Polarized ensembles of random pure states
International Nuclear Information System (INIS)
Cunden, Fabio Deelan; Facchi, Paolo; Florio, Giuseppe
2013-01-01
A new family of polarized ensembles of random pure states is presented. These ensembles are obtained by linear superposition of two random pure states with suitable distributions, and are quite manageable. We will use the obtained results for two purposes: on the one hand we will be able to derive an efficient strategy for sampling states from isopurity manifolds. On the other, we will characterize the deviation of a pure quantum state from separability under the influence of noise. (paper)
Polarized ensembles of random pure states
Deelan Cunden, Fabio; Facchi, Paolo; Florio, Giuseppe
2013-08-01
A new family of polarized ensembles of random pure states is presented. These ensembles are obtained by linear superposition of two random pure states with suitable distributions, and are quite manageable. We will use the obtained results for two purposes: on the one hand we will be able to derive an efficient strategy for sampling states from isopurity manifolds. On the other, we will characterize the deviation of a pure quantum state from separability under the influence of noise.
Entanglement in random pure states: spectral density and average von Neumann entropy
Energy Technology Data Exchange (ETDEWEB)
Kumar, Santosh; Pandey, Akhilesh, E-mail: skumar.physics@gmail.com, E-mail: ap0700@mail.jnu.ac.in [School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110 067 (India)
2011-11-04
Quantum entanglement plays a crucial role in quantum information, quantum teleportation and quantum computation. The information about the entanglement content between subsystems of the composite system is encoded in the Schmidt eigenvalues. We derive here closed expressions for the spectral density of Schmidt eigenvalues for all three invariant classes of random matrix ensembles. We also obtain exact results for average von Neumann entropy. We find that maximum average entanglement is achieved if the system belongs to the symplectic invariant class. (paper)
Concurrence classes for general pure multipartite states
International Nuclear Information System (INIS)
Heydari, Hoshang
2005-01-01
We propose concurrence classes for general pure multipartite states based on an orthogonal complement of a positive operator-valued measure on quantum phase. In particular, we construct W m class, GHZ m , and GHZ m-1 class concurrences for general pure m-partite states. We give explicit expressions for W 3 and GHZ 3 class concurrences for general pure three-partite states and for W 4 , GHZ 4 and GHZ 3 class concurrences for general pure four-partite states
Mixtures of maximally entangled pure states
Energy Technology Data Exchange (ETDEWEB)
Flores, M.M., E-mail: mflores@nip.up.edu.ph; Galapon, E.A., E-mail: eric.galapon@gmail.com
2016-09-15
We study the conditions when mixtures of maximally entangled pure states remain entangled. We found that the resulting mixed state remains entangled when the number of entangled pure states to be mixed is less than or equal to the dimension of the pure states. For the latter case of mixing a number of pure states equal to their dimension, we found that the mixed state is entangled provided that the entangled pure states to be mixed are not equally weighted. We also found that one can restrict the set of pure states that one can mix from in order to ensure that the resulting mixed state is genuinely entangled. Also, we demonstrate how these results could be applied as a way to detect entanglement in mixtures of the entangled pure states with noise.
Engineering arbitrary pure and mixed quantum states
International Nuclear Information System (INIS)
Pechen, Alexander
2011-01-01
Controlled manipulation by atomic- and molecular-scale quantum systems has attracted a lot of research attention in recent years. A fundamental problem is to provide deterministic methods for controlled engineering of arbitrary quantum states. This work proposes a deterministic method for engineering arbitrary pure and mixed states of a wide class of quantum systems. The method exploits a special combination of incoherent and coherent controls (incoherent and coherent radiation) and has two properties which are specifically important for manipulating by quantum systems: it realizes the strongest possible degree of their state control, complete density matrix controllability, meaning the ability to steer arbitrary pure and mixed initial states into any desired pure or mixed final state, and it is all-to-one, such that each particular control transfers all initial system states into one target state.
Random unitary evolution model of quantum Darwinism with pure decoherence
Balanesković, Nenad
2015-10-01
We study the behavior of Quantum Darwinism [W.H. Zurek, Nat. Phys. 5, 181 (2009)] within the iterative, random unitary operations qubit-model of pure decoherence [J. Novotný, G. Alber, I. Jex, New J. Phys. 13, 053052 (2011)]. We conclude that Quantum Darwinism, which describes the quantum mechanical evolution of an open system S from the point of view of its environment E, is not a generic phenomenon, but depends on the specific form of input states and on the type of S-E-interactions. Furthermore, we show that within the random unitary model the concept of Quantum Darwinism enables one to explicitly construct and specify artificial input states of environment E that allow to store information about an open system S of interest with maximal efficiency.
Graphical calculus for Gaussian pure states
International Nuclear Information System (INIS)
Menicucci, Nicolas C.; Flammia, Steven T.; Loock, Peter van
2011-01-01
We provide a unified graphical calculus for all Gaussian pure states, including graph transformation rules for all local and semilocal Gaussian unitary operations, as well as local quadrature measurements. We then use this graphical calculus to analyze continuous-variable (CV) cluster states, the essential resource for one-way quantum computing with CV systems. Current graphical approaches to CV cluster states are only valid in the unphysical limit of infinite squeezing, and the associated graph transformation rules only apply when the initial and final states are of this form. Our formalism applies to all Gaussian pure states and subsumes these rules in a natural way. In addition, the term 'CV graph state' currently has several inequivalent definitions in use. Using this formalism we provide a single unifying definition that encompasses all of them. We provide many examples of how the formalism may be used in the context of CV cluster states: defining the 'closest' CV cluster state to a given Gaussian pure state and quantifying the error in the approximation due to finite squeezing; analyzing the optimality of certain methods of generating CV cluster states; drawing connections between this graphical formalism and bosonic Hamiltonians with Gaussian ground states, including those useful for CV one-way quantum computing; and deriving a graphical measure of bipartite entanglement for certain classes of CV cluster states. We mention other possible applications of this formalism and conclude with a brief note on fault tolerance in CV one-way quantum computing.
Minimal covariant observables identifying all pure states
Energy Technology Data Exchange (ETDEWEB)
Carmeli, Claudio, E-mail: claudio.carmeli@gmail.com [D.I.M.E., Università di Genova, Via Cadorna 2, I-17100 Savona (Italy); I.N.F.N., Sezione di Genova, Via Dodecaneso 33, I-16146 Genova (Italy); Heinosaari, Teiko, E-mail: teiko.heinosaari@utu.fi [Turku Centre for Quantum Physics, Department of Physics and Astronomy, University of Turku (Finland); Toigo, Alessandro, E-mail: alessandro.toigo@polimi.it [Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy); I.N.F.N., Sezione di Milano, Via Celoria 16, I-20133 Milano (Italy)
2013-09-02
It has been recently shown by Heinosaari, Mazzarella and Wolf (2013) [1] that an observable that identifies all pure states of a d-dimensional quantum system has minimally 4d−4 outcomes or slightly less (the exact number depending on d). However, no simple construction of this type of minimal observable is known. We investigate covariant observables that identify all pure states and have minimal number of outcomes. It is shown that the existence of this kind of observables depends on the dimension of the Hilbert space.
Critical Properties of Pure and Random Antiferromagnets
DEFF Research Database (Denmark)
Cowley, R. A.; Carneiro, K.
1980-01-01
Neutron scattering techniques have been used to study the critical properties of CoF2 and the randomly mixed systems: Co/ZnF2 and KMn/NiF3. The results for CoF2 are in excellent accord with the critical properties of the three-dimensional Ising model. In all of the random crystals studied the tra...
Square-root measurement for pure states
International Nuclear Information System (INIS)
Huang Siendong
2005-01-01
Square-root measurement is a very useful suboptimal measurement in many applications. It was shown that the square-root measurement minimizes the squared error for pure states. In this paper, the least squared error problem is reformulated and a new proof is provided. It is found that the least squared error depends only on the average density operator of the input states. The properties of the least squared error are then discussed, and it is shown that if the input pure states are uniformly distributed, the average probability of error has an upper bound depending on the least squared error, the rank of the average density operator, and the number of the input states. The aforementioned properties help explain why the square-root measurement can be effective in decoding processes
Pure state condition for the semi-classical Wigner function
International Nuclear Information System (INIS)
Ozorio de Almeida, A.M.
1982-01-01
The Wigner function W(p,q) is a symmetrized Fourier transform of the density matrix e(q 1 ,q 2 ), representing quantum-mechanical states or their statistical mixture in phase space. Identification of these two alternatives in the case of density matrices depends on the projection identity e 2 = e; its Wigner correspondence is the pure state condition. This criterion is applied to the Wigner functions botained from standard semiclassical wave functions, determining as pure states those whose classical invariant tori satisfy the generalized Bohr-Sommerfeld conditions. Superpositions of eigenstates are then examined and it is found that the Wigner function corresponding to Gaussian random wave functions are smoothed out in the manner of mixedstate Wigner functions. Attention is also given to the pure-state condition in the case where an angular coordinate is used. (orig.)
Quantum correlations support probabilistic pure state cloning
Energy Technology Data Exchange (ETDEWEB)
Roa, Luis, E-mail: lroa@udec.cl [Departamento de Física, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Alid-Vaccarezza, M.; Jara-Figueroa, C. [Departamento de Física, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Klimov, A.B. [Departamento de Física, Universidad de Guadalajara, Avenida Revolución 1500, 44420 Guadalajara, Jalisco (Mexico)
2014-02-01
The probabilistic scheme for making two copies of two nonorthogonal pure states requires two auxiliary systems, one for copying and one for attempting to project onto the suitable subspace. The process is performed by means of a unitary-reduction scheme which allows having a success probability of cloning different from zero. The scheme becomes optimal when the probability of success is maximized. In this case, a bipartite state remains as a free degree which does not affect the probability. We find bipartite states for which the unitarity does not introduce entanglement, but does introduce quantum discord between some involved subsystems.
Unitary evolution between pure and mixed states
International Nuclear Information System (INIS)
Reznik, B.
1996-01-01
We propose an extended quantum mechanical formalism that is based on a wave operator d, which is related to the ordinary density matrix via ρ=dd degree . This formalism allows a (generalized) unitary evolution between pure and mixed states. It also preserves much of the connection between symmetries and conservation laws. The new formalism is illustrated for the case of a two-level system. copyright 1996 The American Physical Society
Catalytic transformations for bipartite pure states
International Nuclear Information System (INIS)
Turgut, S
2007-01-01
Entanglement catalysis is a phenomenon that usually enhances the conversion probability in the transformation of entangled states by the temporary involvement of another entangled state (so-called catalyst), where after the process is completed the catalyst is returned to the same state. For some pairs of bipartite pure entangled states, catalysis enables a transformation with unit probability of success, in which case the respective Schmidt coefficients of the states are said to satisfy the trumping relation, a mathematical relation which is an extension of the majorization relation. This paper provides all necessary and sufficient conditions for the trumping and two other associated relations. Using these conditions, the least upper bound of conversion probabilities using catalysis is also obtained. Moreover, best conversion ratios achievable with catalysis are found for transformations involving many copies of states
Tractable Quantification of Entanglement for Multipartite Pure States
International Nuclear Information System (INIS)
Nian-Quan, Jiang; Yu-Jian, Wang; Yi-Zhuang, Zheng; Gen-Chang, Cai
2008-01-01
We present kth-order entanglement measure and global kth-order entanglement measure for multipartite pure states, and extend Bennett's measure of partial entropy for bipartite pure states to a multipartite case. These measures are computable and can effectively classify and quantify the entanglement of multipartite pure states. (general)
Passage from a pure state description to the microcanonical ...
Indian Academy of Sciences (India)
ensemble distribution (microcanonical distribution) has no memory of the initial state. In .... state is not erased as the subspace is still state-dependent and no statistical mechanics ... using in the present context, even for pure states, the entropy.
Reexamination of optimal quantum state estimation of pure states
International Nuclear Information System (INIS)
Hayashi, A.; Hashimoto, T.; Horibe, M.
2005-01-01
A direct derivation is given for the optimal mean fidelity of quantum state estimation of a d-dimensional unknown pure state with its N copies given as input, which was first obtained by Hayashi in terms of an infinite set of covariant positive operator valued measures (POVM's) and by Bruss and Macchiavello establishing a connection to optimal quantum cloning. An explicit condition for POVM measurement operators for optimal estimators is obtained, by which we construct optimal estimators with finite POVMs using exact quadratures on a hypersphere. These finite optimal estimators are not generally universal, where universality means the fidelity is independent of input states. However, any optimal estimator with finite POVM for M(>N) copies is universal if it is used for N copies as input
The effect of pure state structure on nonequilibrium dynamics
International Nuclear Information System (INIS)
Newman, C M; Stein, D L
2008-01-01
Motivated by short-range Ising spin glasses, we review some rigorous results and their consequences for the relation between the number/nature of equilibrium pure states and nonequilibrium dynamics. Two of the consequences for spin glass dynamics following an instantaneous deep quench to a temperature with broken spin flip symmetry are: (1) almost all initial configurations lie on the boundary between the basins of attraction of multiple pure states; (2) unless there are uncountably many pure states with almost all pairs having zero overlap, there can be no equilibration to a pure state as time t → ∞. We discuss the relevance of these results to the difficulty of equilibration of spin glasses. We also review some results concerning the 'nature versus nurture' problem of whether the large-t behavior of both ferromagnets and spin glasses following a deep quench is determined more by the initial configuration (nature) or by the dynamics realization (nurture)
Superposing pure quantum states with partial prior information
Dogra, Shruti; Thomas, George; Ghosh, Sibasish; Suter, Dieter
2018-05-01
The principle of superposition is an intriguing feature of quantum mechanics, which is regularly exploited in many different circumstances. A recent work [M. Oszmaniec et al., Phys. Rev. Lett. 116, 110403 (2016), 10.1103/PhysRevLett.116.110403] shows that the fundamentals of quantum mechanics restrict the process of superimposing two unknown pure states, even though it is possible to superimpose two quantum states with partial prior knowledge. The prior knowledge imposes geometrical constraints on the choice of input states. We discuss an experimentally feasible protocol to superimpose multiple pure states of a d -dimensional quantum system and carry out an explicit experimental realization for two single-qubit pure states with partial prior information on a two-qubit NMR quantum information processor.
Effect of Bound Entanglement on the Convertibility of Pure States
International Nuclear Information System (INIS)
Ishizaka, Satoshi
2004-01-01
I show that bound entanglement strongly influences the quantum entanglement processing of pure states: If N distant parties share appropriate bound entangled states with positive partial transpose, all N-partite pure entangled states become inter-convertible by stochastic local operations and classical communication (SLOCC) at the single copy level. This implies that the Schmidt rank of a bipartite pure entangled state can be increased, and that two incomparable tripartite entanglement of the GHZ and W type can be inter-converted by the assistance of bound entanglement. Further, I propose the simplest experimental scheme for the demonstration of the corresponding bound-entanglement-assisted SLOCC. This scheme does not need quantum gates and is feasible for the current experimental technology of linear optics
Entanglement measure for general pure multipartite quantum states
International Nuclear Information System (INIS)
Heydari, Hoshang; Bjoerk, Gunnar
2004-01-01
We propose an explicit formula for a measure of entanglement of pure multipartite quantum states. We discuss the mathematical structure of the measure and give a brief explanation of its physical motivation. We apply the measure on some pure, tripartite, qubit states and demonstrate that, in general, the entanglement can depend on what actions are performed on the various subsystems, and specifically if the parties in possession of the subsystems cooperate or not. We also give some simple but illustrative examples of the entanglement of four-qubit and m-qubit states
Probabilistic teleportation of an arbitrary pure state of two atoms
Institute of Scientific and Technical Information of China (English)
Yang Zhen-Biao; Wu Huai-Zhi; Su Wan-Jun
2007-01-01
In the context of microwave cavity QED, this paper proposes a new scheme for teleportation of an arbitrary pure state of two atoms. The scheme is very different from the previous ones which achieve the integrated state measurement,it deals in a probabilistic but simplified way. In the scheme, no additional atoms are involved and thus only two atoms are required to be detected. The scheme can also be used for the teleportation of arbitrary pure states of many atoms or two-mode cavities.
Faithful teleportation with arbitrary pure or mixed resource states
Energy Technology Data Exchange (ETDEWEB)
Zhao Mingjing; Fei Shaoming; Wang Zhixi [School of Mathematical Sciences, Capital Normal University, Beijing 100048 (China); Li Zongguo [College of Science, Tianjin University of Technology, Tianjin 300191 (China); Lijost Xianqing, E-mail: zhaomingjingde@126.com [Max-Planck-Institute for Mathematics in the Sciences, 04103 Leipzig (Germany)
2011-05-27
We study faithful teleportation systematically with arbitrary entangled states as resources. The necessary conditions of mixed states to complete perfect teleportation are proved. Based on these results, the necessary and sufficient conditions of faithful teleportation of an unknown state |{phi}) in C{sup d} with an entangled resource {rho} in C{sup m} otimes C{sup d} and C{sup d} otimes C{sup n} are derived. It is shown that for {rho} in C{sup m} otimes C{sup d}, {rho} must be a maximally entangled state, while for {rho} in C{sup d} otimes C{sup n}, {rho} must be a pure maximally entangled state. Moreover, we show that the sender's measurements must be all projectors of maximally entangled pure states. The relations between the entanglement of the formation of the resource states and faithful teleportation are also discussed.
Faithful teleportation with arbitrary pure or mixed resource states
International Nuclear Information System (INIS)
Zhao Mingjing; Fei Shaoming; Wang Zhixi; Li Zongguo; Lijost Xianqing
2011-01-01
We study faithful teleportation systematically with arbitrary entangled states as resources. The necessary conditions of mixed states to complete perfect teleportation are proved. Based on these results, the necessary and sufficient conditions of faithful teleportation of an unknown state |φ) in C d with an entangled resource ρ in C m otimes C d and C d otimes C n are derived. It is shown that for ρ in C m otimes C d , ρ must be a maximally entangled state, while for ρ in C d otimes C n , ρ must be a pure maximally entangled state. Moreover, we show that the sender's measurements must be all projectors of maximally entangled pure states. The relations between the entanglement of the formation of the resource states and faithful teleportation are also discussed.
Control aspects of quantum computing using pure and mixed states
Schulte-Herbrüggen, Thomas; Marx, Raimund; Fahmy, Amr; Kauffman, Louis; Lomonaco, Samuel; Khaneja, Navin; Glaser, Steffen J.
2012-01-01
Steering quantum dynamics such that the target states solve classically hard problems is paramount to quantum simulation and computation. And beyond, quantum control is also essential to pave the way to quantum technologies. Here, important control techniques are reviewed and presented in a unified frame covering quantum computational gate synthesis and spectroscopic state transfer alike. We emphasize that it does not matter whether the quantum states of interest are pure or not. While pure states underly the design of quantum circuits, ensemble mixtures of quantum states can be exploited in a more recent class of algorithms: it is illustrated by characterizing the Jones polynomial in order to distinguish between different (classes of) knots. Further applications include Josephson elements, cavity grids, ion traps and nitrogen vacancy centres in scenarios of closed as well as open quantum systems. PMID:22946034
Control aspects of quantum computing using pure and mixed states.
Schulte-Herbrüggen, Thomas; Marx, Raimund; Fahmy, Amr; Kauffman, Louis; Lomonaco, Samuel; Khaneja, Navin; Glaser, Steffen J
2012-10-13
Steering quantum dynamics such that the target states solve classically hard problems is paramount to quantum simulation and computation. And beyond, quantum control is also essential to pave the way to quantum technologies. Here, important control techniques are reviewed and presented in a unified frame covering quantum computational gate synthesis and spectroscopic state transfer alike. We emphasize that it does not matter whether the quantum states of interest are pure or not. While pure states underly the design of quantum circuits, ensemble mixtures of quantum states can be exploited in a more recent class of algorithms: it is illustrated by characterizing the Jones polynomial in order to distinguish between different (classes of) knots. Further applications include Josephson elements, cavity grids, ion traps and nitrogen vacancy centres in scenarios of closed as well as open quantum systems.
Interconversion of pure Gaussian states requiring non-Gaussian operations
Jabbour, Michael G.; García-Patrón, Raúl; Cerf, Nicolas J.
2015-01-01
We analyze the conditions under which local operations and classical communication enable entanglement transformations between bipartite pure Gaussian states. A set of necessary and sufficient conditions had been found [G. Giedke et al., Quant. Inf. Comput. 3, 211 (2003)] for the interconversion between such states that is restricted to Gaussian local operations and classical communication. Here, we exploit majorization theory in order to derive more general (sufficient) conditions for the interconversion between bipartite pure Gaussian states that goes beyond Gaussian local operations. While our technique is applicable to an arbitrary number of modes for each party, it allows us to exhibit surprisingly simple examples of 2 ×2 Gaussian states that necessarily require non-Gaussian local operations to be transformed into each other.
Pure Jauch-Piron states on von Neumann algebras
International Nuclear Information System (INIS)
Hamhalter, J.
1993-01-01
We study Jauch-Piron states and two-valued measures on von Neumann algebra. We prove as the main result that, under some set-theoretical assumption, a pure state of a von Neumann algebra A not containing a central abelian portion is Jauch-Piron if and only if it is σ-additive. Moreover, we show that this result holds for type I factor indenpendently on the set-theoretical axiomatics. As a consequence we obtain a lucid characterization of pure Jauch-Piron states on von Neumann algebras acting on a Hilbert space with real-nonmeasurable dimension (this can be viewed as a generalization of the paper). We also characterize the von Neumann algebras whose logic of projections is Jauch-Piron. Finally, we prove that every two-valued measure on the projection logic of A, where A contains no type I 2 central portion, has to be concentrated at an abelian direct summand of A. (orig.)
Complex projection of unitary dynamics of quaternionic pure states
International Nuclear Information System (INIS)
Asorey, M.; Scolarici, G.; Solombrino, L.
2007-01-01
Quaternionic quantum mechanics has been revealed to be a very useful framework to describe quantum phenomena. In the case of two qubit compound systems we show that the complex projection of quaternionic pure states and quaternionic unitary maps permits the description of interesting phenomena such as decoherence and optimal entanglement generation. The approach, however, presents severe limitations for the case of multipartite or higher dimensional bipartite quantum systems as we point out
Push-pull optical pumping of pure superposition states
International Nuclear Information System (INIS)
Jau, Y.-Y.; Miron, E.; Post, A.B.; Kuzma, N.N.; Happer, W.
2004-01-01
A new optical pumping method, 'push-pull pumping', can produce very nearly pure, coherent superposition states between the initial and the final sublevels of the important field-independent 0-0 clock resonance of alkali-metal atoms. The key requirement for push-pull pumping is the use of D1 resonant light which alternates between left and right circular polarization at the Bohr frequency of the state. The new pumping method works for a wide range of conditions, including atomic beams with almost no collisions, and atoms in buffer gases with pressures of many atmospheres
All pure bipartite entangled states can be self-tested
Coladangelo, Andrea; Goh, Koon Tong; Scarani, Valerio
2017-05-01
Quantum technologies promise advantages over their classical counterparts in the fields of computation, security and sensing. It is thus desirable that classical users are able to obtain guarantees on quantum devices, even without any knowledge of their inner workings. That such classical certification is possible at all is remarkable: it is a consequence of the violation of Bell inequalities by entangled quantum systems. Device-independent self-testing refers to the most complete such certification: it enables a classical user to uniquely identify the quantum state shared by uncharacterized devices by simply inspecting the correlations of measurement outcomes. Self-testing was first demonstrated for the singlet state and a few other examples of self-testable states were reported in recent years. Here, we address the long-standing open question of whether every pure bipartite entangled state is self-testable. We answer it affirmatively by providing explicit self-testing correlations for all such states.
