WorldWideScience

Sample records for random thermal motion

  1. Quantum radiation produced by a uniformly accelerating charged particle in thermal random motion

    Science.gov (United States)

    Oshita, Naritaka; Yamamoto, Kazuhiro; Zhang, Sen

    2016-04-01

    We investigate the properties of quantum radiation produced by a uniformly accelerating charged particle undergoing thermal random motion, which originates from the coupling to the vacuum fluctuations of the electromagnetic field. Because the thermal random motion is regarded to result from the Unruh effect, the quantum radiation might give us hints of the Unruh effect. The energy flux of the quantum radiation is negative and smaller than that of Larmor radiation by one order in a /m , where a is the constant acceleration and m is the mass of the particle. Thus, the quantum radiation appears to be a suppression of the classical Larmor radiation. The quantum interference effect plays an important role in this unique signature. The results are consistent with the predictions of a model consisting of a particle coupled to a massless scalar field as well as those of the previous studies on the quantum effect on the Larmor radiation.

  2. Disentangling random thermal motion of particles and collective expansion of source from transverse momentum spectra in high energy collisions

    Science.gov (United States)

    Wei, Hua-Rong; Liu, Fu-Hu; Lacey, Roy A.

    2016-12-01

    In the framework of a multisource thermal model, we describe experimental results of the transverse momentum spectra of final-state light flavor particles produced in gold-gold (Au-Au), copper-copper (Cu-Cu), lead-lead (Pb-Pb), proton-lead (p-Pb), and proton-proton (p -p) collisions at various energies, measured by the PHENIX, STAR, ALICE, and CMS Collaborations, by using the Tsallis-standard (Tsallis form of Fermi-Dirac or Bose-Einstein), Tsallis, and two- or three-component standard distributions which can be in fact regarded as different types of ‘thermometers’ or ‘thermometric scales’ and ‘speedometers’. A central parameter in the three distributions is the effective temperature which contains information on the kinetic freeze-out temperature of the emitting source and reflects the effects of random thermal motion of particles as well as collective expansion of the source. To disentangle both effects, we extract the kinetic freeze-out temperature from the intercept of the effective temperature (T) curve as a function of particle’s rest mass (m 0) when plotting T versus m 0, and the mean transverse flow velocity from the slope of the mean transverse momentum ( ) curve as a function of mean moving mass (\\overline{m}) when plotting versus \\overline{m}.

  3. Brownian Motion Problem: Random Walk and Beyond

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 8. Brownian Motion Problem: Random Walk and Beyond. Shama Sharma Vishwamittar. General Article Volume 10 Issue 8 August 2005 pp 49-66. Fulltext. Click here to view fulltext PDF. Permanent link:

  4. Correlated thermal motion of two liquid Pb inclusions attached to a fixed dislocation in an Al matrix

    DEFF Research Database (Denmark)

    Prokofjev, Sergei I.; Johnson, Erik

    2017-01-01

    Thermal motion of two liquid lead inclusions attached to the same fixed dislocation in an Al-0.65 at% Pb alloy is studied in situ at 447 °C using transmission electron microscopy. Observations of their motion is recorded on video and analyzed frame by frame. Random oscillatory motion of the inclu......Thermal motion of two liquid lead inclusions attached to the same fixed dislocation in an Al-0.65 at% Pb alloy is studied in situ at 447 °C using transmission electron microscopy. Observations of their motion is recorded on video and analyzed frame by frame. Random oscillatory motion...

  5. Chaos the science of predictable random motion

    CERN Document Server

    Kautz, Richard

    2011-01-01

    Based on only elementary mathematics, this engaging account of chaos theory bridges the gap between introductions for the layman and college-level texts. It develops the science of dynamics in terms of small time steps, describes the phenomenon of chaos through simple examples, and concludes with a close look at a homoclinic tangle, the mathematical monster at the heart of chaos. The presentation is enhanced by many figures, animations of chaotic motion (available on a companion CD), and biographical sketches of the pioneers of dynamics and chaos theory. To ensure accessibility to motivated high school students, care has been taken to explain advanced mathematical concepts simply, including exponentials and logarithms, probability, correlation, frequency analysis, fractals, and transfinite numbers. These tools help to resolve the intriguing paradox of motion that is predictable and yet random, while the final chapter explores the various ways chaos theory has been put to practical use.

  6. Simulating intrafraction prostate motion with a random walk model

    Directory of Open Access Journals (Sweden)

    Tobias Pommer, PhD

    2017-07-01

    Conclusions: Random walk modeling is feasible and recreated the characteristics of the observed prostate motion. Introducing artificial transient motion did not improve the overall agreement, although the first 30 seconds of the traces were better reproduced. The model provides a simple estimate of prostate motion during delivery of radiation therapy.

  7. Killing (absorption) versus survival in random motion

    Science.gov (United States)

    Garbaczewski, Piotr

    2017-09-01

    We address diffusion processes in a bounded domain, while focusing on somewhat unexplored affinities between the presence of absorbing and/or inaccessible boundaries. For the Brownian motion (Lévy-stable cases are briefly mentioned) model-independent features are established of the dynamical law that underlies the short-time behavior of these random paths, whose overall lifetime is predefined to be long. As a by-product, the limiting regime of a permanent trapping in a domain is obtained. We demonstrate that the adopted conditioning method, involving the so-called Bernstein transition function, works properly also in an unbounded domain, for stochastic processes with killing (Feynman-Kac kernels play the role of transition densities), provided the spectrum of the related semigroup operator is discrete. The method is shown to be useful in the case, when the spectrum of the generator goes down to zero and no isolated minimal (ground state) eigenvalue is in existence, like in the problem of the long-term survival on a half-line with a sink at origin.

  8. Thermally-induced structural motions of satellite solar arrays

    Science.gov (United States)

    Johnston, John Dennis

    1999-11-01

    Satellites have experienced attitude disturbances resulting from thermally. induced structural motions of flexible appendages since the early days of the space program. Thermally-induced structural motions are typically initiated during orbital eclipse transitions when a satellite exits from or enters into the Earth's shadow. The accompanying rapid changes in thermal loading may lead to time-varying temperature differences through the cross-section of appendages resulting in differential thermal expansion and corresponding structural deformations. Since the total angular momentum of the system must be conserved, motions of flexible appendages such as booms and solar arrays result in rigid body rotations of the entire satellite. These potentially large attitude disturbances may violate satellite pointing and jitter requirements. This research investigates thermally-induced structural motions of rigid panel solar arrays (solar panels) through analytical and experimental studies. Orbital eclipse transition heating and thermal analyses were completed to study solar panel thermal behavior and provide results for input to dynamics analyses. A hybrid coordinate dynamical model was utilized to study the planar dynamics of a simple satellite consisting of a rigid hub with a cantilevered flexible solar panel undergoing thermally-induced structural motions. Laboratory experimental studies were carried out to gain new insight into thermal-structural behavior and to validate analytical models. The experimental studies investigated the thermal-structural performance of honeycomb sandwich panels and satellite solar panel hardware subject to simulated eclipse transition heating. Results from the analytical and experimental studies illustrate the importance of the through-the-thickness temperature difference and its time derivatives as well as the ratio of the characteristic thermal and structural response times in solar panel thermally-induced structural motions. The thermal

  9. Thermal Actuation for Precision Micro Motion and Positioning

    NARCIS (Netherlands)

    Paalvast, S.L.

    2010-01-01

    The primary goal of this research was to study the feasibility of a thermal micro actuator for improved tracking performance of a Hard Disk Drive (HDD), and the feasibility of thermal actuation for precision micro motion and positioning in general. The fast dynamics of the micro actuator allows it

  10. Monitoring Motion of Pigs in Thermal Videos

    DEFF Research Database (Denmark)

    Gronskyte, Ruta; Kulahci, Murat; Clemmensen, Line Katrine Harder

    2013-01-01

    We propose a new approach for monitoring animal movement in thermal videos. The method distinguishes movements as walking in the expected direction from walking in the opposite direction, stopping or lying down. The method utilizes blob detection combined with opti-cal ow to segment the pigs...

  11. Motion of particles in a thermal boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Schefer, R.W.; Agrawal, Y.; Cheng, R.K.; Robben, F.; Talbot, L.

    1978-06-15

    In the course of using laser Doppler velocimetry to study combustion in a thermal boundary layer, the particle count rate was found to decrease abruptly to zero inside the boundary layer. Experimental and theoretical investigation of this phenomenon was carried out. The motion of the particles may be due to the combined effects of thermophoresis and radiative heating.

  12. Cell motility as random motion: A review

    DEFF Research Database (Denmark)

    Selmeczi, Dávid; Li, Liwen; Pedersen, Leif

    2008-01-01

    The historical co-evolution of biological motility models with models of Brownian motion is outlined. Recent results for how to derive cell-type-specific motility models from experimental cell trajectories are reviewed. Experimental work in progress, which tests the generality of this phenomenolo...... of this phenomenological model building is reported. So is theoretical work in progress, which explains the characteristic time scales and correlations of phenomenological models in terms of the dynamics of cytoskeleton, lamellipodia, and pseudopodia.......The historical co-evolution of biological motility models with models of Brownian motion is outlined. Recent results for how to derive cell-type-specific motility models from experimental cell trajectories are reviewed. Experimental work in progress, which tests the generality...

  13. Circular random motion in diatom gliding under isotropic conditions.

    Science.gov (United States)

    Gutiérrez-Medina, Braulio; Guerra, Andrés Jiménez; Maldonado, Ana Iris Peña; Rubio, Yadiralia Covarrubias; Meza, Jessica Viridiana García

    2014-11-13

    How cells migrate has been investigated primarily for the case of trajectories composed by joined straight segments. In contrast, little is known when cellular motion follows intrinsically curved paths. Here, we use time-lapse optical microscopy and automated trajectory tracking to investigate how individual cells of the diatom Nitzschia communis glide across surfaces under isotropic environmental conditions. We find a distinct kind of random motion, where trajectories are formed by circular arcs traveled at constant speed, alternated with random stoppages, direction reversals and changes in the orientation of the arcs. Analysis of experimental and computer-simulated trajectories show that the circular random motion of diatom gliding is not optimized for long-distance travel but rather for recurrent coverage of limited surface area. These results suggest that one main biological role for this type of diatom motility is to efficiently build the foundation of algal biofilms.

  14. Performance characterization of Watson Ahumada motion detector using random dot rotary motion stimuli.

    Directory of Open Access Journals (Sweden)

    Siddharth Jain

    Full Text Available The performance of Watson & Ahumada's model of human visual motion sensing is compared against human psychophysical performance. The stimulus consists of random dots undergoing rotary motion, displayed in a circular annulus. The model matches psychophysical observer performance with respect to most parameters. It is able to replicate some key psychophysical findings such as invariance of observer performance to dot density in the display, and decrease of observer performance with frame duration of the display.Associated with the concept of rotary motion is the notion of a center about which rotation occurs. One might think that for accurate estimation of rotary motion in the display, this center must be accurately known. A simple vector analysis reveals that this need not be the case. Numerical simulations confirm this result, and may explain the position invariance of MST(d cells. Position invariance is the experimental finding that rotary motion sensitive cells are insensitive to where in their receptive field rotation occurs.When all the dots in the display are randomly drawn from a uniform distribution, illusory rotary motion is perceived. This case was investigated by Rose & Blake previously, who termed the illusory rotary motion the omega effect. Two important experimental findings are reported concerning this effect. First, although the display of random dots evokes perception of rotary motion, the direction of motion perceived does not depend on what dot pattern is shown. Second, the time interval between spontaneous flips in perceived direction is lognormally distributed (mode approximately 2 s. These findings suggest the omega effect fits in the category of a typical bistable illusion, and therefore the processes that give rise to this illusion may be the same processes that underlie much of other bistable phenomenon.

  15. Thermal singularity and droplet motion in one-component fluids on solid substrates with thermal gradients

    KAUST Repository

    Xu, Xinpeng

    2012-06-26

    Using a continuum model capable of describing the one-component liquid-gas hydrodynamics down to the contact line scale, we carry out numerical simulation and physical analysis for the droplet motion driven by thermal singularity. For liquid droplets in one-component fluids on heated or cooled substrates, the liquid-gas interface is nearly isothermal. Consequently, a thermal singularity occurs at the contact line and the Marangoni effect due to temperature gradient is suppressed. Through evaporation or condensation in the vicinity of the contact line, the thermal singularity makes the contact angle increase with the increasing substrate temperature. This effect on the contact angle can be used to move the droplets on substrates with thermal gradients. Our numerical results for this kind of droplet motion are explained by a simple fluid dynamical model at the droplet length scale. Since the mechanism for droplet motion is based on the change of contact angle, a separation of length scales is exhibited through a comparison between the droplet motion induced by a wettability gradient and that by a thermal gradient. It is shown that the flow field at the droplet length scale is independent of the statics or dynamics at the contact line scale.

  16. 'Dicty dynamics': Dictyostelium motility as persistent random motion

    DEFF Research Database (Denmark)

    Li, Liang; Cox, Edward C; Flyvbjerg, Henrik

    2011-01-01

    than the usual tracking by centroid or nucleus. Our data account for cell individuality and dictate a model that extends the cell-type specific models recently derived for mammalian cells. Two generalized Langevin equations model stochastic periodic pseudopod motion parallel and orthogonal...... to the amoeba's direction of motion. This motion propels the amoeba with a random periodic left–right waddle in a direction that has a long persistence time. The model fully accounts for the statistics of the experimental trajectories, including velocity power spectra and auto-correlations, non......-Gaussian velocity distributions, and multiplicative noise. Thus, we find neither need nor place in our data for an interpretation in terms of anomalous diffusion. The model faithfully captures cell individuality as different parameter values in the model, and serves as a basis for integrating the local mechanics...

  17. Random forcing of geostrophic motion in rotating stratified turbulence

    Science.gov (United States)

    Waite, Michael L.

    2017-12-01

    Random forcing of geostrophic motion is a common approach in idealized simulations of rotating stratified turbulence. Such forcing represents the injection of energy into large-scale balanced motion, and the resulting breakdown of quasi-geostrophic turbulence into inertia-gravity waves and stratified turbulence can shed light on the turbulent cascade processes of the atmospheric mesoscale. White noise forcing is commonly employed, which excites all frequencies equally, including frequencies much higher than the natural frequencies of large-scale vortices. In this paper, the effects of these high frequencies in the forcing are investigated. Geostrophic motion is randomly forced with red noise over a range of decorrelation time scales τ, from a few time steps to twice the large-scale vortex time scale. It is found that short τ (i.e., nearly white noise) results in about 46% more gravity wave energy than longer τ, despite the fact that waves are not directly forced. We argue that this effect is due to wave-vortex interactions, through which the high frequencies in the forcing are able to excite waves at their natural frequencies. It is concluded that white noise forcing should be avoided, even if it is only applied to the geostrophic motion, when a careful investigation of spontaneous wave generation is needed.

  18. The Poincaré Map of Randomly Perturbed Periodic Motion

    Science.gov (United States)

    Hitczenko, Pawel; Medvedev, Georgi S.

    2013-10-01

    A system of autonomous differential equations with a stable limit cycle and perturbed by small white noise is analyzed in this work. In the vicinity of the limit cycle of the unperturbed deterministic system, we define, construct, and analyze the Poincaré map of the randomly perturbed periodic motion. We show that the time of the first exit from a small neighborhood of the fixed point of the map, which corresponds to the unperturbed periodic orbit, is well approximated by the geometric distribution. The parameter of the geometric distribution tends to zero together with the noise intensity. Therefore, our result can be interpreted as an estimate of the stability of periodic motion to random perturbations. In addition, we show that the geometric distribution of the first exit times translates into statistical properties of solutions of important differential equation models in applications. To this end, we demonstrate three distinct examples from mathematical neuroscience featuring complex oscillatory patterns characterized by the geometric distribution. We show that in each of these models the statistical properties of emerging oscillations are fully explained by the general properties of randomly perturbed periodic motions identified in this paper.

  19. Motion compensation for ultrasound thermal imaging using motion-mapped reference model: an in vivo mouse study.

    Science.gov (United States)

    Seo, Joonho; Kim, Sun Kwon; Kim, Young-sun; Choi, Kiwan; Kong, Dong Geon; Bang, Won-Chul

    2014-11-01

    Ultrasound (US)-based thermal imaging is very sensitive to tissue motion, which is a major obstacle to apply US temperature monitoring to noninvasive thermal therapies of in vivo subjects. In this study, we aim to develop a motion compensation method for stable US thermal imaging in in vivo subjects. Based on the assumption that the major tissue motion is approximately periodic caused by respiration, we propose a motion compensation method for change in backscattered energy (CBE) with multiple reference frames. Among the reference frames, the most similar reference to the current frame is selected to subtract the respiratory-induced motions. Since exhaustive reference searching in all stored reference frames can impede real-time thermal imaging, we improve the reference searching by using a motion-mapped reference model. We tested our method in six tumor-bearing mice with high intensity focused ultrasound (HIFU) sonication in the tumor volume until the temperature had increased by 7°C. The proposed motion compensation was evaluated by root-mean-square-error (RMSE) analysis between the estimated temperature by CBE and the measured temperature by thermocouple. As a result, the mean ±SD RMSE in the heating range was 1.1±0.1°C with the proposed method, while the corresponding result without motion compensation was 4.3±2.6°C. In addition, with the idea of motion-mapped reference frame, total processing time to produce a frame of thermal image was reduced in comparison with the exhaustive reference searching, which enabled the motion-compensated thermal imaging in 15 frames per second with 150 reference frames under 50% HIFU duty ratio.

  20. Thermal structure of a lake with water in vertical motion

    Energy Technology Data Exchange (ETDEWEB)

    Zito, G.; Mongelli, F. (Bari Univ. (Italy). Ist. di Geodesia e Geofisica)

    The vertical temperature structures of the seasonal thermocline of two lakes in temperate latitude with different feedings have been examined experimentally and reproduced theoretically by the basic equation of heat diffusion. One of these lakes is fed mainly from springs emerging from the lake bottom: as a consequence a vertical motion of water is established. The other lake is fed from the former by a small superficial channel. It is argued that the observed quantitative features of the stratification cycle agree with the theoretical calculations in both lakes with the same value of the molecular thermal diffusivity. Moreover, the seasonal thermocline of the lake with the bottom feeding is reduced: this involves a faster drop in the temperature amplitude of the annual cycle.

  1. Spin Injection in Thermally Assisted Magnetic Random Access Memory

    National Research Council Canada - National Science Library

    Deak, James G

    2005-01-01

    An integrated thermal, micromagnetic, spin-momentum-transfer (SMT) model was developed to study the effect of SMT on the programming current required for thermally assisted magnetic random access memory (MRAM...

  2. Saccadic Tracking with Random Walk (brownian Motion) Stimuli.

    Science.gov (United States)

    Horner, Douglas Gordon

    This study was designed to evaluate the saccadic system's response to continuously presented random walk (Brownian motion) stimuli. Our goals were: (1) to examine how closely timed consecutive saccades interact; and (2) to estimate the response modification time for the new position of the stimulus to give an estimate of integration and decision delays. Horizontal eye movements resulting from rapid continuous random target movements were recorded. Step amplitudes of 1.5 and 3.0 degrees were alternated between single- and rapid double-step movements every 200 to 400 msec. From these random multiple stimulus step sequences, saccadic responses to single 3.0 degree step stimuli were collected for subjects to evaluate interactions of consecutive saccades. The results showed that: (1) subjects are capable of making independent goal directed saccades with intersaccadic intervals as short as 50 msec, and (2) subjects had individual biases in the direction of the successive saccades. The main interaction between saccades was related to the spatial error of the preceding saccade combining with the new stimulus step to yield the new error signal for the next saccade. The magnitude of the new retinal error signal was reflected in the latency of the following saccade. To evaluate the decision period of the saccadic system, the single-step responses were used as templates to assess the modification times for staircase, pulse under -return and pulse over-return double-step stimuli. The responses were organized by whether consecutive saccades continued in the same direction or in the opposite direction. The results on the modification times indicate saccadic responses are directed to the new stimulus 85 to 90 msec after the new position of the stimulus. This modification time was independent of stimuli and preferred direction of responses. The 85-90 msec modification delay is used to estimate the time interval needed to program the next saccade.

  3. In search of random uncorrelated particle motion (RUM) in a simple random flow field

    CERN Document Server

    Reeks, Michael W; Soldati, Alfredo

    2012-01-01

    DNS studies of dispersed particle motion in isotropic homogeneous turbulence [1] have revealed the existence of a component of random uncorrelated motion (RUM)dependent on the particle inertia {\\tau}p(normalised particle response time or Stoke number). This paper reports the presence of RUM in a simple linear random smoothly varying flow field of counter rotating vortices where the two-particle velocity correlation was measured as a function of spatial separation. Values of the correlation less than one for zero separation indicated the presence of RUM. In terms of Stokes number, the motion of the particles in one direction corresponds to either a heavily damped ({\\tau}p 0.25)harmonic oscillator. In the lightly damped case the particles overshoot the stagnation lines of the flow and are projected from one vortex to another (the so-called sling-shot effect). It is shown that RUM occurs only when {\\tau}p > 0.25, increasing monotonically with increasing Stokes number. Calculations of the particle pair separatio...

  4. High-Speed AFM Images of Thermal Motion Provide Stiffness Map of Interfacial Membrane Protein Moieties

    OpenAIRE

    Preiner, Johannes; Horner, Andreas; Karner, Andreas; Ollinger, Nicole; Siligan, Christine; Pohl, Peter; Hinterdorfer, Peter

    2014-01-01

    The flexibilities of extracellular loops determine ligand binding and activation of membrane receptors. Arising from fluctuations in inter- and intraproteinaceous interactions, flexibility manifests in thermal motion. Here we demonstrate that quantitative flexibility values can be extracted from directly imaging the thermal motion of membrane protein moieties using high-speed atomic force microscopy (HS-AFM). Stiffness maps of the main periplasmic loops of single reconstituted water channels ...

  5. Modeling on thermally induced coupled micro-motions of satellite with complex flexible appendages

    Directory of Open Access Journals (Sweden)

    Zhicheng Zhou

    2015-06-01

    Full Text Available To describe the characteristics of thermally induced coupled micro-motions more exactly, a numerical model is proposed for a satellite system consisting of a rigid body and the complex appendages. The coupled governing equations including the effects of transient temperature differences are formulated within the framework of the Lagrangian Method based on the finite element models of flexible structures. Meanwhile, the problem of coupling between attitude motions of rigid body and vibrations of flexible attachments are addressed with explicit expressions. Thermally induced micro-motions are examined in detail for a simple satellite with a large solar panel under the disturbance of thermal environment from earth shadow to sunlight area in the earth orbit. The results show that the thermal–mechanical performances of an on-orbit satellite can be well predicted by the proposed finite element model.

  6. THERMAL AND AERODYNAMIC PERFORMANCES OF THE SUPERSONIC MOTION

    Directory of Open Access Journals (Sweden)

    Dejan P Ninković

    2010-01-01

    Full Text Available Generally speaking, Mach number of 4 can be taken as a boundary value for transition from conditions for supersonic, into the area of hypersonic flow, distinguishing two areas: area of supersonic in which the effects of the aerodynamic heating can be neglected and the area of hypersonic, in which the thermal effects become dominant. This paper presents the effects in static and dynamic areas, as well as presentation of G.R.O.M. software for determination of the values of aerodynamic derivatives, which was developed on the basis of linearized theory of supersonic flow. Validation of developed software was carried out through different types of testing, proving its usefulness for engineering practice in the area of supersonic wing aerodynamic loading calculations, even at high Mach numbers, with dominant thermal effects.

  7. Human confort response to random motions with a dominant rolling motion

    Science.gov (United States)

    Stone, R. W., Jr.

    1975-01-01

    Subjective ride comfort response ratings were measured on a visual motion simulator with rolling velocity inputs with various power spectra shapes and magnitudes. The results show only little influence of spectra shape on comfort response. The effects of magnitude on comfort response indicate the applicability of psychophysical precepts for comfort modeling.

  8. Thermal Motion of Steps and Vacancies in SILICON(001) by Scanning Tunneling Microscopy

    Science.gov (United States)

    Kitamura, Nobuyoshi

    Thermal motion of steps and vacancies plays important roles in surface kinetic processes. Using a scanning tunneling microscope with the new capability to image heated samples, we have conducted direct observations of the motion of monatomic-height steps and vacancies on Si(001) at the atomic level in the temperature range of 490 to 530K. We clarify behaviors of steps and vacancies specific to the Si(001) surface. The tip-to-sample drift caused by the sample heating has been reduced to about 0.01 A/sec by applying linear voltage ramps with a precisely adjusted rate to the piezo tube scanner. The low drift rate allows detailed analyses of individual structural changes at steps and vacancies within the same region for ~ 1 hour. We find that motion of vacancies is predominantly along the dimer rows, and that creation and annihilation events occur in the terraces rather than at steps. In particular, diffusion of the single-dimer vacancy has been analyzed in detail, and an activation energy of 1.7 +/- 0.4 eV has been measured for its diffusion. Structural changes at steps are observed at the ends of dimer rows as either additions or deletions of a pair of dimers. We observe that changes mainly occur nearby kinks and those of the same sign are clustered together. It is shown that these changes involve nucleation or dissociation of dimers and long range transport of monomers, and that they are inconsistent with random nucleation and dissociation of dimers. All the observations are quantitatively reproduced by a Metropolis Monte Carlo simulation with a Hamiltonian containing only kink and corner energies. By classifying the elementary reactions at steps based on the same Hamiltonian, we find that hopping of a unit kink along the step is the predominant type of reactions. This finding leads to a simple explanation for all the observations. At our temperatures, changes at steps are governed by energy differences among local configurations, which are only on the order of 0

  9. Neutron moderation theory with thermal motion of the moderator nuclei

    Science.gov (United States)

    Rusov, V. D.; Tarasov, V. A.; Chernezhenko, S. A.; Kakaev, A. A.; Smolyar, V. P.

    2017-09-01

    In this paper we present the analytical expression for the neutron scattering law for an isotropic source of neutrons, obtained within the framework of the gas model with the temperature of the moderating medium as a parameter. The obtained scattering law is based on the solution of the general kinematic problem of elastic scattering of neutrons on nuclei in the L-system. Both the neutron and the nucleus possess arbitrary velocities in the L-system. For the new scattering law we obtain the flux densities and neutron moderation spectra as functions of temperature for the reactor fissile medium. The expressions for the moderating neutrons spectra allow reinterpreting the physical nature of the underlying processes in the thermal region.

  10. Neutron moderation theory with thermal motion of the moderator nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Rusov, V.D.; Tarasov, V.A.; Chernezhenko, S.A.; Kakaev, A.A.; Smolyar, V.P. [Odessa National Polytechnic University, Department of Theoretical and Experimental Nuclear Physics, Odessa (Ukraine)

    2017-09-15

    In this paper we present the analytical expression for the neutron scattering law for an isotropic source of neutrons, obtained within the framework of the gas model with the temperature of the moderating medium as a parameter. The obtained scattering law is based on the solution of the general kinematic problem of elastic scattering of neutrons on nuclei in the L-system. Both the neutron and the nucleus possess arbitrary velocities in the L-system. For the new scattering law we obtain the flux densities and neutron moderation spectra as functions of temperature for the reactor fissile medium. The expressions for the moderating neutrons spectra allow reinterpreting the physical nature of the underlying processes in the thermal region. (orig.)

  11. Assessing randomness and complexity in human motion trajectories through analysis of symbolic sequences

    Directory of Open Access Journals (Sweden)

    Zhen ePeng

    2014-03-01

    Full Text Available Complexity is a hallmark of intelligent behavior consisting both of regular patterns and random variation. To quantitatively assess the complexity and randomness of human motion, we designed a motor task in which we translated subjects' motion trajectories into strings of symbol sequences. In the first part of the experiment participants were asked to perform self-paced movements to create repetitive patterns, copy pre-specified letter sequences, and generate random movements. To investigate whether the degree of randomness can be manipulated, in the second part of the experiment participants were asked to perform unpredictable movements in the context of a pursuit game, where they received feedback from an online Bayesian predictor guessing their next move. We analyzed symbol sequences representing subjects' motion trajectories with five common complexity measures: predictability, compressibility, approximate entropy, Lempel-Ziv complexity, as well as effective measure complexity. We found that subjects’ self-created patterns were the most complex, followed by drawing movements of letters and self-paced random motion. We also found that participants could change the randomness of their behavior depending on context and feedback. Our results suggest that humans can adjust both complexity and regularity in different movement types and contexts and that this can be assessed with information-theoretic measures of the symbolic sequences generated from movement trajectories.

  12. Stochastic modeling for starting-time of phase evolution of random seismic ground motions

    Directory of Open Access Journals (Sweden)

    Yongbo Peng

    2014-01-01

    Full Text Available In response to the challenge inherent in classical high-dimensional models of random ground motions, a family of simulation methods for non-stationary seismic ground motions was developed previously through employing a wave-group propagation formulation with phase spectrum model built up on the frequency components' starting-time of phase evolution. The present paper aims at extending the formulation to the simulation of non-stationary random seismic ground motions. The ground motion records associated with N—S component of Northridge Earthquake at the type-II site are investigated. The frequency components' starting-time of phase evolution of is identified from the ground motion records, and is proved to admit the Gamma distribution through data fitting. Numerical results indicate that the simulated random ground motion features zero-mean, non-stationary, and non-Gaussian behaviors, and the phase spectrum model with only a few starting-times of phase evolution could come up with a sound contribution to the simulation.

  13. Thermally Activated Motion of Sodium Cations in Insulating Parent Low-Silica X Zeolite

    Science.gov (United States)

    Igarashi, Mutsuo; Jeglič, Peter; Mežnaršič, Tadej; Nakano, Takehito; Nozue, Yasuo; Watanabe, Naohiro; Arčon, Denis

    2017-07-01

    We report a 23Na spin-lattice relaxation rate, T1 - 1, in low-silica X zeolite. T1 - 1 follows multiple BPP-type behavior as a result of thermal motion of sodium cations in insulating material. The estimated lowest activation energy of 15 meV is much lower than 100 meV observed previously for sodium motion in heavily Na-loaded samples and is most likely attributed to short-distance jumps of sodium cations between sites within the same supercage.

  14. Structure and thermal motion of phosphorylethanolamine at 122 K from neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Weber, H.P.; McMullan, R.K.; Swaminathan, S.; Craven, B.M.

    1984-01-01

    At 122K, the crystalline structure of phosphorylethanolamine is monoclinic and the crystal parameters are reported. Nuclear anisotropic thermal parameters have been analyzed to describe the molecular thermal motion including the non-rigid vibrations. The C-H distances with both harmonic librational and anharmonic stretching-motion corrections range from 1.095(4) to 1.099(4)A. These estimated bond lengths are in satisfactory agreement with values determined for C-H theoretically and by other experimental methods. The configuration of the P-O bonds in the monoester H-O-P-O-C group is (+)-ac, (-)-sc. The terminal O-H and NH3 groups are twisted 40 to 20, respectively, from ideally expected for adjacent OCH3 groups alternating up and down.

  15. Wetting and motion behaviors of water droplet on graphene under thermal-electric coupling field

    Science.gov (United States)

    Zhang, Zhong-Qiang; Dong, Xin; Ye, Hong-Fei; Cheng, Guang-Gui; Ding, Jian-Ning; Ling, Zhi-Yong

    2015-02-01

    Wetting dynamics and motion behaviors of a water droplet on graphene are characterized under the electric-thermal coupling field using classical molecular dynamics simulation method. The water droplet on graphene can be driven by the temperature gradient, while the moving direction is dependent on the electric field intensity. Concretely, the water droplet on graphene moves from the low temperature region to the high temperature region for the relatively weak electric field intensity. The motion acceleration increases with the electric field intensity on graphene, whereas the moving direction switches when the electric field intensity increases up to a threshold. The essence is the change from hydrophilic to hydrophobic for the water droplet on graphene at a threshold of the electric field intensity. Moreover, the driven force of the water droplet caused by the overall oscillation of graphene has important influence on the motion behaviors. The results are helpful to control the wettability of graphene and further develop the graphene-based fluidic nanodevices.

  16. Motion

    CERN Document Server

    Graybill, George

    2007-01-01

    Take the mystery out of motion. Our resource gives you everything you need to teach young scientists about motion. Students will learn about linear, accelerating, rotating and oscillating motion, and how these relate to everyday life - and even the solar system. Measuring and graphing motion is easy, and the concepts of speed, velocity and acceleration are clearly explained. Reading passages, comprehension questions, color mini posters and lots of hands-on activities all help teach and reinforce key concepts. Vocabulary and language are simplified in our resource to make them accessible to str

  17. An Interactive Computer Model for Improved Student Understanding of Random Particle Motion and Osmosis

    Science.gov (United States)

    Kottonau, Johannes

    2011-01-01

    Effectively teaching the concepts of osmosis to college-level students is a major obstacle in biological education. Therefore, a novel computer model is presented that allows students to observe the random nature of particle motion simultaneously with the seemingly directed net flow of water across a semipermeable membrane during osmotic…

  18. Molecular dynamics simulations for the motion of evaporative droplets driven by thermal gradients along nanochannels

    KAUST Repository

    Wu, Congmin

    2013-04-04

    For a one-component fluid on a solid substrate, a thermal singularity may occur at the contact line where the liquid-vapor interface intersects the solid surface. Physically, the liquid-vapor interface is almost isothermal at the liquid-vapor coexistence temperature in one-component fluids while the solid surface is almost isothermal for solids of high thermal conductivity. Therefore, a temperature discontinuity is formed if the two isothermal interfaces are of different temperatures and intersect at the contact line. This leads to the so-called thermal singularity. The localized hydrodynamics involving evaporation/condensation near the contact line leads to a contact angle depending on the underlying substrate temperature. This dependence has been shown to lead to the motion of liquid droplets on solid substrates with thermal gradients (Xu and Qian 2012 Phys. Rev. E 85 061603). In the present work, we carry out molecular dynamics (MD) simulations as numerical experiments to further confirm the predictions made from our previous continuum hydrodynamic modeling and simulations, which are actually semi-quantitatively accurate down to the small length scales in the problem. Using MD simulations, we investigate the motion of evaporative droplets in one-component Lennard-Jones fluids confined in nanochannels with thermal gradients. The droplet is found to migrate in the direction of decreasing temperature of solid walls, with a migration velocity linearly proportional to the temperature gradient. This agrees with the prediction of our continuum model. We then measure the effect of droplet size on the droplet motion. It is found that the droplet mobility is inversely proportional to a dimensionless coefficient associated with the total rate of dissipation due to droplet movement. Our results show that this coefficient is of order unity and increases with the droplet size for the small droplets (∼10 nm) simulated in the present work. These findings are in semi

  19. Inertial-particle dynamics in turbulent flows: caustics, concentration fluctuations and random uncorrelated motion

    Science.gov (United States)

    Gustavsson, K.; Meneguz, E.; Reeks, M.; Mehlig, B.

    2012-11-01

    We have performed numerical simulations of inertial particles in random model flows in the white-noise limit (at zero Kubo number, Ku = 0) and at finite Kubo numbers. Our results for the moments of relative inertial-particle velocities are in good agreement with recent theoretical results (Gustavsson and Mehlig 2011a) based on the formation of phase-space singularities in the inertial-particle dynamics (caustics). We discuss the relation between three recent approaches describing the dynamics and spatial distribution of inertial particles suspended in turbulent flows: caustic formation, real-space singularities of the deformation tensor and random uncorrelated motion. We discuss how the phase- and real-space singularities are related. Their formation is well understood in terms of a local theory. We summarise the implications for random uncorrelated motion.

  20. Random walk study of electron motion in helium in crossed electromagnetic fields

    Science.gov (United States)

    Englert, G. W.

    1972-01-01

    Random walk theory, previously adapted to electron motion in the presence of an electric field, is extended to include a transverse magnetic field. In principle, the random walk approach avoids mathematical complexity and concomitant simplifying assumptions and permits determination of energy distributions and transport coefficients within the accuracy of available collisional cross section data. Application is made to a weakly ionized helium gas. Time of relaxation of electron energy distribution, determined by the random walk, is described by simple expressions based on energy exchange between the electron and an effective electric field. The restrictive effect of the magnetic field on electron motion, which increases the required number of collisions per walk to reach a terminal steady state condition, as well as the effect of the magnetic field on electron transport coefficients and mean energy can be quite adequately described by expressions involving only the Hall parameter.

  1. Effects of deformability and thermal motion of lipid membrane on electroporation: By molecular dynamics simulations

    KAUST Repository

    Sun, Sheng

    2011-01-01

    Effects of mechanical properties and thermal motion of POPE lipid membrane on electroporation were studied by molecular dynamics simulations. Among simulations in which specific atoms of lipids were artificially constrained at their equilibrium positions using a spring with force constant of 2.0kcal/(molÅ2) in the external electric field of 1.4kcal/(molÅe), only constraint on lateral motions of lipid tails prohibited electroporation while non-tail parts had little effects. When force constant decreased to 0.2kcal/(molÅ2) in the position constraints on lipid tails in the external electric field of 2.0kcal/(molÅe), water molecules began to enter the membrane. Position constraints of lipid tails allow water to penetrate from both sides of membrane. Thermal motion of lipids can induce initial defects in the hydrophobic core of membrane, which are favorable nucleation sites for electroporation. Simulations at different temperatures revealed that as the temperature increases, the time taken to the initial pore formation will decrease. © 2010 Elsevier Inc.

  2. Theoretical estimate of the effect of thermal agitation on ribosome motion generated by stochastic microswimming.

    Science.gov (United States)

    González-García, José S

    2016-11-04

    The effect of thermal agitation on ribosome motion is evaluated through the Péclet number, assuming that the ribosome is self-propelled along the mRNA during protein synthesis by a swimming stroke consisting of a cycle of stochastically-generated ribosome configurations involving its two subunits. The ribosome velocity probability distribution function is obtained, giving an approximately normal distribution. Its mean and variance together with an estimate of the in vivo free diffusion coefficient of the ribosome and using only configuration changes of small size, give a Péclet number similar to motor proteins and microorganisms. These results suggest the feasibility of the stochastic microswimming hypothesis to explain ribosome motion. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. A continuous-time model of centrally coordinated motion with random switching.

    Science.gov (United States)

    Dallon, J C; Despain, Lynnae C; Evans, Emily J; Grant, Christopher P; Smith, W V

    2017-02-01

    This paper considers differential problems with random switching, with specific applications to the motion of cells and centrally coordinated motion. Starting with a differential-equation model of cell motion that was proposed previously, we set the relaxation time to zero and consider the simpler model that results. We prove that this model is well-posed, in the sense that it corresponds to a pure jump-type continuous-time Markov process (without explosion). We then describe the model's long-time behavior, first by specifying an attracting steady-state distribution for a projection of the model, then by examining the expected location of the cell center when the initial data is compatible with that steady-state. Under such conditions, we present a formula for the expected velocity and give a rigorous proof of that formula's validity. We conclude the paper with a comparison between these theoretical results and the results of numerical simulations.

  4. Review of the nuclear reactor thermal hydraulic research in ocean motions

    Energy Technology Data Exchange (ETDEWEB)

    Yan, B.H., E-mail: yanbh3@mail.sysu.edu.cn

    2017-03-15

    The research and development of small modular reactor in floating platform has been strongly supported by Chinese government and enterprises. Due to the effect of ocean waves, the thermal hydraulic behavior and safety characteristics of floating reactor are different from that of land-based reactor. Many scholars including the author have published their research and results in open literatures. Much of these literatures are valuable but there are also some contradictory conclusions. In this wok, the nuclear reactor thermal hydraulic research in ocean motions was systematically summarized. Valuable results and experimental data were analyzed and classified. Inherent mechanism for controversial issues in different experiments was explained. Necessary work needed in the future was suggested. Through this work, we attempt to find as many valuable results as possible for the designing and subsequent research.

  5. Intelligent bidirectional rapidly-exploring random trees for optimal motion planning in complex cluttered environments

    OpenAIRE

    Qureshi, Ahmed Hussain; Ayaz, Yasar

    2017-01-01

    The sampling based motion planning algorithm known as Rapidly-exploring Random Trees (RRT) has gained the attention of many researchers due to their computational efficiency and effectiveness. Recently, a variant of RRT called RRT* has been proposed that ensures asymptotic optimality. Subsequently its bidirectional version has also been introduced in the literature known as Bidirectional-RRT* (B-RRT*). We introduce a new variant called Intelligent Bidirectional-RRT* (IB-RRT*) which is an impr...

  6. Thermal motion in proteins: Large effects on the time-averaged interaction energies

    Energy Technology Data Exchange (ETDEWEB)

    Goethe, Martin, E-mail: martingoethe@ub.edu; Rubi, J. Miguel [Departament de Física Fonamental, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain); Fita, Ignacio [Institut de Biologia Molecular de Barcelona, Baldiri Reixac 10, 08028 Barcelona (Spain)

    2016-03-15

    As a consequence of thermal motion, inter-atomic distances in proteins fluctuate strongly around their average values, and hence, also interaction energies (i.e. the pair-potentials evaluated at the fluctuating distances) are not constant in time but exhibit pronounced fluctuations. These fluctuations cause that time-averaged interaction energies do generally not coincide with the energy values obtained by evaluating the pair-potentials at the average distances. More precisely, time-averaged interaction energies behave typically smoother in terms of the average distance than the corresponding pair-potentials. This averaging effect is referred to as the thermal smoothing effect. Here, we estimate the strength of the thermal smoothing effect on the Lennard-Jones pair-potential for globular proteins at ambient conditions using x-ray diffraction and simulation data of a representative set of proteins. For specific atom species, we find a significant smoothing effect where the time-averaged interaction energy of a single atom pair can differ by various tens of cal/mol from the Lennard-Jones potential at the average distance. Importantly, we observe a dependency of the effect on the local environment of the involved atoms. The effect is typically weaker for bulky backbone atoms in beta sheets than for side-chain atoms belonging to other secondary structure on the surface of the protein. The results of this work have important practical implications for protein software relying on free energy expressions. We show that the accuracy of free energy expressions can largely be increased by introducing environment specific Lennard-Jones parameters accounting for the fact that the typical thermal motion of protein atoms depends strongly on their local environment.

  7. Do Motion Controllers Make Action Video Games Less Sedentary? A Randomized Experiment

    Science.gov (United States)

    Lyons, Elizabeth J.; Tate, Deborah F.; Ward, Dianne S.; Ribisl, Kurt M.; Bowling, J. Michael; Kalyanaraman, Sriram

    2012-01-01

    Sports- and fitness-themed video games using motion controllers have been found to produce physical activity. It is possible that motion controllers may also enhance energy expenditure when applied to more sedentary games such as action games. Young adults (N = 100) were randomized to play three games using either motion-based or traditional controllers. No main effect was found for controller or game pair (P > .12). An interaction was found such that in one pair, motion control (mean [SD] 0.96 [0.20] kcal · kg−1 · hr−1) produced 0.10 kcal · kg−1 · hr−1 (95% confidence interval 0.03 to 0.17) greater energy expenditure than traditional control (0.86 [0.17] kcal · kg−1 · hr−1, P = .048). All games were sedentary. As currently implemented, motion control is unlikely to produce moderate intensity physical activity in action games. However, some games produce small but significant increases in energy expenditure, which may benefit health by decreasing sedentary behavior. PMID:22028959

  8. Do Motion Controllers Make Action Video Games Less Sedentary? A Randomized Experiment

    Directory of Open Access Journals (Sweden)

    Elizabeth J. Lyons

    2012-01-01

    Full Text Available Sports- and fitness-themed video games using motion controllers have been found to produce physical activity. It is possible that motion controllers may also enhance energy expenditure when applied to more sedentary games such as action games. Young adults (N = 100 were randomized to play three games using either motion-based or traditional controllers. No main effect was found for controller or game pair (P > .12. An interaction was found such that in one pair, motion control (mean [SD] 0.96 [0.20] kcal ⋅ kg-1 ⋅ hr-1 produced 0.10 kcal ⋅ kg-1 ⋅ hr-1 (95% confidence interval 0.03 to 0.17 greater energy expenditure than traditional control (0.86 [0.17] kcal ⋅ kg-1 ⋅ hr-1, P = .048. All games were sedentary. As currently implemented, motion control is unlikely to produce moderate intensity physical activity in action games. However, some games produce small but significant increases in energy expenditure, which may benefit health by decreasing sedentary behavior.

  9. Do motion controllers make action video games less sedentary? A randomized experiment.

    Science.gov (United States)

    Lyons, Elizabeth J; Tate, Deborah F; Ward, Dianne S; Ribisl, Kurt M; Bowling, J Michael; Kalyanaraman, Sriram

    2012-01-01

    Sports- and fitness-themed video games using motion controllers have been found to produce physical activity. It is possible that motion controllers may also enhance energy expenditure when applied to more sedentary games such as action games. Young adults (N = 100) were randomized to play three games using either motion-based or traditional controllers. No main effect was found for controller or game pair (P > .12). An interaction was found such that in one pair, motion control (mean [SD] 0.96 [0.20] kcal · kg(-1) · hr(-1)) produced 0.10 kcal · kg(-1) · hr(-1) (95% confidence interval 0.03 to 0.17) greater energy expenditure than traditional control (0.86 [0.17] kcal · kg(-1) · hr(-1), P = .048). All games were sedentary. As currently implemented, motion control is unlikely to produce moderate intensity physical activity in action games. However, some games produce small but significant increases in energy expenditure, which may benefit health by decreasing sedentary behavior.

  10. Bath thermal waters in the treatment of knee osteoarthritis: a randomized controlled clinical trial.

    Science.gov (United States)

    Branco, Marcelo; Rêgo, Neiva N; Silva, Paulo H; Archanjo, Ingrid E; Ribeiro, Mirian C; Trevisani, Virgínia F

    2016-08-01

    Osteoarthritis is a degenerative disease associated with pain, reduced range of motion, and impaired function. Balneotherapy or bathing in thermal or mineral waters is used as a non-invasive treatment for various rheumatic diseases. To evaluate the effectiveness of hot sulfurous and non-sulfurous waters in the treatment of knee osteoarthritis. A randomized, assessor-blind, controlled trial. A spa resort. One hundred and forty patients of both genders, mean age of 64.8±8.9 years, with knee osteoarthritis and chronic knee pain. Patients were randomized into three groups: the sulfurous water (SW) group (N.=47), non-sulfurous water (NSW) group (N.=50), or control group (N.=43) who received no treatment. Patients were not blinded to treatment allocation. Treatment groups received 30 individual thermal baths (three 20-minute baths a week for 10 weeks) at 37-39 °C. The outcome measures were pain (visual analog scale, VAS), physical function (Western Ontario and McMaster Universities Osteoarthritis Index, WOMAC; Lequesne Algofunctional Index, LAFI; Stanford Health Assessment Questionnaire, HAQ), and use of pain medication. Patients were assessed before treatment (T1), at treatment endpoint (T2), and two months post-intervention (T3). Intra- and intergroup comparisons were performed at a significance level of 0.05 (Ptreatment groups (Ptreatment groups at T2 and T3 (Ptreatment groups at T2, but patients in the SW group reported less pain and better functional status than those in the NSW group at T3, showing a lasting effect of sulfurous water baths. Both therapeutic methods were effective in the treatment of knee osteoarthritis; however, sulfurous baths yielded longer-lasting effects than non-sulfurous water baths. Baths in thermal waters, especially those in sulfurous waters, are effective in reducing pain and improving physical function in patients with knee osteoarthritis.

  11. Intermittent thermal plasma acceleration linked to sporadic motions of the magnetopause, first Cluster results

    Directory of Open Access Journals (Sweden)

    J.-A. Sauvaud

    Full Text Available This paper presents the first observations with Cluster of a very dense population of thermal ionospheric ions (H+, He+, O+ locally "accelerated" perpendicularly to the local magnetic field in a region adjacent to the magnetopause and on its magnetospheric side. The observation periods follow a long period of very weak magnetic activity. Recurrent motions of the magnetopause are, in the presented cases, unexpectedly associated with the appearance inside closed field lines of recurrent energy structures of ionospheric ions with energies in the 5 eV to  ~1000 eV range. The heaviest ions were detected with the highest energies. Here, the ion behaviour is interpreted as resulting from local electric field enhancements/decreases which adiabatically enhance/lower the bulk energy of a local dense thermal ion population. This drift effect, which is directly linked to magnetopause motions caused by pressure changes, allows for the thermal ions to overcome the satellite potential and be detected by the suprathermal CIS Cluster experiment. When fast flowing, i.e. when detectable, the density (~ 1 cm-3 of these ions from a terrestrial origin is (in the cases presented here largely higher than the local density of ions from magnetospheric/plasma sheet origin which poses again the question of the relative importance of solar and ionospheric sources for the magnetospheric plasma even during very quiet magnetic conditions.

    Key words. Ionosphere (planetary ionosphere; plasma convection Magnetospheric physics (magnetopause, cusp and boundary layers

  12. Determining whether observed eukaryotic cell migration indicates chemotactic responsiveness or random chemokinetic motion.

    Science.gov (United States)

    Szatmary, A C; Nossal, R

    2017-07-21

    Chemotaxis, the motion of cells directed by a gradient of chemoattractant molecules, guides cells in immune response, development, wound healing, and cancer. Unfortunately, this process is difficult to distinguish from chemokinesis, i.e., stimulated random cell motion. Chemotaxis is frequently inferred by determining how many cells cross a boundary in a chemotaxis assay, for example how many cells crawl into a chemoattractant-infused filter, or how many cells enter a defined region in an under-agarose assay or agarose spot assay. To mitigate possible ambiguity in whether motion observed in these assays is directed by the chemoattractant gradient or by chemokinesis, we developed a mathematical model to determine when such methods indeed indicate directed motion of cells. In contrast to previous analyses of chemotaxis assays, we report not just the gradients that arise in the assays but also resulting cell motion. We applied the model to data obtained from rigorous measurements and show, as examples, that MDA-MB-231 breast-cancer cells are at least 20 times less sensitive to gradients of EGF or CXCL12 than neutrophils are to formyl peptides; we then used this information to determine the extent to which gradient sensing increases the rate of boundary crossing relative to a random-motility control. Results show, for example, that in the filter assay, 2-4 times as many neutrophils pass through the filter when exposed to a gradient as when the gradient is absent. However, in the other combinations of cells and assays we considered, only 10-20% more cells are counted as having migrated in a directed, rather than random, motility condition. We also discuss the design of appropriate controls for these assays, which is difficult for the under-agarose and agarose spot assays. Moreover, although straightforward to perform with the filter assay, reliable controls are often not done. Consequently, we infer that chemotaxis is frequently over-reported, especially for cells like

  13. Quasi-Random Algorithms for Real-Time Spacecraft Motion Planning and Formation Flight

    Science.gov (United States)

    Frazzoli, E.

    Many applications of current interest, including on-orbit servicing of large space structures, space-based interferometry, and distributed radar systems, involve several spacecraft maneuvering in close proximity of one another. Often, the mission requires that the spacecraft be able to react quickly to changes in the environment, for example to reconfigure the formation to investigate a target of opportunity, or to prevent damage from a failure. In these cases, the spacecraft need to solve in real time complex motion planning problems, minimizing meaningful cost functions, such as time or fuel consumption, and taking into account constraints such as collision and plume impingement avoidance. Such problems are provably hard from a computational point of view, in the sense that any deterministic, complete algorithm will require exponential time to find a feasible solution. Recent advances in the robotics field have provided a new class of algorithms based on randomization, which provides computational tractability, by relaxing the completeness requirement to probabilistic completeness (i.e. the solution will be found by such algorithms with arbitrarily high probability in polynomial time). Randomized algorithms have been developed and successfully applied by the author and other researchers to real-time motion planning problems involving autonomous air vehicles and spacecraft attitude motion. In this paper we present a new class of quasi- random algorithms, which, combining optimal orbital maneuvers and deterministic sampling strategies, are able to provide extremely fast and efficient planners. Moreover, these planners are able to guarantee the safety of the space system, that is the satisfaction of collision and plume impingement avoidance constraints, even in the face of finite computation times (i.e., when the planner has to be pre-empted). Formation reconfiguration examples will illustrate the effectiveness of the methods, and a discussion of the results will

  14. Analysis of Peristaltic Motion of a Nanofluid with Wall Shear Stress, Microrotation, and Thermal Radiation Effects

    Directory of Open Access Journals (Sweden)

    C. Dhanapal

    2016-01-01

    Full Text Available This paper analyzes the peristaltic flow of an incompressible micropolar nanofluid in a tapered asymmetric channel in the presence of thermal radiation and heat sources parameters. The rotation of the nanoparticles is incorporated in the flow model. The equations governing the nanofluid flow are modeled and exact solutions are managed under long wavelength and flow Reynolds number and long wavelength approximations. Explicit expressions of axial velocity, stream function, microrotation, nanoparticle temperature, and concentration have been derived. The phenomena of shear stress and trapping have also been discussed. Finally, the influences of various parameters of interest on flow variables have been discussed numerically and explained graphically. Besides, the results obtained in this paper will be helpful to those who are working on the development of various realms like fluid mechanics, the rotation, Brownian motion, thermophoresis, coupling number, micropolar parameter, and the nondimensional geometry parameters.

  15. The role of thermal motion in free-space light-atom interaction

    Science.gov (United States)

    Chin, Yue Sum; Steiner, Matthias; Kurtsiefer, Christian

    2017-04-01

    The prospects of distributed quantum networks have triggered much interest in developing light-matter interfaces. While this is usually realized by optical resonators, tightly focused free-space interfaces offer a complementary alternative. Our version of free-space light-matter interface is formed by a pair of high numerical aperture (NA=0.75) lenses and a single atom held in an optical tweezer. Operating near the diffraction limit, we demonstrate 17.7% extinction of a weak coherent field by a single atom. The thermal motion of the atom is commonly suspected to be one of the limiting factors of the interaction. Here we verify quantitatively this effect by measuring in-situ the interaction strength as the atom heats up. Ministry of Education in Singapore; National Research Foundation.

  16. Brownian-motion ensembles of random matrix theory: A classification scheme and an integral transform method

    Energy Technology Data Exchange (ETDEWEB)

    Macedo-Junior, A.F. [Departamento de Fisica, Laboratorio de Fisica Teorica e Computacional, Universidade Federal de Pernambuco, 50670-901 Recife, PE (Brazil)]. E-mail: ailton@df.ufpe.br; Macedo, A.M.S. [Departamento de Fisica, Laboratorio de Fisica Teorica e Computacional, Universidade Federal de Pernambuco, 50670-901 Recife, PE (Brazil)

    2006-09-25

    We study a class of Brownian-motion ensembles obtained from the general theory of Markovian stochastic processes in random-matrix theory. The ensembles admit a complete classification scheme based on a recent multivariable generalization of classical orthogonal polynomials and are closely related to Hamiltonians of Calogero-Sutherland-type quantum systems. An integral transform is proposed to evaluate the n-point correlation function for a large class of initial distribution functions. Applications of the classification scheme and of the integral transform to concrete physical systems are presented in detail.

  17. Immediate passive motion versus immobilization after endoscopic supraspinatus tendon repair: a prospective randomized study.

    Science.gov (United States)

    Arndt, J; Clavert, P; Mielcarek, P; Bouchaib, J; Meyer, N; Kempf, J-F

    2012-10-01

    Rehabilitation programs after rotator cuff repair should allow recovery of shoulder function without preventing tendon healing. The aim of this randomized prospective study was to compare the clinical results after two types of postoperative management: immediate passive motion versus immobilization. We followed 100 patients, mean age 55 years old, who underwent arthroscopic repair of a non-retracted supraspinatus tear. Patients were randomized to receive postoperative management of immediate passive motion or strict immobilization for 6 weeks. A clinical evaluation was performed in 92 patients, and CT arthrography in 82. Mean follow-up was 15 months. The mean preoperative Constant score improved significantly from 46.1 points to 73.9 at the final follow-up. The rate of intact cuffs was 58.5%. Functional results were statistically better after immediate passive motion with a mean passive external rotation of 58.7° at the final follow-up versus 49.1° after immobilization (P=0.011), a passive anterior elevation of 172.4° versus 163.3° (P=0.094) respectively, a Constant score of 77.6 points versus 69.7 (P=0.045) respectively, and a lower rate of adhesive capsulitis and complex regional pain syndrome. Results for healing seemed to be slightly better with immobilization, but this was not statistically significant: the cuff had a normal appearance in 35.9% of cases after immobilization compared to 25.6% after passive motion, an image of intratendinous addition was found in 25.6% versus 30.2%, punctiform leaks in 23.1% versus 20.9%, and recurrent tears in 15.4% versus 23.3% respectively. The rehabilitation program that results in better tendon healing by preventing postoperative stiffness has not yet been identified. Our results suggest that early passive motion should be authorized: the functional results were better with no significant difference in healing. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  18. Bounds on the vibrational energy that can be harvested from random base motion

    Science.gov (United States)

    Langley, R. S.

    2015-03-01

    This paper is concerned with the development of upper bounds on the energy harvesting performance of a general multi-degree-of-freedom nonlinear electromechanical system that is subjected to random base motion and secondary applied periodic forces. The secondary forces are applied with the aim of enhancing the energy harvested from the base motion, and they may constitute direct excitation, or they may produce parametric terms in the equations of motion. It is shown that when the base motion has white noise acceleration then the power input by the base is always πS0 M / 2 where S0 is the single sided spectral density of the acceleration, and M is the mass of the system. This implies that although the secondary forces may enhance the energy harvested by causing a larger fraction of the power input from the base to be harvested rather than dissipated, there is an upper limit on the power that can be harvested. Attention is then turned to narrow band excitation, and it is found that in the absence of secondary forces a bound can be derived for a single degree of freedom system with linear damping and arbitrary nonlinear stiffness. The upper bound on the power input by the base is πM max [ S (ω) ] / 2, where S (ω) is the single sided base acceleration spectrum. The validity of this result for more general systems is found to be related to the properties of the first Wiener kernel, and this issue is explored analytically and by numerical simulation.

  19. A Randomized Controlled Trial of Lorazepam to Reduce Liver Motion in Patients Receiving Upper Abdominal Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Tsang, Derek S.; Voncken, Francine E.M.; Tse, Regina V. [Princess Margaret Cancer Centre, University Health Network, Department of Radiation Oncology, University of Toronto, Toronto (Canada); Sykes, Jenna [Department of Biostatistics, Princess Margaret Cancer Centre, University Health Network, Toronto (Canada); Wong, Rebecca K.S.; Dinniwell, Rob E.; Kim, John; Ringash, Jolie; Brierley, James D.; Cummings, Bernard J.; Brade, Anthony [Princess Margaret Cancer Centre, University Health Network, Department of Radiation Oncology, University of Toronto, Toronto (Canada); Dawson, Laura A., E-mail: laura.dawson@rmp.uhn.on.ca [Princess Margaret Cancer Centre, University Health Network, Department of Radiation Oncology, University of Toronto, Toronto (Canada)

    2013-12-01

    Purpose: Reduction of respiratory motion is desirable to reduce the volume of normal tissues irradiated, to improve concordance of planned and delivered doses, and to improve image guided radiation therapy (IGRT). We hypothesized that pretreatment lorazepam would lead to a measurable reduction of liver motion. Methods and Materials: Thirty-three patients receiving upper abdominal IGRT were recruited to a double-blinded randomized controlled crossover trial. Patients were randomized to 1 of 2 study arms: arm 1 received lorazepam 2 mg by mouth on day 1, followed by placebo 4 to 8 days later; arm 2 received placebo on day 1, followed by lorazepam 4 to 8 days later. After tablet ingestion and daily radiation therapy, amplitude of liver motion was measured on both study days. The primary outcomes were reduction in craniocaudal (CC) liver motion using 4-dimensional kV cone beam computed tomography (CBCT) and the proportion of patients with liver motion ≤5 mm. Secondary endpoints included motion measured with cine magnetic resonance imaging and kV fluoroscopy. Results: Mean relative and absolute reduction in CC amplitude with lorazepam was 21% and 2.5 mm respectively (95% confidence interval [CI] 1.1-3.9, P=.001), as assessed with CBCT. Reduction in CC amplitude to ≤5 mm residual liver motion was seen in 13% (95% CI 1%-25%) of patients receiving lorazepam (vs 10% receiving placebo, P=NS); 65% (95% CI 48%-81%) had reduction in residual CC liver motion to ≤10 mm (vs 52% with placebo, P=NS). Patients with large respiratory movement and patients who took lorazepam ≥60 minutes before imaging had greater reductions in liver CC motion. Mean reductions in liver CC amplitude on magnetic resonance imaging and fluoroscopy were nonsignificant. Conclusions: Lorazepam reduces liver motion in the CC direction; however, average magnitude of reduction is small, and most patients have residual motion >5 mm.

  20. Masking of random-walk motion by flicker, and its role in the allocation of motion in the on-line jitter illusion.

    Science.gov (United States)

    Park, Adela S Y; Bedggood, Phillip A; Metha, Andrew B; Anderson, Andrew J

    2017-08-01

    Typically, perceptual stabilization mechanisms make us unaware of the retinal image motion produced by the small, involuntary eye movements our eyes constantly make during fixation. The breakdown of perceptual stability is demonstrated by the on-line jitter illusion, in which a circular static pattern appears to jitter coherently when surrounded by a flickering annular pattern. Although both regions of the stimulus are subject to retinal motion from eye movements, the visual system attributes this motion to the central static region in the form of visual jitter, while the surrounding flickering region remains perceptually stable. We investigated factors influencing this allocation of motion and reference frame in the on-line jitter illusion. The flickering of the surround was found to impair the detection of simultaneous random-walk motion in this area, giving a detection reliability of around 80% for motion approximating that from fixational eye movements. Changes to spatial texture and location of flicker (centre vs. surrounding annulus) had little effect on the final percept. However, use of a nonconcentric stimulus resulted in a marked reduction in apparent jitter in all subjects. Our results suggest for the on-line jitter illusion, allocation of motion and reference frame is influenced by the general principle that, if one region surrounds another, the surrounding region tends to be allocated as the frame of reference. When this factor is controlled for, spatial textures, location of flicker, and the masking of motion by flicker have a smaller but measurable influence on the final percept. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Random Free Fermions : An Analytical Example of Eigenstate Thermalization

    NARCIS (Netherlands)

    Martínez Magán, Javier

    2016-01-01

    Having analytical instances of the eigenstate thermalization hypothesis (ETH) is of obvious interest, both for fundamental and applied reasons. This is generally a hard task, due to the belief that nonlinear interactions are basic ingredients of the thermalization mechanism. In this article we prove

  2. Survey of strong motion earthquake effects on thermal power plants in California with emphasis on piping systems. Volume 2, Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, J.D. [Stevenson and Associates, Cleveland, OH (United States)

    1995-11-01

    Volume 2 of the ``Survey of Strong Motion Earthquake Effects on Thermal Power Plants in California with Emphasis on Piping Systems`` contains Appendices which detail the detail design and seismic response of several power plants subjected to strong motion earthquakes. The particular plants considered include the Ormond Beach, Long Beach and Seal Beach, Burbank, El Centro, Glendale, Humboldt Bay, Kem Valley, Pasadena and Valley power plants. Included is a typical power plant piping specification and photographs of typical power plant piping specification and photographs of typical piping and support installations for the plants surveyed. Detailed piping support spacing data are also included.

