Reduction of the number of parameters needed for a polynomial random regression test-day model
Pool, M.H.; Meuwissen, T.H.E.
2000-01-01
Legendre polynomials were used to describe the (co)variance matrix within a random regression test day model. The goodness of fit depended on the polynomial order of fit, i.e., number of parameters to be estimated per animal but is limited by computing capacity. Two aspects: incomplete lactation
Directory of Open Access Journals (Sweden)
Ajay Singh
2016-06-01
Full Text Available A single trait linear mixed random regression test-day model was applied for the first time for analyzing the first lactation monthly test-day milk yield records in Karan Fries cattle. The test-day milk yield data was modeled using a random regression model (RRM considering different order of Legendre polynomial for the additive genetic effect (4th order and the permanent environmental effect (5th order. Data pertaining to 1,583 lactation records spread over a period of 30 years were recorded and analyzed in the study. The variance component, heritability and genetic correlations among test-day milk yields were estimated using RRM. RRM heritability estimates of test-day milk yield varied from 0.11 to 0.22 in different test-day records. The estimates of genetic correlations between different test-day milk yields ranged 0.01 (test-day 1 [TD-1] and TD-11 to 0.99 (TD-4 and TD-5. The magnitudes of genetic correlations between test-day milk yields decreased as the interval between test-days increased and adjacent test-day had higher correlations. Additive genetic and permanent environment variances were higher for test-day milk yields at both ends of lactation. The residual variance was observed to be lower than the permanent environment variance for all the test-day milk yields.
Directory of Open Access Journals (Sweden)
A. Seyeddokht
2012-09-01
Full Text Available In this research a random regression test day model was used to estimate heritability values and calculation genetic correlations between test day milk records. a total of 140357 monthly test day milk records belonging to 28292 first lactation Holstein cattle(trice time a day milking distributed in 165 herd and calved from 2001 to 2010 belonging to the herds of Tehran province were used. The fixed effects of herd-year-month of calving as contemporary group and age at calving and Holstein gene percentage as covariate were fitted. Orthogonal legendre polynomial with a 4th-order was implemented to take account of genetic and environmental aspects of milk production over the course of lactation. RRM using Legendre polynomials as base functions appears to be the most adequate to describe the covariance structure of the data. The results showed that the average of heritability for the second half of lactation period was higher than that of the first half. The heritability value for the first month was lowest (0.117 and for the eighth month of the lactation was highest (0.230 compared to the other months of lactation. Because of genetic variation was increased gradually, and residual variance was high in the first months of lactation, heritabilities were different over the course of lactation. The RRMs with a higher number of parameters were more useful to describe the genetic variation of test-day milk yield throughout the lactation. In this research estimation of genetic parameters, and calculation genetic correlations were implemented by random regression test day model, therefore using this method is the exact way to take account of parameters rather than the other ways.
Santellano-Estrada, E; Becerril-Pérez, C M; de Alba, J; Chang, Y M; Gianola, D; Torres-Hernández, G; Ramírez-Valverde, R
2008-11-01
This study inferred genetic and permanent environmental variation of milk yield in Tropical Milking Criollo cattle and compared 5 random regression test-day models using Wilmink's function and Legendre polynomials. Data consisted of 15,377 test-day records from 467 Tropical Milking Criollo cows that calved between 1974 and 2006 in the tropical lowlands of the Gulf Coast of Mexico and in southern Nicaragua. Estimated heritabilities of test-day milk yields ranged from 0.18 to 0.45, and repeatabilities ranged from 0.35 to 0.68 for the period spanning from 6 to 400 d in milk. Genetic correlation between days in milk 10 and 400 was around 0.50 but greater than 0.90 for most pairs of test days. The model that used first-order Legendre polynomials for additive genetic effects and second-order Legendre polynomials for permanent environmental effects gave the smallest residual variance and was also favored by the Akaike information criterion and likelihood ratio tests.
Baba, Toshimi; Gotoh, Yusaku; Yamaguchi, Satoshi; Nakagawa, Satoshi; Abe, Hayato; Masuda, Yutaka; Kawahara, Takayoshi
2017-08-01
This study aimed to evaluate a validation reliability of single-step genomic best linear unbiased prediction (ssGBLUP) with a multiple-lactation random regression test-day model and investigate an effect of adding genotyped cows on the reliability. Two data sets for test-day records from the first three lactations were used: full data from February 1975 to December 2015 (60 850 534 records from 2 853 810 cows) and reduced data cut off in 2011 (53 091 066 records from 2 502 307 cows). We used marker genotypes of 4480 bulls and 608 cows. Genomic enhanced breeding values (GEBV) of 305-day milk yield in all the lactations were estimated for at least 535 young bulls using two marker data sets: bull genotypes only and both bulls and cows genotypes. The realized reliability (R 2 ) from linear regression analysis was used as an indicator of validation reliability. Using only genotyped bulls, R 2 was ranged from 0.41 to 0.46 and it was always higher than parent averages. The very similar R 2 were observed when genotyped cows were added. An application of ssGBLUP to a multiple-lactation random regression model is feasible and adding a limited number of genotyped cows has no significant effect on reliability of GEBV for genotyped bulls. © 2016 Japanese Society of Animal Science.
Caccamo, M.; Veerkamp, R.F.; Ferguson, J.D.; Petriglieri, R.; Terra, La F.; Licitra, G.
2010-01-01
Earlier studies identified large between-herd variation in estimated lactation curve parameters from test-day milk yield and milk composition records collected in Ragusa province, Italy. The objective of this study was to identify sources of variation able to explain these between-herd differences
Genetic analysis of somatic cell score in Danish dairy cattle using ramdom regression test-day model
DEFF Research Database (Denmark)
Elsaid, Reda; Sabry, Ayman; Lund, Mogens Sandø
2011-01-01
,233 Danish Holstein cows, were extracted from the national milk recording database. Each data set was analyzed with random regression models using AI-REML. Fixed effects in all models were age at first calving, herd test day, days carrying calf, effects of germ plasm importation (e.g. additive breed effects......) and low between the beginning and the end of lactation. The estimated environmental correlations were lower than the genetic correlations, but the trends were similar. Based on test-day records, the accuracy of genetic evaluations for SCC should be improved when the variation in heritabilities...
Directory of Open Access Journals (Sweden)
Claudio Napolis Costa
2005-10-01
número de estimativas negativas entre as PLC do início e fim da lactação do que a FAS. Exceto para a FAS, observou-se redução das estimativas de correlação genética próximas à unidade entre as PLC adjacentes para valores negativos entre as PLC no início e no fim da lactação. Entre os polinômios de Legendre, o de quinta ordem apresentou um melhor o ajuste das PLC. Os resultados indicam o potencial de uso de regressão aleatória, com os modelos LP5 e a FAS apresentando-se como os mais adequados para a modelagem das variâncias genética e de efeito permanente das PLC da raça Gir.Data comprising 8,183 test day records of 1,273 first lactations of Gyr cows from herds supervised by ABCZ were used to estimate variance components and genetic parameters for milk yield using repeatability and random regression animal models by REML. Genetic modelling of logarithmic (FAS, exponential (FW curves was compared to orthogonal Legendre polynomials (LP of order 3 to 5. Residual variance was assumed to be constant in all (ME=1 or some periods of lactation (ME=4. Lactation milk yield in 305-d was also adjusted by an animal model. Genetic variance, heritability and repeatability for test day milk yields estimated by a repeatability animal model were 1.74 kg2, 0.27, and 0.76, respectively. Genetic variance and heritability estimates for lactation milk yield were respectively 121,094.6 and 0.22. Heritability estimates from FAS and FW, respectively, decreased from 0,59 and 0.74 at the beginning of lactation to 0.20 at the end of the period. Except for a fifth-order LP with ME=1, heritability estimates decreased from around 0,70 at early lactation to 0,30 at the end of lactation. Residual variance estimates were slightly smaller for logarithimic than for exponential curves both for homogeneous and heterogeneous variance assumptions. Estimates of residual variance in all stages of lactation decreased as the order of LP increased and depended on the assumption about ME
Chandler, T L; Pralle, R S; Dórea, J R R; Poock, S E; Oetzel, G R; Fourdraine, R H; White, H M
2018-03-01
Although cowside testing strategies for diagnosing hyperketonemia (HYK) are available, many are labor intensive and costly, and some lack sufficient accuracy. Predicting milk ketone bodies by Fourier transform infrared spectrometry during routine milk sampling may offer a more practical monitoring strategy. The objectives of this study were to (1) develop linear and logistic regression models using all available test-day milk and performance variables for predicting HYK and (2) compare prediction methods (Fourier transform infrared milk ketone bodies, linear regression models, and logistic regression models) to determine which is the most predictive of HYK. Given the data available, a secondary objective was to evaluate differences in test-day milk and performance variables (continuous measurements) between Holsteins and Jerseys and between cows with or without HYK within breed. Blood samples were collected on the same day as milk sampling from 658 Holstein and 468 Jersey cows between 5 and 20 d in milk (DIM). Diagnosis of HYK was at a serum β-hydroxybutyrate (BHB) concentration ≥1.2 mmol/L. Concentrations of milk BHB and acetone were predicted by Fourier transform infrared spectrometry (Foss Analytical, Hillerød, Denmark). Thresholds of milk BHB and acetone were tested for diagnostic accuracy, and logistic models were built from continuous variables to predict HYK in primiparous and multiparous cows within breed. Linear models were constructed from continuous variables for primiparous and multiparous cows within breed that were 5 to 11 DIM or 12 to 20 DIM. Milk ketone body thresholds diagnosed HYK with 64.0 to 92.9% accuracy in Holsteins and 59.1 to 86.6% accuracy in Jerseys. Logistic models predicted HYK with 82.6 to 97.3% accuracy. Internally cross-validated multiple linear regression models diagnosed HYK of Holstein cows with 97.8% accuracy for primiparous and 83.3% accuracy for multiparous cows. Accuracy of Jersey models was 81.3% in primiparous and 83
Interpreting parameters in the logistic regression model with random effects
DEFF Research Database (Denmark)
Larsen, Klaus; Petersen, Jørgen Holm; Budtz-Jørgensen, Esben
2000-01-01
interpretation, interval odds ratio, logistic regression, median odds ratio, normally distributed random effects......interpretation, interval odds ratio, logistic regression, median odds ratio, normally distributed random effects...
SDE based regression for random PDEs
Bayer, Christian
2016-01-01
A simulation based method for the numerical solution of PDE with random coefficients is presented. By the Feynman-Kac formula, the solution can be represented as conditional expectation of a functional of a corresponding stochastic differential equation driven by independent noise. A time discretization of the SDE for a set of points in the domain and a subsequent Monte Carlo regression lead to an approximation of the global solution of the random PDE. We provide an initial error and complexity analysis of the proposed method along with numerical examples illustrating its behaviour.
SDE based regression for random PDEs
Bayer, Christian
2016-01-06
A simulation based method for the numerical solution of PDE with random coefficients is presented. By the Feynman-Kac formula, the solution can be represented as conditional expectation of a functional of a corresponding stochastic differential equation driven by independent noise. A time discretization of the SDE for a set of points in the domain and a subsequent Monte Carlo regression lead to an approximation of the global solution of the random PDE. We provide an initial error and complexity analysis of the proposed method along with numerical examples illustrating its behaviour.
Centers for Disease Control (CDC) Podcasts
Dr. Kevin A. Fenton, Director of CDC's National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, discusses National HIV Testing Day, an annual observance which raises awareness of the importance of knowing one's HIV status and encourages at-risk individuals to get an HIV test.
Centers for Disease Control (CDC) Podcasts
2011-06-09
Dr. Kevin A. Fenton, Director of CDC's National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, discusses National HIV Testing Day, an annual observance which raises awareness of the importance of knowing one's HIV status and encourages at-risk individuals to get an HIV test. Created: 6/9/2011 by National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention (NCHHSTP). Date Released: 6/9/2011.
Berry, D.P.; Buckley, F.; Dillon, P.; Evans, R.D.; Rath, M.; Veerkamp, R.F.
2003-01-01
Genetic (co)variances between body condition score (BCS), body weight (BW), milk yield, and fertility were estimated using a random regression animal model extended to multivariate analysis. The data analyzed included 81,313 BCS observations, 91,937 BW observations, and 100,458 milk test-day yields
Solving large test-day models by iteration on data and preconditioned conjugate gradient.
Lidauer, M; Strandén, I; Mäntysaari, E A; Pösö, J; Kettunen, A
1999-12-01
A preconditioned conjugate gradient method was implemented into an iteration on a program for data estimation of breeding values, and its convergence characteristics were studied. An algorithm was used as a reference in which one fixed effect was solved by Gauss-Seidel method, and other effects were solved by a second-order Jacobi method. Implementation of the preconditioned conjugate gradient required storing four vectors (size equal to number of unknowns in the mixed model equations) in random access memory and reading the data at each round of iteration. The preconditioner comprised diagonal blocks of the coefficient matrix. Comparison of algorithms was based on solutions of mixed model equations obtained by a single-trait animal model and a single-trait, random regression test-day model. Data sets for both models used milk yield records of primiparous Finnish dairy cows. Animal model data comprised 665,629 lactation milk yields and random regression test-day model data of 6,732,765 test-day milk yields. Both models included pedigree information of 1,099,622 animals. The animal model ¿random regression test-day model¿ required 122 ¿305¿ rounds of iteration to converge with the reference algorithm, but only 88 ¿149¿ were required with the preconditioned conjugate gradient. To solve the random regression test-day model with the preconditioned conjugate gradient required 237 megabytes of random access memory and took 14% of the computation time needed by the reference algorithm.
Random regression models for detection of gene by environment interaction
Directory of Open Access Journals (Sweden)
Meuwissen Theo HE
2007-02-01
Full Text Available Abstract Two random regression models, where the effect of a putative QTL was regressed on an environmental gradient, are described. The first model estimates the correlation between intercept and slope of the random regression, while the other model restricts this correlation to 1 or -1, which is expected under a bi-allelic QTL model. The random regression models were compared to a model assuming no gene by environment interactions. The comparison was done with regards to the models ability to detect QTL, to position them accurately and to detect possible QTL by environment interactions. A simulation study based on a granddaughter design was conducted, and QTL were assumed, either by assigning an effect independent of the environment or as a linear function of a simulated environmental gradient. It was concluded that the random regression models were suitable for detection of QTL effects, in the presence and absence of interactions with environmental gradients. Fixing the correlation between intercept and slope of the random regression had a positive effect on power when the QTL effects re-ranked between environments.
Approximating prediction uncertainty for random forest regression models
John W. Coulston; Christine E. Blinn; Valerie A. Thomas; Randolph H. Wynne
2016-01-01
Machine learning approaches such as random forest haveÂ increased for the spatial modeling and mapping of continuousÂ variables. Random forest is a non-parametric ensembleÂ approach, and unlike traditional regression approaches thereÂ is no direct quantification of prediction error. UnderstandingÂ prediction uncertainty is important when using model-basedÂ continuous maps as...
Application of random regression models to the genetic evaluation ...
African Journals Online (AJOL)
The model included fixed regression on AM (range from 30 to 138 mo) and the effect of herd-measurement date concatenation. Random parts of the model were RRM coefficients for additive and permanent environmental effects, while residual effects were modelled to account for heterogeneity of variance by AY. Estimates ...
Conditional Monte Carlo randomization tests for regression models.
Parhat, Parwen; Rosenberger, William F; Diao, Guoqing
2014-08-15
We discuss the computation of randomization tests for clinical trials of two treatments when the primary outcome is based on a regression model. We begin by revisiting the seminal paper of Gail, Tan, and Piantadosi (1988), and then describe a method based on Monte Carlo generation of randomization sequences. The tests based on this Monte Carlo procedure are design based, in that they incorporate the particular randomization procedure used. We discuss permuted block designs, complete randomization, and biased coin designs. We also use a new technique by Plamadeala and Rosenberger (2012) for simple computation of conditional randomization tests. Like Gail, Tan, and Piantadosi, we focus on residuals from generalized linear models and martingale residuals from survival models. Such techniques do not apply to longitudinal data analysis, and we introduce a method for computation of randomization tests based on the predicted rate of change from a generalized linear mixed model when outcomes are longitudinal. We show, by simulation, that these randomization tests preserve the size and power well under model misspecification. Copyright © 2014 John Wiley & Sons, Ltd.
Simultaneous confidence bands for Cox regression from semiparametric random censorship.
Mondal, Shoubhik; Subramanian, Sundarraman
2016-01-01
Cox regression is combined with semiparametric random censorship models to construct simultaneous confidence bands (SCBs) for subject-specific survival curves. Simulation results are presented to compare the performance of the proposed SCBs with the SCBs that are based only on standard Cox. The new SCBs provide correct empirical coverage and are more informative. The proposed SCBs are illustrated with two real examples. An extension to handle missing censoring indicators is also outlined.
Selapa, N W; Nephawe, K A; Maiwashe, A; Norris, D
2012-02-08
The aim of this study was to estimate genetic parameters for body weights of individually fed beef bulls measured at centralized testing stations in South Africa using random regression models. Weekly body weights of Bonsmara bulls (N = 2919) tested between 1999 and 2003 were available for the analyses. The model included a fixed regression of the body weights on fourth-order orthogonal Legendre polynomials of the actual days on test (7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, and 84) for starting age and contemporary group effects. Random regressions on fourth-order orthogonal Legendre polynomials of the actual days on test were included for additive genetic effects and additional uncorrelated random effects of the weaning-herd-year and the permanent environment of the animal. Residual effects were assumed to be independently distributed with heterogeneous variance for each test day. Variance ratios for additive genetic, permanent environment and weaning-herd-year for weekly body weights at different test days ranged from 0.26 to 0.29, 0.37 to 0.44 and 0.26 to 0.34, respectively. The weaning-herd-year was found to have a significant effect on the variation of body weights of bulls despite a 28-day adjustment period. Genetic correlations amongst body weights at different test days were high, ranging from 0.89 to 1.00. Heritability estimates were comparable to literature using multivariate models. Therefore, random regression model could be applied in the genetic evaluation of body weight of individually fed beef bulls in South Africa.
Smith, Paul F; Ganesh, Siva; Liu, Ping
2013-10-30
Regression is a common statistical tool for prediction in neuroscience. However, linear regression is by far the most common form of regression used, with regression trees receiving comparatively little attention. In this study, the results of conventional multiple linear regression (MLR) were compared with those of random forest regression (RFR), in the prediction of the concentrations of 9 neurochemicals in the vestibular nucleus complex and cerebellum that are part of the l-arginine biochemical pathway (agmatine, putrescine, spermidine, spermine, l-arginine, l-ornithine, l-citrulline, glutamate and γ-aminobutyric acid (GABA)). The R(2) values for the MLRs were higher than the proportion of variance explained values for the RFRs: 6/9 of them were ≥ 0.70 compared to 4/9 for RFRs. Even the variables that had the lowest R(2) values for the MLRs, e.g. ornithine (0.50) and glutamate (0.61), had much lower proportion of variance explained values for the RFRs (0.27 and 0.49, respectively). The RSE values for the MLRs were lower than those for the RFRs in all but two cases. In general, MLRs seemed to be superior to the RFRs in terms of predictive value and error. In the case of this data set, MLR appeared to be superior to RFR in terms of its explanatory value and error. This result suggests that MLR may have advantages over RFR for prediction in neuroscience with this kind of data set, but that RFR can still have good predictive value in some cases. Copyright © 2013 Elsevier B.V. All rights reserved.
Comparing spatial regression to random forests for large ...
Environmental data may be “large” due to number of records, number of covariates, or both. Random forests has a reputation for good predictive performance when using many covariates, whereas spatial regression, when using reduced rank methods, has a reputation for good predictive performance when using many records. In this study, we compare these two techniques using a data set containing the macroinvertebrate multimetric index (MMI) at 1859 stream sites with over 200 landscape covariates. Our primary goal is predicting MMI at over 1.1 million perennial stream reaches across the USA. For spatial regression modeling, we develop two new methods to accommodate large data: (1) a procedure that estimates optimal Box-Cox transformations to linearize covariate relationships; and (2) a computationally efficient covariate selection routine that takes into account spatial autocorrelation. We show that our new methods lead to cross-validated performance similar to random forests, but that there is an advantage for spatial regression when quantifying the uncertainty of the predictions. Simulations are used to clarify advantages for each method. This research investigates different approaches for modeling and mapping national stream condition. We use MMI data from the EPA's National Rivers and Streams Assessment and predictors from StreamCat (Hill et al., 2015). Previous studies have focused on modeling the MMI condition classes (i.e., good, fair, and po
Genetic evaluation of European quails by random regression models
Directory of Open Access Journals (Sweden)
Flaviana Miranda Gonçalves
2012-09-01
Full Text Available The objective of this study was to compare different random regression models, defined from different classes of heterogeneity of variance combined with different Legendre polynomial orders for the estimate of (covariance of quails. The data came from 28,076 observations of 4,507 female meat quails of the LF1 lineage. Quail body weights were determined at birth and 1, 14, 21, 28, 35 and 42 days of age. Six different classes of residual variance were fitted to Legendre polynomial functions (orders ranging from 2 to 6 to determine which model had the best fit to describe the (covariance structures as a function of time. According to the evaluated criteria (AIC, BIC and LRT, the model with six classes of residual variances and of sixth-order Legendre polynomial was the best fit. The estimated additive genetic variance increased from birth to 28 days of age, and dropped slightly from 35 to 42 days. The heritability estimates decreased along the growth curve and changed from 0.51 (1 day to 0.16 (42 days. Animal genetic and permanent environmental correlation estimates between weights and age classes were always high and positive, except for birth weight. The sixth order Legendre polynomial, along with the residual variance divided into six classes was the best fit for the growth rate curve of meat quails; therefore, they should be considered for breeding evaluation processes by random regression models.
Weighted SGD for ℓp Regression with Randomized Preconditioning*
Yang, Jiyan; Chow, Yin-Lam; Ré, Christopher; Mahoney, Michael W.
2018-01-01
In recent years, stochastic gradient descent (SGD) methods and randomized linear algebra (RLA) algorithms have been applied to many large-scale problems in machine learning and data analysis. SGD methods are easy to implement and applicable to a wide range of convex optimization problems. In contrast, RLA algorithms provide much stronger performance guarantees but are applicable to a narrower class of problems. We aim to bridge the gap between these two methods in solving constrained overdetermined linear regression problems—e.g., ℓ2 and ℓ1 regression problems. We propose a hybrid algorithm named pwSGD that uses RLA techniques for preconditioning and constructing an importance sampling distribution, and then performs an SGD-like iterative process with weighted sampling on the preconditioned system.By rewriting a deterministic ℓp regression problem as a stochastic optimization problem, we connect pwSGD to several existing ℓp solvers including RLA methods with algorithmic leveraging (RLA for short).We prove that pwSGD inherits faster convergence rates that only depend on the lower dimension of the linear system, while maintaining low computation complexity. Such SGD convergence rates are superior to other related SGD algorithm such as the weighted randomized Kaczmarz algorithm.Particularly, when solving ℓ1 regression with size n by d, pwSGD returns an approximate solution with ε relative error in the objective value in 𝒪(log n·nnz(A)+poly(d)/ε2) time. This complexity is uniformly better than that of RLA methods in terms of both ε and d when the problem is unconstrained. In the presence of constraints, pwSGD only has to solve a sequence of much simpler and smaller optimization problem over the same constraints. In general this is more efficient than solving the constrained subproblem required in RLA.For ℓ2 regression, pwSGD returns an approximate solution with ε relative error in the objective value and the solution vector measured in
Robust linear registration of CT images using random regression forests
Konukoglu, Ender; Criminisi, Antonio; Pathak, Sayan; Robertson, Duncan; White, Steve; Haynor, David; Siddiqui, Khan
2011-03-01
Global linear registration is a necessary first step for many different tasks in medical image analysis. Comparing longitudinal studies1, cross-modality fusion2, and many other applications depend heavily on the success of the automatic registration. The robustness and efficiency of this step is crucial as it affects all subsequent operations. Most common techniques cast the linear registration problem as the minimization of a global energy function based on the image intensities. Although these algorithms have proved useful, their robustness in fully automated scenarios is still an open question. In fact, the optimization step often gets caught in local minima yielding unsatisfactory results. Recent algorithms constrain the space of registration parameters by exploiting implicit or explicit organ segmentations, thus increasing robustness4,5. In this work we propose a novel robust algorithm for automatic global linear image registration. Our method uses random regression forests to estimate posterior probability distributions for the locations of anatomical structures - represented as axis aligned bounding boxes6. These posterior distributions are later integrated in a global linear registration algorithm. The biggest advantage of our algorithm is that it does not require pre-defined segmentations or regions. Yet it yields robust registration results. We compare the robustness of our algorithm with that of the state of the art Elastix toolbox7. Validation is performed via 1464 pair-wise registrations in a database of very diverse 3D CT images. We show that our method decreases the "failure" rate of the global linear registration from 12.5% (Elastix) to only 1.9%.
Directory of Open Access Journals (Sweden)
Maria Gabriela Campolina Diniz Peixoto
2014-05-01
Full Text Available The objective of this work was to compare random regression models for the estimation of genetic parameters for Guzerat milk production, using orthogonal Legendre polynomials. Records (20,524 of test-day milk yield (TDMY from 2,816 first-lactation Guzerat cows were used. TDMY grouped into 10-monthly classes were analyzed for additive genetic effect and for environmental and residual permanent effects (random effects, whereas the contemporary group, calving age (linear and quadratic effects and mean lactation curve were analized as fixed effects. Trajectories for the additive genetic and permanent environmental effects were modeled by means of a covariance function employing orthogonal Legendre polynomials ranging from the second to the fifth order. Residual variances were considered in one, four, six, or ten variance classes. The best model had six residual variance classes. The heritability estimates for the TDMY records varied from 0.19 to 0.32. The random regression model that used a second-order Legendre polynomial for the additive genetic effect, and a fifth-order polynomial for the permanent environmental effect is adequate for comparison by the main employed criteria. The model with a second-order Legendre polynomial for the additive genetic effect, and that with a fourth-order for the permanent environmental effect could also be employed in these analyses.
Random Decrement and Regression Analysis of Traffic Responses of Bridges
DEFF Research Database (Denmark)
Asmussen, J. C.; Ibrahim, S. R.; Brincker, Rune
1996-01-01
The topic of this paper is the estimation of modal parameters from ambient data by applying the Random Decrement technique. The data fro the Queensborough Bridge over the Fraser River in Vancouver, Canada have been applied. The loads producing the dynamic response are ambient, e. g. wind, traffic...
Random Decrement and Regression Analysis of Traffic Responses of Bridges
DEFF Research Database (Denmark)
Asmussen, J. C.; Ibrahim, S. R.; Brincker, Rune
The topic of this paper is the estimation of modal parameters from ambient data by applying the Random Decrement technique. The data from the Queensborough Bridge over the Fraser River in Vancouver, Canada have been applied. The loads producing the dynamic response are ambient, e.g. wind, traffic...
DEFF Research Database (Denmark)
Strathe, Anders B; Mark, Thomas; Nielsen, Bjarne
2014-01-01
Random regression models were used to estimate covariance functions between cumulated feed intake (CFI) and body weight (BW) in 8424 Danish Duroc pigs. Random regressions on second order Legendre polynomials of age were used to describe genetic and permanent environmental curves in BW and CFI...
Berry, D P; Buckley, F; Dillon, P; Evans, R D; Rath, M; Veerkamp, R F
2003-11-01
Genetic (co)variances between body condition score (BCS), body weight (BW), milk yield, and fertility were estimated using a random regression animal model extended to multivariate analysis. The data analyzed included 81,313 BCS observations, 91,937 BW observations, and 100,458 milk test-day yields from 8725 multiparous Holstein-Friesian cows. A cubic random regression was sufficient to model the changing genetic variances for BCS, BW, and milk across different days in milk. The genetic correlations between BCS and fertility changed little over the lactation; genetic correlations between BCS and interval to first service and between BCS and pregnancy rate to first service varied from -0.47 to -0.31, and from 0.15 to 0.38, respectively. This suggests that maximum genetic gain in fertility from indirect selection on BCS should be based on measurements taken in midlactation when the genetic variance for BCS is largest. Selection for increased BW resulted in shorter intervals to first service, but more services and poorer pregnancy rates; genetic correlations between BW and pregnancy rate to first service varied from -0.52 to -0.45. Genetic selection for higher lactation milk yield alone through selection on increased milk yield in early lactation is likely to have a more deleterious effect on genetic merit for fertility than selection on higher milk yield in late lactation.
Chen, Carla Chia-Ming; Schwender, Holger; Keith, Jonathan; Nunkesser, Robin; Mengersen, Kerrie; Macrossan, Paula
2011-01-01
Due to advancements in computational ability, enhanced technology and a reduction in the price of genotyping, more data are being generated for understanding genetic associations with diseases and disorders. However, with the availability of large data sets comes the inherent challenges of new methods of statistical analysis and modeling. Considering a complex phenotype may be the effect of a combination of multiple loci, various statistical methods have been developed for identifying genetic epistasis effects. Among these methods, logic regression (LR) is an intriguing approach incorporating tree-like structures. Various methods have built on the original LR to improve different aspects of the model. In this study, we review four variations of LR, namely Logic Feature Selection, Monte Carlo Logic Regression, Genetic Programming for Association Studies, and Modified Logic Regression-Gene Expression Programming, and investigate the performance of each method using simulated and real genotype data. We contrast these with another tree-like approach, namely Random Forests, and a Bayesian logistic regression with stochastic search variable selection.
Directory of Open Access Journals (Sweden)
C. I. Cho
2016-05-01
Full Text Available The objectives of the study were to estimate genetic parameters for milk production traits of Holstein cattle using random regression models (RRMs, and to compare the goodness of fit of various RRMs with homogeneous and heterogeneous residual variances. A total of 126,980 test-day milk production records of the first parity Holstein cows between 2007 and 2014 from the Dairy Cattle Improvement Center of National Agricultural Cooperative Federation in South Korea were used. These records included milk yield (MILK, fat yield (FAT, protein yield (PROT, and solids-not-fat yield (SNF. The statistical models included random effects of genetic and permanent environments using Legendre polynomials (LP of the third to fifth order (L3–L5, fixed effects of herd-test day, year-season at calving, and a fixed regression for the test-day record (third to fifth order. The residual variances in the models were either homogeneous (HOM or heterogeneous (15 classes, HET15; 60 classes, HET60. A total of nine models (3 orders of polynomials×3 types of residual variance including L3-HOM, L3-HET15, L3-HET60, L4-HOM, L4-HET15, L4-HET60, L5-HOM, L5-HET15, and L5-HET60 were compared using Akaike information criteria (AIC and/or Schwarz Bayesian information criteria (BIC statistics to identify the model(s of best fit for their respective traits. The lowest BIC value was observed for the models L5-HET15 (MILK; PROT; SNF and L4-HET15 (FAT, which fit the best. In general, the BIC values of HET15 models for a particular polynomial order was lower than that of the HET60 model in most cases. This implies that the orders of LP and types of residual variances affect the goodness of models. Also, the heterogeneity of residual variances should be considered for the test-day analysis. The heritability estimates of from the best fitted models ranged from 0.08 to 0.15 for MILK, 0.06 to 0.14 for FAT, 0.08 to 0.12 for PROT, and 0.07 to 0.13 for SNF according to days in milk of first
The Initial Regression Statistical Characteristics of Intervals Between Zeros of Random Processes
Directory of Open Access Journals (Sweden)
V. K. Hohlov
2014-01-01
Full Text Available The article substantiates the initial regression statistical characteristics of intervals between zeros of realizing random processes, studies their properties allowing the use these features in the autonomous information systems (AIS of near location (NL. Coefficients of the initial regression (CIR to minimize the residual sum of squares of multiple initial regression views are justified on the basis of vector representations associated with a random vector notion of analyzed signal parameters. It is shown that even with no covariance-based private CIR it is possible to predict one random variable through another with respect to the deterministic components. The paper studies dependences of CIR interval sizes between zeros of the narrowband stationary in wide-sense random process with its energy spectrum. Particular CIR for random processes with Gaussian and rectangular energy spectra are obtained. It is shown that the considered CIRs do not depend on the average frequency of spectra, are determined by the relative bandwidth of the energy spectra, and weakly depend on the type of spectrum. CIR properties enable its use as an informative parameter when implementing temporary regression methods of signal processing, invariant to the average rate and variance of the input implementations. We consider estimates of the average energy spectrum frequency of the random stationary process by calculating the length of the time interval corresponding to the specified number of intervals between zeros. It is shown that the relative variance in estimation of the average energy spectrum frequency of stationary random process with increasing relative bandwidth ceases to depend on the last process implementation in processing above ten intervals between zeros. The obtained results can be used in the AIS NL to solve the tasks of detection and signal recognition, when a decision is made in conditions of unknown mathematical expectations on a limited observation
A random regression model in analysis of litter size in pigs | Lukovi& ...
African Journals Online (AJOL)
Dispersion parameters for number of piglets born alive (NBA) were estimated using a random regression model (RRM). Two data sets of litter records from the Nemščak farm in Slovenia were used for analyses. The first dataset (DS1) included records from the first to the sixth parity. The second dataset (DS2) was extended ...
Comparing spatial regression to random forests for large environmental data sets
Environmental data may be “large” due to number of records, number of covariates, or both. Random forests has a reputation for good predictive performance when using many covariates, whereas spatial regression, when using reduced rank methods, has a reputatio...
DEFF Research Database (Denmark)
Petersen, Jørgen Holm
2016-01-01
This paper describes a new approach to the estimation in a logistic regression model with two crossed random effects where special interest is in estimating the variance of one of the effects while not making distributional assumptions about the other effect. A composite likelihood is studied...
The limiting behavior of the estimated parameters in a misspecified random field regression model
DEFF Research Database (Denmark)
Dahl, Christian Møller; Qin, Yu
This paper examines the limiting properties of the estimated parameters in the random field regression model recently proposed by Hamilton (Econometrica, 2001). Though the model is parametric, it enjoys the flexibility of the nonparametric approach since it can approximate a large collection of n...
Wang, Wei; Griswold, Michael E
2016-11-30
The random effect Tobit model is a regression model that accommodates both left- and/or right-censoring and within-cluster dependence of the outcome variable. Regression coefficients of random effect Tobit models have conditional interpretations on a constructed latent dependent variable and do not provide inference of overall exposure effects on the original outcome scale. Marginalized random effects model (MREM) permits likelihood-based estimation of marginal mean parameters for the clustered data. For random effect Tobit models, we extend the MREM to marginalize over both the random effects and the normal space and boundary components of the censored response to estimate overall exposure effects at population level. We also extend the 'Average Predicted Value' method to estimate the model-predicted marginal means for each person under different exposure status in a designated reference group by integrating over the random effects and then use the calculated difference to assess the overall exposure effect. The maximum likelihood estimation is proposed utilizing a quasi-Newton optimization algorithm with Gauss-Hermite quadrature to approximate the integration of the random effects. We use these methods to carefully analyze two real datasets. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Multiple Imputation of a Randomly Censored Covariate Improves Logistic Regression Analysis.
Atem, Folefac D; Qian, Jing; Maye, Jacqueline E; Johnson, Keith A; Betensky, Rebecca A
2016-01-01
Randomly censored covariates arise frequently in epidemiologic studies. The most commonly used methods, including complete case and single imputation or substitution, suffer from inefficiency and bias. They make strong parametric assumptions or they consider limit of detection censoring only. We employ multiple imputation, in conjunction with semi-parametric modeling of the censored covariate, to overcome these shortcomings and to facilitate robust estimation. We develop a multiple imputation approach for randomly censored covariates within the framework of a logistic regression model. We use the non-parametric estimate of the covariate distribution or the semiparametric Cox model estimate in the presence of additional covariates in the model. We evaluate this procedure in simulations, and compare its operating characteristics to those from the complete case analysis and a survival regression approach. We apply the procedures to an Alzheimer's study of the association between amyloid positivity and maternal age of onset of dementia. Multiple imputation achieves lower standard errors and higher power than the complete case approach under heavy and moderate censoring and is comparable under light censoring. The survival regression approach achieves the highest power among all procedures, but does not produce interpretable estimates of association. Multiple imputation offers a favorable alternative to complete case analysis and ad hoc substitution methods in the presence of randomly censored covariates within the framework of logistic regression.
Random regression models for daily feed intake in Danish Duroc pigs
DEFF Research Database (Denmark)
Strathe, Anders Bjerring; Mark, Thomas; Jensen, Just
The objective of this study was to develop random regression models and estimate covariance functions for daily feed intake (DFI) in Danish Duroc pigs. A total of 476201 DFI records were available on 6542 Duroc boars between 70 to 160 days of age. The data originated from the National test station......-year-season, permanent, and animal genetic effects. The functional form was based on Legendre polynomials. A total of 64 models for random regressions were initially ranked by BIC to identify the approximate order for the Legendre polynomials using AI-REML. The parsimonious model included Legendre polynomials of 2nd...... order for genetic and permanent environmental curves and a heterogeneous residual variance, allowing the daily residual variance to change along the age trajectory due to scale effects. The parameters of the model were estimated in a Bayesian framework, using the RJMC module of the DMU package, where...
Linear Regression with a Randomly Censored Covariate: Application to an Alzheimer's Study.
Atem, Folefac D; Qian, Jing; Maye, Jacqueline E; Johnson, Keith A; Betensky, Rebecca A
2017-01-01
The association between maternal age of onset of dementia and amyloid deposition (measured by in vivo positron emission tomography (PET) imaging) in cognitively normal older offspring is of interest. In a regression model for amyloid, special methods are required due to the random right censoring of the covariate of maternal age of onset of dementia. Prior literature has proposed methods to address the problem of censoring due to assay limit of detection, but not random censoring. We propose imputation methods and a survival regression method that do not require parametric assumptions about the distribution of the censored covariate. Existing imputation methods address missing covariates, but not right censored covariates. In simulation studies, we compare these methods to the simple, but inefficient complete case analysis, and to thresholding approaches. We apply the methods to the Alzheimer's study.
Bastin, Catherine; Gillon, Alain; Massart, Xavier; Bertozzi, Carlo; Vanderick, Sylvie; Gengler, Nicolas
2010-01-01
Genetic correlations between body condition score (BCS) in lactation 1 to 3 and four economically important traits (days open, 305-days milk, fat, and protein yields recorded in the first 3 lactations) were estimated on about 12,500 Walloon Holstein cows using 4-trait random regression models. Results indicated moderate favorable genetic correlations between BCS and days open (from -0.46 to -0.62) and suggested the use of BCS for indirect selection on fertility. However, unfavorable genetic c...
Multilevel covariance regression with correlated random effects in the mean and variance structure.
Quintero, Adrian; Lesaffre, Emmanuel
2017-09-01
Multivariate regression methods generally assume a constant covariance matrix for the observations. In case a heteroscedastic model is needed, the parametric and nonparametric covariance regression approaches can be restrictive in the literature. We propose a multilevel regression model for the mean and covariance structure, including random intercepts in both components and allowing for correlation between them. The implied conditional covariance function can be different across clusters as a result of the random effect in the variance structure. In addition, allowing for correlation between the random intercepts in the mean and covariance makes the model convenient for skewedly distributed responses. Furthermore, it permits us to analyse directly the relation between the mean response level and the variability in each cluster. Parameter estimation is carried out via Gibbs sampling. We compare the performance of our model to other covariance modelling approaches in a simulation study. Finally, the proposed model is applied to the RN4CAST dataset to identify the variables that impact burnout of nurses in Belgium. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Suri, Rakesh M; Zehr, Kenton J; Sundt, Thoralf M; Dearani, Joseph A; Daly, Richard C; Oh, Jae K; Schaff, Hartzell V
2009-10-01
It is unclear whether small differences in transprosthetic gradient between porcine and bovine biologic aortic valves translate into improved regression of left ventricular (LV) hypertrophy after aortic valve replacement. We investigated transprosthetic gradient, aortic valve orifice area, and LV mass in patients randomized to aortic valve replacement with either the Medtronic Mosaic (MM) porcine or an Edwards Perimount (EP) bovine pericardial bioprosthesis. One hundred fifty-two patients with aortic valve disease were randomly assigned to receive either the MM (n = 76) or an EP prosthesis. There were 89 men (59%), and the mean age was 76 years. Echocardiograms from preoperative, postoperative, predismissal, and 1-year time points were analyzed. Baseline characteristics and preoperative echocardiograms were similar between the two groups. The median implant size was 23 mm for both. There were no early deaths, and 10 patients (7%) died after dismissal. One hundred seven of 137 patients (78%) had a 1-year echocardiogram, and none required aortic valve reoperation. The mean aortic valve gradient at dismissal was 19.4 mm Hg (MM) versus13.5 mm Hg (EP; p regression of LV mass index (MM, -32.4 g/m(2) versus EP, -27.0 g/m(2); p = 0.40). Greater preoperative LV mass index was the sole independent predictor of greater LV mass regression after surgery (p regression of LV mass during the first year after aortic valve replacement.
Kim, Yoonsang; Emery, Sherry
2013-01-01
Several statistical packages are capable of estimating generalized linear mixed models and these packages provide one or more of three estimation methods: penalized quasi-likelihood, Laplace, and Gauss-Hermite. Many studies have investigated these methods’ performance for the mixed-effects logistic regression model. However, the authors focused on models with one or two random effects and assumed a simple covariance structure between them, which may not be realistic. When there are multiple correlated random effects in a model, the computation becomes intensive, and often an algorithm fails to converge. Moreover, in our analysis of smoking status and exposure to anti-tobacco advertisements, we have observed that when a model included multiple random effects, parameter estimates varied considerably from one statistical package to another even when using the same estimation method. This article presents a comprehensive review of the advantages and disadvantages of each estimation method. In addition, we compare the performances of the three methods across statistical packages via simulation, which involves two- and three-level logistic regression models with at least three correlated random effects. We apply our findings to a real dataset. Our results suggest that two packages—SAS GLIMMIX Laplace and SuperMix Gaussian quadrature—perform well in terms of accuracy, precision, convergence rates, and computing speed. We also discuss the strengths and weaknesses of the two packages in regard to sample sizes. PMID:24288415
Kim, Yoonsang; Choi, Young-Ku; Emery, Sherry
2013-08-01
Several statistical packages are capable of estimating generalized linear mixed models and these packages provide one or more of three estimation methods: penalized quasi-likelihood, Laplace, and Gauss-Hermite. Many studies have investigated these methods' performance for the mixed-effects logistic regression model. However, the authors focused on models with one or two random effects and assumed a simple covariance structure between them, which may not be realistic. When there are multiple correlated random effects in a model, the computation becomes intensive, and often an algorithm fails to converge. Moreover, in our analysis of smoking status and exposure to anti-tobacco advertisements, we have observed that when a model included multiple random effects, parameter estimates varied considerably from one statistical package to another even when using the same estimation method. This article presents a comprehensive review of the advantages and disadvantages of each estimation method. In addition, we compare the performances of the three methods across statistical packages via simulation, which involves two- and three-level logistic regression models with at least three correlated random effects. We apply our findings to a real dataset. Our results suggest that two packages-SAS GLIMMIX Laplace and SuperMix Gaussian quadrature-perform well in terms of accuracy, precision, convergence rates, and computing speed. We also discuss the strengths and weaknesses of the two packages in regard to sample sizes.
Ryu, Duchwan
2010-09-28
We consider nonparametric regression analysis in a generalized linear model (GLM) framework for data with covariates that are the subject-specific random effects of longitudinal measurements. The usual assumption that the effects of the longitudinal covariate processes are linear in the GLM may be unrealistic and if this happens it can cast doubt on the inference of observed covariate effects. Allowing the regression functions to be unknown, we propose to apply Bayesian nonparametric methods including cubic smoothing splines or P-splines for the possible nonlinearity and use an additive model in this complex setting. To improve computational efficiency, we propose the use of data-augmentation schemes. The approach allows flexible covariance structures for the random effects and within-subject measurement errors of the longitudinal processes. The posterior model space is explored through a Markov chain Monte Carlo (MCMC) sampler. The proposed methods are illustrated and compared to other approaches, the "naive" approach and the regression calibration, via simulations and by an application that investigates the relationship between obesity in adulthood and childhood growth curves. © 2010, The International Biometric Society.
Karami, K; Zerehdaran, S; Barzanooni, B; Lotfi, E
2017-12-01
1. The aim of the present study was to estimate genetic parameters for average egg weight (EW) and egg number (EN) at different ages in Japanese quail using multi-trait random regression (MTRR) models. 2. A total of 8534 records from 900 quail, hatched between 2014 and 2015, were used in the study. Average weekly egg weights and egg numbers were measured from second until sixth week of egg production. 3. Nine random regression models were compared to identify the best order of the Legendre polynomials (LP). The most optimal model was identified by the Bayesian Information Criterion. A model with second order of LP for fixed effects, second order of LP for additive genetic effects and third order of LP for permanent environmental effects (MTRR23) was found to be the best. 4. According to the MTRR23 model, direct heritability for EW increased from 0.26 in the second week to 0.53 in the sixth week of egg production, whereas the ratio of permanent environment to phenotypic variance decreased from 0.48 to 0.1. Direct heritability for EN was low, whereas the ratio of permanent environment to phenotypic variance decreased from 0.57 to 0.15 during the production period. 5. For each trait, estimated genetic correlations among weeks of egg production were high (from 0.85 to 0.98). Genetic correlations between EW and EN were low and negative for the first two weeks, but they were low and positive for the rest of the egg production period. 6. In conclusion, random regression models can be used effectively for analysing egg production traits in Japanese quail. Response to selection for increased egg weight would be higher at older ages because of its higher heritability and such a breeding program would have no negative genetic impact on egg production.
Liu, Xian; Engel, Charles C
2012-12-20
Researchers often encounter longitudinal health data characterized with three or more ordinal or nominal categories. Random-effects multinomial logit models are generally applied to account for potential lack of independence inherent in such clustered data. When parameter estimates are used to describe longitudinal processes, however, random effects, both between and within individuals, need to be retransformed for correctly predicting outcome probabilities. This study attempts to go beyond existing work by developing a retransformation method that derives longitudinal growth trajectories of unbiased health probabilities. We estimated variances of the predicted probabilities by using the delta method. Additionally, we transformed the covariates' regression coefficients on the multinomial logit function, not substantively meaningful, to the conditional effects on the predicted probabilities. The empirical illustration uses the longitudinal data from the Asset and Health Dynamics among the Oldest Old. Our analysis compared three sets of the predicted probabilities of three health states at six time points, obtained from, respectively, the retransformation method, the best linear unbiased prediction, and the fixed-effects approach. The results demonstrate that neglect of retransforming random errors in the random-effects multinomial logit model results in severely biased longitudinal trajectories of health probabilities as well as overestimated effects of covariates on the probabilities. Copyright © 2012 John Wiley & Sons, Ltd.
The performance of random coefficient regression in accounting for residual confounding.
Gustafson, Paul; Greenland, Sander
2006-09-01
Greenland (2000, Biometrics 56, 915-921) describes the use of random coefficient regression to adjust for residual confounding in a particular setting. We examine this setting further, giving theoretical and empirical results concerning the frequentist and Bayesian performance of random coefficient regression. Particularly, we compare estimators based on this adjustment for residual confounding to estimators based on the assumption of no residual confounding. This devolves to comparing an estimator from a nonidentified but more realistic model to an estimator from a less realistic but identified model. The approach described by Gustafson (2005, Statistical Science 20, 111-140) is used to quantify the performance of a Bayesian estimator arising from a nonidentified model. From both theoretical calculations and simulations we find support for the idea that superior performance can be obtained by replacing unrealistic identifying constraints with priors that allow modest departures from those constraints. In terms of point-estimator bias this superiority arises when the extent of residual confounding is substantial, but the advantage is much broader in terms of interval estimation. The benefit from modeling residual confounding is maintained when the prior distributions employed only roughly correspond to reality, for the standard identifying constraints are equivalent to priors that typically correspond much worse.
Estimation of genetic parameters related to eggshell strength using random regression models.
Guo, J; Ma, M; Qu, L; Shen, M; Dou, T; Wang, K
2015-01-01
This study examined the changes in eggshell strength and the genetic parameters related to this trait throughout a hen's laying life using random regression. The data were collected from a crossbred population between 2011 and 2014, where the eggshell strength was determined repeatedly for 2260 hens. Using random regression models (RRMs), several Legendre polynomials were employed to estimate the fixed, direct genetic and permanent environment effects. The residual effects were treated as independently distributed with heterogeneous variance for each test week. The direct genetic variance was included with second-order Legendre polynomials and the permanent environment with third-order Legendre polynomials. The heritability of eggshell strength ranged from 0.26 to 0.43, the repeatability ranged between 0.47 and 0.69, and the estimated genetic correlations between test weeks was high at > 0.67. The first eigenvalue of the genetic covariance matrix accounted for about 97% of the sum of all the eigenvalues. The flexibility and statistical power of RRM suggest that this model could be an effective method to improve eggshell quality and to reduce losses due to cracked eggs in a breeding plan.
ESTIMATION OF GENETIC PARAMETERS IN TROPICARNE CATTLE WITH RANDOM REGRESSION MODELS USING B-SPLINES
Directory of Open Access Journals (Sweden)
Joel DomÃnguez Viveros
2015-04-01
Full Text Available The objectives were to estimate variance components, and direct (h2 and maternal (m2 heritability in the growth of Tropicarne cattle based on a random regression model using B-Splines for random effects modeling. Information from 12 890 monthly weightings of 1787 calves, from birth to 24 months old, was analyzed. The pedigree included 2504 animals. The random effects model included genetic and permanent environmental (direct and maternal of cubic order, and residuals. The fixed effects included contemporaneous groups (year â€“ season of weighed, sex and the covariate age of the cow (linear and quadratic. The B-Splines were defined in four knots through the growth period analyzed. Analyses were performed with the software Wombat. The variances (phenotypic and residual presented a similar behavior; of 7 to 12 months of age had a negative trend; from birth to 6 months and 13 to 18 months had positive trend; after 19 months were maintained constant. The m2 were low and near to zero, with an average of 0.06 in an interval of 0.04 to 0.11; the h2 also were close to zero, with an average of 0.10 in an interval of 0.03 to 0.23.
Genetic analysis of partial egg production records in Japanese quail using random regression models.
Abou Khadiga, G; Mahmoud, B Y F; Farahat, G S; Emam, A M; El-Full, E A
2017-08-01
The main objectives of this study were to detect the most appropriate random regression model (RRM) to fit the data of monthly egg production in 2 lines (selected and control) of Japanese quail and to test the consistency of different criteria of model choice. Data from 1,200 female Japanese quails for the first 5 months of egg production from 4 consecutive generations of an egg line selected for egg production in the first month (EP1) was analyzed. Eight RRMs with different orders of Legendre polynomials were compared to determine the proper model for analysis. All criteria of model choice suggested that the adequate model included the second-order Legendre polynomials for fixed effects, and the third-order for additive genetic effects and permanent environmental effects. Predictive ability of the best model was the highest among all models (ρ = 0.987). According to the best model fitted to the data, estimates of heritability were relatively low to moderate (0.10 to 0.17) showed a descending pattern from the first to the fifth month of production. A similar pattern was observed for permanent environmental effects with greater estimates in the first (0.36) and second (0.23) months of production than heritability estimates. Genetic correlations between separate production periods were higher (0.18 to 0.93) than their phenotypic counterparts (0.15 to 0.87). The superiority of the selected line over the control was observed through significant (P egg production in earlier ages (first and second months) than later ones. A methodology based on random regression animal models can be recommended for genetic evaluation of egg production in Japanese quail. © 2017 Poultry Science Association Inc.