Multicopy and stochastic transformation of multipartite pure states
International Nuclear Information System (INIS)
Chen Lin; Hayashi, Masahito
2011-01-01
Characterizing the transformation and classification of multipartite entangled states is a basic problem in quantum information. We study the problem under the two most common environments, local operations and classical communications (LOCC), stochastic LOCC and two more general environments, multicopy LOCC (MCLOCC), and multicopy SLOCC (MCSLOCC). We show that two transformable multipartite states under LOCC or SLOCC are also transformable under MCLOCC and MCSLOCC. What is more, these two environments are equivalent in the sense that two transformable states under MCLOCC are also transformable under MCSLOCC, and vice versa. Based on these environments we classify the multipartite pure states into a few inequivalent sets and orbits, between which we build the partial order to decide their transformation. In particular, we investigate the structure of SLOCC-equivalent states in terms of tensor rank, which is known as the generalized Schmidt rank. Given the tensor rank, we show that Greenberger-Horne-Zeilinger states can be used to generate all states with a smaller or equivalent tensor rank under SLOCC, and all reduced separable states with a cardinality smaller than or equivalent to the tensor rank under LOCC. Using these concepts, we extended the concept of the ''maximally entangled state'' in the multipartite system.
Characteristics of a pure-state ambiguity function
International Nuclear Information System (INIS)
Praxmeyer, Ludmila; Vitanov, Nikolay; Stenholm, Stig
2009-01-01
We present the necessary and sufficient condition for a square integrable function on R 2N to be an ambiguity function corresponding to a square integrable function on R N . This condition has the form of an integral equation. We also list some easier to check necessary conditions that must be fulfilled by a function that is an ambiguity function of a pure state. We show how to construct a wavefunction corresponding to a given ambiguity function and we present examples of how our formal results can be used in practice.
Atom lasers, coherent states, and coherence II. Maximally robust ensembles of pure states
International Nuclear Information System (INIS)
Wiseman, H.M.; Vaccaro, John A.
2002-01-01
As discussed in the preceding paper [Wiseman and Vaccaro, preceding paper, Phys. Rev. A 65, 043605 (2002)], the stationary state of an optical or atom laser far above threshold is a mixture of coherent field states with random phase, or, equivalently, a Poissonian mixture of number states. We are interested in which, if either, of these descriptions of ρ ss as a stationary ensemble of pure states, is more natural. In the preceding paper we concentrated upon the question of whether descriptions such as these are physically realizable (PR). In this paper we investigate another relevant aspect of these ensembles, their robustness. A robust ensemble is one for which the pure states that comprise it survive relatively unchanged for a long time under the system evolution. We determine numerically the most robust ensembles as a function of the parameters in the laser model: the self-energy χ of the bosons in the laser mode, and the excess phase noise ν. We find that these most robust ensembles are PR ensembles, or similar to PR ensembles, for all values of these parameters. In the ideal laser limit (ν=χ=0), the most robust states are coherent states. As the phase noise or phase dispersion is increased through ν or the self-interaction of the bosons χ, respectively, the most robust states become more and more amplitude squeezed. We find scaling laws for these states, and give analytical derivations for them. As the phase diffusion or dispersion becomes so large that the laser output is no longer quantum coherent, the most robust states become so squeezed that they cease to have a well-defined coherent amplitude. That is, the quantum coherence of the laser output is manifest in the most robust PR ensemble being an ensemble of states with a well-defined coherent amplitude. This lends support to our approach of regarding robust PR ensembles as the most natural description of the state of the laser mode. It also has interesting implications for atom lasers in particular
Average subentropy, coherence and entanglement of random mixed quantum states
Energy Technology Data Exchange (ETDEWEB)
Zhang, Lin, E-mail: godyalin@163.com [Institute of Mathematics, Hangzhou Dianzi University, Hangzhou 310018 (China); Singh, Uttam, E-mail: uttamsingh@hri.res.in [Harish-Chandra Research Institute, Allahabad, 211019 (India); Pati, Arun K., E-mail: akpati@hri.res.in [Harish-Chandra Research Institute, Allahabad, 211019 (India)
2017-02-15
Compact expressions for the average subentropy and coherence are obtained for random mixed states that are generated via various probability measures. Surprisingly, our results show that the average subentropy of random mixed states approaches the maximum value of the subentropy which is attained for the maximally mixed state as we increase the dimension. In the special case of the random mixed states sampled from the induced measure via partial tracing of random bipartite pure states, we establish the typicality of the relative entropy of coherence for random mixed states invoking the concentration of measure phenomenon. Our results also indicate that mixed quantum states are less useful compared to pure quantum states in higher dimension when we extract quantum coherence as a resource. This is because of the fact that average coherence of random mixed states is bounded uniformly, however, the average coherence of random pure states increases with the increasing dimension. As an important application, we establish the typicality of relative entropy of entanglement and distillable entanglement for a specific class of random bipartite mixed states. In particular, most of the random states in this specific class have relative entropy of entanglement and distillable entanglement equal to some fixed number (to within an arbitrary small error), thereby hugely reducing the complexity of computation of these entanglement measures for this specific class of mixed states.
On Absence of Pure Singular Spectrum of Random Perturbations and in Anderson Model at Low Disorde
Grinshpun, V
2006-01-01
Absence of singular component, with probability one, in the conductivity spectra of bounded random perturbations of multidimensional finite-difference Hamiltonians, is for the first time rigorously established under certain conditions ensuring either absence of pure point, or absence of pure absolutely continuous component in the corresponding regions of spectra. The main technical tool applied is the theory of rank-one perturbations of singular spectra. The respective new result (the non-mixing property) is applied to establish existence and bounds of the (non-empty) pure absolutely continuous component in the spectrum of the Anderson model with bounded random potential in dimension 2 at low disorder. The new (1999) result implies, via the trace-class perturbation analysis, the Anderson model with the unbounded potential to have only pure point spectrum (complete system of localized wave-functions) with probability one in arbitrary dimension. The new technics, based on the resolvent reduction formula, and ex...
Controlled Remote State Preparation via General Pure Three-Qubit State
Directory of Open Access Journals (Sweden)
Yuebo Zha
2015-07-01
Full Text Available The protocols for controlled remote state preparation of a single qubit and a general two-qubit state are presented in this paper. The general pure three-qubit states are chosen as shared quantum channel, which are not Local operations and classical communication (LOCC equivalent to the mostly used GHz state. This is the first time that general pure three-qubit states have been introduced to complete remote state preparation. The probability of successful preparation is presented. Moreover, in some special cases, the successful probability could reach a unit value.
Flexible scheme to truncate the hierarchy of pure states.
Zhang, P-P; Bentley, C D B; Eisfeld, A
2018-04-07
The hierarchy of pure states (HOPS) is a wavefunction-based method that can be used for numerically modeling open quantum systems. Formally, HOPS recovers the exact system dynamics for an infinite depth of the hierarchy. However, truncation of the hierarchy is required to numerically implement HOPS. We want to choose a "good" truncation method, where by "good" we mean that it is numerically feasible to check convergence of the results. For the truncation approximation used in previous applications of HOPS, convergence checks are numerically challenging. In this work, we demonstrate the application of the "n-particle approximation" to HOPS. We also introduce a new approximation, which we call the "n-mode approximation." We then explore the convergence of these truncation approximations with respect to the number of equations required in the hierarchy in two exemplary problems: absorption and energy transfer of molecular aggregates.
Flexible scheme to truncate the hierarchy of pure states
Zhang, P.-P.; Bentley, C. D. B.; Eisfeld, A.
2018-04-01
The hierarchy of pure states (HOPS) is a wavefunction-based method that can be used for numerically modeling open quantum systems. Formally, HOPS recovers the exact system dynamics for an infinite depth of the hierarchy. However, truncation of the hierarchy is required to numerically implement HOPS. We want to choose a "good" truncation method, where by "good" we mean that it is numerically feasible to check convergence of the results. For the truncation approximation used in previous applications of HOPS, convergence checks are numerically challenging. In this work, we demonstrate the application of the "n-particle approximation" to HOPS. We also introduce a new approximation, which we call the "n-mode approximation." We then explore the convergence of these truncation approximations with respect to the number of equations required in the hierarchy in two exemplary problems: absorption and energy transfer of molecular aggregates.
Structure and state of repeatedly rubbed pure iron
Energy Technology Data Exchange (ETDEWEB)
Furuichi, Hiroshi [Dept. of Mechanical System Engineering, Yamanashi Univ., Kofu (Japan); Nakamura, Shoichiro [Dept. of Mechanical System Engineering, Yamanashi Univ., Kofu (Japan); Xuan Junsong [Nippo Precision Ltd., Nirasaki (Japan); Yamazaki, Kunihiro [Dept. of Mechanical System Engineering, Yamanashi Univ., Kofu (Japan)
1995-05-01
Pure iron was repeatedly rubbed under special conditions. The highest and the average hardness near the friction surface were 1431 HV and 1146 HV, respectively. Diffraction patterns near the friction surface showed a broad hexagonal ring corresponding to the (002) plane of {epsilon}-iron (hcp), although the other rings are from {alpha}-iron. Extremely fine imperfectly defined regions were observed from the area of this diffraction pattern. Another diffraction patterns showed an extremely diffuse and faint halo ring indicating an amorphous state, whose average atomic distance equals one of the interplanar spacing of the basal plane of {epsilon}-iron. This amorphous state differs from that by obtained rapid quenching. These results suggest that a structure with only the basal plane of {epsilon}-iron appeared during the rubbing and further destruction resulted in the amorphous state. Extremely high pressure may arise during rubbing: {epsilon}-iron forms above 13 GPa at room temperature and the basal plane consists of the shortest atomic distance of iron. In the latter pattern, a spot arrangement indicating a structure ordered only in one or two directions was observed. Rows of pits and cracks connecting them were observed, on the side surface near the rubbed surface, which shows crack formation during sliding contact fatigue. (orig.)
Impossibility criterion for obtaining pure entangled states from mixed states by purifying protocols
International Nuclear Information System (INIS)
Chen Pingxing; Liang Linmei; Li Chengzu; Huang Mingqiu
2002-01-01
Purifying noisy entanglement is a protocol that can increase the entanglement of a mixed state (as a source) at the expense of the entanglement of others (such as an ancilla) by collective measurement. A protocol with which one can get a pure entangled state from a mixed state is defined as purifying mixed states. We address a basic question: can one get a pure entangled state from a mixed state? We give a necessary and sufficient condition of purifying a mixed state by fit local operations and classical communication and show that for a class of source states and ancilla states in arbitrary bipartite systems purifying mixed states is impossible by finite rounds of purifying protocols. For 2x2 systems, it is proved that arbitrary states cannot be purified by individual measurement. The possible application and meaning of the conclusion are discussed
Pure Absolutely Continuous Spectrum for Random Operators on $l^2(Z^d)$ at Low Disorder
Grinshpun, V
2006-01-01
Absence of singular continuous component, with probability one, in the spectra of random perturbations of multidimensional finite-difference Hamiltonians, is for the first time rigorously established under certain conditions ensuring either absence of point component, or absence of absolutely continuous component in the corresponding regions of spectra. The main technical tool involved is the rank-one perturbation theory of singular spectra. The respective new result (the non-mixing property) is applied to establish existence and bounds of the (non-empty) pure absolutely continuous component in the spectrum of the Anderson model with bounded random potential in dimension d=2 at low disorder (similar proof holds for d>4). The new result implies, via the trace-class perturbation analysis, Anderson model with the unbounded random potential having only pure point spectrum (complete system of localized wave-functions) with probability one in arbitrary dimension. The basic idea is to establish absence of the mixed,...
Noginov, Mikhail A
2005-01-01
Random lasers are the simplest sources of stimulated emission without cavity, with the feedback provided by scattering in a gain medium. First proposed in the late 60’s, random lasers have grown to a large research field. This book reviews the history and the state of the art of random lasers, provides an outline of the basic models describing their behavior, and describes the recent advances in the field. The major focus of the book is on solid-state random lasers. However, it also briefly describes random lasers based on liquid dyes with scatterers. The chapters of the book are almost independent of each other. So, the scientists or engineers interested in any particular aspect of random lasers can read directly the relevant section. Researchers entering the field of random lasers will find in the book an overview of the field of study. Scientists working in the field can use the book as a reference source.
General entanglement-assisted transformation for bipartite pure quantum states
Song, Wei; Huang, Yan; Nai-LeLiu; Chen, Zeng-Bing
2007-01-01
We introduce the general catalysts for pure entanglement transformations under local operations and classical communications in such a way that we disregard the profit and loss of entanglement of the catalysts per se. As such, the possibilities of pure entanglement transformations are greatly expanded. We also design an efficient algorithm to detect whether a k × k general catalyst exists for a given entanglement transformation. This algorithm can also be exploited to witness the existence of standard catalysts.
Random graph states, maximal flow and Fuss-Catalan distributions
International Nuclear Information System (INIS)
Collins, BenoIt; Nechita, Ion; Zyczkowski, Karol
2010-01-01
For any graph consisting of k vertices and m edges we construct an ensemble of random pure quantum states which describe a system composed of 2m subsystems. Each edge of the graph represents a bipartite, maximally entangled state. Each vertex represents a random unitary matrix generated according to the Haar measure, which describes the coupling between subsystems. Dividing all subsystems into two parts, one may study entanglement with respect to this partition. A general technique to derive an expression for the average entanglement entropy of random pure states associated with a given graph is presented. Our technique relies on Weingarten calculus and flow problems. We analyze the statistical properties of spectra of such random density matrices and show for which cases they are described by the free Poissonian (Marchenko-Pastur) distribution. We derive a discrete family of generalized, Fuss-Catalan distributions and explicitly construct graphs which lead to ensembles of random states characterized by these novel distributions of eigenvalues.
International Nuclear Information System (INIS)
Chen Lin; Zhu Huangjun; Wei, Tzu-Chieh
2011-01-01
We study the geometric measure of entanglement (GM) of pure symmetric states related to rank 1 positive-operator-valued measures (POVMs) and establish a general connection with quantum state estimation theory, especially the maximum likelihood principle. Based on this connection, we provide a method for computing the GM of these states and demonstrate its additivity property under certain conditions. In particular, we prove the additivity of the GM of pure symmetric multiqubit states whose Majorana points under Majorana representation are distributed within a half sphere, including all pure symmetric three-qubit states. We then introduce a family of symmetric states that are generated from mutually unbiased bases and derive an analytical formula for their GM. These states include Dicke states as special cases, which have already been realized in experiments. We also derive the GM of symmetric states generated from symmetric informationally complete POVMs (SIC POVMs) and use it to characterize all inequivalent SIC POVMs in three-dimensional Hilbert space that are covariant with respect to the Heisenberg-Weyl group. Finally, we describe an experimental scheme for creating the symmetric multiqubit states studied in this article and a possible scheme for measuring the permanence of the related Gram matrix.
Canonical form of three-fermion pure-states with six single particle states
International Nuclear Information System (INIS)
Chen, Lin; Ž Ðoković, Dragomir; Grassl, Markus; Zeng, Bei
2014-01-01
We construct a canonical form for pure states in ∧ 3 (C 6 ), the three-fermion system with six single particle states, under local unitary (LU) transformations, i.e., the unitary group U(6). We also construct a minimal set of generators of the algebra of polynomial U(6)-invariants on ∧ 3 (C 6 ). It turns out that this algebra is isomorphic to the algebra of polynomial LU-invariants of three-qubits which are additionally invariant under qubit permutations. As a consequence of this surprising fact, we deduce that there is a one-to-one correspondence between the U(6)-orbits of pure three-fermion states in ∧ 3 (C 6 ) and the LU orbits of pure three-qubit states when qubit permutations are allowed. As an important byproduct, we obtain a new canonical form for pure three-qubit states under LU transformations U(2) × U(2) × U(2) (no qubit permutations allowed)
Neutron Transport in Finite Random Media with Pure-Triplet Scattering
International Nuclear Information System (INIS)
Sallaha, M.; Hendi, A.A.
2008-01-01
The solution of the one-speed neutron transport equation in a finite slab random medium with pure-triplet anisotropic scattering is studied. The stochastic medium is assumed to consist of two randomly mixed immiscible fluids. The cross section and the scattering kernel are treated as discrete random variables, which obey the same statistics as Markovian processes and exponential chord length statistics. The medium boundaries are considered to have specular reflectivities with angular-dependent externally incident flux. The deterministic solution is obtained by using Pomraning-Eddington approximation. Numerical results are calculated for the average reflectivity and average transmissivity for different values of the single scattering albedo and varying the parameters which characterize the random medium. Compared to the results obtained by Adams et al. in case of isotropic scattering that based on the Monte Carlo technique, it can be seen that we have good comparable data
Bipartite quantum states and random complex networks
International Nuclear Information System (INIS)
Garnerone, Silvano; Zanardi, Paolo; Giorda, Paolo
2012-01-01
We introduce a mapping between graphs and pure quantum bipartite states and show that the associated entanglement entropy conveys non-trivial information about the structure of the graph. Our primary goal is to investigate the family of random graphs known as complex networks. In the case of classical random graphs, we derive an analytic expression for the averaged entanglement entropy S-bar while for general complex networks we rely on numerics. For a large number of nodes n we find a scaling S-bar ∼c log n +g e where both the prefactor c and the sub-leading O(1) term g e are characteristic of the different classes of complex networks. In particular, g e encodes topological features of the graphs and is named network topological entropy. Our results suggest that quantum entanglement may provide a powerful tool for the analysis of large complex networks with non-trivial topological properties. (paper)
Regression relation for pure quantum states and its implications for efficient computing.
Elsayed, Tarek A; Fine, Boris V
2013-02-15
We obtain a modified version of the Onsager regression relation for the expectation values of quantum-mechanical operators in pure quantum states of isolated many-body quantum systems. We use the insights gained from this relation to show that high-temperature time correlation functions in many-body quantum systems can be controllably computed without complete diagonalization of the Hamiltonians, using instead the direct integration of the Schrödinger equation for randomly sampled pure states. This method is also applicable to quantum quenches and other situations describable by time-dependent many-body Hamiltonians. The method implies exponential reduction of the computer memory requirement in comparison with the complete diagonalization. We illustrate the method by numerically computing infinite-temperature correlation functions for translationally invariant Heisenberg chains of up to 29 spins 1/2. Thereby, we also test the spin diffusion hypothesis and find it in a satisfactory agreement with the numerical results. Both the derivation of the modified regression relation and the justification of the computational method are based on the notion of quantum typicality.
Quadratic Plus Linear Operators which Preserve Pure States of Quantum Systems: Small Dimensions
International Nuclear Information System (INIS)
Saburov, Mansoor
2014-01-01
A mathematical formalism of quantum mechanics says that a pure state of a quantum system corresponds to a vector of norm 1 and an observable is a self-adjoint operator on the space of states. It is of interest to describe all linear or nonlinear operators which preserve the pure states of the system. In the linear case, it is nothing more than isometries of Hilbert spaces. In the nonlinear case, this problem was open. In this paper, in the small dimensional spaces, we shall describe all quadratic plus linear operators which preserve pure states of the quantum system
Local hypothesis testing between a pure bipartite state and the white noise state
Owari, Masaki; Hayashi, Masahito
2010-01-01
In this paper, we treat a local discrimination problem in the framework of asymmetric hypothesis testing. We choose a known bipartite pure state $\\ket{\\Psi}$ as an alternative hypothesis, and the completely mixed state as a null hypothesis. As a result, we analytically derive an optimal type 2 error and an optimal POVM for one-way LOCC POVM and Separable POVM. For two-way LOCC POVM, we study a family of simple three-step LOCC protocols, and show that the best protocol in this family has stric...
Directory of Open Access Journals (Sweden)
Varsha Komath Pavithran
2017-01-01
Full Text Available Introduction: Oil pulling as described in ancient Ayurveda involves the use of edible vegetable oils as oral antibacterial agents. It is a practice of swishing oil in the mouth for oral and systemic health benefits. Pure coconut oil has antimicrobial properties and is commonly available in all Indian households. Aim: This study aims to assess the effect of oil pulling therapy with pure coconut oil on Streptococcus mutans count and to compare its efficacy against sesame oil and saline. Materials and Methods: A randomized controlled concurrent parallel- triple blinded clinical trial was conducted. Thirty participants in age range of 20–23 years were randomly allocated into Group A (coconut oil, Group B (sesame oil, and Group C (saline, with 10 in each group. The participants were instructed to swish and pull 10 ml of oil on empty stomach, early morning for 10–15 min. Unstimulated saliva collected before and after oil pulling procedure was analyzed for colony forming units (CFU per ml saliva of S. mutans. The data were analyzed using paired t-test, ANOVA, and post hoc analysis using Tukey's honest significant difference. Statistical significance was set at P < 0.05. Results: A statistically significant reduction in S. mutans CFU count after oil pulling with pure coconut oil (P = 0.001 was found. There was no statistically significant difference between sesame oil and coconut oil (P = 0.97 and between sesame oil and saline (P = 0.061. When efficacy of coconut oil against saline was evaluated, a statistical significant difference (P = 0.039 was found. Conclusion: Oil pulling is an effective method for oral hygiene maintenance as it significantly reduces S. mutans count in the saliva.
Method of convex rigid frames and applications in studies of multipartite quNit pure states
International Nuclear Information System (INIS)
Zhong Zaizhe
2005-01-01
In this letter, we suggest a method of convex rigid frames in the studies of multipartite quNit pure states. We illustrate what the convex rigid frames are, and what is their method. As applications, we use this method to solve some basic problems and give some new results (three theorems): the problem of the partial separability of the multipartite quNit pure states and its geometric explanation; the problem of the classification of multipartite quNit pure states, giving a perfect explanation of the local unitary transformations; thirdly, we discuss the invariants of classes and give a possible physical explanation. (letter to the editor)
Random unitary maps for quantum state reconstruction
International Nuclear Information System (INIS)
Merkel, Seth T.; Riofrio, Carlos A.; Deutsch, Ivan H.; Flammia, Steven T.
2010-01-01
We study the possibility of performing quantum state reconstruction from a measurement record that is obtained as a sequence of expectation values of a Hermitian operator evolving under repeated application of a single random unitary map, U 0 . We show that while this single-parameter orbit in operator space is not informationally complete, it can be used to yield surprisingly high-fidelity reconstruction. For a d-dimensional Hilbert space with the initial observable in su(d), the measurement record lacks information about a matrix subspace of dimension ≥d-2 out of the total dimension d 2 -1. We determine the conditions on U 0 such that the bound is saturated, and show they are achieved by almost all pseudorandom unitary matrices. When we further impose the constraint that the physical density matrix must be positive, we obtain even higher fidelity than that predicted from the missing subspace. With prior knowledge that the state is pure, the reconstruction will be perfect (in the limit of vanishing noise) and for arbitrary mixed states, the fidelity is over 0.96, even for small d, and reaching F>0.99 for d>9. We also study the implementation of this protocol based on the relationship between random matrices and quantum chaos. We show that the Floquet operator of the quantum kicked top provides a means of generating the required type of measurement record, with implications on the relationship between quantum chaos and information gain.
Pure state consciousness and its local reduction to neuronal space
Duggins, A. J.
2013-01-01
The single neuronal state can be represented as a vector in a complex space, spanned by an orthonormal basis of integer spike counts. In this model a scalar element of experience is associated with the instantaneous firing rate of a single sensory neuron over repeated stimulus presentations. Here the model is extended to composite neural systems that are tensor products of single neuronal vector spaces. Depiction of the mental state as a vector on this tensor product space is intended to capture the unity of consciousness. The density operator is introduced as its local reduction to the single neuron level, from which the firing rate can again be derived as the objective correlate of a subjective element. However, the relational structure of perceptual experience only emerges when the non-local mental state is considered. A metric of phenomenal proximity between neuronal elements of experience is proposed, based on the cross-correlation function of neurophysiology, but constrained by the association of theoretical extremes of correlation/anticorrelation in inseparable 2-neuron states with identical and opponent elements respectively.
Diverging conductance at the contact between random and pure quantum XX spin chains
Chatelain, Christophe
2017-11-01
A model consisting of two quantum XX spin chains, one homogeneous and the second with random couplings drawn from a binary distribution, is considered. The two chains are coupled to two different non-local thermal baths and their dynamics is governed by a Lindblad equation. In the steady state, a current J is induced between the two chains by coupling them together by their edges and imposing different chemical potentials μ to the two baths. While a regime of linear characteristics J versus Δμ is observed in the absence of randomness, a gap opens as the disorder strength is increased. In the infinite-randomness limit, this behavior is related to the density of states of the localized states contributing to the current. The conductance is shown to diverge in this limit.
Pure states of general quantum-mechanical systems as Kaehler bundles
International Nuclear Information System (INIS)
Abbati, M.C.; Cirelli, R.; Lanzavecchia, P.; Mania, A.