  3. Spatial and Temporal Control of Hyperthermia Using Real Time Ultrasonic Thermal Strain Imaging with Motion Compensation, Phantom Study.

    Science.gov (United States)

    Foiret, Josquin; Ferrara, Katherine W

    2015-01-01

    Mild hyperthermia has been successfully employed to induce reversible physiological changes that can directly treat cancer and enhance local drug delivery. In this approach, temperature monitoring is essential to avoid undesirable biological effects that result from thermal damage. For thermal therapies, Magnetic Resonance Imaging (MRI) has been employed to control real-time Focused Ultrasound (FUS) therapies. However, combined ultrasound imaging and therapy systems offer the benefits of simple, low-cost devices that can be broadly applied. To facilitate such technology, ultrasound thermometry has potential to reliably monitor temperature. Control of mild hyperthermia was previously achieved using a proportional-integral-derivative (PID) controller based on thermocouple measurements. Despite accurate temporal control of heating, this method is limited by the single position at which the temperature is measured. Ultrasound thermometry techniques based on exploiting the thermal dependence of acoustic parameters (such as longitudinal velocity) can be extended to create thermal maps and allow an accurate monitoring of temperature with good spatial resolution. However, in vivo applications of this technique have not been fully developed due to the high sensitivity to tissue motion. Here, we propose a motion compensation method based on the acquisition of multiple reference frames prior to treatment. The technique was tested in the presence of 2-D and 3-D physiological-scale motion and was found to provide effective real-time temperature monitoring. PID control of mild hyperthermia in presence of motion was then tested with ultrasound thermometry as feedback and temperature was maintained within 0.3°C of the requested value.

  4. A hybrid approach for the simulation of a nearly neutrally buoyant nanoparticle thermal motion in an incompressible Newtonian fluid medium.

    Science.gov (United States)

    Uma, B; Radhakrishnan, R; Eckmann, D M; Ayyaswamy, P S

    2013-01-01

    A hybrid scheme based on Markovian fluctuating hydrodynamics of the fluid and a non-Markovian Langevin dynamics with the Ornstein-Uhlenbeck noise perturbing the translational and rotational equations of motion of a nanoparticle is employed to study the thermal motion of a nearly neutrally buoyant nanoparticle in an incompressible Newtonian fluid medium. A direct numerical simulation adopting an arbitrary Lagrangian-Eulerian based finite element method is employed in simulating the thermal motion of the particle suspended in the fluid contained in a cylindrical vessel. The instantaneous flow around the particle and the particle motion are fully resolved. The numerical results show that (a) the calculated temperature of the nearly neutrally buoyant Brownian particle in a quiescent fluid satisfies the equipartition theorem; (b) the translational and rotational decay of the velocity autocorrelation functions result in algebraic tails, over long time; (c) the translational and rotational mean square displacements of the particle obeys Stokes-Einstein and Stokes-Einstein-Debye relations, respectively; and (d) the parallel and perpendicular diffusivities of the particle closer to the wall are consistent with the analytical results, where available. The study has important implications for designing nanocarriers for targeted drug delivery.

  5. Thermal Property Analysis of Axle Load Sensors for Weighing Vehicles in Weigh-in-Motion System

    OpenAIRE

    Piotr Burnos; Janusz Gajda

    2016-01-01

    Systems which permit the weighing of vehicles in motion are called dynamic Weigh-in-Motion scales. In such systems, axle load sensors are embedded in the pavement. Among the influencing factors that negatively affect weighing accuracy is the pavement temperature. This paper presents a detailed analysis of this phenomenon and describes the properties of polymer, quartz and bending plate load sensors. The studies were conducted in two ways: at roadside Weigh-in-Motion sites and at a laboratory ...

  6. Thermal noise variance of a receive radiofrequency coil as a respiratory motion sensor

    NARCIS (Netherlands)

    Andreychenko, A.|info:eu-repo/dai/nl/341697672; Raaijmakers, A. J E|info:eu-repo/dai/nl/304819662; Sbrizzi, A.|info:eu-repo/dai/nl/341735868; Crijns, S. P M|info:eu-repo/dai/nl/341021296; Lagendijk, J. J W|info:eu-repo/dai/nl/07011868X; Luijten, P. R.|info:eu-repo/dai/nl/304821098; van den Berg, C. A T|info:eu-repo/dai/nl/304817422

    2017-01-01

    Purpose: Development of a passive respiratory motion sensor based on the noise variance of the receive coil array. Methods: Respiratory motion alters the body resistance. The noise variance of an RF coil depends on the body resistance and, thus, is also modulated by respiration. For the noise

  7. LCoMotion - Learning, Cognition and Motion; a multicomponent cluster randomized school-based intervention aimed at increasing learning and cognition - rationale, design and methods.

    Science.gov (United States)

    Bugge, Anna; Tarp, Jakob; Østergaard, Lars; Domazet, Sidsel Louise; Andersen, Lars Bo; Froberg, Karsten

    2014-09-18

    The aim of the study; LCoMotion - Learning, Cognition and Motion was to develop, document, and evaluate a multi-component physical activity (PA) intervention in public schools in Denmark. The primary outcome was cognitive function. Secondary outcomes were academic skills, body composition, aerobic fitness and PA. The primary aim of the present paper was to describe the rationale, design and methods of the LCoMotion study. LCoMotion was designed as a cluster-randomized controlled study. Fourteen schools from all five regions in Denmark participated. All students from 6th and 7th grades were invited to participate (n = 869) and consent was obtained for 87% (n = 759). Baseline measurements were obtained in November/December 2013 and follow-up measurements in May/June 2014. The intervention lasted five months and consisted of a "package" of three main components: PA during academic lessons, PA during recess and PA homework. Furthermore a cycling campaign was conducted during the intervention period. Intervention schools should endeavor to ensure that students were physically active for at least 60 min every school day. Cognitive function was measured by a modified Eriksen flanker task and academic skills by a custom made mathematics test. PA was objectively measured by accelerometers (ActiGraph, GT3X and GT3X+) and aerobic fitness assessed by an intermittent shuttle-run test (the Andersen intermittent running test). Furthermore, compliance with the intervention was assessed by short message service (SMS)-tracking and questionnaires were delivered to students, parents and teachers. LCoMotion has ability to provide new insights on the effectiveness of a multicomponent intervention on cognitive function and academic skills in 6th and 7th grade students. Clinicaltrials.gov: NCT02012881 (10/10/2013).

  8. The induced motion of a probe coupled to a bath with random resettings

    Science.gov (United States)

    Maes, Christian; Thiery, Thimothée

    2017-10-01

    We consider a probe linearly coupled to the center of mass of a nonequilibrium bath. We study the induced motion on the probe for a model where a resetting mechanism is added to an overdamped bath dynamics with quadratic potentials. The fact that each bath particle is at random times reset to a fixed position is known for optimizing diffusive search strategies, but here stands for the nonequilibrium aspect of the bath. In the large bath scaling limit the probe is governed by an effective Langevin equation. Depending on the value of the parameters, there appear three regimes: (i) an equilibrium-like regime but with a reduced friction and an increased effective temperature; (ii) a regime where the noise felt by the probe is continuous but non-Gaussian and exhibits fat-tails; (iii) a regime with a non-Gaussian noise exhibiting power-law distributed jumps. The model thus represents an exactly solvable case for the origin of nonequilibrium probe dynamics.

  9. Heave motion prediction of a large barge in random seas by using artificial neural network

    Science.gov (United States)

    Lee, Hsiu Eik; Liew, Mohd Shahir; Zawawi, Noor Amila Wan Abdullah; Toloue, Iraj

    2017-11-01

    This paper describes the development of a multi-layer feed forward artificial neural network (ANN) to predict rigid heave body motions of a large catenary moored barge subjected to multi-directional irregular waves. The barge is idealized as a rigid plate of finite draft with planar dimensions 160m (length) and 100m (width) which is held on station using a six point chain catenary mooring in 50m water depth. Hydroelastic effects are neglected from the physical model as the chief intent of this study is focused on large plate rigid body hydrodynamics modelling using ANN. Even with this assumption, the computational requirements for time domain coupled hydrodynamic simulations of a moored floating body is considerably costly, particularly if a large number of simulations are required such as in the case of response based design (RBD) methods. As an alternative to time consuming numerical hydrodynamics, a regression-type ANN model has been developed for efficient prediction of the barge's heave responses to random waves from various directions. It was determined that a network comprising of 3 input features, 2 hidden layers with 5 neurons each and 1 output was sufficient to produce acceptable predictions within 0.02 mean squared error. By benchmarking results from the ANN with those generated by a fully coupled dynamic model in OrcaFlex, it is demonstrated that the ANN is capable of predicting the barge's heave responses with acceptable accuracy.

  10. Diversity and survival of artificial lifeforms under sedimentation and random motion.

    Science.gov (United States)

    Glade, Nicolas; Bastien, Olivier; Ballet, Pascal

    2017-12-01

    Cellular automata are often used to explore the numerous possible scenarios of what could have occurred at the origins of life and before, during the prebiotic ages, when very simple molecules started to assemble and organise into larger catalytic or informative structures, or to simulate ecosystems. Artificial self-maintained spatial structures emerge in cellular automata and are often used to represent molecules or living organisms. They converge generally towards homogeneous stationary soups of still-life creatures. It is hard for an observer to believe they are similar to living systems, in particular because nothing is moving anymore within such simulated environments after few computation steps, because they present isotropic spatial organisation, because the diversity of self-maintained morphologies is poor, and because when stationary states are reached the creatures are immortal. Natural living systems, on the contrary, are composed of a high diversity of creatures in interaction having limited lifetimes and generally present a certain anisotropy of their spatial organisation, in particular frontiers and interfaces. In the present work, we propose that the presence of directional weak fields such as gravity may counter-balance the excess of mixing and disorder caused by Brownian motion and favour the appearance of specific regions, i.e. different strata or environmental layers, in which physical-chemical conditions favour the emergence and the survival of self-maintained spatial structures including living systems. We test this hypothesis by way of numerical simulations of a very simplified ecosystem model. We use the well-known Game of Life to which we add rules simulating both sedimentation forces and thermal agitation. We show that this leads to more active (vitality and biodiversity) and robust (survival) dynamics. This effectively suggests that coupling such physical processes to reactive systems allows the separation of environments into different

  11. Biomechanical assessment and monitoring of thermal ablation using Harmonic Motion Imaging for Focused Ultrasound (HMIFU)

    Science.gov (United States)

    Hou, Gary Yi

    Cancer remains, one of the major public health problems in the United States as well as many other countries worldwide. According to According to the World Health Organization, cancer is currently the leading cause of death worldwide, accounting for 7.6 million deaths annually, and 25% of the annual death was due to Cancer during the year of 2011. In the long history of the cancer treatment field, many treatment options have been established up to date. Traditional procedures include surgical procedures as well as systemic therapies such as biologic therapy, chemotherapy, hormone therapy, and radiation therapy. Nevertheless, side-effects are often associated with such procedures due to the systemic delivery across the entire body. Recently technologies have been focused on localized therapy under minimally or noninvasive procedure with imaging-guidance, such as cryoablation, laser ablation, radio-frequency (RF) ablation, and High Intensity F-ocused Ultrasound (HIFU). HIFU is a non-invasive procedure aims to coagulate tissue thermally at a localized focal zone created with noninvasively emitting a set of focused ultrasound beams while the surrounding healthy tissues remain relatively untreated. Harmonic Motion Imaging for Focused Ultrasound (HMIFU) is a dynamic, radiation-force-based imaging technique, which utilizes a single HIFU transducer by emitting an Amplitude-modulated (AM) beam to both thermally ablate the tumor while inducing a stable oscillatory tissue displacement at its focal zone. The oscillatory response is then estimated by a cross-correlation based motion tracking technique on the signal collected by a confocally-aligned diagnostic transducer. HMIFU addresses the most critical aspect and one of the major unmet needs of HIFU treatment, which is the ability to perform real-time monitoring and mapping of tissue property change during the HIFU treatment. In this dissertation, both the assessment and monitoring aspects of HMIFU have been investigated

  12. Lundquist Number Scaling of Solar Coronal Heating Due to Random Photospheric Footpoint Motion in a Three-Dimensional Tectonics Model

    Science.gov (United States)

    Lin, L.; Ng, C. S.; Bhattacharjee, A.

    2008-11-01

    We have recently obtained new scaling results in 2D for a ``tectonics model'' of coronal heating which suggest that the heating rate becomes independent of resistivity in a statistical steady state [Ng & Bhattacharjee, Astrophys. J., 675, 899 (2008)]. Here we extend our 2D results to 3D by means of numerical simulations. Random photospheric footpoint motion is applied for a time much longer than the correlation time to obtain converged average coronal heating rates. Simulations are done for different values of the Lundquist number to determine scaling. In the large Lundquist number limit, we recover the case in which the heating rate is independent of the Lundquist number, predicted by previous analysis as well as 2D simulations. In the same limit the average magnetic energy built up by the random footpoint motion saturates at a constant level, apparently limited by nonlinear processes, such as instabilities and/or magnetic reconnection.

  13. Auricular Acupressure for Managing Postoperative Pain and Knee Motion in Patients with Total Knee Replacement: A Randomized Sham Control Study

    Directory of Open Access Journals (Sweden)

    Ling-hua Chang

    2012-01-01

    Full Text Available Background. Postoperative pain management remains a significant challenge for all healthcare providers. A randomized controlled trial was conducted to examine the adjuvant effects of auricular acupressure on relieving postoperative pain and improving the passive range of motion in patients with total knee replacement (TKR. Method. Sixty-two patients who had undergone a TKR were randomly assigned to the acupressure group and the sham control group. The intervention was delivered three times a day for 3 days. A visual analog scale (VAS and the Short-Form McGill Pain Questionnaire were used to assess pain intensity. Pain medication consumption was recorded, and the knee motion was measured using a goniometer. Results. The patients experienced a moderately severe level of pain postoperatively (VAS 58.66 ± 20.35 while being on the routine PCA. No differences were found in pain scores between the groups at all points. However, analgesic drug usage in the acupressure group patients was significantly lower than in the sham control group (<0.05, controlling for BMI, age, and pain score. On the 3rd day after surgery, the passive knee motion in the acupressure group patients was significantly better than in the sham control group patients (<0.05, controlling for BMI. Conclusion. The application of auricular acupressure at specific therapeutic points significantly reduces the opioid analgesia requirement and improves the knee motion in patients with TKR.

  14. Thermal noise variance of a receive radiofrequency coil as a respiratory motion sensor.

    Science.gov (United States)

    Andreychenko, A; Raaijmakers, A J E; Sbrizzi, A; Crijns, S P M; Lagendijk, J J W; Luijten, P R; van den Berg, C A T

    2017-01-01

    Development of a passive respiratory motion sensor based on the noise variance of the receive coil array. Respiratory motion alters the body resistance. The noise variance of an RF coil depends on the body resistance and, thus, is also modulated by respiration. For the noise variance monitoring, the noise samples were acquired without and with MR signal excitation on clinical 1.5/3 T MR scanners. The performance of the noise sensor was compared with the respiratory bellow and with the diaphragm displacement visible on MR images. Several breathing patterns were tested. The noise variance demonstrated a periodic, temporal modulation that was synchronized with the respiratory bellow signal. The modulation depth of the noise variance resulting from the respiration varied between the channels of the array and depended on the channel's location with respect to the body. The noise sensor combined with MR acquisition was able to detect the respiratory motion for every k-space read-out line. Within clinical MR systems, the respiratory motion can be detected by the noise in receive array. The noise sensor does not require careful positioning unlike the bellow, any additional hardware, and/or MR acquisition. Magn Reson Med 77:221-228, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Thermal fluctuations in resonant motion of fluxons on a Josephson transmission line: Theory and experiment

    DEFF Research Database (Denmark)

    Jørgensen, E.; Koshelets, V. P.; Monaco, Roberto

    1982-01-01

    The radiation emission from long and narrow Josephson tunnel junctions dc-current biased on zero-field steps has been ascribed to resonant motion of fluxons on the transmission line. Within this dynamic model a theoretical expression for the radiation linewidth is derived from a full statistical...

  16. Thermal Property Analysis of Axle Load Sensors for Weighing Vehicles in Weigh-in-Motion System

    Directory of Open Access Journals (Sweden)

    Piotr Burnos

    2016-12-01

    Full Text Available Systems which permit the weighing of vehicles in motion are called dynamic Weigh-in-Motion scales. In such systems, axle load sensors are embedded in the pavement. Among the influencing factors that negatively affect weighing accuracy is the pavement temperature. This paper presents a detailed analysis of this phenomenon and describes the properties of polymer, quartz and bending plate load sensors. The studies were conducted in two ways: at roadside Weigh-in-Motion sites and at a laboratory using a climate chamber. For accuracy assessment of roadside systems, the reference vehicle method was used. The pavement temperature influence on the weighing error was experimentally investigated as well as a non-uniform temperature distribution along and across the Weigh-in-Motion site. Tests carried out in the climatic chamber allowed the influence of temperature on the sensor intrinsic error to be determined. The results presented clearly show that all kinds of sensors are temperature sensitive. This is a new finding, as up to now the quartz and bending plate sensors were considered insensitive to this factor.

  17. Thermal Property Analysis of Axle Load Sensors for Weighing Vehicles in Weigh-in-Motion System.

    Science.gov (United States)

    Burnos, Piotr; Gajda, Janusz

    2016-12-15

    Systems which permit the weighing of vehicles in motion are called dynamic Weigh-in-Motion scales. In such systems, axle load sensors are embedded in the pavement. Among the influencing factors that negatively affect weighing accuracy is the pavement temperature. This paper presents a detailed analysis of this phenomenon and describes the properties of polymer, quartz and bending plate load sensors. The studies were conducted in two ways: at roadside Weigh-in-Motion sites and at a laboratory using a climate chamber. For accuracy assessment of roadside systems, the reference vehicle method was used. The pavement temperature influence on the weighing error was experimentally investigated as well as a non-uniform temperature distribution along and across the Weigh-in-Motion site. Tests carried out in the climatic chamber allowed the influence of temperature on the sensor intrinsic error to be determined. The results presented clearly show that all kinds of sensors are temperature sensitive. This is a new finding, as up to now the quartz and bending plate sensors were considered insensitive to this factor.

  18. Excited-state entanglement and thermal mutual information in random spin chains

    Science.gov (United States)

    Huang, Yichen; Moore, Joel E.

    2014-12-01

    Entanglement properties of excited eigenstates (or of thermal mixed states) are difficult to study with conventional analytical methods. We approach this problem for random spin chains using a recently developed real-space renormalization group technique for excited states ("RSRG-X"). For the random XX and quantum Ising chains, which have logarithmic divergences in the entanglement entropy of their (infinite-randomness) critical ground states, we show that the entanglement entropy of excited eigenstates retains a logarithmic divergence while the mutual information of thermal mixed states does not. However, in the XX case the coefficient of the logarithmic divergence extends from the universal ground-state value to a universal interval due to the degeneracy of excited eigenstates. These models are noninteracting in the sense of having free-fermion representations, allowing strong numerical checks of our analytical predictions.

  19. Derivation of cloud-free-region atmospheric motion vectors from FY-2E thermal infrared imagery

    Science.gov (United States)

    Wang, Zhenhui; Sui, Xinxiu; Zhang, Qing; Yang, Lu; Zhao, Hang; Tang, Min; Zhan, Yizhe; Zhang, Zhiguo

    2017-02-01

    The operational cloud-motion tracking technique fails to retrieve atmospheric motion vectors (AMVs) in areas lacking cloud; and while water vapor shown in water vapor imagery can be used, the heights assigned to the retrieved AMVs are mostly in the upper troposphere. As the noise-equivalent temperature difference (NEdT) performance of FY-2E split window (10.3-11.5 μm, 11.6-12.8 μm) channels has been improved, the weak signals representing the spatial texture of water vapor and aerosols in cloud-free areas can be strengthened with algorithms based on the difference principle, and applied in calculating AMVs in the lower troposphere. This paper is a preliminary summary for this purpose, in which the principles and algorithm schemes for the temporal difference, split window difference and second-order difference (SD) methods are introduced. Results from simulation and cases experiments are reported in order to verify and evaluate the methods, based on comparison among retrievals and the "truth". The results show that all three algorithms, though not perfect in some cases, generally work well. Moreover, the SD method appears to be the best in suppressing the surface temperature influence and clarifying the spatial texture of water vapor and aerosols. The accuracy with respect to NCEP 800 hPa reanalysis data was found to be acceptable, as compared with the accuracy of the cloud motion vectors.

  20. Thermally driven ratchet motion of a skyrmion microcrystal and topological magnon Hall effect

    NARCIS (Netherlands)

    Mochizuki, M.; Yu, X.Z.; Seki, S.; Kanazawa, N.; Koshibae, W.; Zang, J.; Mostovoy, M.; Tokura, Y.; Nagaosa, N.

    2014-01-01

    Spontaneously emergent chirality is an issue of fundamental importance across the natural sciences. It has been argued that a unidirectional (chiral) rotation of a mechanical ratchet is forbidden in thermal equilibrium, but becomes possible in systems out of equilibrium. Here we report our finding

  1. Brownian Motion in a Weyl Chamber, Non-Colliding Particles, and Random Matrices

    OpenAIRE

    Grabiner, David J.

    1997-01-01

    Let $n$ particles move in standard Brownian motion in one dimension, with the process terminating if two particles collide. This is a specific case of Brownian motion constrained to stay inside a Weyl chamber; the Weyl group for this chamber is $A_{n-1}$, the symmetric group. For any starting positions, we compute a determinant formula for the density function for the particles to be at specified positions at time $t$ without having collided by time $t$. We show that the probability that ther...

  2. Plasma motions and non-thermal line broadening in flaring twisted coronal loops

    Science.gov (United States)

    Gordovskyy, M.; Kontar, E. P.; Browning, P. K.

    2016-05-01

    Context. Observation of coronal extreme ultra-violet (EUV) spectral lines sensitive to different temperatures offers an opportunity to evaluate the thermal structure and flows in flaring atmospheres. This, in turn, can be used to estimate the partitioning between the thermal and kinetic energies released in flares. Aims: Our aim is to forward-model large-scale (50-10 000 km) velocity distributions to interpret non-thermal broadening of different spectral EUV lines observed in flares. The developed models allow us to understand the origin of the observed spectral line shifts and broadening, and link these features to particular physical phenomena in flaring atmospheres. Methods: We use ideal magnetohydrodynamics (MHD) to derive unstable twisted magnetic fluxtube configurations in a gravitationally stratified atmosphere. The evolution of these twisted fluxtubes is followed using resistive MHD with anomalous resistivity depending on the local density and temperature. The model also takes thermal conduction and radiative losses in the continuum into account. The model allows us to evaluate average velocities and velocity dispersions, which would be interpreted as non-thermal velocities in observations, at different temperatures for different parts of the models. Results: Our models show qualitative and quantitative agreement with observations. Thus, the line-of-sight (LOS) velocity dispersions demonstrate substantial correlation with the temperature, increasing from about 20-30 km s-1 around 1 MK to about 200-400 km s-1 near 10-20 MK. The average LOS velocities also correlate with velocity dispersions, although they demonstrate a very strong scattering compared to the observations. We also note that near footpoints the velocity dispersions across the magnetic field are systematically lower than those along the field. We conclude that the correlation between the flow velocities, velocity dispersions, and temperatures are likely to indicate that the same heating

  3. Effect of Continuous Motion Parameter Feedback on Laparoscopic Simulation Training: A Prospective Randomized Controlled Trial on Skill Acquisition and Retention.

    Science.gov (United States)

    Buescher, Julian Frederik; Mehdorn, Anne-Sophie; Neumann, Philipp-Alexander; Becker, Felix; Eichelmann, Ann-Kathrin; Pankratius, Ulrich; Bahde, Ralf; Foell, Daniel; Senninger, Norbert; Rijcken, Emile

    2017-08-29

    To investigate the effect of motion parameter feedback on laparoscopic basic skill acquisition and retention during a standardized box training curriculum. A Lap-X Hybrid laparoscopic simulator was designed to provide individual and continuous motion parameter feedback in a dry box trainer setting. In a prospective controlled trial, surgical novices were randomized into 2 groups (regular box group, n = 18, and Hybrid group, n = 18) to undergo an identical 5-day training program. In each group, 7 standardized tasks on laparoscopic basic skills were completed twice a day on 4 consecutive days in fixed pairs. Additionally, each participant performed a simulated standard laparoscopic cholecystectomy before (day 1) and after training (day 5) on a LAP Mentor II virtual reality (VR) trainer, allowing an independent control of skill progress in both groups. A follow-up assessment of skill retention was performed after 6 weeks with repetition of both the box tasks and VR cholecystectomy. Muenster University Hospital Training Center, Muenster, Germany. Medical students without previous surgical experience. Laparoscopic skills in both groups improved significantly during the training period, measured by the overall task performance time. The 6 week follow-up showed comparable skill retention in both groups. Evaluation of the VR cholecystectomies demonstrated significant decrease of operation time (p skill retention. Simulation training on both trainers enables reliable acquisition of laparoscopic basic skills. Furthermore, individual and continuous motion feedback improves laparoscopic skill enhancement significantly in several aspects. Thus, training systems with feedback of motion parameters should be considered to achieve long-term improvement of motion economy among surgical trainees. Copyright © 2017 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  4. Rehabilitation following arthroscopic rotator cuff repair: a prospective randomized trial of immobilization compared with early motion.

    Science.gov (United States)

    Keener, Jay D; Galatz, Leesa M; Stobbs-Cucchi, Georgia; Patton, Rebecca; Yamaguchi, Ken

    2014-01-01

    The influence of rehabilitation on the outcomes after arthroscopic rotator cuff repair remains unknown. The purpose of this study was to compare clinical results and tendon healing rates following arthroscopic rotator cuff repair utilizing two distinct rehabilitation protocols. Over a thirty-month period, 124 patients under the age of sixty-five years underwent arthroscopic repair of a full-thickness rotator cuff tear measuring rehabilitation program with early range of motion or to an immobilization group with delayed range of motion for six weeks. Clinical outcomes assessment included visual analog pain scale score, American Shoulder and Elbow Surgeons (ASES) score, Simple Shoulder Test (SST), relative Constant score, and strength measurements at six, twelve, and twenty-four months. Tendon integrity was assessed with ultrasonography at a minimum of twelve months postoperatively. There were no significant differences in patient age, tear size, or measures of preoperative function between groups at baseline. Final clinical follow-up was available for 114 subjects (92%). Active elevation and external rotation were better in the traditional rehabilitation group at three months. No significant differences were seen in functional scores, active motion, and shoulder strength between rehabilitation groups at later time points. Functional outcomes plateaued at six or twelve months except for the relative Constant score, which improved up to twenty-four months following surgery. Ninety-two percent of the tears were healed, with no difference between rehabilitation protocols (p = 0.46). Arthroscopic repair of small and medium full-thickness rotator cuff tears results in reliable improvements in clinical outcomes and a high rate of tendon integrity using a double-row repair technique in patients under the age of sixty-five years. There is no apparent advantage or disadvantage of early passive range of motion compared with immobilization with regard to healing or functional

  5. Acute changes of hip joint range of motion using selected clinical stretching procedures: A randomized crossover study.

    Science.gov (United States)

    Hammer, Adam M; Hammer, Roger L; Lomond, Karen V; O'Connor, Paul

    2017-09-01

    Hip adductor flexibility and strength is an important component of athletic performance and many activities of daily living. Little research has been done on the acute effects of a single session of stretching on hip abduction range of motion (ROM). The aim of this study was to compare 3 clinical stretching procedures against passive static stretching and control on ROM and peak isometric maximal voluntary contraction (MVC). Using a randomized crossover study design, a total of 40 participants (20 male and 20 female) who had reduced hip adductor muscle length attended a familiarization session and 5 testing sessions on non-consecutive days. Following the warm-up and pre-intervention measures of ROM and MVC, participants were randomly assigned 1 of 3 clinical stretching procedures (modified lunge, multidirectional, and joint mobilization) or a static stretch or control condition. Post-intervention measures of ROM and MVC were taken immediately following completion of the assigned condition. An ANOVA using a repeated measure design with the change score was conducted. All interventions resulted in small but statistically significant (p stretching was greater than control (p = 0.031). These data suggest that a single session of stretching has only a minimal effect on acute changes of hip abduction ROM. Although hip abduction is a frontal plane motion, to effectively increase the extensibility of the structures that limit abduction, integrating multi-planar stretches may be indicated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Analysis of self-heating of thermally assisted spin-transfer torque magnetic random access memory

    Directory of Open Access Journals (Sweden)

    Austin Deschenes

    2016-11-01

    Full Text Available Thermal assistance has been shown to significantly reduce the required operation power for spin torque transfer magnetic random access memory (STT-MRAM. Proposed heating methods include modified material stack compositions that result in increased self-heating or external heat sources. In this work we analyze the self-heating process of a standard perpendicular magnetic anisotropy STT-MRAM device through numerical simulations in order to understand the relative contributions of Joule, thermoelectric Peltier and Thomson, and tunneling junction heating. A 2D rotationally symmetric numerical model is used to solve the coupled electro-thermal equations including thermoelectric effects and heat absorbed or released at the tunneling junction. We compare self-heating for different common passivation materials, positive and negative electrical current polarity, and different device thermal anchoring and boundaries resistance configurations. The variations considered are found to result in significant differences in maximum temperatures reached. Average increases of 3 K, 10 K, and 100 K for different passivation materials, positive and negative polarity, and different thermal anchoring configurations, respectively, are observed. The highest temperatures, up to 424 K, are obtained for silicon dioxide as the passivation material, positive polarity, and low thermal anchoring with thermal boundary resistance configurations. Interestingly it is also found that due to the tunneling heat, Peltier effect, device geometry, and numerous interfacial layers around the magnetic tunnel junction (MTJ, most of the heat is dissipated on the lower potential side of the magnetic junction. This asymmetry in heating, which has also been observed experimentally, is important as thermally assisted switching requires heating of the free layer specifically and this will be significantly different for the two polarity operations, set and reset.

  7. From Gyroscopic to Thermal Motion: A Crossover in the Dynamics of Molecular Superrotors

    Directory of Open Access Journals (Sweden)

    A. A. Milner

    2015-09-01

    Full Text Available Localized heating of a gas by intense laser pulses leads to interesting acoustic, hydrodynamic, and optical effects with numerous applications in science and technology, including controlled wave guiding and remote atmosphere sensing. Rotational excitation of molecules can serve as the energy source for raising the gas temperature. Here, we study the dynamics of energy transfer from the molecular rotation to heat. By optically imaging a cloud of molecular superrotors, created with an optical centrifuge, we experimentally identify two separate and qualitatively different stages of its evolution. The first nonequilibrium “gyroscopic” stage is characterized by the modified optical properties of the centrifuged gas—its refractive index and optical birefringence, owing to the ultrafast directional molecular rotation, which survives tens of collisions. The loss of rotational directionality is found to overlap with the release of rotational energy to heat, which triggers the second stage of thermal expansion. The crossover between anisotropic rotational and isotropic thermal regimes is in agreement with recent theoretical predictions and our hydrodynamic calculations.

  8. Different motion modes of a mobile plate on top of a thermally convecting fluid

    Science.gov (United States)

    Mao, Yadan; Zhong, Jin-Qiang; Zhang, Jun

    2016-11-01

    Numerical simulations are conducted to model the dynamics of a mobile, insulating plate floating on top of a Rayleigh-Benard convecting fluid with infinite Prandtl number in a two dimensional rectangular domain, which is roughly analogues to the geological model of continent drift over mantle. We focus on the effect of plate size on the dynamic feedback between the plate and the underlying convection. Four different modes of coupling are revealed as plate size varies. Among them, two transient stable modes are identified: 1. a very small plate tends to linger for long time over a cold downwelling bordering two counter-rotating convection cells; 2. a relatively small plate sometimes lingers over an upwelling plume bordering two convection cells with cold downwellings on the edges of the plate. A relatively large plate rides on a moving convection cell and oscillates periodically between the two ends walls. A very large plate executes only small excursions in response to the competition between the two neighbouring cells underneath and no longer touches the end walls. These modes are well related to different continent motions since the breakup of the Pangaea supercontinent.

  9. Air Motion and Thermal Environment in Pig Housing Facilities with Diffuse Inlet

    DEFF Research Database (Denmark)

    Jacobsen, Lis

    in ambient temperature and air exchange rate. The effect of housing equipment on environmental conditions has been examined both experimental and numerically and it was found that impervious housing equipment has a significant effect on the climatic conditions close to the wall in the occupational zone....... The wind tunnel experiments show that the diffuse material works as a heat exchanger and preheats the inlet air if the temperature in the room is higher than the inlet air. The result of the experiment is that the heat exchanging function of the inlet boundary surface is dependent on flow velocity...... of thermal comfort in terms of the operative temperature of the occupational zone. A model of the boundary condition of the diffuse inlet is necessary because the inlet is a conglomeration of an inlet and a wall boundary condition. Two methods of modelling can be chosen, a model based on the determination...

  10. From gyroscopic to thermal motion: a crossover in the dynamics of molecular superrotors

    CERN Document Server

    Milner, A A; Rezaiezadeh, K; Milner, V

    2015-01-01

    Localized heating of a gas by intense laser pulses leads to interesting acoustic, hydrodynamic and optical effects with numerous applications in science and technology, including controlled wave guiding and remote atmosphere sensing. Rotational excitation of molecules can serve as the energy source for raising the gas temperature. Here, we study the dynamics of energy transfer from the molecular rotation to heat. By optically imaging a cloud of molecular superrotors, created with an optical centrifuge, we experimentally identify two separate and qualitatively different stages of its evolution. The first non-equilibrium "gyroscopic" stage is characterized by the modified optical properties of the centrifuged gas - its refractive index and optical birefringence, owing to the ultrafast directional molecular rotation, which survives tens of collisions. The loss of rotational directionality is found to overlap with the release of rotational energy to heat, which triggers the second stage of thermal expansion. The ...

  11. A finite element formulation for the large deflection random response of thermally buckled beams

    Science.gov (United States)

    Locke, James; Mei, Chuh

    1989-01-01

    The effects of temperature and acoustic loading are included in a theoretical finite element large deflection formulation for thin, isotropic beams. Thermal loads are applied as steady-state temperature distributions, and acoustic loads are taken to be ergodic and Gaussian with zero mean and uniform magnitude and phase along the length of the beam. Material properties are considered presently to be independent of temperature. Also, inplane and rotary inertia terms are assumed to be negligible, and all inplane edge conditions are taken to be immovable. For the random response analysis, both auto- and cross-correlation terms are included. The nature of the loads leads to the solution of two separate problems. First, the problem of thermal postbuckling is solved to determine the deflections and stresses due to the thermal load only. These deflections and stresses are then used as initial deflections and stresses for the random vibration analysis. Root-mean-square (RMS) maximum deflections and strains are obtained and compared with previous classical equivalent linearization results.

  12. Fundamental analysis and ex vivo validation of thermal lesion mapping using harmonic motion imaging for focused ultrasound (HMIFU)

    Science.gov (United States)

    Hou, Gary Y.; Luo, Jianwen; Maleke, Caroline; Vappou, Jonathan; Marquet, Fabrice; Konofagou, Elisa E.

    2012-10-01

    Harmonic Motion Imaging for Focused Ultrasound (HMIFU) is a novel high-intensity focused ultrasound (HIFU) therapy monitoring method with feasibilities demonstrated in vitro, ex vivo and in vivo. Its principle is based on Amplitude-modulated (AM) - Harmonic Motion Imaging (HMI), an oscillatory radiation force used for imaging the tissue mechanical response during thermal ablation. In this study, a theoretical framework of HMIFU is presented, comprising a customized nonlinear wave propagation model, a finite-element (FE) analysis module, and an image-formation model. The objective of this study is to develop such a framework in order to 1) assess the fundamental performance of HMIFU in detecting HIFU lesions based on the change in tissue apparent elasticity, i.e., the increasing Young's modulus, and the HIFU lesion size with respect to the HIFU exposure time and 2) validate the simulation findings ex vivo. The same HMI and HMIFU parameters as in the experimental studies were used, i.e., 4.5-MHz HIFU frequency and 25-Hz AM frequency. For a lesion-to-background Young's modulus ratio of 3, 6, and 9, the estimated HMI displacement ratios were equal to 1.65, 3.19, 4.59, respectively. In experiments, the HMI displacement followed a similar increasing trend of 1.19, 1.28, 1.78 at 10-s, 20-s, and 30-s HIFU exposure, respectively. In addition, moderate agreement in lesion size growth was also found in both simulations (16.2, 73.1 and 334.7 mm2) and experiments (26.2, 94.2 and 206.2 mm2). Therefore, the feasibility of HMIFU for HIFU lesion detection based on the underlying tissue elasticity changes was verified through the developed theoretical framework, i.e., validation of the fundamental performance of the HMIFU system for lesion detection, localization and quantification, was demonstrated both theoretically and ex vivo.

  13. Application of a model to investigate the effective thermal conductivity of randomly packed fusion pebble beds

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoliang; Zheng, Jie; Chen, Hongli, E-mail: hlchen1@ustc.edu.cn

    2016-05-15

    In our precious study, a prediction model, which calculates the effective thermal conductivity k{sub eff} of mono-sized pebble beds, has been developed and validated. Based on this model, here the effects of these influencing factors such as pebble size, thermal radiation, contact area, filling gas, gas flow, gas pressure, etc. on the k{sub eff} of randomly packed fusion pebble beds are studied and analyzed. The pebble beds investigated include Li{sub 4}SiO{sub 4}, Li{sub 2}ZrO{sub 3}, Li{sub 2}TiO{sub 3}, Li{sub 2}O, Be and BeO pebble beds. In the current study, many important and meaningful conclusions are derived and some of them are similar to the existing research results. Particularly, some critters that under which conditions the effect of some influencing factors can be neglected or should be considered are also presented.

  14. Randomized Clinical Trial with e-MotionalTraining® 1.0 for Social Cognition Rehabilitation in Schizophrenia

    Directory of Open Access Journals (Sweden)

    Yolanda Maroño Souto

    2018-02-01

    Full Text Available BackgroundSchizophrenia patients present deficits in social cognition (SC, emotion and social perception, theory of mind (ToM, and attributional style. This study tested the efficacy, in real clinical conditions, of a online self-training program in SC, e-Motional Training®, in comparison with treatment as usual.MethodA randomized single-blinded multicenter clinical trial was conducted with 60 schizophrenia stable outpatients. All patients (control and intervention were treated with drug therapy, case management, and individual and group psychotherapy (not focused on SC. Intervention group was treated with e-Motional Training®, an online program devised for SC rehabilitation.Statistical analysisA descriptive analysis and parametric/non-parametric tests were used to compare both groups at baseline. Analysis of covariance was used to compared post–pre changes in SC between the two interventions. If the group effect was significant, follow-up univariate test (t-test for dependent samples was carried out in each group to verify whether the effect was due to improvement in the intervention group or deterioration in the control group. We considered statistically significant differences with P < 0.05.ResultsSignificant improvements were obtained in the intervention group in emotion recognition and most ToM variables in comparison with the control group.Discussione-Motional Training® seems to be a promising online training tool for SC deficits in schizophrenia, covering the lack of similar intervention instruments in our community.

  15. Simulation of Field Dependence of Critical Current Densities of Bulk High Tc Superconducting Materials regarding Thermally Activated Flux Motion

    Science.gov (United States)

    Santosh, M.; Naik, S. Pavan Kumar; Koblischka, M. R.

    2017-07-01

    In the upcoming generation, bulk high temperature superconductors (HTS) will play a crucial and a promising role in numerous industrial applications ranging from Maglev trains to magnetic resonance imaging, etc. Especially, the bulk HTS as permanent magnets are suitable due to the fact that they can trap magnetic fields being several orders of magnitude higher than those of the best hard ferromagnets. The bulk HTS LREBa2Cu3O7-δ (LREBCO or LRE-123, LRE: Y, Gd, etc.,) materials could obtain very powerful compact superconducting super-magnets, which can be operated at the cheaper liquid nitrogen temperature or below due to higher critical temperatures (i.e., ∼90 K). As a result, the new advanced technology can be utilized in a more attractive manner for a variety of technological and medical applications which have the capacity to revolutionize the field. An understanding of the magnetic field dependence of the critical current density (J c(H)) is important to develop better adapted materials. To achieve this goal, a variety of Jc (H) behaviours of bulk LREBCO samples were modelled regarding thermally activated flux motion. In essence, the Jc (H) curves follows a certain criterion where an exponential model is applied. However, to fit the complete Jc (H) curve of the LRE-123 samples an unique model is necessary to explain the behavior at low and high fields. The modelling of the various superconducting materials could be understood in terms of the pinning mechanisms.

  16. Land cover mapping based on random forest classification of multitemporal spectral and thermal images.

    Science.gov (United States)

    Eisavi, Vahid; Homayouni, Saeid; Yazdi, Ahmad Maleknezhad; Alimohammadi, Abbas

    2015-05-01

    Thematic mapping of complex landscapes, with various phenological patterns from satellite imagery, is a particularly challenging task. However, supplementary information, such as multitemporal data and/or land surface temperature (LST), has the potential to improve the land cover classification accuracy and efficiency. In this paper, in order to map land covers, we evaluated the potential of multitemporal Landsat 8's spectral and thermal imageries using a random forest (RF) classifier. We used a grid search approach based on the out-of-bag (OOB) estimate of error to optimize the RF parameters. Four different scenarios were considered in this research: (1) RF classification of multitemporal spectral images, (2) RF classification of multitemporal LST images, (3) RF classification of all multitemporal LST and spectral images, and (4) RF classification of selected important or optimum features. The study area in this research was Naghadeh city and its surrounding region, located in West Azerbaijan Province, northwest of Iran. The overall accuracies of first, second, third, and fourth scenarios were equal to 86.48, 82.26, 90.63, and 91.82%, respectively. The quantitative assessments of the results demonstrated that the most important or optimum features increase the class separability, while the spectral and thermal features produced a more moderate increase in the land cover mapping accuracy. In addition, the contribution of the multitemporal thermal information led to a considerable increase in the user and producer accuracies of classes with a rapid temporal change behavior, such as crops and vegetation.

  17. Microscopic Evaluation of Electrical and Thermal Conduction in Random Metal Wire Networks.

    Science.gov (United States)

    Gupta, Ritu; Kumar, Ankush; Sadasivam, Sridhar; Walia, Sunil; Kulkarni, Giridhar U; Fisher, Timothy S; Marconnet, Amy

    2017-04-19

    Ideally, transparent heaters exhibit uniform temperature, fast response time, high achievable temperatures, low operating voltage, stability across a range of temperatures, and high optical transmittance. For metal network heaters, unlike for uniform thin-film heaters, all of these parameters are directly or indirectly related to the network geometry. In the past, at equilibrium, the temperature distributions within metal networks have primarily been studied using either a physical temperature probe or direct infrared (IR) thermography, but there are limits to the spatial resolution of these cameras and probes, and thus, only average regional temperatures have typically been measured. However, knowledge of local temperatures within the network with a very high spatial resolution is required for ensuring a safe and stable operation. Here, we examine the thermal properties of random metal network thin-film heaters fabricated from crack templates using high-resolution IR microscopy. Importantly, the heaters achieve predominantly uniform temperatures throughout the substrate despite the random crack network structure (e.g., unequal sized polygons created by metal wires), but the temperatures of the wires in the network are observed to be significantly higher than the substrate because of the significant thermal contact resistance at the interface between the metal and the substrate. Last, the electrical breakdown mechanisms within the network are examined through transient IR imaging. In addition to experimental measurements of temperatures, an analytical model of the thermal properties of the network is developed in terms of geometrical parameters and material properties, providing insights into key design rules for such transparent heaters. Beyond this work, the methods and the understanding developed here extend to other network-based heaters and conducting films, including those that are not transparent.

  18. A comparative study on the effects of air gap wind and walking motion on the thermal properties of Arabian Thawbs and Chinese Cheongsams.

    Science.gov (United States)

    Cui, Zhiying; Fan, Jintu; Wu, Yuenshing

    2016-08-01

    This paper reports on an experimental investigation on the effects of air gap, wind and walking motion on the thermal properties of traditional Arabian thawbs and Chinese cheongsams. Total thermal resistance (It) and vapour resistance (Re) were measured using the sweating fabric manikin - 'Walter', and the air gap volumes of the garments were determined by a 3D body scanner. The results showed the relative changes of It and Re of thawbs due to wind and walking motion are greater than those of cheongsams, which provided an explanation of why thawbs are preferred in extremely hot climate. It is further shown that thermal insulation and vapour resistance of thawbs increase with the air gap volume up to about 71,000 cm(3) and then decrease gradually. Thawbs with higher air permeability have significantly lower evaporative resistance particularly under windy conditions demonstrating the advantage of air permeable fabrics in body cooling in hot environments. Practitioner Summary: This paper aims to better understand the thermal insulation and vapour resistance of traditional Arabian thawbs and Chinese cheongsams, and the relationship between the thermal properties and their fit and design. The results of this study provide a scientific basis for designing ethnic clothing used in hot environments.

  19. Sample-to-sample fluctuations of power spectrum of a random motion in a periodic Sinai model

    Science.gov (United States)

    Dean, David S.; Iorio, Antonio; Marinari, Enzo; Oshanin, Gleb

    2016-09-01

    The Sinai model of a tracer diffusing in a quenched Brownian potential is a much-studied problem exhibiting a logarithmically slow anomalous diffusion due to the growth of energy barriers with the system size. However, if the potential is random but periodic, the regime of anomalous diffusion crosses over to one of normal diffusion once a tracer has diffused over a few periods of the system. Here we consider a system in which the potential is given by a Brownian bridge on a finite interval (0 ,L ) and then periodically repeated over the whole real line and study the power spectrum S (f ) of the diffusive process x (t ) in such a potential. We show that for most of realizations of x (t ) in a given realization of the potential, the low-frequency behavior is S (f ) ˜A /f2 , i.e., the same as for standard Brownian motion, and the amplitude A is a disorder-dependent random variable with a finite support. Focusing on the statistical properties of this random variable, we determine the moments of A of arbitrary, negative, or positive order k and demonstrate that they exhibit a multifractal dependence on k and a rather unusual dependence on the temperature and on the periodicity L , which are supported by atypical realizations of the periodic disorder. We finally show that the distribution of A has a log-normal left tail and exhibits an essential singularity close to the right edge of the support, which is related to the Lifshitz singularity. Our findings are based both on analytic results and on extensive numerical simulations of the process x (t ) .

  20. Magneto hall effect on unsteady elastico-viscous nanofluid slip flow in a channel in presence of thermal radiation and heat generation with Brownian motion

    Science.gov (United States)

    Karim, M. Enamul; Samad, M. Abdus; Ferdows, M.

    2017-06-01

    The present note investigates the magneto hall effect on unsteady flow of elastico-viscous nanofluid in a channel with slip boundary considering the presence of thermal radiation and heat generation with Brownian motion. Numerical results are achieved by solving the governing equations by the implicit Finite Difference Method (FDM) obtaining primary and secondary velocities, temperature, nanoparticles volume fraction and concentration distributions within the boundary layer entering into the problem. The influences of several interesting parameters such as elastico-viscous parameter, magnetic field, hall parameter, heat generation, thermal radiation and Brownian motion parameters on velocity, heat and mass transfer characteristics of the fluid flow are discussed with the help of graphs. Also the effects of the pertinent parameters, which are of physical and engineering interest, such as Skin friction parameter, Nusselt number and Sherwood number are sorted out. It is found that the flow field and other quantities of physical concern are significantly influenced by these parameters.

  1. A hybrid formalism combining fluctuating hydrodynamics and generalized Langevin dynamics for the simulation of nanoparticle thermal motion in an incompressible fluid medium.

    Science.gov (United States)

    Uma, B; Eckmann, D M; Ayyaswamy, P S; Radhakrishnan, R

    2012-01-01

    A novel hybrid scheme based on Markovian fluctuating hydrodynamics of the fluid and a non-Markovian Langevin dynamics with the Ornstein-Uhlenbeck noise perturbing the translational and rotational equations of motion of the nanoparticle is employed to study the thermal motion of a nanoparticle in an incompressible Newtonian fluid medium. A direct numerical simulation adopting an arbitrary Lagrangian-Eulerian (ALE) based finite element method (FEM) is employed in simulating the thermal motion of a particle suspended in the fluid confined in a cylindrical vessel. The results for thermal equilibrium between the particle and the fluid are validated by comparing the numerically predicted temperature of the nanoparticle with that obtained from the equipartition theorem. The nature of the hydrodynamic interactions is verified by comparing the velocity autocorrelation function (VACF) and mean squared displacement (MSD) with well-known analytical results. For nanoparticle motion in an incompressible fluid, the fluctuating hydrodynamics approach resolves the hydrodynamics correctly but does not impose the correct equipartition of energy based on the nanoparticle mass because of the added mass of the displaced fluid. In contrast, the Langevin approach with an appropriate memory is able to show the correct equipartition of energy, but not the correct short- and long-time hydrodynamic correlations. Using our hybrid approach presented here, we show for the first time, that we can simultaneously satisfy the equipartition theorem and the (short- and long-time) hydrodynamic correlations. In effect, this results in a thermostat that also simultaneously preserves the true hydrodynamic correlations. The significance of this result is that our new algorithm provides a robust computational approach to explore nanoparticle motion in arbitrary geometries and flow fields, while simultaneously enabling us to study carrier adhesion mediated by biological reactions (receptor

  2. Correlated atomic motions in the negative thermal expansion material ZrW2O8: A local structure study

    Science.gov (United States)

    Cao, D.; Bridges, F.; Kowach, G. R.; Ramirez, A. P.

    2003-07-01

    Recent studies of zirconium tungstate, ZrW2O8, show an isotropic negative thermal expansion (NTE) over a wide temperature range. It has been proposed that the low-energy phonon vibrational modes, observed in both specific heat and phonon density-of-states measurements, are responsible for this unusual NTE. We have carried out x-ray-absorption fine-structure (XAFS) experiments at both the W LIII edge and Zr K edge to study the detailed local structure in ZrW2O8. Our XAFS results show a very small temperature dependence of the broadening parameter, σ, for the W-Zr atom pair and the W-O-Zr linkage; consequently, the displacements of the W, O, and Zr atoms must be correlated. The data show a much larger temperature dependence of σ for the nearest W1-W2 pair as well as for the nearest Zr-Zr pair. These combined results indicate that it is the correlated motion of a WO4 tetrahedron and its three nearest ZrO6 octahedra that leads to the NTE effect in this material instead of primarily transverse vibrations of the middle O atom in the W-O-Zr linkage. The data for both W-W and Zr-Zr atom pairs also indicate a hardening of the effective spring constant near 100 K, which is consistent with the shift of the lowest mode with T in the phonon density of states. A simple model is developed to explain the NTE in terms of the local structure results; it also provides a natural explanation for the lack of a soft-mode phase transition.

  3. Thermal stability of functional P(S-r-MMA) random copolymers for nanolithographic applications.

    Science.gov (United States)

    Sparnacci, Katia; Antonioli, Diego; Gianotti, Valentina; Laus, Michele; Zuccheri, Giampaolo; Ferrarese Lupi, Federico; Giammaria, Tommaso Jacopo; Seguini, Gabriele; Ceresoli, Monica; Perego, Michele

    2015-02-25

    Two strategies are envisioned to improve the thermal stability of the grafted layer and to allow the processing of the random copolymer/block copolymer (RCP/BCP) system at high temperature. From one side, a high-temperature thermal treatment of a commercial α-hydroxyl ω-2,2,6,6-tetramethylpiperidinyloxy functional RCP, namely, TR58, leads to the formation of a stabilized layer able to induce the perpendicular orientation of a symmetric BCP to temperatures higher than 310 °C. On the other side, an α-hydroxyl ω-Br functional RCP, namely, BrR58, with the same molar mass and composition of TR58, was prepared by activator regenerated by electron transfer atom transfer radical polymerization. The resulting brush layer can sustain the self-assembly of the symmetric BCP for processing temperatures as high as 330 °C. In both systems, the disruption of the BCP film, deposited on the grafted RCP layer, occurs because of the formation of bubbles, due to a low-temperature evolution of monomers from the RCP layer. The extent of the low-temperature monomer evolution is higher for TR58 than it is for BrR58 and starts at lower temperatures. For both copolymers, the thermal treatment offsets the low-temperature monomer evolution while still maintaining surface characteristics suitable to induce the perpendicular orientation of the BCPs, thus ultimately extending the range of processing temperatures of the BCP film and consequently speeding the self-organization process.

  4. Whole-body strength training with Huber Motion Lab and traditional strength training in cardiac rehabilitation: A randomized controlled study.

    Science.gov (United States)

    Guiraud, Thibaut; Labrunée, Marc; Besnier, Florent; Sénard, Jean-Michel; Pillard, Fabien; Rivière, Daniel; Richard, Lisa; Laroche, Davy; Sanguignol, Frédéric; Pathak, Atul; Gayda, Mathieu; Gremeaux, Vincent

    2017-01-01

    Isometric strengthening has been rarely studied in patients with coronary heart disease (CHD), mainly because of possible potential side effects and lack of appropriate and reliable devices. We aimed to compare 2 different modes of resistance training, an isometric mode with the Huber Motion Lab (HML) and traditional strength training (TST), in CHD patients undergoing a cardiac rehabilitation program. We randomly assigned 50 patients to HML or TST. Patients underwent complete blinded evaluation before and after the rehabilitation program, including testing for cardiopulmonary exercise, maximal isometric voluntary contraction, endothelial function and body composition. After 4 weeks of training (16 sessions), the groups did not differ in body composition, anthropometric characteristics, or endothelial function. With HML, peak power output (P=0.035), maximal heart rate (P<0.01) and gain of force measured in the chest press position (P<0.02) were greater after versus before training. Both protocols appeared to be well tolerated, safe and feasible for these CHD patients. A training protocol involving 6s phases of isometric contractions with 10s of passive recovery on an HML device could be safely implemented in rehabilitation programs for patients with CHD and improve functional outcomes. Copyright © 2016. Published by Elsevier Masson SAS.

  5. A Double-Blind Placebo-Controlled Randomized Clinical Trial With Magnesium Oxide to Reduce Intrafraction Prostate Motion for Prostate Cancer Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Lips, Irene M., E-mail: i.m.lips@umcutrecht.nl [Department of Radiation Oncology, University Medical Center Utrecht, Utrecht (Netherlands); Gils, Carla H. van [Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht (Netherlands); Kotte, Alexis N.T.J. [Department of Radiation Oncology, University Medical Center Utrecht, Utrecht (Netherlands); Leerdam, Monique E. van [Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam (Netherlands); Franken, Stefan P.G.; Heide, Uulke A. van der; Vulpen, Marco van [Department of Radiation Oncology, University Medical Center Utrecht, Utrecht (Netherlands)

    2012-06-01

    Purpose: To investigate whether magnesium oxide during external-beam radiotherapy for prostate cancer reduces intrafraction prostate motion in a double-blind, placebo-controlled randomized trial. Methods and Materials: At the Department of Radiotherapy, prostate cancer patients scheduled for intensity-modulated radiotherapy (77 Gy in 35 fractions) using fiducial marker-based position verification were randomly assigned to receive magnesium oxide (500 mg twice a day) or placebo during radiotherapy. The primary outcome was the proportion of patients with clinically relevant intrafraction prostate motion, defined as the proportion of patients who demonstrated in {>=}50% of the fractions an intrafraction motion outside a range of 2 mm. Secondary outcome measures included quality of life and acute toxicity. Results: In total, 46 patients per treatment arm were enrolled. The primary endpoint did not show a statistically significant difference between the treatment arms with a percentage of patients with clinically relevant intrafraction motion of 83% in the magnesium oxide arm as compared with 80% in the placebo arm (p = 1.00). Concerning the secondary endpoints, exploratory analyses demonstrated a trend towards worsened quality of life and slightly more toxicity in the magnesium oxide arm than in the placebo arm; however, these differences were not statistically significant. Conclusions: Magnesium oxide is not effective in reducing the intrafraction prostate motion during external-beam radiotherapy, and therefore there is no indication to use it in clinical practice for this purpose.

  6. LCoMotion - Learning, Cognition and Motion; a multicomponent cluster randomized school-based intervention aimed at increasing learning and cognition - rationale, design and methods

    DEFF Research Database (Denmark)

    Bugge, Anna; Tarp, Jakob; Ostergaard, Lars

    2014-01-01

    with the intervention was assessed by short message service (SMS)-tracking and questionnaires were delivered to students, parents and teachers. DISCUSSION: LCoMotion has ability to provide new insights on the effectiveness of a multicomponent intervention on cognitive function and academic skills in 6th and 7th grade...

  7. Kinesio taping improves pain, range of motion, and proprioception in older patients with knee osteoarthritis: a randomized controlled trial.

    Science.gov (United States)

    Cho, Hwi-young; Kim, Eun-Hye; Kim, Junesun; Yoon, Young Wook

    2015-03-01

    This study investigated the short-term effects of Kinesio taping (KT) on various types of pain, active range of motion (AROM), and proprioception in patients with knee osteoarthritis. Forty-six older participants (mean [SD], 57.9 [4.4] yrs) with osteoarthritis were randomly allocated to two groups: the KT group or the placebo-KT group. Taping with tension (KT application) or without tension (placebo-KT application) was applied to the quadriceps of the participants in both groups. Before and after intervention, pain intensity was measured using a visual analog scale at rest and during walking, and pressure pain thresholds (PPTs) were assessed using an algometer in the quadriceps and the tibialis anterior. In addition, pain-free AROM and proprioception were measured. The KT group showed attenuation of pain during walking (effect size [ES], 1.97), PPT in the quadriceps (ES, 2.58), and PPT in the tibialis anterior (ES, 2.45). This group also showed significantly improved AROM (ES, 2.01) and proprioception (ES, 1.73-1.89; P proprioception. There were significant differences between the two groups in pain during walking and PPT. In addition, pain during walking showed a significant correlation with AROM and proprioception, and a significant correlation was found between PPT and AROM. These results demonstrated that KT application with proper tension to the quadriceps effectively attenuates various types of pain and improves AROM and proprioception in osteoarthritis patients. Thus, KT may be a suitable intervention to improve pain, AROM, and proprioception in patients with osteoarthritis in clinics.

  8. Effects of Global Postural Reeducation on gait kinematics in parkinsonian patients: a pilot randomized three-dimensional motion analysis study.

    Science.gov (United States)

    Agosti, Valeria; Vitale, Carmine; Avella, Dario; Rucco, Rosaria; Santangelo, Gabriella; Sorrentino, Pierpaolo; Varriale, Pasquale; Sorrentino, Giuseppe

    2016-04-01

    The Global Postural Reeducation (GPR) method is a physical therapy based on the stretching of antigravity muscle chains with the parallel enhancement of the basal tone of antagonistic muscles addressed to improve static and dynamic stability. Through a three-dimensional motion analysis (3DMA) system, our study aims to investigate whether in Parkinson's disease (PD) patients a GPR program results in a more physiological gait pattern. The kinematic parameters of gait of twenty subjects with clinically diagnosed PD were calculated. The patients were randomly assigned to a study (10 or control (10) group. All subjects underwent neurological and 3DMA assessments at entry time (t 0), at 4 weeks (t 1, end of GPR program), and at 8 and 12 weeks (t 2 and t 3, follow-up evaluation). The study group underwent a four-week GPR program, three times a week, for 40 min individual sessions. Kinematic gait parameters of thigh (T), knee (K) and ankle (A) and UPDRS-III scores were evaluated. At the end of the GPR program, we observed an improvement of the kinematic gait pattern, documented by the increase in KΔc and TΔc values that respectively express the flexion amplitude of knee and thigh. The amelioration was persistent at follow-up assessments, with a parallel enhancement in clinical parameters. GPR intervention shows a long-term efficacy on gait pattern in PD patients. Furthermore, we validated 3DMA as a valuable tool to study the kinematics of gait thus refining the understanding of the effects of specific rehabilitation programs.