De Haas, Y; Janss, L L G; Kadarmideen, H N
2007-10-01
Genetic correlations between body condition score (BCS) and fertility traits in dairy cattle were estimated using bivariate random regression models. BCS was recorded by the Swiss Holstein Association on 22,075 lactating heifers (primiparous cows) from 856 sires. Fertility data during first lactation were extracted for 40,736 cows. The fertility traits were days to first service (DFS), days between first and last insemination (DFLI), calving interval (CI), number of services per conception (NSPC) and conception rate to first insemination (CRFI). A bivariate model was used to estimate genetic correlations between BCS as a longitudinal trait by random regression components, and daughter's fertility at the sire level as a single lactation measurement. Heritability of BCS was 0.17, and heritabilities for fertility traits were low (0.01-0.08). Genetic correlations between BCS and fertility over the lactation varied from: -0.45 to -0.14 for DFS; -0.75 to 0.03 for DFLI; from -0.59 to -0.02 for CI; from -0.47 to 0.33 for NSPC and from 0.08 to 0.82 for CRFI. These results show (genetic) interactions between fat reserves and reproduction along the lactation trajectory of modern dairy cows, which can be useful in genetic selection as well as in management. Maximum genetic gain in fertility from indirect selection on BCS should be based on measurements taken in mid lactation when the genetic variance for BCS is largest, and the genetic correlations between BCS and fertility is strongest.
Comparison between the Lactation Model and the Test-Day Model ...
African Journals Online (AJOL)
ARC-IRENE
National Genetic Evaluation, using a Fixed Regression Test-day Model (TDM). This comparison is made for. Ayrshire, Guernsey, Holstein and Jersey cows participating in the South African Dairy Animal Improvement. Scheme. Specific differences between the two models were documented, with differences in statistical.
Directory of Open Access Journals (Sweden)
Marjan Čeh
2018-05-01
Full Text Available The goal of this study is to analyse the predictive performance of the random forest machine learning technique in comparison to commonly used hedonic models based on multiple regression for the prediction of apartment prices. A data set that includes 7407 records of apartment transactions referring to real estate sales from 2008–2013 in the city of Ljubljana, the capital of Slovenia, was used in order to test and compare the predictive performances of both models. Apparent challenges faced during modelling included (1 the non-linear nature of the prediction assignment task; (2 input data being based on transactions occurring over a period of great price changes in Ljubljana whereby a 28% decline was noted in six consecutive testing years; and (3 the complex urban form of the case study area. Available explanatory variables, organised as a Geographic Information Systems (GIS ready dataset, including the structural and age characteristics of the apartments as well as environmental and neighbourhood information were considered in the modelling procedure. All performance measures (R2 values, sales ratios, mean average percentage error (MAPE, coefficient of dispersion (COD revealed significantly better results for predictions obtained by the random forest method, which confirms the prospective of this machine learning technique on apartment price prediction.
Lin, Yi Hung; Tu, Yu Kang; Lu, Chun Tai; Chung, Wen Chen; Huang, Chiung Fang; Huang, Mao Suan; Lu, Hsein Kun
2014-01-01
Repigmentation variably occurs with different treatment methods in patients with gingival pigmentation. A systemic review was conducted of various treatment modalities for eliminating melanin pigmentation of the gingiva, comprising bur abrasion, scalpel surgery, cryosurgery, electrosurgery, gingival grafts, and laser techniques, to compare the recurrence rates (Rrs) of these treatment procedures. Electronic databases, including PubMed, Web of Science, Google, and Medline were comprehensively searched, and manual searches were conducted for studies published from January 1951 to June 2013. After applying inclusion and exclusion criteria, the final list of articles was reviewed in depth to achieve the objectives of this review. A Poisson regression was used to analyze the outcome of depigmentation using the various treatment methods. The systematic review was based on case reports mainly. In total, 61 eligible publications met the defined criteria. The various therapeutic procedures showed variable clinical results with a wide range of Rrs. A random-effects Poisson regression showed that cryosurgery (Rr = 0.32%), electrosurgery (Rr = 0.74%), and laser depigmentation (Rr = 1.16%) yielded superior result, whereas bur abrasion yielded the highest Rr (8.89%). Within the limit of the sampling level, the present evidence-based results show that cryosurgery exhibits the optimal predictability for depigmentation of the gingiva among all procedures examined, followed by electrosurgery and laser techniques. It is possible to treat melanin pigmentation of the gingiva with various methods and prevent repigmentation. Among those treatment modalities, cryosurgery, electrosurgery, and laser surgery appear to be the best choices for treating gingival pigmentation. © 2014 Wiley Periodicals, Inc.
BOX-COX transformation and random regression models for fecal egg count data
Directory of Open Access Journals (Sweden)
Marcos Vinicius Silva
2012-01-01
Full Text Available Accurate genetic evaluation of livestock is based on appropriate modeling of phenotypic measurements. In ruminants fecal egg count (FEC is commonly used to measure resistance to nematodes. FEC values are not normally distributed and logarithmic transformations have been used to achieve normality before analysis. However, the transformed data are often not normally distributed, especially when data are extremely skewed. A series of repeated FEC measurements may provide information about the population dynamics of a group or individual. A total of 6,375 FEC measures were obtained for 410 animals between 1992 and 2003 from the Beltsville Agricultural Research Center Angus herd. Original data were transformed using an extension of the Box-Cox transformation to approach normality and to estimate (covariance components. We also proposed using random regression models (RRM for genetic and non-genetic studies of FEC. Phenotypes were analyzed using RRM and restricted maximum likelihood. Within the different orders of Legendre polynomials used, those with more parameters (order 4 adjusted FEC data best. Results indicated that the transformation of FEC data utilizing the Box-Cox transformation family was effective in reducing the skewness and kurtosis, and dramatically increased estimates of heritability, and measurements of FEC obtained in the period between 12 and 26 weeks in a 26-week experimental challenge period are genetically correlated.
Multi-fidelity Gaussian process regression for prediction of random fields
Energy Technology Data Exchange (ETDEWEB)
Parussini, L. [Department of Engineering and Architecture, University of Trieste (Italy); Venturi, D., E-mail: venturi@ucsc.edu [Department of Applied Mathematics and Statistics, University of California Santa Cruz (United States); Perdikaris, P. [Department of Mechanical Engineering, Massachusetts Institute of Technology (United States); Karniadakis, G.E. [Division of Applied Mathematics, Brown University (United States)
2017-05-01
We propose a new multi-fidelity Gaussian process regression (GPR) approach for prediction of random fields based on observations of surrogate models or hierarchies of surrogate models. Our method builds upon recent work on recursive Bayesian techniques, in particular recursive co-kriging, and extends it to vector-valued fields and various types of covariances, including separable and non-separable ones. The framework we propose is general and can be used to perform uncertainty propagation and quantification in model-based simulations, multi-fidelity data fusion, and surrogate-based optimization. We demonstrate the effectiveness of the proposed recursive GPR techniques through various examples. Specifically, we study the stochastic Burgers equation and the stochastic Oberbeck–Boussinesq equations describing natural convection within a square enclosure. In both cases we find that the standard deviation of the Gaussian predictors as well as the absolute errors relative to benchmark stochastic solutions are very small, suggesting that the proposed multi-fidelity GPR approaches can yield highly accurate results.
Box-Cox Transformation and Random Regression Models for Fecal egg Count Data.
da Silva, Marcos Vinícius Gualberto Barbosa; Van Tassell, Curtis P; Sonstegard, Tad S; Cobuci, Jaime Araujo; Gasbarre, Louis C
2011-01-01
Accurate genetic evaluation of livestock is based on appropriate modeling of phenotypic measurements. In ruminants, fecal egg count (FEC) is commonly used to measure resistance to nematodes. FEC values are not normally distributed and logarithmic transformations have been used in an effort to achieve normality before analysis. However, the transformed data are often still not normally distributed, especially when data are extremely skewed. A series of repeated FEC measurements may provide information about the population dynamics of a group or individual. A total of 6375 FEC measures were obtained for 410 animals between 1992 and 2003 from the Beltsville Agricultural Research Center Angus herd. Original data were transformed using an extension of the Box-Cox transformation to approach normality and to estimate (co)variance components. We also proposed using random regression models (RRM) for genetic and non-genetic studies of FEC. Phenotypes were analyzed using RRM and restricted maximum likelihood. Within the different orders of Legendre polynomials used, those with more parameters (order 4) adjusted FEC data best. Results indicated that the transformation of FEC data utilizing the Box-Cox transformation family was effective in reducing the skewness and kurtosis, and dramatically increased estimates of heritability, and measurements of FEC obtained in the period between 12 and 26 weeks in a 26-week experimental challenge period are genetically correlated.
Microbiome Data Accurately Predicts the Postmortem Interval Using Random Forest Regression Models
Directory of Open Access Journals (Sweden)
Aeriel Belk
2018-02-01
Full Text Available Death investigations often include an effort to establish the postmortem interval (PMI in cases in which the time of death is uncertain. The postmortem interval can lead to the identification of the deceased and the validation of witness statements and suspect alibis. Recent research has demonstrated that microbes provide an accurate clock that starts at death and relies on ecological change in the microbial communities that normally inhabit a body and its surrounding environment. Here, we explore how to build the most robust Random Forest regression models for prediction of PMI by testing models built on different sample types (gravesoil, skin of the torso, skin of the head, gene markers (16S ribosomal RNA (rRNA, 18S rRNA, internal transcribed spacer regions (ITS, and taxonomic levels (sequence variants, species, genus, etc.. We also tested whether particular suites of indicator microbes were informative across different datasets. Generally, results indicate that the most accurate models for predicting PMI were built using gravesoil and skin data using the 16S rRNA genetic marker at the taxonomic level of phyla. Additionally, several phyla consistently contributed highly to model accuracy and may be candidate indicators of PMI.
Multi-fidelity Gaussian process regression for prediction of random fields
International Nuclear Information System (INIS)
Parussini, L.; Venturi, D.; Perdikaris, P.; Karniadakis, G.E.
2017-01-01
We propose a new multi-fidelity Gaussian process regression (GPR) approach for prediction of random fields based on observations of surrogate models or hierarchies of surrogate models. Our method builds upon recent work on recursive Bayesian techniques, in particular recursive co-kriging, and extends it to vector-valued fields and various types of covariances, including separable and non-separable ones. The framework we propose is general and can be used to perform uncertainty propagation and quantification in model-based simulations, multi-fidelity data fusion, and surrogate-based optimization. We demonstrate the effectiveness of the proposed recursive GPR techniques through various examples. Specifically, we study the stochastic Burgers equation and the stochastic Oberbeck–Boussinesq equations describing natural convection within a square enclosure. In both cases we find that the standard deviation of the Gaussian predictors as well as the absolute errors relative to benchmark stochastic solutions are very small, suggesting that the proposed multi-fidelity GPR approaches can yield highly accurate results.
Englishby, Tanya M; Moore, Kirsty L; Berry, Donagh P; Coffey, Mike P; Banos, Georgios
2017-07-01
Abattoir data are an important source of information for the genetic evaluation of carcass traits, but also for on-farm management purposes. The present study aimed to quantify the contribution of herd environment to beef carcass characteristics (weight, conformation score and fat score) with particular emphasis on generating finishing herd-specific profiles for these traits across different ages at slaughter. Abattoir records from 46,115 heifers and 78,790 steers aged between 360 and 900days, and from 22,971 young bulls aged between 360 and 720days, were analysed. Finishing herd-year and animal genetic (co)variance components for each trait were estimated using random regression models. Across slaughter age and gender, the ratio of finishing herd-year to total phenotypic variance ranged from 0.31 to 0.72 for carcass weight, 0.21 to 0.57 for carcass conformation and 0.11 to 0.44 for carcass fat score. These parameters indicate that the finishing herd environment is an important contributor to carcass trait variability and amenable to improvement with management practices. Copyright © 2017 Elsevier Ltd. All rights reserved.
Oldenburg, Catherine E; Venkatesh Prajna, N; Krishnan, Tiruvengada; Rajaraman, Revathi; Srinivasan, Muthiah; Ray, Kathryn J; O'Brien, Kieran S; Glymour, M Maria; Porco, Travis C; Acharya, Nisha R; Rose-Nussbaumer, Jennifer; Lietman, Thomas M
2018-08-01
We compare results from regression discontinuity (RD) analysis to primary results of a randomized controlled trial (RCT) utilizing data from two contemporaneous RCTs for treatment of fungal corneal ulcers. Patients were enrolled in the Mycotic Ulcer Treatment Trials I and II (MUTT I & MUTT II) based on baseline visual acuity: patients with acuity ≤ 20/400 (logMAR 1.3) enrolled in MUTT I, and >20/400 in MUTT II. MUTT I investigated the effect of topical natamycin versus voriconazole on best spectacle-corrected visual acuity. MUTT II investigated the effect of topical voriconazole plus placebo versus topical voriconazole plus oral voriconazole. We compared the RD estimate (natamycin arm of MUTT I [N = 162] versus placebo arm of MUTT II [N = 54]) to the RCT estimate from MUTT I (topical natamycin [N = 162] versus topical voriconazole [N = 161]). In the RD, patients receiving natamycin had mean improvement of 4-lines of visual acuity at 3 months (logMAR -0.39, 95% CI: -0.61, -0.17) compared to topical voriconazole plus placebo, and 2-lines in the RCT (logMAR -0.18, 95% CI: -0.30, -0.05) compared to topical voriconazole. The RD and RCT estimates were similar, although the RD design overestimated effects compared to the RCT.
Directory of Open Access Journals (Sweden)
Cláudio Vieira de Araújo
2006-06-01
Full Text Available Registros de produção de leite de 68.523 controles leiteiros de 8.536 vacas da raça Holandesa, com parições nos anos de 1996 a 2001, foram utilizados na comparação entre modelos de regressão aleatória para estimação de componentes de variância. Os registros de controle leiteiro foram analisados como características múltiplas, considerando cada controle uma característica distinta. Os mesmos registros de controle leiteiro foram analisados como dados longitudinais, por meio de modelos de regressão aleatória, que diferiram entre si pela função utilizada para descrever a trajetória da curva de lactação dos animais. As funções utilizadas foram a exponencial de Wilmink, a função de Ali e Schaeffer e os polinômios de Legendre de segundo e quarto graus. A comparação entre modelos foi realizada com base nos seguintes critérios: estimativas de componentes de variância, obtidas no modelo multicaractístico e por regressão aleatória; valores da variância residual; e valores do logaritmo da função de verossimilhança. As estimativas de herdabilidade obtidas por meio dos modelos de características múltiplas variaram de 0,110 a 0,244. Para os modelos de regressão aleatória, esses valores oscilaram de 0,127 a 0,301, observando-se as maiores estimativas nos modelos com maior número de parâmetros. Verificou-se que os modelos de regressão aleatória que utilizaram os polinômios de Legendre descreveram melhor a variação genética da produção de leite.Data comprising 68,523 test day milk yield of 8,536 cows of the Holstein breed, calving from 1996 to 2001, were used to compare random regression models, for estimating variance components. Test day records (TD were analyzed as multiple traits, considering each TD as a different trait. The test day records were analyzed as longitudinal traits by different random regression models regarding the function used to describe the trajectory of the lactation curve of the animals
Directory of Open Access Journals (Sweden)
Kiessling Arndt H
2011-10-01
Full Text Available Abstract Background We assessed the hemodynamic performance of various prostheses and the clinical outcomes after aortic valve replacement, in different age groups. Methods One-hundred-and-twenty patients with isolated aortic valve stenosis were included in this prospective randomized randomised trial and allocated in three age-groups to receive either pulmonary autograft (PA, n = 20 or mechanical prosthesis (MP, Edwards Mira n = 20 in group 1 (age 75. Clinical outcomes and hemodynamic performance were evaluated at discharge, six months and one year. Results In group 1, patients with PA had significantly lower mean gradients than the MP (2.6 vs. 10.9 mmHg, p = 0.0005 with comparable left ventricular mass regression (LVMR. Morbidity included 1 stroke in the PA population and 1 gastrointestinal bleeding in the MP subgroup. In group 2, mean gradients did not differ significantly between both populations (7.0 vs. 8.9 mmHg, p = 0.81. The rate of LVMR and EF were comparable at 12 months; each group with one mortality. Morbidity included 1 stroke and 1 gastrointestinal bleeding in the stentless and 3 bleeding complications in the MP group. In group 3, mean gradients did not differ significantly (7.8 vs 6.5 mmHg, p = 0.06. Postoperative EF and LVMR were comparable. There were 3 deaths in the stented group and no mortality in the stentless group. Morbidity included 1 endocarditis and 1 stroke in the stentless compared to 1 endocarditis, 1 stroke and one pulmonary embolism in the stented group. Conclusions Clinical outcomes justify valve replacement with either valve substitute in the respective age groups. The PA hemodynamically outperformed the MPs. Stentless valves however, did not demonstrate significantly superior hemodynamics or outcomes in comparison to stented bioprosthesis or MPs.
NeCamp, Timothy; Kilbourne, Amy; Almirall, Daniel
2017-08-01
Cluster-level dynamic treatment regimens can be used to guide sequential treatment decision-making at the cluster level in order to improve outcomes at the individual or patient-level. In a cluster-level dynamic treatment regimen, the treatment is potentially adapted and re-adapted over time based on changes in the cluster that could be impacted by prior intervention, including aggregate measures of the individuals or patients that compose it. Cluster-randomized sequential multiple assignment randomized trials can be used to answer multiple open questions preventing scientists from developing high-quality cluster-level dynamic treatment regimens. In a cluster-randomized sequential multiple assignment randomized trial, sequential randomizations occur at the cluster level and outcomes are observed at the individual level. This manuscript makes two contributions to the design and analysis of cluster-randomized sequential multiple assignment randomized trials. First, a weighted least squares regression approach is proposed for comparing the mean of a patient-level outcome between the cluster-level dynamic treatment regimens embedded in a sequential multiple assignment randomized trial. The regression approach facilitates the use of baseline covariates which is often critical in the analysis of cluster-level trials. Second, sample size calculators are derived for two common cluster-randomized sequential multiple assignment randomized trial designs for use when the primary aim is a between-dynamic treatment regimen comparison of the mean of a continuous patient-level outcome. The methods are motivated by the Adaptive Implementation of Effective Programs Trial which is, to our knowledge, the first-ever cluster-randomized sequential multiple assignment randomized trial in psychiatry.
Van Der Meer, D.; Hoekstra, P. J.; Van Donkelaar, M.; Bralten, J.; Oosterlaan, J.; Heslenfeld, D.; Faraone, S. V.; Franke, B.; Buitelaar, J. K.; Hartman, C. A.
2017-01-01
Identifying genetic variants contributing to attention-deficit/hyperactivity disorder (ADHD) is complicated by the involvement of numerous common genetic variants with small effects, interacting with each other as well as with environmental factors, such as stress exposure. Random forest regression
van der Meer, D.; Hoekstra, P. J.; van Donkelaar, Marjolein M. J.; Bralten, Janita; Oosterlaan, J; Heslenfeld, Dirk J.; Faraone, S. V.; Franke, B.; Buitelaar, J. K.; Hartman, C. A.
2017-01-01
Identifying genetic variants contributing to attention-deficit/hyperactivity disorder (ADHD) is complicated by the involvement of numerous common genetic variants with small effects, interacting with each other as well as with environmental factors, such as stress exposure. Random forest regression
Strobl, Carolin; Malley, James; Tutz, Gerhard
2009-01-01
Recursive partitioning methods have become popular and widely used tools for nonparametric regression and classification in many scientific fields. Especially random forests, which can deal with large numbers of predictor variables even in the presence of complex interactions, have been applied successfully in genetics, clinical medicine, and…
Shabani, Farzin; Kumar, Lalit; Solhjouy-fard, Samaneh
2017-08-01
The aim of this study was to have a comparative investigation and evaluation of the capabilities of correlative and mechanistic modeling processes, applied to the projection of future distributions of date palm in novel environments and to establish a method of minimizing uncertainty in the projections of differing techniques. The location of this study on a global scale is in Middle Eastern Countries. We compared the mechanistic model CLIMEX (CL) with the correlative models MaxEnt (MX), Boosted Regression Trees (BRT), and Random Forests (RF) to project current and future distributions of date palm ( Phoenix dactylifera L.). The Global Climate Model (GCM), the CSIRO-Mk3.0 (CS) using the A2 emissions scenario, was selected for making projections. Both indigenous and alien distribution data of the species were utilized in the modeling process. The common areas predicted by MX, BRT, RF, and CL from the CS GCM were extracted and compared to ascertain projection uncertainty levels of each individual technique. The common areas identified by all four modeling techniques were used to produce a map indicating suitable and unsuitable areas for date palm cultivation for Middle Eastern countries, for the present and the year 2100. The four different modeling approaches predict fairly different distributions. Projections from CL were more conservative than from MX. The BRT and RF were the most conservative methods in terms of projections for the current time. The combination of the final CL and MX projections for the present and 2100 provide higher certainty concerning those areas that will become highly suitable for future date palm cultivation. According to the four models, cold, hot, and wet stress, with differences on a regional basis, appears to be the major restrictions on future date palm distribution. The results demonstrate variances in the projections, resulting from different techniques. The assessment and interpretation of model projections requires reservations
Ryu, Duchwan; Li, Erning; Mallick, Bani K.
2010-01-01
" approach and the regression calibration, via simulations and by an application that investigates the relationship between obesity in adulthood and childhood growth curves. © 2010, The International Biometric Society.
Directory of Open Access Journals (Sweden)
C.K.P. Dorneles
2009-04-01
Full Text Available Foram utilizados 21.702 registros de produção de leite no dia do controle de 2.429 vacas primíparas da raça Holandesa, filhas de 233 touros, coletados em 33 rebanhos do Estado do Rio Grande do Sul, para estimar parâmetros genéticos para produção de leite no dia do controle. O modelo de regressão aleatória ajustado aos controles leiteiros entre o sexto e o 305º dia de lactação incluiu o efeito de rebanho-ano-mês do controle, idade da vaca no parto e os parâmetros do polinômio de Legendre de ordem quatro, para modelar a curva média da produção de leite da população e parâmetros do mesmo polinômio, para modelar os efeitos aleatórios genético-aditivo e de ambiente permanente. As variâncias genéticas e de ambiente permanente para produção de leite no dia do controle variaram, respectivamente, de 2,38 a 3,14 e de 7,55 a 10,35. As estimativas de herdabilidade aumentaram gradativamente do início (0,14 para o final do período de lactação (0,20, indicando ser uma característica de moderada herdabilidade. As correlações genéticas entre as produções de leite de diferentes estágios leiteiros variaram de 0,33 a 0,99 e foram maiores entre os controles adjacentes. As correlações de ambiente permanente seguiram a mesma tendência das correlações genéticas. O modelo de regressão aleatória com polinômio de Legendre de ordem quatro pode ser considerado como uma boa ferramenta para estimação de parâmetros genéticos para a produção de leite ao longo da lactação.A total of 21,702 records of milk production from 2,429 first-lactation Holstein cows, sired by 233 bulls, collected in 33 herds in the State of Rio Grande do Sul from 1991 to 2003, were used to estimate genetic parameters for that characteristic. The random regression model adjusted to test day from the 6th and the 305th lactation day included the effect of herd-year-month of the test day, the age of the cow at parturition, and the order fourth Legendre
May, Katharina; Brügemann, Kerstin; Yin, Tong; Scheper, Carsten; Strube, Christina; König, Sven
2017-09-01
Keeping dairy cows in grassland systems relies on detailed analyses of genetic resistance against endoparasite infections, including between- and within-breed genetic evaluations. The objectives of this study were (1) to compare different Black and White dairy cattle selection lines for endoparasite infections and (2) the estimation of genetic (co)variance components for endoparasite and test-day milk production traits within the Black and White cattle population. A total of 2,006 fecal samples were taken during 2 farm visits in summer and autumn 2015 from 1,166 cows kept in 17 small- and medium-scale organic and conventional German grassland farms. Fecal egg counts were determined for gastrointestinal nematodes (FEC-GIN) and flukes (FEC-FLU), and fecal larvae counts for the bovine lungworm Dictyocaulus viviparus (FLC-DV). The lowest values for gastrointestinal nematode infections were identified for genetic lines adopted to pasture-based production systems, especially selection lines from New Zealand. Heritabilities were low for FEC-GIN (0.05-0.06 ± 0.04) and FLC-DV (0.05 ± 0.04), but moderate for FEC-FLU (0.33 ± 0.06). Almost identical heritabilities were estimated for different endoparasite trait transformations (log-transformation, square root). The genetic correlation between FEC-GIN and FLC-DV was 1.00 ± 0.60, slightly negative between FEC-GIN and FEC-FLU (-0.10 ± 0.27), and close to zero between FLC-DV and FEC-FLU (0.03 ± 0.30). Random regression test-day models on a continuous time scale [days in milk (DIM)] were applied to estimate genetic relationships between endoparasite and longitudinal test-day production traits. Genetic correlations were negative between FEC-GIN and milk yield (MY) until DIM 85, and between FEC-FLU and MY until DIM 215. Genetic correlations between FLC-DV and MY were negative throughout lactation, indicating improved disease resistance for high-productivity cows. Genetic relationships between FEC-GIN and FEC-FLU with milk
Random Forest as a Predictive Analytics Alternative to Regression in Institutional Research
He, Lingjun; Levine, Richard A.; Fan, Juanjuan; Beemer, Joshua; Stronach, Jeanne
2018-01-01
In institutional research, modern data mining approaches are seldom considered to address predictive analytics problems. The goal of this paper is to highlight the advantages of tree-based machine learning algorithms over classic (logistic) regression methods for data-informed decision making in higher education problems, and stress the success of…
DEFF Research Database (Denmark)
Larsen, Klaus; Merlo, Juan
2005-01-01
The logistic regression model is frequently used in epidemiologic studies, yielding odds ratio or relative risk interpretations. Inspired by the theory of linear normal models, the logistic regression model has been extended to allow for correlated responses by introducing random effects. However......, the model does not inherit the interpretational features of the normal model. In this paper, the authors argue that the existing measures are unsatisfactory (and some of them are even improper) when quantifying results from multilevel logistic regression analyses. The authors suggest a measure...... of heterogeneity, the median odds ratio, that quantifies cluster heterogeneity and facilitates a direct comparison between covariate effects and the magnitude of heterogeneity in terms of well-known odds ratios. Quantifying cluster-level covariates in a meaningful way is a challenge in multilevel logistic...
Sørensen, By Ole H
2016-10-01
Organizational-level occupational health interventions have great potential to improve employees' health and well-being. However, they often compare unfavourably to individual-level interventions. This calls for improving methods for designing, implementing and evaluating organizational interventions. This paper presents and discusses the regression discontinuity design because, like the randomized control trial, it is a strong summative experimental design, but it typically fits organizational-level interventions better. The paper explores advantages and disadvantages of a regression discontinuity design with an embedded randomized control trial. It provides an example from an intervention study focusing on reducing sickness absence in 196 preschools. The paper demonstrates that such a design fits the organizational context, because it allows management to focus on organizations or workgroups with the most salient problems. In addition, organizations may accept an embedded randomized design because the organizations or groups with most salient needs receive obligatory treatment as part of the regression discontinuity design. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Norajitra, Tobias; Meinzer, Hans-Peter; Maier-Hein, Klaus H.
2015-03-01
During image segmentation, 3D Statistical Shape Models (SSM) usually conduct a limited search for target landmarks within one-dimensional search profiles perpendicular to the model surface. In addition, landmark appearance is modeled only locally based on linear profiles and weak learners, altogether leading to segmentation errors from landmark ambiguities and limited search coverage. We present a new method for 3D SSM segmentation based on 3D Random Forest Regression Voting. For each surface landmark, a Random Regression Forest is trained that learns a 3D spatial displacement function between the according reference landmark and a set of surrounding sample points, based on an infinite set of non-local randomized 3D Haar-like features. Landmark search is then conducted omni-directionally within 3D search spaces, where voxelwise forest predictions on landmark position contribute to a common voting map which reflects the overall position estimate. Segmentation experiments were conducted on a set of 45 CT volumes of the human liver, of which 40 images were randomly chosen for training and 5 for testing. Without parameter optimization, using a simple candidate selection and a single resolution approach, excellent results were achieved, while faster convergence and better concavity segmentation were observed, altogether underlining the potential of our approach in terms of increased robustness from distinct landmark detection and from better search coverage.
Santana, Mário L; Bignardi, Annaiza Braga; Pereira, Rodrigo Junqueira; Menéndez-Buxadera, Alberto; El Faro, Lenira
2016-02-01
The present study had the following objectives: to compare random regression models (RRM) considering the time-dependent (days in milk, DIM) and/or temperature × humidity-dependent (THI) covariate for genetic evaluation; to identify the effect of genotype by environment interaction (G×E) due to heat stress on milk yield; and to quantify the loss of milk yield due to heat stress across lactation of cows under tropical conditions. A total of 937,771 test-day records from 3603 first lactations of Brazilian Holstein cows obtained between 2007 and 2013 were analyzed. An important reduction in milk yield due to heat stress was observed for THI values above 66 (-0.23 kg/day/THI). Three phases of milk yield loss were identified during lactation, the most damaging one at the end of lactation (-0.27 kg/day/THI). Using the most complex RRM, the additive genetic variance could be altered simultaneously as a function of both DIM and THI values. This model could be recommended for the genetic evaluation taking into account the effect of G×E. The response to selection in the comfort zone (THI ≤ 66) is expected to be higher than that obtained in the heat stress zone (THI > 66) of the animals. The genetic correlations between milk yield in the comfort and heat stress zones were less than unity at opposite extremes of the environmental gradient. Thus, the best animals for milk yield in the comfort zone are not necessarily the best in the zone of heat stress and, therefore, G×E due to heat stress should not be neglected in the genetic evaluation.
Huang, Lei
2015-01-01
To solve the problem in which the conventional ARMA modeling methods for gyro random noise require a large number of samples and converge slowly, an ARMA modeling method using a robust Kalman filtering is developed. The ARMA model parameters are employed as state arguments. Unknown time-varying estimators of observation noise are used to achieve the estimated mean and variance of the observation noise. Using the robust Kalman filtering, the ARMA model parameters are estimated accurately. The developed ARMA modeling method has the advantages of a rapid convergence and high accuracy. Thus, the required sample size is reduced. It can be applied to modeling applications for gyro random noise in which a fast and accurate ARMA modeling method is required. PMID:26437409
Sadler, J. M.; Goodall, J. L.; Morsy, M. M.; Spencer, K.
2018-04-01
Sea level rise has already caused more frequent and severe coastal flooding and this trend will likely continue. Flood prediction is an essential part of a coastal city's capacity to adapt to and mitigate this growing problem. Complex coastal urban hydrological systems however, do not always lend themselves easily to physically-based flood prediction approaches. This paper presents a method for using a data-driven approach to estimate flood severity in an urban coastal setting using crowd-sourced data, a non-traditional but growing data source, along with environmental observation data. Two data-driven models, Poisson regression and Random Forest regression, are trained to predict the number of flood reports per storm event as a proxy for flood severity, given extensive environmental data (i.e., rainfall, tide, groundwater table level, and wind conditions) as input. The method is demonstrated using data from Norfolk, Virginia USA from September 2010 to October 2016. Quality-controlled, crowd-sourced street flooding reports ranging from 1 to 159 per storm event for 45 storm events are used to train and evaluate the models. Random Forest performed better than Poisson regression at predicting the number of flood reports and had a lower false negative rate. From the Random Forest model, total cumulative rainfall was by far the most dominant input variable in predicting flood severity, followed by low tide and lower low tide. These methods serve as a first step toward using data-driven methods for spatially and temporally detailed coastal urban flood prediction.
Genetic parameters for test-day milk yield in tropical Holstein ...
African Journals Online (AJOL)
peace
2017-04-26
Apr 26, 2017 ... multiple-lactation random regression animal model ... Multiple observations scored on a cow during lactation form a classical example of longitudinal data ..... We wish to state that the financial source and data material used in ...
Pan, Xin; Cao, Chen; Yang, Yingbao; Li, Xiaolong; Shan, Liangliang; Zhu, Xi
2018-04-01
The land surface temperature (LST) derived from thermal infrared satellite images is a meaningful variable in many remote sensing applications. However, at present, the spatial resolution of the satellite thermal infrared remote sensing sensor is coarser, which cannot meet the needs. In this study, LST image was downscaled by a random forest model between LST and multiple predictors in an arid region with an oasis-desert ecotone. The proposed downscaling approach was evaluated using LST derived from the MODIS LST product of Zhangye City in Heihe Basin. The primary result of LST downscaling has been shown that the distribution of downscaled LST matched with that of the ecosystem of oasis and desert. By the way of sensitivity analysis, the most sensitive factors to LST downscaling were modified normalized difference water index (MNDWI)/normalized multi-band drought index (NMDI), soil adjusted vegetation index (SAVI)/ shortwave infrared reflectance (SWIR)/normalized difference vegetation index (NDVI), normalized difference building index (NDBI)/SAVI and SWIR/NDBI/MNDWI/NDWI for the region of water, vegetation, building and desert, with LST variation (at most) of 0.20/-0.22 K, 0.92/0.62/0.46 K, 0.28/-0.29 K and 3.87/-1.53/-0.64/-0.25 K in the situation of +/-0.02 predictor perturbances, respectively.
Directory of Open Access Journals (Sweden)
Chong Wei
2015-01-01
Full Text Available Logistic regression models have been widely used in previous studies to analyze public transport utilization. These studies have shown travel time to be an indispensable variable for such analysis and usually consider it to be a deterministic variable. This formulation does not allow us to capture travelers’ perception error regarding travel time, and recent studies have indicated that this error can have a significant effect on modal choice behavior. In this study, we propose a logistic regression model with a hierarchical random error term. The proposed model adds a new random error term for the travel time variable. This term structure enables us to investigate travelers’ perception error regarding travel time from a given choice behavior dataset. We also propose an extended model that allows constraining the sign of this error in the model. We develop two Gibbs samplers to estimate the basic hierarchical model and the extended model. The performance of the proposed models is examined using a well-known dataset.
Production loss due to new subclinical mastitis in Dutch dairy cows estimated iwth a test-day model
Halasa, T.; Nielen, M.; Roos, de S.; Hoorne, van R.; Jong, de G.; Lam, T.J.G.M.; Werven, van T.; Hogeveen, H.
2009-01-01
Milk, fat, and protein loss due to a new subclinical mastitis case may be economically important, and the objective of this study was to estimate this loss. The loss was estimated based on test-day (TD) cow records collected over a 1-yr period from 400 randomly selected Dutch dairy herds. After
Pham, Binh Thai; Prakash, Indra; Tien Bui, Dieu
2018-02-01
A hybrid machine learning approach of Random Subspace (RSS) and Classification And Regression Trees (CART) is proposed to develop a model named RSSCART for spatial prediction of landslides. This model is a combination of the RSS method which is known as an efficient ensemble technique and the CART which is a state of the art classifier. The Luc Yen district of Yen Bai province, a prominent landslide prone area of Viet Nam, was selected for the model development. Performance of the RSSCART model was evaluated through the Receiver Operating Characteristic (ROC) curve, statistical analysis methods, and the Chi Square test. Results were compared with other benchmark landslide models namely Support Vector Machines (SVM), single CART, Naïve Bayes Trees (NBT), and Logistic Regression (LR). In the development of model, ten important landslide affecting factors related with geomorphology, geology and geo-environment were considered namely slope angles, elevation, slope aspect, curvature, lithology, distance to faults, distance to rivers, distance to roads, and rainfall. Performance of the RSSCART model (AUC = 0.841) is the best compared with other popular landslide models namely SVM (0.835), single CART (0.822), NBT (0.821), and LR (0.723). These results indicate that performance of the RSSCART is a promising method for spatial landslide prediction.
Directory of Open Access Journals (Sweden)
Mirjam J Knol
Full Text Available BACKGROUND: In randomized controlled trials (RCTs, the odds ratio (OR can substantially overestimate the risk ratio (RR if the incidence of the outcome is over 10%. This study determined the frequency of use of ORs, the frequency of overestimation of the OR as compared with its accompanying RR in published RCTs, and we assessed how often regression models that calculate RRs were used. METHODS: We included 288 RCTs published in 2008 in five major general medical journals (Annals of Internal Medicine, British Medical Journal, Journal of the American Medical Association, Lancet, New England Journal of Medicine. If an OR was reported, we calculated the corresponding RR, and we calculated the percentage of overestimation by using the formula . RESULTS: Of 193 RCTs with a dichotomous primary outcome, 24 (12.4% presented a crude and/or adjusted OR for the primary outcome. In five RCTs (2.6%, the OR differed more than 100% from its accompanying RR on the log scale. Forty-one of all included RCTs (n = 288; 14.2% presented ORs for other outcomes, or for subgroup analyses. Nineteen of these RCTs (6.6% had at least one OR that deviated more than 100% from its accompanying RR on the log scale. Of 53 RCTs that adjusted for baseline variables, 15 used logistic regression. Alternative methods to estimate RRs were only used in four RCTs. CONCLUSION: ORs and logistic regression are often used in RCTs and in many articles the OR did not approximate the RR. Although the authors did not explicitly misinterpret these ORs as RRs, misinterpretation by readers can seriously affect treatment decisions and policy making.
Directory of Open Access Journals (Sweden)
Cristian Kelen Pinto Dorneles
2009-08-01
Full Text Available Foram utilizados 21.702 registros de produção de leite no dia do controle de 2.429 vacas primíparas da raça Holandesa, filhas de 233 touros, coletados em 33 rebanhos do Estado do Rio Grande do Sul, entre 1992 e 2003, para estimar parâmetros genéticos, para três medidas de persistência (PS1, PS2 e PS3 e para a produção de leite até 305 dias (P305 de lactação. Os modelos de regressão aleatória ajustados aos controles leiteiros entre o sexto e o 300o dia de lactação incluíram o efeito de rebanho-ano-mês do controle, a idade da vaca ao parto e os parâmetros do polinômio de Legendre de ordem quatro, para modelar a curva média da produção de leite da população e os parâmetros do mesmo polinômio, para modelar os efeitos aleatórios genético-aditivo direto e de ambiente permanente. As estimativas de herdabilidade obtidas foram 0,05, 0,08 e 0,19, respectivamente, para PS1, PS2 e PS3 e 0,25, para P305 sugerindo a possibilidade de ganho genético por meio da seleção para PS3 e para P305. As correlações genéticas entre as três medidas de persistência e P305, variaram de -0,05 a 0,07, indicando serem persistência e produção, características determinadas por grupos de genes diferentes. Assim, consequentemente, a seleção para P305, geralmente praticada, não promove progresso genético para a persistência.There were used 21,702 test day milk yields from 2,429 first parity Holstein breed cows, daughters of 2,031 dams and 233 sires, distributed over 33 herds in the state of Rio Grande do Sul, from 1992 to 2003. Genetic parameters for three measures of lactation persistency (PS1, PS2 e PS3 and for milk production to 305 days (P305 were evaluated. A random regression model adjusted by fourth order Legendre polynomial was used. The random regression model adjusted to test day between the sixth and the 305th lactation day included the herd-year-season of the test day, the age of the cow at the parturition effects and the
Li, Hongjian; Leung, Kwong-Sak; Wong, Man-Hon; Ballester, Pedro J
2014-08-27
State-of-the-art protein-ligand docking methods are generally limited by the traditionally low accuracy of their scoring functions, which are used to predict binding affinity and thus vital for discriminating between active and inactive compounds. Despite intensive research over the years, classical scoring functions have reached a plateau in their predictive performance. These assume a predetermined additive functional form for some sophisticated numerical features, and use standard multivariate linear regression (MLR) on experimental data to derive the coefficients. In this study we show that such a simple functional form is detrimental for the prediction performance of a scoring function, and replacing linear regression by machine learning techniques like random forest (RF) can improve prediction performance. We investigate the conditions of applying RF under various contexts and find that given sufficient training samples RF manages to comprehensively capture the non-linearity between structural features and measured binding affinities. Incorporating more structural features and training with more samples can both boost RF performance. In addition, we analyze the importance of structural features to binding affinity prediction using the RF variable importance tool. Lastly, we use Cyscore, a top performing empirical scoring function, as a baseline for comparison study. Machine-learning scoring functions are fundamentally different from classical scoring functions because the former circumvents the fixed functional form relating structural features with binding affinities. RF, but not MLR, can effectively exploit more structural features and more training samples, leading to higher prediction performance. The future availability of more X-ray crystal structures will further widen the performance gap between RF-based and MLR-based scoring functions. This further stresses the importance of substituting RF for MLR in scoring function development.
Veerkamp, R F; Koenen, E P; De Jong, G
2001-10-01
Twenty type classifiers scored body condition (BCS) of 91,738 first-parity cows from 601 sires and 5518 maternal grandsires. Fertility data during first lactation were extracted for 177,220 cows, of which 67,278 also had a BCS observation, and first-lactation 305-d milk, fat, and protein yields were added for 180,631 cows. Heritabilities and genetic correlations were estimated using a sire-maternal grandsire model. Heritability of BCS was 0.38. Heritabilities for fertility traits were low (0.01 to 0.07), but genetic standard deviations were substantial, 9 d for days to first service and calving interval, 0.25 for number of services, and 5% for first-service conception. Phenotypic correlations between fertility and yield or BCS were small (-0.15 to 0.20). Genetic correlations between yield and all fertility traits were unfavorable (0.37 to 0.74). Genetic correlations with BCS were between -0.4 and -0.6 for calving interval and days to first service. Random regression analysis (RR) showed that correlations changed with days in milk for BCS. Little agreement was found between variances and correlations from RR, and analysis including a single month (mo 1 to 10) of data for BCS, especially during early and late lactation. However, this was due to excluding data from the conventional analysis, rather than due to the polynomials used. RR and a conventional five-traits model where BCS in mo 1, 4, 7, and 10 was treated as a separate traits (plus yield or fertility) gave similar results. Thus a parsimonious random regression model gave more realistic estimates for the (co)variances than a series of bivariate analysis on subsets of the data for BCS. A higher genetic merit for yield has unfavorable effects on fertility, but the genetic correlation suggests that BCS (at some stages of lactation) might help to alleviate the unfavorable effect of selection for higher yield on fertility.
Directory of Open Access Journals (Sweden)
Luise A Seeker
Full Text Available Telomeres cap the ends of linear chromosomes and shorten with age in many organisms. In humans short telomeres have been linked to morbidity and mortality. With the accumulation of longitudinal datasets the focus shifts from investigating telomere length (TL to exploring TL change within individuals over time. Some studies indicate that the speed of telomere attrition is predictive of future disease. The objectives of the present study were to 1 characterize the change in bovine relative leukocyte TL (RLTL across the lifetime in Holstein Friesian dairy cattle, 2 estimate genetic parameters of RLTL over time and 3 investigate the association of differences in individual RLTL profiles with productive lifespan. RLTL measurements were analysed using Legendre polynomials in a random regression model to describe TL profiles and genetic variance over age. The analyses were based on 1,328 repeated RLTL measurements of 308 female Holstein Friesian dairy cattle. A quadratic Legendre polynomial was fitted to the fixed effect of age in months and to the random effect of the animal identity. Changes in RLTL, heritability and within-trait genetic correlation along the age trajectory were calculated and illustrated. At a population level, the relationship between RLTL and age was described by a positive quadratic function. Individuals varied significantly regarding the direction and amount of RLTL change over life. The heritability of RLTL ranged from 0.36 to 0.47 (SE = 0.05-0.08 and remained statistically unchanged over time. The genetic correlation of RLTL at birth with measurements later in life decreased with the time interval between samplings from near unity to 0.69, indicating that TL later in life might be regulated by different genes than TL early in life. Even though animals differed in their RLTL profiles significantly, those differences were not correlated with productive lifespan (p = 0.954.
Stubbs, Brendon; Vancampfort, Davy; Rosenbaum, Simon; Ward, Philip B; Richards, Justin; Soundy, Andrew; Veronese, Nicola; Solmi, Marco; Schuch, Felipe B
2016-01-15
Exercise has established efficacy in improving depressive symptoms. Dropouts from randomized controlled trials (RCT's) pose a threat to the validity of this evidence base, with dropout rates varying across studies. We conducted a systematic review and meta-analysis to investigate the prevalence and predictors of dropout rates among adults with depression participating in exercise RCT's. Three authors identified RCT's from a recent Cochrane review and conducted updated searches of major electronic databases from 01/2013 to 08/2015. We included RCT's of exercise interventions in people with depression (including major depressive disorder (MDD) and depressive symptoms) that reported dropout rates. A random effects meta-analysis and meta regression were conducted. Overall, 40 RCT's were included reporting dropout rates across 52 exercise interventions including 1720 people with depression (49.1 years (range=19-76 years), 72% female (range=0-100)). The trim and fill adjusted prevalence of dropout across all studies was 18.1% (95%CI=15.0-21.8%) and 17.2% (95%CI=13.5-21.7, N=31) in MDD only. In MDD participants, higher baseline depressive symptoms (β=0.0409, 95%CI=0.0809-0.0009, P=0.04) predicted greater dropout, whilst supervised interventions delivered by physiotherapists (β=-1.2029, 95%CI=-2.0967 to -0.3091, p=0.008) and exercise physiologists (β=-1.3396, 95%CI=-2.4478 to -0.2313, p=0.01) predicted lower dropout. A comparative meta-analysis (N=29) established dropout was lower in exercise than control conditions (OR=0.642, 95%CI=0.43-0.95, p=0.02). Exercise is well tolerated by people with depression and drop out in RCT's is lower than control conditions. Thus, exercise is a feasible treatment, in particular when delivered by healthcare professionals with specific training in exercise prescription. Copyright © 2015 Elsevier B.V. All rights reserved.
He, Jie; Zhao, Yunfeng; Zhao, Jingli; Gao, Jin; Xu, Pao; Yang, Runqing
2018-02-01
To genetically analyse growth traits in genetically improved farmed tilapia (GIFT), the body weight (BWE) and main morphological traits, including body length (BL), body depth (BD), body width (BWI), head length (HL) and length of the caudal peduncle (CPL), were measured six times in growth duration on 1451 fish from 45 mixed families of full and half sibs. A random regression model (RRM) was used to model genetic changes of the growth traits with days of age and estimate the heritability for any growth point and genetic correlations between pairwise growth points. Using the covariance function based on optimal RRMs, the heritabilities were estimated to be from 0.102 to 0.662 for BWE, 0.157 to 0.591 for BL, 0.047 to 0.621 for BD, 0.018 to 0.577 for BWI, 0.075 to 0.597 for HL and 0.032 to 0.610 for CPL between 60 and 140 days of age. All genetic correlations exceeded 0.5 between pairwise growth points. Moreover, the traits at initial days of age showed less correlation with those at later days of age. With phenotypes observed repeatedly, the model choice showed that the optimal RRMs could more precisely predict breeding values at a specific growth time than repeatability models or multiple trait animal models, which enhanced the efficiency of selection for the BWE and main morphological traits.
Sun, Jin; Rutkoski, Jessica E; Poland, Jesse A; Crossa, José; Jannink, Jean-Luc; Sorrells, Mark E
2017-07-01
High-throughput phenotyping (HTP) platforms can be used to measure traits that are genetically correlated with wheat ( L.) grain yield across time. Incorporating such secondary traits in the multivariate pedigree and genomic prediction models would be desirable to improve indirect selection for grain yield. In this study, we evaluated three statistical models, simple repeatability (SR), multitrait (MT), and random regression (RR), for the longitudinal data of secondary traits and compared the impact of the proposed models for secondary traits on their predictive abilities for grain yield. Grain yield and secondary traits, canopy temperature (CT) and normalized difference vegetation index (NDVI), were collected in five diverse environments for 557 wheat lines with available pedigree and genomic information. A two-stage analysis was applied for pedigree and genomic selection (GS). First, secondary traits were fitted by SR, MT, or RR models, separately, within each environment. Then, best linear unbiased predictions (BLUPs) of secondary traits from the above models were used in the multivariate prediction models to compare predictive abilities for grain yield. Predictive ability was substantially improved by 70%, on average, from multivariate pedigree and genomic models when including secondary traits in both training and test populations. Additionally, (i) predictive abilities slightly varied for MT, RR, or SR models in this data set, (ii) results indicated that including BLUPs of secondary traits from the MT model was the best in severe drought, and (iii) the RR model was slightly better than SR and MT models under drought environment. Copyright © 2017 Crop Science Society of America.
Rahayu, A. P.; Hartatik, T.; Purnomoadi, A.; Kurnianto, E.
2018-02-01
The aims of this study were to estimate 305 day first lactation milk yield of Indonesian Holstein cattle from cumulative monthly and bimonthly test day records and to analyze its accuracy.The first lactation records of 258 dairy cows from 2006 to 2014 consisted of 2571 monthly (MTDY) and 1281 bimonthly test day yield (BTDY) records were used. Milk yields were estimated by regression method. Correlation coefficients between actual and estimated milk yield by cumulative MTDY were 0.70, 0.78, 0.83, 0.86, 0.89, 0.92, 0.94 and 0.96 for 2-9 months, respectively, meanwhile by cumulative BTDY were 0.69, 0.81, 0.87 and 0.92 for 2, 4, 6 and 8 months, respectively. The accuracy of fitting regression models (R2) increased with the increasing in the number of cumulative test day used. The used of 5 cumulative MTDY was considered sufficient for estimating 305 day first lactation milk yield with 80.6% accuracy and 7% error percentage of estimation. The estimated milk yield from MTDY was more accurate than BTDY by 1.1 to 2% less error percentage in the same time.
L.R. Iverson; A.M. Prasad; A. Liaw
2004-01-01
More and better machine learning tools are becoming available for landscape ecologists to aid in understanding species-environment relationships and to map probable species occurrence now and potentially into the future. To thal end, we evaluated three statistical models: Regression Tree Analybib (RTA), Bagging Trees (BT) and Random Forest (RF) for their utility in...
Berry, D.P.; Buckley, F.; Dillon, P.; Evans, R.D.; Rath, M.; Veerkamp, R.F.
2003-01-01
(Co)variance components for milk yield, body condition score (BCS), body weight (BW), BCS change and BW change over different herd-year mean milk yields (HMY) and nutritional environments (concentrate feeding level, grazing severity and silage quality) were estimated using a random regression model.
A Model for Quantifying Sources of Variation in Test-day Milk Yield ...
African Journals Online (AJOL)
A cow's test-day milk yield is influenced by several systematic environmental effects, which have to be removed when estimating the genetic potential of an animal. The present study quantified the variation due to test date and month of test in test-day lactation yield records using full and reduced models. The data consisted ...