1984-01-01
Pure states of general quantum systems in the Csup(*)-algebraic approach are endowed with a structure both of Kaehler manifold and of projective bundle with uniformity on the total space. The former structure gives a geometric interpretation of transition probabilities and Wigner theorem. The latter is a finer structure which determines Csup(*)-algebras up to sup(*)-isomorphisms. Pure states of Csup(*)-algebras with continuous trace among projective bundles with uniformity are characterized
Do all pure entangled states violate Bell's inequalities for correlation functions?
Zukowski, Marek; Brukner, Caslav; Laskowski, Wiesław; Wieśniak, Marcin
2002-05-27
Any pure entangled state of two particles violates a Bell inequality for two-particle correlation functions (Gisin's theorem). We show that there exist pure entangled N>2 qubit states that do not violate any Bell inequality for N particle correlation functions for experiments involving two dichotomic observables per local measuring station. We also find that Mermin-Ardehali-Belinskii-Klyshko inequalities may not always be optimal for refutation of local realistic description.
International Nuclear Information System (INIS)
Feng Yuan; Duan Runyao; Ying Mingsheng
2006-01-01
We show that in some cases, catalyst-assisted entanglement transformation cannot be implemented by multiple-copy transformation for pure states. This fact, together with the result we obtained in R. Y. Duan, Y. Feng, X. Li, and M. S. Ying, Phys. Rev. A 71, 042319 (2005), namely that the latter can be completely implemented by the former, indicates that catalyst-assisted transformation is strictly more powerful than multiple-copy transformation. For the purely probabilistic setting we find, however, these two kinds of transformations are geometrically equivalent in the sense that the sets of pure states that can be converted into a given pure state with maximal probabilities not less than a given value have the same closure, regardless of whether catalyst-assisted transformation or multiple-copy transformation is used
The operations of quantum logic gates with pure and mixed initial states.
Chen, Jun-Liang; Li, Che-Ming; Hwang, Chi-Chuan; Ho, Yi-Hui
2011-04-07
The implementations of quantum logic gates realized by the rovibrational states of a C(12)O(16) molecule in the X((1)Σ(+)) electronic ground state are investigated. Optimal laser fields are obtained by using the modified multitarget optimal theory (MTOCT) which combines the maxima of the cost functional and the fidelity for state and quantum process. The projection operator technique together with modified MTOCT is used to get optimal laser fields. If initial states of the quantum gate are pure states, states at target time approach well to ideal target states. However, if the initial states are mixed states, the target states do not approach well to ideal ones. The process fidelity is introduced to investigate the reliability of the quantum gate operation driven by the optimal laser field. We found that the quantum gates operate reliably whether the initial states are pure or mixed.
Adesso, Gerardo; Giampaolo, Salvatore M.; Illuminati, Fabrizio
2007-10-01
We present a geometric approach to the characterization of separability and entanglement in pure Gaussian states of an arbitrary number of modes. The analysis is performed adapting to continuous variables a formalism based on single subsystem unitary transformations that has been recently introduced to characterize separability and entanglement in pure states of qubits and qutrits [S. M. Giampaolo and F. Illuminati, Phys. Rev. A 76, 042301 (2007)]. In analogy with the finite-dimensional case, we demonstrate that the 1×M bipartite entanglement of a multimode pure Gaussian state can be quantified by the minimum squared Euclidean distance between the state itself and the set of states obtained by transforming it via suitable local symplectic (unitary) operations. This minimum distance, corresponding to a , uniquely determined, extremal local operation, defines an entanglement monotone equivalent to the entropy of entanglement, and amenable to direct experimental measurement with linear optical schemes.
International Nuclear Information System (INIS)
Adesso, Gerardo; Giampaolo, Salvatore M.; Illuminati, Fabrizio
2007-01-01
We present a geometric approach to the characterization of separability and entanglement in pure Gaussian states of an arbitrary number of modes. The analysis is performed adapting to continuous variables a formalism based on single subsystem unitary transformations that has been recently introduced to characterize separability and entanglement in pure states of qubits and qutrits [S. M. Giampaolo and F. Illuminati, Phys. Rev. A 76, 042301 (2007)]. In analogy with the finite-dimensional case, we demonstrate that the 1xM bipartite entanglement of a multimode pure Gaussian state can be quantified by the minimum squared Euclidean distance between the state itself and the set of states obtained by transforming it via suitable local symplectic (unitary) operations. This minimum distance, corresponding to a, uniquely determined, extremal local operation, defines an entanglement monotone equivalent to the entropy of entanglement, and amenable to direct experimental measurement with linear optical schemes
International Nuclear Information System (INIS)
Fortescue, Ben; Lo, H.-K.
2005-01-01
We derive lower limits on the inefficiency and classical communication costs of dilution between two-term bipartite pure states that are partially entangled. We first calculate explicit relations between the allowable error and classical communication costs of entanglement dilution using a previously described protocol, then consider a two-stage dilution from singlets with this protocol followed by some unknown protocol for conversion between partially entangled states. Applying overall lower bounds on classical communication and inefficiency to this two-stage protocol, we derive bounds for the unknown protocol. In addition we derive analogous (but looser) bounds for general pure states
Pure random search for ambient sensor distribution optimisation in a smart home environment.
Poland, Michael P; Nugent, Chris D; Wang, Hui; Chen, Liming
2011-01-01
Smart homes are living spaces facilitated with technology to allow individuals to remain in their own homes for longer, rather than be institutionalised. Sensors are the fundamental physical layer with any smart home, as the data they generate is used to inform decision support systems, facilitating appropriate actuator actions. Positioning of sensors is therefore a fundamental characteristic of a smart home. Contemporary smart home sensor distribution is aligned to either a) a total coverage approach; b) a human assessment approach. These methods for sensor arrangement are not data driven strategies, are unempirical and frequently irrational. This Study hypothesised that sensor deployment directed by an optimisation method that utilises inhabitants' spatial frequency data as the search space, would produce more optimal sensor distributions vs. the current method of sensor deployment by engineers. Seven human engineers were tasked to create sensor distributions based on perceived utility for 9 deployment scenarios. A Pure Random Search (PRS) algorithm was then tasked to create matched sensor distributions. The PRS method produced superior distributions in 98.4% of test cases (n=64) against human engineer instructed deployments when the engineers had no access to the spatial frequency data, and in 92.0% of test cases (n=64) when engineers had full access to these data. These results thus confirmed the hypothesis.
Unified quantum no-go theorems and transforming of quantum pure states in a restricted set
Luo, Ming-Xing; Li, Hui-Ran; Lai, Hong; Wang, Xiaojun
2017-12-01
The linear superposition principle in quantum mechanics is essential for several no-go theorems such as the no-cloning theorem, the no-deleting theorem and the no-superposing theorem. In this paper, we investigate general quantum transformations forbidden or permitted by the superposition principle for various goals. First, we prove a no-encoding theorem that forbids linearly superposing of an unknown pure state and a fixed pure state in Hilbert space of a finite dimension. The new theorem is further extended for multiple copies of an unknown state as input states. These generalized results of the no-encoding theorem include the no-cloning theorem, the no-deleting theorem and the no-superposing theorem as special cases. Second, we provide a unified scheme for presenting perfect and imperfect quantum tasks (cloning and deleting) in a one-shot manner. This scheme may lead to fruitful results that are completely characterized with the linear independence of the representative vectors of input pure states. The upper bounds of the efficiency are also proved. Third, we generalize a recent superposing scheme of unknown states with a fixed overlap into new schemes when multiple copies of an unknown state are as input states.
Normal pure states of the von Nuemann algebra of bounded operators as Kaehler manifold
International Nuclear Information System (INIS)
Cirelli, R.; Lanzavecchia, P.; Mania, A.
1983-01-01
The projective space of a complex Hilbert space H is considered both as a Kaehler manifold and as the set of pure states of the von Neumann algebra B(H). A link is given between these two structures. Special attention is devoted to topology, orientation and automorphisms of the structures and Wigner's theorem. (author)
Generation of Arbitrary Pure States for Three-dimensional Motion of a Trapped Ion
International Nuclear Information System (INIS)
Li Dachuang; Dong Ping; Cao Zhuoliang; Wang Xianping; Yang Ming
2010-01-01
In this paper, we propose a scheme for generating an arbitrary three-dimensional pure state of vibrational motion of a trapped ion. Our scheme is based on a sequence of laser pulses, which are tuned to the appropriate vibrational sidebands with respect to the appropriate electronic transition. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)
Theory of pure rotational transitions in doubly degenerate torsional states of ethane
Rosenberg, A.; Susskind, J.
1979-01-01
It is shown that pure rotational transitions in doubly degenerate torsional states of C2H6 (with selection rules Delta K = 0, plus or minus 1) are made allowed by Coriolis interaction between torsion and dipole-allowed vibrations. Expressions are presented for integrated intensities from which strengths of lines in the millimeter region can be calculated.
Varsha Komath Pavithran; Madhusudhan Krishna; Vinod A Kumar; Ashish Jaiswal; Arul K Selvan; Sudhir Rawlani
2017-01-01
Introduction: Oil pulling as described in ancient Ayurveda involves the use of edible vegetable oils as oral antibacterial agents. It is a practice of swishing oil in the mouth for oral and systemic health benefits. Pure coconut oil has antimicrobial properties and is commonly available in all Indian households. Aim: This study aims to assess the effect of oil pulling therapy with pure coconut oil on Streptococcus mutans count and to compare its efficacy against sesame oil and saline. Materia...
International Nuclear Information System (INIS)
Ahmed, S.; Kabir, H.; Nigar, F.
2011-01-01
Calcium Phosphate based bioceramic materials, in pure and doped forms have been successfully synthesized from egg shells by using solid-state method for the first time. Considering the diverse role of zinc and fluoride in biological functions, these two ions were chosen to develop the substituted bioceramic materials. Structural characterizations of these developed bioceramics were performed by using FTIR, XRD, SEM and EDS techniques. The results revealed that the fluoride doped apatite was formed in single phase containing hydroxyapatite while pure and Zinc doped apatites contained -TCP with hydroxyapatite. Experimental results and the crystallographic parameters matched well with the literature values indicating that the present experimental protocol favoured the formation of the desired bioceramics. However, to synthesize the (Ca (PO)) based bioceramic materials, such a simple solid-state approach would obviously be very helpful, not only in making the process economically feasible, but also in creating an effective material recycling technology for waste-management. (author)
Fidelity estimation between two finite ensembles of unknown pure equatorial qubit states
Energy Technology Data Exchange (ETDEWEB)
Siomau, Michael, E-mail: siomau@physi.uni-heidelberg.de [Physikalisches Institut, Heidelberg Universitaet, D-69120 Heidelberg (Germany); Department of Theoretical Physics, Belarussian State University, 220030 Minsk (Belarus)
2011-09-05
Suppose, we are given two finite ensembles of pure qubit states, so that the qubits in each ensemble are prepared in identical (but unknown for us) states lying on the equator of the Bloch sphere. What is the best strategy to estimate fidelity between these two finite ensembles of qubit states? We discuss three possible strategies for the fidelity estimation. We show that the best strategy includes two stages: a specific unitary transformation on two ensembles and state estimation of the output states of this transformation. -- Highlights: → We search for the best strategy for the fidelity estimation. → A measurement-based, a cloning-based and a unified strategies are considered. → The last strategy includes a specific unitary transformation and state estimation. → The unified strategy is shown to be the best among the three.
Single Crystal Growth of Pure Co3+ Oxidation State Material LaSrCoO4
Directory of Open Access Journals (Sweden)
Hanjie Guo
2016-08-01
Full Text Available We report on the single crystal growth of the single-layer perovskite cobaltate LaSrCoO4 that was grown by the optical floating zone method using high oxygen pressures. Phase purity and single crystallinity were confirmed by X-ray diffraction techniques. The pure Co3+ oxidation state was confirmed by X-ray absorbtion spectroscopy measurements. A transition to a spin glass state is observed at ∼7 K in magnetic susceptibility and specific heat measurements.
Preparing Pseudo-Pure States in a Quadrupolar Spin System Using Optimal Control
International Nuclear Information System (INIS)
Tan Yi-Peng; Li Jun; Zhou Xian-Yi; Peng Xin-Hua; Du Jiang-Feng; Nie Xin-Fang; Chen Hong-Wei
2012-01-01
Pseudo-pure state (PPS) preparation is crucial in nuclear magnetic resonance quantum computation. There have been some methods in spin-1/2 systems and a few attempts in quadrupolar spin systems. As optimal control via gradient ascent pulses engineering (GRAPE) has been widely used in quantum information science, we apply this technique to PPS preparation in quadrupolar spin systems. This approach shows an effective and fast quantum control method for both the state preparation and the realization of quantum gates in quadrupolar systems
International Nuclear Information System (INIS)
Paraan, Francis N. C.; Korepin, Vladimir E.; Molina-Vilaplana, Javier; Bose, Sougato
2011-01-01
We quantify the extractable entanglement of excited states of a Lieb-Liniger gas that are obtained from coarse-grained measurements on the ground state in which the boson number in one of two complementary contiguous partitions of the gas is determined. Numerically exact results obtained from the coordinate Bethe ansatz show that the von Neumann entropy of the resulting bipartite pure state increases monotonically with the strength of repulsive interactions and saturates to the impenetrable-boson limiting value. We also present evidence indicating that the largest amount of entanglement can be extracted from the most probable projected state having half the number of bosons in a given partition. Our study points to a fundamental difference between the nature of the entanglement in free-bosonic and free-fermionic systems, with the entanglement in the former being zero after projection, while that in the latter (corresponding to the impenetrable-boson limit) being nonzero.
An equation of state for purely kinetic k-essence inspired by cosmic topological defects
Energy Technology Data Exchange (ETDEWEB)
Cordero, Ruben; Gonzalez, Eduardo L.; Queijeiro, Alfonso [Instituto Politecnico Nacional, Departamento de Fisica, Escuela Superior de Fisica y Matematicas, Ciudad de Mexico (Mexico)
2017-06-15
We investigate the physical properties of a purely kinetic k-essence model with an equation of state motivated in superconducting membranes. We compute the equation of state parameter w and discuss its physical evolution via a nonlinear equation of state. Using the adiabatic speed of sound and energy density, we restrict the range of parameters of the model in order to have an acceptable physical behavior. We study the evolution of the scale factor and address the question of the possible existence of finite-time future singularities. Furthermore, we analyze the evolution of the luminosity distance d{sub L} with redshift z by comparing (normalizing) it with the ΛCDM model. Since the equation of state parameter is z-dependent the evolution of the luminosity distance is also analyzed using the Alcock-Paczynski test. (orig.)
Pure quasifree states of the Dirac field from the fermionic projector
International Nuclear Information System (INIS)
Fewster, Christopher J; Lang, Benjamin
2015-01-01
We consider the quantized free massive Dirac field on oriented and globally hyperbolic ultrastatic slab spacetimes with compact spatial section and demonstrate how a gauge invariant, pure and quasifree state on the C*-completion of the self-dual CAR-algebra can be extracted from the fermionic projector construction of Finster and Reintjes. This state is analogous to the ‘SJ-state’ of the free scalar field recently discussed in the literature. We prove that this state generically fails to be Hadamard. However, we also show how a modified version of the construction, inspired by the work of Brum and Fredenhagen, yields states that are Hadamard. We also relate the Hadamard condition to the finiteness of fluctuations of Wick polynomials. (paper)
DDF construction and D-brane boundary states in pure spinor formalism
International Nuclear Information System (INIS)
Mukhopadhyay, Partha
2006-01-01
Open string boundary conditions for non-BPS D-branes in type II string theories discussed in hep-th/0505157 give rise to two sectors with integer (R sector) and half-integer (NS sector) modes for the combined fermionic matter and bosonic ghost variables in pure spinor formalism. Exploiting the manifest supersymmetry of the formalism we explicitly construct the DDF (Del Giudice, Di Vecchia, Fubini) states in both the sectors which are in one-to-one correspondence with the states in light-cone Green-Schwarz formalism. We also give a proof of validity of this construction. A similar construction in the closed string sector enables us to define a physical Hilbert space in pure spinor formalism which is used to project the covariant boundary states of both the BPS and non-BPS instantonic D-branes. These projected boundary states take exactly the same form as those found in light-cone Green-Schwarz formalism and are suitable for computing the cylinder diagram with manifest open-closed duality
On bipartite pure-state entanglement structure in terms of disentanglement
Herbut, Fedor
2006-12-01
Schrödinger's disentanglement [E. Schrödinger, Proc. Cambridge Philos. Soc. 31, 555 (1935)], i.e., remote state decomposition, as a physical way to study entanglement, is carried one step further with respect to previous work in investigating the qualitative side of entanglement in any bipartite state vector. Remote measurement (or, equivalently, remote orthogonal state decomposition) from previous work is generalized to remote linearly independent complete state decomposition both in the nonselective and the selective versions. The results are displayed in terms of commutative square diagrams, which show the power and beauty of the physical meaning of the (antiunitary) correlation operator inherent in the given bipartite state vector. This operator, together with the subsystem states (reduced density operators), constitutes the so-called correlated subsystem picture. It is the central part of the antilinear representation of a bipartite state vector, and it is a kind of core of its entanglement structure. The generalization of previously elaborated disentanglement expounded in this article is a synthesis of the antilinear representation of bipartite state vectors, which is reviewed, and the relevant results of [Cassinelli et al., J. Math. Anal. Appl. 210, 472 (1997)] in mathematical analysis, which are summed up. Linearly independent bases (finite or infinite) are shown to be almost as useful in some quantum mechanical studies as orthonormal ones. Finally, it is shown that linearly independent remote pure-state preparation carries the highest probability of occurrence. This singles out linearly independent remote influence from all possible ones.
Decoherence and thermalization of a pure quantum state in quantum field theory.
Giraud, Alexandre; Serreau, Julien
2010-06-11
We study the real-time evolution of a self-interacting O(N) scalar field initially prepared in a pure, coherent quantum state. We present a complete solution of the nonequilibrium quantum dynamics from a 1/N expansion of the two-particle-irreducible effective action at next-to-leading order, which includes scattering and memory effects. We demonstrate that, restricting one's attention (or ability to measure) to a subset of the infinite hierarchy of correlation functions, one observes an effective loss of purity or coherence and, on longer time scales, thermalization. We point out that the physics of decoherence is well described by classical statistical field theory.
Multiparty Quantum Secret Sharing via Introducing Auxiliary Particles Using a Pure Entangled State
International Nuclear Information System (INIS)
Xia Yan; Song Jie; Song Heshan; Huang Xiaoli
2008-01-01
We propose a new multiparty quantum secret sharing protocol via introducing auxiliary particles using a non-maximally entangled (pure) two-particle state without a Bell measurement. The communication parties utilize decoy particles to check eavesdropping. After ensuring the security of the quantum channel, the sender encodes the secret message and transmits it to the receiver by using controlled-NOT operation and von Neumann measurement. If and only if all the agents agree to collaborate, they can read out the secret message
International Nuclear Information System (INIS)
Sallah, M.; Degheidy, A.R.
2013-01-01
Radiative transfer problem for pure-triplet scattering, in participating half-space random medium is proposed. The medium is assumed to be random with binary Markovian mixtures (e.g. radiation transfer in astrophysical contexts where the clouds and clear sky play and two-phase medium) described by Markovian statistics. The specular reflectivity of the boundary is angular-dependent described by the Fresnel's reflection probability function. The problem is solved at first in the deterministic case, and then the solution is averaged using the formalism developed by Levermore and Pomraning, to treat particles transport problems in statistical mixtures. Some physical quantities of interest such as the reflectivity of the boundary, average radiant energy, and average net flux are computed for various values of refractive index of the boundary
Minimum error discrimination for an ensemble of linearly independent pure states
International Nuclear Information System (INIS)
Singal, Tanmay; Ghosh, Sibasish
2016-01-01
Inspired by the work done by Belavkin (1975 Stochastics 1 315) and independently by Mochon, (2006 Phys. Rev. A 73 032328), we formulate the problem of minimum error discrimination (MED) of any ensemble of n linearly independent pure states by stripping the problem of its rotational covariance and retaining only the rotationally invariant aspect of the problem. This is done by embedding the optimal conditions in a matrix equality as well as matrix inequality. Employing the implicit function theorem in these conditions we get a set of first-order coupled ordinary nonlinear differential equations which can be used to drag the solution from an initial point (where solution is known) to another point (whose solution is sought). This way of obtaining the solution can be done through a simple Taylor series expansion and analytic continuation when required. Thus, we complete the work done by Belavkin and Mochon by ultimately leading their theory to a solution for the MED problem of linearly independent pure state ensembles. We also compare the computational complexity of our technique with the barrier-type interior point method of SDP and show that our technique is computationally as efficient as (actually, a bit more than) the SDP algorithm, with the added advantage of being much simpler to implement. (paper)
Optimal estimate of a pure qubit state from Uhlmann-Josza fidelity
Energy Technology Data Exchange (ETDEWEB)
Aoki, Manuel Avila, E-mail: manvlk@yahoo.com [Centro Universitario UAEM Valle de Chalco, UAEMex, Edo. de Mexico (Mexico)
2012-04-15
In the framework of collective measurements, efforts have been made to reconstruct one-qubit states. Such schemes find an obstacle in the no-cloning theorem, which prevents full reconstruction of a quantum state. Quantum Mechanics thus restricts to obtain estimates of the reconstruction of a pure qubit. We discuss the optimal estimate on the basis of the Uhlmann-Josza fidelity, respecting the limitations imposed by the no-cloning theorem. We derive a realistic optimal expression for the average fidelity. Our formalism also introduces an optimization parameter L. Values close to zero imply full reconstruction of the qubit (i. e., the classical limit), while larger L's represent good quantum optimization of the qubit estimate. The parameter L is interpreted as the degree of quantumness of the average fidelity associated with the reconstruction. (author)
Equation of state for thermodynamic properties of pure and mixtures liquid alkali metals
International Nuclear Information System (INIS)
Mousazadeh, M.H.; Faramarzi, E.; Maleki, Z.
2010-01-01
We developed an equation of state based on statistical-mechanical perturbation theory for pure and mixtures alkali metals. Thermodynamic properties were calculated by the equation of state, based on the perturbed-chain statistical associating fluid theory (PC-SAFT). The model uses two parameters for a monatomic system, segment size, σ, and segment energy, ε. In this work, we calculate the saturation and compressed liquid density, heat capacity at constant pressure and constant volume, isobaric expansion coefficient, for which accurate experimental data exist in the literatures. Results on the density of binary and ternary alkali metal alloys of Cs-K, Na-K, Na-K-Cs, at temperatures from the freezing point up to several hundred degrees above the boiling point are presented. The calculated results are in good agreement with experimental data.
Method of distinction of pure d-wave state from the mixed state in HTSC
International Nuclear Information System (INIS)
Filatova, Tatiana; Brusov, Peter; Brusov, Pavel; Lee, Chong; Chaudhury, Ranjan
2009-01-01
Direct observation of the collective modes in unconventional superconductors (USC) by microwave impedance technique experiments has made the study of the collective excitations in these systems very important. One remaining question is the exact form of the order parameter of unconventional superconductors. Extended s-wave pairing, mixture of s- and d-states, as well as of different d-wave states are among possibilities. We have considered the mixtures of d x 2 - y 2 and d xy states in high temperature superconductors (HTSC) and have, for the first time, derived the full set of equations for the collective mode spectrum in the mixed d-wave state with an arbitrary admixture of d xy state. The results we have obtained will allow us to calculate the whole collective mode spectrum, which may then be used for interpretation of sound attenuation and microwave absorption data as well as for identification of the type of pairing and order parameter in unconventional superconductors. In particular, this will allow one to estimate the extent of admixture of d xy state in the possible mixed state.
Energy Technology Data Exchange (ETDEWEB)
Hobbs, M.L.
