggbox pattern. The proposed continuous model predicts correctly the existence of various fittings that are subsequently constructed and illustrated.

  15. Curvature, metric and parametrization of origami tessellations: theory and application to the eggbox pattern.

    Science.gov (United States)

    Nassar, H; Lebée, A; Monasse, L

    2017-01-01

    Origami tessellations are particular textured morphing shell structures. Their unique folding and unfolding mechanisms on a local scale aggregate and bring on large changes in shape, curvature and elongation on a global scale. The existence of these global deformation modes allows for origami tessellations to fit non-trivial surfaces thus inspiring applications across a wide range of domains including structural engineering, architectural design and aerospace engineering. The present paper suggests a homogenization-type two-scale asymptotic method which, combined with standard tools from differential geometry of surfaces, yields a macroscopic continuous characterization of the global deformation modes of origami tessellations and other similar periodic pin-jointed trusses. The outcome of the method is a set of nonlinear differential equations governing the parametrization, metric and curvature of surfaces that the initially discrete structure can fit. The theory is presented through a case study of a fairly generic example: the eggbox pattern. The proposed continuous model predicts correctly the existence of various fittings that are subsequently constructed and illustrated.

  16. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... The two tools of the Poisson Voronoi Tessellation (PVT) and the luminosity function for galaxies allow building a new version of the local cosmological principle. ... This means that each accepted article is being published immediately online with DOI and article citation ID with starting page number 1.

  17. Dynamic load balancing algorithm for molecular dynamics based on Voronoi cells domain decompositions

    Energy Technology Data Exchange (ETDEWEB)

    Fattebert, J.-L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Richards, D.F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Glosli, J.N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2012-12-01

    We present a new algorithm for automatic parallel load balancing in classical molecular dynamics. It assumes a spatial domain decomposition of particles into Voronoi cells. It is a gradient method which attempts to minimize a cost function by displacing Voronoi sites associated with each processor/sub-domain along steepest descent directions. Excellent load balance has been obtained for quasi-2D and 3D practical applications, with up to 440·106 particles on 65,536 MPI tasks.

  18. The area-of-interest problem in eyetracking research: A noise-robust solution for face and sparse stimuli.

    Science.gov (United States)

    Hessels, Roy S; Kemner, Chantal; van den Boomen, Carlijn; Hooge, Ignace T C

    2016-12-01

    A problem in eyetracking research is choosing areas of interest (AOIs): Researchers in the same field often use widely varying AOIs for similar stimuli, making cross-study comparisons difficult or even impossible. Subjective choices while choosing AOIs cause differences in AOI shape, size, and location. On the other hand, not many guidelines for constructing AOIs, or comparisons between AOI-production methods, are available. In the present study, we addressed this gap by comparing AOI-production methods in face stimuli, using data collected with infants and adults (with autism spectrum disorder [ASD] and matched controls). Specifically, we report that the attention-attracting and attention-maintaining capacities of AOIs differ between AOI-production methods, and that this matters for statistical comparisons in one of three groups investigated (the ASD group). In addition, we investigated the relation between AOI size and an AOI's attention-attracting and attention-maintaining capacities, as well as the consequences for statistical analyses, and report that adopting large AOIs solves the problem of statistical differences between the AOI methods. Finally, we tested AOI-production methods for their robustness to noise, and report that large AOIs-using the Voronoi tessellation method or the limited-radius Voronoi tessellation method with large radii-are most robust to noise. We conclude that large AOIs are a noise-robust solution in face stimuli and, when implemented using the Voronoi method, are the most objective of the researcher-defined AOIs. Adopting Voronoi AOIs in face-scanning research should allow better between-group and cross-study comparisons.

  19. Exact computation of the Voronoi Diagram of spheres in 3D, its topology and its geometric invariants

    DEFF Research Database (Denmark)

    Anton, François; Mioc, Darka; Santos, Marcelo

    2011-01-01

    In this paper, we are addressing the exact computation of the Delaunay graph (or quasi-triangulation) and the Voronoi diagram of spheres using Wu’s algorithm. Our main contribution is first a methodology for automated derivation of invariants of the Delaunay empty circumcircle predicate for spheres...... and the Voronoi vertex of four spheres, then the application of this methodology to get all geometrical invariants that intervene in this problem and the exact computation of the Delaunay graph and the Voronoi diagram of spheres. To the best of our knowledge, there does not exist a comprehensive treatment...... of the exact computation with geometrical invariants of the Delaunay graph and the Voronoi diagram of spheres. Starting from the system of equations defining the zero-dimensional algebraic set of the problem, we are following Wu’s algorithm to transform the initial system into an equivalent Wu characteristic...

  20. Geoplotlib: a Python Toolbox for Visualizing Geographical Data

    OpenAIRE

    Cuttone, Andrea; Lehmann, Sune; Larsen, Jakob Eg

    2016-01-01

    We introduce geoplotlib, an open-source python toolbox for visualizing geographical data. geoplotlib supports the development of hardware-accelerated interactive visualizations in pure python, and provides implementations of dot maps, kernel density estimation, spatial graphs, Voronoi tesselation, shapefiles and many more common spatial visualizations. We describe geoplotlib design, functionalities and use cases.

  1. Point Cluster Analysis Using a 3D Voronoi Diagram with Applications in Point Cloud Segmentation

    Directory of Open Access Journals (Sweden)

    Shen Ying

    2015-08-01

    Full Text Available Three-dimensional (3D point analysis and visualization is one of the most effective methods of point cluster detection and segmentation in geospatial datasets. However, serious scattering and clotting characteristics interfere with the visual detection of 3D point clusters. To overcome this problem, this study proposes the use of 3D Voronoi diagrams to analyze and visualize 3D points instead of the original data item. The proposed algorithm computes the cluster of 3D points by applying a set of 3D Voronoi cells to describe and quantify 3D points. The decompositions of point cloud of 3D models are guided by the 3D Voronoi cell parameters. The parameter values are mapped from the Voronoi cells to 3D points to show the spatial pattern and relationships; thus, a 3D point cluster pattern can be highlighted and easily recognized. To capture different cluster patterns, continuous progressive clusters and segmentations are tested. The 3D spatial relationship is shown to facilitate cluster detection. Furthermore, the generated segmentations of real 3D data cases are exploited to demonstrate the feasibility of our approach in detecting different spatial clusters for continuous point cloud segmentation.

  2. Lagrangian fluid dynamics using the Voronoi-Delauanay mesh

    International Nuclear Information System (INIS)

    Dukowicz, J.K.

    1981-01-01

    A Lagrangian technique for numerical fluid dynamics is described. This technique makes use of the Voronoi mesh to efficiently locate new neighbors, and it uses the dual (Delaunay) triangulation to define computational cells. This removes all topological restrictions and facilitates the solution of problems containing interfaces and multiple materials. To improve computational accuracy a mesh smoothing procedure is employed

  3. Further Developments in Characterizing Capture Zone Distributions (CZD) in Island Growth

    Science.gov (United States)

    Einstein, T. L.; Pimpinelli, Alberto; González, Diego Luis

    2014-03-01

    As argued previously, analysis of the distribution of the areas of capture zones (i.e. proximity polygons [or Voronoi tesselations] with respect to island centers) is often the best way to extract the critical nucleus size in studies of epitaxial growth. For non-Poisson deposition (i.e. when island nucleation is not fully random) the areas of these Voronoi cells can be well described by the generalized Wigner distribution (GWD), particularly in the central region around the mean area where the distribution is largest. We discuss several recent applications to experimental systems, catelogued in a recent minireview,[2] showing how this perspective leads to insights about the critical nucleus size. In contrast, several (but not all) studies have shown that the GWD may not describe the numerical data from painstaking simulations in both tails.2 We discuss some refinements that have been proposed, as well as scaling forms. Finally, we comment on applications to social phenomena. Emphasis is on very recent developments. Work at UMD supported by NSF CHE 13-05892 & NSF MRSEC DMR 05-20471.

  4. A Hybrid Vector Quantization Combining a Tree Structure and a Voronoi Diagram

    Directory of Open Access Journals (Sweden)

    Yeou-Jiunn Chen

    2014-01-01

    Full Text Available Multimedia data is a popular communication medium, but requires substantial storage space and network bandwidth. Vector quantization (VQ is suitable for multimedia data applications because of its simple architecture, fast decoding ability, and high compression rate. Full-search VQ can typically be used to determine optimal codewords, but requires considerable computational time and resources. In this study, a hybrid VQ combining a tree structure and a Voronoi diagram is proposed to improve VQ efficiency. To efficiently reduce the search space, a tree structure integrated with principal component analysis is proposed, to rapidly determine an initial codeword in low-dimensional space. To increase accuracy, a Voronoi diagram is applied to precisely enlarge the search space by modeling relations between each codeword. This enables an optimal codeword to be efficiently identified by rippling an optimal neighbor from parts of neighboring Voronoi regions. The experimental results demonstrated that the proposed approach improved VQ performance, outperforming other approaches. The proposed approach also satisfies the requirements of handheld device application, namely, the use of limited memory and network bandwidth, when a suitable number of dimensions in principal component analysis is selected.

  5. Computational analysis of RNA-protein interaction interfaces via the Voronoi diagram.

    Science.gov (United States)

    Mahdavi, Sedigheh; Mohades, Ali; Salehzadeh Yazdi, Ali; Jahandideh, Samad; Masoudi-Nejad, Ali

    2012-01-21

    Cellular functions are mediated by various biological processes including biomolecular interactions, such as protein-protein, DNA-protein and RNA-protein interactions in which RNA-Protein interactions are indispensable for many biological processes like cell development and viral replication. Unlike the protein-protein and protein-DNA interactions, accurate mechanisms and structures of the RNA-Protein complexes are not fully understood. A large amount of theoretical evidence have shown during the past several years that computational geometry is the first pace in understanding the binding profiles and plays a key role in the study of intricate biological structures, interactions and complexes. In this paper, RNA-Protein interaction interface surface is computed via the weighted Voronoi diagram of atoms. Using two filter operations provides a natural definition for interface atoms as classic methods. Unbounded parts of Voronoi facets that are far from the complex are trimmed using modified convex hull of atom centers. This algorithm is implemented to a database with different RNA-Protein complexes extracted from Protein Data Bank (PDB). Afterward, the features of interfaces have been computed and compared with classic method. The results show high correlation coefficients between interface size in the Voronoi model and the classical model based on solvent accessibility, as well as high accuracy and precision in comparison to classical model. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Canaliculi in the tessellated skeleton of cartilaginous fishes

    Energy Technology Data Exchange (ETDEWEB)

    Dean, M.N.; Socha, J.J.; Hall, B.K.; Summers, A.P. (UCI); (Dalhousie U.); (VPI-SU)

    2010-08-04

    The endoskeletal elements of sharks and rays are comprised of an uncalcified, hyaline cartilage-like core overlain by a thin fibro-ceramic layer of mineralized hexagonal tiles (tesserae) adjoined by intertesseral fibers. The basic spatial relationships of the constituent tissues (unmineralized cartilage, mineralized cartilage, fibrous tissue) are well-known - endoskeletal tessellation is a long-recognized synapomorphy of elasmobranch fishes - but a high-resolution and three-dimensional (3D) understanding of their interactions has been hampered by difficulties in sample preparation and lack of technologies adequate for visualizing microstructure and microassociations. We used cryo-electron microscopy and synchrotron radiation tomography to investigate tessellated skeleton ultrastructure but without damage to the delicate relationships between constituent tissues or to the tesserae themselves. The combination of these techniques allowed visualization of never before appreciated internal structures, namely passages connecting the lacunar spaces within tesserae. These intratesseral 'canaliculi' link consecutive lacunar spaces into long lacunar strings, radiating outward from the center of tesserae. The continuity of extracellular matrix throughout the canalicular network may explain how chondrocytes in tesserae remain vital despite encasement in mineral. Extracellular fluid exchange may also permit transmission of nutrients, and mechanical and mineralization signals among chondrocytes, in a manner similar to the canalicular network in bone. These co-adapted mechanisms for the facilitated exchange of extracellular material suggest a level of parallelism in early chondrocyte and osteocyte evolution.

  7. ColDICE: A parallel Vlasov–Poisson solver using moving adaptive simplicial tessellation

    International Nuclear Information System (INIS)

    Sousbie, Thierry; Colombi, Stéphane

    2016-01-01

    Resolving numerically Vlasov–Poisson equations for initially cold systems can be reduced to following the evolution of a three-dimensional sheet evolving in six-dimensional phase-space. We describe a public parallel numerical algorithm consisting in representing the phase-space sheet with a conforming, self-adaptive simplicial tessellation of which the vertices follow the Lagrangian equations of motion. The algorithm is implemented both in six- and four-dimensional phase-space. Refinement of the tessellation mesh is performed using the bisection method and a local representation of the phase-space sheet at second order relying on additional tracers created when needed at runtime. In order to preserve in the best way the Hamiltonian nature of the system, refinement is anisotropic and constrained by measurements of local Poincaré invariants. Resolution of Poisson equation is performed using the fast Fourier method on a regular rectangular grid, similarly to particle in cells codes. To compute the density projected onto this grid, the intersection of the tessellation and the grid is calculated using the method of Franklin and Kankanhalli [65–67] generalised to linear order. As preliminary tests of the code, we study in four dimensional phase-space the evolution of an initially small patch in a chaotic potential and the cosmological collapse of a fluctuation composed of two sinusoidal waves. We also perform a “warm” dark matter simulation in six-dimensional phase-space that we use to check the parallel scaling of the code.

  8. ColDICE: A parallel Vlasov–Poisson solver using moving adaptive simplicial tessellation

    Energy Technology Data Exchange (ETDEWEB)

    Sousbie, Thierry, E-mail: tsousbie@gmail.com [Institut d' Astrophysique de Paris, CNRS UMR 7095 and UPMC, 98bis, bd Arago, F-75014 Paris (France); Department of Physics, The University of Tokyo, Tokyo 113-0033 (Japan); Research Center for the Early Universe, School of Science, The University of Tokyo, Tokyo 113-0033 (Japan); Colombi, Stéphane, E-mail: colombi@iap.fr [Institut d' Astrophysique de Paris, CNRS UMR 7095 and UPMC, 98bis, bd Arago, F-75014 Paris (France); Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan)

    2016-09-15

    Resolving numerically Vlasov–Poisson equations for initially cold systems can be reduced to following the evolution of a three-dimensional sheet evolving in six-dimensional phase-space. We describe a public parallel numerical algorithm consisting in representing the phase-space sheet with a conforming, self-adaptive simplicial tessellation of which the vertices follow the Lagrangian equations of motion. The algorithm is implemented both in six- and four-dimensional phase-space. Refinement of the tessellation mesh is performed using the bisection method and a local representation of the phase-space sheet at second order relying on additional tracers created when needed at runtime. In order to preserve in the best way the Hamiltonian nature of the system, refinement is anisotropic and constrained by measurements of local Poincaré invariants. Resolution of Poisson equation is performed using the fast Fourier method on a regular rectangular grid, similarly to particle in cells codes. To compute the density projected onto this grid, the intersection of the tessellation and the grid is calculated using the method of Franklin and Kankanhalli [65–67] generalised to linear order. As preliminary tests of the code, we study in four dimensional phase-space the evolution of an initially small patch in a chaotic potential and the cosmological collapse of a fluctuation composed of two sinusoidal waves. We also perform a “warm” dark matter simulation in six-dimensional phase-space that we use to check the parallel scaling of the code.

  9. APPLICATION OF VORONOI DIAGRAM TO MASK-BASED INTERCEPTING PHASE-SPACE MEASUREMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Halavanau, A. [Fermilab; Ha, G. [POSTECH

    2017-05-19

    Intercepting multi-aperture masks (e.g. pepper pot or multislit mask) combined with a downstream transversedensity diagnostics (e.g. based on optical transition radiation or employing scintillating media) are commonly used for characterizing the phase space of charged particle beams and the associated emittances. The required data analysis relies on precise calculation of the RMS sizes and positions of the beamlets originated from the mask which drifted up to the analyzing diagnostics. Voronoi diagram is an efficient method for splitting a plane into subsets according to the distances between given vortices. The application of the method to analyze data from pepper pot and multislit mask based measurement is validated via numerical simulation and applied to experimental data acquired at the Argonne Wakefield Accelerator (AWA) facility. We also discuss the application of the Voronoi diagrams to quantify transverselymodulated beams distortion.

  10. A three-dimensional electrostatic particle-in-cell methodology on unstructured Delaunay-Voronoi grids

    International Nuclear Information System (INIS)

    Gatsonis, Nikolaos A.; Spirkin, Anton

    2009-01-01

    The mathematical formulation and computational implementation of a three-dimensional particle-in-cell methodology on unstructured Delaunay-Voronoi tetrahedral grids is presented. The method allows simulation of plasmas in complex domains and incorporates the duality of the Delaunay-Voronoi in all aspects of the particle-in-cell cycle. Charge assignment and field interpolation weighting schemes of zero- and first-order are formulated based on the theory of long-range constraints. Electric potential and fields are derived from a finite-volume formulation of Gauss' law using the Voronoi-Delaunay dual. Boundary conditions and the algorithms for injection, particle loading, particle motion, and particle tracking are implemented for unstructured Delaunay grids. Error and sensitivity analysis examines the effects of particles/cell, grid scaling, and timestep on the numerical heating, the slowing-down time, and the deflection times. The problem of current collection by cylindrical Langmuir probes in collisionless plasmas is used for validation. Numerical results compare favorably with previous numerical and analytical solutions for a wide range of probe radius to Debye length ratios, probe potentials, and electron to ion temperature ratios. The versatility of the methodology is demonstrated with the simulation of a complex plasma microsensor, a directional micro-retarding potential analyzer that includes a low transparency micro-grid.

  11. Ancient dragon fish, Rhinoceroses and Bird Rosettas : tessellations in laser cut wood

    NARCIS (Netherlands)

    2013-01-01

    The art works proposed are examples of results of a yearly workshop for industrial design students at TU/e. The workshop serves to teach mathematical principles to design students. The students defined tessellations in turtle graphics using the new Oogway library for Processing and the classical

  12. Adaptive acoustic energy delivery to near and far fields using foldable, tessellated star transducers

    Science.gov (United States)

    Zou, Chengzhe; Harne, Ryan L.

    2017-05-01

    Methods of guiding acoustic energy arbitrarily through space have long relied on digital controls to meet performance needs. Yet, more recent attention to adaptive structures with unique spatial configurations has motivated mechanical signal processing (MSP) concepts that may not be subjected to the same functional and performance limitations as digital acoustic beamforming counterparts. The periodicity of repeatable structural reconfiguration enabled by origami-inspired tessellated architectures turns attention to foldable platforms as frameworks for MSP development. This research harnesses principles of MSP to study a tessellated, star-shaped acoustic transducer constituent that provides on-demand control of acoustic energy guiding via folding-induced shape reconfiguration. An analytical framework is established to probe the roles of mechanical and acoustic geometry on the far field directivity and near field focusing of sound energy. Following validation by experiments and verification by simulations, parametric studies are undertaken to uncover relations between constituent topology and acoustic energy delivery to arbitrary points in the free field. The adaptations enabled by folding of the star-shaped transducer reveal capability for restricting sound energy to angular regions in the far field while also introducing means to modulate sound energy by three orders-of-magnitude to locations near to the transducer surface. In addition, the modeling philosophy devised here provides a valuable approach to solve general sound radiation problems for foldable, tessellated acoustic transducer constituents of arbitrary geometry.

  13. Diagramas de Voronoi para a definição de áreas de abrangência de hospitais públicos no Município do Rio de Janeiro Defining catchment areas for public hospitals in the Municipality of Rio de Janeiro through Weighted Voronoi Diagrams

    Directory of Open Access Journals (Sweden)

    Flavio Astolpho Vieira Souto Rezende

    2000-06-01

    Full Text Available No planejamento de recursos em saúde é importante o conhecimento da área de abrangência de uma unidade. Os Diagramas de Voronoi constituem uma técnica para tal; são polígonos construídos de tal forma que as bordas de polígonos adjacentes encontram-se eqüidistantes de seus respectivos pontos geradores. Uma modificação nas áreas de abrangência assim definidas é sua ponderação (Diagramas de Voronoi ponderados, representando a capacidade da unidade de forma mais real. No presente trabalho foram utilizados, como pontos geradores, 21 hospitais gerais públicos no Rio de Janeiro, RJ. Inicialmente foram criados os Diagramas de Voronoi sem ponderação, e, a partir destes, os diagramas ponderados, empregando-se como variável de ponderação as estimativas de internação anual para cada unidade. Na divisão clássica, áreas de abrangência similares foram atribuídas a hospitais com características diferenciadas, problema esse contornado no método ponderado. O método é de simples implementação e visualização, utiliza dados de fácil acesso e independe de parâmetros arbitrários ou geopolíticos. Portanto, esses diagramas podem fornecer, a gerentes de saúde, uma visão mais realista para o planejamento da demanda de suas unidades.One of the most important pieces of information for health resources planning is the definition of catchment areas for health units. Voronoi Diagrams are a potential technique for this purpose. They are polygons with the property whereby adjacent polygons have their borders located within the same distance of the respective generator points. One possible adjustment to the catchment areas thus defined is the use of weighted Voronoi Diagrams, which result in an improved representation of a health unit's actual capacity. In this study, the 21 public general hospitals in the city of Rio de Janeiro, Brazil, were used as generator points for Voronoi Diagrams. Non-weighted Voronoi Diagrams were initially

  14. Spatio-temporal map generalizations with the hierarchical Voronoi data structure

    DEFF Research Database (Denmark)

    Mioc, Darka; Anton, François; Gold, Christopher M.

    implemented in commercial GIS systems. In this research, we used the Voronoi spatial data model for map generalizations. We were able to demonstrate that the map generalization does not affect only spatial objects (points, lines or polygons), but also the events corresponding to the creation and modification...... their spatio-temporal characteristics and their dynamic behaviour....

  15. A Novel Spatial-Temporal Voronoi Diagram-Based Heuristic Approach for Large-Scale Vehicle Routing Optimization with Time Constraints

    Directory of Open Access Journals (Sweden)

    Wei Tu

    2015-10-01

    Full Text Available Vehicle routing optimization (VRO designs the best routes to reduce travel cost, energy consumption, and carbon emission. Due to non-deterministic polynomial-time hard (NP-hard complexity, many VROs involved in real-world applications require too much computing effort. Shortening computing time for VRO is a great challenge for state-of-the-art spatial optimization algorithms. From a spatial-temporal perspective, this paper presents a spatial-temporal Voronoi diagram-based heuristic approach for large-scale vehicle routing problems with time windows (VRPTW. Considering time constraints, a spatial-temporal Voronoi distance is derived from the spatial-temporal Voronoi diagram to find near neighbors in the space-time searching context. A Voronoi distance decay strategy that integrates a time warp operation is proposed to accelerate local search procedures. A spatial-temporal feature-guided search is developed to improve unpromising micro route structures. Experiments on VRPTW benchmarks and real-world instances are conducted to verify performance. The results demonstrate that the proposed approach is competitive with state-of-the-art heuristics and achieves high-quality solutions for large-scale instances of VRPTWs in a short time. This novel approach will contribute to spatial decision support community by developing an effective vehicle routing optimization method for large transportation applications in both public and private sectors.

  16. Regional SAR Image Segmentation Based on Fuzzy Clustering with Gamma Mixture Model

    Science.gov (United States)

    Li, X. L.; Zhao, Q. H.; Li, Y.

    2017-09-01

    Most of stochastic based fuzzy clustering algorithms are pixel-based, which can not effectively overcome the inherent speckle noise in SAR images. In order to deal with the problem, a regional SAR image segmentation algorithm based on fuzzy clustering with Gamma mixture model is proposed in this paper. First, initialize some generating points randomly on the image, the image domain is divided into many sub-regions using Voronoi tessellation technique. Each sub-region is regarded as a homogeneous area in which the pixels share the same cluster label. Then, assume the probability of the pixel to be a Gamma mixture model with the parameters respecting to the cluster which the pixel belongs to. The negative logarithm of the probability represents the dissimilarity measure between the pixel and the cluster. The regional dissimilarity measure of one sub-region is defined as the sum of the measures of pixels in the region. Furthermore, the Markov Random Field (MRF) model is extended from pixels level to Voronoi sub-regions, and then the regional objective function is established under the framework of fuzzy clustering. The optimal segmentation results can be obtained by the solution of model parameters and generating points. Finally, the effectiveness of the proposed algorithm can be proved by the qualitative and quantitative analysis from the segmentation results of the simulated and real SAR images.

  17. Soft-sphere simulations of a planar shock interaction with a granular bed

    Science.gov (United States)

    Stewart, Cameron; Balachandar, S.; McGrath, Thomas P.

    2018-03-01

    Here we consider the problem of shock propagation through a layer of spherical particles. A point particle force model is used to capture the shock-induced aerodynamic force acting upon the particles. The discrete element method (DEM) code liggghts is used to implement the shock-induced force as well as to capture the collisional forces within the system. A volume-fraction-dependent drag correction is applied using Voronoi tessellation to calculate the volume of fluid around each individual particle. A statistically stationary frame is chosen so that spatial and temporal averaging can be performed to calculate ensemble-averaged macroscopic quantities, such as the granular temperature. A parametric study is carried out by varying the coefficient of restitution for three sets of multiphase shock conditions. A self-similar profile is obtained for the granular temperature that is dependent on the coefficient of restitution. A traveling wave structure is observed in the particle concentration downstream of the shock and this instability arises from the volume-fraction-dependent drag force. The intensity of the traveling wave increases significantly as inelastic collisions are introduced. Downstream of the shock, the variance in Voronoi volume fraction is shown to have a strong dependence upon the coefficient of restitution, indicating clustering of particles induced by collisional dissipation. Statistics of the Voronoi volume are computed upstream and downstream of the shock and compared to theoretical results for randomly distributed hard spheres.

  18. Applications of Voronoi and Delaunay Diagrams in the solution of the geodetic boundary value problem

    Directory of Open Access Journals (Sweden)

    C. A. B. Quintero

    Full Text Available Voronoi and Delaunay structures are presented as discretization tools to be used in numerical surface integration aiming the computation of geodetic problems solutions, when under the integral there is a non-analytical function (e. g., gravity anomaly and height. In the Voronoi approach, the target area is partitioned into polygons which contain the observed point and no interpolation is necessary, only the original data is used. In the Delaunay approach, the observed points are vertices of triangular cells and the value for a cell is interpolated for its barycenter. If the amount and distribution of the observed points are adequate, gridding operation is not required and the numerical surface integration is carried out by point-wise. Even when the amount and distribution of the observed points are not enough, the structures of Voronoi and Delaunay can combine grid with observed points in order to preserve the integrity of the original information. Both schemes are applied to the computation of the Stokes' integral, the terrain correction, the indirect effect and the gradient of the gravity anomaly, in the State of Rio de Janeiro, Brazil area.

  19. The mechanics of tessellations - bioinspired strategies for fracture resistance.

    Science.gov (United States)

    Fratzl, Peter; Kolednik, Otmar; Fischer, F Dieter; Dean, Mason N

    2016-01-21

    Faced with a comparatively limited palette of minerals and organic polymers as building materials, evolution has arrived repeatedly on structural solutions that rely on clever geometric arrangements to avoid mechanical trade-offs in stiffness, strength and flexibility. In this tutorial review, we highlight the concept of tessellation, a structural motif that involves periodic soft and hard elements arranged in series and that appears in a vast array of invertebrate and vertebrate animal biomaterials. We start from basic mechanics principles on the effects of material heterogeneities in hypothetical structures, to derive common concepts from a diversity of natural examples of one-, two- and three-dimensional tilings/layerings. We show that the tessellation of a hard, continuous surface - its atomization into discrete elements connected by a softer phase - can theoretically result in maximization of material toughness, with little expense to stiffness or strength. Moreover, the arrangement of soft/flexible and hard/stiff elements into particular geometries can permit surprising functions, such as signal filtering or 'stretch and catch' responses, where the constrained flexibility of systems allows a built-in safety mechanism for ensuring that both compressive and tensile loads are managed well. Our analysis unites examples ranging from exoskeletal materials (fish scales, arthropod cuticle, turtle shell) to endoskeletal materials (bone, shark cartilage, sponge spicules) to attachment devices (mussel byssal threads), from both invertebrate and vertebrate animals, while spotlighting success and potential for bio-inspired manmade applications.

  20. Detecting kinematic boundary surfaces in phase space: particle mass measurements in SUSY-like events

    Science.gov (United States)

    Debnath, Dipsikha; Gainer, James S.; Kilic, Can; Kim, Doojin; Matchev, Konstantin T.; Yang, Yuan-Pao

    2017-06-01

    We critically examine the classic endpoint method for particle mass determination, focusing on difficult corners of parameter space, where some of the measurements are not independent, while others are adversely affected by the experimental resolution. In such scenarios, mass differences can be measured relatively well, but the overall mass scale remains poorly constrained. Using the example of the standard SUSY decay chain \\tilde{q}\\to {\\tilde{χ}}_2^0\\to \\tilde{ℓ}\\to {\\tilde{χ}}_1^0 , we demonstrate that sensitivity to the remaining mass scale parameter can be recovered by measuring the two-dimensional kinematical boundary in the relevant three-dimensional phase space of invariant masses squared. We develop an algorithm for detecting this boundary, which uses the geometric properties of the Voronoi tessellation of the data, and in particular, the relative standard deviation (RSD) of the volumes of the neighbors for each Voronoi cell in the tessellation. We propose a new observable, \\overline{Σ} , which is the average RSD per unit area, calculated over the hypothesized boundary. We show that the location of the \\overline{Σ} maximum correlates very well with the true values of the new particle masses. Our approach represents the natural extension of the one-dimensional kinematic endpoint method to the relevant three dimensions of invariant mass phase space.

  1. Estimating minimum polycrystalline aggregate size for macroscopic material homogeneity

    International Nuclear Information System (INIS)

    Kovac, M.; Simonovski, I.; Cizelj, L.

    2002-01-01

    During severe accidents the pressure boundary of reactor coolant system can be subjected to extreme loadings, which might cause failure. Reliable estimation of the extreme deformations can be crucial to determine the consequences of severe accidents. Important drawback of classical continuum mechanics is idealization of inhomogenous microstructure of materials. Classical continuum mechanics therefore cannot predict accurately the differences between measured responses of specimens, which are different in size but geometrical similar (size effect). A numerical approach, which models elastic-plastic behavior on mesoscopic level, is proposed to estimate minimum size of polycrystalline aggregate above which it can be considered macroscopically homogeneous. The main idea is to divide continuum into a set of sub-continua. Analysis of macroscopic element is divided into modeling the random grain structure (using Voronoi tessellation and random orientation of crystal lattice) and calculation of strain/stress field. Finite element method is used to obtain numerical solutions of strain and stress fields. The analysis is limited to 2D models.(author)

  2. The art and science of hyperbolic tessellations.

    Science.gov (United States)

    Van Dusen, B; Taylor, R P

    2013-04-01

    The visual impact of hyperbolic tessellations has captured artists' imaginations ever since M.C. Escher generated his Circle Limit series in the 1950s. The scaling properties generated by hyperbolic geometry are different to the fractal scaling properties found in nature's scenery. Consequently, prevalent interpretations of Escher's art emphasize the lack of connection with nature's patterns. However, a recent collaboration between the two authors proposed that Escher's motivation for using hyperbolic geometry was as a method to deliberately distort nature's rules. Inspired by this hypothesis, this year's cover artist, Ben Van Dusen, embeds natural fractals such as trees, clouds and lightning into a hyperbolic scaling grid. The resulting interplay of visual structure at multiple size scales suggests that hybridizations of fractal and hyperbolic geometries provide a rich compositional tool for artists.

  3. Mesoscopic approach to modeling elastic-plastic polycrystalline material behaviour

    International Nuclear Information System (INIS)

    Kovac, M.; Cizelj, L.

    2001-01-01

    Extreme loadings during severe accident conditions might cause failure or rupture of the pressure boundary of a reactor coolant system. Reliable estimation of the extreme deformations can be crucial to determine the consequences of such an accident. One of important drawbacks of classical continuum mechanics is idealization of inhomogenous microstructure of materials. This paper discusses the mesoscopic approach to modeling the elastic-plastic behavior of a polycrystalline material. The main idea is to divide the continuum (e.g., polycrystalline aggregate) into a set of sub-continua (grains). The overall properties of the polycrystalline aggregate are therefore determined by the number of grains in the aggregate and properties of randomly shaped and oriented grains. The random grain structure is modeled with Voronoi tessellation and random orientations of crystal lattices are assumed. The elastic behavior of monocrystal grains is assumed to be anisotropic. Crystal plasticity is used to describe plastic response of monocrystal grains. Finite element method is used to obtain numerical solutions of strain and stress fields. The analysis is limited to two-dimensional models.(author)

  4. A 3D coupled hydro-mechanical granular model for the prediction of hot tearing formation

    International Nuclear Information System (INIS)

    Sistaninia, M; Drezet, J-M; Rappaz, M; Phillion, A B

    2012-01-01

    A new 3D coupled hydro-mechanical granular model that simulates hot tearing formation in metallic alloys is presented. The hydro-mechanical model consists of four separate 3D modules. (I) The Solidification Module (SM) is used for generating the initial solid-liquid geometry. Based on a Voronoi tessellation of randomly distributed nucleation centers, this module computes solidification within each polyhedron using a finite element based solute diffusion calculation for each element within the tessellation. (II) The Fluid Flow Module (FFM) calculates the solidification shrinkage and deformation-induced pressure drop within the intergranular liquid. (III) The Semi-solid Deformation Module (SDM) is used to simulate deformation of the granular structure via a combined finite element / discrete element method. In this module, deformation of the solid grains is modeled using an elasto-viscoplastic constitutive law. (IV) The Failure Module (FM) is used to simulate crack initiation and propagation with the fracture criterion estimated from the overpressure required to overcome the capillary forces at the liquid-gas interface. The FFM, SDM, and FM are coupled processes since solid deformation, intergranular flow, and crack initiation are deeply linked together. The granular model predictions have been validated against bulk data measured experimentally and calculated with averaging techniques.

  5. Simulation of Semi-Solid Material Mechanical Behavior Using a Combined Discrete/Finite Element Method

    Science.gov (United States)

    Sistaninia, M.; Phillion, A. B.; Drezet, J.-M.; Rappaz, M.

    2011-01-01

    As a necessary step toward the quantitative prediction of hot tearing defects, a three-dimensional stress-strain simulation based on a combined finite element (FE)/discrete element method (DEM) has been developed that is capable of predicting the mechanical behavior of semisolid metallic alloys during solidification. The solidification model used for generating the initial solid-liquid structure is based on a Voronoi tessellation of randomly distributed nucleation centers and a solute diffusion model for each element of this tessellation. At a given fraction of solid, the deformation is then simulated with the solid grains being modeled using an elastoviscoplastic constitutive law, whereas the remaining liquid layers at grain boundaries are approximated by flexible connectors, each consisting of a spring element and a damper element acting in parallel. The model predictions have been validated against Al-Cu alloy experimental data from the literature. The results show that a combined FE/DEM approach is able to express the overall mechanical behavior of semisolid alloys at the macroscale based on the morphology of the grain structure. For the first time, the localization of strain in the intergranular regions is taken into account. Thus, this approach constitutes an indispensible step towards the development of a comprehensive model of hot tearing.

  6. Progress in characterizing submonolayer island growth: Capture-zone distributions, growth exponents, & hot precursors

    Science.gov (United States)

    Einstein, Theodore L.; Pimpinelli, Alberto; González, Diego Luis; Morales-Cifuentes, Josue R.

    2015-09-01

    In studies of epitaxial growth, analysis of the distribution of the areas of capture zones (i.e. proximity polygons or Voronoi tessellations with respect to island centers) is often the best way to extract the critical nucleus size i. For non-random nucleation the normalized areas s of these Voronoi cells are well described by the generalized Wigner distribution (GWD) Pβ(s) = asβ exp(-bs2), particularly in the central region 0.5 < s < 2 where data are least noisy. Extensive Monte Carlo simulations reveal inadequacies of our earlier mean field analysis, suggesting β = i + 2 for diffusion-limited aggregation (DLA). Since simulations generate orders of magnitude more data than experiments, they permit close examination of the tails of the distribution, which differ from the simple GWD form. One refinement is based on a fragmentation model. We also compare island-size distributions. We compare analysis by island-size distribution and by scaling of island density with flux. Modifications appear for attach-limited aggregation (ALA). We focus on the experimental system para-hexaphenyl on amorphous mica, comparing the results of the three analysis techniques and reconciling their results via a novel model of hot precursors based on rate equations, pointing out the existence of intermediate scaling regimes between DLA and ALA.

  7. Study by XRD and ion beams of tessels of a turquoises disc of the Templo Mayor de Tenochtitlan

    International Nuclear Information System (INIS)

    Ruvalcaba S, J.L.; Bucio, L.; Marin, M.E.; Velasquez, A.

    2005-01-01

    For the study of minerals and semiprecious stones, such as turquoise, it is necessary to use a combined analysis in order to determine crystalline minerals phases and elemental com- position. In this way, it is possible to identify mineralogical substitutions in the crystals and to perform sourcing by trace elemental analysis. In this work, the analysis focused on the study of surface alterations of tessels from a disc found in the 99 offering from Templo Mayor of Tenochtitlan. Rutherford Backscattering Spectrometry and Particle Induced X-ray Emission (PIXE) Spectrometries using protons and alpha particles were applied to determine surface elemental analysis of tessels of different colours (blue, green, white). For mineralogical identification, standard X-ray Diffraction was used. (Author)

  8. Accuracy tests of the tessellated SLBM model

    International Nuclear Information System (INIS)

    Ramirez, A L; Myers, S C

    2007-01-01

    We have compared the Seismic Location Base Model (SLBM) tessellated model (version 2.0 Beta, posted July 3, 2007) with the GNEMRE Unified Model. The comparison is done on a layer/depth-by-layer/depth and layer/velocity-by-layer/velocity comparison. The SLBM earth model is defined on a tessellation that spans the globe at a constant resolution of about 1 degree (Ballard, 2007). For the tests, we used the earth model in file ''unified( ) iasp.grid''. This model contains the top 8 layers of the Unified Model (UM) embedded in a global IASP91 grid. Our test queried the same set of nodes included in the UM model file. To query the model stored in memory, we used some of the functionality built into the SLBMInterface object. We used the method get InterpolatedPoint() to return desired values for each layer at user-specified points. The values returned include: depth to the top of each layer, layer velocity, layer thickness and (for the upper-mantle layer) velocity gradient. The SLBM earth model has an extra middle crust layer whose values are used when Pg/Lg phases are being calculated. This extra layer was not accessed by our tests. Figures 1 to 8 compare the layer depths, P velocities and P gradients in the UM and SLBM models. The figures show results for the three sediment layers, three crustal layers and the upper mantle layer defined in the UM model. Each layer in the models (sediment1, sediment2, sediment3, upper crust, middle crust, lower crust and upper mantle) is shown on a separate figure. The upper mantle P velocity and gradient distribution are shown on Figures 7 and 8. The left and center images in the top row of each figure is the rendering of depth to the top of the specified layer for the UM and SLBM models. When a layer has zero thickness, its depth is the same as that of the layer above. The right image in the top row is the difference between in layer depth for the UM and SLBM renderings. The left and center images in the bottom row of the figures are

  9. Cooperation among cancer cells as public goods games on Voronoi networks.

    Science.gov (United States)

    Archetti, Marco

    2016-05-07

    Cancer cells produce growth factors that diffuse and sustain tumour proliferation, a form of cooperation that can be studied using mathematical models of public goods in the framework of evolutionary game theory. Cell populations, however, form heterogeneous networks that cannot be described by regular lattices or scale-free networks, the types of graphs generally used in the study of cooperation. To describe the dynamics of growth factor production in populations of cancer cells, I study public goods games on Voronoi networks, using a range of non-linear benefits that account for the known properties of growth factors, and different types of diffusion gradients. The results are surprisingly similar to those obtained on regular graphs and different from results on scale-free networks, revealing that network heterogeneity per se does not promote cooperation when public goods diffuse beyond one-step neighbours. The exact shape of the diffusion gradient is not crucial, however, whereas the type of non-linear benefit is an essential determinant of the dynamics. Public goods games on Voronoi networks can shed light on intra-tumour heterogeneity, the evolution of resistance to therapies that target growth factors, and new types of cell therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. On some limitations of reaction-diffusion chemical computers in relation to Voronoi diagram and its inversion

    International Nuclear Information System (INIS)

    Adamatzky, Andrew; Lacy Costello, Benjamin de

    2003-01-01

    A reaction-diffusion chemical computer in this context is a planar uniform chemical reactor, where data and results of a computation are represented by concentration profiles of reactants and the computation itself is implemented via the spreading and interaction of diffusive and phase waves. This class of chemical computers are efficient at solving problems with a 'natural' parallelism where data sets are decomposable onto a large number of geographically neighboring domains which are then processed in parallel. Typical problems of this type include image processing, geometrical transformations and optimisation. When chemical based devices are used to solve such problems questions regarding their reproducible, efficiency and the accuracy of their computations arise. In addition to these questions what are the limitations of reaction-diffusion chemical processors--what type of problems cannot currently and are unlikely ever to be solved? To answer the questions we study how a Voronoi diagram is constructed and how it is inverted in a planar chemical processor. We demonstrate that a Voronoi diagram is computed only partially in the chemical processor. We also prove that given a specific Voronoi diagram it is impossible to reconstruct the planar set (from which diagram was computed) in the reaction-diffusion chemical processor. In the Letter we open the first ever line of enquiry into the computational inability of reaction-diffusion chemical computers

  11. Ajuste de particiones planas mediante diagramas de Voronoi discretos

    OpenAIRE

    García Bernal, Daniel

    2017-01-01

    La geometría computacional se centra en el diseño y análisis de algoritmos para problemas geométricos. En la última decada, esta disciplina ha atraído un enorme interés. Pero ha sido en los últimos a~nos cuando se ha incrementado el interés en una estructura geométrica, concretamente los diagramas de Voronoi. No solo por sus características y propiedades matemáticas, sino también por aparecer ampliamente relacionados con fenómenos y procesos físicos que se dan en la naturale...

  12. Fractional Dynamics of Genetic Algorithms Using Hexagonal Space Tessellation

    Directory of Open Access Journals (Sweden)

    J. A. Tenreiro Machado

    2013-01-01

    Full Text Available The paper formulates a genetic algorithm that evolves two types of objects in a plane. The fitness function promotes a relationship between the objects that is optimal when some kind of interface between them occurs. Furthermore, the algorithm adopts an hexagonal tessellation of the two-dimensional space for promoting an efficient method of the neighbour modelling. The genetic algorithm produces special patterns with resemblances to those revealed in percolation phenomena or in the symbiosis found in lichens. Besides the analysis of the spacial layout, a modelling of the time evolution is performed by adopting a distance measure and the modelling in the Fourier domain in the perspective of fractional calculus. The results reveal a consistent, and easy to interpret, set of model parameters for distinct operating conditions.

  13. Application of Delaunay tessellation for the characterization of solute-rich clusters in atom probe tomography

    International Nuclear Information System (INIS)

    Lefebvre, W.; Philippe, T.; Vurpillot, F.

    2011-01-01

    This work presents an original method for cluster selection in Atom Probe Tomography designed to be applied to large datasets. It is based on the calculation of the Delaunay tessellation generated by the distribution of atoms of a selected element. It requires a single input parameter from the user. Furthermore, no prior knowledge of the material is needed. The sensitivity of the proposed Delaunay cluster selection is demonstrated by its application on simulated APT datasets. A strong advantage of the proposed methodology is that it is reinforced by the availability of an analytical model for the distribution of Delaunay cells circumspheres, which is used to control the accuracy of the cluster selection procedure. Another advantage of the Delaunay cluster selection is the direct calculation of a sharp envelope for each identified cluster or precipitate, which leads to the more appropriate morphology of the objects as they are reconstructed in the APT dataset. -- Research Highligthts: →Original method for cluster selection in Atom Probe Tomography. →Delaunay tessellation generated by the distribution of solute atoms. →Direct calculation of a sharp envelope for each identified cluster or precipitate. →Delaunay cluster selection demonstrated by its application on simulated APT datasets.

  14. Use of three-dimensional parameters in the analysis of crystal structures under compression

    DEFF Research Database (Denmark)

    Balic Zunic, Tonci

    2007-01-01

    . For a complete understanding of structural changes, the behaviour of all coordination polyhedra plus the voids that separate them must be investigated. The structural voids in a framework are identified by a Voronoi tessellation. It can be performed e.g. on the anionic framework alone to find the centres...... information. Accurate determination of atomic coordinations is difficult in cases where a clear bond gap does not exist. In such instances the most reliable existing method is the determination of atomic domains in electron density, which can be performed even for experimental high-pressure crystal structure...

  15. A 3D Voronoi+Gapper Galaxy Cluster Finder in Redshift Space to z ∼ 0.2 I: an Algorithm Optimized for the 2dFGRS

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Sebastián; Campusano, Luis E.; Hitschfeld-Kahler, Nancy; Pizarro, Daniel; Haines, Christopher P. [Universidad de Chile, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago (Chile); Clowes, Roger G.; Marinello, Gabriel [Jeremiah Horrocks Institute, University of Central Lancashire, Preston PR1 2HE (United Kingdom); Söchting, Ilona K., E-mail: luis@das.uchile.cl [University of Oxford, Astrophysics, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom)

    2017-04-01

    This paper is the first in a series, presenting a new galaxy cluster finder based on a three-dimensional Voronoi Tesselation plus a maximum likelihood estimator, followed by gapping-filtering in radial velocity(VoML+G). The scientific aim of the series is a reassessment of the diversity of optical clusters in the local universe. A mock galaxy database mimicking the southern strip of the magnitude(blue)-limited 2dF Galaxy Redshift Survey (2dFGRS), for the redshift range 0.009 < z < 0.22, is built on the basis of the Millennium Simulation of the LCDM cosmology and a reference catalog of “Millennium clusters,” spannning across the 1.0 × 10{sup 12}–1.0 × 10{sup 15} M {sub ⊙} h {sup −1} dark matter (DM) halo mass range, is recorded. The validation of VoML+G is performed through its application to the mock data and the ensuing determination of the completeness and purity of the cluster detections by comparison with the reference catalog. The execution of VoML+G over the 2dFGRS mock data identified 1614 clusters, 22% with N {sub g} ≥ 10, 64 percent with 10 > N {sub g} ≥ 5, and 14% with N {sub g} < 5. The ensemble of VoML+G clusters has a ∼59% completeness and a ∼66% purity, whereas the subsample with N {sub g} ≥ 10, to z ∼ 0.14, has greatly improved mean rates of ∼75% and ∼90%, respectively. The VoML+G cluster velocity dispersions are found to be compatible with those corresponding to “Millennium clusters” over the 300–1000 km s{sup −1} interval, i.e., for cluster halo masses in excess of ∼3.0 × 10{sup 13} M {sub ⊙} h {sup −1}.

  16. Evolution of local atomic structure during solidification of Al2Au liquid: An ab initio study

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, L H; Lou, H B; Wang, X D; Debela, T T; Cao, Q P; Zhang, D X; Wang, S Y; Wang, C Z; Jiang, J Z

    2014-04-01

    The local atomic structure evolution in Al2Au alloy during solidification from 2000 K to 400 K was studied by ab initio molecular dynamics simulations and analyzed using the structure factor, pair correlation functions, bond angle distributions, the Honeycutt-Anderson (HA) index and Voronoi tessellation methods. It was found that the icosahedral-like clusters are negligible in the Al2Au stable liquid and supercooled liquid states, and the most abundant clusters are those having HA indices of 131 and 120 or Voronoi indices of < 0,4,4,0 >, < 0,3, 6,0 > and < 0,4,4,2 > with coordination numbers of 8, 9 and 10, respectively. These clusters are similar to the local atomic structures in the CaF2-type Al2Au crystal, revealing the existence of structure heredity between liquid and crystalline phase in Al2Au alloy. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. The motion of discs and spherical fuel particles in combustion burners based on Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Granada, E.; Patino, D.; Porteiro, J.; Collazo, J.; Miguez, J.L.; Moran, J. [University of Vigo, E.T.S. Ingenieros Industriales, Lagoas-Marcosende s/n, 36200-Vigo (Spain)

    2010-04-15

    The position of pellet fuel particles in a burner largely determines their combustion behaviour. This paper addresses the simulated motion of circles and spheres, equivalent to pellet, and their final position in a packed bed subject to a gravitational field confined inside rigid cylindrical walls. A simplified Monte Carlo statistical technique has been described and applied with the standard Metropolis method for the simulation of movement. This simplification provides an easier understanding of the method when applied to solid fuels in granular form, provided that they are only under gravitational forces. Not only have we contrasted one parameter, as other authors, but three, which are radial, bulk and local porosities, via Voronoi tessellation. Our simulations reveal a structural order near the walls, which declines towards the centre of the container, and no pattern was found in local porosity via Voronoi. Results with this simplified method are in agreement with more complex previously published studies. (author)

  18. Evolution of local atomic structure during solidification of Al2Au liquid: An ab initio study

    International Nuclear Information System (INIS)

    Xiong, L.H.; Lou, H.B.; Wang, X.D.; Debela, T.T.; Cao, Q.P.; Zhang, D.X.; Wang, S.Y.; Wang, C.Z.; Jiang, J.Z.