  9. A Comparison of the Effects of Different Types of Laryngoscope on the Cervical Motions: Randomized Clinical Trial

    Science.gov (United States)

    Çolak, Alkin; Çopuroğlu, Elif; Yılmaz, Ali; Şahin, Sevtap Hekimoğlu; Turan, Nesrin

    2015-01-01

    Background: The rate of cervical injury among all trauma patients is 3.1%. The most important point during intubation of those patients is not to increase the cervical injury. Aims: In this study, we hypothesize that there will be a minimal cervical extension during a laryngoscopy with the use of optical view laryngoscopes. Study Design: Prospective, randomized clinical trial. Methods: One hundred and fifty adult patients with ASA physical status I to III were enrolled in our study. After routine anesthesia induction, we randomly assigned the patients into three groups according to the type of laryngoscope. Macintosh type, Truview EVO2® type and Airtraq® type laryngoscopes were used in Group DL (n=50), Group TW (n=50) and Group ATQ (n=50), respectively. After applying general anesthesia induction and mask ventilation, all of the patients were positioned in the neutral position. An inclinometer was placed on the forehead of the patients. Then, the extension angle during intubation and the Cormack-Lehane Score were measured and the time to intubation was recorded. Results: One of the 50 patients in the DL Group, 2 of the 50 patients in the TW Group, and 4 of the 50 patients in the ATQ Group were excluded from the study because of the failure of intubation at defined times. The angle of cervical extension during laryngoscopy was found to be 27.24±6.71, 18.08±7.53, and 14.54±4.09 degrees in the Groups DL, TV and ATQ, respectively; these differences also had statistical significance (p=0.000). The duration of intubation was found to be 13.59±5.49, 23.60±15.23, and 29.80±13.82 seconds in Groups DL, TV and ATQ, respectively (p=0.000). Conclusion: A minimal cervical motion was obtained during tracheal intubation with the use of Truview EVO2® and Airtraq® types of laryngoscope compared with the Macintosh laryngoscope. (ClinicalTrials.gov Identifier: NCT02191904). PMID:26167342

  10. A Comparison of the Effects of Different Types of Laryngoscope on the Cervical Motions: Randomized Clinical Trial

    Directory of Open Access Journals (Sweden)

    Alkin Çolak

    2015-06-01

    Full Text Available Background: The rate of cervical injury among all trauma patients is 3.1%. The most important point during intubation of those patients is not to increase the cervical injury. Aims: In this study, we hypothesize that there will be a minimal cervical extension during a laryngoscopy with the use of optical view laryngoscopes. Study Design: Prospective, randomized clinical trial. Methods: One hundred and fifty adult patients with ASA physical status I to III were enrolled in our study. After routine anesthesia induction, we randomly assigned the patients into three groups according to the type of laryngoscope. Macintosh type, Truview EVO2® type and Airtraq® type laryngoscopes were used in Group DL (n=50, Group TW (n=50 and Group ATQ (n=50, respectively. After applying general anesthesia induction and mask ventilation, all of the patients were positioned in the neutral position. An inclinometer was placed on the forehead of the patients. Then, the extension angle during intubation and the Cormack-Lehane Score were measured and the time to intubation was recorded. Results: One of the 50 patients in the DL Group, 2 of the 50 patients in the TW Group, and 4 of the 50 patients in the ATQ Group were excluded from the study because of the failure of intubation at defined times. The angle of cervical extension during laryngoscopy was found to be 27.24±6.71, 18.08±7.53, and 14.54±4.09 degrees in the Groups DL, TV and ATQ, respectively; these differences also had statistical significance (p=0.000. The duration of intubation was found to be 13.59±5.49, 23.60±15.23, and 29.80±13.82 seconds in Groups DL, TV and ATQ, respectively (p=0.000. Conclusion: A minimal cervical motion was obtained during tracheal intubation with the use of Truview EVO2® and Airtraq® types of laryngoscope compared with the Macintosh laryngoscope.

  11. Multilevel Thermally Assisted Magnetoresistive Random-Access Memory Based on Exchange-Biased Vortex Configurations

    Science.gov (United States)

    de Araujo, C. I. L.; Alves, S. G.; Buda-Prejbeanu, L. D.; Dieny, B.

    2016-08-01

    A concept of multilevel thermally assisted magnetoresistive random-access memory is proposed and investigated by micromagnetic simulations. The storage cells are magnetic tunnel junctions in which the storage layer is exchange biased and in a vortex configuration. The reference layer is an unpinned soft magnetic layer. The stored information is encoded via the position of the vortex core in the storage layer. This position can be varied along two degrees of freedom: the radius and the in-plane angle. The information is read out from the amplitude and phase of the tunnel magnetoresistance signal obtained by applying a rotating field on the cell without heating the cell. Various configurations are compared in which the soft reference layer consists of either a simple ferromagnetic layer or a synthetic antiferromagnetic sandwich (SAF). Among those, the most practical one comprises a SAF reference layer in which the magnetostatic interaction between the SAF and storage layer is minimized. This type of cell should allow one to store at least 40 different states per cell representing more than five bits per cell.

  12. Thermally-Activated Vortex Motion and Electrical Dissipation in a Bi 2 Sr 2 CaCu 2 Oδ Thin Film

    Directory of Open Access Journals (Sweden)

    C. R. de la Cruz

    2003-06-01

    Full Text Available The magnetoresistance, obtained from resistivity measurements with external magnetic fields up to 0.5T,was used to directly measure and investigate the electrical dissipation properties of a c-axis orientedBi2Sr2CaCu2O8+δ thin film. An activation-related “peaked” profile below Tc was observed in themagnetoresistance. In increasing applied magnetic field, the peak shifts to lower temperatures, broadens,and becomes more asymmetric. The analysis, made based on an Arrhenius-type activation mechanism,shows that the activation energy decreased with increasing applied magnetic field, as predicted by theAnderson-Kim Thermally-Activated Flux Creep Theory. Therefore, in these low magnetic fields andtemperatures, the vortex motion predominant in the films is thermally activated and contributes largely tothe dissipation in these films.

  13. Quantum and thermal ionic motion, oxygen isotope effect, and superexchange distribution in La2CuO4

    DEFF Research Database (Denmark)

    Haefliger, P. S.; Gerber, S.; Pramod, R.

    2014-01-01

    for theoretical estimates of the distribution of magnetic interaction parameters, J, in an effective one-band model for the cuprate plane. We find that ionic motion causes only small (1%) effects on the average value , which vary with temperature and O isotope, but results in dramatic (10-20%) fluctuations...

  14. Effects of Rigid and Kinesio Taping on Shoulder Rotation Motions, Posterior Shoulder Tightness, and Posture in Asymptomatic Overhead Athletes: A Randomized Controlled Trial.

    Science.gov (United States)

    Gulpinar, Damla; Ozer, Sibel Tekeli; Yesilyaprak, Sevgi S

    2017-07-17

    Alterations in posture and motion patterns are thought to play a role in developing shoulder injuries in overhead athletes. Taping is widely used in the sporting population, but there are limited empirical data regarding its effectiveness. To determine and compare the effects of rigid and kinesio taping on shoulder rotation motions, posterior shoulder tightness (PST) and posture in overhead athletes. Randomized controlled trial. Athletic training rooms. Eighty-six asymptomatic elite overhead athletes. Participants were randomly divided into four groups: rigid taping group (RTG) which underwent therapeutic rigid taping, kinesio taping group (KTG) which underwent therapeutic kinesio taping, placebo group which underwent placebo kinesio taping (shoulder&scapular region taping for taping groups), and control group (no taping). Shoulder rotation motions, PST, and head and shoulder posture were evaluated at baseline, immediately after application and 60-72 hours after application for all groups. Glenohumeral internal rotation (GIR) increased immediately (p .05). Kinesio taping may improve and rigid taping may worsen GIR and PST in overhead athletes. For increasing TROM, kinesio taping is superior to rigid taping. Taping did not affect posture. Short-term kinesio taping in overhead athletes may be useful to improve GIR, TROM, and PST.

  15. Influence of vestibular rehabilitation on neck pain and cervical range of motion among patients with whiplash-associated disorder: a randomized controlled trial.

    Science.gov (United States)

    Hansson, Eva Ekvall; Persson, Liselott; Malmström, Eva Maj

    2013-09-01

    To describe how vestibular rehabilitation influences pain and range of motion among patients with whiplash-associated disorder and dizziness, and to describe whether pain or range of motion correlated with balance performance or self-perceived dizziness handicap. A total of 29 patients, 20 women and 9 men, age range 22-76 years. Patients with whiplash-associated disorder and dizziness were randomized to either intervention (vestibular rehabilitation) or control. Neck pain intensity, cervical range of motion (CROM), balance and self-perceived dizziness handicap were measured at baseline, 6 weeks and 3 months. There were no differences in neck pain intensity or CROM between the 2 groups either at baseline, 6 weeks or 3 months (p = 0.10-0.89). At baseline, neck pain intensity correlated with CROM (-0.406) and self-perceived dizziness handicap (0.492). CROM correlated with self-perceived dizziness handicap and with 1 balance measure (-0.432). Neck pain intensity did not correlate with balance performance (-0.188-0.049). Neck pain intensity and CROM was not influenced by vestibular rehabilitation. Importantly, the programme did not appear to increase pain or decrease neck motion, as initially thought. Neck pain intensity and CROM correlated with self-perceived dizziness handicap. CROM also correlated with 1 balance measure.

  16. Lagrangian modelling of plankton motion: From deceptively simple random walks to Fokker-Planck and back again

    DEFF Research Database (Denmark)

    Visser, Andre

    2008-01-01

    The movement of plankton, either by turbulent mixing or their own inherent motility, can be simulated in a Lagrangian framework as a random walk. Validation of random walk simulations is essential. There is a continuum of mathematically valid stochastic integration schemes upon which random walk ...

  17. A randomized, double-blind, crossover comparison of novel continuous bed motion versus traditional bed position whole-body PET/CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Schatka, Imke [Hannover Medical School, Department of Nuclear Medicine, Hannover (Germany); Charite, Department of Nuclear Medicine, Berlin (Germany); Weiberg, Desiree; Reichelt, Stephanie; Owsianski-Hille, Nicole; Derlin, Thorsten; Berding, Georg; Bengel, Frank M. [Hannover Medical School, Department of Nuclear Medicine, Hannover (Germany)

    2016-04-15

    Continuous bed motion has recently been introduced for whole-body PET/CT, and represents a paradigm shift towards individualized and flexible acquisition without the limitations of bed position-based planning. Increased patient comfort due to lack of abrupt table position changes may be another albeit still unproven advantage. For robust clinical implementation, image quality and quantitative accuracy should at least be equal to the prior standard of bed position-based step-and-shoot imaging. The study included 68 consecutive patients referred for whole-body PET/CT for various malignancies. The patients underwent traditional step-and-shoot and novel continuous bed motion acquisition in the same session in a randomized crossover design. The patients and two independent observers were blinded to the sequence of scan techniques. Patient comfort/satisfaction was examined using a standardized questionnaire. SUVs were compared for reference tissue (liver, muscle) and tumour lesions. PET image quality and misalignment with CT images were evaluated on a scale of 1 - 4. Patients preferred continuous bed motion over step-and-shoot (P = 0.0001). It was considered to be more relaxing (38 % vs. 8 %), quieter (34 % vs. 8 %), and more fluid (64 % vs. 8 %). Image quality, SUV and CT misalignment did not differ between the techniques. Continuous bed motion resulted in better end-plane image quality (P < 0.0001). Regardless of the technique, second examinations had significantly higher tumour lesion SUVmax values (P = 0.0002), and a higher CT misalignment score (P = 0.0017). Oncological PET/CT with continuous bed motion enhances patient comfort and is associated with image quality at least comparable to that with traditional bed position-based step-and-shoot acquisition. (orig.)

  18. Effectiveness of a School-Based Physical Activity Intervention on Cognitive Performance in Danish Adolescents: LCoMotion-Learning, Cognition and Motion - A Cluster Randomized Controlled Trial.

    Directory of Open Access Journals (Sweden)

    Jakob Tarp

    Full Text Available Physical activity is associated not only with health-related parameters, but also with cognitive and academic performance. However, no large scale school-based physical activity interventions have investigated effects on cognitive performance in adolescents. The aim of this study was to describe the effectiveness of a school-based physical activity intervention in enhancing cognitive performance in 12-14 years old adolescents.A 20 week cluster randomized controlled trial was conducted including seven intervention and seven control schools. A total of 632 students (mean (SD age: 12.9 (0.6 years completed the trial with baseline and follow-up data on primary or secondary outcomes (74% of randomized subjects. The intervention targeted physical activity during academic subjects, recess, school transportation and leisure-time. Cognitive performance was assessed using an executive functions test of inhibition (flanker task with the primary outcomes being accuracy and reaction time on congruent and incongruent trials. Secondary outcomes included mathematics performance, physical activity levels, body-mass index, waist-circumference and cardiorespiratory fitness.No significant difference in change, comparing the intervention group to the control group, was observed on the primary outcomes (p's>0.05 or mathematics skills (p>0.05. An intervention effect was found for cardiorespiratory fitness in girls (21 meters (95% CI: 4.4-38.6 and body-mass index in boys (-0.22 kg/m2 (95% CI: -0.39-0.05. Contrary to our predictions, a significantly larger change in interference control for reaction time was found in favor of the control group (5.0 milliseconds (95% CI: 0-9. Baseline to mid-intervention changes in physical activity levels did not differ significantly between groups (all p's>0.05.No evidence was found for effectiveness of a 20-week multi-faceted school-based physical activity intervention for enhancing executive functioning or mathematics skills compared

  19. Effectiveness of a School-Based Physical Activity Intervention on Cognitive Performance in Danish Adolescents: LCoMotion-Learning, Cognition and Motion - A Cluster Randomized Controlled Trial.

    Science.gov (United States)

    Tarp, Jakob; Domazet, Sidsel Louise; Froberg, Karsten; Hillman, Charles H; Andersen, Lars Bo; Bugge, Anna

    2016-01-01

    Physical activity is associated not only with health-related parameters, but also with cognitive and academic performance. However, no large scale school-based physical activity interventions have investigated effects on cognitive performance in adolescents. The aim of this study was to describe the effectiveness of a school-based physical activity intervention in enhancing cognitive performance in 12-14 years old adolescents. A 20 week cluster randomized controlled trial was conducted including seven intervention and seven control schools. A total of 632 students (mean (SD) age: 12.9 (0.6) years) completed the trial with baseline and follow-up data on primary or secondary outcomes (74% of randomized subjects). The intervention targeted physical activity during academic subjects, recess, school transportation and leisure-time. Cognitive performance was assessed using an executive functions test of inhibition (flanker task) with the primary outcomes being accuracy and reaction time on congruent and incongruent trials. Secondary outcomes included mathematics performance, physical activity levels, body-mass index, waist-circumference and cardiorespiratory fitness. No significant difference in change, comparing the intervention group to the control group, was observed on the primary outcomes (p's>0.05) or mathematics skills (p>0.05). An intervention effect was found for cardiorespiratory fitness in girls (21 meters (95% CI: 4.4-38.6) and body-mass index in boys (-0.22 kg/m2 (95% CI: -0.39-0.05). Contrary to our predictions, a significantly larger change in interference control for reaction time was found in favor of the control group (5.0 milliseconds (95% CI: 0-9). Baseline to mid-intervention changes in physical activity levels did not differ significantly between groups (all p's>0.05). No evidence was found for effectiveness of a 20-week multi-faceted school-based physical activity intervention for enhancing executive functioning or mathematics skills compared to a

  20. Comparison of effects of static, proprioceptive neuromuscular facilitation and Mulligan stretching on hip flexion range of motion: a randomized controlled trial

    OpenAIRE

    MS Yıldırım; S Ozyurek; OÇ Tosun; Uzer, S; Gelecek, N.

    2016-01-01

    The aim of this study was to compare the effects of static stretching, proprioceptive neuromuscular facilitation (PNF) stretching and Mulligan technique on hip flexion range of motion (ROM) in subjects with bilateral hamstring tightness. A total of 40 students (mean age: 21.5±1.3 years, mean body height: 172.8±8.2 cm, mean body mass index: 21.9±3.0 kg • m-2) with bilateral hamstring tightness were enrolled in this randomized trial, of whom 26 completed the study. Subjects were divided into 4 ...

  1. The effect of kinesio taping with exercise compared with exercise alone on pain, range of motion, and disability of the shoulder in postmastectomy females: a randomized control trial.

    Science.gov (United States)

    Tantawy, Sayed A; Kamel, Dalia M

    2016-12-01

    [Purpose] The aim of the study was to investigate the effect of kinesio tape on pain, range of motion, and disability of the shoulder. [Subjects and Methods] Seventy-four female patients who underwent modified radical mastectomy participated in this study. They were randomly divided into two groups, an experimental group that received kinesio tape for the shoulder joint in addition to a conventional physiotherapy program and a control group that received the physiotherapy program only. Outcome measures included the Visual Analogue Scale, shoulder range of motion, and Shoulder Pain and Disability Index. [Results] The experimental group showed significant differences in all outcome measures both within and between groups. The control group only showed a significant within group difference in shoulder flexion. [Conclusion] Clinicians should be able to recognize the benefits achieved through the use of adjunct treatment options such as kinesio tape in comparison with benefits that can be obtained through the use of individual modalities in physical therapy. Kinesio tape can be suggested and recommended for postmastectomy patients, especially for shoulder pain, range of motion, and disability.

  2. Efficacy of manual and manipulative therapy in the perception of pain and cervical motion in patients with tension-type headache: a randomized, controlled clinical trial.

    Science.gov (United States)

    Espí-López, Gemma V; Gómez-Conesa, Antonia

    2014-03-01

    The purpose of this study was to evaluate the efficacy of manipulative and manual therapy treatments with regard to pain perception and neck mobility in patients with tension-type headache. A randomized clinical trial was conducted on 84 adults diagnosed with tension-type headache. Eighty-four subjects were enrolled in this study: 68 women and 16 men. Mean age was 39.76 years, ranging from 18 to 65 years. A total of 57.1% were diagnosed with chronic tension-type headache and 42.9% with tension-type headache. Participants were divided into 3 treatment groups (manual therapy, manipulative therapy, a combination of manual and manipulative therapy) and a control group. Four treatment sessions were administered during 4 weeks, with posttreatment assessment and follow-up at 1 month. Cervical ranges of motion pain perception, and frequency and intensity of headaches were assessed. All 3 treatment groups showed significant improvements in the different dimensions of pain perception. Manual therapy and manipulative treatment improved some cervical ranges of motion. Headache frequency was reduced with manipulative treatment (P therapy (P efficacy for patients with tension-type headache with regard to pain perception. As for cervical ranges of motion, treatments produced greater effect when separately administered.

  3. Korean hand acupressure for motion sickness in prehospital trauma care: a prospective, randomized, double-blinded trial in a geriatric population.

    Science.gov (United States)

    Bertalanffy, Petra; Hoerauf, Klaus; Fleischhackl, Roman; Strasser, Helmut; Wicke, Franziska; Greher, Manfred; Gustorff, Burkhard; Kober, Alexander

    2004-01-01

    Patients with trauma or medical illnesses transported to the hospital by ambulance have a frequent incidence of motion sickness. Because the administration of drugs in the ambulance is prohibited by law in Austria, the noninvasive Korean hand acupressure point at K-K9 may be an alternative against nausea and vomiting. We enrolled 100 geriatric patients with minor trauma, randomizing them into a K-K9 group and a sham acupressure group. We recorded visual analog scores (VAS) for nausea and for the patient's overall satisfaction with the treatment, hemodynamic variables, and peripheral vasoconstriction. In the K-K9 group, a significant (P patients had been vasoconstricted at the emergency site before treatment, there was a significant difference (P patients at the hospital (4 and 46 constricted and dilated, respectively, in the K-K9 group versus 48 and 2 constricted and dilated, respectively, in the sham group). On arrival in the hospital, a significant difference (P patients' overall satisfaction with the provided care was significantly higher (P patient satisfaction. Korean hand acupressure at the K-K9 point was effective in reducing nausea and subjective symptoms of motion sickness in emergency trauma transport of patients at high risk of motion sickness.

  4. EFFECTIVENESS OF EARLY STRETCHING EXERCISES FOR RANGE OF MOTION IN THE SHOULDER JOINT AND QUALITY OF FUNCTIONAL RECOVERY IN PATIENTS WITH BURNS - A RANDOMIZED CONTROL TRIAL

    Directory of Open Access Journals (Sweden)

    Amara D. Perer

    2017-10-01

    Full Text Available Background: This study evaluated the effects of an early stretching exercises programme on the range of motion of the shoulder joint and functional recovery in patients with burns. Methods: A randomized controlled study was conducted. Patients from 15 to 55 years of age with a total burn injury surface area (TBSA of 10% to 45% involving the shoulder joint including axilla were eligible. Participants were randomized into two groups; intervention and a usual care control group, with 110 patients in each group. A standardized protocol was used in the management of intervention group for 14 days. The control group was subjected to usual protocol currently used. The range of Motion (ROM was measured, and Functional recovery (FR was assessed with the Quick DASH questionnaire and the Abduction Ladder. Data were obtained before and after the intervention phase and at 3, 6 and 12 months of post-burn period. Results: The mean (SD age of intervention group and control group were 29.76 [9.81] and 30.31 [9.45] respectively. The mean (SD TBSA% of intervention group and control group was 26.15[9.45] and 24.60[9.56] respectively. There is a significant beneficial difference (p=<0.0001 in ROM and FR between the intervention group and the control group. Conclusion: This study demonstrated that an early sustained stretching exercise regime significantly improved the ROM and functional recovery of the shoulder joint after a severe burn involving the axilla.

  5. Effects of mobilization with movement on pain and range of motion in patients with unilateral shoulder impingement syndrome: a randomized controlled trial.

    Science.gov (United States)

    Delgado-Gil, José A; Prado-Robles, Eva; Rodrigues-de-Souza, Daiana P; Cleland, Joshua A; Fernández-de-las-Peñas, César; Alburquerque-Sendín, Francisco

    2015-05-01

    The purpose of this study was to compare the immediate effects of mobilization with movement (MWM) to a sham technique in patients with shoulder impingement syndrome. A randomized controlled trial was performed. Forty-two patients (mean ± SD age, 55 ± 9 years; 81% female) satisfied eligibility criteria, agreed to participate, and were randomized into an MWM group (n = 21) or sham manual contact (n = 21). The primary outcome measures including pain intensity, pain during active range of motion, and maximal active range of motion were assessed by a clinician blinded to group allocation. Outcomes were captured at baseline and after 2 weeks of MWM treatment or sham intervention. The primary analysis was the group × time interaction. The 2×2 analysis of variance revealed a significant group × time interaction for pain intensity during shoulder flexion (F = 7.054; P = .011), pain-free shoulder flexion (F = 32.853; P < .001), maximum shoulder flexion (F = 18.791; P < .01), and shoulder external rotation (F = 7.950; P < .01) in favor of the MWM group. No other significant differences were found. Patients with shoulder impingement syndrome who received 4 sessions of MWM exhibited significantly better outcomes for pain during shoulder flexion, pain-free range of shoulder flexion, maximal shoulder flexion, and maximal external rotation than those patients who were in the sham group. Copyright © 2015 National University of Health Sciences. Published by Elsevier Inc. All rights reserved.

  6. Effect of mouth-motion fatigue and thermal cycling on the marginal accuracy of partial coverage restorations made of various dental materials.

    Science.gov (United States)

    Stappert, Christian F J; Chitmongkolsuk, Somsak; Silva, Nelson R F A; Att, Wael; Strub, Joerg R

    2008-09-01

    To investigate the influence of mouth-motion fatigue on marginal-accuracy of partial-coverage-restorations-(PCRs) of various dental materials. Eighty molars were prepared equally and divided into five groups (n=16). PCRs were fabricated of following dental materials: Group-GO=Gold-Pontor-MPF(double dagger), Group-TA=Targis*, Group-EX=IPS-e.max-Press*, Group-EM=IPS-Empress*, Group-PC=ProCAD*/Cerec 3(dagger) ((double dagger)Metalor/*Ivoclar-Vivadent/(dagger)Sirona-Dental-System). Gold-PCRs were cemented conventionally. Residual 64 PCRs were adhesively luted and subjected to masticatory loading (1.2million-cycles, 1.6Hz, 49N) and thermal cycling (5 degrees C/55 degrees C, 60s, dwell-time, 5500cycles). Discrepancies in marginal-accuracy were examined on epoxy replicas (200 x magnification). Statistical analysis was performed by unpaired and paired t-tests (alpha=0.05). After cementing, marginal-accuracy (geometrical mean)[95% confidence limits] was recorded: GO-47[43-51]microm, TA-42[38-45]microm, EX-60[52-67]microm, EM-52[45-60]microm and PC-75[59-94]microm. No significant differences were found between groups GO, TA and EM. Values of Group-EX were significantly higher compared to Group-TA (p=0.04). Group-PC demonstrated significantly decreased marginal-accuracy towards groups GO (p=0.03) and TA (p=0.02). Except for Group-GO (p=0.01), no significant changes in marginal-accuracy were observed after mouth-motion fatigue and thermal cycling (GO-42[38-45]microm, TA-42[38-47]microm, EX-56[49-65]microm, EM-54[46-64]microm and PC-71[59-84]microm). However, Group-GO and Group-EM showed significant deviations in marginal-accuracy after aging (p=0.04). Marginal discrepancies of groups EX and EM were similar (p=1.0). Values of Group-PC were significantly higher when compared to groups GO (p=0.01) and TA (p=0.02). Buccal-lingual marginal discrepancies were significantly higher than mesial-distal in all groups and stages. Cast-gold-PCRs demonstrated superior marginal

  7. Viscous Dissipation Effects on the Motion of Casson Fluid over an Upper Horizontal Thermally Stratified Melting Surface of a Paraboloid of Revolution: Boundary Layer Analysis

    Directory of Open Access Journals (Sweden)

    T. M. Ajayi

    2017-01-01

    Full Text Available The problem of a non-Newtonian fluid flow past an upper surface of an object that is neither a perfect horizontal/vertical nor inclined/cone in which dissipation of energy is associated with temperature-dependent plastic dynamic viscosity is considered. An attempt has been made to focus on the case of two-dimensional Casson fluid flow over a horizontal melting surface embedded in a thermally stratified medium. Since the viscosity of the non-Newtonian fluid tends to take energy from the motion (kinetic energy and transform it into internal energy, the viscous dissipation term is accommodated in the energy equation. Due to the existence of internal space-dependent heat source; plastic dynamic viscosity and thermal conductivity of the non-Newtonian fluid are assumed to vary linearly with temperature. Based on the boundary layer assumptions, suitable similarity variables are applied to nondimensionalized, parameterized and reduce the governing partial differential equations into a coupled ordinary differential equations. These equations along with the boundary conditions are solved numerically using the shooting method together with the Runge-Kutta technique. The effects of pertinent parameters are established. A significant increases in Rex1/2Cfx is guaranteed with St when magnitude of β is large. Rex1/2Cfx decreases with Ec and m.

  8. Random telegraphic voltage noise due to thermal bi-stability in a superconducting weak link

    Science.gov (United States)

    Biswas, Sourav; Kumar, Nikhil; Winkelmann, C. B.; Courtois, Herve; Gupta, Anjan K.

    2016-05-01

    We investigated the random telegraphic voltage noise signal in the hysteretic bi-stable state of a superconducting weak link device. Fluctuation induced random switching between zero voltage state and non-zero-voltage state gives rise to a random telegraphic voltage signal in time domain. This telegraphic noise is used to find the mean lifetime of each of the two states. The mean life time in the zero voltage state is found to decrease with increasing bias current while that of resistive state increases and thus the two cross at certain bias current. We qualitatively discuss this observed switching behavior as arising from the bi-stable nature.

  9. Using motion-sensor camera technology to infer seasonal activity and thermal niche of the desert tortoise (Gopherus agassizii)

    Science.gov (United States)

    Agha, Mickey; Augustine, Benjamin; Lovich, Jeffrey E.; Delaney, David F.; Sinervo, Barry; Murphy, Mason O.; Ennen, Joshua R.; Briggs, Jessica R.; Cooper, Robert J.; Price, Steven J.

    2015-01-01

    Understanding the relationships between environmental variables and wildlife activity is an important part of effective management. The desert tortoise (Gopherus agassizii), an imperiled species of arid environments in the southwest US, may have increasingly restricted windows for activity due to current warming trends. In summer 2013, we deployed 48 motion sensor cameras at the entrances of tortoise burrows to investigate the effects of temperature, sex, and day of the year on the activity of desert tortoises. Using generalized estimating equations, we found that the relative probability of activity was associated with temperature (linear and quadratic), sex, and day of the year. Sex effects showed that male tortoises are generally more active than female tortoises. Temperature had a quadratic effect, indicating that tortoise activity was heightened at a range of temperatures. In addition, we found significant support for interactions between sex and day of the year, and sex and temperature as predictors of the probability of activity. Using our models, we were able to estimate air temperatures and times (days and hours) that were associated with maximum activity during the study. Because tortoise activity is constrained by environmental conditions such as temperature, it is increasingly vital to conduct studies on how tortoises vary their activity throughout the Sonoran Desert to better understand the effects of a changing climate.

  10. Using motion-sensor camera technology to infer seasonal activity and thermal niche of the desert tortoise (Gopherus agassizii).

    Science.gov (United States)

    Agha, Mickey; Augustine, Benjamin; Lovich, Jeffrey E; Delaney, David; Sinervo, Barry; Murphy, Mason O; Ennen, Joshua R; Briggs, Jessica R; Cooper, Robert; Price, Steven J

    2015-01-01

    Understanding the relationships between environmental variables and wildlife activity is an important part of effective management. The desert tortoise (Gopherus agassizii), an imperiled species of arid environments in the southwest US, may have increasingly restricted windows for activity due to current warming trends. In summer 2013, we deployed 48 motion sensor cameras at the entrances of tortoise burrows to investigate the effects of temperature, sex, and day of the year on the activity of desert tortoises. Using generalized estimating equations, we found that the relative probability of activity was associated with temperature (linear and quadratic), sex, and day of the year. Sex effects showed that male tortoises are generally more active than female tortoises. Temperature had a quadratic effect, indicating that tortoise activity was heightened at a range of temperatures. In addition, we found significant support for interactions between sex and day of the year, and sex and temperature as predictors of the probability of activity. Using our models, we were able to estimate air temperatures and times (days and hours) that were associated with maximum activity during the study. Because tortoise activity is constrained by environmental conditions such as temperature, it is increasingly vital to conduct studies on how tortoises vary their activity throughout the Sonoran Desert to better understand the effects of a changing climate. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Thermal and force loads on the vehicle surface in high-velocity motion in the earth's atmosphere

    Science.gov (United States)

    Tarnavskii, G. A.

    2008-03-01

    Consideration has been given to a number of aspects of mathematical modeling of a high-velocity flight in the earth’s atmosphere in a wide range of variation of the determining parameters. Super-and hypersonic gas flow past flying vehicles has been investigated based on computer-aided calculations with allowance for its actual properties. Data on the distribution of gasdynamic parameters in the flow field, including thermal and force loads on the surface, have been obtained and analyzed. The issues of applying today’s information technologies to archiving scientific knowledge obtained in electronic databases of a specialized Internet center and their dissemination via the Global Network have been discussed.

  12. Adjacent segment motion after anterior cervical discectomy and fusion versus Prodisc-c cervical total disk arthroplasty: analysis from a randomized, controlled trial.

    Science.gov (United States)

    Kelly, Michael P; Mok, James M; Frisch, Richard F; Tay, Bobby K

    2011-07-01

    Post hoc analysis of data acquired in a prospective, randomized, controlled trial. To compare adjacent segment motion after anterior cervical discectomy and fusion (ACDF) versus cervical total disc arthroplasty (TDA). TDA has been designed to be a motion-preserving device, thus theoretically normalizing adjacent segment kinematics. Clinical studies with short-term follow-up have yet to demonstrate a consistent significant difference in the incidence of adjacent segment disease. Two hundred nine patients at 13 sites were treated in a prospective, randomized, controlled trial of ACDF versus TDA for single-level symptomatic cervical degenerative disc disease (SCDD). Flexion and extension radiographs were obtained at all follow-up visits. Changes in ROM were compared using the Wilcoxon signed-rank test and the Mann-Whitney U test. Predictors of postoperative ROM were determined by multivariate analysis using mixed effects linear regression. Data for 199 patients were available with 24-month follow-up. The groups were similar with respect to baseline demographics. A significant increase in motion at the cranial and caudal adjacent segments after surgery was observed in the ACDF group only (cranial: ACDF: +1.4° (0.4, 2.4), P = 0.01; TDA: +0.8°, (-0.1, +1.7), P = 0.166; caudal: ACDF: +2.6° (1.3, 3.9), P TDA: +1.3, (-0.2, +2.8), P = 0.359). No significant difference in adjacent segment ROM was observed between ACDF and TDA. Only time was a significant predictor of postoperative ROM at both the cranial and caudal adjacent segments. Adjacent segment kinematics may be altered after ACDF and TDA. Multivariate analysis showed time to be a significant predictor of changes in adjacent segment ROM. No association between the treatment chosen (ACDF vs. TDA) and ROM was observed. Furthermore clinical follow-up is needed to determine whether possible differences in adjacent segment motion affect the prevalence of adjacent segment disease in the two groups.

  13. Optical and thermal properties of PTh-co-PANI-Ti random copolymer composite for photovoltaic application

    Directory of Open Access Journals (Sweden)

    Sanjay R. Takpire

    2015-12-01

    Full Text Available In thе present work, a polythiophene (PTh-co-polyaniline (PANI-titanium (Ti copolymer has been synthesized as a novel copolymeric composite material for photovoltaic (PV application. The focus of the study was to evaluate optical and thermal properties of the PTh-co-PANI-Ti copolymer containing different types of monomers. The optical conductivity was determined from the UV–VIS spectra that were used to calculate the extinction coefficients. The structure and morphology of composite was analyzed through field emission-electron microscopy (FESEM. The PTh-co-PANI-Ti copolymer composite exhibited significant photovoltaic (PV response to light intensity. J–V analysis showed an increase in conversion efficiency from 0.21 to 1.5 of PTh-co-PANi-Ti with illumination light intensity. PV properties demonstrated that the PTh-co-PANI-Ti exhibited the highest power conversion efficiency ɳ=1.5, with a short circuit current Isc=0.72mA, an open circuit voltage Voc=0.9V and a fill factor FF=0.51. Thermo-gravimetric (TG and differential thermal (DTA analyses were carried out for the thermal stability of the PTh-co-PANI-Ti copolymer composite. The results obtained from the characterization of PTh-co-PANI-Ti showed that many properties of PV action are present in as-synthesized material.

  14. Effectiveness of Ischia thermal water nasal aerosol in children with seasonal allergic rhinitis: a randomized and controlled study.

    Science.gov (United States)

    Miraglia Del Giudice, M; Decimo, F; Maiello, N; Leonardi, S; Parisi, G; Golluccio, M; Capasso, M; Balestrieri, U; Rocco, A; Perrone, L; Ciprandi, G

    2011-01-01

    Allergic rhinitis is characterized by local inflammation. Nasal lavage may be a useful treatment, however, there are few studies on this topic. This study aims to evaluate the effects of Ischia thermal water nasal irrigation on allergic rhinitis symptoms and airway inflammation during the period of natural exposure to Parietaria pollen in children with allergic rhinitis and intermittent asthma. Forty allergic children were randomly divided into two groups: the first group (Group 1) practiced crenotherapy with thermal water aerosol for 15 days per month, for three consecutive months, the control group (Group 2) was treated with 0.9% NaCl (isotonic) solution. In addition, all children were treated with cetirizine (0.5 gtt./kg/day once daily). Nasal symptom assessment, including Total Symptom Score (TSS), spirometry, and exhaled nitric oxide (FeNO) were considered before the treatment (T0), at the end of the treatment (T1) and again 2 weeks after the end of the treatment (T2). The study was registered in the Clinical Trials.gov (NCT01326247). Thermal water significantly reduced both TSS and FeNO levels and there was a significant relationship between reduction of nasal symptoms and FeNO values at the end of treatment with thermal water. In conclusion, this study shows that nasal crenotherapy with the hypermineral chloride-sodium water of Ischia was effective in children with seasonal allergic rhinitis based on the sensitivity to Parietaria. These results demonstrate that this natural treatment may be effective in a common and debilitating disease such as the allergic rhinitis.

  15. The efficacy of interactive, motion capture-based rehabilitation on functional outcomes in an inpatient stroke population: a randomized controlled trial.

    Science.gov (United States)

    Cannell, John; Jovic, Emelyn; Rathjen, Amy; Lane, Kylie; Tyson, Anna M; Callisaya, Michele L; Smith, Stuart T; Ahuja, Kiran Dk; Bird, Marie-Louise

    2018-02-01

    To compare the efficacy of novel interactive, motion capture-rehabilitation software to usual care stroke rehabilitation on physical function. Randomized controlled clinical trial. Two subacute hospital rehabilitation units in Australia. In all, 73 people less than six months after stroke with reduced mobility and clinician determined capacity to improve. Both groups received functional retraining and individualized programs for up to an hour, on weekdays for 8-40 sessions (dose matched). For the intervention group, this individualized program used motivating virtual reality rehabilitation and novel gesture controlled interactive motion capture software. For usual care, the individualized program was delivered in a group class on one unit and by rehabilitation assistant 1:1 on the other. Primary outcome was standing balance (functional reach). Secondary outcomes were lateral reach, step test, sitting balance, arm function, and walking. Participants (mean 22 days post-stroke) attended mean 14 sessions. Both groups improved (mean (95% confidence interval)) on primary outcome functional reach (usual care 3.3 (0.6 to 5.9), intervention 4.1 (-3.0 to 5.0) cm) with no difference between groups ( P = 0.69) on this or any secondary measures. No differences between the rehabilitation units were seen except in lateral reach (less affected side) ( P = 0.04). No adverse events were recorded during therapy. Interactive, motion capture rehabilitation for inpatients post stroke produced functional improvements that were similar to those achieved by usual care stroke rehabilitation, safely delivered by either a physical therapist or a rehabilitation assistant.

  16. Effect of global posture reeducation and of static stretching on pain, range of motion, and quality of life in women with chronic neck pain: a randomized clinical trial

    Directory of Open Access Journals (Sweden)

    Ana Cláudia Violino Cunha

    2008-01-01

    Full Text Available PURPOSE: Compare the effect of conventional static stretching and muscle chain stretching, as proposed by the global posture reeducation method, in the manual therapy of patients with chronic neck pain. METHODS: Thirty-three female patients aged 35 to 60 years old, 31 of whom completed the program, were randomly divided into two groups: The global posture reeducation group (n=15 performed muscle chain stretching, while the conventional stretching group (n=16 performed conventional static muscle stretching. Both groups also underwent manual therapy. Patients were evaluated before and after treatment and at a six-week follow-up appointment and tested for pain intensity (by means of visual analog scale, range of motion (by goniometry, and health-related quality of life (by the SF-36 questionnaire. The treatment program consisted of two 1-hour individual sessions per week for six weeks. Data were statistically analyzed at a significance level of p<0.05. RESULTS: Significant pain relief and range of motion improvement were observed after treatment in both groups, with a slight reduction at follow-up time. Quality of life also improved after treatment, except for the global posture reeducation group in one domain; at follow-up, there was improvement in all domains, except that both groups reported increased pain. There were no significant differences between groups CONCLUSION: Conventional stretching and muscle chain stretching in association with manual therapy were equally effective in reducing pain and improving the range of motion and quality of life of female patients with chronic neck pain, both immediately after treatment and at a six-week follow-up, suggesting that stretching exercises should be prescribed to chronic neck pain patients.

  17. Effect of Global Posture Reeducation and of Static Stretching on Pain, Range of Motion, and Quality of Life in Women with Chronic Neck Pain: A Randomized Clinical Trial

    Science.gov (United States)

    Cunha, Ana Cláudia Violino; Burke, Thomaz Nogueira; França, Fábio Jorge Renovato; Marques, Amélia Pasqual

    2008-01-01

    PURPOSE Compare the effect of conventional static stretching and muscle chain stretching, as proposed by the global posture reeducation method, in the manual therapy of patients with chronic neck pain. METHODS Thirty-three female patients aged 35 to 60 years old, 31 of whom completed the program, were randomly divided into two groups: The global posture reeducation group (n=15) performed muscle chain stretching, while the conventional stretching group (n=16) performed conventional static muscle stretching. Both groups also underwent manual therapy. Patients were evaluated before and after treatment and at a six-week follow-up appointment and tested for pain intensity (by means of visual analog scale), range of motion (by goniometry), and health-related quality of life (by the SF-36 questionnaire). The treatment program consisted of two 1-hour individual sessions per week for six weeks. Data were statistically analyzed at a significance level of pglobal posture reeducation group in one domain; at follow-up, there was improvement in all domains, except that both groups reported increased pain. There were no significant differences between groups CONCLUSION Conventional stretching and muscle chain stretching in association with manual therapy were equally effective in reducing pain and improving the range of motion and quality of life of female patients with chronic neck pain, both immediately after treatment and at a six-week follow-up, suggesting that stretching exercises should be prescribed to chronic neck pain patients. PMID:19060998

  18. Effectiveness of the Gaze Direction Recognition Task for Chronic Neck Pain and Cervical Range of Motion: A Randomized Controlled Pilot Study

    Directory of Open Access Journals (Sweden)

    Satoshi Nobusako

    2012-01-01

    Full Text Available We developed a mental task with gaze direction recognition (GDR by which subjects observed neck rotation of another individual from behind and attempted to recognize the direction of gaze. A randomized controlled trial was performed in test (=9 and control (=8 groups of subjects with chronic neck pain undergoing physical therapy either with or without the GDR task carried out over 12 sessions during a three-week period. Primary outcome measures were defined as the active range of motion and pain on rotation of the neck. Secondary outcome measures were reaction time (RT and response accuracy in the GDR task group. ANOVA indicated a main effect for task session and group, and interaction of session. Post hoc testing showed that the GDR task group exhibited a significant simple main effect upon session, and significant sequential improvement of neck motion and relief of neck pain. Rapid effectiveness was significant in both groups. The GDR task group had a significant session-to-session reduction of RTs in correct responses. In conclusion, the GDR task we developed provides a promising rehabilitation measure for chronic neck pain.

  19. Effectiveness of a night positioning programme on ankle range of motion in patients after hemiparesis: a prospective randomized controlled pilot study.

    Science.gov (United States)

    DeMeyer, Lauren; Brown, Marcie; Adams, Ashley

    2015-10-05

    To investigate the effect of night positioning on ankle motion in patients after stroke or brain injury. Prospective randomized controlled pilot study with 3 groups: bivalve cast; pressure-relieving ankle-foot orthosis; and control. Adults (n = 46) in inpatient rehabilitation with lower extremity paresis following stroke or brain injury. Intervention group participants wore a custom bivalve cast or pre-fabricated orthosis 8-12 h/night. The primary outcome variable was passive ankle dorsiflexion. Muscle spasticity (Modified Ashworth Scale) and functional mobility (Functional Independence Measure) were also assessed. No significant differences were found between groups for all outcome measures at the pilot sample size (p > 0.05). Control and pressure-relieving ankle-foot orthosis groups showed improvement in ankle dorsiflexion, and the bivalve cast group demonstrated a trend toward decreased spasticity. Positioning interventions were tolerated for approximately 11 h/night. Baseline range of motion was measured and a retrospective power analysis determined that a sample size of 234 is needed for 80% power to establish significance. Future research with a larger sample size is re-commended to determine significance and whether a more specific subset of patients would benefit from night positioning to maximize treatment time during daytime therapy sessions.

  20. Directed motion emerging from two coupled random processes: translocation of a chain through a membrane nanopore driven by binding proteins

    Energy Technology Data Exchange (ETDEWEB)

    Ambjoernsson, Tobias; Lomholt, Michael A; Metzler, Ralf [NORDITA-Nordic Institute for Theoretical Physics, Blegdamsvej 17, DK-2100 Copenhagen O (Denmark)

    2005-11-30

    We investigate the translocation of a stiff polymer consisting of M monomers through a nanopore in a membrane, in the presence of binding particles (chaperones) that bind onto the polymer, and partially prevent backsliding of the polymer through the pore. The process is characterized by the rates: k for the polymer to make a diffusive jump through the pore, q for unbinding of a chaperone, and the rate q{kappa} for binding (with a binding strength {kappa}); except for the case of no binding {kappa} = 0 the presence of the chaperones gives rise to an effective force that drives the translocation process. In more detail, we develop a dynamical description of the process in terms of a (2+1)-variable master equation for the probability of having m monomers on the target side of the membrane with n bound chaperones at time t. Emphasis is put on the calculation of the mean first passage time T as a function of total chain length M. The transfer coefficients in the master equation are determined through detailed balance, and depend on the relative chaperone size {lambda} and binding strength {kappa}, as well as the two rate constants k and q. The ratio {gamma} = q/k between the two rates determines, together with {kappa} and {lambda}, three limiting cases, for which analytic results are derived: (i) for the case of slow binding ({gamma}{kappa} {yields} 0), the motion is purely diffusive, and T{approx} M{sup 2} for large M; (ii) for fast binding ({gamma}{kappa} {yields} {infinity}) but slow unbinding ({gamma} {yields} 0), the motion is, for small chaperones {lambda} = 1, ratchet-like, and T{approx} M; (iii) for the case of fast binding and unbinding dynamics ({gamma} {yields} {infinity} and {gamma}{kappa} {yields} {infinity}), we perform the adiabatic elimination of the fast variable n, and find that for a very long polymer T{approx} M, but with a smaller prefactor than for ratchet-like dynamics. We solve the general case numerically as a function of the dimensionless

  1. Fractional Nonablative 1540 nm Laser Resurfacing for Thermal Burn Scars: A Randomized Controlled Trial

    DEFF Research Database (Denmark)

    Haedersdal, M.; Moreau, K.E.R.; Beyer, D.M.

    2009-01-01

    Background and Objective: Burn scars cause permanent and disfiguring problems for many patients and limited treatments are available. Nonablative fractional lasers induce a wound healing response, which may lead to remodeling of burn sear texture. This randomized trial evaluates efficacy...... and adverse effects of 1540 nm fractional laser versus untreated control for burn scars. Materials and Methods: Seventeen adult patients with burn scars of 1 year or older and Fitzpatrick skin types I-III were included in the study. Side-by-side test areas were randomized to (i) three monthly 1540 nm.......0015; 12 weeks: 4 (2-5), P = 0.0007). Patients were satisfied with treatments (week 12: 7 (4-8.5)) and 8/17 patients evaluated burn scars to be moderately or significantly improved. Skin redness increased transiently from laser treatments. No significant differences were found in skin pigmentation...

  2. Short-term effects of cervical kinesio taping on pain and cervical range of motion in patients with acute whiplash injury: a randomized clinical trial.

    Science.gov (United States)

    González-Iglesias, Javier; Fernández-de-Las-Peñas, César; Cleland, Joshua A; Huijbregts, Peter; Del Rosario Gutiérrez-Vega, Maria

    2009-07-01

    Randomized clinical trial. To determine the short-term effects of Kinesio Taping, applied to the cervical spine, on neck pain and cervical range of motion in individuals with acute whiplash-associated disorders (WADs). Researchers have begun to investigate the effects of Kinesio Taping on different musculoskeletal conditions (eg, shoulder and trunk pain). Considering the demonstrated short-term effectiveness of Kinesio Tape for the management of shoulder pain, it is suggested that Kinesio Tape may also be beneficial in reducing pain associated with WAD. Forty-one patients (21 females) were randomly assigned to 1 of 2 groups: the experimental group received Kinesio Taping to the cervical spine (applied with tension) and the placebo group received a sham Kinesio Taping application (applied without tension). Both neck pain (11-point numerical pain rating scale) and cervical range-of-motion data were collected at baseline, immediately after the Kinesio Tape application, and at a 24-hour follow-up by an assessor blinded to the treatment allocation of the patients. Mixed-model analyses of variance (ANOVAs) were used to examine the effects of the treatment on each outcome variable, with group as the between-subjects variable and time as the within-subjects variable. The primary analysis was the group-by-time interaction. The group-by-time interaction for the 2-by-3 mixed-model ANOVA was statistically significant for pain as the dependent variable (F = 64.8; PKinesio Taping experienced a greater decrease in pain immediately postapplication and at the 24-hour follow-up (both, PKinesio Taping, applied with proper tension, exhibited statistically significant improvements immediately following application of the Kinesio Tape and at a 24-hour follow-up. However, the improvements in pain and cervical range of motion were small and may not be clinically meaningful. Future studies should investigate if Kinesio Taping provides enhanced outcomes when added to physical therapy

  3. Integrated thermal infrared imaging and Structure-from-Motion photogrametry to map apparent temperature and radiant hydrothermal heat flux at Mammoth Mountain, CA USA

    Science.gov (United States)

    Lewis, Aaron; George Hilley,; Lewicki, Jennifer L.

    2015-01-01

    This work presents a method to create high-resolution (cm-scale) orthorectified and georeferenced maps of apparent surface temperature and radiant hydrothermal heat flux and estimate the radiant hydrothermal heat emission rate from a study area. A ground-based thermal infrared (TIR) camera was used to collect (1) a set of overlapping and offset visible imagery around the study area during the daytime and (2) time series of co-located visible and TIR imagery at one or more sites within the study area from pre-dawn to daytime. Daytime visible imagery was processed using the Structure-from-Motion photogrammetric method to create a digital elevation model onto which pre-dawn TIR imagery was orthorectified and georeferenced. Three-dimensional maps of apparent surface temperature and radiant hydrothermal heat flux were then visualized and analyzed from various computer platforms (e.g., Google Earth, ArcGIS). We demonstrate this method at the Mammoth Mountain fumarole area on Mammoth Mountain, CA. Time-averaged apparent surface temperatures and radiant hydrothermal heat fluxes were observed up to 73.7 oC and 450 W m-2, respectively, while the estimated radiant hydrothermal heat emission rate from the area was 1.54 kW. Results should provide a basis for monitoring potential volcanic unrest and mitigating hydrothermal heat-related hazards on the volcano.

  4. Eliminating thermal violin spikes from LIGO noise

    Energy Technology Data Exchange (ETDEWEB)

    Santamore, D. H.; Levin, Yuri

    2001-08-15

    We have developed a scheme for reducing LIGO suspension thermal noise close to violin-mode resonances. The idea is to monitor directly the thermally induced motion of a small portion of (a 'point' on) each suspension fiber, thereby recording the random forces driving the test-mass motion close to each violin-mode frequency. One can then suppress the thermal noise by optimally subtracting the recorded fiber motions from the measured motion of the test mass, i.e., from the LIGO output. The proposed method is a modification of an analogous but more technically difficult scheme by Braginsky, Levin and Vyatchanin for reducing broad-band suspension thermal noise. The efficiency of our method is limited by the sensitivity of the sensor used to monitor the fiber motion. If the sensor has no intrinsic noise (i.e. has unlimited sensitivity), then our method allows, in principle, a complete removal of violin spikes from the thermal-noise spectrum. We find that in LIGO-II interferometers, in order to suppress violin spikes below the shot-noise level, the intrinsic noise of the sensor must be less than {approx}2 x 10{sup -13} cm/Hz. This sensitivity is two orders of magnitude greater than that of currently available sensors.

  5. Effect of magnesium oxide on interfraction prostate motion and rectal filling in prostate cancer radiotherapy. Analysis of a randomized clinical trial

    Energy Technology Data Exchange (ETDEWEB)

    Harder, Annemarie M. den; Kotte, Alexis N.T.J.; Vulpen, Marco van; Lips, Irene M. [University Medical Center Utrecht, Department of Radiation Oncology, Utrecht (Netherlands); Gils, Carla H. van [University Medical Center Utrecht, Julius Center for Health Sciences and Primary Care, Utrecht (Netherlands)

    2014-08-15

    To investigate whether magnesium oxide reduces the interfraction motion of the prostate and the amount of rectal filling and rectal gas, which influences prostate position during radiotherapy for prostate cancer. From December 2008 to February 2010, 92 prostate cancer patients scheduled for intensity-modulated radiotherapy (77 Gy in 35 fractions) using fiducial marker-based position verification were randomly assigned to receive magnesium oxide (500 mg twice a day) or placebo during radiotherapy. In a previous study, we investigated the effect on intrafraction motion and did not find a difference between the treatment arms. Here, we compared the interfraction prostate motion between the two treatment arms as well as the amount of rectal filling and rectal air pockets using pretreatment planning computed tomography and magnetic resonance imaging scans. There was no statistically significant difference between the treatment arms in translation and rotation of the prostate between treatment fractions, except for the rotation around the cranial caudal axis. However, the difference was less than 1 and therefore considered not clinically relevant. There was no significant difference in the amount of rectal filling and rectal air pockets between the treatment arms. Magnesium oxide is not effective in reducing the interfraction prostate motion or the amount of rectal filling and rectal gas during external-beam radiotherapy. Therefore, magnesium oxide is not recommended in clinical practice for these purposes. (orig.) [German] Ziel der Studie war es, zu untersuchen, ob Magnesiumoxid die interfraktionaere Bewegung und die rektale Fuellung sowie rektales Gas reduziert, was die Position der Prostata waehrend der Strahlentherapie bei Prostatakrebs beeinflusst. Von Dezember 2008 bis Februar 2010 haben 92 Prostatakrebspatienten die intensitaetsmodulierte Strahlentherapie (IMRT) mit bezugsmarkenbasierter Positionsverifikation erhalten (77 Gy in 35 Fraktionen). Sie wurden waehrend

  6. Lumbar lordosis rehabilitation for pain and lumbar segmental motion in chronic mechanical low back pain: a randomized trial.

    Science.gov (United States)

    Diab, Aliaa A; Moustafa, Ibrahim M

    2012-05-01

    The purpose of this study was to investigate the effects of lumbar extension traction with stretching and infrared radiation compared with stretching and infrared radiation alone on the lumbar curve, pain, and intervertebral movements of patients with chronic mechanical low back pain (CMLBP). This randomized clinical study with 3-month follow-up was completed at the Cairo University research laboratory. Eighty patients (age ranged from 40 to 50 years) with CMLBP and a hypolordotic lumbar spine were randomly assigned to traction or a comparison group. The comparison group (n = 40) received stretching exercises and infrared radiation, whereas the traction group (n = 40) received lumbar extension traction in addition to stretching exercises and infrared radiation. The absolute rotatory angle, intervertebral movements, and visual analog scale were measured for all patients at 3 intervals. The results revealed a statistically significant difference between the groups at 2 follow-up time points compared with the baseline values for the translational and sagittal rotational movements of L3-L4, L4-L5, L5-S1, and L2-L3 (posttreatment) and absolute rotatory angle (P .01). Lumbar extension traction with stretching exercises and infrared radiation was superior to stretching exercises and infrared radiation alone for improving the sagittal lumbar curve, pain, and intervertebral movement in CMLBP. Copyright © 2012 National University of Health Sciences. Published by Mosby, Inc. All rights reserved.

  7. The Relationship Between Engagement and Neurophysiological Measures of Attention in Motion-Controlled Video Games: A Randomized Controlled Trial.

    Science.gov (United States)

    Leiker, Amber M; Miller, Matthew; Brewer, Lauren; Nelson, Monica; Siow, Maria; Lohse, Keith

    2016-04-21

    Video games and virtual environments continue to be the subject of research in health sciences for their capacity to augment practice through user engagement. Creating game mechanics that increase user engagement may have indirect benefits on learning (ie, engaged learners are likely to practice more) and may also have direct benefits on learning (ie, for a fixed amount of practice, engaged learners show superior retention of information or skills). To manipulate engagement through the aesthetic features of a motion-controlled video game and measure engagement's influence on learning. A group of 40 right-handed participants played the game under two different conditions (game condition or sterile condition). The mechanics of the game and the amount of practice were constant. During practice, event-related potentials (ERPs) to task-irrelevant probe tones were recorded during practice as an index of participants' attentional reserve. Participants returned for retention and transfer testing one week later. Although both groups improved in the task, there was no difference in the amount of learning between the game and sterile groups, countering previous research. A new finding was a statistically significant relationship between self-reported engagement and the amplitude of the early-P3a (eP3a) component of the ERP waveform, such that participants who reported higher levels of engagement showed a smaller eP3a (beta=-.08, P=.02). This finding provides physiological data showing that engagement elicits increased information processing (reducing attentional reserve), which yields new insight into engagement and its underlying neurophysiological properties. Future studies may objectively index engagement by quantifying ERPs (specifically the eP3a) to task-irrelevant probes.

  8. Effects of cervical spine manual therapy on range of motion, head repositioning, and balance in participants with cervicogenic dizziness: a randomized controlled trial.

    Science.gov (United States)

    Reid, Susan A; Callister, Robin; Katekar, Michael G; Rivett, Darren A

    2014-09-01

    To evaluate and compare the effects of 2 manual therapy interventions on cervical spine range of motion (ROM), head repositioning accuracy, and balance in patients with chronic cervicogenic dizziness. Randomized controlled trial with 12-week follow-up using blinded outcome assessment. University School of Health Sciences. Participants (N=86; mean age ± SD, 62.0 ± 12.7 y; 50% women) with chronic cervicogenic dizziness. Participants were randomly assigned to 1 of 3 groups: sustained natural apophyseal glides (SNAGs) with self-SNAG exercises, passive joint mobilization (PJM) with ROM exercises, or a placebo. Participants each received 2 to 6 treatments over 6 weeks. Cervical ROM, head repositioning accuracy, and balance. SNAG therapy resulted in improved (P ≤.05) cervical spine ROM in all 6 physiological cervical spine movement directions immediately posttreatment and at 12 weeks. Treatment with PJM resulted in improvement in 1 of the 6 cervical movement directions posttreatment and 1 movement direction at 12 weeks. There was a greater improvement (PManual therapy had no effect on balance or head repositioning accuracy. SNAG treatment improved cervical ROM, and the effects were maintained for 12 weeks after treatment. PJM had very limited impact on cervical ROM. There was no conclusive effect of SNAGs or PJMs on joint repositioning accuracy or balance in people with cervicogenic dizziness. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  9. Effects of intranasal oxytocin on thermal pain in healthy men: a randomized functional magnetic resonance imaging study.

    Science.gov (United States)

    Zunhammer, Matthias; Geis, Sandra; Busch, Volker; Greenlee, Mark W; Eichhammer, Peter

    2015-01-01

    Intranasal oxytocin has been shown to affect human social and emotional processing, but its potential to affect pain remains elusive. This randomized, placebo-controlled, double-blind, crossover trial investigated the effect of intranasal oxytocin on the perception and processing of noxious experimental heat in 36 healthy male volunteers. Thermal thresholds were determined according to the Quantitative Sensory Testing protocol. A functional magnetic resonance imaging experiment including intensity and unpleasantness ratings of tonic heat was used to investigate the effects of oxytocin within the brain. Thirty men (aged 18-50 years) were included in the study. Intranasal oxytocin had no significant effect on thermal thresholds, but significantly (t = -2.06, p = .046) reduced heat intensity ratings during functional magnetic resonance imaging. The effect on intensity ratings was small (-3.46 points on a 100-point visual analog scale [95% confidence interval {CI} = -6.86 to -0.07] and independent of temperature. No effects of oxytocin on stimulus- or temperature-related processing were found at the whole-brain level at a robust statistical threshold. A region of interest analysis indicated that oxytocin caused small but significant decreases in left (-0.045%, 95% CI = -0.087 to -0.003, t = -2.19, p = .037) and right (-0.051%, 95% CI = -0.088 to -0.014], t = -2.82, p = .008) amygdala activity across all temperatures. The present study provides evidence for a significant but subtle inhibitory effect of oxytocin on thermal stimulus ratings and concurrent amygdala activity. Neither of the two effects significantly depended of temperature; therefore, the hypothesis of a pain-specific effect of oxytocin could not be confirmed. EUDRA-CT 2009-015115-40.

  10. Postoperative leg position following total knee arthroplasty influences blood loss and range of motion: a meta-analysis of randomized controlled trials.

    Science.gov (United States)

    Fu, Xin; Tian, Peng; Li, Zhi-jun; Sun, Xiao-lei; Ma, Xin-long

    2016-01-01

    Postoperative leg position has been reported as an efficient and convenient technique to minimize blood loss and improve early recovery following total knee arthroplasty (TKA); however, no single study was large enough to definitively determine optimal leg position. Therefore, we performed a meta-analysis pooling the results from randomized controlled trials (RCTs) to evaluate the effect of postoperative leg position on blood loss and range of motion (ROM) in TKA. Potential academic articles were identified from the Cochrane Library, Medline (1966-October 2015), PubMed (1966-October 2015), Embase (1980-October 2015), ScienceDirect (1985-October 2015) and other databases. Gray studies were identified from the references of included literature reports. The pooling of data was analyzed by RevMan 5.1. Ten RCTs were included in the meta-analysis. There were significant differences in the total blood loss (mean difference [MD] = -130.66, 95% CI: -198.74 to -62.57, P = 0.0002), hidden blood loss (MD = -73.27, 95% CI: -117.57 to -28.96, P = 0.001), blood transfusion requirement (risk difference [RD] = -0.10, 95% CI: -0.19 to -0.22, P = 0.02), postoperative hemoglobin level (MD = 0.73, 95% CI: 0.42 to 1.04, P extension group. No significant differences were found regarding length of hospital stay, deep vein thrombosis (DVT) and wound infection between the two groups. This meta-analysis indicated that the postoperative flexion position of the leg in TKA was effective and safe, significantly decreasing total blood loss, hidden blood loss and blood transfusion requirement. In addition, the postoperative range of motion is significantly improved by the flexion position of the leg.

  11. Pain intensity and cervical range of motion in women with myofascial pain treated with acupuncture and electroacupuncture: a double-blinded, randomized clinical trial

    Science.gov (United States)

    Aranha, Maria F. M.; Müller, Cristina E. E.; Gavião, Maria B. D.

    2015-01-01

    BACKGROUND: Acupuncture stimulates points on the body, influencing the perception of myofascial pain or altering physiologic functions. OBJECTIVE: The aim was to evaluate the effect of electroacupuncture (EAC) and acupuncture (AC) for myofascial pain of the upper trapezius and cervical range of motion, using SHAM acupuncture as control. METHOD: Sixty women presenting at least one trigger point at the upper trapezius and local or referred pain for more than six months were randomized into EAC, AC, and SHAM groups. Eight sessions were scheduled and a follow-up was conducted after 28 days. The Visual Analog Scale assessed the intensity of local and general pain. A fleximeter assessed cervical movements. Data were analyzed using paired t or Wilcoxon's tests, ANOVA or Friedman or Kruskal-Wallis tests and Pearson's correlation (α=0.05). RESULTS: There was reduction in general pain in the EAC and AC groups after eight sessions (P<0.001). A significant decrease in pain intensity occurred for the right trapezius in all groups and for the left trapezius in the EAC and AC groups. Intergroup comparisons showed improvement in general pain in the EAC and AC groups and in local pain intensity in the EAC group (P<0.05), which showed an increase in left rotation (P=0.049). The AC group showed increases in inclination (P=0.005) sustained until follow-up and rotation to the right (P=0.032). CONCLUSION : EAC and AC were effective in reducing the pain intensity compared with SHAM. EAC was better than AC for local pain relief. These treatments can assist in increasing cervical range of motion, albeit subtly. PMID:25714602

  12. Intra-articular morphine versus bupivacaine for knee motion among patients with osteoarthritis: randomized double-blind clinical trial

    Directory of Open Access Journals (Sweden)

    Miriam Bellini Gazi

    Full Text Available CONTEXT AND OBJECTIVE: Osteoarthritis causes pain and disability in a high percentage of elderly people. The aim of the present study was to assess the efficacy of intra-articular morphine and bupivacaine on the joint flexion and extension angles of patients with knee osteoarthritis. DESIGN AND SETTING: A randomized double-blind study was performed at a pain clinic of Universidade Federal de São Paulo. METHODS: Thirty-nine patients with pain for more than three months, of intensity greater than three on a numerical scale (zero to 10, were included. G1 patients received 1 mg (1 ml of morphine diluted in 9 ml of saline, intra-articularly, and G2 patients received 25 mg (10 ml of 0.25% bupivacaine without epinephrine. Pain was assessed on a numerical scale and knee flexion and extension angles were measured after administration of the drugs at rest and during movement. The total amount of analgesic supplementation using 500 mg doses of paracetamol was also determined. RESULTS: No significant difference in pain intensity was observed between G1 and G2. Significant decreases in pain at rest and during movement and significant increases in mean flexion and extension angles were observed in both groups, with no significant difference between the two groups. The mean total amount of paracetamol used over a seven-day period was 3578 mg in G1 and 5333 mg in G2 (P = 0.2355; Mann-Whitney test. CONCLUSION: The analgesic effects of 1 mg of morphine and 25 mg of 0.25% bupivacaine were similar among patients with osteoarthritis of the knee.