Directory of Open Access Journals (Sweden)
Aderbal Cavalcante-Neto
2011-12-01
Full Text Available Objetivou-se comparar modelos de regressão aleatória com diferentes estruturas de variância residual, a fim de se buscar a melhor modelagem para a característica tamanho da leitegada ao nascer (TLN. Utilizaram-se 1.701 registros de TLN, que foram analisados por meio de modelo animal, unicaracterística, de regressão aleatória. As regressões fixa e aleatórias foram representadas por funções contínuas sobre a ordem de parto, ajustadas por polinômios ortogonais de Legendre de ordem 3. Para averiguar a melhor modelagem para a variância residual, considerou-se a heterogeneidade de variância por meio de 1 a 7 classes de variância residual. O modelo geral de análise incluiu grupo de contemporâneo como efeito fixo; os coeficientes de regressão fixa para modelar a trajetória média da população; os coeficientes de regressão aleatória do efeito genético aditivo-direto, do comum-de-leitegada e do de ambiente permanente de animal; e o efeito aleatório residual. O teste da razão de verossimilhança, o critério de informação de Akaike e o critério de informação bayesiano de Schwarz apontaram o modelo que considerou homogeneidade de variância como o que proporcionou melhor ajuste aos dados utilizados. As herdabilidades obtidas foram próximas a zero (0,002 a 0,006. O efeito de ambiente permanente foi crescente da 1ª (0,06 à 5ª (0,28 ordem, mas decrescente desse ponto até a 7ª ordem (0,18. O comum-de-leitegada apresentou valores baixos (0,01 a 0,02. A utilização de homogeneidade de variância residual foi mais adequada para modelar as variâncias associadas à característica tamanho da leitegada ao nascer nesse conjunto de dado.The objective of this work was to compare random regression models with different residual variance structures, so as to obtain the best modeling for the trait litter size at birth (LSB in swine. One thousand, seven hundred and one records of LSB were analyzed. LSB was analyzed by means of a
Directory of Open Access Journals (Sweden)
Luis Gabriel González Herrera
2008-09-01
of Gyr cows calving between 1990 and 2005 were used to estimate genetic parameters of monthly test-day milk yield (TDMY. Records were analyzed by random regression models (MRA that included the additive genetic and permanent environmental random effects and the contemporary group, age of cow at calving (linear and quadratic components and the average trend of the population as fixed effects. Random trajectories were fitted by Wilmink's (WIL and Ali & Schaeffer's (AS parametric functions. Residual variances were fitted by step functions with 1, 4, 6 or 10 classes. The contemporary group was defined by herd-year-season of test-day and included at least three animals. Models were compared by Akaike's and Schwarz's Bayesian (BIC information criterion. The AS function used for modeling the additive genetic and permanent environmental effects with heterogeneous residual variances adjusted with a step function with four classes was the best fitted model. Heritability estimates ranged from 0.21 to 0.33 for the AS function and from 0.17 to 0.30 for WIL function and were larger in the first half of the lactation period. Genetic correlations between TDMY were high and positive for adjacent test-days and decreased as days between records increased. Predicted breeding values for total 305-day milk yield (MRA305 and specific periods of lactation (obtained by the mean of all breeding values in the periods using the AS function were compared with that predicted by a standard model using accumulated 305-day milk yield (PTA305 by rank correlation. The magnitude of correlations suggested differences may be observed in ranking animals by using the different criteria which were compared in this study.
Yuan, Qi-ling; Wang, Peng; Liu, Liang; Sun, Fu; Cai, Yong-song; Wu, Wen-tao; Ye, Mao-lin; Ma, Jiang-tao; Xu, Bang-bang; Zhang, Yin-gang
2016-01-01
The aims of this systematic review were to study the analgesic effect of real acupuncture and to explore whether sham acupuncture (SA) type is related to the estimated effect of real acupuncture for musculoskeletal pain. Five databases were searched. The outcome was pain or disability immediately (≤1 week) following an intervention. Standardized mean differences (SMDs) with 95% confidence intervals were calculated. Meta-regression was used to explore possible sources of heterogeneity. Sixty-three studies (6382 individuals) were included. Eight condition types were included. The pooled effect size was moderate for pain relief (59 trials, 4980 individuals, SMD −0.61, 95% CI −0.76 to −0.47; P acupuncture has a moderate effect (approximate 12-point reduction on the 100-mm visual analogue scale) on musculoskeletal pain. SA type did not appear to be related to the estimated effect of real acupuncture. PMID:27471137
Spady, Richard; Stouli, Sami
2012-01-01
We propose dual regression as an alternative to the quantile regression process for the global estimation of conditional distribution functions under minimal assumptions. Dual regression provides all the interpretational power of the quantile regression process while avoiding the need for repairing the intersecting conditional quantile surfaces that quantile regression often produces in practice. Our approach introduces a mathematical programming characterization of conditional distribution f...
Tzavidis, Nikos; Salvati, Nicola; Schmid, Timo; Flouri, Eirini; Midouhas, Emily
2016-02-01
Multilevel modelling is a popular approach for longitudinal data analysis. Statistical models conventionally target a parameter at the centre of a distribution. However, when the distribution of the data is asymmetric, modelling other location parameters, e.g. percentiles, may be more informative. We present a new approach, M -quantile random-effects regression, for modelling multilevel data. The proposed method is used for modelling location parameters of the distribution of the strengths and difficulties questionnaire scores of children in England who participate in the Millennium Cohort Study. Quantile mixed models are also considered. The analyses offer insights to child psychologists about the differential effects of risk factors on children's outcomes.
Directory of Open Access Journals (Sweden)
Bruno Bastos Teixeira
2012-09-01
Full Text Available Objetivou-se comparar diferentes modelos de regressão aleatória por meio de funções polinomiais de Legendre de diferentes ordens, para avaliar o que melhor se ajusta ao estudo genético da curva de crescimento de codornas de corte. Foram avaliados dados de 2136 matrizes de codorna de corte, dos quais 1026 pertenciam ao grupo genético UFV1 e 1110 ao grupo UFV2. As codornas foram pesadas nos 1°, 7°, 14°, 21°, 28°, 35°, 42°, 77°, 112° e 147° dias de idade e seus pesos utilizados para a análise. Foram testadas duas possíveis modelagens de variância residual heterogênea, sendo agrupadas em 3 e 5 classes de idade. Após, foi realizado o estudo do modelo de regressão aleatória que melhor aplica-se à curva de crescimento das codornas. A comparação entre os modelos foi feita pelo Critério de Informação de Akaike (AIC, Critério de Informação Bayesiano de Schwarz (BIC, Logaritmo da função de verossimilhança (Log e L e teste da razão de verossimilhança (LRT, ao nível de 1%. O modelo que considerou a heterogeneidade de variância residual CL3 mostrou-se adequado à linhagem UFV1, e o modelo CL5 à linhagem UFV2. Uma função polinomial de Legendre com ordem 5, para efeito genético aditivo direto e 5 para efeito permanente de animal, para a linhagem UFV1 e, com ordem 3, para efeito genético aditivo direto e 5 para efeito permanente de animal para a linhagem UFV2, deve ser utilizada na avaliação genética da curva de crescimento das codornas de corte.The objective was to compare different random regression models using Legendre polynomial functions of different orders, to evaluate what best fits the genetic study of the growth curve of meat quails. It was evaluated data from 2136 cut dies quail, of which 1026 belonged to genetic group UFV1 and 1110 the group UFV2. Quail were weighed at 10, 70, 140, 210, 280, 350, 420, 770, 1120 and 1470 days of age, and weights used for the analysis. It was tested two possible modeling
Will, R. M.; Glenn, N. F.; Benner, S. G.; Pierce, J. L.; Spaete, L.; Li, A.
2015-12-01
Quantifying SOC (Soil Organic Carbon) storage in complex terrain is challenging due to high spatial variability. Generally, the challenge is met by transforming point data to the entire landscape using surrogate, spatially-distributed, variables like elevation or precipitation. In many ecosystems, remotely sensed information on above-ground vegetation (e.g. NDVI) is a good predictor of below-ground carbon stocks. In this project, we are attempting to improve this predictive method by incorporating LiDAR-derived vegetation indices. LiDAR provides a mechanism for improved characterization of aboveground vegetation by providing structural parameters such as vegetation height and biomass. In this study, a random forest model is used to predict SOC using a suite of LiDAR-derived vegetation indices as predictor variables. The Reynolds Creek Experimental Watershed (RCEW) is an ideal location for a study of this type since it encompasses a strong elevation/precipitation gradient that supports lower biomass sagebrush ecosystems at low elevations and forests with more biomass at higher elevations. Sagebrush ecosystems composed of Wyoming, Low and Mountain Sagebrush have SOC values ranging from .4 to 1% (top 30 cm), while higher biomass ecosystems composed of aspen, juniper and fir have SOC values approaching 4% (top 30 cm). Large differences in SOC have been observed between canopy and interspace locations and high resolution vegetation information is likely to explain plot scale variability in SOC. Mapping of the SOC reservoir will help identify underlying controls on SOC distribution and provide insight into which processes are most important in determining SOC in semi-arid mountainous regions. In addition, airborne LiDAR has the potential to characterize vegetation communities at a high resolution and could be a tool for improving estimates of SOC at larger scales.
Directory of Open Access Journals (Sweden)
G. Ibarra-Berastegi
2011-06-01
Full Text Available In this paper, reanalysis fields from the ECMWF have been statistically downscaled to predict from large-scale atmospheric fields, surface moisture flux and daily precipitation at two observatories (Zaragoza and Tortosa, Ebro Valley, Spain during the 1961–2001 period. Three types of downscaling models have been built: (i analogues, (ii analogues followed by random forests and (iii analogues followed by multiple linear regression. The inputs consist of data (predictor fields taken from the ERA-40 reanalysis. The predicted fields are precipitation and surface moisture flux as measured at the two observatories. With the aim to reduce the dimensionality of the problem, the ERA-40 fields have been decomposed using empirical orthogonal functions. Available daily data has been divided into two parts: a training period used to find a group of about 300 analogues to build the downscaling model (1961–1996 and a test period (1997–2001, where models' performance has been assessed using independent data. In the case of surface moisture flux, the models based on analogues followed by random forests do not clearly outperform those built on analogues plus multiple linear regression, while simple averages calculated from the nearest analogues found in the training period, yielded only slightly worse results. In the case of precipitation, the three types of model performed equally. These results suggest that most of the models' downscaling capabilities can be attributed to the analogues-calculation stage.
Veerkamp, R.F.; Goddard, M.E.
1998-01-01
Multiple-trait BLUP evaluations of test day records require a large number of genetic parameters. This study estimated covariances with a reduced model that included covariance functions in two dimensions (stage of lactation and herd production level) and all three yield traits. Records came from
Test-day models for South African dairy cattle for participation in ...
African Journals Online (AJOL)
Variance components and breeding values of production traits and somatic cell score of South African Guernsey, Ayrshire, Holstein and Jersey breeds have been estimated using a multi-lactation repeatability test-day model, including tests of the first three lactations as repeated measures and fitting the permanent ...
Johansen, Mette; Bahrt, Henriette; Altman, Roy D; Bartels, Else M; Juhl, Carsten B; Bliddal, Henning; Lund, Hans; Christensen, Robin
2016-08-01
The aim was to identify factors explaining inconsistent observations concerning the efficacy of intra-articular hyaluronic acid compared to intra-articular sham/control, or non-intervention control, in patients with symptomatic osteoarthritis, based on randomized clinical trials (RCTs). A systematic review and meta-regression analyses of available randomized trials were conducted. The outcome, pain, was assessed according to a pre-specified hierarchy of potentially available outcomes. Hedges׳s standardized mean difference [SMD (95% CI)] served as effect size. REstricted Maximum Likelihood (REML) mixed-effects models were used to combine study results, and heterogeneity was calculated and interpreted as Tau-squared and I-squared, respectively. Overall, 99 studies (14,804 patients) met the inclusion criteria: Of these, only 71 studies (72%), including 85 comparisons (11,216 patients), had adequate data available for inclusion in the primary meta-analysis. Overall, compared with placebo, intra-articular hyaluronic acid reduced pain with an effect size of -0.39 [-0.47 to -0.31; P hyaluronic acid. Based on available trial data, intra-articular hyaluronic acid showed a better effect than intra-articular saline on pain reduction in osteoarthritis. Publication bias and the risk of selective outcome reporting suggest only small clinical effect compared to saline. Copyright © 2016 Elsevier Inc. All rights reserved.
Bowden, Jack; Del Greco M, Fabiola; Minelli, Cosetta; Davey Smith, George; Sheehan, Nuala A; Thompson, John R
2016-12-01
: MR-Egger regression has recently been proposed as a method for Mendelian randomization (MR) analyses incorporating summary data estimates of causal effect from multiple individual variants, which is robust to invalid instruments. It can be used to test for directional pleiotropy and provides an estimate of the causal effect adjusted for its presence. MR-Egger regression provides a useful additional sensitivity analysis to the standard inverse variance weighted (IVW) approach that assumes all variants are valid instruments. Both methods use weights that consider the single nucleotide polymorphism (SNP)-exposure associations to be known, rather than estimated. We call this the `NO Measurement Error' (NOME) assumption. Causal effect estimates from the IVW approach exhibit weak instrument bias whenever the genetic variants utilized violate the NOME assumption, which can be reliably measured using the F-statistic. The effect of NOME violation on MR-Egger regression has yet to be studied. An adaptation of the I2 statistic from the field of meta-analysis is proposed to quantify the strength of NOME violation for MR-Egger. It lies between 0 and 1, and indicates the expected relative bias (or dilution) of the MR-Egger causal estimate in the two-sample MR context. We call it IGX2 . The method of simulation extrapolation is also explored to counteract the dilution. Their joint utility is evaluated using simulated data and applied to a real MR example. In simulated two-sample MR analyses we show that, when a causal effect exists, the MR-Egger estimate of causal effect is biased towards the null when NOME is violated, and the stronger the violation (as indicated by lower values of IGX2 ), the stronger the dilution. When additionally all genetic variants are valid instruments, the type I error rate of the MR-Egger test for pleiotropy is inflated and the causal effect underestimated. Simulation extrapolation is shown to substantially mitigate these adverse effects. We
Zhang, Hongyang; Welch, William J.; Zamar, Ruben H.
2017-01-01
Tomal et al. (2015) introduced the notion of "phalanxes" in the context of rare-class detection in two-class classification problems. A phalanx is a subset of features that work well for classification tasks. In this paper, we propose a different class of phalanxes for application in regression settings. We define a "Regression Phalanx" - a subset of features that work well together for prediction. We propose a novel algorithm which automatically chooses Regression Phalanxes from high-dimensi...
Test-day records as a tool for subclinical ketosis detection
Gantner Vesna; Potočnik K.; Jovanovac Sonja
2009-01-01
The prevalence, as well as the effect of subclinical ketosis on daily milk yield, was observed using 1.299,630 test-day records collected from January 2000 to December 2005 on 73,255 Slovenian Holstein cows. Subclinical ketosis was indicated by the fat to protein ratio (F/P ratio) higher than 1.5 in cows that yielded between 33 to 50 kg of milk per day (Eicher, 2004). The ketosis index was defined in relation to the timing of subclinical ketosis detection to the subsequent measures of test-da...
Estimation of genetic parameters for test day records of dairy traits in the first three lactations
Directory of Open Access Journals (Sweden)
Ducrocq Vincent
2005-05-01
Full Text Available Abstract Application of test-day models for the genetic evaluation of dairy populations requires the solution of large mixed model equations. The size of the (covariance matrices required with such models can be reduced through the use of its first eigenvectors. Here, the first two eigenvectors of (covariance matrices estimated for dairy traits in first lactation were used as covariables to jointly estimate genetic parameters of the first three lactations. These eigenvectors appear to be similar across traits and have a biological interpretation, one being related to the level of production and the other to persistency. Furthermore, they explain more than 95% of the total genetic variation. Variances and heritabilities obtained with this model were consistent with previous studies. High correlations were found among production levels in different lactations. Persistency measures were less correlated. Genetic correlations between second and third lactations were close to one, indicating that these can be considered as the same trait. Genetic correlations within lactation were high except between extreme parts of the lactation. This study shows that the use of eigenvectors can reduce the rank of (covariance matrices for the test-day model and can provide consistent genetic parameters.
Analyses of fixed effects for genetic evaluation of dairy cattle using test day records in Indonesia
Directory of Open Access Journals (Sweden)
Asep Anang
2010-06-01
Full Text Available Season, rainfall, day of rain, temperature, humidity, year and farm are fixed effects, which have been reported to influence milk yield. Those factors are often linked together to contribute to the variation of milk production. This research is addressed to study the fixed effect factors, including lactation curve, which should be considered for genetic evaluation of milk yield based on test day records of dairy cattle. The data were taken from four different farms, which were PT. Taurus Dairy Farm, BPPT Cikole, Bandang Dairy Farm, and BBPTU Baturraden. In total of 16806 test day records were evaluated, consisting of 9,302 at first and 7,504 at second lactation, respectively. The results indicated that fixed effects were very specific and the influences had different patterns for each farm. Consequently, in a genetic evaluation, these factors such as lactation, temperature, year, day of rain, and humidity need to be evaluated first. Ali-Schaeffer curve represented the most appropriate curve to use in the genetic evaluation of dairy cattle in Indonesia.
Moreno, Raul; Martin-Reyes, Roberto; Jimenez-Valero, Santiago; Sanchez-Recalde, Angel; Galeote, Guillermo; Calvo, Luis; Plaza, Ignacio; Lopez-Sendon, Jose-Luis
2011-04-01
The use of drug-eluting stents (DES) in unfavourable patients has been associated with higher rates of clinical complications and stent thrombosis, and because of that concerns about the use of DES in high-risk settings have been raised. This study sought to demonstrate that the clinical benefit of DES increases as the risk profile of the patients increases. A meta-regression analysis from 31 randomized trials that compared DES and bare-metal stents, including overall 12,035 patients, was performed. The relationship between the clinical benefit of using DES (number of patients to treat [NNT] to prevent one episode of target lesion revascularization [TLR]), and the risk profile of the population (rate of TLR in patients allocated to bare-metal stents) in each trial was evaluated. The clinical benefit of DES increased as the risk profile of each study population increased: NNT for TLR=31.1-1.2 (TLR for bare-metal stents); prisk profile of each study population, since the effect of DES in mortality, myocardial infarction, and stent thrombosis, was not adversely affected by the risk profile of each study population (95% confidence interval for β value 0.09 to 0.11, -0.12 to 0.19, and -0.03 to-0.15 for mortality, myocardial infarction, and stent thrombosis, respectively). The clinical benefit of DES increases as the risk profile of the patients increases, without affecting safety. Copyright © 2009 Elsevier Ireland Ltd. All rights reserved.
Saberioon, Mohammadmehdi; Císař, Petr; Labbé, Laurent; Souček, Pavel; Pelissier, Pablo; Kerneis, Thierry
2018-03-29
The main aim of this study was to develop a new objective method for evaluating the impacts of different diets on the live fish skin using image-based features. In total, one-hundred and sixty rainbow trout ( Oncorhynchus mykiss ) were fed either a fish-meal based diet (80 fish) or a 100% plant-based diet (80 fish) and photographed using consumer-grade digital camera. Twenty-three colour features and four texture features were extracted. Four different classification methods were used to evaluate fish diets including Random forest (RF), Support vector machine (SVM), Logistic regression (LR) and k -Nearest neighbours ( k -NN). The SVM with radial based kernel provided the best classifier with correct classification rate (CCR) of 82% and Kappa coefficient of 0.65. Although the both LR and RF methods were less accurate than SVM, they achieved good classification with CCR 75% and 70% respectively. The k -NN was the least accurate (40%) classification model. Overall, it can be concluded that consumer-grade digital cameras could be employed as the fast, accurate and non-invasive sensor for classifying rainbow trout based on their diets. Furthermore, these was a close association between image-based features and fish diet received during cultivation. These procedures can be used as non-invasive, accurate and precise approaches for monitoring fish status during the cultivation by evaluating diet's effects on fish skin.
Directory of Open Access Journals (Sweden)
Mohammadmehdi Saberioon
2018-03-01
Full Text Available The main aim of this study was to develop a new objective method for evaluating the impacts of different diets on the live fish skin using image-based features. In total, one-hundred and sixty rainbow trout (Oncorhynchus mykiss were fed either a fish-meal based diet (80 fish or a 100% plant-based diet (80 fish and photographed using consumer-grade digital camera. Twenty-three colour features and four texture features were extracted. Four different classification methods were used to evaluate fish diets including Random forest (RF, Support vector machine (SVM, Logistic regression (LR and k-Nearest neighbours (k-NN. The SVM with radial based kernel provided the best classifier with correct classification rate (CCR of 82% and Kappa coefficient of 0.65. Although the both LR and RF methods were less accurate than SVM, they achieved good classification with CCR 75% and 70% respectively. The k-NN was the least accurate (40% classification model. Overall, it can be concluded that consumer-grade digital cameras could be employed as the fast, accurate and non-invasive sensor for classifying rainbow trout based on their diets. Furthermore, these was a close association between image-based features and fish diet received during cultivation. These procedures can be used as non-invasive, accurate and precise approaches for monitoring fish status during the cultivation by evaluating diet’s effects on fish skin.
Candel, Math J J M; Van Breukelen, Gerard J P
2010-06-30
Adjustments of sample size formulas are given for varying cluster sizes in cluster randomized trials with a binary outcome when testing the treatment effect with mixed effects logistic regression using second-order penalized quasi-likelihood estimation (PQL). Starting from first-order marginal quasi-likelihood (MQL) estimation of the treatment effect, the asymptotic relative efficiency of unequal versus equal cluster sizes is derived. A Monte Carlo simulation study shows this asymptotic relative efficiency to be rather accurate for realistic sample sizes, when employing second-order PQL. An approximate, simpler formula is presented to estimate the efficiency loss due to varying cluster sizes when planning a trial. In many cases sampling 14 per cent more clusters is sufficient to repair the efficiency loss due to varying cluster sizes. Since current closed-form formulas for sample size calculation are based on first-order MQL, planning a trial also requires a conversion factor to obtain the variance of the second-order PQL estimator. In a second Monte Carlo study, this conversion factor turned out to be 1.25 at most. (c) 2010 John Wiley & Sons, Ltd.
Effects of the DGAT1 polymorphism on test-day milk production traits throughout lactation
DEFF Research Database (Denmark)
Bovenhuis, Henk; Visker, H P W; van Valenberg, H J F
2015-01-01
Several studies have shown that the diacylglycerol O-acyltransferase 1 (DGAT1) K232A polymorphism has a major effect on milk production traits. It is less clear how effects of DGAT1 on milk production traits change throughout lactation, if dominance effects of DGAT1 are relevant, and whether DGAT1...... also affects lactose content, lactose yield, and total energy output in milk. Results from this study, using test-day records of 3 subsequent parities of around 1,800 cows, confirm previously reported effects of the DGAT1 polymorphism on milk, fat, and protein yield, as well as fat and protein content....... In addition, we found significant effects of the DGAT1 polymorphism on lactose content and lactose yield. No significant effects on somatic cell score were detected. The effect of DGAT1 on total energy excreted in milk was only significant in parity 1 and is mainly due to a higher energy output in milk...
Hu, Q.; Friedl, M. A.; Wu, W.
2017-12-01
Accurate and timely information regarding the spatial distribution of crop types and their changes is essential for acreage surveys, yield estimation, water management, and agricultural production decision-making. In recent years, increasing population, dietary shifts and climate change have driven drastic changes in China's agricultural land use. However, no maps are currently available that document the spatial and temporal patterns of these agricultural land use changes. Because of its short revisit period, rich spectral bands and global coverage, MODIS time series data has been shown to have great potential for detecting the seasonal dynamics of different crop types. However, its inherently coarse spatial resolution limits the accuracy with which crops can be identified from MODIS in regions with small fields or complex agricultural landscapes. To evaluate this more carefully and specifically understand the strengths and weaknesses of MODIS data for crop-type mapping, we used MODIS time-series imagery to map the sub-pixel fractional crop area for four major crop types (rice, corn, soybean and wheat) at 500-m spatial resolution for Heilongjiang province, one of the most important grain-production regions in China where recent agricultural land use change has been rapid and pronounced. To do this, a random forest regression (RF-g) model was constructed to estimate the percentage of each sub-pixel crop type in 2006, 2011 and 2016. Crop type maps generated through expert visual interpretation of high spatial resolution images (i.e., Landsat and SPOT data) were used to calibrate the regression model. Five different time series of vegetation indices (155 features) derived from different spectral channels of MODIS land surface reflectance (MOD09A1) data were used as candidate features for the RF-g model. An out-of-bag strategy and backward elimination approach was applied to select the optimal spectra-temporal feature subset for each crop type. The resulting crop maps
Matson, Johnny L.; Kozlowski, Alison M.
2010-01-01
Autistic regression is one of the many mysteries in the developmental course of autism and pervasive developmental disorders not otherwise specified (PDD-NOS). Various definitions of this phenomenon have been used, further clouding the study of the topic. Despite this problem, some efforts at establishing prevalence have been made. The purpose of…
Olive, David J
2017-01-01
This text covers both multiple linear regression and some experimental design models. The text uses the response plot to visualize the model and to detect outliers, does not assume that the error distribution has a known parametric distribution, develops prediction intervals that work when the error distribution is unknown, suggests bootstrap hypothesis tests that may be useful for inference after variable selection, and develops prediction regions and large sample theory for the multivariate linear regression model that has m response variables. A relationship between multivariate prediction regions and confidence regions provides a simple way to bootstrap confidence regions. These confidence regions often provide a practical method for testing hypotheses. There is also a chapter on generalized linear models and generalized additive models. There are many R functions to produce response and residual plots, to simulate prediction intervals and hypothesis tests, to detect outliers, and to choose response trans...
Jamrozik, J; Schaeffer, L R
2012-02-01
Test-day (TD) records of milk, fat-to-protein ratio (F:P) and somatic cell score (SCS) of first-lactation Canadian Holstein cows were analysed by a three-trait finite mixture random regression model, with the purpose of revealing hidden structures in the data owing to putative, sub-clinical mastitis. Different distributions of the data were allowed in 30 intervals of days in milk (DIM), covering the lactation from 5 to 305 days. Bayesian analysis with Gibbs sampling was used for model inferences. Estimated proportion of TD records originated from cows infected with mastitis was 0.66 in DIM from 5 to 15 and averaged 0.2 in the remaining part of lactation. Data from healthy and mastitic cows exhibited markedly different distributions, with respect to both average value and the variance, across all parts of lactation. Heterogeneity of distributions for infected cows was also apparent in different DIM intervals. Cows with mastitis were characterized by smaller milk yield (down to -5 kg) and larger F:P (up to 0.13) and SCS (up to 1.3) compared with healthy contemporaries. Differences in averages between healthy and infected cows for F:P were the most profound at the beginning of lactation, when a dairy cow suffers the strongest energy deficit and is therefore more prone to mammary infection. Residual variances for data from infected cows were substantially larger than for the other mixture components. Fat-to-protein ratio had a significant genetic component, with estimates of heritability that were larger or comparable with milk yield, and was not strongly correlated with milk and SCS on both genetic and environmental scales. Daily milk, F:P and SCS are easily available from milk-recording data for most breeding schemes in dairy cattle. Fat-to-protein ratio can potentially be a valuable addition to SCS and milk yield as an indicator trait for selection against mastitis. © 2011 Blackwell Verlag GmbH.
Caccamo, M.; Veerkamp, R.F.; Jong, de G.; Pool, M.H.; Petriglieri, R.; Licitra, G.
2008-01-01
Test-day (TD) models are used in most countries to perform national genetic evaluations for dairy cattle. The TD models estimate lactation curves and their changes as well as variation in populations. Although potentially useful, little attention has been given to the application of TD models for
Regression modeling methods, theory, and computation with SAS
Panik, Michael
2009-01-01
Regression Modeling: Methods, Theory, and Computation with SAS provides an introduction to a diverse assortment of regression techniques using SAS to solve a wide variety of regression problems. The author fully documents the SAS programs and thoroughly explains the output produced by the programs.The text presents the popular ordinary least squares (OLS) approach before introducing many alternative regression methods. It covers nonparametric regression, logistic regression (including Poisson regression), Bayesian regression, robust regression, fuzzy regression, random coefficients regression,
DEFF Research Database (Denmark)
Petersen, Mette Bisgaard; Tolver, Anders; Husted, Louise
2016-01-01
-off value of 7 mmol/L had a sensitivity of 0.66 and a specificity of 0.92 in predicting survival. In independent test data, the sensitivity was 0.69 and the specificity was 0.76. At the observed survival rate (38%), the optimal decision tree identified horses as non-survivors when the Lac at admission...... admitted with acute colitis (trees, as well as random...
Duda, David P.; Minnis, Patrick
2009-01-01
Straightforward application of the Schmidt-Appleman contrail formation criteria to diagnose persistent contrail occurrence from numerical weather prediction data is hindered by significant bias errors in the upper tropospheric humidity. Logistic models of contrail occurrence have been proposed to overcome this problem, but basic questions remain about how random measurement error may affect their accuracy. A set of 5000 synthetic contrail observations is created to study the effects of random error in these probabilistic models. The simulated observations are based on distributions of temperature, humidity, and vertical velocity derived from Advanced Regional Prediction System (ARPS) weather analyses. The logistic models created from the simulated observations were evaluated using two common statistical measures of model accuracy, the percent correct (PC) and the Hanssen-Kuipers discriminant (HKD). To convert the probabilistic results of the logistic models into a dichotomous yes/no choice suitable for the statistical measures, two critical probability thresholds are considered. The HKD scores are higher when the climatological frequency of contrail occurrence is used as the critical threshold, while the PC scores are higher when the critical probability threshold is 0.5. For both thresholds, typical random errors in temperature, relative humidity, and vertical velocity are found to be small enough to allow for accurate logistic models of contrail occurrence. The accuracy of the models developed from synthetic data is over 85 percent for both the prediction of contrail occurrence and non-occurrence, although in practice, larger errors would be anticipated.
Use of test day milk fat and milk protein to detect subclinical ketosis in dairy cattle in Ontario.
Duffield, T F; Kelton, D F; Leslie, K E; Lissemore, K D; Lumsden, J H
1997-01-01
Serum beta-hydroxybutyrate (BHB) levels were determined for 1333 dairy cows in various stages of lactation and parity on 93 dairy farms in Ontario. The data were collected in a cross-sectional manner, as part of the 1992 Ontario Dairy Monitoring and Analysis Program. The median serum BHB was 536 mumol/L for all cows, with a range of 0 to 5801 mumol/L. When subclinical ketosis was defined as a serum BHB level of 1200 mumol/L or higher, the prevalence of ketosis for cows in early lactation ( 149 DIM), and dry cows were 5.3%, 3.2%, and 1.6%, respectively. The mean serum BHB was significantly higher in the early group compared with each of the other 3 groups (P ketosis. However, test-day fat percent and test-day protein percent, used alone or in combination, were not useful screening tests for identifying cows with subclinical ketosis. PMID:9360791
Beerens, Moniek W; Ten Cate, Jacob M; Buijs, Mark J; van der Veen, Monique H
2017-11-17
Casein-phosphopeptide-amorphous-calcium-fluoride-phosphate (CPP-ACFP) can remineralize subsurface lesions. It is the active ingredient of MI-Paste-Plus® (MPP). The long-term remineralization efficacy is unknown. To evaluate the long-term effect of MPP versus a placebo paste on remineralization of enamel after fixed orthodontic treatment over a 12-month period. This trial was designed as a prospective, double-blinded, placebo-controlled RCT. Patients with subsurface lesions scheduled for removal of the appliance were included. They applied either MPP or control paste once a day at bedtime for 12 months, complementary to normal oral hygiene. Changes in enamel lesions (primary outcome) were fluorescence loss and lesion area determined by quantitative light-induced fluorescence (QLF). Secondary outcomes were Microbial composition, by conventional plating, and acidogenicity of plaque, by capillary ion analysis (CIA), and lesion changes scored visually on clinical photographs. Participants [age = 15.5 years (SD = 1.6)] were randomly assigned to either the MPP or the control group, as determined by a computer-randomization scheme, created and locked before the start of the study. Participants received neutral-coloured concealed toothpaste tubes marked A or B. The patients and the observers were blinded with respect to the content of tube A or B. A total of 51 patients were analysed; MPP (n = 25) versus control group (n = 26); data loss (n = 14). There was no significant difference between the groups over time for all the used outcome measures. There was a significant improvement in enamel lesions (fluorescence loss) over time in both groups (P orthodontic fixed appliance treatment did not improve these lesions during the 1 year following debonding. This trial is registered at the medical ethical committee of the VU Medical Centre in Amsterdam (NL.199226.029.07). © The Author 2017. Published by Oxford University Press on behalf of the European Orthodontic Society
Differentiating regressed melanoma from regressed lichenoid keratosis.
Chan, Aegean H; Shulman, Kenneth J; Lee, Bonnie A
2017-04-01
Distinguishing regressed lichen planus-like keratosis (LPLK) from regressed melanoma can be difficult on histopathologic examination, potentially resulting in mismanagement of patients. We aimed to identify histopathologic features by which regressed melanoma can be differentiated from regressed LPLK. Twenty actively inflamed LPLK, 12 LPLK with regression and 15 melanomas with regression were compared and evaluated by hematoxylin and eosin staining as well as Melan-A, microphthalmia transcription factor (MiTF) and cytokeratin (AE1/AE3) immunostaining. (1) A total of 40% of regressed melanomas showed complete or near complete loss of melanocytes within the epidermis with Melan-A and MiTF immunostaining, while 8% of regressed LPLK exhibited this finding. (2) Necrotic keratinocytes were seen in the epidermis in 33% regressed melanomas as opposed to all of the regressed LPLK. (3) A dense infiltrate of melanophages in the papillary dermis was seen in 40% of regressed melanomas, a feature not seen in regressed LPLK. In summary, our findings suggest that a complete or near complete loss of melanocytes within the epidermis strongly favors a regressed melanoma over a regressed LPLK. In addition, necrotic epidermal keratinocytes and the presence of a dense band-like distribution of dermal melanophages can be helpful in differentiating these lesions. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Better Autologistic Regression
Directory of Open Access Journals (Sweden)
Mark A. Wolters
2017-11-01
Full Text Available Autologistic regression is an important probability model for dichotomous random variables observed along with covariate information. It has been used in various fields for analyzing binary data possessing spatial or network structure. The model can be viewed as an extension of the autologistic model (also known as the Ising model, quadratic exponential binary distribution, or Boltzmann machine to include covariates. It can also be viewed as an extension of logistic regression to handle responses that are not independent. Not all authors use exactly the same form of the autologistic regression model. Variations of the model differ in two respects. First, the variable coding—the two numbers used to represent the two possible states of the variables—might differ. Common coding choices are (zero, one and (minus one, plus one. Second, the model might appear in either of two algebraic forms: a standard form, or a recently proposed centered form. Little attention has been paid to the effect of these differences, and the literature shows ambiguity about their importance. It is shown here that changes to either coding or centering in fact produce distinct, non-nested probability models. Theoretical results, numerical studies, and analysis of an ecological data set all show that the differences among the models can be large and practically significant. Understanding the nature of the differences and making appropriate modeling choices can lead to significantly improved autologistic regression analyses. The results strongly suggest that the standard model with plus/minus coding, which we call the symmetric autologistic model, is the most natural choice among the autologistic variants.
Directory of Open Access Journals (Sweden)
Santana Isabel
2011-08-01
Full Text Available Abstract Background Dementia and cognitive impairment associated with aging are a major medical and social concern. Neuropsychological testing is a key element in the diagnostic procedures of Mild Cognitive Impairment (MCI, but has presently a limited value in the prediction of progression to dementia. We advance the hypothesis that newer statistical classification methods derived from data mining and machine learning methods like Neural Networks, Support Vector Machines and Random Forests can improve accuracy, sensitivity and specificity of predictions obtained from neuropsychological testing. Seven non parametric classifiers derived from data mining methods (Multilayer Perceptrons Neural Networks, Radial Basis Function Neural Networks, Support Vector Machines, CART, CHAID and QUEST Classification Trees and Random Forests were compared to three traditional classifiers (Linear Discriminant Analysis, Quadratic Discriminant Analysis and Logistic Regression in terms of overall classification accuracy, specificity, sensitivity, Area under the ROC curve and Press'Q. Model predictors were 10 neuropsychological tests currently used in the diagnosis of dementia. Statistical distributions of classification parameters obtained from a 5-fold cross-validation were compared using the Friedman's nonparametric test. Results Press' Q test showed that all classifiers performed better than chance alone (p Conclusions When taking into account sensitivity, specificity and overall classification accuracy Random Forests and Linear Discriminant analysis rank first among all the classifiers tested in prediction of dementia using several neuropsychological tests. These methods may be used to improve accuracy, sensitivity and specificity of Dementia predictions from neuropsychological testing.
Pedrini, D. T.; Pedrini, Bonnie C.
Regression, another mechanism studied by Sigmund Freud, has had much research, e.g., hypnotic regression, frustration regression, schizophrenic regression, and infra-human-animal regression (often directly related to fixation). Many investigators worked with hypnotic age regression, which has a long history, going back to Russian reflexologists.…
DEFF Research Database (Denmark)
Johansen, Søren
2008-01-01
The reduced rank regression model is a multivariate regression model with a coefficient matrix with reduced rank. The reduced rank regression algorithm is an estimation procedure, which estimates the reduced rank regression model. It is related to canonical correlations and involves calculating...
2000-06-23
CDC-funded human immunodeficiency virus (HIV) counseling, testing, and referral sites are an integral part of national HIV prevention efforts (1). Voluntary counseling, testing, and referral opportunities are offered to persons at risk for HIV infection at approximately 11,000 sites, including dedicated HIV counseling and testing sites, sexually transmitted disease (STD) clinics, drug-treatment centers, hospitals, and prisons. Services also are offered to women in family planning and prenatal/obstetric clinics to increase HIV prevention efforts among women and decrease the risk for perinatal HIV transmission. To increase use of HIV counseling, testing, and referral services by those at risk for HIV infection, in 1995, the National Association of People with AIDS designated June 27 each year as National HIV Testing Day. This report compares use of CDC-funded counseling, testing, and referral services the week before and the week of June 27 from 1994 through 1998 and documents the importance of a national public health campaign designed to increase knowledge of HIV serostatus.
Directory of Open Access Journals (Sweden)
Asres Berhan
Full Text Available The development of tipranavir and darunavir, second generation non-peptidic HIV protease inhibitors, with marked improved resistance profiles, has opened a new perspective on the treatment of antiretroviral therapy (ART experienced HIV patients with poor viral load control. The aim of this study was to determine the virologic response in ART experienced patients to tipranavir-ritonavir and darunavir-ritonavir based regimens.A computer based literature search was conducted in the databases of HINARI (Health InterNetwork Access to Research Initiative, Medline and Cochrane library. Meta-analysis was performed by including randomized controlled studies that were conducted in ART experienced patients with plasma viral load above 1,000 copies HIV RNA/ml. The odds ratios and 95% confidence intervals (CI for viral loads of <50 copies and <400 copies HIV RNA/ml at the end of the intervention were determined by the random effects model. Meta-regression, sensitivity analysis and funnel plots were done. The number of HIV-1 patients who were on either a tipranavir-ritonavir or darunavir-ritonavir based regimen and achieved viral load less than 50 copies HIV RNA/ml was significantly higher (overall OR = 3.4; 95% CI, 2.61-4.52 than the number of HIV-1 patients who were on investigator selected boosted comparator HIV-1 protease inhibitors (CPIs-ritonavir. Similarly, the number of patients with viral load less than 400 copies HIV RNA/ml was significantly higher in either the tipranavir-ritonavir or darunavir-ritonavir based regimen treated group (overall OR = 3.0; 95% CI, 2.15-4.11. Meta-regression showed that the viral load reduction was independent of baseline viral load, baseline CD4 count and duration of tipranavir-ritonavir or darunavir-ritonavir based regimen.Tipranavir and darunavir based regimens were more effective in patients who were ART experienced and had poor viral load control. Further studies are required to determine their consistent
Regression analysis by example
Chatterjee, Samprit
2012-01-01
Praise for the Fourth Edition: ""This book is . . . an excellent source of examples for regression analysis. It has been and still is readily readable and understandable."" -Journal of the American Statistical Association Regression analysis is a conceptually simple method for investigating relationships among variables. Carrying out a successful application of regression analysis, however, requires a balance of theoretical results, empirical rules, and subjective judgment. Regression Analysis by Example, Fifth Edition has been expanded
Logistic regression for dichotomized counts.
Preisser, John S; Das, Kalyan; Benecha, Habtamu; Stamm, John W
2016-12-01
Sometimes there is interest in a dichotomized outcome indicating whether a count variable is positive or zero. Under this scenario, the application of ordinary logistic regression may result in efficiency loss, which is quantifiable under an assumed model for the counts. In such situations, a shared-parameter hurdle model is investigated for more efficient estimation of regression parameters relating to overall effects of covariates on the dichotomous outcome, while handling count data with many zeroes. One model part provides a logistic regression containing marginal log odds ratio effects of primary interest, while an ancillary model part describes the mean count of a Poisson or negative binomial process in terms of nuisance regression parameters. Asymptotic efficiency of the logistic model parameter estimators of the two-part models is evaluated with respect to ordinary logistic regression. Simulations are used to assess the properties of the models with respect to power and Type I error, the latter investigated under both misspecified and correctly specified models. The methods are applied to data from a randomized clinical trial of three toothpaste formulations to prevent incident dental caries in a large population of Scottish schoolchildren. © The Author(s) 2014.
Coupé, Christophe
2018-01-01
As statistical approaches are getting increasingly used in linguistics, attention must be paid to the choice of methods and algorithms used. This is especially true since they require assumptions to be satisfied to provide valid results, and because scientific articles still often fall short of reporting whether such assumptions are met. Progress is being, however, made in various directions, one of them being the introduction of techniques able to model data that cannot be properly analyzed with simpler linear regression models. We report recent advances in statistical modeling in linguistics. We first describe linear mixed-effects regression models (LMM), which address grouping of observations, and generalized linear mixed-effects models (GLMM), which offer a family of distributions for the dependent variable. Generalized additive models (GAM) are then introduced, which allow modeling non-linear parametric or non-parametric relationships between the dependent variable and the predictors. We then highlight the possibilities offered by generalized additive models for location, scale, and shape (GAMLSS). We explain how they make it possible to go beyond common distributions, such as Gaussian or Poisson, and offer the appropriate inferential framework to account for 'difficult' variables such as count data with strong overdispersion. We also demonstrate how they offer interesting perspectives on data when not only the mean of the dependent variable is modeled, but also its variance, skewness, and kurtosis. As an illustration, the case of phonemic inventory size is analyzed throughout the article. For over 1,500 languages, we consider as predictors the number of speakers, the distance from Africa, an estimation of the intensity of language contact, and linguistic relationships. We discuss the use of random effects to account for genealogical relationships, the choice of appropriate distributions to model count data, and non-linear relationships. Relying on GAMLSS, we
Directory of Open Access Journals (Sweden)
Christophe Coupé
2018-04-01
Full Text Available As statistical approaches are getting increasingly used in linguistics, attention must be paid to the choice of methods and algorithms used. This is especially true since they require assumptions to be satisfied to provide valid results, and because scientific articles still often fall short of reporting whether such assumptions are met. Progress is being, however, made in various directions, one of them being the introduction of techniques able to model data that cannot be properly analyzed with simpler linear regression models. We report recent advances in statistical modeling in linguistics. We first describe linear mixed-effects regression models (LMM, which address grouping of observations, and generalized linear mixed-effects models (GLMM, which offer a family of distributions for the dependent variable. Generalized additive models (GAM are then introduced, which allow modeling non-linear parametric or non-parametric relationships between the dependent variable and the predictors. We then highlight the possibilities offered by generalized additive models for location, scale, and shape (GAMLSS. We explain how they make it possible to go beyond common distributions, such as Gaussian or Poisson, and offer the appropriate inferential framework to account for ‘difficult’ variables such as count data with strong overdispersion. We also demonstrate how they offer interesting perspectives on data when not only the mean of the dependent variable is modeled, but also its variance, skewness, and kurtosis. As an illustration, the case of phonemic inventory size is analyzed throughout the article. For over 1,500 languages, we consider as predictors the number of speakers, the distance from Africa, an estimation of the intensity of language contact, and linguistic relationships. We discuss the use of random effects to account for genealogical relationships, the choice of appropriate distributions to model count data, and non-linear relationships
DEFF Research Database (Denmark)
Fitzenberger, Bernd; Wilke, Ralf Andreas
2015-01-01
if the mean regression model does not. We provide a short informal introduction into the principle of quantile regression which includes an illustrative application from empirical labor market research. This is followed by briefly sketching the underlying statistical model for linear quantile regression based......Quantile regression is emerging as a popular statistical approach, which complements the estimation of conditional mean models. While the latter only focuses on one aspect of the conditional distribution of the dependent variable, the mean, quantile regression provides more detailed insights...... by modeling conditional quantiles. Quantile regression can therefore detect whether the partial effect of a regressor on the conditional quantiles is the same for all quantiles or differs across quantiles. Quantile regression can provide evidence for a statistical relationship between two variables even...
Understanding logistic regression analysis
Sperandei, Sandro
2014-01-01
Logistic regression is used to obtain odds ratio in the presence of more than one explanatory variable. The procedure is quite similar to multiple linear regression, with the exception that the response variable is binomial. The result is the impact of each variable on the odds ratio of the observed event of interest. The main advantage is to avoid confounding effects by analyzing the association of all variables together. In this article, we explain the logistic regression procedure using ex...
Introduction to regression graphics
Cook, R Dennis
2009-01-01
Covers the use of dynamic and interactive computer graphics in linear regression analysis, focusing on analytical graphics. Features new techniques like plot rotation. The authors have composed their own regression code, using Xlisp-Stat language called R-code, which is a nearly complete system for linear regression analysis and can be utilized as the main computer program in a linear regression course. The accompanying disks, for both Macintosh and Windows computers, contain the R-code and Xlisp-Stat. An Instructor's Manual presenting detailed solutions to all the problems in the book is ava
Alternative Methods of Regression
Birkes, David
2011-01-01
Of related interest. Nonlinear Regression Analysis and its Applications Douglas M. Bates and Donald G. Watts ".an extraordinary presentation of concepts and methods concerning the use and analysis of nonlinear regression models.highly recommend[ed].for anyone needing to use and/or understand issues concerning the analysis of nonlinear regression models." --Technometrics This book provides a balance between theory and practice supported by extensive displays of instructive geometrical constructs. Numerous in-depth case studies illustrate the use of nonlinear regression analysis--with all data s
Directory of Open Access Journals (Sweden)
Gilberto Romeiro de Oliveira Menezes
2010-08-01
Full Text Available Utilizaram-se 10.238 registros semanais de produção de leite no dia do controle, provenientes de 388 primeiras lactações de cabras da raça Saanen, na avaliação de seis medidas da persistência da lactação, a fim de verificar qual a mais adequada para o uso em avaliações genéticas para a característica. As seis medidas avaliadas são adaptações de medidas utilizadas em bovinos de leite, obtidas por substituir, nas fórmulas, os valores de referência de bovinos pelos de caprinos. Os valores usados nos cálculos foram obtidos de modelos de regressão aleatória. As estimativas de herdabilidade para as medidas de persistência variaram entre 0,03 e 0,09. As correlações genéticas entre medidas de persistência e produção de leite até 268 dias variaram entre -0,64 e 0,67. Por apresentar a menor correlação genética com produção aos 268 dias (0,14, a medida de persistência PS4, obtida pelo somatório dos valores do 41º ao 240º dia de lactação como desvios da produção aos 40 dias de lactação, é a mais indicada em avaliações genéticas para persistência da lactação em cabras da raça Saanen. Assim, a seleção de cabras de melhor persistência da lactação não altera a produção aos 268 dias. Em razão da baixa herdabilidade dessa medida (0,03, pequenas respostas à seleção são esperadas neste rebanho.It was used 10,238 weekly milk production records on the control day from the first 388 lactations of Saanen goats on the evalution of six lactation persistency measures in order to find out which was the best fitted for using in genetic evaluations on this trait. These six evaluated measures are adaptations from those used on dairy cattle, obtained by replacing, in the formula, bovine reference values by the goat ones. The values used in the calculations were obtained from random regression models. Heritability estimates for persistency measures ranged from 0.03 to 0.09. Genetic correlations between
Dimension Reduction and Discretization in Stochastic Problems by Regression Method
DEFF Research Database (Denmark)
Ditlevsen, Ove Dalager
1996-01-01
The chapter mainly deals with dimension reduction and field discretizations based directly on the concept of linear regression. Several examples of interesting applications in stochastic mechanics are also given.Keywords: Random fields discretization, Linear regression, Stochastic interpolation, ...
Directory of Open Access Journals (Sweden)
Matthias Schmid
Full Text Available Regression analysis with a bounded outcome is a common problem in applied statistics. Typical examples include regression models for percentage outcomes and the analysis of ratings that are measured on a bounded scale. In this paper, we consider beta regression, which is a generalization of logit models to situations where the response is continuous on the interval (0,1. Consequently, beta regression is a convenient tool for analyzing percentage responses. The classical approach to fit a beta regression model is to use maximum likelihood estimation with subsequent AIC-based variable selection. As an alternative to this established - yet unstable - approach, we propose a new estimation technique called boosted beta regression. With boosted beta regression estimation and variable selection can be carried out simultaneously in a highly efficient way. Additionally, both the mean and the variance of a percentage response can be modeled using flexible nonlinear covariate effects. As a consequence, the new method accounts for common problems such as overdispersion and non-binomial variance structures.
Understanding logistic regression analysis.
Sperandei, Sandro
2014-01-01
Logistic regression is used to obtain odds ratio in the presence of more than one explanatory variable. The procedure is quite similar to multiple linear regression, with the exception that the response variable is binomial. The result is the impact of each variable on the odds ratio of the observed event of interest. The main advantage is to avoid confounding effects by analyzing the association of all variables together. In this article, we explain the logistic regression procedure using examples to make it as simple as possible. After definition of the technique, the basic interpretation of the results is highlighted and then some special issues are discussed.
Weisberg, Sanford
2013-01-01
Praise for the Third Edition ""...this is an excellent book which could easily be used as a course text...""-International Statistical Institute The Fourth Edition of Applied Linear Regression provides a thorough update of the basic theory and methodology of linear regression modeling. Demonstrating the practical applications of linear regression analysis techniques, the Fourth Edition uses interesting, real-world exercises and examples. Stressing central concepts such as model building, understanding parameters, assessing fit and reliability, and drawing conclusions, the new edition illus
Hosmer, David W; Sturdivant, Rodney X
2013-01-01
A new edition of the definitive guide to logistic regression modeling for health science and other applications This thoroughly expanded Third Edition provides an easily accessible introduction to the logistic regression (LR) model and highlights the power of this model by examining the relationship between a dichotomous outcome and a set of covariables. Applied Logistic Regression, Third Edition emphasizes applications in the health sciences and handpicks topics that best suit the use of modern statistical software. The book provides readers with state-of-
Heuer, C; Schukken, Y H; Dobbelaar, P
1999-02-01
The study used field data from a regular herd health service to investigate the relationships between body condition scores or first test day milk data and disease incidence, milk yield, fertility, and culling. Path model analysis with adjustment for time at risk was applied to delineate the time sequence of events. Milk fever occurred more often in fat cows, and endometritis occurred between calving and 20 d of lactation more often in thin cows. Fat cows were less likely to conceive at first service than were cows in normal condition. Fat body condition postpartum, higher first test day milk yield, and a fat to protein ratio of > 1.5 increased body condition loss. Fat or thin condition or condition loss was not related to other lactation diseases, fertility parameters, milk yield, or culling. First test day milk yield was 1.3 kg higher after milk fever and was 7.1 kg lower after displaced abomasum. Higher first test day milk yield directly increased the risk of ovarian cyst and lameness, increased 100-d milk yield, and reduced the risk of culling and indirectly decreased reproductive performance. Cows with a fat to protein ratio of > 1.5 had higher risks for ketosis, displaced abomasum, ovarian cyst, lameness, and mastitis. Those cows produced more milk but showed poor reproductive performance. Given this type of herd health data, we concluded that the first test day milk yield and the fat to protein ratio were more reliable indicators of disease, fertility, and milk yield than was body condition score or loss of body condition score.