    2014-01-01

    The local atomic structure evolution in Al 2 Au alloy during solidification from 2000 K to 400 K was studied by ab initio molecular dynamics simulations and analyzed using the structure factor, pair correlation functions, bond angle distributions, the Honeycutt–Anderson (HA) index and Voronoi tessellation methods. It was found that the icosahedral-like clusters are negligible in the Al 2 Au stable liquid and supercooled liquid states, and the most abundant clusters are those having HA indices of 131 and 120 or Voronoi indices of 〈0, 4, 4, 0〉, 〈0, 3, 6, 0〉 and 〈0, 4, 4, 2〉 with coordination numbers of 8, 9 and 10, respectively. These clusters are similar to the local atomic structures in the CaF 2 -type Al 2 Au crystal, revealing the existence of structure heredity between liquid and crystalline phase in Al 2 Au alloy

  19. The motion of discs and spherical fuel particles in combustion burners based on Monte Carlo simulation

    International Nuclear Information System (INIS)

    Granada, E.; Patino, D.; Porteiro, J.; Collazo, J.; Miguez, J.L.; Moran, J.

    2010-01-01

    The position of pellet fuel particles in a burner largely determines their combustion behaviour. This paper addresses the simulated motion of circles and spheres, equivalent to pellet, and their final position in a packed bed subject to a gravitational field confined inside rigid cylindrical walls. A simplified Monte Carlo statistical technique has been described and applied with the standard Metropolis method for the simulation of movement. This simplification provides an easier understanding of the method when applied to solid fuels in granular form, provided that they are only under gravitational forces. Not only have we contrasted one parameter, as other authors, but three, which are radial, bulk and local porosities, via Voronoi tessellation. Our simulations reveal a structural order near the walls, which declines towards the centre of the container, and no pattern was found in local porosity via Voronoi. Results with this simplified method are in agreement with more complex previously published studies.

  20. Multi-scale coarse-graining of non-conservative interactions in molecular liquids

    International Nuclear Information System (INIS)

    Izvekov, Sergei; Rice, Betsy M.

    2014-01-01

    A new bottom-up procedure for constructing non-conservative (dissipative and stochastic) interactions for dissipative particle dynamics (DPD) models is described and applied to perform hierarchical coarse-graining of a polar molecular liquid (nitromethane). The distant-dependent radial and shear frictions in functional-free form are derived consistently with a chosen form for conservative interactions by matching two-body force-velocity and three-body velocity-velocity correlations along the microscopic trajectories of the centroids of Voronoi cells (clusters), which represent the dissipative particles within the DPD description. The Voronoi tessellation is achieved by application of the K-means clustering algorithm at regular time intervals. Consistently with a notion of many-body DPD, the conservative interactions are determined through the multi-scale coarse-graining (MS-CG) method, which naturally implements a pairwise decomposition of the microscopic free energy. A hierarchy of MS-CG/DPD models starting with one molecule per Voronoi cell and up to 64 molecules per cell is derived. The radial contribution to the friction appears to be dominant for all models. As the Voronoi cell sizes increase, the dissipative forces rapidly become confined to the first coordination shell. For Voronoi cells of two and more molecules the time dependence of the velocity autocorrelation function becomes monotonic and well reproduced by the respective MS-CG/DPD models. A comparative analysis of force and velocity correlations in the atomistic and CG ensembles indicates Markovian behavior with as low as two molecules per dissipative particle. The models with one and two molecules per Voronoi cell yield transport properties (diffusion and shear viscosity) that are in good agreement with the atomistic data. The coarser models produce slower dynamics that can be appreciably attributed to unaccounted dissipation introduced by regular Voronoi re-partitioning as well as by larger

  1. Multi-scale coarse-graining of non-conservative interactions in molecular liquids

    Energy Technology Data Exchange (ETDEWEB)

    Izvekov, Sergei, E-mail: sergiy.izvyekov.civ@mail.mil; Rice, Betsy M. [U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005 (United States)

    2014-03-14

    A new bottom-up procedure for constructing non-conservative (dissipative and stochastic) interactions for dissipative particle dynamics (DPD) models is described and applied to perform hierarchical coarse-graining of a polar molecular liquid (nitromethane). The distant-dependent radial and shear frictions in functional-free form are derived consistently with a chosen form for conservative interactions by matching two-body force-velocity and three-body velocity-velocity correlations along the microscopic trajectories of the centroids of Voronoi cells (clusters), which represent the dissipative particles within the DPD description. The Voronoi tessellation is achieved by application of the K-means clustering algorithm at regular time intervals. Consistently with a notion of many-body DPD, the conservative interactions are determined through the multi-scale coarse-graining (MS-CG) method, which naturally implements a pairwise decomposition of the microscopic free energy. A hierarchy of MS-CG/DPD models starting with one molecule per Voronoi cell and up to 64 molecules per cell is derived. The radial contribution to the friction appears to be dominant for all models. As the Voronoi cell sizes increase, the dissipative forces rapidly become confined to the first coordination shell. For Voronoi cells of two and more molecules the time dependence of the velocity autocorrelation function becomes monotonic and well reproduced by the respective MS-CG/DPD models. A comparative analysis of force and velocity correlations in the atomistic and CG ensembles indicates Markovian behavior with as low as two molecules per dissipative particle. The models with one and two molecules per Voronoi cell yield transport properties (diffusion and shear viscosity) that are in good agreement with the atomistic data. The coarser models produce slower dynamics that can be appreciably attributed to unaccounted dissipation introduced by regular Voronoi re-partitioning as well as by larger

  2. Tessellated permanent magnet circuits for flow-through, open gradient separations of weakly magnetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Lee R. [Department of Biomedical Engineering, Cleveland Clinic, 9500 Euclid Ave., Cleveland OH 44195 (United States); Williams, P. Stephen [Cambrian Technologies, Inc., Cleveland, OH (United States); Chalmers, Jeffrey J. [William G. Lowrie Department of Chemical and Biomedical Engineering, The Ohio State University, Columbus 151 W. Woodruff Avenue, OH 43210 (United States); Zborowski, Maciej, E-mail: zborowm@ccf.org [Department of Biomedical Engineering, Cleveland Clinic, 9500 Euclid Ave., Cleveland OH 44195 (United States)

    2017-04-01

    Emerging microfluidic-based cell assays favor label-free red blood cell (RBC) depletion. Magnetic separation of RBC is possible because of the paramagnetism of deoxygenated hemoglobin but the process is slow for open-gradient field configurations. In order to increase the throughput, periodic arrangements of the unit magnets were considered, consisting of commercially available Nd-Fe-B permanent magnets and soft steel flux return pieces. The magnet design is uniquely suitable for multiplexing by magnet tessellation, here meaning the tiling of the magnet assembly cross-sectional plane by periodic repetition of the magnet and the flow channel shapes. The periodic pattern of magnet magnetizations allows a reduction of the magnetic material per channel with minimal distortion of the field cylindrical symmetry inside the magnet apertures. A number of such magnet patterns are investigated for separator performance, size and economy with the goal of designing an open-gradient magnetic separator capable of reducing the RBC number concentration a hundred-fold in 1 mL whole blood per hour. - Highlights: • Simple geometry of commercial, off-the-shelf NdFeB magnet blocks is amenable to generate high fields and open gradients. • Periodic pattern of permanent magnet blocks (tessellation) reduces the number of blocks per separation channel and improves the efficiency of separator design. • Split-flow lateral transport thin (SPLITT) fractionation model predicts 100-fold reduction of red blood cells from 1 mL whole blood sample in 1 h, suitable for laboratory medicine applications.

  3. Tessellated permanent magnet circuits for flow-through, open gradient separations of weakly magnetic materials

    International Nuclear Information System (INIS)

    Moore, Lee R.; Williams, P. Stephen; Chalmers, Jeffrey J.; Zborowski, Maciej

    2017-01-01

    Emerging microfluidic-based cell assays favor label-free red blood cell (RBC) depletion. Magnetic separation of RBC is possible because of the paramagnetism of deoxygenated hemoglobin but the process is slow for open-gradient field configurations. In order to increase the throughput, periodic arrangements of the unit magnets were considered, consisting of commercially available Nd-Fe-B permanent magnets and soft steel flux return pieces. The magnet design is uniquely suitable for multiplexing by magnet tessellation, here meaning the tiling of the magnet assembly cross-sectional plane by periodic repetition of the magnet and the flow channel shapes. The periodic pattern of magnet magnetizations allows a reduction of the magnetic material per channel with minimal distortion of the field cylindrical symmetry inside the magnet apertures. A number of such magnet patterns are investigated for separator performance, size and economy with the goal of designing an open-gradient magnetic separator capable of reducing the RBC number concentration a hundred-fold in 1 mL whole blood per hour. - Highlights: • Simple geometry of commercial, off-the-shelf NdFeB magnet blocks is amenable to generate high fields and open gradients. • Periodic pattern of permanent magnet blocks (tessellation) reduces the number of blocks per separation channel and improves the efficiency of separator design. • Split-flow lateral transport thin (SPLITT) fractionation model predicts 100-fold reduction of red blood cells from 1 mL whole blood sample in 1 h, suitable for laboratory medicine applications.

  4. VoroMQA: Assessment of protein structure quality using interatomic contact areas.

    Science.gov (United States)

    Olechnovič, Kliment; Venclovas, Česlovas

    2017-06-01

    In the absence of experimentally determined protein structure many biological questions can be addressed using computational structural models. However, the utility of protein structural models depends on their quality. Therefore, the estimation of the quality of predicted structures is an important problem. One of the approaches to this problem is the use of knowledge-based statistical potentials. Such methods typically rely on the statistics of distances and angles of residue-residue or atom-atom interactions collected from experimentally determined structures. Here, we present VoroMQA (Voronoi tessellation-based Model Quality Assessment), a new method for the estimation of protein structure quality. Our method combines the idea of statistical potentials with the use of interatomic contact areas instead of distances. Contact areas, derived using Voronoi tessellation of protein structure, are used to describe and seamlessly integrate both explicit interactions between protein atoms and implicit interactions of protein atoms with solvent. VoroMQA produces scores at atomic, residue, and global levels, all in the fixed range from 0 to 1. The method was tested on the CASP data and compared to several other single-model quality assessment methods. VoroMQA showed strong performance in the recognition of the native structure and in the structural model selection tests, thus demonstrating the efficacy of interatomic contact areas in estimating protein structure quality. The software implementation of VoroMQA is freely available as a standalone application and as a web server at http://bioinformatics.lt/software/voromqa. Proteins 2017; 85:1131-1145. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Predictive Manufacturing: A Classification Strategy to Predict Product Failures

    DEFF Research Database (Denmark)

    Khan, Abdul Rauf; Schiøler, Henrik; Kulahci, Murat

    2018-01-01

    manufacturing analytics model that employs a big data approach to predicting product failures; third, we illustrate the issue of high dimensionality, along with statistically redundant information; and, finally, our proposed method will be compared against the well-known classification methods (SVM, K......-nearest neighbor, artificial neural networks). The results from real data show that our predictive manufacturing analytics approach, using genetic algorithms and Voronoi tessellations, is capable of predicting product failure with reasonable accuracy. The potential application of this method contributes...... to accurately predicting product failures, which would enable manufacturers to reduce production costs without compromising product quality....

  6. Simulating the influence of crop spatial patterns on canola yield

    DEFF Research Database (Denmark)

    Griepentrog, H.W.; Nielsen, J.; Olsen, Jannie Maj

    2011-01-01

    plant uniformity on the yield of oil seed rape. Voronoi polygons (tessellations) which define the area closer to an individual than to any other individual were used as a measure of the area available to each plant, and corrections were included for extreme polygon shape and eccentricity of the plant...... location within the polygon. These adjusted polygon areas were used to investigate the potential influence of two of the most important determinants of crop sowing spatial uniformity: row width and longitudinal spacing accuracy, on yield per unit area, and to ask how changes in seeding technology would...

  7. A Voronoi interior adjacency-based approach for generating a contour tree

    Science.gov (United States)

    Chen, Jun; Qiao, Chaofei; Zhao, Renliang

    2004-05-01

    A contour tree is a good graphical tool for representing the spatial relations of contour lines and has found many applications in map generalization, map annotation, terrain analysis, etc. A new approach for generating contour trees by introducing a Voronoi-based interior adjacency set concept is proposed in this paper. The immediate interior adjacency set is employed to identify all of the children contours of each contour without contour elevations. It has advantages over existing methods such as the point-in-polygon method and the region growing-based method. This new approach can be used for spatial data mining and knowledge discovering, such as the automatic extraction of terrain features and construction of multi-resolution digital elevation model.

  8. Classification of Noisy Data: An Approach Based on Genetic Algorithms and Voronoi Tessellation

    DEFF Research Database (Denmark)

    Khan, Abdul Rauf; Schiøler, Henrik; Knudsen, Torben

    Classification is one of the major constituents of the data-mining toolkit. The well-known methods for classification are built on either the principle of logic or statistical/mathematical reasoning for classification. In this article we propose: (1) a different strategy, which is based on the po......Classification is one of the major constituents of the data-mining toolkit. The well-known methods for classification are built on either the principle of logic or statistical/mathematical reasoning for classification. In this article we propose: (1) a different strategy, which is based...

  9. Integrating Spatial and Attribute Characteristics of Extended Voronoi Diagrams in Spatial Patterning Research: A Case Study of Wuhan City in China

    Directory of Open Access Journals (Sweden)

    Zuohua Miao

    2016-07-01

    Full Text Available Rapid urbanization has caused numerous problems, and the urban spatial structure has been a hot topic in sustainable development management. Urban spatial structure is affected by a series of factors. Thus, the research model should synthetically consider the spatial and non-spatial relationship of every element. Here, we propose an extended Voronoi diagram for exploring the urban land spatial pattern. In essence, we first used a principal component analysis method to construct attribute evaluation indicators and obtained the attribute distance for each indicator. Second, we integrated spatial and attribute distances to extend the comparison distance for Voronoi diagrams, and then, we constructed the Voronoi aggregative homogeneous map of the study area. Finally, we make a spatial autocorrelation analysis by using GeoDA and SPSS software. Results show that: (1 the residential land cover aggregation is not significant, but spatial diffusion is obvious; (2 the commercial land cover aggregation is considerable; and (3 the spatial agglomeration degree of the industrial land cover is increased and mainly located in urban fringes. According to the neo-Marxist theory, we briefly analyzed the driving forces for shaping the urban spatial structure. To summarize, our approach yields important insights into the urban spatial structure characterized by attribute similarity with geospatial proximity, which contributes to a better understanding of the urban growth mechanism. In addition, it explicitly identifies ongoing urban transformations, potentially supporting the planning for sustainable urban land use and protection.

  10. The cosmic spiderweb: equivalence of cosmic, architectural and origami tessellations

    Science.gov (United States)

    Neyrinck, Mark C.; Hidding, Johan; Konstantatou, Marina; van de Weygaert, Rien

    2018-04-01

    For over 20 years, the term `cosmic web' has guided our understanding of the large-scale arrangement of matter in the cosmos, accurately evoking the concept of a network of galaxies linked by filaments. But the physical correspondence between the cosmic web and structural engineering or textile `spiderwebs' is even deeper than previously known, and also extends to origami tessellations. Here, we explain that in a good structure-formation approximation known as the adhesion model, threads of the cosmic web form a spiderweb, i.e. can be strung up to be entirely in tension. The correspondence is exact if nodes sampling voids are included, and if structure is excluded within collapsed regions (walls, filaments and haloes), where dark-matter multistreaming and baryonic physics affect the structure. We also suggest how concepts arising from this link might be used to test cosmological models: for example, to test for large-scale anisotropy and rotational flows in the cosmos.

  11. The cosmic spiderweb: equivalence of cosmic, architectural and origami tessellations.

    Science.gov (United States)

    Neyrinck, Mark C; Hidding, Johan; Konstantatou, Marina; van de Weygaert, Rien

    2018-04-01

    For over 20 years, the term 'cosmic web' has guided our understanding of the large-scale arrangement of matter in the cosmos, accurately evoking the concept of a network of galaxies linked by filaments. But the physical correspondence between the cosmic web and structural engineering or textile 'spiderwebs' is even deeper than previously known, and also extends to origami tessellations. Here, we explain that in a good structure-formation approximation known as the adhesion model, threads of the cosmic web form a spiderweb, i.e. can be strung up to be entirely in tension. The correspondence is exact if nodes sampling voids are included, and if structure is excluded within collapsed regions (walls, filaments and haloes), where dark-matter multistreaming and baryonic physics affect the structure. We also suggest how concepts arising from this link might be used to test cosmological models: for example, to test for large-scale anisotropy and rotational flows in the cosmos.

  12. The cosmic spiderweb: equivalence of cosmic, architectural and origami tessellations

    Science.gov (United States)

    Hidding, Johan; Konstantatou, Marina; van de Weygaert, Rien

    2018-01-01

    For over 20 years, the term ‘cosmic web’ has guided our understanding of the large-scale arrangement of matter in the cosmos, accurately evoking the concept of a network of galaxies linked by filaments. But the physical correspondence between the cosmic web and structural engineering or textile ‘spiderwebs’ is even deeper than previously known, and also extends to origami tessellations. Here, we explain that in a good structure-formation approximation known as the adhesion model, threads of the cosmic web form a spiderweb, i.e. can be strung up to be entirely in tension. The correspondence is exact if nodes sampling voids are included, and if structure is excluded within collapsed regions (walls, filaments and haloes), where dark-matter multistreaming and baryonic physics affect the structure. We also suggest how concepts arising from this link might be used to test cosmological models: for example, to test for large-scale anisotropy and rotational flows in the cosmos. PMID:29765637

  13. Discrete element modeling of microstructure of nacre

    Science.gov (United States)

    Chandler, Mei Qiang; Cheng, Jing-Ru C.

    2018-04-01

    The microstructure of nacre consists of polygon-shaped aragonite mineral tablets bonded by very thin layers of organic materials and is organized in a brick-mortar morphology. In this research, the discrete element method was utilized to model this structure. The aragonite mineral tablets were modeled with three-dimensional polygon particles generated by the Voronoi tessellation method to represent the Voronoi-like patterns of mineral tablets assembly observed in experiments. The organic matrix was modeled with a group of spring elements. The constitutive relations of the spring elements were inspired from the experimental results of organic molecules from the literature. The mineral bridges were modeled with simple elastic bonds with the parameters based on experimental data from the literature. The bulk stress-strain responses from the models agreed well with experimental results. The model results show that the mineral bridges play important roles in providing the stiffness and yield strength for the nacre, while the organic matrix in providing the ductility for the nacre. This work demonstrated the suitability of particle methods for modeling microstructures of nacre.

  14. Light Management in Optoelectronic Devices with Disordered and Chaotic Structures

    KAUST Repository

    Khan, Yasser

    2012-07-01

    With experimental realization, energy harvesting capabilities of chaotic microstructures were explored. Incident photons falling into chaotic trajectories resulted in energy buildup for certain frequencies. As a consequence, many fold enhancement in light trapping was observed. These ellipsoid like chaotic microstructures demonstrated 25% enhancement in light trapping at 450nm excitation and 15% enhancement at 550nm excitation. Optimization of these structures can drive novel chaos-assisted energy harvesting systems. In subsequent sections of the thesis, prospect of broadband light extraction from white light emitting diodes were investigated, which is an unchallenged but quintessential problem in solid-state lighting. Size dependent scattering allows microstructures to interact strongly with narrow-band light. If disorder is introduced in spread and sizes of microstructures, broadband light extraction is possible. A novel scheme with Voronoi tessellation to quantify disorder in physical systems was also introduced, and a link between voronoi disorder and state disorder of statistical mechanics was established. Overall, in this thesis some nascent concepts regarding disorder and chaos were investigated to efficiently manage electromagnetic waves in optoelectronic devices.

  15. Applying computational geometry techniques for advanced feature analysis in atom probe data

    International Nuclear Information System (INIS)

    Felfer, Peter; Ceguerra, Anna; Ringer, Simon; Cairney, Julie

    2013-01-01

    In this paper we present new methods for feature analysis in atom probe tomography data that have useful applications in materials characterisation. The analysis works on the principle of Voronoi subvolumes and piecewise linear approximations, and feature delineation based on the distance to the centre of mass of a subvolume (DCOM). Based on the coordinate systems defined by these approximations, two examples are shown of the new types of analyses that can be performed. The first is the analysis of line-like-objects (i.e. dislocations) using both proxigrams and line-excess plots. The second is interfacial excess mapping of an InGaAs quantum dot. - Highlights: • Computational geometry is used to detect and analyse features within atom probe data. • Limitations of conventional feature detection are overcome by using atomic density gradients. • 0D, 1D, 2D and 3D features can be analysed by using Voronoi tessellation for spatial binning. • New, robust analysis methods are demonstrated, including line and interfacial excess mapping

  16. Brownian Dynamics of a Suspension of Particles with Constrained Voronoi Cell Volumes

    KAUST Repository

    Singh, John P.; Walsh, Stuart D. C.; Koch, Donald L.

    2015-01-01

    © 2015 American Chemical Society. Solvent-free polymer-grafted nanoparticle fluids consist of inorganic core particles fluidized by polymers tethered to their surfaces. The attachment of the suspending fluid to the particle surface creates a strong penalty for local variations in the fluid volume surrounding the particles. As a model of such a suspension we perform Brownian dynamics of an equilibrium system consisting of hard spheres which experience a many-particle potential proportional to the variance of the Voronoi volumes surrounding each particle (E = α(Vi-V0)2). The coefficient of proportionality α can be varied such that pure hard sphere dynamics is recovered as α → 0, while an incompressible array of hairy particles is obtained as α →. As α is increased the distribution of Voronoi volumes becomes narrower, the mean coordination number of the particle increases and the variance in the number of nearest neighbors decreases. The nearest neighbor peaks in the pair distribution function are suppressed and shifted to larger radial separations as the constraint acts to maintain relatively uniform interstitial regions. The structure factor of the model suspension satisfies S(k=0) → 0 as α → in accordance with expectation for a single component (particle plus tethered fluid) incompressible system. The tracer diffusivity of the particles is reduced by the volume constraint and goes to zero at φ 0.52, indicating an earlier glass transition than has been observed in hard sphere suspensions. The total pressure of the suspension grows in proportion to (αkBT)1/2 as the strength of the volume-constraint potential grows. This stress arises primarily from the interparticle potential forces, while the hard-sphere collisional contribution to the stress is suppressed by the volume constraint.

  17. Brownian Dynamics of a Suspension of Particles with Constrained Voronoi Cell Volumes

    KAUST Repository

    Singh, John P.

    2015-06-23

    © 2015 American Chemical Society. Solvent-free polymer-grafted nanoparticle fluids consist of inorganic core particles fluidized by polymers tethered to their surfaces. The attachment of the suspending fluid to the particle surface creates a strong penalty for local variations in the fluid volume surrounding the particles. As a model of such a suspension we perform Brownian dynamics of an equilibrium system consisting of hard spheres which experience a many-particle potential proportional to the variance of the Voronoi volumes surrounding each particle (E = α(Vi-V0)2). The coefficient of proportionality α can be varied such that pure hard sphere dynamics is recovered as α → 0, while an incompressible array of hairy particles is obtained as α →. As α is increased the distribution of Voronoi volumes becomes narrower, the mean coordination number of the particle increases and the variance in the number of nearest neighbors decreases. The nearest neighbor peaks in the pair distribution function are suppressed and shifted to larger radial separations as the constraint acts to maintain relatively uniform interstitial regions. The structure factor of the model suspension satisfies S(k=0) → 0 as α → in accordance with expectation for a single component (particle plus tethered fluid) incompressible system. The tracer diffusivity of the particles is reduced by the volume constraint and goes to zero at φ 0.52, indicating an earlier glass transition than has been observed in hard sphere suspensions. The total pressure of the suspension grows in proportion to (αkBT)1/2 as the strength of the volume-constraint potential grows. This stress arises primarily from the interparticle potential forces, while the hard-sphere collisional contribution to the stress is suppressed by the volume constraint.

  18. A Time-constrained Network Voronoi Construction and Accessibility Analysis in Location-based Service Technology

    Science.gov (United States)

    Yu, W.; Ai, T.

    2014-11-01

    Accessibility analysis usually requires special models of spatial location analysis based on some geometric constructions, such as Voronoi diagram (abbreviated to VD). There are many achievements in classic Voronoi model research, however suffering from the following limitations for location-based services (LBS) applications. (1) It is difficult to objectively reflect the actual service areas of facilities by using traditional planar VDs, because human activities in LBS are usually constrained only to the network portion of the planar space. (2) Although some researchers have adopted network distance to construct VDs, their approaches are used in a static environment, where unrealistic measures of shortest path distance based on assumptions about constant travel speeds through the network were often used. (3) Due to the computational complexity of the shortest-path distance calculating, previous researches tend to be very time consuming, especially for large datasets and if multiple runs are required. To solve the above problems, a novel algorithm is developed in this paper. We apply network-based quadrat system and 1-D sequential expansion to find the corresponding subnetwork for each focus. The idea is inspired by the natural phenomenon that water flow extends along certain linear channels until meets others or arrives at the end of route. In order to accommodate the changes in traffic conditions, the length of network-quadrat is set upon the traffic condition of the corresponding street. The method has the advantage over Dijkstra's algorithm in that the time cost is avoided, and replaced with a linear time operation.

  19. A methodology for automated cartographic data input, drawing and editing using kinetic Delaunay/Voronoi diagrams

    DEFF Research Database (Denmark)

    Gold, Christopher M.; Mioc, Darka; Anton, François

    2008-01-01

    This chapter presents a methodology for automated cartographic data in- put, drawing and editing. This methodology is based on kinematic algorithms for point and line Delaunay triangulation and the Voronoi diagram. It allows one to automate some parts of the manual digitization process......-oriented algorithm for large data sets, and all our algorithms are based on local operations (except for basic point location). Because the deletion of individual points or line segments is a necessary part of the manual editing process, incremental insertion and deletion is used. The original concept used here...

  20. Invariants of the Dirichlet/Voronoi Tilings of Hyperspheres in Rn and their Dual Delone/Delaunay Graphs

    DEFF Research Database (Denmark)

    Antón Castro, Francesc/François

    2015-01-01

    In this paper, we are addressing the geometric and topological invariants that arise in the exact computation of the Delone (Delaunay) graph and the Dirichlet/Voronoi tiling of N-dimensional hyperspheres using Ritt-Wu's algorithm. Our main contribution is a methodology for automated derivation...... of geometric and topological invariants of the Dirichlet tiling of N + 1-dimenional hyperspheres and its dual Delone graph from the invariants of the Dirichlet tiling of N-dimensional hyperspheres and its dual Delone graph (starting from N = 3)....

  1. Invariants of the dirichlet/voronoi tilings of hyperspheres in RN and their dual delone/delaunay graphs

    DEFF Research Database (Denmark)

    Anton, François

    In this paper, we are addressing the geometric and topological invariants that arise in the exact computation of the Delone (Delaunay) graph and the Dirichlet/Voronoi tiling of n-dimensional hyperspheres using Ritt-Wu's algorithm. Our main contribution is a methodology for automated derivation...... of geometric and topological invariants of the Dirichlet tiling of N + 1-dimenional hyperspheres and its dual Delone graph from the invariants of the Dirichlet tiling of N-dimensional hyperspheres and its dual Delone graph (starting from N = 3)....

  2. Reaction Diffusion Voronoi Diagrams: From Sensors Data to Computing

    Directory of Open Access Journals (Sweden)

    Alejandro Vázquez-Otero

    2015-05-01

    Full Text Available In this paper, a new method to solve computational problems using reaction diffusion (RD systems is presented. The novelty relies on the use of a model configuration that tailors its spatiotemporal dynamics to develop Voronoi diagrams (VD as a part of the system’s natural evolution. The proposed framework is deployed in a solution of related robotic problems, where the generalized VD are used to identify topological places in a grid map of the environment that is created from sensor measurements. The ability of the RD-based computation to integrate external information, like a grid map representing the environment in the model computational grid, permits a direct integration of sensor data into the model dynamics. The experimental results indicate that this method exhibits significantly less sensitivity to noisy data than the standard algorithms for determining VD in a grid. In addition, previous drawbacks of the computational algorithms based on RD models, like the generation of volatile solutions by means of excitable waves, are now overcome by final stable states.

  3. Voronoi-based spatial analysis reveals selective interneuron changes in the cortex of FALS mice.

    Science.gov (United States)

    Minciacchi, Diego; Kassa, Roman M; Del Tongo, Claudia; Mariotti, Raffaella; Bentivoglio, Marina

    2009-01-01

    The neurodegenerative disease amyotrophic lateral sclerosis affects lower motoneurons and corticospinal cells. Mice expressing human mutant superoxide dismutase (SOD)1 provide widely investigated models of the familial form of disease, but information on cortical changes in these mice is still limited. We here analyzed the spatial organization of interneurons characterized by parvalbumin immunoreactivity in the motor, somatosensory, and visual cortical areas of SOD1(G93A) mice. Cell number and sociological spatial behavior were assessed by digital charts of cell location in cortical samples, cell counts, and generation of two-dimensional Voronoi diagrams. In end-stage SOD1-mutant mice, an increase of parvalbumin-containing cortical interneurons was found in the motor and somatosensory areas (about 35% and 20%, respectively) with respect to wild-type littermates. Changes in cell spatial distribution, as documented by Voronoi-derived coefficients of variation, indicated increased tendency of parvalbumin cells to aggregate into clusters in the same areas of the SOD1-mutant cortex. Counts and coefficients of variation of parvalbumin cells in the visual cortex gave instead similar results in SOD1-mutant and wild-type mice. Analyses of motor and somatosensory areas in presymptomatic SOD1-mutant mice provided findings very similar to those obtained at end-stage, indicating early changes of interneurons in these cortical areas during the pathology. Altogether the data reveal in the SOD1-mutant mouse cortex an altered architectonic pattern of interneurons, which selectively affects areas involved in motor control. The findings, which can be interpreted as pathogenic factors or early disease-related adaptations, point to changes in the cortical regulation and modulation of the motor circuit during motoneuron disease.

  4. Obtuse triangle suppression in anisotropic meshes

    KAUST Repository

    Sun, Feng; Choi, Yi King; Wang, Wen Ping; Yan, Dongming; Liu, Yang; Lé vy, Bruno L.

    2011-01-01

    Anisotropic triangle meshes are used for efficient approximation of surfaces and flow data in finite element analysis, and in these applications it is desirable to have as few obtuse triangles as possible to reduce the discretization error. We present a variational approach to suppressing obtuse triangles in anisotropic meshes. Specifically, we introduce a hexagonal Minkowski metric, which is sensitive to triangle orientation, to give a new formulation of the centroidal Voronoi tessellation (CVT) method. Furthermore, we prove several relevant properties of the CVT method with the newly introduced metric. Experiments show that our algorithm produces anisotropic meshes with much fewer obtuse triangles than using existing methods while maintaining mesh anisotropy. © 2011 Elsevier B.V. All rights reserved.

  5. Molecular dynamics simulation of liquid structure for undercooled Zr-Nb alloys assisted with electrostatic levitation experiments

    Science.gov (United States)

    Yang, S. J.; Hu, L.; Wang, L.; Wei, B.

    2018-06-01

    The liquid structures of undercooled Zr90Nb10, Zr70Nb30 and Zr50Nb50 alloys were studied by molecular dynamics simulation combined with electrostatic levitation experiments. The densities of three alloys were measured by electrostatic levitation to modify the Zr-Nb potential functions by adjusting parameters in potential functions. In simulation, the atomic packing in Zr-Nb alloys was more ordered at lower temperatures. The Voronoi tessellation analyses indicated Nb-centered clusters were easier to form than Zr-centered clusters although the Nb content was less than 50%. The partial pair distribution functions showed that the interactions among Zr atoms are quite different to that among Nb atoms.

  6. Obtuse triangle suppression in anisotropic meshes

    KAUST Repository

    Sun, Feng

    2011-12-01

    Anisotropic triangle meshes are used for efficient approximation of surfaces and flow data in finite element analysis, and in these applications it is desirable to have as few obtuse triangles as possible to reduce the discretization error. We present a variational approach to suppressing obtuse triangles in anisotropic meshes. Specifically, we introduce a hexagonal Minkowski metric, which is sensitive to triangle orientation, to give a new formulation of the centroidal Voronoi tessellation (CVT) method. Furthermore, we prove several relevant properties of the CVT method with the newly introduced metric. Experiments show that our algorithm produces anisotropic meshes with much fewer obtuse triangles than using existing methods while maintaining mesh anisotropy. © 2011 Elsevier B.V. All rights reserved.

  7. A mesoscale granular model for the mechanical behavior of alloys during solidification

    Energy Technology Data Exchange (ETDEWEB)

    Vernede, Stephane [Computational Materials Laboratory, Ecole Polytechnique Federale de Lausanne, Station 12, Lausanne CH-1015 (Switzerland); Alcan Centre de Recherches de Voreppe, ZI Centr' Alp, 725 rue Aristide Berges, BP 27, Voreppe FR-38341 (France)], E-mail: stephane.vernede@alcan.com; Dantzig, Jonathan A. [Computational Materials Laboratory, Ecole Polytechnique Federale de Lausanne, Station 12, Lausanne CH-1015 (Switzerland); Department of Mechanical Science and Engineering, University of Illinois, 1206 West Green Street Urbana, IL 61801 (United States); Rappaz, Michel [Computational Materials Laboratory, Ecole Polytechnique Federale de Lausanne, Station 12, Lausanne CH-1015 (Switzerland)

    2009-03-15

    We present a two-dimensional granular model for the mechanical behavior of an ensemble of globular grains during solidification. The grain structure is produced by a Voronoi tessellation based on an array of predefined nuclei. We consider the fluid flow caused by grain movement and solidification shrinkage in the network of channels that is formed by the faces of the grains in the tessellation. We develop the governing equations for the flow rate and pressure drop across each channel when the grains are allowed to move, and we then assemble the equations into a global expression that conserves mass and force in the system. We show that the formulation is consistent with dissipative formulations of non-equilibrium thermodynamics. Several example problems are presented to illustrate the effect of tensile strains and the availability of liquid to feed the deforming microstructure. For solid fractions below g{sub s}=0.97, we find that the fluid is able to feed the deformation at low strain, even if external feeding is not permitted. For solid fractions above g{sub s}=0.97, clusters of grains with 'dry' boundaries form and fluid flow becomes highly localized.

  8. Incremental Construction of Generalized Voronoi Diagrams on Pointerless Quadtrees

    Directory of Open Access Journals (Sweden)

    Quanjun Yin

    2014-01-01

    Full Text Available In robotics, Generalized Voronoi Diagrams (GVDs are widely used by mobile robots to represent the spatial topologies of their surrounding area. In this paper we consider the problem of constructing GVDs on discrete environments. Several algorithms that solve this problem exist in the literature, notably the Brushfire algorithm and its improved versions which possess local repair mechanism. However, when the area to be processed is very large or is of high resolution, the size of the metric matrices used by these algorithms to compute GVDs can be prohibitive. To address this issue, we propose an improvement on the current algorithms, using pointerless quadtrees in place of metric matrices to compute and maintain GVDs. Beyond the construction and reconstruction of a GVD, our algorithm further provides a method to approximate roadmaps in multiple granularities from the quadtree based GVD. Simulation tests in representative scenarios demonstrate that, compared with the current algorithms, our algorithm generally makes an order of magnitude improvement regarding memory cost when the area is larger than 210×210. We also demonstrate the usefulness of the approximated roadmaps for coarse-to-fine pathfinding tasks.

  9. Quantification of the myocardial area at risk using coronary CT angiography and Voronoi algorithm-based myocardial segmentation

    Energy Technology Data Exchange (ETDEWEB)

    Kurata, Akira; Kono, Atsushi; Coenen, Adriaan; Saru-Chelu, Raluca G.; Krestin, Gabriel P. [Erasmus University Medical Center, Department of Radiology, Rotterdam (Netherlands); Sakamoto, Tsuyoshi [AZE inc, Development Division, Chiyoda, Tokyo (Japan); Kido, Teruhito; Mochizuki, Teruhito [Ehime University Graduate School of Medicine, Department of Radiology, Toon, Ehime (Japan); Higashino, Hiroshi [Yotsuba Circulation Clinic, Department of Radiology, Matsuyama, Ehime (Japan); Abe, Mitsunori [Yotsuba Circulation Clinic, Department of Cardiology, Matsuyama, Ehime (Japan); Feyter, Pim J. de; Nieman, Koen [Erasmus University Medical Center, Department of Radiology, Rotterdam (Netherlands); Erasmus University Medical Center, Department of Cardiology, Rotterdam (Netherlands)

    2015-01-15

    The purpose of this study was to estimate the myocardial area at risk (MAAR) using coronary computed tomography angiography (CTA) and Voronoi algorithm-based myocardial segmentation in comparison with single-photon emission computed tomography (SPECT). Thirty-four patients with coronary artery disease underwent 128-slice coronary CTA, stress/rest thallium-201 SPECT, and coronary angiography (CAG). CTA-based MAAR was defined as the sum of all CAG stenosis (>50 %) related territories (the ratio of the left ventricular volume). Using automated quantification software (17-segment model, 5-point scale), SPECT-based MAAR was defined as the number of segments with a score above zero as compared to the total 17 segments by summed stress score (SSS), difference (SDS) score map, and comprehensive SPECT interpretation with either SSS or SDS best correlating CAG findings (SSS/SDS). Results were compared using Pearson's correlation coefficient. Forty-nine stenoses were observed in 102 major coronary territories. Mean value of CTA-based MAAR was 28.3 ± 14.0 %. SSS-based, SDS-based, and SSS/SDS-based MAAR was 30.1 ± 6.1 %, 20.1 ± 15.8 %, and 26.8 ± 15.7 %, respectively. CTA-based MAAR was significantly related to SPECT-based MAAR (r = 0.531 for SSS; r = 0.494 for SDS; r = 0.814 for SSS/SDS; P < 0.05 in each). CTA-based Voronoi algorithm myocardial segmentation reliably quantifies SPECT-based MAAR. (orig.)

  10. Quantification of the myocardial area at risk using coronary CT angiography and Voronoi algorithm-based myocardial segmentation

    International Nuclear Information System (INIS)

    Kurata, Akira; Kono, Atsushi; Coenen, Adriaan; Saru-Chelu, Raluca G.; Krestin, Gabriel P.; Sakamoto, Tsuyoshi; Kido, Teruhito; Mochizuki, Teruhito; Higashino, Hiroshi; Abe, Mitsunori; Feyter, Pim J. de; Nieman, Koen

    2015-01-01

    The purpose of this study was to estimate the myocardial area at risk (MAAR) using coronary computed tomography angiography (CTA) and Voronoi algorithm-based myocardial segmentation in comparison with single-photon emission computed tomography (SPECT). Thirty-four patients with coronary artery disease underwent 128-slice coronary CTA, stress/rest thallium-201 SPECT, and coronary angiography (CAG). CTA-based MAAR was defined as the sum of all CAG stenosis (>50 %) related territories (the ratio of the left ventricular volume). Using automated quantification software (17-segment model, 5-point scale), SPECT-based MAAR was defined as the number of segments with a score above zero as compared to the total 17 segments by summed stress score (SSS), difference (SDS) score map, and comprehensive SPECT interpretation with either SSS or SDS best correlating CAG findings (SSS/SDS). Results were compared using Pearson's correlation coefficient. Forty-nine stenoses were observed in 102 major coronary territories. Mean value of CTA-based MAAR was 28.3 ± 14.0 %. SSS-based, SDS-based, and SSS/SDS-based MAAR was 30.1 ± 6.1 %, 20.1 ± 15.8 %, and 26.8 ± 15.7 %, respectively. CTA-based MAAR was significantly related to SPECT-based MAAR (r = 0.531 for SSS; r = 0.494 for SDS; r = 0.814 for SSS/SDS; P < 0.05 in each). CTA-based Voronoi algorithm myocardial segmentation reliably quantifies SPECT-based MAAR. (orig.)

  11. Diagramas de Voronoi para a definição de áreas de abrangência de hospitais públicos no Município do Rio de Janeiro

    Directory of Open Access Journals (Sweden)

    Flavio Astolpho Vieira Souto Rezende

    2000-06-01

    Full Text Available No planejamento de recursos em saúde é importante o conhecimento da área de abrangência de uma unidade. Os Diagramas de Voronoi constituem uma técnica para tal; são polígonos construídos de tal forma que as bordas de polígonos adjacentes encontram-se eqüidistantes de seus respectivos pontos geradores. Uma modificação nas áreas de abrangência assim definidas é sua ponderação (Diagramas de Voronoi ponderados, representando a capacidade da unidade de forma mais real. No presente trabalho foram utilizados, como pontos geradores, 21 hospitais gerais públicos no Rio de Janeiro, RJ. Inicialmente foram criados os Diagramas de Voronoi sem ponderação, e, a partir destes, os diagramas ponderados, empregando-se como variável de ponderação as estimativas de internação anual para cada unidade. Na divisão clássica, áreas de abrangência similares foram atribuídas a hospitais com características diferenciadas, problema esse contornado no método ponderado. O método é de simples implementação e visualização, utiliza dados de fácil acesso e independe de parâmetros arbitrários ou geopolíticos. Portanto, esses diagramas podem fornecer, a gerentes de saúde, uma visão mais realista para o planejamento da demanda de suas unidades.

  12. Definition and properties of ideal amorphous structures

    International Nuclear Information System (INIS)

    Stachurski, Z.H.

    2002-01-01

    Full text: Amorphous structure is usually defined by what it is not (ie, no crystalline peaks in XRS, no bond correlation in NMR), rather than by what it is. The interest in defining the structure of non-crystalline materials is long standing; packing geometry of spheres, molecular structure of glassy SiO 2 , or the structure of atactic polymers are prime examples. The earliest definitions of amorphous structure were in terms of a microcrystallite model of Valenkov, or continuous random network by Zachariasen. The random close packing of spheres of equal size, and an amorphous structure, composed of freely jointed linear chains of hard spheres, has been described mathematically in terms of a linear homogeneous Poisson process. This paper aims to describe some geometrical, kinematic, and topological properties of these two ideal amorphous structures, which belong to the same amorphous class. The geometry of packing is elucidated, and the use of Voronoi tessellation method for measuring the structures is described. The ideal amorphous solid has no symmetry elements; its volume can not be divided into identical unit cells. However, there is a volume element small enough to allow the distinction of its nanoscopic inhomogeneities, and sufficiently large enough to represent, accurately the overall behaviour. We define this volume element, the representative volume element. Suitable boundary conditions must be prescribed for a choice of RVE, and satisfy certain requirements. Topologically, a catchment region on the Born-Oppenheimer potential energy surface over nuclear configuration space, is defined by Mezey and Bader as an energetically stable geometry of the open region of R 3 traversed by all the trajectories which terminate at a local maximum. Two topological properties will be described: (i) the boundaries of the catchment region as a direct geometrical correspondence to the Voronoi polyhedron for a given atom in a given structure, and (ii) the constriction points

  13. Nature of the many-particle potential in the monatomic liquid state: Radial and angular structure

    International Nuclear Information System (INIS)

    Clements, B.E.; Wallace, D.C.

    1999-01-01

    The atomic configurational order of random, symmetric, and crystalline states of sodium is investigated using molecular-dynamics simulations. Pair distribution functions are calculated for these states. Consistent with the liquid- and random-state energetics, we find that, by cooling, the liquid configurations evolve continuously to random-state structures. For sodium, the random pair distribution function has a split second peak characteristic of many amorphous materials and has the first subpeak exceeding the second subpeak. Experiments have shown this to be the case for amorphous Ni, Co, Cr, Fe, and Mn. A universal pair distribution function is identified for all random structures, as was hypothesized by liquid-dynamics theory. The peak widths of the random pair distribution function are considerably broader, even at very low temperatures, than those of the bcc and symmetric structures. No universal pair distribution function exists for symmetric structures. For low-temperature random, symmetric, and crystalline structures we determine average Voronoi coordination numbers, angular distributions between neighboring atomic triplets, and the number of Voronoi edges per face. Without exception the random and symmetric structures show very different trends for each of these properties. The universal nature of the random structures is also apparent in each property exhibited in the Voronoi polyhedra, unlike for the symmetric structures. Angles between neighboring Voronoi triplets common to random close-packing structures are favored by the random structures whereas those hinting at microcrystalline order are found for the symmetric structures. The distribution of Voronoi coordination numbers for both random and symmetric structures are peaked at 14 neighbors, but while the symmetric structures are essentially all 14, the random structures have nearly as many 13 and 15 neighbor polyhedra. The number of edges per face also shows a stark difference between the random and

  14. The ALHAMBRA survey: 2D analysis of the stellar populations in massive early-type galaxies at z < 0.3

    Science.gov (United States)

    San Roman, I.; Cenarro, A. J.; Díaz-García, L. A.; López-Sanjuan, C.; Varela, J.; González Delgado, R. M.; Sánchez-Blázquez, P.; Alfaro, E. J.; Ascaso, B.; Bonoli, S.; Borlaff, A.; Castander, F. J.; Cerviño, M.; Fernández-Soto, A.; Márquez, I.; Masegosa, J.; Muniesa, D.; Pović, M.; Viironen, K.; Aguerri, J. A. L.; Benítez, N.; Broadhurst, T.; Cabrera-Caño, J.; Cepa, J.; Cristóbal-Hornillos, D.; Infante, L.; Martínez, V. J.; Moles, M.; del Olmo, A.; Perea, J.; Prada, F.; Quintana, J. M.

    2018-01-01

    We present a technique that permits the analysis of stellar population gradients in a relatively low-cost way compared to integral field unit (IFU) surveys. We developed a technique to analyze unresolved stellar populations of spatially resolved galaxies based on photometric multi-filter surveys. This technique allows the analysis of vastly larger samples and out to larger galactic radii. We derived spatially resolved stellar population properties and radial gradients by applying a centroidal Voronoi tessellation and performing a multicolor photometry spectral energy distribution fitting. This technique has been successfully applied to a sample of 29 massive (M⋆ > 1010.5M⊙) early-type galaxies at z Max-Planck-Institut für Astronomie (MPIA) at Heidelberg and the Instituto de Astrofísica de Andalucía (CSIC).

  15. Morphology and linear-elastic moduli of random network solids.

    Science.gov (United States)

    Nachtrab, Susan; Kapfer, Sebastian C; Arns, Christoph H; Madadi, Mahyar; Mecke, Klaus; Schröder-Turk, Gerd E

    2011-06-17

    The effective linear-elastic moduli of disordered network solids are analyzed by voxel-based finite element calculations. We analyze network solids given by Poisson-Voronoi processes and by the structure of collagen fiber networks imaged by confocal microscopy. The solid volume fraction ϕ is varied by adjusting the fiber radius, while keeping the structural mesh or pore size of the underlying network fixed. For intermediate ϕ, the bulk and shear modulus are approximated by empirical power-laws K(phi)proptophin and G(phi)proptophim with n≈1.4 and m≈1.7. The exponents for the collagen and the Poisson-Voronoi network solids are similar, and are close to the values n=1.22 and m=2.11 found in a previous voxel-based finite element study of Poisson-Voronoi systems with different boundary conditions. However, the exponents of these empirical power-laws are at odds with the analytic values of n=1 and m=2, valid for low-density cellular structures in the limit of thin beams. We propose a functional form for K(ϕ) that models the cross-over from a power-law at low densities to a porous solid at high densities; a fit of the data to this functional form yields the asymptotic exponent n≈1.00, as expected. Further, both the intensity of the Poisson-Voronoi process and the collagen concentration in the samples, both of which alter the typical pore or mesh size, affect the effective moduli only by the resulting change of the solid volume fraction. These findings suggest that a network solid with the structure of the collagen networks can be modeled in quantitative agreement by a Poisson-Voronoi process. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Evaluating Local Primary Dendrite Arm Spacing Characterization Techniques Using Synthetic Directionally Solidified Dendritic Microstructures

    Science.gov (United States)

    Tschopp, Mark A.; Miller, Jonathan D.; Oppedal, Andrew L.; Solanki, Kiran N.

    2015-10-01

    Microstructure characterization continues to play an important bridge to understanding why particular processing routes or parameters affect the properties of materials. This statement certainly holds true in the case of directionally solidified dendritic microstructures, where characterizing the primary dendrite arm spacing is vital to developing the process-structure-property relationships that can lead to the design and optimization of processing routes for defined properties. In this work, four series of simulations were used to examine the capability of a few Voronoi-based techniques to capture local microstructure statistics (primary dendrite arm spacing and coordination number) in controlled (synthetically generated) microstructures. These simulations used both cubic and hexagonal microstructures with varying degrees of disorder (noise) to study the effects of length scale, base microstructure, microstructure variability, and technique parameters on the local PDAS distribution, local coordination number distribution, bulk PDAS, and bulk coordination number. The Voronoi tesselation technique with a polygon-side-length criterion correctly characterized the known synthetic microstructures. By systematically studying the different techniques for quantifying local primary dendrite arm spacings, we have evaluated their capability to capture this important microstructure feature in different dendritic microstructures, which can be an important step for experimentally correlating with both processing and properties in single crystal nickel-based superalloys.