1997-12-01
Determination of product species, equations-of-state (EOS) and thermochemical properties of high explosives and pyrotechnics remains a major unsolved problem. Although, empirical EOS models may be calibrated to replicate detonation conditions within experimental variability (5--10%), different states, e.g. expansion, may produce significant discrepancy with data if the basic form of the EOS model is incorrect. A more physically realistic EOS model based on intermolecular potentials, such as the Jacobs Cowperthwaite Zwisler (JCZ3) EOS, is needed to predict detonation states as well as expanded states. Predictive capability for any EOS requires a large species data base composed of a wide variety of elements. Unfortunately, only 20 species have known JCZ3 molecular force constants. Of these 20 species, only 10 have been adequately compared to experimental data such as molecular scattering or shock Hugoniot data. Since data in the strongly repulsive region of the molecular potential is limited, alternative methods must be found to deduce force constants for a larger number of species. The objective of the present study is to determine JCZ3 product species force constants by using a corresponding states theory. Intermolecular potential parameters were obtained for a variety of gas species using a simple corresponding states technique with critical volume and critical temperature. A more complex, four parameter corresponding state method with shape and polarity corrections was also used to obtain intermolecular potential parameters. Both corresponding state methods were used to predict shock Hugoniot data obtained from pure liquids. The simple corresponding state method is shown to give adequate agreement with shock Hugoniot data.
Svetlichny's inequality and genuine tripartite nonlocality in three-qubit pure states
International Nuclear Information System (INIS)
Ajoy, Ashok; Rungta, Pranaw
2010-01-01
The violation of the Svetlichny's inequality (SI) [Phys. Rev. D 35, 3066 (1987)] is sufficient but not necessary for genuine tripartite nonlocal correlations. Here we quantify the relationship between tripartite entanglement and the maximum expectation value of the Svetlichny operator (which is bounded from above by the inequality) for the two inequivalent subclasses of pure three-qubit states: the Greenberger-Horne-Zeilinger (GHZ) class and the W class. We show that the maximum for the GHZ-class states reduces to Mermin's inequality [Phys. Rev. Lett. 65, 1838 (1990)] modulo a constant factor, and although it is a function of the three tangle and the residual concurrence, large numbers of states do not violate the inequality. We further show that by design SI is more suitable as a measure of genuine tripartite nonlocality between the three qubits in the W-class states, and the maximum is a certain function of the bipartite entanglement (the concurrence) of the three reduced states, and only when their sum attains a certain threshold value do they violate the inequality.
Preparation and coherent manipulation of pure quantum states of a single molecular ion
Chou, Chin-Wen; Kurz, Christoph; Hume, David B.; Plessow, Philipp N.; Leibrandt, David R.; Leibfried, Dietrich
2017-05-01
Laser cooling and trapping of atoms and atomic ions has led to advances including the observation of exotic phases of matter, the development of precision sensors and state-of-the-art atomic clocks. The same level of control in molecules could also lead to important developments such as controlled chemical reactions and sensitive probes of fundamental theories, but the vibrational and rotational degrees of freedom in molecules pose a challenge for controlling their quantum mechanical states. Here we use quantum-logic spectroscopy, which maps quantum information between two ion species, to prepare and non-destructively detect quantum mechanical states in molecular ions. We develop a general technique for optical pumping and preparation of the molecule into a pure initial state. This enables us to observe high-resolution spectra in a single ion (CaH+) and coherent phenomena such as Rabi flopping and Ramsey fringes. The protocol requires a single, far-off-resonant laser that is not specific to the molecule, so many other molecular ions, including polyatomic species, could be treated using the same methods in the same apparatus by changing the molecular source. Combined with the long interrogation times afforded by ion traps, a broad range of molecular ions could be studied with unprecedented control and precision. Our technique thus represents a critical step towards applications such as precision molecular spectroscopy, stringent tests of fundamental physics, quantum computing and precision control of molecular dynamics.
Production and technological plasticity of commercially pure Titanium in submicrocrystalline state
International Nuclear Information System (INIS)
Danilov, V. I.; Zuev, L. B.; Shlyahova, G. V.; Orlova, D. V; Sharkeev, Yu. P.
2010-01-01
Presented is the method for producing solid billets of commercially pure titanium having low dimensional nanostructure (structural elements < 100 nm). The method is based on multiple unidirectional pressing, with the direction of pressing being changed every other cycle, followed by cold rolling. The microstructure, mechanical characteristics and plastic deformation behavior of material produced by the above method was investigated. The results obtained are presented herein. The loading diagram of titanium alloy in nanostructure state shows a lengthy prefracture portion, which suggests that material undergoes practically no deformation hardening. The latter stage is also distinguished by the emergence of macroscopic nuclei of localized plastic flow, which differ in the level of accumulated deformation. The maximal-amplitude nucleus will remain stationary, pinpointing the place of future fracture. On the meso-scale level formation of meso-bands (folds) is observed, with the distribution and characteristic sizes of the meso-bands corresponding to the arrangement of localized plastic flow macro-nuclei. Characteristically, the local and global loss of plastic flow stability will occur simultaneously in titanium alloy in nanostructure state. On the base of experimental evidence certain modifications can be introduced into the pressing schedules employed by the production of materials in nanostructure state. Key words: titanium, nanostructure state, method of severe plastic deformation, deformation behavior, localized plastic flow, fracture
Mehtedi, Mohamad El; Forcellese, Archimede; Simoncini, Michela; Spigarelli, Stefano
2018-05-01
In this research, the feasibility of solid-state recycling of pure aluminum AA1099 machining chips using FSE process is investigated. In the early stage, a FE simulation was conducted in order to optimize the die design and the process parameters in terms of plunge rotational speed and extrusion rate. The AA1099 aluminum chips were produced by turning of an as-received bar without lubrication. The chips were compacted on a MTS machine up to 150KN of load. The extruded samples were analyzed by optical and electron microscope in order to see the material flow and to characterize the microstructure. Finally, micro-hardness Vickers profiles were carried out, in both longitudinal and transversal direction of the obtained profiles, in order to investigate the homogeneity of the mechanical properties of the extrudate.
On a decomposition theorem for density operators of a pure quantum state
International Nuclear Information System (INIS)
Giannoni, M.J.
1979-03-01
Conditions for the existence of a decomposition of a hermitian projector rho into two hermitian and time reversal invariant operators r/rho 0 and chi under the form rho=esup(i,chi)rho 0 esup(-i,chi) are investigated. Sufficient conditions are given, and an explicit construction of a decomposition is performed when they are fulfilled. A stronger theorem of existence and unicity is studied. All the proofs are valid for any p-body reduced density operator of a pure state of a system of bosons as well as fermions. The decomposition studied in this work has already been used in Nuclear Physics, and may be of interest in other fields of Physics
Entropy-power uncertainty relations: towards a tight inequality for all Gaussian pure states
International Nuclear Information System (INIS)
Hertz, Anaelle; Jabbour, Michael G; Cerf, Nicolas J
2017-01-01
We show that a proper expression of the uncertainty relation for a pair of canonically-conjugate continuous variables relies on entropy power, a standard notion in Shannon information theory for real-valued signals. The resulting entropy-power uncertainty relation is equivalent to the entropic formulation of the uncertainty relation due to Bialynicki-Birula and Mycielski, but can be further extended to rotated variables. Hence, based on a reasonable assumption, we give a partial proof of a tighter form of the entropy-power uncertainty relation taking correlations into account and provide extensive numerical evidence of its validity. Interestingly, it implies the generalized (rotation-invariant) Schrödinger–Robertson uncertainty relation exactly as the original entropy-power uncertainty relation implies Heisenberg relation. It is saturated for all Gaussian pure states, in contrast with hitherto known entropic formulations of the uncertainty principle. (paper)
García, Gregorio; Atilhan, Mert; Aparicio, Santiago
2015-09-17
The N-ethyl-N-(furan-2-ylmethyl)ethanaminium dihydrogen phosphate ionic liquid was studied as a model of ionic liquids which can be produced from totally renewable sources. A computational study using both molecular dynamics and density functional theory methods was carried out. The properties, structuring, and intermolecular interactions (hydrogen bonding) of this fluid in the pure state were studied as a function of pressure and temperature. Likewise, the adsorption on graphene and the confinement between graphene sheets was also studied. The solvation of single walled carbon nanotubes in the selected ionic liquid was analyzed together with the behavior of ions confined inside these nanotubes. The reported results show remarkable properties for this fluid, which show that many of the most relevant properties of ionic liquids and their ability to interact with carbon nanosystems may be maintained and even improved using new families of renewable compounds instead of classic types of ionic liquids with worse environmental, toxicological, and economical profiles.
Ellipsometry with randomly varying polarization states
Liu, F.; Lee, C. J.; Chen, J. Q.; E. Louis,; van der Slot, P. J. M.; Boller, K. J.; F. Bijkerk,
2012-01-01
We show that, under the right conditions, one can make highly accurate polarization-based measurements without knowing the absolute polarization state of the probing light field. It is shown that light, passed through a randomly varying birefringent material has a well-defined orbit on the Poincar
A quick and easy test for deciding entanglement status of an N-qubit pure quantum state
International Nuclear Information System (INIS)
Mehendale, D.P.; Joag, P.S.
2018-01-01
We develop a simple criterion in terms of a necessary-sufficient condition (NS condition) for deciding separability of an arbitrary n-qubit pure quantum state. This NS condition provides a quick and easy test procedure to determine the entanglement status of a pure quantum state. We normalize the given quantum state and using this normalized state we can easily build a simplest system of equations containing trigonometric functions by making use of the well known Bloch Sphere representation for single qubit states and check whether or not this system of equations is consistent. According to proposed NS condition the given pure quantum state is separable (entangled) if and only if the above mentioned system of equations is consistent (inconsistent). We build this system of equations by equating the coefficients of computational basis states in the superposition representing the given pure quantum state with certain products of trigonometric functions obtained using standard Bloch Sphere representation for single qubit states. To establish separability of given state one requires to find a valid solution of the above mentioned system of equations but entanglement on the other hand follows when any two equations in this system of equations are mutually inconsistent. Thus, entanglement of the state can follow easily if one succeeds in finding any two mutually inconsistent equations in the above mentioned system of equations.
Evolution from pure states into mixed states in de Sitter space
International Nuclear Information System (INIS)
Sakagami, Masa-aki.
1987-03-01
An attempt is made to clarify realization of a classical distribution from quantum fluctuations of the order parameter in the inflationary universe. We discuss destruction of quantum coherence associated with a state of the order parameter in models where it interacts with the environment. For that purpose, the time evolution of the reduced density matrix ρ tilde, which is obtained by coarse-graining of the environment, is investigated. It is shown that off-diagonal elements of ρ tilde decrease as the phase transition proceeds. (author)
The decay of a false vacuum and the density of states in a random, repulsive potential
International Nuclear Information System (INIS)
Neuberger, H.
1982-01-01
The replica method is applied to a disordered system built out of randomly distributed, purely repulsive scattering centers. The emerging field theoretical model has a classical solution, a bounce, which gives both the leading form of the level density and the typical ground-state wave function. (orig.)
Goldblatt, Colin
2015-05-01
There are four different stable climate states for pure water atmospheres, as might exist on so-called "waterworlds." I map these as a function of solar constant for planets ranging in size from Mars-sized to 10 Earth-mass. The states are as follows: globally ice covered (Ts ⪅ 245 K), cold and damp (270 ⪅ Ts ⪅ 290 K), hot and moist (350 ⪅ Ts ⪅ 550 K), and very hot and dry (Tsx2A86;900 K). No stable climate exists for 290 ⪅ T s ⪅ 350 K or 550 ⪅ Ts ⪅ 900 K. The union of hot moist and cold damp climates describes the liquid water habitable zone, the width and location of which depends on planet mass. At each solar constant, two or three different climate states are stable. This is a consequence of strong nonlinearities in both thermal emission and the net absorption of sunlight. Across the range of planet sizes, I account for the atmospheres expanding to high altitudes as they warm. The emitting and absorbing surfaces (optical depth of unity) move to high altitude, making their area larger than the planet surface, so more thermal radiation is emitted and more sunlight absorbed (the former dominates). The atmospheres of small planets expand more due to weaker gravity; the effective runaway greenhouse threshold is about 35 W m(-2) higher for Mars, 10 W m(-2) higher for Earth or Venus, but only a few W m(-2) higher for a 10 Earth-mass planet. There is an underlying (expansion-neglected) trend of increasing runaway greenhouse threshold with planetary size (40 W m(-2) higher for a 10 Earth-mass planet than for Mars). Summing these opposing trends means that Venus-sized (or slightly smaller) planets are most susceptible to a runaway greenhouse. The habitable zone for pure water atmospheres is very narrow, with an insolation range of 0.07 times the solar constant. A wider habitable zone requires background gas and greenhouse gas: N2 and CO2 on Earth, which are biologically controlled. Thus, habitability depends on inhabitance.
On the algebra of local unitary invariants of pure and mixed quantum states
International Nuclear Information System (INIS)
Vrana, Peter
2011-01-01
We study the structure of the inverse limit of the graded algebras of local unitary invariant polynomials using its Hilbert series. For k subsystems, we show that the inverse limit is a free algebra and the number of algebraically independent generators with homogenous degree 2m equals the number of conjugacy classes of index m subgroups in a free group on k - 1 generators. Similarly, we show that the inverse limit in the case of k-partite mixed state invariants is free and the number of algebraically independent generators with homogenous degree m equals the number of conjugacy classes of index m subgroups in a free group on k generators. The two statements are shown to be equivalent. To illustrate the equivalence, using the representation theory of the unitary groups, we obtain all invariants in the m = 2 graded parts and express them in a simple form both in the case of mixed and pure states. The transformation between the two forms is also derived. Analogous invariants of higher degree are also introduced.
Exact Open Quantum System Dynamics Using the Hierarchy of Pure States (HOPS).
Hartmann, Richard; Strunz, Walter T
2017-12-12
We show that the general and numerically exact Hierarchy of Pure States method (HOPS) is very well applicable to calculate the reduced dynamics of an open quantum system. In particular, we focus on environments with a sub-Ohmic spectral density (SD) resulting in an algebraic decay of the bath correlation function (BCF). The universal applicability of HOPS, reaching from weak to strong coupling for zero and nonzero temperature, is demonstrated by solving the spin-boson model for which we find perfect agreement with other methods, each one suitable for a special regime of parameters. The challenges arising in the strong coupling regime are not only reflected in the computational effort needed for the HOPS method to converge but also in the necessity for an importance sampling mechanism, accounted for by the nonlinear variant of HOPS. In order to include nonzero-temperature effects in the strong coupling regime we found that it is highly favorable for the HOPS method to use the zero-temperature BCF and include temperature via a stochastic Hermitian contribution to the system Hamiltonian.
Separable states improve protocols with finite randomness
International Nuclear Information System (INIS)
Bobby, Tan Kok Chuan; Paterek, Tomasz
2014-01-01
It is known from Bell's theorem that quantum predictions for some entangled states cannot be mimicked using local hidden variable (LHV) models. From a computer science perspective, LHV models may be interpreted as classical computers operating on a potentially infinite number of correlated bits originating from a common source. As such, Bell inequality violations achieved through entangled states are able to characterize the quantum advantage of certain tasks, so long as the task itself imposes no restriction on the availability of correlated bits. However, if the number of shared bits is limited, additional constraints are placed on the possible LHV models, and separable, i.e. disentangled states may become a useful resource. Bell violations are therefore no longer necessary to achieve a quantum advantage. Here we show that, in particular, separable states improve the so-called random access codes, which is a class of communication problem wherein one party tries to read a portion of the data held by another distant party in the presence of finite shared randomness and limited classical communication. We also show how the bias of classical bits can be used to avoid wrong answers in order to achieve the optimal classical protocol and how the advantage of quantum protocols is linked to quantum discord. (paper)
International Nuclear Information System (INIS)
Basieva, I.T.; Basiev, T.T.; Dietler, G.; Pukhov, K.K.; Sekatskii, S.K.
2007-01-01
Use of a biharmonic laser pumping for preparation of pure and entangled multiexciton states in dimers and tetramers of resonantly interacting fluorescent particles is analysed. Special emphasis is given to the preparation of all possible pure exciton states and their maximally entangled Bell states. The general results are illustrated using as an example the pair and quartet centres of neodymium ions in calcium fluoride (M- and N-centres), where all necessary experimental information concerning the interactions and decoherence is available, and experimental preparation of Bell vacuum-single exciton and vacuum-biexciton states has been recently demonstrated. These results can be easily rescaled for the cases of quantum dots and dye molecules. Numerical results are compared with the analytical results obtained for a particular case of the biharmonic excitation of dimers. Excellent agreement between these approaches is demonstrated
Are safe results obtained when the PC-SAFT equation of state is applied to ordinary pure chemicals?
DEFF Research Database (Denmark)
Privat, Romain; Gani, Rafiqul; Jaubert, Jean-Noël
2010-01-01
The PC-SAFT equation of state is a very popular and promising model for fluids that employs a complicated pressure-explicit mathematical function (and can therefore not be solved analytically at a specified pressure and temperature, contrary to classical cubic equations). In this work, we...... demonstrate that in case of pure fluids, the PC-SAFT equation may exhibit up to five different volume-roots whereas cubic equations give at the most three volume-roots (and yet, only one or two volume roots have real significance). The consequence of this strongly atypical behaviour is the existence of two...... different fluid-fluid coexistence lines (the vapour pressure-curve and an additional liquid-liquid equilibrium curve) and two critical points for a same pure component, which is obviously physically inconsistent. In addition to n-alkanes, nearly sixty very common pure components (branched alkanes...
International Nuclear Information System (INIS)
Dodonov, V V
2012-01-01
Exact and approximate formulas for the upper bound of the relative energy difference of two Gaussian states with a fixed fidelity between them are derived. The reciprocal formulas for the upper bound of the fidelity for the fixed value of the relative energy difference are also obtained. The bounds appear higher for pure states than for mixed ones, and their maximal values correspond to squeezed vacuum states. In particular, to guarantee the relative energy difference less than 10%, for quite arbitrary Gaussian states, the fidelity between them must exceed the level 0.998866. (fast track communication)
International Nuclear Information System (INIS)
He, Rui; Fan, Hong-yi
2014-01-01
Based on the solution to the master equation of the density operator describing the amplitude dissipative channel, we derive the time evolution law of the coarse-graining-smoothed Wigner operator in this channel, which demonstrates how an initial pure state evolves into a mixed state, exhibiting decoherence
International Nuclear Information System (INIS)
Liu Jiong; Zhou Lan; Sheng Yu-Bo
2015-01-01
We propose a protocol for directly measuring the concurrence of a two-qubit electronic pure entangled state. To complete this task, we first design a parity-check measurement (PCM) which is constructed by two polarization beam splitters (PBSs) and a charge detector. By using the PCM for three rounds, we can achieve the concurrence by calculating the total probability of picking up the odd parity states from the initial states. Since the conduction electron may be a good candidate for the realization of quantum computation, this protocol may be useful in future solid quantum computation. (paper)
Institute of Scientific and Technical Information of China (English)
FAN Hong-Yi
2002-01-01
We show that the Wigner function W = Tr(△ρ) (an ensemble average of the density operator ρ, △ is theWigner operator) can be expressed as a matrix element of ρ in the entangled pure states. In doing so, converting fromquantum master equations to time-evolution equation of the Wigner functions seems direct and concise. The entangledstates are defined in the enlarged Fock space with a fictitious freedom.
International Nuclear Information System (INIS)
Xie Chuan-Mei; Xing Hang; Zhang Zhan-Jun; Liu Yi-Min
2015-01-01
Quantum correlations in a family of states comprising any mixture of a pair of arbitrary bi-qubit product pure states are studied by employing geometric discord [Phys. Rev. Lett. 105 (2010) 190502] as the quantifier. First, the inherent symmetry in the family of states about local unitary transformations is revealed. Then, the analytic expression of geometric discords in the states is worked out. Some concrete discussions and analyses on the captured geometric discords are made so that their distinct features are exposed. It is found that, the more averagely the two bi-qubit product states are mixed, the bigger geometric discord the mixed state owns. Moreover, the monotonic relationships of geometric discord with different parameters are revealed. (paper)
Randomly Generating Four Mixed Bell-Diagonal States with a Concurrences Sum to Unity
International Nuclear Information System (INIS)
Toh, S. P.; Zainuddin Hishamuddin; Foo Kim Eng
2012-01-01
A two-qubit system in quantum information theory is the simplest bipartite quantum system and its concurrence for pure and mixed states is well known. As a subset of two-qubit systems, Bell-diagonal states can be depicted by a very simple geometrical representation of a tetrahedron with sides of length 2√2. Based on this geometric representation, we propose a simple approach to randomly generate four mixed Bell decomposable states in which the sum of their concurrence is equal to one. (general)
Kern, Philippe; Ramelet, Albert-Adrien; Wutschert, Robert; Mazzolai, Lucia
2011-11-01
Chromated glycerin (CG) is an effective, although painful, sclerosing agent for telangiectasias and reticular leg veins treatment. To determine pain level and relative efficacy of pure or one-third lidocaine-epinephrine 1% mixed chromated glycerin in a prospective randomized double-blind trial. Patients presenting with telangiectasias and reticular leg veins on the lateral aspect of the thigh (C(1A) or (S) E(P) A(S) P(N1) ) were randomized to receive pure CG or CG mixed with one-third lidocaine-epinephrine 1% (CGX) treatment. Lower limb photographs were taken before and after treatment and analyzed by blinded expert reviewers for efficacy assessment (visual vein disappearance). Patients' pain and satisfaction were assessed using visual analogue scales. Data from 102 of 110 randomized patients could be evaluated. Patient pain scores were significantly higher when pure CG was used than with CGX (psclerotherapy pain without affecting efficacy when treating telangiectasias and reticular leg veins. © 2011 by the American Society for Dermatologic Surgery, Inc.
DEFF Research Database (Denmark)
Grenner, Andreas; Kontogeorgis, Georgios; von Solms, Nicolas
2007-01-01
The simplified PC-SAFT equation of state has been applied to liquid-liquid, vapor-liquid and solid-liquid equilibria for mixtures containing 1-or 2-alkanols with alkanes, aromatic hydrocarbons, CO2 and water. For the alkanols we use generalized pure compound parameters. This means that two...... of the physical pure compound parameters, in (segment number) and or (segment diameter), are obtained from linear extrapolations, since m and m sigma(3), increase linearly with respect to the molar mass, and moreover, the two association parameters (association energy and association volume) were assumed...... to be constant for all alkanols. Only the dispersion energy is fitted to experimental data. Thus it is possible to estimate parameters for several 1-and 2-alkanols. The final aim is to develop a group contribution approach for PC-SAFT which is suitable for complex compounds, considering that the motivation...
Institute of Scientific and Technical Information of China (English)
2007-01-01
This paper presents a scheme for probabilistic teleportation of an arbitrary GHZ-class state with a pure entangled two-particle quantum channel. The sender Alice first teleports the coefficients of the unknown state to the receiver Bob, and then Bob reconstructs the state with an auxiliary particle and some unitary operations if the teleportation succeeds. This scheme has the advantage of transmitting much less particles for teleporting an arbitrary GHZ-class state than others. Moreover, it discusses the application of this scheme in quantum state sharing.
International Nuclear Information System (INIS)
Chaudhuri, K.D.; Singh, R.
1982-01-01
The attenuation of longitudinal ultrasonic waves has been measured in single crystals of indium (99.999%), indium doped with 0.003 at % of tin, and indium doped with 0.002 at % of bismuth in the intermediate and superconducting states over the frequency range 10--30 MHz. For the bismuth-doped indium specimen, measurements were taken for three different physical states, i.e., for three different dislocation densities, and for the indium and the tin-doped indium specimens, measurements were for one-physical state. For a particular measurement, the same physical state was maintained both in the intermediate and superconducting states. A temperature-dependent oscillatory behavior of the ultrasonic attenuation was observed in the intermediate state in all the three specimens, but in the superconducting state the oscillatory behavior was observed only in the bismuth-doped specimen. Two phases have been identified in the superconducting layers of the intermediate state and there is only one phase in the superconducting state of the bismuth-doped sample. The origin of the two phases in the intermediate state and that of the single phase in the superconducting state of the bismuth-doped sample are discussed. A qualitative explanation is presented for the occurrence of oscillatory attenuation in the intermediate state irrespective of the nature of the dopant and the selective occurrence of oscillatory attenuation in the superconducting state due to the nature of the dopant
Controllability of pure states for the Poeschl-Teller potential with a dynamical group SU(2)
International Nuclear Information System (INIS)
Dong, S.-H.; Tang Yu; Sun, G.-H.; Lara-Rosano, F.; Lozada-Cassou, M.