Understanding poisson regression.
Hayat, Matthew J; Higgins, Melinda
2014-04-01
Nurse investigators often collect study data in the form of counts. Traditional methods of data analysis have historically approached analysis of count data either as if the count data were continuous and normally distributed or with dichotomization of the counts into the categories of occurred or did not occur. These outdated methods for analyzing count data have been replaced with more appropriate statistical methods that make use of the Poisson probability distribution, which is useful for analyzing count data. The purpose of this article is to provide an overview of the Poisson distribution and its use in Poisson regression. Assumption violations for the standard Poisson regression model are addressed with alternative approaches, including addition of an overdispersion parameter or negative binomial regression. An illustrative example is presented with an application from the ENSPIRE study, and regression modeling of comorbidity data is included for illustrative purposes. Copyright 2014, SLACK Incorporated.
Directory of Open Access Journals (Sweden)
Mok Tik
2014-06-01
Full Text Available This study formulates regression of vector data that will enable statistical analysis of various geodetic phenomena such as, polar motion, ocean currents, typhoon/hurricane tracking, crustal deformations, and precursory earthquake signals. The observed vector variable of an event (dependent vector variable is expressed as a function of a number of hypothesized phenomena realized also as vector variables (independent vector variables and/or scalar variables that are likely to impact the dependent vector variable. The proposed representation has the unique property of solving the coefficients of independent vector variables (explanatory variables also as vectors, hence it supersedes multivariate multiple regression models, in which the unknown coefficients are scalar quantities. For the solution, complex numbers are used to rep- resent vector information, and the method of least squares is deployed to estimate the vector model parameters after transforming the complex vector regression model into a real vector regression model through isomorphism. Various operational statistics for testing the predictive significance of the estimated vector parameter coefficients are also derived. A simple numerical example demonstrates the use of the proposed vector regression analysis in modeling typhoon paths.
Testing homogeneity in Weibull-regression models.
Bolfarine, Heleno; Valença, Dione M
2005-10-01
In survival studies with families or geographical units it may be of interest testing whether such groups are homogeneous for given explanatory variables. In this paper we consider score type tests for group homogeneity based on a mixing model in which the group effect is modelled as a random variable. As opposed to hazard-based frailty models, this model presents survival times that conditioned on the random effect, has an accelerated failure time representation. The test statistics requires only estimation of the conventional regression model without the random effect and does not require specifying the distribution of the random effect. The tests are derived for a Weibull regression model and in the uncensored situation, a closed form is obtained for the test statistic. A simulation study is used for comparing the power of the tests. The proposed tests are applied to real data sets with censored data.
Multicollinearity and Regression Analysis
Daoud, Jamal I.
2017-12-01
In regression analysis it is obvious to have a correlation between the response and predictor(s), but having correlation among predictors is something undesired. The number of predictors included in the regression model depends on many factors among which, historical data, experience, etc. At the end selection of most important predictors is something objective due to the researcher. Multicollinearity is a phenomena when two or more predictors are correlated, if this happens, the standard error of the coefficients will increase [8]. Increased standard errors means that the coefficients for some or all independent variables may be found to be significantly different from In other words, by overinflating the standard errors, multicollinearity makes some variables statistically insignificant when they should be significant. In this paper we focus on the multicollinearity, reasons and consequences on the reliability of the regression model.
DEFF Research Database (Denmark)
Bache, Stefan Holst
A new and alternative quantile regression estimator is developed and it is shown that the estimator is root n-consistent and asymptotically normal. The estimator is based on a minimax ‘deviance function’ and has asymptotically equivalent properties to the usual quantile regression estimator. It is......, however, a different and therefore new estimator. It allows for both linear- and nonlinear model specifications. A simple algorithm for computing the estimates is proposed. It seems to work quite well in practice but whether it has theoretical justification is still an open question....
DEFF Research Database (Denmark)
Ozenne, Brice; Sørensen, Anne Lyngholm; Scheike, Thomas
2017-01-01
In the presence of competing risks a prediction of the time-dynamic absolute risk of an event can be based on cause-specific Cox regression models for the event and the competing risks (Benichou and Gail, 1990). We present computationally fast and memory optimized C++ functions with an R interface...... for predicting the covariate specific absolute risks, their confidence intervals, and their confidence bands based on right censored time to event data. We provide explicit formulas for our implementation of the estimator of the (stratified) baseline hazard function in the presence of tied event times. As a by...... functionals. The software presented here is implemented in the riskRegression package....
Directory of Open Access Journals (Sweden)
Fernanda Cristina Breda
2006-04-01
Full Text Available Foram utilizados 9.374 registros semanais de produção de leite de 302 primeiras lactações de cabras da raça Alpina. A produção de leite no dia do controle foi analisada por meio de um modelo animal, unicarater, de regressão aleatória, em que as funções de covariâncias para os componentes genéticos aditivos e de ambiente permanente foram modeladas por meio das funções de Wilmink, Ali e Schaeffer e por polinômios ortogonais, em uma escala de Legendre de ordens cúbica e quíntica. Assumiu-se, ainda, variância residual homogênea durante toda a lactação e heterogênea com três e quatro classes de variância residual. Os modelos foram comparados pelo critério de informação de Akaike (AIC, pelo critério de informação Bayesiano de Schwar (BIC, pela função de verossimilhança (Ln L, pela visualização das estimativas de variâncias genéticas, de ambiente permanente, fenotípicas e residuais e pelas herdabilidades. O polinômio de Legendre de ordem quíntica, com quatro e três classes de variâncias residuais, e a função de Ali e Schaeffer, com quatro classes de variâncias residuais, foram indicados como os mais adequados pelo AIC, BIC e Ln L. Estes modelos diferiram na partição da variância fenotípica para as variâncias de ambiente permanente, genética e residual apenas no início e no final da lactação. Contudo, a função de Ali e Schaeffer resultou em estimativas negativas de correlação genética entre os controles mais distantes. O polinômio de Legendre de ordem quíntica, assumindo variância residual heterogênea, mostrou-se mais adequado para ajustar a produção de leite no dia do controle de cabras da raça Alpina.Data consisting of 9,374 test day milk yield records from 302 first lactations of Alpina goats were analyzed by random regression models using the Wilmink and Ali and Schaeffer functions and Legendre orthogonal polynomials of third and fifth orders. Models including animal additive genetic
Multiple linear regression analysis
Edwards, T. R.
1980-01-01
Program rapidly selects best-suited set of coefficients. User supplies only vectors of independent and dependent data and specifies confidence level required. Program uses stepwise statistical procedure for relating minimal set of variables to set of observations; final regression contains only most statistically significant coefficients. Program is written in FORTRAN IV for batch execution and has been implemented on NOVA 1200.
Bayesian logistic regression analysis
Van Erp, H.R.N.; Van Gelder, P.H.A.J.M.
2012-01-01
In this paper we present a Bayesian logistic regression analysis. It is found that if one wishes to derive the posterior distribution of the probability of some event, then, together with the traditional Bayes Theorem and the integrating out of nuissance parameters, the Jacobian transformation is an
Seber, George A F
2012-01-01
Concise, mathematically clear, and comprehensive treatment of the subject.* Expanded coverage of diagnostics and methods of model fitting.* Requires no specialized knowledge beyond a good grasp of matrix algebra and some acquaintance with straight-line regression and simple analysis of variance models.* More than 200 problems throughout the book plus outline solutions for the exercises.* This revision has been extensively class-tested.
Ritz, Christian; Parmigiani, Giovanni
2009-01-01
R is a rapidly evolving lingua franca of graphical display and statistical analysis of experiments from the applied sciences. This book provides a coherent treatment of nonlinear regression with R by means of examples from a diversity of applied sciences such as biology, chemistry, engineering, medicine and toxicology.
Bayesian ARTMAP for regression.
Sasu, L M; Andonie, R
2013-10-01
Bayesian ARTMAP (BA) is a recently introduced neural architecture which uses a combination of Fuzzy ARTMAP competitive learning and Bayesian learning. Training is generally performed online, in a single-epoch. During training, BA creates input data clusters as Gaussian categories, and also infers the conditional probabilities between input patterns and categories, and between categories and classes. During prediction, BA uses Bayesian posterior probability estimation. So far, BA was used only for classification. The goal of this paper is to analyze the efficiency of BA for regression problems. Our contributions are: (i) we generalize the BA algorithm using the clustering functionality of both ART modules, and name it BA for Regression (BAR); (ii) we prove that BAR is a universal approximator with the best approximation property. In other words, BAR approximates arbitrarily well any continuous function (universal approximation) and, for every given continuous function, there is one in the set of BAR approximators situated at minimum distance (best approximation); (iii) we experimentally compare the online trained BAR with several neural models, on the following standard regression benchmarks: CPU Computer Hardware, Boston Housing, Wisconsin Breast Cancer, and Communities and Crime. Our results show that BAR is an appropriate tool for regression tasks, both for theoretical and practical reasons. Copyright © 2013 Elsevier Ltd. All rights reserved.
Bounded Gaussian process regression
DEFF Research Database (Denmark)
Jensen, Bjørn Sand; Nielsen, Jens Brehm; Larsen, Jan
2013-01-01
We extend the Gaussian process (GP) framework for bounded regression by introducing two bounded likelihood functions that model the noise on the dependent variable explicitly. This is fundamentally different from the implicit noise assumption in the previously suggested warped GP framework. We...... with the proposed explicit noise-model extension....
and Multinomial Logistic Regression
African Journals Online (AJOL)
This work presented the results of an experimental comparison of two models: Multinomial Logistic Regression (MLR) and Artificial Neural Network (ANN) for classifying students based on their academic performance. The predictive accuracy for each model was measured by their average Classification Correct Rate (CCR).
Mechanisms of neuroblastoma regression
Brodeur, Garrett M.; Bagatell, Rochelle
2014-01-01
Recent genomic and biological studies of neuroblastoma have shed light on the dramatic heterogeneity in the clinical behaviour of this disease, which spans from spontaneous regression or differentiation in some patients, to relentless disease progression in others, despite intensive multimodality therapy. This evidence also suggests several possible mechanisms to explain the phenomena of spontaneous regression in neuroblastomas, including neurotrophin deprivation, humoral or cellular immunity, loss of telomerase activity and alterations in epigenetic regulation. A better understanding of the mechanisms of spontaneous regression might help to identify optimal therapeutic approaches for patients with these tumours. Currently, the most druggable mechanism is the delayed activation of developmentally programmed cell death regulated by the tropomyosin receptor kinase A pathway. Indeed, targeted therapy aimed at inhibiting neurotrophin receptors might be used in lieu of conventional chemotherapy or radiation in infants with biologically favourable tumours that require treatment. Alternative approaches consist of breaking immune tolerance to tumour antigens or activating neurotrophin receptor pathways to induce neuronal differentiation. These approaches are likely to be most effective against biologically favourable tumours, but they might also provide insights into treatment of biologically unfavourable tumours. We describe the different mechanisms of spontaneous neuroblastoma regression and the consequent therapeutic approaches. PMID:25331179
Ridge Regression Signal Processing
Kuhl, Mark R.
1990-01-01
The introduction of the Global Positioning System (GPS) into the National Airspace System (NAS) necessitates the development of Receiver Autonomous Integrity Monitoring (RAIM) techniques. In order to guarantee a certain level of integrity, a thorough understanding of modern estimation techniques applied to navigational problems is required. The extended Kalman filter (EKF) is derived and analyzed under poor geometry conditions. It was found that the performance of the EKF is difficult to predict, since the EKF is designed for a Gaussian environment. A novel approach is implemented which incorporates ridge regression to explain the behavior of an EKF in the presence of dynamics under poor geometry conditions. The basic principles of ridge regression theory are presented, followed by the derivation of a linearized recursive ridge estimator. Computer simulations are performed to confirm the underlying theory and to provide a comparative analysis of the EKF and the recursive ridge estimator.
Subset selection in regression
Miller, Alan
2002-01-01
Originally published in 1990, the first edition of Subset Selection in Regression filled a significant gap in the literature, and its critical and popular success has continued for more than a decade. Thoroughly revised to reflect progress in theory, methods, and computing power, the second edition promises to continue that tradition. The author has thoroughly updated each chapter, incorporated new material on recent developments, and included more examples and references. New in the Second Edition:A separate chapter on Bayesian methodsComplete revision of the chapter on estimationA major example from the field of near infrared spectroscopyMore emphasis on cross-validationGreater focus on bootstrappingStochastic algorithms for finding good subsets from large numbers of predictors when an exhaustive search is not feasible Software available on the Internet for implementing many of the algorithms presentedMore examplesSubset Selection in Regression, Second Edition remains dedicated to the techniques for fitting...
(Non) linear regression modelling
Cizek, P.; Gentle, J.E.; Hardle, W.K.; Mori, Y.
2012-01-01
We will study causal relationships of a known form between random variables. Given a model, we distinguish one or more dependent (endogenous) variables Y = (Y1,…,Yl), l ∈ N, which are explained by a model, and independent (exogenous, explanatory) variables X = (X1,…,Xp),p ∈ N, which explain or
Regression in organizational leadership.
Kernberg, O F
1979-02-01
The choice of good leaders is a major task for all organizations. Inforamtion regarding the prospective administrator's personality should complement questions regarding his previous experience, his general conceptual skills, his technical knowledge, and the specific skills in the area for which he is being selected. The growing psychoanalytic knowledge about the crucial importance of internal, in contrast to external, object relations, and about the mutual relationships of regression in individuals and in groups, constitutes an important practical tool for the selection of leaders.
Classification and regression trees
Breiman, Leo; Olshen, Richard A; Stone, Charles J
1984-01-01
The methodology used to construct tree structured rules is the focus of this monograph. Unlike many other statistical procedures, which moved from pencil and paper to calculators, this text's use of trees was unthinkable before computers. Both the practical and theoretical sides have been developed in the authors' study of tree methods. Classification and Regression Trees reflects these two sides, covering the use of trees as a data analysis method, and in a more mathematical framework, proving some of their fundamental properties.
Hilbe, Joseph M
2009-01-01
This book really does cover everything you ever wanted to know about logistic regression … with updates available on the author's website. Hilbe, a former national athletics champion, philosopher, and expert in astronomy, is a master at explaining statistical concepts and methods. Readers familiar with his other expository work will know what to expect-great clarity.The book provides considerable detail about all facets of logistic regression. No step of an argument is omitted so that the book will meet the needs of the reader who likes to see everything spelt out, while a person familiar with some of the topics has the option to skip "obvious" sections. The material has been thoroughly road-tested through classroom and web-based teaching. … The focus is on helping the reader to learn and understand logistic regression. The audience is not just students meeting the topic for the first time, but also experienced users. I believe the book really does meet the author's goal … .-Annette J. Dobson, Biometric...
Steganalysis using logistic regression
Lubenko, Ivans; Ker, Andrew D.
2011-02-01
We advocate Logistic Regression (LR) as an alternative to the Support Vector Machine (SVM) classifiers commonly used in steganalysis. LR offers more information than traditional SVM methods - it estimates class probabilities as well as providing a simple classification - and can be adapted more easily and efficiently for multiclass problems. Like SVM, LR can be kernelised for nonlinear classification, and it shows comparable classification accuracy to SVM methods. This work is a case study, comparing accuracy and speed of SVM and LR classifiers in detection of LSB Matching and other related spatial-domain image steganography, through the state-of-art 686-dimensional SPAM feature set, in three image sets.
SEPARATION PHENOMENA LOGISTIC REGRESSION
Directory of Open Access Journals (Sweden)
Ikaro Daniel de Carvalho Barreto
2014-03-01
Full Text Available This paper proposes an application of concepts about the maximum likelihood estimation of the binomial logistic regression model to the separation phenomena. It generates bias in the estimation and provides different interpretations of the estimates on the different statistical tests (Wald, Likelihood Ratio and Score and provides different estimates on the different iterative methods (Newton-Raphson and Fisher Score. It also presents an example that demonstrates the direct implications for the validation of the model and validation of variables, the implications for estimates of odds ratios and confidence intervals, generated from the Wald statistics. Furthermore, we present, briefly, the Firth correction to circumvent the phenomena of separation.
DEFF Research Database (Denmark)
Ozenne, Brice; Sørensen, Anne Lyngholm; Scheike, Thomas
2017-01-01
In the presence of competing risks a prediction of the time-dynamic absolute risk of an event can be based on cause-specific Cox regression models for the event and the competing risks (Benichou and Gail, 1990). We present computationally fast and memory optimized C++ functions with an R interface......-product we obtain fast access to the baseline hazards (compared to survival::basehaz()) and predictions of survival probabilities, their confidence intervals and confidence bands. Confidence intervals and confidence bands are based on point-wise asymptotic expansions of the corresponding statistical...
Adaptive metric kernel regression
DEFF Research Database (Denmark)
Goutte, Cyril; Larsen, Jan
2000-01-01
Kernel smoothing is a widely used non-parametric pattern recognition technique. By nature, it suffers from the curse of dimensionality and is usually difficult to apply to high input dimensions. In this contribution, we propose an algorithm that adapts the input metric used in multivariate...... regression by minimising a cross-validation estimate of the generalisation error. This allows to automatically adjust the importance of different dimensions. The improvement in terms of modelling performance is illustrated on a variable selection task where the adaptive metric kernel clearly outperforms...
Adaptive Metric Kernel Regression
DEFF Research Database (Denmark)
Goutte, Cyril; Larsen, Jan
1998-01-01
Kernel smoothing is a widely used nonparametric pattern recognition technique. By nature, it suffers from the curse of dimensionality and is usually difficult to apply to high input dimensions. In this paper, we propose an algorithm that adapts the input metric used in multivariate regression...... by minimising a cross-validation estimate of the generalisation error. This allows one to automatically adjust the importance of different dimensions. The improvement in terms of modelling performance is illustrated on a variable selection task where the adaptive metric kernel clearly outperforms the standard...
DEFF Research Database (Denmark)
Hansen, Henrik; Tarp, Finn
2001-01-01
This paper examines the relationship between foreign aid and growth in real GDP per capita as it emerges from simple augmentations of popular cross country growth specifications. It is shown that aid in all likelihood increases the growth rate, and this result is not conditional on ‘good’ policy....... investment. We conclude by stressing the need for more theoretical work before this kind of cross-country regressions are used for policy purposes.......This paper examines the relationship between foreign aid and growth in real GDP per capita as it emerges from simple augmentations of popular cross country growth specifications. It is shown that aid in all likelihood increases the growth rate, and this result is not conditional on ‘good’ policy...
A logistic regression estimating function for spatial Gibbs point processes
DEFF Research Database (Denmark)
Baddeley, Adrian; Coeurjolly, Jean-François; Rubak, Ege
We propose a computationally efficient logistic regression estimating function for spatial Gibbs point processes. The sample points for the logistic regression consist of the observed point pattern together with a random pattern of dummy points. The estimating function is closely related to the p......We propose a computationally efficient logistic regression estimating function for spatial Gibbs point processes. The sample points for the logistic regression consist of the observed point pattern together with a random pattern of dummy points. The estimating function is closely related...
Modified Regression Correlation Coefficient for Poisson Regression Model
Kaengthong, Nattacha; Domthong, Uthumporn
2017-09-01
This study gives attention to indicators in predictive power of the Generalized Linear Model (GLM) which are widely used; however, often having some restrictions. We are interested in regression correlation coefficient for a Poisson regression model. This is a measure of predictive power, and defined by the relationship between the dependent variable (Y) and the expected value of the dependent variable given the independent variables [E(Y|X)] for the Poisson regression model. The dependent variable is distributed as Poisson. The purpose of this research was modifying regression correlation coefficient for Poisson regression model. We also compare the proposed modified regression correlation coefficient with the traditional regression correlation coefficient in the case of two or more independent variables, and having multicollinearity in independent variables. The result shows that the proposed regression correlation coefficient is better than the traditional regression correlation coefficient based on Bias and the Root Mean Square Error (RMSE).
Luo, Chongliang; Liu, Jin; Dey, Dipak K; Chen, Kun
2016-07-01
In many fields, multi-view datasets, measuring multiple distinct but interrelated sets of characteristics on the same set of subjects, together with data on certain outcomes or phenotypes, are routinely collected. The objective in such a problem is often two-fold: both to explore the association structures of multiple sets of measurements and to develop a parsimonious model for predicting the future outcomes. We study a unified canonical variate regression framework to tackle the two problems simultaneously. The proposed criterion integrates multiple canonical correlation analysis with predictive modeling, balancing between the association strength of the canonical variates and their joint predictive power on the outcomes. Moreover, the proposed criterion seeks multiple sets of canonical variates simultaneously to enable the examination of their joint effects on the outcomes, and is able to handle multivariate and non-Gaussian outcomes. An efficient algorithm based on variable splitting and Lagrangian multipliers is proposed. Simulation studies show the superior performance of the proposed approach. We demonstrate the effectiveness of the proposed approach in an [Formula: see text] intercross mice study and an alcohol dependence study. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Gwin, Jess A; Maki, Kevin C; Leidy, Heather J
2017-12-01
Background: Higher-protein (HP) energy-restriction diets improve weight management to a greater extent than normal-protein (NP) versions. Potential mechanisms of action with regard to assessment of eating behaviors across the day have not been widely examined during energy restriction. Objectives: The objectives of this study were to test whether the consumption of an HP energy-restriction diet reduces carbohydrate and fat intakes through improvements in daily appetite, satiety, and food cravings compared with NP versions and to test whether protein type within the NP diets alters protein-related satiety. Methods: Seventeen overweight women [mean ± SEM age: 36 ± 1 y; body mass index (kg/m 2 ): 28.4 ± 0.1] completed a randomized, controlled-feeding crossover study. Participants were provided with the following ∼1250-kcal/d energy-restricted (-750-kcal/d deficit) diets, each for 6 d: HP [124 g protein/d; 60% from beef and 40% from plant sources (HP-BEEF)] or NP (48 g protein/d) that was protein-type matched (NP-BEEF) or unmatched [100% from plant-based sources (NP-PLANT)]. On day 6 of each diet period, participants completed a 12-h testing day containing repetitive appetite, satiety, and food-craving questionnaires. On day 7, the participants were asked to consume their protein requirement within each respective diet but were provided with a surplus of carbohydrate- and fat-rich foods to consume, ad libitum, at each eating occasion across the day. All outcomes reported were primary study outcomes. Results: The HP-BEEF diet reduced daily hunger by 16%, desire to eat by 15%, prospective food consumption by 14%, and fast-food cravings by 15% but increased daily fullness by 25% compared with the NP-BEEF and NP-PLANT diets (all P protein throughout the day did not reduce the energy consumed ad libitum from the fat- and carbohydrate-rich foods (HP-BEEF: 2000 ± 180 kcal/d; NP-BEEF: 2120 ± 190 kcal/d; NP-PLANT: 2070 ± 180 kcal/d). None of the outcomes differed
Polynomial regression analysis and significance test of the regression function
International Nuclear Information System (INIS)
Gao Zhengming; Zhao Juan; He Shengping
2012-01-01
In order to analyze the decay heating power of a certain radioactive isotope per kilogram with polynomial regression method, the paper firstly demonstrated the broad usage of polynomial function and deduced its parameters with ordinary least squares estimate. Then significance test method of polynomial regression function is derived considering the similarity between the polynomial regression model and the multivariable linear regression model. Finally, polynomial regression analysis and significance test of the polynomial function are done to the decay heating power of the iso tope per kilogram in accord with the authors' real work. (authors)
Recursive Algorithm For Linear Regression
Varanasi, S. V.
1988-01-01
Order of model determined easily. Linear-regression algorithhm includes recursive equations for coefficients of model of increased order. Algorithm eliminates duplicative calculations, facilitates search for minimum order of linear-regression model fitting set of data satisfactory.
Combining Alphas via Bounded Regression
Directory of Open Access Journals (Sweden)
Zura Kakushadze
2015-11-01
Full Text Available We give an explicit algorithm and source code for combining alpha streams via bounded regression. In practical applications, typically, there is insufficient history to compute a sample covariance matrix (SCM for a large number of alphas. To compute alpha allocation weights, one then resorts to (weighted regression over SCM principal components. Regression often produces alpha weights with insufficient diversification and/or skewed distribution against, e.g., turnover. This can be rectified by imposing bounds on alpha weights within the regression procedure. Bounded regression can also be applied to stock and other asset portfolio construction. We discuss illustrative examples.
Regression in autistic spectrum disorders.
Stefanatos, Gerry A
2008-12-01
A significant proportion of children diagnosed with Autistic Spectrum Disorder experience a developmental regression characterized by a loss of previously-acquired skills. This may involve a loss of speech or social responsitivity, but often entails both. This paper critically reviews the phenomena of regression in autistic spectrum disorders, highlighting the characteristics of regression, age of onset, temporal course, and long-term outcome. Important considerations for diagnosis are discussed and multiple etiological factors currently hypothesized to underlie the phenomenon are reviewed. It is argued that regressive autistic spectrum disorders can be conceptualized on a spectrum with other regressive disorders that may share common pathophysiological features. The implications of this viewpoint are discussed.
Linear regression in astronomy. I
Isobe, Takashi; Feigelson, Eric D.; Akritas, Michael G.; Babu, Gutti Jogesh
1990-01-01
Five methods for obtaining linear regression fits to bivariate data with unknown or insignificant measurement errors are discussed: ordinary least-squares (OLS) regression of Y on X, OLS regression of X on Y, the bisector of the two OLS lines, orthogonal regression, and 'reduced major-axis' regression. These methods have been used by various researchers in observational astronomy, most importantly in cosmic distance scale applications. Formulas for calculating the slope and intercept coefficients and their uncertainties are given for all the methods, including a new general form of the OLS variance estimates. The accuracy of the formulas was confirmed using numerical simulations. The applicability of the procedures is discussed with respect to their mathematical properties, the nature of the astronomical data under consideration, and the scientific purpose of the regression. It is found that, for problems needing symmetrical treatment of the variables, the OLS bisector performs significantly better than orthogonal or reduced major-axis regression.
Advanced statistics: linear regression, part I: simple linear regression.
Marill, Keith A
2004-01-01
Simple linear regression is a mathematical technique used to model the relationship between a single independent predictor variable and a single dependent outcome variable. In this, the first of a two-part series exploring concepts in linear regression analysis, the four fundamental assumptions and the mechanics of simple linear regression are reviewed. The most common technique used to derive the regression line, the method of least squares, is described. The reader will be acquainted with other important concepts in simple linear regression, including: variable transformations, dummy variables, relationship to inference testing, and leverage. Simplified clinical examples with small datasets and graphic models are used to illustrate the points. This will provide a foundation for the second article in this series: a discussion of multiple linear regression, in which there are multiple predictor variables.
Mixed-effects regression models in linguistics
Heylen, Kris; Geeraerts, Dirk
2018-01-01
When data consist of grouped observations or clusters, and there is a risk that measurements within the same group are not independent, group-specific random effects can be added to a regression model in order to account for such within-group associations. Regression models that contain such group-specific random effects are called mixed-effects regression models, or simply mixed models. Mixed models are a versatile tool that can handle both balanced and unbalanced datasets and that can also be applied when several layers of grouping are present in the data; these layers can either be nested or crossed. In linguistics, as in many other fields, the use of mixed models has gained ground rapidly over the last decade. This methodological evolution enables us to build more sophisticated and arguably more realistic models, but, due to its technical complexity, also introduces new challenges. This volume brings together a number of promising new evolutions in the use of mixed models in linguistics, but also addres...
Linear regression in astronomy. II
Feigelson, Eric D.; Babu, Gutti J.
1992-01-01
A wide variety of least-squares linear regression procedures used in observational astronomy, particularly investigations of the cosmic distance scale, are presented and discussed. The classes of linear models considered are (1) unweighted regression lines, with bootstrap and jackknife resampling; (2) regression solutions when measurement error, in one or both variables, dominates the scatter; (3) methods to apply a calibration line to new data; (4) truncated regression models, which apply to flux-limited data sets; and (5) censored regression models, which apply when nondetections are present. For the calibration problem we develop two new procedures: a formula for the intercept offset between two parallel data sets, which propagates slope errors from one regression to the other; and a generalization of the Working-Hotelling confidence bands to nonstandard least-squares lines. They can provide improved error analysis for Faber-Jackson, Tully-Fisher, and similar cosmic distance scale relations.
Time-adaptive quantile regression
DEFF Research Database (Denmark)
Møller, Jan Kloppenborg; Nielsen, Henrik Aalborg; Madsen, Henrik
2008-01-01
and an updating procedure are combined into a new algorithm for time-adaptive quantile regression, which generates new solutions on the basis of the old solution, leading to savings in computation time. The suggested algorithm is tested against a static quantile regression model on a data set with wind power......An algorithm for time-adaptive quantile regression is presented. The algorithm is based on the simplex algorithm, and the linear optimization formulation of the quantile regression problem is given. The observations have been split to allow a direct use of the simplex algorithm. The simplex method...... production, where the models combine splines and quantile regression. The comparison indicates superior performance for the time-adaptive quantile regression in all the performance parameters considered....
Retro-regression--another important multivariate regression improvement.
Randić, M
2001-01-01
We review the serious problem associated with instabilities of the coefficients of regression equations, referred to as the MRA (multivariate regression analysis) "nightmare of the first kind". This is manifested when in a stepwise regression a descriptor is included or excluded from a regression. The consequence is an unpredictable change of the coefficients of the descriptors that remain in the regression equation. We follow with consideration of an even more serious problem, referred to as the MRA "nightmare of the second kind", arising when optimal descriptors are selected from a large pool of descriptors. This process typically causes at different steps of the stepwise regression a replacement of several previously used descriptors by new ones. We describe a procedure that resolves these difficulties. The approach is illustrated on boiling points of nonanes which are considered (1) by using an ordered connectivity basis; (2) by using an ordering resulting from application of greedy algorithm; and (3) by using an ordering derived from an exhaustive search for optimal descriptors. A novel variant of multiple regression analysis, called retro-regression (RR), is outlined showing how it resolves the ambiguities associated with both "nightmares" of the first and the second kind of MRA.
Quantile regression theory and applications
Davino, Cristina; Vistocco, Domenico
2013-01-01
A guide to the implementation and interpretation of Quantile Regression models This book explores the theory and numerous applications of quantile regression, offering empirical data analysis as well as the software tools to implement the methods. The main focus of this book is to provide the reader with a comprehensivedescription of the main issues concerning quantile regression; these include basic modeling, geometrical interpretation, estimation and inference for quantile regression, as well as issues on validity of the model, diagnostic tools. Each methodological aspect is explored and
Stochastic development regression using method of moments
DEFF Research Database (Denmark)
Kühnel, Line; Sommer, Stefan Horst
2017-01-01
This paper considers the estimation problem arising when inferring parameters in the stochastic development regression model for manifold valued non-linear data. Stochastic development regression captures the relation between manifold-valued response and Euclidean covariate variables using...... the stochastic development construction. It is thereby able to incorporate several covariate variables and random effects. The model is intrinsically defined using the connection of the manifold, and the use of stochastic development avoids linearizing the geometry. We propose to infer parameters using...... the Method of Moments procedure that matches known constraints on moments of the observations conditional on the latent variables. The performance of the model is investigated in a simulation example using data on finite dimensional landmark manifolds....
Panel Smooth Transition Regression Models
DEFF Research Database (Denmark)
González, Andrés; Terasvirta, Timo; Dijk, Dick van
We introduce the panel smooth transition regression model. This new model is intended for characterizing heterogeneous panels, allowing the regression coefficients to vary both across individuals and over time. Specifically, heterogeneity is allowed for by assuming that these coefficients are bou...
Testing discontinuities in nonparametric regression
Dai, Wenlin
2017-01-19
In nonparametric regression, it is often needed to detect whether there are jump discontinuities in the mean function. In this paper, we revisit the difference-based method in [13 H.-G. Müller and U. Stadtmüller, Discontinuous versus smooth regression, Ann. Stat. 27 (1999), pp. 299–337. doi: 10.1214/aos/1018031100
Testing discontinuities in nonparametric regression
Dai, Wenlin; Zhou, Yuejin; Tong, Tiejun
2017-01-01
In nonparametric regression, it is often needed to detect whether there are jump discontinuities in the mean function. In this paper, we revisit the difference-based method in [13 H.-G. Müller and U. Stadtmüller, Discontinuous versus smooth regression, Ann. Stat. 27 (1999), pp. 299–337. doi: 10.1214/aos/1018031100
Logistic Regression: Concept and Application
Cokluk, Omay
2010-01-01
The main focus of logistic regression analysis is classification of individuals in different groups. The aim of the present study is to explain basic concepts and processes of binary logistic regression analysis intended to determine the combination of independent variables which best explain the membership in certain groups called dichotomous…
Fungible weights in logistic regression.
Jones, Jeff A; Waller, Niels G
2016-06-01
In this article we develop methods for assessing parameter sensitivity in logistic regression models. To set the stage for this work, we first review Waller's (2008) equations for computing fungible weights in linear regression. Next, we describe 2 methods for computing fungible weights in logistic regression. To demonstrate the utility of these methods, we compute fungible logistic regression weights using data from the Centers for Disease Control and Prevention's (2010) Youth Risk Behavior Surveillance Survey, and we illustrate how these alternate weights can be used to evaluate parameter sensitivity. To make our work accessible to the research community, we provide R code (R Core Team, 2015) that will generate both kinds of fungible logistic regression weights. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
International Nuclear Information System (INIS)
Leng Ling; Zhang Tianyi; Kleinman, Lawrence; Zhu Wei
2007-01-01
Regression analysis, especially the ordinary least squares method which assumes that errors are confined to the dependent variable, has seen a fair share of its applications in aerosol science. The ordinary least squares approach, however, could be problematic due to the fact that atmospheric data often does not lend itself to calling one variable independent and the other dependent. Errors often exist for both measurements. In this work, we examine two regression approaches available to accommodate this situation. They are orthogonal regression and geometric mean regression. Comparisons are made theoretically as well as numerically through an aerosol study examining whether the ratio of organic aerosol to CO would change with age
Evaluation of random forest regression for prediction of breeding ...
Indian Academy of Sciences (India)
have been widely used for prediction of breeding values of genotypes from genomewide association studies. However, appli- ... tolerance to biotic and abiotic stresses. But due to ..... School, IARI, New Delhi, during his Ph.D. References.
Multi-trait and random regression mature weight heritability and ...
African Journals Online (AJOL)
Legendre polynomials of orders 4, 3, 6 and 3 were used for animal and maternal genetic and permanent environmental effects, respectively, considering five classes of residual variances. Mature weight (five years) direct heritability estimates were 0.35 (MM) and 0.38 (RRM). Rank correlation between sires' breeding values ...
Covariance Functions and Random Regression Models in the ...
African Journals Online (AJOL)
ARC-IRENE
0.31 ± 0.021. 0.28 ± 0.004. aNo = number of records; Mean = unadjusted mean; s.d. = standard deviation .... A manual for. USA. Kirkp ., 1990. ... J. Math. Biol. 27, 429-450. atrick, M., Lofsvold, D. & Bulmer, M trajectories. Genetics 124, 979-993.
Tumor regression patterns in retinoblastoma
International Nuclear Information System (INIS)
Zafar, S.N.; Siddique, S.N.; Zaheer, N.
2016-01-01
To observe the types of tumor regression after treatment, and identify the common pattern of regression in our patients. Study Design: Descriptive study. Place and Duration of Study: Department of Pediatric Ophthalmology and Strabismus, Al-Shifa Trust Eye Hospital, Rawalpindi, Pakistan, from October 2011 to October 2014. Methodology: Children with unilateral and bilateral retinoblastoma were included in the study. Patients were referred to Pakistan Institute of Medical Sciences, Islamabad, for chemotherapy. After every cycle of chemotherapy, dilated funds examination under anesthesia was performed to record response of the treatment. Regression patterns were recorded on RetCam II. Results: Seventy-four tumors were included in the study. Out of 74 tumors, 3 were ICRB group A tumors, 43 were ICRB group B tumors, 14 tumors belonged to ICRB group C, and remaining 14 were ICRB group D tumors. Type IV regression was seen in 39.1% (n=29) tumors, type II in 29.7% (n=22), type III in 25.6% (n=19), and type I in 5.4% (n=4). All group A tumors (100%) showed type IV regression. Seventeen (39.5%) group B tumors showed type IV regression. In group C, 5 tumors (35.7%) showed type II regression and 5 tumors (35.7%) showed type IV regression. In group D, 6 tumors (42.9%) regressed to type II non-calcified remnants. Conclusion: The response and success of the focal and systemic treatment, as judged by the appearance of different patterns of tumor regression, varies with the ICRB grouping of the tumor. (author)
Regression to Causality : Regression-style presentation influences causal attribution
DEFF Research Database (Denmark)
Bordacconi, Mats Joe; Larsen, Martin Vinæs
2014-01-01
of equivalent results presented as either regression models or as a test of two sample means. Our experiment shows that the subjects who were presented with results as estimates from a regression model were more inclined to interpret these results causally. Our experiment implies that scholars using regression...... models – one of the primary vehicles for analyzing statistical results in political science – encourage causal interpretation. Specifically, we demonstrate that presenting observational results in a regression model, rather than as a simple comparison of means, makes causal interpretation of the results...... more likely. Our experiment drew on a sample of 235 university students from three different social science degree programs (political science, sociology and economics), all of whom had received substantial training in statistics. The subjects were asked to compare and evaluate the validity...
Regression analysis with categorized regression calibrated exposure: some interesting findings
Directory of Open Access Journals (Sweden)
Hjartåker Anette
2006-07-01
Full Text Available Abstract Background Regression calibration as a method for handling measurement error is becoming increasingly well-known and used in epidemiologic research. However, the standard version of the method is not appropriate for exposure analyzed on a categorical (e.g. quintile scale, an approach commonly used in epidemiologic studies. A tempting solution could then be to use the predicted continuous exposure obtained through the regression calibration method and treat it as an approximation to the true exposure, that is, include the categorized calibrated exposure in the main regression analysis. Methods We use semi-analytical calculations and simulations to evaluate the performance of the proposed approach compared to the naive approach of not correcting for measurement error, in situations where analyses are performed on quintile scale and when incorporating the original scale into the categorical variables, respectively. We also present analyses of real data, containing measures of folate intake and depression, from the Norwegian Women and Cancer study (NOWAC. Results In cases where extra information is available through replicated measurements and not validation data, regression calibration does not maintain important qualities of the true exposure distribution, thus estimates of variance and percentiles can be severely biased. We show that the outlined approach maintains much, in some cases all, of the misclassification found in the observed exposure. For that reason, regression analysis with the corrected variable included on a categorical scale is still biased. In some cases the corrected estimates are analytically equal to those obtained by the naive approach. Regression calibration is however vastly superior to the naive method when applying the medians of each category in the analysis. Conclusion Regression calibration in its most well-known form is not appropriate for measurement error correction when the exposure is analyzed on a
Advanced statistics: linear regression, part II: multiple linear regression.
Marill, Keith A
2004-01-01
The applications of simple linear regression in medical research are limited, because in most situations, there are multiple relevant predictor variables. Univariate statistical techniques such as simple linear regression use a single predictor variable, and they often may be mathematically correct but clinically misleading. Multiple linear regression is a mathematical technique used to model the relationship between multiple independent predictor variables and a single dependent outcome variable. It is used in medical research to model observational data, as well as in diagnostic and therapeutic studies in which the outcome is dependent on more than one factor. Although the technique generally is limited to data that can be expressed with a linear function, it benefits from a well-developed mathematical framework that yields unique solutions and exact confidence intervals for regression coefficients. Building on Part I of this series, this article acquaints the reader with some of the important concepts in multiple regression analysis. These include multicollinearity, interaction effects, and an expansion of the discussion of inference testing, leverage, and variable transformations to multivariate models. Examples from the first article in this series are expanded on using a primarily graphic, rather than mathematical, approach. The importance of the relationships among the predictor variables and the dependence of the multivariate model coefficients on the choice of these variables are stressed. Finally, concepts in regression model building are discussed.
Logic regression and its extensions.
Schwender, Holger; Ruczinski, Ingo
2010-01-01
Logic regression is an adaptive classification and regression procedure, initially developed to reveal interacting single nucleotide polymorphisms (SNPs) in genetic association studies. In general, this approach can be used in any setting with binary predictors, when the interaction of these covariates is of primary interest. Logic regression searches for Boolean (logic) combinations of binary variables that best explain the variability in the outcome variable, and thus, reveals variables and interactions that are associated with the response and/or have predictive capabilities. The logic expressions are embedded in a generalized linear regression framework, and thus, logic regression can handle a variety of outcome types, such as binary responses in case-control studies, numeric responses, and time-to-event data. In this chapter, we provide an introduction to the logic regression methodology, list some applications in public health and medicine, and summarize some of the direct extensions and modifications of logic regression that have been proposed in the literature. Copyright © 2010 Elsevier Inc. All rights reserved.
Abstract Expression Grammar Symbolic Regression
Korns, Michael F.
This chapter examines the use of Abstract Expression Grammars to perform the entire Symbolic Regression process without the use of Genetic Programming per se. The techniques explored produce a symbolic regression engine which has absolutely no bloat, which allows total user control of the search space and output formulas, which is faster, and more accurate than the engines produced in our previous papers using Genetic Programming. The genome is an all vector structure with four chromosomes plus additional epigenetic and constraint vectors, allowing total user control of the search space and the final output formulas. A combination of specialized compiler techniques, genetic algorithms, particle swarm, aged layered populations, plus discrete and continuous differential evolution are used to produce an improved symbolic regression sytem. Nine base test cases, from the literature, are used to test the improvement in speed and accuracy. The improved results indicate that these techniques move us a big step closer toward future industrial strength symbolic regression systems.
Quantile Regression With Measurement Error
Wei, Ying; Carroll, Raymond J.
2009-01-01
. The finite sample performance of the proposed method is investigated in a simulation study, and compared to the standard regression calibration approach. Finally, we apply our methodology to part of the National Collaborative Perinatal Project growth data, a
Linear and logistic regression analysis
Tripepi, G.; Jager, K. J.; Dekker, F. W.; Zoccali, C.
2008-01-01
In previous articles of this series, we focused on relative risks and odds ratios as measures of effect to assess the relationship between exposure to risk factors and clinical outcomes and on control for confounding. In randomized clinical trials, the random allocation of patients is hoped to
From Rasch scores to regression
DEFF Research Database (Denmark)
Christensen, Karl Bang
2006-01-01
Rasch models provide a framework for measurement and modelling latent variables. Having measured a latent variable in a population a comparison of groups will often be of interest. For this purpose the use of observed raw scores will often be inadequate because these lack interval scale propertie....... This paper compares two approaches to group comparison: linear regression models using estimated person locations as outcome variables and latent regression models based on the distribution of the score....
Testing Heteroscedasticity in Robust Regression
Czech Academy of Sciences Publication Activity Database
Kalina, Jan
2011-01-01
Roč. 1, č. 4 (2011), s. 25-28 ISSN 2045-3345 Grant - others:GA ČR(CZ) GA402/09/0557 Institutional research plan: CEZ:AV0Z10300504 Keywords : robust regression * heteroscedasticity * regression quantiles * diagnostics Subject RIV: BB - Applied Statistics , Operational Research http://www.researchjournals.co.uk/documents/Vol4/06%20Kalina.pdf
Regression methods for medical research
Tai, Bee Choo
2013-01-01
Regression Methods for Medical Research provides medical researchers with the skills they need to critically read and interpret research using more advanced statistical methods. The statistical requirements of interpreting and publishing in medical journals, together with rapid changes in science and technology, increasingly demands an understanding of more complex and sophisticated analytic procedures.The text explains the application of statistical models to a wide variety of practical medical investigative studies and clinical trials. Regression methods are used to appropriately answer the
Forecasting with Dynamic Regression Models
Pankratz, Alan
2012-01-01
One of the most widely used tools in statistical forecasting, single equation regression models is examined here. A companion to the author's earlier work, Forecasting with Univariate Box-Jenkins Models: Concepts and Cases, the present text pulls together recent time series ideas and gives special attention to possible intertemporal patterns, distributed lag responses of output to input series and the auto correlation patterns of regression disturbance. It also includes six case studies.
Producing The New Regressive Left
DEFF Research Database (Denmark)
Crone, Christine
members, this thesis investigates a growing political trend and ideological discourse in the Arab world that I have called The New Regressive Left. On the premise that a media outlet can function as a forum for ideology production, the thesis argues that an analysis of this material can help to trace...... the contexture of The New Regressive Left. If the first part of the thesis lays out the theoretical approach and draws the contextual framework, through an exploration of the surrounding Arab media-and ideoscapes, the second part is an analytical investigation of the discourse that permeates the programmes aired...... becomes clear from the analytical chapters is the emergence of the new cross-ideological alliance of The New Regressive Left. This emerging coalition between Shia Muslims, religious minorities, parts of the Arab Left, secular cultural producers, and the remnants of the political,strategic resistance...
A Matlab program for stepwise regression
Directory of Open Access Journals (Sweden)
Yanhong Qi
2016-03-01
Full Text Available The stepwise linear regression is a multi-variable regression for identifying statistically significant variables in the linear regression equation. In present study, we presented the Matlab program of stepwise regression.
Correlation and simple linear regression.
Zou, Kelly H; Tuncali, Kemal; Silverman, Stuart G
2003-06-01
In this tutorial article, the concepts of correlation and regression are reviewed and demonstrated. The authors review and compare two correlation coefficients, the Pearson correlation coefficient and the Spearman rho, for measuring linear and nonlinear relationships between two continuous variables. In the case of measuring the linear relationship between a predictor and an outcome variable, simple linear regression analysis is conducted. These statistical concepts are illustrated by using a data set from published literature to assess a computed tomography-guided interventional technique. These statistical methods are important for exploring the relationships between variables and can be applied to many radiologic studies.
Regression filter for signal resolution
International Nuclear Information System (INIS)
Matthes, W.
1975-01-01
The problem considered is that of resolving a measured pulse height spectrum of a material mixture, e.g. gamma ray spectrum, Raman spectrum, into a weighed sum of the spectra of the individual constituents. The model on which the analytical formulation is based is described. The problem reduces to that of a multiple linear regression. A stepwise linear regression procedure was constructed. The efficiency of this method was then tested by transforming the procedure in a computer programme which was used to unfold test spectra obtained by mixing some spectra, from a library of arbitrary chosen spectra, and adding a noise component. (U.K.)
Nonparametric Mixture of Regression Models.
Huang, Mian; Li, Runze; Wang, Shaoli
2013-07-01
Motivated by an analysis of US house price index data, we propose nonparametric finite mixture of regression models. We study the identifiability issue of the proposed models, and develop an estimation procedure by employing kernel regression. We further systematically study the sampling properties of the proposed estimators, and establish their asymptotic normality. A modified EM algorithm is proposed to carry out the estimation procedure. We show that our algorithm preserves the ascent property of the EM algorithm in an asymptotic sense. Monte Carlo simulations are conducted to examine the finite sample performance of the proposed estimation procedure. An empirical analysis of the US house price index data is illustrated for the proposed methodology.
Cactus: An Introduction to Regression
Hyde, Hartley
2008-01-01
When the author first used "VisiCalc," the author thought it a very useful tool when he had the formulas. But how could he design a spreadsheet if there was no known formula for the quantities he was trying to predict? A few months later, the author relates he learned to use multiple linear regression software and suddenly it all clicked into…
Regression Models for Repairable Systems
Czech Academy of Sciences Publication Activity Database
Novák, Petr
2015-01-01
Roč. 17, č. 4 (2015), s. 963-972 ISSN 1387-5841 Institutional support: RVO:67985556 Keywords : Reliability analysis * Repair models * Regression Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.782, year: 2015 http://library.utia.cas.cz/separaty/2015/SI/novak-0450902.pdf
Survival analysis II: Cox regression
Stel, Vianda S.; Dekker, Friedo W.; Tripepi, Giovanni; Zoccali, Carmine; Jager, Kitty J.
2011-01-01
In contrast to the Kaplan-Meier method, Cox proportional hazards regression can provide an effect estimate by quantifying the difference in survival between patient groups and can adjust for confounding effects of other variables. The purpose of this article is to explain the basic concepts of the
Kernel regression with functional response
Ferraty, Frédéric; Laksaci, Ali; Tadj, Amel; Vieu, Philippe
2011-01-01
We consider kernel regression estimate when both the response variable and the explanatory one are functional. The rates of uniform almost complete convergence are stated as function of the small ball probability of the predictor and as function of the entropy of the set on which uniformity is obtained.
Meaney, Christopher; Moineddin, Rahim
2014-01-24
In biomedical research, response variables are often encountered which have bounded support on the open unit interval--(0,1). Traditionally, researchers have attempted to estimate covariate effects on these types of response data using linear regression. Alternative modelling strategies may include: beta regression, variable-dispersion beta regression, and fractional logit regression models. This study employs a Monte Carlo simulation design to compare the statistical properties of the linear regression model to that of the more novel beta regression, variable-dispersion beta regression, and fractional logit regression models. In the Monte Carlo experiment we assume a simple two sample design. We assume observations are realizations of independent draws from their respective probability models. The randomly simulated draws from the various probability models are chosen to emulate average proportion/percentage/rate differences of pre-specified magnitudes. Following simulation of the experimental data we estimate average proportion/percentage/rate differences. We compare the estimators in terms of bias, variance, type-1 error and power. Estimates of Monte Carlo error associated with these quantities are provided. If response data are beta distributed with constant dispersion parameters across the two samples, then all models are unbiased and have reasonable type-1 error rates and power profiles. If the response data in the two samples have different dispersion parameters, then the simple beta regression model is biased. When the sample size is small (N0 = N1 = 25) linear regression has superior type-1 error rates compared to the other models. Small sample type-1 error rates can be improved in beta regression models using bias correction/reduction methods. In the power experiments, variable-dispersion beta regression and fractional logit regression models have slightly elevated power compared to linear regression models. Similar results were observed if the
Mundy, Matthew E
2014-01-01
Explanations for the cognitive basis of the Müller-Lyer illusion are still frustratingly mixed. To date, Day's (1989) theory of perceptual compromise has received little empirical attention. In this study, we examine the merit of Day's hypothesis for the Müller-Lyer illusion by biasing participants toward global or local visual processing through exposure to Navon (1977) stimuli, which are known to alter processing level preference for a short time. Participants (N = 306) were randomly allocated to global, local, or control conditions. Those in global or local conditions were exposed to Navon stimuli for 5 min and participants were required to report on the global or local stimulus features, respectively. Subsequently, participants completed a computerized Müller-Lyer experiment where they adjusted the length of a line to match an illusory-figure. The illusion was significantly stronger for participants with a global bias, and significantly weaker for those with a local bias, compared with the control condition. These findings provide empirical support for Day's "conflicting cues" theory of perceptual compromise in the Müller-Lyer illusion.
Cao, Qingqing; Wu, Zhenqiang; Sun, Ying; Wang, Tiezhu; Han, Tengwei; Gu, Chaomei; Sun, Yehuan
2011-11-01
To Eexplore the application of negative binomial regression and modified Poisson regression analysis in analyzing the influential factors for injury frequency and the risk factors leading to the increase of injury frequency. 2917 primary and secondary school students were selected from Hefei by cluster random sampling method and surveyed by questionnaire. The data on the count event-based injuries used to fitted modified Poisson regression and negative binomial regression model. The risk factors incurring the increase of unintentional injury frequency for juvenile students was explored, so as to probe the efficiency of these two models in studying the influential factors for injury frequency. The Poisson model existed over-dispersion (P Poisson regression and negative binomial regression model, was fitted better. respectively. Both showed that male gender, younger age, father working outside of the hometown, the level of the guardian being above junior high school and smoking might be the results of higher injury frequencies. On a tendency of clustered frequency data on injury event, both the modified Poisson regression analysis and negative binomial regression analysis can be used. However, based on our data, the modified Poisson regression fitted better and this model could give a more accurate interpretation of relevant factors affecting the frequency of injury.