  17. Modeling elasto-plastic behavior of polycrystalline grain structure of steels at mesoscopic level

    International Nuclear Information System (INIS)

    Kovac, Marko; Cizelj, Leon

    2005-01-01

    The multiscale model is proposed to explicitly account for the inhomogeneous structure of polycrystalline materials. Grains and grain boundaries are modeled explicitly using Voronoi tessellation. The constitutive model of crystal grains utilizes anisotropic elasticity and crystal plasticity. Commercially available finite element code is applied to solve the boundary value problem defined at the macroscopic scale. No assumption regarding the distribution of the mesoscopic strain and stress fields is used, apart the finite element discretization. The proposed model is then used to estimate the minimum size of polycrystalline aggregate of selected reactor pressure vessel steel (22 NiMoCr 3 7), above which it can be considered macroscopically homogeneous. Elastic and rate-independent plastic deformation modes are considered. The results are validated by the experimental and simulation results from the literature

  18. Micromechanical modeling of tungsten-based bulk metallic glass matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Li Hao [Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931 (United States); Li Ke [Department of Mechanical Engineering, Texas A and M University, TAMU 3123, College Station, TX 77843 (United States)]. E-mail: keli@tamu.edu; Subhash, Ghatu [Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931 (United States); Kecskes, Laszlo J. [Weapons and Materials Research Directorate, US Army Research Laboratory, Aberdeen Proving Ground, MD 21005 (United States); Dowding, Robert J. [Weapons and Materials Research Directorate, US Army Research Laboratory, Aberdeen Proving Ground, MD 21005 (United States)

    2006-08-15

    Micromechanics models are developed for tungsten (W)-based bulk metallic glass (BMG) matrix composites employing the Voronoi tessellation technique and the finite element (FE) method. The simulation results indicate that the computed elastic moduli are close to those measured in the experiments. The predicted stress-strain curves agree well with their experimentally obtained counterparts in the early stage of the plastic deformation. An increase in the W volume fraction leads to a decrease in the yield stress and an increase in the Young's modulus of the composite. In addition, contours of equivalent plastic strain for increasing applied strains provide an explanation why shear bands were observed in the glassy phase, along the W/BMG interface, and in the W phase of failed W/BMG composite specimens.

  19. Evaluation of local stress and local hydrogen concentration at grain boundary using three-dimensional polycrystalline model

    International Nuclear Information System (INIS)

    Ebihara, Ken-ichi; Itakura, Mitsuhiro; Yamaguchi, Masatake; Kaburaki, Hideo; Suzudo, Tomoaki

    2010-01-01

    The decohesion model in which hydrogen segregating at grain boundaries reduces cohesive energy is considered to explain hydrogen embrittlement. Although there are several experimental and theoretical supports of this model, its total process is still unclear. In order to understand hydrogen embrittlement in terms of the decohesion model, therefore, it is necessary to evaluate stress and hydrogen concentration at grain boundaries under experimental conditions and to verify the grain boundary decohesion process. Under this consideration, we evaluated the stress and the hydrogen concentration at grain boundaries in the three-dimensional polycrystalline model which was generated by the random Voronoi tessellation. The crystallographic anisotropy was given to each grain. As the boundary conditions of the calculations, data extracted from the results calculated in the notched round-bar specimen model under the tensile test condition in which fracture of the steel specimen is observed was given to the polycrystalline model. As a result, it was found that the evaluated stress does not reach the fracture stress which was estimated under the condition of the evaluated hydrogen concentration by first principles calculations. Therefore, it was considered that the initiation of grain boundary fracture needs other factors except the stress concentration due to the crystallographic anisotropy. (author)

  20. Random lattice structures. Modelling, manufacture and FEA of their mechanical response

    Science.gov (United States)

    Maliaris, G.; Sarafis, I. T.; Lazaridis, T.; Varoutoglou, A.; Tsakataras, G.

    2016-11-01

    The implementation of lightweight structures in various applications, especially in Aerospace/ Automotive industries and Orthopaedics, has become a necessity due to their exceptional mechanical properties with respect to reduced weight. In this work we present a Voronoi tessellation based algorithm, which has been developed for modelling stochastic lattice structures. With the proposed algorithm, is possible to generate CAD geometry with controllable structural parameters, such as porosity, cell number and strut thickness. The digital structures were transformed into physical objects through the combination of 3D printing technics and investment casting. This process was applied to check the mechanical behaviour of generated digital models. Until now, the only way to materialize such structures into physical objects, was feasible through 3D printing methods such as Selective Laser Sintering/ Melting (SLS/ SLM). Investment casting possesses numerous advantages against SLS or SLA, with the major one being the material variety. On the other hand, several trials are required in order to calibrate the process parameters to have successful castings, which is the major drawback of investment casting. The manufactured specimens were subjected to compression tests, where their mechanical response was registered in the form of compressive load - displacement curves. Also, a finite element model was developed, using the specimens’ CAD data and compression test parameters. The FE assisted calculation of specimen plastic deformation is identical with the one of the physical object, which validates the conclusions drawn from the simulation results. As it was observed, strut contact is initiated when specimen deformation is approximately 5mm. Although FE calculated compressive force follows the same trend for the first 3mm of compression, then diverges because of the elasto-plastic FE model type definition and the occurred remeshing steps.

  1. Active unjamming of confluent cell layers

    Science.gov (United States)

    Marchetti, M. Cristina

    Cell motion inside dense tissues governs many biological processes, including embryonic development and cancer metastasis, and recent experiments suggest that these tissues exhibit collective glassy behavior. Motivated by these observations, we have studied a model of dense tissues that combines self-propelled particle models and vertex models of confluent cell layers. In this model, referred to as self-propelled Voronoi (SPV), cells are described as polygons in a Voronoi tessellation with directed noisy cell motility and interactions governed by a shape energy that incorporates the effects of cell volume incompressibility, contractility and cell-cell adhesion. Using this model, we have demonstrated a new density-independent solid-liquid transition in confluent tissues controlled by cell motility and a cell-shape parameter measuring the interplay of cortical tension and cell-cell adhesion. An important insight of this work is that the rigidity and dynamics of cell layers depends sensitively on cell shape. We have also used the SPV model to test a new method developed by our group to determine cellular forces and tissue stresses from experimentally accessible cell shapes and traction forces, hence providing the spatio-temporal distribution of stresses in motile dense tissues. This work was done with Dapeng Bi, Lisa Manning and Xingbo Yang. MCM was supported by NSF-DMR-1305184 and by the Simons Foundation.

  2. A shell-resolved analysis of preferential solvation of coffee ingredients in aqueous mixtures of the ionic liquid 1-ethyl-3-methylimidazolium acetate

    Science.gov (United States)

    Zeindlhofer, Veronika; Berger, Magdalena; Steinhauser, Othmar; Schröder, Christian

    2018-05-01

    Ionic liquids increase the solubility of various coffee ingredients in aqueous solution but little is known about the underlying mechanism. Kirkwood-Buff integrals as well as the potential of mean force indicate that the imidazolium cations are accumulated at the surface of the solutes, removing water molecules from the solute surface. Although hydrogen bonding of the anions to hydroxy groups of the solutes can be detected, their concentration at the surface is less enhanced compared to the cations. The decomposition into solvation shells by Voronoi tessellation reveals that structural features are only observed in the first solvation shell. Nevertheless, the depletion of water and the excess concentration of the ions and, in particular, of the cations are visible in the next solvation shells as well. Therefore, classical arguments of hydrotropic theory fail to explain this behavior.

  3. Theory and simulations for hard-disk models of binary mixtures of molecules with internal degrees of freedom

    DEFF Research Database (Denmark)

    Fraser, Diane P.; Zuckermann, Martin J.; Mouritsen, Ole G.

    1991-01-01

    A two-dimensional Monte Carlo simulation method based on the NpT ensemble and the Voronoi tesselation, which was previously developed for single-species hard-disk systems, is extended, along with a version of scaled-particle theory, to many-component mixtures. These systems are unusual in the sense...... and internal degrees of freedom leads to a rich phase structure that includes solid-liquid transitions (governed by the translational variables) as well as transitions involving changes in average disk size (governed by the internal variables). The relationship between these two types of transitions is studied...... by the method in the case of a binary mixture, and results are presented for varying disk-size ratios and degeneracies. The results are also compared with the predictions of the extended scaled-particle theory. Applications of the model are discussed in relation to lipid monolayers spread on air...

  4. Coupling LaGrit unstructured mesh generation and model setup with TOUGH2 flow and transport: A case study

    Science.gov (United States)

    Sentís, Manuel Lorenzo; Gable, Carl W.

    2017-11-01

    There are many applications in science and engineering modeling where an accurate representation of a complex model geometry in the form of a mesh is important. In applications of flow and transport in subsurface porous media, this is manifest in models that must capture complex geologic stratigraphy, structure (faults, folds, erosion, deposition) and infrastructure (tunnels, boreholes, excavations). Model setup, defined as the activities of geometry definition, mesh generation (creation, optimization, modification, refine, de-refine, smooth), assigning material properties, initial conditions and boundary conditions requires specialized software tools to automate and streamline the process. In addition, some model setup tools will provide more utility if they are designed to interface with and meet the needs of a particular flow and transport software suite. A control volume discretization that uses a two point flux approximation is for example most accurate when the underlying control volumes are 2D or 3D Voronoi tessellations. In this paper we will present the coupling of LaGriT, a mesh generation and model setup software suite and TOUGH2 (Pruess et al., 1999) to model subsurface flow problems and we show an example of how LaGriT can be used as a model setup tool for the generation of a Voronoi mesh for the simulation program TOUGH2. To generate the MESH file for TOUGH2 from the LaGriT output a standalone module Lagrit2Tough2 was developed, which is presented here and will be included in a future release of LaGriT. In this paper an alternative method to generate a Voronoi mesh for TOUGH2 with LaGriT is presented and thanks to the modular and command based structure of LaGriT this method is well suited to generating a mesh for complex models.

  5. Study of 3-D stress development in parent and twin pairs of a hexagonal close-packed polycrystal: Part II - Crystal plasticity finite element modeling

    DEFF Research Database (Denmark)

    Abdolvand, Hamidreza; Majkut, Marta; Oddershede, Jette

    2015-01-01

    for each grain from the 3DXRD experiment is within the stress variation zone of the grain modeled in the CPFE simulation. Also, the CPFE average stress calculation for each grain is in good agreement with the measured average stress values. It is shown that upon considering the stress variations within......Stress heterogeneity within each individual grain of polycrystalline Zircaloy-2 is studied using a crystal plasticity finite element (CPFE) model. For this purpose, the weighted Voronoi tessellation method is used to construct 3D geometries of more than 2600 grains based on their center......-of-mass positions and volumes as measured by three-dimensional X-ray diffraction (3DXRD) microscopy. The constructed microstructure is meshed with different element densities and for different numbers of grains. Then a selected group of twin and parent pairs are studied. It is shown that the measured average stress...

  6. A tesselation-based model for intensity estimation and laser plasma interactions calculations in three dimensions

    Science.gov (United States)

    Colaïtis, A.; Chapman, T.; Strozzi, D.; Divol, L.; Michel, P.

    2018-03-01

    A three-dimensional laser propagation model for computation of laser-plasma interactions is presented. It is focused on indirect drive geometries in inertial confinement fusion and formulated for use at large temporal and spatial scales. A modified tesselation-based estimator and a relaxation scheme are used to estimate the intensity distribution in plasma from geometrical optics rays. Comparisons with reference solutions show that this approach is well-suited to reproduce realistic 3D intensity field distributions of beams smoothed by phase plates. It is shown that the method requires a reduced number of rays compared to traditional rigid-scale intensity estimation. Using this field estimator, we have implemented laser refraction, inverse-bremsstrahlung absorption, and steady-state crossed-beam energy transfer with a linear kinetic model in the numerical code Vampire. Probe beam amplification and laser spot shapes are compared with experimental results and pf3d paraxial simulations. These results are promising for the efficient and accurate computation of laser intensity distributions in holhraums, which is of importance for determining the capsule implosion shape and risks of laser-plasma instabilities such as hot electron generation and backscatter in multi-beam configurations.

  7. The Minkowski sum of a zonotope and the Voronoi polytope of the root lattice E7

    International Nuclear Information System (INIS)

    Grishukhin, Vyacheslav P

    2012-01-01

    We show that the Minkowski sum P V (E 7 )+Z(U) of the Voronoi polytope P V (E 7 ) of the root lattice E 7 and the zonotope Z(U) is a 7-dimensional parallelohedron if and only if the set U consists of minimal vectors of the dual lattice E 7 * up to scalar multiplication, and U does not contain forbidden sets. The minimal vectors of E 7 are the vectors r of the classical root system E 7 . If the r 2 -norm of the roots is set equal to 2, then the scalar products of minimal vectors from the dual lattice only take the values ±1/2. A set of minimal vectors is referred to as forbidden if it consists of six vectors, and the directions of some of these vectors can be changed so as to obtain a set of six vectors with all the pairwise scalar products equal to 1/2. Bibliography: 11 titles.

  8. Classification of Voronoi and Delone tiles of quasicrystals: III. Decagonal acceptance window of any size

    International Nuclear Information System (INIS)

    Masakova, Z; Patera, J; Zich, J

    2005-01-01

    This paper is the last of a series of three articles presenting a classification of Vornoi and Delone tilings determined by point sets Σ(Ω) ('quasicrystals'), built by the standard projection of the root lattice of type A 4 to a two-dimensional plane spanned by the roots of the Coxeter group H 2 (dihedral group of order 10). The acceptance window Ω for Σ(Ω) in the present paper is a regular decagon of any radius 0 k , τ = 1/2(1+√5) and k element of Z. The number of Voronoi tiles in different quasicrystal tilings varies between 3 and 12. Similarly, the number of Delone tiles is varying between 4 and 6. There are 7 VT sets of the 'generic' type and 7 of the 'singular' type. The latter occur for seven precise values of the radius of the acceptance window. Quasicrystals with acceptance windows with radii in between these values have constant VT sets, only the relative densities and arrangement of the tiles in the tilings change. Similarly, we distinguish singular and generic sets DT of Delone tiles

  9. Mathematical algorithm development and parametric studies with the GEOFRAC three-dimensional stochastic model of natural rock fracture systems

    Science.gov (United States)

    Ivanova, Violeta M.; Sousa, Rita; Murrihy, Brian; Einstein, Herbert H.

    2014-06-01

    This paper presents results from research conducted at MIT during 2010-2012 on modeling of natural rock fracture systems with the GEOFRAC three-dimensional stochastic model. Following a background summary of discrete fracture network models and a brief introduction of GEOFRAC, the paper provides a thorough description of the newly developed mathematical and computer algorithms for fracture intensity, aperture, and intersection representation, which have been implemented in MATLAB. The new methods optimize, in particular, the representation of fracture intensity in terms of cumulative fracture area per unit volume, P32, via the Poisson-Voronoi Tessellation of planes into polygonal fracture shapes. In addition, fracture apertures now can be represented probabilistically or deterministically whereas the newly implemented intersection algorithms allow for computing discrete pathways of interconnected fractures. In conclusion, results from a statistical parametric study, which was conducted with the enhanced GEOFRAC model and the new MATLAB-based Monte Carlo simulation program FRACSIM, demonstrate how fracture intensity, size, and orientations influence fracture connectivity.

  10. Thermal conductivity of nanocrystalline SiGe alloys using molecular dynamics simulations

    Science.gov (United States)

    Abs da Cruz, Carolina; Katcho, Nebil A.; Mingo, Natalio; Veiga, Roberto G. A.

    2013-10-01

    We have studied the effect of nanocrystalline microstructure on the thermal conductivity of SiGe alloys using molecular dynamics simulations. Nanograins are modeled using both the coincidence site lattice and the Voronoi tessellation methods, and the thermal conductivity is computed using the Green-Kubo formalism. We analyze the dependence of the thermal conductivity with temperature, grain size L, and misorientation angle. We find a power dependence of L1/4 of the thermal conductivity with the grain size, instead of the linear dependence shown by non-alloyed nanograined systems. This dependence can be derived analytically underlines the important role that disorder scattering plays even when the grains are of the order of a few nm. This is in contrast to non-alloyed systems, where phonon transport is governed mainly by the boundary scattering. The temperature dependence is weak, in agreement with experimental measurements. The effect of angle misorientation is also small, which stresses the main role played by the disorder scattering.

  11. Rate Dependence of the Compressive Response of Ti Foams

    Directory of Open Access Journals (Sweden)

    Nik Petrinic

    2012-06-01

    Full Text Available Titanium foams of relative density ranging from 0.3 to 0.9 were produced by titanium powder sintering procedures and tested in uniaxial compression at strain rates ranging from 0.01 to 2,000 s−1. The material microstructure was examined by X-ray tomography and Scanning Electron Microscopy (SEM observations. The foams investigated are strain rate sensitive, with both the yield stress and the strain hardening increasing with applied strain rate, and the strain rate sensitivity is more pronounced in foams of lower relative density. Finite element simulations were conducted modelling explicitly the material’s microstructure at the micron level, via a 3D Voronoi tessellation. Low and high strain rate simulations were conducted in order to predict the material’s compressive response, employing both rate-dependant and rate-independent constitutive models. Results from numerical analyses suggest that the primary source of rate sensitivity is represented by the intrinsic sensitivity of the foam’s parent material.

  12. Incorporation of the Pore Size Variation to Modeling of the Elastic Behavior of Metallic Open-Cell Foams

    Directory of Open Access Journals (Sweden)

    Ćwieka K.

    2017-03-01

    Full Text Available In the present paper we present the approach for modeling of the elastic behavior of open-cell metallic foams concerning non-uniform pore size distribution. This approach combines design of foam structures and numerical simulations of compression tests using finite element method (FEM. In the design stage, Laguerre-Voronoi tessellations (LVT were performed on several sets of packed spheres with defined variation of radii, bringing about a set of foam structures with porosity ranging from 74 to 98% and different pore size variation quantified by the coefficient of pore volume variation, CV(V, from 0.5 to 2.1. Each structure was numerically subjected to uni-axial compression test along three directions within the elastic region. Basing on the numerical response, the effective Young’s modulus, Eeff, was calculated for each structure. It is shown that the Eeff is not only dependent on the porosity but also on the pore size variation.

  13. Mathematical Tools for Discovery of Nanoporous Materials for Energy Applications

    International Nuclear Information System (INIS)

    Haranczyk, M; Martin, R L

    2015-01-01

    Porous materials such as zeolites and metal organic frameworks have been of growing importance as materials for energy-related applications such as CO 2 capture, hydrogen and methane storage, and catalysis. The current state-of-the-art molecular simulations allow for accurate in silico prediction of materials' properties but the computational cost of such calculations prohibits their application in the characterisation of very large sets of structures, which would be required to perform brute-force screening. Our work focuses on the development of novel methodologies to efficiently characterize and explore this complex materials space. In particular, we have been developing algorithms and tools for enumeration and characterisation of porous material databases as well as efficient screening approaches. Our methodology represents a ensemble of mathematical methods. We have used Voronoi tessellation-based techniques to enable high-throughput structure characterisation, statistical techniques to perform comparison and screening, and continuous optimisation to design materials. This article outlines our developments in material design

  14. Parallel Performance Optimizations on Unstructured Mesh-based Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Sarje, Abhinav; Song, Sukhyun; Jacobsen, Douglas; Huck, Kevin; Hollingsworth, Jeffrey; Malony, Allen; Williams, Samuel; Oliker, Leonid

    2015-01-01

    © The Authors. Published by Elsevier B.V. This paper addresses two key parallelization challenges the unstructured mesh-based ocean modeling code, MPAS-Ocean, which uses a mesh based on Voronoi tessellations: (1) load imbalance across processes, and (2) unstructured data access patterns, that inhibit intra- and inter-node performance. Our work analyzes the load imbalance due to naive partitioning of the mesh, and develops methods to generate mesh partitioning with better load balance and reduced communication. Furthermore, we present methods that minimize both inter- and intranode data movement and maximize data reuse. Our techniques include predictive ordering of data elements for higher cache efficiency, as well as communication reduction approaches. We present detailed performance data when running on thousands of cores using the Cray XC30 supercomputer and show that our optimization strategies can exceed the original performance by over 2×. Additionally, many of these solutions can be broadly applied to a wide variety of unstructured grid-based computations.

  15. VIDE: The Void IDentification and Examination toolkit

    Science.gov (United States)

    Sutter, P. M.; Lavaux, G.; Hamaus, N.; Pisani, A.; Wandelt, B. D.; Warren, M.; Villaescusa-Navarro, F.; Zivick, P.; Mao, Q.; Thompson, B. B.

    2015-03-01

    We present VIDE, the Void IDentification and Examination toolkit, an open-source Python/C++ code for finding cosmic voids in galaxy redshift surveys and N-body simulations, characterizing their properties, and providing a platform for more detailed analysis. At its core, VIDE uses a substantially enhanced version of ZOBOV (Neyinck 2008) to calculate a Voronoi tessellation for estimating the density field and performing a watershed transform to construct voids. Additionally, VIDE provides significant functionality for both pre- and post-processing: for example, VIDE can work with volume- or magnitude-limited galaxy samples with arbitrary survey geometries, or dark matter particles or halo catalogs in a variety of common formats. It can also randomly subsample inputs and includes a Halo Occupation Distribution model for constructing mock galaxy populations. VIDE uses the watershed levels to place voids in a hierarchical tree, outputs a summary of void properties in plain ASCII, and provides a Python API to perform many analysis tasks, such as loading and manipulating void catalogs and particle members, filtering, plotting, computing clustering statistics, stacking, comparing catalogs, and fitting density profiles. While centered around ZOBOV, the toolkit is designed to be as modular as possible and accommodate other void finders. VIDE has been in development for several years and has already been used to produce a wealth of results, which we summarize in this work to highlight the capabilities of the toolkit. VIDE is publicly available at http://bitbucket.org/cosmicvoids/vide_public and http://www.cosmicvoids.net.

  16. Calcified cartilage or bone? Collagens in the tessellated endoskeletons of cartilaginous fish (sharks and rays).

    Science.gov (United States)

    Seidel, Ronald; Blumer, Michael; Pechriggl, Elisabeth-Judith; Lyons, Kady; Hall, Brian K; Fratzl, Peter; Weaver, James C; Dean, Mason N

    2017-10-01

    The primary skeletal tissue in elasmobranchs -sharks, rays and relatives- is cartilage, forming both embryonic and adult endoskeletons. Only the skeletal surface calcifies, exhibiting mineralized tiles (tesserae) sandwiched between a cartilage core and overlying fibrous perichondrium. These two tissues are based on different collagens (Coll II and I, respectively), fueling a long-standing debate as to whether tesserae are more like calcified cartilage or bone (Coll 1-based) in their matrix composition. We demonstrate that stingray (Urobatis halleri) tesserae are bipartite, having an upper Coll I-based 'cap' that merges into a lower Coll II-based 'body' zone, although tesserae are surrounded by cartilage. We identify a 'supratesseral' unmineralized cartilage layer, between tesserae and perichondrium, distinguished from the cartilage core in containing Coll I and X (a common marker for mammalian mineralization), in addition to Coll II. Chondrocytes within tesserae appear intact and sit in lacunae filled with Coll II-based matrix, suggesting tesserae originate in cartilage, despite comprising a diversity of collagens. Intertesseral joints are also complex in their collagenous composition, being similar to supratesseral cartilage closer to the perichondrium, but containing unidentified fibrils nearer the cartilage core. Our results indicate a unique potential for tessellated cartilage in skeletal biology research, since it lacks features believed diagnostic for vertebrate cartilage mineralization (e.g. hypertrophic and apoptotic chondrocytes), while offering morphologies amenable for investigating the regulation of complex mineralized ultrastructure and tissues patterned on multiple collagens. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. High helmintic infection of the European grass snake, Natrix natrix and the dice snake, Natrix tessellate (Serpentes: Colubridae from Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Yossefi

    2014-02-01

    Full Text Available Objective: To determine the helminth parasites of Natrix natrix Linnaeus, 1758 (N. natrix and Natrix tessellata Laurenti, 1768 (N. tessellate in north of Iran. Methods: Eighteen snakes including nine N. natrix and nine N. tessellata from Mazandaran Province, north of Iran were collected and examined during March 2011 to October 2011 for helminth parasites. The collected specimens were fixed and preserved in 70% ethanol. Results: All of the examined snakes (100% were infected with parasitic helminth. The list of extracted helminths both in N. natrix and N. tessellata includes one Nematode: Rhabdias fuscovenosa (larva, one Digenea: Telorchis assula and one Cestoda: Ophiotaenia europaea. The infection rate of Ophiotaenia europaea, Telorchis assula and Rhabdias fuscovenosa (larva from collected snakes were 100%, 83.3% and 61.1%, respectively. Moreover, in the current investigation the morphological characteristics of the collected helminths were described elaborately. Conclusions: This is the first survey on helminth parasites from N. tessellata in Iran and the helminthes are reported for the first time from this host in Iran.

  18. Effects of Connectivity Disorder on the Potts Model

    International Nuclear Information System (INIS)

    Janke, W.; Weigel, M.

    2003-01-01

    The relevance of quenched, uncorrelated disorder coupling to the local energy density, its paradigm being the random-bond model, is judged by the Harris criterion. A generalization of the underlying argument to the case of spatially correlated disorder, exemplified by quasi-crystals, has been given by Luck. We address the question, whether a relevance criterion of this type is applicable to the case of spin models coupled to different kinds of random graphs. The geometrical fluctuation exponent appearing in Luck's criterion is precisely determined for the case of two-dimensional Poissonian Voronoi-Delaunay random lattices and planar, ''flat'' φ 3 Feynman diagrams. While previous work for the latter graphs is in accord with the determined relevance threshold, a preliminary analysis of the result of a Monte Carlo simulation of the three-states Pott model on Poissonian Voronoi Lattices presented here does not meet the expectation from the relevance criterion. (author)

  19. Network modelling of fluid retention behaviour in unsaturated soils

    Directory of Open Access Journals (Sweden)

    Athanasiadis Ignatios

    2016-01-01

    Full Text Available The paper describes discrete modelling of the retention behaviour of unsaturated porous materials. A network approach is used within a statistical volume element (SVE, suitable for subsequent use in hydro-mechanical analysis and incorporation within multi-scale numerical modelling. The soil pore structure is modelled by a network of cylindrical pipes connecting spheres, with the spheres representing soil voids and the pipes representing inter-connecting throats. The locations of pipes and spheres are determined by a Voronoi tessellation of the domain. Original aspects of the modelling include a form of periodic boundary condition implementation applied for the first time to this type of network, a new pore volume scaling technique to provide more realistic modelling and a new procedure for initiating drying or wetting paths in a network model employing periodic boundary conditions. Model simulations, employing two linear cumulative probability distributions to represent the distributions of sphere and pipe radii, are presented for the retention behaviour reported from a mercury porosimetry test on a sandstone.

  20. Toward transferable interatomic van der Waals interactions without electrons: The role of multipole electrostatics and many-body dispersion

    International Nuclear Information System (INIS)

    Bereau, Tristan; Lilienfeld, O. Anatole von

    2014-01-01

    We estimate polarizabilities of atoms in molecules without electron density, using a Voronoi tesselation approach instead of conventional density partitioning schemes. The resulting atomic dispersion coefficients are calculated, as well as many-body dispersion effects on intermolecular potential energies. We also estimate contributions from multipole electrostatics and compare them to dispersion. We assess the performance of the resulting intermolecular interaction model from dispersion and electrostatics for more than 1300 neutral and charged, small organic molecular dimers. Applications to water clusters, the benzene crystal, the anti-cancer drug ellipticine—intercalated between two Watson-Crick DNA base pairs, as well as six macro-molecular host-guest complexes highlight the potential of this method and help to identify points of future improvement. The mean absolute error made by the combination of static electrostatics with many-body dispersion reduces at larger distances, while it plateaus for two-body dispersion, in conflict with the common assumption that the simple 1/R 6 correction will yield proper dissociative tails. Overall, the method achieves an accuracy well within conventional molecular force fields while exhibiting a simple parametrization protocol

  1. Toward transferable interatomic van der Waals interactions without electrons: The role of multipole electrostatics and many-body dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Bereau, Tristan, E-mail: bereau@mpip-mainz.mpg.de [Max-Planck-Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany and Department of Chemistry, University of Basel, 4056 Basel (Switzerland); Lilienfeld, O. Anatole von [Department of Chemistry, Institute of Physical Chemistry, University of Basel, 4056 Basel, Switzerland and Argonne Leadership Computing Facility, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2014-07-21

    We estimate polarizabilities of atoms in molecules without electron density, using a Voronoi tesselation approach instead of conventional density partitioning schemes. The resulting atomic dispersion coefficients are calculated, as well as many-body dispersion effects on intermolecular potential energies. We also estimate contributions from multipole electrostatics and compare them to dispersion. We assess the performance of the resulting intermolecular interaction model from dispersion and electrostatics for more than 1300 neutral and charged, small organic molecular dimers. Applications to water clusters, the benzene crystal, the anti-cancer drug ellipticine—intercalated between two Watson-Crick DNA base pairs, as well as six macro-molecular host-guest complexes highlight the potential of this method and help to identify points of future improvement. The mean absolute error made by the combination of static electrostatics with many-body dispersion reduces at larger distances, while it plateaus for two-body dispersion, in conflict with the common assumption that the simple 1/R{sup 6} correction will yield proper dissociative tails. Overall, the method achieves an accuracy well within conventional molecular force fields while exhibiting a simple parametrization protocol.

  2. Characterizing cavities in model inclusion molecules: a comparative study.

    Science.gov (United States)

    Torrens, F; Sánchez-Marín, J; Nebot-Gil, I

    1998-04-01

    We have selected fullerene-60 and -70 cavities as model systems in order to test several methods for characterizing inclusion molecules. The methods are based on different technical foundations such as a square and triangular tessellation of the molecule taken as a unitary sphere, spherical tessellation of the molecular surface, numerical integration of the atomic volumes and surfaces, triangular tessellation of the molecular surface, and a cubic lattice approach to a molecular space. Accurate measures of the molecular volume and surface area have been performed with the pseudo-random Monte Carlo (MCVS) and uniform Monte Carlo (UMCVS) methods. These calculations serve as a reference for the rest of the methods. The SURMO2 and MS methods have not recognized the cavities and may not be convenient for intercalation compounds. The programs that have detected the cavities never exceed 5% deviation relative to the reference values for molecular volume and surface area. The GEPOL algorithm, alone or combined with TOPO, shows results in good agreement with those of the UMCVS reference. The uniform random number generator provides the fastest convergence for UMCVS and a correct estimate of the standard deviations. The effect of the internal cavity on the accessible surfaces has been calculated.

  3. Effect of inter-species selective interactions on the thermodynamics and nucleation free-energy barriers of a tessellating polyhedral compound

    International Nuclear Information System (INIS)

    Escobedo, Fernando A.

    2016-01-01

    The phase behavior and the homogeneous nucleation of an equimolar mixture of octahedra and cuboctahedra are studied using thermodynamic integration, Gibbs-Duhem integration, and umbrella sampling simulations. The components of this mixture are modeled as polybead objects of equal edge lengths so that they can assemble into a space-filling compound with the CsCl crystal structure. Taking as reference the hard-core system where the compound crystal does not spontaneously nucleate, we quantified the effect of inter-species selective interactions on facilitating the disorder-to-order transition. Facet selective and facet non-selective inter-species attractions were considered, and while the former was expectedly more favorable toward the target tessellating structure, the latter was found to be similarly effective in nucleating the crystal compound. Ranges for the strength of attractions and degree of supersaturation were identified where the nucleation free-energy barrier was small enough to foretell a fast process but large enough to prevent spinodal fluctuations that can trap the system in dense metastable states lacking long-range order. At those favorable conditions, the tendency toward the local orientational order favored by packing entropy is amplified and found to play a key role seeding nuclei with the CsCl structure.

  4. Cohesive zone modeling of intergranular cracking in polycrystalline aggregates

    International Nuclear Information System (INIS)

    Simonovski, Igor; Cizelj, Leon

    2015-01-01

    Highlights: • Alternative approach to cohesive elements is proposed: cohesive-zone contact. • Applicability to measured and simulated grain structures is demonstrated. • Normal and normal/shear separation as a damage initialization is explored. • Normal/shear damage initialization significantly reduces ductility. • Little difference in Voronoi aggregate size on macroscopic response. - Abstract: Understanding and controlling early damage initiation and evolution are amongst the most important challenges in nuclear power plants, occurring in ferritic, austenitic steels and nickel based alloys. In this work a meso-scale approach to modeling initiation and evolution of early intergranular cracking is presented. This damage mechanism is present in a number of nuclear power plant components and depends on the material (e.g. composition, heat treatment, microstructure), environment and load. Finite element modeling is used to explicitly model the microstructure – both the grains and the grain boundaries. Spatial Voronoi tessellation is used to obtain the grain topology. In addition, measured topology of a 0.4 mm stainless steel wire is used. Anisotropic elasticity and crystal plasticity are used as constitutive laws for the grains. Grain boundaries are modeled using the cohesive zone approach. Different modeling assumptions/parameters are evaluated against the numerical stability criteria. The biggest positive contribution to numerical stability is the use of cohesive-type contact instead of cohesive elements. A small amount of viscous regularization should be also used along with the addition of a small amount of viscous forces to the global equilibrium equations. Two cases of grain boundary damage initiation are explored: (1) initiation due to normal separation and (2) initiation due to a combination of normal and shear separation. The second criterion significantly decreases the ductility of an aggregate and slightly improves the numerical stability

  5. The DEEP2 Galaxy Redshift Survey: The Voronoi-Delaunay Method Catalog of Galaxy Groups

    Energy Technology Data Exchange (ETDEWEB)

    Gerke, Brian F.; /UC, Berkeley; Newman, Jeffrey A.; /LBNL, NSD; Davis, Marc; /UC, Berkeley /UC, Berkeley, Astron.Dept.; Marinoni, Christian; /Brera Observ.; Yan, Renbin; Coil, Alison L.; Conroy, Charlie; Cooper, Michael C.; /UC, Berkeley, Astron.Dept.; Faber, S.M.; /Lick Observ.; Finkbeiner, Douglas P.; /Princeton U. Observ.; Guhathakurta, Puragra; /Lick Observ.; Kaiser, Nick; /Hawaii U.; Koo, David C.; Phillips, Andrew C.; /Lick Observ.; Weiner, Benjamin J.; /Maryland U.

    2012-02-14

    We use the first 25% of the DEEP2 Galaxy Redshift Survey spectroscopic data to identify groups and clusters of galaxies in redshift space. The data set contains 8370 galaxies with confirmed redshifts in the range 0.7 {<=} z {<=} 1.4, over one square degree on the sky. Groups are identified using an algorithm (the Voronoi-Delaunay Method) that has been shown to accurately reproduce the statistics of groups in simulated DEEP2-like samples. We optimize this algorithm for the DEEP2 survey by applying it to realistic mock galaxy catalogs and assessing the results using a stringent set of criteria for measuring group-finding success, which we develop and describe in detail here. We find in particular that the group-finder can successfully identify {approx}78% of real groups and that {approx}79% of the galaxies that are true members of groups can be identified as such. Conversely, we estimate that {approx}55% of the groups we find can be definitively identified with real groups and that {approx}46% of the galaxies we place into groups are interloper field galaxies. Most importantly, we find that it is possible to measure the distribution of groups in redshift and velocity dispersion, n({sigma}, z), to an accuracy limited by cosmic variance, for dispersions greater than 350 km s{sup -1}. We anticipate that such measurements will allow strong constraints to be placed on the equation of state of the dark energy in the future. Finally, we present the first DEEP2 group catalog, which assigns 32% of the galaxies to 899 distinct groups with two or more members, 153 of which have velocity dispersions above 350 km s{sup -1}. We provide locations, redshifts and properties for this high-dispersion subsample. This catalog represents the largest sample to date of spectroscopically detected groups at z {approx} 1.

  6. Dynamical, structural and chemical heterogeneities in a binary metallic glass-forming liquid

    Science.gov (United States)

    Puosi, F.; Jakse, N.; Pasturel, A.

    2018-04-01

    As it approaches the glass transition, particle motion in liquids becomes highly heterogeneous and regions with virtually no mobility coexist with liquid-like domains. This complex dynamic is believed to be responsible for different phenomena including non-exponential relaxation and the breakdown of the Stokes-Einstein relation. Understanding the relationships between dynamical heterogeneities and local structure in metallic liquids and glasses is a major scientific challenge. Here we use classical molecular dynamics simulations to study the atomic dynamics and microscopic structure of Cu50Zr50 alloy in the supercooling regime. Dynamical heterogeneities are identified via an isoconfigurational analysis. We demonstrate the transition from isolated to clustering low mobility with decreasing temperature. These slow clusters, whose sizes grow upon cooling, are also associated with concentration fluctuations, characterized by a Zr-enriched phase, with a composition CuZr2 . In addition, a structural analysis of slow clusters based on Voronoi tessellation evidences an increase with respect of the bulk system of the fraction of Cu atoms having a local icosahedral order. These results are in agreement with the consolidated scenario of the relevant role played by icosahedral order in the dynamic slowing-down in supercooled metal alloys.

  7. Geothermal-Related Thermo-Elastic Fracture Analysis by Numerical Manifold Method

    Directory of Open Access Journals (Sweden)

    Jun He

    2018-05-01

    Full Text Available One significant factor influencing geothermal energy exploitation is the variation of the mechanical properties of rock in high temperature environments. Since rock is typically a heterogeneous granular material, thermal fracturing frequently occurs in the rock when the ambient temperature changes, which can greatly influence the geothermal energy exploitation. A numerical method based on the numerical manifold method (NMM is developed in this study to simulate the thermo-elastic fracturing of rocklike granular materials. The Voronoi tessellation is incorporated into the pre-processor of NMM to represent the grain structure. A contact-based heat transfer model is developed to reflect heat interaction among grains. Based on the model, the transient thermal conduction algorithm for granular materials is established. To simulate the cohesion effects among grains and the fracturing process between grains, a damage-based contact fracture model is developed to improve the contact algorithm of NMM. In the developed numerical method, the heat interaction among grains as well as the heat transfer inside each solid grain are both simulated. Additionally, as damage evolution and fracturing at grain interfaces are also considered, the developed numerical method is applicable to simulate the geothermal-related thermal fracturing process.

  8. Study of the glass forming ability of Cu{sub 60}Zr{sub 32,5}Ti{sub 7,5} alloy by molecular dynamics; Formacao de fase amorfa na liga Cu{sub 60}Zr{sub 32,5}Ti{sub 7,5} por dinamica molecular

    Energy Technology Data Exchange (ETDEWEB)

    Schimidt, C.S.; Lima, L.V.; Bastos, I.N.; Aliaga, L.C.R., E-mail: camilaschimidt17@gmail.com [Universidade do Estado do Rio de Janeiro (UERJ), Nova Friburgo, RJ (Brazil). Departamento de Materiais

    2016-07-01

    This article presents the results of molecular dynamics simulation of Cu{sub 60}Zr{sub 32.5}Ti{sub 7.5} alloy through the open source code LAMMPS. Amorphous samples were produced by quenching the metallic molten from 2300K to 200K at cooling rates of 50, 5 and 0.5K/ps. The pair distribution functions of both the liquid and solid were calculated and compared at different temperatures. The topology of short-range order was analyzed using the Voronoi tessellation method, which determined the presence of Cu-centered icosahedral clusters as the prevailing in the amorphous state at 300K. Moreover, the sample was submitted to uniaxial tensile tests at strain rate of 10ps{sup -1}, in order to investigate the mechanical behavior of the metallic glass. The result of the stress-strain curve showed that applied loads lead to the plastic regime. However, the presences of shear bands, typical in the experimental testing, were not observed. Moreover, the evolution of the viscosity above the glass transition temperature and the fragility of the alloy were determined. The solidus and liquidus temperatures were determined and a good agreement with experimental data was found. (author)

  9. Cell packing structures

    KAUST Repository

    Pottmann, Helmut

    2015-03-03

    This paper is an overview of architectural structures which are either composed of polyhedral cells or closely related to them. We introduce the concept of a support structure of such a polyhedral cell packing. It is formed by planar quads and obtained by connecting corresponding vertices in two combinatorially equivalent meshes whose corresponding edges are coplanar and thus determine planar quads. Since corresponding triangle meshes only yield trivial structures, we focus on support structures associated with quad meshes or hex-dominant meshes. For the quadrilateral case, we provide a short survey of recent research which reveals beautiful relations to discrete differential geometry. Those are essential for successfully initializing numerical optimization schemes for the computation of quad-based support structures. Hex-dominant structures may be designed via Voronoi tessellations, power diagrams, sphere packings and various extensions of these concepts. Apart from the obvious application as load-bearing structures, we illustrate here a new application to shading and indirect lighting. On a higher level, our work emphasizes the interplay between geometry, optimization, statics, and manufacturing, with the overall aim of combining form, function and fabrication into novel integrated design tools.

  10. Study of the glass forming ability of Cu60Zr32,5Ti7,5 alloy by molecular dynamics

    International Nuclear Information System (INIS)

    Schimidt, C.S.; Lima, L.V.; Bastos, I.N.; Aliaga, L.C.R.

    2016-01-01

    This article presents the results of molecular dynamics simulation of Cu 60 Zr 32.5 Ti 7.5 alloy through the open source code LAMMPS. Amorphous samples were produced by quenching the metallic molten from 2300K to 200K at cooling rates of 50, 5 and 0.5K/ps. The pair distribution functions of both the liquid and solid were calculated and compared at different temperatures. The topology of short-range order was analyzed using the Voronoi tessellation method, which determined the presence of Cu-centered icosahedral clusters as the prevailing in the amorphous state at 300K. Moreover, the sample was submitted to uniaxial tensile tests at strain rate of 10ps -1 , in order to investigate the mechanical behavior of the metallic glass. The result of the stress-strain curve showed that applied loads lead to the plastic regime. However, the presences of shear bands, typical in the experimental testing, were not observed. Moreover, the evolution of the viscosity above the glass transition temperature and the fragility of the alloy were determined. The solidus and liquidus temperatures were determined and a good agreement with experimental data was found. (author)

  11. Atomic Scale Investigation of Structural Properties and Glass Forming Ability of Ti100- x Al x Metallic Glasses

    Science.gov (United States)

    Tahiri, M.; Hasnaoui, A.; Sbiaai, K.

    2018-06-01

    In this work, we employed molecular dynamics (MD) simulations to study Ti-Al metallic glasses (MGs) using the embedded atom method (EAM) potential to model the atomic interaction with different compositions. The results showed evidence of the metallic glass formation induced by the split occurring in the second peak of the radial distribution function (RDF) curves implying both Ti and Al atoms. The common neighbor analysis (CNA) method confirmed the presence of the icosahedral clusters with a maximum amount observed for an alloy with 75 pct of Al. Analysis of coordination numbers (CNs) indicated that the total CNs are nearly unchanged in these systems. Finally, Voronoi tessellation analyses (VTA) showed a higher value of the number of icosahedral units at Ti25Al75 composition. This specific composition represents a nearby peritectic point localized at a low melting point in the Ti-Al binary phase diagram. The glass forming ability (GFA) becomes important when the fraction of Al increases by forming and connecting "icosahedral-like" clusters (12-coordinated and 13-coordinated ) and by playing a main role in the structure stability of the Ti-Al MGs.

  12. Atomic Scale Investigation of Structural Properties and Glass Forming Ability of Ti100-x Al x Metallic Glasses

    Science.gov (United States)

    Tahiri, M.; Hasnaoui, A.; Sbiaai, K.

    2018-03-01

    In this work, we employed molecular dynamics (MD) simulations to study Ti-Al metallic glasses (MGs) using the embedded atom method (EAM) potential to model the atomic interaction with different compositions. The results showed evidence of the metallic glass formation induced by the split occurring in the second peak of the radial distribution function (RDF) curves implying both Ti and Al atoms. The common neighbor analysis (CNA) method confirmed the presence of the icosahedral clusters with a maximum amount observed for an alloy with 75 pct of Al. Analysis of coordination numbers (CNs) indicated that the total CNs are nearly unchanged in these systems. Finally, Voronoi tessellation analyses (VTA) showed a higher value of the number of icosahedral units at Ti25Al75 composition. This specific composition represents a nearby peritectic point localized at a low melting point in the Ti-Al binary phase diagram. The glass forming ability (GFA) becomes important when the fraction of Al increases by forming and connecting "icosahedral-like" clusters (12-coordinated and 13-coordinated ) and by playing a main role in the structure stability of the Ti-Al MGs.

  13. Multi-Scale Modeling for Predicting the Stiffness and Strength of Hollow-Structured Metal Foams with Structural Hierarchy

    Directory of Open Access Journals (Sweden)

    Yong Yi

    2018-03-01

    Full Text Available This work was inspired by previous experiments which managed to establish an optimal template-dealloying route to prepare ultralow density metal foams. In this study, we propose a new analytical–numerical model of hollow-structured metal foams with structural hierarchy to predict its stiffness and strength. The two-level model comprises a main backbone and a secondary nanoporous structure. The main backbone is composed of hollow sphere-packing architecture, while the secondary one is constructed of a bicontinuous nanoporous network proposed to describe the nanoscale interactions in the shell. Firstly, two nanoporous models with different geometries are generated by Voronoi tessellation, then the scaling laws of the mechanical properties are determined as a function of relative density by finite volume simulation. Furthermore, the scaling laws are applied to identify the uniaxial compression behavior of metal foams. It is shown that the thickness and relative density highly influence the Young’s modulus and yield strength, and vacancy defect determines the foams being self-supported. The present study provides not only new insights into the mechanical behaviors of both nanoporous metals and metal foams, but also a practical guide for their fabrication and application.

  14. Airflow resistivity of models of fibrous acoustic materials

    DEFF Research Database (Denmark)

    Tarnow, Viggo

    1996-01-01

    A new way of calculating the airflow resistivity of randomly placed parallel cylinders is presented. The calculation is based on Voronoi polygons, and the resistivity is given by the mean spacing between the fibers, their diameters, and the physical properties of air. New explicit formulas...

  15. GENUS STATISTICS USING THE DELAUNAY TESSELLATION FIELD ESTIMATION METHOD. I. TESTS WITH THE MILLENNIUM SIMULATION AND THE SDSS DR7

    International Nuclear Information System (INIS)

    Zhang Youcai; Yang Xiaohu; Springel, Volker

    2010-01-01

    We study the topology of cosmic large-scale structure through the genus statistics, using galaxy catalogs generated from the Millennium Simulation and observational data from the latest Sloan Digital Sky Survey Data Release (SDSS DR7). We introduce a new method for constructing galaxy density fields and for measuring the genus statistics of its isodensity surfaces. It is based on a Delaunay tessellation field estimation (DTFE) technique that allows the definition of a piece-wise continuous density field and the exact computation of the topology of its polygonal isodensity contours, without introducing any free numerical parameter. Besides this new approach, we also employ the traditional approaches of smoothing the galaxy distribution with a Gaussian of fixed width, or by adaptively smoothing with a kernel that encloses a constant number of neighboring galaxies. Our results show that the Delaunay-based method extracts the largest amount of topological information. Unlike the traditional approach for genus statistics, it is able to discriminate between the different theoretical galaxy catalogs analyzed here, both in real space and in redshift space, even though they are based on the same underlying simulation model. In particular, the DTFE approach detects with high confidence a discrepancy of one of the semi-analytic models studied here compared with the SDSS data, while the other models are found to be consistent.

  16. Transactions on Computational Science IX

    DEFF Research Database (Denmark)

    Diagrams, held in Copenhagen, Denmark, June 23-36, 2009. Topics covered include: divide and conquer construction of Voronoi diagrams; new generalized Voronoi diagrams or properties of existing generalized Voronoi diagrams; and applications of Voronoi diagrams and their duals in graph theory, computer...... graphics, bioinformatics, and spatial process simulation....

  17. Weak-lensing calibration of a stellar mass-based mass proxy for redMaPPer and Voronoi Tessellation clusters in SDSS Stripe 82

    Science.gov (United States)

    Pereira, Maria E. S.; Soares-Santos, Marcelle; Makler, Martin; Annis, James; Lin, Huan; Palmese, Antonella; Vitorelli, André Z.; Welch, Brian; Caminha, Gabriel B.; Erben, Thomas; Moraes, Bruno; Shan, Huanyuan

    2018-02-01

    We present the first weak lensing calibration of μ⋆, a new galaxy cluster mass proxy corresponding to the total stellar mass of red and blue members, in two cluster samples selected from the SDSS Stripe 82 data: 230 red-sequence Matched-filter Probabilistic Percolation (redMaPPer) clusters at redshift 0.1 ≤ z proxy for VT clusters. Catalogues including μ⋆ measurements will enable its use in studies of galaxy evolution in clusters and cluster cosmology.