2005-01-01
The controllability of a quantum system for the modified Poeschl-Teller (MPT) potential with the discrete bound states is investigated. The creation and annihilation operators of this potential are constructed directly from the normalized wave function with the factorization method and associated to an su(2) algebra. It is shown that this quantum system with the nondegenerate discrete bound states can, in principle, be strongly completely controllable, i.e., the system eigenstates can be guided by the external field to approach arbitrarily close to a target state, which could be theoretically realized by the actions of the creation and annihilation operators on the ground state
Noise resistance of the violation of local causality for pure three-qutrit entangled states
International Nuclear Information System (INIS)
Laskowski, Wiesław; Ryu, Junghee; Żukowski, Marek
2014-01-01
Bell's theorem started with two qubits (spins 1/2). It is a ‘no-go’ statement on classical (local causal) models of quantum correlations. After 25 years, it turned out that for three qubits the situation is even more astonishing. General statements concerning higher dimensional systems, qutrits, etc, started to appear even later, once the picture with spin (higher than 1/2) was replaced by a broader one, allowing all possible observables. This work is a continuation of the Gdansk effort to take advantage of the fact that Bell's theorem can be put in the form of a linear programming problem, which in turn can be translated into a computer code. Our results are numerical and classify the strength of the violation of local causality by various families of three-qutrit states, as measured by the resistance to noise. This is previously uncharted territory. The results may be helpful in suggesting which three-qutrit states will be handy for applications in quantum information protocols. One of the surprises is that the W state turns out to reveal a stronger violation of local causality than the GHZ (Greenberger–Horne–Zeilinger) state. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘50 years of Bell's theorem’. (paper)
TRANSIENT AND STEADY STATE STUDY OF PURE AND MIXED REFRIGERANTS IN A RESIDENTIAL HEAT PUMP
The report gives results of an experimental and theoretical investigation of the transient and steady state performance of a residential air-conditioning/heat pump (AC/HP) operating with different refrigerants. (NOTE: The project was motivated by environmental concerns related to...
Noise resistance of the violation of local causality for pure three-qutrit entangled states
Laskowski, Wiesław; Ryu, Junghee; Żukowski, Marek
2014-10-01
Bell's theorem started with two qubits (spins 1/2). It is a ‘no-go’ statement on classical (local causal) models of quantum correlations. After 25 years, it turned out that for three qubits the situation is even more astonishing. General statements concerning higher dimensional systems, qutrits, etc, started to appear even later, once the picture with spin (higher than 1/2) was replaced by a broader one, allowing all possible observables. This work is a continuation of the Gdansk effort to take advantage of the fact that Bell's theorem can be put in the form of a linear programming problem, which in turn can be translated into a computer code. Our results are numerical and classify the strength of the violation of local causality by various families of three-qutrit states, as measured by the resistance to noise. This is previously uncharted territory. The results may be helpful in suggesting which three-qutrit states will be handy for applications in quantum information protocols. One of the surprises is that the W state turns out to reveal a stronger violation of local causality than the GHZ (Greenberger-Horne-Zeilinger) state. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘50 years of Bell's theorem’.
International Nuclear Information System (INIS)
Poe, C.H.; Owocki, S.P.; Castor, J.I.
1990-01-01
The steady state solution topology for absorption line-driven flows is investigated for the condition that the Sobolev approximation is not used to compute the line force. The solution topology near the sonic point is of the nodal type with two positive slope solutions. The shallower of these slopes applies to reasonable lower boundary conditions and realistic ion thermal speed v(th) and to the Sobolev limit of zero of the usual Castor, Abbott, and Klein model. At finite v(th), this solution consists of a family of very similar solutions converging on the sonic point. It is concluded that a non-Sobolev, absorption line-driven flow with a realistic values of v(th) has no uniquely defined steady state. To the extent that a pure absorption model of the outflow of stellar winds is applicable, radiatively driven winds should be intrinsically variable. 34 refs
Magnetic Field Effects on Pure-state and Thermal Entanglement of Anisotropic Magnetic Nanodots
Istomin, Andrei Y.
2005-05-01
Anisotropic magnetic nanodots have recently been proposed as promising candidates for qubits for scalable quantum computing [1,2]. The main advantages of such magnetic qubits are their well-separated energy levels (which may allow operation at temperature of the order of a few K), nanometer size (which simplifies fabrication), and large spin values (which facilitates measurement of qubit states). The entanglement properties of eigenstates of a pair of Heisenberg-interacting nanodots have been analyzed in [2], where we have shown that ferromagnetic (FM) coupling produces two significantly entangled excited states. Here we investigate the magnetic field effects on the entanglement of these and other states. We show that entanglement of excited FM eigenstates of two non-identical nanodots can be tuned to its maximum value by applying a relatively weak non-uniform magnetic field. [1] J. Tejada, E.M. Chudnovsky, E. del Barco, J.M. Hernandez, and T.P. Spiller, Nanotechnology 12, 181 (2001). [2] R. Skomski, A.Y. Istomin, A.F. Starace, and D.J. Sellmyer, Phys. Rev. A 70, 062307 (2004).
Magneto-conductance fingerprints of purely quantum states in the open quantum dot limit
Mendoza, Michel; Ujevic, Sebastian
2012-06-01
We present quantum magneto-conductance simulations, at the quantum low energy condition, to study the open quantum dot limit. The longitudinal conductance G(E,B) of spinless and non-interacting electrons is mapped as a function of the magnetic field B and the energy E of the electrons. The quantum dot linked to the semi-infinite leads is tuned by quantum point contacts of variable width w. We analyze the transition from a quantum wire to an open quantum dot and then to an effective closed system. The transition, as a function of w, occurs in the following sequence: evolution of quasi-Landau levels to Fano resonances and quasi-bound states between the quasi-Landau levels, followed by the formation of crossings that evolve to anti-crossings inside the quasi-Landau level region. After that, Fano resonances are created between the quasi-Landau states with the final generation of resonant tunneling peaks. By comparing the G(E,B) maps, we identify the closed and open-like limits of the system as a function of the applied magnetic field. These results were used to build quantum openness diagrams G(w,B). Also, these maps allow us to determine the w-limit value from which we can qualitatively relate the closed system properties to the open one. The above analysis can be used to identify single spinless particle effects in experimental measurements of the open quantum dot limit.
Magneto-conductance fingerprints of purely quantum states in the open quantum dot limit
International Nuclear Information System (INIS)
Mendoza, Michel; Ujevic, Sebastian
2012-01-01
We present quantum magneto-conductance simulations, at the quantum low energy condition, to study the open quantum dot limit. The longitudinal conductance G(E,B) of spinless and non-interacting electrons is mapped as a function of the magnetic field B and the energy E of the electrons. The quantum dot linked to the semi-infinite leads is tuned by quantum point contacts of variable width w. We analyze the transition from a quantum wire to an open quantum dot and then to an effective closed system. The transition, as a function of w, occurs in the following sequence: evolution of quasi-Landau levels to Fano resonances and quasi-bound states between the quasi-Landau levels, followed by the formation of crossings that evolve to anti-crossings inside the quasi-Landau level region. After that, Fano resonances are created between the quasi-Landau states with the final generation of resonant tunneling peaks. By comparing the G(E,B) maps, we identify the closed and open-like limits of the system as a function of the applied magnetic field. These results were used to build quantum openness diagrams G(w,B). Also, these maps allow us to determine the w-limit value from which we can qualitatively relate the closed system properties to the open one. The above analysis can be used to identify single spinless particle effects in experimental measurements of the open quantum dot limit. (paper)
Directory of Open Access Journals (Sweden)
Feng-Mei Lu
Full Text Available Conduct disorder (CD is characterized by a persistent pattern of antisocial behavior and aggression in childhood and adolescence. Previous task-based and resting-state functional magnetic resonance imaging (fMRI studies have revealed widespread brain regional abnormalities in adolescents with CD. However, whether the resting-state networks (RSNs are altered in adolescents with CD remains unknown. In this study, resting-state fMRI data were first acquired from eighteen male adolescents with pure CD and eighteen age- and gender-matched typically developing (TD individuals. Independent component analysis (ICA was implemented to extract nine representative RSNs, and the generated RSNs were then compared to show the differences between the CD and TD groups. Interestingly, it was observed from the brain mapping results that compared with the TD group, the CD group manifested decreased functional connectivity in four representative RSNs: the anterior default mode network (left middle frontal gyrus, which is considered to be correlated with impaired social cognition, the somatosensory network (bilateral supplementary motor area and right postcentral gyrus, the lateral visual network (left superior occipital gyrus, and the medial visual network (right fusiform, left lingual gyrus and right calcarine, which are expected to be relevant to the perceptual systems responsible for perceptual dysfunction in male adolescents with CD. Importantly, the novel findings suggested that male adolescents with pure CD were identified to have dysfunctions in both low-level perceptual networks (the somatosensory network and visual network and a high-order cognitive network (the default mode network. Revealing the changes in the functional connectivity of these RSNs enhances our understanding of the neural mechanisms underlying the modulation of emotion and social cognition and the regulation of perception in adolescents with CD.
Continuity of Integrated Density of States - Independent Randomness
Indian Academy of Sciences (India)
In this paper we discuss the continuity properties of the integrated density of states for random models based on that of the single site distribution. Our results are valid for models with independent randomness with arbitrary free parts. In particular in the case of the Anderson type models (with stationary, growing, decaying ...
International Nuclear Information System (INIS)
Azevedo, Eduardo R. de; Becker-Guedes, Fabio; Bonagamba, Tito J.; Schmidt-Rohr, Klaus; Iowa State University, Ames, IA
2001-01-01
The dynamics in the amorphous regions of semicrystalline polymers exert important influences on mechanical properties, but have been notoriously difficult to characterize. Two new solid-state NMR techniques, PUREX (pure exchange) and CODEX (center band-only detection of exchange) NMR, make it possible to analyze the molecular motions near the glass transition in the amorphous regions of semicrystalline polymers. This is achieved by selectively suppressing the otherwise dominant signals of the static segments in the crystallites. We have applied both NMR techniques to study the slow motions near the glass transition in semicrystalline polymers (β relaxation) and in fully amorphous samples for reference. The studied polymers were isotactic poly(1-butene) (iPB1) (form I), syndiotactic and atactic polypropylenes (sPP, and aPP, respectively), as well as polyisobutylene (PIB). We have analyzed the geometry and time scale of the slow molecular motion for all samples and determined the apparent activation energies. (author)
Non-Markovian dynamics of quantum systems: decay rate, capture and pure states
International Nuclear Information System (INIS)
Kanokov, Z.; Palchikov, Yu.V.; Antonenko, N.V.; Adamian, G.G.; Kanokov, Z.; Adamian, G.G.; Scheid, W.
2004-01-01
Full text: With the exact numerical solution of the equation for the reduced density matrix we found a minor role of the time dependence of the friction and diffusion coefficients in the escape rate from a potential well [1]. Since the used friction and diffusion coefficients were self- consistently under certain approximations derived, they preserve the positivity of the density matrix at any time. The mixed diffusion coefficient leads to a decrease of the escape rate. Since the used value of quantum diffusion coefficient in momentum is larger than the one following from a 'classic' treatment, the obtained escape rate is close to the rate calculated with the 'classic' set of diffusion coefficients. If the regime of motion is close to the under damped case or the temperature is small, the quasi-stationary escape rate can increase with friction. This is explained by the larger role of the increasing diffusion in the decay process. The agreement of the escape rate obtained with the analytical expressions in comparison to numerically calculated data depends on the characteristics of the considered system. The agreement is better in the overdamped regime. However, for any regime the deviations are not larger than in the case of the classical Kramers formula. Therefore, the analytical expressions can be applied in a large range of parameters for the potential and diffusion coefficients. We demonstrated that the uncertainty function is related to the linear entropy. The diffusion coefficients supplying the purity of states were elaborated for the non-Markovian dynamics. The obtained dependences of the capture probability on the friction proves that the quantum nature of this process should be taken into consideration when one calculates the capture cross section in nucleus-nucleus collisions
The pure rotational spectrum of the CrS radical in its X 5Π(r) state.
Pulliam, R L; Ziurys, L M
2010-11-07
The pure rotational spectrum of the CrS radical has been measured in its ground X (5)Π(r) state using gas-phase millimeter/submillimeter direct absorption methods. The molecule was created by the reaction of chromium vapor, sublimed in a Broida-type oven, with hydrogen sulfide. Eleven rotational transitions were recorded for this free radical in the frequency range of 280-405 GHz; in most transitions, all five spin components were observed, and lambda-doubling was resolved in the Ω=0, 1, and 2 ladders. The data were fit with a Hund's case (a) Hamiltonian and rotational, spin-orbit, spin-spin, and lambda-doubling constants were established. Higher order spin and spin-orbit terms were essential in the analysis. The lambda-doubling constants indicate a nearby (5)Σ(+) state at an energy of ∼1500-2000 cm(-1). A bond length of 2.0781 Å was derived for CrS from the data, which is larger than the value of 2.0682 Å found for MnS by ∼0.01 Å. In contrast, the bond distance for MnO is greater than that of CrO by 0.03 Å, an illustration of the subtle differences between 3d oxide and sulfides. CrS is the second molecule in a (5)Π state that has been studied by rotational spectroscopy.
Monthus, Cécile
2015-06-01
We consider M ⩾ 2 pure or random quantum Ising chains of N spins when they are coupled via a single star junction at their origins or when they are coupled via two star junctions at the their two ends leading to the watermelon geometry. The energy gap is studied via a sequential self-dual real-space renormalization procedure that can be explicitly solved in terms of Kesten variables containing the initial couplings and and the initial transverse fields. In the pure case at criticality, the gap is found to decay as a power-law {ΔM}\\propto {{N}-z(M)} with the dynamical exponent z(M)=\\frac{M}{2} for the single star junction (the case M = 2 corresponds to z = 1 for a single chain with free boundary conditions) and z(M) = M - 1 for the watermelon (the case M = 2 corresponds to z = 1 for a single chain with periodic boundary conditions). In the random case at criticality, the gap follows the Infinite Disorder Fixed Point scaling \\ln {ΔM}=-{{N}\\psi}g with the same activated exponent \\psi =\\frac{1}{2} as the single chain corresponding to M = 2, and where g is an O(1) random positive variable, whose distribution depends upon the number M of chains and upon the geometry (star or watermelon).
N-state random switching based on quantum tunnelling
Bernardo Gavito, Ramón; Jiménez Urbanos, Fernando; Roberts, Jonathan; Sexton, James; Astbury, Benjamin; Shokeir, Hamzah; McGrath, Thomas; Noori, Yasir J.; Woodhead, Christopher S.; Missous, Mohamed; Roedig, Utz; Young, Robert J.
2017-08-01
In this work, we show how the hysteretic behaviour of resonant tunnelling diodes (RTDs) can be exploited for new functionalities. In particular, the RTDs exhibit a stochastic 2-state switching mechanism that could be useful for random number generation and cryptographic applications. This behaviour can be scaled to N-bit switching, by connecting various RTDs in series. The InGaAs/AlAs RTDs used in our experiments display very sharp negative differential resistance (NDR) peaks at room temperature which show hysteresis cycles that, rather than having a fixed switching threshold, show a probability distribution about a central value. We propose to use this intrinsic uncertainty emerging from the quantum nature of the RTDs as a source of randomness. We show that a combination of two RTDs in series results in devices with three-state outputs and discuss the possibility of scaling to N-state devices by subsequent series connections of RTDs, which we demonstrate for the up to the 4-state case. In this work, we suggest using that the intrinsic uncertainty in the conduction paths of resonant tunnelling diodes can behave as a source of randomness that can be integrated into current electronics to produce on-chip true random number generators. The N-shaped I-V characteristic of RTDs results in a two-level random voltage output when driven with current pulse trains. Electrical characterisation and randomness testing of the devices was conducted in order to determine the validity of the true randomness assumption. Based on the results obtained for the single RTD case, we suggest the possibility of using multi-well devices to generate N-state random switching devices for their use in random number generation or multi-valued logic devices.
Kumar, Pravin; Mal, Kedar; Rodrigues, G
2016-11-01
We report the charge state distributions of the pure, 25% and 50% oxygen mixed krypton plasma to shed more light on the understanding of the gas mixing and the isotope anomaly [A. G. Drentje, Rev. Sci. Instrum. 63 (1992) 2875 and Y Kawai, D Meyer, A Nadzeyka, U Wolters and K Wiesemann, Plasma Sources Sci. Technol. 10 (2001) 451] in the electron cyclotron resonance (ECR) plasmas. The krypton plasma was produced using a 10 GHz all-permanent-magnet ECR ion source. The intensities of the highly abundant four isotopes, viz. 82 Kr (~11.58%), 83 Kr (~11.49%), 84 Kr (~57%) and 86 Kr (17.3%) up to ~ +14 charge state have been measured by extracting the ions from the plasma and analysing them in the mass and the energy using a large acceptance analyzer-cum-switching dipole magnet. The influence of the oxygen gas mixing on the isotopic krypton ion intensities is clearly evidenced beyond +9 charge state. With and without oxygen mixing, the charge state distribution of the krypton ECR plasma shows the isotope anomaly with unusual trends. The anomaly in the intensities of the isotopes having quite closer natural abundance, viz. 82 Kr, 86 Kr and 83 Kr, 86 Kr is prominent, whereas the intensity ratio of 86 Kr to 84 Kr shows a weak signature of it. The isotope anomaly tends to disappear with increasing oxygen mixing in the plasma. The observed trends in the intensities of the krypton isotopes do not follow the prediction of linear Landau wave damping in the plasma. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Adaptive importance sampling of random walks on continuous state spaces
International Nuclear Information System (INIS)
Baggerly, K.; Cox, D.; Picard, R.
1998-01-01
The authors consider adaptive importance sampling for a random walk with scoring in a general state space. Conditions under which exponential convergence occurs to the zero-variance solution are reviewed. These results generalize previous work for finite, discrete state spaces in Kollman (1993) and in Kollman, Baggerly, Cox, and Picard (1996). This paper is intended for nonstatisticians and includes considerable explanatory material
Generating and using truly random quantum states in Mathematica
Miszczak, Jarosław Adam
2012-01-01
The problem of generating random quantum states is of a great interest from the quantum information theory point of view. In this paper we present a package for Mathematica computing system harnessing a specific piece of hardware, namely Quantis quantum random number generator (QRNG), for investigating statistical properties of quantum states. The described package implements a number of functions for generating random states, which use Quantis QRNG as a source of randomness. It also provides procedures which can be used in simulations not related directly to quantum information processing. Program summaryProgram title: TRQS Catalogue identifier: AEKA_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKA_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 7924 No. of bytes in distributed program, including test data, etc.: 88 651 Distribution format: tar.gz Programming language: Mathematica, C Computer: Requires a Quantis quantum random number generator (QRNG, http://www.idquantique.com/true-random-number-generator/products-overview.html) and supporting a recent version of Mathematica Operating system: Any platform supporting Mathematica; tested with GNU/Linux (32 and 64 bit) RAM: Case dependent Classification: 4.15 Nature of problem: Generation of random density matrices. Solution method: Use of a physical quantum random number generator. Running time: Generating 100 random numbers takes about 1 second, generating 1000 random density matrices takes more than a minute.
Gasper, A.; Hollands, W.; Casgrain, A.; Saha, S.; Teucher, B.; Dainty, J.R.; Venema, D.P.; Hollman, P.C.H.
2014-01-01
We hypothesised that consumption of flavanol-containing apple puree would modulate platelet activity and increase nitric oxide metabolite status, and that high flavanol apple puree would exert a greater effect than low flavanol apple puree. 25 subjects consumed 230 g of apple puree containing 25 and
Partial transpose of random quantum states: Exact formulas and meanders
Energy Technology Data Exchange (ETDEWEB)
Fukuda, Motohisa [Zentrum Mathematik, M5, Technische Universitaet Muenchen, Boltzmannstrasse 3, 85748 Garching (Germany); Sniady, Piotr [Zentrum Mathematik, M5, Technische Universitaet Muenchen, Boltzmannstrasse 3, 85748 Garching (Germany); Institute of Mathematics, Polish Academy of Sciences, ul. Sniadeckich 8, 00-956 Warszawa (Poland); Institute of Mathematics, University of Wroclaw, pl. Grunwaldzki 2/4, 50-384 Wroclaw (Poland)
2013-04-15
We investigate the asymptotic behavior of the empirical eigenvalues distribution of the partial transpose of a random quantum state. The limiting distribution was previously investigated via Wishart random matrices indirectly (by approximating the matrix of trace 1 by the Wishart matrix of random trace) and shown to be the semicircular distribution or the free difference of two free Poisson distributions, depending on how dimensions of the concerned spaces grow. Our use of Wishart matrices gives exact combinatorial formulas for the moments of the partial transpose of the random state. We find three natural asymptotic regimes in terms of geodesics on the permutation groups. Two of them correspond to the above two cases; the third one turns out to be a new matrix model for the meander polynomials. Moreover, we prove the convergence to the semicircular distribution together with its extreme eigenvalues under weaker assumptions, and show large deviation bound for the latter.
Partial transpose of random quantum states: Exact formulas and meanders
Fukuda, Motohisa; Śniady, Piotr
2013-04-01
We investigate the asymptotic behavior of the empirical eigenvalues distribution of the partial transpose of a random quantum state. The limiting distribution was previously investigated via Wishart random matrices indirectly (by approximating the matrix of trace 1 by the Wishart matrix of random trace) and shown to be the semicircular distribution or the free difference of two free Poisson distributions, depending on how dimensions of the concerned spaces grow. Our use of Wishart matrices gives exact combinatorial formulas for the moments of the partial transpose of the random state. We find three natural asymptotic regimes in terms of geodesics on the permutation groups. Two of them correspond to the above two cases; the third one turns out to be a new matrix model for the meander polynomials. Moreover, we prove the convergence to the semicircular distribution together with its extreme eigenvalues under weaker assumptions, and show large deviation bound for the latter.
The oxidation states of elements in pure and Ca-doped BiCuSeO thermoelectric oxides
International Nuclear Information System (INIS)
Hsiao, Chun-Lung; Qi, Xiaoding
2016-01-01
Bi 1−x Ca x CuSeO (x = 0–0.3) was synthesized at 650 °C in an air-tight system flowing with pure argon. The Ca doping resulted in an increase in the thermoelectric figure of merit (ZT) as the consequence of increased carrier concentration. X-ray photoelectron spectroscopy (XPS) was carried out to check the oxidation states in Bi 1−x Ca x CuSeO. The results indicated that in addition to the expected Bi 3+ and Cu 1+ , there existed Bi 2+ and Cu 2+ in the undoped BiCuSeO, whereas in the Ca-doped BiCuSeO, Bi 4+ , Cu 3+ and Cu 2+ were observed. The Ca dopant was confirmed to be in the 2+ oxidation state. Two broad peaks centered at 54.22 and 58.59 eV were recorded in the vicinity around the binding energy of Se 3d. The former is often observed in the Se-containing intermetallics while the latter is often found in the Se-containing oxides, indicating that along with the expected Se–Cu bonding, a bonding between Se and O may also exist. Based on the XPS results, the charge compensation mechanisms were proposed for Bi 1−x Ca x CuSeO, which may shed some light on the origins of charge carriers. BiCuSeO based oxides have recently be discovered to have a large ZT comparable to the best alloys currently in use, because of the large Seebeck coefficient and small thermal conductivity. However, their electrical conductivity is lower compared to the best thermoelectrics. This work may provide some hints for the further improvement of ZT in BiCuSeO based oxides. - Graphical abstract: The oxidation states, charge compensation mechanisms, and origins of charge carriers in Bi 1−x Ca x CuSeO thermoelectrics. Display Omitted
van Lettow, Monique; Tweya, Hannock; Rosenberg, Nora E; Trapence, Clement; Kayoyo, Virginia; Kasende, Florence; Kaunda, Blessings; Hosseinipour, Mina C; Eliya, Michael; Cataldo, Fabian; Gugsa, Salem; Phiri, Sam
2017-07-11
Malawi introduced an ambitious public health program known as "Option B+" which provides all HIV-infected pregnant and breastfeeding women with lifelong combination antiretroviral therapy, regardless of WHO clinical stage or CD4 cell count. The PMTCT Uptake and REtention (PURE) study aimed at evaluating the effect of peer-support on care-seeking and retention in care. PURE Malawi was a three-arm cluster randomized controlled trial that compared facility-based and community-based models of peer support to standard of care under Option B+ strategy. Each arm was expected to enroll a minimum of 360 women with a total minimum sample size of 1080 participants. 21 sites (clusters) were selected for inclusion in the study. This paper describes the site selection, recruitment, enrollment process and baseline characteristics of study sites and women enrolled in the trial. Study implementation was managed by 3 partner organizations; each responsible for 7 study sites. The trial was conducted in the South East, South West, and Central West zones of Malawi, the zones where the implementing partners operate. Study sites included 2 district hospitals, 2 mission hospitals, 2 rural hospitals, 13 health centers and 1 private clinic. Enrollment occurred from November 2013 to November 2014, over a median period of 31 weeks (range 17-51) by site. A total of 1269 HIV-infected pregnant (1094) and breastfeeding (175) women, who were eligible to initiate ART under Option B+, were enrolled. Each site reached or surpassed the minimum sample size. Comparing the number of women enrolled versus antenatal cohort reports, sites recruited a median of 90% (IQR 75-100) of eligible reported women. In the majority of sites the ratio of pregnant and lactating women enrolled in the study was similar to the ratio of reported pregnant and lactating women starting ART in the same sites. The median age of all women was 27 (IQR 22-31) years. All women have ≥20 months of possible follow-up time; 96%
Hüpf, T.; Cagran, C.; Pottlacher, G.