  13. Influence of vestibular rehabilitation on neck pain and cervical range of motion among patients with whiplash-associated disorder: a randomized controlled trial

    National Research Council Canada - National Science Library

    Hansson, Eva Ekvall; Persson, Liselott; Malmström, Eva Maj

    2013-01-01

    To describe how vestibular rehabilitation influences pain and range of motion among patients with whiplash-associated disorder and dizziness, and to describe whether pain or range of motion correlated...

  14. Effects of massage therapy and occlusal splint therapy on mandibular range of motion in individuals with temporomandibular disorder: a randomized clinical trial.

    Science.gov (United States)

    Gomes, Cid André Fidelis de Paula; Politti, Fabiano; Andrade, Daniel Ventura; de Sousa, Dowglas Fernando Magalhães; Herpich, Carolina Marciela; Dibai-Filho, Almir Vieira; Gonzalez, Tabajara de Oliveira; Biasotto-Gonzalez, Daniela Aparecida

    2014-01-01

    The purpose of this study was to investigate the effects of massage therapy compared with occlusal splint therapy on mandibular range of motion (ROM) in individuals with temporomandibular disorder (TMD) and compare the results with ROM obtained in a group of individuals without this disorder. A blinded randomized clinical trial was conducted. Twenty-eight volunteers with TMD were randomly distributed into either a massage therapy group or an occlusal splint group. Both treatments were provided for 4 weeks. Fourteen individuals without TMD were consecutively allocated to a comparison group. Fonseca anamnestic index was used to characterize TMD and allocate the volunteers to either of the intervention groups or asymptomatic comparison group. Mandibular ROM was evaluated before and after treatment using a digital caliper. Two-way repeated-measures analysis of variance with a post hoc Bonferroni testing was used for intergroup and intragroup comparisons (level of significance was set to 5%). Cohen d was used to calculate the effect size. In the intragroup analysis, significant increases in ROM were found for all measures in both the massage and occlusal splint groups (P < .05). A small to moderate clinical effect of treatment with the occlusal splint was found regarding right and left lateral excursion in comparison with the massage therapy and asymptomatic comparison groups (0.2

  15. Integration of spectral, thermal, and textural features of ASTER data using Random Forests classification for lithological mapping

    Science.gov (United States)

    Masoumi, Feizollah; Eslamkish, Taymour; Abkar, Ali Akbar; Honarmand, Mehdi; Harris, Jeff R.

    2017-05-01

    The ensemble classifier, Random Forests (RF), is assessed for mapping lithology using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) imagery over an area in southern Iran. The study area in the northern part of Rabor in the Kerman's Cenozoic magmatic arc (KCMA) is well exposed and contains some copper mineralization occurrences. In this research, the following six groups of ASTER datasets were used for RF classification: nine spectral bands in the VNIR and SWIR, five thermal bands in TIR, all 14 bands (including VNIR, SWIR, and TIR), band ratios, texture features, and principal components (PCs). The results showed that band ratios and all ASTER bands were able to more efficiently discriminate rock units than PC and texture images. The overall classification accuracies achieved were 62.58%, 55.40%, 65.04%, 67.12%, 54.54%, and 53.99% for the nine VNIR/SWIR bands, five TIR bands, all ASTER bands, band ratios, textural, and PCs datasets, respectively. Four datasets including all ASTER bands, band ratios, textural, and PCs datasets (37 bands) were combined as one group and applied in second RF classification which led to increase overall accuracy (up to 81.52%). Based on the four classified maps, an uncertainty map was produced to identify areas of variable (uncertain) classification results, which revealed that approximately 21.43% of all pixels on the classified map were highly uncertain. The RF algorithm found that 12 of the predictors were more important in the classification process. These predictors were used in a third RF classification, which resulted in an overall classification accuracy of 77.21%. Thus, the third RF classification decreases the accuracy. Field observations were used to validate our classification results.

  16. Immediate Effects of Mobilization With Movement vs Sham Technique on Range of Motion, Strength, and Function in Patients With Shoulder Impingement Syndrome: Randomized Clinical Trial.

    Science.gov (United States)

    Guimarães, João Flávio; Salvini, Tania Fátima; Siqueira, Aristides Leite; Ribeiro, Ivana Leão; Camargo, Paula Rezende; Alburquerque-Sendín, Francisco

    The purpose of this study was to compare the immediate effects of mobilization with movement (MWM) with sham technique on range of motion (ROM), muscle strength, and function in patients with shoulder impingement syndrome. A randomized clinical study was performed. Participants (mean age ± standard deviation, 31 ± 8 years; 56% women) were divided into 2 groups: group 1 (n = 14), which received the MWM technique in the first 4 sessions and the sham technique in the last 4 sessions; and group 2 (n = 13), which was treated with the opposite order of treatment conditions described for group 1. Shoulder ROM, isometric peak force assessed with a handheld dynamometer, and function as determined through the Disabilities of the Arm, Shoulder and Hand and Shoulder Pain and Disability Index (SPADI) questionnaires were collected at preintervention, interchange, and postintervention moments. Two-way analysis of variance revealed no significant group-by-time interaction for any outcome but did reveal a main time effect for shoulder external rotation (P = .04) and abduction (P = .01) ROM, Disabilities of the Arm, Shoulder and Hand (P shoulder ROM during external rotation and abduction, pain, and function in patients with shoulder impingement syndrome. Copyright © 2016. Published by Elsevier Inc.

  17. Effects of therapeutic exercise and hydrotherapy on pain severity and knee range of motion in patients with hemophilia: a randomized controlled trial.

    Science.gov (United States)

    Mazloum, Vahid; Rahnama, Nader; Khayambashi, Khalil

    2014-01-01

    Pain and limited range of motion (ROM) are the crucial subsequent results of joint hemorrhages in individuals with bleeding disorders and hemophilia. Exercise interventions are particularly recommended in treatment of such patients. The purpose of this study was to detect the influences of conventional exercise therapy and hydrotherapy on the knee joint complications in patients with hemophilia. A total of 40 patients engaging hemophilia A were randomized into one of three groups: Therapeutic exercise (N = 13), hydrotherapy (N = 14) or control (N = 13). While the first two groups followed their specific programs for 4 weeks, routine life-style was maintained by subjects in the control group in this period. To evaluate the pain level and knee ROM the visual analog scale and standard goniometer were utilized, respectively. The outcome was measured at baseline and after completing the prescribed protocols. Data analysis was performed using one-way analysis of variance and Scheffe statistical tests (P hydrotherapy in comparison to exercise therapy, the difference in ROM improvement was not statistically significant (P > 0.05). Using hydrotherapy in addition to usual rehabilitation training can result in beneficial effect in terms of pain and knee joint ROM. However, it appears that hydrotherapy is more effective in reducing pain.

  18. Comparison of effects of static, proprioceptive neuromuscular facilitation and Mulligan stretching on hip flexion range of motion: a randomized controlled trial.

    Science.gov (United States)

    Yıldırım, M S; Ozyurek, S; Tosun, Oç; Uzer, S; Gelecek, N

    2016-03-01

    The aim of this study was to compare the effects of static stretching, proprioceptive neuromuscular facilitation (PNF) stretching and Mulligan technique on hip flexion range of motion (ROM) in subjects with bilateral hamstring tightness. A total of 40 students (mean age: 21.5±1.3 years, mean body height: 172.8±8.2 cm, mean body mass index: 21.9±3.0 kg · m(-2)) with bilateral hamstring tightness were enrolled in this randomized trial, of whom 26 completed the study. Subjects were divided into 4 groups performing (I) typical static stretching, (II) PNF stretching, (III) Mulligan traction straight leg raise (TSLR) technique, (IV) no intervention. Hip flexion ROM was measured using a digital goniometer with the passive straight leg raise test before and after 4 weeks by two physiotherapists blinded to the groups. 52 extremities of 26 subjects were analyzed. Hip flexion ROM increased in all three intervention groups (pstatic stretching (p=0.016 and p=0.02, respectively). No significant difference was found between Mulligan TSLR technique and PNF stretching (p=0.920). The initial-final assessment difference of hip flexion ROM was similar in typical static stretching and no intervention (p=0.491). A 4-week stretching intervention is beneficial for increasing hip flexion ROM in bilateral hamstring tightness. However, PNF stretching and Mulligan TSLR technique are superior to typical static stretching. These two interventions can be alternatively used for stretching in hamstring tightness.

  19. Perpendicular spin transfer torque magnetic random access memories with high spin torque efficiency and thermal stability for embedded applications (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Luc, E-mail: luc.thomas@headway.com; Jan, Guenole; Zhu, Jian; Liu, Huanlong; Lee, Yuan-Jen; Le, Son; Tong, Ru-Ying; Pi, Keyu; Wang, Yu-Jen; Shen, Dongna; He, Renren; Haq, Jesmin; Teng, Jeffrey; Lam, Vinh; Huang, Kenlin; Zhong, Tom; Torng, Terry; Wang, Po-Kang [TDK-Headway Technologies, Inc., Milpitas, California 95035 (United States)

    2014-05-07

    Magnetic random access memories based on the spin transfer torque phenomenon (STT-MRAMs) have become one of the leading candidates for next generation memory applications. Among the many attractive features of this technology are its potential for high speed and endurance, read signal margin, low power consumption, scalability, and non-volatility. In this paper, we discuss our recent results on perpendicular STT-MRAM stack designs that show STT efficiency higher than 5 k{sub B}T/μA, energy barriers higher than 100 k{sub B}T at room temperature for sub-40 nm diameter devices, and tunnel magnetoresistance higher than 150%. We use both single device data and results from 8 Mb array to demonstrate data retention sufficient for automotive applications. Moreover, we also demonstrate for the first time thermal stability up to 400 °C exceeding the requirement of Si CMOS back-end processing, thus opening the realm of non-volatile embedded memory to STT-MRAM technology.

  20. Chemistry in motion: tiny synthetic motors.

    Science.gov (United States)

    Colberg, Peter H; Reigh, Shang Yik; Robertson, Bryan; Kapral, Raymond

    2014-12-16

    CONSPECTUS: Diffusion is the principal transport mechanism that controls the motion of solute molecules and other species in solution; however, the random walk process that underlies diffusion is slow and often nonspecific. Although diffusion is an essential mechanism for transport in the biological realm, biological systems have devised more efficient transport mechanisms using molecular motors. Most biological motors utilize some form of chemical energy derived from their surroundings to induce conformational changes in order to carry out specific functions. These small molecular motors operate in the presence of strong thermal fluctuations and in the regime of low Reynolds numbers, where viscous forces dominate inertial forces. Thus, their dynamical behavior is fundamentally different from that of macroscopic motors, and different mechanisms are responsible for the production of useful mechanical motion. There is no reason why our interest should be confined to the small motors that occur naturally in biological systems. Recently, micron and nanoscale motors that use chemical energy to produce directed motion by a number of different mechanisms have been made in the laboratory. These small synthetic motors also experience strong thermal fluctuations and operate in regimes where viscous forces dominate. Potentially, these motors could be directed to perform different transport tasks, analogous to those of biological motors, for both in vivo and in vitro applications. Although some synthetic motors execute conformational changes to effect motion, the majority do not, and, instead, they use other mechanisms to convert chemical energy into directed motion. In this Account, we describe how synthetic motors that operate by self-diffusiophoresis make use of a self-generated concentration gradient to drive motor motion. A description of propulsion by self-diffusiophoresis is presented for Janus particle motors comprising catalytic and noncatalytic faces. The properties

  1. The Effect of a Non-Gaussian Random Loading on High-Cycle Fatigue of a Thermally Post-Buckled Structure

    Science.gov (United States)

    Rizzi, Stephen A.; Behnke, marlana N.; Przekop, Adam

    2010-01-01

    High-cycle fatigue of an elastic-plastic beam structure under the combined action of thermal and high-intensity non-Gaussian acoustic loadings is considered. Such loadings can be highly damaging when snap-through motion occurs between thermally post-buckled equilibria. The simulated non-Gaussian loadings investigated have a range of skewness and kurtosis typical of turbulent boundary layer pressure fluctuations in the vicinity of forward facing steps. Further, the duration and steadiness of high excursion peaks is comparable to that found in such turbulent boundary layer data. Response and fatigue life estimates are found to be insensitive to the loading distribution, with the minor exception of cases involving plastic deformation. In contrast, the fatigue life estimate was found to be highly affected by a different type of non-Gaussian loading having bursts of high excursion peaks.

  2. Effects of two stretching methods on shoulder range of motion and muscle stiffness in baseball players with posterior shoulder tightness: a randomized controlled trial.

    Science.gov (United States)

    Yamauchi, Taishi; Hasegawa, Satoshi; Nakamura, Masatoshi; Nishishita, Satoru; Yanase, Ko; Fujita, Kosuke; Umehara, Jun; Ji, Xiang; Ibuki, Satoko; Ichihashi, Noriaki

    2016-09-01

    The cross-body stretch and sleeper stretch are widely used for improving flexibility of the posterior shoulder. These stretching methods were modified by Wilk. However, few quantitative data are available on the new, modified stretching methods. A recent study reported the immediate effects of stretching and soft tissue mobilization on the shoulder range of motion (ROM) and muscle stiffness in subjects with posterior shoulder tightness. However, the long-term effect of stretching for muscle stiffness is unknown. The objective of this study was to examine the effects of 2 stretching methods, the modified cross-body stretch (MCS) and the modified sleeper stretch (MSS), on shoulder ROM and muscle stiffness in baseball players with posterior shoulder tightness. Twenty-four college baseball players with ROM limitations in shoulder internal rotation were randomly assigned to the MCS or MSS group. We measured shoulder internal rotation and horizontal adduction ROM and assessed posterior shoulder muscle stiffness with ultrasonic shear wave elastography before and after a 4-week intervention. Subjects were asked to perform 3 repetitions of the stretching exercises every day, for 30 seconds, with their dominant shoulder. In both groups, shoulder internal rotation and horizontal adduction ROM were significantly increased after the 4-week intervention. Muscle stiffness of the teres minor decreased in the MCS group, and that of the infraspinatus decreased in the MSS group. The MCS and MSS are effective for increasing shoulder internal rotation and horizontal adduction ROM and decreasing muscle stiffness of the infraspinatus or teres minor. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  3. The immediate effects of two manual therapy techniques on ankle musculoarticular stiffness and dorsiflexion range of motion in people with chronic ankle rigidity: A randomized clinical trial.

    Science.gov (United States)

    Hidalgo, Benjamin; Hall, Toby; Berwart, Mathilde; Biernaux, Elinor; Detrembleur, Christine

    2017-12-29

    Ankle rigidity is a common musculoskeletal disorder affecting the talocrural joint, which can impair weight-bearing ankle dorsiflexion (WBADF) and daily-life in people with or without history of ankle injuries. Our objective was to compare the immediate effects of efficacy of Mulligan Mobilization with Movement (MWM) and Osteopathic Mobilization (OM) for improving ankle dorsiflexion range of motion (ROM) and musculoarticular stiffness (MAS) in people with chronic ankle dorsiflexion rigidity. A randomized clinical trial with two arms. Patients were recruited by word of mouth and via social network as well as posters, and analyzed in the neuro musculoskeletal laboratory of the "Université Catholique de Louvain-la-Neuve", Brussels, Belgium. 67 men (aged 18-40 years) presenting with potential chronic non-specific and unilateral ankle mobility deficit during WBDF were assessed for eligibility and finally 40 men were included and randomly allocated to single session of either MWM or OM. Two modalities of manual therapy indicated for hypothetic immediate effects in chronic ankle dorsiflexion stiffness, i.e. MWM and OM, were applied during a single session on included patients. Comprised blinding measures of MAS with a specific electromechanical device (namely: Lehmann's device) producing passive oscillatory ankle joint dorsiflexion and with clinical measures of WBADF-ROM as well. A two-way ANOVA revealed a non-significant interaction between both techniques and time for all outcome measures. For measures of MAS: elastic-stiffness (p= 0.37), viscous-stiffness (p= 0.83), total-stiffness (p= 0.58). For WBADF-ROM: toe-wall distance (p= 0.58) and angular ROM (p= 0.68). Small effect sizes between groups were determined with Cohen's d ranging from 0.05 to 0.29. One-way ANOVA demonstrated non-significant difference and small to moderate effects sizes (d= 0.003-0.58) on all outcome measures before and after interventions within both groups. A second two-way ANOVA analyzed the

  4. Motion Sickness

    Science.gov (United States)

    Motion sickness is a common problem in people traveling by car, train, airplanes, and especially boats. Anyone ... children, pregnant women, and people taking certain medicines. Motion sickness can start suddenly, with a queasy feeling ...

  5. Short- and medium-term effects of manual therapy on cervical active range of motion and pressure pain sensitivity in latent myofascial pain of the upper trapezius muscle: a randomized controlled trial

    OpenAIRE

    Campelo, Natália; Melo, Cristina Argel de; Albuquerque-Sendín, Francisco; Machado, Jorge P.

    2013-01-01

    Objective: The purpose of this study was to investigate effects of different manual techniques on cervical ranges of 17 motion and pressure pain sensitivity in subjects with latent trigger point of the upper trapezius muscle. 18 Methods: One hundred seventeen volunteers, with a unilateral latent trigger point on upper trapezius due to computer 19 work, were randomly divided into 5 groups: ischemic compression (IC) group (n = 24); passive stretching group (n = 20 23); muscle energy...

  6. Motion sickness

    NARCIS (Netherlands)

    Bles, W.; Bos, J.E.; Kruit, H.

    2000-01-01

    The number of recently published papers on motion sickness may convey the impression that motion sickness is far from being understood. The current review focusses on a concept which tends to unify the different manifestations and theories of motion sickness. The paper highlights the relations

  7. Quantifying data retention of perpendicular spin-transfer-torque magnetic random access memory chips using an effective thermal stability factor method

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Luc, E-mail: luc.thomas@headway.com; Jan, Guenole; Le, Son; Wang, Po-Kang [TDK-Headway Technologies, Inc., 463 S. Milpitas Boulevard, Milpitas, California 95035 (United States)

    2015-04-20

    The thermal stability of perpendicular Spin-Transfer-Torque Magnetic Random Access Memory (STT-MRAM) devices is investigated at chip level. Experimental data are analyzed in the framework of the Néel-Brown model including distributions of the thermal stability factor Δ. We show that in the low error rate regime important for applications, the effect of distributions of Δ can be described by a single quantity, the effective thermal stability factor Δ{sub eff}, which encompasses both the median and the standard deviation of the distributions. Data retention of memory chips can be assessed accurately by measuring Δ{sub eff} as a function of device diameter and temperature. We apply this method to show that 54 nm devices based on our perpendicular STT-MRAM design meet our 10 year data retention target up to 120 °C.

  8. Short-term changes in neck pain, widespread pressure pain sensitivity, and cervical range of motion after the application of trigger point dry needling in patients with acute mechanical neck pain: a randomized clinical trial.

    Science.gov (United States)

    Mejuto-Vázquez, María J; Salom-Moreno, Jaime; Ortega-Santiago, Ricardo; Truyols-Domínguez, Sebastián; Fernández-de-Las-Peñas, César

    2014-04-01

    Randomized clinical trial. To determine the effects of trigger point dry needling (TrPDN) on neck pain, widespread pressure pain sensitivity, and cervical range of motion in patients with acute mechanical neck pain and active trigger points in the upper trapezius muscle. TrPDN seems to be effective for decreasing pain in individuals with upper-quadrant pain syndromes. Potential effects of TrPDN for decreasing pain and sensitization in individuals with acute mechanical neck pain are needed. Methods Seventeen patients (53% female) were randomly assigned to 1 of 2 groups: a single session of TrPDN or no intervention (waiting list). Pressure pain thresholds over the C5-6 zygapophyseal joint, second metacarpal, and tibialis anterior muscle; neck pain intensity; and cervical spine range-of-motion data were collected at baseline (pretreatment) and 10 minutes and 1 week after the intervention by an assessor blinded to the treatment allocation of the patient. Mixed-model analyses of variance were used to examine the effects of treatment on each outcome variable. Patients treated with 1 session of TrPDN experienced greater decreases in neck pain, greater increases in pressure pain threshold, and higher increases in cervical range of motion than those who did not receive an intervention at both 10 minutes and 1 week after the intervention (Pneck pain intensity and widespread pressure pain sensitivity, and also increase active cervical range of motion, in patients with acute mechanical neck pain. Changes in pain, pressure pain threshold, and cervical range of motion surpassed their respective minimal detectable change values, supporting clinically relevant treatment effects. Level of Evidence Therapy, level 1b-.

  9. Comparison of a Vibrating Foam Roller and a Non-vibrating Foam Roller Intervention on Knee Range of Motion and Pressure Pain Threshold: A Randomized Controlled Trial.

    Science.gov (United States)

    Cheatham, Scott W; Stull, Kyle R; Kolber, Morey J

    2017-08-08

    The use of foam rollers to provide soft-tissue massage has become a common intervention among health and fitness professionals. Recently, manufacturers have merged the science of vibration therapy and foam rolling with the development of vibrating foam rollers. To date, no peer reviewed investigations have been published on this technology. The purpose of this study was to compare the effects of a vibrating roller and non-vibrating roller intervention on prone knee flexion passive range of motion (ROM) and pressure pain thresholds (PPT) of the quadriceps musculature. Forty-five recreationally active adults were randomly allocated to one of three groups: vibrating roller, non-vibrating roller, and control. Each roll intervention lasted a total of 2 minutes. The control group did not roll. Dependent variables included prone knee flexion ROM and PPT measures. Statistical analysis included parametric and non-parametric tests to measure changes among groups. The vibrating roller demonstrated the greatest increase in PPT (180kPa, p< 0.001), followed by the non-vibrating roller (112kPa, p< 0.001), and control (61kPa, p<0.001). For knee ROM, the vibrating roller demonstrated the greatest increase in ROM (7 degrees, p< 0.001), followed by the non-vibrating roller (5 degrees, p< 0.001), and control (2 degrees, p<0.001). Between groups, there was significant difference in PPT between the vibrating and non-vibrating roller (p=.03) and vibrating roller and control (p<.001). There was also a significant difference between the non-vibrating roller and control (p<.001). For knee ROM, there was no significant difference between the vibrating and non-vibrating roller (p=.31). A significant difference was found between the vibrating roller and control group (p<.001) and non-vibrating roller and control (p<.001). The results suggest that a vibrating roller may increase an individual's tolerance to pain greater than a non-vibrating roller. This investigation should be considered

  10. Survey of strong motion earthquake effects on thermal power plants in California with emphasis on piping systems. Volume 1, Main report

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, J.D. [Stevenson and Associates, Cleveland, OH (United States)

    1995-11-01

    Since 1982, there has been a major effort expended to evaluate the susceptibility of nuclear Power plant equipment to failure and significant damage during seismic events. This was done by making use of data on the performance of electrical and mechanical equipment in conventional power plants and other similar industrial facilities during strong motion earthquakes. This report is intended as an extension of the seismic experience data collection effort and a compilation of experience data specific to power plant piping and supports designed and constructed US power piping code requirements which have experienced strong motion earthquakes. Eight damaging (Richter Magnitude 7.7 to 5.5) California earthquakes and their effects on 8 power generating facilities in use natural gas and California were reviewed. All of these facilities were visited and evaluated. Seven fossel-fueled (dual use natural gas and oil) and one nuclear fueled plants consisting of a total of 36 individual boiler or reactor units were investigated. Peak horizontal ground accelerations that either had been recorded on site at these facilities or were considered applicable to these power plants on the basis of nearby recordings ranged between 0.20g and 0.5lg with strong motion durations which varied from 3.5 to 15 seconds. Most US nuclear power plants are designed for a safe shutdown earthquake peak ground acceleration equal to 0.20g or less with strong motion durations which vary from 10 to 15 seconds.

  11. Predictions to motion stimuli in human early visual cortex : Effects of motion displacement on motion predictability

    NARCIS (Netherlands)

    Schellekens, W.|info:eu-repo/dai/nl/413971309; Ramsey, N. F.|info:eu-repo/dai/nl/07313774X; Raemaekers, M.|info:eu-repo/dai/nl/31370709X

    2015-01-01

    Recently, several studies showed that fMRI BOLD responses to moving random dot stimuli are enhanced at the location of dot appearance, i.e., the motion trailing edge. Possibly, BOLD activity in human visual cortex reflects predictability of visual motion input. In the current study, we investigate

  12. [Low back pain of cold-damp pattern treated with electric-thermal Bian-stone therapy and traditional moxibustion: a randomized controlled trial].

    Science.gov (United States)

    Huang, Tao; Han, Bin; Tian, Yu-Ying; Wang, Guang-Jun; Jia, Shu-Yong; Zhang, Wei-Bo

    2014-06-01

    To compare the difference in the efficacy on low back pain of cold-damp pattern between electric-thermal Bian-stone therapy and moxibustion box therapy. Forty-one cases of low back pain of cold-damp pattern were randomized into an electric-thermal Bian-stone therapy group (group A, 26 cases) and a box moxibustion therapy group (group B, 15 cases). In the group A, the electric-thermal Bian-stone was placed over Shenshu (BL 23) and Weizhong (BL 40). The temperature of stone was adjusted in accordance with patient's comfort. In the group B, moxibustion box was used over Shenshu (BL 23) and Weizhong (BL 40). The treatment was given once every day or every two days. Ten treatments made one session. The symptom and physical signs score of low back pain and the score of cold-damp syndrome were observed before and after treatment in the patients. The symptom and physical signs score of low back pain and the score of cold-damp syndrome were all improved in the two groups (all P 0.05). The efficacy on low back pain of cold-damp pattern treated with the electric-thermal Bian-stone therapy is similar to that of moxibustion box therapy. This therapy is characterized as more convenient, safer operation and less pollution.

  13. Comparing the Effects of Therapeutic Exercise and Hydrotherapy on Pain Severity and Knee Range of Motion in Patients with Hemophilia: A Randomized Controlled Trial

    Directory of Open Access Journals (Sweden)

    V Mazloum

    2013-10-01

    . Results: Both experimental groups exhibited significant reduction of pain along with improved knee flexion and extension compared with the control group (P<0.001. Pain reduction in subjects treated in water treatment was significantly higher than exercise group in drought (P0.05. Conclusion: The use of therapeutic exercise in water with regular exercise rehabilitation for patients with hemophilia can be helpful to reduce pain and improve range of motion in hemophilia patients. The effect of exercise therapy on pain reduction is more effective compared to traditional pain therapy. Key words: Hydrotherapy, Exercise Therapy, Hemophilia, Knee Range of Motion

  14. Effectiveness of a fine motor skills rehabilitation program on upper limb disability, manual dexterity, pinch strength, range of fingers motion, performance in activities of daily living, functional independency, and general self-efficacy in hand osteoarthritis: A randomized clinical trial.

    Science.gov (United States)

    Pérez-Mármol, Jose Manuel; García-Ríos, Ma Carmen; Ortega-Valdivieso, María Azucena; Cano-Deltell, Enrique Elías; Peralta-Ramírez, María Isabel; Ickmans, Kelly; Aguilar-Ferrándiz, María Encarnación

    A randomized clinical trial. Rehabilitation treatments for improving fine motor skills (FMS) in hand osteoarthritis (HOA) have not been well explored yet. To assess the effectiveness of a rehabilitation program on upper limb disability, independence of activities of daily living (ADLs), fine motor abilities, functional independency, and general self-efficacy in older adults with HOA. About 45 adults (74-86 years) with HOA were assigned to an experimental group for completing an FMS intervention or a control group receiving conventional occupational therapy. Both interventions were performed 3 times/wk, 45 minutes each session, during 8 weeks. Upper limb disability, performance in ADLs, pinch strength, manual dexterity, range of fingers motion, functional independency, and general self-efficacy were assessed at baseline, immediately after treatment, and after 2 months of follow-up. FMS group showed significant improvements with a small effect size on manual dexterity (P ≤ .034; d ≥ 0.48) and a moderate-high effect on range of index (P ≤ .018; d ≥ 0.58) and thumb (P ≤ .027; d ≥ 0.39) motion. The control group showed a significant worse range of motion over time in some joints at the index (P ≤ .037; d ≥ 0.36) finger and thumb (P ≤ .017; d ≥ 0.55). A rehabilitation intervention for FMS may improve manual dexterity and range of fingers motion in HOA, but its effects on upper limb disability, performance in ADLs, pinch strength, functionality, and self-efficacy remain uncertain. Specific interventions of the hand are needed to prevent a worsening in range of finger motion. 1b. Copyright © 2016 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.

  15. Separating the Laparoscopic Camera Cord From the Monopolar "Bovie" Cord Reduces Unintended Thermal Injury From Antenna Coupling: A Randomized Controlled Trial.

    Science.gov (United States)

    Robinson, Thomas N; Jones, Edward L; Dunn, Christina L; Dunne, Bruce; Johnson, Elizabeth; Townsend, Nicole T; Paniccia, Alessandro; Stiegmann, Greg V

    2015-06-01

    The monopolar "Bovie" is used in virtually every laparoscopic operation. The active electrode and its cord emit radiofrequency energy that couples (or transfers) to nearby conductive material without direct contact. This phenomenon is increased when the active electrode cord is oriented parallel to another wire/cord. The parallel orientation of the "Bovie" and laparoscopic camera cords cause transfer of energy to the camera cord resulting in cutaneous burns at the camera trocar incision. We hypothesized that separating the active electrode/camera cords would reduce thermal injury occurring at the camera trocar incision in comparison to parallel oriented active electrode/camera cords. In this prospective, blinded, randomized controlled trial, patients undergoing standardized laparoscopic cholecystectomy were randomized to separated active electrode/camera cords or parallel oriented active electrode/camera cords. The primary outcome variable was thermal injury determined by histology from skin biopsied at the camera trocar incision. Eighty-four patients participated. Baseline demographics were similar in the groups for age, sex, preoperative diagnosis, operative time, and blood loss. Thermal injury at the camera trocar incision was lower in the separated versus parallel group (31% vs 57%; P = 0.027). Separation of the laparoscopic camera cord from the active electrode cord decreases thermal injury from antenna coupling at the camera trocar incision in comparison to the parallel orientation of these cords. Therefore, parallel orientation of these cords (an arrangement promoted by integrated operating rooms) should be abandoned. The findings of this study should influence the operating room setup for all laparoscopic cases.

  16. Comparing motion induction in lateral motion and motion in depth

    OpenAIRE

    Harris, Julie; German, KJ

    2008-01-01

    Induced motion, the apparent motion of an object when a nearby object moves, has been shown to occur in a variety of different conditions, including motion in depth. Here we explore whether similar patterns of induced motion result from induction in a lateral direction (frontoparallel motion) or induction in depth. We measured the magnitude of induced motion in a stationary target for: (a) binocularly viewed lateral motion of a pair of inducers, where the angular motion is in the same directi...

  17. Short- and medium-term effects of manual therapy on cervical active range of motion and pressure pain sensitivity in latent myofascial pain of the upper trapezius muscle: a randomized controlled trial.

    Science.gov (United States)

    Oliveira-Campelo, Natália M; de Melo, Cristina A; Alburquerque-Sendín, Francisco; Machado, Jorge P

    2013-06-01

    The purpose of this study was to investigate effects of different manual techniques on cervical ranges of motion and pressure pain sensitivity in subjects with latent trigger point of the upper trapezius muscle. One hundred seventeen volunteers, with a unilateral latent trigger point on upper trapezius due to computer work, were randomly divided into 5 groups: ischemic compression (IC) group (n=24); passive stretching group (n=23); muscle energy technique group (n=23); and 2 control groups, wait-and-see group (n=25) and placebo group (n=22). Cervical spine range of movement was measured using a cervical range of motion instrument as well as pressure pain sensitivity by means of an algometer and a visual analog scale. Outcomes were assessed pretreatment, immediately, and 24 hours after the intervention and 1 week later by a blind researcher. A 4×5 mixed repeated-measures analysis of variance was used to examine the effects of the intervention and Cohen d coefficient was used. A group-by-time interaction was detected in all variables (Pupper trapezius with latent trigger point seemed to improve the cervical range of motion and the pressure pain sensitivity. These effects persist after 1 week in the IC group. Copyright © 2013 National University of Health Sciences. Published by Mosby, Inc. All rights reserved.

  18. The effects of the CORE programme on pain at rest, movement-induced and secondary pain, active range of motion, and proprioception in female office workers with chronic low back pain: a randomized controlled trial.

    Science.gov (United States)

    Kim, Tae Hoon; Kim, Eun-Hye; Cho, Hwi-young

    2015-07-01

    To investigate the effects of the CORE programme on pain at rest, movement-induced pain, secondary pain, active range of motion, and proprioception deficits in female office workers with chronic low back pain. Randomized controlled trial. Rehabilitation clinics. A total of 53 participants with chronic low back pain were randomized into the CORE group and the control group. CORE group participants underwent the 30-minute CORE programme, five times per week, for eight weeks, with additional use of hot-packs and transcutaneous electrical nerve stimulation, while the control group used only hot-packs and transcutaneous electrical nerve stimulation. Participants were evaluated pretest, posttest, and two months after the intervention period to measure resting and movement-induced pain, pressure pain as secondary pain, active range of pain-free motion, and trunk proprioception. Pain intensity at rest (35.6 ±5.9 mm) and during movement (39.4 ±9.1 mm) was significantly decreased in the CORE group following intervention compared with the control group. There were significant improvements in pressure pain thresholds (quadratus lumborum: 2.2 ±0.7 kg/cm(2); sacroiliac joint: 2.0 ±0.7 kg/cm(2)), active range of motion (flexion: 30.8 ±14.3°; extension: 6.6 ±2.5°), and proprioception (20° flexion: 4.3 ±2.4°; 10° extension: 3.1 ±2.0°) in the CORE group following intervention (all p proprioception in female office workers with chronic low back pain. © The Author(s) 2014.

  19. Random walks on three-strand braids and on related hyperbolic groups 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion; 02.50.-r Probability theory, stochastic processes, and statistics; 02.40.Ky Riemannian geometries;

    CERN Document Server

    Nechaev, S

    2003-01-01

    We investigate the statistical properties of random walks on the simplest nontrivial braid group B sub 3 , and on related hyperbolic groups. We provide a method using Cayley graphs of groups allowing us to compute explicitly the probability distribution of the basic statistical characteristics of random trajectories - the drift and the return probability. The action of the groups under consideration in the hyperbolic plane is investigated, and the distribution of a geometric invariant - the hyperbolic distance - is analysed. It is shown that a random walk on B sub 3 can be viewed as a 'magnetic random walk' on the group PSL(2, Z).

  20. Random walks on three-strand braids and on related hyperbolic groups[05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion; 02.50.-r Probability theory, stochastic processes, and statistics; 02.40.Ky Riemannian geometries;

    Energy Technology Data Exchange (ETDEWEB)

    Nechaev, Sergei [Laboratoire de Physique Theorique et Modeles Statistiques, Universite Paris Sud, 91405 Orsay Cedex (France); Voituriez, Raphael [Laboratoire de Physique Theorique et Modeles Statistiques, Universite Paris Sud, 91405 Orsay Cedex (France)

    2003-01-10

    We investigate the statistical properties of random walks on the simplest nontrivial braid group B{sub 3}, and on related hyperbolic groups. We provide a method using Cayley graphs of groups allowing us to compute explicitly the probability distribution of the basic statistical characteristics of random trajectories - the drift and the return probability. The action of the groups under consideration in the hyperbolic plane is investigated, and the distribution of a geometric invariant - the hyperbolic distance - is analysed. It is shown that a random walk on B{sub 3} can be viewed as a 'magnetic random walk' on the group PSL(2, Z)

  1. Integration of Motion Responses Underlying Directional Motion Anisotropy in Human Early Visual Cortical Areas

    Science.gov (United States)

    Schellekens, Wouter; Van Wezel, Richard J. A.; Petridou, Natalia; Ramsey, Nick F.; Raemaekers, Mathijs

    2013-01-01

    Recent imaging studies have reported directional motion biases in human visual cortex when perceiving moving random dot patterns. It has been hypothesized that these biases occur as a result of the integration of motion detector activation along the path of motion in visual cortex. In this study we investigate the nature of such motion integration with functional MRI (fMRI) using different motion stimuli. Three types of moving random dot stimuli were presented, showing either coherent motion, motion with spatial decorrelations or motion with temporal decorrelations. The results from the coherent motion stimulus reproduced the centripetal and centrifugal directional motion biases in V1, V2 and V3 as previously reported. The temporally decorrelated motion stimulus resulted in both centripetal and centrifugal biases similar to coherent motion. In contrast, the spatially decorrelated motion stimulus resulted in small directional motion biases that were only present in parts of visual cortex coding for higher eccentricities of the visual field. In combination with previous results, these findings indicate that biased motion responses in early visual cortical areas most likely depend on the spatial integration of a simultaneously activated motion detector chain. PMID:23840711

  2. Active perioperative patient warming using a self-warming blanket (BARRIER EasyWarm) is superior to passive thermal insulation: a multinational, multicenter, randomized trial.

    Science.gov (United States)

    Torossian, Alexander; Van Gerven, Elke; Geertsen, Karin; Horn, Bengt; Van de Velde, Marc; Raeder, Johan

    2016-11-01

    Incidence of inadvertent perioperative hypothermia is still high; therefore, present guidelines advocate "prewarming" for its prevention. Prewarming means preoperative patient skin warming, which minimizes redistribution hypothermia caused by induction of anesthesia. In this study, we compared the new self-warming BARRIER EasyWarm blanket with passive thermal insulation regarding mean perioperative patient core body temperature. Multinational, multicenter randomized prospective open-label controlled trial. Surgical ward, operation room, postanesthesia care unit at 4 European hospitals. A total of 246 adult patients, American Society of Anesthesiologists class I to III undergoing elective orthopedic; gynecologic; or ear, nose, and throat surgery scheduled for 30 to 120 minutes under general anesthesia. Patients received warmed hospital cotton blankets (passive thermal insulation, control group) or BARRIER EasyWarm blanket at least 30 minutes before induction of general anesthesia and throughout the perioperative period (intervention group). The primary efficacy outcome was the perioperative mean core body temperature measured by a tympanic infrared thermometer. Secondary outcomes were hypothermia incidence, change in core body temperature, length of stay in postanesthesia care unit, thermal comfort, patient satisfaction, ease of use, and adverse events related to the BARRIER EasyWarm blanket. The BARRIER EasyWarm blanket significantly improved perioperative core body temperature compared with standard hospital blankets (36.5°C, SD 0.4°C, vs 36.3, SD 0.3°C; Pthermal comfort scores, preoperatively and postoperatively. No serious adverse effects were observed in either group. Perioperative use of the new self-warming blanket improves mean perioperative core body temperature, reduces the incidence of inadvertent perioperative hypothermia, and improves patients' thermal comfort during elective adult surgery. Copyright © 2016 The Authors. Published by Elsevier Inc

  3. Geologically current plate motions

    Science.gov (United States)

    DeMets, Charles; Gordon, Richard G.; Argus, Donald F.

    2010-04-01

    indicates that motions across the Caribbean-North America and Caribbean-South America plate boundaries are twice as fast as given by NUVEL-1A. Summed, least-squares differences between angular velocities estimated from GPS and those for MORVEL, NUVEL-1 and NUVEL-1A are, respectively, 260 per cent larger for NUVEL-1 and 50 per cent larger for NUVEL-1A than for MORVEL, suggesting that MORVEL more accurately describes historically current plate motions. Significant differences between geological and GPS estimates of Nazca plate motion and Arabia-Eurasia and India-Eurasia motion are reduced but not eliminated when using MORVEL instead of NUVEL-1A, possibly indicating that changes have occurred in those plate motions since 3.16 Ma. The MORVEL and GPS estimates of Pacific-North America plate motion in western North America differ by only 2.6 +/- 1.7mmyr-1, ~25 per cent smaller than for NUVEL-1A. The remaining difference for this plate pair, assuming there are no unrecognized systematic errors and no measurable change in Pacific-North America motion over the past 1-3 Myr, indicates deformation of one or more plates in the global circuit. Tests for closure of six three-plate circuits indicate that two, Pacific-Cocos-Nazca and Sur-Nubia-Antarctic, fail closure, with respective linear velocities of non-closure of 14 +/- 5 and 3 +/- 1mmyr-1 (95 per cent confidence limits) at their triple junctions. We conclude that the rigid plate approximation continues to be tremendously useful, but-absent any unrecognized systematic errors-the plates deform measurably, possibly by thermal contraction and wide plate boundaries with deformation rates near or beneath the level of noise in plate kinematic data.

  4. Integration of motion responses underlying directional motion anisotropy in human early visual cortical areas

    NARCIS (Netherlands)

    Schellekens, W.; van Wezel, Richard Jack Anton; Petridou, N.; Ramsey, N.F.; Raemaekers, M.

    2013-01-01

    Recent imaging studies have reported directional motion biases in human visual cortex when perceiving moving random dot patterns. It has been hypothesized that these biases occur as a result of the integration of motion detector activation along the path of motion in visual cortex. In this study we

  5. [Perioperative warming with a thermal gown prevents maternal temperature loss during elective cesarean section. A randomized clinical trial].

    Science.gov (United States)

    Bernardis, Ricardo Caio Gracco de; Siaulys, Monica Maria; Vieira, Joaquim Edson; Mathias, Lígia Andrade Silva Telles

    2016-01-01

    Decrease in body temperature is common during general and regional anesthesia. Forced-air warming intraoperative during cesarean section under spinal anesthesia seems not able to prevent it. The hypothesis considers that active warming before the intraoperative period avoids temperature loss during cesarean. Forty healthy pregnant patients undergoing elective cesarean section with spinal anesthesia received active warming from a thermal gown in the preoperative care unit 30min before spinal anesthesia and during surgery (Go, n=20), or no active warming at any time (Ct, n=20). After induction of spinal anesthesia, the thermal gown was replaced over the chest and upper limbs and maintained throughout study. Room temperature, hemoglobin saturation, heart rate, arterial pressure, and tympanic body temperature were registered 30min before (baseline) spinal anesthesia, right after it (time zero) and every 15min thereafter. There was no difference for temperature at baseline, but they were significant throughout the study (pcontrol group had baseline temperature of 36.4±0.4°C, measured 36.3±0.3°C at time zero and reached 35.4±0.4°C (F=32.53; 95% CI 0.45-0.86; p<0.001). Hemodynamics did not differ throughout the study for both groups of patients. Active warming 30min before spinal anesthesia and during surgery prevented a fall in body temperature in full-term pregnant women during elective cesarean delivery. Copyright © 2015 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  6. Perioperative warming with a thermal gown prevents maternal temperature loss during elective cesarean section. A randomized clinical trial.

    Science.gov (United States)

    de Bernardis, Ricardo Caio Gracco; Siaulys, Monica Maria; Vieira, Joaquim Edson; Mathias, Lígia Andrade Silva Telles

    2016-01-01

    Decrease in body temperature is common during general and regional anesthesia. Forced-air warming intraoperative during cesarean section under spinal anesthesia seems not able to prevent it. The hypothesis considers that active warming before the intraoperative period avoids temperature loss during cesarean. Forty healthy pregnant patients undergoing elective cesarean section with spinal anesthesia received active warming from a thermal gown in the preoperative care unit 30min before spinal anesthesia and during surgery (Go, n=20), or no active warming at any time (Ct, n=20). After induction of spinal anesthesia, the thermal gown was replaced over the chest and upper limbs and maintained throughout study. Room temperature, hemoglobin saturation, heart rate, arterial pressure, and tympanic body temperature were registered 30min before (baseline) spinal anesthesia, right after it (time zero) and every 15min thereafter. There was no difference for temperature at baseline, but they were significant throughout the study (pcontrol group had baseline temperature of 36.4±0.4°C, measured 36.3±0.3°C at time zero and reached 35.4±0.4°C (F=32.53; 95% CI 0.45-0.86; p<0.001). Hemodynamics did not differ throughout the study for both groups of patients. Active warming 30min before spinal anesthesia and during surgery prevented a fall in body temperature in full-term pregnant women during elective cesarean delivery. Copyright © 2015 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.

  7. Thermal discomfort with cold extremities in relation to age, gender, and body mass index in a random sample of a Swiss urban population

    Directory of Open Access Journals (Sweden)

    Orgül Selim

    2010-06-01

    Full Text Available Abstract Background The aim of this epidemiological study was to investigate the relationship of thermal discomfort with cold extremities (TDCE to age, gender, and body mass index (BMI in a Swiss urban population. Methods In a random population sample of Basel city, 2,800 subjects aged 20-40 years were asked to complete a questionnaire evaluating the extent of cold extremities. Values of cold extremities were based on questionnaire-derived scores. The correlation of age, gender, and BMI to TDCE was analyzed using multiple regression analysis. Results A total of 1,001 women (72.3% response rate and 809 men (60% response rate returned a completed questionnaire. Statistical analyses revealed the following findings: Younger subjects suffered more intensely from cold extremities than the elderly, and women suffered more than men (particularly younger women. Slimmer subjects suffered significantly more often from cold extremities than subjects with higher BMIs. Conclusions Thermal discomfort with cold extremities (a relevant symptom of primary vascular dysregulation occurs at highest intensity in younger, slimmer women and at lowest intensity in elderly, stouter men.

  8. Photo-thermal study of a layer of randomly distributed gold nanoparticles: from nano-localization to macro-scale effects

    Science.gov (United States)

    Pezzi, Luigia; Palermo, Giovanna; Veltri, Alessandro; Cataldi, Ugo; Bürgi, Thomas; Ritacco, Tiziana; Giocondo, Michele; Umeton, Cesare; De Luca, Antonio

    2017-11-01

    We present an experimental characterization and a comprehensive theoretical modeling of macroscopic plasmonic heat production that takes place in a single layer of small gold nanoparticles (GNPs), randomly distributed on a glass substrate, covered with different host media and acted on by a resonant radiation. We have performed a detailed experimental study of the temperature variations of three different systems, obtained by varying the density of nanoparticles. Due to the macroscopic dimension of the spot size, the used laser irradiates a huge number of nanoparticles, inducing a broad thermo-plasmonic effect that modifies the thermal conductivity of the entire system; starting from the state of art, we have implemented a simple model that enables to evaluate the resulting new thermal conductivity. We have also extended our theoretical approach to the macroscale, including an analysis of the effects predicted for different NP densities and laser spot size values, as well as for different values of the laser intensity, which can be as low as 0.05 W cm-2 . Theoretically predicted temperature variations are in excellent agreement with experimental results.

  9. Planck's Radiation Law: Thermal Excitations of Vacuum Induced Fluctuations

    Directory of Open Access Journals (Sweden)

    Ogiba F.

    2015-04-01

    Full Text Available The second Planck’s radiation law is derived considering that “resonators” induced by the vacuum absorb thermal excitations as additional fluctuations. The maximum energy transfer, as required by the maximum entropy equilibrium, occurs when the frequencies of these two kind of vibrations are equal. The motion resembles that of the coherent states of the quantum oscillator, as originally pointed by Schrödinger [1]. The resulting variance, due to random phases, coincides with that used by Einstein to reproduce the first Planck’s radiation law from his thermal fluctuation equation [2].

  10. Quantum quenches in disordered systems: approach to thermal equilibrium without a typical relaxation time.

    Science.gov (United States)

    Khatami, Ehsan; Rigol, Marcos; Relaño, Armando; García-García, Antonio M

    2012-05-01

    We study spectral properties and the dynamics after a quench of one-dimensional spinless fermions with short-range interactions and long-range random hopping. We show that a sufficiently fast decay of the hopping term promotes localization effects at finite temperature, which prevents thermalization even if the classical motion is chaotic. For slower decays, we find that thermalization does occur. However, within this model, the latter regime falls in an unexpected universality class, namely, observables exhibit a power-law (as opposed to an exponential) approach to their thermal expectation values.

  11. Quantum quenches in disordered systems: Approach to thermal equilibrium without a typical relaxation time

    Science.gov (United States)

    Khatami, Ehsan; Rigol, Marcos; Relaño, Armando; García-García, Antonio M.

    2012-05-01

    We study spectral properties and the dynamics after a quench of one-dimensional spinless fermions with short-range interactions and long-range random hopping. We show that a sufficiently fast decay of the hopping term promotes localization effects at finite temperature, which prevents thermalization even if the classical motion is chaotic. For slower decays, we find that thermalization does occur. However, within this model, the latter regime falls in an unexpected universality class, namely, observables exhibit a power-law (as opposed to an exponential) approach to their thermal expectation values.

  12. Conserved linear dynamics of single-molecule Brownian motion

    KAUST Repository

    Serag, Maged F.

    2017-06-06

    Macromolecular diffusion in homogeneous fluid at length scales greater than the size of the molecule is regarded as a random process. The mean-squared displacement (MSD) of molecules in this regime increases linearly with time. Here we show that non-random motion of DNA molecules in this regime that is undetectable by the MSD analysis can be quantified by characterizing the molecular motion relative to a latticed frame of reference. Our lattice occupancy analysis reveals unexpected sub-modes of motion of DNA that deviate from expected random motion in the linear, diffusive regime. We demonstrate that a subtle interplay between these sub-modes causes the overall diffusive motion of DNA to appear to conform to the linear regime. Our results show that apparently random motion of macromolecules could be governed by non-random dynamics that are detectable only by their relative motion. Our analytical approach should advance broad understanding of diffusion processes of fundamental relevance.

  13. No-Onset Looming Motion Guides Spatial Attention

    Science.gov (United States)

    von Muhlenen, Adrian; Lleras, Alejandro

    2007-01-01

    These 6 experiments explored the ability of moving random dot patterns to attract attention, as measured by a simple probe-detection task. Each trial began with random motion (i.e., dots linearly moved in random directions). After 1 s motion in 1 hemifield became gradually coherent (i.e., all dots moved up-, down-, left-, or rightwards, or either…

  14. Motion words selectively modulate direction discrimination sensitivity for threshold motion

    Science.gov (United States)

    Pavan, Andrea; Skujevskis, Māris; Baggio, Giosuè

    2013-01-01

    Can speech selectively modulate the sensitivity of a sensory system so that, in the presence of a suitable linguistic context, the discrimination of certain perceptual features becomes more or less likely? In this study, participants heard upward or downward motion words followed by a single visual field of random dots moving upwards or downwards. The time interval between the onsets of the auditory and the visual stimuli was varied parametrically. Motion direction could be either discriminable (suprathreshold motion) or non-discriminable (threshold motion). Participants had to judge whether the dots were moving upward or downward. Results show a double dissociation between discrimination sensitivity (d′) and reaction times depending on whether vertical motion was above or at threshold. With suprathreshold motion, responses were faster for congruent directions of words and dots, but sensitivity was equal across conditions. With threshold motion, sensitivity was higher for congruent directions of words and dots, but responses were equally fast across conditions. The observed differences in sensitivity and response times were largest when the dots appeared 450 ms after word onset, that is, consistently with electrophysiology, at the time the up/down semantics of the word had become available. These data suggest that word meanings can alter the balance between signal and noise within the visual system and affect the perception of low-level sensory features. PMID:23596407

  15. Estimation of Motion Vector Fields

    DEFF Research Database (Denmark)

    Larsen, Rasmus

    1993-01-01

    This paper presents an approach to the estimation of 2-D motion vector fields from time varying image sequences. We use a piecewise smooth model based on coupled vector/binary Markov random fields. We find the maximum a posteriori solution by simulated annealing. The algorithm generate sample...

  16. Spinal Manipulative Therapy Has an Immediate Effect on Thermal Pain Sensitivity in People With Low Back Pain: A Randomized Controlled Trial

    Science.gov (United States)

    Bishop, Mark D.; Robinson, Michael E.; Zeppieri, Giorgio; George, Steven Z.

    2009-01-01

    Background Current evidence suggests that spinal manipulative therapy (SMT) is effective in the treatment of people with low back pain (LBP); however, the corresponding mechanisms are unknown. Hypoalgesia is associated with SMT and is suggestive of specific mechanisms. Objective The primary purpose of this study was to assess the immediate effects of SMT on thermal pain perception in people with LBP. A secondary purpose was to determine whether the resulting hypoalgesia was a local effect and whether psychological influences were associated with changes in pain perception. Design This study was a randomized controlled trial. Setting A sample of convenience was recruited from community and outpatient clinics. Participants Thirty-six people (10 men, 26 women) currently experiencing LBP participated in the study. The average age of the participants was 32.39 (SD=12.63) years, and the average duration of LBP was 221.79 (SD=365.37) weeks. Intervention and Measurements Baseline demographic and psychological measurements were obtained, followed by quantitative sensory testing to assess temporal summation and Aδ fiber–mediated pain perception. Next, participants were randomly assigned to ride a stationary bicycle, perform low back extension exercises, or receive SMT. Finally, the same quantitative sensory testing protocol was reassessed to determine the immediate effects of each intervention on thermal pain sensitivity. Results Hypoalgesia to Aδ fiber–mediated pain perception was not observed. Group-dependent hypoalgesia of temporal summation specific to the lumbar innervated region was observed. Pair-wise comparisons indicated significant hypoalgesia in participants who received SMT, but not in those who rode a stationary bicycle or performed low back extension exercises. Psychological factors did not significantly correlate with changes in temporal summation in participants who received SMT. Limitations Only immediate effects of SMT were measured, so the authors

  17. Effectiveness of a School-Based Physical Activity Intervention on Cognitive Performance in Danish Adolescents: LCoMotion—Learning, Cognition and Motion – A Cluster Randomized Controlled Trial

    Science.gov (United States)

    Domazet, Sidsel Louise; Froberg, Karsten; Hillman, Charles H.; Andersen, Lars Bo; Bugge, Anna

    2016-01-01

    Background Physical activity is associated not only with health-related parameters, but also with cognitive and academic performance. However, no large scale school-based physical activity interventions have investigated effects on cognitive performance in adolescents. The aim of this study was to describe the effectiveness of a school-based physical activity intervention in enhancing cognitive performance in 12–14 years old adolescents. Methods A 20 week cluster randomized controlled trial was conducted including seven intervention and seven control schools. A total of 632 students (mean (SD) age: 12.9 (0.6) years) completed the trial with baseline and follow-up data on primary or secondary outcomes (74% of randomized subjects). The intervention targeted physical activity during academic subjects, recess, school transportation and leisure-time. Cognitive performance was assessed using an executive functions test of inhibition (flanker task) with the primary outcomes being accuracy and reaction time on congruent and incongruent trials. Secondary outcomes included mathematics performance, physical activity levels, body-mass index, waist-circumference and cardiorespiratory fitness. Results No significant difference in change, comparing the intervention group to the control group, was observed on the primary outcomes (p’s>0.05) or mathematics skills (p>0.05). An intervention effect was found for cardiorespiratory fitness in girls (21 meters (95% CI: 4.4–38.6) and body-mass index in boys (-0.22 kg/m2 (95% CI: -0.39–0.05). Contrary to our predictions, a significantly larger change in interference control for reaction time was found in favor of the control group (5.0 milliseconds (95% CI: 0–9). Baseline to mid-intervention changes in physical activity levels did not differ significantly between groups (all p’s>0.05). Conclusions No evidence was found for effectiveness of a 20-week multi-faceted school-based physical activity intervention for enhancing

  18. Femtosecond quantum dynamics and laser-cooling in thermal molecular systems

    CERN Document Server

    Warmuth, C

    2000-01-01

    of thermal trans-stilbene upon excitation at the omega sub 0 frequency. The experimental results are in good agreement with theoretical analysis. This work deals with coherent and incoherent vibrational phenomena in thermal systems, wave packet motion and laser-cooling. In the first part, the principle of COIN (Coherence Observation by Interference Noise) has been applied as a new approach to measuring wave packet motion. In the experiment pairs of phase-randomized femtosecond pulses with relative delay-time tau prepare interference fluctuations in the excited state population, so the variance of the correlated fluorescence intensity directly mimics the dynamics of the propagating wave packet. The scheme is demonstrated by measuring the vibrational coherence of wave packet-motion in the B-state of gaseous iodine. The COIN-interferograms obtained recover propagation, recurrences, spreading, and revivals as the typical signature of wave packets. Due to the disharmony of the B-state-potential, fractional revival...

  19. Auditory motion capturing ambiguous visual motion

    Directory of Open Access Journals (Sweden)

    Arjen eAlink

    2012-01-01

    Full Text Available In this study, it is demonstrated that moving sounds have an effect on the direction in which one sees visual stimuli move. During the main experiment sounds were presented consecutively at four speaker locations inducing left- or rightwards auditory apparent motion. On the path of auditory apparent motion, visual apparent motion stimuli were presented with a high degree of directional ambiguity. The main outcome of this experiment is that our participants perceived visual apparent motion stimuli that were ambiguous (equally likely to be perceived as moving left- or rightwards more often as moving in the same direction than in the opposite direction of auditory apparent motion. During the control experiment we replicated this finding and found no effect of sound motion direction on eye movements. This indicates that auditory motion can capture our visual motion percept when visual motion direction is insufficiently determinate without affecting eye movements.

  20. Motion control report

    CERN Document Server

    2013-01-01

    Please note this is a short discount publication. In today's manufacturing environment, Motion Control plays a major role in virtually every project.The Motion Control Report provides a comprehensive overview of the technology of Motion Control:* Design Considerations* Technologies* Methods to Control Motion* Examples of Motion Control in Systems* A Detailed Vendors List

  1. Thermally Driven Elastic Micromachines

    Science.gov (United States)

    Hosaka, Yuto; Yasuda, Kento; Sou, Isamu; Okamoto, Ryuichi; Komura, Shigeyuki

    2017-11-01

    We discuss the directional motion of an elastic three-sphere micromachine in which the spheres are in equilibrium with independent heat baths having different temperatures. Even in the absence of prescribed motion of springs, such a micromachine can gain net motion purely because of thermal fluctuations. A relation connecting the average velocity and the temperatures of the spheres is analytically obtained. This velocity can also be expressed in terms of the average heat flows in the steady state. Our model suggests a new mechanism for the locomotion of micromachines in nonequilibrium biological systems.

  2. Dizziness and Motion Sickness

    Science.gov (United States)

    ... Find an ENT Doctor Near You Dizziness and Motion Sickness Dizziness and Motion Sickness Patient Health Information ... other respiratory infections If you are subject to motion sickness: •Do not read while traveling •Avoid sitting ...

  3. Separating spin torque and heating effects in current-induced domain wall motion probed by high-resolution transmission electron microscopy

    DEFF Research Database (Denmark)

    Junginger, F.; Klaeui, M.; Backes, D.

    2007-01-01

    Observations of domain wall motion and transformations due to injected current pulses in permalloy zigzag structures using off-axis electron holography and Lorentz microscopy are reported. Heating on membranes leads to thermally activated random behavior at low current densities and by backcoating...... the SiN membranes with Al, heating effects are significantly reduced. A set of indicators is devised to separate unambiguously spin torque effects from heating and it is shown that by using the Al layer the structures are sufficiently cooled to exhibit current-induced domain wall motion due to spin...

  4. CLINICAL EFFECTIVENESS OF KINESIOLOGICAL TAPING ON PAIN AND PAIN‐FREE SHOULDER RANGE OF MOTION IN PATIENTS WITH SHOULDER IMPINGEMENT SYNDROME: A RANDOMIZED, DOUBLE BLINDED, PLACEBO‐CONTROLLED TRIAL

    Science.gov (United States)

    Shakeri, Hassan; Keshavarz, Roshanak; Ebrahimi, Ismaeil

    2013-01-01

    Background: Kinesiological taping (KT) is commonly used to improve symptoms associated with musculoskeletal disorders. However, review of the literature revealed minimal evidence to support the use of KT in treatment of shoulder disorders and controversy exists regarding the effect of KT in patients with shoulder impingement syndrome (SIS). Objective: The purpose of this study was to investigate the effect of KT on pain intensity during movement, pain experienced during the night (nocturnal pain), and pain‐free shoulder range of motion (ROM) immediately after taping, after three days and after one week, in patients with SIS. Design: Randomized, Double blinded, Placebo‐controlled design. Participants: A total of 30 patients with SIS participated in this study. Patients were assigned randomly to a control (N = 15) and an experimental group (N = 15). Methods: The patients in the experimental group received a standardized therapeutic KT. The standardized, placebo neutral KT was applied for control group. KT was applied two times with a three day interval, remaining on during the 3 day interval. Both groups followed the same procedures. Pain‐free active ROM during shoulder abduction, flexion, and elevation in the scapular plane was measured. Visual analogue scale (VAS) for pain intensity during movement or nocturnal pain and was assessed at baseline, immediately after KT, after three days, and one week after KT. Results: The result of repeated measures ANOVA showed a significant change in pain level during movement, nocturnal pain, and pain‐free ROM (p = 0.000) after KT in the experimental group. In the ANCOVA, controlling for pre‐test scores, change in pain level at movement (p = 0.009) and nocturnal pain (p = 0.04) immediately after KT was significantly greater in the experimental group than in control group. There was no significant difference in ROM measures (p > 0.05) between groups immediately after KT. No significant differences were found between the

  5. Clinical effectiveness of kinesiological taping on pain and pain-free shoulder range of motion in patients with shoulder impingement syndrome: a randomized, double blinded, placebo-controlled trial.