  18. THE DEEP2 GALAXY REDSHIFT SURVEY: THE VORONOI-DELAUNAY METHOD CATALOG OF GALAXY GROUPS

    Energy Technology Data Exchange (ETDEWEB)

    Gerke, Brian F. [KIPAC, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, MS 29, Menlo Park, CA 94725 (United States); Newman, Jeffrey A. [Department of Physics and Astronomy, 3941 O' Hara Street, Pittsburgh, PA 15260 (United States); Davis, Marc [Department of Physics and Department of Astronomy, Campbell Hall, University of California-Berkeley, Berkeley, CA 94720 (United States); Coil, Alison L. [Center for Astrophysics and Space Sciences, University of California, San Diego, 9500 Gilman Drive, MC 0424, La Jolla, CA 92093 (United States); Cooper, Michael C. [Center for Galaxy Evolution, Department of Physics and Astronomy, University of California-Irvine, Irvine, CA 92697 (United States); Dutton, Aaron A. [Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2 (Canada); Faber, S. M.; Guhathakurta, Puragra; Koo, David C.; Phillips, Andrew C. [UCO/Lick Observatory, University of California-Santa Cruz, Santa Cruz, CA 95064 (United States); Konidaris, Nicholas; Lin, Lihwai [Astronomy Department, Caltech 249-17, Pasadena, CA 91125 (United States); Noeske, Kai [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Rosario, David J. [Max Planck Institute for Extraterrestrial Physics, Giessenbachstr. 1, 85748 Garching bei Muenchen (Germany); Weiner, Benjamin J.; Willmer, Christopher N. A. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Yan, Renbin [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada)

    2012-05-20

    We present a public catalog of galaxy groups constructed from the spectroscopic sample of galaxies in the fourth data release from the Deep Extragalactic Evolutionary Probe 2 (DEEP2) Galaxy Redshift Survey, including the Extended Groth Strip (EGS). The catalog contains 1165 groups with two or more members in the EGS over the redshift range 0 < z < 1.5 and 1295 groups at z > 0.6 in the rest of DEEP2. Twenty-five percent of EGS galaxies and fourteen percent of high-z DEEP2 galaxies are assigned to galaxy groups. The groups were detected using the Voronoi-Delaunay method (VDM) after it has been optimized on mock DEEP2 catalogs following similar methods to those employed in Gerke et al. In the optimization effort, we have taken particular care to ensure that the mock catalogs resemble the data as closely as possible, and we have fine-tuned our methods separately on mocks constructed for the EGS and the rest of DEEP2. We have also probed the effect of the assumed cosmology on our inferred group-finding efficiency by performing our optimization on three different mock catalogs with different background cosmologies, finding large differences in the group-finding success we can achieve for these different mocks. Using the mock catalog whose background cosmology is most consistent with current data, we estimate that the DEEP2 group catalog is 72% complete and 61% pure (74% and 67% for the EGS) and that the group finder correctly classifies 70% of galaxies that truly belong to groups, with an additional 46% of interloper galaxies contaminating the catalog (66% and 43% for the EGS). We also confirm that the VDM catalog reconstructs the abundance of galaxy groups with velocity dispersions above {approx}300 km s{sup -1} to an accuracy better than the sample variance, and this successful reconstruction is not strongly dependent on cosmology. This makes the DEEP2 group catalog a promising probe of the growth of cosmic structure that can potentially be used for cosmological tests.

  19. THE DEEP2 GALAXY REDSHIFT SURVEY: THE VORONOI-DELAUNAY METHOD CATALOG OF GALAXY GROUPS

    International Nuclear Information System (INIS)

    Gerke, Brian F.; Newman, Jeffrey A.; Davis, Marc; Coil, Alison L.; Cooper, Michael C.; Dutton, Aaron A.; Faber, S. M.; Guhathakurta, Puragra; Koo, David C.; Phillips, Andrew C.; Konidaris, Nicholas; Lin, Lihwai; Noeske, Kai; Rosario, David J.; Weiner, Benjamin J.; Willmer, Christopher N. A.; Yan, Renbin

    2012-01-01

    We present a public catalog of galaxy groups constructed from the spectroscopic sample of galaxies in the fourth data release from the Deep Extragalactic Evolutionary Probe 2 (DEEP2) Galaxy Redshift Survey, including the Extended Groth Strip (EGS). The catalog contains 1165 groups with two or more members in the EGS over the redshift range 0 0.6 in the rest of DEEP2. Twenty-five percent of EGS galaxies and fourteen percent of high-z DEEP2 galaxies are assigned to galaxy groups. The groups were detected using the Voronoi-Delaunay method (VDM) after it has been optimized on mock DEEP2 catalogs following similar methods to those employed in Gerke et al. In the optimization effort, we have taken particular care to ensure that the mock catalogs resemble the data as closely as possible, and we have fine-tuned our methods separately on mocks constructed for the EGS and the rest of DEEP2. We have also probed the effect of the assumed cosmology on our inferred group-finding efficiency by performing our optimization on three different mock catalogs with different background cosmologies, finding large differences in the group-finding success we can achieve for these different mocks. Using the mock catalog whose background cosmology is most consistent with current data, we estimate that the DEEP2 group catalog is 72% complete and 61% pure (74% and 67% for the EGS) and that the group finder correctly classifies 70% of galaxies that truly belong to groups, with an additional 46% of interloper galaxies contaminating the catalog (66% and 43% for the EGS). We also confirm that the VDM catalog reconstructs the abundance of galaxy groups with velocity dispersions above ∼300 km s –1 to an accuracy better than the sample variance, and this successful reconstruction is not strongly dependent on cosmology. This makes the DEEP2 group catalog a promising probe of the growth of cosmic structure that can potentially be used for cosmological tests.

  20. A forest simulation approach using weighted Voronoi diagrams. An application to Mediterranean fir Abies pinsapo Boiss stands

    Energy Technology Data Exchange (ETDEWEB)

    Abellanas, B.; Abellanas, M.; Pommerening, A.; Lodares, D.; Cuadros, S.

    2016-07-01

    Aim of the study. a) To present a new version of the forest simulator Vorest, an individual-based spatially explicit model that uses weighted Voronoi diagrams to simulate the natural dynamics of forest stands with closed canopies. b) To apply the model to the current dynamics of a Grazalema pinsapo stand to identify the nature of its competition regime and the stagnation risks it is currently facing. Area of study: Sierra del Pinar de Grazalema (S Spain) Material and methods: Two large plots representative of Grazalema pinsapo stands were used to fit and validate the model (plus 6 accesory plots to increase the availability of mortality data). Two inventories were carried out in 1998 and 2007 producing tree size and location data. We developed a forest simulator based on three submodels: growth, competition and mortality. The model was fitted, evaluated and validated for Grazalema plots. The simulation outputs were used to infer the expected evolution of structural diversity of forest stands. Main results: Vorest has proved to be a good tool for simulating dynamics of natural closed stands. The application to Grazalema pinsapo stands has allowed assessing the nature of the main processes that are driving its development pathway. We have found that the prevailing size-asymmetric competition dominates the self-thinning process in small-sized trees. At the same time, there is an active tree-size differentiation process. Research highlights: Vorest has proved to be a good tool for simulating natural stands with closed canopies. The Grazalema pinsapo stand under consideration is currently undergoing a natural process of differentiation, avoiding long-term stagnation. (Author)

  1. Analysis of spatial relationships in three dimensions: tools for the study of nerve cell patterning

    Directory of Open Access Journals (Sweden)

    Raven Mary A

    2008-07-01

    Full Text Available Abstract Background Multiple technologies have been brought to bear on understanding the three-dimensional morphology of individual neurons and glia within the brain, but little progress has been made on understanding the rules controlling cellular patterning. We describe new matlab-based software tools, now available to the scientific community, permitting the calculation of spatial statistics associated with 3D point patterns. The analyses are largely derived from the Delaunay tessellation of the field, including the nearest neighbor and Voronoi domain analyses, and from the spatial autocorrelogram. Results Our tools enable the analysis of the spatial relationship between neurons within the central nervous system in 3D, and permit the modeling of these fields based on lattice-like simulations, and on simulations of minimal-distance spacing rules. Here we demonstrate the utility of our analysis methods to discriminate between two different simulated neuronal populations. Conclusion Together, these tools can be used to reveal the presence of nerve cell patterning and to model its foundation, in turn informing on the potential developmental mechanisms that govern its establishment. Furthermore, in conjunction with analyses of dendritic morphology, they can be used to determine the degree of dendritic coverage within a volume of tissue exhibited by mature nerve cells.

  2. Towards modeling intergranular stress corrosion cracks on grain size scales

    International Nuclear Information System (INIS)

    Simonovski, Igor; Cizelj, Leon

    2012-01-01

    Highlights: ► Simulating the onset and propagation of intergranular cracking. ► Model based on the as-measured geometry and crystallographic orientations. ► Feasibility, performance of the proposed computational approach demonstrated. - Abstract: Development of advanced models at the grain size scales has so far been mostly limited to simulated geometry structures such as for example 3D Voronoi tessellations. The difficulty came from a lack of non-destructive techniques for measuring the microstructures. In this work a novel grain-size scale approach for modelling intergranular stress corrosion cracking based on as-measured 3D grain structure of a 400 μm stainless steel wire is presented. Grain topologies and crystallographic orientations are obtained using a diffraction contrast tomography, reconstructed within a detailed finite element model and coupled with advanced constitutive models for grains and grain boundaries. The wire is composed of 362 grains and over 1600 grain boundaries. Grain boundary damage initialization and early development is then explored for a number of cases, ranging from isotropic elasticity up to crystal plasticity constitutive laws for the bulk grain material. In all cases the grain boundaries are modeled using the cohesive zone approach. The feasibility of the approach is explored.

  3. Interatomic potential to predict the favored and optimized compositions for ternary Cu-Zr-Hf metallic glasses

    International Nuclear Information System (INIS)

    Luo, S. Y.; Cui, Y. Y.; Dai, Y.; Li, J. H.; Liu, B. X.

    2012-01-01

    Under the framework of smoothed and long range second-moment approximation of tight-binding, a realistic interatomic potential was first constructed for the Cu-Zr-Hf ternary metal system. Applying the constructed potential, Monte Carlo simulations were carried out to compare the relative stability of crystalline solid solution versus its disordered counterpart over the entire composition triangle of the system (as a function of alloy composition). Simulations not only reveal that the origin of metallic glass formation but also determine, in the composition triangle, a quadrilateral region, within which metallic glass formation is energetically favored. It is proposed to define the energy differences between the crystalline solid solutions and disordered states as the driving force for amorphization and the corresponding calculations pinpoint an optimized composition locating at an composition of Cu 55 Zr 10 Hf 35 , around which the driving force for metallic glass formation reaches its maximum, suggesting that the ternary Cu-Zr-Hf metallic glasses designed to have the compositions around Cu 55 Zr 10 Hf 35 could be more stable than other alloys in the system. Moreover, for the Cu 55 Zr 10 Hf 35 metallic glass, the Voronoi tessellation calculations reveal some interesting features of its atomic configurations and coordination polyhedra distribution.

  4. Short-to-Medium-Range Order and Atomic Packing in Zr48Cu36Ag8Al8 Bulk Metallic Glass

    Directory of Open Access Journals (Sweden)

    Yong Xu

    2016-10-01

    Full Text Available Due to its excellent glass-forming ability (GFA, the Zr48Cu36Al8Ag8 bulk metallic glass (BMG is of great importance in glass transition investigations and new materials development. However, due to the lack of detailed structural information, the local structure and atomic packing of this alloy is still unknown. In this work, synchrotron measurement and reverse Monte Carlo simulation are performed on the atomic configuration of a Zr-based bulk metallic glass. The local structure is characterized in terms of bond pairs and Voronoi tessellation. It is found that there are mainly two types of bond pairs in the configuration, as the body-centered cubic (bcc-type and icosahedral (ico-type bond pairs. On the other hand, the main polyhedra in the configuration are icosahedra and the bcc structure. That is, the bcc-type bond pairs, together with the ico-type bond pairs, form the bcc polyhedra, introducing the distortion in bcc clusters in short range. However, in the medium range, the atoms formed linear or planar structures, other than the tridimensional clusters. That is, the medium-range order in glass is of 1D or 2D structure, suggesting the imperfect ordered packing feature.

  5. Design and properties of 3D scaffolds for bone tissue engineering.

    Science.gov (United States)

    Gómez, S; Vlad, M D; López, J; Fernández, E

    2016-09-15

    In this study, the Voronoi tessellation method has been used to design novel bone like three dimension (3D) porous scaffolds. The Voronoi method has been processed with computer design software to obtain 3D virtual isotropic porous interconnected models, exactly matching the main histomorphometric indices of trabecular bone (trabecular thickness, trabecular separation, trabecular number, bone volume to total volume ratio, bone surface to bone volume ratio, etc.). These bone like models have been further computed for mechanical (elastic modulus) and fluid mass transport (permeability) properties. The results show that the final properties of the scaffolds can be controlled during their microstructure and histomorphometric initial design stage. It is also shown that final properties can be tuned during the design stage to exactly match those of trabecular natural bone. Moreover, identical total porosity models can be designed with quite different specific bone surface area and thus, this specific microstructural feature can be used to favour cell adhesion, migration and, ultimately, new bone apposition (i.e. osteoconduction). Once the virtual models are fully characterized and optimized, these can be easily 3D printed by additive manufacturing and/or stereolitography technologies. The significance of this article goes far beyond the specific objectives on which it is focussed. In fact, it shows, in a guided way, the entire novel process that can be followed to design graded porous implants, whatever its external shape and geometry, but internally tuned to the exact histomorphometric indices needed to match natural human tissues microstructures and, consequently, their mechanical and fluid properties, among others. The significance is even more relevant nowadays thanks to the available new computing and design software that is easily linked to the 3D printing new technologies. It is this transversality, at the frontier of different disciplines, the main characteristic

  6. Synthesis and crystal structure analysis of uranyl triple acetates

    Energy Technology Data Exchange (ETDEWEB)

    Klepov, Vladislav V., E-mail: vladislavklepov@gmail.com [Institute for Energy and Climate Research (IEK-6), Forschungszentrum Jülich GmbH, 52428 Jülich (Germany); Department of Chemistry, Samara National Research University, 443086 Samara (Russian Federation); Serezhkina, Larisa B.; Serezhkin, Victor N. [Department of Chemistry, Samara National Research University, 443086 Samara (Russian Federation); Alekseev, Evgeny V., E-mail: e.alekseev@fz-juelich.de [Institute for Energy and Climate Research (IEK-6), Forschungszentrum Jülich GmbH, 52428 Jülich (Germany); Institut für Kristallographie, RWTH Aachen University, 52066 Aachen (Germany)

    2016-12-15

    Single crystals of triple acetates NaR[UO{sub 2}(CH{sub 3}COO){sub 3}]{sub 3}·6H{sub 2}O (R=Mg, Co, Ni, Zn), well-known for their use as reagents for sodium determination, were grown from aqueous solutions and their structural and spectroscopic properties were studied. Crystal structures of the mentioned phases are based upon (Na[UO{sub 2}(CH{sub 3}COO){sub 3}]{sub 3}){sup 2–} clusters and [R(H{sub 2}O){sub 6}]{sup 2+} aqua-complexes. The cooling of a single crystal of NaMg[UO{sub 2}(CH{sub 3}COO){sub 3}]{sub 3}·6H{sub 2}O from 300 to 100 K leads to a phase transition from trigonal to monoclinic crystal system. Intermolecular interactions between the structural units and their mutual packing were studied and compared from the point of view of the stereoatomic model of crystal structures based on Voronoi-Dirichlet tessellation. Using this method we compared the crystal structures of the triple acetates with Na[UO{sub 2}(CH{sub 3}COO){sub 3}] and [R(H{sub 2}O){sub 6}][UO{sub 2}(CH{sub 3}COO){sub 3}]{sub 2} and proposed reasons of triple acetates stability. Infrared and Raman spectra were collected and their bands were assigned. - Graphical abstract: Single crystals of uranium based triple acetates, analytical reagents for sodium determination, were synthesized and structurally, spectroscopically and topologically characterized. The structures were compared with the structures of compounds from preceding families [M(H{sub 2}O){sub 6})][UO{sub 2}(CH{sub 3}COO){sub 3}]{sub 2} (M = Mg, Co, Ni, Zn) and Na[UO{sub 2}(CH{sub 3}COO){sub 3}]. Analysis was performed with the method of molecular Voronoi-Dirichlet polyhedra to reveal a large contribution of the hydrogen bonds into intermolecular interactions which can be a reason of low solubility of studied complexes.

  7. Characterizing Cavities in Model Inclusion Fullerenes: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Francisco Torrens

    2001-06-01

    Full Text Available Abstract: The fullerene-82 cavity is selected as a model system in order to test several methods for characterizing inclusion molecules. The methods are based on different technical foundations such as a square and triangular tessellation of the molecular surface, spherical tessellation of the molecular surface, numerical integration of the atomic volumes and surfaces, triangular tessellation of the molecular surface, and cubic lattice approach to the molecular volume. Accurate measures of the molecular volume and surface area have been performed with the pseudorandom Monte Carlo (MCVS and uniform Monte Carlo (UMCVS methods. These calculations serve as a reference for the rest of the methods. The SURMO2 method does not recognize the cavity and may not be convenient for intercalation compounds. The programs that detect the cavities never exceed 1% deviation relative to the reference value for molecular volume and 5% for surface area. The GEPOL algorithm, alone or combined with TOPO, shows results in good agreement with those of the UMCVS reference. The uniform random number generator provides the fastest convergence for UMCVS and a correct estimate of the standard deviations. The effect of the internal cavity on the solvent-accessible surfaces has been calculated. Fullerene-82 is compared with fullerene-60 and -70.

  8. Application of computer simulation in the stereology of materials

    Czech Academy of Sciences Publication Activity Database

    Saxl, Ivan; Ponížil, P.; Löflerová, M.

    2009-01-01

    Roč. 4, č. 2 (2009), s. 231-249 ISSN 1741-8410 R&D Projects: GA ČR GA201/06/0302 Grant - others:GA ČR(CZ) GA106/05/0550 Institutional research plan: CEZ:AV0Z10190503 Keywords : 3D computer simulation * fibre anisotropy * fracture surface * grain size estimation * random tessellation * rough surface analysis * fibre processes Subject RIV: BA - General Mathematics

  9. Growth of solid domains in model membranes: quantitative image analysis reveals a strong correlation between domain shape and spatial position

    DEFF Research Database (Denmark)

    Bernchou, Uffe; Ipsen, John Hjort; Simonsen, Adam Cohen

    2009-01-01

    . To analyze this effect, the nucleation points were used as generators in a Voronoi construction. Associated with each generator is a Voronoi polygon that contains all points closer to this generator than to any other. Through a detailed quantitative analysis of the Voronoi cells and the domains, we have...

  10. Developments in Characterizing Capture Zone Distributions in Island Growth

    Science.gov (United States)

    Einstein, T. L.; Pimpinelli, Alberto; GonzáLez, Diego Luis; Sathiyanarayanan, Rajesh

    2013-03-01

    The utility of using the distribution of capture zones (CZD) to characterize epitaxial growth continues to mount. For non-Poisson deposition (i.e. when island nucleation is not fully random) the areas of these Voronoi cells (proximity polygons) can be well described by the generalized Wigner distribution (GWD), particularly in the central region around the mean area. We discuss several recent applications to experimental systems, showing how this perspective leads to insights about the critical nucleus size. In contrast, several studies have shown that the GWD may not describe the numerical data from painstaking simulations in both tails. We discuss some refinements that have been proposed. Finally, we comment on applications to social phenomena such as area distributions of secondary administrative units (like counties) and of Voronoi cells around Metro stops. Work at UMD supported by NSF-MRSEC Grant DMR 05-20471 and NSF CHE 07-49949

  11. Teaching geometrical principles to design students

    Directory of Open Access Journals (Sweden)

    Christoph Bartneck

    2009-12-01

    Full Text Available We propose a new method of teaching the principles of geometry to design students. The students focus on a field of design in which geometry is the design: tessellation. We review different approaches to geometry and the field of tessellation before we discuss the setup of the course. Instead of employing 2D drawing tools, such as Adobe Illustrator, the students define their tessellation in mathematical formulas, using the Mathematica software. This procedure enables them to understand the mathematical principles on which graphical tools, such as Illustrator are built upon. But we do not stop at a digital representation of their tessellation design we continue to cut their tessellations in Perspex. It moves the abstract concepts of math into the real world, so that the students can experience them directly, which provides a tremendous reward to the students.

  12. A Dual-Continuum Model for Brine Migration in Salt Associated with Heat-Generating Nuclear Waste: Fully Coupled Thermal-Hydro-Mechanical Analysis

    Science.gov (United States)

    Hu, M.; Rutqvist, J.

    2017-12-01

    The disposal of heat-generating nuclear waste in salt host rock establishes a thermal gradient around the waste package that may cause brine inclusions in the salt grains to migrate toward the waste package. In this study, a dual-continuum model is developed to analyze such a phenomenon. This model is based on the Finite Volume Method (FVM), and it is fully thermal-hydro-mechanical (THM) coupled. For fluid flow, the dual-continuum model considers flow in the interconnected pore space and also in the salt grains. The mass balance of salt and water in these two continua is separately established, and their coupling is represented by flux associated with brine migration. Together with energy balance, such a system produces a coupled TH model with strongly nonlinear features. For mechanical analysis, a new formulation is developed based on the Voronoi tessellated mesh. By relating each cell to several connected triangles, first-order approximation is constructed. The coupling between thermal and mechanical fields is only considered in terms of thermal expansion. And the coupling between the hydraulic and mechanical fields in terms of pore-volume effects is consistent with Biot's theory. Therefore, a fully coupled THM model is developed. Several demonstration examples are provided to verify the model. Last the new model is applied to analyze coupled THM behavior and the results are compared with experimental data.

  13. Study of 3-D stress development in parent and twin pairs of a hexagonal close-packed polycrystal: Part II – crystal plasticity finite element modeling

    International Nuclear Information System (INIS)

    Abdolvand, Hamidreza; Majkut, Marta; Oddershede, Jette; Wright, Jonathan P.; Daymond, Mark R.

    2015-01-01

    Stress heterogeneity within each individual grain of polycrystalline Zircaloy-2 is studied using a crystal plasticity finite element (CPFE) model. For this purpose, the weighted Voronoi tessellation method is used to construct 3D geometries of more than 2600 grains based on their center-of-mass positions and volumes as measured by three-dimensional X-ray diffraction (3DXRD) microscopy. The constructed microstructure is meshed with different element densities and for different numbers of grains. Then a selected group of twin and parent pairs are studied. It is shown that the measured average stress for each grain from the 3DXRD experiment is within the stress variation zone of the grain modeled in the CPFE simulation. Also, the CPFE average stress calculation for each grain is in good agreement with the measured average stress values. It is shown that upon considering the stress variations within each grain, stresses in the parent and twin are quite different if they are plotted in the global coordinate system. However, if the stress tensor is rotated into the local coordinate system of the twin habit plane, all the stress components averaged over the presented population are close, except for the shear acting on the twin plane and the transverse stress. This result is significant as it provides information needed to model such parent-twin interactions in crystal plasticity codes

  14. Training nuclei detection algorithms with simple annotations

    Directory of Open Access Journals (Sweden)

    Henning Kost

    2017-01-01

    Full Text Available Background: Generating good training datasets is essential for machine learning-based nuclei detection methods. However, creating exhaustive nuclei contour annotations, to derive optimal training data from, is often infeasible. Methods: We compared different approaches for training nuclei detection methods solely based on nucleus center markers. Such markers contain less accurate information, especially with regard to nuclear boundaries, but can be produced much easier and in greater quantities. The approaches use different automated sample extraction methods to derive image positions and class labels from nucleus center markers. In addition, the approaches use different automated sample selection methods to improve the detection quality of the classification algorithm and reduce the run time of the training process. We evaluated the approaches based on a previously published generic nuclei detection algorithm and a set of Ki-67-stained breast cancer images. Results: A Voronoi tessellation-based sample extraction method produced the best performing training sets. However, subsampling of the extracted training samples was crucial. Even simple class balancing improved the detection quality considerably. The incorporation of active learning led to a further increase in detection quality. Conclusions: With appropriate sample extraction and selection methods, nuclei detection algorithms trained on the basis of simple center marker annotations can produce comparable quality to algorithms trained on conventionally created training sets.

  15. First shark from the Late Devonian (Frasnian) Gogo Formation, Western Australia sheds new light on the development of tessellated calcified cartilage.

    Science.gov (United States)

    Long, John A; Burrow, Carole J; Ginter, Michal; Maisey, John G; Trinajstic, Kate M; Coates, Michael I; Young, Gavin C; Senden, Tim J

    2015-01-01

    as a transitional step toward the tessellated prismatic calcified cartilage that is recognized as the main diagnostic character of the chondrichthyans.

  16. First shark from the Late Devonian (Frasnian Gogo Formation, Western Australia sheds new light on the development of tessellated calcified cartilage.

    Directory of Open Access Journals (Sweden)

    John A Long

    , interpreted as a transitional step toward the tessellated prismatic calcified cartilage that is recognized as the main diagnostic character of the chondrichthyans.

  17. 3D Representative Volume Element Reconstruction of Fiber Composites via Orientation Tensor and Substructure Features

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yi; Chen, Wei; Xu, Hongyi; Jin, Xuejun

    2016-01-01

    To provide a seamless integration of manufacturing processing simulation and fiber microstructure modeling, two new stochastic 3D microstructure reconstruction methods are proposed for two types of random fiber composites: random short fiber composites, and Sheet Molding Compounds (SMC) chopped fiber composites. A Random Sequential Adsorption (RSA) algorithm is first developed to embed statistical orientation information into 3D RVE reconstruction of random short fiber composites. For the SMC composites, an optimized Voronoi diagram based approach is developed for capturing the substructure features of SMC chopped fiber composites. The proposed methods are distinguished from other reconstruction works by providing a way of integrating statistical information (fiber orientation tensor) obtained from material processing simulation, as well as capturing the multiscale substructures of the SMC composites.

  18. Null Environmental Effects of the Cosmic Web on Dark Matter Halo Properties

    Science.gov (United States)

    Goh, Tze; Primack, Joel; Aragon-Calvo, Miguel; Hellinger, Doug; Rodriguez-Puebla, Aldo; Lee, Christoph; Eckleholm, Elliot; Johnston, Kathryn

    2018-01-01

    We study the effects of the cosmic web environment (filaments, voids and walls) and environmental density on key properties of dark matter halos at redshift z = 0 using the Bolshoi-Planck ΛCDM. The z=0 Bolshoi-Planck simulation is analysed into filaments, voids and walls using the SpineWeb method, as well as VIDE method, both of which use Voronoi tessellation and the watershed transform. The key halo properties that we study are the mass accretion rate, spin parameter, concentration, prolateness, scale factor of the last major merger, and scale factor when the halo had half of its z=0 mass. For all these properties, we find that there is no discernible difference between the halo properties in filaments, walls or voids when compared at the same environmental density. As a result, we conclude that environmental density is the core attribute that affects these properties. This conclusion is in line with recent findings that properties of galaxies in redshift surveys are independent of their cosmic web environment at the same environmental density. We also find that the local web environment of the Milky Way and the Andromeda galaxy near the centre of a cosmic wall does not appear to have any effect on the key properties of these galaxies' dark matter halos, although we find that it is rather rare to have such massive halos near the centre of a relatively small cosmic wall.

  19. Modeling grain boundaries in polycrystals using cohesive elements: Qualitative and quantitative analysis

    Energy Technology Data Exchange (ETDEWEB)

    El Shawish, Samir, E-mail: Samir.ElShawish@ijs.si [Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Cizelj, Leon [Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Simonovski, Igor [European Commission, DG-JRC, Institute for Energy and Transport, P.O. Box 2, NL-1755 ZG Petten (Netherlands)

    2013-08-15

    Highlights: ► We estimate the performance of cohesive elements for modeling grain boundaries. ► We compare the computed stresses in ABAQUS finite element solver. ► Tests are performed in analytical and realistic models of polycrystals. ► Most severe issue is found within the plastic grain response. ► Other identified issues are related to topological constraints in modeling space. -- Abstract: We propose and demonstrate several tests to estimate the performance of the cohesive elements in ABAQUS for modeling grain boundaries in complex spatial structures such as polycrystalline aggregates. The performance of the cohesive elements is checked by comparing the computed stresses with the theoretically predicted values for a homogeneous material under uniaxial tensile loading. Statistical analyses are performed under different loading conditions for two elasto-plastic models of the grains: isotropic elasticity with isotropic hardening plasticity and anisotropic elasticity with crystal plasticity. Tests are conducted on an analytical finite element model generated from Voronoi tessellation as well as on a realistic finite element model of a stainless steel wire. The results of the analyses highlight several issues related to the computation of normal and shear stresses. The most severe issue is found within the plastic grain response where the computed normal stresses on a particularly oriented cohesive elements are significantly underestimated. Other issues are found to be related to topological constraints in the modeling space and result in the increased scatter of the computed stresses.

  20. The applicability of physical optics in the millimetre and sub-millimetre spectral region. Part II: Application to a three-component model of ice cloud and its evaluation against the bulk single-scattering properties of various other aggregate models

    Science.gov (United States)

    Baran, Anthony J.; Ishimoto, Hiroshi; Sourdeval, Odran; Hesse, Evelyn; Harlow, Chawn

    2018-02-01

    The bulk single-scattering properties of various randomly oriented aggregate ice crystal models are compared and contrasted at a number of frequencies between 89 and 874 GHz. The model ice particles consist of the ten-branched plate aggregate, five-branched plate aggregate, eight-branched hexagonal aggregate, Voronoi ice aggregate, six-branched hollow bullet rosette, hexagonal column of aspect ratio unity, and the ten-branched hexagonal aggregate. The bulk single-scattering properties of the latter two ice particle models have been calculated using the light scattering methods described in Part I, which represent the two most extreme members of an ensemble model of cirrus ice crystals. In Part I, it was shown that the method of physical optics could be combined with the T-matrix at a size parameter of about 18 to compute the bulk integral ice optical properties and the phase function in the microwave to sufficient accuracy to be of practical value. Here, the bulk single-scattering properties predicted by the two ensemble model members and the Voronoi model are shown to generally bound those of all other models at frequencies between 89 and 874 GHz, thus representing a three-component model of ice cloud that can be generally applied to the microwave, rather than using many differing ice particle models. Moreover, the Voronoi model and hollow bullet rosette scatter similarly to each other in the microwave. Furthermore, from the various comparisons, the importance of assumed shapes of the particle size distribution as well as cm-sized ice aggregates is demonstrated.

  1. Surface reconstruction through poisson disk sampling.

    Directory of Open Access Journals (Sweden)

    Wenguang Hou

    Full Text Available This paper intends to generate the approximate Voronoi diagram in the geodesic metric for some unbiased samples selected from original points. The mesh model of seeds is then constructed on basis of the Voronoi diagram. Rather than constructing the Voronoi diagram for all original points, the proposed strategy is to run around the obstacle that the geodesic distances among neighboring points are sensitive to nearest neighbor definition. It is obvious that the reconstructed model is the level of detail of original points. Hence, our main motivation is to deal with the redundant scattered points. In implementation, Poisson disk sampling is taken to select seeds and helps to produce the Voronoi diagram. Adaptive reconstructions can be achieved by slightly changing the uniform strategy in selecting seeds. Behaviors of this method are investigated and accuracy evaluations are done. Experimental results show the proposed method is reliable and effective.

  2. Teaching geometrical principles to design students

    NARCIS (Netherlands)

    Feijs, L.M.G.; Bartneck, C.

    2009-01-01

    We propose a new method of teaching the principles of geometry to design students. The students focus on a field of design in which geometry is the design: tessellation. We review different approaches to geometry and the field of tessellation before we discuss the setup of the course. Instead of

  3. Power diagrams and interaction processes for unions of discs

    DEFF Research Database (Denmark)

    Møller, Jesper; Helisova, Katarina

    We study a flexible class of finite disc process models with interaction between the discs. We let U denote the random set given by the union of discs, and use for the disc process an exponential family density with the canonical sufficient statistic only depending on geometric properties of U......, becomes useful for handling the problem of edge effects when only U is observed within a bounded observation window. The power tessellation and its dual graph become major tools when establishing inclusion-exclusion formulae, formulae for computing geometric characteristics of U, and stability properties...

  4. Power diagrams and interaction processes for unions of discs

    DEFF Research Database (Denmark)

    Møller, Jesper; Helisova, Katerina

    2008-01-01

     We study a flexible class of finite-disc process models with interaction between the discs. We let U denote the random set given by the union of discs, and use for the disc process an exponential family density with the canonical sufficient statistic depending only on geometric properties of U......, becomes useful for handling the problem of edge effects when only U is observed within a bounded observation window. The power tessellation and its dual graph become major tools when establishing inclusion-exclusion formulae, formulae for computing geometric characteristics of U, and stability properties...

  5. An analytical method for computing atomic contact areas in biomolecules.

    Science.gov (United States)

    Mach, Paul; Koehl, Patrice

    2013-01-15

    We propose a new analytical method for detecting and computing contacts between atoms in biomolecules. It is based on the alpha shape theory and proceeds in three steps. First, we compute the weighted Delaunay triangulation of the union of spheres representing the molecule. In the second step, the Delaunay complex is filtered to derive the dual complex. Finally, contacts between spheres are collected. In this approach, two atoms i and j are defined to be in contact if their centers are connected by an edge in the dual complex. The contact areas between atom i and its neighbors are computed based on the caps formed by these neighbors on the surface of i; the total area of all these caps is partitioned according to their spherical Laguerre Voronoi diagram on the surface of i. This method is analytical and its implementation in a new program BallContact is fast and robust. We have used BallContact to study contacts in a database of 1551 high resolution protein structures. We show that with this new definition of atomic contacts, we generate realistic representations of the environments of atoms and residues within a protein. In particular, we establish the importance of nonpolar contact areas that complement the information represented by the accessible surface areas. This new method bears similarity to the tessellation methods used to quantify atomic volumes and contacts, with the advantage that it does not require the presence of explicit solvent molecules if the surface of the protein is to be considered. © 2012 Wiley Periodicals, Inc. Copyright © 2012 Wiley Periodicals, Inc.

  6. Decaf: Decoupled Dataflows for In Situ High-Performance Workflows

    Energy Technology Data Exchange (ETDEWEB)

    Dreher, M.; Peterka, T.

    2017-07-31

    Decaf is a dataflow system for the parallel communication of coupled tasks in an HPC workflow. The dataflow can perform arbitrary data transformations ranging from simply forwarding data to complex data redistribution. Decaf does this by allowing the user to allocate resources and execute custom code in the dataflow. All communication through the dataflow is efficient parallel message passing over MPI. The runtime for calling tasks is entirely message-driven; Decaf executes a task when all messages for the task have been received. Such a messagedriven runtime allows cyclic task dependencies in the workflow graph, for example, to enact computational steering based on the result of downstream tasks. Decaf includes a simple Python API for describing the workflow graph. This allows Decaf to stand alone as a complete workflow system, but Decaf can also be used as the dataflow layer by one or more other workflow systems to form a heterogeneous task-based computing environment. In one experiment, we couple a molecular dynamics code with a visualization tool using the FlowVR and Damaris workflow systems and Decaf for the dataflow. In another experiment, we test the coupling of a cosmology code with Voronoi tessellation and density estimation codes using MPI for the simulation, the DIY programming model for the two analysis codes, and Decaf for the dataflow. Such workflows consisting of heterogeneous software infrastructures exist because components are developed separately with different programming models and runtimes, and this is the first time that such heterogeneous coupling of diverse components was demonstrated in situ on HPC systems.

  7. Simulating structure and dynamics in small droplets of 1-ethyl-3-methylimidazolium acetate

    Science.gov (United States)

    Brehm, Martin; Sebastiani, Daniel

    2018-05-01

    To investigate the structure and dynamics of small ionic liquid droplets in gas phase, we performed a DFT-based ab initio molecular dynamics study of several 1-ethyl-3-methylimidazolium acetate clusters in vacuum as well as a bulk phase simulation. We introduce an unbiased criterion for average droplet diameter and density. By extrapolation of the droplet densities, we predict the experimental bulk phase density with a deviation of only a few percent. The hydrogen bond geometry between cations and anions is very similar in droplets and bulk, but the hydrogen bond dynamics is significantly slower in the droplets, becoming slower with increasing system size, with hydrogen bond lifetimes up to 2000 ps. From a normal mode analysis of the trajectories, we identify the modes of the ring proton C-H stretching, which are strongly affected by hydrogen bonding. From analyzing these, we find that the hydrogen bond becomes weaker with increasing system size. The cations possess an increased concentration inside the clusters, whereas the anions show an excess concentration on the outside. Almost all anions point towards the droplet center with their carboxylic groups. Ring stacking is found to be a very important structural motif in the droplets (as in the bulk), but side chain interactions are only of minor importance. By using Voronoi tessellation, we define the exposed droplet surface and find that it consists mainly of hydrogen atoms from the cation's and anion's methyl and ethyl groups. Polar atoms are rarely found on the surface, such that the droplets appear completely hydrophobic on the outside.

  8. Dynamics of motile phytoplankton in turbulence: Laboratory investigation of microscale patchiness

    Science.gov (United States)

    Crimaldi, J. P.; True, A.; Stocker, R.

    2016-02-01

    Phytoplankton represent the basis of oceanic life and play a critical role in biogeochemical cycles. While phytoplankton are traditionally studied in bulk, their collective impact stems from cell-level processes and interactions at the microscale. A fundamental element that determines these interactions is the small-scale spatial distribution of individual cells: this directly determines the local cell concentration and the probability that two cells contact or interact with each other. The traditional, bulk perspective on phytoplankton distributions is that turbulence acts to smear out patchiness and locally homogenizes the distributions. However, recent numerical simulations suggest that the action of turbulence on motile phytoplankton may be precisely the opposite: by biasing the swimming direction of cells through the action of viscous torques, turbulence is predicted to generate strong patchiness at small scales. Flow-mediated patch formation has been demonstrated experimentally in simple laminar flows, but has never been tested experimentally in turbulence. In this talk we report on preliminary laboratory experiments performed in a purpose-built flow facility that uses a pair of computer-controlled oscillating grids to generate approximately homogenous isotropic 3D turbulence. Turbulent flow characteristics and dissipation rates are first quantified using particle image velocimetry (PIV). Then, 2D distributions of the motile dinoflagellate Heterosigma akashiwo are imaged using planar laser-induced fluorescence (PLIF). Analysis of imaged phytoplankton distributions for patchiness is performed using a Voronoi tessellation approach. Results suggest that motile phytoplankton distributions differ from those of passive particles. Furthermore, computed values for the patch enhancement factor are shown to be roughly consistent with those of previous DNS predictions.

  9. Modeling of Processing-Induced Pore Morphology in an Additively-Manufactured Ti-6Al-4V Alloy.

    Science.gov (United States)

    Kabir, Mohammad Rizviul; Richter, Henning

    2017-02-08

    A selective laser melting (SLM)-based, additively-manufactured Ti-6Al-4V alloy is prone to the accumulation of undesirable defects during layer-by-layer material build-up. Defects in the form of complex-shaped pores are one of the critical issues that need to be considered during the processing of this alloy. Depending on the process parameters, pores with concave or convex boundaries may occur. To exploit the full potential of additively-manufactured Ti-6Al-4V, the interdependency between the process parameters, pore morphology, and resultant mechanical properties, needs to be understood. By incorporating morphological details into numerical models for micromechanical analyses, an in-depth understanding of how these pores interact with the Ti-6Al-4V microstructure can be gained. However, available models for pore analysis lack a realistic description of both the Ti-6Al-4V grain microstructure, and the pore geometry. To overcome this, we propose a comprehensive approach for modeling and discretizing pores with complex geometry, situated in a polycrystalline microstructure. In this approach, the polycrystalline microstructure is modeled by means of Voronoi tessellations, and the complex pore geometry is approximated by strategically combining overlapping spheres of varied sizes. The proposed approach provides an elegant way to model the microstructure of SLM-processed Ti-6Al-4V containing pores or crack-like voids, and makes it possible to investigate the relationship between process parameters, pore morphology, and resultant mechanical properties in a finite-element-based simulation framework.

  10. Modeling of Processing-Induced Pore Morphology in an Additively-Manufactured Ti-6Al-4V Alloy

    Directory of Open Access Journals (Sweden)

    Mohammad Rizviul Kabir

    2017-02-01

    Full Text Available A selective laser melting (SLM-based, additively-manufactured Ti-6Al-4V alloy is prone to the accumulation of undesirable defects during layer-by-layer material build-up. Defects in the form of complex-shaped pores are one of the critical issues that need to be considered during the processing of this alloy. Depending on the process parameters, pores with concave or convex boundaries may occur. To exploit the full potential of additively-manufactured Ti-6Al-4V, the interdependency between the process parameters, pore morphology, and resultant mechanical properties, needs to be understood. By incorporating morphological details into numerical models for micromechanical analyses, an in-depth understanding of how these pores interact with the Ti-6Al-4V microstructure can be gained. However, available models for pore analysis lack a realistic description of both the Ti-6Al-4V grain microstructure, and the pore geometry. To overcome this, we propose a comprehensive approach for modeling and discretizing pores with complex geometry, situated in a polycrystalline microstructure. In this approach, the polycrystalline microstructure is modeled by means of Voronoi tessellations, and the complex pore geometry is approximated by strategically combining overlapping spheres of varied sizes. The proposed approach provides an elegant way to model the microstructure of SLM-processed Ti-6Al-4V containing pores or crack-like voids, and makes it possible to investigate the relationship between process parameters, pore morphology, and resultant mechanical properties in a finite-element-based simulation framework.

  11. Analytical and experimental investigation of microstructural alterations in bearing steel in rolling contact fatigue

    Science.gov (United States)

    Mobasher Moghaddam, Sina

    Rolling Contact Fatigue (RCF) is one the most common failure modes in bearings. RCF is usually associated with particular microstructural alterations. Such alterations (i.e. white etching cracks, butterflies, etc.) which lead to RCF failure are known to be among the most concerning matters to bearing industry. In the current work, an analytical as well as experimental approaches are used to investigate "butterfly wing" formation, crack initiation and propagation from inclusions. A new damage evolution equation coupled with a FE model is employed to account for the effect of mean stresses and alternating stresses simultaneously to investigate butterfly formation. The proposed damage evolution law matches experimentally observed butterfly orientation, shape, and size successfully. The model is used to obtain S-N results for butterfly formation at different Hertzian load levels. The results corroborate well with the experimental data available in the open literature. The model is used to predict debonding at the inclusion/matrix interface and the most vulnerable regions for crack initiation on butterfly/matrix interface. A new variable called butterfly formation index (BFI) is introduced to manifest the dependence of wing formation on depth. The value of critical damage inside the butterfly wings was obtained experimentally and was then used to simulate damage evolution. Voronoi tessellation was used to develop the FEM domains to capture the effect of microstructural randomness on butterfly wing formation, crack initiation and propagation. Then, the effects of different inclusion characteristics such as size, depth, and stiffness on RCF life are studied. The results show that stiffness of an inclusion and its location has a significant effect on the RCF life: stiffer inclusions and inclusions located at the depth of maximum shear stress reversal are more detrimental to the RCF life. Stress concentrations are not significantly affected by inclusion size for the cases

  12. An examination of the interparticle contact area during sintering of W-0.3 wt pct Co

    International Nuclear Information System (INIS)

    Mitlin, D.; German, R.M.

    1998-01-01

    As a powder compact sinters, its microstructure evolves. One way to quantify the scale of the microstructure is to consider the interparticle contact area. This study examines two known models for calculating the interparticle contact area: the classic two-sphere model and the Voronoi cell model. Both models have particular assumptions about the microstructure that make them not applicable for treating densification to near full density with concurrent grain growth. The classic two-sphere model assumes a regular packing of particles and a perfectly spherical particle geometry and neglects an increasing particle coordination number with sintering. The Voronoi cell model assumes that the scale of the microstructure remains constant; i.e., as long as the compact is densifying, grain growth does not occur. The authors propose a modified Voronoi cell that accounts for an increasing grain size, making it applicable to a general case where grain growth occurs during sintering. The three models are compared to the interparticle contact area data, obtained by stereology techniques, for W-0.3 wt pct Co sintered from green state to near full density. The original Voronoi cell model fits the data only at low temperatures, before the onset of grain growth. Below approximately 90 pct relative density, the two-sphere model with an assumed coordination number of six (coordination number in a green compact) and the modified Voronoi cell model provide a good fit to the data. At higher densities, both models overestimate the interparticle contact area

  13. Phyllotaxis: a framework for foam topological evolution.

    Science.gov (United States)

    Rivier, Nicolas; Sadoc, Jean-François; Charvolin, Jean

    2016-01-01

    Phyllotaxis describes the arrangement of florets, scales or leaves in composite flowers or plants (daisy, aster, sunflower, pinecone, pineapple). As a structure, it is a geometrical foam, the most homogeneous and densest covering of a large disk by Voronoi cells (the florets), constructed by a simple algorithm: Points placed regularly on a generative spiral constitute a spiral lattice, and phyllotaxis is the tiling by the Voronoi cells of the spiral lattice. Locally, neighboring cells are organized as three whorls or parastichies, labelled with successive Fibonacci numbers. The structure is encoded as the sequence of the shapes (number of sides) of the successive Voronoi cells on the generative spiral. We show that sequence and organization are independent of the position of the initial point on the generative spiral, that is invariant under disappearance (T2 of the first Voronoi cell or, conversely, under creation of a first cell, that is under growth. This independence shows how a foam is able to respond to a shear stress, notably through grain boundaries that are layers of square cells slightly truncated into heptagons, pentagons and hexagons, meeting at four-corner vertices, critical points of T1 elementary topological transformations.

  14. Analysing and controlling the tax evasion dynamics via majority-vote model

    Energy Technology Data Exchange (ETDEWEB)

    Lima, F W S, E-mail: fwslima@gmail.co, E-mail: wel@ufpi.edu.b [Departamento de Fisica, Universidade Federal do PiauI, 64049-550, Teresina - PI (Brazil)

    2010-09-01

    Within the context of agent-based Monte-Carlo simulations, we study the well-known majority-vote model (MVM) with noise applied to tax evasion on simple square lattices, Voronoi-Delaunay random lattices, Barabasi-Albert networks, and Erdoes-Renyi random graphs. In the order to analyse and to control the fluctuations for tax evasion in the economics model proposed by Zaklan, MVM is applied in the neighborhood of the noise critical q{sub c} to evolve the Zaklan model. The Zaklan model had been studied recently using the equilibrium Ising model. Here we show that the Zaklan model is robust because this can be studied using equilibrium dynamics of Ising model also through the nonequilibrium MVM and on various topologies cited above giving the same behavior regardless of dynamic or topology used here.

  15. Analysing and controlling the tax evasion dynamics via majority-vote model

    International Nuclear Information System (INIS)

    Lima, F W S

    2010-01-01

    Within the context of agent-based Monte-Carlo simulations, we study the well-known majority-vote model (MVM) with noise applied to tax evasion on simple square lattices, Voronoi-Delaunay random lattices, Barabasi-Albert networks, and Erdoes-Renyi random graphs. In the order to analyse and to control the fluctuations for tax evasion in the economics model proposed by Zaklan, MVM is applied in the neighborhood of the noise critical q c to evolve the Zaklan model. The Zaklan model had been studied recently using the equilibrium Ising model. Here we show that the Zaklan model is robust because this can be studied using equilibrium dynamics of Ising model also through the nonequilibrium MVM and on various topologies cited above giving the same behavior regardless of dynamic or topology used here.

  16. Multi-Agent Simulation of Allocating and Routing Ambulances Under Condition of Street Blockage after Natural Disaster

    Science.gov (United States)

    Azimi, S.; Delavar, M. R.; Rajabifard, A.

    2017-09-01

    In response to natural disasters, efficient planning for optimum allocation of the medical assistance to wounded as fast as possible and wayfinding of first responders immediately to minimize the risk of natural disasters are of prime importance. This paper aims to propose a multi-agent based modeling for optimum allocation of space to emergency centers according to the population, street network and number of ambulances in emergency centers by constraint network Voronoi diagrams, wayfinding of ambulances from emergency centers to the wounded locations and return based on the minimum ambulances travel time and path length implemented by NSGA and the use of smart city facilities to accelerate the rescue operation. Simulated annealing algorithm has been used for minimizing the difference between demands and supplies of the constrained network Voronoi diagrams. In the proposed multi-agent system, after delivering the location of the wounded and their symptoms, the constraint network Voronoi diagram for each emergency center is determined. This process was performed simultaneously for the multi-injuries in different Voronoi diagrams. In the proposed multi-agent system, the priority of the injuries for receiving medical assistance and facilities of the smart city for reporting the blocked streets was considered. Tehran Municipality District 5 was considered as the study area and during 3 minutes intervals, the volunteers reported the blocked street. The difference between the supply and the demand divided to the supply in each Voronoi diagram decreased to 0.1601. In the proposed multi-agent system, the response time of the ambulances is decreased about 36.7%.