2011-05-01
The workgroup of subsecond thermophysics in Graz has a long tradition in performing fast pulseheating experiments on metals and alloys. Thereby, wire-shaped specimens are rapidly heated (108 K/s) by a large current-pulse (104 A). This method provides thermophysical properties like volume-expansion, enthalpy and electrical resistivity up to the end of the liquid phase. Today, no more experiments on pure metals are to be expected, because almost all elements, which are suitable for pulse-heating so far, have been investigated. The requirements for pulse-heating are: a melting point which is high enough to enable pyrometric temperature measurements and the availability of wire-shaped specimens. These elements are: Co, Cu, Au, Hf, In, Ir, Fe, Pb, Mo, Ni, Nb, Pd, Pt, Re, Rh, Ag, Ta, Ti, W, V, Zn, and Zr. Hence, it is the correct time to present the results in a collected form. We provide data for the above mentioned quantities together with basic information on each material. The uniqueness of this compilation is the high temperature range covered and the homogeneity of the measurement conditions (the same method, the same laboratory, etc.). The latter makes it a good starting point for comparative analyses (e.g. a comparison of all 22 enthalpy traces is in first approximation conform with the rule of Dulong-Petit which states heat capacity - the slope of enthalpy traces - as a function of the number of atoms). The data is useful for input parameters in numerical simulations and it is a major purpose of our ongoing research to provide data for simulations of casting processes for the metal working industry. This work demonstrates some examples of how a data compilation like this can be utilized. Additionally, the latest completive measurement results on Ag, Ni, Ti, and Zr are described.
Directory of Open Access Journals (Sweden)
Pottlacher G.
2011-05-01
Full Text Available The workgroup of subsecond thermophysics in Graz has a long tradition in performing fast pulseheating experiments on metals and alloys. Thereby, wire-shaped specimens are rapidly heated (108 K/s by a large current-pulse (104 A. This method provides thermophysical properties like volume-expansion, enthalpy and electrical resistivity up to the end of the liquid phase. Today, no more experiments on pure metals are to be expected, because almost all elements, which are suitable for pulse-heating so far, have been investigated. The requirements for pulse-heating are: a melting point which is high enough to enable pyrometric temperature measurements and the availability of wire-shaped specimens. These elements are: Co, Cu, Au, Hf, In, Ir, Fe, Pb, Mo, Ni, Nb, Pd, Pt, Re, Rh, Ag, Ta, Ti, W, V, Zn, and Zr. Hence, it is the correct time to present the results in a collected form. We provide data for the above mentioned quantities together with basic information on each material. The uniqueness of this compilation is the high temperature range covered and the homogeneity of the measurement conditions (the same method, the same laboratory, etc.. The latter makes it a good starting point for comparative analyses (e.g. a comparison of all 22 enthalpy traces is in first approximation conform with the rule of Dulong-Petit which states heat capacity – the slope of enthalpy traces – as a function of the number of atoms. The data is useful for input parameters in numerical simulations and it is a major purpose of our ongoing research to provide data for simulations of casting processes for the metal working industry. This work demonstrates some examples of how a data compilation like this can be utilized. Additionally, the latest completive measurement results on Ag, Ni, Ti, and Zr are described.
DEFF Research Database (Denmark)
Luo, Jiangshui; Jensen, Annemette Hindhede; Brooks, Neil R.
2015-01-01
1,2,4-Triazolium perfluorobutanesulfonate (1), a novel, pure protic organic ionic plastic crystal (POIPC) with a wide plastic crystalline phase, has been explored as a proof-of-principle anhydrous proton conductor for all-solid-state high temperature hydrogen/air fuel cells. Its physicochemical p...
Miszczak, Jarosław Adam
2013-01-01
The presented package for the Mathematica computing system allows the harnessing of quantum random number generators (QRNG) for investigating the statistical properties of quantum states. The described package implements a number of functions for generating random states. The new version of the package adds the ability to use the on-line quantum random number generator service and implements new functions for retrieving lists of random numbers. Thanks to the introduced improvements, the new version provides faster access to high-quality sources of random numbers and can be used in simulations requiring large amount of random data. New version program summaryProgram title: TRQS Catalogue identifier: AEKA_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKA_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 18 134 No. of bytes in distributed program, including test data, etc.: 2 520 49 Distribution format: tar.gz Programming language: Mathematica, C. Computer: Any supporting Mathematica in version 7 or higher. Operating system: Any platform supporting Mathematica; tested with GNU/Linux (32 and 64 bit). RAM: Case-dependent Supplementary material: Fig. 1 mentioned below can be downloaded. Classification: 4.15. External routines: Quantis software library (http://www.idquantique.com/support/quantis-trng.html) Catalogue identifier of previous version: AEKA_v1_0 Journal reference of previous version: Comput. Phys. Comm. 183(2012)118 Does the new version supersede the previous version?: Yes Nature of problem: Generation of random density matrices and utilization of high-quality random numbers for the purpose of computer simulation. Solution method: Use of a physical quantum random number generator and an on-line service providing access to the source of true random
Continuous state branching processes in random environment: The Brownian case
Palau, Sandra; Pardo, Juan Carlos
2015-01-01
We consider continuous state branching processes that are perturbed by a Brownian motion. These processes are constructed as the unique strong solution of a stochastic differential equation. The long-term extinction and explosion behaviours are studied. In the stable case, the extinction and explosion probabilities are given explicitly. We find three regimes for the asymptotic behaviour of the explosion probability and, as in the case of branching processes in random environment, we find five...
Pure energy solutions - pure tomorrows
International Nuclear Information System (INIS)
Allison, J.
2006-01-01
HTC is an energy technology company whose mandate is to deliver 'Carbon Clear Solutions' to address the pending challenges the energy sector is facing in meeting the environmental impact of Greenhouse Gas emissions, and energy security. HTC will speak on its comprehensive suite of technologies including hydrogen production, CO 2 capture and CO 2 sequestration. HTC has patented technologies that produce H 2 from a broad variety of feedstocks such as Natural gas, Diesel, Gasoline, Bio-fuels i.e. ethanol, methanol and Coal Gasification. HTC Hydrogen reformation systems are unique in their method of delivering pure Hydrogen. Dry Reformation Reactor - New catalyst system designed to eliminate contamination problems (i.e. coking) while at the same time operate at a low temperature. Water Gas Shift Reactor - Plus - improved and redesigned catalyst that improves operating temperature and hydrogen production efficiency. Two stage catalyst reactor that provides near balance of the endothermic and exothermic reaction temperatures for efficient energy balance
Dower, James I; Geleijnse, Johanna M; Gijsbers, Lieke; Zock, Peter L; Kromhout, Daan; Hollman, Peter C H
2015-05-01
Prospective cohort studies showed inverse associations between the intake of flavonoid-rich foods (cocoa and tea) and cardiovascular disease (CVD). Intervention studies showed protective effects on intermediate markers of CVD. This may be due to the protective effects of the flavonoids epicatechin (in cocoa and tea) and quercetin (in tea). We investigated the effects of supplementation of pure epicatechin and quercetin on vascular function and cardiometabolic health. Thirty-seven apparently healthy men and women aged 40-80 y with a systolic blood pressure (BP) between 125 and 160 mm Hg at screening were enrolled in a randomized, double-blind, placebo-controlled, crossover trial. CVD risk factors were measured before and after 4 wk of daily flavonoid supplementation. Participants received (-)-epicatechin (100 mg/d), quercetin-3-glucoside (160 mg/d), or placebo capsules for 4 wk in random order. The primary outcome was the change in flow-mediated dilation from pre- to postintervention. Secondary outcomes included other markers of CVD risk and vascular function. Epicatechin supplementation did not change flow-mediated dilation significantly (1.1% absolute; 95% CI: -0.1%, 2.3%; P = 0.07). Epicatechin supplementation improved fasting plasma insulin (Δ insulin: -1.46 mU/L; 95% CI: -2.74, -0.18 mU/L; P = 0.03) and insulin resistance (Δ homeostasis model assessment of insulin resistance: -0.38; 95% CI: -0.74, -0.01; P = 0.04) and had no effect on fasting plasma glucose. Epicatechin did not change BP (office BP and 24-h ambulatory BP), arterial stiffness, nitric oxide, endothelin 1, or blood lipid profile. Quercetin-3-glucoside supplementation had no effect on flow-mediated dilation, insulin resistance, or other CVD risk factors. Our results suggest that epicatechin may in part contribute to the cardioprotective effects of cocoa and tea by improving insulin resistance. It is unlikely that quercetin plays an important role in the cardioprotective effects of tea. This study
Analysis of pure maple syrup consumers
Paul E. Sendak
1974-01-01
Virtually all of the pure maple syrup productim in the United States is in the northern states of Maine, Massachusetts, Michigan, New Hampshire, New York, Ohio, Pennsylvania, Vermont, and Wisconsin. Pure maple syrup users living in the maple production area and users living in other areas of the United States were asked a series of questions about their use of pure...
Complex network analysis of state spaces for random Boolean networks
Energy Technology Data Exchange (ETDEWEB)
Shreim, Amer [Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4 (Canada); Berdahl, Andrew [Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4 (Canada); Sood, Vishal [Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4 (Canada); Grassberger, Peter [Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4 (Canada); Paczuski, Maya [Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4 (Canada)
2008-01-15
We apply complex network analysis to the state spaces of random Boolean networks (RBNs). An RBN contains N Boolean elements each with K inputs. A directed state space network (SSN) is constructed by linking each dynamical state, represented as a node, to its temporal successor. We study the heterogeneity of these SSNs at both local and global scales, as well as sample to-sample fluctuations within an ensemble of SSNs. We use in-degrees of nodes as a local topological measure, and the path diversity (Shreim A et al 2007 Phys. Rev. Lett. 98 198701) of an SSN as a global topological measure. RBNs with 2 {<=} K {<=} 5 exhibit non-trivial fluctuations at both local and global scales, while K = 2 exhibits the largest sample-to-sample (possibly non-self-averaging) fluctuations. We interpret the observed 'multi scale' fluctuations in the SSNs as indicative of the criticality and complexity of K = 2 RBNs. 'Garden of Eden' (GoE) states are nodes on an SSN that have in-degree zero. While in-degrees of non-GoE nodes for K > 1 SSNs can assume any integer value between 0 and 2{sup N}, for K = 1 all the non-GoE nodes in a given SSN have the same in-degree which is always a power of two.
Complex network analysis of state spaces for random Boolean networks
International Nuclear Information System (INIS)
Shreim, Amer; Berdahl, Andrew; Sood, Vishal; Grassberger, Peter; Paczuski, Maya
2008-01-01
We apply complex network analysis to the state spaces of random Boolean networks (RBNs). An RBN contains N Boolean elements each with K inputs. A directed state space network (SSN) is constructed by linking each dynamical state, represented as a node, to its temporal successor. We study the heterogeneity of these SSNs at both local and global scales, as well as sample to-sample fluctuations within an ensemble of SSNs. We use in-degrees of nodes as a local topological measure, and the path diversity (Shreim A et al 2007 Phys. Rev. Lett. 98 198701) of an SSN as a global topological measure. RBNs with 2 ≤ K ≤ 5 exhibit non-trivial fluctuations at both local and global scales, while K = 2 exhibits the largest sample-to-sample (possibly non-self-averaging) fluctuations. We interpret the observed 'multi scale' fluctuations in the SSNs as indicative of the criticality and complexity of K = 2 RBNs. 'Garden of Eden' (GoE) states are nodes on an SSN that have in-degree zero. While in-degrees of non-GoE nodes for K > 1 SSNs can assume any integer value between 0 and 2 N , for K = 1 all the non-GoE nodes in a given SSN have the same in-degree which is always a power of two
International Nuclear Information System (INIS)
Cassandro, M.; Olivieri, E.; Picco, P.
1984-10-01
We discuss and solve by standard method a simple model with long range random interaction. In this model we can rigorously define and explicitly work out many peculiar features already found in the Sherrington-Kirpatrick model only by means of replica symmetry breaking and/or via numerical simulations
Pischel, Uwe; Patra, Digambara; Koner, Apurba L; Nau, Werner M
2006-01-01
The fluorescence quenching of singlet-excited 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) by 22 phenols and 12 alkylbenzenes has been investigated. Quenching rate constants in acetonitrile are in the range of 10(8)-10(9) M(-1)s(-1) for phenols and 10(5)-10(6) M(-1)s(-1) for alkylbenzenes. In contrast to the quenching of triplet-excited benzophenone, no exciplexes are involved, so that a pure hydrogen atom transfer is proposed as quenching mechanism. This is supported by (1) pronounced deuterium isotope effects (kH/kD ca 4-6), which were observed for phenols and alkylbenzenes, and (2) a strongly endergonic thermodynamics for charge transfer processes (electron transfer, exciplex formation). In the case of phenols, linear free energy relationships applied, which led to a reaction constant of rho = -0.40, suggesting a lower electrophilicity of singlet-excited DBO than that of triplet-excited ketones and alkoxyl radicals. The reactivity of singlet-excited DBO exposes statistical, steric, polar and stereoelectronic effects on the hydrogen atom abstraction process in the absence of complications because of competitive exciplex formation.
Remote optimal state estimation over communication channels with random delays
Mahmoud, Magdi S.
2014-01-22
This paper considers the optimal estimation of linear systems over unreliable communication channels with random delays. In this work, it is assumed that the system to be estimated is far away from the filter. The observations of the system are capsulized without time stamp and then transmitted to the network node at which the filter is located. The probabilities of time delays are assumed to be known. The event-driven estimation scheme is applied in this paper and the estimate of the states is updated only at each time instant when any measurement arrives. To capture the feature of communication, the system considered is augmented, and the arrived measurements are regarded as the uncertain observations of the augmented system. The corresponding optimal estimation algorithm is proposed and additionally, a numerical simulation represents the performance of this work. © 2014 The authors. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
International Nuclear Information System (INIS)
Zhou, Ping; Li, Xi-Han; Deng, Fu-Guo; Zhou, Hong-Yu
2007-01-01
We present a general scheme for multiparty-controlled teleportation of an arbitrary m-qudit (d-dimensional quantum system) state by using non-maximally entangled states as the quantum channel. The sender performs m generalized Bell-state measurements on her 2m particles, the controllers take some single-particle measurements with the measuring basis X d and the receiver only needs to introduce one auxiliary two-level particle to extract quantum information probabilistically with the fidelity unit if he cooperates with all the controllers. All the parties can use some decoy photons to set up their quantum channel securely, which will forbid a dishonest party to eavesdrop freely. This scheme is optimal as the probability that the receiver obtains the originally unknown m-qudit state equals the entanglement of the quantum channel
Dower, J.I.; Geleijnse, J.M.; Gijsbers, L.; Zock, P.L.; Kromhout, D.; Hollman, P.C.H.
2015-01-01
BACKGROUND: Prospective cohort studies showed inverse associations between the intake of flavonoid-rich foods (cocoa and tea) and cardiovascular disease (CVD). Intervention studies showed protective effects on intermediate markers of CVD. This may be due to the protective effects of the flavonoids epicatechin (in cocoa and tea) and quercetin (in tea). OBJECTIVE: We investigated the effects of supplementation of pure epicatechin and quercetin on vascular function and cardiometabolic health. DE...
Ziegler, Tom; Krykunov, Mykhaylo; Autschbach, Jochen
2014-09-09
The random phase approximation (RPA) equation of adiabatic time dependent density functional ground state response theory (ATDDFT) has been used extensively in studies of excited states. It extracts information about excited states from frequency dependent ground state response properties and avoids, thus, in an elegant way, direct Kohn-Sham calculations on excited states in accordance with the status of DFT as a ground state theory. Thus, excitation energies can be found as resonance poles of frequency dependent ground state polarizability from the eigenvalues of the RPA equation. ATDDFT is approximate in that it makes use of a frequency independent energy kernel derived from the ground state functional. It is shown in this study that one can derive the RPA equation of ATDDFT from a purely variational approach in which stationary states above the ground state are located using our constricted variational DFT (CV-DFT) method and the ground state functional. Thus, locating stationary states above the ground state due to one-electron excitations with a ground state functional is completely equivalent to solving the RPA equation of TDDFT employing the same functional. The present study is an extension of a previous work in which we demonstrated the equivalence between ATDDFT and CV-DFT within the Tamm-Dancoff approximation.
DEFF Research Database (Denmark)
Starrfelt, Randi; Ólafsdóttir, Rannveig Rós; Arendt, Ida-Marie
2013-01-01
that pure alexia was an easy target for rehabilitation efforts. We review the literature on rehabilitation of pure alexia from 1990 to the present, and find that patients differ widely on several dimensions like alexia severity, and associated deficits. Many patients reported to have pure alexia......-designed and controlled studies of rehabilitation of pure alexia....
Remote optimal state estimation over communication channels with random delays
Mahmoud, Magdi S.; Al-Sunni, Fouad; Liu, Bo
2014-01-01
This paper considers the optimal estimation of linear systems over unreliable communication channels with random delays. In this work, it is assumed that the system to be estimated is far away from the filter. The observations of the system
Driving a mechanical resonator into coherent states via random measurements
International Nuclear Information System (INIS)
Garcia, Ll; Wu, L-A; Chhajlany, R W; Li, Y
2013-01-01
We propose dynamical schemes to engineer coherent states of a mechanical resonator (MR) coupled to an ancillary, superconducting flux qubit. The flux qubit, when repeatedly projected on to its ground state, drives the MR into a coherent state in probabilistic, albeit heralded fashion. Assuming no operations on the state of the MR during the protocol, coherent states are successfully generated only up to a certain value of the displacement parameter. This restriction can be overcome at the cost of a one-time operation on the initial state of the MR. We discuss the possibility of experimental realization of the presented schemes. (paper)
Modeling lake trophic state: a random forest approach
Productivity of lentic ecosystems has been well studied and it is widely accepted that as nutrient inputs increase, productivity increases and lakes transition from low trophic state (e.g. oligotrophic) to higher trophic states (e.g. eutrophic). These broad trophic state classi...
A generator for unique quantum random numbers based on vacuum states
DEFF Research Database (Denmark)
Gabriel, C.; Wittmann, C.; Sych, D.
2010-01-01
the purity of a continuous-variable quantum vacuum state to generate unique random numbers. We use the intrinsic randomness in measuring the quadratures of a mode in the lowest energy vacuum state, which cannot be correlated to any other state. The simplicity of our source, combined with its verifiably......Random numbers are a valuable component in diverse applications that range from simulations(1) over gambling to cryptography(2,3). The quest for true randomness in these applications has engendered a large variety of different proposals for producing random numbers based on the foundational...... unpredictability of quantum mechanics(4-11). However, most approaches do not consider that a potential adversary could have knowledge about the generated numbers, so the numbers are not verifiably random and unique(12-15). Here we present a simple experimental setup based on homodyne measurements that uses...
International Nuclear Information System (INIS)
Monthus, Cécile
2015-01-01
For the quantum Ising chain, the self-dual block renormalization procedure of Fernandez-Pacheco (1979 Phys. Rev. D 19 3173) is known to reproduce exactly the location of the zero-temperature critical point and the correlation length exponent ν = 1. Recently, Miyazaki and Nishimori (2013 Phys. Rev. E 87 032154) have proposed to study the disordered quantum Ising model in dimensions d > 1 by applying the Fernandez-Pacheco procedure successively in each direction. To avoid the inequivalence of directions of their approach, we propose here an alternative procedure where the d directions are treated on the same footing. For the pure model, this leads to the correlation length exponents ν ≃ 0.625 in d = 2 (to be compared with the 3D classical Ising model exponent ν ≃ 0.63) and ν ≃ 0.5018 (to be compared with the 4D classical Ising model mean-field exponent ν = 1/2). For the disordered model in dimension d = 2, either ferromagnetic or spin-glass, the numerical application of the renormalization rules to samples of linear size L = 4096 yields that the transition is governed by an Infinite Disorder Fixed Point, with the activated exponent ψ ≃ 0.65, the typical correlation exponent ν typ ≃ 0.44 and the finite-size correlation exponent ν FS ≃ 1.25. We discuss the similarities and differences with the Strong Disorder Renormalization results. (paper)
Pseudo-random number generation using a 3-state cellular automaton
Bhattacharjee, Kamalika; Paul, Dipanjyoti; Das, Sukanta
This paper investigates the potentiality of pseudo-random number generation of a 3-neighborhood 3-state cellular automaton (CA) under periodic boundary condition. Theoretical and empirical tests are performed on the numbers, generated by the CA, to observe the quality of it as pseudo-random number generator (PRNG). We analyze the strength and weakness of the proposed PRNG and conclude that the selected CA is a good random number generator.
Continuity of integrated density of states – independent randomness
Indian Academy of Sciences (India)
Abstract. In this paper we discuss the continuity properties of the integrated density ... Density of states; Wegner estimate; Hölder continuous. 1. Introduction ..... and inverse spectral theory (Goa, 2000), Proc. Indian Acad. Sci. (Math. Sci.) 112(1).
First steps towards a state classification in the random-field Ising model
International Nuclear Information System (INIS)
Basso, Vittorio; Magni, Alessandro; Bertotti, Giorgio
2006-01-01
The properties of locally stable states of the random-field Ising model are studied. A map is defined for the dynamics driven by the field starting from a locally stable state. The fixed points of the map are connected with the limit hysteresis loops that appear in the classification of the states
Protocols for data hiding in pseudo-random state
Craver, Scott; Li, Enping; Yu, Jun
2009-02-01
An emerging form of steganographic communication uses ciphertext to replace the output of a random or strong pseudo-random number generator. PRNG-driven media, for example computer animated backdrops in video-conferencing channels, can then be used as a covert channel, if the PRNG bits that generated a piece of content can be estimated by the recipient. However, all bits sent over such a channel must be computationally indistinguishable from i.i.d. coin flips. Ciphertext messages and even key exchange datagrams are easily shaped to match this distribution; however, when placing these messages into a continous stream of PRNG bits, the sender is unable to provide synchronization markers, metadata, or error correction to ensure the message's location and proper decoding. In this paper we explore methods for message transmission and steganographic key exchange in such a "coin flip" channel. We establish that key exchange is generally not possible in this channel if an adversary possesses even a modest noise budget. If the warden is not vigilant in adding noise, however, communication is very simple.