    Science.gov (United States)

    Shakeri, Hassan; Keshavarz, Roshanak; Arab, Amir Massoud; Ebrahimi, Ismaeil

    2013-12-01

    Kinesiological taping (KT) is commonly used to improve symptoms associated with musculoskeletal disorders. However, review of the literature revealed minimal evidence to support the use of KT in treatment of shoulder disorders and controversy exists regarding the effect of KT in patients with shoulder impingement syndrome (SIS). The purpose of this study was to investigate the effect of KT on pain intensity during movement, pain experienced during the night (nocturnal pain), and pain-free shoulder range of motion (ROM) immediately after taping, after three days and after one week, in patients with SIS. Randomized, Double blinded, Placebo-controlled design. A total of 30 patients with SIS participated in this study. Patients were assigned randomly to a control (N = 15) and an experimental group (N = 15). The patients in the experimental group received a standardized therapeutic KT. The standardized, placebo neutral KT was applied for control group. KT was applied two times with a three day interval, remaining on during the 3 day interval. Both groups followed the same procedures. Pain-free active ROM during shoulder abduction, flexion, and elevation in the scapular plane was measured. Visual analogue scale (VAS) for pain intensity during movement or nocturnal pain and was assessed at baseline, immediately after KT, after three days, and one week after KT. The result of repeated measures ANOVA showed a significant change in pain level during movement, nocturnal pain, and pain-free ROM (p = 0.000) after KT in the experimental group. In the ANCOVA, controlling for pre-test scores, change in pain level at movement (p = 0.009) and nocturnal pain (p = 0.04) immediately after KT was significantly greater in the experimental group than in control group. There was no significant difference in ROM measures (p > 0.05) between groups immediately after KT. No significant differences were found between the two groups in the after one week measurements of pain intensity and

  6. Motion in radiotherapy

    DEFF Research Database (Denmark)

    Korreman, Stine Sofia

    2012-01-01

    This review considers the management of motion in photon radiation therapy. An overview is given of magnitudes and variability of motion of various structures and organs, and how the motion affects images by producing artifacts and blurring. Imaging of motion is described, including 4DCT and 4DPE...

  7. Motion Transplantation Techniques: A Survey

    NARCIS (Netherlands)

    van Basten, Ben|info:eu-repo/dai/nl/30484800X; Egges, Arjan|info:eu-repo/dai/nl/304822779

    2012-01-01

    During the past decade, researchers have developed several techniques for transplanting motions. These techniques transplant a partial auxiliary motion, possibly defined for a small set of degrees of freedom, on a base motion. Motion transplantation improves motion databases' expressiveness and

  8. Local Nanomechanical Motion In Single Cells.

    Science.gov (United States)

    Pelling, Andrew; Gimzewski, James

    2004-03-01

    We present new evidence that the nanoscale motion of the cell wall of Saccharomyces cerevisiae exhibits local bionanomechanical motion at characteristic frequencies and which is not caused by random or Brownian processes. This motion is measured with the AFM tip which acts as a nanomechanical sensor, permitting the motion of the cell wall to be recorded as a function of time, applied force, etc. We present persuasive evidence which shows that the local nanomechanical motion is characteristic of metabolic processes taking place inside the cell. This is demonstrated by clear differences between living cells and living cells treated with a metabolic inhibitor. This inhibitor specifically targets cytochrome oxidase inside the mitochondria and inhibits ATP production. The cells observed in this study display characteristic local cell wall motion with amplitudes between 1 and 3 nm and frequencies between 500 and 1700 Hz. The motion is temperature dependant which also suggests the mechanism for the observed motion has biological origins. In addition to a stringent series of control experiments we also discuss local measurements of the cell's mechanical properties and their influence on the observed bionanomechanical motion.

  9. Anomalous Brownian motion of colloidal particle in a nematic environment: effect of the director fluctuations

    Directory of Open Access Journals (Sweden)

    T. Turiv

    2015-06-01

    Full Text Available As recently reported [Turiv T. et al., Science, 2013, Vol. 342, 1351], fluctuations in the orientation of the liquid crystal (LC director can transfer momentum from the LC to a colloid, such that the diffusion of the colloid becomes anomalous on a short time scale. Using video microscopy and single particle tracking, we investigate random thermal motion of colloidal particles in a nematic liquid crystal for the time scales shorter than the expected time of director fluctuations. At long times, compared to the characteristic time of the nematic director relaxation we observe typical anisotropic Brownian motion with the mean square displacement (MSD linear in time τ and inversly proportional to the effective viscosity of the nematic medium. At shorter times, however, the dynamics is markedly nonlinear with MSD growing more slowly (subdiffusion or faster (superdiffusion than τ. These results are discussed in the context of coupling of colloidal particle's dynamics to the director fluctuation dynamics.

  10. Nano-motion dynamics are determined by surface-tethered selectin mechanokinetics and bond formation.

    Directory of Open Access Journals (Sweden)

    Brian J Schmidt

    2009-12-01

    -dimensional bond formation gained from flow cell assays might therefore be important to understand processes involving extended cellular interactions, such as immunological synapse formation. A biologically informative in silico system was created with minimal, high-confidence inputs. Incorporating random effects in surface separation through thermal motion enabled new deductions of the effects of surface-constrained biomolecular function. Important molecular information is embedded in the patterns and statistics of motion.

  11. PREDICTING MERGER-INDUCED GAS MOTIONS IN ΛCDM GALAXY CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Nagai, Daisuke; Lau, Erwin T.; Avestruz, Camille; Rudd, Douglas H. [Department of Physics, Yale University, New Haven, CT 06520 (United States); Nelson, Kaylea, E-mail: daisuke.nagai@yale.edu [Department of Astronomy, Yale University, New Haven, CT 06520 (United States)

    2013-11-10

    In the hierarchical structure formation model, clusters of galaxies form through a sequence of mergers and continuous mass accretion, which generate significant random gas motions especially in their outskirts where material is actively accreting. Non-thermal pressure provided by the internal gas motions affects the thermodynamic structure of the X-ray emitting intracluster plasma and introduces biases in the physical interpretation of X-ray and Sunyaev-Zeldovich effect observations. However, we know very little about the nature of gas motions in galaxy clusters. The ASTRO-H X-ray mission, scheduled to launch in 2015, will have a calorimeter capable of measuring gas motions in galaxy clusters at the level of ∼< 100 km s{sup –1}. In this work, we predict the level of merger-induced gas motions expected in the ΛCDM model using hydrodynamical simulations of galaxy cluster formation. We show that the gas velocity dispersion is larger in more massive clusters, but exhibits a large scatter. We show that systems with large gas motions are morphologically disturbed, while early forming, relaxed groups show a smaller level of gas motions. By analyzing mock ASTRO-H observations of simulated clusters, we show that such observations can accurately measure the gas velocity dispersion out to the outskirts of nearby relaxed galaxy clusters. ASTRO-H analysis of merging clusters, on the other hand, requires multi-component spectral fitting and enables unique studies of substructures in galaxy clusters by measuring both the peculiar velocities and the velocity dispersion of gas within individual sub-clusters.

  12. Macro motion vector quantization

    Science.gov (United States)

    Lee, Yoon Y.; Woods, John W.

    1995-04-01

    A new algorithm is developed for reducing the bit rate required for motion vectors. This algorithm is a generalization of block matching motion estimation in which the search region is represented as a codebook of motion vectors. The new algorithm, called macro motion vector quantization (MMVQ), generalized our earlier MVQ by coding a group of motion vectors. The codebook is a set of macro motion vectors which represent the block locations of the small neighboring blocks in the previous frame. We develop an interative design algorithm for the codebook. Our experiments show that the variances of displaced frame differences (DFDs) are reduced significantly compared to block matching algorithm (BMA) with the macroblock size.

  13. Continuous passive motion and physical therapy (CPM) versus physical therapy (PT) versus delayed physical therapy (DPT) after surgical release for elbow contractures; a study protocol for a prospective randomized controlled trial

    NARCIS (Netherlands)

    Viveen, Jetske; Doornberg, Job N.; Kodde, Izaak F.; Goossens, Pjotr; Koenraadt, Koen L. M.; The, Bertram; Eygendaal, Denise

    2017-01-01

    The elbow is prone to stiffness after trauma. To regain functional elbow motion several conservative- and surgical treatment options are available. Conservative treatment includes physical therapy, intra-articular injections with corticosteroids and a static progressive or dynamic splinting program.

  14. Sound-contingent visual motion aftereffect

    Directory of Open Access Journals (Sweden)

    Kobayashi Maori

    2011-05-01

    Full Text Available Abstract Background After a prolonged exposure to a paired presentation of different types of signals (e.g., color and motion, one of the signals (color becomes a driver for the other signal (motion. This phenomenon, which is known as contingent motion aftereffect, indicates that the brain can establish new neural representations even in the adult's brain. However, contingent motion aftereffect has been reported only in visual or auditory domain. Here, we demonstrate that a visual motion aftereffect can be contingent on a specific sound. Results Dynamic random dots moving in an alternating right or left direction were presented to the participants. Each direction of motion was accompanied by an auditory tone of a unique and specific frequency. After a 3-minutes exposure, the tones began to exert marked influence on the visual motion perception, and the percentage of dots required to trigger motion perception systematically changed depending on the tones. Furthermore, this effect lasted for at least 2 days. Conclusions These results indicate that a new neural representation can be rapidly established between auditory and visual modalities.

  15. Brownian motion with adhesion: harmonic oscillator with fluctuating mass.

    Science.gov (United States)

    Gitterman, M; Klyatskin, V I

    2010-05-01

    In contrast to the cases usually studied of a harmonic oscillator subject to a random force (Brownian motion) or having random frequency or random damping, we consider a random mass which corresponds to an oscillator for which the particles of the surrounding medium adhere to it for some (random) time after the collision, thereby changing the oscillator mass. This model, which describes Brownian motion with adhesion, can be useful for the analysis of chemical and biological solutions as well as nanotechnological devices. We consider dichotomous noise and its limiting case, white noise.

  16. Objects in Motion

    Science.gov (United States)

    Damonte, Kathleen

    2004-01-01

    One thing scientists study is how objects move. A famous scientist named Sir Isaac Newton (1642-1727) spent a lot of time observing objects in motion and came up with three laws that describe how things move. This explanation only deals with the first of his three laws of motion. Newton's First Law of Motion says that moving objects will continue…

  17. Non-Fourier based thermal-mechanical tissue damage prediction for thermal ablation.

    Science.gov (United States)

    Li, Xin; Zhong, Yongmin; Smith, Julian; Gu, Chengfan

    2017-01-02

    Prediction of tissue damage under thermal loads plays important role for thermal ablation planning. A new methodology is presented in this paper by combing non-Fourier bio-heat transfer, constitutive elastic mechanics as well as non-rigid motion of dynamics to predict and analyze thermal distribution, thermal-induced mechanical deformation and thermal-mechanical damage of soft tissues under thermal loads. Simulations and comparison analysis demonstrate that the proposed methodology based on the non-Fourier bio-heat transfer can account for the thermal-induced mechanical behaviors of soft tissues and predict tissue thermal damage more accurately than classical Fourier bio-heat transfer based model.

  18. Process of random distributions : classification and prediction ...

    African Journals Online (AJOL)

    Dirichlet random distribution. The parameter of this process can be the distribution of any usual such as the (multifractional) Brownian motion. We also extend Kraft random distribution to the continuous time case. We give an application in ...

  19. Brownian motion in non-equilibrium systems and the Ornstein-Uhlenbeck stochastic process.

    Science.gov (United States)

    Donado, F; Moctezuma, R E; López-Flores, L; Medina-Noyola, M; Arauz-Lara, J L

    2017-10-03

    The Ornstein-Uhlenbeck stochastic process is an exact mathematical model providing accurate representations of many real dynamic processes in systems in a stationary state. When applied to the description of random motion of particles such as that of Brownian particles, it provides exact predictions coinciding with those of the Langevin equation but not restricted to systems in thermal equilibrium but only conditioned to be stationary. Here, we investigate experimentally single particle motion in a two-dimensional granular system in a stationary state, consisting of 1 mm stainless balls on a plane circular surface. The motion of the particles is produced by an alternating magnetic field applied perpendicular to the surface of the container. The mean square displacement of the particles is measured for a range of low concentrations and it is found that following an appropriate scaling of length and time, the short-time experimental curves conform a master curve covering the range of particle motion from ballistic to diffusive in accordance with the description of the Ornstein-Uhlenbeck model.

  20. Rolling Shutter Motion Deblurring

    KAUST Repository

    Su, Shuochen

    2015-06-07

    Although motion blur and rolling shutter deformations are closely coupled artifacts in images taken with CMOS image sensors, the two phenomena have so far mostly been treated separately, with deblurring algorithms being unable to handle rolling shutter wobble, and rolling shutter algorithms being incapable of dealing with motion blur. We propose an approach that delivers sharp and undis torted output given a single rolling shutter motion blurred image. The key to achieving this is a global modeling of the camera motion trajectory, which enables each scanline of the image to be deblurred with the corresponding motion segment. We show the results of the proposed framework through experiments on synthetic and real data.

  1. Smoothing Motion Estimates for Radar Motion Compensation.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-07-01

    Simple motion models for complex motion environments are often not adequate for keeping radar data coherent. Eve n perfect motion samples appli ed to imperfect models may lead to interim calculations e xhibiting errors that lead to degraded processing results. Herein we discuss a specific i ssue involving calculating motion for groups of pulses, with measurements only available at pulse-group boundaries. - 4 - Acknowledgements This report was funded by General A tomics Aeronautical Systems, Inc. (GA-ASI) Mission Systems under Cooperative Re search and Development Agre ement (CRADA) SC08/01749 between Sandia National Laboratories and GA-ASI. General Atomics Aeronautical Systems, Inc. (GA-ASI), an affilia te of privately-held General Atomics, is a leading manufacturer of Remotely Piloted Aircraft (RPA) systems, radars, and electro-optic and rel ated mission systems, includin g the Predator(r)/Gray Eagle(r)-series and Lynx(r) Multi-mode Radar.

  2. Asymptotics of weighted random sums

    DEFF Research Database (Denmark)

    Corcuera, José Manuel; Nualart, David; Podolskij, Mark

    2014-01-01

    In this paper we study the asymptotic behaviour of weighted random sums when the sum process converges stably in law to a Brownian motion and the weight process has continuous trajectories, more regular than that of a Brownian motion. We show that these sums converge in law to the integral...

  3. Structural motion engineering

    CERN Document Server

    Connor, Jerome

    2014-01-01

    This innovative volume provides a systematic treatment of the basic concepts and computational procedures for structural motion design and engineering for civil installations. The authors illustrate the application of motion control to a wide spectrum of buildings through many examples. Topics covered include optimal stiffness distributions for building-type structures, the role of damping in controlling motion, tuned mass dampers, base isolation systems, linear control, and nonlinear control. The book's primary objective is the satisfaction of motion-related design requirements, such as restrictions on displacement and acceleration. The book is ideal for practicing engineers and graduate students. This book also: ·         Broadens practitioners' understanding of structural motion control, the enabling technology for motion-based design ·         Provides readers the tools to satisfy requirements of modern, ultra-high strength materials that lack corresponding stiffness, where the motion re...

  4. Critical percolation phase and thermal Berezinskii-Kosterlitz-Thouless transition in a scale-free network with short-range and long-range random bonds.

    Science.gov (United States)

    Berker, A Nihat; Hinczewski, Michael; Netz, Roland R

    2009-10-01

    Percolation in a scale-free hierarchical network is solved exactly by renormalization-group theory in terms of the different probabilities of short-range and long-range bonds. A phase of critical percolation, with algebraic [Berezinskii-Kosterlitz-Thouless (BKT)] geometric order, occurs in the phase diagram in addition to the ordinary (compact) percolating phase and the nonpercolating phase. It is found that no connection exists between, on the one hand, the onset of this geometric BKT behavior and, on the other hand, the onsets of the highly clustered small-world character of the network and of the thermal BKT transition of the Ising model on this network. Nevertheless, both geometric and thermal BKT behaviors have inverted characters, occurring where disorder is expected, namely, at low bond probability and high temperature, respectively. This may be a general property of long-range networks.

  5. Rectified motion in an asymmetrically structured channel due to induced-charge electrokinetic and thermo-kinetic phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Sugioka, Hideyuki, E-mail: hsugioka@shinshu-u.ac.jp [Frontier Research Center, Canon Inc. 30-2, Shimomaruko 3-chome, Ohta-ku, Tokyo 146-8501, Japan and Department of Mechanical Systems Engineering, Shinshu University 4-17-1 Wakasato, Nagano 380-8553 (Japan)

    2016-02-15

    It would be advantageous to move fluid by the gradient of random thermal noises that are omnipresent in the natural world. To achieve this motion, we propose a rectifier that uses a thermal noise along with induced-charge electroosmosis and electrophoresis (ICEO and ICEP) around a metal post cylinder in an asymmetrically structured channel and numerically examine its rectification performance. By the boundary element method combined with the thin double layer approximation, we find that rectified motion occurs in the asymmetrically structured channel due to ICEO and ICEP. Further, by thermodynamical and equivalent circuit methods, we discuss a thermal voltage that drives a rectifier consisting of a fluidic channel of an electrolyte and an impedance as a noise source. Our calculations show that fluid can be moved in the asymmetrically structured channel by the fluctuation of electric fields due to a thermal noise only when there is a temperature difference. In addition, our simple noise argument provides a different perspective for the thermo-kinetic phenomena (around a metal post) which was predicted based on the electrolyte Seebeck effect in our previous paper [H. Sugioka, “Nonlinear thermokinetic phenomena due to the Seebeck effect,” Langmuir 30, 8621 (2014)].

  6. People can understand descriptions of motion without activating visual motion brain regions

    Directory of Open Access Journals (Sweden)

    Swethasri eDravida

    2013-08-01

    Full Text Available What is the relationship between our perceptual and linguistic representations of the same event? We approached this question by asking to whether visual perception of motion and understanding linguistic depictions of motion rely on the same neural architecture. The same group of participants took part in two language tasks and one visual task. In task 1, participants made semantic similarity judgments with high (e.g. to bounce and low motion (e.g. to look words. In task 2, participants made plausibility judgments for passages describing movement (A centaur hurled a spear… or cognitive events (A gentleman loved cheese…. Task 3 was a visual motion localizer in which participants viewed animations of point-light walkers, randomly moving dots, and stationary dots changing in luminance. Based on the visual motion localizer we identified classic visual motion areas of the temporal (MT/MST and STS and parietal cortex (inferior and superior parietal lobules. We find that linguistic depictions of motion and seeing motion activate largely distinct cortical areas. Motion words did not activate any part of the visual motion system. Motion passages produced a small response in the right superior parietal lobule, but none of the temporal motion regions. These results suggest 1 as compared to words, rich language stimuli such as passages are more likely to evoke mental imagery and more likely to affect perceptual circuits and 2 effects of language on the visual system are more likely in secondary perceptual areas as compared to early sensory areas. We conclude that language and visual perception constitute distinct but interacting systems.

  7. Accurate and Robust Ego-Motion Estimation using Expectation Maximization

    NARCIS (Netherlands)

    Dubbelman, G.; Mark, W. van der; Groen, F.C.A.

    2008-01-01

    A novel robust visual-odometry technique, called EM-SE(3) is presented and compared against using the random sample consensus (RANSAC) for ego-motion estimation. In this contribution, stereo-vision is used to generate a number of minimal-set motion hypothesis. By using EM-SE(3), which involves

  8. Tested Demonstrations. Brownian Motion: A Classroom Demonstration and Student Experiment.

    Science.gov (United States)

    Kirksey, H. Graden; Jones, Richard F.

    1988-01-01

    Shows how video recordings of the Brownian motion of tiny particles may be made. Describes a classroom demonstration and cites a reported experiment designed to show the random nature of Brownian motion. Suggests a student experiment to discover the distance a tiny particle travels as a function of time. (MVL)

  9. Motion and relativity

    CERN Document Server

    Infeld, Leopold

    1960-01-01

    Motion and Relativity focuses on the methodologies, solutions, and approaches involved in the study of motion and relativity, including the general relativity theory, gravitation, and approximation.The publication first offers information on notation and gravitational interaction and the general theory of motion. Discussions focus on the notation of the general relativity theory, field values on the world-lines, general statement of the physical problem, Newton's theory of gravitation, and forms for the equation of motion of the second kind. The text then takes a look at the approximation meth

  10. Brain Image Motion Correction

    DEFF Research Database (Denmark)

    Jensen, Rasmus Ramsbøl; Benjaminsen, Claus; Larsen, Rasmus

    2015-01-01

    The application of motion tracking is wide, including: industrial production lines, motion interaction in gaming, computer-aided surgery and motion correction in medical brain imaging. Several devices for motion tracking exist using a variety of different methodologies. In order to use such devices...... offset and tracking noise in medical brain imaging. The data are generated from a phantom mounted on a rotary stage and have been collected using a Siemens High Resolution Research Tomograph for positron emission tomography. During acquisition the phantom was tracked with our latest tracking prototype...

  11. Measurement of visual motion

    Energy Technology Data Exchange (ETDEWEB)

    Hildreth, E.C.

    1984-01-01

    This book examines the measurement of visual motion and the use of relative movement to locate the boundaries of physical objects in the environment. It investigates the nature of the computations that are necessary to perform this analysis by any vision system, biological or artificial. Contents: Introduction. Background. Computation of the Velocity Field. An Algorithm to Compute the Velocity Field. The Computation of Motion Discontinuities. Perceptual Studies of Motion Measurement. The Psychophysics of Discontinuity Detection. Neurophysiological Studies of Motion. Summary and Conclusions. References. Author and Subject Indexes.

  12. Male Spine Motion During Coitus

    Science.gov (United States)

    Sidorkewicz, Natalie

    2014-01-01

    Study Design. Repeated measures design. Objective. To describe male spine movement and posture characteristics during coitus and compare these characteristics across 5 common coital positions. Summary of Background Data. Exacerbation of pain during coitus due to coital movements and positions is a prevalent issue reported by low back pain patients. A biomechanical analysis of spine movements and postures during coitus has never been conducted. Methods. Ten healthy males and females engaged in coitus in the following preselected positions and variations: QUADRUPED, MISSIONARY, and SIDELYING. An optoelectronic motion capture system was used to measure 3-dimensional lumbar spine angles that were normalized to upright standing. To determine whether each coital position had distinct spine kinematic profiles, separate univariate general linear models, followed by Tukey's honestly significant difference post hoc analysis were used. The presentation of coital positions was randomized. Results. Both variations of QUADRUPED, mQUAD1 and mQUAD2, were found to have a significantly higher cycle speed than mSIDE (P = 0.043 and P = 0.034, respectively), mMISS1 (P = 0.003 and P = 0.002, respectively), and mMISS2 (P = 0.001 and P spine movement varied depending on the coital position; however, across all positions, the majority of the range of motion used was in flexion. Based on range of motion, the least-to-most recommended positions for a male flexion-intolerant patient are mSIDE, mMISS2, mQUAD2, mMISS1, and mQUAD1. Conclusion. Initial recommendations—which include specific coital positions to avoid, movement strategies, and role of the partner—were developed for male patients whose low back pain is exacerbated by specific motions and postures. Level of Evidence: N/A PMID:25208042

  13. Ground motion improvements in SPEAR3

    Energy Technology Data Exchange (ETDEWEB)

    Safranek, James A.; Yan, Yiton T.; Dell’Orco, Domenico; Gassner, Georg; Sunilkumar, Nikita

    2016-09-01

    SPEAR3 is a third-generation synchrotron light source storage ring, about 234 meters in circumference. To meet the beam stability requirement, our goal is to ultimately achieve an orbit variation (relative to the photon beam lines) of less than 10% of the beam size, which is about 1 micron in the vertical plane. Hydrostatic leveling system (HLS) measurements show that the height of the SPEAR3 tunnel floor can vary by tens of microns daily without thermal insulation improvements. We present an analysis of the HLS data that shows that adding thermal insulation to the concrete walls of the storage ring tunnel dramatically decreased diurnal tunnel floor motion.

  14. Human motion correction and representation method from motion camera

    Directory of Open Access Journals (Sweden)

    Hong-Bo Zhang

    2017-06-01

    Full Text Available Motion estimation is a basic issue for many computer vision tasks, such as human–computer interaction, motion objection detection and intelligent robot. In many practical scenes, the object movement goes with camera motion. Generally, motion descriptors directly based on optical flow are inaccurate and have low discrimination power. To this end, a novel motion correction method is proposed and a novel motion feature descriptor called the motion difference histogram (MDH for recognising human action is proposed in this study. Motion estimation results are corrected by background motion estimation and MDH encodes the motion difference between the background and the objects. Experimental results on video shot with camera motion show that the proposed motion correction method is effective and the recognition accuracy of MDH is better than that of the state-of-the-art motion descriptor.

  15. Teaching Projectile Motion

    Science.gov (United States)

    Summers, M. K.

    1977-01-01

    Described is a novel approach to the teaching of projectile motion of sixth form level. Students are asked to use an analogue circuit to observe projectile motion and to graph the experimental results. Using knowledge of basic dynamics, students are asked to explain the shape of the curves theoretically. (Author/MA)

  16. Motion control systems

    CERN Document Server

    Sabanovic, Asif

    2011-01-01

    "Presents a unified approach to the fundamental issues in motion control, starting from the basics and moving through single degree of freedom and multi-degree of freedom systems In Motion Control Systems, Šabanovic and Ohnishi present a unified approach to very diverse issues covered in motion control systems, offering know-how accumulated through work on very diverse problems into a comprehensive, integrated approach suitable for application in high demanding high-tech products. It covers material from single degree of freedom systems to complex multi-body non-redundant and redundant systems. The discussion of the main subject is based on original research results and will give treatment of the issues in motion control in the framework of the acceleration control method with disturbance rejection technique. This allows consistent unification of different issues in motion control ranging from simple trajectory tracking to topics related to haptics and bilateral control without and with delay in the measure...

  17. The effects of the calcium-magnesium-bicarbonate content in thermal mineral water on chronic low back pain: a randomized, controlled follow-up study

    Science.gov (United States)

    Tamás, Gáti; Katalin, Tefner Ildikó; Lajos, Kovács; Katalin, Hodosi; Tamás, Bender

    2018-01-01

    The aim of this study was to investigate the effects of balneotherapy on chronic low back pain. This is a minimized, follow-up study evaluated according to the analysis of intention to treat. The subjects included in the study were 105 patients suffering from chronic low back pain. The control group (n = 53) received the traditional musculoskeletal pain killer treatment, while the target group (n = 52) attended thermal mineral water treatment for 3 weeks for 15 occasions on top of the usual musculoskeletal pain killer treatment. The following parameters were measured before, right after, and 9 weeks after the 3-week therapy: the level of low back pain in rest and the level during activity are tested using the Visual Analog Scale (VAS); specific questionnaire on the back pain (Oswestry); and a questionnaire on quality of life (EuroQual-5D). All of the investigated parameters improved significantly (p low back pain.

  18. Motion planning for gantry mounted manipulators

    DEFF Research Database (Denmark)

    Olsen, Anders Lau; Petersen, Henrik Gordon

    2007-01-01

    We present a roadmap based planner for finding robot motions for gantry mounted manipulators for a line welding application at Odense Steel Shipyard (OSS). The robot motions are planned subject to constraints on when the gantry may be moved. We show that random sampling of gantry configurations...... is a viable technique for positioning the manipulator and present a pruning technique for managing the growth of the roadmap. We discuss results from simulations and from applications at the shipyard, where a similar planner has now been implemented for production....

  19. Thermal stress relaxation in magnesium composites during thermal cycling

    Energy Technology Data Exchange (ETDEWEB)

    Trojanova, Z.; Lukac, P. (Karlova Univ., Prague (Czech Republic)); Kiehn, J.; Kainer, K.U.; Mordike, B.L. (Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany))

    1998-01-01

    It has been shown that the internal friction of Mg - Saffil metal matrix composites can be influenced by thermal stresses, if MMCc are submitted to thermal cycling between room temperature and an upper temperature of cycling. These stresses can be accommodated by generation and motion of dislocations giving the formation of the microplastic zones. The thermal stress relaxation depends on the upper temperature of cycling, the volume fraction of reinforcement and the matrix composition and can result in plastic deformation and strain hardening of the matrix without applied stress. The internal friction measurements can be used for non destructive investigation of processes which influence the mechanical properties. (orig.)

  20. Superluminal motion in astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Falla, D.F.; Floyd, M.J. [Department of Physics, University of Wales, Aberystwyth (United Kingdom)

    2002-01-01

    Several examples of 'intrinsic-type' superluminal motion in astronomy are taken. A simple signal-delay transformation is devised and shown to be sufficient to explain the superluminal effect as resulting from differential signal delay across an expanding source. The distinction between relativistic motion and relativistic kinematics is made. The key kinematical equation used to describe superluminal motion is an alternative statement of the Doppler effect. Relativistic transformations, which are relevant when intervals in different reference frames are compared, then lead to the relativistic Doppler factor ({delta}), which is applicable to measurements on a photographic image, for example that of a relativistic quasar jet with superluminal components. (author)

  1. Method through motion

    DEFF Research Database (Denmark)

    Steijn, Arthur

    2016-01-01

    Contemporary scenography often consists of video-projected motion graphics. The field is lacking in academic methods and rigour: descriptions and models relevant for the creation as well as in the analysis of existing works. In order to understand the phenomenon of motion graphics in a scenographic...... context, I have been conducting a practice-led research project. Central to the project is construction of a design model describing sets of procedures, concepts and terminology relevant for design and studies of motion graphics in spatial contexts. The focus of this paper is the role of model...

  2. Tangle-Free Finite Element Mesh Motion for Ablation Problems

    Science.gov (United States)

    Droba, Justin

    2016-01-01

    Mesh motion is the process by which a computational domain is updated in time to reflect physical changes in the material the domain represents. Such a technique is needed in the study of the thermal response of ablative materials, which erode when strong heating is applied to the boundary. Traditionally, the thermal solver is coupled with a linear elastic or biharmonic system whose sole purpose is to update mesh node locations in response to altering boundary heating. Simple mesh motion algorithms rely on boundary surface normals. In such schemes, evolution in time will eventually cause the mesh to intersect and "tangle" with itself, causing failure. Furthermore, such schemes are greatly limited in the problems geometries on which they will be successful. This paper presents a comprehensive and sophisticated scheme that tailors the directions of motion based on context. By choosing directions for each node smartly, the inevitable tangle can be completely avoided and mesh motion on complex geometries can be modeled accurately.

  3. The development of depth perception from motion parallax in infancy.

    Science.gov (United States)

    Nawrot, Elizabeth; Mayo, Sherryse L; Nawrot, Mark

    2009-01-01

    Little is known about infants' perception of depth from motion parallax, even though it is known that infants are sensitive both to motion and to depth-from-motion cues at an early age. The present experiment assesses whether infants are sensitive to the unambiguous depth specified by motion parallax and, if so, when this sensitivity first develops. Eleven infants were followed longitudinally from 8 to 29 weeks. Infants monocularly viewed a translating Rogers and Graham (1979) random-dot stimulus, which appears as a corrugated surface to adult observers. Using the infant-control habituation paradigm, looking time was recorded for each 10-sec trial until habituation, followed by two test trials: one using a depth-reversed and one using a flat stimulus. Dishabituation results indicate that infants may be sensitive to unambiguous depth from motion parallax by 16 weeks of age. Implications for the developmental sequence of depth from motion, stereopsis, and eye movements are discussed.

  4. Optomechanics for thermal characterization of suspended graphene

    Science.gov (United States)

    Dolleman, Robin J.; Houri, Samer; Davidovikj, Dejan; Cartamil-Bueno, Santiago J.; Blanter, Yaroslav M.; van der Zant, Herre S. J.; Steeneken, Peter G.

    2017-10-01

    The thermal response of graphene is expected to be extremely fast due to its low heat capacity and high thermal conductivity. In this work, the thermal response of suspended single-layer graphene membranes is investigated by characterization of their mechanical motion in response to a high-frequency modulated laser. A characteristic delay time τ between the optical intensity and mechanical motion is observed, which is attributed to the time required to raise the temperature of the membrane. We find, however, that the measured time constants are significantly larger than the predicted ones based on values of the specific heat and thermal conductivity. In order to explain the discrepancy between measured and modeled τ , a model is proposed that takes a thermal boundary resistance at the edge of the graphene drum into account. The measurements provide a noninvasive way to characterize thermal properties of suspended atomically thin membranes, providing information that can be hard to obtain by other means.

  5. Theoretical Exploration of Exponential Heat Source and Thermal Stratification Effects on The Motion of 3-Dimensional Flow of Casson Fluid Over a Low Heat Energy Surface at Initial Unsteady Stage

    Science.gov (United States)

    Sandeep, N.; Animasaun, I. L.

    2017-06-01

    Within the last few decades, experts and scientists dealing with the flow of non-Newtonian fluids (most especially Casson fluid) have confirmed the existence of such flow on a stretchable surface with low heat energy (i.e. absolute zero of temperature). This article presents the motion of a three-dimensional of such fluid. Influence of uniform space dependent internal heat source on the intermolecular forces holding the molecules of Casson fluid is investigated. It is assumed that the stagnation flow was induced by an external force (pressure gradient) together with impulsive. Based on these assumptions, variable thermophysical properties are most suitable; hence modified kinematic viscosity model is presented. The system of governing equations of 3-dimensional unsteady Casson fluid was non-dimensionalized using suitable similarity transformation which unravels the behavior of the flow at full fledge short period. The numerical solution of the corresponding boundary value problem (ODE) was obtained using Runge-Kutta fourth order along with shooting technique. The intermolecular forces holding the molecules of Casson fluid flow in both horizontal directions when magnitude of velocity ratio parameters are greater than unity breaks continuously with an increase in Casson parameter and this leads to an increase in velocity profiles in both directions.

  6. Theoretical Exploration of Exponential Heat Source and Thermal Stratification Effects on The Motion of 3-Dimensional Flow of Casson Fluid Over a Low Heat Energy Surface at Initial Unsteady Stage

    Directory of Open Access Journals (Sweden)

    Sandeep N.

    2017-06-01

    Full Text Available Within the last few decades, experts and scientists dealing with the flow of non-Newtonian fluids (most especially Casson fluid have confirmed the existence of such flow on a stretchable surface with low heat energy (i.e. absolute zero of temperature. This article presents the motion of a three-dimensional of such fluid. Influence of uniform space dependent internal heat source on the intermolecular forces holding the molecules of Casson fluid is investigated. It is assumed that the stagnation flow was induced by an external force (pressure gradient together with impulsive. Based on these assumptions, variable thermophysical properties are most suitable; hence modified kinematic viscosity model is presented. The system of governing equations of 3-dimensional unsteady Casson fluid was non-dimensionalized using suitable similarity transformation which unravels the behavior of the flow at full fledge short period. The numerical solution of the corresponding boundary value problem (ODE was obtained using Runge-Kutta fourth order along with shooting technique. The intermolecular forces holding the molecules of Casson fluid flow in both horizontal directions when magnitude of velocity ratio parameters are greater than unity breaks continuously with an increase in Casson parameter and this leads to an increase in velocity profiles in both directions.

  7. Motion Alters Color Appearance

    Science.gov (United States)

    Hong, Sang-Wook; Kang, Min-Suk

    2016-01-01

    Chromatic induction compellingly demonstrates that chromatic context as well as spectral lights reflected from an object determines its color appearance. Here, we show that when one colored object moves around an identical stationary object, the perceived saturation of the stationary object decreases dramatically whereas the saturation of the moving object increases. These color appearance shifts in the opposite directions suggest that normalization induced by the object’s motion may mediate the shift in color appearance. We ruled out other plausible alternatives such as local adaptation, attention, and transient neural responses that could explain the color shift without assuming interaction between color and motion processing. These results demonstrate that the motion of an object affects both its own color appearance and the color appearance of a nearby object, suggesting a tight coupling between color and motion processing. PMID:27824098

  8. Projectile Motion with Mathematica.

    Science.gov (United States)

    de Alwis, Tilak

    2000-01-01

    Describes how to use the computer algebra system (CAS) Mathematica to analyze projectile motion with and without air resistance. These experiments result in several conjectures leading to theorems. (Contains 17 references.) (Author/ASK)

  9. Projectile Motion Details.

    Science.gov (United States)

    Schnick, Jeffrey W.

    1994-01-01

    Presents an exercise that attempts to correct for the common discrepancies between theoretical and experimental predictions concerning projectile motion using a spring-loaded projectile ball launcher. Includes common correction factors for student use. (MVL)

  10. A Projectile Motion Bullseye.

    Science.gov (United States)

    Lamb, William G.

    1985-01-01

    Explains a projectile motion experiment involving a bow and arrow. Procedures to measure "muzzle" velocity, bow elastic potential energy, range, flight time, wind resistance, and masses are considered. (DH)

  11. Molecular Motion Machine

    Science.gov (United States)

    Shourd, Melvin L.

    1977-01-01

    Describes the construction of an inexpensive apparatus which utilizes the oscillatory motion of 60 cycle AC current in conjunction with an electromagnetic to illustrate various principles and processes in geology. (SL)

  12. Toying with Motion.

    Science.gov (United States)

    Galus, Pamela J.

    2002-01-01

    Presents a variety of activities that support the development of an understanding of Newton's laws of motion. Activities use toy cars, mobile roads, and a seat-of-nails. Includes a scoring rubric. (DDR)

  13. Travelers' Health: Motion Sickness

    Science.gov (United States)

    ... motion by sea, car, train, air, and virtual reality immersion. Given sufficient stimulus all people with functional ... retching Sweating Cold sweats Excessive salivation Apathy Hyperventilation Increased sensitivity to odors Loss of appetite Headache Drowsiness ...

  14. Motion of a Pendulum

    Directory of Open Access Journals (Sweden)

    Jared Wynn

    2010-01-01

    Full Text Available The objective of this project is to derive and solve the equation of motion for a pendulum swinging at small angles in one dimension. The pendulum may be either a simple pendulum like a ball hanging from a string or a physical pendulum like a pendulum on a clock. For simplicity, we only considered small rotational angles so that the equation of motion becomes a harmonic oscillator.

  15. Perpetual Motion Machine

    Directory of Open Access Journals (Sweden)

    D. Tsaousis

    2008-01-01

    Full Text Available Ever since the first century A.D. there have been relative descriptions of known devices as well as manufactures for the creation of perpetual motion machines. Although physics has led, with two thermodynamic laws, to the opinion that a perpetual motion machine is impossible to be manufactured, inventors of every age and educational level appear to claim that they have invented something «entirely new» or they have improved somebody else’s invention, which «will function henceforth perpetually»! However the fact of the failure in manufacturing a perpetual motion machine till now, it does not mean that countless historical elements for these fictional machines become indifferent. The discussion on every version of a perpetual motion machine on the one hand gives the chance to comprehend the inventor’s of each period level of knowledge and his way of thinking, and on the other hand, to locate the points where this «perpetual motion machine» clashes with the laws of nature and that’s why it is impossible to have been manufactured or have functioned. The presentation of a new «perpetual motion machine» has excited our interest to locate its weak points. According to the designer of it the machine functions with the work produced by the buoyant force

  16. A Simplified Treatment of Brownian Motion and Stochastic Differential Equations Arising in Financial Mathematics

    Science.gov (United States)

    Parlar, Mahmut

    2004-01-01

    Brownian motion is an important stochastic process used in modelling the random evolution of stock prices. In their 1973 seminal paper--which led to the awarding of the 1997 Nobel prize in Economic Sciences--Fischer Black and Myron Scholes assumed that the random stock price process is described (i.e., generated) by Brownian motion. Despite its…

  17. Protrusion Fluctuations Direct Cell Motion

    Science.gov (United States)

    Caballero, David; Voituriez, Raphaël; Riveline, Daniel

    2014-01-01

    Many physiological phenomena involve directional cell migration. It is usually attributed to chemical gradients in vivo. Recently, other cues have been shown to guide cells in vitro, including stiffness/adhesion gradients or micropatterned adhesive motifs. However, the cellular mechanism leading to these biased migrations remains unknown, and, often, even the direction of motion is unpredictable. In this study, we show the key role of fluctuating protrusions on ratchet-like structures in driving NIH3T3 cell migration. We identified the concept of efficient protrusion and an associated direction index. Our analysis of the protrusion statistics facilitated the quantitative prediction of cell trajectories in all investigated conditions. We varied the external cues by changing the adhesive patterns. We also modified the internal cues using drug treatments, which modified the protrusion activity. Stochasticity affects the short- and long-term steps. We developed a theoretical model showing that an asymmetry in the protrusion fluctuations is sufficient for predicting all measures associated with the long-term motion, which can be described as a biased persistent random walk. PMID:24988339

  18. Using Human Motion Intensity as Input for Urban Design

    DEFF Research Database (Denmark)

    Poulsen, Esben Skouboe; Andersen, Hans Jørgen; Gade, Rikke

    2012-01-01

    This paper presents a study investigating the potential use of human motion intensities as input for parametric urban design. Through a computer vision analysis of thermal images, motion intensity maps are generated and utilized as design drivers for urban design patterns; and, through a case study...... of a town square, human occupancy and motion intensities are used to generate situated or topologies presenting new adaptive methods for urban design. These methods incorporate local or as design drivers for canopy, pavement and furniture layout. The urban design solution may be congured due to various...

  19. Wave propagation and scattering in random media

    CERN Document Server

    Ishimaru, Akira

    1978-01-01

    Wave Propagation and Scattering in Random Media, Volume 2, presents the fundamental formulations of wave propagation and scattering in random media in a unified and systematic manner. The topics covered in this book may be grouped into three categories: waves in random scatterers, waves in random continua, and rough surface scattering. Random scatterers are random distributions of many particles. Examples are rain, fog, smog, hail, ocean particles, red blood cells, polymers, and other particles in a state of Brownian motion. Random continua are the media whose characteristics vary randomly an

  20. Thermal comfort

    CSIR Research Space (South Africa)

    Osburn, L

    2010-01-01

    Full Text Available wider range of temperature limits, saving energy while still satisfying the majority of building occupants. It is also noted that thermal comfort varies significantly between individuals and it is generally not possible to provide a thermal environment...

  1. ORTEP-III: Oak Ridge Thermal Ellipsoid Plot Program for crystal structure illustrations

    Energy Technology Data Exchange (ETDEWEB)

    Burnett, M.N.; Johnson, C.K.

    1996-07-01

    This report describes a computer program for drawing crystal structure illustrations. Ball-and-stick type illustrations of a quality suitable for publication are produced with either spheres or thermal-motion probability ellipsoids on the atomic sites. The program can also produce stereoscopic pairs of illustrations which aid in the visualization of complex packing arrangements of atoms and thermal motion patterns. Interatomic distances, bond angles, and principal axes of thermal motion are also calculated to aid the structural study.

  2. Contrasting accounts of direction and shape perception in short-range motion: Counterchange compared with motion energy detection.

    Science.gov (United States)

    Norman, Joseph; Hock, Howard; Schöner, Gregor

    2014-07-01

    It has long been thought (e.g., Cavanagh & Mather, 1989) that first-order motion-energy extraction via space-time comparator-type models (e.g., the elaborated Reichardt detector) is sufficient to account for human performance in the short-range motion paradigm (Braddick, 1974), including the perception of reverse-phi motion when the luminance polarity of the visual elements is inverted during successive frames. Human observers' ability to discriminate motion direction and use coherent motion information to segregate a region of a random cinematogram and determine its shape was tested; they performed better in the same-, as compared with the inverted-, polarity condition. Computational analyses of short-range motion perception based on the elaborated Reichardt motion energy detector (van Santen & Sperling, 1985) predict, incorrectly, that symmetrical results will be obtained for the same- and inverted-polarity conditions. In contrast, the counterchange detector (Hock, Schöner, & Gilroy, 2009) predicts an asymmetry quite similar to that of human observers in both motion direction and shape discrimination. The further advantage of counterchange, as compared with motion energy, detection for the perception of spatial shape- and depth-from-motion is discussed.

  3. PROMOTIONS: PROper MOTION Software

    Science.gov (United States)

    Caleb Wherry, John; Sahai, R.

    2009-05-01

    We report on the development of a software tool (PROMOTIONS) to streamline the process of measuring proper motions of material in expanding nebulae. Our tool makes use of IDL's widget programming capabilities to design a unique GUI that is used to compare images of the objects from two epochs. The software allows us to first orient and register the images to a common frame of reference and pixel scale, using field stars in each of the images. We then cross-correlate specific morphological features in order to determine their proper motions, which consist of the proper motion of the nebula as a whole (PM-neb), and expansion motions of the features relative to the center. If the central star is not visible (quite common in bipolar nebulae with dense dusty waists), point-symmetric expansion is assumed and we use the average motion of high-quality symmetric pairs of features on opposite sides of the nebular center to compute PM-neb. This is then subtracted out to determine the individual movements of these and additional features relative to the nebular center. PROMOTIONS should find wide applicability in measuring proper motions in astrophysical objects such as the expanding outflows/jets commonly seen around young and dying stars. We present first results from using PROMOTIONS to successfully measure proper motions in several pre-planetary nebulae (transition objects between the red giant and planetary nebula phases), using images taken 7-10 years apart with the WFPC2 and ACS instruments on board HST. The authors are grateful to NASA's Undergradute Scholars Research Program (USRP) for supporting this research.

  4. Flow characteristics in occupied zone – An experimental study with symmetrically located thermal plumes and low-momentum diffuse ceiling air distribution

    DEFF Research Database (Denmark)

    Lestinen, Sami; Kilpeläinen, Simo; Kosonen, Risto

    2018-01-01

    (width) x 3.2 m (height) with symmetrical set-up of cylindrical heat sources that gave a thermal load of 40–80 W/floor-m2. The ventilation air was supplied through a diffuse ceiling with 0.5% degree of perforation. The observations indicate that the mean air speed and the airflow fluctuation increase......Airflow interaction between thermal plumes and vertical air distribution may cause significant effects on airflow characteristics such as velocity and temperature fields, turbulence intensity and fluctuation frequency. The flow interaction creates a random flow motion, vortical structures...... with thermal load. Furthermore, the results show that a range of length scales increases with thermal load and with mean air speed. The results indicate that it can be difficult to fulfill the standard air velocity criteria for highly occupied spaces, where the maximum allowable mean air velocity is relatively...

  5. Active Brownian motion tunable by light.

    Science.gov (United States)

    Buttinoni, Ivo; Volpe, Giovanni; Kümmel, Felix; Volpe, Giorgio; Bechinger, Clemens

    2012-07-18

    Active Brownian particles are capable of taking up energy from their environment and converting it into directed motion; examples range from chemotactic cells and bacteria to artificial micro-swimmers. We have recently demonstrated that Janus particles, i.e. gold-capped colloidal spheres, suspended in a critical binary liquid mixture perform active Brownian motion when illuminated by light. In this paper, we investigate in more detail their swimming mechanism, leading to active Brownian motion. We show that the illumination-borne heating induces a local asymmetric demixing of the binary mixture, generating a spatial chemical concentration gradient which is responsible for the particle's self-diffusiophoretic motion. We study this effect as a function of the functionalization of the gold cap, the particle size and the illumination intensity: the functionalization determines what component of the binary mixture is preferentially adsorbed at the cap and the swimming direction (towards or away from the cap); the particle size determines the rotational diffusion and, therefore, the random reorientation of the particle; and the intensity tunes the strength of the heating and, therefore, of the motion. Finally, we harness this dependence of the swimming strength on the illumination intensity to investigate the behavior of a micro-swimmer in a spatial light gradient, where its swimming properties are space-dependent.

  6. Random walks, random fields, and disordered systems

    CERN Document Server

    Černý, Jiří; Kotecký, Roman

    2015-01-01

    Focusing on the mathematics that lies at the intersection of probability theory, statistical physics, combinatorics and computer science, this volume collects together lecture notes on recent developments in the area. The common ground of these subjects is perhaps best described by the three terms in the title: Random Walks, Random Fields and Disordered Systems. The specific topics covered include a study of Branching Brownian Motion from the perspective of disordered (spin-glass) systems, a detailed analysis of weakly self-avoiding random walks in four spatial dimensions via methods of field theory and the renormalization group, a study of phase transitions in disordered discrete structures using a rigorous version of the cavity method, a survey of recent work on interacting polymers in the ballisticity regime and, finally, a treatise on two-dimensional loop-soup models and their connection to conformally invariant systems and the Gaussian Free Field. The notes are aimed at early graduate students with a mod...

  7. Measuring Behavior using Motion Capture

    NARCIS (Netherlands)

    Fikkert, F.W.; van der Kooij, Herman; Ruttkay, Z.M.; van Welbergen, H.; Spink, A.J.; Ballintijn, M.R.; Bogers, N.D.; Grieco, F; Loijens, L.W.S.; Noldus, L.P.J.J.; Smit, G; Zimmerman, P.H.

    2008-01-01

    Motion capture systems, using optical, magnetic or mechanical sensors are now widely used to record human motion. Motion capture provides us with precise measurements of human motion at a very high recording frequency and accuracy, resulting in a massive amount of movement data on several joints of

  8. Contribution of thermal expansion and

    Directory of Open Access Journals (Sweden)

    O.I.Pursky

    2007-01-01

    Full Text Available A theoretical model is developed to describe the experimental results obtained for the isobaric thermal conductivity of rare gas solids (RGS. The isobaric thermal conductivity of RGS has been analysed within Debye approximation with regard to the effect of thermal expansion. The suggested model takes into consideration the fact that thermal conductivity is determined by U-processes while above the phonon mobility edge it is determined by "diffusive" modes migrating randomly from site to site. The mobility edge ω0 is determined from the condition that the phonon mean-free path restricted by the U-processes cannot be smaller than half of the phonon wavelength.

  9. MACHINE MOTION EQUATIONS

    Directory of Open Access Journals (Sweden)

    Florian Ion Tiberiu Petrescu

    2015-09-01

    Full Text Available This paper presents the dynamic, original, machine motion equations. The equation of motion of the machine that generates angular speed of the shaft (which varies with position and rotation speed is deduced by conservation kinetic energy of the machine. An additional variation of angular speed is added by multiplying by the coefficient dynamic D (generated by the forces out of mechanism and or by the forces generated by the elasticity of the system. Kinetic energy conservation shows angular speed variation (from the shaft with inertial masses, while the dynamic coefficient introduces the variation of w with forces acting in the mechanism. Deriving the first equation of motion of the machine one can obtain the second equation of motion dynamic. From the second equation of motion of the machine it determines the angular acceleration of the shaft. It shows the distribution of the forces on the mechanism to the internal combustion heat engines. Dynamic, the velocities can be distributed in the same way as forces. Practically, in the dynamic regimes, the velocities have the same timing as the forces. Calculations should be made for an engine with a single cylinder. Originally exemplification is done for a classic distribution mechanism, and then even the module B distribution mechanism of an Otto engine type.

  10. Thermal-mechanical deformation modelling of soft tissues for thermal ablation.

    Science.gov (United States)

    Li, Xin; Zhong, Yongmin; Jazar, Reza; Subic, Aleksandar

    2014-01-01

    Modeling of thermal-induced mechanical behaviors of soft tissues is of great importance for thermal ablation. This paper presents a method by integrating the heating process with thermal-induced mechanical deformations of soft tissues for simulation and analysis of the thermal ablation process. This method combines bio-heat transfer theories, constitutive elastic material law under thermal loads as well as non-rigid motion dynamics to predict and analyze thermal-mechanical deformations of soft tissues. The 3D governing equations of thermal-mechanical soft tissue deformation are discretized by using the finite difference scheme and are subsequently solved by numerical algorithms. Experimental results show that the proposed method can effectively predict the thermal-induced mechanical behaviors of soft tissues, and can be used for the thermal ablation therapy to effectively control the delivered heat energy for cancer treatment.

  11. Perpetual Motion Machine

    OpenAIRE

    D. Tsaousis

    2008-01-01

    Ever since the first century A.D. there have been relative descriptions of known devices as well as manufactures for the creation of perpetual motion machines. Although physics has led, with two thermodynamic laws, to the opinion that a perpetual motion machine is impossible to be manufactured, inventors of every age and educational level appear to claim that they have invented something «entirely new» or they have improved somebody else’s invention, which «will function henceforth perpetuall...

  12. Ship Roll Motion Control

    DEFF Research Database (Denmark)

    Perez, Tristan; Blanke, Mogens

    2010-01-01

    The technical feasibility of roll motion control devices has been amply demonstrated for over 100 years. Performance, however, can still fall short of expectations because of deciencies in control system designs, which have proven to be far from trivial due to fundamental performance limitations....... This tutorial paper presents an account of the development of various ship roll motion control systems and the challenges associated with their design. The paper discusses how to assess performance, the applicability of dierent models, and control methods that have been applied in the past....

  13. Elements of spin motion

    Science.gov (United States)

    Fukushima, Toshio; Ishizaki, Hideharu

    1994-06-01

    For use in numerical studies of rotational motion, a set of elements is introduced for the torque-free rotational motion of a rigid body around its barycenter. The elements are defined as the initial values of a modification of the Andoyer canonical variables. A computational procedure is obtained for determining these elements from the combination of the spin angular momentum vector and a triad defining the orientation of the rigid body. A numerical experiment shows that the errors of transformation between the elements and variables are sufficiently small. The errors increase linearly with time for some elements and quadratically for some others.

  14. Leap Motion development essentials

    CERN Document Server

    Spiegelmock, Mischa

    2013-01-01

    This book is a fast-paced guide with practical examples that aims to help you understand and master the Leap Motion SDK.This book is for developers who are either involved in game development or who are looking to utilize Leap Motion technology in order to create brand new user interaction experiences to distinguish their products from the mass market. You should be comfortable with high-level languages and object-oriented development concepts in order to get the most out of this book.

  15. Current plate motions

    Science.gov (United States)

    Demets, C.; Gordon, R. G.; Argus, D. F.; Stein, S.

    1990-05-01

    A global plate motion model, named NUVEL-1, which describes current plate motions between 12 rigid plates is described, with special attention given to the method, data, and assumptions used. Tectonic implications of the patterns that emerged from the results are discussed. It is shown that wide plate boundary zones can form not only within the continental lithosphere but also within the oceanic lithosphere; e.g., between the Indian and Australian plates and between the North American and South American plates. Results of the model also suggest small but significant diffuse deformation of the oceanic lithosphere, which may be confined to small awkwardly shaped salients of major plates.

  16. Hand in motion reveals mind in motion

    Directory of Open Access Journals (Sweden)

    Jonathan eFreeman

    2011-04-01

    Full Text Available Recently, researchers have measured hand movements en route to choices on a screen to understand the dynamics of a broad range of psychological processes. We review this growing body of research and explain how manual action exposes the real-time unfolding of underlying cognitive processing. We describe how simple hand motions may be used to continuously index participants’ tentative commitments to different choice alternatives during the evolution of a behavioral response. As such, hand-tracking can provide unusually high-fidelity, real-time motor traces of the mind. These motor traces cast novel theoretical and empirical light onto a wide range of phenomena and serve as a potential bridge between far-reaching areas of psychological science—from language, to high-level cognition and learning, to social cognitive processes.

  17. Nonlinear optomechanical measurement of mechanical motion

    DEFF Research Database (Denmark)

    Brawley, G.A.; Vanner, M R; Larsen, Peter Emil

    2016-01-01

    with otherwise linear interactions. In cavity optomechanics much progress has been made using linear interactions and measurement, but observation of nonlinear mechanical degrees-of-freedom remains outstanding. Here we report the observation of displacement-squared thermal motion of a micro-mechanical resonator...... by exploiting the intrinsic nonlinearity of the radiation-pressure interaction. Using this measurement we generate bimodal mechanical states of motion with separations and feature sizes well below 100 pm. Future improvements to this approach will allow the preparation of quantum superposition states, which can...... be used to experimentally explore collapse models of the wavefunction and the potential for mechanical-resonator-based quantum information and metrology applications....

  18. Pollen Grains, Random Walks and Einstein

    Indian Academy of Sciences (India)

    wnian motion show us how the most profound physics and mathematics can emerge from simple, direct obser- vation of natural phenomena. Ideas related to Brownian motion and random walks appear today in mathematics, all the natural sciences, engineering, linguistics, finance, economics, and even the social sciences.

  19. Lumbar motion changes in chronic low back pain patients

    DEFF Research Database (Denmark)

    Mieritz, Rune M; Hartvigsen, Jan; Boyle, Eleanor

    2014-01-01

    BACKGROUND CONTEXT: Several therapies have been used in the treatment of chronic low back pain, including various exercise strategies and spinal manipulative therapy. A common belief is that spinal motion changes in particular ways in direct response to specific interventions, such as exercise....../SETTING: Secondary analysis of a subset of participants from a randomized clinical trial. PATIENT SAMPLE: 199 study participants with low back pain of more than six weeks' duration who had spinal motion measures obtained before and after the period of intervention. OUTCOME MEASURES: Lumbar region spinal kinematics......, the motion parameters included in the analysis. The spinal manipulation group changed to a smoother motion pattern (reduced jerk index) while the exercise groups did not. CONCLUSION: This study provides evidence that spinal motion changes can occur in chronic low back pain patients over a 12-week period...

  20. Rehabilitation protocol after arthroscopic rotator cuff repair: early versus delayed motion.

    Science.gov (United States)

    Chen, Long; Peng, Kun; Zhang, Dagang; Peng, Jing; Xing, Fei; Xiang, Zhou

    2015-01-01

    To evaluate the effectiveness of early and delayed motion in rehabilitation after arthroscopic rotator cuff repair using a meta-analysis from randomized controlled trials. Electronic searches of the CENTRAL, PUBMED, and EMBASE were used to identify randomized controlled trials that evaluated the effectiveness and safety of early and delayed motion for rehabilitation after arthroscopic rotator cuff repair. The methodological quality of the studies was assessed by the Cochrane Collaboration tool for assessing risk of bias. Four randomized controlled trials involving a total of 348 shoulders were included. Of these, two were rated as high quality and two were rated as moderate quality. No significant publication bias was detected by Egger's test and sensitivity analysis demonstrates a statistically robust result. Our meta-analysis indicated that early motion after arthroscopic rotator cuff repair resulted in a significantly greater recovery of external rotation from pre-operation to 3, 6, and 12 months post-operation (P 0.05) in the rate of recurrence, compared to delayed motion. In addition, there were statistically higher rating scale of the American Shoulder and Elbow Surgeons (ASES) scores at 12 months post-operation (P rotator cuff repair, compared with early motion. Our meta-analysis included data from randomized controlled trials and demonstrated that delayed motion after arthroscopic rotator cuff repair resulted in higher healing rates and ASES scores than early motion. Alternatively, early motion increased range of motion (ROM) recovery, but also increased the rate of recurrence compared to delayed motion.

  1. Smooth pursuit eye movements and motion perception share motion signals in slow and fast motion mechanisms.

    Science.gov (United States)

    Matsumiya, Kazumichi; Shioiri, Satoshi

    2015-08-01

    Pursuit eye movements correlate with perceived motion in both velocity and direction, even without retinal motion. Cortical cells in the monkey medial temporal region generate signals for initiating pursuit eye movements and respond to retinal motion for perception. However, recent studies suggest multiple motion processes, fast and slow, even for low-level motion. Here we investigated whether the relationship with pursuit eye movements is different for fast and slow motion processes, using a motion aftereffect technique with superimposed low- and high-spatial-frequency gratings. A previous study showed that the low- and high-spatial-frequency gratings adapt the fast and slow motion processes, respectively, and that a static test probes the slow motion process and a flicker test probes the fast motion process (Shioiri & Matsumiya, 2009). In the present study, an adaptation stimulus was composed of two gratings with different spatial frequencies and orientations but the same temporal frequency, moving in the orthogonal direction of ±45° from the vertical. We measured the directions of perceived motion and pursuit eye movements to a test stimulus presented after motion adaptation with changing relative contrasts of the two adapting gratings. Pursuit eye movements were observed in the same direction as that of the motion aftereffects, independent of the relative contrasts of the two adapting gratings, for both the static and flicker tests. These results suggest that pursuit eye movements and perception share motion signals in both slow and fast motion processes.

  2. Motion Control with Vision

    NARCIS (Netherlands)

    Ir Dick van Schenk Brill; Ir Peter Boots

    2001-01-01

    This paper describes the work that is done by a group of I3 students at Philips CFT in Eindhoven, Netherlands. I3 is an initiative of Fontys University of Professional Education also located in Eindhoven. The work focuses on the use of computer vision in motion control. Experiments are done with

  3. Seeing Objects in Motion

    Science.gov (United States)

    Burr, D. C.; Ross, J.; Morrone, M. C.

    1986-03-01

    This paper reports estimates of the conjoint spatiotemporal tuning functions of the neural mechanisms of the human vision system which detect image motion. The functions were derived from measurements of the minimum contrast necessary to detect the direction of drift of a sinusoidal grating, in the presence of phase-reversed masking gratings of various spatial and temporal frequencies. A mask of similar spatial and temporal frequencies to the test grating reduces sensitivity considerably, whereas one differing greatly in spatial or temporal frequency has little or no effect. The results show that for test gratings drifting at 8 Hz, the tuning function is bandpass in both space and time, peaked at the temporal and spatial frequency (SF) of the test (SFS were 0.1, 1 or 5 c deg-1; c represents cycles throughout). For a grating of 5 c deg-1 drifting at 0.3 Hz, the function is bandpass in space but lowpass in time. Fourier transform of the frequency results yields a function in space-time which we term the `spatiotemporal receptive field'. For movement detectors (bandpass in space and time) the fields comprise alternating ridges of opposing polarity, elongated in space-time along the preferred velocity axis of the detector. We suggest that this organization explains how detectors analyse form and motion concurrently and accounts, at least in part, for a variety of perceptual phenomena, including summation, reduction of motion smear, metacontrast, stroboscopic motion and spatiotemporal interpolation.

  4. Superluminal motion (review)

    Science.gov (United States)

    Malykin, G. B.; Romanets, E. A.