  17. Geostatistical interpolation of available copper in orchard soil as influenced by planting duration.

    Science.gov (United States)

    Fu, Chuancheng; Zhang, Haibo; Tu, Chen; Li, Lianzhen; Luo, Yongming

    2018-01-01

    Mapping the spatial distribution of available copper (A-Cu) in orchard soils is important in agriculture and environmental management. However, data on the distribution of A-Cu in orchard soils is usually highly variable and severely skewed due to the continuous input of fungicides. In this study, ordinary kriging combined with planting duration (OK_PD) is proposed as a method for improving the interpolation of soil A-Cu. Four normal distribution transformation methods, namely, the Box-Cox, Johnson, rank order, and normal score methods, were utilized prior to interpolation. A total of 317 soil samples were collected in the orchards of the Northeast Jiaodong Peninsula. Moreover, 1472 orchards were investigated to obtain a map of planting duration using Voronoi tessellations. The soil A-Cu content ranged from 0.09 to 106.05 with a mean of 18.10 mg kg -1 , reflecting the high availability of Cu in the soils. Soil A-Cu concentrations exhibited a moderate spatial dependency and increased significantly with increasing planting duration. All the normal transformation methods successfully decreased the skewness and kurtosis of the soil A-Cu and the associated residuals, and also computed more robust variograms. OK_PD could generate better spatial prediction accuracy than ordinary kriging (OK) for all transformation methods tested, and it also provided a more detailed map of soil A-Cu. Normal score transformation produced satisfactory accuracy and showed an advantage in ameliorating smoothing effect derived from the interpolation methods. Thus, normal score transformation prior to kriging combined with planting duration (NSOK_PD) is recommended for the interpolation of soil A-Cu in this area.

  18. Random matrices and random difference equations

    International Nuclear Information System (INIS)

    Uppuluri, V.R.R.

    1975-01-01

    Mathematical models leading to products of random matrices and random difference equations are discussed. A one-compartment model with random behavior is introduced, and it is shown how the average concentration in the discrete time model converges to the exponential function. This is of relevance to understanding how radioactivity gets trapped in bone structure in blood--bone systems. The ideas are then generalized to two-compartment models and mammillary systems, where products of random matrices appear in a natural way. The appearance of products of random matrices in applications in demography and control theory is considered. Then random sequences motivated from the following problems are studied: constant pulsing and random decay models, random pulsing and constant decay models, and random pulsing and random decay models

  19. Anisotropy of the monomer random walk in a polymer melt: local-order and connectivity effects

    International Nuclear Information System (INIS)

    Bernini, S; Leporini, D

    2016-01-01

    The random walk of a bonded monomer in a polymer melt is anisotropic due to local order and bond connectivity. We investigate both effects by molecular-dynamics simulations on melts of fully-flexible linear chains ranging from dimers (M  =  2) up to entangled polymers (M  =  200). The corresponding atomic liquid is also considered a reference system. To disentangle the influence of the local geometry and the bond arrangements, and to reveal their interplay, we define suitable measures of the anisotropy emphasising either the former or the latter aspect. Connectivity anisotropy, as measured by the correlation between the initial bond orientation and the direction of the subsequent monomer displacement, shows a slight enhancement due to the local order at times shorter than the structural relaxation time. At intermediate times—when the monomer displacement is comparable to the bond length—a pronounced peak and then decays slowly as t −1/2 , becoming negligible when the displacement is as large as about five bond lengths, i.e. about four monomer diameters or three Kuhn lengths. Local-geometry anisotropy, as measured by the correlation between the initial orientation of a characteristic axis of the Voronoi cell and the subsequent monomer dynamics, is affected at shorter times than the structural relaxation time by the cage shape with antagonistic disturbance by the connectivity. Differently, at longer times, the connectivity favours the persistence of the local-geometry anisotropy, which vanishes when the monomer displacement exceeds the bond length. Our results strongly suggest that the sole consideration of the local order is not enough to understand the microscopic origin of the rattling amplitude of the trapped monomer in the cage of the neighbours. (paper)

  20. Random walk on random walks

    NARCIS (Netherlands)

    Hilário, M.; Hollander, den W.Th.F.; Sidoravicius, V.; Soares dos Santos, R.; Teixeira, A.

    2014-01-01

    In this paper we study a random walk in a one-dimensional dynamic random environment consisting of a collection of independent particles performing simple symmetric random walks in a Poisson equilibrium with density ¿¿(0,8). At each step the random walk performs a nearest-neighbour jump, moving to

  1. Equivelar toroids with few flag-orbits

    OpenAIRE

    Collins, José; Montero, Antonio

    2018-01-01

    An $(n+1)$-toroid is a quotient of a tessellation of the $n$-dimensional Euclidean space with a lattice group. Toroids are generalizations of maps in the torus on higher dimensions and also provide examples of abstract polytopes. Equivelar toroids are those that are induced by regular tessellations. In this paper we present a classification of equivelar $(n+1)$-toroids with at most $n$ flag-orbits; in particular, we discuss a classification of $2$-orbit toroids of arbitrary dimension.

  2. Numerical evaluation of energy barriers and magnetic relaxation in interacting nanostructured magnetic systems

    International Nuclear Information System (INIS)

    Chubykalo-Fesenko, Oksana A.; Chantrell, Roy W.

    2004-01-01

    We discuss a model to quantify long-time thermally induced magnetization reversal in magnetic systems with distributed properties. Two algorithms, based on kinetic and Metropolis Monte Carlo are introduced. While the former requires the constant recalculation of all energy barriers and is useful when the interactions are weak, the latter uses the Metropolis Monte Carlo to estimate the magnetization trajectory and, consequently, only the most probable transition rates are evaluated. The ridge optimization method is used to evaluate the energy barriers in a multidimensional energy landscape. The algorithms are applied to a granular system modeled by means of Voronoi polyhedra and having random in-plane anisotropy

  3. Tessellation of SoHO Magnetograms

    Indian Academy of Sciences (India)

    tribpo

    R. Srikant* & Jagdev Singh,Indian Institute of Astrophysi cs, Bangalore 560034, India. *e mail: srik@iiap.ernet.in. Abstract. A gradient based algorithm which divides arbitrary images into non overlapping surface filling tiles of opposite polarity is used to study the flux and size distributions of large scale magnetic flux concen.

  4. How random is a random vector?

    International Nuclear Information System (INIS)

    Eliazar, Iddo

    2015-01-01

    Over 80 years ago Samuel Wilks proposed that the “generalized variance” of a random vector is the determinant of its covariance matrix. To date, the notion and use of the generalized variance is confined only to very specific niches in statistics. In this paper we establish that the “Wilks standard deviation” –the square root of the generalized variance–is indeed the standard deviation of a random vector. We further establish that the “uncorrelation index” –a derivative of the Wilks standard deviation–is a measure of the overall correlation between the components of a random vector. Both the Wilks standard deviation and the uncorrelation index are, respectively, special cases of two general notions that we introduce: “randomness measures” and “independence indices” of random vectors. In turn, these general notions give rise to “randomness diagrams”—tangible planar visualizations that answer the question: How random is a random vector? The notion of “independence indices” yields a novel measure of correlation for Lévy laws. In general, the concepts and results presented in this paper are applicable to any field of science and engineering with random-vectors empirical data.

  5. How random is a random vector?

    Science.gov (United States)

    Eliazar, Iddo

    2015-12-01

    Over 80 years ago Samuel Wilks proposed that the "generalized variance" of a random vector is the determinant of its covariance matrix. To date, the notion and use of the generalized variance is confined only to very specific niches in statistics. In this paper we establish that the "Wilks standard deviation" -the square root of the generalized variance-is indeed the standard deviation of a random vector. We further establish that the "uncorrelation index" -a derivative of the Wilks standard deviation-is a measure of the overall correlation between the components of a random vector. Both the Wilks standard deviation and the uncorrelation index are, respectively, special cases of two general notions that we introduce: "randomness measures" and "independence indices" of random vectors. In turn, these general notions give rise to "randomness diagrams"-tangible planar visualizations that answer the question: How random is a random vector? The notion of "independence indices" yields a novel measure of correlation for Lévy laws. In general, the concepts and results presented in this paper are applicable to any field of science and engineering with random-vectors empirical data.

  6. Randomized random walk on a random walk

    International Nuclear Information System (INIS)

    Lee, P.A.

    1983-06-01

    This paper discusses generalizations of the model introduced by Kehr and Kunter of the random walk of a particle on a one-dimensional chain which in turn has been constructed by a random walk procedure. The superimposed random walk is randomised in time according to the occurrences of a stochastic point process. The probability of finding the particle in a particular position at a certain instant is obtained explicitly in the transform domain. It is found that the asymptotic behaviour for large time of the mean-square displacement of the particle depends critically on the assumed structure of the basic random walk, giving a diffusion-like term for an asymmetric walk or a square root law if the walk is symmetric. Many results are obtained in closed form for the Poisson process case, and these agree with those given previously by Kehr and Kunter. (author)

  7. Compressibility of the protein-water interface

    Science.gov (United States)

    Persson, Filip; Halle, Bertil

    2018-06-01

    The compressibility of a protein relates to its stability, flexibility, and hydrophobic interactions, but the measurement, interpretation, and computation of this important thermodynamic parameter present technical and conceptual challenges. Here, we present a theoretical analysis of protein compressibility and apply it to molecular dynamics simulations of four globular proteins. Using additively weighted Voronoi tessellation, we decompose the solution compressibility into contributions from the protein and its hydration shells. We find that positively cross-correlated protein-water volume fluctuations account for more than half of the protein compressibility that governs the protein's pressure response, while the self correlations correspond to small (˜0.7%) fluctuations of the protein volume. The self compressibility is nearly the same as for ice, whereas the total protein compressibility, including cross correlations, is ˜45% of the bulk-water value. Taking the inhomogeneous solvent density into account, we decompose the experimentally accessible protein partial compressibility into intrinsic, hydration, and molecular exchange contributions and show how they can be computed with good statistical accuracy despite the dominant bulk-water contribution. The exchange contribution describes how the protein solution responds to an applied pressure by redistributing water molecules from lower to higher density; it is negligibly small for native proteins, but potentially important for non-native states. Because the hydration shell is an open system, the conventional closed-system compressibility definitions yield a pseudo-compressibility. We define an intrinsic shell compressibility, unaffected by occupation number fluctuations, and show that it approaches the bulk-water value exponentially with a decay "length" of one shell, less than the bulk-water compressibility correlation length. In the first hydration shell, the intrinsic compressibility is 25%-30% lower than in

  8. Base Station Ordering for Emergency Call Localization in Ultra-dense Cellular Networks

    KAUST Repository

    Elsawy, Hesham

    2017-10-04

    This paper proposes the base station ordering localization technique (BoLT) for emergency call localization in cellular networks. Exploiting the foreseen ultra-densification of the next-generation (5G and beyond) cellular networks, we utilize higher-order Voronoi tessellations to provide ubiquitous localization services that are in compliance to the public safety standards in cellular networks. The proposed localization algorithm runs at the base stations (BSs) and requires minimal operation from agents (i.e., mobile users). Particularly, BoLT requires each agent to feedback a neighbor cell list (NCL) that contains the order of neighboring BSs based on the received signal power in the pilots sent from these BSs. Moreover, this paper utilizes stochastic geometry to develop a tractable mathematical model to assess the performance of BoLT in a general network setting. The goal of this paper is to answer the following two fundamental questions: i) how many BSs should be ordered and reported by the agent to achieve a desirable localization accuracy? and ii) what is the localization error probability given that the pilot signals are subject to shadowing? Assuming that the BSs are deployed according to a Poisson point process (PPP), we answer these two questions via characterizing the tradeoff between the area of location region (ALR) and the localization error probability in terms of the number of BSs ordered by the agent. The results show that reporting the order of six neighboring BSs is sufficient to localize the agent within 10% of the cell area. Increasing the number of reported BSs to ten confines the location region to 1% of the cell area. This would translate to the range of a few meters to decimeters in the foreseen ultra-dense 5G networks.

  9. Compressibility of the protein-water interface.

    Science.gov (United States)

    Persson, Filip; Halle, Bertil

    2018-06-07

    The compressibility of a protein relates to its stability, flexibility, and hydrophobic interactions, but the measurement, interpretation, and computation of this important thermodynamic parameter present technical and conceptual challenges. Here, we present a theoretical analysis of protein compressibility and apply it to molecular dynamics simulations of four globular proteins. Using additively weighted Voronoi tessellation, we decompose the solution compressibility into contributions from the protein and its hydration shells. We find that positively cross-correlated protein-water volume fluctuations account for more than half of the protein compressibility that governs the protein's pressure response, while the self correlations correspond to small (∼0.7%) fluctuations of the protein volume. The self compressibility is nearly the same as for ice, whereas the total protein compressibility, including cross correlations, is ∼45% of the bulk-water value. Taking the inhomogeneous solvent density into account, we decompose the experimentally accessible protein partial compressibility into intrinsic, hydration, and molecular exchange contributions and show how they can be computed with good statistical accuracy despite the dominant bulk-water contribution. The exchange contribution describes how the protein solution responds to an applied pressure by redistributing water molecules from lower to higher density; it is negligibly small for native proteins, but potentially important for non-native states. Because the hydration shell is an open system, the conventional closed-system compressibility definitions yield a pseudo-compressibility. We define an intrinsic shell compressibility, unaffected by occupation number fluctuations, and show that it approaches the bulk-water value exponentially with a decay "length" of one shell, less than the bulk-water compressibility correlation length. In the first hydration shell, the intrinsic compressibility is 25%-30% lower than

  10. Base Station Ordering for Emergency Call Localization in Ultra-dense Cellular Networks

    KAUST Repository

    Elsawy, Hesham; Dai, Wenhan; Alouini, Mohamed-Slim; Win, Moe Z.

    2017-01-01

    This paper proposes the base station ordering localization technique (BoLT) for emergency call localization in cellular networks. Exploiting the foreseen ultra-densification of the next-generation (5G and beyond) cellular networks, we utilize higher-order Voronoi tessellations to provide ubiquitous localization services that are in compliance to the public safety standards in cellular networks. The proposed localization algorithm runs at the base stations (BSs) and requires minimal operation from agents (i.e., mobile users). Particularly, BoLT requires each agent to feedback a neighbor cell list (NCL) that contains the order of neighboring BSs based on the received signal power in the pilots sent from these BSs. Moreover, this paper utilizes stochastic geometry to develop a tractable mathematical model to assess the performance of BoLT in a general network setting. The goal of this paper is to answer the following two fundamental questions: i) how many BSs should be ordered and reported by the agent to achieve a desirable localization accuracy? and ii) what is the localization error probability given that the pilot signals are subject to shadowing? Assuming that the BSs are deployed according to a Poisson point process (PPP), we answer these two questions via characterizing the tradeoff between the area of location region (ALR) and the localization error probability in terms of the number of BSs ordered by the agent. The results show that reporting the order of six neighboring BSs is sufficient to localize the agent within 10% of the cell area. Increasing the number of reported BSs to ten confines the location region to 1% of the cell area. This would translate to the range of a few meters to decimeters in the foreseen ultra-dense 5G networks.

  11. A fully automated cell segmentation and morphometric parameter system for quantifying corneal endothelial cell morphology.

    Science.gov (United States)

    Al-Fahdawi, Shumoos; Qahwaji, Rami; Al-Waisy, Alaa S; Ipson, Stanley; Ferdousi, Maryam; Malik, Rayaz A; Brahma, Arun

    2018-07-01

    Corneal endothelial cell abnormalities may be associated with a number of corneal and systemic diseases. Damage to the endothelial cells can significantly affect corneal transparency by altering hydration of the corneal stroma, which can lead to irreversible endothelial cell pathology requiring corneal transplantation. To date, quantitative analysis of endothelial cell abnormalities has been manually performed by ophthalmologists using time consuming and highly subjective semi-automatic tools, which require an operator interaction. We developed and applied a fully-automated and real-time system, termed the Corneal Endothelium Analysis System (CEAS) for the segmentation and computation of endothelial cells in images of the human cornea obtained by in vivo corneal confocal microscopy. First, a Fast Fourier Transform (FFT) Band-pass filter is applied to reduce noise and enhance the image quality to make the cells more visible. Secondly, endothelial cell boundaries are detected using watershed transformations and Voronoi tessellations to accurately quantify the morphological parameters of the human corneal endothelial cells. The performance of the automated segmentation system was tested against manually traced ground-truth images based on a database consisting of 40 corneal confocal endothelial cell images in terms of segmentation accuracy and obtained clinical features. In addition, the robustness and efficiency of the proposed CEAS system were compared with manually obtained cell densities using a separate database of 40 images from controls (n = 11), obese subjects (n = 16) and patients with diabetes (n = 13). The Pearson correlation coefficient between automated and manual endothelial cell densities is 0.9 (p system, and the possibility of utilizing it in a real world clinical setting to enable rapid diagnosis and for patient follow-up, with an execution time of only 6 seconds per image. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Hydromechanical modeling of clay rock including fracture damage

    Science.gov (United States)

    Asahina, D.; Houseworth, J. E.; Birkholzer, J. T.

    2012-12-01

    Argillaceous rock typically acts as a flow barrier, but under certain conditions significant and potentially conductive fractures may be present. Fracture formation is well-known to occur in the vicinity of underground excavations in a region known as the excavation disturbed zone. Such problems are of particular importance for low-permeability, mechanically weak rock such as clays and shales because fractures can be relatively transient as a result of fracture self-sealing processes. Perhaps not as well appreciated is the fact that natural fractures can form in argillaceous rock as a result of hydraulic overpressure caused by phenomena such as disequlibrium compaction, changes in tectonic stress, and mineral dehydration. Overpressure conditions can cause hydraulic fracturing if the fluid pressure leads to tensile effective stresses that exceed the tensile strength of the material. Quantitative modeling of this type of process requires coupling between hydrogeologic processes and geomechanical processes including fracture initiation and propagation. Here we present a computational method for three-dimensional, hydromechanical coupled processes including fracture damage. Fractures are represented as discrete features in a fracture network that interact with a porous rock matrix. Fracture configurations are mapped onto an unstructured, three-dimensonal, Voronoi grid, which is based on a random set of spatial points. Discrete fracture networks (DFN) are represented by the connections of the edges of a Voronoi cells. This methodology has the advantage that fractures can be more easily introduced in response to coupled hydro-mechanical processes and generally eliminates several potential issues associated with the geometry of DFN and numerical gridding. A geomechanical and fracture-damage model is developed here using the Rigid-Body-Spring-Network (RBSN) numerical method. The hydrogelogic and geomechanical models share the same geometrical information from a 3D Voronoi

  13. Geometrical study of phyllotactic patterns by Bernoulli spiral lattices.

    Science.gov (United States)

    Sushida, Takamichi; Yamagishi, Yoshikazu

    2017-06-01

    Geometrical studies of phyllotactic patterns deal with the centric or cylindrical models produced by ideal lattices. van Iterson (Mathematische und mikroskopisch - anatomische Studien über Blattstellungen nebst Betrachtungen über den Schalenbau der Miliolinen, Verlag von Gustav Fischer, Jena, 1907) suggested a centric model representing ideal phyllotactic patterns as disk packings of Bernoulli spiral lattices and presented a phase diagram now called Van Iterson's diagram explaining the bifurcation processes of their combinatorial structures. Geometrical properties on disk packings were shown by Rothen & Koch (J. Phys France, 50(13), 1603-1621, 1989). In contrast, as another centric model, we organized a mathematical framework of Voronoi tilings of Bernoulli spiral lattices and showed mathematically that the phase diagram of a Voronoi tiling is graph-theoretically dual to Van Iterson's diagram. This paper gives a review of two centric models for disk packings and Voronoi tilings of Bernoulli spiral lattices. © 2017 Japanese Society of Developmental Biologists.

  14. STRAIGHTENING THE DENSITY-DISPLACEMENT RELATION WITH A LOGARITHMIC TRANSFORM

    International Nuclear Information System (INIS)

    Falck, Bridget L.; Neyrinck, Mark C.; Aragon-Calvo, Miguel A.; Lavaux, Guilhem; Szalay, Alexander S.

    2012-01-01

    We investigate the use of a logarithmic density variable in estimating the Lagrangian displacement field motivated by the success of a logarithmic transformation in restoring information to the matter power spectrum. The logarithmic relation is an extension of the linear relation, motivated by the continuity equation, in which the density field is assumed to be proportional to the divergence of the displacement field; we compare the linear and logarithmic relations by measuring both of these fields directly in a cosmological N-body simulation. The relative success of the logarithmic and linear relations depends on the scale at which the density field is smoothed. Thus we explore several ways of measuring the density field, including Cloud-In-Cell smoothing, adaptive smoothing, and the (scale-independent) Delaunay tessellation, and we use both a Fourier-space and a geometrical tessellation approach to measuring the divergence. We find that the relation between the divergence of the displacement field and the density is significantly tighter and straighter with a logarithmic density variable, especially at low redshifts and for very small (∼2 h –1 Mpc) smoothing scales. We find that the grid-based methods are more reliable than the tessellation-based method of calculating both the density and the divergence fields, though in both cases the logarithmic relation works better in the appropriate regime, which corresponds to nonlinear scales for the grid-based methods and low densities for the tessellation-based method.

  15. Random broadcast on random geometric graphs

    Energy Technology Data Exchange (ETDEWEB)

    Bradonjic, Milan [Los Alamos National Laboratory; Elsasser, Robert [UNIV OF PADERBORN; Friedrich, Tobias [ICSI/BERKELEY; Sauerwald, Tomas [ICSI/BERKELEY

    2009-01-01

    In this work, we consider the random broadcast time on random geometric graphs (RGGs). The classic random broadcast model, also known as push algorithm, is defined as: starting with one informed node, in each succeeding round every informed node chooses one of its neighbors uniformly at random and informs it. We consider the random broadcast time on RGGs, when with high probability: (i) RGG is connected, (ii) when there exists the giant component in RGG. We show that the random broadcast time is bounded by {Omicron}({radical} n + diam(component)), where diam(component) is a diameter of the entire graph, or the giant component, for the regimes (i), or (ii), respectively. In other words, for both regimes, we derive the broadcast time to be {Theta}(diam(G)), which is asymptotically optimal.

  16. Etnomatematika di Balik Kerajinan Anyaman Bali

    Directory of Open Access Journals (Sweden)

    Kadek Rahayu Puspadewi

    2014-12-01

    Full Text Available This paper is study about the existence of ethnomathematics on the Bali woven handicraft. Ethnomathematics is mathematics that grow and develop in a particular culture. Unconsciously, the society use tesselation concepts in making woven handicraft. A tessellation is a special type of pattern that consists of geometric figures that fit without gaps or overlaps to cover the plane. The existence of ethnomathematics on woven handicraft can be used as a source of learning and of course can make learners better understand how their cultural relate with mathematics.

  17. Topics in random walks in random environment

    International Nuclear Information System (INIS)

    Sznitman, A.-S.

    2004-01-01

    Over the last twenty-five years random motions in random media have been intensively investigated and some new general methods and paradigms have by now emerged. Random walks in random environment constitute one of the canonical models of the field. However in dimension bigger than one they are still poorly understood and many of the basic issues remain to this day unresolved. The present series of lectures attempt to give an account of the progresses which have been made over the last few years, especially in the study of multi-dimensional random walks in random environment with ballistic behavior. (author)

  18. Three-Dimensional Electromagnetic Mixing Models for Dual-Phase Steel Microstructures

    Directory of Open Access Journals (Sweden)

    Weibin Zhou

    2018-03-01

    Full Text Available Linking the ferrite fraction in a dual-phase (DP steel microstructure and its electromagnetic properties is critical in the effort to develop on-line measurement techniques for phase transformation using electromagnetic (EM sensors. This paper developed a seamlessly integrated method for generating 3D microstructures and evaluating their equivalent permeability values. Both the generation of 3D microstructures and evaluation of equivalent permeability have been achieved through custom modelling packages developed by the authors. Voronoi modelling based on the random close packing of spheres (RCPS-VM was used to precisely control the ferrite fraction in DP steel microstructure, and an equivalent uniform field method for 3D finite element simulation was developed for efficient analysis.

  19. Diagrama de potencias

    OpenAIRE

    Martín Santos, Tomás

    2016-01-01

    Los Diagramas de Potencias (Power Diagrams) son una generalización de los Diagramas de Voronoi, que junto a la Envolvente Convexa son dos de las estructuras fundamentales dentro del ámbito de la Geometría Computacional. Para poder tener una noción correcta del Diagrama de Potencias, es necesario partir del Diagrama de Voronoi. Este tipo de estructuras geométricas están compuestas de regiones, tanto finitas como infinitas, que cubren todo el espacio en el que se estén calcula...

  20. [Intel random number generator-based true random number generator].

    Science.gov (United States)

    Huang, Feng; Shen, Hong

    2004-09-01

    To establish a true random number generator on the basis of certain Intel chips. The random numbers were acquired by programming using Microsoft Visual C++ 6.0 via register reading from the random number generator (RNG) unit of an Intel 815 chipset-based computer with Intel Security Driver (ISD). We tested the generator with 500 random numbers in NIST FIPS 140-1 and X(2) R-Squared test, and the result showed that the random number it generated satisfied the demand of independence and uniform distribution. We also compared the random numbers generated by Intel RNG-based true random number generator and those from the random number table statistically, by using the same amount of 7500 random numbers in the same value domain, which showed that the SD, SE and CV of Intel RNG-based random number generator were less than those of the random number table. The result of u test of two CVs revealed no significant difference between the two methods. Intel RNG-based random number generator can produce high-quality random numbers with good independence and uniform distribution, and solves some problems with random number table in acquisition of the random numbers.

  1. Randomization tests

    CERN Document Server

    Edgington, Eugene

    2007-01-01

    Statistical Tests That Do Not Require Random Sampling Randomization Tests Numerical Examples Randomization Tests and Nonrandom Samples The Prevalence of Nonrandom Samples in Experiments The Irrelevance of Random Samples for the Typical Experiment Generalizing from Nonrandom Samples Intelligibility Respect for the Validity of Randomization Tests Versatility Practicality Precursors of Randomization Tests Other Applications of Permutation Tests Questions and Exercises Notes References Randomized Experiments Unique Benefits of Experiments Experimentation without Mani

  2. Material selection for elastic energy absorption in origami-inspired compliant corrugations

    International Nuclear Information System (INIS)

    Tolman, Sean S; Delimont, Isaac L; Howell, Larry L; Fullwood, David T

    2014-01-01

    Elastic absorption of kinetic energy and distribution of impact forces are required in many applications. Recent attention to the potential for using origami in engineering may provide new methods for energy absorption and force distribution. A three-stage strategy is presented for selecting materials for such origami-inspired designs that can deform to achieve a desired motion without yielding, absorb elastic strain energy, and be lightweight or cost effective. Two material indices are derived to meet these requirements based on compliant mechanism theory. Finite element analysis is used to investigate the effects of the material stiffness in the Miura-ori tessellation on its energy absorption and force distribution characteristics compared with a triangular wave corrugation. An example is presented of how the method can be used to select a material for a general energy absorption application of the Miura-ori. Whereas the focus of this study is the Miura-ori tessellation, the methods developed can be applied to other tessellated patterns used in energy absorbing or force distribution applications. (paper)

  3. Scaling of the surface vasculature on the human placenta

    Science.gov (United States)

    Leonard, A. S.; Lee, J.; Schubert, D.; Croen, L. A.; Fallin, M. D.; Newschaffer, C. J.; Walker, C. K.; Salafia, C. M.; Morgan, S. P.; Vvedensky, D. D.

    2017-10-01

    The networks of veins and arteries on the chorionic plate of the human placenta are analyzed in terms of Voronoi cells derived from these networks. Two groups of placentas from the United States are studied: a population cohort with no prescreening, and a cohort from newborns with an elevated risk of developing autistic spectrum disorder. Scaled distributions of the Voronoi cell areas in the two cohorts collapse onto a single distribution, indicating common mechanisms for the formation of the complete vasculatures, but which have different levels of activity in the two cohorts.

  4. A simple algorithm for computing the smallest enclosing circle

    DEFF Research Database (Denmark)

    Skyum, Sven

    1991-01-01

    Presented is a simple O(n log n) algorithm for computing the smallest enclosing circle of a convex polygon. It can be easily extended to algorithms that compute the farthest-and the closest-point Voronoi diagram of a convex polygon within the same time bound.......Presented is a simple O(n log n) algorithm for computing the smallest enclosing circle of a convex polygon. It can be easily extended to algorithms that compute the farthest-and the closest-point Voronoi diagram of a convex polygon within the same time bound....

  5. The Knowledge Base Interface for Parametric Grid Information

    International Nuclear Information System (INIS)

    Hipp, James R.; Simons, Randall W.; Young, Chris J.

    1999-01-01

    The parametric grid capability of the Knowledge Base (KBase) provides an efficient robust way to store and access interpolatable information that is needed to monitor the Comprehensive Nuclear Test Ban Treaty. To meet both the accuracy and performance requirements of operational monitoring systems, we use an approach which combines the error estimation of kriging with the speed and robustness of Natural Neighbor Interpolation. The method involves three basic steps: data preparation, data storage, and data access. In past presentations we have discussed in detail the first step. In this paper we focus on the latter two, describing in detail the type of information which must be stored and the interface used to retrieve parametric grid data from the Knowledge Base. Once data have been properly prepared, the information (tessellation and associated value surfaces) needed to support the interface functionality, can be entered into the KBase. The primary types of parametric grid data that must be stored include (1) generic header information; (2) base model, station, and phase names and associated ID's used to construct surface identifiers; (3) surface accounting information; (4) tessellation accounting information; (5) mesh data for each tessellation; (6) correction data defined for each surface at each node of the surfaces owning tessellation (7) mesh refinement calculation set-up and flag information; and (8) kriging calculation set-up and flag information. The eight data components not only represent the results of the data preparation process but also include all required input information for several population tools that would enable the complete regeneration of the data results if that should be necessary

  6. Random a-adic groups and random net fractals

    Energy Technology Data Exchange (ETDEWEB)

    Li Yin [Department of Mathematics, Nanjing University, Nanjing 210093 (China)], E-mail: Lyjerry7788@hotmail.com; Su Weiyi [Department of Mathematics, Nanjing University, Nanjing 210093 (China)], E-mail: suqiu@nju.edu.cn

    2008-08-15

    Based on random a-adic groups, this paper investigates the relationship between the existence conditions of a positive flow in a random network and the estimation of the Hausdorff dimension of a proper random net fractal. Subsequently we describe some particular random fractals for which our results can be applied. Finally the Mauldin and Williams theorem is shown to be very important example for a random Cantor set with application in physics as shown in E-infinity theory.

  7. Non-compact random generalized games and random quasi-variational inequalities

    OpenAIRE

    Yuan, Xian-Zhi

    1994-01-01

    In this paper, existence theorems of random maximal elements, random equilibria for the random one-person game and random generalized game with a countable number of players are given as applications of random fixed point theorems. By employing existence theorems of random generalized games, we deduce the existence of solutions for non-compact random quasi-variational inequalities. These in turn are used to establish several existence theorems of noncompact generalized random ...

  8. How random are random numbers generated using photons?

    International Nuclear Information System (INIS)

    Solis, Aldo; Angulo Martínez, Alí M; Ramírez Alarcón, Roberto; Cruz Ramírez, Hector; U’Ren, Alfred B; Hirsch, Jorge G

    2015-01-01

    Randomness is fundamental in quantum theory, with many philosophical and practical implications. In this paper we discuss the concept of algorithmic randomness, which provides a quantitative method to assess the Borel normality of a given sequence of numbers, a necessary condition for it to be considered random. We use Borel normality as a tool to investigate the randomness of ten sequences of bits generated from the differences between detection times of photon pairs generated by spontaneous parametric downconversion. These sequences are shown to fulfil the randomness criteria without difficulties. As deviations from Borel normality for photon-generated random number sequences have been reported in previous work, a strategy to understand these diverging findings is outlined. (paper)

  9. Quasi-periodicity in deep redshift surveys

    International Nuclear Information System (INIS)

    Weygaert, R. van de

    1991-01-01

    The recent result by Broadhurst et al., (1990. Nature 343, 726) showing a striking, nearly periodic, galaxy redshift distribution in a narrow pencil-beam survey, is explained within the Voronoi cellular model of clustering of galaxies. Galaxies, whose luminosities are selected from a Schechter luminosity function, are placed randomly within the walls of this cellular model. Narrow and deep, magnitude-limited, pencil-beam surveys through these structures are simulated. Some 15 per cent of these beams show that observed regular pattern, with a spacing between the peaks of the order of 105 h -1 -150 h -1 Mpc, but most pencil-beams show peaks in the redshift distribution without periodicity, so we may conclude that, even within a cellular universe, periodicity is not a common phenomenon. (author)

  10. Random pulse generator

    International Nuclear Information System (INIS)

    Guo Ya'nan; Jin Dapeng; Zhao Dixin; Liu Zhen'an; Qiao Qiao; Chinese Academy of Sciences, Beijing

    2007-01-01

    Due to the randomness of radioactive decay and nuclear reaction, the signals from detectors are random in time. But normal pulse generator generates periodical pulses. To measure the performances of nuclear electronic devices under random inputs, a random generator is necessary. Types of random pulse generator are reviewed, 2 digital random pulse generators are introduced. (authors)

  11. The RANDOM computer program: A linear congruential random number generator

    Science.gov (United States)

    Miles, R. F., Jr.

    1986-01-01

    The RANDOM Computer Program is a FORTRAN program for generating random number sequences and testing linear congruential random number generators (LCGs). The linear congruential form of random number generator is discussed, and the selection of parameters of an LCG for a microcomputer described. This document describes the following: (1) The RANDOM Computer Program; (2) RANDOM.MOD, the computer code needed to implement an LCG in a FORTRAN program; and (3) The RANCYCLE and the ARITH Computer Programs that provide computational assistance in the selection of parameters for an LCG. The RANDOM, RANCYCLE, and ARITH Computer Programs are written in Microsoft FORTRAN for the IBM PC microcomputer and its compatibles. With only minor modifications, the RANDOM Computer Program and its LCG can be run on most micromputers or mainframe computers.

  12. On a randomly imperfect spherical cap pressurized by a random ...

    African Journals Online (AJOL)

    On a randomly imperfect spherical cap pressurized by a random dynamic load. ... In this paper, we investigate a dynamical system in a random setting of dual ... characterization of the random process for determining the dynamic buckling load ...

  13. Effect of the third element on the structure of liquid Mg{sub 65}Cu{sub 25}Y{sub 10} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Dan [Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061 (China); Weihai Wanfeng Magnesium Industry Science and Technology Development Co. Ltd., Weihai 264209 (China); Zhu, Xun Ming [Weihai Wanfeng Magnesium Industry Science and Technology Development Co. Ltd., Weihai 264209 (China); Qin, Jing Yu, E-mail: qinjy@sdu.edu.cn [Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061 (China); Duan, Jun Peng; Wang, Ai Min [Weihai Wanfeng Magnesium Industry Science and Technology Development Co. Ltd., Weihai 264209 (China); Gu, Ting Kun [School of Electrical Engineering, Shandong University, Jinan 250061 (China)

    2016-08-12

    The liquid structures of Mg{sub 65}Cu{sub 25}Y{sub 10} and its three homologous binary liquid alloys are investigated via ab initio molecular dynamics in the present work. The chemical and topological environments in all four liquid alloys are analyzed using pair distribution function, coordination number, and the Voronoi polyhedron. It shows that the Cu atoms play significant role in deciding the chemical and topological short-range orders of the Mg{sub 65}Cu{sub 25}Y{sub 10} liquid alloy. The Voronoi polyhedra in the ternary liquid alloy illustrate less varieties and longer lifetime. Moreover, the diffusion coefficients are decreased significantly in the ternary liquid alloys according to the mean square displacements. All above offer a deeper insight into how the three species work in the Mg{sub 65}Cu{sub 25}Y{sub 10} liquid alloy. - Highlights: • Cu plays crucial role in Mg{sub 65}Cu{sub 25}Y{sub 10}'s chemical and topological SROs. • Additive elements decrease varieties and prolong lifetimes of Voronoi polyhedra. • Additive elements hinder the diffusion of Mg and Y efficiently.

  14. Quantum random flip-flop and its applications in random frequency synthesis and true random number generation

    Energy Technology Data Exchange (ETDEWEB)

    Stipčević, Mario, E-mail: mario.stipcevic@irb.hr [Photonics and Quantum Optics Research Unit, Center of Excellence for Advanced Materials and Sensing Devices, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb (Croatia)

    2016-03-15

    In this work, a new type of elementary logic circuit, named random flip-flop (RFF), is proposed, experimentally realized, and studied. Unlike conventional Boolean logic circuits whose action is deterministic and highly reproducible, the action of a RFF is intentionally made maximally unpredictable and, in the proposed realization, derived from a fundamentally random process of emission and detection of light quanta. We demonstrate novel applications of RFF in randomness preserving frequency division, random frequency synthesis, and random number generation. Possible usages of these applications in the information and communication technology, cryptographic hardware, and testing equipment are discussed.

  15. A comparison of random walks in dependent random environments

    NARCIS (Netherlands)

    Scheinhardt, Willem R.W.; Kroese, Dirk

    We provide exact computations for the drift of random walks in dependent random environments, including $k$-dependent and moving average environments. We show how the drift can be characterized and evaluated using Perron–Frobenius theory. Comparing random walks in various dependent environments, we

  16. Randomness at the root of things 1: Random walks

    Science.gov (United States)

    Ogborn, Jon; Collins, Simon; Brown, Mick

    2003-09-01

    This is the first of a pair of articles about randomness in physics. In this article, we use some variations on the idea of a `random walk' to consider first the path of a particle in Brownian motion, and then the random variation to be expected in radioactive decay. The arguments are set in the context of the general importance of randomness both in physics and in everyday life. We think that the ideas could usefully form part of students' A-level work on random decay and quantum phenomena, as well as being good for their general education. In the second article we offer a novel and simple approach to Poisson sequences.

  17. Blocked Randomization with Randomly Selected Block Sizes

    Directory of Open Access Journals (Sweden)

    Jimmy Efird

    2010-12-01

    Full Text Available When planning a randomized clinical trial, careful consideration must be given to how participants are selected for various arms of a study. Selection and accidental bias may occur when participants are not assigned to study groups with equal probability. A simple random allocation scheme is a process by which each participant has equal likelihood of being assigned to treatment versus referent groups. However, by chance an unequal number of individuals may be assigned to each arm of the study and thus decrease the power to detect statistically significant differences between groups. Block randomization is a commonly used technique in clinical trial design to reduce bias and achieve balance in the allocation of participants to treatment arms, especially when the sample size is small. This method increases the probability that each arm will contain an equal number of individuals by sequencing participant assignments by block. Yet still, the allocation process may be predictable, for example, when the investigator is not blind and the block size is fixed. This paper provides an overview of blocked randomization and illustrates how to avoid selection bias by using random block sizes.

  18. Random Fields

    Science.gov (United States)

    Vanmarcke, Erik

    1983-03-01

    Random variation over space and time is one of the few attributes that might safely be predicted as characterizing almost any given complex system. Random fields or "distributed disorder systems" confront astronomers, physicists, geologists, meteorologists, biologists, and other natural scientists. They appear in the artifacts developed by electrical, mechanical, civil, and other engineers. They even underlie the processes of social and economic change. The purpose of this book is to bring together existing and new methodologies of random field theory and indicate how they can be applied to these diverse areas where a "deterministic treatment is inefficient and conventional statistics insufficient." Many new results and methods are included. After outlining the extent and characteristics of the random field approach, the book reviews the classical theory of multidimensional random processes and introduces basic probability concepts and methods in the random field context. It next gives a concise amount of the second-order analysis of homogeneous random fields, in both the space-time domain and the wave number-frequency domain. This is followed by a chapter on spectral moments and related measures of disorder and on level excursions and extremes of Gaussian and related random fields. After developing a new framework of analysis based on local averages of one-, two-, and n-dimensional processes, the book concludes with a chapter discussing ramifications in the important areas of estimation, prediction, and control. The mathematical prerequisite has been held to basic college-level calculus.

  19. Random walk of passive tracers among randomly moving obstacles

    OpenAIRE

    Gori, Matteo; Donato, Irene; Floriani, Elena; Nardecchia, Ilaria; Pettini, Marco

    2016-01-01

    Background: This study is mainly motivated by the need of understanding how the diffusion behaviour of a biomolecule (or even of a larger object) is affected by other moving macromolecules, organelles, and so on, inside a living cell, whence the possibility of understanding whether or not a randomly walking biomolecule is also subject to a long-range force field driving it to its target. Method: By means of the Continuous Time Random Walk (CTRW) technique the topic of random walk in random en...

  20. Pseudo-random number generator based on asymptotic deterministic randomness

    Science.gov (United States)

    Wang, Kai; Pei, Wenjiang; Xia, Haishan; Cheung, Yiu-ming

    2008-06-01

    A novel approach to generate the pseudorandom-bit sequence from the asymptotic deterministic randomness system is proposed in this Letter. We study the characteristic of multi-value correspondence of the asymptotic deterministic randomness constructed by the piecewise linear map and the noninvertible nonlinearity transform, and then give the discretized systems in the finite digitized state space. The statistic characteristics of the asymptotic deterministic randomness are investigated numerically, such as stationary probability density function and random-like behavior. Furthermore, we analyze the dynamics of the symbolic sequence. Both theoretical and experimental results show that the symbolic sequence of the asymptotic deterministic randomness possesses very good cryptographic properties, which improve the security of chaos based PRBGs and increase the resistance against entropy attacks and symbolic dynamics attacks.

  1. Pseudo-random number generator based on asymptotic deterministic randomness

    International Nuclear Information System (INIS)

    Wang Kai; Pei Wenjiang; Xia Haishan; Cheung Yiuming

    2008-01-01

    A novel approach to generate the pseudorandom-bit sequence from the asymptotic deterministic randomness system is proposed in this Letter. We study the characteristic of multi-value correspondence of the asymptotic deterministic randomness constructed by the piecewise linear map and the noninvertible nonlinearity transform, and then give the discretized systems in the finite digitized state space. The statistic characteristics of the asymptotic deterministic randomness are investigated numerically, such as stationary probability density function and random-like behavior. Furthermore, we analyze the dynamics of the symbolic sequence. Both theoretical and experimental results show that the symbolic sequence of the asymptotic deterministic randomness possesses very good cryptographic properties, which improve the security of chaos based PRBGs and increase the resistance against entropy attacks and symbolic dynamics attacks

  2. Solution Methods for Structures with Random Properties Subject to Random Excitation

    DEFF Research Database (Denmark)

    Köylüoglu, H. U.; Nielsen, Søren R. K.; Cakmak, A. S.

    This paper deals with the lower order statistical moments of the response of structures with random stiffness and random damping properties subject to random excitation. The arising stochastic differential equations (SDE) with random coefficients are solved by two methods, a second order...... the SDE with random coefficients with deterministic initial conditions to an equivalent nonlinear SDE with deterministic coefficient and random initial conditions. In both methods, the statistical moment equations are used. Hierarchy of statistical moments in the markovian approach is closed...... by the cumulant neglect closure method applied at the fourth order level....

  3. The finite body triangulation: algorithms, subgraphs, homogeneity estimation and application.

    Science.gov (United States)

    Carson, Cantwell G; Levine, Jonathan S

    2016-09-01

    The concept of a finite body Dirichlet tessellation has been extended to that of a finite body Delaunay 'triangulation' to provide a more meaningful description of the spatial distribution of nonspherical secondary phase bodies in 2- and 3-dimensional images. A finite body triangulation (FBT) consists of a network of minimum edge-to-edge distances between adjacent objects in a microstructure. From this is also obtained the characteristic object chords formed by the intersection of the object boundary with the finite body tessellation. These two sets of distances form the basis of a parsimonious homogeneity estimation. The characteristics of the spatial distribution are then evaluated with respect to the distances between objects and the distances within them. Quantitative analysis shows that more physically representative distributions can be obtained by selecting subgraphs, such as the relative neighbourhood graph and the minimum spanning tree, from the finite body tessellation. To demonstrate their potential, we apply these methods to 3-dimensional X-ray computed tomographic images of foamed cement and their 2-dimensional cross sections. The Python computer code used to estimate the FBT is made available. Other applications for the algorithm - such as porous media transport and crack-tip propagation - are also discussed. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  4. Technical factors influencing cone packing density estimates in adaptive optics flood illuminated retinal images.

    Directory of Open Access Journals (Sweden)

    Marco Lombardo

    Full Text Available PURPOSE: To investigate the influence of various technical factors on the variation of cone packing density estimates in adaptive optics flood illuminated retinal images. METHODS: Adaptive optics images of the photoreceptor mosaic were obtained in fifteen healthy subjects. The cone density and Voronoi diagrams were assessed in sampling windows of 320×320 µm, 160×160 µm and 64×64 µm at 1.5 degree temporal and superior eccentricity from the preferred locus of fixation (PRL. The technical factors that have been analyzed included the sampling window size, the corrected retinal magnification factor (RMFcorr, the conversion from radial to linear distance from the PRL, the displacement between the PRL and foveal center and the manual checking of cone identification algorithm. Bland-Altman analysis was used to assess the agreement between cone density estimated within the different sampling window conditions. RESULTS: The cone density declined with decreasing sampling area and data between areas of different size showed low agreement. A high agreement was found between sampling areas of the same size when comparing density calculated with or without using individual RMFcorr. The agreement between cone density measured at radial and linear distances from the PRL and between data referred to the PRL or the foveal center was moderate. The percentage of Voronoi tiles with hexagonal packing arrangement was comparable between sampling areas of different size. The boundary effect, presence of any retinal vessels, and the manual selection of cones missed by the automated identification algorithm were identified as the factors influencing variation of cone packing arrangements in Voronoi diagrams. CONCLUSIONS: The sampling window size is the main technical factor that influences variation of cone density. Clear identification of each cone in the image and the use of a large buffer zone are necessary to minimize factors influencing variation of Voronoi

  5. Curvature of random walks and random polygons in confinement

    International Nuclear Information System (INIS)

    Diao, Y; Ernst, C; Montemayor, A; Ziegler, U

    2013-01-01

    The purpose of this paper is to study the curvature of equilateral random walks and polygons that are confined in a sphere. Curvature is one of several basic geometric properties that can be used to describe random walks and polygons. We show that confinement affects curvature quite strongly, and in the limit case where the confinement diameter equals the edge length the unconfined expected curvature value doubles from π/2 to π. To study curvature a simple model of an equilateral random walk in spherical confinement in dimensions 2 and 3 is introduced. For this simple model we derive explicit integral expressions for the expected value of the total curvature in both dimensions. These expressions are functions that depend only on the radius R of the confinement sphere. We then show that the values obtained by numeric integration of these expressions agrees with numerical average curvature estimates obtained from simulations of random walks. Finally, we compare the confinement effect on curvature of random walks with random polygons. (paper)

  6. Random magnetism

    International Nuclear Information System (INIS)

    Tahir-Kheli, R.A.

    1975-01-01

    A few simple problems relating to random magnetic systems are presented. Translational symmetry, only on the macroscopic scale, is assumed for these systems. A random set of parameters, on the microscopic scale, for the various regions of these systems is also assumed. A probability distribution for randomness is obeyed. Knowledge of the form of these probability distributions, is assumed in all cases [pt

  7. The Global Terrestrial Network for Permafrost Database: metadata statistics and prospective analysis on future permafrost temperature and active layer depth monitoring site distribution

    Science.gov (United States)

    Biskaborn, B. K.; Lanckman, J.-P.; Lantuit, H.; Elger, K.; Streletskiy, D. A.; Cable, W. L.; Romanovsky, V. E.