International Nuclear Information System (INIS)
Maziero, Jonas
2015-01-01
The numerical generation of random quantum states (RQS) is an important procedure for investigations in quantum information science. Here, we review some methods that may be used for performing that task. We start by presenting a simple procedure for generating random state vectors, for which the main tool is the random sampling of unbiased discrete probability distributions (DPD). Afterwards, the creation of random density matrices is addressed. In this context, we first present the standard method, which consists in using the spectral decomposition of a quantum state for getting RQS from random DPDs and random unitary matrices. In the sequence, the Bloch vector parametrization method is described. This approach, despite being useful in several instances, is not in general convenient for RQS generation. In the last part of the article, we regard the overparametrized method (OPM) and the related Ginibre and Bures techniques. The OPM can be used to create random positive semidefinite matrices with unit trace from randomly produced general complex matrices in a simple way that is friendly for numerical implementations. We consider a physically relevant issue related to the possible domains that may be used for the real and imaginary parts of the elements of such general complex matrices. Subsequently, a too fast concentration of measure in the quantum state space that appears in this parametrization is noticed. (author)
Plumpton, C
1968-01-01
Sixth Form Pure Mathematics, Volume 1, Second Edition, is the first of a series of volumes on Pure Mathematics and Theoretical Mechanics for Sixth Form students whose aim is entrance into British and Commonwealth Universities or Technical Colleges. A knowledge of Pure Mathematics up to G.C.E. O-level is assumed and the subject is developed by a concentric treatment in which each new topic is used to illustrate ideas already treated. The major topics of Algebra, Calculus, Coordinate Geometry, and Trigonometry are developed together. This volume covers most of the Pure Mathematics required for t
DYNAMIC STRAIN MAPPING AND REAL-TIME DAMAGE STATE ESTIMATION UNDER BIAXIAL RANDOM FATIGUE LOADING
National Aeronautics and Space Administration — DYNAMIC STRAIN MAPPING AND REAL-TIME DAMAGE STATE ESTIMATION UNDER BIAXIAL RANDOM FATIGUE LOADING SUBHASISH MOHANTY*, ADITI CHATTOPADHYAY, JOHN N. RAJADAS, AND CLYDE...
Optimal state estimation over communication channels with random delays
Mahmoud, Magdi S.; Liu, Bo
2013-01-01
This paper is concerned with the optimal estimation of linear systems over unreliable communication channels with random delays. The measurements are delivered without time stamp, and the probabilities of time delays are assumed to be known. Since the estimation is time-driven, the actual time delays are converted into virtual time delays among the formulation. The receiver of estimation node stores the sum of arrived measurements between two adjacent processing time instants and also counts the number of arrived measurements. The original linear system is modeled as an extended system with uncertain observation to capture the feature of communication, then the optimal estimation algorithm of systems with uncertain observations is proposed. Additionally, a numerical simulation is presented to show the performance of this work. © 2013 The Franklin Institute.
Optimal state estimation over communication channels with random delays
Mahmoud, Magdi S.
2013-04-01
This paper is concerned with the optimal estimation of linear systems over unreliable communication channels with random delays. The measurements are delivered without time stamp, and the probabilities of time delays are assumed to be known. Since the estimation is time-driven, the actual time delays are converted into virtual time delays among the formulation. The receiver of estimation node stores the sum of arrived measurements between two adjacent processing time instants and also counts the number of arrived measurements. The original linear system is modeled as an extended system with uncertain observation to capture the feature of communication, then the optimal estimation algorithm of systems with uncertain observations is proposed. Additionally, a numerical simulation is presented to show the performance of this work. © 2013 The Franklin Institute.
International Nuclear Information System (INIS)
Beddo, M.E.
1990-10-01
A measurement off Δσ L (np), the difference between neutron-proton total cross sections in pure longitudinal spin states, is described. The results will help determine the isospin-zero (I = 0) scattering amplitudes, which are not well known above laboratory energies of 500 MeV, whereas the isospin-one (I = 1) amplitudes are fairly well-determined to 1 GeV. Data points were taken at the Los Alamos Meson Physics Facility (LAMPF) at Los Alamos, New Mexico, for five neutron beam energies: 484, 568, 634,720 and 788 MeV; they are the first in this energy range. Polarized neutrons were produced by charge-exchange of polarized protons on a liquid deuterium target (LD 2 ). Large-volume neutron counters detected the neutrons that passed through a polarized proton target. The counters subtended a range of solid angles large enough to allow extrapolation of the scattered neutrons to 0 degree. Two modifications to the LAMPF accelerator system which were made for this work are described. They included a ''beam buncher,'' which modified the normal rf-time structure of the proton beam and allowed for the selection of peak-energy neutrons by time-of-flight means, and a computerized beam steering program, which reduced systematic effects due to beam motion at the LD 2 target. The experimental values of Δσ L (np) are found to be consistent with other np data, including preliminary data from SIN and Saclay, but not with some results from Argonne which used a polarized proton beam and a polarized deuteron target. The I = 0 component was extracted from Δσ L (np) using existing pp data (I = 1), with the unexpected result that Δσ L (I = 0) was found to be essentially identical in shape to Δσ L (I = 1). The significance of this is not yet understood
Smoothness of density of states for random decaying interaction
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
to the book of Carmona and Lacroix [1], Figotin–Pastur [3] for the results and ... We however take a definition of the integrated density of states, based on the spectral ...... Schrödinger operators with unbounded potentials, Commun. Math. Phys.
Fundamentals of the Pure Spinor Formalism
Hoogeveen, Joost
2010-01-01
This thesis presents recent developments within the pure spinor formalism, which has simplified amplitude computations in perturbative string theory, especially when spacetime fermions are involved. Firstly the worldsheet action of both the minimal and the non-minimal pure spinor formalism is derived from first principles, i.e. from an action with two dimensional diffeomorphism and Weyl invariance. Secondly the decoupling of unphysical states in the minimal pure spinor formalism is proved
Generalized pure Lovelock gravity
Concha, Patrick; Rodríguez, Evelyn
2017-11-01
We present a generalization of the n-dimensional (pure) Lovelock Gravity theory based on an enlarged Lorentz symmetry. In particular, we propose an alternative way to introduce a cosmological term. Interestingly, we show that the usual pure Lovelock gravity is recovered in a matter-free configuration. The five and six-dimensional cases are explicitly studied.
Generalized pure Lovelock gravity
Directory of Open Access Journals (Sweden)
Patrick Concha
2017-11-01
Full Text Available We present a generalization of the n-dimensional (pure Lovelock Gravity theory based on an enlarged Lorentz symmetry. In particular, we propose an alternative way to introduce a cosmological term. Interestingly, we show that the usual pure Lovelock gravity is recovered in a matter-free configuration. The five and six-dimensional cases are explicitly studied.
Quantum cryptography using coherent states: Randomized encryption and key generation
Corndorf, Eric
With the advent of the global optical-telecommunications infrastructure, an increasing number of individuals, companies, and agencies communicate information with one another over public networks or physically-insecure private networks. While the majority of the traffic flowing through these networks requires little or no assurance of secrecy, the same cannot be said for certain communications between banks, between government agencies, within the military, and between corporations. In these arenas, the need to specify some level of secrecy in communications is a high priority. While the current approaches to securing sensitive information (namely the public-key-cryptography infrastructure and deterministic private-key ciphers like AES and 3DES) seem to be cryptographically strong based on empirical evidence, there exist no mathematical proofs of secrecy for any widely deployed cryptosystem. As an example, the ubiquitous public-key cryptosystems infer all of their secrecy from the assumption that factoring of the product of two large primes is necessarily time consuming---something which has not, and perhaps cannot, be proven. Since the 1980s, the possibility of using quantum-mechanical features of light as a physical mechanism for satisfying particular cryptographic objectives has been explored. This research has been fueled by the hopes that cryptosystems based on quantum systems may provide provable levels of secrecy which are at least as valid as quantum mechanics itself. Unfortunately, the most widely considered quantum-cryptographic protocols (BB84 and the Ekert protocol) have serious implementation problems. Specifically, they require quantum-mechanical states which are not readily available, and they rely on unproven relations between intrusion-level detection and the information available to an attacker. As a result, the secrecy level provided by these experimental implementations is entirely unspecified. In an effort to provably satisfy the cryptographic
DEFF Research Database (Denmark)
Lu, Xiaobing; Liu, Zhigang; Wang, Yanbo
2016-01-01
Active control of pantograph could be performed to decrease the fluctuation in pantograph-catenary contact force (PCCF) in high-speed railway. However, it is difficult to obtain the states of the pantograph when state feedback control is implemented. And the measurements may randomly miss due...
Directory of Open Access Journals (Sweden)
Azorin Jean-Michel
2009-06-01
Full Text Available Abstract Background To describe the clinical course and treatment patterns over 24 months of patients experiencing an acute manic/mixed episode within the standard course of care. Methods EMBLEM was a 2-year European prospective, observational study on outcomes of patients experiencing a manic/mixed episode. Adults with bipolar disorder were enrolled within the standard course of care as in/outpatients if they initiated or changed oral medication for treatment of acute mania. After completing 12 weeks of acute phase, patients were assessed every 3–6 months during the maintenance phase. We present the 24 month results, with subgroup analysis for mixed states (MS and pure mania (PM. These subgroup analyses are driven by the high proportion of antidepressants prescribed in this cohort. Results In France, 771 patients were eligible for the maintenance phase. 69% of patients completed the follow up over 24 months. The mean age was 45.5 years (sd = 13.6 with 57% of women. 504 (66% patients were experiencing a PM and 262 (34% a MS at baseline. The main significant differences in MS vs. PM at baseline were: a higher rate of women, and in the previous 12 months, a higher frequency of episodes (manic/mixed and depressive, more suicide attempts, more rapid cycling, fewer social activities and more work impairment. Over the 24 months of follow-up the MS group had a significantly lower recovery than PM (36% vs. 46%, p = 0.006. Overall, 42% of all patients were started on monotherapy and 58% on combination therapy; of those 35% and 30% respectively remained on their initial medication throughout the 24 months. At baseline, 36% were treated with an antidepressant, this proportion remains high throughout the follow-up period, with a significantly higher rate for MS vs. PM at 24 months (55% vs. 27%, p Conclusion In this large sample, MS occur frequently (34%, they are more severe at baseline and have a worse functional prognosis than PM. Although
Energy Technology Data Exchange (ETDEWEB)
Beddo, M.E.
1990-10-01
A measurement off {Delta}{sigma}{sub L}(np), the difference between neutron-proton total cross sections in pure longitudinal spin states, is described. The results will help determine the isospin-zero (I = 0) scattering amplitudes, which are not well known above laboratory energies of 500 MeV, whereas the isospin-one (I = 1) amplitudes are fairly well-determined to 1 GeV. Data points were taken at the Los Alamos Meson Physics Facility (LAMPF) at Los Alamos, New Mexico, for five neutron beam energies: 484, 568, 634,720 and 788 MeV; they are the first in this energy range. Polarized neutrons were produced by charge-exchange of polarized protons on a liquid deuterium target (LD{sub 2}). Large-volume neutron counters detected the neutrons that passed through a polarized proton target. The counters subtended a range of solid angles large enough to allow extrapolation of the scattered neutrons to 0{degree}. Two modifications to the LAMPF accelerator system which were made for this work are described. They included a beam buncher,'' which modified the normal rf-time structure of the proton beam and allowed for the selection of peak-energy neutrons by time-of-flight means, and a computerized beam steering program, which reduced systematic effects due to beam motion at the LD{sub 2} target. The experimental values of {Delta}{sigma}{sub L}(np) are found to be consistent with other np data, including preliminary data from SIN and Saclay, but not with some results from Argonne which used a polarized proton beam and a polarized deuteron target. The I = 0 component was extracted from {Delta}{sigma}{sub L}(np) using existing pp data (I = 1), with the unexpected result that {Delta}{sigma}{sub L}(I = 0) was found to be essentially identical in shape to {Delta}{sigma}{sub L}(I = 1). The significance of this is not yet understood.
DEFF Research Database (Denmark)
Kontogeorgis, Georgios; Michelsen, Michael Locht; Folas, Georgios
2006-01-01
, glycols), glycol regeneration and gas dehydration units, oxygenate additives in gasoline, alcohol separation, etc. This manuscript, which is the first of a series of two papers, offers a review of previous applications and illustrates current focus areas related to the estimation of pure compound...
Robust random number generation using steady-state emission of gain-switched laser diodes
International Nuclear Information System (INIS)
Yuan, Z. L.; Lucamarini, M.; Dynes, J. F.; Fröhlich, B.; Plews, A.; Shields, A. J.
2014-01-01
We demonstrate robust, high-speed random number generation using interference of the steady-state emission of guaranteed random phases, obtained through gain-switching a semiconductor laser diode. Steady-state emission tolerates large temporal pulse misalignments and therefore significantly improves the interference quality. Using an 8-bit digitizer followed by a finite-impulse-response unbiasing algorithm, we achieve random number generation rates of 8 and 20 Gb/s, for laser repetition rates of 1 and 2.5 GHz, respectively, with a ±20% tolerance in the interferometer differential delay. We also report a generation rate of 80 Gb/s using partially phase-correlated short pulses. In relation to the field of quantum key distribution, our results confirm the gain-switched laser diode as a suitable light source, capable of providing phase-randomized coherent pulses at a clock rate of up to 2.5 GHz.
Reconstruction of photon number conditioned states using phase randomized homodyne measurements
International Nuclear Information System (INIS)
Chrzanowski, H M; Assad, S M; Bernu, J; Hage, B; Lam, P K; Symul, T; Lund, A P; Ralph, T C
2013-01-01
We experimentally demonstrate the reconstruction of a photon number conditioned state without using a photon number discriminating detector. By using only phase randomized homodyne measurements, we reconstruct up to the three photon subtracted squeezed vacuum state. The reconstructed Wigner functions of these states show regions of pronounced negativity, signifying the non-classical nature of the reconstructed states. The techniques presented allow for complete characterization of the role of a conditional measurement on an ensemble of states, and might prove useful in systems where photon counting still proves technically challenging. (paper)
Pure spinor partition function and the massive superstring spectrum
International Nuclear Information System (INIS)
Aisaka, Yuri; Arroyo, E. Aldo; Berkovits, Nathan; Nekrasov, Nikita
2008-01-01
We explicitly compute up to the fifth mass-level the partition function of ten-dimensional pure spinor worldsheet variables including the spin dependence. After adding the contribution from the (x μ , θ α , p α ) matter variables, we reproduce the massive superstring spectrum. Even though pure spinor variables are bosonic, the pure spinor partition function contains fermionic states which first appear at the second mass-level. These fermionic states come from functions which are not globally defined in pure spinor space, and are related to the b ghost in the pure spinor formalism. This result clarifies the proper definition of the Hilbert space for pure spinor variables.
Scalability of GHZ and random-state entanglement in the presence of decoherence
Energy Technology Data Exchange (ETDEWEB)
Melo, Fernando de; Tiersch, Markus; Buchleitner, Andreas [Physikalisches Institut, Albert-Ludwigs-Universitaet Freiburg (Germany); Aolita, Leandro; Cavalcanti, Daniel [ICFO - Institut de Ciencies Fotoniques (Spain); Acin, Antonio [ICFO - Institut de Ciencies Fotoniques (Spain); ICREA - Institucio Catalana de Recerca i Estudis Avancats (Spain); Salles, Alejo [Instituto de Fisica, Universidade Federal do Rio de Janeiro (Brazil); Physikalisches Institut, Albert-Ludwigs-Universitaet Freiburg (Germany)
2009-07-01
We derive analytical upper bounds for the entanglement of generalized Greenberger-Horne-Zeilinger (GHZ) states locally coupled to dephasing, depolarizing, and thermal reservoirs. The derivation is carried out under very weak constraints, and holds for any convex quantifier of entanglement. The obtained bounds reveal an exponential entanglement decay with the number of qubits - the robustness of the generalized GHZ states decreases exponentially with the system size. This poses a severe limitation to many quantum communication protocols. A comparison between the entanglement decay of randomly generated states with the GHZ family shows that the former decays slower, thus violating the previously obtained bounds. Furthermore, the random state's entanglement is more robust against noise for larger system size.
Directory of Open Access Journals (Sweden)
Khvedelidze Arsen
2018-01-01
Full Text Available The generation of random mixed states is discussed, aiming for the computation of probabilistic characteristics of composite finite dimensional quantum systems. In particular, we consider the generation of random Hilbert-Schmidt and Bures ensembles of qubit and qutrit pairs and compute the corresponding probabilities to find a separable state among the states of a fixed rank.
Spectra of random operators with absolutely continuous integrated density of states
Energy Technology Data Exchange (ETDEWEB)
Rio, Rafael del, E-mail: delrio@iimas.unam.mx, E-mail: delriomagia@gmail.com [Departamento de Fisica Matematica, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, C.P. 04510, México D.F. (Mexico)
2014-04-15
The structure of the spectrum of random operators is studied. It is shown that if the density of states measure of some subsets of the spectrum is zero, then these subsets are empty. In particular follows that absolute continuity of the integrated density of states implies singular spectra of ergodic operators is either empty or of positive measure. Our results apply to Anderson and alloy type models, perturbed Landau Hamiltonians, almost periodic potentials, and models which are not ergodic.
Spectra of random operators with absolutely continuous integrated density of states
International Nuclear Information System (INIS)
Rio, Rafael del
2014-01-01
The structure of the spectrum of random operators is studied. It is shown that if the density of states measure of some subsets of the spectrum is zero, then these subsets are empty. In particular follows that absolute continuity of the integrated density of states implies singular spectra of ergodic operators is either empty or of positive measure. Our results apply to Anderson and alloy type models, perturbed Landau Hamiltonians, almost periodic potentials, and models which are not ergodic
Theoretical model of the density of states of random binary alloys
International Nuclear Information System (INIS)
Zekri, N.; Brezini, A.
1991-09-01
A theoretical formulation of the density of states for random binary alloys is examined based on a mean field treatment. The present model includes both diagonal and off-diagonal disorder and also short-range order. Extensive results are reported for various concentrations and compared to other calculations. (author). 22 refs, 6 figs
Random interactions, isospin, and the ground states of odd-A and odd-odd nuclei
International Nuclear Information System (INIS)
Horoi, Mihai; Volya, Alexander; Zelevinsky, Vladimir
2002-01-01
It was recently shown that the ground state quantum numbers of even-even nuclei have a high probability to be reproduced by an ensemble of random but rotationally invariant two-body interactions. In the present work we extend these investigations to odd-A and odd-odd nuclei, considering in particular the isospin effects. Studying the realistic shell model as well as the single-j model, we show that random interactions have a tendency to assign the lowest possible total angular momentum and isospin to the ground state. In the sd shell model this reproduces correctly the isospin but not the spin quantum numbers of actual odd-odd nuclei. An odd-even staggering effect in probability of various ground state quantum numbers is present for even-even and odd-odd nuclei, while it is smeared out for odd-A nuclei. The observed regularities suggest the underlying mechanism of bosonlike pairing of fermionic pairs in T=0 and T=1 states generated by the off-diagonal matrix elements of random interactions. The relation to the models of random spin interactions is briefly discussed
Randomizing quantum states to Shatten p -norm for all p ≥ 1
International Nuclear Information System (INIS)
Jeong, Kabgyun
2014-01-01
We formularize a method for randomizing quantum states with respect to the Shatten p-norms (p ≥ 1) in trace class. In particular, this work includes the operator norm, p = ∞, and the trace norm, p = 1, simultaneously in a single statement via McDiarmid's inequality and a net construction
Patterns of the ground states in the presence of random interactions : Nucleon systems
Zhao, YM; Arima, A; Shimizu, N; Ogawa, K; Yoshinaga, N; Scholten, O
We present our results on properties of ground states for nucleonic systems in the presence of random two-body interactions. In particular, we calculate probability distributions for parity, seniority, spectroscopic (i.e., in the laboratory frame) quadrupole moments, and discuss a clustering in the
Directory of Open Access Journals (Sweden)
Yasunori Nomura
2018-01-01
Full Text Available We point out that a simple inflationary model in which the axionic inflaton couples to a pure Yang–Mills theory may give the scalar spectral index (ns and tensor-to-scalar ratio (r in complete agreement with the current observational data.
Park, Joseph Sung-Yul
2016-01-01
Language occupies a crucial position in neoliberalism, due to the reimagination of language as commodified skill. This paper studies the role of language ideology in this transformation by identifying a particular ideology that facilitates this process, namely the ideology which views language as pure potential. Neoliberalism treats language as a…
Philipp, W. H.; Marsik, S. J.; May, C. E. (Inventor)
1974-01-01
A process for depositing elements by irradiating liquids is reported. Ultra pure elements are precipitated from aqueous solutions or suspensions of compounds. A solution of a salt of a metal to be prepared is irradiated, and the insoluble reaction product settles out. Some chemical compounds may also be prepared in this manner.
International Nuclear Information System (INIS)
Dunaevskii, A.M.
1977-01-01
The subject of this work are pure gamma families consisting of the gamma quanta produced in the early stages of cosmic cascades. The criteria of selecting these families from the all measured families are presented. The characteristics of these families are given and some conclusions about the mechanism of the nuclear-electromagnetic cascades are extracted. (S.B.)
Mackenzie, Jim
2016-01-01
This article responds to Johan Dahlbeck's "Towards a pure ontology: Children's bodies and morality" ["Educational Philosophy and Theory," vol. 46 (1), 2014, pp. 8-23 (EJ1026561)]. His arguments from Nietzsche and Spinoza do not carry the weight he supposes, and the conclusions he draws from them about pedagogy would be…
Nomura, Yasunori; Watari, Taizan; Yamazaki, Masahito
2018-01-01
We point out that a simple inflationary model in which the axionic inflaton couples to a pure Yang-Mills theory may give the scalar spectral index (ns) and tensor-to-scalar ratio (r) in complete agreement with the current observational data.
London, Jillian
2014-01-01
The 1860 Adulteration Act in England and the 1906 Pure Food and Drug Act in the United States were two of the earliest pieces of legislation to provide generalized regulation of food and drugs on a national scale. While significant scholarly attention has been given to explaining the factors and forces that led to the passage of each Act independent of the other, few books or articles have directly compared the similar individuals and events that led to the adoption of both Acts. This paper attempts to fill that gap. Through a comparative examination, this paper reveals that four main components were key to the national pure food and drug movements in both countries: individuals who crusaded for national adulteration legislation; tragedies that shocked the public into calling for reform; press and publicity that was willing and able to bring the evils of adulteration to the forefront of the public mind; and a transformation of the social, political, and economic systems, which created atmospheres conducive to reform. This paper aims to shed new light on the 1860 Adulteration Act and the 1906 Pure Food and Drug Act--two acts that derive their importance not just from the effect that they directly had on the regulation of food and drugs but also as some of the earliest examples of western governments coming to recognize the need for national regulation to protect the public from harm and coming to embrace their changing role as spearheads of modern regulatory states.
Raffaelli, Francesco; Ferranti, Giacomo; Mahler, Dylan H.; Sibson, Philip; Kennard, Jake E.; Santamato, Alberto; Sinclair, Gary; Bonneau, Damien; Thompson, Mark G.; Matthews, Jonathan C. F.
2018-04-01
Optical homodyne detection has found use as a characterisation tool in a range of quantum technologies. So far implementations have been limited to bulk optics. Here we present the optical integration of a homodyne detector onto a silicon photonics chip. The resulting device operates at high speed, up 150 MHz, it is compact and it operates with low noise, quantified with 11 dB clearance between shot noise and electronic noise. We perform on-chip quantum tomography of coherent states with the detector and show that it meets the requirements for characterising more general quantum states of light. We also show that the detector is able to produce quantum random numbers at a rate of 1.2 Gbps, by measuring the vacuum state of the electromagnetic field and applying off-line post processing. The produced random numbers pass all the statistical tests provided by the NIST test suite.
Fortran code for generating random probability vectors, unitaries, and quantum states
Directory of Open Access Journals (Sweden)
Jonas eMaziero
2016-03-01
Full Text Available The usefulness of generating random configurations is recognized in many areas of knowledge. Fortran was born for scientific computing and has been one of the main programming languages in this area since then. And several ongoing projects targeting towards its betterment indicate that it will keep this status in the decades to come. In this article, we describe Fortran codes produced, or organized, for the generation of the following random objects: numbers, probability vectors, unitary matrices, and quantum state vectors and density matrices. Some matrix functions are also included and may be of independent interest.
Poladian, L; Straton, M; Docherty, A; Argyros, A
2011-01-17
We investigate the properties of optical fibres made from chiral materials, in which a contrast in optical activity forms the waveguide, rather than a contrast in the refractive index; we refer to such structures as pure chiral fibres. We present a mathematical formulation for solving the modes of circularly symmetric examples of such fibres and examine the guidance and polarisation properties of pure chiral step-index, Bragg and photonic crystal fibre designs. Their behaviour is shown to differ for left- and right-hand circular polarisation, allowing circular polarisations to be isolated and/or guided by different mechanisms, as well as differing from equivalent non-chiral fibres. The strength of optical activity required in each case is quantified.