    2012-06-01

    Prior to the development of Special Relativity, no restrictions were imposed on the velocity of the motion of particles and material bodies, as well as on energy transfer and signal propagation. At the end of the 19th century and the beginning of the 20th century, it was shown that a charge that moves at a velocity faster than the speed of light in an optical medium, in particular, in vacuum, gives rise to impact radiation, which later was termed the Vavilov-Cherenkov radiation. Shortly after the development of Special Relativity, some researchers considered the possibility of superluminal motion. In 1923, the Soviet physicist L.Ya. Strum suggested the existence of tachyons, which, however, have not been discovered yet. Superluminal motions can occur only for images, e.g., for so-called "light spots," which were considered in 1972 by V.L. Ginzburg and B.M. Bolotovskii. These spots can move with a superluminal phase velocity but are incapable of transferring energy and information. Nevertheless, these light spots may induce quite real generation of microwave radiation in closed waveguides and create the Vavilov-Cherenkov radiation in vacuum. In this work, we consider various paradoxes, illusions, and artifacts associated with superluminal motion.

  5. Projectile Motion Revisited.

    Science.gov (United States)

    Lucie, Pierre

    1979-01-01

    Analyzes projectile motion using symmetry and simple geometry. Deduces the direction of velocity at any point, range, time of flight, maximum height, safety parabola, and maximum range for a projectile launched upon a plane inclined at any angle with respect to the horizontal. (Author/GA)

  6. Choosing a Motion Detector.

    Science.gov (United States)

    Ballard, David M.

    1990-01-01

    Examines the characteristics of three types of motion detectors: Doppler radar, infrared, and ultrasonic wave, and how they are used on school buses to prevent students from being killed by their own school bus. Other safety devices cited are bus crossing arms and a camera monitor system. (MLF)

  7. Markerless Motion Tracking

    DEFF Research Database (Denmark)

    Brooks, Anthony Lewis; Czarowicz, Alex

    2012-01-01

    This contribution focuses on the Associated Technologies aspect of the ICDVRAT event. Two industry leading markerless motion capture systems are examined that offer advancement in the field of rehabilitation. Residing at each end of the cost continuum, technical differences such as 3D versus 360...

  8. Fly motion vision.

    Science.gov (United States)

    Borst, Alexander; Haag, Juergen; Reiff, Dierk F

    2010-01-01

    Fly motion vision and resultant compensatory optomotor responses are a classic example for neural computation. Here we review our current understanding of processing of optic flow as generated by an animal's self-motion. Optic flow processing is accomplished in a series of steps: First, the time-varying photoreceptor signals are fed into a two-dimensional array of Reichardt-type elementary motion detectors (EMDs). EMDs compute, in parallel, local motion vectors at each sampling point in space. Second, the output signals of many EMDs are spatially integrated on the dendrites of large-field tangential cells in the lobula plate. In the third step, tangential cells form extensive interactions with each other, giving rise to their large and complex receptive fields. Thus, tangential cells can act as matched filters tuned to optic flow during particular flight maneuvers. They finally distribute their information onto postsynaptic descending neurons, which either instruct the motor centers of the thoracic ganglion for flight and locomotion control or act themselves as motor neurons that control neck muscles for head movements.

  9. Structure from Motion

    Science.gov (United States)

    1988-11-17

    differential motion Pouu:v tangential to the edge orientation. -iows one irame from a sentience in which tile T is moving b ehind IC uci daes signal...occiuded sides. :esvr. sinme templiate matching may not he etfective fo, recogni- .!on. Viumvre .I shows contrast edges in tileT sentience . lie edges

  10. Wiimote Experiments: Circular Motion

    Science.gov (United States)

    Kouh, Minjoon; Holz, Danielle; Kawam, Alae; Lamont, Mary

    2013-01-01

    The advent of new sensor technologies can provide new ways of exploring fundamental physics. In this paper, we show how a Wiimote, which is a handheld remote controller for the Nintendo Wii video game system with an accelerometer, can be used to study the dynamics of circular motion with a very simple setup such as an old record player or a…

  11. S4-3: Spatial Processing of Visual Motion

    Directory of Open Access Journals (Sweden)

    Shin'ya Nishida

    2012-10-01

    Full Text Available Local motion signals are extracted in parallel by a bank of motion detectors, and their spatiotemporal interactions are processed in subsequent stages. In this talk, I will review our recent studies on spatial interactions in visual motion processing. First, we found two types of spatial pooling of local motion signals. Directionally ambiguous 1D local motion signals are pooled across orientation and space for solution of the aperture problem, while 2D local motion signals are pooled for estimation of global vector average (e.g., Amano et al., 2009 Journal of Vision 9(3:4 1–25. Second, when stimulus presentation is brief, coherent motion detection of dynamic random-dot kinematogram is not efficient. Nevertheless, it is significantly improved by transient and synchronous presentation of a stationary surround pattern. This suggests that centre-surround spatial interaction may help rapid perception of motion (Linares et al., submitted. Third, to know how the visual system encodes pairwise relationships between remote motion signals, we measured the temporal rate limit for perceiving the relationship of two motion directions presented at the same time at different spatial locations. Compared with similar tasks with luminance or orientation signals, motion comparison was more rapid and hence efficient. This high performance was affected little by inter-element separation even when it was increased up to 100 deg. These findings indicate the existence of specialized processes to encode long-range relationships between motion signals for quick appreciation of global dynamic scene structure (Maruya et al., in preparation.

  12. Atypical integration of motion signals in Autism Spectrum Conditions.

    Directory of Open Access Journals (Sweden)

    Caroline E Robertson

    Full Text Available Vision in Autism Spectrum Conditions (ASC is characterized by enhanced perception of local elements, but impaired perception of global percepts. Deficits in coherent motion perception seem to support this characterization, but the roots and robustness of such deficits remain unclear. We aimed to investigate the dynamics of the perceptual decision-making network known to support coherent motion perception. In a series of forced-choice coherent motion perception tests, we parametrically varied a single stimulus dimension, viewing duration, to test whether the rate at which evidence is accumulated towards a global decision is atypical in ASC. 40 adult participants (20 ASC performed a classic motion discrimination task, manually indicating the global direction of motion in a random-dot kinematogram across a range of coherence levels (2-75% and stimulus-viewing durations (200-1500 ms. We report a deficit in global motion perception at short viewing durations in ASC. Critically, however, we found that increasing the amount of time over which motion signals could be integrated reduced the magnitude of the deficit, such that at the longest duration there was no difference between the ASC and control groups. Further, the deficit in motion integration at the shortest duration was significantly associated with the severity of autistic symptoms in our clinical population, and was independent from measures of intelligence. These results point to atypical integration of motion signals during the construction of a global percept in ASC. Based on the neural correlates of decision-making in global motion perception our findings suggest the global motion deficit observed in ASC could reflect a slower or more variable response from the primary motion area of the brain or longer accumulation of evidence towards a decision-bound in parietal areas.

  13. Design of the muscles in motion study: a randomized controlled trial to evaluate the efficacy and feasibility of an individually tailored home-based exercise training program for children and adolescents with juvenile dermatomyositis

    Directory of Open Access Journals (Sweden)

    Habers Esther A

    2012-06-01

    Full Text Available Abstract Background Juvenile dermatomyositis (JDM is a rare, often chronic, systemic autoimmune disease of childhood, characterized by inflammation of the microvasculature of the skeletal muscle and skin. Prominent clinical features include significant exercise intolerance, muscle weakness, and fatigue. Despite pharmacological improvements, these clinical features continue to affect patients with JDM, even when the disease is in remission. Exercise training is increasingly utilized as a non-pharmacological intervention in the clinical management of (adult patients with chronic inflammatory conditions; however no randomized controlled trials (RCT have been performed in JDM. In the current study, the efficacy and feasibility of an exercise training program in patients with JDM will be examined. Methods/design Subjects (n = 30 will include 8–18 year olds diagnosed with JDM. The intervention consists of an individually tailored 12-weeks home-based exercise training program in which interval training on a treadmill is alternated with strength training during each session. The program is based on previous literature and designed with a defined frequency, intensity, time, and type of exercise (FITT principles. Primary outcome measures include aerobic exercise capacity, isometric muscle strength, and perception of fatigue. The study methodology has been conceived according to the standards of the CONSORT guidelines. The current study will be a multi-center (4 Dutch University Medical Centers RCT, with the control group also entering the training arm directly after completion of the initial protocol. Randomization is stratified according to age and gender. Discussion The current study will provide evidence on the efficacy and feasibility of an individually tailored 12-week home-based exercise training program in youth with JDM. Trial registration Medical Ethics Committee of the University Medical Center Utrecht, the Netherlands: 11–336

  14. Pursuit eye movements to second-order motion targets.

    Science.gov (United States)

    Hawken, M J; Gegenfurtner, K R

    2001-09-01

    We studied smooth-pursuit eye movements elicited by first- and second-order motion stimuli. Stimuli were random dot fields whose contrast was modulated by a Gaussian window with a space constant of 0.5 degrees. For the first-order stimuli, the random dots simply moved across the screen at the same speed as the window; for the second-order stimuli the window moved across stationary or randomly flickering dots. Additional stimuli which combined first- and second-order motion cues were used to determine the degree and type of interaction found between the two types of motion stimuli. Measurements were made at slow (1 degrees/s) and moderate (6 degrees/s) target speeds. At a velocity of 1 degrees/s the initiation, transition, and steady-state phases of smooth pursuit in response to second-order motion targets are severely affected when compared with the smooth pursuit of first-order motion targets. At a velocity of 6 degrees/s there is a small but significant deficit in steady-state pursuit of second-order motion targets but not much effect on pursuit initiation.

  15. Mean-field theory of quantum Brownian motion

    NARCIS (Netherlands)

    Allahverdyan, A.; Balian, R.

    2001-01-01

    We investigate a mean-field approach to a quantum Brownian particle interacting with a quantum thermal bath at temperature T, and subjected to a non-linear potential. An exact, partially classical description of quantum Brownian motion is proposed, which uses negative probabilities in its

  16. Diffusion in a weakly random Hamiltonian flow

    OpenAIRE

    Komorowski, T.; Ryzhik, L.

    2005-01-01

    We consider the motion of a particle governed by a weakly random Hamiltonian flow. We identify temporal and spatial scales on which the particle trajectory converges to a spatial Brownian motion. The main technical issue in the proof is to obtain error estimates for the convergence of the solution of the stochastic acceleration problem to a momentum diffusion. We also apply our results to the system of random geometric acoustics equations and show that the energy density of the acoustic waves...

  17. Speed and accuracy of visual motion discrimination by rats.

    Directory of Open Access Journals (Sweden)

    Pamela Reinagel

    Full Text Available Animals must continuously evaluate sensory information to select the preferable among possible actions in a given context, including the option to wait for more information before committing to another course of action. In experimental sensory decision tasks that replicate these features, reaction time distributions can be informative about the implicit rules by which animals determine when to commit and what to do. We measured reaction times of Long-Evans rats discriminating the direction of motion in a coherent random dot motion stimulus, using a self-paced two-alternative forced-choice (2-AFC reaction time task. Our main findings are: (1 When motion strength was constant across trials, the error trials had shorter reaction times than correct trials; in other words, accuracy increased with response latency. (2 When motion strength was varied in randomly interleaved trials, accuracy increased with motion strength, whereas reaction time decreased. (3 Accuracy increased with reaction time for each motion strength considered separately, and in the interleaved motion strength experiment overall. (4 When stimulus duration was limited, accuracy improved with stimulus duration, whereas reaction time decreased. (5 Accuracy decreased with response latency after stimulus offset. This was the case for each stimulus duration considered separately, and in the interleaved duration experiment overall. We conclude that rats integrate visual evidence over time, but in this task the time of their response is governed more by elapsed time than by a criterion for sufficient evidence.

  18. Effective thermal conductivity of a thin composite material

    Energy Technology Data Exchange (ETDEWEB)

    Phelan, P.E. [Arizona State Univ., Tempe, AZ (United States). Dept. of Mechanical and Aerospace Engineering; Niemann, R.C. [Argonne National Lab., IL (United States)

    1996-12-31

    The thermal conductivity of a randomly oriented composite material is modeled using a probabilistic approach in order to determine if a size effect exists for the thermal conductivity at small composite thickness. The numerical scheme employs a random number generator to position the filler elements, which have a relatively high thermal conductivity, within a matrix having a relatively low thermal conductivity. Results indicate that, below some threshold thickness, the composite thermal conductivity increases with decreasing thickness, while above the threshold the thermal conductivity is independent of thickness. The threshold thickness increases for increasing filler fraction and increasing k{sub f}/k{sub m}, the ratio between filler and matrix thermal conductivities.

  19. Animating with Stop Motion Pro

    CERN Document Server

    Sawicki, Mark

    2010-01-01

    Animating with Stop Motion Pro is comprehensive, hands-on guide to achieving professional results with Stop Motion Pro 7.0 software. Gone are the days of stop motion guesswork and waiting to see the finalized result of your meticulous, labor intensive animations. With the push of a mouse button and the Stop Motion Pro software, animators have ten times the capability of simple camera stop motion capture. Re-visualize stop motion character movements, graph these movements and composite characters into a flawless animations with the techniques and step by step tutorials featured in Animating wit

  20. Spatial design and control of graphene flake motion

    Science.gov (United States)

    Ghorbanfekr-Kalashami, H.; Peeters, F. M.; Novoselov, K. S.; Neek-Amal, M.

    2017-08-01

    The force between a sharp scanning probe tip and a surface can drive a graphene flake over crystalline substrates. The recent design of particular patterns of structural defects on a graphene surface allows us to propose an alternative approach for controlling the motion of a graphene flake over a graphene substrate. The thermally induced motion of a graphene flake is controlled by engineering topological defects in the substrate. Such defect regions lead to an inhomogeneous energy landscape and are energetically unfavorable for the motion of the flake, and will invert and scatter graphene flakes when they are moving toward the defect line. Engineering the distribution of these energy barriers results in a controllable trajectory for the thermal motion of the flake without using any external force. We predict superlubricity of the graphene flake for motion along and between particular defect lines. This Rapid Communication provides insights into the frictional forces of interfaces and opens a route to the engineering of the stochastic motion of a graphene flake over any crystalline substrate.

  1. Thermophoretic Motion of Water Nanodroplets confined inside Carbon Nanotubes

    DEFF Research Database (Denmark)

    Zambrano, Harvey A; Walther, Jens Honore; Koumoutsakos, Petros

    2009-01-01

    We study the thermophoretic motion of water nanodroplets confined inside carbon nanotubes using molecular dynamics simulations. We find that the nanodroplets move in the direction opposite the imposed thermal gradient with a terminal velocity that is linearly proportional to the gradient....... The translational motion is associated with a solid body rotation of the water nanodroplet coinciding with the helical symmetry of the carbon nanotube. The thermal diffusion displays a weak dependence on the wetting of the water-carbon nanotube interface. We introduce the use of the Moment Scaling Spectrum (MSS......) in order to determine the characteristics of the motion of the nanoparticles inside the carbon nanotube. The MSS indicates that affinity of the nanodroplet with the walls of the carbon nanotubes is important for the isothermal diffusion, and hence for the Soret coefficient of the system....

  2. Global Motion Model for Stereovision-Based Motion Analysis

    Directory of Open Access Journals (Sweden)

    Hu Zhencheng

    2006-01-01

    Full Text Available An advantage of stereovision-based motion analysis is that the depth information is available, thus motion can be estimated more precisely in D stereo coordinate system (SCS constructed by the depth and the image coordinates. In this paper, stereo global motion in SCS, which is induced by 3D camera motion in real-world coordinate system (WCS, is parameterized by a five-parameter global motion model (GMM. Based on such model, global motion can be estimated and identified directly in SCS without knowing the physical parameters about camera motion and camera setup in WCS. The reconstructed global motion field accords with the spatial structure of the scene much better. Experiments on both synthetic data and real-world images illustrate its promising performance.

  3. Randomization tests

    CERN Document Server

    Edgington, Eugene

    2007-01-01

    Statistical Tests That Do Not Require Random Sampling Randomization Tests Numerical Examples Randomization Tests and Nonrandom Samples The Prevalence of Nonrandom Samples in Experiments The Irrelevance of Random Samples for the Typical Experiment Generalizing from Nonrandom Samples Intelligibility Respect for the Validity of Randomization Tests Versatility Practicality Precursors of Randomization Tests Other Applications of Permutation Tests Questions and Exercises Notes References Randomized Experiments Unique Benefits of Experiments Experimentation without Mani

  4. PET motion correction using PRESTO with ITK motion estimation

    Energy Technology Data Exchange (ETDEWEB)

    Botelho, Melissa [Institute of Biophysics and Biomedical Engineering, Science Faculty of University of Lisbon (Portugal); Caldeira, Liliana; Scheins, Juergen [Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich (Germany); Matela, Nuno [Institute of Biophysics and Biomedical Engineering, Science Faculty of University of Lisbon (Portugal); Kops, Elena Rota; Shah, N Jon [Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich (Germany)

    2014-07-29

    The Siemens BrainPET scanner is a hybrid MRI/PET system. PET images are prone to motion artefacts which degrade the image quality. Therefore, motion correction is essential. The library PRESTO converts motion-corrected LORs into highly accurate generic projection data [1], providing high-resolution PET images. ITK is an open-source software used for registering multidimensional data []. ITK provides motion estimation necessary to PRESTO.

  5. Design of the Quality of Life in Motion (QLIM study: a randomized controlled trial to evaluate the effectiveness and cost-effectiveness of a combined physical exercise and psychosocial training program to improve physical fitness in children with cancer

    Directory of Open Access Journals (Sweden)

    Takken Tim

    2010-11-01

    Full Text Available Abstract Background Childhood cancer and its treatment have considerable impact on a child's physical and mental wellbeing. Especially long-term administration of chemotherapy and/or radiotherapy impairs physical fitness both during and after therapy, when children often present with muscle weakness and/or low cardiorespiratory fitness. Physical exercise can improve these two elements of physical fitness, but the positive effects of physical exercise might be further increased when a child's wellbeing is simultaneously enhanced by psychosocial training. Feeling better may increase the willingness and motivation to engage in sports activities. Therefore, this multi-centre study evaluates the short and long-term changes in physical fitness of a child with a childhood malignancy, using a combined physical exercise and psychosocial intervention program, implemented during or shortly after treatment. Also examined is whether positive effects on physical fitness reduce inactivity-related adverse health problems, improve quality of life, and are cost-effective. Methods This multi-centre randomized controlled trial compares a combined physical and psychosocial intervention program for children with cancer, with care as usual (controls. Children with cancer (aged 8-18 years treated with chemotherapy and/or radiotherapy, and who are no longer than 1 year post-treatment, are eligible for participation. A total of 100 children are being recruited from the paediatric oncology/haematology departments of three Dutch university medical centres. Patients are stratified according to pubertal stage (girls: age ≤10 or >10 years; boys: ≤11 or >11 years, type of malignancy (haematological or solid tumour, and moment of inclusion into the study (during or after treatment, and are randomly assigned to the intervention or control group. Discussion Childhood cancer patients undergoing long-term cancer therapy may benefit from a combined physical exercise and

  6. Negotiation in Motion

    DEFF Research Database (Denmark)

    Jensen, Ole B.

    2010-01-01

    related to interaction, mobility, and transit that focus on notions of the “mobile with,” “negotiation in motion,” “mobile sense making,” and “temporary congregations.” The theoretical approach aims at seeing public transit spaces as sites where cars, pedestrians, mopeds, and bikes on a regular basis...... “negotiate” not only routes in and across the space but also express dynamic flows of interaction in motion. The claim is that what seems like ordinary urban movement patterns are more than this. By moving in the city among buildings, objects, and people, one interacts with the “environment,” making sense...

  7. Visible Motion Blur

    Science.gov (United States)

    Watson, Andrew B. (Inventor); Ahumada, Albert J. (Inventor)

    2014-01-01

    A method of measuring motion blur is disclosed comprising obtaining a moving edge temporal profile r(sub 1)(k) of an image of a high-contrast moving edge, calculating the masked local contrast m(sub1)(k) for r(sub 1)(k) and the masked local contrast m(sub 2)(k) for an ideal step edge waveform r(sub 2)(k) with the same amplitude as r(sub 1)(k), and calculating the measure or motion blur Psi as a difference function, The masked local contrasts are calculated using a set of convolution kernels scaled to simulate the performance of the human visual system, and Psi is measured in units of just-noticeable differences.

  8. Motion Representation with Acceleration Images

    OpenAIRE

    Kataoka, Hirokatsu; He, Yun; Shirakabe, Soma; Satoh, Yutaka

    2016-01-01

    Information of time differentiation is extremely important cue for a motion representation. We have applied first-order differential velocity from a positional information, moreover we believe that second-order differential acceleration is also a significant feature in a motion representation. However, an acceleration image based on a typical optical flow includes motion noises. We have not employed the acceleration image because the noises are too strong to catch an effective motion feature ...

  9. Why do adults with dyslexia have poor global motion sensitivity?

    Science.gov (United States)

    Conlon, Elizabeth G; Lilleskaret, Gry; Wright, Craig M; Stuksrud, Anne

    2013-01-01

    Two experiments aimed to determine why adults with dyslexia have higher global motion thresholds than typically reading controls. In Experiment 1, the dot density and number of animation frames presented in the dot stimulus were manipulated because of findings that use of a high dot density can normalize coherence thresholds in individuals with dyslexia. Dot densities were 14.15 and 3.54 dots/deg(2). These were presented for five (84 ms) or eight (134 ms) frames. The dyslexia group had higher coherence thresholds in all conditions than controls. However, in the high dot density, long duration condition, both reader groups had the lowest thresholds indicating normal temporal recruitment. These results indicated that the dyslexia group could sample the additional signals dots over space and then integrate these with the same efficiency as controls. In Experiment 2, we determined whether briefly presenting a fully coherent prime moving in either the same or opposite direction of motion to a partially coherent test stimulus would systematically increase and decrease global motion thresholds in the reader groups. When the direction of motion in the prime and test was the same, global motion thresholds increased for both reader groups. The increase in coherence thresholds was significantly greater for the dyslexia group. When the motion of the prime and test were presented in opposite directions, coherence thresholds were reduced in both groups. No group threshold differences were found. We concluded that the global motion processing deficit found in adults with dyslexia can be explained by undersampling of the target motion signals. This might occur because of difficulties directing attention to the relevant motion signals in the random dot pattern, and not a specific difficulty integrating global motion signals. These effects are most likely to occur in the group with dyslexia when more complex computational processes are required to process global motion.

  10. Force and motion

    CERN Document Server

    Robertson, William C

    2002-01-01

    Intimidated by inertia? Frightened by forces? Mystified by Newton s law of motion? You re not alone and help is at hand. The stop Faking It! Series is perfect for science teachers, home-schoolers, parents wanting to help with homework all of you who need a jargon-free way to learn the background for teaching middle school physical science with confidence. With Bill Roberton as your friendly, able but somewhat irreverent guide, you will discover you CAN come to grips with the basics of force and motion. Combining easy-to-understand explanations with activities using commonly found equipment, this book will lead you through Newton s laws to the physics of space travel. The book is as entertaining as it is informative. Best of all, the author understands the needs of adults who want concrete examples, hands-on activities, clear language, diagrams and yes, a certain amount of empathy. Ideas For Use Newton's laws, and all of the other motion principles presented in this book, do a good job of helping us to underst...

  11. Phase Diagram of Collective Motion of Bacterial Cells in a Shallow Circular Pool

    OpenAIRE

    Wakita, Jun-ichi; Tsukamoto, Shota; Yamamoto, Ken; Katori, Makoto; Yamada, Yasuyuki

    2015-01-01

    The collective motion of bacterial cells in a shallow circular pool is systematically studied using the bacterial species $Bacillus$ $subtilis$. The ratio of cell length to pool diameter (i.e., the reduced cell length) ranges from 0.06 to 0.43 in our experiments. Bacterial cells in a circular pool show various types of collective motion depending on the cell density in the pool and the reduced cell length. The motion is classified into six types, which we call random motion, turbulent motion,...

  12. Relative motion of orbiting bodies

    Science.gov (United States)

    Butikov, Eugene I.

    2001-01-01

    A problem of relative motion of orbiting bodies is investigated on the example of the free motion of any body ejected from the orbital station that stays in a circular orbit around the earth. An elementary approach is illustrated by a simulation computer program and supported by a mathematical treatment based on approximate differential equations of the relative orbital motion.

  13. Statistics of bicycle rider motion

    NARCIS (Netherlands)

    Moore, J.K.; Hubbard, M.; Schwab, A.L.; Kooijman, J.D.G.; Peterson, D.L.

    2010-01-01

    An overview of bicycle and rider kinematic motions from a series of experimental treadmill tests is presented. The full kinematics of bicycles and riders were measured with an active motion capture system. Motion across speeds are compared graphically with box and whiskers plots. Trends and ranges

  14. MotionCast for mobile wireless networks

    CERN Document Server

    Wang, Xinbing

    2013-01-01

    MotionCast for Mobile Wireless Networks provides an overview on the research for mobile ad-hoc networks regarding capacity and connectivity. Wireless ad-hoc networks are useful when there is a lack of infrastructure for communication. The proposed notion “MotionCast” is for the capacity analysis of multicast in MANET. A new kind of connectivity (k;m)-connectivity, is also defined, and its critical transmission range for i.i.d. (independently and identically distributed) and random walk mobility models are derived respectively. This book also investigates the related issues of connectivity in mobile and static circumstances. In addition, it provides a survey of the capacity scaling research, which gives a good summary of this field.

  15. Detrended Fluctuation Analysis of multifractional Brownian motion

    Science.gov (United States)

    Setty, Venkat; Sharma, Surjalal

    2013-03-01

    Multifractional Brownian Motion (mBm) is a generalization of Fractional Brownian motion (fBm) with a time varying Hurst exponent, H (t) . Detrended Fluctuation Analysis (DFA) is a technique used to study the scaling behavior representing long term correlations in various dynamical systems. In our work, we apply DFA to calculate a time averaged Hurst exponent, in mBm data. The accuracy of estimation of was shown to depend on the range and variability of H (t) . Furthermore, the effect of uniform random noise in H (t) on the nature of scaling observed in DFA is studied. Our research focusses on the robustness and applicability of the DFA technique for studying long term correlations in systems with time varying Hurst exponents akin to mBm .

  16. Global form and motion processing in healthy ageing.

    Science.gov (United States)

    Agnew, Hannah C; Phillips, Louise H; Pilz, Karin S

    2016-05-01

    The ability to perceive biological motion has been shown to deteriorate with age, and it is assumed that older adults rely more on the global form than local motion information when processing point-light walkers. Further, it has been suggested that biological motion processing in ageing is related to a form-based global processing bias. Here, we investigated the relationship between older adults' preference for form information when processing point-light actions and an age-related form-based global processing bias. In a first task, we asked older (>60years) and younger adults (19-23years) to sequentially match three different point-light actions; normal actions that contained local motion and global form information, scrambled actions that contained primarily local motion information, and random-position actions that contained primarily global form information. Both age groups overall performed above chance in all three conditions, and were more accurate for actions that contained global form information. For random-position actions, older adults were less accurate than younger adults but there was no age-difference for normal or scrambled actions. These results indicate that both age groups rely more on global form than local motion to match point-light actions, but can use local motion on its own to match point-light actions. In a second task, we investigated form-based global processing biases using the Navon task. In general, participants were better at discriminating the local letters but faster at discriminating global letters. Correlations showed that there was no significant linear relationship between performance in the Navon task and biological motion processing, which suggests that processing biases in form- and motion-based tasks are unrelated. Copyright © 2016. Published by Elsevier B.V.

  17. Supersymmetry in Random Matrix Theory

    OpenAIRE

    Guhr, Thomas

    2010-01-01

    Supersymmetry is nowadays indispensable for many problems in Random Matrix Theory. It is presented here with an emphasis on conceptual and structural issues. An introduction to supermathematics is given. The Hubbard-Stratonovich transformation as well as its generalization and superbosonization are explained. The supersymmetric non-linear sigma model, Brownian motion in superspace and the color-flavor transformation are discussed.

  18. Nonadiabatic Spin Torque Investigated Using Thermally Activated Magnetic Domain Wall Dynamics

    DEFF Research Database (Denmark)

    Eltschka, M.; Woetzel, Mathias; Rhensius, J.

    2010-01-01

    Using transmission electron microscopy, we investigate the thermally activated motion of domain walls (DWs) between two positions in Permalloy (Ni80Fe20) nanowires at room temperature. We show that this purely thermal motion is well described by an Arrhenius law, allowing for a description...

  19. Single molecule detection, thermal fluctuation and life

    Science.gov (United States)

    YANAGIDA, Toshio; ISHII, Yoshiharu

    2017-01-01

    Single molecule detection has contributed to our understanding of the unique mechanisms of life. Unlike artificial man-made machines, biological molecular machines integrate thermal noises rather than avoid them. For example, single molecule detection has demonstrated that myosin motors undergo biased Brownian motion for stepwise movement and that single protein molecules spontaneously change their conformation, for switching to interactions with other proteins, in response to thermal fluctuation. Thus, molecular machines have flexibility and efficiency not seen in artificial machines. PMID:28190869

  20. Human motion analysis and modeling

    Science.gov (United States)

    Prussing, Keith; Cathcart, J. Michael; Kocher, Brian

    2011-06-01

    Georgia Tech has investigated methods for the detection and tracking of personnel in a variety of acquisition environments. This research effort focused on a detailed phenomenological analysis of human physiology and signatures with the subsequent identification and characterization of potential observables. As a fundamental part of this research effort, Georgia Tech collected motion capture data on an individual for a variety of walking speeds, carrying loads, and load distributions. These data formed the basis for deriving fundamental properties of the individual's motion and supported the development of a physiologically-based human motion model. Subsequently this model aided the derivation and analysis of motion-based observables, particularly changes in the motion of various body components resulting from load variations. This paper will describe the data acquisition process, development of the human motion model, and use of the model in the observable analysis. Video sequences illustrating the motion data and modeling results will also be presented.

  1. Human motion simulation predictive dynamics

    CERN Document Server

    Abdel-Malek, Karim

    2013-01-01

    Simulate realistic human motion in a virtual world with an optimization-based approach to motion prediction. With this approach, motion is governed by human performance measures, such as speed and energy, which act as objective functions to be optimized. Constraints on joint torques and angles are imposed quite easily. Predicting motion in this way allows one to use avatars to study how and why humans move the way they do, given specific scenarios. It also enables avatars to react to infinitely many scenarios with substantial autonomy. With this approach it is possible to predict dynamic motion without having to integrate equations of motion -- rather than solving equations of motion, this approach solves for a continuous time-dependent curve characterizing joint variables (also called joint profiles) for every degree of freedom. Introduces rigorous mathematical methods for digital human modelling and simulation Focuses on understanding and representing spatial relationships (3D) of biomechanics Develops an i...

  2. Measuring response saturation in human MT and MST as a function of motion density.

    Science.gov (United States)

    Durant, Szonya; Furlan, Michele

    2014-07-24

    The human brain areas MT and MST have been studied in great detail using fMRI with regards to their motion processing properties; however, to what extent this corresponds with single cell recordings remains to be fully described. Average response over human MT+ has been shown to increase linearly with motion coherence, similar to single cell responses. In response to motion density some single cell data however suggest a rapid saturation. We ask how the combination of these responses is reflected in the population response. We measured the blood oxygen level dependent (BOLD) response function of MT and MST using a motion density signal, comparing with area V1. We used spatially fixed apertures containing motion stimuli to manipulate the area covered by motion. We found that MT and MST responded above baseline to a very minimal amount of motion and showed a rather flat response to motion density, indicative of saturation. We discuss how this may be related to the size of the receptive fields and inhibitory interactions, although necessarily residual attention effects also need to be considered. We then compared different types of motion and found no difference between coherent and random motion at any motion density, suggesting that when combining response over several motion stimuli covering the visual field, a linear relationship of MT and MST population response as a function of motion coherence might not hold. © 2014 ARVO.

  3. EDITORIAL: Nanotechnology in motion Nanotechnology in motion

    Science.gov (United States)

    Demming, Anna

    2012-02-01

    , Toshio Ando from the University of Kanazawa provides an overview of developments that have allowed atomic force microscopy to move from rates of the order of one frame a minute to over a thousand frames per second in constant height mode, as reported by Mervyn Miles and colleagues at Bristol University and University College London [8]. Among the pioneers in the field, Ando's group demonstrated the ability to record the Brownian motion of myosin V molecules on mica with image capture rates of 100 x 100 pixels in 80 ms over a decade ago [9]. The developments unleash the potential of atomic force microscopy to observe the dynamics of biological and materials systems. If seeing is believing, the ability to present real motion pictures of the nanoworld cannot fail to capture the public imagination and stimulate burgeoning new avenues of scientific endeavour. Nearly 350 years on from the publication Micrographia, images in microscopy have moved from the page to the movies. References [1] Binnig G, Quate C F, and Gerber Ch 1986 Phys. Rev. Lett. 56 930-3 [2] Ando T 2012 Nanotechnology 23 062001 [3] J G 1934 Nature 134 635-6 [4] Bharadwaj P, Anger P and Novotny L 2007 Nanotechnology 18 044017 [5] The Nobel Prize in Physics 1986 Nobelprize.org [6] Kim K K, Reina A, Shi Y, Park H, Li L-J, Lee Y H and Kong J 2010 Nanotechnology 21 285205 [7] Phillips D B, Grieve J A, Olof S N, Kocher S J, Bowman R, Padgett M J, Miles M J and Carberry D M 2011 Nanotechnology 22 285503 [8] Picco L M, Bozec L, Ulcinas A, Engledew D J, Antognozzi M, Horton M A and Miles M J 2007 Nanotechnology 18 044030 [9] Ando T, Kodera N, Takai E, Maruyama D, Saito K and Toda A 2001 Proc. Natl. Acad. Sci. 98 12468

  4. SOFIA image motion compensation

    Science.gov (United States)

    Dunham, Edward; Collins, Peter; Reinacher, Andreas; Lampater, Ulrich

    2010-07-01

    We describe a laboratory simulation of an image motion compensation system for SOFIA that uses high-speed image acquisition from the science instrument HIPO as the sensing element of the system and a Newport voice-coil actuated fast steering mirror as the correcting actuator. Performance of the system when coupled to the SOFIA secondary mirror is estimated based on the known current performance of the secondary mirror controller. The system is described and the observed performance is presented together with expectations for applicability in flight with SOFIA.

  5. Electromechanical motion devices

    CERN Document Server

    Krause, Paul C; Pekarek, Steven D

    2012-01-01

    This text provides a basic treatment of modern electric machine analysis that gives readers the necessary background for comprehending the traditional applications and operating characteristics of electric machines-as well as their emerging applications in modern power systems and electric drives, such as those used in hybrid and electric vehicles. Through the appropriate use of reference frame theory, Electromagnetic Motion Devices, Second Edition introduces readers to field-oriented control of induction machines, constant-torque, and constant-power control of dc, permanent-magnet ac

  6. Action Video Games Improve Direction Discrimination of Parafoveal Translational Global Motion but Not Reaction Times.

    Science.gov (United States)

    Pavan, Andrea; Boyce, Matthew; Ghin, Filippo

    2016-10-01

    Playing action video games enhances visual motion perception. However, there is psychophysical evidence that action video games do not improve motion sensitivity for translational global moving patterns presented in fovea. This study investigates global motion perception in action video game players and compares their performance to that of non-action video game players and non-video game players. Stimuli were random dot kinematograms presented in the parafovea. Observers discriminated the motion direction of a target random dot kinematogram presented in one of the four visual quadrants. Action video game players showed lower motion coherence thresholds than the other groups. However, when the task was performed at threshold, we did not find differences between groups in terms of distributions of reaction times. These results suggest that action video games improve visual motion sensitivity in the near periphery of the visual field, rather than speed response. © The Author(s) 2016.

  7. Regional lumbar motion and patient-rated outcomes

    DEFF Research Database (Denmark)

    Mieritz, Rune M; Bronfort, Gert; Hartvigsen, Jan

    2014-01-01

    OBJECTIVE: The purpose of this study was to examine the relationship in change scores between regional lumbar motion and patient-rated pain of the previous week and back-related function in chronic low back pain patients enrolled in a randomized clinical trial and treated with either exercise...

  8. Empirical ground motion prediction

    Directory of Open Access Journals (Sweden)

    R. J. Archuleta

    1994-06-01

    Full Text Available New methods of site-specific ground motion prediction in the time and frequency domains are presented. A large earthquake is simulated as a composite (linear combination of observed small earthquakes (subevents assuming Aki-Brune functional models of the source time functions (spectra. Source models incorporate basic scaling relations between source and spectral parameters. Ground motion predictions are consistent with the entire observed seismic spectrum from the lowest to the highest frequencies. These methods are designed to use all the available empirical Green’s functions (or any subset of observations at a site. Thus a prediction is not biased by a single record, and different possible source-receiver paths are taken into account. Directivity is accounted for by adjusting the apparent source duration at each site. Our time-series prediction algorithm is based on determination of a non-uniform distribution of rupture times of subevents. By introducing a specific rupture velocity we avoid the major problem of deficiency of predictions around the main event's corner frequency. A novel notion of partial coherence allows us to sum subevents' amplitude spectra directly without using any information on their rupture times and phase histories. Predictions by this spectral method are not Jependent on details of rupture nucleation and propagation, location of asperities and other predominantly phase-affecting factors, responsible for uncertainties in time-domain simulations.

  9. Stochastic Blind Motion Deblurring

    KAUST Repository

    Xiao, Lei

    2015-05-13

    Blind motion deblurring from a single image is a highly under-constrained problem with many degenerate solutions. A good approximation of the intrinsic image can therefore only be obtained with the help of prior information in the form of (often non-convex) regularization terms for both the intrinsic image and the kernel. While the best choice of image priors is still a topic of ongoing investigation, this research is made more complicated by the fact that historically each new prior requires the development of a custom optimization method. In this paper, we develop a stochastic optimization method for blind deconvolution. Since this stochastic solver does not require the explicit computation of the gradient of the objective function and uses only efficient local evaluation of the objective, new priors can be implemented and tested very quickly. We demonstrate that this framework, in combination with different image priors produces results with PSNR values that match or exceed the results obtained by much more complex state-of-the-art blind motion deblurring algorithms.

  10. Waves in Motion

    Science.gov (United States)

    McGourty, L.; Rideout, K.

    2005-12-01

    "Waves in Motion" This teaching unit was created by Leslie McGourty and Ken Rideout under the Research Experience for Teachers (RET) program at MIT Haystack Observatory during the summer of 2005. The RET program is funded by a grant from the National Science Foundation. The goals of this teaching unit are to deepen students' understanding about waves, wave motion, and the electromagnetic spectrum as a whole. Specifically students will comprehend the role radio waves play in our daily lives and in the investigation of the universe. The lessons can be used in a high school physics, earth science or astronomy curriculum. The unit consists of a series of interlocking lectures, activities, and investigations that can be used as stand alone units to supplement a teacher's existing curriculum, as an independent investigation for a student, or as a long exploration into radio astronomy with a theme of waves in space: how and where they carry their information. Special emphasis is given to the Relativity theories in honor of the "World Year of Physics" to celebrate Einstein's 1905 contributions. The lessons are currently being implemented at the high school level, the preliminary results of which will be presented. At the end of the academic year, the units will be evaluated and updated, reflecting student input and peer review after which they will be posted on the internet for teachers to use in their classrooms.

  11. Perceptually Uniform Motion Space.

    Science.gov (United States)

    Birkeland, Asmund; Turkay, Cagatay; Viola, Ivan

    2014-11-01

    Flow data is often visualized by animated particles inserted into a flow field. The velocity of a particle on the screen is typically linearly scaled by the velocities in the data. However, the perception of velocity magnitude in animated particles is not necessarily linear. We present a study on how different parameters affect relative motion perception. We have investigated the impact of four parameters. The parameters consist of speed multiplier, direction, contrast type and the global velocity scale. In addition, we investigated if multiple motion cues, and point distribution, affect the speed estimation. Several studies were executed to investigate the impact of each parameter. In the initial results, we noticed trends in scale and multiplier. Using the trends for the significant parameters, we designed a compensation model, which adjusts the particle speed to compensate for the effect of the parameters. We then performed a second study to investigate the performance of the compensation model. From the second study we detected a constant estimation error, which we adjusted for in the last study. In addition, we connect our work to established theories in psychophysics by comparing our model to a model based on Stevens' Power Law.

  12. Thermal Creep Force: Analysis And Application

    Science.gov (United States)

    2016-06-01

    pressure does exist, it produces a small force and would tend to move the vanes with the black side leading contrary to the observed motion . The same year...the simulation. After the particles have completed their motion , particles are randomly selected for collision . The probability that an individual...of the mean free time between collisions at lower pressures. Each simulation ran 100 thousand time steps. We calculated the force by multiplying

  13. PET motion correction using MR-derived motion parameters

    Energy Technology Data Exchange (ETDEWEB)

    Bickell, Matthew [Department of Nuclear Medicine, Medical Imaging Research Center, KU Leuven (Belgium); Koesters, Thomas; Boada, Fernando [Center for Advanced Imaging Innovation and Research, New York University (United States); Department of Radiology, NYU School of Medicine, New York, Bernard & Irene Schwartz Center for Biomedical Imaging, New York (United States); Nuyts, Johan [Department of Nuclear Medicine, Medical Imaging Research Center, KU Leuven (Belgium)

    2014-07-29

    With the improving resolution of modern PET scanners, any slight motion during the scan can cause significant blurring and loss of resolution. MRI scanners have the capacity to perform quick successive scans and thus provide a means to track motion during a scan. Hence, with the advent of simultaneous PET-MR scanners, it has become possible to use the MR scanner to track the motion and thereby provide the necessary motion parameters to correct the PET data. Using a suitable segmentation approach a separate MR scan can provide the attenuation map to produce quantitative PET images.

  14. The Humidity in a Low-Flow Dräger Fabius Anesthesia Workstation with or without Thermal Insulation or a Heat and Moisture Exchanger: A Prospective Randomized Clinical Trial.

    Science.gov (United States)

    de Oliveira, Sergius A R; Lucio, Lorena M C; Modolo, Norma S P; Hayashi, Yoko; Braz, Mariana G; de Carvalho, Lídia R; Braz, Leandro G; Braz, José Reinaldo C

    2017-01-01

    During anesthesia, as compared with intensive care, the time of the tracheal intubation is much shorter. An inhaled gas minimum humidity of 20 mgH2O.L-1 is recommended to reduce the deleterious effects of dry gas on the airways during anesthesia with tracheal intubation. The Fabius GS Premium® anesthesia workstation (Dräger Medical, Lübeck, Germany) has a built-in hotplate to heat gases in the breathing circuit. A heat and moisture exchanger (HME) is used to further heat and humidify the inhaled gas. The humidity of the gases in the breathing circuit is influenced by the ambient temperature. We compared the humidity of the inhaled gases from a low-flow Fabius anesthesia workstation with or without thermal insulation (TI) of the breathing circuit and with or without an HME. We conducted a prospective randomized trial in 41 adult female patients who underwent elective abdominal surgery. The patients were allocated into four groups according to the devices used to ventilate their lungs using a Dräger Fabius anesthesia workstation with a low gas flow (1 L.min-1): control, with TI, with an HME or with TI and an HME (TIHME). The mean temperature and humidity of the inhaled gases were measured during 2-h after connecting the patients to the breathing circuit. The mean inhaled gas temperature and absolute humidity were higher in the HME (29.2±1.3°C; 28.1±2.3 mgH2O·L-1) and TIHME (30.1±1.2°C; 29.4±2.0 mgH2O·L-1) groups compared with the control (27.5±1.0°C; 25.0±1.8 mgH2O·L-1) and TI (27.2±1.1°C; 24.9±1.8 mgH2O·L-1) groups (P = 0.003 and P<0.001, respectively). The low-flow Fabius GS Premium breathing circuit provides the minimum humidity level of inhaled gases to avoid damage to the tracheobronchial epithelia during anesthesia. TI of the breathing circuit does not increase the humidity of the inhaled gases, whereas inserting an HME increases the moisture of the inhaled gases closer to physiological values.

  15. Attenuation correction of PET activation studies in the presence of task-related motion

    NARCIS (Netherlands)

    van den Heuvel, Odile A.; Boellaard, Ronald; Veltman, Dick J.; Mesina, Catalina; Lammertsma, Adriaan A.

    2003-01-01

    Motion-induced misalignment between transmission and emission scans can result in erroneous estimation of regional tissue activity concentrations. If this motion is of a random nature, mismatch between transmission and emission scans is likely to result in diminished signal-to-noise ratios. In the

  16. Thermally stimulated discharge current (TSDC) and dielectric ...

    Indian Academy of Sciences (India)

    Unknown

    2001-10-09

    Oct 9, 2001 ... current (TSDC) peak above room temperature. Hong and Day (1979) applied the techniques of thermally stimulated polarization and depolarization current for studying alkaline ion motion in glasses of sodium silicate and lead silicate. The peaks observed are discussed on the basis of d.c. conductivity and ...

  17. Earthquake ground motion: Chapter 3

    Science.gov (United States)

    Luco, Nicolas; Kircher, Charles A.; Crouse, C. B.; Charney, Finley; Haselton, Curt B.; Baker, Jack W.; Zimmerman, Reid; Hooper, John D.; McVitty, William; Taylor, Andy

    2016-01-01

    Most of the effort in seismic design of buildings and other structures is focused on structural design. This chapter addresses another key aspect of the design process—characterization of earthquake ground motion into parameters for use in design. Section 3.1 describes the basis of the earthquake ground motion maps in the Provisions and in ASCE 7 (the Standard). Section 3.2 has examples for the determination of ground motion parameters and spectra for use in design. Section 3.3 describes site-specific ground motion requirements and provides example site-specific design and MCER response spectra and example values of site-specific ground motion parameters. Section 3.4 discusses and provides an example for the selection and scaling of ground motion records for use in various types of response history analysis permitted in the Standard.

  18. CNT based thermal Brownian motor to pump water in nanodevices

    DEFF Research Database (Denmark)

    Oyarzua, Elton; Zambrano, Harvey; Walther, Jens Honore

    2016-01-01

    Brownian molecular motors are nanoscale machines that exploit thermal fluctuations for directional motion by employing mechanisms such as the Feynman-Smoluchowski ratchet. In this study, using Non Equilibrium Molecular Dynamics, we propose a novel thermal Brownian motor for pumping water through...

  19. Standardized rendering from IR surveillance motion imagery

    Science.gov (United States)

    Prokoski, F. J.

    2014-06-01

    Government agencies, including defense and law enforcement, increasingly make use of video from surveillance systems and camera phones owned by non-government entities.Making advanced and standardized motion imaging technology available to private and commercial users at cost-effective prices would benefit all parties. In particular, incorporating thermal infrared into commercial surveillance systems offers substantial benefits beyond night vision capability. Face rendering is a process to facilitate exploitation of thermal infrared surveillance imagery from the general area of a crime scene, to assist investigations with and without cooperating eyewitnesses. Face rendering automatically generates greyscale representations similar to police artist sketches for faces in surveillance imagery collected from proximate locations and times to a crime under investigation. Near-realtime generation of face renderings can provide law enforcement with an investigation tool to assess witness memory and credibility, and integrate reports from multiple eyewitnesses, Renderings can be quickly disseminated through social media to warn of a person who may pose an immediate threat, and to solicit the public's help in identifying possible suspects and witnesses. Renderings are pose-standardized so as to not divulge the presence and location of eyewitnesses and surveillance cameras. Incorporation of thermal infrared imaging into commercial surveillance systems will significantly improve system performance, and reduce manual review times, at an incremental cost that will continue to decrease. Benefits to criminal justice would include improved reliability of eyewitness testimony and improved accuracy of distinguishing among minority groups in eyewitness and surveillance identifications.

  20. Weigh - in - motion (WIM

    Directory of Open Access Journals (Sweden)

    Todorović Neven B.

    2014-01-01

    Full Text Available The biggest wealth of every country lies in its transportation infrastructure so the protection of negative impacts on infrastructure must be provided. The progress of sensor technology proposes today several types of weigh-in-motion systems, which have been tested for their efficiency, accuracy and cost-effectiveness. Technologies of piezoelectric sensors, bending plates and load cells are used for a number of applications comprising weigh enforcement, traffic data collection, bridge and toll control systems and so on. Advantages of using WIM technology are various and its benefits affects all road users (transport companies, public, public transport authorities. Potential of WIM application has been recognized in the leading EU countries, so the existence of the numerous WIM projects.

  1. Experimental challenges to reproduce seismic fault motion

    Science.gov (United States)

    Shimamoto, T.

    2011-12-01

    This presentation briefly reviews scientific and technical development in the studies of intermediate to high-velocity frictional properties of faults and summarizes remaining technical challenges to reproduce nucleation to growth processes of large earthquakes in laboratory. Nearly 10 high-velocity or low to high-velocity friction apparatuses have been built in the last several years in the world and it has become possible now to produce sub-plate velocity to seismic slip rate in a single machine. Despite spreading of high-velocity friction studies, reproducing seismic fault motion at high P and T conditions to cover the entire seismogenic zone is still a big challenge. Previous studies focused on (1) frictional melting, (2) thermal pressurization, and (3) high-velocity gouge behavior without frictional melting. Frictional melting process was solved as a Stefan problem with very good agreement with experimental results. Thermal pressurization has been solved theoretically based on measured transport properties and has been included successfully in the modeling of earthquake generation. High-velocity gouge experiments in the last several years have revealed that a wide variety of gouges exhibit dramatic weakening at high velocities (e.g., Di Toro et al., 2011, Nature). Most gouge experiments were done under dry conditions partly to separate gouge friction from the involvement of thermal pressurization. However, recent studies demonstrated that dehydration or degassing due to mineral decomposition can occur during seismic fault motion. Those results not only provided a new view of looking at natural fault zones in search of geological evidence of seismic fault motion, but also indicated that thermal pressurization and gouge weakening can occur simultaneously even in initially dry gouge. Thus experiments with controlled pore pressure are needed. I have struggled to make a pressure vessel for wet high-velocity experiments in the last several years. A technical

  2. Thermal comfort

    DEFF Research Database (Denmark)

    d’Ambrosio Alfano, Francesca Romana; Olesen, Bjarne W.; Palella, Boris Igor

    2014-01-01

    Thermal comfort is one of the most important aspects of the indoor environmental quality due to its effects on well-being, people's performance and building energy requirements. Its attainment is not an easy task requiring advanced design and operation of building and HVAC systems, taking...... under specific conditions. At operation level, only few variables are taken into account with unpredictable effects on the assessment of comfort indices. In this paper, the main criteria for the design and assessment of thermal comfort are discussed in order to help building and HVAC systems designers...... into account all parameters involved. Even though thermal comfort fundamentals are consolidated topics for more than forty years, often designers seem to ignore or apply them in a wrong way. Design input values from standards are often considered as universal values rather than recommended values to be used...

  3. Effect of non-homogenous thermal stress during sub-lethal photodynamic antimicrobial chemotherapy

    Science.gov (United States)

    Gadura, N.; Kokkinos, D.; Dehipawala, S.; Cheung, E.; Sullivan, R.; Subramaniam, R.; Schneider, P.; Tremberger, G., Jr.; Holden, T.; Lieberman, D.; Cheung, T.

    2012-03-01

    Pathogens could be inactivated via a light source coupled with a photosensitizing agent in photodynamic antimicrobial chemotherapy (PACT). This project studied the effect of non-homogenous substrate on cell colony. The non-homogeneity could be controlled by iron oxide nano-particles doping in porous glassy substrates such that each cell would experience tens of hot spots when illuminated with additional light source. The substrate non-homogeneity was characterized by Atomic Force Microscopy, Transmission Electron Microscopy and Extended X-Ray Absorption Fine Structure at Brookhaven Synchrotron Light Source. Microscopy images of cell motion were used to study the motility. Laboratory cell colonies on non-homogenous substrates exhibit reduced motility similar to those observed with sub-lethal PCAT treatment. Such motility reduction on non-homogenous substrate is interpreted as the presence of thermal stress. The studied pathogens included E. coli and Pseudomonas aeruginosa. Non-pathogenic microbes Bacillus subtilis was also studied for comparison. The results show that sub-lethal PACT could be effective with additional non-homogenous thermal stress. The use of non-uniform illumination on a homogeneous substrate to create thermal stress in sub-micron length scale is discussed via light correlation in propagation through random medium. Extension to sub-lethal PACT application complemented with thermal stress would be an appropriate application.

  4. Visual motion influences the contingent auditory motion aftereffect

    NARCIS (Netherlands)

    Vroomen, J.; de Gelder, B.

    2003-01-01

    In this study, we show that the contingent auditory motion aftereffect is strongly influenced by visual motion information. During an induction phase, participants listened to rightward-moving sounds with falling pitch alternated with leftward-moving sounds with rising pitch (or vice versa).

  5. Motion-Matching: A Challenge Game to Generate Motion Concepts

    Science.gov (United States)

    Schuster, David; Adams, Betty; Brookes, David; Milner-Bolotin, Marina; Undreiu, Adriana

    2009-01-01

    Motion is a topic that is taught from elementary grades through to university at various levels of sophistication. It is an area that can be challenging for learning in a conceptually meaningful way, and formal kinematics instruction can sometimes seem dry and boring. Thus, the nature of students' initial introduction to motion is important in…

  6. Smooth Pursuit of Flicker-Defined Motion

    Science.gov (United States)

    Mulligan, Jeffrey B.; Stevenson, Scott B.

    2014-01-01

    We examined the pursuit response to stimuli defined by space-variant flicker of a dense random dot carrier pattern. On each frame, every element of the pattern could change polarity, with a probability given by a two-dimensional Gaussian distribution. A normal distribution produces a circular region of twinkle, while inverting the distribution results in a spot of static texture in a twinkling surround. In this latter case, the carrier texture could be stationary, or could move with the twinkle modulator, thereby producing first-order motion in the region of the spot. While the twinkle-defined spot produces a strong sensation of motion, the complementary stimulus defined by the absence of twinkle does not, when viewed peripherally, it appears to move in steps even when the generating distribution moves smoothly. We examined pursuit responses to these stimuli using two techniques: 1) the eye movement correlogram, obtained by cross-correlating eye velocity with the velocity of a randomly-moving stimulus; and 2) delayed visual feedback, where transient stabilization of a target can produce spontaneous oscillations of the eye, with a period empirically observed to vary linearly with the applied delay. Both techniques provide an estimate of the internal processing time, which can be as short as 100 milliseconds for a first-order target. Assessed by the correlogram method, the response to flicker-defined motion is delayed by more than 100 milliseconds, and significantly weaker (especially in the vertical dimension). When initially presented in the delayed feedback condition, purely saccadic oscillation is observed. One subject eventually developed smooth oscillations (albeit with significant saccadic intrusions), showing a period-versus-delay slope similar to that observed for first-order targets. This result is somewhat surprising, given that we interpret the slope of the period-versus-delay-function as reflecting the balance between position- and velocity

  7. Directed motion emerging from two coupled random processes

    DEFF Research Database (Denmark)

    Ambjörnsson, T.; Lomholt, Michael Andersen; Metzler, R.

    2005-01-01

    We investigate the translocation of a stiff polymer consisting of M monomers through a nanopore in a membrane, in the presence of binding particles (chaperones) that bind onto the polymer, and partially prevent backsliding of the polymer through the pore. The process is characterized by the rates......: k for the polymer to make a diffusive jump through the pore, q for unbinding of a chaperone, and the rate qκ for binding (with a binding strength κ); except for the case of no binding κ ≤ 0 the presence of the chaperones gives rise to an effective force that drives the translocation process. In more...... detail, we develop a dynamical description of the process in terms of a (2+1)-variable master equation for the probability of having m monomers on the target side of the membrane with n bound chaperones at time t. Emphasis is put on the calculation of the mean first passage time as a function of total...

  8. Brownian Motion Problem: Random Walk and Beyond -RE ...

    Indian Academy of Sciences (India)

    University, Chandigarh and his present research activities are in non eqUilibrium statistical mechanics. He has written articles on teaching of physics, history and .... 2 Review article entitled 'Brown- ian Movement and Molecular. Reality' based on his work. has been translated into English by. F Soddy and published by Tay-.

  9. Cell motility as persistent random motion: Theories from experiments

    DEFF Research Database (Denmark)

    Selmeczi, D.; Mosler, S.; Hagedorn, P.H.

    2005-01-01

    Experimental time series for trajectories of motile cells may contain so much information that a systematic analysis will yield cell-type- specific motility models. Here we demonstrate how, using human keratinocytes and fibroblasts as examples. The two resulting models reflect the cells' different...

  10. QUANTUM MECHANICS. Quantum squeezing of motion in a mechanical resonator.

    Science.gov (United States)

    Wollman, E E; Lei, C U; Weinstein, A J; Suh, J; Kronwald, A; Marquardt, F; Clerk, A A; Schwab, K C

    2015-08-28

    According to quantum mechanics, a harmonic oscillator can never be completely at rest. Even in the ground state, its position will always have fluctuations, called the zero-point motion. Although the zero-point fluctuations are unavoidable, they can be manipulated. Using microwave frequency radiation pressure, we have manipulated the thermal fluctuations of a micrometer-scale mechanical resonator to produce a stationary quadrature-squeezed state with a minimum variance of 0.80 times that of the ground state. We also performed phase-sensitive, back-action evading measurements of a thermal state squeezed to 1.09 times the zero-point level. Our results are relevant to the quantum engineering of states of matter at large length scales, the study of decoherence of large quantum systems, and for the realization of ultrasensitive sensing of force and motion. Copyright © 2015, American Association for the Advancement of Science.

  11. Thermal defoliation

    Science.gov (United States)

    The negative perception some consumers hold regarding agricultural chemicals has resulted in an increased demand for organic foods and fibers, and in increasing political pressure for the regulation of agricultural production practices. This has revived interest in thermal defoliation of cotton and ...

  12. Holographic thermalization

    NARCIS (Netherlands)

    Balasubramanian, V.; Bernamonti, A.; de Boer, J.; Copland, N.; Craps, B.; Keski-Vakkuri, E.; Müller, B.; Schäfer, A.; Shigemori, M.; Staessens, W.

    2011-01-01

    Using the AdS/CFT correspondence, we probe the scale-dependence of thermalization in strongly coupled field theories following a quench, via calculations of two-point functions, Wilson loops and entanglement entropy in d=2,3,4. In the saddlepoint approximation these probes are computed in AdS space

  13. Algorithmic Issues in Modeling Motion

    DEFF Research Database (Denmark)

    Agarwal, P. K; Guibas, L. J; Edelsbrunner, H.

    2003-01-01

    This article is a survey of research areas in which motion plays a pivotal role. The aim of the article is to review current approaches to modeling motion together with related data structures and algorithms, and to summarize the challenges that lie ahead in producing a more unified theory...

  14. Rolling motion in moving droplets

    Indian Academy of Sciences (India)

    2015-02-19

    Feb 19, 2015 ... Drops moving on a substrate under the action of gravity display both rolling and sliding motions. The two limits of a thin sheet-like drop in sliding motion on a surface, and a spherical drop in roll, have been extensively studied. We are interested in intermediate shapes. We quantify the contribution of rolling ...

  15. Motion management in radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Bert, Christoph [GSI, Helmholtzzentrum fuer Schwerionenforschung, Abteilung Biophysik, Darmstadt (Germany)

    2009-07-01

    Radiotherapy of tumors that move during irradiation requires dedicated means to ensure target coverage despite the motion influence. Motion can occur inter-fractionally (e.g. position of the prostate) or intra-fractionally; the most dominant reason for intra-fractional motion is respiration. The standard procedure to reduce the influence of target motion is the use of margins encompassing the clinical target volume (CTV) to form a planning target volume (PTV) that covers all uncertainties. This approach ensures CTV coverage for most treatment modalities but results in therapeutic dose to normal tissue. With the opportunities given by improved imaging techniques such as time-resolved computed tomography (CT) or (cone-beam) CT in treatment position as well as motion mitigation techniques such as gating or tracking the dosimetric influence of target motion could be reduced. Especially for conformal techniques such as intensity modulated radiotherapy (IMRT) or particle therapy only advanced motion mitigation techniques and/or adaptive therapy concepts lead to preservation of the target conformation established for stationary targets in treatments of moving targets. In the scope of the talk an introduction to motion management is given with an emphasis on application in scanned particle beam therapy.

  16. Rigid Motion and Adapted Frames

    Science.gov (United States)

    Lyle, Stephen N.

    The aim here is to describe the rigid motion of a continuous medium in special and general relativity. Section 7.1 defines a rigid rod in special relativity, and Sect. 7.2 shows the link with the space coordinates of a certain kind of accelerating frame in flat spacetimes. Section 7.3 then sets up a notation for describing the arbitrary smooth motion of a continuous medium in general curved spacetimes, defining the proper metric of such a medium. Section 7.4 singles out rigid motions and shows that the rod in Sect. 7.1 undergoes rigid motion in the more generally defined sense. Section 7.5 defines a rate of strain tensor for a continuous medium in general relativity and reformulates the rigidity criterion. Section 7.6 aims to classify all possible rigid motions in special relativity, reemphasizing the link with semi-Euclidean frames adapted to accelerating observers in special relativity. Then, Sects. 7.7 and 7.8 describe rigid motion without rotation and rigid rotation, respectively. Along the way we introduce the notion of Fermi-Walker transport and discuss its relevance for rigid motions. Section 7.9 brings together all the above themes in an account of a recent generalization of the notion of uniform acceleration, thereby characterizing a wide class of rigid motions.

  17. Recent developments in motion planning

    NARCIS (Netherlands)

    Overmars, M.H.

    2002-01-01

    Motion planning is becoming an important topic in many application areas, ranging from robotics to virtual environments and games. In this paper I review some recent results in motion planning, concentrating on the probabilistic roadmap approach that has proven to be very successful for many

  18. Thermal Hardware for the Thermal Analyst

    Science.gov (United States)

    Steinfeld, David

    2015-01-01

    The presentation will be given at the 26th Annual Thermal Fluids Analysis Workshop (TFAWS 2015) hosted by the Goddard Space Flight Center (GSFC) Thermal Engineering Branch (Code 545). NCTS 21070-1. Most Thermal analysts do not have a good background into the hardware which thermally controls the spacecraft they design. SINDA and Thermal Desktop models are nice, but knowing how this applies to the actual thermal hardware (heaters, thermostats, thermistors, MLI blanketing, optical coatings, etc...) is just as important. The course will delve into the thermal hardware and their application techniques on actual spacecraft. Knowledge of how thermal hardware is used and applied will make a thermal analyst a better engineer.