    2015-03-01

    The Global Terrestrial Network for Permafrost (GTN-P) provides the first dynamic database associated with the Thermal State of Permafrost (TSP) and the Circumpolar Active Layer Monitoring (CALM) programs, which extensively collect permafrost temperature and active layer thickness data from Arctic, Antarctic and Mountain permafrost regions. The purpose of the database is to establish an "early warning system" for the consequences of climate change in permafrost regions and to provide standardized thermal permafrost data to global models. In this paper we perform statistical analysis of the GTN-P metadata aiming to identify the spatial gaps in the GTN-P site distribution in relation to climate-effective environmental parameters. We describe the concept and structure of the Data Management System in regard to user operability, data transfer and data policy. We outline data sources and data processing including quality control strategies. Assessment of the metadata and data quality reveals 63% metadata completeness at active layer sites and 50% metadata completeness for boreholes. Voronoi Tessellation Analysis on the spatial sample distribution of boreholes and active layer measurement sites quantifies the distribution inhomogeneity and provides potential locations of additional permafrost research sites to improve the representativeness of thermal monitoring across areas underlain by permafrost. The depth distribution of the boreholes reveals that 73% are shallower than 25 m and 27% are deeper, reaching a maximum of 1 km depth. Comparison of the GTN-P site distribution with permafrost zones, soil organic carbon contents and vegetation types exhibits different local to regional monitoring situations on maps. Preferential slope orientation at the sites most likely causes a bias in the temperature monitoring and should be taken into account when using the data for global models. The distribution of GTN-P sites within zones of projected temperature change show a high

  8. Exploring a Multiresolution Modeling Approach within the Shallow-Water Equations

    Energy Technology Data Exchange (ETDEWEB)

    Ringler, Todd D.; Jacobsen, Doug; Gunzburger, Max; Ju, Lili; Duda, Michael; Skamarock, William

    2011-11-01

    The ability to solve the global shallow-water equations with a conforming, variable-resolution mesh is evaluated using standard shallow-water test cases. While the long-term motivation for this study is the creation of a global climate modeling framework capable of resolving different spatial and temporal scales in different regions, the process begins with an analysis of the shallow-water system in order to better understand the strengths and weaknesses of the approach developed herein. The multiresolution meshes are spherical centroidal Voronoi tessellations where a single, user-supplied density function determines the region(s) of fine- and coarsemesh resolution. The shallow-water system is explored with a suite of meshes ranging from quasi-uniform resolution meshes, where the grid spacing is globally uniform, to highly variable resolution meshes, where the grid spacing varies by a factor of 16 between the fine and coarse regions. The potential vorticity is found to be conserved to within machine precision and the total available energy is conserved to within a time-truncation error. This result holds for the full suite of meshes, ranging from quasi-uniform resolution and highly variable resolution meshes. Based on shallow-water test cases 2 and 5, the primary conclusion of this study is that solution error is controlled primarily by the grid resolution in the coarsest part of the model domain. This conclusion is consistent with results obtained by others.When these variable-resolution meshes are used for the simulation of an unstable zonal jet, the core features of the growing instability are found to be largely unchanged as the variation in the mesh resolution increases. The main differences between the simulations occur outside the region of mesh refinement and these differences are attributed to the additional truncation error that accompanies increases in grid spacing. Overall, the results demonstrate support for this approach as a path toward

  9. Heterogeneous nucleation from a supercooled ionic liquid on a carbon surface.

    Science.gov (United States)

    He, Xiaoxia; Shen, Yan; Hung, Francisco R; Santiso, Erik E

    2016-12-07

    Classical molecular dynamics simulations were used to study the nucleation of the crystal phase of the ionic liquid [dmim + ][Cl - ] from its supercooled liquid phase, both in the bulk and in contact with a graphitic surface of D = 3 nm. By combining the string method in collective variables [Maragliano et al., J. Chem. Phys. 125, 024106 (2006)], with Markovian milestoning with Voronoi tessellations [Maragliano et al., J. Chem. Theory Comput. 5, 2589-2594 (2009)] and order parameters for molecular crystals [Santiso and Trout, J. Chem. Phys. 134, 064109 (2011)], we computed minimum free energy paths, the approximate size of the critical nucleus, the free energy barrier, and the rates involved in these nucleation processes. For homogeneous nucleation, the subcooled liquid phase has to overcome a free energy barrier of ∼85 kcal/mol to form a critical nucleus of size ∼3.6 nm, which then grows into the monoclinic crystal phase. This free energy barrier becomes about 42% smaller (∼49 kcal/mol) when the subcooled liquid phase is in contact with a graphitic disk, and the critical nucleus formed is about 17% smaller (∼3.0 nm) than the one observed for homogeneous nucleation. The crystal formed in the heterogeneous nucleation scenario has a structure that is similar to that of the bulk crystal, with the exception of the layers of ions next to the graphene surface, which have larger local density and the cations lie with their imidazolium rings parallel to the graphitic surface. The critical nucleus forms near the graphene surface separated only by these layers of ions. The heterogeneous nucleation rate (∼4.8 × 10 11 cm -3 s -1 ) is about one order of magnitude faster than the homogeneous rate (∼6.6 × 10 10 cm -3 s -1 ). The computed free energy barriers and nucleation rates are in reasonable agreement with experimental and simulation values obtained for the homogeneous and heterogeneous nucleation of other systems (ice, urea, Lennard-Jones spheres, and oxide

  10. Probability, random variables, and random processes theory and signal processing applications

    CERN Document Server

    Shynk, John J

    2012-01-01

    Probability, Random Variables, and Random Processes is a comprehensive textbook on probability theory for engineers that provides a more rigorous mathematical framework than is usually encountered in undergraduate courses. It is intended for first-year graduate students who have some familiarity with probability and random variables, though not necessarily of random processes and systems that operate on random signals. It is also appropriate for advanced undergraduate students who have a strong mathematical background. The book has the following features: Several app

  11. A random number generator for continuous random variables

    Science.gov (United States)

    Guerra, V. M.; Tapia, R. A.; Thompson, J. R.

    1972-01-01

    A FORTRAN 4 routine is given which may be used to generate random observations of a continuous real valued random variable. Normal distribution of F(x), X, E(akimas), and E(linear) is presented in tabular form.

  12. Randomizing Roaches: Exploring the "Bugs" of Randomization in Experimental Design

    Science.gov (United States)

    Wagler, Amy; Wagler, Ron

    2014-01-01

    Understanding the roles of random selection and random assignment in experimental design is a central learning objective in most introductory statistics courses. This article describes an activity, appropriate for a high school or introductory statistics course, designed to teach the concepts, values and pitfalls of random selection and assignment…

  13. Random walk of passive tracers among randomly moving obstacles.

    Science.gov (United States)

    Gori, Matteo; Donato, Irene; Floriani, Elena; Nardecchia, Ilaria; Pettini, Marco

    2016-04-14

    This study is mainly motivated by the need of understanding how the diffusion behavior of a biomolecule (or even of a larger object) is affected by other moving macromolecules, organelles, and so on, inside a living cell, whence the possibility of understanding whether or not a randomly walking biomolecule is also subject to a long-range force field driving it to its target. By means of the Continuous Time Random Walk (CTRW) technique the topic of random walk in random environment is here considered in the case of a passively diffusing particle among randomly moving and interacting obstacles. The relevant physical quantity which is worked out is the diffusion coefficient of the passive tracer which is computed as a function of the average inter-obstacles distance. The results reported here suggest that if a biomolecule, let us call it a test molecule, moves towards its target in the presence of other independently interacting molecules, its motion can be considerably slowed down.

  14. On a randomly imperfect spherical cap pressurized by a random ...

    African Journals Online (AJOL)

    In this paper, we investigate a dynamical system in a random setting of dual randomness in space and time variables in which both the imperfection of the structure and the load function are considered random , each with a statistical zero-mean .The auto- covariance of the load is correlated as an exponentially decaying ...

  15. Trust-based hexagonal clustering for efficient certificate ...

    Indian Academy of Sciences (India)

    Clustering; certificate management; MANET; security; trust; Voronoi. ... terms of effectiveness of revocation scheme (with respect to revocation rate and time), security, ... Engineering, Thiagarajar College of Engineering, Madurai 625015, India ...

  16. Random matrix ensembles with random interactions: Results for ...

    Indian Academy of Sciences (India)

    ... Public Lectures · Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Pramana – Journal of Physics; Volume 73; Issue 3. Random matrix ensembles with random interactions: Results for EGUE(2)-(4). Manan Vyas Manan Vyas. Volume 73 Issue 3 September 2009 pp 521-531 ...

  17. Random Intercept and Random Slope 2-Level Multilevel Models

    Directory of Open Access Journals (Sweden)

    Rehan Ahmad Khan

    2012-11-01

    Full Text Available Random intercept model and random intercept & random slope model carrying two-levels of hierarchy in the population are presented and compared with the traditional regression approach. The impact of students’ satisfaction on their grade point average (GPA was explored with and without controlling teachers influence. The variation at level-1 can be controlled by introducing the higher levels of hierarchy in the model. The fanny movement of the fitted lines proves variation of student grades around teachers.

  18. Coupled continuous time-random walks in quenched random environment

    Science.gov (United States)

    Magdziarz, M.; Szczotka, W.

    2018-02-01

    We introduce a coupled continuous-time random walk with coupling which is characteristic for Lévy walks. Additionally we assume that the walker moves in a quenched random environment, i.e. the site disorder at each lattice point is fixed in time. We analyze the scaling limit of such a random walk. We show that for large times the behaviour of the analyzed process is exactly the same as in the case of uncoupled quenched trap model for Lévy flights.

  19. Investigation into stress wave propagation in metal foams

    Directory of Open Access Journals (Sweden)

    Li Lang

    2015-01-01

    Full Text Available The aim of this study is to investigate stress wave propagation in metal foams under high-speed impact loading. Three-dimensional Voronoi model is established to represent real closed-cell foam. Based on the one-dimensional stress wave theory and Voronoi model, a numerical model is developed to calculate the velocity of elastic wave and shock wave in metal foam. The effects of impact velocity and relative density of metal foam on the stress wave propagation in metal foams are explored respectively. The results show that both elastic wave and shock wave propagate faster in metal foams with larger relative density; with increasing the impact velocity, the shock wave propagation velocity increase, but the elastic wave propagation is not sensitive to the impact velocity.

  20. Misuse of randomization

    DEFF Research Database (Denmark)

    Liu, Jianping; Kjaergard, Lise Lotte; Gluud, Christian

    2002-01-01

    The quality of randomization of Chinese randomized trials on herbal medicines for hepatitis B was assessed. Search strategy and inclusion criteria were based on the published protocol. One hundred and seventy-six randomized clinical trials (RCTs) involving 20,452 patients with chronic hepatitis B...... virus (HBV) infection were identified that tested Chinese medicinal herbs. They were published in 49 Chinese journals. Only 10% (18/176) of the studies reported the method by which they randomized patients. Only two reported allocation concealment and were considered as adequate. Twenty percent (30...

  1. BWIP-RANDOM-SAMPLING, Random Sample Generation for Nuclear Waste Disposal

    International Nuclear Information System (INIS)

    Sagar, B.

    1989-01-01

    1 - Description of program or function: Random samples for different distribution types are generated. Distribution types as required for performance assessment modeling of geologic nuclear waste disposal are provided. These are: - Uniform, - Log-uniform (base 10 or natural), - Normal, - Lognormal (base 10 or natural), - Exponential, - Bernoulli, - User defined continuous distribution. 2 - Method of solution: A linear congruential generator is used for uniform random numbers. A set of functions is used to transform the uniform distribution to the other distributions. Stratified, rather than random, sampling can be chosen. Truncated limits can be specified on many distributions, whose usual definition has an infinite support. 3 - Restrictions on the complexity of the problem: Generation of correlated random variables is not included

  2. Partition-based discrete-time quantum walks

    Science.gov (United States)

    Konno, Norio; Portugal, Renato; Sato, Iwao; Segawa, Etsuo

    2018-04-01

    We introduce a family of discrete-time quantum walks, called two-partition model, based on two equivalence-class partitions of the computational basis, which establish the notion of local dynamics. This family encompasses most versions of unitary discrete-time quantum walks driven by two local operators studied in literature, such as the coined model, Szegedy's model, and the 2-tessellable staggered model. We also analyze the connection of those models with the two-step coined model, which is driven by the square of the evolution operator of the standard discrete-time coined walk. We prove formally that the two-step coined model, an extension of Szegedy model for multigraphs, and the two-tessellable staggered model are unitarily equivalent. Then, selecting one specific model among those families is a matter of taste not generality.

  3. A comparison of random walks in dependent random environments

    NARCIS (Netherlands)

    Scheinhardt, Willem R.W.; Kroese, Dirk

    2015-01-01

    Although the theoretical behavior of one-dimensional random walks in random environments is well understood, the actual evaluation of various characteristics of such processes has received relatively little attention. This paper develops new methodology for the exact computation of the drift in such

  4. Quantifiers for randomness of chaotic pseudo-random number generators.

    Science.gov (United States)

    De Micco, L; Larrondo, H A; Plastino, A; Rosso, O A

    2009-08-28

    We deal with randomness quantifiers and concentrate on their ability to discern the hallmark of chaos in time series used in connection with pseudo-random number generators (PRNGs). Workers in the field are motivated to use chaotic maps for generating PRNGs because of the simplicity of their implementation. Although there exist very efficient general-purpose benchmarks for testing PRNGs, we feel that the analysis provided here sheds additional didactic light on the importance of the main statistical characteristics of a chaotic map, namely (i) its invariant measure and (ii) the mixing constant. This is of help in answering two questions that arise in applications: (i) which is the best PRNG among the available ones? and (ii) if a given PRNG turns out not to be good enough and a randomization procedure must still be applied to it, which is the best applicable randomization procedure? Our answer provides a comparative analysis of several quantifiers advanced in the extant literature.

  5. Solid-State Random Lasers

    CERN Document Server

    Noginov, Mikhail A

    2005-01-01

    Random lasers are the simplest sources of stimulated emission without cavity, with the feedback provided by scattering in a gain medium. First proposed in the late 60’s, random lasers have grown to a large research field. This book reviews the history and the state of the art of random lasers, provides an outline of the basic models describing their behavior, and describes the recent advances in the field. The major focus of the book is on solid-state random lasers. However, it also briefly describes random lasers based on liquid dyes with scatterers. The chapters of the book are almost independent of each other. So, the scientists or engineers interested in any particular aspect of random lasers can read directly the relevant section. Researchers entering the field of random lasers will find in the book an overview of the field of study. Scientists working in the field can use the book as a reference source.

  6. Random walks, random fields, and disordered systems

    CERN Document Server

    Černý, Jiří; Kotecký, Roman

    2015-01-01

    Focusing on the mathematics that lies at the intersection of probability theory, statistical physics, combinatorics and computer science, this volume collects together lecture notes on recent developments in the area. The common ground of these subjects is perhaps best described by the three terms in the title: Random Walks, Random Fields and Disordered Systems. The specific topics covered include a study of Branching Brownian Motion from the perspective of disordered (spin-glass) systems, a detailed analysis of weakly self-avoiding random walks in four spatial dimensions via methods of field theory and the renormalization group, a study of phase transitions in disordered discrete structures using a rigorous version of the cavity method, a survey of recent work on interacting polymers in the ballisticity regime and, finally, a treatise on two-dimensional loop-soup models and their connection to conformally invariant systems and the Gaussian Free Field. The notes are aimed at early graduate students with a mod...

  7. Quantumness, Randomness and Computability

    International Nuclear Information System (INIS)

    Solis, Aldo; Hirsch, Jorge G

    2015-01-01

    Randomness plays a central role in the quantum mechanical description of our interactions. We review the relationship between the violation of Bell inequalities, non signaling and randomness. We discuss the challenge in defining a random string, and show that algorithmic information theory provides a necessary condition for randomness using Borel normality. We close with a view on incomputablity and its implications in physics. (paper)

  8. Self-correcting random number generator

    Science.gov (United States)

    Humble, Travis S.; Pooser, Raphael C.

    2016-09-06

    A system and method for generating random numbers. The system may include a random number generator (RNG), such as a quantum random number generator (QRNG) configured to self-correct or adapt in order to substantially achieve randomness from the output of the RNG. By adapting, the RNG may generate a random number that may be considered random regardless of whether the random number itself is tested as such. As an example, the RNG may include components to monitor one or more characteristics of the RNG during operation, and may use the monitored characteristics as a basis for adapting, or self-correcting, to provide a random number according to one or more performance criteria.

  9. Cross over of recurrence networks to random graphs and random ...

    Indian Academy of Sciences (India)

    2017-01-27

    Jan 27, 2017 ... that all recurrence networks can cross over to random geometric graphs by adding sufficient amount of noise to .... municative [19] or social [20], deviate from the random ..... He has shown that the spatial effects become.

  10. Quantum random number generator

    Science.gov (United States)

    Soubusta, Jan; Haderka, Ondrej; Hendrych, Martin

    2001-03-01

    Since reflection or transmission of a quantum particle on a beamsplitter is inherently random quantum process, a device built on this principle does not suffer from drawbacks of neither pseudo-random computer generators or classical noise sources. Nevertheless, a number of physical conditions necessary for high quality random numbers generation must be satisfied. Luckily, in quantum optics realization they can be well controlled. We present an easy random number generator based on the division of weak light pulses on a beamsplitter. The randomness of the generated bit stream is supported by passing the data through series of 15 statistical test. The device generates at a rate of 109.7 kbit/s.

  11. Random sets and random fuzzy sets as ill-perceived random variables an introduction for Ph.D. students and practitioners

    CERN Document Server

    Couso, Inés; Sánchez, Luciano

    2014-01-01

    This short book provides a unified view of the history and theory of random sets and fuzzy random variables, with special emphasis on its use for representing higher-order non-statistical uncertainty about statistical experiments. The authors lay bare the existence of two streams of works using the same mathematical ground, but differing form their use of sets, according to whether they represent objects of interest naturally taking the form of sets, or imprecise knowledge about such objects. Random (fuzzy) sets can be used in many fields ranging from mathematical morphology, economics, artificial intelligence, information processing and statistics per se, especially in areas where the outcomes of random experiments cannot be observed with full precision. This book also emphasizes the link between random sets and fuzzy sets with some techniques related to the theory of imprecise probabilities. This small book is intended for graduate and doctoral students in mathematics or engineering, but also provides an i...

  12. A simplified method for random vibration analysis of structures with random parameters

    International Nuclear Information System (INIS)

    Ghienne, Martin; Blanzé, Claude

    2016-01-01

    Piezoelectric patches with adapted electrical circuits or viscoelastic dissipative materials are two solutions particularly adapted to reduce vibration of light structures. To accurately design these solutions, it is necessary to describe precisely the dynamical behaviour of the structure. It may quickly become computationally intensive to describe robustly this behaviour for a structure with nonlinear phenomena, such as contact or friction for bolted structures, and uncertain variations of its parameters. The aim of this work is to propose a non-intrusive reduced stochastic method to characterize robustly the vibrational response of a structure with random parameters. Our goal is to characterize the eigenspace of linear systems with dynamic properties considered as random variables. This method is based on a separation of random aspects from deterministic aspects and allows us to estimate the first central moments of each random eigenfrequency with a single deterministic finite elements computation. The method is applied to a frame with several Young's moduli modeled as random variables. This example could be expanded to a bolted structure including piezoelectric devices. The method needs to be enhanced when random eigenvalues are closely spaced. An indicator with no additional computational cost is proposed to characterize the ’’proximity” of two random eigenvalues. (paper)

  13. Random vibrations theory and practice

    CERN Document Server

    Wirsching, Paul H; Ortiz, Keith

    1995-01-01

    Random Vibrations: Theory and Practice covers the theory and analysis of mechanical and structural systems undergoing random oscillations due to any number of phenomena— from engine noise, turbulent flow, and acoustic noise to wind, ocean waves, earthquakes, and rough pavement. For systems operating in such environments, a random vibration analysis is essential to the safety and reliability of the system. By far the most comprehensive text available on random vibrations, Random Vibrations: Theory and Practice is designed for readers who are new to the subject as well as those who are familiar with the fundamentals and wish to study a particular topic or use the text as an authoritative reference. It is divided into three major sections: fundamental background, random vibration development and applications to design, and random signal analysis. Introductory chapters cover topics in probability, statistics, and random processes that prepare the reader for the development of the theory of random vibrations a...

  14. Subjective randomness as statistical inference.

    Science.gov (United States)

    Griffiths, Thomas L; Daniels, Dylan; Austerweil, Joseph L; Tenenbaum, Joshua B

    2018-06-01

    Some events seem more random than others. For example, when tossing a coin, a sequence of eight heads in a row does not seem very random. Where do these intuitions about randomness come from? We argue that subjective randomness can be understood as the result of a statistical inference assessing the evidence that an event provides for having been produced by a random generating process. We show how this account provides a link to previous work relating randomness to algorithmic complexity, in which random events are those that cannot be described by short computer programs. Algorithmic complexity is both incomputable and too general to capture the regularities that people can recognize, but viewing randomness as statistical inference provides two paths to addressing these problems: considering regularities generated by simpler computing machines, and restricting the set of probability distributions that characterize regularity. Building on previous work exploring these different routes to a more restricted notion of randomness, we define strong quantitative models of human randomness judgments that apply not just to binary sequences - which have been the focus of much of the previous work on subjective randomness - but also to binary matrices and spatial clustering. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Autonomous Byte Stream Randomizer

    Science.gov (United States)

    Paloulian, George K.; Woo, Simon S.; Chow, Edward T.

    2013-01-01

    Net-centric networking environments are often faced with limited resources and must utilize bandwidth as efficiently as possible. In networking environments that span wide areas, the data transmission has to be efficient without any redundant or exuberant metadata. The Autonomous Byte Stream Randomizer software provides an extra level of security on top of existing data encryption methods. Randomizing the data s byte stream adds an extra layer to existing data protection methods, thus making it harder for an attacker to decrypt protected data. Based on a generated crypto-graphically secure random seed, a random sequence of numbers is used to intelligently and efficiently swap the organization of bytes in data using the unbiased and memory-efficient in-place Fisher-Yates shuffle method. Swapping bytes and reorganizing the crucial structure of the byte data renders the data file unreadable and leaves the data in a deconstructed state. This deconstruction adds an extra level of security requiring the byte stream to be reconstructed with the random seed in order to be readable. Once the data byte stream has been randomized, the software enables the data to be distributed to N nodes in an environment. Each piece of the data in randomized and distributed form is a separate entity unreadable on its own right, but when combined with all N pieces, is able to be reconstructed back to one. Reconstruction requires possession of the key used for randomizing the bytes, leading to the generation of the same cryptographically secure random sequence of numbers used to randomize the data. This software is a cornerstone capability possessing the ability to generate the same cryptographically secure sequence on different machines and time intervals, thus allowing this software to be used more heavily in net-centric environments where data transfer bandwidth is limited.

  16. Employing online quantum random number generators for generating truly random quantum states in Mathematica

    Science.gov (United States)

    Miszczak, Jarosław Adam

    2013-01-01

    The presented package for the Mathematica computing system allows the harnessing of quantum random number generators (QRNG) for investigating the statistical properties of quantum states. The described package implements a number of functions for generating random states. The new version of the package adds the ability to use the on-line quantum random number generator service and implements new functions for retrieving lists of random numbers. Thanks to the introduced improvements, the new version provides faster access to high-quality sources of random numbers and can be used in simulations requiring large amount of random data. New version program summaryProgram title: TRQS Catalogue identifier: AEKA_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKA_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 18 134 No. of bytes in distributed program, including test data, etc.: 2 520 49 Distribution format: tar.gz Programming language: Mathematica, C. Computer: Any supporting Mathematica in version 7 or higher. Operating system: Any platform supporting Mathematica; tested with GNU/Linux (32 and 64 bit). RAM: Case-dependent Supplementary material: Fig. 1 mentioned below can be downloaded. Classification: 4.15. External routines: Quantis software library (http://www.idquantique.com/support/quantis-trng.html) Catalogue identifier of previous version: AEKA_v1_0 Journal reference of previous version: Comput. Phys. Comm. 183(2012)118 Does the new version supersede the previous version?: Yes Nature of problem: Generation of random density matrices and utilization of high-quality random numbers for the purpose of computer simulation. Solution method: Use of a physical quantum random number generator and an on-line service providing access to the source of true random

  17. Tunable random packings

    International Nuclear Information System (INIS)

    Lumay, G; Vandewalle, N

    2007-01-01

    We present an experimental protocol that allows one to tune the packing fraction η of a random pile of ferromagnetic spheres from a value close to the lower limit of random loose packing η RLP ≅0.56 to the upper limit of random close packing η RCP ≅0.64. This broad range of packing fraction values is obtained under normal gravity in air, by adjusting a magnetic cohesion between the grains during the formation of the pile. Attractive and repulsive magnetic interactions are found to affect stongly the internal structure and the stability of sphere packing. After the formation of the pile, the induced cohesion is decreased continuously along a linear decreasing ramp. The controlled collapse of the pile is found to generate various and reproducible values of the random packing fraction η

  18. On reflexivity of random walks in a random environment on a metric space

    International Nuclear Information System (INIS)

    Rozikov, U.A.

    2002-11-01

    In this paper, we consider random walks in random environments on a countable metric space when jumps of the walks of the fractions are finite. The transfer probabilities of the random walk from x is an element of G (where G is the considering metric space) are defined by vector p(x) is an element of R k , k>1, where {p(x), x is an element of G} is the set of independent and indentically distributed random vectors. For the random walk, a sufficient condition of nonreflexivity is obtained. Examples for metric spaces Z d free groups and free product of finite numbers cyclic groups of the second order and some other metric spaces are considered. (author)

  19. Computer modelling of granular material microfracturing

    CSIR Research Space (South Africa)

    Malan, DF

    1995-08-15

    Full Text Available Interaction and Growth Simulation). Grains were represented by straight-sided polygons generated with a Voronoi generator. Experiments were carried out to simulate experimental micro fracture studies of quartzite in triaxial extension tests. The results...

  20. Tuneabilities of localized electromagnetic modes in random nanostructures for random lasing

    Science.gov (United States)

    Takeda, S.; Obara, M.

    2010-02-01

    The modal characteristics of localized electromagnetic waves inside random nanostructures are theoretically presented. It is crucial to know the tuneabilities of the localized modes systematically for demonstrating a specific random lasing application. By use of FDTD (Finite-Difference Time-Domain) method, we investigated the impulse response of two-dimensional random nanostructures consisting of closely packed cylindrical dielectric columns, and precisely analyzed the localized modes. We revealed the tuneability of the frequency of the localized modes by controlling the medium configurations: diameter, spatial density, and refractive index of the cylinders. Furthermore, it is found to be able to tune the Q (quality) factors of the localized modes dramatically by controlling simply the system size of the entire medium. The observed Q factors of approximately 1.6×104 were exhibited in our random disordered structures.

  1. Simplicial quantum gravity with higher derivative terms: Formalism and numerical results in four dimensions

    International Nuclear Information System (INIS)

    Hamber, H.W.; Williams, R.M.; Cambridge Univ.

    1986-01-01

    Higher derivative terms for Regge's formulation of lattice gravity are discussed. The analytic weak-field expansion for the regular tessellation α 5 of the four-sphere is presented. Preliminary numerical results for some computations in four dimensions are also discussed. (orig.)

  2. Certified randomness in quantum physics.

    Science.gov (United States)

    Acín, Antonio; Masanes, Lluis

    2016-12-07

    The concept of randomness plays an important part in many disciplines. On the one hand, the question of whether random processes exist is fundamental for our understanding of nature. On the other, randomness is a resource for cryptography, algorithms and simulations. Standard methods for generating randomness rely on assumptions about the devices that are often not valid in practice. However, quantum technologies enable new methods for generating certified randomness, based on the violation of Bell inequalities. These methods are referred to as device-independent because they do not rely on any modelling of the devices. Here we review efforts to design device-independent randomness generators and the associated challenges.

  3. K-means Clustering: Lloyd's algorithm

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. K-means Clustering: Lloyd's algorithm. Refines clusters iteratively. Cluster points using Voronoi partitioning of the centers; Centroids of the clusters determine the new centers. Bad example k = 3, n =4.

  4. Molecular packing in 1-hexanol-DMPC bilayers studied by molecular dynamics simulation

    DEFF Research Database (Denmark)

    Pedersen, U.R.; Peters, Günther H.j.; Westh, P.

    2007-01-01

    The structure and molecular packing density of a “mismatched” solute, 1-hexanol, in lipid membranes of dimyristoyl phosphatidylcholine (DMPC) was studied by molecular dynamics simulations. We found that the average location and orientation of the hexanol molecules matched earlier experimental data...... on comparable systems. The local density or molecular packing in DMPC–hexanol was elucidated through the average Voronoi volumes of all heavy (non-hydrogen) atoms. Analogous analysis was conducted on trajectories from simulations of pure 1-hexanol and pure (hydrated) DMPC bilayers. The results suggested...... of the alcohol upon partitioning and an even stronger loosening in the packing of the lipid. Furthermore, analysis of Voronoi volumes along the membrane normal identifies a distinctive depth dependence of the changes in molecular packing. The outer (interfacial) part of the lipid acyl chains (up to C8...

  5. Random maintenance policies

    CERN Document Server

    Nakagawa, Toshio

    2014-01-01

    Exploring random maintenance models, this book provides an introduction to the implementation of random maintenance, and it is one of the first books to be written on this subject.  It aims to help readers learn new techniques for applying random policies to actual reliability models, and it provides new theoretical analyses of various models including classical replacement, preventive maintenance and inspection policies. These policies are applied to scheduling problems, backup policies of database systems, maintenance policies of cumulative damage models, and reliability of random redundant systems. Reliability theory is a major concern for engineers and managers, and in light of Japan’s recent earthquake, the reliability of large-scale systems has increased in importance. This also highlights the need for a new notion of maintenance and reliability theory, and how this can practically be applied to systems. Providing an essential guide for engineers and managers specializing in reliability maintenance a...

  6. Quantum random number generator

    Science.gov (United States)

    Pooser, Raphael C.

    2016-05-10

    A quantum random number generator (QRNG) and a photon generator for a QRNG are provided. The photon generator may be operated in a spontaneous mode below a lasing threshold to emit photons. Photons emitted from the photon generator may have at least one random characteristic, which may be monitored by the QRNG to generate a random number. In one embodiment, the photon generator may include a photon emitter and an amplifier coupled to the photon emitter. The amplifier may enable the photon generator to be used in the QRNG without introducing significant bias in the random number and may enable multiplexing of multiple random numbers. The amplifier may also desensitize the photon generator to fluctuations in power supplied thereto while operating in the spontaneous mode. In one embodiment, the photon emitter and amplifier may be a tapered diode amplifier.

  7. On Random Numbers and Design

    Science.gov (United States)

    Ben-Ari, Morechai

    2004-01-01

    The term "random" is frequently used in discussion of the theory of evolution, even though the mathematical concept of randomness is problematic and of little relevance in the theory. Therefore, since the core concept of the theory of evolution is the non-random process of natural selection, the term random should not be used in teaching the…

  8. The Design of Cluster Randomized Trials with Random Cross-Classifications

    Science.gov (United States)

    Moerbeek, Mirjam; Safarkhani, Maryam

    2018-01-01

    Data from cluster randomized trials do not always have a pure hierarchical structure. For instance, students are nested within schools that may be crossed by neighborhoods, and soldiers are nested within army units that may be crossed by mental health-care professionals. It is important that the random cross-classification is taken into account…

  9. Randomization of inspections

    International Nuclear Information System (INIS)

    Markin, J.T.

    1989-01-01

    As the numbers and complexity of nuclear facilities increase, limitations on resources for international safeguards may restrict attainment of safeguards goals. One option for improving the efficiency of limited resources is to expand the current inspection regime to include random allocation of the amount and frequency of inspection effort to material strata or to facilities. This paper identifies the changes in safeguards policy, administrative procedures, and operational procedures that would be necessary to accommodate randomized inspections and identifies those situations where randomization can improve inspection efficiency and those situations where the current nonrandom inspections should be maintained. 9 refs., 1 tab

  10. Competition on the rocks: community growth and tessellation.

    Directory of Open Access Journals (Sweden)

    Espen Jettestuen

    Full Text Available Crustose lichen communities on rocks exhibit fascinating spatial mosaics resembling political maps of nations or municipalities. Although the establishment and development of biological populations are important themes in ecology, our understanding of the formation of such patterns on the rocks is still in its infancy. Here, we present a novel model of the concurrent growth, establishment and interaction of lichens. We introduce an inverse technique based on Monte Carlo simulations to test our model on field samples of lichen communities. We derive an expression for the time needed for a community to cover a surface and predict the historical spatial dynamics of field samples. Lichens are frequently used for dating the time of exposure of rocks in glacial deposits, lake retreats or rock falls. We suggest our method as a way to improve the dating.

  11. View-Dependent Tessellation and Simulation of Ocean Surfaces

    Directory of Open Access Journals (Sweden)

    Anna Puig-Centelles

    2014-01-01

    Full Text Available Modeling and rendering realistic ocean scenes have been thoroughly investigated for many years. Its appearance has been studied and it is possible to find very detailed simulations where a high degree of realism is achieved. Nevertheless, among the solutions to ocean rendering, real-time management of the huge heightmaps that are necessary for rendering an ocean scene is still not solved. We propose a new technique for simulating the ocean surface on GPU. This technique is capable of offering view-dependent approximations of the mesh while maintaining coherence among the extracted approximations. This feature is very important as most solutions previously presented must retessellate from the initial mesh. Our solution is able to use the latest extracted approximation when refining or coarsening the mesh.

  12. Three-dimensional portable document format: a simple way to present 3-dimensional data in an electronic publication

    NARCIS (Netherlands)

    Danz, J.C.; Katsaros, C.

    2011-01-01

    Three-dimensional (3D) models of teeth and soft and hard tissues are tessellated surfaces used for diagnosis, treatment planning, appliance fabrication, outcome evaluation, and research. In scientific publications or communications with colleagues, these 3D data are often reduced to 2-dimensional

  13. Random lasing in human tissues

    International Nuclear Information System (INIS)

    Polson, Randal C.; Vardeny, Z. Valy

    2004-01-01

    A random collection of scatterers in a gain medium can produce coherent laser emission lines dubbed 'random lasing'. We show that biological tissues, including human tissues, can support coherent random lasing when infiltrated with a concentrated laser dye solution. To extract a typical random resonator size within the tissue we average the power Fourier transform of random laser spectra collected from many excitation locations in the tissue; we verified this procedure by a computer simulation. Surprisingly, we found that malignant tissues show many more laser lines compared to healthy tissues taken from the same organ. Consequently, the obtained typical random resonator was found to be different for healthy and cancerous tissues, and this may lead to a technique for separating malignant from healthy tissues for diagnostic imaging

  14. Random distributed feedback fibre lasers

    Energy Technology Data Exchange (ETDEWEB)

    Turitsyn, Sergei K., E-mail: s.k.turitsyn@aston.ac.uk [Aston Institute of Photonic Technologies, Aston University, Birmingham B4 7ET (United Kingdom); Novosibirsk State University, 2 Pirogova str., 630090, Novosibirsk (Russian Federation); Babin, Sergey A. [Novosibirsk State University, 2 Pirogova str., 630090, Novosibirsk (Russian Federation); Institute of Automation and Electrometry SB RAS, 1 Ac. Koptug. ave., 630090, Novosibirsk (Russian Federation); Churkin, Dmitry V. [Aston Institute of Photonic Technologies, Aston University, Birmingham B4 7ET (United Kingdom); Novosibirsk State University, 2 Pirogova str., 630090, Novosibirsk (Russian Federation); Institute of Automation and Electrometry SB RAS, 1 Ac. Koptug. ave., 630090, Novosibirsk (Russian Federation); Vatnik, Ilya D.; Nikulin, Maxim [Institute of Automation and Electrometry SB RAS, 1 Ac. Koptug. ave., 630090, Novosibirsk (Russian Federation); Podivilov, Evgenii V. [Novosibirsk State University, 2 Pirogova str., 630090, Novosibirsk (Russian Federation); Institute of Automation and Electrometry SB RAS, 1 Ac. Koptug. ave., 630090, Novosibirsk (Russian Federation)

    2014-09-10

    The concept of random lasers exploiting multiple scattering of photons in an amplifying disordered medium in order to generate coherent light without a traditional laser resonator has attracted a great deal of attention in recent years. This research area lies at the interface of the fundamental theory of disordered systems and laser science. The idea was originally proposed in the context of astrophysics in the 1960s by V.S. Letokhov, who studied scattering with “negative absorption” of the interstellar molecular clouds. Research on random lasers has since developed into a mature experimental and theoretical field. A simple design of such lasers would be promising for potential applications. However, in traditional random lasers the properties of the output radiation are typically characterized by complex features in the spatial, spectral and time domains, making them less attractive than standard laser systems in terms of practical applications. Recently, an interesting and novel type of one-dimensional random laser that operates in a conventional telecommunication fibre without any pre-designed resonator mirrors–random distributed feedback fibre laser–was demonstrated. The positive feedback required for laser generation in random fibre lasers is provided by the Rayleigh scattering from the inhomogeneities of the refractive index that are naturally present in silica glass. In the proposed laser concept, the randomly backscattered light is amplified through the Raman effect, providing distributed gain over distances up to 100 km. Although an effective reflection due to the Rayleigh scattering is extremely small (∼0.1%), the lasing threshold may be exceeded when a sufficiently large distributed Raman gain is provided. Such a random distributed feedback fibre laser has a number of interesting and attractive features. The fibre waveguide geometry provides transverse confinement, and effectively one-dimensional random distributed feedback leads to the

  15. Random distributed feedback fibre lasers

    International Nuclear Information System (INIS)

    Turitsyn, Sergei K.; Babin, Sergey A.; Churkin, Dmitry V.; Vatnik, Ilya D.; Nikulin, Maxim; Podivilov, Evgenii V.

    2014-01-01

    The concept of random lasers exploiting multiple scattering of photons in an amplifying disordered medium in order to generate coherent light without a traditional laser resonator has attracted a great deal of attention in recent years. This research area lies at the interface of the fundamental theory of disordered systems and laser science. The idea was originally proposed in the context of astrophysics in the 1960s by V.S. Letokhov, who studied scattering with “negative absorption” of the interstellar molecular clouds. Research on random lasers has since developed into a mature experimental and theoretical field. A simple design of such lasers would be promising for potential applications. However, in traditional random lasers the properties of the output radiation are typically characterized by complex features in the spatial, spectral and time domains, making them less attractive than standard laser systems in terms of practical applications. Recently, an interesting and novel type of one-dimensional random laser that operates in a conventional telecommunication fibre without any pre-designed resonator mirrors–random distributed feedback fibre laser–was demonstrated. The positive feedback required for laser generation in random fibre lasers is provided by the Rayleigh scattering from the inhomogeneities of the refractive index that are naturally present in silica glass. In the proposed laser concept, the randomly backscattered light is amplified through the Raman effect, providing distributed gain over distances up to 100 km. Although an effective reflection due to the Rayleigh scattering is extremely small (∼0.1%), the lasing threshold may be exceeded when a sufficiently large distributed Raman gain is provided. Such a random distributed feedback fibre laser has a number of interesting and attractive features. The fibre waveguide geometry provides transverse confinement, and effectively one-dimensional random distributed feedback leads to the

  16. Quantum randomness and unpredictability

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, Gregg [Quantum Communication and Measurement Laboratory, Department of Electrical and Computer Engineering and Division of Natural Science and Mathematics, Boston University, Boston, MA (United States)

    2017-06-15

    Quantum mechanics is a physical theory supplying probabilities corresponding to expectation values for measurement outcomes. Indeed, its formalism can be constructed with measurement as a fundamental process, as was done by Schwinger, provided that individual measurements outcomes occur in a random way. The randomness appearing in quantum mechanics, as with other forms of randomness, has often been considered equivalent to a form of indeterminism. Here, it is argued that quantum randomness should instead be understood as a form of unpredictability because, amongst other things, indeterminism is not a necessary condition for randomness. For concreteness, an explication of the randomness of quantum mechanics as the unpredictability of quantum measurement outcomes is provided. Finally, it is shown how this view can be combined with the recently introduced view that the very appearance of individual quantum measurement outcomes can be grounded in the Plenitude principle of Leibniz, a principle variants of which have been utilized in physics by Dirac and Gell-Mann in relation to the fundamental processes. This move provides further support to Schwinger's ''symbolic'' derivation of quantum mechanics from measurement. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. An introduction to random sets

    CERN Document Server

    Nguyen, Hung T

    2006-01-01

    The study of random sets is a large and rapidly growing area with connections to many areas of mathematics and applications in widely varying disciplines, from economics and decision theory to biostatistics and image analysis. The drawback to such diversity is that the research reports are scattered throughout the literature, with the result that in science and engineering, and even in the statistics community, the topic is not well known and much of the enormous potential of random sets remains untapped.An Introduction to Random Sets provides a friendly but solid initiation into the theory of random sets. It builds the foundation for studying random set data, which, viewed as imprecise or incomplete observations, are ubiquitous in today''s technological society. The author, widely known for his best-selling A First Course in Fuzzy Logic text as well as his pioneering work in random sets, explores motivations, such as coarse data analysis and uncertainty analysis in intelligent systems, for studying random s...

  18. Source-Independent Quantum Random Number Generation

    Science.gov (United States)

    Cao, Zhu; Zhou, Hongyi; Yuan, Xiao; Ma, Xiongfeng

    2016-01-01

    Quantum random number generators can provide genuine randomness by appealing to the fundamental principles of quantum mechanics. In general, a physical generator contains two parts—a randomness source and its readout. The source is essential to the quality of the resulting random numbers; hence, it needs to be carefully calibrated and modeled to achieve information-theoretical provable randomness. However, in practice, the source is a complicated physical system, such as a light source or an atomic ensemble, and any deviations in the real-life implementation from the theoretical model may affect the randomness of the output. To close this gap, we propose a source-independent scheme for quantum random number generation in which output randomness can be certified, even when the source is uncharacterized and untrusted. In our randomness analysis, we make no assumptions about the dimension of the source. For instance, multiphoton emissions are allowed in optical implementations. Our analysis takes into account the finite-key effect with the composable security definition. In the limit of large data size, the length of the input random seed is exponentially small compared to that of the output random bit. In addition, by modifying a quantum key distribution system, we experimentally demonstrate our scheme and achieve a randomness generation rate of over 5 ×103 bit /s .

  19. The relationship between randomness and power-law distributed move lengths in random walk algorithms

    Science.gov (United States)

    Sakiyama, Tomoko; Gunji, Yukio-Pegio

    2014-05-01

    Recently, we proposed a new random walk algorithm, termed the REV algorithm, in which the agent alters the directional rule that governs it using the most recent four random numbers. Here, we examined how a non-bounded number, i.e., "randomness" regarding move direction, was important for optimal searching and power-law distributed step lengths in rule change. We proposed two algorithms: the REV and REV-bounded algorithms. In the REV algorithm, one of the four random numbers used to change the rule is non-bounded. In contrast, all four random numbers in the REV-bounded algorithm are bounded. We showed that the REV algorithm exhibited more consistent power-law distributed step lengths and flexible searching behavior.

  20. Random number generation and creativity.

    Science.gov (United States)

    Bains, William

    2008-01-01

    A previous paper suggested that humans can generate genuinely random numbers. I tested this hypothesis by repeating the experiment with a larger number of highly numerate subjects, asking them to call out a sequence of digits selected from 0 through 9. The resulting sequences were substantially non-random, with an excess of sequential pairs of numbers and a deficit of repeats of the same number, in line with previous literature. However, the previous literature suggests that humans generate random numbers with substantial conscious effort, and distractions which reduce that effort reduce the randomness of the numbers. I reduced my subjects' concentration by asking them to call out in another language, and with alcohol - neither affected the randomness of their responses. This suggests that the ability to generate random numbers is a 'basic' function of the human mind, even if those numbers are not mathematically 'random'. I hypothesise that there is a 'creativity' mechanism, while not truly random, provides novelty as part of the mind's defence against closed programming loops, and that testing for the effects seen here in people more or less familiar with numbers or with spontaneous creativity could identify more features of this process. It is possible that training to perform better at simple random generation tasks could help to increase creativity, through training people to reduce the conscious mind's suppression of the 'spontaneous', creative response to new questions.

  1. Asymptotic Properties of Multistate Random Walks. II. Applications to Inhomogeneous Periodic and Random Lattices

    NARCIS (Netherlands)

    Roerdink, J.B.T.M.; Shuler, K.E.

    1985-01-01

    The previously developed formalism for the calculation of asymptotic properties of multistate random walks is used to study random walks on several inhomogeneous periodic lattices, where the periodically repeated unit cell contains a number of inequivalent sites, as well as on lattices with a random

  2. Random numbers from vacuum fluctuations

    International Nuclear Information System (INIS)

    Shi, Yicheng; Kurtsiefer, Christian; Chng, Brenda

    2016-01-01

    We implement a quantum random number generator based on a balanced homodyne measurement of vacuum fluctuations of the electromagnetic field. The digitized signal is directly processed with a fast randomness extraction scheme based on a linear feedback shift register. The random bit stream is continuously read in a computer at a rate of about 480 Mbit/s and passes an extended test suite for random numbers.

  3. Random numbers from vacuum fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yicheng; Kurtsiefer, Christian, E-mail: christian.kurtsiefer@gmail.com [Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore); Center for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543 (Singapore); Chng, Brenda [Center for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543 (Singapore)

    2016-07-25

    We implement a quantum random number generator based on a balanced homodyne measurement of vacuum fluctuations of the electromagnetic field. The digitized signal is directly processed with a fast randomness extraction scheme based on a linear feedback shift register. The random bit stream is continuously read in a computer at a rate of about 480 Mbit/s and passes an extended test suite for random numbers.

  4. Random walks and diffusion on networks

    Science.gov (United States)

    Masuda, Naoki; Porter, Mason A.; Lambiotte, Renaud

    2017-11-01

    Random walks are ubiquitous in the sciences, and they are interesting from both theoretical and practical perspectives. They are one of the most fundamental types of stochastic processes; can be used to model numerous phenomena, including diffusion, interactions, and opinions among humans and animals; and can be used to extract information about important entities or dense groups of entities in a network. Random walks have been studied for many decades on both regular lattices and (especially in the last couple of decades) on networks with a variety of structures. In the present article, we survey the theory and applications of random walks on networks, restricting ourselves to simple cases of single and non-adaptive random walkers. We distinguish three main types of random walks: discrete-time random walks, node-centric continuous-time random walks, and edge-centric continuous-time random walks. We first briefly survey random walks on a line, and then we consider random walks on various types of networks. We extensively discuss applications of random walks, including ranking of nodes (e.g., PageRank), community detection, respondent-driven sampling, and opinion models such as voter models.

  5. Random number generation

    International Nuclear Information System (INIS)

    Coveyou, R.R.

    1974-01-01

    The subject of random number generation is currently controversial. Differing opinions on this subject seem to stem from implicit or explicit differences in philosophy; in particular, from differing ideas concerning the role of probability in the real world of physical processes, electronic computers, and Monte Carlo calculations. An attempt is made here to reconcile these views. The role of stochastic ideas in mathematical models is discussed. In illustration of these ideas, a mathematical model of the use of random number generators in Monte Carlo calculations is constructed. This model is used to set up criteria for the comparison and evaluation of random number generators. (U.S.)

  6. Source-Independent Quantum Random Number Generation

    Directory of Open Access Journals (Sweden)

    Zhu Cao

    2016-02-01

    Full Text Available Quantum random number generators can provide genuine randomness by appealing to the fundamental principles of quantum mechanics. In general, a physical generator contains two parts—a randomness source and its readout. The source is essential to the quality of the resulting random numbers; hence, it needs to be carefully calibrated and modeled to achieve information-theoretical provable randomness. However, in practice, the source is a complicated physical system, such as a light source or an atomic ensemble, and any deviations in the real-life implementation from the theoretical model may affect the randomness of the output. To close this gap, we propose a source-independent scheme for quantum random number generation in which output randomness can be certified, even when the source is uncharacterized and untrusted. In our randomness analysis, we make no assumptions about the dimension of the source. For instance, multiphoton emissions are allowed in optical implementations. Our analysis takes into account the finite-key effect with the composable security definition. In the limit of large data size, the length of the input random seed is exponentially small compared to that of the output random bit. In addition, by modifying a quantum key distribution system, we experimentally demonstrate our scheme and achieve a randomness generation rate of over 5×10^{3}  bit/s.

  7. On estimation of the intensity function of a point process

    NARCIS (Netherlands)

    Lieshout, van M.N.M.

    2010-01-01

    Abstract. Estimation of the intensity function of spatial point processes is a fundamental problem. In this paper, we interpret the Delaunay tessellation field estimator recently introduced by Schaap and Van de Weygaert as an adaptive kernel estimator and give explicit expressions for the mean and

  8. A Quick Negative Selection Algorithm for One-Class Classification in Big Data Era

    Directory of Open Access Journals (Sweden)

    Fangdong Zhu

    2017-01-01

    Full Text Available Negative selection algorithm (NSA is an important kind of the one-class classification model, but it is limited in the big data era due to its low efficiency. In this paper, we propose a new NSA based on Voronoi diagrams: VorNSA. The scheme of the detector generation process is changed from the traditional “Random-Discard” model to the “Computing-Designated” model by VorNSA. Furthermore, we present an immune detection process of VorNSA under Map/Reduce framework (VorNSA/MR to further reduce the time consumption on massive data in the testing stage. Theoretical analyses show that the time complexity of VorNSA decreases from the exponential level to the logarithmic level. Experiments are performed to compare the proposed technique with other NSAs and one-class classifiers. The results show that the time cost of the VorNSA is averagely decreased by 87.5% compared with traditional NSAs in UCI skin dataset.

  9. Spatio-temporal analysis of Modified Omori law in Bayesian framework

    Science.gov (United States)

    Rezanezhad, V.; Narteau, C.; Shebalin, P.; Zoeller, G.; Holschneider, M.

    2017-12-01

    This work presents a study of the spatio temporal evolution of the modified Omori parameters in southern California in then time period of 1981-2016. A nearest-neighbor approach is applied for earthquake clustering. This study targets small mainshocks and corresponding big aftershocks ( 2.5 ≤ mmainshocks ≤ 4.5 and 1.8 ≤ maftershocks ≤ 2.8 ). We invert for the spatio temporal behavior of c and p values (especially c) all over the area using a MCMC based maximum likelihood estimator. As parameterizing families we use Voronoi cells with randomly distributed cell centers. Considering that c value represents a physical character like stress change we expect to see a coherent c value pattern over seismologically coacting areas. This correlation of c valus can actually be seen for the San Andreas, San Jacinto and Elsinore faults. Moreover, the depth dependency of c value is studied which shows a linear behavior of log(c) with respect to aftershock's depth within 5 to 15 km depth.