Statistical learning from a regression perspective
Berk, Richard A
2016-01-01
This textbook considers statistical learning applications when interest centers on the conditional distribution of the response variable, given a set of predictors, and when it is important to characterize how the predictors are related to the response. As a first approximation, this can be seen as an extension of nonparametric regression. This fully revised new edition includes important developments over the past 8 years. Consistent with modern data analytics, it emphasizes that a proper statistical learning data analysis derives from sound data collection, intelligent data management, appropriate statistical procedures, and an accessible interpretation of results. A continued emphasis on the implications for practice runs through the text. Among the statistical learning procedures examined are bagging, random forests, boosting, support vector machines and neural networks. Response variables may be quantitative or categorical. As in the first edition, a unifying theme is supervised learning that can be trea...
Directory of Open Access Journals (Sweden)
Drzewiecki Wojciech
2016-12-01
Full Text Available In this work nine non-linear regression models were compared for sub-pixel impervious surface area mapping from Landsat images. The comparison was done in three study areas both for accuracy of imperviousness coverage evaluation in individual points in time and accuracy of imperviousness change assessment. The performance of individual machine learning algorithms (Cubist, Random Forest, stochastic gradient boosting of regression trees, k-nearest neighbors regression, random k-nearest neighbors regression, Multivariate Adaptive Regression Splines, averaged neural networks, and support vector machines with polynomial and radial kernels was also compared with the performance of heterogeneous model ensembles constructed from the best models trained using particular techniques.
Testing overall and moderator effects meta-regression
Huizenga, H.M.; Visser, I.; Dolan, C.V.
2011-01-01
Random effects meta-regression is a technique to synthesize results of multiple studies. It allows for a test of an overall effect, as well as for tests of effects of study characteristics, that is, (discrete or continuous) moderator effects. We describe various procedures to test moderator effects:
A Bayesian Nonparametric Causal Model for Regression Discontinuity Designs
Karabatsos, George; Walker, Stephen G.
2013-01-01
The regression discontinuity (RD) design (Thistlewaite & Campbell, 1960; Cook, 2008) provides a framework to identify and estimate causal effects from a non-randomized design. Each subject of a RD design is assigned to the treatment (versus assignment to a non-treatment) whenever her/his observed value of the assignment variable equals or…
On the null distribution of Bayes factors in linear regression
We show that under the null, the 2 log (Bayes factor) is asymptotically distributed as a weighted sum of chi-squared random variables with a shifted mean. This claim holds for Bayesian multi-linear regression with a family of conjugate priors, namely, the normal-inverse-gamma prior, the g-prior, and...
Quantile Regression With Measurement Error
Wei, Ying
2009-08-27
Regression quantiles can be substantially biased when the covariates are measured with error. In this paper we propose a new method that produces consistent linear quantile estimation in the presence of covariate measurement error. The method corrects the measurement error induced bias by constructing joint estimating equations that simultaneously hold for all the quantile levels. An iterative EM-type estimation algorithm to obtain the solutions to such joint estimation equations is provided. The finite sample performance of the proposed method is investigated in a simulation study, and compared to the standard regression calibration approach. Finally, we apply our methodology to part of the National Collaborative Perinatal Project growth data, a longitudinal study with an unusual measurement error structure. © 2009 American Statistical Association.
Multivariate and semiparametric kernel regression
Härdle, Wolfgang; Müller, Marlene
1997-01-01
The paper gives an introduction to theory and application of multivariate and semiparametric kernel smoothing. Multivariate nonparametric density estimation is an often used pilot tool for examining the structure of data. Regression smoothing helps in investigating the association between covariates and responses. We concentrate on kernel smoothing using local polynomial fitting which includes the Nadaraya-Watson estimator. Some theory on the asymptotic behavior and bandwidth selection is pro...
Regression algorithm for emotion detection
Berthelon , Franck; Sander , Peter
2013-01-01
International audience; We present here two components of a computational system for emotion detection. PEMs (Personalized Emotion Maps) store links between bodily expressions and emotion values, and are individually calibrated to capture each person's emotion profile. They are an implementation based on aspects of Scherer's theoretical complex system model of emotion~\\cite{scherer00, scherer09}. We also present a regression algorithm that determines a person's emotional feeling from sensor m...
Directional quantile regression in R
Czech Academy of Sciences Publication Activity Database
Boček, Pavel; Šiman, Miroslav
2017-01-01
Roč. 53, č. 3 (2017), s. 480-492 ISSN 0023-5954 R&D Projects: GA ČR GA14-07234S Institutional support: RVO:67985556 Keywords : multivariate quantile * regression quantile * halfspace depth * depth contour Subject RIV: BD - Theory of Information OBOR OECD: Applied mathematics Impact factor: 0.379, year: 2016 http://library.utia.cas.cz/separaty/2017/SI/bocek-0476587.pdf
Polylinear regression analysis in radiochemistry
International Nuclear Information System (INIS)
Kopyrin, A.A.; Terent'eva, T.N.; Khramov, N.N.
1995-01-01
A number of radiochemical problems have been formulated in the framework of polylinear regression analysis, which permits the use of conventional mathematical methods for their solution. The authors have considered features of the use of polylinear regression analysis for estimating the contributions of various sources to the atmospheric pollution, for studying irradiated nuclear fuel, for estimating concentrations from spectral data, for measuring neutron fields of a nuclear reactor, for estimating crystal lattice parameters from X-ray diffraction patterns, for interpreting data of X-ray fluorescence analysis, for estimating complex formation constants, and for analyzing results of radiometric measurements. The problem of estimating the target parameters can be incorrect at certain properties of the system under study. The authors showed the possibility of regularization by adding a fictitious set of data open-quotes obtainedclose quotes from the orthogonal design. To estimate only a part of the parameters under consideration, the authors used incomplete rank models. In this case, it is necessary to take into account the possibility of confounding estimates. An algorithm for evaluating the degree of confounding is presented which is realized using standard software or regression analysis
Gaussian Process Regression Model in Spatial Logistic Regression
Sofro, A.; Oktaviarina, A.
2018-01-01
Spatial analysis has developed very quickly in the last decade. One of the favorite approaches is based on the neighbourhood of the region. Unfortunately, there are some limitations such as difficulty in prediction. Therefore, we offer Gaussian process regression (GPR) to accommodate the issue. In this paper, we will focus on spatial modeling with GPR for binomial data with logit link function. The performance of the model will be investigated. We will discuss the inference of how to estimate the parameters and hyper-parameters and to predict as well. Furthermore, simulation studies will be explained in the last section.
Spontaneous regression of pulmonary bullae
International Nuclear Information System (INIS)
Satoh, H.; Ishikawa, H.; Ohtsuka, M.; Sekizawa, K.
2002-01-01
The natural history of pulmonary bullae is often characterized by gradual, progressive enlargement. Spontaneous regression of bullae is, however, very rare. We report a case in which complete resolution of pulmonary bullae in the left upper lung occurred spontaneously. The management of pulmonary bullae is occasionally made difficult because of gradual progressive enlargement associated with abnormal pulmonary function. Some patients have multiple bulla in both lungs and/or have a history of pulmonary emphysema. Others have a giant bulla without emphysematous change in the lungs. Our present case had treated lung cancer with no evidence of local recurrence. He had no emphysematous change in lung function test and had no complaints, although the high resolution CT scan shows evidence of underlying minimal changes of emphysema. Ortin and Gurney presented three cases of spontaneous reduction in size of bulla. Interestingly, one of them had a marked decrease in the size of a bulla in association with thickening of the wall of the bulla, which was observed in our patient. This case we describe is of interest, not only because of the rarity with which regression of pulmonary bulla has been reported in the literature, but also because of the spontaneous improvements in the radiological picture in the absence of overt infection or tumor. Copyright (2002) Blackwell Science Pty Ltd
Quantum algorithm for linear regression
Wang, Guoming
2017-07-01
We present a quantum algorithm for fitting a linear regression model to a given data set using the least-squares approach. Differently from previous algorithms which yield a quantum state encoding the optimal parameters, our algorithm outputs these numbers in the classical form. So by running it once, one completely determines the fitted model and then can use it to make predictions on new data at little cost. Moreover, our algorithm works in the standard oracle model, and can handle data sets with nonsparse design matrices. It runs in time poly( log2(N ) ,d ,κ ,1 /ɛ ) , where N is the size of the data set, d is the number of adjustable parameters, κ is the condition number of the design matrix, and ɛ is the desired precision in the output. We also show that the polynomial dependence on d and κ is necessary. Thus, our algorithm cannot be significantly improved. Furthermore, we also give a quantum algorithm that estimates the quality of the least-squares fit (without computing its parameters explicitly). This algorithm runs faster than the one for finding this fit, and can be used to check whether the given data set qualifies for linear regression in the first place.
Interpretation of commonly used statistical regression models.
Kasza, Jessica; Wolfe, Rory
2014-01-01
A review of some regression models commonly used in respiratory health applications is provided in this article. Simple linear regression, multiple linear regression, logistic regression and ordinal logistic regression are considered. The focus of this article is on the interpretation of the regression coefficients of each model, which are illustrated through the application of these models to a respiratory health research study. © 2013 The Authors. Respirology © 2013 Asian Pacific Society of Respirology.
Prediction, Regression and Critical Realism
DEFF Research Database (Denmark)
Næss, Petter
2004-01-01
This paper considers the possibility of prediction in land use planning, and the use of statistical research methods in analyses of relationships between urban form and travel behaviour. Influential writers within the tradition of critical realism reject the possibility of predicting social...... phenomena. This position is fundamentally problematic to public planning. Without at least some ability to predict the likely consequences of different proposals, the justification for public sector intervention into market mechanisms will be frail. Statistical methods like regression analyses are commonly...... seen as necessary in order to identify aggregate level effects of policy measures, but are questioned by many advocates of critical realist ontology. Using research into the relationship between urban structure and travel as an example, the paper discusses relevant research methods and the kinds...
On Weighted Support Vector Regression
DEFF Research Database (Denmark)
Han, Xixuan; Clemmensen, Line Katrine Harder
2014-01-01
We propose a new type of weighted support vector regression (SVR), motivated by modeling local dependencies in time and space in prediction of house prices. The classic weights of the weighted SVR are added to the slack variables in the objective function (OF‐weights). This procedure directly...... shrinks the coefficient of each observation in the estimated functions; thus, it is widely used for minimizing influence of outliers. We propose to additionally add weights to the slack variables in the constraints (CF‐weights) and call the combination of weights the doubly weighted SVR. We illustrate...... the differences and similarities of the two types of weights by demonstrating the connection between the Least Absolute Shrinkage and Selection Operator (LASSO) and the SVR. We show that an SVR problem can be transformed to a LASSO problem plus a linear constraint and a box constraint. We demonstrate...
Credit Scoring Problem Based on Regression Analysis
Khassawneh, Bashar Suhil Jad Allah
2014-01-01
ABSTRACT: This thesis provides an explanatory introduction to the regression models of data mining and contains basic definitions of key terms in the linear, multiple and logistic regression models. Meanwhile, the aim of this study is to illustrate fitting models for the credit scoring problem using simple linear, multiple linear and logistic regression models and also to analyze the found model functions by statistical tools. Keywords: Data mining, linear regression, logistic regression....
Edgington, Eugene
2007-01-01
Statistical Tests That Do Not Require Random Sampling Randomization Tests Numerical Examples Randomization Tests and Nonrandom Samples The Prevalence of Nonrandom Samples in Experiments The Irrelevance of Random Samples for the Typical Experiment Generalizing from Nonrandom Samples Intelligibility Respect for the Validity of Randomization Tests Versatility Practicality Precursors of Randomization Tests Other Applications of Permutation Tests Questions and Exercises Notes References Randomized Experiments Unique Benefits of Experiments Experimentation without Mani
Regularized Label Relaxation Linear Regression.
Fang, Xiaozhao; Xu, Yong; Li, Xuelong; Lai, Zhihui; Wong, Wai Keung; Fang, Bingwu
2018-04-01
Linear regression (LR) and some of its variants have been widely used for classification problems. Most of these methods assume that during the learning phase, the training samples can be exactly transformed into a strict binary label matrix, which has too little freedom to fit the labels adequately. To address this problem, in this paper, we propose a novel regularized label relaxation LR method, which has the following notable characteristics. First, the proposed method relaxes the strict binary label matrix into a slack variable matrix by introducing a nonnegative label relaxation matrix into LR, which provides more freedom to fit the labels and simultaneously enlarges the margins between different classes as much as possible. Second, the proposed method constructs the class compactness graph based on manifold learning and uses it as the regularization item to avoid the problem of overfitting. The class compactness graph is used to ensure that the samples sharing the same labels can be kept close after they are transformed. Two different algorithms, which are, respectively, based on -norm and -norm loss functions are devised. These two algorithms have compact closed-form solutions in each iteration so that they are easily implemented. Extensive experiments show that these two algorithms outperform the state-of-the-art algorithms in terms of the classification accuracy and running time.
Directory of Open Access Journals (Sweden)
M. E. Gorbunov
2018-01-01
Full Text Available A new reference occultation processing system (rOPS will include a Global Navigation Satellite System (GNSS radio occultation (RO retrieval chain with integrated uncertainty propagation. In this paper, we focus on wave-optics bending angle (BA retrieval in the lower troposphere and introduce (1 an empirically estimated boundary layer bias (BLB model then employed to reduce the systematic uncertainty of excess phases and bending angles in about the lowest 2 km of the troposphere and (2 the estimation of (residual systematic uncertainties and their propagation together with random uncertainties from excess phase to bending angle profiles. Our BLB model describes the estimated bias of the excess phase transferred from the estimated bias of the bending angle, for which the model is built, informed by analyzing refractivity fluctuation statistics shown to induce such biases. The model is derived from regression analysis using a large ensemble of Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC RO observations and concurrent European Centre for Medium-Range Weather Forecasts (ECMWF analysis fields. It is formulated in terms of predictors and adaptive functions (powers and cross products of predictors, where we use six main predictors derived from observations: impact altitude, latitude, bending angle and its standard deviation, canonical transform (CT amplitude, and its fluctuation index. Based on an ensemble of test days, independent of the days of data used for the regression analysis to establish the BLB model, we find the model very effective for bias reduction and capable of reducing bending angle and corresponding refractivity biases by about a factor of 5. The estimated residual systematic uncertainty, after the BLB profile subtraction, is lower bounded by the uncertainty from the (indirect use of ECMWF analysis fields but is significantly lower than the systematic uncertainty without BLB correction. The
Gorbunov, Michael E.; Kirchengast, Gottfried
2018-01-01
A new reference occultation processing system (rOPS) will include a Global Navigation Satellite System (GNSS) radio occultation (RO) retrieval chain with integrated uncertainty propagation. In this paper, we focus on wave-optics bending angle (BA) retrieval in the lower troposphere and introduce (1) an empirically estimated boundary layer bias (BLB) model then employed to reduce the systematic uncertainty of excess phases and bending angles in about the lowest 2 km of the troposphere and (2) the estimation of (residual) systematic uncertainties and their propagation together with random uncertainties from excess phase to bending angle profiles. Our BLB model describes the estimated bias of the excess phase transferred from the estimated bias of the bending angle, for which the model is built, informed by analyzing refractivity fluctuation statistics shown to induce such biases. The model is derived from regression analysis using a large ensemble of Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) RO observations and concurrent European Centre for Medium-Range Weather Forecasts (ECMWF) analysis fields. It is formulated in terms of predictors and adaptive functions (powers and cross products of predictors), where we use six main predictors derived from observations: impact altitude, latitude, bending angle and its standard deviation, canonical transform (CT) amplitude, and its fluctuation index. Based on an ensemble of test days, independent of the days of data used for the regression analysis to establish the BLB model, we find the model very effective for bias reduction and capable of reducing bending angle and corresponding refractivity biases by about a factor of 5. The estimated residual systematic uncertainty, after the BLB profile subtraction, is lower bounded by the uncertainty from the (indirect) use of ECMWF analysis fields but is significantly lower than the systematic uncertainty without BLB correction. The systematic and
Kepler AutoRegressive Planet Search (KARPS)
Caceres, Gabriel
2018-01-01
One of the main obstacles in detecting faint planetary transits is the intrinsic stellar variability of the host star. The Kepler AutoRegressive Planet Search (KARPS) project implements statistical methodology associated with autoregressive processes (in particular, ARIMA and ARFIMA) to model stellar lightcurves in order to improve exoplanet transit detection. We also develop a novel Transit Comb Filter (TCF) applied to the AR residuals which provides a periodogram analogous to the standard Box-fitting Least Squares (BLS) periodogram. We train a random forest classifier on known Kepler Objects of Interest (KOIs) using select features from different stages of this analysis, and then use ROC curves to define and calibrate the criteria to recover the KOI planet candidates with high fidelity. These statistical methods are detailed in a contributed poster (Feigelson et al., this meeting).These procedures are applied to the full DR25 dataset of NASA’s Kepler mission. Using the classification criteria, a vast majority of known KOIs are recovered and dozens of new KARPS Candidate Planets (KCPs) discovered, including ultra-short period exoplanets. The KCPs will be briefly presented and discussed.
The Regression Analysis of Individual Financial Performance: Evidence from Croatia
Bahovec, Vlasta; Barbić, Dajana; Palić, Irena
2017-01-01
Background: A large body of empirical literature indicates that gender and financial literacy are significant determinants of individual financial performance. Objectives: The purpose of this paper is to recognize the impact of the variable financial literacy and the variable gender on the variation of the financial performance using the regression analysis. Methods/Approach: The survey was conducted using the systematically chosen random sample of Croatian financial consumers. The cross sect...
Principal component regression analysis with SPSS.
Liu, R X; Kuang, J; Gong, Q; Hou, X L
2003-06-01
The paper introduces all indices of multicollinearity diagnoses, the basic principle of principal component regression and determination of 'best' equation method. The paper uses an example to describe how to do principal component regression analysis with SPSS 10.0: including all calculating processes of the principal component regression and all operations of linear regression, factor analysis, descriptives, compute variable and bivariate correlations procedures in SPSS 10.0. The principal component regression analysis can be used to overcome disturbance of the multicollinearity. The simplified, speeded up and accurate statistical effect is reached through the principal component regression analysis with SPSS.
Random Intercept and Random Slope 2-Level Multilevel Models
Directory of Open Access Journals (Sweden)
Rehan Ahmad Khan
2012-11-01
Full Text Available Random intercept model and random intercept & random slope model carrying two-levels of hierarchy in the population are presented and compared with the traditional regression approach. The impact of students’ satisfaction on their grade point average (GPA was explored with and without controlling teachers influence. The variation at level-1 can be controlled by introducing the higher levels of hierarchy in the model. The fanny movement of the fitted lines proves variation of student grades around teachers.
Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses.
Faul, Franz; Erdfelder, Edgar; Buchner, Axel; Lang, Albert-Georg
2009-11-01
G*Power is a free power analysis program for a variety of statistical tests. We present extensions and improvements of the version introduced by Faul, Erdfelder, Lang, and Buchner (2007) in the domain of correlation and regression analyses. In the new version, we have added procedures to analyze the power of tests based on (1) single-sample tetrachoric correlations, (2) comparisons of dependent correlations, (3) bivariate linear regression, (4) multiple linear regression based on the random predictor model, (5) logistic regression, and (6) Poisson regression. We describe these new features and provide a brief introduction to their scope and handling.
Unbalanced Regressions and the Predictive Equation
DEFF Research Database (Denmark)
Osterrieder, Daniela; Ventosa-Santaulària, Daniel; Vera-Valdés, J. Eduardo
Predictive return regressions with persistent regressors are typically plagued by (asymptotically) biased/inconsistent estimates of the slope, non-standard or potentially even spurious statistical inference, and regression unbalancedness. We alleviate the problem of unbalancedness in the theoreti......Predictive return regressions with persistent regressors are typically plagued by (asymptotically) biased/inconsistent estimates of the slope, non-standard or potentially even spurious statistical inference, and regression unbalancedness. We alleviate the problem of unbalancedness...
Semiparametric regression during 2003–2007
Ruppert, David; Wand, M.P.; Carroll, Raymond J.
2009-01-01
Semiparametric regression is a fusion between parametric regression and nonparametric regression that integrates low-rank penalized splines, mixed model and hierarchical Bayesian methodology – thus allowing more streamlined handling of longitudinal and spatial correlation. We review progress in the field over the five-year period between 2003 and 2007. We find semiparametric regression to be a vibrant field with substantial involvement and activity, continual enhancement and widespread application.
Gaussian process regression analysis for functional data
Shi, Jian Qing
2011-01-01
Gaussian Process Regression Analysis for Functional Data presents nonparametric statistical methods for functional regression analysis, specifically the methods based on a Gaussian process prior in a functional space. The authors focus on problems involving functional response variables and mixed covariates of functional and scalar variables.Covering the basics of Gaussian process regression, the first several chapters discuss functional data analysis, theoretical aspects based on the asymptotic properties of Gaussian process regression models, and new methodological developments for high dime
Regression Analysis by Example. 5th Edition
Chatterjee, Samprit; Hadi, Ali S.
2012-01-01
Regression analysis is a conceptually simple method for investigating relationships among variables. Carrying out a successful application of regression analysis, however, requires a balance of theoretical results, empirical rules, and subjective judgment. "Regression Analysis by Example, Fifth Edition" has been expanded and thoroughly…
Standards for Standardized Logistic Regression Coefficients
Menard, Scott
2011-01-01
Standardized coefficients in logistic regression analysis have the same utility as standardized coefficients in linear regression analysis. Although there has been no consensus on the best way to construct standardized logistic regression coefficients, there is now sufficient evidence to suggest a single best approach to the construction of a…
A Seemingly Unrelated Poisson Regression Model
King, Gary
1989-01-01
This article introduces a new estimator for the analysis of two contemporaneously correlated endogenous event count variables. This seemingly unrelated Poisson regression model (SUPREME) estimator combines the efficiencies created by single equation Poisson regression model estimators and insights from "seemingly unrelated" linear regression models.
Arruda, A G; Godden, S; Rapnicki, P; Gorden, P; Timms, L; Aly, S S; Lehenbauer, T W; Champagne, J
2013-10-01
The objective of this randomized noninferiority clinical trial was to compare the effect of treatment with 3 different dry cow therapy formulations at dry-off on cow-level health and production parameters in the first 100 d in milk (DIM) in the subsequent lactation, including 305-d mature-equivalent (305 ME) milk production, linear score (LS), risk for the cow experiencing a clinical mastitis event, risk for culling or death, and risk for pregnancy by 100 DIM. A total of 1,091 cows from 6 commercial dairy herds in 4 states (California, Iowa, Minnesota, and Wisconsin) were randomly assigned at dry-off to receive treatment with 1 of 3 commercial products: Quartermaster (QT; Zoetis Animal Health, Madison, NJ), Spectramast DC (SP; Zoetis Animal Health) or ToMorrow Dry Cow (TM; Boehringer Ingelheim Vetmedica Inc., St Joseph, MO). All clinical mastitis, pregnancy, culling, and death events occurring in the first 100 DIM were recorded by farm staff using an on-farm electronic record-keeping system. Dairy Herd Improvement Association test-day records of milk production and milk component testing were retrieved electronically. Mixed linear regression analysis was used to describe the effect of treatment on 305ME milk production and LS recorded on the last Dairy Herd Improvement Association test day before 100 DIM. Cox proportional hazards regression analysis was used to describe the effect of treatment on risk for experiencing a case of clinical mastitis, risk for leaving the herd, and risk for pregnancy between calving and 100 DIM. Results showed no effect of treatment on adjusted mean 305 ME milk production (QT=11,759 kg, SP=11,574 kg, and TM=11,761 kg) or adjusted mean LS (QT=1.8, SP=1.9, and TM=1.6) on the last test day before 100 DIM. Similarly, no effect of treatment was observed on risk for a clinical mastitis event (QT=14.8%, SP=12.7%, and TM=15.0%), risk for leaving the herd (QT=7.5%, SP=9.2%, and TM=10.3%), or risk for pregnancy (QT=31.5%, SP=26.1%, and TM=26
Supremum Norm Posterior Contraction and Credible Sets for Nonparametric Multivariate Regression
Yoo, W.W.; Ghosal, S
2016-01-01
In the setting of nonparametric multivariate regression with unknown error variance, we study asymptotic properties of a Bayesian method for estimating a regression function f and its mixed partial derivatives. We use a random series of tensor product of B-splines with normal basis coefficients as a
DEFF Research Database (Denmark)
Azarang, Leyla; Scheike, Thomas; de Uña-Álvarez, Jacobo
2017-01-01
In this work, we present direct regression analysis for the transition probabilities in the possibly non-Markov progressive illness–death model. The method is based on binomial regression, where the response is the indicator of the occupancy for the given state along time. Randomly weighted score...
Design and analysis of experiments classical and regression approaches with SAS
Onyiah, Leonard C
2008-01-01
Introductory Statistical Inference and Regression Analysis Elementary Statistical Inference Regression Analysis Experiments, the Completely Randomized Design (CRD)-Classical and Regression Approaches Experiments Experiments to Compare Treatments Some Basic Ideas Requirements of a Good Experiment One-Way Experimental Layout or the CRD: Design and Analysis Analysis of Experimental Data (Fixed Effects Model) Expected Values for the Sums of Squares The Analysis of Variance (ANOVA) Table Follow-Up Analysis to Check fo
Regression with Sparse Approximations of Data
DEFF Research Database (Denmark)
Noorzad, Pardis; Sturm, Bob L.
2012-01-01
We propose sparse approximation weighted regression (SPARROW), a method for local estimation of the regression function that uses sparse approximation with a dictionary of measurements. SPARROW estimates the regression function at a point with a linear combination of a few regressands selected...... by a sparse approximation of the point in terms of the regressors. We show SPARROW can be considered a variant of \\(k\\)-nearest neighbors regression (\\(k\\)-NNR), and more generally, local polynomial kernel regression. Unlike \\(k\\)-NNR, however, SPARROW can adapt the number of regressors to use based...
Spontaneous regression of a congenital melanocytic nevus
Directory of Open Access Journals (Sweden)
Amiya Kumar Nath
2011-01-01
Full Text Available Congenital melanocytic nevus (CMN may rarely regress which may also be associated with a halo or vitiligo. We describe a 10-year-old girl who presented with CMN on the left leg since birth, which recently started to regress spontaneously with associated depigmentation in the lesion and at a distant site. Dermoscopy performed at different sites of the regressing lesion demonstrated loss of epidermal pigments first followed by loss of dermal pigments. Histopathology and Masson-Fontana stain demonstrated lymphocytic infiltration and loss of pigment production in the regressing area. Immunohistochemistry staining (S100 and HMB-45, however, showed that nevus cells were present in the regressing areas.
Hilário, M.; Hollander, den W.Th.F.; Sidoravicius, V.; Soares dos Santos, R.; Teixeira, A.
2014-01-01
In this paper we study a random walk in a one-dimensional dynamic random environment consisting of a collection of independent particles performing simple symmetric random walks in a Poisson equilibrium with density ¿¿(0,8). At each step the random walk performs a nearest-neighbour jump, moving to
Applied regression analysis a research tool
Pantula, Sastry; Dickey, David
1998-01-01
Least squares estimation, when used appropriately, is a powerful research tool. A deeper understanding of the regression concepts is essential for achieving optimal benefits from a least squares analysis. This book builds on the fundamentals of statistical methods and provides appropriate concepts that will allow a scientist to use least squares as an effective research tool. Applied Regression Analysis is aimed at the scientist who wishes to gain a working knowledge of regression analysis. The basic purpose of this book is to develop an understanding of least squares and related statistical methods without becoming excessively mathematical. It is the outgrowth of more than 30 years of consulting experience with scientists and many years of teaching an applied regression course to graduate students. Applied Regression Analysis serves as an excellent text for a service course on regression for non-statisticians and as a reference for researchers. It also provides a bridge between a two-semester introduction to...
Regression models of reactor diagnostic signals
International Nuclear Information System (INIS)
Vavrin, J.
1989-01-01
The application is described of an autoregression model as the simplest regression model of diagnostic signals in experimental analysis of diagnostic systems, in in-service monitoring of normal and anomalous conditions and their diagnostics. The method of diagnostics is described using a regression type diagnostic data base and regression spectral diagnostics. The diagnostics is described of neutron noise signals from anomalous modes in the experimental fuel assembly of a reactor. (author)
Bulcock, J. W.
The problem of model estimation when the data are collinear was examined. Though the ridge regression (RR) outperforms ordinary least squares (OLS) regression in the presence of acute multicollinearity, it is not a problem free technique for reducing the variance of the estimates. It is a stochastic procedure when it should be nonstochastic and it…
Multivariate Regression Analysis and Slaughter Livestock,
AGRICULTURE, *ECONOMICS), (*MEAT, PRODUCTION), MULTIVARIATE ANALYSIS, REGRESSION ANALYSIS , ANIMALS, WEIGHT, COSTS, PREDICTIONS, STABILITY, MATHEMATICAL MODELS, STORAGE, BEEF, PORK, FOOD, STATISTICAL DATA, ACCURACY
[From clinical judgment to linear regression model.
Palacios-Cruz, Lino; Pérez, Marcela; Rivas-Ruiz, Rodolfo; Talavera, Juan O
2013-01-01
When we think about mathematical models, such as linear regression model, we think that these terms are only used by those engaged in research, a notion that is far from the truth. Legendre described the first mathematical model in 1805, and Galton introduced the formal term in 1886. Linear regression is one of the most commonly used regression models in clinical practice. It is useful to predict or show the relationship between two or more variables as long as the dependent variable is quantitative and has normal distribution. Stated in another way, the regression is used to predict a measure based on the knowledge of at least one other variable. Linear regression has as it's first objective to determine the slope or inclination of the regression line: Y = a + bx, where "a" is the intercept or regression constant and it is equivalent to "Y" value when "X" equals 0 and "b" (also called slope) indicates the increase or decrease that occurs when the variable "x" increases or decreases in one unit. In the regression line, "b" is called regression coefficient. The coefficient of determination (R 2 ) indicates the importance of independent variables in the outcome.
International Nuclear Information System (INIS)
Tahir-Kheli, R.A.
1975-01-01
A few simple problems relating to random magnetic systems are presented. Translational symmetry, only on the macroscopic scale, is assumed for these systems. A random set of parameters, on the microscopic scale, for the various regions of these systems is also assumed. A probability distribution for randomness is obeyed. Knowledge of the form of these probability distributions, is assumed in all cases [pt
RAWS II: A MULTIPLE REGRESSION ANALYSIS PROGRAM,
This memorandum gives instructions for the use and operation of a revised version of RAWS, a multiple regression analysis program. The program...of preprocessed data, the directed retention of variable, listing of the matrix of the normal equations and its inverse, and the bypassing of the regression analysis to provide the input variable statistics only. (Author)
A Simulation Investigation of Principal Component Regression.
Allen, David E.
Regression analysis is one of the more common analytic tools used by researchers. However, multicollinearity between the predictor variables can cause problems in using the results of regression analyses. Problems associated with multicollinearity include entanglement of relative influences of variables due to reduced precision of estimation,…
Hierarchical regression analysis in structural Equation Modeling
de Jong, P.F.
1999-01-01
In a hierarchical or fixed-order regression analysis, the independent variables are entered into the regression equation in a prespecified order. Such an analysis is often performed when the extra amount of variance accounted for in a dependent variable by a specific independent variable is the main
Categorical regression dose-response modeling
The goal of this training is to provide participants with training on the use of the U.S. EPA’s Categorical Regression soft¬ware (CatReg) and its application to risk assessment. Categorical regression fits mathematical models to toxicity data that have been assigned ord...
Variable importance in latent variable regression models
Kvalheim, O.M.; Arneberg, R.; Bleie, O.; Rajalahti, T.; Smilde, A.K.; Westerhuis, J.A.
2014-01-01
The quality and practical usefulness of a regression model are a function of both interpretability and prediction performance. This work presents some new graphical tools for improved interpretation of latent variable regression models that can also assist in improved algorithms for variable
Stepwise versus Hierarchical Regression: Pros and Cons
Lewis, Mitzi
2007-01-01
Multiple regression is commonly used in social and behavioral data analysis. In multiple regression contexts, researchers are very often interested in determining the "best" predictors in the analysis. This focus may stem from a need to identify those predictors that are supportive of theory. Alternatively, the researcher may simply be interested…
Suppression Situations in Multiple Linear Regression
Shieh, Gwowen
2006-01-01
This article proposes alternative expressions for the two most prevailing definitions of suppression without resorting to the standardized regression modeling. The formulation provides a simple basis for the examination of their relationship. For the two-predictor regression, the author demonstrates that the previous results in the literature are…
Gibrat’s law and quantile regressions
DEFF Research Database (Denmark)
Distante, Roberta; Petrella, Ivan; Santoro, Emiliano
2017-01-01
The nexus between firm growth, size and age in U.S. manufacturing is examined through the lens of quantile regression models. This methodology allows us to overcome serious shortcomings entailed by linear regression models employed by much of the existing literature, unveiling a number of important...
Regression Analysis and the Sociological Imagination
De Maio, Fernando
2014-01-01
Regression analysis is an important aspect of most introductory statistics courses in sociology but is often presented in contexts divorced from the central concerns that bring students into the discipline. Consequently, we present five lesson ideas that emerge from a regression analysis of income inequality and mortality in the USA and Canada.
Repeated Results Analysis for Middleware Regression Benchmarking
Czech Academy of Sciences Publication Activity Database
Bulej, Lubomír; Kalibera, T.; Tůma, P.
2005-01-01
Roč. 60, - (2005), s. 345-358 ISSN 0166-5316 R&D Projects: GA ČR GA102/03/0672 Institutional research plan: CEZ:AV0Z10300504 Keywords : middleware benchmarking * regression benchmarking * regression testing Subject RIV: JD - Computer Applications, Robotics Impact factor: 0.756, year: 2005
Principles of Quantile Regression and an Application
Chen, Fang; Chalhoub-Deville, Micheline
2014-01-01
Newer statistical procedures are typically introduced to help address the limitations of those already in practice or to deal with emerging research needs. Quantile regression (QR) is introduced in this paper as a relatively new methodology, which is intended to overcome some of the limitations of least squares mean regression (LMR). QR is more…
ON REGRESSION REPRESENTATIONS OF STOCHASTIC-PROCESSES
RUSCHENDORF, L; DEVALK, [No Value
We construct a.s. nonlinear regression representations of general stochastic processes (X(n))n is-an-element-of N. As a consequence we obtain in particular special regression representations of Markov chains and of certain m-dependent sequences. For m-dependent sequences we obtain a constructive
Kepler AutoRegressive Planet Search
Caceres, Gabriel Antonio; Feigelson, Eric
2016-01-01
The Kepler AutoRegressive Planet Search (KARPS) project uses statistical methodology associated with autoregressive (AR) processes to model Kepler lightcurves in order to improve exoplanet transit detection in systems with high stellar variability. We also introduce a planet-search algorithm to detect transits in time-series residuals after application of the AR models. One of the main obstacles in detecting faint planetary transits is the intrinsic stellar variability of the host star. The variability displayed by many stars may have autoregressive properties, wherein later flux values are correlated with previous ones in some manner. Our analysis procedure consisting of three steps: pre-processing of the data to remove discontinuities, gaps and outliers; AR-type model selection and fitting; and transit signal search of the residuals using a new Transit Comb Filter (TCF) that replaces traditional box-finding algorithms. The analysis procedures of the project are applied to a portion of the publicly available Kepler light curve data for the full 4-year mission duration. Tests of the methods have been made on a subset of Kepler Objects of Interest (KOI) systems, classified both as planetary `candidates' and `false positives' by the Kepler Team, as well as a random sample of unclassified systems. We find that the ARMA-type modeling successfully reduces the stellar variability, by a factor of 10 or more in active stars and by smaller factors in more quiescent stars. A typical quiescent Kepler star has an interquartile range (IQR) of ~10 e-/sec, which may improve slightly after modeling, while those with IQR ranging from 20 to 50 e-/sec, have improvements from 20% up to 70%. High activity stars (IQR exceeding 100) markedly improve. A periodogram based on the TCF is constructed to concentrate the signal of these periodic spikes. When a periodic transit is found, the model is displayed on a standard period-folded averaged light curve. Our findings to date on real
Regression of environmental noise in LIGO data
International Nuclear Information System (INIS)
Tiwari, V; Klimenko, S; Mitselmakher, G; Necula, V; Drago, M; Prodi, G; Frolov, V; Yakushin, I; Re, V; Salemi, F; Vedovato, G
2015-01-01
We address the problem of noise regression in the output of gravitational-wave (GW) interferometers, using data from the physical environmental monitors (PEM). The objective of the regression analysis is to predict environmental noise in the GW channel from the PEM measurements. One of the most promising regression methods is based on the construction of Wiener–Kolmogorov (WK) filters. Using this method, the seismic noise cancellation from the LIGO GW channel has already been performed. In the presented approach the WK method has been extended, incorporating banks of Wiener filters in the time–frequency domain, multi-channel analysis and regulation schemes, which greatly enhance the versatility of the regression analysis. Also we present the first results on regression of the bi-coherent noise in the LIGO data. (paper)
Pathological assessment of liver fibrosis regression
Directory of Open Access Journals (Sweden)
WANG Bingqiong
2017-03-01
Full Text Available Hepatic fibrosis is the common pathological outcome of chronic hepatic diseases. An accurate assessment of fibrosis degree provides an important reference for a definite diagnosis of diseases, treatment decision-making, treatment outcome monitoring, and prognostic evaluation. At present, many clinical studies have proven that regression of hepatic fibrosis and early-stage liver cirrhosis can be achieved by effective treatment, and a correct evaluation of fibrosis regression has become a hot topic in clinical research. Liver biopsy has long been regarded as the gold standard for the assessment of hepatic fibrosis, and thus it plays an important role in the evaluation of fibrosis regression. This article reviews the clinical application of current pathological staging systems in the evaluation of fibrosis regression from the perspectives of semi-quantitative scoring system, quantitative approach, and qualitative approach, in order to propose a better pathological evaluation system for the assessment of fibrosis regression.
Should metacognition be measured by logistic regression?
Rausch, Manuel; Zehetleitner, Michael
2017-03-01
Are logistic regression slopes suitable to quantify metacognitive sensitivity, i.e. the efficiency with which subjective reports differentiate between correct and incorrect task responses? We analytically show that logistic regression slopes are independent from rating criteria in one specific model of metacognition, which assumes (i) that rating decisions are based on sensory evidence generated independently of the sensory evidence used for primary task responses and (ii) that the distributions of evidence are logistic. Given a hierarchical model of metacognition, logistic regression slopes depend on rating criteria. According to all considered models, regression slopes depend on the primary task criterion. A reanalysis of previous data revealed that massive numbers of trials are required to distinguish between hierarchical and independent models with tolerable accuracy. It is argued that researchers who wish to use logistic regression as measure of metacognitive sensitivity need to control the primary task criterion and rating criteria. Copyright © 2017 Elsevier Inc. All rights reserved.
Randomized random walk on a random walk
International Nuclear Information System (INIS)
Lee, P.A.
1983-06-01
This paper discusses generalizations of the model introduced by Kehr and Kunter of the random walk of a particle on a one-dimensional chain which in turn has been constructed by a random walk procedure. The superimposed random walk is randomised in time according to the occurrences of a stochastic point process. The probability of finding the particle in a particular position at a certain instant is obtained explicitly in the transform domain. It is found that the asymptotic behaviour for large time of the mean-square displacement of the particle depends critically on the assumed structure of the basic random walk, giving a diffusion-like term for an asymmetric walk or a square root law if the walk is symmetric. Many results are obtained in closed form for the Poisson process case, and these agree with those given previously by Kehr and Kunter. (author)
Regression modeling of ground-water flow
Cooley, R.L.; Naff, R.L.
1985-01-01
Nonlinear multiple regression methods are developed to model and analyze groundwater flow systems. Complete descriptions of regression methodology as applied to groundwater flow models allow scientists and engineers engaged in flow modeling to apply the methods to a wide range of problems. Organization of the text proceeds from an introduction that discusses the general topic of groundwater flow modeling, to a review of basic statistics necessary to properly apply regression techniques, and then to the main topic: exposition and use of linear and nonlinear regression to model groundwater flow. Statistical procedures are given to analyze and use the regression models. A number of exercises and answers are included to exercise the student on nearly all the methods that are presented for modeling and statistical analysis. Three computer programs implement the more complex methods. These three are a general two-dimensional, steady-state regression model for flow in an anisotropic, heterogeneous porous medium, a program to calculate a measure of model nonlinearity with respect to the regression parameters, and a program to analyze model errors in computed dependent variables such as hydraulic head. (USGS)
Variable and subset selection in PLS regression
DEFF Research Database (Denmark)
Høskuldsson, Agnar
2001-01-01
The purpose of this paper is to present some useful methods for introductory analysis of variables and subsets in relation to PLS regression. We present here methods that are efficient in finding the appropriate variables or subset to use in the PLS regression. The general conclusion...... is that variable selection is important for successful analysis of chemometric data. An important aspect of the results presented is that lack of variable selection can spoil the PLS regression, and that cross-validation measures using a test set can show larger variation, when we use different subsets of X, than...
Applied Regression Modeling A Business Approach
Pardoe, Iain
2012-01-01
An applied and concise treatment of statistical regression techniques for business students and professionals who have little or no background in calculusRegression analysis is an invaluable statistical methodology in business settings and is vital to model the relationship between a response variable and one or more predictor variables, as well as the prediction of a response value given values of the predictors. In view of the inherent uncertainty of business processes, such as the volatility of consumer spending and the presence of market uncertainty, business professionals use regression a
Variable Selection for Regression Models of Percentile Flows
Fouad, G.
2017-12-01
Percentile flows describe the flow magnitude equaled or exceeded for a given percent of time, and are widely used in water resource management. However, these statistics are normally unavailable since most basins are ungauged. Percentile flows of ungauged basins are often predicted using regression models based on readily observable basin characteristics, such as mean elevation. The number of these independent variables is too large to evaluate all possible models. A subset of models is typically evaluated using automatic procedures, like stepwise regression. This ignores a large variety of methods from the field of feature (variable) selection and physical understanding of percentile flows. A study of 918 basins in the United States was conducted to compare an automatic regression procedure to the following variable selection methods: (1) principal component analysis, (2) correlation analysis, (3) random forests, (4) genetic programming, (5) Bayesian networks, and (6) physical understanding. The automatic regression procedure only performed better than principal component analysis. Poor performance of the regression procedure was due to a commonly used filter for multicollinearity, which rejected the strongest models because they had cross-correlated independent variables. Multicollinearity did not decrease model performance in validation because of a representative set of calibration basins. Variable selection methods based strictly on predictive power (numbers 2-5 from above) performed similarly, likely indicating a limit to the predictive power of the variables. Similar performance was also reached using variables selected based on physical understanding, a finding that substantiates recent calls to emphasize physical understanding in modeling for predictions in ungauged basins. The strongest variables highlighted the importance of geology and land cover, whereas widely used topographic variables were the weakest predictors. Variables suffered from a high
Asgary, S; Dinani, N Jafari; Madani, H; Mahzouni, P
2008-05-01
Artemisia aucheri is a native-growing plant which is widely used in Iranian traditional medicine. This study was designed to evaluate the effects of A. aucheri on regression of atherosclerosis in hypercholesterolemic rabbits. Twenty five rabbits were randomly divided into five groups of five each and treated 3-months as follows: 1: normal diet, 2: hypercholesterolemic diet (HCD), 3 and 4: HCD for 60 days and then normal diet and normal diet + A. aucheri (100 mg x kg(-1) x day(-1)) respectively for an additional 30 days (regression period). In the regression period dietary use of A. aucheri in group 4 significantly decreased total cholesterol, triglyceride and LDL-cholesterol, while HDL-cholesterol was significantly increased. The atherosclerotic area was significantly decreased in this group. Animals, which received only normal diet in the regression period showed no regression but rather progression of atherosclerosis. These findings suggest that A. aucheri may cause regression of atherosclerotic lesions.
Vectors, a tool in statistical regression theory
Corsten, L.C.A.
1958-01-01
Using linear algebra this thesis developed linear regression analysis including analysis of variance, covariance analysis, special experimental designs, linear and fertility adjustments, analysis of experiments at different places and times. The determination of the orthogonal projection, yielding
Genetics Home Reference: caudal regression syndrome
... umbilical artery: Further support for a caudal regression-sirenomelia spectrum. Am J Med Genet A. 2007 Dec ... AK, Dickinson JE, Bower C. Caudal dysgenesis and sirenomelia-single centre experience suggests common pathogenic basis. Am ...
Dynamic travel time estimation using regression trees.
2008-10-01
This report presents a methodology for travel time estimation by using regression trees. The dissemination of travel time information has become crucial for effective traffic management, especially under congested road conditions. In the absence of c...
Two Paradoxes in Linear Regression Analysis
FENG, Ge; PENG, Jing; TU, Dongke; ZHENG, Julia Z.; FENG, Changyong
2016-01-01
Summary Regression is one of the favorite tools in applied statistics. However, misuse and misinterpretation of results from regression analysis are common in biomedical research. In this paper we use statistical theory and simulation studies to clarify some paradoxes around this popular statistical method. In particular, we show that a widely used model selection procedure employed in many publications in top medical journals is wrong. Formal procedures based on solid statistical theory should be used in model selection. PMID:28638214
Discriminative Elastic-Net Regularized Linear Regression.
Zhang, Zheng; Lai, Zhihui; Xu, Yong; Shao, Ling; Wu, Jian; Xie, Guo-Sen
2017-03-01
In this paper, we aim at learning compact and discriminative linear regression models. Linear regression has been widely used in different problems. However, most of the existing linear regression methods exploit the conventional zero-one matrix as the regression targets, which greatly narrows the flexibility of the regression model. Another major limitation of these methods is that the learned projection matrix fails to precisely project the image features to the target space due to their weak discriminative capability. To this end, we present an elastic-net regularized linear regression (ENLR) framework, and develop two robust linear regression models which possess the following special characteristics. First, our methods exploit two particular strategies to enlarge the margins of different classes by relaxing the strict binary targets into a more feasible variable matrix. Second, a robust elastic-net regularization of singular values is introduced to enhance the compactness and effectiveness of the learned projection matrix. Third, the resulting optimization problem of ENLR has a closed-form solution in each iteration, which can be solved efficiently. Finally, rather than directly exploiting the projection matrix for recognition, our methods employ the transformed features as the new discriminate representations to make final image classification. Compared with the traditional linear regression model and some of its variants, our method is much more accurate in image classification. Extensive experiments conducted on publicly available data sets well demonstrate that the proposed framework can outperform the state-of-the-art methods. The MATLAB codes of our methods can be available at http://www.yongxu.org/lunwen.html.
Fuzzy multiple linear regression: A computational approach
Juang, C. H.; Huang, X. H.; Fleming, J. W.
1992-01-01
This paper presents a new computational approach for performing fuzzy regression. In contrast to Bardossy's approach, the new approach, while dealing with fuzzy variables, closely follows the conventional regression technique. In this approach, treatment of fuzzy input is more 'computational' than 'symbolic.' The following sections first outline the formulation of the new approach, then deal with the implementation and computational scheme, and this is followed by examples to illustrate the new procedure.
Computing multiple-output regression quantile regions
Czech Academy of Sciences Publication Activity Database
Paindaveine, D.; Šiman, Miroslav
2012-01-01
Roč. 56, č. 4 (2012), s. 840-853 ISSN 0167-9473 R&D Projects: GA MŠk(CZ) 1M06047 Institutional research plan: CEZ:AV0Z10750506 Keywords : halfspace depth * multiple-output regression * parametric linear programming * quantile regression Subject RIV: BA - General Mathematics Impact factor: 1.304, year: 2012 http://library.utia.cas.cz/separaty/2012/SI/siman-0376413.pdf
There is No Quantum Regression Theorem
International Nuclear Information System (INIS)
Ford, G.W.; OConnell, R.F.
1996-01-01
The Onsager regression hypothesis states that the regression of fluctuations is governed by macroscopic equations describing the approach to equilibrium. It is here asserted that this hypothesis fails in the quantum case. This is shown first by explicit calculation for the example of quantum Brownian motion of an oscillator and then in general from the fluctuation-dissipation theorem. It is asserted that the correct generalization of the Onsager hypothesis is the fluctuation-dissipation theorem. copyright 1996 The American Physical Society
Caudal regression syndrome : a case report
International Nuclear Information System (INIS)
Lee, Eun Joo; Kim, Hi Hye; Kim, Hyung Sik; Park, So Young; Han, Hye Young; Lee, Kwang Hun
1998-01-01
Caudal regression syndrome is a rare congenital anomaly, which results from a developmental failure of the caudal mesoderm during the fetal period. We present a case of caudal regression syndrome composed of a spectrum of anomalies including sirenomelia, dysplasia of the lower lumbar vertebrae, sacrum, coccyx and pelvic bones,genitourinary and anorectal anomalies, and dysplasia of the lung, as seen during infantography and MR imaging
Caudal regression syndrome : a case report
Energy Technology Data Exchange (ETDEWEB)
Lee, Eun Joo; Kim, Hi Hye; Kim, Hyung Sik; Park, So Young; Han, Hye Young; Lee, Kwang Hun [Chungang Gil Hospital, Incheon (Korea, Republic of)
1998-07-01
Caudal regression syndrome is a rare congenital anomaly, which results from a developmental failure of the caudal mesoderm during the fetal period. We present a case of caudal regression syndrome composed of a spectrum of anomalies including sirenomelia, dysplasia of the lower lumbar vertebrae, sacrum, coccyx and pelvic bones,genitourinary and anorectal anomalies, and dysplasia of the lung, as seen during infantography and MR imaging.
Spontaneous regression of metastatic Merkel cell carcinoma.
LENUS (Irish Health Repository)
Hassan, S J
2010-01-01
Merkel cell carcinoma is a rare aggressive neuroendocrine carcinoma of the skin predominantly affecting elderly Caucasians. It has a high rate of local recurrence and regional lymph node metastases. It is associated with a poor prognosis. Complete spontaneous regression of Merkel cell carcinoma has been reported but is a poorly understood phenomenon. Here we present a case of complete spontaneous regression of metastatic Merkel cell carcinoma demonstrating a markedly different pattern of events from those previously published.
Forecasting exchange rates: a robust regression approach
Preminger, Arie; Franck, Raphael
2005-01-01
The least squares estimation method as well as other ordinary estimation method for regression models can be severely affected by a small number of outliers, thus providing poor out-of-sample forecasts. This paper suggests a robust regression approach, based on the S-estimation method, to construct forecasting models that are less sensitive to data contamination by outliers. A robust linear autoregressive (RAR) and a robust neural network (RNN) models are estimated to study the predictabil...
Marginal longitudinal semiparametric regression via penalized splines
Al Kadiri, M.
2010-08-01
We study the marginal longitudinal nonparametric regression problem and some of its semiparametric extensions. We point out that, while several elaborate proposals for efficient estimation have been proposed, a relative simple and straightforward one, based on penalized splines, has not. After describing our approach, we then explain how Gibbs sampling and the BUGS software can be used to achieve quick and effective implementation. Illustrations are provided for nonparametric regression and additive models.