  19. Motion Predicts Clinical Callus Formation

    Science.gov (United States)

    Elkins, Jacob; Marsh, J. Lawrence; Lujan, Trevor; Peindl, Richard; Kellam, James; Anderson, Donald D.; Lack, William

    2016-01-01

    Background: Mechanotransduction is theorized to influence fracture-healing, but optimal fracture-site motion is poorly defined. We hypothesized that three-dimensional (3-D) fracture-site motion as estimated by finite element (FE) analysis would influence callus formation for a clinical series of supracondylar femoral fractures treated with locking-plate fixation. Methods: Construct-specific FE modeling simulated 3-D fracture-site motion for sixty-six supracondylar femoral fractures (OTA/AO classification of 33A or 33C) treated at a single institution. Construct stiffness and directional motion through the fracture were investigated to assess the validity of construct stiffness as a surrogate measure of 3-D motion at the fracture site. Callus formation was assessed radiographically for all patients at six, twelve, and twenty-four weeks postoperatively. Univariate and multivariate linear regression analyses examined the effects of longitudinal motion, shear (transverse motion), open fracture, smoking, and diabetes on callus formation. Construct types were compared to determine whether their 3-D motion profile was associated with callus formation. Results: Shear disproportionately increased relative to longitudinal motion with increasing bridge span, which was not predicted by our assessment of construct stiffness alone. Callus formation was not associated with open fracture, smoking, or diabetes at six, twelve, or twenty-four weeks. However, callus formation was associated with 3-D fracture-site motion at twelve and twenty-four weeks. Longitudinal motion promoted callus formation at twelve and twenty-four weeks (p = 0.017 for both). Shear inhibited callus formation at twelve and twenty-four weeks (p = 0.017 and p = 0.022, respectively). Titanium constructs with a short bridge span demonstrated greater longitudinal motion with less shear than did the other constructs, and this was associated with greater callus formation (p callus formation, while shear inhibited

  20. Synchronization and collective motion of globally coupled Brownian particles

    OpenAIRE

    Sevilla, Francisco J.; Dossetti, Victor; Heiblum-Robles, Alexandro

    2014-01-01

    In this work, we study a system of passive Brownian (non-self-propelled) particles in two dimensions, interacting only through a social-like force (velocity alignment in this case) that resembles Kuramoto's coupling among phase oscillators. We show that the kinematical stationary states of the system go from a phase in thermal equilibrium with no net flux of particles, to far-from-equilibrium phases exhibiting collective motion by increasing the coupling among particles. The mechanism that le...

  1. Topographic Structure from Motion

    Science.gov (United States)

    Fonstad, M. A.; Dietrich, J. T.; Courville, B. C.; Jensen, J.; Carbonneau, P.

    2011-12-01

    The production of high-resolution topographic datasets is of increasing concern and application throughout the geomorphic sciences, and river science is no exception. Consequently, a wide range of topographic measurement methods have evolved. Despite the range of available methods, the production of high resolution, high quality digital elevation models (DEMs) generally requires a significant investment in personnel time, hardware and/or software. However, image-based methods such as digital photogrammetry have steadily been decreasing in costs. Initially developed for the purpose of rapid, inexpensive and easy three dimensional surveys of buildings or small objects, the "structure from motion" photogrammetric approach (SfM) is a purely image based method which could deliver a step-change if transferred to river remote sensing, and requires very little training and is extremely inexpensive. Using the online SfM program Microsoft Photosynth, we have created high-resolution digital elevation models (DEM) of rivers from ordinary photographs produced from a multi-step workflow that takes advantage of free and open source software. This process reconstructs real world scenes from SfM algorithms based on the derived positions of the photographs in three-dimensional space. One of the products of the SfM process is a three-dimensional point cloud of features present in the input photographs. This point cloud can be georeferenced from a small number of ground control points collected via GPS in the field. The georeferenced point cloud can then be used to create a variety of digital elevation model products. Among several study sites, we examine the applicability of SfM in the Pedernales River in Texas (USA), where several hundred images taken from a hand-held helikite are used to produce DEMs of the fluvial topographic environment. This test shows that SfM and low-altitude platforms can produce point clouds with point densities considerably better than airborne LiDAR, with

  2. The Perception of Auditory Motion

    Science.gov (United States)

    Leung, Johahn

    2016-01-01

    The growing availability of efficient and relatively inexpensive virtual auditory display technology has provided new research platforms to explore the perception of auditory motion. At the same time, deployment of these technologies in command and control as well as in entertainment roles is generating an increasing need to better understand the complex processes underlying auditory motion perception. This is a particularly challenging processing feat because it involves the rapid deconvolution of the relative change in the locations of sound sources produced by rotational and translations of the head in space (self-motion) to enable the perception of actual source motion. The fact that we perceive our auditory world to be stable despite almost continual movement of the head demonstrates the efficiency and effectiveness of this process. This review examines the acoustical basis of auditory motion perception and a wide range of psychophysical, electrophysiological, and cortical imaging studies that have probed the limits and possible mechanisms underlying this perception. PMID:27094029

  3. Yawning as a behavioral marker of mild motion sickness and sopite syndrome.

    Science.gov (United States)

    Matsangas, Panagiotis; McCauley, Michael E

    2014-06-01

    Severe motion sickness is easily identifiable with sufferers showing obvious behavioral signs, including emesis (vomiting). Mild motion sickness and sopite syndrome lack such clear and objective behavioral markers. We postulate that yawning may have the potential to be used in operational settings as such a marker. This study assesses the utility of yawning as a behavioral marker for the identification of soporific effects by investigating the association between yawning and mild motion sickness/sopite syndrome in a controlled environment. Using a randomized motion-counterbalanced design, we collected yawning and motion sickness data from 39 healthy individuals (34 men and 5 women, ages 27-59 yr) in static and motion conditions. Each individual participated in two 1-h sessions. Each session consisted of six 10-min blocks. Subjects performed a multitasking battery on a head mounted display while seated on the moving platform. The occurrence and severity of symptoms were assessed with the Motion Sickness Assessment Questionnaire (MSAQ). Yawning occurred predominantly in the motion condition. All yawners in motion (N = 5) were symptomatic. Compared to nonyawners (MSAQ indices: Total = 14.0, Sopite = 15.0), subjects who yawned in motion demonstrated increased severity of motion sickness and soporific symptoms (MSAQ indices: Total = 17.2, Sopite = 22.4), and reduced multitasking cognitive performance (Composite score: nonyawners = 1348; yawners = 1145). These results provide evidence that yawning may be a viable behavioral marker to recognize the onset of soporific effects and their concomitant reduction in cognitive performance.

  4. 49 CFR 230.105 - Lateral motion.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Lateral motion. 230.105 Section 230.105... Tenders Running Gear § 230.105 Lateral motion. (a) Condemning limits. The total lateral motion or play... require additional lateral motion. (c) Non-interference with other parts. The lateral motion shall in all...

  5. Quincke random walkers

    Science.gov (United States)

    Pradillo, Gerardo; Heintz, Aneesh; Vlahovska, Petia

    2017-11-01

    The spontaneous rotation of a sphere in an applied uniform DC electric field (Quincke effect) has been utilized to engineer self-propelled particles: if the sphere is initially resting on a surface, it rolls. The Quincke rollers have been widely used as a model system to study collective behavior in ``active'' suspensions. If the applied field is DC, an isolated Quincke roller follows a straight line trajectory. In this talk, we discuss the design of a Quincke roller that executes a random-walk-like behavior. We utilize AC field - upon reversal of the field direction a fluctuation in the axis of rotation (which is degenerate in the plane perpendicular to the field and parallel to the surface) introduces randomness in the direction of motion. The MSD of an isolated Quincke walker depends on frequency, amplitude, and waveform of the electric field. Experiment and theory are compared. We also investigate the collective behavior of Quincke walkers,the transport of inert particles in a bath of Quincke walkers, and the spontaneous motion of a drop containing Quincke active particle. supported by NSF Grant CBET 1437545.

  6. Motion perception in motion : how we perceive object motion during smooth pursuit eye movements

    NARCIS (Netherlands)

    Souman, J.L.

    2005-01-01

    Eye movements change the retinal image motion of objects in the visual field. When we make an eye movement, the image of a stationary object will move across the retinae, while the retinal image of an object that we follow with the eyes is approximately stationary. To enable us to perceive motion in

  7. The first step towards a respiratory motion prediction for natural-breathing by using a motion generator

    Science.gov (United States)

    Kim, Moo-Sub; Jung, Joo-Young; Yoon, Do-Kun; Shin, Han-Back; Suh, Tae Suk; Jung, Jae-Hong

    2017-03-01

    Respiratory gated radiation therapy (RGRT) gives accurate results when a patient's breathing is stable and regular. Thus, the patient should be acutely aware during respiratory pattern training before undergoing the RGRT treatment. To bypass the process of respiratory pattern training, we propose a tumor location prediction system for RGRT that uses only the natural respiratory volume, and we confirm its application. In order to verify the proposed tumor location prediction system, we used an in-house phantom set. The set involved a chest phantom with target, external markers and a motion generator. Natural respiratory volume signals were generated using the random function in the MATLAB code. In the chest phantom, the target undergoes linear motion based on the respiratory signal. After a four-dimensional computed tomography (4DCT) scan of the in-house phantom, the motion trajectory was derived as a linear equation. The accuracy of the linear equation was compared with that of the motion algorithm used by the operating motion generator. In addition, we attempted to predict the tumor's location by using the random respiratory volume values. The correspondence rate of the linear equation derived from the 4DCT images with the motion algorithm of the motion generator was 99.41% ( p > 0.05). Also, the average error rate of the tumor-location prediction was 1.23% for 26 cases. We confirmed the applicability of our proposed tumor location prediction system using the natural respiratory volume for RGRT. If additional clinical studies can be conducted, a more accurate prediction that would not require respiratory pattern training can be realized.

  8. Thermal Clothing

    Science.gov (United States)

    1997-01-01

    Gateway Technologies, Inc. is marketing and developing textile insulation technology originally developed by Triangle Research and Development Corporation. The enhanced thermal insulation stems from Small Business Innovation Research contracts from NASA's Johnson Space Center and the U.S. Air Force. The effectiveness of the insulation comes from the microencapsulated phase-change materials originally made to keep astronauts gloved hands warm. The applications for the product range from outer wear, housing insulation, and blankets to protective firefighting gear and scuba diving suits. Gateway has developed and begun marketing thermal regulating products under the trademark, OUTLAST. Products made from OUTLAST are already on the market, including boot and shoe liners, winter headgear, hats and caps for hunting and other outdoor sports, and a variety of men's and women's ski gloves.

  9. Turbulent Thermalization

    CERN Document Server

    Micha, Raphael; Micha, Raphael; Tkachev, Igor I.

    2004-01-01

    We study, analytically and with lattice simulations, the decay of coherent field oscillations and the subsequent thermalization of the resulting stochastic classical wave-field. The problem of reheating of the Universe after inflation constitutes our prime motivation and application of the results. We identify three different stages of these processes. During the initial stage of ``parametric resonance'', only a small fraction of the initial inflaton energy is transferred to fluctuations in the physically relevant case of sufficiently large couplings. A major fraction is transfered in the prompt regime of driven turbulence. The subsequent long stage of thermalization classifies as free turbulence. During the turbulent stages, the evolution of particle distribution functions is self-similar. We show that wave kinetic theory successfully describes the late stages of our lattice calculation. Our analytical results are general and give estimates of reheating time and temperature in terms of coupling constants and...

  10. Human motion analysis and characterization

    Science.gov (United States)

    Cathcart, J. Michael; Prussing, Keith; Kocher, Brian

    2011-06-01

    Georgia Tech has investigated methods for the detection and tracking of personnel in a variety of acquisition environments. This research effort focused on a detailed phenomenological analysis of human physiology and signatures with the subsequent identification and characterization of potential observables. Both aspects are needed to support the development of personnel detection and tracking algorithms. As a fundamental part of this research effort, Georgia Tech collected motion capture data on an individual for a variety of walking speeds, carrying loads, and load distributions. These data formed the basis for deriving fundamental properties of the individual's motion and the derivation of motionbased observables, and changes in these fundamental properties arising from load variations. Analyses were conducted to characterize the motion properties of various body components such as leg swing, arm swing, head motion, and full body motion. This paper will describe the data acquisition process, extraction of motion characteristics, and analysis of these data. Video sequences illustrating the motion data and analysis results will also be presented.

  11. Open architecture CMM motion controller

    Science.gov (United States)

    Chang, David; Spence, Allan D.; Bigg, Steve; Heslip, Joe; Peterson, John

    2001-12-01

    Although initially the only Coordinate Measuring Machine (CMM) sensor available was a touch trigger probe, technological advances in sensors and computing have greatly increased the variety of available inspection sensors. Non-contact laser digitizers and analog scanning touch probes require very well tuned CMM motion control, as well as an extensible, open architecture interface. This paper describes the implementation of a retrofit CMM motion controller designed for open architecture interface to a variety of sensors. The controller is based on an Intel Pentium microcomputer and a Servo To Go motion interface electronics card. Motor amplifiers, safety, and additional interface electronics are housed in a separate enclosure. Host Signal Processing (HSP) is used for the motion control algorithm. Compared to the usual host plus DSP architecture, single CPU HSP simplifies integration with the various sensors, and implementation of software geometric error compensation. Motion control tuning is accomplished using a remote computer via 100BaseTX Ethernet. A Graphical User Interface (GUI) is used to enter geometric error compensation data, and to optimize the motion control tuning parameters. It is shown that this architecture achieves the required real time motion control response, yet is much easier to extend to additional sensors.

  12. Visual motion responses in the posterior cingulate sulcus: a comparison to V5/MT and MST.

    Science.gov (United States)

    Fischer, Elvira; Bülthoff, Heinrich H; Logothetis, Nikos K; Bartels, Andreas

    2012-04-01

    Motion processing regions apart from V5+/MT+ are still relatively poorly understood. Here, we used functional magnetic resonance imaging to perform a detailed functional analysis of the recently described cingulate sulcus visual area (CSv) in the dorsal posterior cingulate cortex. We used distinct types of visual motion stimuli to compare CSv with V5/MT and MST, including a visual pursuit paradigm. Both V5/MT and MST preferred 3D flow over 2D planar motion, responded less yet substantially to random motion, had a strong preference for contralateral versus ipsilateral stimulation, and responded nearly equally to contralateral and to full-field stimuli. In contrast, CSv had a pronounced preference to 2D planar motion over 3D flow, did not respond to random motion, had a weak and nonsignificant lateralization that was significantly smaller than that of MST, and strongly preferred full-field over contralateral stimuli. In addition, CSv had a better capability to integrate eye movements with retinal motion compared with V5/MT and MST. CSv thus differs from V5+/MT+ by its unique preference to full-field, coherent, and planar motion cues. These results place CSv in a good position to process visual cues related to self-induced motion, in particular those associated to eye or lateral head movements.

  13. Time series analysis of collective motions in proteins.

    Science.gov (United States)

    Alakent, Burak; Doruker, Pemra; Camurdan, Mehmet C

    2004-01-08

    The dynamics of alpha-amylase inhibitor tendamistat around its native state is investigated using time series analysis of the principal components of the C(alpha) atomic displacements obtained from molecular dynamics trajectories. Collective motion along a principal component is modeled as a homogeneous nonstationary process, which is the result of the damped oscillations in local minima superimposed on a random walk. The motion in local minima is described by a stationary autoregressive moving average model, consisting of the frequency, damping factor, moving average parameters and random shock terms. Frequencies for the first 50 principal components are found to be in the 3-25 cm(-1) range, which are well correlated with the principal component indices and also with atomistic normal mode analysis results. Damping factors, though their correlation is less pronounced, decrease as principal component indices increase, indicating that low frequency motions are less affected by friction. The existence of a positive moving average parameter indicates that the stochastic force term is likely to disturb the mode in opposite directions for two successive sampling times, showing the modes tendency to stay close to minimum. All these four parameters affect the mean square fluctuations of a principal mode within a single minimum. The inter-minima transitions are described by a random walk model, which is driven by a random shock term considerably smaller than that for the intra-minimum motion. The principal modes are classified into three subspaces based on their dynamics: essential, semiconstrained, and constrained, at least in partial consistency with previous studies. The Gaussian-type distributions of the intermediate modes, called "semiconstrained" modes, are explained by asserting that this random walk behavior is not completely free but between energy barriers. (c) 2004 American Institute of Physics

  14. Thermal bioaerosol cloud tracking with Bayesian classification

    Science.gov (United States)

    Smith, Christian W.; Dupuis, Julia R.; Schundler, Elizabeth C.; Marinelli, William J.

    2017-05-01

    The development of a wide area, bioaerosol early warning capability employing existing uncooled thermal imaging systems used for persistent perimeter surveillance is discussed. The capability exploits thermal imagers with other available data streams including meteorological data and employs a recursive Bayesian classifier to detect, track, and classify observed thermal objects with attributes consistent with a bioaerosol plume. Target detection is achieved based on similarity to a phenomenological model which predicts the scene-dependent thermal signature of bioaerosol plumes. Change detection in thermal sensor data is combined with local meteorological data to locate targets with the appropriate thermal characteristics. Target motion is tracked utilizing a Kalman filter and nearly constant velocity motion model for cloud state estimation. Track management is performed using a logic-based upkeep system, and data association is accomplished using a combinatorial optimization technique. Bioaerosol threat classification is determined using a recursive Bayesian classifier to quantify the threat probability of each tracked object. The classifier can accept additional inputs from visible imagers, acoustic sensors, and point biological sensors to improve classification confidence. This capability was successfully demonstrated for bioaerosol simulant releases during field testing at Dugway Proving Grounds. Standoff detection at a range of 700m was achieved for as little as 500g of anthrax simulant. Developmental test results will be reviewed for a range of simulant releases, and future development and transition plans for the bioaerosol early warning platform will be discussed.

  15. From fractional Brownian motion to multifractional and multistable motion

    Science.gov (United States)

    Falconer, Kenneth

    2015-03-01

    Fractional Brownian motion, introduced by Benoit Mandelbrot and John Van Ness in 1968, has had a major impact on stochastic processes and their applications. We survey a few of the many developments that have stemmed from their ideas. In particular we discuss the local structure of fractional and multifractional Brownian, stable and multistable processes, emphasising the `diagonal' construction of such processes. In all this, the ubiquity and centrality of fractional Brownian motion is striking.

  16. Adaptive Motion Compensation in Radiotherapy

    CERN Document Server

    Murphy, Martin J

    2011-01-01

    External-beam radiotherapy has long been challenged by the simple fact that patients can (and do) move during the delivery of radiation. Recent advances in imaging and beam delivery technologies have made the solution--adapting delivery to natural movement--a practical reality. Adaptive Motion Compensation in Radiotherapy provides the first detailed treatment of online interventional techniques for motion compensation radiotherapy. This authoritative book discusses: Each of the contributing elements of a motion-adaptive system, including target detection and tracking, beam adaptation, and pati

  17. Random processes in nuclear reactors

    CERN Document Server

    Williams, M M R

    1974-01-01

    Random Processes in Nuclear Reactors describes the problems that a nuclear engineer may meet which involve random fluctuations and sets out in detail how they may be interpreted in terms of various models of the reactor system. Chapters set out to discuss topics on the origins of random processes and sources; the general technique to zero-power problems and bring out the basic effect of fission, and fluctuations in the lifetime of neutrons, on the measured response; the interpretation of power reactor noise; and associated problems connected with mechanical, hydraulic and thermal noise sources

  18. Brownian motion as a new probe of wettability

    Science.gov (United States)

    Mo, Jianyong; Simha, Akarsh; Raizen, Mark G.

    2017-04-01

    Understanding wettability is crucial for optimizing oil recovery, semiconductor manufacturing, pharmaceutical industry, and electrowetting. In this letter, we study the effects of wettability on Brownian motion. We consider the cases of a sphere in an unbounded fluid medium, as well as a sphere placed in the vicinity of a plane wall. For the first case, we show the effects of wettability on the statistical properties of the particles' motion, such as velocity autocorrelation, velocity, and thermal force power spectra over a large range of time scales. We also propose a new method to measure wettability based on the particles' Brownian motion. In addition, we compare the boundary effects on Brownian motion imposed by both no-slip and perfect-slip flat walls. We emphasize the surprising boundary effects on Brownian motion imposed by a perfect-slip wall in the parallel direction, such as a higher particle mobility parallel to a perfect flat wall compared to that in the absence of the wall, as well as compared to a particle near a no-slip flat wall.

  19. Cache-Aware Asymptotically-Optimal Sampling-Based Motion Planning.

    Science.gov (United States)

    Ichnowski, Jeffrey; Prins, Jan F; Alterovitz, Ron

    2014-05-01

    We present CARRT* (Cache-Aware Rapidly Exploring Random Tree*), an asymptotically optimal sampling-based motion planner that significantly reduces motion planning computation time by effectively utilizing the cache memory hierarchy of modern central processing units (CPUs). CARRT* can account for the CPU's cache size in a manner that keeps its working dataset in the cache. The motion planner progressively subdivides the robot's configuration space into smaller regions as the number of configuration samples rises. By focusing configuration exploration in a region for periods of time, nearest neighbor searching is accelerated since the working dataset is small enough to fit in the cache. CARRT* also rewires the motion planning graph in a manner that complements the cache-aware subdivision strategy to more quickly refine the motion planning graph toward optimality. We demonstrate the performance benefit of our cache-aware motion planning approach for scenarios involving a point robot as well as the Rethink Robotics Baxter robot.

  20. Motion sickness: more than nausea and vomiting

    OpenAIRE

    Lackner, James R.

    2014-01-01

    Motion sickness is a complex syndrome that includes many features besides nausea and vomiting. This review describes some of these factors and points out that under normal circumstances, many cases of motion sickness go unrecognized. Motion sickness can occur during exposure to physical motion, visual motion, and virtual motion, and only those without a functioning vestibular system are fully immune. The range of vulnerability in the normal population varies about 10,000 to 1. Sleep deprivati...

  1. OR TEP-II: a FORTRAN Thermal-Ellipsoid Plot Program for crystal structure illustrations

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, C.K.

    1976-03-01

    A computer program is described for drawing crystal structure illustrations using a mechanical plotter. Ball-and-stick type illustrations of a quality suitable for publication are produced with either spheres or thermal-motion probability ellipsoids on the atomic sites. The program can produce stereoscopic pairs of illustrations which aid in the visualization of complex packing arrangements of atoms and thermal motion patterns. Interatomic distances, bond angles, and principal axes of thermal motion are also calculated to aid the structural study. The most recent version of the program, OR TEP-II, has a hidden-line-elimination feature to omit those portions of atoms or bonds behind other atoms or bonds.

  2. Dose/volume-response relations for rectal morbidity using planned and simulated motion-inclusive dose distributions.

    Science.gov (United States)

    Thor, Maria; Apte, Aditya; Deasy, Joseph O; Karlsdóttir, Àsa; Moiseenko, Vitali; Liu, Mitchell; Muren, Ludvig Paul

    2013-12-01

    Many dose-limiting normal tissues in radiotherapy (RT) display considerable internal motion between fractions over a course of treatment, potentially reducing the appropriateness of using planned dose distributions to predict morbidity. Accounting explicitly for rectal motion could improve the predictive power of modelling rectal morbidity. To test this, we simulated the effect of motion in two cohorts. The included patients (232 and 159 cases) received RT for prostate cancer to 70 and 74 Gy. Motion-inclusive dose distributions were introduced as simulations of random or systematic motion to the planned dose distributions. Six rectal morbidity endpoints were analysed. A probit model using the QUANTEC recommended parameters was also applied to the cohorts. The differences in associations using the planned over the motion-inclusive dose distributions were modest. Statistically significant associations were obtained with four of the endpoints, mainly at high doses (55-70 Gy), using both the planned and the motion-inclusive dose distributions, primarily when simulating random motion. The strongest associations were observed for GI toxicity and rectal bleeding (Rs=0.12-0.21; Rs=0.11-0.20). Applying the probit model, significant associations were found for tenesmus and rectal bleeding (Rs=0.13, p=0.02). Equally strong associations with rectal morbidity were observed at high doses (>55 Gy), for the planned and the simulated dose distributions including in particular random rectal motion. Future studies should explore patient-specific descriptions of rectal motion to achieve improved predictive power. Published by Elsevier Ireland Ltd.

  3. Bidirectional RRT Algorithm for Collision Avoidance Motion Planning of FFSR

    Directory of Open Access Journals (Sweden)

    Huazhong Li

    2014-08-01

    Full Text Available The nonholonomic kinematics characteristic of free-floating space robot (FFSR in a microgravity environment is a special difficulty in its motion planning. First, kinematics model for FFSR system and state transition equation have been established by applying linear momentum and angular momentum conservation laws followed by FFSR in a microgravity environment. Second, aiming at the nonholonomic characteristic of FFSR, a collision avoidance motion planning algorithm based on bidirectional rapidly-exploring random tree (RRT has been proposed. This paper focuses on explaining the basic theory of FFSR motion planning, the basic principle for such core algorithms as EXTEND, CONECT and RRT-Connect and the realization of such algorithms. Finally, the correctness of the algorithms proposed has been verified via computer simulation.

  4. Dance notations and robot motion

    CERN Document Server

    Abe, Naoko

    2016-01-01

    How and why to write a movement? Who is the writer? Who is the reader? They may be choreographers working with dancers. They may be roboticists programming robots. They may be artists designing cartoons in computer animation. In all such fields the purpose is to express an intention about a dance, a specific motion or an action to perform, in terms of intelligible sequences of elementary movements, as a music score that would be devoted to motion representation. Unfortunately there is no universal language to write a motion. Motion languages live together in a Babel tower populated by biomechanists, dance notators, neuroscientists, computer scientists, choreographers, roboticists. Each community handles its own concepts and speaks its own language. The book accounts for this diversity. Its origin is a unique workshop held at LAAS-CNRS in Toulouse in 2014. Worldwide representatives of various communities met there. Their challenge was to reach a mutual understanding allowing a choreographer to access robotics ...

  5. Weigh-in-Motion Stations

    Data.gov (United States)

    Department of Homeland Security — The data included in the GIS Traffic Stations Version database have been assimilated from station description files provided by FHWA for Weigh-in-Motion (WIM), and...

  6. Organized motion in turbulent flow

    Science.gov (United States)

    Cantwell, B. J.

    A review of organized motion in turbulent flow indicates that the transport properties of most shear flows are dominated by large-scale vortex nonrandom motions. The mean velocity profile of a turbulent boundary layer consists of a viscous sublayer, buffer layer, and a logarithmic outer layer; an empirical formula of Coles (1956) applies to various pressure gradients. The boundary layer coherent structure was isolated by the correlation methods of Townsend (1956) and flow visualization by direct observations of complex unsteady turbulent motions. The near-wall studies of Willmart and Wooldridge (1962) used the space-time correlation for pressure fluctuations at the wall under a thick turbulent boundary layer; finally, organized motion in free shear flows and transition-control of mixing demonstrated that the Reynolds number invariance of turbulence shows wide scatter.

  7. q-deformed Brownian motion

    CERN Document Server

    Man'ko, V I

    1993-01-01

    Brownian motion may be embedded in the Fock space of bosonic free field in one dimension.Extending this correspondence to a family of creation and annihilation operators satisfying a q-deformed algebra, the notion of q-deformation is carried from the algebra to the domain of stochastic processes.The properties of q-deformed Brownian motion, in particular its non-Gaussian nature and cumulant structure,are established.

  8. Turbulent Motions in Molecular Clouds

    Science.gov (United States)

    Pellegatti Franco, G. A.; Tarsia, R. D.; Quiroga, R. J.

    1986-02-01

    We have studied the behavior of the inner motions of OH, H2CO and CO molecular clouds. This study shows the existence of two main components of these clouds: the narrow one, associated to dense small clouds and a wide one "representing" the large diffuse clouds seen in neutral hidrogen.The large clouds are the "vortex" and intermediate state between turbulent and hydrodynamic motions in the alaxy.

  9. Storyboard dalam Pembuatan Motion Graphic

    OpenAIRE

    Satrya Mahardhika; Ahmad Faisal Choiril Anam Fathoni

    2013-01-01

    Motion graphics is one category in the animation that makes animation with lots of design elements in each component. Motion graphics needs long process including preproduction, production, and postproduction. Preproduction has an important role so that the next stage may provide guidance or instructions for the production process or the animation process. Preproduction includes research, making the story, script, screenplay, character, environment design and storyboards. The storyboard will ...

  10. Root cause analysis of thermal sleeve separation

    Energy Technology Data Exchange (ETDEWEB)

    Jo, J. C.; Jhung, M. J.; Yu, S. O.; Kim, H. J.; Yune, Y. K.; Park, J. Y

    2006-01-15

    Thermal sleeves in the shape of thin wall cylinder seated inside the nozzle part of each Safety Injection (SI) line at Pressurized Water Reactors (PWRs) have such functions as prevention and relief of potential excessive transient thermal stress in the wall of SI line nozzle part which is initially heated up with hot water flowing in the primary coolant piping system when cold water is injected into the system through the SI nozzles during the SI operation mode. Recently, mechanical failures that the sleeves were separated from the SI branch pipe and fell into the connected cold leg main pipe occurred in sequence at some typical PWR plants in Korea. To find out the root cause of thermal sleeve breakaway failures, the flow situation in the junction of primary coolant main pipe and SI branch pipe, and the vibration modal characteristics of the thermal sleeve are investigated in detail by using both Computational Fluid Dynamic (CFD) code and structure analysis finite element code. As the results, the transient response in fluid force exerting on the local part of thermal sleeve wall surface to the primary coolant flow through the pipe junction area during the normal reactor operation mode shows oscillatory characteristics with frequencies ranging from 17 to 18, which coincide with one of the lower mode natural frequencies of thermal sleeve having a pinned support condition on the circumferential prominence on the outer surface of thermal sleeve which is put into the circumferential groove on the inner surface of SI nozzle at the mid-height of the thermal sleeve. In addition, the variation of force on the thermal sleeve surface yields alternating torques in the directions of two rectangular axes which are perpendicular to the longitudinal axis of cylindrical thermal sleeve, which cause rolling, pitching and rotating motions of the thermal sleeve. Consequently, it is seen that this flow situation surrounding the thermal sleeve during the normal reactor operation can

  11. Thermal conductivity of US coals

    Energy Technology Data Exchange (ETDEWEB)

    Herrin, J.M.; Deming, D. [University of Oklahoma, Norman, OK (United States). School of Geology and Geophysics

    1996-11-10

    Coal samples in the form of randomly oriented aggregates were obtained from the Pennsylvania State University Coal Bank for the purpose of thermal conductivity measurements. Samples represented 55 locations from throughout the United States and included 6 lignites, 10 subbituminous coals, 36 bituminous coals, and 3 anthracite samples. Matrix thermal conductivities measured at 22{degree}C in the laboratory ranged from 0.22 to 0.55 W/m degree K, with an arithmetic mean of 0.33 W/m degrees K and a standard deviation of 0.07 W/m degrees K. The thermal conductivity of lignites, subbituminous, and bituminous coals is controlled by composition and can be predicted by a three-component (Moisture, ash, and carbon + volatiles) geometric mean model with a rns residual of 6.1%. The thermal conductivity of bituminous and anthracite samples was found to be positively correlated with matrix density. With the exception of three anthracite samples, rank was not correlated with thermal conductivity nor was the ratio of carbon to volatiles. The relatively high thermal conductivity of three anthracite samples (mean of 0.49 W/m degrees K) may have been related to graphitization.

  12. Thermal insulator

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, R.; Asada, Y.; Matsuo, Y.; Mikoda, M.

    1985-07-16

    A thermal insulator comprises an expanded resin body having embedded therein an evacuated powder insulation portion which consists of fine powder and a container of film-like plastics or a film-like composite of plastics and metal for enclosing the powder. The resin body has been expanded by a Freon gas as a blowing agent. Since a Freon gas has a larger molecular diameter than the constituent gases of air, it is less likely to permeate through the container than air. Thus present invention provides a novel composite insulator which fully utilizes the benefits of vacuum insulation without necessitating a strong and costly material for a vacuum container.

  13. Audiovisual associations alter the perception of low-level visual motion

    Directory of Open Access Journals (Sweden)

    Hulusi eKafaligonul

    2015-03-01

    Full Text Available Motion perception is a pervasive nature of vision and is affected by both immediate pattern of sensory inputs and prior experiences acquired through associations. Recently, several studies reported that an association can be established quickly between directions of visual motion and static sounds of distinct frequencies. After the association is formed, sounds are able to change the perceived direction of visual motion. To determine whether such rapidly acquired audiovisual associations and their subsequent influences on visual motion perception are dependent on the involvement of higher-order attentive tracking mechanisms, we designed psychophysical experiments using regular and reverse-phi random dot motions isolating low-level pre-attentive motion processing. Our results show that an association between the directions of low-level visual motion and static sounds can be formed and this audiovisual association alters the subsequent perception of low-level visual motion. These findings support the view that audiovisual associations are not restricted to high-level attention based motion system and early-level visual motion processing has some potential role.

  14. Automated Detection of Motion Artefacts in MR Imaging Using Decision Forests

    Directory of Open Access Journals (Sweden)

    Benedikt Lorch

    2017-01-01

    Full Text Available The acquisition of a Magnetic Resonance (MR scan usually takes longer than subjects can remain still. Movement of the subject such as bulk patient motion or respiratory motion degrades the image quality and its diagnostic value by producing image artefacts like ghosting, blurring, and smearing. This work focuses on the effect of motion on the reconstructed slices and the detection of motion artefacts in the reconstruction by using a supervised learning approach based on random decision forests. Both the effects of bulk patient motion occurring at various time points in the acquisition on head scans and the effects of respiratory motion on cardiac scans are studied. Evaluation is performed on synthetic images where motion artefacts have been introduced by altering the k-space data according to a motion trajectory, using the three common k-space sampling patterns: Cartesian, radial, and spiral. The results suggest that a machine learning approach is well capable of learning the characteristics of motion artefacts and subsequently detecting motion artefacts with a confidence that depends on the sampling pattern.

  15. A scalable distributed RRT for motion planning

    KAUST Repository

    Jacobs, Sam Ade

    2013-05-01

    Rapidly-exploring Random Tree (RRT), like other sampling-based motion planning methods, has been very successful in solving motion planning problems. Even so, sampling-based planners cannot solve all problems of interest efficiently, so attention is increasingly turning to parallelizing them. However, one challenge in parallelizing RRT is the global computation and communication overhead of nearest neighbor search, a key operation in RRTs. This is a critical issue as it limits the scalability of previous algorithms. We present two parallel algorithms to address this problem. The first algorithm extends existing work by introducing a parameter that adjusts how much local computation is done before a global update. The second algorithm radially subdivides the configuration space into regions, constructs a portion of the tree in each region in parallel, and connects the subtrees,i removing cycles if they exist. By subdividing the space, we increase computation locality enabling a scalable result. We show that our approaches are scalable. We present results demonstrating almost linear scaling to hundreds of processors on a Linux cluster and a Cray XE6 machine. © 2013 IEEE.

  16. d-alpha Correlation functions and collective motion in Xe+Au collisions at E/A=50 MeV

    OpenAIRE

    G. VerdeINFN, Sezione di Catania, Italy; P. Danielewicz(NSCL, Michigan State University, USA); W. G. Lynch(NSCL, Michigan State University, USA); C. F. Chan(NSCL, Michigan State University, USA); C. K. Gelbke(NSCL, Michigan State University, USA); K. K. Lau(NSCL, Michigan State University, USA); T. X. Liu(NSCL, Michigan State University, USA); X. D. Liu(NSCL, Michigan State University, USA); D. Seymour(NSCL, Michigan State University, USA); R. Shomin(NSCL, Michigan State University, USA); W. P. Tan(NSCL, Michigan State University, USA); M. B. Tsang(NSCL, Michigan State University, USA); A. Wagner(NSCL, Michigan State University, USA); H. S. Xu(NSCL, Michigan State University, USA); D. A. Brown(LLNL, USA)

    2015-01-01

    The interplay of the effects of geometry and collective motion on d-$\\alpha$ correlation functions is investigated for central Xe+Au collisions at E/A=50 MeV. The data cannot be explained without collective motion, which could be partly along the beam axis. A semi-quantitative description of the data can be obtained using a Monte-Carlo model, where thermal emission is superimposed on collective motion. Both the emission volume and the competition between the thermal and collective motion infl...

  17. Efficacy of early controlled motion of the ankle compared with no motion after non-operative treatment of an acute Achilles tendon rupture

    DEFF Research Database (Denmark)

    Barfod, Kristoffer Weisskirchner; Hansen, Maria Swennergren; Hølmich, Per

    2016-01-01

    BACKGROUND: Early controlled ankle motion is widely used in the non-operative treatment of acute Achilles tendon rupture, though its safety and efficacy have never been investigated in a randomized setup. The objectives of this study are to investigate if early controlled motion of the ankle...... controlled motion of the ankle in weeks 3-8 after rupture. The control group is immobilized. In total, 130 patients will be included from one big orthopedic center over a period of 2½ years. The primary outcome is the patient-reported Achilles tendon Total Rupture Score evaluated at 12 months post...

  18. Martian Landscapes in Motion

    Science.gov (United States)

    Mattson, Sarah; McEwen, Alfred; Kirk, Randolph; Howington-Kraus, Elpitha; Chojnacki, Matthew; Runyon, Kirby; Cremonese, Gabriele; Re, Cristina

    2014-05-01

    RISE orthorectified image sequences makes it possible to conduct accurate change detection studies of active processes on Mars. Some examples of studies of active landscapes on Mars using HiRISE DTMs and orthoimage sequences include: dune and ripple motion (Bridges et al., 2012, Nature), recurring slope lineae (RSL) (McEwen et al., 2011, Science; McEwen et al., 2013, Nature Geoscience), gully activity (Dundas et al., 2012, Icarus), and polar processes (Hansen et al., 2011, Science; Portyankina et al. 2013, Icarus,). These studies encompass images from multiple Mars years and seasons. Sequences of orthoimages make it possible to generate animated gifs or movies to visualize temporal changes (http://www.uahirise.org/sim/). They can also be brought into geospatial software to quantitatively map and record changes. The ability to monitor the surface of Mars at high spatial resolution with frequent repeat images has opened up our insight into seasonal and interannual changes, further increasing our understanding of Mars as an active planet.

  19. The "motion silencing" illusion results from global motion and crowding.

    Science.gov (United States)

    Turi, Marco; Burr, David

    2013-04-18

    Suchow and Alvarez (2011) recently devised a striking illusion, where objects changing in color, luminance, size, or shape appear to stop changing when they move. They refer to the illusion as "motion silencing of awareness to visual change." Here we present evidence that the illusion results from two perceptual processes: global motion and crowding. We adapted Suchow and Alvarez's stimulus to three concentric rings of dots, a central ring of "target dots" flanked on either side by similarly moving flanker dots. Subjects had to identify in which of two presentations the target dots were continuously changing (sinusoidally) in size, as distinct from the other interval in which size was constant. The results show: (a) Motion silencing depends on target speed, with a threshold around 0.2 rotations per second (corresponding to about 10°/s linear motion). (b) Silencing depends on both target-flanker spacing and eccentricity, with critical spacing about half eccentricity, consistent with Bouma's law. (c) The critical spacing was independent of stimulus size, again consistent with Bouma's law. (d) Critical spacing depended strongly on contrast polarity. All results imply that the "motion silencing" illusion may result from crowding.

  20. Tangle-Free Mesh Motion for Ablation Simulations

    Science.gov (United States)

    Droba, Justin

    2016-01-01

    Problems involving mesh motion-which should not be mistakenly associated with moving mesh methods, a class of adaptive mesh redistribution techniques-are of critical importance in numerical simulations of the thermal response of melting and ablative materials. Ablation is the process by which material vaporizes or otherwise erodes due to strong heating. Accurate modeling of such materials is of the utmost importance in design of passive thermal protection systems ("heatshields") for spacecraft, the layer of the vehicle that ensures survival of crew and craft during re-entry. In an explicit mesh motion approach, a complete thermal solve is first performed. Afterwards, the thermal response is used to determine surface recession rates. These values are then used to generate boundary conditions for an a posteriori correction designed to update the location of the mesh nodes. Most often, linear elastic or biharmonic equations are used to model this material response, traditionally in a finite element framework so that complex geometries can be simulated. A simple scheme for moving the boundary nodes involves receding along the surface normals. However, for all but the simplest problem geometries, evolution in time following such a scheme will eventually bring the mesh to intersect and "tangle" with itself, inducing failure. This presentation demonstrates a comprehensive and sophisticated scheme that analyzes the local geometry of each node with help from user-provided clues to eliminate the tangle and enable simulations on a wide-class of difficult problem geometries. The method developed is demonstrated for linear elastic equations but is general enough that it may be adapted to other modeling equations. The presentation will explicate the inner workings of the tangle-free mesh motion algorithm for both two and three-dimensional meshes. It will show abstract examples of the method's success, including a verification problem that demonstrates its accuracy and

  1. Motion discrimination in dementia with Lewy bodies and Alzheimer disease.

    Science.gov (United States)

    Landy, Kelly M; Salmon, David P; Galasko, Douglas; Filoteo, J Vincent; Festa, Elena K; Heindel, William C; Hansen, Lawrence A; Hamilton, Joanne M

    2015-10-20

    Visual processing abilities of patients with dementia with Lewy bodies (DLB) or Alzheimer disease (AD) dementia were assessed psychophysically using a simple horizontal motion discrimination task that engages the dorsal visual processing stream. Participants included patients with mild dementia with DLB, AD dementia or Parkinson disease (PD) with dementia (PDD), without dementia with PD, and normal controls. Participants indicated the left or right direction of coherently moving dots that were embedded within dynamic visual noise provided by randomly moving dots. The proportion of coherently moving dots was increased or decreased across trials to determine a threshold at which participants could correctly indicate their direction with greater than 80% accuracy. Motion discrimination thresholds of patients with DLB and PDD were comparable and significantly higher (i.e., worse) than those of patients with AD dementia. The thresholds of patients with AD dementia and patients with PD were normal. These results were confirmed in subgroups of patients with DLB/PDD and AD dementia with autopsy-confirmed disease. A motion discrimination threshold greater than 0.23 distinguished between DLB/PDD and AD dementia with 67% sensitivity and 85% specificity. Differential deficits in detecting direction of simple horizontal motion suggest that dorsal processing stream dysfunction is greater in DLB and PDD than in AD dementia. Therefore, impaired performance on simple visual motion discrimination tasks that specifically engage occipitoparietal brain regions suggests the presence of Lewy body pathology. © 2015 American Academy of Neurology.

  2. Rapid sampling of molecular motions with prior information constraints.

    Directory of Open Access Journals (Sweden)

    Barak Raveh

    2009-02-01

    Full Text Available Proteins are active, flexible machines that perform a range of different functions. Innovative experimental approaches may now provide limited partial information about conformational changes along motion pathways of proteins. There is therefore a need for computational approaches that can efficiently incorporate prior information into motion prediction schemes. In this paper, we present PathRover, a general setup designed for the integration of prior information into the motion planning algorithm of rapidly exploring random trees (RRT. Each suggested motion pathway comprises a sequence of low-energy clash-free conformations that satisfy an arbitrary number of prior information constraints. These constraints can be derived from experimental data or from expert intuition about the motion. The incorporation of prior information is very straightforward and significantly narrows down the vast search in the typically high-dimensional conformational space, leading to dramatic reduction in running time. To allow the use of state-of-the-art energy functions and conformational sampling, we have integrated this framework into Rosetta, an accurate protocol for diverse types of structural modeling. The suggested framework can serve as an effective complementary tool for molecular dynamics, Normal Mode Analysis, and other prevalent techniques for predicting motion in proteins. We applied our framework to three different model systems. We show that a limited set of experimentally motivated constraints may effectively bias the simulations toward diverse predicates in an outright fashion, from distance constraints to enforcement of loop closure. In particular, our analysis sheds light on mechanisms of protein domain swapping and on the role of different residues in the motion.

  3. Dynamic visual attention: motion direction versus motion magnitude

    Science.gov (United States)

    Bur, A.; Wurtz, P.; Müri, R. M.; Hügli, H.

    2008-02-01

    Defined as an attentive process in the context of visual sequences, dynamic visual attention refers to the selection of the most informative parts of video sequence. This paper investigates the contribution of motion in dynamic visual attention, and specifically compares computer models designed with the motion component expressed either as the speed magnitude or as the speed vector. Several computer models, including static features (color, intensity and orientation) and motion features (magnitude and vector) are considered. Qualitative and quantitative evaluations are performed by comparing the computer model output with human saliency maps obtained experimentally from eye movement recordings. The model suitability is evaluated in various situations (synthetic and real sequences, acquired with fixed and moving camera perspective), showing advantages and inconveniences of each method as well as preferred domain of application.

  4. 49 CFR 229.63 - Lateral motion.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Lateral motion. 229.63 Section 229.63....63 Lateral motion. (a) Except as provided in paragraph (b), the total uncontrolled lateral motion... powered axles. (b) The total uncontrolled lateral motion may not exceed 11/4 inches on the center axle of...

  5. Vertical Motions of Oceanic Volcanoes

    Science.gov (United States)

    Clague, D. A.; Moore, J. G.

    2006-12-01

    Oceanic volcanoes offer abundant evidence of changes in their elevations through time. Their large-scale motions begin with a period of rapid subsidence lasting hundreds of thousands of years caused by isostatic compensation of the added mass of the volcano on the ocean lithosphere. The response is within thousands of years and lasts as long as the active volcano keeps adding mass on the ocean floor. Downward flexure caused by volcanic loading creates troughs around the growing volcanoes that eventually fill with sediment. Seismic surveys show that the overall depression of the old ocean floor beneath Hawaiian volcanoes such as Mauna Loa is about 10 km. This gross subsidence means that the drowned shorelines only record a small part of the total subsidence the islands experienced. In Hawaii, this history is recorded by long-term tide-gauge data, the depth in drill holes of subaerial lava flows and soil horizons, former shorelines presently located below sea level. Offshore Hawaii, a series of at least 7 drowned reefs and terraces record subsidence of about 1325 m during the last half million years. Older sequences of drowned reefs and terraces define the early rapid phase of subsidence of Maui, Molokai, Lanai, Oahu, Kauai, and Niihau. Volcanic islands, such as Maui, tip down toward the next younger volcano as it begins rapid growth and subsidence. Such tipping results in drowned reefs on Haleakala as deep as 2400 m where they are tipped towards Hawaii. Flat-topped volcanoes on submarine rift zones also record this tipping towards the next younger volcano. This early rapid subsidence phase is followed by a period of slow subsidence lasting for millions of years caused by thermal contraction of the aging ocean lithosphere beneath the volcano. The well-known evolution along the Hawaiian chain from high to low volcanic island, to coral island, and to guyot is due to this process. This history of rapid and then slow subsidence is interrupted by a period of minor uplift

  6. A reduced-dimensionality approach to uncovering dyadic modes of body motion in conversations

    Science.gov (United States)

    Noy, Lior; Liron, Yuvalal; Alon, Uri

    2017-01-01

    Face-to-face conversations are central to human communication and a fascinating example of joint action. Beyond verbal content, one of the primary ways in which information is conveyed in conversations is body language. Body motion in natural conversations has been difficult to study precisely due to the large number of coordinates at play. There is need for fresh approaches to analyze and understand the data, in order to ask whether dyads show basic building blocks of coupled motion. Here we present a method for analyzing body motion during joint action using depth-sensing cameras, and use it to analyze a sample of scientific conversations. Our method consists of three steps: defining modes of body motion of individual participants, defining dyadic modes made of combinations of these individual modes, and lastly defining motion motifs as dyadic modes that occur significantly more often than expected given the single-person motion statistics. As a proof-of-concept, we analyze the motion of 12 dyads of scientists measured using two Microsoft Kinect cameras. In our sample, we find that out of many possible modes, only two were motion motifs: synchronized parallel torso motion in which the participants swayed from side to side in sync, and still segments where neither person moved. We find evidence of dyad individuality in the use of motion modes. For a randomly selected subset of 5 dyads, this individuality was maintained for at least 6 months. The present approach to simplify complex motion data and to define motion motifs may be used to understand other joint tasks and interactions. The analysis tools developed here and the motion dataset are publicly available. PMID:28141861

  7. A reduced-dimensionality approach to uncovering dyadic modes of body motion in conversations.

    Directory of Open Access Journals (Sweden)

    Guy Gaziv

    Full Text Available Face-to-face conversations are central to human communication and a fascinating example of joint action. Beyond verbal content, one of the primary ways in which information is conveyed in conversations is body language. Body motion in natural conversations has been difficult to study precisely due to the large number of coordinates at play. There is need for fresh approaches to analyze and understand the data, in order to ask whether dyads show basic building blocks of coupled motion. Here we present a method for analyzing body motion during joint action using depth-sensing cameras, and use it to analyze a sample of scientific conversations. Our method consists of three steps: defining modes of body motion of individual participants, defining dyadic modes made of combinations of these individual modes, and lastly defining motion motifs as dyadic modes that occur significantly more often than expected given the single-person motion statistics. As a proof-of-concept, we analyze the motion of 12 dyads of scientists measured using two Microsoft Kinect cameras. In our sample, we find that out of many possible modes, only two were motion motifs: synchronized parallel torso motion in which the participants swayed from side to side in sync, and still segments where neither person moved. We find evidence of dyad individuality in the use of motion modes. For a randomly selected subset of 5 dyads, this individuality was maintained for at least 6 months. The present approach to simplify complex motion data and to define motion motifs may be used to understand other joint tasks and interactions. The analysis tools developed here and the motion dataset are publicly available.

  8. Dynamics of 3D isolated thermal filaments

    CERN Document Server

    Walkden, N R; Militello, F; Omotani, J T

    2016-01-01

    Simulations have been carried out to establish how electron thermal physics, introduced in the form of a dynamic electron temperature, affects isolated filament motion and dynamics in 3D. It is found that thermal effects impact filament motion in two major ways when the filament has a significant temperature perturbation compared to its density perturbation: They lead to a strong increase in filament propagation in the bi-normal direction and a significant decrease in net radial propagation. Both effects arise from the temperature dependence of the sheath current which leads to a non-uniform floating potential, with the latter effect supplemented by faster pressure loss. The reduction in radial velocity can only occur when the filament cross-section loses angular symmetry. The behaviour is observed across different filament sizes and suggests that filaments with much larger temperature perturbations than density perturbations are more strongly confined to the near SOL region.

  9. Random thoughts

    Science.gov (United States)

    ajansen; kwhitefoot; panteltje1; edprochak; sudhakar, the

    2014-07-01

    In reply to the physicsworld.com news story “How to make a quantum random-number generator from a mobile phone” (16 May, http://ow.ly/xFiYc, see also p5), which describes a way of delivering random numbers by counting the number of photons that impinge on each of the individual pixels in the camera of a Nokia N9 smartphone.

  10. The reliability of echocardiographic left ventricular wall motion index to identify high-risk patients for multicenter studies

    DEFF Research Database (Denmark)

    Gislason, Gunnar H; Gadsbøll, Niels; Quinones, Miguel A

    2006-01-01

    OBJECTIVE: To study whether the use of echocardiographic left ventricular (LV) wall motion index (WMI) is a dependable parameter for identifying patients with LV dysfunction to be enrolled in multicenter trials. METHODS: Videotaped echocardiographic examinations from 200 randomly selected patient...

  11. Quantification of renal and diaphragmatic interfractional motion in pediatric image-guided radiation therapy: A multicenter study

    NARCIS (Netherlands)

    Huijskens, S.C.; Dijk, I.W. van; Jong, R. de; Visser, J.; Fajardo, R.D.; Ronckers, C.M.; Janssens, G.O.R.J.; Maduro, J.H.; Rasch, C.R.; Alderliesten, T.; Bel, A.

    2015-01-01

    BACKGROUND AND PURPOSE: To quantify renal and diaphragmatic interfractional motion in order to estimate systematic and random errors, and to investigate the correlation between interfractional motion and patient-specific factors. MATERIAL AND METHODS: We used 527 retrospective abdominal-thoracic

  12. Quantification of renal and diaphragmatic interfractional motion in pediatric image-guided radiation therapy: A multicenter study

    NARCIS (Netherlands)

    Huijskens, Sophie C.; van Dijk, Irma W. E. M.; de Jong, Rianne; Visser, Jorrit; Fajardo, Raquel Dávila; Ronckers, Cécile M.; Janssens, Geert O. R. J.; Maduro, John H.; Rasch, Coen R. N.; Alderliesten, Tanja; Bel, Arjan

    2015-01-01

    To quantify renal and diaphragmatic interfractional motion in order to estimate systematic and random errors, and to investigate the correlation between interfractional motion and patient-specific factors. We used 527 retrospective abdominal-thoracic cone beam CT scans of 39 childhood cancer

  13. Robot Motion and Control 2011

    CERN Document Server

    2012-01-01

    Robot Motion Control 2011 presents very recent results in robot motion and control. Forty short papers have been chosen from those presented at the sixth International Workshop on Robot Motion and Control held in Poland in June 2011. The authors of these papers have been carefully selected and represent leading institutions in this field. The following recent developments are discussed: • Design of trajectory planning schemes for holonomic and nonholonomic systems with optimization of energy, torque limitations and other factors. • New control algorithms for industrial robots, nonholonomic systems and legged robots. • Different applications of robotic systems in industry and everyday life, like medicine, education, entertainment and others. • Multiagent systems consisting of mobile and flying robots with their applications The book is suitable for graduate students of automation and robotics, informatics and management, mechatronics, electronics and production engineering systems as well as scientists...

  14. Methods for Structure from Motion

    DEFF Research Database (Denmark)

    Aanæs, Henrik

    2003-01-01

    Structure from motion, the problem of estimating 3D structure from 2D images hereof, is one of the most popular and well studied problems within computer vision. In part because it is academically interesting, but also because it holds a wealth of commercially very interesting prospects, e.......g. within entertainment, reverse engineering and architecture. This thesis is a study within this area of structure from motion. The result of the work, which this thesis represents is the development of new methods for addressing some of the problems within the field. Mainly in robustifying...... the factorization approach, relaxing the rigidity constrains, and in considering alternative ways of solving the surface estimation problem. In Danish: Structure from motion problematikken beskæftiger sig med at estimere 3D struktur fra 2D afbildninger heraf. Denne problemstilling er en af de mest populære og...

  15. Alpha motion based on a motion detector, but not on the Müller-Lyer illusion

    Science.gov (United States)

    Suzuki, Masahiro

    2014-07-01

    This study examined the mechanism of alpha motion, the apparent motion of the Müller-Lyer figure's shaft that occurs when the arrowheads and arrow tails are alternately presented. The following facts were found: (a) reduced exposure duration decreased the amount of alpha motion, and this phenomenon was not explainable by the amount of the Müller-Lyer illusion; (b) the motion aftereffect occurred after adaptation to alpha motion; (c) occurrence of alpha motion became difficult when the temporal frequency increased, and this characteristic of alpha motion was similar to the characteristic of a motion detector that motion detection became difficult when the temporal frequency increased from the optimal frequency. These findings indicated that alpha motion occurs on the basis of a motion detector but not on the Müller-Lyer illusion, and that the mechanism of alpha motion is the same as that of general motion perception.

  16. Motion Verbs in Learner Corpora

    Directory of Open Access Journals (Sweden)

    M. Pınar BABANOĞLU

    2018-01-01

    Full Text Available Motions verbs differ across languages in respect of spatial relations and syntactic/semantic conceptualization. Languages have two typological groups for motion events: (a verb-framed languages in which the main verb expresses the core information of the path of movement, and the manner information is expressed in a subordinate structure (e.g. a gerundive and (b satellite-framed languages where the main verb expresses information about manner of movement and a subordinate satellite element (e.g., a verb particle to the verb conveys the path of movement (Talmy, 1985; Chen & Guo, 2009. In this corpus-based study, two learner corpora from two different native languages as Turkish as a verb-framed language and German as satellite-framed language are investigated in terms of motion verbs in English like move, fly, walk, go via frequency and statistical analysis for corpora comparison. The purpose of the study is to find out whether there is a statistical difference in the use of motion verbs by Turkish (as a verb-framed L1 and German (as a satellite-framed L1 learners in due of cross-linguistic difference between Turkish and German which may be a factor that influence learners essay writing in English (as a satellite-framed L2 in the use of motion verbs. Results indicated that German learners of English use especially manner of motion verbs in English statistically more frequent and lexically more diverse in their essays than Turkish learners of English.

  17. Quantitative assessment of human motion using video motion analysis

    Science.gov (United States)

    Probe, John D.

    1993-01-01

    In the study of the dynamics and kinematics of the human body a wide variety of technologies has been developed. Photogrammetric techniques are well documented and are known to provide reliable positional data from recorded images. Often these techniques are used in conjunction with cinematography and videography for analysis of planar motion, and to a lesser degree three-dimensional motion. Cinematography has been the most widely used medium for movement analysis. Excessive operating costs and the lag time required for film development, coupled with recent advances in video technology, have allowed video based motion analysis systems to emerge as a cost effective method of collecting and analyzing human movement. The Anthropometric and Biomechanics Lab at Johnson Space Center utilizes the video based Ariel Performance Analysis System (APAS) to develop data on shirtsleeved and space-suited human performance in order to plan efficient on-orbit intravehicular and extravehicular activities. APAS is a fully integrated system of hardware and software for biomechanics and the analysis of human performance and generalized motion measurement. Major components of the complete system include the video system, the AT compatible computer, and the proprietary software.

  18. Roll motion stimuli : sensory conflict, perceptual weighting and motion sickness

    NARCIS (Netherlands)

    Graaf, B. de; Bles, W.; Bos, J.E.

    1998-01-01

    In an experiment with seventeen subjects interactions of visual roll motion stimuli and vestibular body tilt stimuli were examined in determining the subjective vertical. Interindi-vidual differences in weighting the visual information were observed, but in general visual and vestibular responses

  19. A Motion Aftereffect from Visual Imagery of Motion

    Science.gov (United States)

    Winawer, Jonathan; Huk, Alexander C.; Boroditsky, Lera

    2010-01-01

    Mental imagery is thought to share properties with perception. To what extent does the process of imagining a scene share neural circuits and computational mechanisms with actually perceiving the same scene? Here, we investigated whether mental imagery of motion in a particular direction recruits neural circuits tuned to the same direction of…

  20. Contribution of Visuospatial and motion-tracking to invisible motion

    Directory of Open Access Journals (Sweden)

    Luca Battaglini

    2016-09-01

    Full Text Available People experience an object’s motion even when it is occluded. We investigate the processing of invisible motion in three experiments. Observers saw a moving circle passing behind an invisible, irregular hendecagonal polygon and had to respond as quickly as possible when the target had just reappeared from behind the occluder. Without explicit cues allowing the end of each of the eight hidden trajectories to be predicted (length ranging between 4.7 and 5 deg, we found as expected, if visuospatial attention was involved, anticipation errors, providing that information on pre-occluder motion was available. This indicates that the observers, rather than simply responding when they saw the target, tended to anticipate its reappearance (Experiment 1. The new finding is that, with a fixation mark indicating the centre of the invisible trajectory, a linear relationship between the physical and judged occlusion duration is found, but not without it (Experiment 2 or with a fixation mark varying in position from trial to trial (Experiment 3. We interpret the role of central fixation in the differences in distinguishing trajectories smaller than 0.3 deg, by suggesting that it reflects spatiotemporal computation and motion-tracking. These two mechanisms allow visual imagery to form of the point symmetrical to that of the disappearance, with respect to fixation, and then for the occluded moving target to be tracked up to this point.

  1. Contribution of Visuospatial and Motion-Tracking to Invisible Motion.

    Science.gov (United States)

    Battaglini, Luca; Casco, Clara

    2016-01-01

    People experience an object's motion even when it is occluded. We investigate the processing of invisible motion in three experiments. Observers saw a moving circle passing behind an invisible, irregular hendecagonal polygon and had to respond as quickly as possible when the target had "just reappeared" from behind the occluder. Without explicit cues allowing the end of each of the eight hidden trajectories to be predicted (length ranging between 4.7 and 5 deg), we found as expected, if visuospatial attention was involved, anticipation errors, providing that information on pre-occluder motion was available. This indicates that the observers, rather than simply responding when they saw the target, tended to anticipate its reappearance (Experiment 1). The new finding is that, with a fixation mark indicating the center of the invisible trajectory, a linear relationship between the physical and judged occlusion duration is found, but not without it (Experiment 2) or with a fixation mark varying in position from trial to trial (Experiment 3). We interpret the role of central fixation in the differences in distinguishing trajectories smaller than 0.3 deg, by suggesting that it reflects spatiotemporal computation and motion-tracking. These two mechanisms allow visual imagery to form of the point symmetrical to that of the disappearance, with respect to fixation, and then for the occluded moving target to be tracked up to this point.

  2. Motion Model Employment using interacting Motion Model Algorithm

    DEFF Research Database (Denmark)

    Hussain, Dil Muhammad Akbar

    2006-01-01

    The paper presents a simulation study to track a maneuvering target using a selective approach in choosing Interacting Multiple Models (IMM) algorithm to provide a wider coverage to track such targets.  Initially, there are two motion models in the system to track a target.  Probability of each...

  3. Biological Motion Perception in Autism

    Directory of Open Access Journals (Sweden)

    J Cusack

    2011-04-01

    Full Text Available Typically developing adults can readily recognize human actions, even when conveyed to them via point-like markers placed on the body of the actor (Johansson, 1973. Previous research has suggested that children affected by autism spectrum disorder (ASD are not equally sensitive to this type of visual information (Blake et al, 2003, but it remains unknown why ASD would impact the ability to perceive biological motion. We present evidence which looks at how adolescents and adults with autism are affected by specific factors which are important in biological motion perception, such as (eg, inter-agent synchronicity, upright/inverted, etc.