  10. Human action analysis with randomized trees

    CERN Document Server

    Yu, Gang; Liu, Zicheng

    2014-01-01

    This book will provide a comprehensive overview on human action analysis with randomized trees. It will cover both the supervised random trees and the unsupervised random trees. When there are sufficient amount of labeled data available, supervised random trees provides a fast method for space-time interest point matching. When labeled data is minimal as in the case of example-based action search, unsupervised random trees is used to leverage the unlabelled data. We describe how the randomized trees can be used for action classification, action detection, action search, and action prediction.

  11. Revisiting the Cosmological Principle in a Cellular Framework L ...

    Indian Academy of Sciences (India)

    The Voronoi diagram Vs(2,3) in the Hammer–Aitoff projection when 693 galaxies ..... a non-isotropic Universe is a consequence of the previous statement, in other words, ... ings of our paper and the currently accepted picture of the transition to ...

  12. Alzheimer random walk

    Science.gov (United States)

    Odagaki, Takashi; Kasuya, Keisuke

    2017-09-01

    Using the Monte Carlo simulation, we investigate a memory-impaired self-avoiding walk on a square lattice in which a random walker marks each of sites visited with a given probability p and makes a random walk avoiding the marked sites. Namely, p = 0 and p = 1 correspond to the simple random walk and the self-avoiding walk, respectively. When p> 0, there is a finite probability that the walker is trapped. We show that the trap time distribution can well be fitted by Stacy's Weibull distribution b(a/b){a+1}/{b}[Γ({a+1}/{b})]-1x^a\\exp(-a/bx^b)} where a and b are fitting parameters depending on p. We also find that the mean trap time diverges at p = 0 as p- α with α = 1.89. In order to produce sufficient number of long walks, we exploit the pivot algorithm and obtain the mean square displacement and its Flory exponent ν(p) as functions of p. We find that the exponent determined for 1000 step walks interpolates both limits ν(0) for the simple random walk and ν(1) for the self-avoiding walk as [ ν(p) - ν(0) ] / [ ν(1) - ν(0) ] = pβ with β = 0.388 when p ≪ 0.1 and β = 0.0822 when p ≫ 0.1. Contribution to the Topical Issue "Continuous Time Random Walk Still Trendy: Fifty-year History, Current State and Outlook", edited by Ryszard Kutner and Jaume Masoliver.

  13. Experimental and numerical study of micro deep drawing

    Directory of Open Access Journals (Sweden)

    Luo Liang

    2015-01-01

    Full Text Available Micro forming is a key technology for an industrial miniaturisation trend, and micro deep drawing (MDD is a typical micro forming method. It has great advantages comparing to other micro manufacturing methods, such as net forming ability, mass production potential, high product quality and complex 3D metal products fabrication capacity. Meanwhile, it is facing difficulties, for example the so-called size effects, once scaled down to micro scale. To investigate and to solve the problems in MDD, a combined micro blanking-drawing machine is employed and an explicit-implicit micro deep drawing model with a voronoi blank model is developed. Through heat treatment different grain sizes can be obtained, which affect material's properties and, consequently, the drawing process parameters, as well as produced cups' quality. Further, a voronoi model can provide detailed material information in simulation, and numerical simulation results are in accordance with experimental results.

  14. Lagrangian fractional step method for the incompressible Navier--Stokes equations on a periodic domain

    International Nuclear Information System (INIS)

    Boergers, C.; Peskin, C.S.

    1987-01-01

    In the Lagrangian fractional step method introduced in this paper, the fluid velocity and pressure are defined on a collection of N fluid markers. At each time step, these markers are used to generate a Voronoi diagram, and this diagram is used to construct finite-difference operators corresponding to the divergence, gradient, and Laplacian. The splitting of the Navier--Stokes equations leads to discrete Helmholtz and Poisson problems, which we solve using a two-grid method. The nonlinear convection terms are modeled simply by the displacement of the fluid markers. We have implemented this method on a periodic domain in the plane. We describe an efficient algorithm for the numerical construction of periodic Voronoi diagrams, and we report on numerical results which indicate the the fractional step method is convergent of first order. The overall work per time step is proportional to N log N. copyright 1987 Academic Press, Inc

  15. Dynamic Output Feedback Control for Nonlinear Networked Control Systems with Random Packet Dropout and Random Delay

    Directory of Open Access Journals (Sweden)

    Shuiqing Yu

    2013-01-01

    Full Text Available This paper investigates the dynamic output feedback control for nonlinear networked control systems with both random packet dropout and random delay. Random packet dropout and random delay are modeled as two independent random variables. An observer-based dynamic output feedback controller is designed based upon the Lyapunov theory. The quantitative relationship of the dropout rate, transition probability matrix, and nonlinear level is derived by solving a set of linear matrix inequalities. Finally, an example is presented to illustrate the effectiveness of the proposed method.

  16. Sensing Urban Patterns with Antenna Mappings: The Case of Santiago, Chile.

    Science.gov (United States)

    Graells-Garrido, Eduardo; Peredo, Oscar; García, José

    2016-07-15

    Mobile data has allowed us to sense urban dynamics at scales and granularities not known before, helping urban planners to cope with urban growth. A frequently used kind of dataset are Call Detail Records (CDR), used by telecommunication operators for billing purposes. Being an already extracted and processed dataset, it is inexpensive and reliable. A common assumption with respect to geography when working with CDR data is that the position of a device is the same as the Base Transceiver Station (BTS) it is connected to. Because the city is divided into a square grid, or by coverage zones approximated by Voronoi tessellations, CDR network events are assigned to corresponding areas according to BTS position. This geolocation may suffer from non negligible error in almost all cases. In this paper we propose "Antenna Virtual Placement" (AVP), a method to geolocate mobile devices according to their connections to BTS, based on decoupling antennas from its corresponding BTS according to its physical configuration (height, downtilt, and azimuth). We use AVP applied to CDR data as input for two different tasks: first, from an individual perspective, what places are meaningful for them? And second, from a global perspective, how to cluster city areas to understand land use using floating population flows? For both tasks we propose methods that complement or improve prior work in the literature. Our proposed methods are simple, yet not trivial, and work with daily CDR data from the biggest telecommunication operator in Chile. We evaluate them in Santiago, the capital of Chile, with data from working days from June 2015. We find that: (1) AVP improves city coverage of CDR data by geolocating devices to more city areas than using standard methods; (2) we find important places (home and work) for a 10% of the sample using just daily information, and recreate the population distribution as well as commuting trips; (3) the daily rhythms of floating population allow to cluster

  17. Wave propagation and scattering in random media

    CERN Document Server

    Ishimaru, Akira

    1978-01-01

    Wave Propagation and Scattering in Random Media, Volume 2, presents the fundamental formulations of wave propagation and scattering in random media in a unified and systematic manner. The topics covered in this book may be grouped into three categories: waves in random scatterers, waves in random continua, and rough surface scattering. Random scatterers are random distributions of many particles. Examples are rain, fog, smog, hail, ocean particles, red blood cells, polymers, and other particles in a state of Brownian motion. Random continua are the media whose characteristics vary randomly an

  18. Levy flights and random searches

    Energy Technology Data Exchange (ETDEWEB)

    Raposo, E P [Laboratorio de Fisica Teorica e Computacional, Departamento de Fisica, Universidade Federal de Pernambuco, Recife-PE, 50670-901 (Brazil); Buldyrev, S V [Department of Physics, Yeshiva University, New York, 10033 (United States); Da Luz, M G E [Departamento de Fisica, Universidade Federal do Parana, Curitiba-PR, 81531-990 (Brazil); Viswanathan, G M [Instituto de Fisica, Universidade Federal de Alagoas, Maceio-AL, 57072-970 (Brazil); Stanley, H E [Center for Polymer Studies and Department of Physics, Boston University, Boston, MA 02215 (United States)

    2009-10-30

    In this work we discuss some recent contributions to the random search problem. Our analysis includes superdiffusive Levy processes and correlated random walks in several regimes of target site density, mobility and revisitability. We present results in the context of mean-field-like and closed-form average calculations, as well as numerical simulations. We then consider random searches performed in regular lattices and lattices with defects, and we discuss a necessary criterion for distinguishing true superdiffusion from correlated random walk processes. We invoke energy considerations in relation to critical survival states on the edge of extinction, and we analyze the emergence of Levy behavior in deterministic search walks. Finally, we comment on the random search problem in the context of biological foraging.

  19. ANALISIS SPASIAL DISTRIBUSI BULAN BASAH DAN BULAN KERING DI JAWA TIMUR (Spatial Distribution of Wet Month and Dry Month in East Java Region

    Directory of Open Access Journals (Sweden)

    Indarto Indarto

    2013-03-01

    Makalah ini memaparkan distribusi spasial Bulan Basah (BB dan Bulan Kering (BK di Jawa Timur.  Data hujan diperoleh dari 943 lokasi stasiun hujan yang tersebar merata di seluruh wilayah Provinsi Jawa Timur.  Hujan bulanan dihitung dari kumulatif hujan harian. Selanjutnya, nilai BB dan BK ditentukan berdasarkan metode klasifikasi Iklim Oldeman.  Analisa spasial dilakukan menggunakan tool  ESDA (Exploratory Spatial Data Analysis yang terdapat pada ArcGIS Geostatistical Analyst. Tool yang digunakan mencakup:  Histogram, Voronoi Map, dan QQ-Plot.  Hasil analisa menunjukkan grafik Histogram dan Normal QQPlot untuk Bulan Basah dan Bulan Kering (BK mendekati distribusi normal.  Nilai statistik BB  yang diperoleh adalah: minimal = 1 bulan/tahun dan maksimal = 9 bulan/tahun. Nilai bulan basah (BB rerata dari seluruh stasiun untuk semua periode adalah 3,67 bulan/tahun dan nilai median = 4 bulan/tahun.  Histogram bulan basah  menghasilkan nilai standar deviasi = 1,2; koefisien skewness = 0,05;  dan koefisien curtosis sebesar (3,09.  Histogram Bulan Kering, menghasilkan nilai minimal 2 bulan/tahun dan maksimal = 11 bulan/tahun.  Sedangkan, nilai BK rerata dari seluruh stasiun untuk semua periode adalah 6,4 bulan/tahun dan nilai median = 6 bulan/tahun.  Histogram juga menampilkan nilai standar deviasi = 1,21; koefisien skewness = 0,11;  dan koefisien curtosis = (3,6.   Penelitian menunjukkan bahwa analisa menggunakan : histogram, Voronoi Map, Normal QQ-Plot dapat menggambarkan lebih detail variabilitas spasial Bulan Basah  dan Bulan Kering di Jawa Timur. Kata kunci: ESDA, Histogram, Voronoi-Map, QQ-Plot,  Bulan basah, Bulan kering, Jawa Timur

  20. Compositions, Random Sums and Continued Random Fractions of Poisson and Fractional Poisson Processes

    Science.gov (United States)

    Orsingher, Enzo; Polito, Federico

    2012-08-01

    In this paper we consider the relation between random sums and compositions of different processes. In particular, for independent Poisson processes N α ( t), N β ( t), t>0, we have that N_{α}(N_{β}(t)) stackrel{d}{=} sum_{j=1}^{N_{β}(t)} Xj, where the X j s are Poisson random variables. We present a series of similar cases, where the outer process is Poisson with different inner processes. We highlight generalisations of these results where the external process is infinitely divisible. A section of the paper concerns compositions of the form N_{α}(tauk^{ν}), ν∈(0,1], where tauk^{ν} is the inverse of the fractional Poisson process, and we show how these compositions can be represented as random sums. Furthermore we study compositions of the form Θ( N( t)), t>0, which can be represented as random products. The last section is devoted to studying continued fractions of Cauchy random variables with a Poisson number of levels. We evaluate the exact distribution and derive the scale parameter in terms of ratios of Fibonacci numbers.

  1. On the pertinence to Physics of random walks induced by random dynamical systems: a survey

    International Nuclear Information System (INIS)

    Petritis, Dimitri

    2016-01-01

    Let be an abstract space and a denumerable (finite or infinite) alphabet. Suppose that is a family of functions such that for all we have and a family of transformations . The pair (( S_a)_a , ( p_a)_a ) is termed an iterated function system with place dependent probabilities. Such systems can be thought as generalisations of random dynamical systems. As a matter of fact, suppose we start from a given ; we pick then randomly, with probability p_a (x) , the transformation S_a and evolve to S_a (x) . We are interested in the behaviour of the system when the iteration continues indefinitely. Random walks of the above type are omnipresent in both classical and quantum Physics. To give a small sample of occurrences we mention: random walks on the affine group, random walks on Penrose lattices, random walks on partially directed lattices, evolution of density matrices induced by repeated quantum measurements, quantum channels, quantum random walks, etc. In this article, we review some basic properties of such systems and provide with a pathfinder in the extensive bibliography (both on mathematical and physical sides) where the main results have been originally published. (paper)

  2. Fractal Pied de Poule (houndstooth) Collection SS'15 : Parka and Jacket

    NARCIS (Netherlands)

    2015-01-01

    Fractal Pied de Poule (houndstooth) Spring/Summer '15 is a collection consisting of a body, a jacket and a parka. The last two will be shown here. Algorithms, new materials, digital prototyping, drapability, tessellations and fractals are recurring themes in our projects. The body, the jacket and

  3. Private randomness expansion with untrusted devices

    International Nuclear Information System (INIS)

    Colbeck, Roger; Kent, Adrian

    2011-01-01

    Randomness is an important resource for many applications, from gambling to secure communication. However, guaranteeing that the output from a candidate random source could not have been predicted by an outside party is a challenging task, and many supposedly random sources used today provide no such guarantee. Quantum solutions to this problem exist, for example a device which internally sends a photon through a beamsplitter and observes on which side it emerges, but, presently, such solutions require the user to trust the internal workings of the device. Here, we seek to go beyond this limitation by asking whether randomness can be generated using untrusted devices-even ones created by an adversarial agent-while providing a guarantee that no outside party (including the agent) can predict it. Since this is easily seen to be impossible unless the user has an initially private random string, the task we investigate here is private randomness expansion. We introduce a protocol for private randomness expansion with untrusted devices which is designed to take as input an initially private random string and produce as output a longer private random string. We point out that private randomness expansion protocols are generally vulnerable to attacks that can render the initial string partially insecure, even though that string is used only inside a secure laboratory; our protocol is designed to remove this previously unconsidered vulnerability by privacy amplification. We also discuss extensions of our protocol designed to generate an arbitrarily long random string from a finite initially private random string. The security of these protocols against the most general attacks is left as an open question.

  4. Private randomness expansion with untrusted devices

    Science.gov (United States)

    Colbeck, Roger; Kent, Adrian

    2011-03-01

    Randomness is an important resource for many applications, from gambling to secure communication. However, guaranteeing that the output from a candidate random source could not have been predicted by an outside party is a challenging task, and many supposedly random sources used today provide no such guarantee. Quantum solutions to this problem exist, for example a device which internally sends a photon through a beamsplitter and observes on which side it emerges, but, presently, such solutions require the user to trust the internal workings of the device. Here, we seek to go beyond this limitation by asking whether randomness can be generated using untrusted devices—even ones created by an adversarial agent—while providing a guarantee that no outside party (including the agent) can predict it. Since this is easily seen to be impossible unless the user has an initially private random string, the task we investigate here is private randomness expansion. We introduce a protocol for private randomness expansion with untrusted devices which is designed to take as input an initially private random string and produce as output a longer private random string. We point out that private randomness expansion protocols are generally vulnerable to attacks that can render the initial string partially insecure, even though that string is used only inside a secure laboratory; our protocol is designed to remove this previously unconsidered vulnerability by privacy amplification. We also discuss extensions of our protocol designed to generate an arbitrarily long random string from a finite initially private random string. The security of these protocols against the most general attacks is left as an open question.

  5. Private randomness expansion with untrusted devices

    Energy Technology Data Exchange (ETDEWEB)

    Colbeck, Roger; Kent, Adrian, E-mail: rcolbeck@perimeterinstitute.ca, E-mail: a.p.a.kent@damtp.cam.ac.uk [Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, ON N2L 2Y5 (Canada)

    2011-03-04

    Randomness is an important resource for many applications, from gambling to secure communication. However, guaranteeing that the output from a candidate random source could not have been predicted by an outside party is a challenging task, and many supposedly random sources used today provide no such guarantee. Quantum solutions to this problem exist, for example a device which internally sends a photon through a beamsplitter and observes on which side it emerges, but, presently, such solutions require the user to trust the internal workings of the device. Here, we seek to go beyond this limitation by asking whether randomness can be generated using untrusted devices-even ones created by an adversarial agent-while providing a guarantee that no outside party (including the agent) can predict it. Since this is easily seen to be impossible unless the user has an initially private random string, the task we investigate here is private randomness expansion. We introduce a protocol for private randomness expansion with untrusted devices which is designed to take as input an initially private random string and produce as output a longer private random string. We point out that private randomness expansion protocols are generally vulnerable to attacks that can render the initial string partially insecure, even though that string is used only inside a secure laboratory; our protocol is designed to remove this previously unconsidered vulnerability by privacy amplification. We also discuss extensions of our protocol designed to generate an arbitrarily long random string from a finite initially private random string. The security of these protocols against the most general attacks is left as an open question.

  6. Local Energies and Energy Fluctuations — Applied to the High Entropy Alloy CrFeCoNi

    Science.gov (United States)

    Fukushima, Tetsuya; Katayama-Yoshida, Hiroshi; Sato, Kazunori; Ogura, Masako; Zeller, Rudolf; Dederichs, Peter H.

    2017-11-01

    High entropy alloys show a variety of fascinating properties like high hardness, wear resistance, corrosion resistance, etc. They are random solid solutions of many components with rather high concentrations. We perform ab-initio calculations for the high entropy alloy CrFeCoNi, which equal concentration of 25% for each element. By the KKRnano program package, which is based on an order-N screened Korringa-Kohn-Rostoker Green's function method, we consider a face-centered cubic (FCC) supercell with 1372 randomly distributed elements, and in addition also smaller supercells with 500 and 256 atoms. It is found from our calculations that the local moments of the Cr atoms show a large environmental variation, ranging from -1.70 μB to +1.01 μB with an average of about -0.51 μB. We present a new method to calculate "local energies" of all atoms. This is based on the partitioning of the whole space into Voronoi cells and allows to calculate the energetic contribution of each atomic cell to the total energy of the supercell. The supercell calculations show very large variations of the local energies, analogous to the variations of the local moments. This shows that the random solid solution is not stable and has a tendency to form an L12-structure with the Cr-atoms ordered at the corner of the cube and the elements Fe, Co, and Ni randomly distributed on the three other FCC sublattices. For this structure the variation of the local moments are much smaller.

  7. Investigating the Randomness of Numbers

    Science.gov (United States)

    Pendleton, Kenn L.

    2009-01-01

    The use of random numbers is pervasive in today's world. Random numbers have practical applications in such far-flung arenas as computer simulations, cryptography, gambling, the legal system, statistical sampling, and even the war on terrorism. Evaluating the randomness of extremely large samples is a complex, intricate process. However, the…

  8. Permutation Entropy for Random Binary Sequences

    Directory of Open Access Journals (Sweden)

    Lingfeng Liu

    2015-12-01

    Full Text Available In this paper, we generalize the permutation entropy (PE measure to binary sequences, which is based on Shannon’s entropy, and theoretically analyze this measure for random binary sequences. We deduce the theoretical value of PE for random binary sequences, which can be used to measure the randomness of binary sequences. We also reveal the relationship between this PE measure with other randomness measures, such as Shannon’s entropy and Lempel–Ziv complexity. The results show that PE is consistent with these two measures. Furthermore, we use PE as one of the randomness measures to evaluate the randomness of chaotic binary sequences.

  9. Quantum random access memory

    OpenAIRE

    Giovannetti, Vittorio; Lloyd, Seth; Maccone, Lorenzo

    2007-01-01

    A random access memory (RAM) uses n bits to randomly address N=2^n distinct memory cells. A quantum random access memory (qRAM) uses n qubits to address any quantum superposition of N memory cells. We present an architecture that exponentially reduces the requirements for a memory call: O(log N) switches need be thrown instead of the N used in conventional (classical or quantum) RAM designs. This yields a more robust qRAM algorithm, as it in general requires entanglement among exponentially l...

  10. Low-dimensional geometry from euclidean surfaces to hyperbolic knots

    CERN Document Server

    Bonahon, Francis

    2009-01-01

    The study of 3-dimensional spaces brings together elements from several areas of mathematics. The most notable are topology and geometry, but elements of number theory and analysis also make appearances. In the past 30 years, there have been striking developments in the mathematics of 3-dimensional manifolds. This book aims to introduce undergraduate students to some of these important developments. Low-Dimensional Geometry starts at a relatively elementary level, and its early chapters can be used as a brief introduction to hyperbolic geometry. However, the ultimate goal is to describe the very recently completed geometrization program for 3-dimensional manifolds. The journey to reach this goal emphasizes examples and concrete constructions as an introduction to more general statements. This includes the tessellations associated to the process of gluing together the sides of a polygon. Bending some of these tessellations provides a natural introduction to 3-dimensional hyperbolic geometry and to the theory o...

  11. Application of quasi-random numbers for simulation

    International Nuclear Information System (INIS)

    Kazachenko, O.N.; Takhtamyshev, G.G.

    1985-01-01

    Application of the Monte-Carlo method for multidimensional integration is discussed. The main goal is to check the statement that the application of quasi-random numbers instead of regular pseudo-random numbers provides more rapid convergency. The Sobol, Richtmayer and Halton algorithms of quasi-random sequences are described. Over 50 tests to compare these quasi-random numbers as well as pseudo-random numbers were fulfilled. In all cases quasi-random numbers have clearly demonstrated a more rapid convergency as compared with pseudo-random ones. Positive test results on quasi-random trend in Monte-Carlo method seem very promising

  12. Dissecting the circle, at random*

    Directory of Open Access Journals (Sweden)

    Curien Nicolas

    2014-01-01

    Full Text Available Random laminations of the disk are the continuous limits of random non-crossing configurations of regular polygons. We provide an expository account on this subject. Initiated by the work of Aldous on the Brownian triangulation, this field now possesses many characters such as the random recursive triangulation, the stable laminations and the Markovian hyperbolic triangulation of the disk. We will review the properties and constructions of these objects as well as the close relationships they enjoy with the theory of continuous random trees. Some open questions are scattered along the text.

  13. Random Decrement Based FRF Estimation

    DEFF Research Database (Denmark)

    Brincker, Rune; Asmussen, J. C.

    to speed and quality. The basis of the new method is the Fourier transformation of the Random Decrement functions which can be used to estimate the frequency response functions. The investigations are based on load and response measurements of a laboratory model of a 3 span bridge. By applying both methods...... that the Random Decrement technique is based on a simple controlled averaging of time segments of the load and response processes. Furthermore, the Random Decrement technique is expected to produce reliable results. The Random Decrement technique will reduce leakage, since the Fourier transformation...

  14. Random Decrement Based FRF Estimation

    DEFF Research Database (Denmark)

    Brincker, Rune; Asmussen, J. C.

    1997-01-01

    to speed and quality. The basis of the new method is the Fourier transformation of the Random Decrement functions which can be used to estimate the frequency response functions. The investigations are based on load and response measurements of a laboratory model of a 3 span bridge. By applying both methods...... that the Random Decrement technique is based on a simple controlled averaging of time segments of the load and response processes. Furthermore, the Random Decrement technique is expected to produce reliable results. The Random Decrement technique will reduce leakage, since the Fourier transformation...

  15. Random Numbers and Quantum Computers

    Science.gov (United States)

    McCartney, Mark; Glass, David

    2002-01-01

    The topic of random numbers is investigated in such a way as to illustrate links between mathematics, physics and computer science. First, the generation of random numbers by a classical computer using the linear congruential generator and logistic map is considered. It is noted that these procedures yield only pseudo-random numbers since…

  16. Enhancing Security of Double Random Phase Encoding Based on Random S-Box

    Science.gov (United States)

    Girija, R.; Singh, Hukum

    2018-06-01

    In this paper, we propose a novel asymmetric cryptosystem for double random phase encoding (DRPE) using random S-Box. While utilising S-Box separately is not reliable and DRPE does not support non-linearity, so, our system unites the effectiveness of S-Box with an asymmetric system of DRPE (through Fourier transform). The uniqueness of proposed cryptosystem lies on employing high sensitivity dynamic S-Box for our DRPE system. The randomness and scalability achieved due to applied technique is an additional feature of the proposed solution. The firmness of random S-Box is investigated in terms of performance parameters such as non-linearity, strict avalanche criterion, bit independence criterion, linear and differential approximation probabilities etc. S-Boxes convey nonlinearity to cryptosystems which is a significant parameter and very essential for DRPE. The strength of proposed cryptosystem has been analysed using various parameters such as MSE, PSNR, correlation coefficient analysis, noise analysis, SVD analysis, etc. Experimental results are conferred in detail to exhibit proposed cryptosystem is highly secure.

  17. Random walk generated by random permutations of {1, 2, 3, ..., n + 1}

    International Nuclear Information System (INIS)

    Oshanin, G; Voituriez, R

    2004-01-01

    We study properties of a non-Markovian random walk X (n) l , l = 0, 1, 2, ..., n, evolving in discrete time l on a one-dimensional lattice of integers, whose moves to the right or to the left are prescribed by the rise-and-descent sequences characterizing random permutations π of [n + 1] = {1, 2, 3, ..., n + 1}. We determine exactly the probability of finding the end-point X n = X (n) n of the trajectory of such a permutation-generated random walk (PGRW) at site X, and show that in the limit n → ∞ it converges to a normal distribution with a smaller, compared to the conventional Polya random walk, diffusion coefficient. We formulate, as well, an auxiliary stochastic process whose distribution is identical to the distribution of the intermediate points X (n) l , l < n, which enables us to obtain the probability measure of different excursions and to define the asymptotic distribution of the number of 'turns' of the PGRW trajectories

  18. Ruler of the plane - Games of geometry

    NARCIS (Netherlands)

    Beekhuis, S.; Buchin, K.; Castermans, T.; Hurks, T.; Sonke, W.; Aronov, B.; Katz, M.J.

    2017-01-01

    Ruler of the Plane is a set of games illustrating concepts from combinatorial and computational geometry. The games are based on the art gallery problem, ham-sandwich cuts, the Voronoi game, and geometric network connectivity problems like the Euclidean minimum spanning tree and traveling

  19. Spatially explicit basal area growth of Norway spruce

    Czech Academy of Sciences Publication Activity Database

    Krejza, Jan; Světlík, J.; Pokorný, Radek

    2015-01-01

    Roč. 29, č. 5 (2015), s. 1545-1558 ISSN 0931-1890 R&D Projects: GA TA ČR TA02010945 Institutional support: RVO:67179843 Keywords : competition * social area * Weighted Voronoi polygons * increment * Picea abies Subject RIV: GK - Forestry Impact factor: 1.706, year: 2015

  20. A Sweepline Algorithm for Generalized Delaunay Triangulations

    DEFF Research Database (Denmark)

    Skyum, Sven

    We give a deterministic O(n log n) sweepline algorithm to construct the generalized Voronoi diagram for n points in the plane or rather its dual the generalized Delaunay triangulation. The algorithm uses no transformations and it is developed solely from the sweepline paradigm together...

  1. Spatially resolved modelling of inhomogeneous materials with a first order magnetic phase transition

    DEFF Research Database (Denmark)

    Nielsen, Kaspar Kirstein; Bahl, Christian; Smith, Anders

    2017-01-01

    of regions each having a uniform and defined through a Voronoi-map. We show that demagnetising effects, caused by a finite sample size, and spatial variation in can account for the previously experimentally observed 'virgin' effects in the adiabatic temperature change and isothermal entropy change...

  2. The randomly renewed general item and the randomly inspected item with exponential life distribution

    International Nuclear Information System (INIS)

    Schneeweiss, W.G.

    1979-01-01

    For a randomly renewed item the probability distributions of the time to failure and of the duration of down time and the expectations of these random variables are determined. Moreover, it is shown that the same theory applies to randomly checked items with exponential probability distribution of life such as electronic items. The case of periodic renewals is treated as an example. (orig.) [de

  3. An introduction to random interlacements

    CERN Document Server

    Drewitz, Alexander; Sapozhnikov, Artëm

    2014-01-01

    This book gives a self-contained introduction to the theory of random interlacements. The intended reader of the book is a graduate student with a background in probability theory who wants to learn about the fundamental results and methods of this rapidly emerging field of research. The model was introduced by Sznitman in 2007 in order to describe the local picture left by the trace of a random walk on a large discrete torus when it runs up to times proportional to the volume of the torus. Random interlacements is a new percolation model on the d-dimensional lattice. The main results covered by the book include the full proof of the local convergence of random walk trace on the torus to random interlacements and the full proof of the percolation phase transition of the vacant set of random interlacements in all dimensions. The reader will become familiar with the techniques relevant to working with the underlying Poisson Process and the method of multi-scale renormalization, which helps in overcoming the ch...

  4. Perceptions of randomized security schedules.

    Science.gov (United States)

    Scurich, Nicholas; John, Richard S

    2014-04-01

    Security of infrastructure is a major concern. Traditional security schedules are unable to provide omnipresent coverage; consequently, adversaries can exploit predictable vulnerabilities to their advantage. Randomized security schedules, which randomly deploy security measures, overcome these limitations, but public perceptions of such schedules have not been examined. In this experiment, participants were asked to make a choice between attending a venue that employed a traditional (i.e., search everyone) or a random (i.e., a probability of being searched) security schedule. The absolute probability of detecting contraband was manipulated (i.e., 1/10, 1/4, 1/2) but equivalent between the two schedule types. In general, participants were indifferent to either security schedule, regardless of the probability of detection. The randomized schedule was deemed more convenient, but the traditional schedule was considered fairer and safer. There were no differences between traditional and random schedule in terms of perceived effectiveness or deterrence. Policy implications for the implementation and utilization of randomized schedules are discussed. © 2013 Society for Risk Analysis.

  5. The patterning of retinal horizontal cells: normalizing the regularity index enhances the detection of genomic linkage

    Directory of Open Access Journals (Sweden)

    Patrick W. Keeley

    2014-10-01

    Full Text Available Retinal neurons are often arranged as non-random distributions called mosaics, as their somata minimize proximity to neighboring cells of the same type. The horizontal cells serve as an example of such a mosaic, but little is known about the developmental mechanisms that underlie their patterning. To identify genes involved in this process, we have used three different spatial statistics to assess the patterning of the horizontal cell mosaic across a panel of genetically distinct recombinant inbred strains. To avoid the confounding effect cell density, which varies two-fold across these different strains, we computed the real/random regularity ratio, expressing the regularity of a mosaic relative to a randomly distributed simulation of similarly sized cells. To test whether this latter statistic better reflects the variation in biological processes that contribute to horizontal cell spacing, we subsequently compared the genetic linkage for each of these two traits, the regularity index and the real/random regularity ratio, each computed from the distribution of nearest neighbor (NN distances and from the Voronoi domain (VD areas. Finally, we compared each of these analyses with another index of patterning, the packing factor. Variation in the regularity indexes, as well as their real/random regularity ratios, and the packing factor, mapped quantitative trait loci (QTL to the distal ends of Chromosomes 1 and 14. For the NN and VD analyses, we found that the degree of linkage was greater when using the real/random regularity ratio rather than the respective regularity index. Using informatic resources, we narrow the list of prospective genes positioned at these two intervals to a small collection of six genes that warrant further investigation to determine their potential role in shaping the patterning of the horizontal cell mosaic.

  6. Random phenomena; Phenomenes aleatoires

    Energy Technology Data Exchange (ETDEWEB)

    Bonnet, G. [Commissariat a l' energie atomique et aux energies alternatives - CEA, C.E.N.G., Service d' Electronique, Section d' Electronique, Grenoble (France)

    1963-07-01

    This document gathers a set of conferences presented in 1962. A first one proposes a mathematical introduction to the analysis of random phenomena. The second one presents an axiomatic of probability calculation. The third one proposes an overview of one-dimensional random variables. The fourth one addresses random pairs, and presents basic theorems regarding the algebra of mathematical expectations. The fifth conference discusses some probability laws: binomial distribution, the Poisson distribution, and the Laplace-Gauss distribution. The last one deals with the issues of stochastic convergence and asymptotic distributions.

  7. Strong Decomposition of Random Variables

    DEFF Research Database (Denmark)

    Hoffmann-Jørgensen, Jørgen; Kagan, Abram M.; Pitt, Loren D.

    2007-01-01

    A random variable X is stongly decomposable if X=Y+Z where Y=Φ(X) and Z=X-Φ(X) are independent non-degenerated random variables (called the components). It is shown that at least one of the components is singular, and we derive a necessary and sufficient condition for strong decomposability...... of a discrete random variable....

  8. Inverse problems for random differential equations using the collage method for random contraction mappings

    Science.gov (United States)

    Kunze, H. E.; La Torre, D.; Vrscay, E. R.

    2009-01-01

    In this paper we are concerned with differential equations with random coefficients which will be considered as random fixed point equations of the form T([omega],x([omega]))=x([omega]), [omega][set membership, variant][Omega]. Here T:[Omega]×X-->X is a random integral operator, is a probability space and X is a complete metric space. We consider the following inverse problem for such equations: Given a set of realizations of the fixed point of T (possibly the interpolations of different observational data sets), determine the operator T or the mean value of its random components, as appropriate. We solve the inverse problem for this class of equations by using the collage theorem for contraction mappings.

  9. MendelianRandomization: an R package for performing Mendelian randomization analyses using summarized data.

    Science.gov (United States)

    Yavorska, Olena O; Burgess, Stephen

    2017-12-01

    MendelianRandomization is a software package for the R open-source software environment that performs Mendelian randomization analyses using summarized data. The core functionality is to implement the inverse-variance weighted, MR-Egger and weighted median methods for multiple genetic variants. Several options are available to the user, such as the use of robust regression, fixed- or random-effects models and the penalization of weights for genetic variants with heterogeneous causal estimates. Extensions to these methods, such as allowing for variants to be correlated, can be chosen if appropriate. Graphical commands allow summarized data to be displayed in an interactive graph, or the plotting of causal estimates from multiple methods, for comparison. Although the main method of data entry is directly by the user, there is also an option for allowing summarized data to be incorporated from the PhenoScanner database of genotype-phenotype associations. We hope to develop this feature in future versions of the package. The R software environment is available for download from [https://www.r-project.org/]. The MendelianRandomization package can be downloaded from the Comprehensive R Archive Network (CRAN) within R, or directly from [https://cran.r-project.org/web/packages/MendelianRandomization/]. Both R and the MendelianRandomization package are released under GNU General Public Licenses (GPL-2|GPL-3). © The Author 2017. Published by Oxford University Press on behalf of the International Epidemiological Association.

  10. Decompounding random sums: A nonparametric approach

    DEFF Research Database (Denmark)

    Hansen, Martin Bøgsted; Pitts, Susan M.

    Observations from sums of random variables with a random number of summands, known as random, compound or stopped sums arise within many areas of engineering and science. Quite often it is desirable to infer properties of the distribution of the terms in the random sum. In the present paper we...... review a number of applications and consider the nonlinear inverse problem of inferring the cumulative distribution function of the components in the random sum. We review the existing literature on non-parametric approaches to the problem. The models amenable to the analysis are generalized considerably...

  11. Computer generation of random deviates

    International Nuclear Information System (INIS)

    Cormack, John

    1991-01-01

    The need for random deviates arises in many scientific applications. In medical physics, Monte Carlo simulations have been used in radiology, radiation therapy and nuclear medicine. Specific instances include the modelling of x-ray scattering processes and the addition of random noise to images or curves in order to assess the effects of various processing procedures. Reliable sources of random deviates with statistical properties indistinguishable from true random deviates are a fundamental necessity for such tasks. This paper provides a review of computer algorithms which can be used to generate uniform random deviates and other distributions of interest to medical physicists, along with a few caveats relating to various problems and pitfalls which can occur. Source code listings for the generators discussed (in FORTRAN, Turbo-PASCAL and Data General ASSEMBLER) are available on request from the authors. 27 refs., 3 tabs., 5 figs

  12. Fast integration using quasi-random numbers

    International Nuclear Information System (INIS)

    Bossert, J.; Feindt, M.; Kerzel, U.

    2006-01-01

    Quasi-random numbers are specially constructed series of numbers optimised to evenly sample a given s-dimensional volume. Using quasi-random numbers in numerical integration converges faster with a higher accuracy compared to the case of pseudo-random numbers. The basic properties of quasi-random numbers are introduced, various generators are discussed and the achieved gain is illustrated by examples

  13. Fast integration using quasi-random numbers

    Science.gov (United States)

    Bossert, J.; Feindt, M.; Kerzel, U.

    2006-04-01

    Quasi-random numbers are specially constructed series of numbers optimised to evenly sample a given s-dimensional volume. Using quasi-random numbers in numerical integration converges faster with a higher accuracy compared to the case of pseudo-random numbers. The basic properties of quasi-random numbers are introduced, various generators are discussed and the achieved gain is illustrated by examples.

  14. Adaptive finite element techniques for the Maxwell equations using implicit a posteriori error estimates

    NARCIS (Netherlands)

    Harutyunyan, D.; Izsak, F.; van der Vegt, Jacobus J.W.; Bochev, Mikhail A.

    For the adaptive solution of the Maxwell equations on three-dimensional domains with N´ed´elec edge finite element methods, we consider an implicit a posteriori error estimation technique. On each element of the tessellation an equation for the error is formulated and solved with a properly chosen

  15. Joint Services Electronics Program.

    Science.gov (United States)

    1985-03-30

    Siences and Systems, Baltimore, MD, March 27-29, 1985, to appear (JSEP/NSF/Kodak). 2. G. Bilardi and F. P. Preparata, "Tessellation techniques for...ADDITONAIL INFORMATION: Awards and Honors: Donna J. Broan Outstanding Young Woman of America, 1984 Member-at-Large, ACM, SIGACT1, 1983-85 * Michael C

  16. Quantum-noise randomized ciphers

    International Nuclear Information System (INIS)

    Nair, Ranjith; Yuen, Horace P.; Kumar, Prem; Corndorf, Eric; Eguchi, Takami

    2006-01-01

    We review the notion of a classical random cipher and its advantages. We sharpen the usual description of random ciphers to a particular mathematical characterization suggested by the salient feature responsible for their increased security. We describe a concrete system known as αη and show that it is equivalent to a random cipher in which the required randomization is affected by coherent-state quantum noise. We describe the currently known security features of αη and similar systems, including lower bounds on the unicity distances against ciphertext-only and known-plaintext attacks. We show how αη used in conjunction with any standard stream cipher such as the Advanced Encryption Standard provides an additional, qualitatively different layer of security from physical encryption against known-plaintext attacks on the key. We refute some claims in the literature that αη is equivalent to a nonrandom stream cipher

  17. Tukey g-and-h Random Fields

    KAUST Repository

    Xu, Ganggang; Genton, Marc G.

    2016-01-01

    We propose a new class of trans-Gaussian random fields named Tukey g-and-h (TGH) random fields to model non-Gaussian spatial data. The proposed TGH random fields have extremely flexible marginal distributions, possibly skewed and/or heavy-tailed, and, therefore, have a wide range of applications. The special formulation of the TGH random field enables an automatic search for the most suitable transformation for the dataset of interest while estimating model parameters. Asymptotic properties of the maximum likelihood estimator and the probabilistic properties of the TGH random fields are investigated. An efficient estimation procedure, based on maximum approximated likelihood, is proposed and an extreme spatial outlier detection algorithm is formulated. Kriging and probabilistic prediction with TGH random fields are developed along with prediction confidence intervals. The predictive performance of TGH random fields is demonstrated through extensive simulation studies and an application to a dataset of total precipitation in the south east of the United States.

  18. Tukey g-and-h Random Fields

    KAUST Repository

    Xu, Ganggang

    2016-07-15

    We propose a new class of trans-Gaussian random fields named Tukey g-and-h (TGH) random fields to model non-Gaussian spatial data. The proposed TGH random fields have extremely flexible marginal distributions, possibly skewed and/or heavy-tailed, and, therefore, have a wide range of applications. The special formulation of the TGH random field enables an automatic search for the most suitable transformation for the dataset of interest while estimating model parameters. Asymptotic properties of the maximum likelihood estimator and the probabilistic properties of the TGH random fields are investigated. An efficient estimation procedure, based on maximum approximated likelihood, is proposed and an extreme spatial outlier detection algorithm is formulated. Kriging and probabilistic prediction with TGH random fields are developed along with prediction confidence intervals. The predictive performance of TGH random fields is demonstrated through extensive simulation studies and an application to a dataset of total precipitation in the south east of the United States.

  19. Random magnetism

    International Nuclear Information System (INIS)

    Tsallis, C.

    1980-03-01

    The 'ingredients' which control a phase transition in well defined system as well as in random ones (e.g. random magnetic systems) are listed and discussed within a somehow unifying perspective. Among these 'ingredients' we find the couplings and elements responsible for the cooperative phenomenon, the topological connectivity as well as possible topological incompatibilities, the influence of new degrees of freedom, the order parameter dimensionality, the ground state degeneracy and finally the 'quanticity' of the system. The general trends, though illustrated in magnetic systems, essentially hold for all phase transitions, and give a basis for connection of this area with Field theory, Theory of dynamical systems, etc. (Author) [pt

  20. Random magnetism

    International Nuclear Information System (INIS)

    Tsallis, C.

    1981-01-01

    The 'ingredients' which control a phase transition in well defined systems as well as in random ones (e.q. random magnetic systems) are listed and discussed within a somehow unifying perspective. Among these 'ingredients' the couplings and elements responsible for the cooperative phenomenon, the topological connectivity as well as possible topological incompatibilities, the influence of new degrees of freedom, the order parameter dimensionality, the ground state degeneracy and finally the 'quanticity' of the system are found. The general trends, though illustrated in magnetic systems, essentially hold for all phase transitions, and give a basis for connection of this area with Field theory, Theory of dynamical systems, etc. (Author) [pt

  1. Analysis of android random number generator

    OpenAIRE

    Sarıtaş, Serkan

    2013-01-01

    Ankara : The Department of Computer Engineering and the Graduate School of Engineering and Science of Bilkent University, 2013. Thesis (Master's) -- Bilkent University, 2013. Includes bibliographical references leaves 61-65. Randomness is a crucial resource for cryptography, and random number generators are critical building blocks of almost all cryptographic systems. Therefore, random number generation is one of the key parts of secure communication. Random number generatio...

  2. The MIXMAX random number generator

    Science.gov (United States)

    Savvidy, Konstantin G.

    2015-11-01

    In this paper, we study the randomness properties of unimodular matrix random number generators. Under well-known conditions, these discrete-time dynamical systems have the highly desirable K-mixing properties which guarantee high quality random numbers. It is found that some widely used random number generators have poor Kolmogorov entropy and consequently fail in empirical tests of randomness. These tests show that the lowest acceptable value of the Kolmogorov entropy is around 50. Next, we provide a solution to the problem of determining the maximal period of unimodular matrix generators of pseudo-random numbers. We formulate the necessary and sufficient condition to attain the maximum period and present a family of specific generators in the MIXMAX family with superior performance and excellent statistical properties. Finally, we construct three efficient algorithms for operations with the MIXMAX matrix which is a multi-dimensional generalization of the famous cat-map. First, allowing to compute the multiplication by the MIXMAX matrix with O(N) operations. Second, to recursively compute its characteristic polynomial with O(N2) operations, and third, to apply skips of large number of steps S to the sequence in O(N2 log(S)) operations.

  3. Random regret and random utility in the household purchase of a motor vehicle

    NARCIS (Netherlands)

    Beck, M.; Chorus, C.G.; Rose, J.M.; Hensher, D.A.

    2013-01-01

    Random utility maximisation is the preeminent behavioural theory used to model choices. An alternative paradigm, however, is random regret minimisation. While the majority of the literature examines the choices of individuals, this paper compares the choices of groups, as well individuals, in both

  4. a Method for the Seamlines Network Automatic Selection Based on Building Vector

    Science.gov (United States)

    Li, P.; Dong, Y.; Hu, Y.; Li, X.; Tan, P.

    2018-04-01

    In order to improve the efficiency of large scale orthophoto production of city, this paper presents a method for automatic selection of seamlines network in large scale orthophoto based on the buildings' vector. Firstly, a simple model of the building is built by combining building's vector, height and DEM, and the imaging area of the building on single DOM is obtained. Then, the initial Voronoi network of the measurement area is automatically generated based on the positions of the bottom of all images. Finally, the final seamlines network is obtained by optimizing all nodes and seamlines in the network automatically based on the imaging areas of the buildings. The experimental results show that the proposed method can not only get around the building seamlines network quickly, but also remain the Voronoi network' characteristics of projection distortion minimum theory, which can solve the problem of automatic selection of orthophoto seamlines network in image mosaicking effectively.

  5. Dense Clustered Multi-Channel Wireless Sensor Cloud

    Directory of Open Access Journals (Sweden)

    Sivaramakrishnan Sivakumar

    2015-08-01

    Full Text Available Dense Wireless Sensor Network Clouds have an inherent issue of latency and packet drops with regards to data collection. Though there is extensive literature that tries to address these issues through either scheduling, channel contention or a combination of the two, the problem still largely exists. In this paper, a Clustered Multi-Channel Scheduling Protocol (CMSP is designed that creates a Voronoi partition of a dense network. Each partition is assigned a channel, and a scheduling scheme is adopted to collect data within the Voronoi partitions. This scheme collects data from the partitions concurrently and then passes it to the base station. CMSP is compared using simulation with other multi-channel protocols like Tree-based Multi-Channel, Multi-Channel MAC and Multi-frequency Media Access Control for wireless sensor networks. Results indicate CMSP has higher throughput and data delivery ratio at a lower power consumption due to network partitioning and hierarchical scheduling that minimizes load on the network.

  6. A geometric construction of the Riemann scalar curvature in Regge calculus

    International Nuclear Information System (INIS)

    McDonald, Jonathan R; Miller, Warner A

    2008-01-01

    The Riemann scalar curvature plays a central role in Einstein's geometric theory of gravity. We describe a new geometric construction of this scalar curvature invariant at an event (vertex) in a discrete spacetime geometry. This allows one to constructively measure the scalar curvature using only clocks and photons. Given recent interest in discrete pre-geometric models of quantum gravity, we believe is it ever so important to reconstruct the curvature scalar with respect to a finite number of communicating observers. This derivation makes use of a new fundamental lattice cell built from elements inherited from both the original simplicial (Delaunay) spacetime and its circumcentric dual (Voronoi) lattice. The orthogonality properties between these two lattices yield an expression for the vertex-based scalar curvature which is strikingly similar to the corresponding hinge-based expression in Regge calculus (deficit angle per unit Voronoi dual area). In particular, we show that the scalar curvature is simply a vertex-based weighted average of deficits per weighted average of dual areas

  7. A geometric construction of the Riemann scalar curvature in Regge calculus

    Science.gov (United States)

    McDonald, Jonathan R.; Miller, Warner A.

    2008-10-01

    The Riemann scalar curvature plays a central role in Einstein's geometric theory of gravity. We describe a new geometric construction of this scalar curvature invariant at an event (vertex) in a discrete spacetime geometry. This allows one to constructively measure the scalar curvature using only clocks and photons. Given recent interest in discrete pre-geometric models of quantum gravity, we believe is it ever so important to reconstruct the curvature scalar with respect to a finite number of communicating observers. This derivation makes use of a new fundamental lattice cell built from elements inherited from both the original simplicial (Delaunay) spacetime and its circumcentric dual (Voronoi) lattice. The orthogonality properties between these two lattices yield an expression for the vertex-based scalar curvature which is strikingly similar to the corresponding hinge-based expression in Regge calculus (deficit angle per unit Voronoi dual area). In particular, we show that the scalar curvature is simply a vertex-based weighted average of deficits per weighted average of dual areas.

  8. DMG-α--a computational geometry library for multimolecular systems.

    Science.gov (United States)

    Szczelina, Robert; Murzyn, Krzysztof

    2014-11-24

    The DMG-α library grants researchers in the field of computational biology, chemistry, and biophysics access to an open-sourced, easy to use, and intuitive software for performing fine-grained geometric analysis of molecular systems. The library is capable of computing power diagrams (weighted Voronoi diagrams) in three dimensions with 3D periodic boundary conditions, computing approximate projective 2D Voronoi diagrams on arbitrarily defined surfaces, performing shape properties recognition using α-shape theory and can do exact Solvent Accessible Surface Area (SASA) computation. The software is written mainly as a template-based C++ library for greater performance, but a rich Python interface (pydmga) is provided as a convenient way to manipulate the DMG-α routines. To illustrate possible applications of the DMG-α library, we present results of sample analyses which allowed to determine nontrivial geometric properties of two Escherichia coli-specific lipids as emerging from molecular dynamics simulations of relevant model bilayers.