Marginal longitudinal semiparametric regression via penalized splines
Al Kadiri, M.; Carroll, R.J.; Wand, M.P.
2010-01-01
We study the marginal longitudinal nonparametric regression problem and some of its semiparametric extensions. We point out that, while several elaborate proposals for efficient estimation have been proposed, a relative simple and straightforward one, based on penalized splines, has not. After describing our approach, we then explain how Gibbs sampling and the BUGS software can be used to achieve quick and effective implementation. Illustrations are provided for nonparametric regression and additive models.
Post-processing through linear regression
van Schaeybroeck, B.; Vannitsem, S.
2011-03-01
Various post-processing techniques are compared for both deterministic and ensemble forecasts, all based on linear regression between forecast data and observations. In order to evaluate the quality of the regression methods, three criteria are proposed, related to the effective correction of forecast error, the optimal variability of the corrected forecast and multicollinearity. The regression schemes under consideration include the ordinary least-square (OLS) method, a new time-dependent Tikhonov regularization (TDTR) method, the total least-square method, a new geometric-mean regression (GM), a recently introduced error-in-variables (EVMOS) method and, finally, a "best member" OLS method. The advantages and drawbacks of each method are clarified. These techniques are applied in the context of the 63 Lorenz system, whose model version is affected by both initial condition and model errors. For short forecast lead times, the number and choice of predictors plays an important role. Contrarily to the other techniques, GM degrades when the number of predictors increases. At intermediate lead times, linear regression is unable to provide corrections to the forecast and can sometimes degrade the performance (GM and the best member OLS with noise). At long lead times the regression schemes (EVMOS, TDTR) which yield the correct variability and the largest correlation between ensemble error and spread, should be preferred.
Post-processing through linear regression
Directory of Open Access Journals (Sweden)
B. Van Schaeybroeck
2011-03-01
Full Text Available Various post-processing techniques are compared for both deterministic and ensemble forecasts, all based on linear regression between forecast data and observations. In order to evaluate the quality of the regression methods, three criteria are proposed, related to the effective correction of forecast error, the optimal variability of the corrected forecast and multicollinearity. The regression schemes under consideration include the ordinary least-square (OLS method, a new time-dependent Tikhonov regularization (TDTR method, the total least-square method, a new geometric-mean regression (GM, a recently introduced error-in-variables (EVMOS method and, finally, a "best member" OLS method. The advantages and drawbacks of each method are clarified.
These techniques are applied in the context of the 63 Lorenz system, whose model version is affected by both initial condition and model errors. For short forecast lead times, the number and choice of predictors plays an important role. Contrarily to the other techniques, GM degrades when the number of predictors increases. At intermediate lead times, linear regression is unable to provide corrections to the forecast and can sometimes degrade the performance (GM and the best member OLS with noise. At long lead times the regression schemes (EVMOS, TDTR which yield the correct variability and the largest correlation between ensemble error and spread, should be preferred.
Unbalanced Regressions and the Predictive Equation
DEFF Research Database (Denmark)
Osterrieder, Daniela; Ventosa-Santaulària, Daniel; Vera-Valdés, J. Eduardo
Predictive return regressions with persistent regressors are typically plagued by (asymptotically) biased/inconsistent estimates of the slope, non-standard or potentially even spurious statistical inference, and regression unbalancedness. We alleviate the problem of unbalancedness in the theoreti......Predictive return regressions with persistent regressors are typically plagued by (asymptotically) biased/inconsistent estimates of the slope, non-standard or potentially even spurious statistical inference, and regression unbalancedness. We alleviate the problem of unbalancedness...... in the theoretical predictive equation by suggesting a data generating process, where returns are generated as linear functions of a lagged latent I(0) risk process. The observed predictor is a function of this latent I(0) process, but it is corrupted by a fractionally integrated noise. Such a process may arise due...... to aggregation or unexpected level shifts. In this setup, the practitioner estimates a misspecified, unbalanced, and endogenous predictive regression. We show that the OLS estimate of this regression is inconsistent, but standard inference is possible. To obtain a consistent slope estimate, we then suggest...
Vanmarcke, Erik
1983-03-01
Random variation over space and time is one of the few attributes that might safely be predicted as characterizing almost any given complex system. Random fields or "distributed disorder systems" confront astronomers, physicists, geologists, meteorologists, biologists, and other natural scientists. They appear in the artifacts developed by electrical, mechanical, civil, and other engineers. They even underlie the processes of social and economic change. The purpose of this book is to bring together existing and new methodologies of random field theory and indicate how they can be applied to these diverse areas where a "deterministic treatment is inefficient and conventional statistics insufficient." Many new results and methods are included. After outlining the extent and characteristics of the random field approach, the book reviews the classical theory of multidimensional random processes and introduces basic probability concepts and methods in the random field context. It next gives a concise amount of the second-order analysis of homogeneous random fields, in both the space-time domain and the wave number-frequency domain. This is followed by a chapter on spectral moments and related measures of disorder and on level excursions and extremes of Gaussian and related random fields. After developing a new framework of analysis based on local averages of one-, two-, and n-dimensional processes, the book concludes with a chapter discussing ramifications in the important areas of estimation, prediction, and control. The mathematical prerequisite has been held to basic college-level calculus.
A brief introduction to regression designs and mixed-effects modelling by a recent convert
Balling, Laura Winther
2008-01-01
This article discusses the advantages of multiple regression designs over the factorial designs traditionally used in many psycholinguistic experiments. It is shown that regression designs are typically more informative, statistically more powerful and better suited to the analysis of naturalistic tasks. The advantages of including both fixed and random effects are demonstrated with reference to linear mixed-effects models, and problems of collinearity, variable distribution and variable sele...
Johnson, A P; Godden, S M; Royster, E; Zuidhof, S; Miller, B; Sorg, J
2016-01-01
The study objective was to compare the efficacy of 2 commercial dry cow mastitis formulations containing cloxacillin benzathine or ceftiofur hydrochloride. Quarter-level outcomes included prevalence of intramammary infection (IMI) postcalving, risk for cure of preexisting infections, risk for acquiring a new IMI during the dry period, and risk for clinical mastitis between dry off and 100 d in milk (DIM). Cow-level outcomes included the risk for clinical mastitis and the risk for removal from the herd between dry off and 100 DIM, as well as Dairy Herd Improvement Association (DHIA) test-day milk component and production measures between calving and 100 DIM. A total of 799 cows from 4 Wisconsin dairy herds were enrolled at dry off and randomized to 1 of the 2 commercial dry cow therapy (DCT) treatments: cloxacillin benzathine (DC; n=401) or ceftiofur hydrochloride (SM; n=398). Aseptic quarter milk samples were collected for routine bacteriological culture before DCT at dry off and again at 0 to 10 DIM. Data describing clinical mastitis cases and DHIA test-day results were retrieved from on-farm electronic records. The overall crude quarter-level prevalence of IMI at dry off was 34.7% and was not different between treatment groups. Ninety-six percent of infections at dry off were of gram-positive organisms, with coagulase-negative Staphylococcus and Aerococcus spp. isolated most frequently. Mixed logistic regression analysis showed no difference between treatments as to the risk for presence of IMI at 0 to 10 DIM (DC=22.4%, SM=19.9%) or on the risk for acquiring a new IMI between dry off and 0 to 10 DIM (DC=16.6%, SM=14.1%). Noninferiority analysis and mixed logistic regression analysis both showed no treatment difference in risk for a cure between dry off and 0 to 10 DIM (DC=84.8%, SM=85.7%). Cox proportional hazards regression showed no difference between treatments in quarter-level risk for clinical mastitis (DC=1.99%, SM=2.96%), cow-level risk for clinical
Regression analysis using dependent Polya trees.
Schörgendorfer, Angela; Branscum, Adam J
2013-11-30
Many commonly used models for linear regression analysis force overly simplistic shape and scale constraints on the residual structure of data. We propose a semiparametric Bayesian model for regression analysis that produces data-driven inference by using a new type of dependent Polya tree prior to model arbitrary residual distributions that are allowed to evolve across increasing levels of an ordinal covariate (e.g., time, in repeated measurement studies). By modeling residual distributions at consecutive covariate levels or time points using separate, but dependent Polya tree priors, distributional information is pooled while allowing for broad pliability to accommodate many types of changing residual distributions. We can use the proposed dependent residual structure in a wide range of regression settings, including fixed-effects and mixed-effects linear and nonlinear models for cross-sectional, prospective, and repeated measurement data. A simulation study illustrates the flexibility of our novel semiparametric regression model to accurately capture evolving residual distributions. In an application to immune development data on immunoglobulin G antibodies in children, our new model outperforms several contemporary semiparametric regression models based on a predictive model selection criterion. Copyright © 2013 John Wiley & Sons, Ltd.
Is past life regression therapy ethical?
Andrade, Gabriel
2017-01-01
Past life regression therapy is used by some physicians in cases with some mental diseases. Anxiety disorders, mood disorders, and gender dysphoria have all been treated using life regression therapy by some doctors on the assumption that they reflect problems in past lives. Although it is not supported by psychiatric associations, few medical associations have actually condemned it as unethical. In this article, I argue that past life regression therapy is unethical for two basic reasons. First, it is not evidence-based. Past life regression is based on the reincarnation hypothesis, but this hypothesis is not supported by evidence, and in fact, it faces some insurmountable conceptual problems. If patients are not fully informed about these problems, they cannot provide an informed consent, and hence, the principle of autonomy is violated. Second, past life regression therapy has the great risk of implanting false memories in patients, and thus, causing significant harm. This is a violation of the principle of non-malfeasance, which is surely the most important principle in medical ethics.
Drzewiecki, Wojciech
2016-12-01
In this work nine non-linear regression models were compared for sub-pixel impervious surface area mapping from Landsat images. The comparison was done in three study areas both for accuracy of imperviousness coverage evaluation in individual points in time and accuracy of imperviousness change assessment. The performance of individual machine learning algorithms (Cubist, Random Forest, stochastic gradient boosting of regression trees, k-nearest neighbors regression, random k-nearest neighbors regression, Multivariate Adaptive Regression Splines, averaged neural networks, and support vector machines with polynomial and radial kernels) was also compared with the performance of heterogeneous model ensembles constructed from the best models trained using particular techniques. The results proved that in case of sub-pixel evaluation the most accurate prediction of change may not necessarily be based on the most accurate individual assessments. When single methods are considered, based on obtained results Cubist algorithm may be advised for Landsat based mapping of imperviousness for single dates. However, Random Forest may be endorsed when the most reliable evaluation of imperviousness change is the primary goal. It gave lower accuracies for individual assessments, but better prediction of change due to more correlated errors of individual predictions. Heterogeneous model ensembles performed for individual time points assessments at least as well as the best individual models. In case of imperviousness change assessment the ensembles always outperformed single model approaches. It means that it is possible to improve the accuracy of sub-pixel imperviousness change assessment using ensembles of heterogeneous non-linear regression models.
On Solving Lq-Penalized Regressions
Directory of Open Access Journals (Sweden)
Tracy Zhou Wu
2007-01-01
Full Text Available Lq-penalized regression arises in multidimensional statistical modelling where all or part of the regression coefficients are penalized to achieve both accuracy and parsimony of statistical models. There is often substantial computational difficulty except for the quadratic penalty case. The difficulty is partly due to the nonsmoothness of the objective function inherited from the use of the absolute value. We propose a new solution method for the general Lq-penalized regression problem based on space transformation and thus efficient optimization algorithms. The new method has immediate applications in statistics, notably in penalized spline smoothing problems. In particular, the LASSO problem is shown to be polynomial time solvable. Numerical studies show promise of our approach.
Refractive regression after laser in situ keratomileusis.
Yan, Mabel K; Chang, John Sm; Chan, Tommy Cy
2018-04-26
Uncorrected refractive errors are a leading cause of visual impairment across the world. In today's society, laser in situ keratomileusis (LASIK) has become the most commonly performed surgical procedure to correct refractive errors. However, regression of the initially achieved refractive correction has been a widely observed phenomenon following LASIK since its inception more than two decades ago. Despite technological advances in laser refractive surgery and various proposed management strategies, post-LASIK regression is still frequently observed and has significant implications for the long-term visual performance and quality of life of patients. This review explores the mechanism of refractive regression after both myopic and hyperopic LASIK, predisposing risk factors and its clinical course. In addition, current preventative strategies and therapies are also reviewed. © 2018 Royal Australian and New Zealand College of Ophthalmologists.
Influence diagnostics in meta-regression model.
Shi, Lei; Zuo, ShanShan; Yu, Dalei; Zhou, Xiaohua
2017-09-01
This paper studies the influence diagnostics in meta-regression model including case deletion diagnostic and local influence analysis. We derive the subset deletion formulae for the estimation of regression coefficient and heterogeneity variance and obtain the corresponding influence measures. The DerSimonian and Laird estimation and maximum likelihood estimation methods in meta-regression are considered, respectively, to derive the results. Internal and external residual and leverage measure are defined. The local influence analysis based on case-weights perturbation scheme, responses perturbation scheme, covariate perturbation scheme, and within-variance perturbation scheme are explored. We introduce a method by simultaneous perturbing responses, covariate, and within-variance to obtain the local influence measure, which has an advantage of capable to compare the influence magnitude of influential studies from different perturbations. An example is used to illustrate the proposed methodology. Copyright © 2017 John Wiley & Sons, Ltd.
Principal component regression for crop yield estimation
Suryanarayana, T M V
2016-01-01
This book highlights the estimation of crop yield in Central Gujarat, especially with regard to the development of Multiple Regression Models and Principal Component Regression (PCR) models using climatological parameters as independent variables and crop yield as a dependent variable. It subsequently compares the multiple linear regression (MLR) and PCR results, and discusses the significance of PCR for crop yield estimation. In this context, the book also covers Principal Component Analysis (PCA), a statistical procedure used to reduce a number of correlated variables into a smaller number of uncorrelated variables called principal components (PC). This book will be helpful to the students and researchers, starting their works on climate and agriculture, mainly focussing on estimation models. The flow of chapters takes the readers in a smooth path, in understanding climate and weather and impact of climate change, and gradually proceeds towards downscaling techniques and then finally towards development of ...
Regression Models for Market-Shares
DEFF Research Database (Denmark)
Birch, Kristina; Olsen, Jørgen Kai; Tjur, Tue
2005-01-01
On the background of a data set of weekly sales and prices for three brands of coffee, this paper discusses various regression models and their relation to the multiplicative competitive-interaction model (the MCI model, see Cooper 1988, 1993) for market-shares. Emphasis is put on the interpretat......On the background of a data set of weekly sales and prices for three brands of coffee, this paper discusses various regression models and their relation to the multiplicative competitive-interaction model (the MCI model, see Cooper 1988, 1993) for market-shares. Emphasis is put...... on the interpretation of the parameters in relation to models for the total sales based on discrete choice models.Key words and phrases. MCI model, discrete choice model, market-shares, price elasitcity, regression model....
On directional multiple-output quantile regression
Czech Academy of Sciences Publication Activity Database
Paindaveine, D.; Šiman, Miroslav
2011-01-01
Roč. 102, č. 2 (2011), s. 193-212 ISSN 0047-259X R&D Projects: GA MŠk(CZ) 1M06047 Grant - others:Commision EC(BE) Fonds National de la Recherche Scientifique Institutional research plan: CEZ:AV0Z10750506 Keywords : multivariate quantile * quantile regression * multiple-output regression * halfspace depth * portfolio optimization * value-at risk Subject RIV: BA - General Mathematics Impact factor: 0.879, year: 2011 http://library.utia.cas.cz/separaty/2011/SI/siman-0364128.pdf
Removing Malmquist bias from linear regressions
Verter, Frances
1993-01-01
Malmquist bias is present in all astronomical surveys where sources are observed above an apparent brightness threshold. Those sources which can be detected at progressively larger distances are progressively more limited to the intrinsically luminous portion of the true distribution. This bias does not distort any of the measurements, but distorts the sample composition. We have developed the first treatment to correct for Malmquist bias in linear regressions of astronomical data. A demonstration of the corrected linear regression that is computed in four steps is presented.
Robust median estimator in logisitc regression
Czech Academy of Sciences Publication Activity Database
Hobza, T.; Pardo, L.; Vajda, Igor
2008-01-01
Roč. 138, č. 12 (2008), s. 3822-3840 ISSN 0378-3758 R&D Projects: GA MŠk 1M0572 Grant - others:Instituto Nacional de Estadistica (ES) MPO FI - IM3/136; GA MŠk(CZ) MTM 2006-06872 Institutional research plan: CEZ:AV0Z10750506 Keywords : Logistic regression * Median * Robustness * Consistency and asymptotic normality * Morgenthaler * Bianco and Yohai * Croux and Hasellbroeck Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.679, year: 2008 http://library.utia.cas.cz/separaty/2008/SI/vajda-robust%20median%20estimator%20in%20logistic%20regression.pdf
Demonstration of a Fiber Optic Regression Probe
Korman, Valentin; Polzin, Kurt A.
2010-01-01
The capability to provide localized, real-time monitoring of material regression rates in various applications has the potential to provide a new stream of data for development testing of various components and systems, as well as serving as a monitoring tool in flight applications. These applications include, but are not limited to, the regression of a combusting solid fuel surface, the ablation of the throat in a chemical rocket or the heat shield of an aeroshell, and the monitoring of erosion in long-life plasma thrusters. The rate of regression in the first application is very fast, while the second and third are increasingly slower. A recent fundamental sensor development effort has led to a novel regression, erosion, and ablation sensor technology (REAST). The REAST sensor allows for measurement of real-time surface erosion rates at a discrete surface location. The sensor is optical, using two different, co-located fiber-optics to perform the regression measurement. The disparate optical transmission properties of the two fiber-optics makes it possible to measure the regression rate by monitoring the relative light attenuation through the fibers. As the fibers regress along with the parent material in which they are embedded, the relative light intensities through the two fibers changes, providing a measure of the regression rate. The optical nature of the system makes it relatively easy to use in a variety of harsh, high temperature environments, and it is also unaffected by the presence of electric and magnetic fields. In addition, the sensor could be used to perform optical spectroscopy on the light emitted by a process and collected by fibers, giving localized measurements of various properties. The capability to perform an in-situ measurement of material regression rates is useful in addressing a variety of physical issues in various applications. An in-situ measurement allows for real-time data regarding the erosion rates, providing a quick method for
KELEŞ, Taliha; ALTUN, Murat
2016-01-01
Regression analysis is a statistical technique for investigating and modeling the relationship between variables. The purpose of this study was the trivial presentation of the equation for orthogonal regression (OR) and the comparison of classical linear regression (CLR) and OR techniques with respect to the sum of squared perpendicular distances. For that purpose, the analyses were shown by an example. It was found that the sum of squared perpendicular distances of OR is smaller. Thus, it wa...
Method for nonlinear exponential regression analysis
Junkin, B. G.
1972-01-01
Two computer programs developed according to two general types of exponential models for conducting nonlinear exponential regression analysis are described. Least squares procedure is used in which the nonlinear problem is linearized by expanding in a Taylor series. Program is written in FORTRAN 5 for the Univac 1108 computer.
Measurement Error in Education and Growth Regressions
Portela, Miguel; Alessie, Rob; Teulings, Coen
2010-01-01
The use of the perpetual inventory method for the construction of education data per country leads to systematic measurement error. This paper analyzes its effect on growth regressions. We suggest a methodology for correcting this error. The standard attenuation bias suggests that using these
The M Word: Multicollinearity in Multiple Regression.
Morrow-Howell, Nancy
1994-01-01
Notes that existence of substantial correlation between two or more independent variables creates problems of multicollinearity in multiple regression. Discusses multicollinearity problem in social work research in which independent variables are usually intercorrelated. Clarifies problems created by multicollinearity, explains detection of…
Regression Discontinuity Designs Based on Population Thresholds
DEFF Research Database (Denmark)
Eggers, Andrew C.; Freier, Ronny; Grembi, Veronica
In many countries, important features of municipal government (such as the electoral system, mayors' salaries, and the number of councillors) depend on whether the municipality is above or below arbitrary population thresholds. Several papers have used a regression discontinuity design (RDD...
Deriving the Regression Line with Algebra
Quintanilla, John A.
2017-01-01
Exploration with spreadsheets and reliance on previous skills can lead students to determine the line of best fit. To perform linear regression on a set of data, students in Algebra 2 (or, in principle, Algebra 1) do not have to settle for using the mysterious "black box" of their graphing calculators (or other classroom technologies).…
Piecewise linear regression splines with hyperbolic covariates
International Nuclear Information System (INIS)
Cologne, John B.; Sposto, Richard
1992-09-01
Consider the problem of fitting a curve to data that exhibit a multiphase linear response with smooth transitions between phases. We propose substituting hyperbolas as covariates in piecewise linear regression splines to obtain curves that are smoothly joined. The method provides an intuitive and easy way to extend the two-phase linear hyperbolic response model of Griffiths and Miller and Watts and Bacon to accommodate more than two linear segments. The resulting regression spline with hyperbolic covariates may be fit by nonlinear regression methods to estimate the degree of curvature between adjoining linear segments. The added complexity of fitting nonlinear, as opposed to linear, regression models is not great. The extra effort is particularly worthwhile when investigators are unwilling to assume that the slope of the response changes abruptly at the join points. We can also estimate the join points (the values of the abscissas where the linear segments would intersect if extrapolated) if their number and approximate locations may be presumed known. An example using data on changing age at menarche in a cohort of Japanese women illustrates the use of the method for exploratory data analysis. (author)
Targeting: Logistic Regression, Special Cases and Extensions
Directory of Open Access Journals (Sweden)
Helmut Schaeben
2014-12-01
Full Text Available Logistic regression is a classical linear model for logit-transformed conditional probabilities of a binary target variable. It recovers the true conditional probabilities if the joint distribution of predictors and the target is of log-linear form. Weights-of-evidence is an ordinary logistic regression with parameters equal to the differences of the weights of evidence if all predictor variables are discrete and conditionally independent given the target variable. The hypothesis of conditional independence can be tested in terms of log-linear models. If the assumption of conditional independence is violated, the application of weights-of-evidence does not only corrupt the predicted conditional probabilities, but also their rank transform. Logistic regression models, including the interaction terms, can account for the lack of conditional independence, appropriate interaction terms compensate exactly for violations of conditional independence. Multilayer artificial neural nets may be seen as nested regression-like models, with some sigmoidal activation function. Most often, the logistic function is used as the activation function. If the net topology, i.e., its control, is sufficiently versatile to mimic interaction terms, artificial neural nets are able to account for violations of conditional independence and yield very similar results. Weights-of-evidence cannot reasonably include interaction terms; subsequent modifications of the weights, as often suggested, cannot emulate the effect of interaction terms.
Functional data analysis of generalized regression quantiles
Guo, Mengmeng
2013-11-05
Generalized regression quantiles, including the conditional quantiles and expectiles as special cases, are useful alternatives to the conditional means for characterizing a conditional distribution, especially when the interest lies in the tails. We develop a functional data analysis approach to jointly estimate a family of generalized regression quantiles. Our approach assumes that the generalized regression quantiles share some common features that can be summarized by a small number of principal component functions. The principal component functions are modeled as splines and are estimated by minimizing a penalized asymmetric loss measure. An iterative least asymmetrically weighted squares algorithm is developed for computation. While separate estimation of individual generalized regression quantiles usually suffers from large variability due to lack of sufficient data, by borrowing strength across data sets, our joint estimation approach significantly improves the estimation efficiency, which is demonstrated in a simulation study. The proposed method is applied to data from 159 weather stations in China to obtain the generalized quantile curves of the volatility of the temperature at these stations. © 2013 Springer Science+Business Media New York.
Regression testing Ajax applications : Coping with dynamism
Roest, D.; Mesbah, A.; Van Deursen, A.
2009-01-01
Note: This paper is a pre-print of: Danny Roest, Ali Mesbah and Arie van Deursen. Regression Testing AJAX Applications: Coping with Dynamism. In Proceedings of the 3rd International Conference on Software Testing, Verification and Validation (ICST’10), Paris, France. IEEE Computer Society, 2010.
Group-wise partial least square regression
Camacho, José; Saccenti, Edoardo
2018-01-01
This paper introduces the group-wise partial least squares (GPLS) regression. GPLS is a new sparse PLS technique where the sparsity structure is defined in terms of groups of correlated variables, similarly to what is done in the related group-wise principal component analysis. These groups are
Functional data analysis of generalized regression quantiles
Guo, Mengmeng; Zhou, Lan; Huang, Jianhua Z.; Hä rdle, Wolfgang Karl
2013-01-01
Generalized regression quantiles, including the conditional quantiles and expectiles as special cases, are useful alternatives to the conditional means for characterizing a conditional distribution, especially when the interest lies in the tails. We develop a functional data analysis approach to jointly estimate a family of generalized regression quantiles. Our approach assumes that the generalized regression quantiles share some common features that can be summarized by a small number of principal component functions. The principal component functions are modeled as splines and are estimated by minimizing a penalized asymmetric loss measure. An iterative least asymmetrically weighted squares algorithm is developed for computation. While separate estimation of individual generalized regression quantiles usually suffers from large variability due to lack of sufficient data, by borrowing strength across data sets, our joint estimation approach significantly improves the estimation efficiency, which is demonstrated in a simulation study. The proposed method is applied to data from 159 weather stations in China to obtain the generalized quantile curves of the volatility of the temperature at these stations. © 2013 Springer Science+Business Media New York.
Finite Algorithms for Robust Linear Regression
DEFF Research Database (Denmark)
Madsen, Kaj; Nielsen, Hans Bruun
1990-01-01
The Huber M-estimator for robust linear regression is analyzed. Newton type methods for solution of the problem are defined and analyzed, and finite convergence is proved. Numerical experiments with a large number of test problems demonstrate efficiency and indicate that this kind of approach may...
Function approximation with polynomial regression slines
International Nuclear Information System (INIS)
Urbanski, P.
1996-01-01
Principles of the polynomial regression splines as well as algorithms and programs for their computation are presented. The programs prepared using software package MATLAB are generally intended for approximation of the X-ray spectra and can be applied in the multivariate calibration of radiometric gauges. (author)
Assessing risk factors for periodontitis using regression
Lobo Pereira, J. A.; Ferreira, Maria Cristina; Oliveira, Teresa
2013-10-01
Multivariate statistical analysis is indispensable to assess the associations and interactions between different factors and the risk of periodontitis. Among others, regression analysis is a statistical technique widely used in healthcare to investigate and model the relationship between variables. In our work we study the impact of socio-demographic, medical and behavioral factors on periodontal health. Using regression, linear and logistic models, we can assess the relevance, as risk factors for periodontitis disease, of the following independent variables (IVs): Age, Gender, Diabetic Status, Education, Smoking status and Plaque Index. The multiple linear regression analysis model was built to evaluate the influence of IVs on mean Attachment Loss (AL). Thus, the regression coefficients along with respective p-values will be obtained as well as the respective p-values from the significance tests. The classification of a case (individual) adopted in the logistic model was the extent of the destruction of periodontal tissues defined by an Attachment Loss greater than or equal to 4 mm in 25% (AL≥4mm/≥25%) of sites surveyed. The association measures include the Odds Ratios together with the correspondent 95% confidence intervals.
Predicting Social Trust with Binary Logistic Regression
Adwere-Boamah, Joseph; Hufstedler, Shirley
2015-01-01
This study used binary logistic regression to predict social trust with five demographic variables from a national sample of adult individuals who participated in The General Social Survey (GSS) in 2012. The five predictor variables were respondents' highest degree earned, race, sex, general happiness and the importance of personally assisting…
Yet another look at MIDAS regression
Ph.H.B.F. Franses (Philip Hans)
2016-01-01
textabstractA MIDAS regression involves a dependent variable observed at a low frequency and independent variables observed at a higher frequency. This paper relates a true high frequency data generating process, where also the dependent variable is observed (hypothetically) at the high frequency,
Revisiting Regression in Autism: Heller's "Dementia Infantilis"
Westphal, Alexander; Schelinski, Stefanie; Volkmar, Fred; Pelphrey, Kevin
2013-01-01
Theodor Heller first described a severe regression of adaptive function in normally developing children, something he termed dementia infantilis, over one 100 years ago. Dementia infantilis is most closely related to the modern diagnosis, childhood disintegrative disorder. We translate Heller's paper, Uber Dementia Infantilis, and discuss…
Fast multi-output relevance vector regression
Ha, Youngmin
2017-01-01
This paper aims to decrease the time complexity of multi-output relevance vector regression from O(VM^3) to O(V^3+M^3), where V is the number of output dimensions, M is the number of basis functions, and V
Regression Equations for Birth Weight Estimation using ...
African Journals Online (AJOL)
In this study, Birth Weight has been estimated from anthropometric measurements of hand and foot. Linear regression equations were formed from each of the measured variables. These simple equations can be used to estimate Birth Weight of new born babies, in order to identify those with low birth weight and referred to ...
Superquantile Regression: Theory, Algorithms, and Applications
2014-12-01
Highway, Suite 1204, Arlington, Va 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503. 1...Navy submariners, reliability engineering, uncertainty quantification, and financial risk management . Superquantile, superquantile regression...Royset Carlos F. Borges Associate Professor of Operations Research Dissertation Supervisor Professor of Applied Mathematics Lyn R. Whitaker Javier
Measurement Error in Education and Growth Regressions
Portela, M.; Teulings, C.N.; Alessie, R.
The perpetual inventory method used for the construction of education data per country leads to systematic measurement error. This paper analyses the effect of this measurement error on GDP regressions. There is a systematic difference in the education level between census data and observations
Measurement error in education and growth regressions
Portela, Miguel; Teulings, Coen; Alessie, R.
2004-01-01
The perpetual inventory method used for the construction of education data per country leads to systematic measurement error. This paper analyses the effect of this measurement error on GDP regressions. There is a systematic difference in the education level between census data and observations
Panel data specifications in nonparametric kernel regression
DEFF Research Database (Denmark)
Czekaj, Tomasz Gerard; Henningsen, Arne
parametric panel data estimators to analyse the production technology of Polish crop farms. The results of our nonparametric kernel regressions generally differ from the estimates of the parametric models but they only slightly depend on the choice of the kernel functions. Based on economic reasoning, we...
transformation of independent variables in polynomial regression ...
African Journals Online (AJOL)
Ada
preferable when possible to work with a simple functional form in transformed variables rather than with a more complicated form in the original variables. In this paper, it is shown that linear transformations applied to independent variables in polynomial regression models affect the t ratio and hence the statistical ...
Multiple Linear Regression: A Realistic Reflector.
Nutt, A. T.; Batsell, R. R.
Examples of the use of Multiple Linear Regression (MLR) techniques are presented. This is done to show how MLR aids data processing and decision-making by providing the decision-maker with freedom in phrasing questions and by accurately reflecting the data on hand. A brief overview of the rationale underlying MLR is given, some basic definitions…
Probabilistic Signal Recovery and Random Matrices
2016-12-08
that classical methods for linear regression (such as Lasso) are applicable for non- linear data. This surprising finding has already found several...we studied the complexity of convex sets. In numerical linear algebra , we analyzed the fastest known randomized approximation algorithm for...and perfect matchings In numerical linear algebra , we studied the fastest known randomized approximation algorithm for computing the permanents of
Genetic parameters for quail body weights using a random ...
African Journals Online (AJOL)
A model including fixed and random linear regressions is described for analyzing body weights at different ages. In this study, (co)variance components, heritabilities for quail weekly weights and genetic correlations among these weights were estimated using a random regression model by DFREML under DXMRR option.
Lin, Yingzhi; Deng, Xiangzheng; Li, Xing; Ma, Enjun
2014-12-01
Spatially explicit simulation of land use change is the basis for estimating the effects of land use and cover change on energy fluxes, ecology and the environment. At the pixel level, logistic regression is one of the most common approaches used in spatially explicit land use allocation models to determine the relationship between land use and its causal factors in driving land use change, and thereby to evaluate land use suitability. However, these models have a drawback in that they do not determine/allocate land use based on the direct relationship between land use change and its driving factors. Consequently, a multinomial logistic regression method was introduced to address this flaw, and thereby, judge the suitability of a type of land use in any given pixel in a case study area of the Jiangxi Province, China. A comparison of the two regression methods indicated that the proportion of correctly allocated pixels using multinomial logistic regression was 92.98%, which was 8.47% higher than that obtained using logistic regression. Paired t-test results also showed that pixels were more clearly distinguished by multinomial logistic regression than by logistic regression. In conclusion, multinomial logistic regression is a more efficient and accurate method for the spatial allocation of land use changes. The application of this method in future land use change studies may improve the accuracy of predicting the effects of land use and cover change on energy fluxes, ecology, and environment.
Virtual machine consolidation enhancement using hybrid regression algorithms
Directory of Open Access Journals (Sweden)
Amany Abdelsamea
2017-11-01
Full Text Available Cloud computing data centers are growing rapidly in both number and capacity to meet the increasing demands for highly-responsive computing and massive storage. Such data centers consume enormous amounts of electrical energy resulting in high operating costs and carbon dioxide emissions. The reason for this extremely high energy consumption is not just the quantity of computing resources and the power inefficiency of hardware, but rather lies in the inefficient usage of these resources. VM consolidation involves live migration of VMs hence the capability of transferring a VM between physical servers with a close to zero down time. It is an effective way to improve the utilization of resources and increase energy efficiency in cloud data centers. VM consolidation consists of host overload/underload detection, VM selection and VM placement. Most of the current VM consolidation approaches apply either heuristic-based techniques, such as static utilization thresholds, decision-making based on statistical analysis of historical data; or simply periodic adaptation of the VM allocation. Most of those algorithms rely on CPU utilization only for host overload detection. In this paper we propose using hybrid factors to enhance VM consolidation. Specifically we developed a multiple regression algorithm that uses CPU utilization, memory utilization and bandwidth utilization for host overload detection. The proposed algorithm, Multiple Regression Host Overload Detection (MRHOD, significantly reduces energy consumption while ensuring a high level of adherence to Service Level Agreements (SLA since it gives a real indication of host utilization based on three parameters (CPU, Memory, Bandwidth utilizations instead of one parameter only (CPU utilization. Through simulations we show that our approach reduces power consumption by 6 times compared to single factor algorithms using random workload. Also using PlanetLab workload traces we show that MRHOD improves
Vaeth, Michael; Skovlund, Eva
2004-06-15
For a given regression problem it is possible to identify a suitably defined equivalent two-sample problem such that the power or sample size obtained for the two-sample problem also applies to the regression problem. For a standard linear regression model the equivalent two-sample problem is easily identified, but for generalized linear models and for Cox regression models the situation is more complicated. An approximately equivalent two-sample problem may, however, also be identified here. In particular, we show that for logistic regression and Cox regression models the equivalent two-sample problem is obtained by selecting two equally sized samples for which the parameters differ by a value equal to the slope times twice the standard deviation of the independent variable and further requiring that the overall expected number of events is unchanged. In a simulation study we examine the validity of this approach to power calculations in logistic regression and Cox regression models. Several different covariate distributions are considered for selected values of the overall response probability and a range of alternatives. For the Cox regression model we consider both constant and non-constant hazard rates. The results show that in general the approach is remarkably accurate even in relatively small samples. Some discrepancies are, however, found in small samples with few events and a highly skewed covariate distribution. Comparison with results based on alternative methods for logistic regression models with a single continuous covariate indicates that the proposed method is at least as good as its competitors. The method is easy to implement and therefore provides a simple way to extend the range of problems that can be covered by the usual formulas for power and sample size determination. Copyright 2004 John Wiley & Sons, Ltd.
Replicating Experimental Impact Estimates Using a Regression Discontinuity Approach. NCEE 2012-4025
Gleason, Philip M.; Resch, Alexandra M.; Berk, Jillian A.
2012-01-01
This NCEE Technical Methods Paper compares the estimated impacts of an educational intervention using experimental and regression discontinuity (RD) study designs. The analysis used data from two large-scale randomized controlled trials--the Education Technology Evaluation and the Teach for America Study--to provide evidence on the performance of…
Wing, Coady; Cook, Thomas D.
2013-01-01
The sharp regression discontinuity design (RDD) has three key weaknesses compared to the randomized clinical trial (RCT). It has lower statistical power, it is more dependent on statistical modeling assumptions, and its treatment effect estimates are limited to the narrow subpopulation of cases immediately around the cutoff, which is rarely of…
A systematic review and meta-regression analysis of mivacurium for tracheal intubation
Vanlinthout, L.E.H.; Mesfin, S.H.; Hens, N.; Vanacker, B.F.; Robertson, E.N.; Booij, L.H.D.J.
2014-01-01
We systematically reviewed factors associated with intubation conditions in randomised controlled trials of mivacurium, using random-effects meta-regression analysis. We included 29 studies of 1050 healthy participants. Four factors explained 72.9% of the variation in the probability of excellent
Controlling attribute effect in linear regression
Calders, Toon; Karim, Asim A.; Kamiran, Faisal; Ali, Wasif Mohammad; Zhang, Xiangliang
2013-01-01
In data mining we often have to learn from biased data, because, for instance, data comes from different batches or there was a gender or racial bias in the collection of social data. In some applications it may be necessary to explicitly control this bias in the models we learn from the data. This paper is the first to study learning linear regression models under constraints that control the biasing effect of a given attribute such as gender or batch number. We show how propensity modeling can be used for factoring out the part of the bias that can be justified by externally provided explanatory attributes. Then we analytically derive linear models that minimize squared error while controlling the bias by imposing constraints on the mean outcome or residuals of the models. Experiments with discrimination-aware crime prediction and batch effect normalization tasks show that the proposed techniques are successful in controlling attribute effects in linear regression models. © 2013 IEEE.
Beta-binomial regression and bimodal utilization.
Liu, Chuan-Fen; Burgess, James F; Manning, Willard G; Maciejewski, Matthew L
2013-10-01
To illustrate how the analysis of bimodal U-shaped distributed utilization can be modeled with beta-binomial regression, which is rarely used in health services research. Veterans Affairs (VA) administrative data and Medicare claims in 2001-2004 for 11,123 Medicare-eligible VA primary care users in 2000. We compared means and distributions of VA reliance (the proportion of all VA/Medicare primary care visits occurring in VA) predicted from beta-binomial, binomial, and ordinary least-squares (OLS) models. Beta-binomial model fits the bimodal distribution of VA reliance better than binomial and OLS models due to the nondependence on normality and the greater flexibility in shape parameters. Increased awareness of beta-binomial regression may help analysts apply appropriate methods to outcomes with bimodal or U-shaped distributions. © Health Research and Educational Trust.
Are increases in cigarette taxation regressive?
Borren, P; Sutton, M
1992-12-01
Using the latest published data from Tobacco Advisory Council surveys, this paper re-evaluates the question of whether or not increases in cigarette taxation are regressive in the United Kingdom. The extended data set shows no evidence of increasing price-elasticity by social class as found in a major previous study. To the contrary, there appears to be no clear pattern in the price responsiveness of smoking behaviour across different social classes. Increases in cigarette taxation, while reducing smoking levels in all groups, fall most heavily on men and women in the lowest social class. Men and women in social class five can expect to pay eight and eleven times more of a tax increase respectively, than their social class one counterparts. Taken as a proportion of relative incomes, the regressive nature of increases in cigarette taxation is even more pronounced.
Controlling attribute effect in linear regression
Calders, Toon
2013-12-01
In data mining we often have to learn from biased data, because, for instance, data comes from different batches or there was a gender or racial bias in the collection of social data. In some applications it may be necessary to explicitly control this bias in the models we learn from the data. This paper is the first to study learning linear regression models under constraints that control the biasing effect of a given attribute such as gender or batch number. We show how propensity modeling can be used for factoring out the part of the bias that can be justified by externally provided explanatory attributes. Then we analytically derive linear models that minimize squared error while controlling the bias by imposing constraints on the mean outcome or residuals of the models. Experiments with discrimination-aware crime prediction and batch effect normalization tasks show that the proposed techniques are successful in controlling attribute effects in linear regression models. © 2013 IEEE.
Regression Models For Multivariate Count Data.
Zhang, Yiwen; Zhou, Hua; Zhou, Jin; Sun, Wei
2017-01-01
Data with multivariate count responses frequently occur in modern applications. The commonly used multinomial-logit model is limiting due to its restrictive mean-variance structure. For instance, analyzing count data from the recent RNA-seq technology by the multinomial-logit model leads to serious errors in hypothesis testing. The ubiquity of over-dispersion and complicated correlation structures among multivariate counts calls for more flexible regression models. In this article, we study some generalized linear models that incorporate various correlation structures among the counts. Current literature lacks a treatment of these models, partly due to the fact that they do not belong to the natural exponential family. We study the estimation, testing, and variable selection for these models in a unifying framework. The regression models are compared on both synthetic and real RNA-seq data.
Model selection in kernel ridge regression
DEFF Research Database (Denmark)
Exterkate, Peter
2013-01-01
Kernel ridge regression is a technique to perform ridge regression with a potentially infinite number of nonlinear transformations of the independent variables as regressors. This method is gaining popularity as a data-rich nonlinear forecasting tool, which is applicable in many different contexts....... The influence of the choice of kernel and the setting of tuning parameters on forecast accuracy is investigated. Several popular kernels are reviewed, including polynomial kernels, the Gaussian kernel, and the Sinc kernel. The latter two kernels are interpreted in terms of their smoothing properties......, and the tuning parameters associated to all these kernels are related to smoothness measures of the prediction function and to the signal-to-noise ratio. Based on these interpretations, guidelines are provided for selecting the tuning parameters from small grids using cross-validation. A Monte Carlo study...
Confidence bands for inverse regression models
International Nuclear Information System (INIS)
Birke, Melanie; Bissantz, Nicolai; Holzmann, Hajo
2010-01-01
We construct uniform confidence bands for the regression function in inverse, homoscedastic regression models with convolution-type operators. Here, the convolution is between two non-periodic functions on the whole real line rather than between two periodic functions on a compact interval, since the former situation arguably arises more often in applications. First, following Bickel and Rosenblatt (1973 Ann. Stat. 1 1071–95) we construct asymptotic confidence bands which are based on strong approximations and on a limit theorem for the supremum of a stationary Gaussian process. Further, we propose bootstrap confidence bands based on the residual bootstrap and prove consistency of the bootstrap procedure. A simulation study shows that the bootstrap confidence bands perform reasonably well for moderate sample sizes. Finally, we apply our method to data from a gel electrophoresis experiment with genetically engineered neuronal receptor subunits incubated with rat brain extract
Regressing Atherosclerosis by Resolving Plaque Inflammation
2017-07-01
regression requires the alteration of macrophages in the plaques to a tissue repair “alternatively” activated state. This switch in activation state... tissue repair “alternatively” activated state. This switch in activation state requires the action of TH2 cytokines interleukin (IL)-4 or IL-13. To...regulation of tissue macrophage and dendritic cell population dynamics by CSF-1. J Exp Med. 2011;208(9):1901–1916. 35. Xu H, Exner BG, Chilton PM
Determination of regression laws: Linear and nonlinear
International Nuclear Information System (INIS)
Onishchenko, A.M.
1994-01-01
A detailed mathematical determination of regression laws is presented in the article. Particular emphasis is place on determining the laws of X j on X l to account for source nuclei decay and detector errors in nuclear physics instrumentation. Both linear and nonlinear relations are presented. Linearization of 19 functions is tabulated, including graph, relation, variable substitution, obtained linear function, and remarks. 6 refs., 1 tab
Directional quantile regression in Octave (and MATLAB)
Czech Academy of Sciences Publication Activity Database
Boček, Pavel; Šiman, Miroslav
2016-01-01
Roč. 52, č. 1 (2016), s. 28-51 ISSN 0023-5954 R&D Projects: GA ČR GA14-07234S Institutional support: RVO:67985556 Keywords : quantile regression * multivariate quantile * depth contour * Matlab Subject RIV: IN - Informatics, Computer Science Impact factor: 0.379, year: 2016 http://library.utia.cas.cz/separaty/2016/SI/bocek-0458380.pdf
Logistic regression a self-learning text
Kleinbaum, David G
1994-01-01
This textbook provides students and professionals in the health sciences with a presentation of the use of logistic regression in research. The text is self-contained, and designed to be used both in class or as a tool for self-study. It arises from the author's many years of experience teaching this material and the notes on which it is based have been extensively used throughout the world.
Multitask Quantile Regression under the Transnormal Model.
Fan, Jianqing; Xue, Lingzhou; Zou, Hui
2016-01-01
We consider estimating multi-task quantile regression under the transnormal model, with focus on high-dimensional setting. We derive a surprisingly simple closed-form solution through rank-based covariance regularization. In particular, we propose the rank-based ℓ 1 penalization with positive definite constraints for estimating sparse covariance matrices, and the rank-based banded Cholesky decomposition regularization for estimating banded precision matrices. By taking advantage of alternating direction method of multipliers, nearest correlation matrix projection is introduced that inherits sampling properties of the unprojected one. Our work combines strengths of quantile regression and rank-based covariance regularization to simultaneously deal with nonlinearity and nonnormality for high-dimensional regression. Furthermore, the proposed method strikes a good balance between robustness and efficiency, achieves the "oracle"-like convergence rate, and provides the provable prediction interval under the high-dimensional setting. The finite-sample performance of the proposed method is also examined. The performance of our proposed rank-based method is demonstrated in a real application to analyze the protein mass spectroscopy data.
Complex regression Doppler optical coherence tomography
Elahi, Sahar; Gu, Shi; Thrane, Lars; Rollins, Andrew M.; Jenkins, Michael W.
2018-04-01
We introduce a new method to measure Doppler shifts more accurately and extend the dynamic range of Doppler optical coherence tomography (OCT). The two-point estimate of the conventional Doppler method is replaced with a regression that is applied to high-density B-scans in polar coordinates. We built a high-speed OCT system using a 1.68-MHz Fourier domain mode locked laser to acquire high-density B-scans (16,000 A-lines) at high enough frame rates (˜100 fps) to accurately capture the dynamics of the beating embryonic heart. Flow phantom experiments confirm that the complex regression lowers the minimum detectable velocity from 12.25 mm / s to 374 μm / s, whereas the maximum velocity of 400 mm / s is measured without phase wrapping. Complex regression Doppler OCT also demonstrates higher accuracy and precision compared with the conventional method, particularly when signal-to-noise ratio is low. The extended dynamic range allows monitoring of blood flow over several stages of development in embryos without adjusting the imaging parameters. In addition, applying complex averaging recovers hidden features in structural images.
Linear regression and the normality assumption.
Schmidt, Amand F; Finan, Chris
2017-12-16
Researchers often perform arbitrary outcome transformations to fulfill the normality assumption of a linear regression model. This commentary explains and illustrates that in large data settings, such transformations are often unnecessary, and worse may bias model estimates. Linear regression assumptions are illustrated using simulated data and an empirical example on the relation between time since type 2 diabetes diagnosis and glycated hemoglobin levels. Simulation results were evaluated on coverage; i.e., the number of times the 95% confidence interval included the true slope coefficient. Although outcome transformations bias point estimates, violations of the normality assumption in linear regression analyses do not. The normality assumption is necessary to unbiasedly estimate standard errors, and hence confidence intervals and P-values. However, in large sample sizes (e.g., where the number of observations per variable is >10) violations of this normality assumption often do not noticeably impact results. Contrary to this, assumptions on, the parametric model, absence of extreme observations, homoscedasticity, and independency of the errors, remain influential even in large sample size settings. Given that modern healthcare research typically includes thousands of subjects focusing on the normality assumption is often unnecessary, does not guarantee valid results, and worse may bias estimates due to the practice of outcome transformations. Copyright © 2017 Elsevier Inc. All rights reserved.
Satellite rainfall retrieval by logistic regression
Chiu, Long S.
1986-01-01
The potential use of logistic regression in rainfall estimation from satellite measurements is investigated. Satellite measurements provide covariate information in terms of radiances from different remote sensors.The logistic regression technique can effectively accommodate many covariates and test their significance in the estimation. The outcome from the logistical model is the probability that the rainrate of a satellite pixel is above a certain threshold. By varying the thresholds, a rainrate histogram can be obtained, from which the mean and the variant can be estimated. A logistical model is developed and applied to rainfall data collected during GATE, using as covariates the fractional rain area and a radiance measurement which is deduced from a microwave temperature-rainrate relation. It is demonstrated that the fractional rain area is an important covariate in the model, consistent with the use of the so-called Area Time Integral in estimating total rain volume in other studies. To calibrate the logistical model, simulated rain fields generated by rainfield models with prescribed parameters are needed. A stringent test of the logistical model is its ability to recover the prescribed parameters of simulated rain fields. A rain field simulation model which preserves the fractional rain area and lognormality of rainrates as found in GATE is developed. A stochastic regression model of branching and immigration whose solutions are lognormally distributed in some asymptotic limits has also been developed.
Bayesian Inference of a Multivariate Regression Model
Directory of Open Access Journals (Sweden)
Marick S. Sinay
2014-01-01
Full Text Available We explore Bayesian inference of a multivariate linear regression model with use of a flexible prior for the covariance structure. The commonly adopted Bayesian setup involves the conjugate prior, multivariate normal distribution for the regression coefficients and inverse Wishart specification for the covariance matrix. Here we depart from this approach and propose a novel Bayesian estimator for the covariance. A multivariate normal prior for the unique elements of the matrix logarithm of the covariance matrix is considered. Such structure allows for a richer class of prior distributions for the covariance, with respect to strength of beliefs in prior location hyperparameters, as well as the added ability, to model potential correlation amongst the covariance structure. The posterior moments of all relevant parameters of interest are calculated based upon numerical results via a Markov chain Monte Carlo procedure. The Metropolis-Hastings-within-Gibbs algorithm is invoked to account for the construction of a proposal density that closely matches the shape of the target posterior distribution. As an application of the proposed technique, we investigate a multiple regression based upon the 1980 High School and Beyond Survey.
Modeling oil production based on symbolic regression
International Nuclear Information System (INIS)
Yang, Guangfei; Li, Xianneng; Wang, Jianliang; Lian, Lian; Ma, Tieju
2015-01-01
Numerous models have been proposed to forecast the future trends of oil production and almost all of them are based on some predefined assumptions with various uncertainties. In this study, we propose a novel data-driven approach that uses symbolic regression to model oil production. We validate our approach on both synthetic and real data, and the results prove that symbolic regression could effectively identify the true models beneath the oil production data and also make reliable predictions. Symbolic regression indicates that world oil production will peak in 2021, which broadly agrees with other techniques used by researchers. Our results also show that the rate of decline after the peak is almost half the rate of increase before the peak, and it takes nearly 12 years to drop 4% from the peak. These predictions are more optimistic than those in several other reports, and the smoother decline will provide the world, especially the developing countries, with more time to orchestrate mitigation plans. -- Highlights: •A data-driven approach has been shown to be effective at modeling the oil production. •The Hubbert model could be discovered automatically from data. •The peak of world oil production is predicted to appear in 2021. •The decline rate after peak is half of the increase rate before peak. •Oil production projected to decline 4% post-peak
Face Alignment via Regressing Local Binary Features.