  4. Wave motion in elastic solids

    CERN Document Server

    Graff, Karl F

    1991-01-01

    This highly useful textbook presents comprehensive intermediate-level coverage of nearly all major topics of elastic wave propagation in solids. The subjects range from the elementary theory of waves and vibrations in strings to the three-dimensional theory of waves in thick plates. The book is designed not only for a wide audience of engineering students, but also as a general reference for workers in vibrations and acoustics. Chapters 1-4 cover wave motion in the simple structural shapes, namely strings, longitudinal rod motion, beams and membranes, plates and (cylindrical) shells. Chapter

  5. Free quantum motion exactly equals sub-quantum ballistic diffusion

    CERN Document Server

    Groessing, Gerhard; Pascasio, Johannes Mesa; Schwabl, Herbert

    2010-01-01

    By modelling quantum systems with the aid of (classical) non-equilibrium thermodynamics, the quantum mechanical "decay of the wave packet" is shown to simply result from sub-quantum diffusion with a specific diffusion coefficient varying in time due to a particle's changing thermal environment. It is thereby proven that free quantum motion strictly equals ballistic diffusion on the sub-quantum level. The exact quantum mechanical trajectory distributions and the velocity field of the Gaussian wave packet are thus derived solely from classical physics. Moreover, also quantum motion in a linear (e.g., gravitational) potential is shown to equal said sub-quantum ballistic diffusion. Quantitative statements on the trajectories' characteristic behaviour are obtained which cannot be formulated in any other existing model for quantum systems.

  6. Brownian motion of massive skyrmions in magnetic thin films

    Energy Technology Data Exchange (ETDEWEB)

    Troncoso, Roberto E., E-mail: r.troncoso.c@gmail.com [Centro para el Desarrollo de la Nanociencia y la Nanotecnología, CEDENNA, Avda. Ecuador 3493, Santiago 9170124 (Chile); Núñez, Álvaro S., E-mail: alnunez@dfi.uchile.cl [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Casilla 487-3, Santiago (Chile)

    2014-12-15

    We report on the thermal effects on the motion of current-driven massive magnetic skyrmions. The reduced equation for the motion of skyrmion has the form of a stochastic generalized Thiele’s equation. We propose an ansatz for the magnetization texture of a non-rigid single skyrmion that depends linearly with the velocity. By using this ansatz it is found that the skyrmion mass tensor is closely related to intrinsic skyrmion parameters, such as Gilbert damping, skyrmion-charge and dissipative force. We have found an exact expression for the average drift velocity as well as the mean-square velocity of the skyrmion. The longitudinal and transverse mobility of skyrmions for small spin-velocity of electrons is also determined and found to be independent of the skyrmion mass.

  7. The law of a stochastic integral with two independent fractional Brownian motions

    OpenAIRE

    Bardina, Xavier; Tudor, Ciprian

    2007-01-01

    Using the tools of the stochastic integration with respect to the fractional Brownian motion, we obtain the expression of the characteristic function of the random variable $\\int_{0}^{1}B^{\\alpha }_{s}dB^{H}_{s}$ where $B^{\\alpha }$ and $B^{H}$ are two independent fractional Brownian motions with Hurst parameters $\\alpha\\in(0,1) $ and $H>\\frac12$ respectively. The two-parameter case is also considered.

  8. Two-Arm Flexible Thermal Strap

    Science.gov (United States)

    Urquiza, Eugenio; Vasquez, Cristal; Rodriquez, Jose I.; Leland, Robert S.; VanGorp, Byron E.

    2011-01-01

    Airborne and space infrared cameras require highly flexible direct cooling of mechanically-sensitive focal planes. A thermal electric cooler is often used together with a thermal strap as a means to transport the thermal energy removed from the infrared detector. While effective, traditional thermal straps are only truly flexible in one direction. In this scenario, a cooling solution must be highly conductive, lightweight, able to operate within a vacuum, and highly flexible in all axes to accommodate adjustment of the focal plane while transmitting minimal force. A two-armed thermal strap using three end pieces and a twisted section offers enhanced elastic movement, significantly beyond the motion permitted by existing thermal straps. This design innovation allows for large elastic displacements in two planes and moderate elasticity in the third plane. By contrast, a more conventional strap of the same conductance offers less flexibility and asymmetrical elasticity. The two-arm configuration reduces the bending moment of inertia for a given conductance by creating the same cross-sectional area for thermal conduction, but with only half the thickness. This reduction in the thickness has a significant effect on the flexibility since there is a cubic relationship between the thickness and the rigidity or bending moment of inertia. The novelty of the technology lies in the mechanical design and manufacturing of the thermal strap. The enhanced flexibility will facilitate cooling of mechanically sensitive components (example: optical focal planes). This development is a significant contribution to the thermal cooling of optics. It is known to be especially important in the thermal control of optical focal planes due to their highly sensitive alignment requirements and mechanical sensitivity; however, many other applications exist including the cooling of gimbal-mounted components.

  9. Seasonal thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Allen, R.D.; Kannberg, L.D.; Raymond, J.R.

    1984-05-01

    This report describes the following: (1) the US Department of Energy Seasonal Thermal Energy Storage Program, (2) aquifer thermal energy storage technology, (3) alternative STES technology, (4) foreign studies in seasonal thermal energy storage, and (5) economic assessment.

  10. Effects of slow and accelerated rehabilitation protocols on range of motion after arthroscopic rotator cuff repair.

    Science.gov (United States)

    Düzgün, İrem; Baltacı, Gül; Turgut, Elif; Atay, O Ahmet

    2014-01-01

    The aim of the study was to investigate the effects of the early initiation of passive and active range of motion exercises following arthroscopic rotator cuff repair. The study included 40 patients who underwent arthroscopic rotator cuff repair. Patients were quasi-randomly assigned into accelerated (ACCEL) protocol (n=19) and slow (SLOW) protocol (n=21) groups. Patients in both groups were treated with the same protocol. Active range of motion was begun at the 3rd week in the ACCEL group and the 6th week in the SLOW group. Range of motion was recorded at postoperative weeks 3, 5, 8, 12, and 24. While active range of motion for all measurements improved across weeks, there were no differences between groups, with the exception of active total elevation which was greater at all time point measurements in the ACCEL group (protator cuff repairs does not appear to affect range of motion in the first 6 postoperative months.

  11. Universal randomness

    Energy Technology Data Exchange (ETDEWEB)

    Dotsenko, Viktor S [Landau Institute for Theoretical Physics, Russian Academy of Sciences, Moscow (Russian Federation)

    2011-03-31

    In the last two decades, it has been established that a single universal probability distribution function, known as the Tracy-Widom (TW) distribution, in many cases provides a macroscopic-level description of the statistical properties of microscopically different systems, including both purely mathematical ones, such as increasing subsequences in random permutations, and quite physical ones, such as directed polymers in random media or polynuclear crystal growth. In the first part of this review, we use a number of models to examine this phenomenon at a simple qualitative level and then consider the exact solution for one-dimensional directed polymers in a random environment, showing that free energy fluctuations in such a system are described by the universal TW distribution. The second part provides detailed appendix material containing the necessary mathematical background for the first part. (reviews of topical problems)

  12. Fundamentals of Thermal Expansion and Thermal Contraction

    OpenAIRE

    Liu, Zi-Kui; Shang, Shun-Li; Wang, Yi

    2017-01-01

    Thermal expansion is an important property of substances. Its theoretical prediction has been challenging, particularly in cases the volume decreases with temperature, i.e., thermal contraction or negative thermal expansion at high temperatures. In this paper, a new theory recently developed by the authors has been reviewed and further examined in the framework of fundamental thermodynamics and statistical mechanics. Its applications to cerium with colossal thermal expansion and Fe3Pt with th...

  13. An Experiment on Projectile Motion

    Indian Academy of Sciences (India)

    IAS Admin

    reading is taken, the reset switch is pressed for taking the next reading. The photogates (attached to launcher and the contact sensor pad) are connected to the microcontroller through USB ports. The timer can also be used in simple pendulum and free fall experiments. In this article, only the projectile motion experiment.

  14. Projectile Motion Gets the Hose

    Science.gov (United States)

    Goff, John Eric; Liyanage, Chinthaka

    2011-01-01

    Students take a weekly quiz in our introductory physics course. During the week in which material focused on projectile motion, we not-so-subtly suggested what problem the students would see on the quiz. The quiz problem was an almost exact replica of a homework problem we worked through in the class preceding the quiz. The goal of the problem is…

  15. Novice Rules for Projectile Motion.

    Science.gov (United States)

    Maloney, David P.

    1988-01-01

    Investigates several aspects of undergraduate students' rules for projectile motion including general patterns; rules for questions about time, distance, solids and liquids; and changes in rules when asked to ignore air resistance. Reports approach differences by sex and high school physics experience, and that novice rules are situation…

  16. Kaleidoscopic motion and velocity illusions

    NARCIS (Netherlands)

    Helm, P.A. van der

    2007-01-01

    A novel class of vivid motion and velocity illusions for contrast-defined shapes is presented and discussed. The illusions concern a starlike wheel that, physically, rotates with constant velocity between stationary starlike inner and outer shapes but that, perceptually, shows pulsations, jolts

  17. Molecular motion in restricted geometries

    Indian Academy of Sciences (India)

    industry as molecular sieves and catalysts. Both the catalytic as well as the sieving applications of the zeolites depend upon the diffusivities of the ... alkyl chains in monolayer-protected metal clusters, which exhibit reverse confine- ment in the sense that the confining media is in motion in contrast to the confined clusters, are ...

  18. Toward a Syntax of Motion.

    Science.gov (United States)

    Kaha, C. W.

    1993-01-01

    Argues that the current popular negative critique of television, if examined carefully, reveals fundamental confusions concerning how print and television communicate information. Discusses the syntax of motion which distinguishes television from print, based on movement in space--a space that is both visual and acoustic. (SR)

  19. Action Recognition using Motion Primitives

    DEFF Research Database (Denmark)

    Moeslund, Thomas B.; Fihl, Preben; Holte, Michael Boelstoft

    the actions as a sequence of temporal isolated instances, denoted primitives. These primitives are each defined by four features extracted from motion images. The primitives are recognized in each frame based on a trained classifier resulting in a sequence of primitives. From this sequence we recognize...

  20. Rolling motion in moving droplets

    Indian Academy of Sciences (India)

    We quantify the contribution of rolling motion for any intermediate shape, and recently obtained a universal curve for the amount of ... limits are well studied, intermediate contact angles are studied much less. They are harder to analyse as ..... This is the strain rate tensor in the principal coordinates, which represents the total ...

  1. Pendulum Motion and Differential Equations

    Science.gov (United States)

    Reid, Thomas F.; King, Stephen C.

    2009-01-01

    A common example of real-world motion that can be modeled by a differential equation, and one easily understood by the student, is the simple pendulum. Simplifying assumptions are necessary for closed-form solutions to exist, and frequently there is little discussion of the impact if those assumptions are not met. This article presents a…

  2. Broadband Synthetic Ground Motion Records

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The dataset contains broadband synthetic ground motion records for three events: 1) 1994 M6.7 Northridge, CA, 2) 1989 M7.0 Loma Prieta, CA, and 3) 1999 M7.5 Izmit,...

  3. Motion Primitives for Action Recognition

    DEFF Research Database (Denmark)

    Fihl, Preben; Holte, Michael Boelstoft; Moeslund, Thomas B.

    2007-01-01

    the actions as a sequence of temporal isolated instances, denoted primitives. These primitives are each defined by four features extracted from motion images. The primitives are recognized in each frame based on a trained classifier resulting in a sequence of primitives. From this sequence we recognize...

  4. Motion psychophysics: 1985-2010.

    Science.gov (United States)

    Burr, David; Thompson, Peter

    2011-07-01

    This review traces progress made in the field of visual motion research from 1985 through to 2010. While it is certainly not exhaustive, it attempts to cover most of the major achievements during that period, and speculate on where the field is heading. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Motion capture in educational robotics

    Science.gov (United States)

    Gajniyarov, Igor; Obabkov, Ilya; Khlebnikov, Nikolai

    2017-09-01

    The learning of a basic task is based on traditional classroom instruction with qualitative assessment and observation. Introduction of individualized tutorials with integrated behavioral-based evaluation techniques could significantly accelerate skill acquisition. The main idea is to provide correct behavior feedback during the process of skill acquisition but isn't by the result only. It is possible by special motion capture suit.

  6. Storyboard dalam Pembuatan Motion Graphic

    Directory of Open Access Journals (Sweden)

    Satrya Mahardhika

    2013-10-01

    Full Text Available Motion graphics is one category in the animation that makes animation with lots of design elements in each component. Motion graphics needs long process including preproduction, production, and postproduction. Preproduction has an important role so that the next stage may provide guidance or instructions for the production process or the animation process. Preproduction includes research, making the story, script, screenplay, character, environment design and storyboards. The storyboard will be determined through camera angles, blocking, sets, and many supporting roles involved in a scene. Storyboard is also useful as a production reference in recording or taping each scene in sequence or as an efficient priority. The example used is an ad creation using motion graphic animation storyboard which has an important role as a blueprint for every scene and giving instructions to make the transition movement, layout, blocking, and defining camera movement that everything should be done periodically in animation production. Planning before making the animation or motion graphic will make the job more organized, presentable, and more efficient in the process.  

  7. Faraday's Law and Seawater Motion

    Science.gov (United States)

    De Luca, R.

    2010-01-01

    Using Faraday's law, one can illustrate how an electromotive force generator, directly utilizing seawater motion, works. The conceptual device proposed is rather simple in its components and can be built in any high school or college laboratory. The description of the way in which the device generates an electromotive force can be instructive not…

  8. Evaluering af Marmormolen in motion

    DEFF Research Database (Denmark)

    Schultz, Casper Siebken; Jørgensen, Kirsten

    Denne rapport udgør proces- og resultatevaluering for sundhedsfremmeprojektet Marmormolen in Motion (MMIM), der er gennemført med støtte fra Fonden for Forebyggelse og Fastholdelse. MMIM er udført blandt timelønnede i anlægs- og nedrivningsbranchen med Per Aarsleff A/S (Aarsleff) som projektejer i...

  9. Smoothing of respiratory motion traces for motion-compensated radiotherapy.

    Science.gov (United States)

    Ernst, Floris; Schlaefer, Alexander; Schweikard, Achim

    2010-01-01

    The CyberKnife system has been used successfully for several years to radiosurgically treat tumors without the need for stereotactic fixation or sedation of the patient. It has been shown that tumor motion in the lung, liver, and pancreas can be tracked with acceptable accuracy and repeatability. However, highly precise targeting for tumors in the lower abdomen, especially for tumors which exhibit strong motion, remains problematic. Reasons for this are manifold, like the slow tracking system operating at 26.5 Hz, and using the signal from the tracking camera "as is." Since the motion recorded with the camera is used to compensate for system latency by prediction and the predicted signal is subsequently used to infer the tumor position from a correlation model based on x-ray imaging of gold fiducials around the tumor, camera noise directly influences the targeting accuracy. The goal of this work is to establish the suitability of a new smoothing method for respiratory motion traces used in motion-compensated radiotherapy. The authors endeavor to show that better prediction--With a lower rms error of the predicted signal--and/or smoother prediction is possible using this method. The authors evaluated six commercially available tracking systems (NDI Aurora, PolarisClassic, Polaris Vicra, MicronTracker2 H40, FP5000, and accuTrack compact). The authors first tracked markers both stationary and while in motion to establish the systems' noise characteristics. Then the authors applied a smoothing method based on the a trous wavelet decomposition to reduce the devices' noise level. Additionally, the smoothed signal of the moving target and a motion trace from actual human respiratory motion were subjected to prediction using the MULIN and the nLMS2 algorithms. The authors established that the noise distribution for a static target is Gaussian and that when the probe is moved such as to mimic human respiration, it remains Gaussian with the exception of the FP5000 and the

  10. Motion onset does not capture attention when subsequent motion is "smooth".

    Science.gov (United States)

    Sunny, Meera Mary; von Mühlenen, Adrian

    2011-12-01

    Previous research on the attentional effects of moving objects has shown that motion per se does not capture attention. However, in later studies it was argued that the onset of motion does capture attention. Here, we show that this motion-onset effect critically depends on motion jerkiness--that is, the rate at which the moving stimulus is refreshed. Experiment 1 used search displays with a static, a motion-onset, and an abrupt-onset stimulus, while systematically varying the refresh rate of the moving stimulus. The results showed that motion onset only captures attention when subsequent motion is jerky (8 and 17 Hz), not when it is smooth (33 and 100 Hz). Experiment 2 replaced motion onset with continuous motion, showing that motion jerkiness does not affect how continuous motion is processed. These findings do not support accounts that assume a special role for motion onset, but they are in line with the more general unique-event account.

  11. Random triangles

    OpenAIRE

    Matula, Dominik

    2013-01-01

    The author summarizes some previous results concerning random triangles. He describes the Gaussian triangle and random triangles whose vertices lie in a unit n-dimensional ball, in a rectangle or in a general bounded convex set. In the second part, the author deals with an inscribed triangle in a triangle - let ABC be an equilateral triangle and let M, N, O be three points, each laying on one side of the ABC. We call MNO inscribed triangle (in an equi- laterral triangle). The median triangle ...

  12. Random matrices

    CERN Document Server

    Mehta, Madan Lal

    1990-01-01

    Since the publication of Random Matrices (Academic Press, 1967) so many new results have emerged both in theory and in applications, that this edition is almost completely revised to reflect the developments. For example, the theory of matrices with quaternion elements was developed to compute certain multiple integrals, and the inverse scattering theory was used to derive asymptotic results. The discovery of Selberg's 1944 paper on a multiple integral also gave rise to hundreds of recent publications. This book presents a coherent and detailed analytical treatment of random matrices, leading

  13. Time-Lapse and Slow-Motion Tracking of Temperature Changes: Response Time of a Thermometer

    Science.gov (United States)

    Moggio, L.; Onorato, P.; Gratton, L. M.; Oss, S.

    2017-01-01

    We propose the use of a smartphone based time-lapse and slow-motion video techniques together with tracking analysis as valuable tools for investigating thermal processes such as the response time of a thermometer. The two simple experimental activities presented here, suitable also for high school and undergraduate students, allow one to measure…

  14. Noise Assisted Directed Motion at the Molecular Level - 1 -R-ES ...

    Indian Academy of Sciences (India)

    (1). This is the Langevin equation of motion. Here the nature of fluctuating forces needs to be specified. ~(t) arises out of collisions of constituent microscopic particles, of the medium. (reservoir) in thermal equilibrium, with the macroscopic particle. The velocities (or kinetic energies) of the microscopic particles must follow the ...

  15. Aging affects postural tracking of complex visual motion cues.

    Science.gov (United States)

    Sotirakis, H; Kyvelidou, A; Mademli, L; Stergiou, N; Hatzitaki, V

    2016-09-01

    Postural tracking of visual motion cues improves perception-action coupling in aging, yet the nature of the visual cues to be tracked is critical for the efficacy of such a paradigm. We investigated how well healthy older (72.45 ± 4.72 years) and young (22.98 ± 2.9 years) adults can follow with their gaze and posture horizontally moving visual target cues of different degree of complexity. Participants tracked continuously for 120 s the motion of a visual target (dot) that oscillated in three different patterns: a simple periodic (simulated by a sine), a more complex (simulated by the Lorenz attractor that is deterministic displaying mathematical chaos) and an ultra-complex random (simulated by surrogating the Lorenz attractor) pattern. The degree of coupling between performance (posture and gaze) and the target motion was quantified in the spectral coherence, gain, phase and cross-approximate entropy (cross-ApEn) between signals. Sway-target coherence decreased as a function of target complexity and was lower for the older compared to the young participants when tracking the chaotic target. On the other hand, gaze-target coherence was not affected by either target complexity or age. Yet, a lower cross-ApEn value when tracking the chaotic stimulus motion revealed a more synchronous gaze-target relationship for both age groups. Results suggest limitations in online visuo-motor processing of complex motion cues and a less efficient exploitation of the body sway dynamics with age. Complex visual motion cues may provide a suitable training stimulus to improve visuo-motor integration and restore sway variability in older adults.

  16. Distinct neural correlates of attending speed vs. coherence of motion.

    Science.gov (United States)

    Kau, S; Strumpf, H; Merkel, C; Stoppel, C M; Heinze, H-J; Hopf, J-M; Schoenfeld, M A

    2013-01-01

    Attention to specific features of moving visual stimuli modulates the activity in human cortical motion sensitive areas. In this study we employed combined event-related electrophysiological, magnetencephalographic (EEG, MEG) and hemodynamic functional magnetic resonance imaging (fMRI) measures of brain activity to investigate the precise time course and the neural correlates of feature-based attention to speed and coherence. Subjects were presented with an aperture of dots randomly moving either slow or fast, at the same time displaying a high or low level of coherence. The task was to attend either the speed or the coherence and press a button upon the high speed or high coherence stimulus respectively. When attention was directed to the speed of motion enhanced neural activity was found in the dorsal visual area V3a and in the IPL, areas previously shown to be specialized for motion processing. In contrast, when attention was directed to the coherence of motion significant hemodynamic activity was observed in the parietal areas fIPS and SPL that are specialized for the processing of complex motion patterns. Concurrent recordings of the event-related electro- and magnetencephalographic responses revealed that the speed-related attentional modulations of activity occurred at an earlier time range (around 240-290 ms), while the coherence-related ones occurred later (around 320-370 ms) post-stimulus. The current results suggest that the attentional selection of motion features modulates neural processing in the lowest-tier regions required to perform the task-critical discrimination. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Motion noise changes directional interaction between transparently moving stimuli from repulsion to attraction.

    Directory of Open Access Journals (Sweden)

    Jennifer L Gaudio

    Full Text Available To interpret visual scenes, visual systems need to segment or integrate multiple moving features into distinct objects or surfaces. Previous studies have found that the perceived direction separation between two transparently moving random-dot stimuli is wider than the actual direction separation. This perceptual "direction repulsion" is useful for segmenting overlapping motion vectors. Here we investigate the effects of motion noise on the directional interaction between overlapping moving stimuli. Human subjects viewed two overlapping random-dot patches moving in different directions and judged the direction separation between the two motion vectors. We found that the perceived direction separation progressively changed from wide to narrow as the level of motion noise in the stimuli was increased, showing a switch from direction repulsion to attraction (i.e. smaller than the veridical direction separation. We also found that direction attraction occurred at a wider range of direction separations than direction repulsion. The normalized effects of both direction repulsion and attraction were the strongest near the direction separation of ∼25° and declined as the direction separation further increased. These results support the idea that motion noise prompts motion integration to overcome stimulus ambiguity. Our findings provide new constraints on neural models of motion transparency and segmentation.

  18. Model and parametric uncertainty in source-based kinematic models of earthquake ground motion

    Science.gov (United States)

    Hartzell, Stephen; Frankel, Arthur; Liu, Pengcheng; Zeng, Yuehua; Rahman, Shariftur

    2011-01-01

    Four independent ground-motion simulation codes are used to model the strong ground motion for three earthquakes: 1994 Mw 6.7 Northridge, 1989 Mw 6.9 Loma Prieta, and 1999 Mw 7.5 Izmit. These 12 sets of synthetics are used to make estimates of the variability in ground-motion predictions. In addition, ground-motion predictions over a grid of sites are used to estimate parametric uncertainty for changes in rupture velocity. We find that the combined model uncertainty and random variability of the simulations is in the same range as the variability of regional empirical ground-motion data sets. The majority of the standard deviations lie between 0.5 and 0.7 natural-log units for response spectra and 0.5 and 0.8 for Fourier spectra. The estimate of model epistemic uncertainty, based on the different model predictions, lies between 0.2 and 0.4, which is about one-half of the estimates for the standard deviation of the combined model uncertainty and random variability. Parametric uncertainty, based on variation of just the average rupture velocity, is shown to be consistent in amplitude with previous estimates, showing percentage changes in ground motion from 50% to 300% when rupture velocity changes from 2.5 to 2.9 km/s. In addition, there is some evidence that mean biases can be reduced by averaging ground-motion estimates from different methods.

  19. P3-23: Center/Surround Motion Interactions Measured Using a Nulling Procedure

    Directory of Open Access Journals (Sweden)

    Soo Hyun Park

    2012-10-01

    Full Text Available Many direction-selective neurons have a receptive field structure that promotes suppressive interactions between center and surround regions. These interactions sculpt the overall pattern of activity among those neurons and, therefore, presumably impact perceived direction of motion. To test this conjecture, we have assessed the effect of motion signals produced by a moving stimulus on perceived motion within a neighboring region. On each trial a vertical bar (inducer appeared at 8 eccentricity in the upper visual field, moving either leftward or rightward, and a circular shaped random dot kinematogram (test appeared at 4 eccentricity. The test dots moved randomly except when the inducer passed nearby the test, at which time a pulse of coherent motion occurred in one of the two directions within the test. Coherence strength was adjusted by QUEST to maintain equal likelihood (point of subjective equality: PSE of leftward and rightward reports of perceived direction during this motion pulse. The inducer caused a substantial shift in PSE: it was necessary for the test to contain 50% coherent motion in the same direction as that of the inducer to nullify the illusory motion within the test caused by the inducer. The effect of the inducer could also be offset by simultaneously presenting a second inducer moving in the opposite direction. This pattern of results implies substantial suppressive interactions between neighboring moving stimuli, interactions whose strength and direction can be assessed psychophysically using nulling procedures.

  20. Identifying directional persistence in intracellular particle motion using Hidden Markov Models.

    Science.gov (United States)

    Röding, Magnus; Guo, Ming; Weitz, David A; Rudemo, Mats; Särkkä, Aila

    2014-02-01

    Particle tracking is a widely used and promising technique for elucidating complex dynamics of the living cell. The cytoplasm is an active material, in which the kinetics of intracellular structures are highly heterogeneous. Tracer particles typically undergo a combination of random motion and various types of directed motion caused by the activity of molecular motors and other non-equilibrium processes. Random switching between more and less directional persistence of motion generally occurs. We present a method for identifying states of motion with different directional persistence in individual particle trajectories. Our analysis is based on a multi-scale turning angle model to characterize motion locally, together with a Hidden Markov Model with two states representing different directional persistence. We define one of the states by the motion of particles in a reference data set where some active processes have been inhibited. We illustrate the usefulness of the method by studying transport of vesicles along microtubules and transport of nanospheres activated by myosin. We study the results using mean square displacements, durations, and particle speeds within each state. We conclude that the method provides accurate identification of states of motion with different directional persistence, with very good agreement in terms of mean-squared displacement between the reference data set and one of the states in the two-state model. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. S3-3: Misbinding of Color and Motion in Human V2 Revealed by Color-Contingent Motion Adaptation

    Directory of Open Access Journals (Sweden)

    Fang Fang

    2012-10-01

    Full Text Available Wu, Kanai, & Shimojo (2004 Nature 429 262 described a compelling illusion demonstrating a steady-state misbinding of color and motion. Here, we took advantage of the illusion and performed psychophysical and fMRI adaptation experiments to explore the neural mechanism of color-motion misbinding. The stimulus subtended 20 deg by 14 deg of visual angle and contained two sheets of random dots, one sheet moving up and the other moving down. On the upward-moving sheet, dots in the right-end area (4 deg by 14 deg were red, and the rest of the dots were green. On the downward-moving sheet, dots in the right-end area were green, and the rest of the dots were red. When subjects fixated at the center of the stimulus, they bound the color and motion of the dots in the right-end area erroneously–the red dots appeared to move downwards and the green dots appeared to move upwards. In the psychophysical experiment, we measured the color-contingent motion aftereffect in the right-end area after adaptation to the illusory stimulus. A significant aftereffect was observed as if subjects had adapted to the perceived binding of color and motion, rather than the physical binding. For example, after adaptation, stationary red dots appeared to move upwards, and stationary green dots appeared to move downwards. In the fMRI experiment, we measured direction-selective motion adaptation effects in V1, V2, V3, V4, V3A/B, and V5. Relative to other cortical areas, V2 showed a much stronger adaptation effect to the perceived motion direction (rather than the physical direction for both the red and green dots. Significantly, the fMRI adaptation effect in V2 correlated with the color-contingent motion aftereffect across twelve subjects. This study provides the first human evidence that color and motion could be misbound at a very early stage of visual processing.

  2. Opponent backgrounds reduce discrimination sensitivity to competing motions: effects of different vertical motions on horizontal motion perception.

    Science.gov (United States)

    Silva, Andrew E; Liu, Zili

    2015-08-01

    We examined the relationship between two distinct motion phenomena. First, locally balanced stimuli in which opposing motion signals are presented spatially near one another fail to cause a robust firing pattern in brain area MT. The brain's response to this motion is effectively suppressed, a phenomenon known as opponency. Second, past research has found that discrimination sensitivity to a target motion is negatively affected by a superimposed irrelevant motion signal - a process we call "perceptual suppression." In the current study, we examined how opponency affects the strength of perceptual suppression. We found unexpected results: a target motion embedded within an opponent background was harder to discriminate than a target motion embedded within a non-opponent background. We argue that this pattern of results runs contrary to the clear prediction stemming from the current understanding of the role of opponency in motion processing and tentatively offer an explanation based on recent MT physiology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Differentially Constrained Motion Planning with State Lattice Motion Primitives

    Science.gov (United States)

    2012-02-01

    particularly Cindy Glick , Sumitra Gopal, Jean Harpley, Deb Harvard, Suzanne Lyons Muth, Pamela Sellitti, Cheryl Wehrer, among others helped in so many ways to...10.1109/TSSC.1968.300136. [52] Thomas Howard. Adaptive Model-Predictive Motion Planning for Navigation in Complex Environments. PhD thesis, Carnegie...2011. doi: 10.1109/IROS.2011.6094900. [113] Mihail Pivtoraiko, Thomas Howard, Issa A.D. Nesnas, and Alonzo Kelly. Field experi- ments in rover

  4. Random field estimation approach to robot dynamics

    Science.gov (United States)

    Rodriguez, Guillermo

    1990-01-01

    The difference equations of Kalman filtering and smoothing recursively factor and invert the covariance of the output of a linear state-space system driven by a white-noise process. Here it is shown that similar recursive techniques factor and invert the inertia matrix of a multibody robot system. The random field models are based on the assumption that all of the inertial (D'Alembert) forces in the system are represented by a spatially distributed white-noise model. They are easier to describe than the models based on classical mechanics, which typically require extensive derivation and manipulation of equations of motion for complex mechanical systems. With the spatially random models, more primitive locally specified computations result in a global collective system behavior equivalent to that obtained with deterministic models. The primary goal of applying random field estimation is to provide a concise analytical foundation for solving robot control and motion planning problems.

  5. Efficacy of early controlled motion of the ankle compared with no motion after non-operative treatment of an acute Achilles tendon rupture

    DEFF Research Database (Denmark)

    Barfod, Kristoffer Weisskirchner; Hansen, Maria Swennergren; Hølmich, Per

    2016-01-01

    BACKGROUND: Early controlled ankle motion is widely used in the non-operative treatment of acute Achilles tendon rupture, though its safety and efficacy have never been investigated in a randomized setup. The objectives of this study are to investigate if early controlled motion of the ankle......-injury. Secondary outcome measures are the heel-rise work test, Achilles tendon elongation, and the rate of re-rupture. The primary analysis will be conducted as intention-to-treat analyses. DISCUSSION: This trial is the first to investigate the safety and efficacy of early controlled motion in the treatment...... of acute Achilles tendon rupture in a randomized setup. The study uses the patient-reported outcome measure, the Achilles tendon Total Rupture Score, as the primary endpoint, as it is believed to be the best surrogate measure for the tendon's actual capability to function in everyday life. TRIAL...

  6. A Motion Planning Approach to Studying Molecular Motions

    KAUST Repository

    Amato, Nancy M.

    2010-01-01

    While structurally very different, protein and RNA molecules share an important attribute. The motions they undergo are strongly related to the function they perform. For example, many diseases such as Mad Cow disease or Alzheimer\\'s disease are associated with protein misfolding and aggregation. Similarly, RNA folding velocity may regulate the plasmid copy number, and RNA folding kinetics can regulate gene expression at the translational level. Knowledge of the stability, folding, kinetics and detailed mechanics of the folding process may help provide insight into how proteins and RNAs fold. In this paper, we present an overview of our work with a computational method we have adapted from robotic motion planning to study molecular motions. We have validated against experimental data and have demonstrated that our method can capture biological results such as stochastic folding pathways, population kinetics of various conformations, and relative folding rates. Thus, our method provides both a detailed view (e.g., individual pathways) and a global view (e.g., population kinetics, relative folding rates, and reaction coordinates) of energy landscapes of both proteins and RNAs. We have validated these techniques by showing that we observe the same relative folding rates as shown in experiments for structurally similar protein molecules that exhibit different folding behaviors. Our analysis has also been able to predict the same relative gene expression rate for wild-type MS2 phage RNA and three of its mutants.

  7. Deficient biological motion perception in schizophrenia: results from a motion noise paradigm

    Science.gov (United States)

    Kim, Jejoong; Norton, Daniel; McBain, Ryan; Ongur, Dost; Chen, Yue

    2013-01-01

    Background: Schizophrenia patients exhibit deficient processing of perceptual and cognitive information. However, it is not well-understood how basic perceptual deficits contribute to higher level cognitive problems in this mental disorder. Perception of biological motion, a motion-based cognitive recognition task, relies on both basic visual motion processing and social cognitive processing, thus providing a useful paradigm to evaluate the potentially hierarchical relationship between these two levels of information processing. Methods: In this study, we designed a biological motion paradigm in which basic visual motion signals were manipulated systematically by incorporating different levels of motion noise. We measured the performances of schizophrenia patients (n = 21) and healthy controls (n = 22) in this biological motion perception task, as well as in coherent motion detection, theory of mind, and a widely used biological motion recognition task. Results: Schizophrenia patients performed the biological motion perception task with significantly lower accuracy than healthy controls when perceptual signals were moderately degraded by noise. A more substantial degradation of perceptual signals, through using additional noise, impaired biological motion perception in both groups. Performance levels on biological motion recognition, coherent motion detection and theory of mind tasks were also reduced in patients. Conclusion: The results from the motion-noise biological motion paradigm indicate that in the presence of visual motion noise, the processing of biological motion information in schizophrenia is deficient. Combined with the results of poor basic visual motion perception (coherent motion task) and biological motion recognition, the association between basic motion signals and biological motion perception suggests a need to incorporate the improvement of visual motion perception in social cognitive remediation. PMID:23847566

  8. Deficient Biological Motion Perception in Schizophrenia: Results from a Motion Noise Paradigm

    Directory of Open Access Journals (Sweden)

    Jejoong eKim

    2013-07-01

    Full Text Available Background: Schizophrenia patients exhibit deficient processing of perceptual and cognitive information. However, it is not well understood how basic perceptual deficits contribute to higher level cognitive problems in this mental disorder. Perception of biological motion, a motion-based cognitive recognition task, relies on both basic visual motion processing and social cognitive processing, thus providing a useful paradigm to evaluate the potentially hierarchical relationship between these two levels of information processing. Methods: In this study, we designed a biological motion paradigm in which basic visual motion signals were manipulated systematically by incorporating different levels of motion noise. We measured the performances of schizophrenia patients (n=21 and healthy controls (n=22 in this biological motion perception task, as well as in coherent motion detection, theory of mind, and a widely used biological motion recognition task. Results: Schizophrenia patients performed the biological motion perception task with significantly lower accuracy than healthy controls when perceptual signals were moderately degraded by noise. A more substantial degradation of perceptual signals, through using additional noise, impaired biological motion perception in both groups. Performance levels on biological motion recognition, coherent motion detection and theory of mind tasks were also reduced in patients. Conclusion: The results from the motion-noise biological motion paradigm indicate that in the presence of visual motion noise, the processing of biological motion information in schizophrenia is deficient. Combined with the results of poor basic visual motion perception (coherent motion task and biological motion recognition, the association between basic motion signals and biological motion perception suggests a need to incorporate the improvement of visual motion perception in social cognitive remediation.

  9. Gravitational Motions in a Large Subtropical Reservoir

    Science.gov (United States)

    Marti, C. L.; Imberger, J.

    2015-12-01

    Subtropical lakes and reservoirs are characterized by a definite, but moderate vertical thermal stratification, so that vertical mixing is the result of a balance between the surface buoyancy flux and wind stirring and horizontal exchanges are the result of a series of gravitational motions: differential mixing, cooling, heating, and absorption. Here we report on two field experiments carried out in Lake Argyle, Australia's second largest artificial lake by volume, in May 2012 and November 2013 that illustrate the delicate balance that exists in subtropical lakes between buoyancy and inertia and how this balance interacts with the resident biology. The field experiments were conducted using a state-of-the-art real-time field technology that allows instant comparison of field data and 3D numerical modelling results of all physical variables at micro and fine scales and phytoplankton concentration at the group level. The results demonstrate that subtropical lakes present special opportunities and challenges for mitigation of water quality problems in face of global warming.

  10. Thermodynamics of random number generation

    Science.gov (United States)

    Aghamohammadi, Cina; Crutchfield, James P.

    2017-06-01

    We analyze the thermodynamic costs of the three main approaches to generating random numbers via the recently introduced Information Processing Second Law. Given access to a specified source of randomness, a random number generator (RNG) produces samples from a desired target probability distribution. This differs from pseudorandom number generators (PRNGs) that use wholly deterministic algorithms and from true random number generators (TRNGs) in which the randomness source is a physical system. For each class, we analyze the thermodynamics of generators based on algorithms implemented as finite-state machines, as these allow for direct bounds on the required physical resources. This establishes bounds on heat dissipation and work consumption during the operation of three main classes of RNG algorithms—including those of von Neumann, Knuth, and Yao and Roche and Hoshi—and for PRNG methods. We introduce a general TRNG and determine its thermodynamic costs exactly for arbitrary target distributions. The results highlight the significant differences between the three main approaches to random number generation: One is work producing, one is work consuming, and the other is potentially dissipation neutral. Notably, TRNGs can both generate random numbers and convert thermal energy to stored work. These thermodynamic costs on information creation complement Landauer's limit on the irreducible costs of information destruction.

  11. Motion estimation under location uncertainty for turbulent fluid flows

    Science.gov (United States)

    Cai, Shengze; Mémin, Etienne; Dérian, Pierre; Xu, Chao

    2018-01-01

    In this paper, we propose a novel optical flow formulation for estimating two-dimensional velocity fields from an image sequence depicting the evolution of a passive scalar transported by a fluid flow. This motion estimator relies on a stochastic representation of the flow allowing to incorporate naturally a notion of uncertainty in the flow measurement. In this context, the Eulerian fluid flow velocity field is decomposed into two components: a large-scale motion field and a small-scale uncertainty component. We define the small-scale component as a random field. Subsequently, the data term of the optical flow formulation is based on a stochastic transport equation, derived from the formalism under location uncertainty proposed in Mémin (Geophys Astrophys Fluid Dyn 108(2):119-146, 2014) and Resseguier et al. (Geophys Astrophys Fluid Dyn 111(3):149-176, 2017a). In addition, a specific regularization term built from the assumption of constant kinetic energy involves the very same diffusion tensor as the one appearing in the data transport term. Opposite to the classical motion estimators, this enables us to devise an optical flow method dedicated to fluid flows in which the regularization parameter has now a clear physical interpretation and can be easily estimated. Experimental evaluations are presented on both synthetic and real world image sequences. Results and comparisons indicate very good performance of the proposed formulation for turbulent flow motion estimation.

  12. 3D+T motion analysis with nanosensors

    Science.gov (United States)

    Leduc, Jean-Pierre

    2017-09-01

    This paper addresses the problem of motion analysis performed in a signal sampled on an irregular grid spread in 3-dimensional space and time (3D+T). Nanosensors can be randomly scattered in the field to form a "sensor network". Once released, each nanosensor transmits at its own fixed pace information which corresponds to some physical variable measured in the field. Each nanosensor is supposed to have a limited lifetime given by a Poisson-exponential distribution after release. The motion analysis is supported by a model based on a Lie group called the Galilei group that refers to the actual mechanics that takes place on some given geometry. The Galilei group has representations in the Hilbert space of the captured signals. Those representations have the properties to be unitary, irreducible and square-integrable and to enable the existence of admissible continuous wavelets fit for motion analysis. The motion analysis can be considered as a so-called "inverse problem" where the physical model is inferred to estimate the kinematical parameters of interest. The estimation of the kinematical parameters is performed by a gradient algorithm. The gradient algorithm extends in the trajectory determination. Trajectory computation is related to a Lagrangian-Hamiltonian formulation and fits into a neuro-dynamic programming approach that can be implemented in the form of a Q-learning algorithm. Applications relevant for this problem can be found in medical imaging, Earth science, military, and neurophysiology.

  13. Active Control Does Not Eliminate Motion-Induced Illusory Displacement

    Directory of Open Access Journals (Sweden)

    Ian M. Thornton

    2011-05-01

    Full Text Available When the sine-wave grating of a Gabor patch drifts to the left or right, the perceived position of the entire object is shifted in the direction of local motion. In the current work we explored whether active control of the physical position of the patch overcomes such motion induced illusory displacement. In Experiment 1 we created a simple computer game and asked participants to continuously guide a Gabor patch along a randomly curving path using a joystick. When the grating inside the Gabor patch was stationary, participants could perform this task without error. When the grating drifted to either left or right, we observed systematic errors consistent with previous reports of motion-induced illusory displacement. In Experiment 2 we created an iPad application where the built-in accelerometer tilt control was used to steer the patch through as series of “gates”. Again, we observed systematic guidance errors that depended on the direction and speed of local motion. In conclusion, we found no evidence that participants could adapt or compensate for illusory displacement given active control of the target.

  14. Motion in a stochastic layer described by symbolic dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Misguich, J.H.; Reuss, J.D. [Association Euratom-CEA, Centre d`Etudes Nucleaires de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Elskens, Y. [Universite de Provence, 13 - Marseille (France); Balescu, R. [Association Euratom, Brussels (Belgium)

    1997-07-01

    The motion in the stochastic layer surrounding an island can be studied by using the standard map: this problem is of direct relevance to the diffusion of magnetic field lines in a tokamak. In a previous work it was shown that this process can be adequately modelled by a continuous time random walk (CTRW) describing transitions of the running point between three basins representing, respectively, trapped motion around the island, and passing motion above or below the island. The sticking property of the island deeply modifies the nature of the transport process, leading to sub-diffusive behavior. In the present work it is shown that the motion can be analyzed in terms of a symbolic dynamics which leads to the possibility of an automatic measurement of the data necessary for the construction of the CTRW. The logical features of the procedure are described, and the method is applied to an analysis of long time series, thus completing the results of the previous work. (author) 10 refs.

  15. Analysis of regenerative thermal storage geometries for solar gas turbines

    CSIR Research Space (South Africa)

    Klein, P

    2014-08-01

    Full Text Available Ceramic heat regenerators are suited to providing thermal storage for concentrating solar power stations based on a recuperated gas turbine cycle. Randomly packed beds of spheres and saddles; honeycombs and checker bricks were identified...

  16. Thermal Ignition

    Science.gov (United States)

    Boettcher, Philipp Andreas

    Accidental ignition of flammable gases is a critical safety concern in many industrial applications. Particularly in the aviation industry, the main areas of concern on an aircraft are the fuel tank and adjoining regions, where spilled fuel has a high likelihood of creating a flammable mixture. To this end, a fundamental understanding of the ignition phenomenon is necessary in order to develop more accurate test methods and standards as a means of designing safer air vehicles. The focus of this work is thermal ignition, particularly auto-ignition with emphasis on the effect of heating rate, hot surface ignition and flame propagation, and puffing flames. Combustion of hydrocarbon fuels is traditionally separated into slow reaction, cool flame, and ignition regimes based on pressure and temperature. Standard tests, such as the ASTM E659, are used to determine the lowest temperature required to ignite a specific fuel mixed with air at atmospheric pressure. It is expected that the initial pressure and the rate at which the mixture is heated also influences the limiting temperature and the type of combustion. This study investigates the effect of heating rate, between 4 and 15 K/min, and initial pressure, in the range of 25 to 100 kPa, on ignition of n-hexane air mixtures. Mixtures with equivalence ratio ranging from 0.6 to 1.2 were investigated. The problem is also modeled computationally using an extension of Semenov's classical auto-ignition theory with a detailed chemical mechanism. Experiments and simulations both show that in the same reactor either a slow reaction or an ignition event can take place depending on the heating rate. Analysis of the detailed chemistry demonstrates that a mixture which approaches the ignition region slowly undergoes a significant modification of its composition. This change in composition induces a progressive shift of the explosion limit until the mixture is no longer flammable. A mixture that approaches the ignition region

  17. The effect of motion acceleration on displacement of continuous and staircase motion in the frontoparallel plane

    Directory of Open Access Journals (Sweden)

    Anja Poljanšek

    2002-05-01

    Full Text Available If a moving target suddenly disappears, memory for the final location of the target is displaced forward in the direction of motion. This displacement depends on higher order motion regularities (e.g., velocity, acceleration, and so a consideration of displacement might reveal which other motion regularities observers are sensitive to. Perceptually continuous or staircase motions exhibiting either negative, zero, or positive acceleration were presented. Displacement magnitude was smallest for negative acceleration and largest for positive acceleration, and these differences were stronger with continuous motion than with staircase motion. The effect of acceleration is consistent with effects of velocity and an incorporation of effects of momentum into the representation. The weaker effect of acceleration condition with staircase motion is consistent with previous findings that motion signals are more impoverished with staircase motion than with continuous motion. Implications for theories of representational momentum and for perception of motion are considered.

  18. Motion correction in MRI of the brain

    Science.gov (United States)

    Godenschweger, F; Kägebein, U; Stucht, D; Yarach, U; Sciarra, A; Yakupov, R; Lüsebrink, F; Schulze, P; Speck, O

    2016-01-01

    Subject motion in MRI is a relevant problem in the daily clinical routine as well as in scientific studies. Since the beginning of clinical use of MRI, many research groups have developed methods to suppress or correct motion artefacts. This review focuses on rigid body motion correction of head and brain MRI and its application in diagnosis and research. It explains the sources and types of motion and related artefacts, classifies and describes existing techniques for motion detection, compensation and correction and lists established and experimental approaches. Retrospective motion correction modifies the MR image data during the reconstruction, while prospective motion correction performs an adaptive update of the data acquisition. Differences, benefits and drawbacks of different motion correction methods are discussed. PMID:26864183

  19. Motion correction in thoracic positron emission tomography

    CERN Document Server

    Gigengack, Fabian; Dawood, Mohammad; Schäfers, Klaus P

    2015-01-01

    Respiratory and cardiac motion leads to image degradation in Positron Emission Tomography (PET), which impairs quantification. In this book, the authors present approaches to motion estimation and motion correction in thoracic PET. The approaches for motion estimation are based on dual gating and mass-preserving image registration (VAMPIRE) and mass-preserving optical flow (MPOF). With mass-preservation, image intensity modulations caused by highly non-rigid cardiac motion are accounted for. Within the image registration framework different data terms, different variants of regularization and parametric and non-parametric motion models are examined. Within the optical flow framework, different data terms and further non-quadratic penalization are also discussed. The approaches for motion correction particularly focus on pipelines in dual gated PET. A quantitative evaluation of the proposed approaches is performed on software phantom data with accompanied ground-truth motion information. Further, clinical appl...

  20. Hyperventilation in a motion sickness desensitization program

    NARCIS (Netherlands)

    Mert, A.; Bles, W.; Nooij, S.A.E.

    2007-01-01

    Introduction: In motion sickness desensitization programs, the motion sickness provocative stimulus is often a forward bending of the trunk on a rotating chair, inducing Coriolis effects. Since respiratory relaxation techniques are applied successfully in these courses, we investigated whether these

  1. Hybrid Motion Planning with Multiple Destinations

    Science.gov (United States)

    Clouse, Jeffery

    1998-01-01

    In our initial proposal, we laid plans for developing a hybrid motion planning system that combines the concepts of visibility-based motion planning, artificial potential field based motion planning, evolutionary constrained optimization, and reinforcement learning. Our goal was, and still is, to produce a hybrid motion planning system that outperforms the best traditional motion planning systems on problems with dynamic environments. The proposed hybrid system will be in two parts the first is a global motion planning system and the second is a local motion planning system. The global system will take global information about the environment, such as the placement of the obstacles and goals, and produce feasible paths through those obstacles. We envision a system that combines the evolutionary-based optimization and visibility-based motion planning to achieve this end.

  2. Object speed derived from the integration of motion in the image plane and motion-in-depth signaled by stereomotion and looming.

    Science.gov (United States)

    Khuu, Sieu K; Lee, Terence C P; Hayes, Anthony

    2010-04-21

    We investigate the influence of local motion in the retinal image plane on the perception of speed-in-depth. Observers judged the apparent speed-in-depth of a square plane of dynamic dots that moved towards the observer. Dots forming the surface of the plane underwent random-direction motion in the image plane. We examined the consequences of changing the dots' image-plane speed on the apparent speed of the stimulus as it traversed depth, where depth is signaled by stereomotion or looming. Results for both the stereomotion and looming conditions indicate that as the speed of random-direction motion in the image plane increases, the apparent speed-in-depth of the stimulus also increases. When stereomotion was used to signal motion-in-depth, the speed judgment is adequately modeled by the resultant of a vector sum of dot-speed in the image plane and speed-in-depth. However, when looming was used to define motion-in-depth, a different pattern of results was found - the apparent speed-in-depth is lower than the actual speed-in-depth, and the results are best predicted by simple averaging. Our results demonstrate that the integration of speed in the image plane and speed-in-depth, to determine object speed, is dependent on the type of cue used to signal motion-in-depth, and this difference is a consequence of the ways in which looming and stereomotion cue motion-in-depth. Looming is derived not at a local stage of motion analysis, but is available only via global integration of local velocities, and consequently global speed conforms to the average speed. Stereomotion, on the other hand, provides an effective cue for individuating local velocities in depth. Copyright 2010 Elsevier Ltd. All rights reserved.

  3. MR imaging, flow and motion.

    Science.gov (United States)

    Ståhlberg, F; Ericsson, A; Nordell, B; Thomsen, C; Henriksen, O; Persson, B R

    1992-05-01

    The present work is intended as a nonmathematical review of the role of flow and motion in nuclear magnetic resonance (MR) imaging. A historical review of MR flow measurement techniques is given, followed by a short overview of flow models in vitro and in vivo. The theory behind the influence of motion on the modulus and phase MR signal information is discussed and effects such as washin/washout, flow-induced signal void, phase offset, and phase dispersion are defined. A simple approach to the concept of MR angiography is given, and methods for quantitative flow measurements such as the phase mapping technique, are surveyed. Aspects of the measurement of diffusion and microcirculation are given, and finally, an overview of the role of MR flow imaging in present and future clinical application is given.

  4. Wheelchair control by head motion

    Directory of Open Access Journals (Sweden)

    Pajkanović Aleksandar

    2013-01-01

    Full Text Available Electric wheelchairs are designed to aid paraplegics. Unfortunately, these can not be used by persons with higher degree of impairment, such as quadriplegics, i.e. persons that, due to age or illness, can not move any of the body parts, except of the head. Medical devices designed to help them are very complicated, rare and expensive. In this paper a microcontroller system that enables standard electric wheelchair control by head motion is presented. The system comprises electronic and mechanic components. A novel head motion recognition technique based on accelerometer data processing is designed. The wheelchair joystick is controlled by the system’s mechanical actuator. The system can be used with several different types of standard electric wheelchairs. It is tested and verified through an experiment performed within this paper.

  5. Brownian Motion and General Relativity

    CERN Document Server

    O'Hara, Paul

    2013-01-01

    We construct a model of Brownian Motion on a pseudo-Riemannian manifold associated with general relativity. There are two aspects of the problem: The first is to define a sequence of stopping times associated with the Brownian "kicks" or impulses. The second is to define the dynamics of the particle along geodesics in between the Brownian kicks. When these two aspects are taken together, we can associate various distributions with the motion. We will find that the statistics of space-time events will obey a temperature dependent four dimensional Gaussian distribution defined over the quaternions which locally can be identified with Minkowski space. Analogously, the statistics of the 4-velocities will obey a kind of Maxwell-Juttner distribution. In contrast to previous work, our processes are characterized by two independent proper time variables defined with respect to the laboratory frame: a discrete one corresponding to the stopping times when the impulses take place and a continuous one corresponding to th...

  6. Energy Conservation Equations of Motion

    CERN Document Server

    Vinokurov, Nikolay A

    2015-01-01

    A conventional derivation of motion equations in mechanics and field equations in field theory is based on the principle of least action with a proper Lagrangian. With a time-independent Lagrangian, a function of coordinates and velocities that is called energy is constant. This paper presents an alternative approach, namely derivation of a general form of equations of motion that keep the system energy, expressed as a function of generalized coordinates and corresponding velocities, constant. These are Lagrange equations with addition of gyroscopic forces. The important fact, that the energy is defined as the function on the tangent bundle of configuration manifold, is used explicitly for the derivation. The Lagrangian is derived from a known energy function. A development of generalized Hamilton and Lagrange equations without the use of variational principles is proposed. The use of new technique is applied to derivation of some equations.

  7. Motion magnification for endoscopic surgery

    Science.gov (United States)

    McLeod, A. Jonathan; Baxter, John S. H.; de Ribaupierre, Sandrine; Peters, Terry M.

    2014-03-01

    Endoscopic and laparoscopic surgeries are used for many minimally invasive procedures but limit the visual and haptic feedback available to the surgeon. This can make vessel sparing procedures particularly challenging to perform. Previous approaches have focused on hardware intensive intraoperative imaging or augmented reality systems that are difficult to integrate into the operating room. This paper presents a simple approach in which motion is visually enhanced in the endoscopic video to reveal pulsating arteries. This is accomplished by amplifying subtle, periodic changes in intensity coinciding with the patient's pulse. This method is then applied to two procedures to illustrate its potential. The first, endoscopic third ventriculostomy, is a neurosurgical procedure where the floor of the third ventricle must be fenestrated without injury to the basilar artery. The second, nerve-sparing robotic prostatectomy, involves removing the prostate while limiting damage to the neurovascular bundles. In both procedures, motion magnification can enhance subtle pulsation in these structures to aid in identifying and avoiding them.

  8. Fractional Levy motion through path integrals

    Energy Technology Data Exchange (ETDEWEB)

    Calvo, Ivan [CIEMAT, Madrid; Sanchez, Raul [ORNL; Carreras, Benjamin A [BACV Solutions, Inc., Oak Ridge

    2009-01-01

    Fractional Levy motion (fLm) is the natural generalization of fractional Brownian motion in the context of self-similar stochastic processes and stable probability distributions. In this paper we give an explicit derivation of the propagator of fLm by using path integral methods. The propagators of Brownian motion and fractional Brownian motion are recovered as particular cases. The fractional diffusion equation corresponding to fLm is also obtained.

  9. Collective Motion: Bistability and Trajectory Tracking

    OpenAIRE

    Paley, Derek; Leonard, Naomi; Sepulchre, Rodolphe

    2004-01-01

    This paper presents analysis and application of steering control laws for a network of self-propelled, planar particles. We explore together the two stably controlled group motions, parallel motion and circular motion, for modeling and design purposes. We show that a previously considered control law simultaneously stabilizes both parallel and circular group motion, leading to bistability and hysteresis. We also present behavior primitives that enable piecewise-linear ...

  10. Is experimental motion blindness due to sensory suppression? An ERP approach.

    Science.gov (United States)

    Niedeggen, Michael; Sahraie, Arash; Hesselmann, Guido; Milders, Maarten; Blakemore, Colin

    2002-04-01

    Recent psychophysical studies have revealed attentional modulation of visual motion perception and interest now focuses on the locus of this interaction. Using event-related brain potentials (ERPs) we examined whether transient motion blindness evoked in a dual task [Vision Res. 41 (2001) 1613-1617] is related to a selection process occurring at the stage of sensory processing or at a higher level. In our paradigm, a particular change of colour of the fixation point cued the subject to detect a brief episode of coherent random dot motion embedded in a succession of episodes of incoherent motion. Detection of the coherent motion was significantly impaired when it occurred simultaneously with the colour cue, and recovered over the subsequent 300 ms. This functional relationship was reflected in the amplitude of a sensory, motion-evoked component (N200), and in a late positive complex (P300). However, a direct comparison of ERPs produced by stimuli that were detected or missed revealed differences only in the P300 component. These results indicate that attenuation of sensory motion processing does not account for this transient, attention-induced deficit in visual motion perception. Copyright 2002 Elsevier Science B.V.

  11. Robot Motion Vision by Fixation

    Science.gov (United States)

    1992-09-01

    These are 8 - bit images but the last two digits are usually too noisy to be reliable. The true motion between these frames is a combination of...Brightness Gradients 2nd ImageN Ist Image yk t k+) Sti+ l Figure B-i: The first brightness derivatives required in the direct methods can be estimated...individual time varying frames, the above algorithms compensate for part of the tessellation errors involved in discrete digitized images. Depth at Fixation

  12. Collective motion from local attraction

    OpenAIRE

    Strömbom, Daniel

    2011-01-01

    Abstract Many animal groups, for example schools of fish or flocks of birds, exhibit complex dynamic patterns while moving cohesively in the same direction. These flocking patterns have been studied using self-propelled particle models, most of which assume that collective motion arises from individuals aligning with their neighbours. Here, we propose a self-propelled particle model in which the only social force between individuals is attraction. We show that this model generates ...

  13. ITRF2014 plate motion model

    Science.gov (United States)

    Altamimi, Zuheir; Métivier, Laurent; Rebischung, Paul; Rouby, Hélène; Collilieux, Xavier

    2017-06-01

    For various geodetic and geophysical applications, users need to have access to a plate motion model (PMM) that is consistent with the ITRF2014 frame. This paper describes the approach used for determining a PMM from the horizontal velocities of a subset of the ITRF2014 sites away from plate boundaries, Glacial Isostatic Adjustment regions and other deforming zones. In theory it would be necessary to include in the inversion model a translational motion vector (called in this paper origin rate bias, ORB) that would represent the relative motion between the ITRF2014 origin (long-term averaged centre of mass of the Earth as sensed by SLR) and the centre of tectonic plate motion. We show that in practice, the magnitude of the estimated ORB is strongly dependent on the selection of ITRF2014 sites used for the PMM adjustment. Its Z-component can in particular range between 0 and more than 1 mm yr-1 depending on the station network used, preventing any geophysical interpretation of the estimated value. Relying on rigorous statistical criteria, the site selection finally adopted for the ITRF2014-PMM adjustment leads to a relatively small ORB (0.30 ± 0.18 mm yr-1 in the Z-component), which is statistically insignificant at the 2-sigma level, but also according to an F-ratio test. Therefore we opted for an ITRF2014-PMM without estimating the ORB, which in turn accommodates geodetic applications that require access to the ITRF2014 frame through pure plate rotation poles.

  14. Active motion on curved surfaces

    OpenAIRE

    Castro-Villarreal, Pavel; Sevilla, Francisco J.

    2017-01-01

    A theoretical analysis of active motion on curved surfaces is presented in terms of a generalization of the Telegrapher's equation. Such generalized equation is explicitly derived as the polar approximation of the hierarchy of equations obtained from the corresponding Fokker-Planck equation of active particles diffusing on curved surfaces. The general solution to the generalized telegrapher's equation is given for a pulse with vanishing current as initial data. Expressions for the probability...

  15. Dynamical Systems and Motion Vision.

    Science.gov (United States)

    1988-04-01

    TASK Artificial Inteligence Laboratory AREA I WORK UNIT NUMBERS 545 Technology Square . Cambridge, MA 02139 C\\ II. CONTROLLING OFFICE NAME ANO0 ADDRESS...INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY A.I.Memo No. 1037 April, 1988 Dynamical Systems and Motion Vision Joachim Heel Abstract: In this... Artificial Intelligence L3 Laboratory of the Massachusetts Institute of Technology. Support for the Laboratory’s [1 Artificial Intelligence Research is

  16. Extremes of multifractional Brownian motion

    OpenAIRE

    Bai, Long

    2017-01-01

    Let $B_{H}(t), t\\geq [0,T], T\\in(0,\\infty)$ be the standard Multifractional Brownian Motion(mBm), in this contribution we are concerned with the exact asymptotics of \\begin{eqnarray*} \\mathbb{P}\\left\\{\\sup_{t\\in[0,T]}B_{H}(t)>u\\right\\} \\end{eqnarray*} as $u\\rightarrow\\infty$. Mainly depended on the structures of $H(t)$, the results under several important cases are investigated.

  17. Shoulder injuries from attacking motion

    Science.gov (United States)

    Yanagi, Shigeru; Nishimura, Tetsu; Itoh, Masaru; Wada, Yuhei; Watanabe, Naoki

    1997-03-01

    Sports injuries have bothered professional players. Although many medical doctors try to treat injured players, to prevent sports injuries is more important. Hence, it is required to clear a kinematic mechanism of the sport injuries. A shoulder of volleyball attacker or baseball pitcher is often inured by playing motion. The injuries are mainly caused at the end of long head tendon, which is located in the upper side of scapula. Generally, a muscle and tendon have enough strength against tensile force, however, it seems that they are sometimes defeated by the lateral force. It is imagined that the effect of the lateral force has a possibility of injuring the tendon. If we find the influence of the lateral force on the injured portion, the mechanism of injuries must be cleared. In our research, volleyball attacking motion is taken by high speed video cameras. We analyze the motion as links system and obtain an acceleration of an arm and a shoulder from video image data. The generated force at a shoulder joint is calculated and resolved into the lateral and longitudinal forces. Our final goal is to discuss a possibility that the lateral force causes the injuries.

  18. Superluminal motion in compact radio sources

    Science.gov (United States)

    Marscher, A. P.; Scott, J. S.

    1980-01-01

    The observations of radio sources whose components appear to move superluminally are now sufficient to eliminate certain theoretical models. However, a number of models might be still relevant. The models which involve relativistic bulk motions of the radio components seem to provide the most likely explanation of apparent superluminal motion. A summary of observational predictions of various models for superluminal motions is included.

  19. An Inexpensive Mechanical Model for Projectile Motion

    Science.gov (United States)

    Kagan, David

    2011-01-01

    As experienced physicists, we see the beauty and simplicity of projectile motion. It is merely the superposition of uniform linear motion along the direction of the initial velocity vector and the downward motion due to the constant acceleration of gravity. We see the kinematic equations as just the mathematical machinery to perform the…

  20. Identification of resonant earthquake ground motion

    Indian Academy of Sciences (India)

    Resonant ground motion has been observed in earthquake records measured at several parts of the world. This class of ground motion is characterized by its energy being contained in a narrow frequency band. This paper develops measures to quantify the frequency content of the ground motion using the entropy ...