  9. Theory of random sets

    CERN Document Server

    Molchanov, Ilya

    2017-01-01

    This monograph, now in a thoroughly revised second edition, offers the latest research on random sets. It has been extended to include substantial developments achieved since 2005, some of them motivated by applications of random sets to econometrics and finance. The present volume builds on the foundations laid by Matheron and others, including the vast advances in stochastic geometry, probability theory, set-valued analysis, and statistical inference. It shows the various interdisciplinary relationships of random set theory within other parts of mathematics, and at the same time fixes terminology and notation that often vary in the literature, establishing it as a natural part of modern probability theory and providing a platform for future development. It is completely self-contained, systematic and exhaustive, with the full proofs that are necessary to gain insight. Aimed at research level, Theory of Random Sets will be an invaluable reference for probabilists; mathematicians working in convex and integ...

  10. Random surfaces and strings

    International Nuclear Information System (INIS)

    Ambjoern, J.

    1987-08-01

    The theory of strings is the theory of random surfaces. I review the present attempts to regularize the world sheet of the string by triangulation. The corresponding statistical theory of triangulated random surfaces has a surprising rich structure, but the connection to conventional string theory seems non-trivial. (orig.)

  11. The Theory of Random Laser Systems

    International Nuclear Information System (INIS)

    Xunya Jiang

    2002-01-01

    Studies of random laser systems are a new direction with promising potential applications and theoretical interest. The research is based on the theories of localization and laser physics. So far, the research shows that there are random lasing modes inside the systems which is quite different from the common laser systems. From the properties of the random lasing modes, they can understand the phenomena observed in the experiments, such as multi-peak and anisotropic spectrum, lasing mode number saturation, mode competition and dynamic processes, etc. To summarize, this dissertation has contributed the following in the study of random laser systems: (1) by comparing the Lamb theory with the Letokhov theory, the general formulas of the threshold length or gain of random laser systems were obtained; (2) they pointed out the vital weakness of previous time-independent methods in random laser research; (3) a new model which includes the FDTD method and the semi-classical laser theory. The solutions of this model provided an explanation of the experimental results of multi-peak and anisotropic emission spectra, predicted the saturation of lasing modes number and the length of localized lasing modes; (4) theoretical (Lamb theory) and numerical (FDTD and transfer-matrix calculation) studies of the origin of localized lasing modes in the random laser systems; and (5) proposal of using random lasing modes as a new path to study wave localization in random systems and prediction of the lasing threshold discontinuity at mobility edge

  12. Random matrix approach to plasmon resonances in the random impedance network model of disordered nanocomposites

    Science.gov (United States)

    Olekhno, N. A.; Beltukov, Y. M.

    2018-05-01

    Random impedance networks are widely used as a model to describe plasmon resonances in disordered metal-dielectric and other two-component nanocomposites. In the present work, the spectral properties of resonances in random networks are studied within the framework of the random matrix theory. We have shown that the appropriate ensemble of random matrices for the considered problem is the Jacobi ensemble (the MANOVA ensemble). The obtained analytical expressions for the density of states in such resonant networks show a good agreement with the results of numerical simulations in a wide range of metal filling fractions 0

  13. Advances in randomized parallel computing

    CERN Document Server

    Rajasekaran, Sanguthevar

    1999-01-01

    The technique of randomization has been employed to solve numerous prob­ lems of computing both sequentially and in parallel. Examples of randomized algorithms that are asymptotically better than their deterministic counterparts in solving various fundamental problems abound. Randomized algorithms have the advantages of simplicity and better performance both in theory and often in practice. This book is a collection of articles written by renowned experts in the area of randomized parallel computing. A brief introduction to randomized algorithms In the aflalysis of algorithms, at least three different measures of performance can be used: the best case, the worst case, and the average case. Often, the average case run time of an algorithm is much smaller than the worst case. 2 For instance, the worst case run time of Hoare's quicksort is O(n ), whereas its average case run time is only O( n log n). The average case analysis is conducted with an assumption on the input space. The assumption made to arrive at t...

  14. Reconstructing random media

    International Nuclear Information System (INIS)

    Yeong, C.L.; Torquato, S.

    1998-01-01

    We formulate a procedure to reconstruct the structure of general random heterogeneous media from limited morphological information by extending the methodology of Rintoul and Torquato [J. Colloid Interface Sci. 186, 467 (1997)] developed for dispersions. The procedure has the advantages that it is simple to implement and generally applicable to multidimensional, multiphase, and anisotropic structures. Furthermore, an extremely useful feature is that it can incorporate any type and number of correlation functions in order to provide as much morphological information as is necessary for accurate reconstruction. We consider a variety of one- and two-dimensional reconstructions, including periodic and random arrays of rods, various distribution of disks, Debye random media, and a Fontainebleau sandstone sample. We also use our algorithm to construct heterogeneous media from specified hypothetical correlation functions, including an exponentially damped, oscillating function as well as physically unrealizable ones. copyright 1998 The American Physical Society

  15. Groupies in multitype random graphs

    OpenAIRE

    Shang, Yilun

    2016-01-01

    A groupie in a graph is a vertex whose degree is not less than the average degree of its neighbors. Under some mild conditions, we show that the proportion of groupies is very close to 1/2 in multitype random graphs (such as stochastic block models), which include Erd?s-R?nyi random graphs, random bipartite, and multipartite graphs as special examples. Numerical examples are provided to illustrate the theoretical results.

  16. Experimental Validation of a Coupled Fluid-Multibody Dynamics Model for Tanker Trucks

    Science.gov (United States)

    2007-11-08

    PFEM ) [17] in which the particles are used to generate a polyhedral finite element mesh every time step using an extended Delaunay tesselation. The...interpolation of the solution field onto the new mesh. • Particle methods require a large number of particles to accurately model the free surface. The PFEM

  17. Local randomness: Examples and application

    Science.gov (United States)

    Fu, Honghao; Miller, Carl A.

    2018-03-01

    When two players achieve a superclassical score at a nonlocal game, their outputs must contain intrinsic randomness. This fact has many useful implications for quantum cryptography. Recently it has been observed [C. Miller and Y. Shi, Quantum Inf. Computat. 17, 0595 (2017)] that such scores also imply the existence of local randomness—that is, randomness known to one player but not to the other. This has potential implications for cryptographic tasks between two cooperating but mistrustful players. In the current paper we bring this notion toward practical realization, by offering near-optimal bounds on local randomness for the CHSH game, and also proving the security of a cryptographic application of local randomness (single-bit certified deletion).

  18. Random walks on reductive groups

    CERN Document Server

    Benoist, Yves

    2016-01-01

    The classical theory of Random Walks describes the asymptotic behavior of sums of independent identically distributed random real variables. This book explains the generalization of this theory to products of independent identically distributed random matrices with real coefficients. Under the assumption that the action of the matrices is semisimple – or, equivalently, that the Zariski closure of the group generated by these matrices is reductive - and under suitable moment assumptions, it is shown that the norm of the products of such random matrices satisfies a number of classical probabilistic laws. This book includes necessary background on the theory of reductive algebraic groups, probability theory and operator theory, thereby providing a modern introduction to the topic.

  19. True random numbers from amplified quantum vacuum.

    Science.gov (United States)

    Jofre, M; Curty, M; Steinlechner, F; Anzolin, G; Torres, J P; Mitchell, M W; Pruneri, V

    2011-10-10

    Random numbers are essential for applications ranging from secure communications to numerical simulation and quantitative finance. Algorithms can rapidly produce pseudo-random outcomes, series of numbers that mimic most properties of true random numbers while quantum random number generators (QRNGs) exploit intrinsic quantum randomness to produce true random numbers. Single-photon QRNGs are conceptually simple but produce few random bits per detection. In contrast, vacuum fluctuations are a vast resource for QRNGs: they are broad-band and thus can encode many random bits per second. Direct recording of vacuum fluctuations is possible, but requires shot-noise-limited detectors, at the cost of bandwidth. We demonstrate efficient conversion of vacuum fluctuations to true random bits using optical amplification of vacuum and interferometry. Using commercially-available optical components we demonstrate a QRNG at a bit rate of 1.11 Gbps. The proposed scheme has the potential to be extended to 10 Gbps and even up to 100 Gbps by taking advantage of high speed modulation sources and detectors for optical fiber telecommunication devices.

  20. Variational Infinite Hidden Conditional Random Fields

    NARCIS (Netherlands)

    Bousmalis, Konstantinos; Zafeiriou, Stefanos; Morency, Louis-Philippe; Pantic, Maja; Ghahramani, Zoubin

    2015-01-01

    Hidden conditional random fields (HCRFs) are discriminative latent variable models which have been shown to successfully learn the hidden structure of a given classification problem. An Infinite hidden conditional random field is a hidden conditional random field with a countably infinite number of

  1. Groupies in multitype random graphs.

    Science.gov (United States)

    Shang, Yilun

    2016-01-01

    A groupie in a graph is a vertex whose degree is not less than the average degree of its neighbors. Under some mild conditions, we show that the proportion of groupies is very close to 1/2 in multitype random graphs (such as stochastic block models), which include Erdős-Rényi random graphs, random bipartite, and multipartite graphs as special examples. Numerical examples are provided to illustrate the theoretical results.

  2. Two spatial light modulator system for laboratory simulation of random beam propagation in random media.

    Science.gov (United States)

    Wang, Fei; Toselli, Italo; Korotkova, Olga

    2016-02-10

    An optical system consisting of a laser source and two independent consecutive phase-only spatial light modulators (SLMs) is shown to accurately simulate a generated random beam (first SLM) after interaction with a stationary random medium (second SLM). To illustrate the range of possibilities, a recently introduced class of random optical frames is examined on propagation in free space and several weak turbulent channels with Kolmogorov and non-Kolmogorov statistics.

  3. Creating, generating and comparing random network models with NetworkRandomizer.

    Science.gov (United States)

    Tosadori, Gabriele; Bestvina, Ivan; Spoto, Fausto; Laudanna, Carlo; Scardoni, Giovanni

    2016-01-01

    Biological networks are becoming a fundamental tool for the investigation of high-throughput data in several fields of biology and biotechnology. With the increasing amount of information, network-based models are gaining more and more interest and new techniques are required in order to mine the information and to validate the results. To fill the validation gap we present an app, for the Cytoscape platform, which aims at creating randomised networks and randomising existing, real networks. Since there is a lack of tools that allow performing such operations, our app aims at enabling researchers to exploit different, well known random network models that could be used as a benchmark for validating real, biological datasets. We also propose a novel methodology for creating random weighted networks, i.e. the multiplication algorithm, starting from real, quantitative data. Finally, the app provides a statistical tool that compares real versus randomly computed attributes, in order to validate the numerical findings. In summary, our app aims at creating a standardised methodology for the validation of the results in the context of the Cytoscape platform.

  4. Microcomputer-Assisted Discoveries: Random Numbers.

    Science.gov (United States)

    Kimberling, Clark

    1983-01-01

    A programing contest was designed to promote interest in mathematical randomness. Student-developed programs making clever uses of random numbers are presented. Modifications users might make are suggested. (MNS)

  5. Stochastic space interval as a link between quantum randomness and macroscopic randomness?

    Science.gov (United States)

    Haug, Espen Gaarder; Hoff, Harald

    2018-03-01

    For many stochastic phenomena, we observe statistical distributions that have fat-tails and high-peaks compared to the Gaussian distribution. In this paper, we will explain how observable statistical distributions in the macroscopic world could be related to the randomness in the subatomic world. We show that fat-tailed (leptokurtic) phenomena in our everyday macroscopic world are ultimately rooted in Gaussian - or very close to Gaussian-distributed subatomic particle randomness, but they are not, in a strict sense, Gaussian distributions. By running a truly random experiment over a three and a half-year period, we observed a type of random behavior in trillions of photons. Combining our results with simple logic, we find that fat-tailed and high-peaked statistical distributions are exactly what we would expect to observe if the subatomic world is quantized and not continuously divisible. We extend our analysis to the fact that one typically observes fat-tails and high-peaks relative to the Gaussian distribution in stocks and commodity prices and many aspects of the natural world; these instances are all observable and documentable macro phenomena that strongly suggest that the ultimate building blocks of nature are discrete (e.g. they appear in quanta).

  6. Unbiased All-Optical Random-Number Generator

    Science.gov (United States)

    Steinle, Tobias; Greiner, Johannes N.; Wrachtrup, Jörg; Giessen, Harald; Gerhardt, Ilja

    2017-10-01

    The generation of random bits is of enormous importance in modern information science. Cryptographic security is based on random numbers which require a physical process for their generation. This is commonly performed by hardware random-number generators. These often exhibit a number of problems, namely experimental bias, memory in the system, and other technical subtleties, which reduce the reliability in the entropy estimation. Further, the generated outcome has to be postprocessed to "iron out" such spurious effects. Here, we present a purely optical randomness generator, based on the bistable output of an optical parametric oscillator. Detector noise plays no role and postprocessing is reduced to a minimum. Upon entering the bistable regime, initially the resulting output phase depends on vacuum fluctuations. Later, the phase is rigidly locked and can be well determined versus a pulse train, which is derived from the pump laser. This delivers an ambiguity-free output, which is reliably detected and associated with a binary outcome. The resulting random bit stream resembles a perfect coin toss and passes all relevant randomness measures. The random nature of the generated binary outcome is furthermore confirmed by an analysis of resulting conditional entropies.

  7. What is quantum in quantum randomness?

    Science.gov (United States)

    Grangier, P; Auffèves, A

    2018-07-13

    It is often said that quantum and classical randomness are of different nature, the former being ontological and the latter epistemological. However, so far the question of 'What is quantum in quantum randomness?', i.e. what is the impact of quantization and discreteness on the nature of randomness, remains to be answered. In a first part, we make explicit the differences between quantum and classical randomness within a recently proposed ontology for quantum mechanics based on contextual objectivity. In this view, quantum randomness is the result of contextuality and quantization. We show that this approach strongly impacts the purposes of quantum theory as well as its areas of application. In particular, it challenges current programmes inspired by classical reductionism, aiming at the emergence of the classical world from a large number of quantum systems. In a second part, we analyse quantum physics and thermodynamics as theories of randomness, unveiling their mutual influences. We finally consider new technological applications of quantum randomness that have opened up in the emerging field of quantum thermodynamics.This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'. © 2018 The Author(s).

  8. Derandomizing from random strings

    NARCIS (Netherlands)

    Buhrman, H.; Fortnow, L.; Koucký, M.; Loff, B.

    2010-01-01

    In this paper we show that BPP is truth-table reducible to the set of Kolmogorov random strings R(K). It was previously known that PSPACE, and hence BPP is Turing-reducible to R(K). The earlier proof relied on the adaptivity of the Turing-reduction to find a Kolmogorov-random string of polynomial

  9. CMOS Compressed Imaging by Random Convolution

    OpenAIRE

    Jacques, Laurent; Vandergheynst, Pierre; Bibet, Alexandre; Majidzadeh, Vahid; Schmid, Alexandre; Leblebici, Yusuf

    2009-01-01

    We present a CMOS imager with built-in capability to perform Compressed Sensing. The adopted sensing strategy is the random Convolution due to J. Romberg. It is achieved by a shift register set in a pseudo-random configuration. It acts as a convolutive filter on the imager focal plane, the current issued from each CMOS pixel undergoing a pseudo-random redirection controlled by each component of the filter sequence. A pseudo-random triggering of the ADC reading is finally applied to comp...

  10. Quality pseudo-random number generator

    International Nuclear Information System (INIS)

    Tarasiuk, J.

    1996-01-01

    The pseudo-random number generator (RNG) was written to match needs of nuclear and high-energy physics computation which in some cases require very long and independent random number sequences. In this random number generator the repetition period is about 10 36 what should be sufficient for all computers in the world. In this article the test results of RNG correlation, speed and identity of computations for PC, Sun4 and VAX computer tests are presented

  11. Discrete least squares polynomial approximation with random evaluations - application to PDEs with Random parameters

    KAUST Repository

    Nobile, Fabio

    2015-01-01

    the parameter-to-solution map u(y) from random noise-free or noisy observations in random points by discrete least squares on polynomial spaces. The noise-free case is relevant whenever the technique is used to construct metamodels, based on polynomial

  12. Cover times of random searches

    Science.gov (United States)

    Chupeau, Marie; Bénichou, Olivier; Voituriez, Raphaël

    2015-10-01

    How long must one undertake a random search to visit all sites of a given domain? This time, known as the cover time, is a key observable to quantify the efficiency of exhaustive searches, which require a complete exploration of an area and not only the discovery of a single target. Examples range from immune-system cells chasing pathogens to animals harvesting resources, from robotic exploration for cleaning or demining to the task of improving search algorithms. Despite its broad relevance, the cover time has remained elusive and so far explicit results have been scarce and mostly limited to regular random walks. Here we determine the full distribution of the cover time for a broad range of random search processes, including Lévy strategies, intermittent strategies, persistent random walks and random walks on complex networks, and reveal its universal features. We show that for all these examples the mean cover time can be minimized, and that the corresponding optimal strategies also minimize the mean search time for a single target, unambiguously pointing towards their robustness.

  13. A Solution Method for Linear and Geometrically Nonlinear MDOF Systems with Random Properties subject to Random Excitation

    DEFF Research Database (Denmark)

    Micaletti, R. C.; Cakmak, A. S.; Nielsen, Søren R. K.

    structural properties. The resulting state-space formulation is a system of ordinary stochastic differential equations with random coefficient and deterministic initial conditions which are subsequently transformed into ordinary stochastic differential equations with deterministic coefficients and random......A method for computing the lower-order moments of randomly-excited multi-degree-of-freedom (MDOF) systems with random structural properties is proposed. The method is grounded in the techniques of stochastic calculus, utilizing a Markov diffusion process to model the structural system with random...... initial conditions. This transformation facilitates the derivation of differential equations which govern the evolution of the unconditional statistical moments of response. Primary consideration is given to linear systems and systems with odd polynomial nonlinearities, for in these cases...

  14. Ordered random variables theory and applications

    CERN Document Server

    Shahbaz, Muhammad Qaiser; Hanif Shahbaz, Saman; Al-Zahrani, Bander M

    2016-01-01

    Ordered Random Variables have attracted several authors. The basic building block of Ordered Random Variables is Order Statistics which has several applications in extreme value theory and ordered estimation. The general model for ordered random variables, known as Generalized Order Statistics has been introduced relatively recently by Kamps (1995).

  15. QUASI-RANDOM TESTING OF COMPUTER SYSTEMS

    Directory of Open Access Journals (Sweden)

    S. V. Yarmolik

    2013-01-01

    Full Text Available Various modified random testing approaches have been proposed for computer system testing in the black box environment. Their effectiveness has been evaluated on the typical failure patterns by employing three measures, namely, P-measure, E-measure and F-measure. A quasi-random testing, being a modified version of the random testing, has been proposed and analyzed. The quasi-random Sobol sequences and modified Sobol sequences are used as the test patterns. Some new methods for Sobol sequence generation have been proposed and analyzed.

  16. Voronoi Based Nanocrystalline Generation Algorithm for Atomistic Simulations

    Science.gov (United States)

    2016-12-22

    shown by the screen shot in Fig. 4. First, a 10-nm grain structure is created in a 15- × 15- × 15-nm simulation cell. Here, each grain con - tains an...configuration file saved as Cu_NC_centroids.config. The nanocrystal_builder.py script is invoked a second time to demonstrate the Con - fig Mode in the lower...distributionisunlimited. output_name = raw_input(’Input desired output basename:\

  17. Average beta-beating from random errors

    CERN Document Server

    Tomas Garcia, Rogelio; Langner, Andy Sven; Malina, Lukas; Franchi, Andrea; CERN. Geneva. ATS Department

    2018-01-01

    The impact of random errors on average β-beating is studied via analytical derivations and simulations. A systematic positive β-beating is expected from random errors quadratic with the sources or, equivalently, with the rms β-beating. However, random errors do not have a systematic effect on the tune.

  18. A Randomized Central Limit Theorem

    International Nuclear Information System (INIS)

    Eliazar, Iddo; Klafter, Joseph

    2010-01-01

    The Central Limit Theorem (CLT), one of the most elemental pillars of Probability Theory and Statistical Physics, asserts that: the universal probability law of large aggregates of independent and identically distributed random summands with zero mean and finite variance, scaled by the square root of the aggregate-size (√(n)), is Gaussian. The scaling scheme of the CLT is deterministic and uniform - scaling all aggregate-summands by the common and deterministic factor √(n). This Letter considers scaling schemes which are stochastic and non-uniform, and presents a 'Randomized Central Limit Theorem' (RCLT): we establish a class of random scaling schemes which yields universal probability laws of large aggregates of independent and identically distributed random summands. The RCLT universal probability laws, in turn, are the one-sided and the symmetric Levy laws.

  19. Cluster randomization and political philosophy.

    Science.gov (United States)

    Chwang, Eric

    2012-11-01

    In this paper, I will argue that, while the ethical issues raised by cluster randomization can be challenging, they are not new. My thesis divides neatly into two parts. In the first, easier part I argue that many of the ethical challenges posed by cluster randomized human subjects research are clearly present in other types of human subjects research, and so are not novel. In the second, more difficult part I discuss the thorniest ethical challenge for cluster randomized research--cases where consent is genuinely impractical to obtain. I argue that once again these cases require no new analytic insight; instead, we should look to political philosophy for guidance. In other words, the most serious ethical problem that arises in cluster randomized research also arises in political philosophy. © 2011 Blackwell Publishing Ltd.

  20. Hardness of Clustering

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Hardness of Clustering. Both k-means and k-medians intractable (when n and d are both inputs even for k =2). The best known deterministic algorithms. are based on Voronoi partitioning that. takes about time. Need for approximation – “close” to optimal.

  1. Notch sensitivity of ductile metallic foams : A computational study

    NARCIS (Netherlands)

    Mangipudi, K. R.; Onck, P. R.

    2011-01-01

    The role of notches in the fracture strength of metal foams has been studied using a multiscale model based on a two-dimensional Voronoi representation of the cellular architecture. The effect of the crack length to the specimen width ratio on the net section strength of double edge notch (DEN)

  2. Simulation technique for hard-disk models in two dimensions

    DEFF Research Database (Denmark)

    Fraser, Diane P.; Zuckermann, Martin J.; Mouritsen, Ole G.

    1990-01-01

    that is extremely sensitive to structural changes in the system. This quantity, which is derived from the edge-length distribution function of the Voronoi polygons, displays a dramatic change at the solid-liquid transition. This is found to be more useful for locating the transition than either the defect density...

  3. Random-Resistor-Random-Temperature Kirchhoff-Law-Johnson-Noise (RRRT-KLJN Key Exchange

    Directory of Open Access Journals (Sweden)

    Kish Laszlo B.

    2016-03-01

    Full Text Available We introduce two new Kirchhoff-law-Johnson-noise (KLJN secure key distribution schemes which are generalizations of the original KLJN scheme. The first of these, the Random-Resistor (RR- KLJN scheme, uses random resistors with values chosen from a quasi-continuum set. It is well-known since the creation of the KLJN concept that such a system could work in cryptography, because Alice and Bob can calculate the unknown resistance value from measurements, but the RR-KLJN system has not been addressed in prior publications since it was considered impractical. The reason for discussing it now is the second scheme, the Random Resistor Random Temperature (RRRT- KLJN key exchange, inspired by a recent paper of Vadai, Mingesz and Gingl, wherein security was shown to be maintained at non-zero power flow. In the RRRT-KLJN secure key exchange scheme, both the resistances and their temperatures are continuum random variables. We prove that the security of the RRRT-KLJN scheme can prevail at a non-zero power flow, and thus the physical law guaranteeing security is not the Second Law of Thermodynamics but the Fluctuation-Dissipation Theorem. Alice and Bob know their own resistances and temperatures and can calculate the resistance and temperature values at the other end of the communication channel from measured voltage, current and power-flow data in the wire. However, Eve cannot determine these values because, for her, there are four unknown quantities while she can set up only three equations. The RRRT-KLJN scheme has several advantages and makes all former attacks on the KLJN scheme invalid or incomplete.

  4. Generation of pseudo-random numbers

    Science.gov (United States)

    Howell, L. W.; Rheinfurth, M. H.

    1982-01-01

    Practical methods for generating acceptable random numbers from a variety of probability distributions which are frequently encountered in engineering applications are described. The speed, accuracy, and guarantee of statistical randomness of the various methods are discussed.

  5. Discrete least squares polynomial approximation with random evaluations - application to PDEs with Random parameters

    KAUST Repository

    Nobile, Fabio

    2015-01-07

    We consider a general problem F(u, y) = 0 where u is the unknown solution, possibly Hilbert space valued, and y a set of uncertain parameters. We specifically address the situation in which the parameterto-solution map u(y) is smooth, however y could be very high (or even infinite) dimensional. In particular, we are interested in cases in which F is a differential operator, u a Hilbert space valued function and y a distributed, space and/or time varying, random field. We aim at reconstructing the parameter-to-solution map u(y) from random noise-free or noisy observations in random points by discrete least squares on polynomial spaces. The noise-free case is relevant whenever the technique is used to construct metamodels, based on polynomial expansions, for the output of computer experiments. In the case of PDEs with random parameters, the metamodel is then used to approximate statistics of the output quantity. We discuss the stability of discrete least squares on random points show convergence estimates both in expectation and probability. We also present possible strategies to select, either a-priori or by adaptive algorithms, sequences of approximating polynomial spaces that allow to reduce, and in some cases break, the curse of dimensionality

  6. Application of Vector Triggering Random Decrement

    DEFF Research Database (Denmark)

    Asmussen, J. C.; Ibrahim, S. R.; Brincker, Rune

    result is a Random Decrement function from each measurement. In traditional Random Decrement estimation the triggering condition is a scalar condition, which should only be fulfilled in a single measurement. In vector triggering Random Decrement the triggering condition is a vector condition......This paper deals with applications of the vector triggering Random Decrement technique. This technique is new and developed with the aim of minimizing estimation time and identification errors. The theory behind the technique is discussed in an accompanying paper. The results presented...... in this paper should be regarded as a further documentation of the technique. The key point in Random Decrement estimation is the formulation of a triggering condition. If the triggering condition is fulfilled a time segment from each measurement is picked out and averaged with previous time segments. The final...

  7. Application of Vector Triggering Random Decrement

    DEFF Research Database (Denmark)

    Asmussen, J. C.; Ibrahim, S. R.; Brincker, Rune

    1997-01-01

    result is a Random Decrement function from each measurement. In traditional Random Decrement estimation the triggering condition is a scalar condition, which should only be fulfilled in a single measurement. In vector triggering Random Decrement the triggering condition is a vector condition......This paper deals with applications of the vector triggering Random Decrement technique. This technique is new and developed with the aim of minimizing estimation time and identification errors. The theory behind the technique is discussed in an accompanying paper. The results presented...... in this paper should be regarded as a further documentation of the technique. The key point in Random Decrement estimation is the formulation of a triggering condition. If the triggering condition is fulfilled a time segment from each measurement is picked out and averaged with previous time segments. The final...

  8. Orthogonal polynomials and random matrices

    CERN Document Server

    Deift, Percy

    2000-01-01

    This volume expands on a set of lectures held at the Courant Institute on Riemann-Hilbert problems, orthogonal polynomials, and random matrix theory. The goal of the course was to prove universality for a variety of statistical quantities arising in the theory of random matrix models. The central question was the following: Why do very general ensembles of random n {\\times} n matrices exhibit universal behavior as n {\\rightarrow} {\\infty}? The main ingredient in the proof is the steepest descent method for oscillatory Riemann-Hilbert problems.

  9. An unbiased estimator of the variance of simple random sampling using mixed random-systematic sampling

    OpenAIRE

    Padilla, Alberto

    2009-01-01

    Systematic sampling is a commonly used technique due to its simplicity and ease of implementation. The drawback of this simplicity is that it is not possible to estimate the design variance without bias. There are several ways to circumvent this problem. One method is to suppose that the variable of interest has a random order in the population, so the sample variance of simple random sampling without replacement is used. By means of a mixed random - systematic sample, an unbiased estimator o...

  10. Perturbation Solutions for Random Linear Structural Systems subject to Random Excitation using Stochastic Differential Equations

    DEFF Research Database (Denmark)

    Köyluoglu, H.U.; Nielsen, Søren R.K.; Cakmak, A.S.

    1994-01-01

    perturbation method using stochastic differential equations. The joint statistical moments entering the perturbation solution are determined by considering an augmented dynamic system with state variables made up of the displacement and velocity vector and their first and second derivatives with respect......The paper deals with the first and second order statistical moments of the response of linear systems with random parameters subject to random excitation modelled as white-noise multiplied by an envelope function with random parameters. The method of analysis is basically a second order...... to the random parameters of the problem. Equations for partial derivatives are obtained from the partial differentiation of the equations of motion. The zero time-lag joint statistical moment equations for the augmented state vector are derived from the Itô differential formula. General formulation is given...

  11. Demonstrating quantum random with single photons

    International Nuclear Information System (INIS)

    Bronner, Patrick; Strunz, Andreas; Meyn, Jan-Peter; Silberhorn, Christine

    2009-01-01

    We present an experiment for education which demonstrates random transmission or reflection of heralded single photons on beam splitters. With our set-up, we can realize different quantum random experiments by appropriate settings of polarization rotators. The concept of entanglement is motivated by correlated randomness. The experiments are suitable for undergraduate education and are available as interactive screen experiments.

  12. Ising model of a randomly triangulated random surface as a definition of fermionic string theory

    International Nuclear Information System (INIS)

    Bershadsky, M.A.; Migdal, A.A.

    1986-01-01

    Fermionic degrees of freedom are added to randomly triangulated planar random surfaces. It is shown that the Ising model on a fixed graph is equivalent to a certain Majorana fermion theory on the dual graph. (orig.)

  13. Random processes in nuclear reactors

    CERN Document Server

    Williams, M M R

    1974-01-01

    Random Processes in Nuclear Reactors describes the problems that a nuclear engineer may meet which involve random fluctuations and sets out in detail how they may be interpreted in terms of various models of the reactor system. Chapters set out to discuss topics on the origins of random processes and sources; the general technique to zero-power problems and bring out the basic effect of fission, and fluctuations in the lifetime of neutrons, on the measured response; the interpretation of power reactor noise; and associated problems connected with mechanical, hydraulic and thermal noise sources

  14. Experimental Characterization and Modeling of the Fracturing Behavior of Marcellus Shale

    Science.gov (United States)

    Jin, C.; Li, W.; Sageman, B. B.; Cusatis, G.

    2014-12-01

    Adequate knowledge and prediction of mechanical properties of shale are pivotal to the design of hydraulic fractures. The urgent technical challenge of such an endeavor is how to translate the highly heterogeneous nature of shale into a predictive model of the mechanical properties. Our group addressed this challenge by adopting a combined experimental and numerical approach to investigate fracture processes and failure mechanisms of shale.Lattice Discrete Particle Model (LDPM), having shown superior capabilities in predicting qualitative and quantitative behavior of concrete and concrete-like materials, as shown in Fig. 1, has been adopted to simulate mesoscale behavior of shale. The polyhedral cell system defining the geometric attributes of the rock microstructure is built via a 3D tessellation procedure based on X-ray microtomography results of microstructure and grain size distribution of shale specimens. The adopted tessellation procedure makes use of well-established packing algorithms for no-contact spherical particle placement and non-overlapping volume tessellation. The polyhedral particles interact through triangular facets where appropriate measure of stresses and strains are defined. Especially, LDPM is extended to simulate transversely isotropic materials by using orientation-dependent and strain-dependent strength limits coupled with orientation-dependent normal and shear stiffnesses on each facet. Appropriate interface constitutive equations are formulated to simulate all phenomena occurring at a scale that is smaller than the resolution of LDPM system, including microscopic fracture, frictional contact, particle breakage, pore collapse, and distributed damage. Bedding planes and natural joints are characterized by greatly decreased strength limits for facets within that region. To calibrate/validate the LDPM model, microscopic and mesoscopic experiments, including Brazilian tests, uniaxial compression tests, and three point-bending tests, are

  15. Digital random-number generator

    Science.gov (United States)

    Brocker, D. H.

    1973-01-01

    For binary digit array of N bits, use N noise sources to feed N nonlinear operators; each flip-flop in digit array is set by nonlinear operator to reflect whether amplitude of generator which feeds it is above or below mean value of generated noise. Fixed-point uniform distribution random number generation method can also be used to generate random numbers with other than uniform distribution.

  16. Systematic versus random sampling in stereological studies.

    Science.gov (United States)

    West, Mark J

    2012-12-01

    The sampling that takes place at all levels of an experimental design must be random if the estimate is to be unbiased in a statistical sense. There are two fundamental ways by which one can make a random sample of the sections and positions to be probed on the sections. Using a card-sampling analogy, one can pick any card at all out of a deck of cards. This is referred to as independent random sampling because the sampling of any one card is made without reference to the position of the other cards. The other approach to obtaining a random sample would be to pick a card within a set number of cards and others at equal intervals within the deck. Systematic sampling along one axis of many biological structures is more efficient than random sampling, because most biological structures are not randomly organized. This article discusses the merits of systematic versus random sampling in stereological studies.

  17. INTERRUPTED IN-SITU COMPRESSIVE DEFORMATION EXPERIMENTS ON MMC FOAMS IN AN XCT: EXPERIMENTS AND ESTIMATION OF DISPLACEMENT FIELDS

    Directory of Open Access Journals (Sweden)

    Katharina Losch

    2014-05-01

    Full Text Available The mechanical properties of a metal-matrix composite foam are investigated by interrupted in-situ compressive deformation experiments within an X-ray computed tomography device (XCT. Each in-situ experiment generates a sequence of reconstructed 3D images of the foam microstructure. From these data, the deformation field is estimated by registring the images corresponding to three consecutive steps. To this end, the generic registration framework of the itk software suite is exploited and combined with several image preprocessing steps. Both segmented (binary images having just two grey values for foreground (strut structure and background (pore space and the result of the Euclidean distance transform (EDT on pore space and solid phase are used. The estimation quality is evaluated based on a sequence of synthetic data sets, where the foam’s microstructure is modelled by a random Laguerre tessellation. For large deformations, a combination of non-rigid registration for the EDT images and partwise-rigid registration on strongly deformed regions of the binary images, yields surprisingly small estimation errors.

  18. Analytic vortex solutions on compact hyperbolic surfaces

    International Nuclear Information System (INIS)

    Maldonado, Rafael; Manton, Nicholas S

    2015-01-01

    We construct, for the first time, abelian Higgs vortices on certain compact surfaces of constant negative curvature. Such surfaces are represented by a tessellation of the hyperbolic plane by regular polygons. The Higgs field is given implicitly in terms of Schwarz triangle functions and analytic solutions are available for certain highly symmetric configurations. (paper)

  19. Random quantum operations

    International Nuclear Information System (INIS)

    Bruzda, Wojciech; Cappellini, Valerio; Sommers, Hans-Juergen; Zyczkowski, Karol

    2009-01-01

    We define a natural ensemble of trace preserving, completely positive quantum maps and present algorithms to generate them at random. Spectral properties of the superoperator Φ associated with a given quantum map are investigated and a quantum analogue of the Frobenius-Perron theorem is proved. We derive a general formula for the density of eigenvalues of Φ and show the connection with the Ginibre ensemble of real non-symmetric random matrices. Numerical investigations of the spectral gap imply that a generic state of the system iterated several times by a fixed generic map converges exponentially to an invariant state

  20. Chaos and random matrices in supersymmetric SYK

    Science.gov (United States)

    Hunter-Jones, Nicholas; Liu, Junyu

    2018-05-01

    We use random matrix theory to explore late-time chaos in supersymmetric quantum mechanical systems. Motivated by the recent study of supersymmetric SYK models and their random matrix classification, we consider the Wishart-Laguerre unitary ensemble and compute the spectral form factors and frame potentials to quantify chaos and randomness. Compared to the Gaussian ensembles, we observe the absence of a dip regime in the form factor and a slower approach to Haar-random dynamics. We find agreement between our random matrix analysis and predictions from the supersymmetric SYK model, and discuss the implications for supersymmetric chaotic systems.

  1. Generation and Analysis of Constrained Random Sampling Patterns

    DEFF Research Database (Denmark)

    Pierzchlewski, Jacek; Arildsen, Thomas

    2016-01-01

    Random sampling is a technique for signal acquisition which is gaining popularity in practical signal processing systems. Nowadays, event-driven analog-to-digital converters make random sampling feasible in practical applications. A process of random sampling is defined by a sampling pattern, which...... indicates signal sampling points in time. Practical random sampling patterns are constrained by ADC characteristics and application requirements. In this paper, we introduce statistical methods which evaluate random sampling pattern generators with emphasis on practical applications. Furthermore, we propose...... algorithm generates random sampling patterns dedicated for event-driven-ADCs better than existed sampling pattern generators. Finally, implementation issues of random sampling patterns are discussed....

  2. k-Means: Random Sampling Procedure

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. k-Means: Random Sampling Procedure. Optimal 1-Mean is. Approximation of Centroid (Inaba et al). S = random sample of size O(1/ ); Centroid of S is a (1+ )-approx centroid of P with constant probability.

  3. Fields on a random lattice

    International Nuclear Information System (INIS)

    Itzykson, C.

    1983-10-01

    We review the formulation of field theory and statistical mechanics on a Poissonian random lattice. Topics discussed include random geometry, the construction of field equations for arbitrary spin, the free field spectrum and the question of localization illustrated in the one dimensional case

  4. RandomSpot: A web-based tool for systematic random sampling of virtual slides.

    Science.gov (United States)

    Wright, Alexander I; Grabsch, Heike I; Treanor, Darren E

    2015-01-01

    This paper describes work presented at the Nordic Symposium on Digital Pathology 2014, Linköping, Sweden. Systematic random sampling (SRS) is a stereological tool, which provides a framework to quickly build an accurate estimation of the distribution of objects or classes within an image, whilst minimizing the number of observations required. RandomSpot is a web-based tool for SRS in stereology, which systematically places equidistant points within a given region of interest on a virtual slide. Each point can then be visually inspected by a pathologist in order to generate an unbiased sample of the distribution of classes within the tissue. Further measurements can then be derived from the distribution, such as the ratio of tumor to stroma. RandomSpot replicates the fundamental principle of traditional light microscope grid-shaped graticules, with the added benefits associated with virtual slides, such as facilitated collaboration and automated navigation between points. Once the sample points have been added to the region(s) of interest, users can download the annotations and view them locally using their virtual slide viewing software. Since its introduction, RandomSpot has been used extensively for international collaborative projects, clinical trials and independent research projects. So far, the system has been used to generate over 21,000 sample sets, and has been used to generate data for use in multiple publications, identifying significant new prognostic markers in colorectal, upper gastro-intestinal and breast cancer. Data generated using RandomSpot also has significant value for training image analysis algorithms using sample point coordinates and pathologist classifications.

  5. Virial expansion for almost diagonal random matrices

    Science.gov (United States)

    Yevtushenko, Oleg; Kravtsov, Vladimir E.

    2003-08-01

    Energy level statistics of Hermitian random matrices hat H with Gaussian independent random entries Higeqj is studied for a generic ensemble of almost diagonal random matrices with langle|Hii|2rangle ~ 1 and langle|Hi\

  6. Randomly and Non-Randomly Missing Renal Function Data in the Strong Heart Study: A Comparison of Imputation Methods.

    Directory of Open Access Journals (Sweden)

    Nawar Shara

    Full Text Available Kidney and cardiovascular disease are widespread among populations with high prevalence of diabetes, such as American Indians participating in the Strong Heart Study (SHS. Studying these conditions simultaneously in longitudinal studies is challenging, because the morbidity and mortality associated with these diseases result in missing data, and these data are likely not missing at random. When such data are merely excluded, study findings may be compromised. In this article, a subset of 2264 participants with complete renal function data from Strong Heart Exams 1 (1989-1991, 2 (1993-1995, and 3 (1998-1999 was used to examine the performance of five methods used to impute missing data: listwise deletion, mean of serial measures, adjacent value, multiple imputation, and pattern-mixture. Three missing at random models and one non-missing at random model were used to compare the performance of the imputation techniques on randomly and non-randomly missing data. The pattern-mixture method was found to perform best for imputing renal function data that were not missing at random. Determining whether data are missing at random or not can help in choosing the imputation method that will provide the most accurate results.

  7. Some common random fixed point theorems for contractive type conditions in cone random metric spaces

    Directory of Open Access Journals (Sweden)

    Saluja Gurucharan S.

    2016-08-01

    Full Text Available In this paper, we establish some common random fixed point theorems for contractive type conditions in the setting of cone random metric spaces. Our results unify, extend and generalize many known results from the current existing literature.

  8. Projection correlation between two random vectors.

    Science.gov (United States)

    Zhu, Liping; Xu, Kai; Li, Runze; Zhong, Wei

    2017-12-01

    We propose the use of projection correlation to characterize dependence between two random vectors. Projection correlation has several appealing properties. It equals zero if and only if the two random vectors are independent, it is not sensitive to the dimensions of the two random vectors, it is invariant with respect to the group of orthogonal transformations, and its estimation is free of tuning parameters and does not require moment conditions on the random vectors. We show that the sample estimate of the projection correction is [Formula: see text]-consistent if the two random vectors are independent and root-[Formula: see text]-consistent otherwise. Monte Carlo simulation studies indicate that the projection correlation has higher power than the distance correlation and the ranks of distances in tests of independence, especially when the dimensions are relatively large or the moment conditions required by the distance correlation are violated.

  9. An integrable low-cost hardware random number generator

    Science.gov (United States)

    Ranasinghe, Damith C.; Lim, Daihyun; Devadas, Srinivas; Jamali, Behnam; Zhu, Zheng; Cole, Peter H.

    2005-02-01

    A hardware random number generator is different from a pseudo-random number generator; a pseudo-random number generator approximates the assumed behavior of a real hardware random number generator. Simple pseudo random number generators suffices for most applications, however for demanding situations such as the generation of cryptographic keys, requires an efficient and a cost effective source of random numbers. Arbiter-based Physical Unclonable Functions (PUFs) proposed for physical authentication of ICs exploits statistical delay variation of wires and transistors across integrated circuits, as a result of process variations, to build a secret key unique to each IC. Experimental results and theoretical studies show that a sufficient amount of variation exits across IC"s. This variation enables each IC to be identified securely. It is possible to exploit the unreliability of these PUF responses to build a physical random number generator. There exists measurement noise, which comes from the instability of an arbiter when it is in a racing condition. There exist challenges whose responses are unpredictable. Without environmental variations, the responses of these challenges are random in repeated measurements. Compared to other physical random number generators, the PUF-based random number generators can be a compact and a low-power solution since the generator need only be turned on when required. A 64-stage PUF circuit costs less than 1000 gates and the circuit can be implemented using a standard IC manufacturing processes. In this paper we have presented a fast and an efficient random number generator, and analysed the quality of random numbers produced using an array of tests used by the National Institute of Standards and Technology to evaluate the randomness of random number generators designed for cryptographic applications.

  10. All-optical fast random number generator.

    Science.gov (United States)

    Li, Pu; Wang, Yun-Cai; Zhang, Jian-Zhong

    2010-09-13

    We propose a scheme of all-optical random number generator (RNG), which consists of an ultra-wide bandwidth (UWB) chaotic laser, an all-optical sampler and an all-optical comparator. Free from the electric-device bandwidth, it can generate 10Gbit/s random numbers in our simulation. The high-speed bit sequences can pass standard statistical tests for randomness after all-optical exclusive-or (XOR) operation.

  11. Generalization of Random Intercept Multilevel Models

    Directory of Open Access Journals (Sweden)

    Rehan Ahmad Khan

    2013-10-01

    Full Text Available The concept of random intercept models in a multilevel model developed by Goldstein (1986 has been extended for k-levels. The random variation in intercepts at individual level is marginally split into components by incorporating higher levels of hierarchy in the single level model. So, one can control the random variation in intercepts by incorporating the higher levels in the model.

  12. Micro-Texture Synthesis by Phase Randomization

    Directory of Open Access Journals (Sweden)

    Bruno Galerne

    2011-09-01

    Full Text Available This contribution is concerned with texture synthesis by example, the process of generating new texture images from a given sample. The Random Phase Noise algorithm presented here synthesizes a texture from an original image by simply randomizing its Fourier phase. It is able to reproduce textures which are characterized by their Fourier modulus, namely the random phase textures (or micro-textures.

  13. Random linear codes in steganography

    Directory of Open Access Journals (Sweden)

    Kamil Kaczyński

    2016-12-01

    Full Text Available Syndrome coding using linear codes is a technique that allows improvement in the steganographic algorithms parameters. The use of random linear codes gives a great flexibility in choosing the parameters of the linear code. In parallel, it offers easy generation of parity check matrix. In this paper, the modification of LSB algorithm is presented. A random linear code [8, 2] was used as a base for algorithm modification. The implementation of the proposed algorithm, along with practical evaluation of algorithms’ parameters based on the test images was made.[b]Keywords:[/b] steganography, random linear codes, RLC, LSB

  14. Random walk through fractal environments

    International Nuclear Information System (INIS)

    Isliker, H.; Vlahos, L.

    2003-01-01

    We analyze random walk through fractal environments, embedded in three-dimensional, permeable space. Particles travel freely and are scattered off into random directions when they hit the fractal. The statistical distribution of the flight increments (i.e., of the displacements between two consecutive hittings) is analytically derived from a common, practical definition of fractal dimension, and it turns out to approximate quite well a power-law in the case where the dimension D F of the fractal is less than 2, there is though, always a finite rate of unaffected escape. Random walks through fractal sets with D F ≤2 can thus be considered as defective Levy walks. The distribution of jump increments for D F >2 is decaying exponentially. The diffusive behavior of the random walk is analyzed in the frame of continuous time random walk, which we generalize to include the case of defective distributions of walk increments. It is shown that the particles undergo anomalous, enhanced diffusion for D F F >2 is normal for large times, enhanced though for small and intermediate times. In particular, it follows that fractals generated by a particular class of self-organized criticality models give rise to enhanced diffusion. The analytical results are illustrated by Monte Carlo simulations

  15. Deception, efficiency, and random groups - Psychology and the gradual origination of the random group design

    NARCIS (Netherlands)

    Dehue, T

    1997-01-01

    In the life sciences, psychology, and large parts of the other social sciences, the ideal experiment is a comparative experiment with randomly composed experimental and control groups. Historians and practitioners of these sciences generally attribute the invention of this "random group design" to

  16. The random continued fraction transformation

    Science.gov (United States)

    Kalle, Charlene; Kempton, Tom; Verbitskiy, Evgeny

    2017-03-01

    We introduce a random dynamical system related to continued fraction expansions. It uses random combinations of the Gauss map and the Rényi (or backwards) continued fraction map. We explore the continued fraction expansions that this system produces, as well as the dynamical properties of the system.

  17. Escher-like quasiperiodic heterostructures

    International Nuclear Information System (INIS)

    Barriuso, A G; Monzon, J J; Sanchez-Soto, L L; Costa, A F

    2009-01-01

    Quasiperiodic heterostructures present unique structural, electronic and vibrational properties, connected to the existence of incommensurate periods. We go beyond previous schemes, such as Fibonacci or Thue-Morse, based on substitutional sequences, by introducing construction rules generated by tessellations of the unit disc by regular polygons. We explore some of the properties exhibited by these systems. (fast track communication)

  18. Escher-like quasiperiodic heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Barriuso, A G; Monzon, J J; Sanchez-Soto, L L [Departamento de Optica, Facultad de Fisica, Universidad Complutense, 28040 Madrid (Spain); Costa, A F [Departamento de Matematicas Fundamentales, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia, Senda del Rey 9, 28040 Madrid (Spain)

    2009-05-15

    Quasiperiodic heterostructures present unique structural, electronic and vibrational properties, connected to the existence of incommensurate periods. We go beyond previous schemes, such as Fibonacci or Thue-Morse, based on substitutional sequences, by introducing construction rules generated by tessellations of the unit disc by regular polygons. We explore some of the properties exhibited by these systems. (fast track communication)

  19. RANDOM WALK HYPOTHESIS IN FINANCIAL MARKETS

    Directory of Open Access Journals (Sweden)

    Nicolae-Marius JULA

    2017-05-01

    Full Text Available Random walk hypothesis states that the stock market prices do not follow a predictable trajectory, but are simply random. If you are trying to predict a random set of data, one should test for randomness, because, despite the power and complexity of the used models, the results cannot be trustworthy. There are several methods for testing these hypotheses and the use of computational power provided by the R environment makes the work of the researcher easier and with a cost-effective approach. The increasing power of computing and the continuous development of econometric tests should give the potential investors new tools in selecting commodities and investing in efficient markets.

  20. Dynamics and bifurcations of random circle diffeomorphisms

    NARCIS (Netherlands)

    Zmarrou, H.; Homburg, A.J.

    2008-01-01

    We discuss iterates of random circle diffeomorphisms with identically distributed noise, where the noise is bounded and absolutely continuous. Using arguments of B. Deroin, V.A. Kleptsyn and A. Navas, we provide precise conditions under which random attracting fixed points or random attracting