Ren, Shaoqing; Cao, Xudong; Wei, Yichen; Sun, Jian
2016-03-01
This paper presents a highly efficient and accurate regression approach for face alignment. Our approach has two novel components: 1) a set of local binary features and 2) a locality principle for learning those features. The locality principle guides us to learn a set of highly discriminative local binary features for each facial landmark independently. The obtained local binary features are used to jointly learn a linear regression for the final output. This approach achieves the state-of-the-art results when tested on the most challenging benchmarks to date. Furthermore, because extracting and regressing local binary features are computationally very cheap, our system is much faster than previous methods. It achieves over 3000 frames per second (FPS) on a desktop or 300 FPS on a mobile phone for locating a few dozens of landmarks. We also study a key issue that is important but has received little attention in the previous research, which is the face detector used to initialize alignment. We investigate several face detectors and perform quantitative evaluation on how they affect alignment accuracy. We find that an alignment friendly detector can further greatly boost the accuracy of our alignment method, reducing the error up to 16% relatively. To facilitate practical usage of face detection/alignment methods, we also propose a convenient metric to measure how good a detector is for alignment initialization.
Geographically weighted regression model on poverty indicator
Slamet, I.; Nugroho, N. F. T. A.; Muslich
2017-12-01
In this research, we applied geographically weighted regression (GWR) for analyzing the poverty in Central Java. We consider Gaussian Kernel as weighted function. The GWR uses the diagonal matrix resulted from calculating kernel Gaussian function as a weighted function in the regression model. The kernel weights is used to handle spatial effects on the data so that a model can be obtained for each location. The purpose of this paper is to model of poverty percentage data in Central Java province using GWR with Gaussian kernel weighted function and to determine the influencing factors in each regency/city in Central Java province. Based on the research, we obtained geographically weighted regression model with Gaussian kernel weighted function on poverty percentage data in Central Java province. We found that percentage of population working as farmers, population growth rate, percentage of households with regular sanitation, and BPJS beneficiaries are the variables that affect the percentage of poverty in Central Java province. In this research, we found the determination coefficient R2 are 68.64%. There are two categories of district which are influenced by different of significance factors.
On logistic regression analysis of dichotomized responses.
Lu, Kaifeng
2017-01-01
We study the properties of treatment effect estimate in terms of odds ratio at the study end point from logistic regression model adjusting for the baseline value when the underlying continuous repeated measurements follow a multivariate normal distribution. Compared with the analysis that does not adjust for the baseline value, the adjusted analysis produces a larger treatment effect as well as a larger standard error. However, the increase in standard error is more than offset by the increase in treatment effect so that the adjusted analysis is more powerful than the unadjusted analysis for detecting the treatment effect. On the other hand, the true adjusted odds ratio implied by the normal distribution of the underlying continuous variable is a function of the baseline value and hence is unlikely to be able to be adequately represented by a single value of adjusted odds ratio from the logistic regression model. In contrast, the risk difference function derived from the logistic regression model provides a reasonable approximation to the true risk difference function implied by the normal distribution of the underlying continuous variable over the range of the baseline distribution. We show that different metrics of treatment effect have similar statistical power when evaluated at the baseline mean. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
General regression and representation model for classification.
Directory of Open Access Journals (Sweden)
Jianjun Qian
Full Text Available Recently, the regularized coding-based classification methods (e.g. SRC and CRC show a great potential for pattern classification. However, most existing coding methods assume that the representation residuals are uncorrelated. In real-world applications, this assumption does not hold. In this paper, we take account of the correlations of the representation residuals and develop a general regression and representation model (GRR for classification. GRR not only has advantages of CRC, but also takes full use of the prior information (e.g. the correlations between representation residuals and representation coefficients and the specific information (weight matrix of image pixels to enhance the classification performance. GRR uses the generalized Tikhonov regularization and K Nearest Neighbors to learn the prior information from the training data. Meanwhile, the specific information is obtained by using an iterative algorithm to update the feature (or image pixel weights of the test sample. With the proposed model as a platform, we design two classifiers: basic general regression and representation classifier (B-GRR and robust general regression and representation classifier (R-GRR. The experimental results demonstrate the performance advantages of proposed methods over state-of-the-art algorithms.
Image superresolution using support vector regression.
Ni, Karl S; Nguyen, Truong Q
2007-06-01
A thorough investigation of the application of support vector regression (SVR) to the superresolution problem is conducted through various frameworks. Prior to the study, the SVR problem is enhanced by finding the optimal kernel. This is done by formulating the kernel learning problem in SVR form as a convex optimization problem, specifically a semi-definite programming (SDP) problem. An additional constraint is added to reduce the SDP to a quadratically constrained quadratic programming (QCQP) problem. After this optimization, investigation of the relevancy of SVR to superresolution proceeds with the possibility of using a single and general support vector regression for all image content, and the results are impressive for small training sets. This idea is improved upon by observing structural properties in the discrete cosine transform (DCT) domain to aid in learning the regression. Further improvement involves a combination of classification and SVR-based techniques, extending works in resolution synthesis. This method, termed kernel resolution synthesis, uses specific regressors for isolated image content to describe the domain through a partitioned look of the vector space, thereby yielding good results.
International Nuclear Information System (INIS)
Tsallis, C.
1980-03-01
The 'ingredients' which control a phase transition in well defined system as well as in random ones (e.g. random magnetic systems) are listed and discussed within a somehow unifying perspective. Among these 'ingredients' we find the couplings and elements responsible for the cooperative phenomenon, the topological connectivity as well as possible topological incompatibilities, the influence of new degrees of freedom, the order parameter dimensionality, the ground state degeneracy and finally the 'quanticity' of the system. The general trends, though illustrated in magnetic systems, essentially hold for all phase transitions, and give a basis for connection of this area with Field theory, Theory of dynamical systems, etc. (Author) [pt
International Nuclear Information System (INIS)
Tsallis, C.
1981-01-01
The 'ingredients' which control a phase transition in well defined systems as well as in random ones (e.q. random magnetic systems) are listed and discussed within a somehow unifying perspective. Among these 'ingredients' the couplings and elements responsible for the cooperative phenomenon, the topological connectivity as well as possible topological incompatibilities, the influence of new degrees of freedom, the order parameter dimensionality, the ground state degeneracy and finally the 'quanticity' of the system are found. The general trends, though illustrated in magnetic systems, essentially hold for all phase transitions, and give a basis for connection of this area with Field theory, Theory of dynamical systems, etc. (Author) [pt
International Nuclear Information System (INIS)
Jafri, Y.Z.; Kamal, L.
2007-01-01
Various statistical techniques was used on five-year data from 1998-2002 of average humidity, rainfall, maximum and minimum temperatures, respectively. The relationships to regression analysis time series (RATS) were developed for determining the overall trend of these climate parameters on the basis of which forecast models can be corrected and modified. We computed the coefficient of determination as a measure of goodness of fit, to our polynomial regression analysis time series (PRATS). The correlation to multiple linear regression (MLR) and multiple linear regression analysis time series (MLRATS) were also developed for deciphering the interdependence of weather parameters. Spearman's rand correlation and Goldfeld-Quandt test were used to check the uniformity or non-uniformity of variances in our fit to polynomial regression (PR). The Breusch-Pagan test was applied to MLR and MLRATS, respectively which yielded homoscedasticity. We also employed Bartlett's test for homogeneity of variances on a five-year data of rainfall and humidity, respectively which showed that the variances in rainfall data were not homogenous while in case of humidity, were homogenous. Our results on regression and regression analysis time series show the best fit to prediction modeling on climatic data of Quetta, Pakistan. (author)
DEFF Research Database (Denmark)
Asmussen, J.C.; Ibrahim, S.R.; Brincker, Rune
Abstraet Thispaper demansirates how to use the Random Decrement (RD) technique for identification o flinear structures subjected to ambient excitation. The theory behind the technique will be presented and guidelines how to choose the different variables will be given. This is done by introducing...
DEFF Research Database (Denmark)
Asmussen, J. C.; Ibrahim, S. R.; Brincker, Rune
This paper demonstrates how to use the Random Decrement (RD) technique for identification of linear structures subjected to ambient excitation. The theory behind the technique will be presented and guidelines how to choose the different variables will be given. This is done by introducing a new...
DEFF Research Database (Denmark)
Asmussen, J. C.; Ibrahim, R.; Brincker, Rune
1998-01-01
This paper demonstrates how to use the Random Decrement (RD) technique for identification of linear structures subjected to ambient excitation. The theory behind the technique will be presented and guidelines how to choose the different variables will be given. This is done by introducing a new...
International Nuclear Information System (INIS)
Bennett, D.L.; Brene, N.; Nielsen, H.B.
1986-06-01
The goal of random dynamics is the derivation of the laws of Nature as we know them (standard model) from inessential assumptions. The inessential assumptions made here are expressed as sets of general models at extremely high energies: gauge glass and spacetime foam. Both sets of models lead tentatively to the standard model. (orig.)
International Nuclear Information System (INIS)
Bennett, D.L.
1987-01-01
The goal of random dynamics is the derivation of the laws of Nature as we know them (standard model) from inessential assumptions. The inessential assumptions made here are expressed as sets of general models at extremely high energies: Gauge glass and spacetime foam. Both sets of models lead tentatively to the standard model. (orig.)
Bennett, D. L.; Brene, N.; Nielsen, H. B.
1987-01-01
The goal of random dynamics is the derivation of the laws of Nature as we know them (standard model) from inessential assumptions. The inessential assumptions made here are expressed as sets of general models at extremely high energies: gauge glass and spacetime foam. Both sets of models lead tentatively to the standard model.
Forecasting Ebola with a regression transmission model
Asher, Jason
2017-01-01
We describe a relatively simple stochastic model of Ebola transmission that was used to produce forecasts with the lowest mean absolute error among Ebola Forecasting Challenge participants. The model enabled prediction of peak incidence, the timing of this peak, and final size of the outbreak. The underlying discrete-time compartmental model used a time-varying reproductive rate modeled as a multiplicative random walk driven by the number of infectious individuals. This structure generalizes ...
Kempe, P T; van Oppen, P; de Haan, E; Twisk, J W R; Sluis, A; Smit, J H; van Dyck, R; van Balkom, A J L M
2007-09-01
Two methods for predicting remissions in obsessive-compulsive disorder (OCD) treatment are evaluated. Y-BOCS measurements of 88 patients with a primary OCD (DSM-III-R) diagnosis were performed over a 16-week treatment period, and during three follow-ups. Remission at any measurement was defined as a Y-BOCS score lower than thirteen combined with a reduction of seven points when compared with baseline. Logistic regression models were compared with a Cox regression for recurrent events model. Logistic regression yielded different models at different evaluation times. The recurrent events model remained stable when fewer measurements were used. Higher baseline levels of neuroticism and more severe OCD symptoms were associated with a lower chance of remission, early age of onset and more depressive symptoms with a higher chance. Choice of outcome time affects logistic regression prediction models. Recurrent events analysis uses all information on remissions and relapses. Short- and long-term predictors for OCD remission show overlap.
A method for nonlinear exponential regression analysis
Junkin, B. G.
1971-01-01
A computer-oriented technique is presented for performing a nonlinear exponential regression analysis on decay-type experimental data. The technique involves the least squares procedure wherein the nonlinear problem is linearized by expansion in a Taylor series. A linear curve fitting procedure for determining the initial nominal estimates for the unknown exponential model parameters is included as an integral part of the technique. A correction matrix was derived and then applied to the nominal estimate to produce an improved set of model parameters. The solution cycle is repeated until some predetermined criterion is satisfied.
Multinomial logistic regression in workers' health
Grilo, Luís M.; Grilo, Helena L.; Gonçalves, Sónia P.; Junça, Ana
2017-11-01
In European countries, namely in Portugal, it is common to hear some people mentioning that they are exposed to excessive and continuous psychosocial stressors at work. This is increasing in diverse activity sectors, such as, the Services sector. A representative sample was collected from a Portuguese Services' organization, by applying a survey (internationally validated), which variables were measured in five ordered categories in Likert-type scale. A multinomial logistic regression model is used to estimate the probability of each category of the dependent variable general health perception where, among other independent variables, burnout appear as statistically significant.
Three Contributions to Robust Regression Diagnostics
Czech Academy of Sciences Publication Activity Database
Kalina, Jan
2015-01-01
Roč. 11, č. 2 (2015), s. 69-78 ISSN 1336-9180 Grant - others:GA ČR(CZ) GA13-01930S; Nadační fond na podporu vědy(CZ) Neuron Institutional support: RVO:67985807 Keywords : robust regression * robust econometrics * hypothesis test ing Subject RIV: BA - General Mathematics http://www.degruyter.com/view/j/jamsi.2015.11.issue-2/jamsi-2015-0013/jamsi-2015-0013.xml?format=INT
Bayesian regression of piecewise homogeneous Poisson processes
Directory of Open Access Journals (Sweden)
Diego Sevilla
2015-12-01
Full Text Available In this paper, a Bayesian method for piecewise regression is adapted to handle counting processes data distributed as Poisson. A numerical code in Mathematica is developed and tested analyzing simulated data. The resulting method is valuable for detecting breaking points in the count rate of time series for Poisson processes. Received: 2 November 2015, Accepted: 27 November 2015; Edited by: R. Dickman; Reviewed by: M. Hutter, Australian National University, Canberra, Australia.; DOI: http://dx.doi.org/10.4279/PIP.070018 Cite as: D J R Sevilla, Papers in Physics 7, 070018 (2015
Selecting a Regression Saturated by Indicators
DEFF Research Database (Denmark)
Hendry, David F.; Johansen, Søren; Santos, Carlos
We consider selecting a regression model, using a variant of Gets, when there are more variables than observations, in the special case that the variables are impulse dummies (indicators) for every observation. We show that the setting is unproblematic if tackled appropriately, and obtain the fin...... the finite-sample distribution of estimators of the mean and variance in a simple location-scale model under the null that no impulses matter. A Monte Carlo simulation confirms the null distribution, and shows power against an alternative of interest....
Selecting a Regression Saturated by Indicators
DEFF Research Database (Denmark)
Hendry, David F.; Johansen, Søren; Santos, Carlos
We consider selecting a regression model, using a variant of Gets, when there are more variables than observations, in the special case that the variables are impulse dummies (indicators) for every observation. We show that the setting is unproblematic if tackled appropriately, and obtain the fin...... the finite-sample distribution of estimators of the mean and variance in a simple location-scale model under the null that no impulses matter. A Monte Carlo simulation confirms the null distribution, and shows power against an alternative of interest...
Mapping geogenic radon potential by regression kriging
Energy Technology Data Exchange (ETDEWEB)
Pásztor, László [Institute for Soil Sciences and Agricultural Chemistry, Centre for Agricultural Research, Hungarian Academy of Sciences, Department of Environmental Informatics, Herman Ottó út 15, 1022 Budapest (Hungary); Szabó, Katalin Zsuzsanna, E-mail: sz_k_zs@yahoo.de [Department of Chemistry, Institute of Environmental Science, Szent István University, Páter Károly u. 1, Gödöllő 2100 (Hungary); Szatmári, Gábor; Laborczi, Annamária [Institute for Soil Sciences and Agricultural Chemistry, Centre for Agricultural Research, Hungarian Academy of Sciences, Department of Environmental Informatics, Herman Ottó út 15, 1022 Budapest (Hungary); Horváth, Ákos [Department of Atomic Physics, Eötvös University, Pázmány Péter sétány 1/A, 1117 Budapest (Hungary)
2016-02-15
Radon ({sup 222}Rn) gas is produced in the radioactive decay chain of uranium ({sup 238}U) which is an element that is naturally present in soils. Radon is transported mainly by diffusion and convection mechanisms through the soil depending mainly on the physical and meteorological parameters of the soil and can enter and accumulate in buildings. Health risks originating from indoor radon concentration can be attributed to natural factors and is characterized by geogenic radon potential (GRP). Identification of areas with high health risks require spatial modeling, that is, mapping of radon risk. In addition to geology and meteorology, physical soil properties play a significant role in the determination of GRP. In order to compile a reliable GRP map for a model area in Central-Hungary, spatial auxiliary information representing GRP forming environmental factors were taken into account to support the spatial inference of the locally measured GRP values. Since the number of measured sites was limited, efficient spatial prediction methodologies were searched for to construct a reliable map for a larger area. Regression kriging (RK) was applied for the interpolation using spatially exhaustive auxiliary data on soil, geology, topography, land use and climate. RK divides the spatial inference into two parts. Firstly, the deterministic component of the target variable is determined by a regression model. The residuals of the multiple linear regression analysis represent the spatially varying but dependent stochastic component, which are interpolated by kriging. The final map is the sum of the two component predictions. Overall accuracy of the map was tested by Leave-One-Out Cross-Validation. Furthermore the spatial reliability of the resultant map is also estimated by the calculation of the 90% prediction interval of the local prediction values. The applicability of the applied method as well as that of the map is discussed briefly. - Highlights: • A new method
Fixed kernel regression for voltammogram feature extraction
International Nuclear Information System (INIS)
Acevedo Rodriguez, F J; López-Sastre, R J; Gil-Jiménez, P; Maldonado Bascón, S; Ruiz-Reyes, N
2009-01-01
Cyclic voltammetry is an electroanalytical technique for obtaining information about substances under analysis without the need for complex flow systems. However, classifying the information in voltammograms obtained using this technique is difficult. In this paper, we propose the use of fixed kernel regression as a method for extracting features from these voltammograms, reducing the information to a few coefficients. The proposed approach has been applied to a wine classification problem with accuracy rates of over 98%. Although the method is described here for extracting voltammogram information, it can be used for other types of signals
Regression analysis for the social sciences
Gordon, Rachel A
2010-01-01
The book provides graduate students in the social sciences with the basic skills that they need to estimate, interpret, present, and publish basic regression models using contemporary standards. Key features of the book include: interweaving the teaching of statistical concepts with examples developed for the course from publicly-available social science data or drawn from the literature. thorough integration of teaching statistical theory with teaching data processing and analysis. teaching of both SAS and Stata "side-by-side" and use of chapter exercises in which students practice programming and interpretation on the same data set and course exercises in which students can choose their own research questions and data set.
Neutrosophic Correlation and Simple Linear Regression
Directory of Open Access Journals (Sweden)
A. A. Salama
2014-09-01
Full Text Available Since the world is full of indeterminacy, the neutrosophics found their place into contemporary research. The fundamental concepts of neutrosophic set, introduced by Smarandache. Recently, Salama et al., introduced the concept of correlation coefficient of neutrosophic data. In this paper, we introduce and study the concepts of correlation and correlation coefficient of neutrosophic data in probability spaces and study some of their properties. Also, we introduce and study the neutrosophic simple linear regression model. Possible applications to data processing are touched upon.
Spectral density regression for bivariate extremes
Castro Camilo, Daniela
2016-05-11
We introduce a density regression model for the spectral density of a bivariate extreme value distribution, that allows us to assess how extremal dependence can change over a covariate. Inference is performed through a double kernel estimator, which can be seen as an extension of the Nadaraya–Watson estimator where the usual scalar responses are replaced by mean constrained densities on the unit interval. Numerical experiments with the methods illustrate their resilience in a variety of contexts of practical interest. An extreme temperature dataset is used to illustrate our methods. © 2016 Springer-Verlag Berlin Heidelberg
SPE dose prediction using locally weighted regression
International Nuclear Information System (INIS)
Hines, J. W.; Townsend, L. W.; Nichols, T. F.
2005-01-01
When astronauts are outside earth's protective magnetosphere, they are subject to large radiation doses resulting from solar particle events (SPEs). The total dose received from a major SPE in deep space could cause severe radiation poisoning. The dose is usually received over a 20-40 h time interval but the event's effects may be mitigated with an early warning system. This paper presents a method to predict the total dose early in the event. It uses a locally weighted regression model, which is easier to train and provides predictions as accurate as neural network models previously used. (authors)
Mapping geogenic radon potential by regression kriging
International Nuclear Information System (INIS)
Pásztor, László; Szabó, Katalin Zsuzsanna; Szatmári, Gábor; Laborczi, Annamária; Horváth, Ákos
2016-01-01
Radon ( 222 Rn) gas is produced in the radioactive decay chain of uranium ( 238 U) which is an element that is naturally present in soils. Radon is transported mainly by diffusion and convection mechanisms through the soil depending mainly on the physical and meteorological parameters of the soil and can enter and accumulate in buildings. Health risks originating from indoor radon concentration can be attributed to natural factors and is characterized by geogenic radon potential (GRP). Identification of areas with high health risks require spatial modeling, that is, mapping of radon risk. In addition to geology and meteorology, physical soil properties play a significant role in the determination of GRP. In order to compile a reliable GRP map for a model area in Central-Hungary, spatial auxiliary information representing GRP forming environmental factors were taken into account to support the spatial inference of the locally measured GRP values. Since the number of measured sites was limited, efficient spatial prediction methodologies were searched for to construct a reliable map for a larger area. Regression kriging (RK) was applied for the interpolation using spatially exhaustive auxiliary data on soil, geology, topography, land use and climate. RK divides the spatial inference into two parts. Firstly, the deterministic component of the target variable is determined by a regression model. The residuals of the multiple linear regression analysis represent the spatially varying but dependent stochastic component, which are interpolated by kriging. The final map is the sum of the two component predictions. Overall accuracy of the map was tested by Leave-One-Out Cross-Validation. Furthermore the spatial reliability of the resultant map is also estimated by the calculation of the 90% prediction interval of the local prediction values. The applicability of the applied method as well as that of the map is discussed briefly. - Highlights: • A new method, regression
SPE dose prediction using locally weighted regression
International Nuclear Information System (INIS)
Hines, J. W.; Townsend, L. W.; Nichols, T. F.
2005-01-01
When astronauts are outside Earth's protective magnetosphere, they are subject to large radiation doses resulting from solar particle events. The total dose received from a major solar particle event in deep space could cause severe radiation poisoning. The dose is usually received over a 20-40 h time interval but the event's effects may be reduced with an early warning system. This paper presents a method to predict the total dose early in the event. It uses a locally weighted regression model, which is easier to train, and provides predictions as accurate as the neural network models that were used previously. (authors)
AIRLINE ACTIVITY FORECASTING BY REGRESSION MODELS
Directory of Open Access Journals (Sweden)
Н. Білак
2012-04-01
Full Text Available Proposed linear and nonlinear regression models, which take into account the equation of trend and seasonality indices for the analysis and restore the volume of passenger traffic over the past period of time and its prediction for future years, as well as the algorithm of formation of these models based on statistical analysis over the years. The desired model is the first step for the synthesis of more complex models, which will enable forecasting of passenger (income level airline with the highest accuracy and time urgency.
Logistic regression applied to natural hazards: rare event logistic regression with replications
Guns, M.; Vanacker, Veerle
2012-01-01
Statistical analysis of natural hazards needs particular attention, as most of these phenomena are rare events. This study shows that the ordinary rare event logistic regression, as it is now commonly used in geomorphologic studies, does not always lead to a robust detection of controlling factors, as the results can be strongly sample-dependent. In this paper, we introduce some concepts of Monte Carlo simulations in rare event logistic regression. This technique, so-called rare event logisti...
Ebrahimzadeh, Farzad; Hajizadeh, Ebrahim; Vahabi, Nasim; Almasian, Mohammad; Bakhteyar, Katayoon
2015-01-01
Unwanted pregnancy not intended by at least one of the parents has undesirable consequences for the family and the society. In the present study, three classification models were used and compared to predict unwanted pregnancies in an urban population. In this cross-sectional study, 887 pregnant mothers referring to health centers in Khorramabad, Iran, in 2012 were selected by the stratified and cluster sampling; relevant variables were measured and for prediction of unwanted pregnancy, logistic regression, discriminant analysis, and probit regression models and SPSS software version 21 were used. To compare these models, indicators such as sensitivity, specificity, the area under the ROC curve, and the percentage of correct predictions were used. The prevalence of unwanted pregnancies was 25.3%. The logistic and probit regression models indicated that parity and pregnancy spacing, contraceptive methods, household income and number of living male children were related to unwanted pregnancy. The performance of the models based on the area under the ROC curve was 0.735, 0.733, and 0.680 for logistic regression, probit regression, and linear discriminant analysis, respectively. Given the relatively high prevalence of unwanted pregnancies in Khorramabad, it seems necessary to revise family planning programs. Despite the similar accuracy of the models, if the researcher is interested in the interpretability of the results, the use of the logistic regression model is recommended.
Bayesian nonlinear regression for large small problems
Chakraborty, Sounak; Ghosh, Malay; Mallick, Bani K.
2012-01-01
Statistical modeling and inference problems with sample sizes substantially smaller than the number of available covariates are challenging. This is known as large p small n problem. Furthermore, the problem is more complicated when we have multiple correlated responses. We develop multivariate nonlinear regression models in this setup for accurate prediction. In this paper, we introduce a full Bayesian support vector regression model with Vapnik's ε-insensitive loss function, based on reproducing kernel Hilbert spaces (RKHS) under the multivariate correlated response setup. This provides a full probabilistic description of support vector machine (SVM) rather than an algorithm for fitting purposes. We have also introduced a multivariate version of the relevance vector machine (RVM). Instead of the original treatment of the RVM relying on the use of type II maximum likelihood estimates of the hyper-parameters, we put a prior on the hyper-parameters and use Markov chain Monte Carlo technique for computation. We have also proposed an empirical Bayes method for our RVM and SVM. Our methods are illustrated with a prediction problem in the near-infrared (NIR) spectroscopy. A simulation study is also undertaken to check the prediction accuracy of our models. © 2012 Elsevier Inc.
Spontaneous regression of intracranial malignant lymphoma
International Nuclear Information System (INIS)
Kojo, Nobuto; Tokutomi, Takashi; Eguchi, Gihachirou; Takagi, Shigeyuki; Matsumoto, Tomie; Sasaguri, Yasuyuki; Shigemori, Minoru.
1988-01-01
In a 46-year-old female with a 1-month history of gait and speech disturbances, computed tomography (CT) demonstrated mass lesions of slightly high density in the left basal ganglia and left frontal lobe. The lesions were markedly enhanced by contrast medium. The patient received no specific treatment, but her clinical manifestations gradually abated and the lesions decreased in size. Five months after her initial examination, the lesions were absent on CT scans; only a small area of low density remained. Residual clinical symptoms included mild right hemiparesis and aphasia. After 14 months the patient again deteriorated, and a CT scan revealed mass lesions in the right frontal lobe and the pons. However, no enhancement was observed in the previously affected regions. A biopsy revealed malignant lymphoma. Despite treatment with steroids and radiation, the patient's clinical status progressively worsened and she died 27 months after initial presentation. Seven other cases of spontaneous regression of primary malignant lymphoma have been reported. In this case, the mechanism of the spontaneous regression was not clear, but changes in immunologic status may have been involved. (author)
Regression testing in the TOTEM DCS
International Nuclear Information System (INIS)
Rodríguez, F Lucas; Atanassov, I; Burkimsher, P; Frost, O; Taskinen, J; Tulimaki, V
2012-01-01
The Detector Control System of the TOTEM experiment at the LHC is built with the industrial product WinCC OA (PVSS). The TOTEM system is generated automatically through scripts using as input the detector Product Breakdown Structure (PBS) structure and its pinout connectivity, archiving and alarm metainformation, and some other heuristics based on the naming conventions. When those initial parameters and automation code are modified to include new features, the resulting PVSS system can also introduce side-effects. On a daily basis, a custom developed regression testing tool takes the most recent code from a Subversion (SVN) repository and builds a new control system from scratch. This system is exported in plain text format using the PVSS export tool, and compared with a system previously validated by a human. A report is sent to the developers with any differences highlighted, in readiness for validation and acceptance as a new stable version. This regression approach is not dependent on any development framework or methodology. This process has been satisfactory during several months, proving to be a very valuable tool before deploying new versions in the production systems.
Supporting Regularized Logistic Regression Privately and Efficiently
Li, Wenfa; Liu, Hongzhe; Yang, Peng; Xie, Wei
2016-01-01
As one of the most popular statistical and machine learning models, logistic regression with regularization has found wide adoption in biomedicine, social sciences, information technology, and so on. These domains often involve data of human subjects that are contingent upon strict privacy regulations. Concerns over data privacy make it increasingly difficult to coordinate and conduct large-scale collaborative studies, which typically rely on cross-institution data sharing and joint analysis. Our work here focuses on safeguarding regularized logistic regression, a widely-used statistical model while at the same time has not been investigated from a data security and privacy perspective. We consider a common use scenario of multi-institution collaborative studies, such as in the form of research consortia or networks as widely seen in genetics, epidemiology, social sciences, etc. To make our privacy-enhancing solution practical, we demonstrate a non-conventional and computationally efficient method leveraging distributing computing and strong cryptography to provide comprehensive protection over individual-level and summary data. Extensive empirical evaluations on several studies validate the privacy guarantee, efficiency and scalability of our proposal. We also discuss the practical implications of our solution for large-scale studies and applications from various disciplines, including genetic and biomedical studies, smart grid, network analysis, etc. PMID:27271738
Structural Break Tests Robust to Regression Misspecification
Directory of Open Access Journals (Sweden)
Alaa Abi Morshed
2018-05-01
Full Text Available Structural break tests for regression models are sensitive to model misspecification. We show—analytically and through simulations—that the sup Wald test for breaks in the conditional mean and variance of a time series process exhibits severe size distortions when the conditional mean dynamics are misspecified. We also show that the sup Wald test for breaks in the unconditional mean and variance does not have the same size distortions, yet benefits from similar power to its conditional counterpart in correctly specified models. Hence, we propose using it as an alternative and complementary test for breaks. We apply the unconditional and conditional mean and variance tests to three US series: unemployment, industrial production growth and interest rates. Both the unconditional and the conditional mean tests detect a break in the mean of interest rates. However, for the other two series, the unconditional mean test does not detect a break, while the conditional mean tests based on dynamic regression models occasionally detect a break, with the implied break-point estimator varying across different dynamic specifications. For all series, the unconditional variance does not detect a break while most tests for the conditional variance do detect a break which also varies across specifications.
Supporting Regularized Logistic Regression Privately and Efficiently.
Li, Wenfa; Liu, Hongzhe; Yang, Peng; Xie, Wei
2016-01-01
As one of the most popular statistical and machine learning models, logistic regression with regularization has found wide adoption in biomedicine, social sciences, information technology, and so on. These domains often involve data of human subjects that are contingent upon strict privacy regulations. Concerns over data privacy make it increasingly difficult to coordinate and conduct large-scale collaborative studies, which typically rely on cross-institution data sharing and joint analysis. Our work here focuses on safeguarding regularized logistic regression, a widely-used statistical model while at the same time has not been investigated from a data security and privacy perspective. We consider a common use scenario of multi-institution collaborative studies, such as in the form of research consortia or networks as widely seen in genetics, epidemiology, social sciences, etc. To make our privacy-enhancing solution practical, we demonstrate a non-conventional and computationally efficient method leveraging distributing computing and strong cryptography to provide comprehensive protection over individual-level and summary data. Extensive empirical evaluations on several studies validate the privacy guarantee, efficiency and scalability of our proposal. We also discuss the practical implications of our solution for large-scale studies and applications from various disciplines, including genetic and biomedical studies, smart grid, network analysis, etc.
Bayesian nonlinear regression for large small problems
Chakraborty, Sounak
2012-07-01
Statistical modeling and inference problems with sample sizes substantially smaller than the number of available covariates are challenging. This is known as large p small n problem. Furthermore, the problem is more complicated when we have multiple correlated responses. We develop multivariate nonlinear regression models in this setup for accurate prediction. In this paper, we introduce a full Bayesian support vector regression model with Vapnik\\'s ε-insensitive loss function, based on reproducing kernel Hilbert spaces (RKHS) under the multivariate correlated response setup. This provides a full probabilistic description of support vector machine (SVM) rather than an algorithm for fitting purposes. We have also introduced a multivariate version of the relevance vector machine (RVM). Instead of the original treatment of the RVM relying on the use of type II maximum likelihood estimates of the hyper-parameters, we put a prior on the hyper-parameters and use Markov chain Monte Carlo technique for computation. We have also proposed an empirical Bayes method for our RVM and SVM. Our methods are illustrated with a prediction problem in the near-infrared (NIR) spectroscopy. A simulation study is also undertaken to check the prediction accuracy of our models. © 2012 Elsevier Inc.
Hyperspectral Unmixing with Robust Collaborative Sparse Regression
Directory of Open Access Journals (Sweden)
Chang Li
2016-07-01
Full Text Available Recently, sparse unmixing (SU of hyperspectral data has received particular attention for analyzing remote sensing images. However, most SU methods are based on the commonly admitted linear mixing model (LMM, which ignores the possible nonlinear effects (i.e., nonlinearity. In this paper, we propose a new method named robust collaborative sparse regression (RCSR based on the robust LMM (rLMM for hyperspectral unmixing. The rLMM takes the nonlinearity into consideration, and the nonlinearity is merely treated as outlier, which has the underlying sparse property. The RCSR simultaneously takes the collaborative sparse property of the abundance and sparsely distributed additive property of the outlier into consideration, which can be formed as a robust joint sparse regression problem. The inexact augmented Lagrangian method (IALM is used to optimize the proposed RCSR. The qualitative and quantitative experiments on synthetic datasets and real hyperspectral images demonstrate that the proposed RCSR is efficient for solving the hyperspectral SU problem compared with the other four state-of-the-art algorithms.
Supporting Regularized Logistic Regression Privately and Efficiently.
Directory of Open Access Journals (Sweden)
Wenfa Li
Full Text Available As one of the most popular statistical and machine learning models, logistic regression with regularization has found wide adoption in biomedicine, social sciences, information technology, and so on. These domains often involve data of human subjects that are contingent upon strict privacy regulations. Concerns over data privacy make it increasingly difficult to coordinate and conduct large-scale collaborative studies, which typically rely on cross-institution data sharing and joint analysis. Our work here focuses on safeguarding regularized logistic regression, a widely-used statistical model while at the same time has not been investigated from a data security and privacy perspective. We consider a common use scenario of multi-institution collaborative studies, such as in the form of research consortia or networks as widely seen in genetics, epidemiology, social sciences, etc. To make our privacy-enhancing solution practical, we demonstrate a non-conventional and computationally efficient method leveraging distributing computing and strong cryptography to provide comprehensive protection over individual-level and summary data. Extensive empirical evaluations on several studies validate the privacy guarantee, efficiency and scalability of our proposal. We also discuss the practical implications of our solution for large-scale studies and applications from various disciplines, including genetic and biomedical studies, smart grid, network analysis, etc.
Forecasting Ebola with a regression transmission model
Directory of Open Access Journals (Sweden)
Jason Asher
2018-03-01
Full Text Available We describe a relatively simple stochastic model of Ebola transmission that was used to produce forecasts with the lowest mean absolute error among Ebola Forecasting Challenge participants. The model enabled prediction of peak incidence, the timing of this peak, and final size of the outbreak. The underlying discrete-time compartmental model used a time-varying reproductive rate modeled as a multiplicative random walk driven by the number of infectious individuals. This structure generalizes traditional Susceptible-Infected-Recovered (SIR disease modeling approaches and allows for the flexible consideration of outbreaks with complex trajectories of disease dynamics. Keywords: Ebola, Forecasting, Mathematical modeling, Bayesian inference
BANK FAILURE PREDICTION WITH LOGISTIC REGRESSION
Directory of Open Access Journals (Sweden)
Taha Zaghdoudi
2013-04-01
Full Text Available In recent years the economic and financial world is shaken by a wave of financial crisis and resulted in violent bank fairly huge losses. Several authors have focused on the study of the crises in order to develop an early warning model. It is in the same path that our work takes its inspiration. Indeed, we have tried to develop a predictive model of Tunisian bank failures with the contribution of the binary logistic regression method. The specificity of our prediction model is that it takes into account microeconomic indicators of bank failures. The results obtained using our provisional model show that a bank's ability to repay its debt, the coefficient of banking operations, bank profitability per employee and leverage financial ratio has a negative impact on the probability of failure.
Robust Mediation Analysis Based on Median Regression
Yuan, Ying; MacKinnon, David P.
2014-01-01
Mediation analysis has many applications in psychology and the social sciences. The most prevalent methods typically assume that the error distribution is normal and homoscedastic. However, this assumption may rarely be met in practice, which can affect the validity of the mediation analysis. To address this problem, we propose robust mediation analysis based on median regression. Our approach is robust to various departures from the assumption of homoscedasticity and normality, including heavy-tailed, skewed, contaminated, and heteroscedastic distributions. Simulation studies show that under these circumstances, the proposed method is more efficient and powerful than standard mediation analysis. We further extend the proposed robust method to multilevel mediation analysis, and demonstrate through simulation studies that the new approach outperforms the standard multilevel mediation analysis. We illustrate the proposed method using data from a program designed to increase reemployment and enhance mental health of job seekers. PMID:24079925
ANYOLS, Least Square Fit by Stepwise Regression
International Nuclear Information System (INIS)
Atwoods, C.L.; Mathews, S.
1986-01-01
Description of program or function: ANYOLS is a stepwise program which fits data using ordinary or weighted least squares. Variables are selected for the model in a stepwise way based on a user- specified input criterion or a user-written subroutine. The order in which variables are entered can be influenced by user-defined forcing priorities. Instead of stepwise selection, ANYOLS can try all possible combinations of any desired subset of the variables. Automatic output for the final model in a stepwise search includes plots of the residuals, 'studentized' residuals, and leverages; if the model is not too large, the output also includes partial regression and partial leverage plots. A data set may be re-used so that several selection criteria can be tried. Flexibility is increased by allowing the substitution of user-written subroutines for several default subroutines
Nonparametric additive regression for repeatedly measured data
Carroll, R. J.
2009-05-20
We develop an easily computed smooth backfitting algorithm for additive model fitting in repeated measures problems. Our methodology easily copes with various settings, such as when some covariates are the same over repeated response measurements. We allow for a working covariance matrix for the regression errors, showing that our method is most efficient when the correct covariance matrix is used. The component functions achieve the known asymptotic variance lower bound for the scalar argument case. Smooth backfitting also leads directly to design-independent biases in the local linear case. Simulations show our estimator has smaller variance than the usual kernel estimator. This is also illustrated by an example from nutritional epidemiology. © 2009 Biometrika Trust.
Conjoined legs: Sirenomelia or caudal regression syndrome?
Directory of Open Access Journals (Sweden)
Sakti Prasad Das
2013-01-01
Full Text Available Presence of single umbilical persistent vitelline artery distinguishes sirenomelia from caudal regression syndrome. We report a case of a12-year-old boy who had bilateral umbilical arteries presented with fusion of both legs in the lower one third of leg. Both feet were rudimentary. The right foot had a valgus rocker-bottom deformity. All toes were present but rudimentary. The left foot showed absence of all toes. Physical examination showed left tibia vara. The chest evaluation in sitting revealed pigeon chest and elevated right shoulder. Posterior examination of the trunk showed thoracic scoliosis with convexity to right. The patient was operated and at 1 year followup the boy had two separate legs with a good aesthetic and functional results.
Conjoined legs: Sirenomelia or caudal regression syndrome?
Das, Sakti Prasad; Ojha, Niranjan; Ganesh, G Shankar; Mohanty, Ram Narayan
2013-07-01
Presence of single umbilical persistent vitelline artery distinguishes sirenomelia from caudal regression syndrome. We report a case of a12-year-old boy who had bilateral umbilical arteries presented with fusion of both legs in the lower one third of leg. Both feet were rudimentary. The right foot had a valgus rocker-bottom deformity. All toes were present but rudimentary. The left foot showed absence of all toes. Physical examination showed left tibia vara. The chest evaluation in sitting revealed pigeon chest and elevated right shoulder. Posterior examination of the trunk showed thoracic scoliosis with convexity to right. The patient was operated and at 1 year followup the boy had two separate legs with a good aesthetic and functional results.
Logistic regression against a divergent Bayesian network
Directory of Open Access Journals (Sweden)
Noel Antonio Sánchez Trujillo
2015-01-01
Full Text Available This article is a discussion about two statistical tools used for prediction and causality assessment: logistic regression and Bayesian networks. Using data of a simulated example from a study assessing factors that might predict pulmonary emphysema (where fingertip pigmentation and smoking are considered; we posed the following questions. Is pigmentation a confounding, causal or predictive factor? Is there perhaps another factor, like smoking, that confounds? Is there a synergy between pigmentation and smoking? The results, in terms of prediction, are similar with the two techniques; regarding causation, differences arise. We conclude that, in decision-making, the sum of both: a statistical tool, used with common sense, and previous evidence, taking years or even centuries to develop; is better than the automatic and exclusive use of statistical resources.
Adaptive regression for modeling nonlinear relationships
Knafl, George J
2016-01-01
This book presents methods for investigating whether relationships are linear or nonlinear and for adaptively fitting appropriate models when they are nonlinear. Data analysts will learn how to incorporate nonlinearity in one or more predictor variables into regression models for different types of outcome variables. Such nonlinear dependence is often not considered in applied research, yet nonlinear relationships are common and so need to be addressed. A standard linear analysis can produce misleading conclusions, while a nonlinear analysis can provide novel insights into data, not otherwise possible. A variety of examples of the benefits of modeling nonlinear relationships are presented throughout the book. Methods are covered using what are called fractional polynomials based on real-valued power transformations of primary predictor variables combined with model selection based on likelihood cross-validation. The book covers how to formulate and conduct such adaptive fractional polynomial modeling in the s...
Crime Modeling using Spatial Regression Approach
Saleh Ahmar, Ansari; Adiatma; Kasim Aidid, M.
2018-01-01
Act of criminality in Indonesia increased both variety and quantity every year. As murder, rape, assault, vandalism, theft, fraud, fencing, and other cases that make people feel unsafe. Risk of society exposed to crime is the number of reported cases in the police institution. The higher of the number of reporter to the police institution then the number of crime in the region is increasing. In this research, modeling criminality in South Sulawesi, Indonesia with the dependent variable used is the society exposed to the risk of crime. Modelling done by area approach is the using Spatial Autoregressive (SAR) and Spatial Error Model (SEM) methods. The independent variable used is the population density, the number of poor population, GDP per capita, unemployment and the human development index (HDI). Based on the analysis using spatial regression can be shown that there are no dependencies spatial both lag or errors in South Sulawesi.
Regression analysis for the social sciences
Gordon, Rachel A
2015-01-01
Provides graduate students in the social sciences with the basic skills they need to estimate, interpret, present, and publish basic regression models using contemporary standards. Key features of the book include: interweaving the teaching of statistical concepts with examples developed for the course from publicly-available social science data or drawn from the literature. thorough integration of teaching statistical theory with teaching data processing and analysis. teaching of Stata and use of chapter exercises in which students practice programming and interpretation on the same data set. A separate set of exercises allows students to select a data set to apply the concepts learned in each chapter to a research question of interest to them, all updated for this edition.
Entrepreneurial intention modeling using hierarchical multiple regression
Directory of Open Access Journals (Sweden)
Marina Jeger
2014-12-01
Full Text Available The goal of this study is to identify the contribution of effectuation dimensions to the predictive power of the entrepreneurial intention model over and above that which can be accounted for by other predictors selected and confirmed in previous studies. As is often the case in social and behavioral studies, some variables are likely to be highly correlated with each other. Therefore, the relative amount of variance in the criterion variable explained by each of the predictors depends on several factors such as the order of variable entry and sample specifics. The results show the modest predictive power of two dimensions of effectuation prior to the introduction of the theory of planned behavior elements. The article highlights the main advantages of applying hierarchical regression in social sciences as well as in the specific context of entrepreneurial intention formation, and addresses some of the potential pitfalls that this type of analysis entails.
Gaussian process regression for geometry optimization
Denzel, Alexander; Kästner, Johannes
2018-03-01
We implemented a geometry optimizer based on Gaussian process regression (GPR) to find minimum structures on potential energy surfaces. We tested both a two times differentiable form of the Matérn kernel and the squared exponential kernel. The Matérn kernel performs much better. We give a detailed description of the optimization procedures. These include overshooting the step resulting from GPR in order to obtain a higher degree of interpolation vs. extrapolation. In a benchmark against the Limited-memory Broyden-Fletcher-Goldfarb-Shanno optimizer of the DL-FIND library on 26 test systems, we found the new optimizer to generally reduce the number of required optimization steps.
Least square regularized regression in sum space.
Xu, Yong-Li; Chen, Di-Rong; Li, Han-Xiong; Liu, Lu
2013-04-01
This paper proposes a least square regularized regression algorithm in sum space of reproducing kernel Hilbert spaces (RKHSs) for nonflat function approximation, and obtains the solution of the algorithm by solving a system of linear equations. This algorithm can approximate the low- and high-frequency component of the target function with large and small scale kernels, respectively. The convergence and learning rate are analyzed. We measure the complexity of the sum space by its covering number and demonstrate that the covering number can be bounded by the product of the covering numbers of basic RKHSs. For sum space of RKHSs with Gaussian kernels, by choosing appropriate parameters, we tradeoff the sample error and regularization error, and obtain a polynomial learning rate, which is better than that in any single RKHS. The utility of this method is illustrated with two simulated data sets and five real-life databases.
Model Selection in Kernel Ridge Regression
DEFF Research Database (Denmark)
Exterkate, Peter
Kernel ridge regression is gaining popularity as a data-rich nonlinear forecasting tool, which is applicable in many different contexts. This paper investigates the influence of the choice of kernel and the setting of tuning parameters on forecast accuracy. We review several popular kernels......, including polynomial kernels, the Gaussian kernel, and the Sinc kernel. We interpret the latter two kernels in terms of their smoothing properties, and we relate the tuning parameters associated to all these kernels to smoothness measures of the prediction function and to the signal-to-noise ratio. Based...... on these interpretations, we provide guidelines for selecting the tuning parameters from small grids using cross-validation. A Monte Carlo study confirms the practical usefulness of these rules of thumb. Finally, the flexible and smooth functional forms provided by the Gaussian and Sinc kernels makes them widely...
Learning Inverse Rig Mappings by Nonlinear Regression.
Holden, Daniel; Saito, Jun; Komura, Taku
2017-03-01
We present a framework to design inverse rig-functions-functions that map low level representations of a character's pose such as joint positions or surface geometry to the representation used by animators called the animation rig. Animators design scenes using an animation rig, a framework widely adopted in animation production which allows animators to design character poses and geometry via intuitive parameters and interfaces. Yet most state-of-the-art computer animation techniques control characters through raw, low level representations such as joint angles, joint positions, or vertex coordinates. This difference often stops the adoption of state-of-the-art techniques in animation production. Our framework solves this issue by learning a mapping between the low level representations of the pose and the animation rig. We use nonlinear regression techniques, learning from example animation sequences designed by the animators. When new motions are provided in the skeleton space, the learned mapping is used to estimate the rig controls that reproduce such a motion. We introduce two nonlinear functions for producing such a mapping: Gaussian process regression and feedforward neural networks. The appropriate solution depends on the nature of the rig and the amount of data available for training. We show our framework applied to various examples including articulated biped characters, quadruped characters, facial animation rigs, and deformable characters. With our system, animators have the freedom to apply any motion synthesis algorithm to arbitrary rigging and animation pipelines for immediate editing. This greatly improves the productivity of 3D animation, while retaining the flexibility and creativity of artistic input.
DRREP: deep ridge regressed epitope predictor.
Sher, Gene; Zhi, Degui; Zhang, Shaojie
2017-10-03
The ability to predict epitopes plays an enormous role in vaccine development in terms of our ability to zero in on where to do a more thorough in-vivo analysis of the protein in question. Though for the past decade there have been numerous advancements and improvements in epitope prediction, on average the best benchmark prediction accuracies are still only around 60%. New machine learning algorithms have arisen within the domain of deep learning, text mining, and convolutional networks. This paper presents a novel analytically trained and string kernel using deep neural network, which is tailored for continuous epitope prediction, called: Deep Ridge Regressed Epitope Predictor (DRREP). DRREP was tested on long protein sequences from the following datasets: SARS, Pellequer, HIV, AntiJen, and SEQ194. DRREP was compared to numerous state of the art epitope predictors, including the most recently published predictors called LBtope and DMNLBE. Using area under ROC curve (AUC), DRREP achieved a performance improvement over the best performing predictors on SARS (13.7%), HIV (8.9%), Pellequer (1.5%), and SEQ194 (3.1%), with its performance being matched only on the AntiJen dataset, by the LBtope predictor, where both DRREP and LBtope achieved an AUC of 0.702. DRREP is an analytically trained deep neural network, thus capable of learning in a single step through regression. By combining the features of deep learning, string kernels, and convolutional networks, the system is able to perform residue-by-residue prediction of continues epitopes with higher accuracy than the current state of the art predictors.
Collaborative regression-based anatomical landmark detection
International Nuclear Information System (INIS)
Gao, Yaozong; Shen, Dinggang
2015-01-01
Anatomical landmark detection plays an important role in medical image analysis, e.g. for registration, segmentation and quantitative analysis. Among the various existing methods for landmark detection, regression-based methods have recently attracted much attention due to their robustness and efficiency. In these methods, landmarks are localised through voting from all image voxels, which is completely different from the classification-based methods that use voxel-wise classification to detect landmarks. Despite their robustness, the accuracy of regression-based landmark detection methods is often limited due to (1) the inclusion of uninformative image voxels in the voting procedure, and (2) the lack of effective ways to incorporate inter-landmark spatial dependency into the detection step. In this paper, we propose a collaborative landmark detection framework to address these limitations. The concept of collaboration is reflected in two aspects. (1) Multi-resolution collaboration. A multi-resolution strategy is proposed to hierarchically localise landmarks by gradually excluding uninformative votes from faraway voxels. Moreover, for informative voxels near the landmark, a spherical sampling strategy is also designed at the training stage to improve their prediction accuracy. (2) Inter-landmark collaboration. A confidence-based landmark detection strategy is proposed to improve the detection accuracy of ‘difficult-to-detect’ landmarks by using spatial guidance from ‘easy-to-detect’ landmarks. To evaluate our method, we conducted experiments extensively on three datasets for detecting prostate landmarks and head and neck landmarks in computed tomography images, and also dental landmarks in cone beam computed tomography images. The results show the effectiveness of our collaborative landmark detection framework in improving landmark detection accuracy, compared to other state-of-the-art methods. (paper)
Regression dilution bias: tools for correction methods and sample size calculation.
Berglund, Lars
2012-08-01
Random errors in measurement of a risk factor will introduce downward bias of an estimated association to a disease or a disease marker. This phenomenon is called regression dilution bias. A bias correction may be made with data from a validity study or a reliability study. In this article we give a non-technical description of designs of reliability studies with emphasis on selection of individuals for a repeated measurement, assumptions of measurement error models, and correction methods for the slope in a simple linear regression model where the dependent variable is a continuous variable. Also, we describe situations where correction for regression dilution bias is not appropriate. The methods are illustrated with the association between insulin sensitivity measured with the euglycaemic insulin clamp technique and fasting insulin, where measurement of the latter variable carries noticeable random error. We provide software tools for estimation of a corrected slope in a simple linear regression model assuming data for a continuous dependent variable and a continuous risk factor from a main study and an additional measurement of the risk factor in a reliability study. Also, we supply programs for estimation of the number of individuals needed in the reliability study and for choice of its design. Our conclusion is that correction for regression dilution bias is seldom applied in epidemiological studies. This may cause important effects of risk factors with large measurement errors to be neglected.
Multiple regression models for energy use in air-conditioned office buildings in different climates
International Nuclear Information System (INIS)
Lam, Joseph C.; Wan, Kevin K.W.; Liu Dalong; Tsang, C.L.
2010-01-01
An attempt was made to develop multiple regression models for office buildings in the five major climates in China - severe cold, cold, hot summer and cold winter, mild, and hot summer and warm winter. A total of 12 key building design variables were identified through parametric and sensitivity analysis, and considered as inputs in the regression models. The coefficient of determination R 2 varies from 0.89 in Harbin to 0.97 in Kunming, indicating that 89-97% of the variations in annual building energy use can be explained by the changes in the 12 parameters. A pseudo-random number generator based on three simple multiplicative congruential generators was employed to generate random designs for evaluation of the regression models. The difference between regression-predicted and DOE-simulated annual building energy use are largely within 10%. It is envisaged that the regression models developed can be used to estimate the likely energy savings/penalty during the initial design stage when different building schemes and design concepts are being considered.
Stylianou, Neophytos; Akbarov, Artur; Kontopantelis, Evangelos; Buchan, Iain; Dunn, Ken W
2015-08-01
Predicting mortality from burn injury has traditionally employed logistic regression models. Alternative machine learning methods have been introduced in some areas of clinical prediction as the necessary software and computational facilities have become accessible. Here we compare logistic regression and machine learning predictions of mortality from burn. An established logistic mortality model was compared to machine learning methods (artificial neural network, support vector machine, random forests and naïve Bayes) using a population-based (England & Wales) case-cohort registry. Predictive evaluation used: area under the receiver operating characteristic curve; sensitivity; specificity; positive predictive value and Youden's index. All methods had comparable discriminatory abilities, similar sensitivities, specificities and positive predictive values. Although some machine learning methods performed marginally better than logistic regression the differences were seldom statistically significant and clinically insubstantial. Random forests were marginally better for high positive predictive value and reasonable sensitivity. Neural networks yielded slightly better prediction overall. Logistic regression gives an optimal mix of performance and interpretability. The established logistic regression model of burn mortality performs well against more complex alternatives. Clinical prediction with a small set of strong, stable, independent predictors is unlikely to gain much from machine learning outside specialist research contexts. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.
Logistic regression applied to natural hazards: rare event logistic regression with replications
Directory of Open Access Journals (Sweden)
M. Guns
2012-06-01
Full Text Available Statistical analysis of natural hazards needs particular attention, as most of these phenomena are rare events. This study shows that the ordinary rare event logistic regression, as it is now commonly used in geomorphologic studies, does not always lead to a robust detection of controlling factors, as the results can be strongly sample-dependent. In this paper, we introduce some concepts of Monte Carlo simulations in rare event logistic regression. This technique, so-called rare event logistic regression with replications, combines the strength of probabilistic and statistical methods, and allows overcoming some of the limitations of previous developments through robust variable selection. This technique was here developed for the analyses of landslide controlling factors, but the concept is widely applicable for statistical analyses of natural hazards.
Logistic regression applied to natural hazards: rare event logistic regression with replications
Guns, M.; Vanacker, V.
2012-06-01
Statistical analysis of natural hazards needs particular attention, as most of these phenomena are rare events. This study shows that the ordinary rare event logistic regression, as it is now commonly used in geomorphologic studies, does not always lead to a robust detection of controlling factors, as the results can be strongly sample-dependent. In this paper, we introduce some concepts of Monte Carlo simulations in rare event logistic regression. This technique, so-called rare event logistic regression with replications, combines the strength of probabilistic and statistical methods, and allows overcoming some of the limitations of previous developments through robust variable selection. This technique was here developed for the analyses of landslide controlling factors, but the concept is widely applicable for statistical analyses of natural hazards.
A brief introduction to regression designs and mixed-effects modelling by a recent convert
DEFF Research Database (Denmark)
Balling, Laura Winther
2008-01-01
This article discusses the advantages of multiple regression designs over the factorial designs traditionally used in many psycholinguistic experiments. It is shown that regression designs are typically more informative, statistically more powerful and better suited to the analysis of naturalistic...... tasks. The advantages of including both fixed and random effects are demonstrated with reference to linear mixed-effects models, and problems of collinearity, variable distribution and variable selection are discussed. The advantages of these techniques are exemplified in an analysis of a word...
Ridge regression estimator: combining unbiased and ordinary ridge regression methods of estimation
Directory of Open Access Journals (Sweden)
Sharad Damodar Gore
2009-10-01
Full Text Available Statistical literature has several methods for coping with multicollinearity. This paper introduces a new shrinkage estimator, called modified unbiased ridge (MUR. This estimator is obtained from unbiased ridge regression (URR in the same way that ordinary ridge regression (ORR is obtained from ordinary least squares (OLS. Properties of MUR are derived. Results on its matrix mean squared error (MMSE are obtained. MUR is compared with ORR and URR in terms of MMSE. These results are illustrated with an example based on data generated by Hoerl and Kennard (1975.
Directory of Open Access Journals (Sweden)
Hong-Juan Li
2013-04-01
Full Text Available Electric load forecasting is an important issue for a power utility, associated with the management of daily operations such as energy transfer scheduling, unit commitment, and load dispatch. Inspired by strong non-linear learning capability of support vector regression (SVR, this paper presents a SVR model hybridized with the empirical mode decomposition (EMD method and auto regression (AR for electric load forecasting. The electric load data of the New South Wales (Australia market are employed for comparing the forecasting performances of different forecasting models. The results confirm the validity of the idea that the proposed model can simultaneously provide forecasting with good accuracy and interpretability.
Using the Ridge Regression Procedures to Estimate the Multiple Linear Regression Coefficients
Gorgees, HazimMansoor; Mahdi, FatimahAssim
2018-05-01
This article concerns with comparing the performance of different types of ordinary ridge regression estimators that have been already proposed to estimate the regression parameters when the near exact linear relationships among the explanatory variables is presented. For this situations we employ the data obtained from tagi gas filling company during the period (2008-2010). The main result we reached is that the method based on the condition number performs better than other methods since it has smaller mean square error (MSE) than the other stated methods.
Tatone, Elise H; Duffield, Todd F; LeBlanc, Stephen J; DeVries, Trevor J; Gordon, Jessica L
2017-02-01
An observational study of 790 to over 3,000 herds was conducted to estimate the within-herd prevalence and cow-level risk factors for ketosis in dairy cattle in herds that participate in a Dairy Herd Improvement Association (DHIA) program. Ketosis or hyperketolactia (KET) was diagnosed as milk β-hydroxybutyrate ≥0.15 mmol/L at first DHIA test when tested within the first 30 d in milk. Seven hundred ninety-five herds providing at least 61 first milk tests from June 2014 to December 2015 were used to estimate the provincial within-herd prevalence of KET. All herds on DHIA in Ontario (n = 3,042) were used to construct cow-level multilevel logistic regression models to investigate the association of DHIA collected variables with the odds of KET at first DHIA milk test. Primiparous and multiparous animals were modeled independently. The cow-level KET prevalence in Ontario was 21%, with an average within-herd prevalence of 21% (standard deviation = 10.6) for dairy herds enrolled in a DHIA program. The prevalence of KET had a distinct seasonality with the lowest prevalence occurring from July to November. Automatic milking systems (AMS) were associated with increased within-herd prevalence, as well as increased odds of KET in multiparous animals at first test (odds ratio: 1.45; 95% confidence interval: 1.30 to 1.63). Jersey cattle had over 1.46 times higher odds of KET than Holstein cattle. Milk fat yield ≥1.12 kg/d at the last test of the previous lactation was associated with decreased odds of KET in the current lactation (odds ratio: 0.56; 95% confidence interval: 0.53 to 0.59). Increased days dry and longer calving intervals, for multiparous animals, and older age at first calving for primiparous animals increased the odds of KET at first test. This study confirms previous findings that increased days dry, longer calving intervals, and increased age at first calving are associated with increased odds of KET and is the first report of increased KET in herds with
AN APPLICATION OF FUNCTIONAL MULTIVARIATE REGRESSION MODEL TO MULTICLASS CLASSIFICATION
Krzyśko, Mirosław; Smaga, Łukasz
2017-01-01
In this paper, the scale response functional multivariate regression model is considered. By using the basis functions representation of functional predictors and regression coefficients, this model is rewritten as a multivariate regression model. This representation of the functional multivariate regression model is used for multiclass classification for multivariate functional data. Computational experiments performed on real labelled data sets demonstrate the effectiveness of the proposed ...
Verification of helical tomotherapy delivery using autoassociative kernel regression
International Nuclear Information System (INIS)
Seibert, Rebecca M.; Ramsey, Chester R.; Garvey, Dustin R.; Wesley Hines, J.; Robison, Ben H.; Outten, Samuel S.
2007-01-01
Quality assurance (QA) is a topic of major concern in the field of intensity modulated radiation therapy (IMRT). The standard of practice for IMRT is to perform QA testing for individual patients to verify that the dose distribution will be delivered to the patient. The purpose of this study was to develop a new technique that could eventually be used to automatically evaluate helical tomotherapy treatments during delivery using exit detector data. This technique uses an autoassociative kernel regression (AAKR) model to detect errors in tomotherapy delivery. AAKR is a novel nonparametric model that is known to predict a group of correct sensor values when supplied a group of sensor values that is usually corrupted or contains faults such as machine failure. This modeling scheme is especially suited for the problem of monitoring the fluence values found in the exit detector data because it is able to learn the complex detector data relationships. This scheme still applies when detector data are summed over many frames with a low temporal resolution and a variable beam attenuation resulting from patient movement. Delivery sequences from three archived patients (prostate, lung, and head and neck) were used in this study. Each delivery sequence was modified by reducing the opening time for random individual multileaf collimator (MLC) leaves by random amounts. The error and error-free treatments were delivered with different phantoms in the path of the beam. Multiple autoassociative kernel regression (AAKR) models were developed and tested by the investigators using combinations of the stored exit detector data sets from each delivery. The models proved robust and were able to predict the correct or error-free values for a projection, which had a single MLC leaf decrease its opening time by less than 10 msec. The model also was able to determine machine output errors. The average uncertainty value for the unfaulted projections ranged from 0.4% to 1.8% of the detector
Spatial vulnerability assessments by regression kriging
Pásztor, László; Laborczi, Annamária; Takács, Katalin; Szatmári, Gábor
2016-04-01
information representing IEW or GRP forming environmental factors were taken into account to support the spatial inference of the locally experienced IEW frequency and measured GRP values respectively. An efficient spatial prediction methodology was applied to construct reliable maps, namely regression kriging (RK) using spatially exhaustive auxiliary data on soil, geology, topography, land use and climate. RK divides the spatial inference into two parts. Firstly the deterministic component of the target variable is determined by a regression model. The residuals of the multiple linear regression analysis represent the spatially varying but dependent stochastic component, which are interpolated by kriging. The final map is the sum of the two component predictions. Application of RK also provides the possibility of inherent accuracy assessment. The resulting maps are characterized by global and local measures of its accuracy. Additionally the method enables interval estimation for spatial extension of the areas of predefined risk categories. All of these outputs provide useful contribution to spatial planning, action planning and decision making. Acknowledgement: Our work was partly supported by the Hungarian National Scientific Research Foundation (OTKA, Grant No. K105167).
DEFF Research Database (Denmark)
Shirali, Mahmoud; Nielsen, Vivi Hunnicke; Møller, Steen Henrik
Heritability of residual feed intake (RFI) increased from low to high over the growing period in male and female mink. The lowest heritability for RFI (male: 0.04 ± 0.01 standard deviation (SD); female: 0.05 ± 0.01 SD) was in early and the highest heritability (male: 0.33 ± 0.02; female: 0.34 ± 0.......02 SD) was achieved at the late growth stages. The genetic correlation between different growth stages for RFI showed a high association (0.91 to 0.98) between early and late growing periods. However, phenotypic correlations were lower from 0.29 to 0.50. The residual variances were substantially higher...
CSIR Research Space (South Africa)
Gregor, Luke
2017-12-01
Full Text Available understanding with spatially integrated air–sea flux estimates (Fay and McKinley, 2014). Conversely, ocean biogeochemical process models are good tools for mechanis- tic understanding, but fail to represent the seasonality of CO2 fluxes in the Southern Ocean... of including coordinate variables as proxies of 1pCO2 in the empirical methods. In the inter- comparison study by Rödenbeck et al. (2015) proxies typi- cally include, but are not limited to, sea surface temperature (SST), chlorophyll a (Chl a), mixed layer...
Rasouli, Soora; Timmermans, Harry
2014-01-01
Rasouli & Timmermans1 suggested a model of travel episode satisfaction that includes the degree and nature of multitasking, activity envelope, transport mode, travel party, duration and a set of contextual and socio-economic variables. In this sequel, the focus of attention shifts to the analysis of
Introduction to the use of regression models in epidemiology.
Bender, Ralf
2009-01-01
Regression modeling is one of the most important statistical techniques used in analytical epidemiology. By means of regression models the effect of one or several explanatory variables (e.g., exposures, subject characteristics, risk factors) on a response variable such as mortality or cancer can be investigated. From multiple regression models, adjusted effect estimates can be obtained that take the effect of potential confounders into account. Regression methods can be applied in all epidemiologic study designs so that they represent a universal tool for data analysis in epidemiology. Different kinds of regression models have been developed in dependence on the measurement scale of the response variable and the study design. The most important methods are linear regression for continuous outcomes, logistic regression for binary outcomes, Cox regression for time-to-event data, and Poisson regression for frequencies and rates. This chapter provides a nontechnical introduction to these regression models with illustrating examples from cancer research.
Gurau, Razvan
2017-01-01
Written by the creator of the modern theory of random tensors, this book is the first self-contained introductory text to this rapidly developing theory. Starting from notions familiar to the average researcher or PhD student in mathematical or theoretical physics, the book presents in detail the theory and its applications to physics. The recent detections of the Higgs boson at the LHC and gravitational waves at LIGO mark new milestones in Physics confirming long standing predictions of Quantum Field Theory and General Relativity. These two experimental results only reinforce today the need to find an underlying common framework of the two: the elusive theory of Quantum Gravity. Over the past thirty years, several alternatives have been proposed as theories of Quantum Gravity, chief among them String Theory. While these theories are yet to be tested experimentally, key lessons have already been learned. Whatever the theory of Quantum Gravity may be, it must incorporate random geometry in one form or another....
Automation of Flight Software Regression Testing
Tashakkor, Scott B.
2016-01-01
NASA is developing the Space Launch System (SLS) to be a heavy lift launch vehicle supporting human and scientific exploration beyond earth orbit. SLS will have a common core stage, an upper stage, and different permutations of boosters and fairings to perform various crewed or cargo missions. Marshall Space Flight Center (MSFC) is writing the Flight Software (FSW) that will operate the SLS launch vehicle. The FSW is developed in an incremental manner based on "Agile" software techniques. As the FSW is incrementally developed, testing the functionality of the code needs to be performed continually to ensure that the integrity of the software is maintained. Manually testing the functionality on an ever-growing set of requirements and features is not an efficient solution and therefore needs to be done automatically to ensure testing is comprehensive. To support test automation, a framework for a regression test harness has been developed and used on SLS FSW. The test harness provides a modular design approach that can compile or read in the required information specified by the developer of the test. The modularity provides independence between groups of tests and the ability to add and remove tests without disturbing others. This provides the SLS FSW team a time saving feature that is essential to meeting SLS Program technical and programmatic requirements. During development of SLS FSW, this technique has proved to be a useful tool to ensure all requirements have been tested, and that desired functionality is maintained, as changes occur. It also provides a mechanism for developers to check functionality of the code that they have developed. With this system, automation of regression testing is accomplished through a scheduling tool and/or commit hooks. Key advantages of this test harness capability includes execution support for multiple independent test cases, the ability for developers to specify precisely what they are testing and how, the ability to add
Laplacian embedded regression for scalable manifold regularization.
Chen, Lin; Tsang, Ivor W; Xu, Dong
2012-06-01
Semi-supervised learning (SSL), as a powerful tool to learn from a limited number of labeled data and a large number of unlabeled data, has been attracting increasing attention in the machine learning community. In particular, the manifold regularization framework has laid solid theoretical foundations for a large family of SSL algorithms, such as Laplacian support vector machine (LapSVM) and Laplacian regularized least squares (LapRLS). However, most of these algorithms are limited to small scale problems due to the high computational cost of the matrix inversion operation involved in the optimization problem. In this paper, we propose a novel framework called Laplacian embedded regression by introducing an intermediate decision variable into the manifold regularization framework. By using ∈-insensitive loss, we obtain the Laplacian embedded support vector regression (LapESVR) algorithm, which inherits the sparse solution from SVR. Also, we derive Laplacian embedded RLS (LapERLS) corresponding to RLS under the proposed framework. Both LapESVR and LapERLS possess a simpler form of a transformed kernel, which is the summation of the original kernel and a graph kernel that captures the manifold structure. The benefits of the transformed kernel are two-fold: (1) we can deal with the original kernel matrix and the graph Laplacian matrix in the graph kernel separately and (2) if the graph Laplacian matrix is sparse, we only need to perform the inverse operation for a sparse matrix, which is much more efficient when compared with that for a dense one. Inspired by kernel principal component analysis, we further propose to project the introduced decision variable into a subspace spanned by a few eigenvectors of the graph Laplacian matrix in order to better reflect the data manifold, as well as accelerate the calculation of the graph kernel, allowing our methods to efficiently and effectively cope with large scale SSL problems. Extensive experiments on both toy and real
Directory of Open Access Journals (Sweden)
Qiutong Jin
2016-06-01
Full Text Available Estimating the spatial distribution of precipitation is an important and challenging task in hydrology, climatology, ecology, and environmental science. In order to generate a highly accurate distribution map of average annual precipitation for the Loess Plateau in China, multiple linear regression Kriging (MLRK and geographically weighted regression Kriging (GWRK methods were employed using precipitation data from the period 1980–2010 from 435 meteorological stations. The predictors in regression Kriging were selected by stepwise regression analysis from many auxiliary environmental factors, such as elevation (DEM, normalized difference vegetation index (NDVI, solar radiation, slope, and aspect. All predictor distribution maps had a 500 m spatial resolution. Validation precipitation data from 130 hydrometeorological stations were used to assess the prediction accuracies of the MLRK and GWRK approaches. Results showed that both prediction maps with a 500 m spatial resolution interpolated by MLRK and GWRK had a high accuracy and captured detailed spatial distribution data; however, MLRK produced a lower prediction error and a higher variance explanation than GWRK, although the differences were small, in contrast to conclusions from similar studies.
Hecht, Jeffrey B.
The analysis of regression residuals and detection of outliers are discussed, with emphasis on determining how deviant an individual data point must be to be considered an outlier and the impact that multiple suspected outlier data points have on the process of outlier determination and treatment. Only bivariate (one dependent and one independent)…
A rotor optimization using regression analysis
Giansante, N.
1984-01-01
The design and development of helicopter rotors is subject to the many design variables and their interactions that effect rotor operation. Until recently, selection of rotor design variables to achieve specified rotor operational qualities has been a costly, time consuming, repetitive task. For the past several years, Kaman Aerospace Corporation has successfully applied multiple linear regression analysis, coupled with optimization and sensitivity procedures, in the analytical design of rotor systems. It is concluded that approximating equations can be developed rapidly for a multiplicity of objective and constraint functions and optimizations can be performed in a rapid and cost effective manner; the number and/or range of design variables can be increased by expanding the data base and developing approximating functions to reflect the expanded design space; the order of the approximating equations can be expanded easily to improve correlation between analyzer results and the approximating equations; gradients of the approximating equations can be calculated easily and these gradients are smooth functions reducing the risk of numerical problems in the optimization; the use of approximating functions allows the problem to be started easily and rapidly from various initial designs to enhance the probability of finding a global optimum; and the approximating equations are independent of the analysis or optimization codes used.
Regression analysis of sparse asynchronous longitudinal data.
Cao, Hongyuan; Zeng, Donglin; Fine, Jason P
2015-09-01
We consider estimation of regression models for sparse asynchronous longitudinal observations, where time-dependent responses and covariates are observed intermittently within subjects. Unlike with synchronous data, where the response and covariates are observed at the same time point, with asynchronous data, the observation times are mismatched. Simple kernel-weighted estimating equations are proposed for generalized linear models with either time invariant or time-dependent coefficients under smoothness assumptions for the covariate processes which are similar to those for synchronous data. For models with either time invariant or time-dependent coefficients, the estimators are consistent and asymptotically normal but converge at slower rates than those achieved with synchronous data. Simulation studies evidence that the methods perform well with realistic sample sizes and may be superior to a naive application of methods for synchronous data based on an ad hoc last value carried forward approach. The practical utility of the methods is illustrated on data from a study on human immunodeficiency virus.
Free Software Development. 1. Fitting Statistical Regressions
Directory of Open Access Journals (Sweden)
Lorentz JÄNTSCHI
2002-12-01
Full Text Available The present paper is focused on modeling of statistical data processing with applications in field of material science and engineering. A new method of data processing is presented and applied on a set of 10 Ni–Mn–Ga ferromagnetic ordered shape memory alloys that are known to exhibit phonon softening and soft mode condensation into a premartensitic phase prior to the martensitic transformation itself. The method allows to identify the correlations between data sets and to exploit them later in statistical study of alloys. An algorithm for computing data was implemented in preprocessed hypertext language (PHP, a hypertext markup language interface for them was also realized and put onto comp.east.utcluj.ro educational web server, and it is accessible via http protocol at the address http://vl.academicdirect.ro/applied_statistics/linear_regression/multiple/v1.5/. The program running for the set of alloys allow to identify groups of alloys properties and give qualitative measure of correlations between properties. Surfaces of property dependencies are also fitted.
DNBR Prediction Using a Support Vector Regression
International Nuclear Information System (INIS)
Yang, Heon Young; Na, Man Gyun
2008-01-01
PWRs (Pressurized Water Reactors) generally operate in the nucleate boiling state. However, the conversion of nucleate boiling into film boiling with conspicuously reduced heat transfer induces a boiling crisis that may cause the fuel clad melting in the long run. This type of boiling crisis is called Departure from Nucleate Boiling (DNB) phenomena. Because the prediction of minimum DNBR in a reactor core is very important to prevent the boiling crisis such as clad melting, a lot of research has been conducted to predict DNBR values. The object of this research is to predict minimum DNBR applying support vector regression (SVR) by using the measured signals of a reactor coolant system (RCS). The SVR has extensively and successfully been applied to nonlinear function approximation like the proposed problem for estimating DNBR values that will be a function of various input variables such as reactor power, reactor pressure, core mass flowrate, control rod positions and so on. The minimum DNBR in a reactor core is predicted using these various operating condition data as the inputs to the SVR. The minimum DBNR values predicted by the SVR confirm its correctness compared with COLSS values
A Comparison of Advanced Regression Algorithms for Quantifying Urban Land Cover
Directory of Open Access Journals (Sweden)
Akpona Okujeni
2014-07-01
Full Text Available Quantitative methods for mapping sub-pixel land cover fractions are gaining increasing attention, particularly with regard to upcoming hyperspectral satellite missions. We evaluated five advanced regression algorithms combined with synthetically mixed training data for quantifying urban land cover from HyMap data at 3.6 and 9 m spatial resolution. Methods included support vector regression (SVR, kernel ridge regression (KRR, artificial neural networks (NN, random forest regression (RFR and partial least squares regression (PLSR. Our experiments demonstrate that both kernel methods SVR and KRR yield high accuracies for mapping complex urban surface types, i.e., rooftops, pavements, grass- and tree-covered areas. SVR and KRR models proved to be stable with regard to the spatial and spectral differences between both images and effectively utilized the higher complexity of the synthetic training mixtures for improving estimates for coarser resolution data. Observed deficiencies mainly relate to known problems arising from spectral similarities or shadowing. The remaining regressors either revealed erratic (NN or limited (RFR and PLSR performances when comprehensively mapping urban land cover. Our findings suggest that the combination of kernel-based regression methods, such as SVR and KRR, with synthetically mixed training data is well suited for quantifying urban land cover from imaging spectrometer data at multiple scales.
Amalia, Junita; Purhadi, Otok, Bambang Widjanarko
2017-11-01
Poisson distribution is a discrete distribution with count data as the random variables and it has one parameter defines both mean and variance. Poisson regression assumes mean and variance should be same (equidispersion). Nonetheless, some case of the count data unsatisfied this assumption because variance exceeds mean (over-dispersion). The ignorance of over-dispersion causes underestimates in standard error. Furthermore, it causes incorrect decision in the statistical test. Previously, paired count data has a correlation and it has bivariate Poisson distribution. If there is over-dispersion, modeling paired count data is not sufficient with simple bivariate Poisson regression. Bivariate Poisson Inverse Gaussian Regression (BPIGR) model is mix Poisson regression for modeling paired count data within over-dispersion. BPIGR model produces a global model for all locations. In another hand, each location has different geographic conditions, social, cultural and economic so that Geographically Weighted Regression (GWR) is needed. The weighting function of each location in GWR generates a different local model. Geographically Weighted Bivariate Poisson Inverse Gaussian Regression (GWBPIGR) model is used to solve over-dispersion and to generate local models. Parameter estimation of GWBPIGR model obtained by Maximum Likelihood Estimation (MLE) method. Meanwhile, hypothesis testing of GWBPIGR model acquired by Maximum Likelihood Ratio Test (MLRT) method.
Modeling Information Content Via Dirichlet-Multinomial Regression Analysis.
Ferrari, Alberto
2017-01-01
Shannon entropy is being increasingly used in biomedical research as an index of complexity and information content in sequences of symbols, e.g. languages, amino acid sequences, DNA methylation patterns and animal vocalizations. Yet, distributional properties of information entropy as a random variable have seldom been the object of study, leading to researchers mainly using linear models or simulation-based analytical approach to assess differences in information content, when entropy is measured repeatedly in different experimental conditions. Here a method to perform inference on entropy in such conditions is proposed. Building on results coming from studies in the field of Bayesian entropy estimation, a symmetric Dirichlet-multinomial regression model, able to deal efficiently with the issue of mean entropy estimation, is formulated. Through a simulation study the model is shown to outperform linear modeling in a vast range of scenarios and to have promising statistical properties. As a practical example, the method is applied to a data set coming from a real experiment on animal communication.
Bayesian logistic regression approaches to predict incorrect DRG assignment.
Suleiman, Mani; Demirhan, Haydar; Boyd, Leanne; Girosi, Federico; Aksakalli, Vural
2018-05-07
Episodes of care involving similar diagnoses and treatments and requiring similar levels of resource utilisation are grouped to the same Diagnosis-Related Group (DRG). In jurisdictions which implement DRG based payment systems, DRGs are a major determinant of funding for inpatient care. Hence, service providers often dedicate auditing staff to the task of checking that episodes have been coded to the correct DRG. The use of statistical models to estimate an episode's probability of DRG error can significantly improve the efficiency of clinical coding audits. This study implements Bayesian logistic regression models with weakly informative prior distributions to estimate the likelihood that episodes require a DRG revision, comparing these models with each other and to classical maximum likelihood estimates. All Bayesian approaches had more stable model parameters than maximum likelihood. The best performing Bayesian model improved overall classification per- formance by 6% compared to maximum likelihood, with a 34% gain compared to random classification, respectively. We found that the original DRG, coder and the day of coding all have a significant effect on the likelihood of DRG error. Use of Bayesian approaches has improved model parameter stability and classification accuracy. This method has already lead to improved audit efficiency in an operational capacity.
Ultracentrifuge separative power modeling with multivariate regression using covariance matrix
International Nuclear Information System (INIS)
Migliavacca, Elder
2004-01-01
In this work, the least-squares methodology with covariance matrix is applied to determine a data curve fitting to obtain a performance function for the separative power δU of a ultracentrifuge as a function of variables that are experimentally controlled. The experimental data refer to 460 experiments on the ultracentrifugation process for uranium isotope separation. The experimental uncertainties related with these independent variables are considered in the calculation of the experimental separative power values, determining an experimental data input covariance matrix. The process variables, which significantly influence the δU values are chosen in order to give information on the ultracentrifuge behaviour when submitted to several levels of feed flow rate F, cut θ and product line pressure P p . After the model goodness-of-fit validation, a residual analysis is carried out to verify the assumed basis concerning its randomness and independence and mainly the existence of residual heteroscedasticity with any explained regression model variable. The surface curves are made relating the separative power with the control variables F, θ and P p to compare the fitted model with the experimental data and finally to calculate their optimized values. (author)
Sirenomelia and severe caudal regression syndrome.
Seidahmed, Mohammed Z; Abdelbasit, Omer B; Alhussein, Khalid A; Miqdad, Abeer M; Khalil, Mohammed I; Salih, Mustafa A
2014-12-01
To describe cases of sirenomelia and severe caudal regression syndrome (CRS), to report the prevalence of sirenomelia, and compare our findings with the literature. Retrospective data was retrieved from the medical records of infants with the diagnosis of sirenomelia and CRS and their mothers from 1989 to 2010 (22 years) at the Security Forces Hospital, Riyadh, Saudi Arabia. A perinatologist, neonatologist, pediatric neurologist, and radiologist ascertained the diagnoses. The cases were identified as part of a study of neural tube defects during that period. A literature search was conducted using MEDLINE. During the 22-year study period, the total number of deliveries was 124,933 out of whom, 4 patients with sirenomelia, and 2 patients with severe forms of CRS were identified. All the patients with sirenomelia had single umbilical artery, and none were the infant of a diabetic mother. One patient was a twin, and another was one of triplets. The 2 patients with CRS were sisters, their mother suffered from type II diabetes mellitus and morbid obesity on insulin, and neither of them had a single umbilical artery. Other associated anomalies with sirenomelia included an absent radius, thumb, and index finger in one patient, Potter's syndrome, abnormal ribs, microphthalmia, congenital heart disease, hypoplastic lungs, and diaphragmatic hernia. The prevalence of sirenomelia (3.2 per 100,000) is high compared with the international prevalence of one per 100,000. Both cases of CRS were infants of type II diabetic mother with poor control, supporting the strong correlation of CRS and maternal diabetes.
Gaussian process regression for tool wear prediction
Kong, Dongdong; Chen, Yongjie; Li, Ning
2018-05-01
To realize and accelerate the pace of intelligent manufacturing, this paper presents a novel tool wear assessment technique based on the integrated radial basis function based kernel principal component analysis (KPCA_IRBF) and Gaussian process regression (GPR) for real-timely and accurately monitoring the in-process tool wear parameters (flank wear width). The KPCA_IRBF is a kind of new nonlinear dimension-increment technique and firstly proposed for feature fusion. The tool wear predictive value and the corresponding confidence interval are both provided by utilizing the GPR model. Besides, GPR performs better than artificial neural networks (ANN) and support vector machines (SVM) in prediction accuracy since the Gaussian noises can be modeled quantitatively in the GPR model. However, the existence of noises will affect the stability of the confidence interval seriously. In this work, the proposed KPCA_IRBF technique helps to remove the noises and weaken its negative effects so as to make the confidence interval compressed greatly and more smoothed, which is conducive for monitoring the tool wear accurately. Moreover, the selection of kernel parameter in KPCA_IRBF can be easily carried out in a much larger selectable region in comparison with the conventional KPCA_RBF technique, which helps to improve the efficiency of model construction. Ten sets of cutting tests are conducted to validate the effectiveness of the presented tool wear assessment technique. The experimental results show that the in-process flank wear width of tool inserts can be monitored accurately by utilizing the presented tool wear assessment technique which is robust under a variety of cutting conditions. This study lays the foundation for tool wear monitoring in real industrial settings.
International Nuclear Information System (INIS)
Park, Yonil; Sheetlin, Sergey; Spouge, John L
2005-01-01
Searches through biological databases provide the primary motivation for studying sequence alignment statistics. Other motivations include physical models of annealing processes or mathematical similarities to, e.g., first-passage percolation and interacting particle systems. Here, we investigate sequence alignment statistics, partly to explore two general mathematical methods. First, we model the global alignment of random sequences heuristically with Markov additive processes. In sequence alignment, the heuristic suggests a numerical acceleration scheme for simulating an important asymptotic parameter (the Gumbel scale parameter λ). The heuristic might apply to similar mathematical theories. Second, we extract the asymptotic parameter λ from simulation data with the statistical technique of robust regression. Robust regression is admirably suited to 'asymptotic regression' and deserves to be better known for it
Rock, N. M. S.; Duffy, T. R.
REGRES allows a range of regression equations to be calculated for paired sets of data values in which both variables are subject to error (i.e. neither is the "independent" variable). Nonparametric regressions, based on medians of all possible pairwise slopes and intercepts, are treated in detail. Estimated slopes and intercepts are output, along with confidence limits, Spearman and Kendall rank correlation coefficients. Outliers can be rejected with user-determined stringency. Parametric regressions can be calculated for any value of λ (the ratio of the variances of the random errors for y and x)—including: (1) major axis ( λ = 1); (2) reduced major axis ( λ = variance of y/variance of x); (3) Y on Xλ = infinity; or (4) X on Y ( λ = 0) solutions. Pearson linear correlation coefficients also are output. REGRES provides an alternative to conventional isochron assessment techniques where bivariate normal errors cannot be assumed, or weighting methods are inappropriate.
Keith, Timothy Z
2014-01-01
Multiple Regression and Beyond offers a conceptually oriented introduction to multiple regression (MR) analysis and structural equation modeling (SEM), along with analyses that flow naturally from those methods. By focusing on the concepts and purposes of MR and related methods, rather than the derivation and calculation of formulae, this book introduces material to students more clearly, and in a less threatening way. In addition to illuminating content necessary for coursework, the accessibility of this approach means students are more likely to be able to conduct research using MR or SEM--and more likely to use the methods wisely. Covers both MR and SEM, while explaining their relevance to one another Also includes path analysis, confirmatory factor analysis, and latent growth modeling Figures and tables throughout provide examples and illustrate key concepts and techniques For additional resources, please visit: http://tzkeith.com/.
Detection of epistatic effects with logic regression and a classical linear regression model.
Malina, Magdalena; Ickstadt, Katja; Schwender, Holger; Posch, Martin; Bogdan, Małgorzata
2014-02-01
To locate multiple interacting quantitative trait loci (QTL) influencing a trait of interest within experimental populations, usually methods as the Cockerham's model are applied. Within this framework, interactions are understood as the part of the joined effect of several genes which cannot be explained as the sum of their additive effects. However, if a change in the phenotype (as disease) is caused by Boolean combinations of genotypes of several QTLs, this Cockerham's approach is often not capable to identify them properly. To detect such interactions more efficiently, we propose a logic regression framework. Even though with the logic regression approach a larger number of models has to be considered (requiring more stringent multiple testing correction) the efficient representation of higher order logic interactions in logic regression models leads to a significant increase of power to detect such interactions as compared to a Cockerham's approach. The increase in power is demonstrated analytically for a simple two-way interaction model and illustrated in more complex settings with simulation study and real data analysis.
International Nuclear Information System (INIS)
Hulsteijn, Leonie T. van; Corssmit, Eleonora P.M.; Coremans, Ida E.M.; Smit, Johannes W.A.; Jansen, Jeroen C.; Dekkers, Olaf M.
2013-01-01
The primary treatment goal of radiotherapy for paragangliomas of the head and neck region (HNPGLs) is local control of the tumor, i.e. stabilization of tumor volume. Interestingly, regression of tumor volume has also been reported. Up to the present, no meta-analysis has been performed giving an overview of regression rates after radiotherapy in HNPGLs. The main objective was to perform a systematic review and meta-analysis to assess regression of tumor volume in HNPGL-patients after radiotherapy. A second outcome was local tumor control. Design of the study is systematic review and meta-analysis. PubMed, EMBASE, Web of Science, COCHRANE and Academic Search Premier and references of key articles were searched in March 2012 to identify potentially relevant studies. Considering the indolent course of HNPGLs, only studies with ⩾12 months follow-up were eligible. Main outcomes were the pooled proportions of regression and local control after radiotherapy as initial, combined (i.e. directly post-operatively or post-embolization) or salvage treatment (i.e. after initial treatment has failed) for HNPGLs. A meta-analysis was performed with an exact likelihood approach using a logistic regression with a random effect at the study level. Pooled proportions with 95% confidence intervals (CI) were reported. Fifteen studies were included, concerning a total of 283 jugulotympanic HNPGLs in 276 patients. Pooled regression proportions for initial, combined and salvage treatment were respectively 21%, 33% and 52% in radiosurgery studies and 4%, 0% and 64% in external beam radiotherapy studies. Pooled local control proportions for radiotherapy as initial, combined and salvage treatment ranged from 79% to 100%. Radiotherapy for jugulotympanic paragangliomas results in excellent local tumor control and therefore is a valuable treatment for these types of tumors. The effects of radiotherapy on regression of tumor volume remain ambiguous, although the data suggest that regression can
International Nuclear Information System (INIS)
Guo Ya'nan; Jin Dapeng; Zhao Dixin; Liu Zhen'an; Qiao Qiao; Chinese Academy of Sciences, Beijing
2007-01-01
Due to the randomness of radioactive decay and nuclear reaction, the signals from detectors are random in time. But normal pulse generator generates periodical pulses. To measure the performances of nuclear electronic devices under random inputs, a random generator is necessary. Types of random pulse generator are reviewed, 2 digital random pulse generators are introduced. (authors)
Random matrices and random difference equations
International Nuclear Information System (INIS)
Uppuluri, V.R.R.
1975-01-01
Mathematical models leading to products of random matrices and random difference equations are discussed. A one-compartment model with random behavior is introduced, and it is shown how the average concentration in the discrete time model converges to the exponential function. This is of relevance to understanding how radioactivity gets trapped in bone structure in blood--bone systems. The ideas are then generalized to two-compartment models and mammillary systems, where products of random matrices appear in a natural way. The appearance of products of random matrices in applications in demography and control theory is considered. Then random sequences motivated from the following problems are studied: constant pulsing and random decay models, random pulsing and constant decay models, and random pulsing and random decay models
Sparse Regression by Projection and Sparse Discriminant Analysis
Qi, Xin; Luo, Ruiyan; Carroll, Raymond J.; Zhao, Hongyu
2015-01-01
predictions. We introduce a new framework, regression by projection, and its sparse version to analyze high-dimensional data. The unique nature of this framework is that the directions of the regression coefficients are inferred first, and the lengths
Poisson Mixture Regression Models for Heart Disease Prediction.
Mufudza, Chipo; Erol, Hamza
2016-01-01
Early heart disease control can be achieved by high disease prediction and diagnosis efficiency. This paper focuses on the use of model based clustering techniques to predict and diagnose heart disease via Poisson mixture regression models. Analysis and application of Poisson mixture regression models is here addressed under two different classes: standard and concomitant variable mixture regression models. Results show that a two-component concomitant variable Poisson mixture regression model predicts heart disease better than both the standard Poisson mixture regression model and the ordinary general linear Poisson regression model due to its low Bayesian Information Criteria value. Furthermore, a Zero Inflated Poisson Mixture Regression model turned out to be the best model for heart prediction over all models as it both clusters individuals into high or low risk category and predicts rate to heart disease componentwise given clusters available. It is deduced that heart disease prediction can be effectively done by identifying the major risks componentwise using Poisson mixture regression model.
Linear regression crash prediction models : issues and proposed solutions.
2010-05-01
The paper develops a linear regression model approach that can be applied to : crash data to predict vehicle crashes. The proposed approach involves novice data aggregation : to satisfy linear regression assumptions; namely error structure normality ...
An Additive-Multiplicative Cox-Aalen Regression Model
DEFF Research Database (Denmark)
Scheike, Thomas H.; Zhang, Mei-Jie
2002-01-01
Aalen model; additive risk model; counting processes; Cox regression; survival analysis; time-varying effects......Aalen model; additive risk model; counting processes; Cox regression; survival analysis; time-varying effects...
Logistic Regression Modeling of Diminishing Manufacturing Sources for Integrated Circuits
National Research Council Canada - National Science Library
Gravier, Michael
1999-01-01
.... The research identified logistic regression as a powerful tool for analysis of DMSMS and further developed twenty models attempting to identify the "best" way to model and predict DMSMS using logistic regression...
Model-based Quantile Regression for Discrete Data
Padellini, Tullia; Rue, Haavard
2018-01-01
Quantile regression is a class of methods voted to the modelling of conditional quantiles. In a Bayesian framework quantile regression has typically been carried out exploiting the Asymmetric Laplace Distribution as a working likelihood. Despite
The MIDAS Touch: Mixed Data Sampling Regression Models
Ghysels, Eric; Santa-Clara, Pedro; Valkanov, Rossen
2004-01-01
We introduce Mixed Data Sampling (henceforth MIDAS) regression models. The regressions involve time series data sampled at different frequencies. Technically speaking MIDAS models specify conditional expectations as a distributed lag of regressors recorded at some higher sampling frequencies. We examine the asymptotic properties of MIDAS regression estimation and compare it with traditional distributed lag models. MIDAS regressions have wide applicability in macroeconomics and ï¿½nance.
Regression Benchmarking: An Approach to Quality Assurance in Performance
Bulej, Lubomír
2005-01-01
The paper presents a short summary of our work in the area of regression benchmarking and its application to software development. Specially, we explain the concept of regression benchmarking, the requirements for employing regression testing in a software project, and methods used for analyzing the vast amounts of data resulting from repeated benchmarking. We present the application of regression benchmarking on a real software project and conclude with a glimpse at the challenges for the fu...
Grajeda, Laura M; Ivanescu, Andrada; Saito, Mayuko; Crainiceanu, Ciprian; Jaganath, Devan; Gilman, Robert H; Crabtree, Jean E; Kelleher, Dermott; Cabrera, Lilia; Cama, Vitaliano; Checkley, William
2016-01-01
Childhood growth is a cornerstone of pediatric research. Statistical models need to consider individual trajectories to adequately describe growth outcomes. Specifically, well-defined longitudinal models are essential to characterize both population and subject-specific growth. Linear mixed-effect models with cubic regression splines can account for the nonlinearity of growth curves and provide reasonable estimators of population and subject-specific growth, velocity and acceleration. We provide a stepwise approach that builds from simple to complex models, and account for the intrinsic complexity of the data. We start with standard cubic splines regression models and build up to a model that includes subject-specific random intercepts and slopes and residual autocorrelation. We then compared cubic regression splines vis-à-vis linear piecewise splines, and with varying number of knots and positions. Statistical code is provided to ensure reproducibility and improve dissemination of methods. Models are applied to longitudinal height measurements in a cohort of 215 Peruvian children followed from birth until their fourth year of life. Unexplained variability, as measured by the variance of the regression model, was reduced from 7.34 when using ordinary least squares to 0.81 (p linear mixed-effect models with random slopes and a first order continuous autoregressive error term. There was substantial heterogeneity in both the intercept (p modeled with a first order continuous autoregressive error term as evidenced by the variogram of the residuals and by a lack of association among residuals. The final model provides a parametric linear regression equation for both estimation and prediction of population- and individual-level growth in height. We show that cubic regression splines are superior to linear regression splines for the case of a small number of knots in both estimation and prediction with the full linear mixed effect model (AIC 19,352 vs. 19
Using Dominance Analysis to Determine Predictor Importance in Logistic Regression
Azen, Razia; Traxel, Nicole
2009-01-01
This article proposes an extension of dominance analysis that allows researchers to determine the relative importance of predictors in logistic regression models. Criteria for choosing logistic regression R[superscript 2] analogues were determined and measures were selected that can be used to perform dominance analysis in logistic regression. A…
Meta-Modeling by Symbolic Regression and Pareto Simulated Annealing
Stinstra, E.; Rennen, G.; Teeuwen, G.J.A.
2006-01-01
The subject of this paper is a new approach to Symbolic Regression.Other publications on Symbolic Regression use Genetic Programming.This paper describes an alternative method based on Pareto Simulated Annealing.Our method is based on linear regression for the estimation of constants.Interval
Li, Jiangtong; Luo, Yongdao; Dai, Honglin
2018-01-01
Water is the source of life and the essential foundation of all life. With the development of industrialization, the phenomenon of water pollution is becoming more and more frequent, which directly affects the survival and development of human. Water quality detection is one of the necessary measures to protect water resources. Ultraviolet (UV) spectral analysis is an important research method in the field of water quality detection, which partial least squares regression (PLSR) analysis method is becoming predominant technology, however, in some special cases, PLSR's analysis produce considerable errors. In order to solve this problem, the traditional principal component regression (PCR) analysis method was improved by using the principle of PLSR in this paper. The experimental results show that for some special experimental data set, improved PCR analysis method performance is better than PLSR. The PCR and PLSR is the focus of this paper. Firstly, the principal component analysis (PCA) is performed by MATLAB to reduce the dimensionality of the spectral data; on the basis of a large number of experiments, the optimized principal component is extracted by using the principle of PLSR, which carries most of the original data information. Secondly, the linear regression analysis of the principal component is carried out with statistic package for social science (SPSS), which the coefficients and relations of principal components can be obtained. Finally, calculating a same water spectral data set by PLSR and improved PCR, analyzing and comparing two results, improved PCR and PLSR is similar for most data, but improved PCR is better than PLSR for data near the detection limit. Both PLSR and improved PCR can be used in Ultraviolet spectral analysis of water, but for data near the detection limit, improved PCR's result better than PLSR.
Morales, Esteban; de Leon, John Mark S; Abdollahi, Niloufar; Yu, Fei; Nouri-Mahdavi, Kouros; Caprioli, Joseph
2016-03-01
The study was conducted to evaluate threshold smoothing algorithms to enhance prediction of the rates of visual field (VF) worsening in glaucoma. We studied 798 patients with primary open-angle glaucoma and 6 or more years of follow-up who underwent 8 or more VF examinations. Thresholds at each VF location for the first 4 years or first half of the follow-up time (whichever was greater) were smoothed with clusters defined by the nearest neighbor (NN), Garway-Heath, Glaucoma Hemifield Test (GHT), and weighting by the correlation of rates at all other VF locations. Thresholds were regressed with a pointwise exponential regression (PER) model and a pointwise linear regression (PLR) model. Smaller root mean square error (RMSE) values of the differences between the observed and the predicted thresholds at last two follow-ups indicated better model predictions. The mean (SD) follow-up times for the smoothing and prediction phase were 5.3 (1.5) and 10.5 (3.9) years. The mean RMSE values for the PER and PLR models were unsmoothed data, 6.09 and 6.55; NN, 3.40 and 3.42; Garway-Heath, 3.47 and 3.48; GHT, 3.57 and 3.74; and correlation of rates, 3.59 and 3.64. Smoothed VF data predicted better than unsmoothed data. Nearest neighbor provided the best predictions; PER also predicted consistently more accurately than PLR. Smoothing algorithms should be used when forecasting VF results with PER or PLR. The application of smoothing algorithms on VF data can improve forecasting in VF points to assist in treatment decisions.
Learning Random Numbers: A Matlab Anomaly
Czech Academy of Sciences Publication Activity Database
Savický, Petr; Robnik-Šikonja, M.
2008-01-01
Roč. 22, č. 3 (2008), s. 254-265 ISSN 0883-9514 R&D Projects: GA AV ČR 1ET100300517 Institutional research plan: CEZ:AV0Z10300504 Keywords : random number s * machine learning * classification * attribute evaluation * regression Subject RIV: BA - General Mathematics Impact factor: 0.795, year: 2008
Random effect selection in generalised linear models
DEFF Research Database (Denmark)
Denwood, Matt; Houe, Hans; Forkman, Björn
We analysed abattoir recordings of meat inspection codes with possible relevance to onfarm animal welfare in cattle. Random effects logistic regression models were used to describe individual-level data obtained from 461,406 cattle slaughtered in Denmark. Our results demonstrate that the largest...
Regression: The Apple Does Not Fall Far From the Tree.
Vetter, Thomas R; Schober, Patrick
2018-05-15
Researchers and clinicians are frequently interested in either: (1) assessing whether there is a relationship or association between 2 or more variables and quantifying this association; or (2) determining whether 1 or more variables can predict another variable. The strength of such an association is mainly described by the correlation. However, regression analysis and regression models can be used not only to identify whether there is a significant relationship or association between variables but also to generate estimations of such a predictive relationship between variables. This basic statistical tutorial discusses the fundamental concepts and techniques related to the most common types of regression analysis and modeling, including simple linear regression, multiple regression, logistic regression, ordinal regression, and Poisson regression, as well as the common yet often underrecognized phenomenon of regression toward the mean. The various types of regression analysis are powerful statistical techniques, which when appropriately applied, can allow for the valid interpretation of complex, multifactorial data. Regression analysis and models can assess whether there is a relationship or association between 2 or more observed variables and estimate the strength of this association, as well as determine whether 1 or more variables can predict another variable. Regression is thus being applied more commonly in anesthesia, perioperative, critical care, and pain research. However, it is crucial to note that regression can identify plausible risk factors; it does not prove causation (a definitive cause and effect relationship). The results of a regression analysis instead identify independent (predictor) variable(s) associated with the dependent (outcome) variable. As with other statistical methods, applying regression requires that certain assumptions be met, which can be tested with specific diagnostics.
Topics in random walks in random environment
International Nuclear Information System (INIS)
Sznitman, A.-S.
2004-01-01
Over the last twenty-five years random motions in random media have been intensively investigated and some new general methods and paradigms have by now emerged. Random walks in random environment constitute one of the canonical models of the field. However in dimension bigger than one they are still poorly understood and many of the basic issues remain to this day unresolved. The present series of lectures attempt to give an account of the progresses which have been made over the last few years, especially in the study of multi-dimensional random walks in random environment with ballistic behavior. (author)
Few crystal balls are crystal clear : eyeballing regression
International Nuclear Information System (INIS)
Wittebrood, R.T.
1998-01-01
The theory of regression and statistical analysis as it applies to reservoir analysis was discussed. It was argued that regression lines are not always the final truth. It was suggested that regression lines and eyeballed lines are often equally accurate. The many conditions that must be fulfilled to calculate a proper regression were discussed. Mentioned among these conditions were the distribution of the data, hidden variables, knowledge of how the data was obtained, the need for causal correlation of the variables, and knowledge of the manner in which the regression results are going to be used. 1 tab., 13 figs
How a dependent's variable non-randomness affects taper equation ...
African Journals Online (AJOL)
In order to apply the least squares method in regression analysis, the values of the dependent variable Y should be random. In an example of regression analysis linear and nonlinear taper equations, which estimate the diameter of the tree dhi at any height of the tree hi, were compared. For each tree the diameter at the ...
Sparse reduced-rank regression with covariance estimation
Chen, Lisha
2014-12-08
Improving the predicting performance of the multiple response regression compared with separate linear regressions is a challenging question. On the one hand, it is desirable to seek model parsimony when facing a large number of parameters. On the other hand, for certain applications it is necessary to take into account the general covariance structure for the errors of the regression model. We assume a reduced-rank regression model and work with the likelihood function with general error covariance to achieve both objectives. In addition we propose to select relevant variables for reduced-rank regression by using a sparsity-inducing penalty, and to estimate the error covariance matrix simultaneously by using a similar penalty on the precision matrix. We develop a numerical algorithm to solve the penalized regression problem. In a simulation study and real data analysis, the new method is compared with two recent methods for multivariate regression and exhibits competitive performance in prediction and variable selection.
Sparse reduced-rank regression with covariance estimation
Chen, Lisha; Huang, Jianhua Z.
2014-01-01
Improving the predicting performance of the multiple response regression compared with separate linear regressions is a challenging question. On the one hand, it is desirable to seek model parsimony when facing a large number of parameters. On the other hand, for certain applications it is necessary to take into account the general covariance structure for the errors of the regression model. We assume a reduced-rank regression model and work with the likelihood function with general error covariance to achieve both objectives. In addition we propose to select relevant variables for reduced-rank regression by using a sparsity-inducing penalty, and to estimate the error covariance matrix simultaneously by using a similar penalty on the precision matrix. We develop a numerical algorithm to solve the penalized regression problem. In a simulation study and real data analysis, the new method is compared with two recent methods for multivariate regression and exhibits competitive performance in prediction and variable selection.