International Nuclear Information System (INIS)
Gourdin, M.
1976-01-01
In most gauge theories weak neutral currents appear as a natural consequence of the models, but the specific properties are not predicted in a general way. In purely leptonic interactions the structure of these currents can be tested without making assumptions about the weak couplings of the hadrons. The influence of neutral currents appearing in the process e + e - → μ + μ - can be measured using the polarization of the outgoing myons. (BJ) [de
Purely Functional Structured Programming
Obua, Steven
2010-01-01
The idea of functional programming has played a big role in shaping today's landscape of mainstream programming languages. Another concept that dominates the current programming style is Dijkstra's structured programming. Both concepts have been successfully married, for example in the programming language Scala. This paper proposes how the same can be achieved for structured programming and PURELY functional programming via the notion of LINEAR SCOPE. One advantage of this proposal is that m...
Energy Technology Data Exchange (ETDEWEB)
Tipireddy, R.; Stinis, P.; Tartakovsky, A. M.
2017-12-01
We present a novel approach for solving steady-state stochastic partial differential equations (PDEs) with high-dimensional random parameter space. The proposed approach combines spatial domain decomposition with basis adaptation for each subdomain. The basis adaptation is used to address the curse of dimensionality by constructing an accurate low-dimensional representation of the stochastic PDE solution (probability density function and/or its leading statistical moments) in each subdomain. Restricting the basis adaptation to a specific subdomain affords finding a locally accurate solution. Then, the solutions from all of the subdomains are stitched together to provide a global solution. We support our construction with numerical experiments for a steady-state diffusion equation with a random spatially dependent coefficient. Our results show that highly accurate global solutions can be obtained with significantly reduced computational costs.
Hacking on decoy-state quantum key distribution system with partial phase randomization
Sun, Shi-Hai; Jiang, Mu-Sheng; Ma, Xiang-Chun; Li, Chun-Yan; Liang, Lin-Mei
2014-04-01
Quantum key distribution (QKD) provides means for unconditional secure key transmission between two distant parties. However, in practical implementations, it suffers from quantum hacking due to device imperfections. Here we propose a hybrid measurement attack, with only linear optics, homodyne detection, and single photon detection, to the widely used vacuum + weak decoy state QKD system when the phase of source is partially randomized. Our analysis shows that, in some parameter regimes, the proposed attack would result in an entanglement breaking channel but still be able to trick the legitimate users to believe they have transmitted secure keys. That is, the eavesdropper is able to steal all the key information without discovered by the users. Thus, our proposal reveals that partial phase randomization is not sufficient to guarantee the security of phase-encoding QKD systems with weak coherent states.
Hacking on decoy-state quantum key distribution system with partial phase randomization.
Sun, Shi-Hai; Jiang, Mu-Sheng; Ma, Xiang-Chun; Li, Chun-Yan; Liang, Lin-Mei
2014-04-23
Quantum key distribution (QKD) provides means for unconditional secure key transmission between two distant parties. However, in practical implementations, it suffers from quantum hacking due to device imperfections. Here we propose a hybrid measurement attack, with only linear optics, homodyne detection, and single photon detection, to the widely used vacuum + weak decoy state QKD system when the phase of source is partially randomized. Our analysis shows that, in some parameter regimes, the proposed attack would result in an entanglement breaking channel but still be able to trick the legitimate users to believe they have transmitted secure keys. That is, the eavesdropper is able to steal all the key information without discovered by the users. Thus, our proposal reveals that partial phase randomization is not sufficient to guarantee the security of phase-encoding QKD systems with weak coherent states.
Takebe, Jun; Ito, Shigeki; Miura, Shingo; Miyata, Kyohei; Ishibashi, Kanji
2012-01-01
A method of coating commercially pure titanium (cpTi) implants with a highly crystalline, thin hydroxyapatite (HA) layer using discharge anodic oxidation followed by hydrothermal treatment (Spark discharged Anodic oxidation treatment ; SA-treated cpTi) has been reported for use in clinical dentistry. We hypothesized that a thin HA layer with high crystallinity and nanostructured anodic titanium oxide film on such SA-treated cpTi implant surfaces might be a crucial function of their surface-specific potential energy. To test this, we analyzed anodic oxide (AO) cpTi and SA-treated cpTi disks by SEM and AFM. Contact angles and surface free energy of each disk surface was measured using FAMAS software. High-magnification SEM and AFM revealed the nanotopographic structure of the anodic titanium oxide film on SA-treated cpTi; however, this was not observed on the AO cpTi surface. The contact angle and surface free energy measurements were also significantly different between AO cpTi and SA-treated cpTi surfaces (Tukey's, P<0.05). These data indicated that the change of physicochemical properties of an anodic titanium oxide film with HA crystals on an SA-treated cpTi surface may play a key role in the phenomenon of osteoconduction during the process of osseointegration. Copyright © 2011 Elsevier B.V. All rights reserved.
Extended random-phase approximation with three-body ground-state correlations
International Nuclear Information System (INIS)
Tohyama, M.; Schuck, P.
2008-01-01
An extended random-phase approximation (ERPA) which contains the effects of ground-state correlations up to a three-body level is applied to an extended Lipkin model which contains an additional particle-scattering term. Three-body correlations in the ground state are necessary to preserve the hermiticity of the Hamiltonian matrix of ERPA. Two approximate forms of ERPA which neglect the three-body correlations are also applied to investigate the importance of three-body correlations. It is found that the ground-state energy is little affected by the inclusion of the three-body correlations. On the contrary, three-body correlations for the excited states can become quite important. (orig.)
Cassie state robustness of plasma generated randomly nano-rough surfaces
Energy Technology Data Exchange (ETDEWEB)
Di Mundo, Rosa, E-mail: rosa.dimundo@poliba.it; Bottiglione, Francesco; Carbone, Giuseppe
2014-10-15
Graphical abstract: - Highlights: • Superhydrophobic randomly rough surfaces are generated by plasma etching. • Statistical analysis of roughness allows calculation of theWenzel roughness factor, r{sub W.} • A r{sub W} threshold is theoretically determined, above which superhydrophobicity is “robust”. • Dynamic wetting, e.g. with high speed impacting drops, confirms this prediction. - Abstract: Superhydrophobic surfaces are effective in practical applications provided they are “robust superhydrophobic”, i.e. able to retain the Cassie state, i.e. with water suspended onto the surface protrusions, even under severe conditions (high pressure, vibrations, high speed impact, etc.). We show that for randomly rough surfaces, given the Young angle, Cassie states are robust when a threshold value of the Wenzel roughness factor, r{sub W}, is exceeded. In particular, superhydrophobic nano-textured surfaces have been generated by self-masked plasma etching. In view of their random roughness, topography features, acquired by Atomic Force Microscopy, have been statistically analyzed in order to gain information on statistical parameters such as power spectral density, fractal dimension and Wenzel roughness factor (r{sub W}), which has been used to assess Cassie state robustness. Results indicate that randomly rough surfaces produced by plasma at high power or long treatment duration, which are also fractal self-affine, have a r{sub W} higher than the theoretical threshold, thus for them a robust superhydrophobicity is predicted. In agreement with this, under dynamic wetting conditionson these surfaces the most pronounced superhydrophobic character has been appreciated: they show the lowest contact angle hysteresis and result in the sharpest bouncing when hit by drops at high impact velocity.
Directory of Open Access Journals (Sweden)
Mokaedi V. Lekgari
2014-01-01
Full Text Available We investigate random-time state-dependent Foster-Lyapunov analysis on subgeometric rate ergodicity of continuous-time Markov chains (CTMCs. We are mainly concerned with making use of the available results on deterministic state-dependent drift conditions for CTMCs and on random-time state-dependent drift conditions for discrete-time Markov chains and transferring them to CTMCs.
Ll, Jin; Sato, Haruki; Watanabe, Koichi
On the basis of critically-evaluated thermodynamic property data among those recently published, a new Peng-Robinson equation of state for the HFC refrigerants,R-32,R-125 and R-134a,has be end eveloped so as to represent the VLE properties in the vapor-liquid coexisting phase at temperatures 223K-323K. In accord with a challenge to correlate the binary and/or ternary interatction parameters as functions of temperature, we have also applied the present modified Peng-Robinson equation of state to the promising alternative HFC refrigerant mixtures, i.e., R-32/125,R-32/134a and R-32/125/134a systems. The developed equation of state improves significantly its effectiveness for practical engineering property calculations at refrigerantion and air-conditioning industries in comparison with conventional Peng-Robinson equation.
Pure homology of algebraic varieties
Weber, Andrzej
2003-01-01
We show that for a complete complex algebraic variety the pure component of homology coincides with the image of intersection homology. Therefore pure homology is topologically invariant. To obtain slightly more general results we introduce "image homology" for noncomplete varieties.
Random unitary operations and quantum Darwinism
International Nuclear Information System (INIS)
Balaneskovic, Nenad
2016-01-01
We study the behavior of Quantum Darwinism (Zurek, Nature Physics 5, 181-188 (2009)) within the iterative, random unitary operations qubit-model of pure decoherence (Novotn'y et al, New Jour. Phys. 13, 053052 (2011)). We conclude that Quantum Darwinism, which describes the quantum mechanical evolution of an open system from the point of view of its environment, is not a generic phenomenon, but depends on the specific form of initial states and on the type of system-environment interactions. Furthermore, we show that within the random unitary model the concept of Quantum Darwinism enables one to explicitly construct and specify artificial initial states of environment that allow to store information about an open system of interest and its pointer-basis with maximal efficiency. Furthermore, we investigate the behavior of Quantum Darwinism after introducing dissipation into the iterative random unitary qubit model with pure decoherence in accord with V. Scarani et al (Phys. Rev. Lett. 88, 097905 (2002)) and reconstruct the corresponding dissipative attractor space. We conclude that in Zurek's qubit model Quantum Darwinism depends on the order in which pure decoherence and dissipation act upon an initial state of the entire system. We show explicitly that introducing dissipation into the random unitary evolution model in general suppresses Quantum Darwinism (regardless of the order in which decoherence and dissipation are applied) for all positive non-zero values of the dissipation strength parameter, even for those initial state configurations which, in Zurek's qubit model and in the random unitary model with pure decoherence, would lead to Quantum Darwinism. Finally, we discuss what happens with Quantum Darwinism after introducing into the iterative random unitary qubit model with pure decoherence (asymmetric) dissipation and dephasing, again in accord with V. Scarani et al (Phys. Rev. Lett. 88, 097905 (2002)), and reconstruct the corresponding
The continuous time random walk, still trendy: fifty-year history, state of art and outlook
Kutner, Ryszard; Masoliver, Jaume
2017-03-01
In this article we demonstrate the very inspiring role of the continuous-time random walk (CTRW) formalism, the numerous modifications permitted by its flexibility, its various applications, and the promising perspectives in the various fields of knowledge. A short review of significant achievements and possibilities is given. However, this review is still far from completeness. We focused on a pivotal role of CTRWs mainly in anomalous stochastic processes discovered in physics and beyond. This article plays the role of an extended announcement of the Eur. Phys. J. B Special Issue [open-calls-for-papers/123-epj-b/1090-ctrw-50-years-on">http://epjb.epj.org/open-calls-for-papers/123-epj-b/1090-ctrw-50-years-on] containing articles which show incredible possibilities of the CTRWs. Contribution to the Topical Issue "Continuous Time Random Walk Still Trendy: Fifty-year History, Current State and Outlook", edited by Ryszard Kutner and Jaume Masoliver.
Derrida's Generalized Random Energy models; 4, Continuous state branching and coalescents
Bovier, A
2003-01-01
In this paper we conclude our analysis of Derrida's Generalized Random Energy Models (GREM) by identifying the thermodynamic limit with a one-parameter family of probability measures related to a continuous state branching process introduced by Neveu. Using a construction introduced by Bertoin and Le Gall in terms of a coherent family of subordinators related to Neveu's branching process, we show how the Gibbs geometry of the limiting Gibbs measure is given in terms of the genealogy of this process via a deterministic time-change. This construction is fully universal in that all different models (characterized by the covariance of the underlying Gaussian process) differ only through that time change, which in turn is expressed in terms of Parisi's overlap distribution. The proof uses strongly the Ghirlanda-Guerra identities that impose the structure of Neveu's process as the only possible asymptotic random mechanism.
Large deviations and Lifshitz singularity of the integrated density of states of random Hamiltonians
International Nuclear Information System (INIS)
Kirsch, W.; Martinelli, F.
1983-01-01
We consider the integrated density of states (IDS) rhosub(infinite)(lambda) of random Hamiltonian Hsub#betta#=-δ+Vsub#betta#, Vsub#betta# being a random field on Rsup(d) which satisfies a mixing condition. We prove that the probability of large fluctuations of the finite volume IDSvertical stroke#betta#vertical stroke - 1 rho(lambda,Hsub(lambda)(#betta#)), #betta#is contained inRsup(d), around the thermodynamic limit rhosub(infinite)(lambda) is bounded from above by exp[-kvertical stroke#betta#vertical stroke], k>0. In this case rhosub(infinite)(lambda) can be recovered from a variational principle. Furthermore we show the existence of a Lifshitz-type of singularity of rhosub(infinite)(lambda) as lambda->0 + in the case where Vsub#betta# is non-negative. More precisely we prove the following bound: rhosub(infinite)(lambda) 0 + k>0. This last result is then discussed in some examples. (orig.)
International Nuclear Information System (INIS)
Milinski, N.; Milinski, E.
2002-01-01
Amorphous conductors such as liquid metals and alloys are subject to dc conductivity σ calculation here. Principal aim is to explore the impact on σ of the constitutive equation α * = 1, formulated and developed in the preceding papers. The nearly free electrons (NFE) model has been applied. Alkali metals are assumed to fit this model well, and sodium the best. Consequently, the results on these metals have been assumed reliable and relevant for conclusions making. The conclusion we made is: instead of the Fermi radius k f proper for the statistical ensemble in state of thermodynamics equilibrium, a new k ' f number is needed to be introduced into the linear response formula when calculating σ and α * . This k ' f is the length of the corresponding axis of ellipsoid proper for describing the statistical ensemble in the state with dc current. In the traditional interpretation of the linear response formula (Kubo formula) this conversion has been overlooked. Parameters of the mentioned ellipsoids are determined in this paper for a number of liquid metals of valency numbers 1,2,3,4, in addition to a selection of some binary and ternary conducting alloys. It is up to experimental measurements to decide how real this concept of restructuring the statistical ensemble is. (Authors)
International Nuclear Information System (INIS)
Regnault, O.
2008-04-01
The efficiency on the long term of CO 2 geological storage will rely on trapping mechanisms and good sealing properties of the cap rock and the eventual access wells. A series of experiments has been devised to observe and quantify the reactivity of portlandite with supercritical CO 2 . The portlandite has been chosen as a key component of calcium-rich cement for its interest in borehole cement degradation. Initial carbonation rates have been measured under different conditions: pressure 160 bar, temperatures 80, 120, and 200 C and with various amount of water. SEM observations show that the reacting fluid state (absence or presence of liquid phase) controls strongly the carbonation behaviour and the reaction path. A specific geochemical model has been developed in order to account for the particular conditions of our experiments. These results (portlandite carbonation rate and water-poor geochemical system modelling techniques) should be useful to simulate well-bore cement degradation. (author)
Critical current of pure SNS junctions
International Nuclear Information System (INIS)
Golub, A.A.; Bezzub, O.P.
1982-01-01
Boundary conditions at the superconductor-normal metal interface are determined, taking into account the differences in the effective masses and the density of states of the metals constituting the transition and assumed to be pure. The potential barrier of the interface is chosen to be zero. The critical current of the junction is calculated [ru
International Nuclear Information System (INIS)
Dutuit, Odile
1974-01-01
The de-excitation of the 3 P 2 , 3 p 1 and 1 P 1 states of argon was studied in pure argon between 10 and 200 torr and in Ar + CO and Ar + H 2 mixtures. These states are populated after excitation of the gas by a short (20 ns) pulse of 500 keV electrons (FEBETRON). Under our experimental conditions, the relation between the measured optical density of the lines studied and the concentration of absorbing species was found to be: DO = log I 0 /I ∝ (lC) n with n = 0,4. The three body rate constants k 2 were measured for the two resonant states 3 p 1 (k 2 = (1,65 ± 0,3) x 10 -32 cm 6 s -1 ) and 1 P 1 (k 2 = (1,0 ± 0,2) x 10 -32 cm 6 s -1 ); they had not been considered in previous low pressure studies. For the metastable state 3 P 2 , the measured value of k 2 ((1,6 ± 0,3) x 10 -32 cm 6 s -1 ) is in good agreement with those found in the literature. However, our two body rate constant k 1 is about ten times higher than that found in measurements at low pressure. This difference could be due to a collision-induced emission process at high pressure. The rate constants for the quenching by CO and H 2 were measured for the metastable state 3 P 2 (1,85 and 10,5 x 10 -11 cm 3 s -1 ) and for the resonant states 3 P 1 (4,5 and 20 x 10 -11 cm 3 s -1 ) and 1 P 1 (8,5 and 33 X 10 -11 cm 3 s -1 ). Comparison of the de-excitation cross sections of resonant and metastable states should lead to a better understanding of energy transfer processes from these latter. (author) [fr
Application of the random phase approximation to some atoms with ns2 ground state configurations
International Nuclear Information System (INIS)
Wright, L.A.
1975-01-01
Atomic bound state properties such as excitation energies and oscillator strengths were calculated by the Random Phase Approximation (RPA), also known as the Time Dependent Hartree-Fock Approximation (TDHFA). The RPA is equivalent to describing excited states as the creation of particle-hole pairs and the application to atoms is important for two reasons: the wide range of densities in an atom will cause the physical interpretation and mathematical approximations to be much different than with a uniform density system, such as an electron gas; this method could detect the existence of collective states in atoms similar to those responsible for the giant dipole resonances in nuclei. The method is shown to be superior to the H-F method in three basic ways: (1) The RPA contains explicit correlations between the excited and ground states. These are not included in the H-F theory. One can apply this method to large atoms since only these correlations are explicitly included. (2) The RPA calculates excitation energies directly without recourse to highly correlated ground state wavefunctions. This is in contrast to the method of configuration mixing which is known to have slow convergence properties. (3) Oscillator strengths and photoionization cross sections can be calculated by finding the eigenvectors corresponding excitation energy eigenvalues. The strength of the RPA is that the excitation energies and oscillator strengths, which are relative quantities, are calculated directly. The results for the oscillator strengths show an improvement of up to 45 percent over the H-F values and an improvement over the RPA done with Hartree wavefunctions by as much as 65 percent. The work was limited to atoms with an ns 2 ground state configuration. These atoms were He, Be, Mg and Ca
Two-state random walk model of lattice diffusion - 1. Self-correlation function
International Nuclear Information System (INIS)
Balakrishnan, V.; Venkataraman, G.
1981-01-01
Diffusion with interruptions (arising from localized oscillations, or traps, or mixing between jump diffusion and fluid-like diffusion, etc.) is a very general phenomenon. Its manifestations range from superionic conductance to the behaviour of hydrogen in metals. Based on a continuous-time random walk approach, we present a comprehensive two-state random walk model for the diffusion of a particle on a lattice, incorporating arbitrary holding-time distributions for both localized residence at the sites and inter-site flights, and also the correct first-waiting-time distributions. A synthesis is thus achieved of the two extremes of jump diffusion (zero flight time) and fluid-like diffusion (zero residence time). Various earlier models emerge as special cases of our theory. Among the noteworthy results obtained are: closed-form solutions (in d dimensions, and with arbitrary directional bias) for temporarily uncorrelated jump diffusion and for the fluid diffusion counterpart; a compact, general formula for the mean square displacement; the effects of a continuous spectrum of time scales in the holding-time distributions, etc. The dynamic mobility and the structure factor for 'oscillatory diffusion' are taken up in part 2. (author)
Quasi-steady-state analysis of two-dimensional random intermittent search processes
Bressloff, Paul C.
2011-06-01
We use perturbation methods to analyze a two-dimensional random intermittent search process, in which a searcher alternates between a diffusive search phase and a ballistic movement phase whose velocity direction is random. A hidden target is introduced within a rectangular domain with reflecting boundaries. If the searcher moves within range of the target and is in the search phase, it has a chance of detecting the target. A quasi-steady-state analysis is applied to the corresponding Chapman-Kolmogorov equation. This generates a reduced Fokker-Planck description of the search process involving a nonzero drift term and an anisotropic diffusion tensor. In the case of a uniform direction distribution, for which there is zero drift, and isotropic diffusion, we use the method of matched asymptotics to compute the mean first passage time (MFPT) to the target, under the assumption that the detection range of the target is much smaller than the size of the domain. We show that an optimal search strategy exists, consistent with previous studies of intermittent search in a radially symmetric domain that were based on a decoupling or moment closure approximation. We also show how the decoupling approximation can break down in the case of biased search processes. Finally, we analyze the MFPT in the case of anisotropic diffusion and find that anisotropy can be useful when the searcher starts from a fixed location. © 2011 American Physical Society.
Physical states in the canonical tensor model from the perspective of random tensor networks
Energy Technology Data Exchange (ETDEWEB)
Narain, Gaurav [The Institute for Fundamental Study “The Tah Poe Academia Institute”,Naresuan University, Phitsanulok 65000 (Thailand); Sasakura, Naoki [Yukawa Institute for Theoretical Physics,Kyoto University, Kyoto 606-8502 (Japan); Sato, Yuki [National Institute for Theoretical Physics,School of Physics and Centre for Theoretical Physics,University of the Witwartersrand, WITS 2050 (South Africa)
2015-01-07
Tensor models, generalization of matrix models, are studied aiming for quantum gravity in dimensions larger than two. Among them, the canonical tensor model is formulated as a totally constrained system with first-class constraints, the algebra of which resembles the Dirac algebra of general relativity. When quantized, the physical states are defined to be vanished by the quantized constraints. In explicit representations, the constraint equations are a set of partial differential equations for the physical wave-functions, which do not seem straightforward to be solved due to their non-linear character. In this paper, after providing some explicit solutions for N=2,3, we show that certain scale-free integration of partition functions of statistical systems on random networks (or random tensor networks more generally) provides a series of solutions for general N. Then, by generalizing this form, we also obtain various solutions for general N. Moreover, we show that the solutions for the cases with a cosmological constant can be obtained from those with no cosmological constant for increased N. This would imply the interesting possibility that a cosmological constant can always be absorbed into the dynamics and is not an input parameter in the canonical tensor model. We also observe the possibility of symmetry enhancement in N=3, and comment on an extension of Airy function related to the solutions.
Quasi-steady-state analysis of two-dimensional random intermittent search processes
Bressloff, Paul C.; Newby, Jay M.
2011-01-01
We use perturbation methods to analyze a two-dimensional random intermittent search process, in which a searcher alternates between a diffusive search phase and a ballistic movement phase whose velocity direction is random. A hidden target is introduced within a rectangular domain with reflecting boundaries. If the searcher moves within range of the target and is in the search phase, it has a chance of detecting the target. A quasi-steady-state analysis is applied to the corresponding Chapman-Kolmogorov equation. This generates a reduced Fokker-Planck description of the search process involving a nonzero drift term and an anisotropic diffusion tensor. In the case of a uniform direction distribution, for which there is zero drift, and isotropic diffusion, we use the method of matched asymptotics to compute the mean first passage time (MFPT) to the target, under the assumption that the detection range of the target is much smaller than the size of the domain. We show that an optimal search strategy exists, consistent with previous studies of intermittent search in a radially symmetric domain that were based on a decoupling or moment closure approximation. We also show how the decoupling approximation can break down in the case of biased search processes. Finally, we analyze the MFPT in the case of anisotropic diffusion and find that anisotropy can be useful when the searcher starts from a fixed location. © 2011 American Physical Society.
Method of producing vegetable puree
DEFF Research Database (Denmark)
2004-01-01
A process for producing a vegetable puree, comprising the sequential steps of: a)crushing, chopping or slicing the vegetable into pieces of 1 to 30 mm; b) blanching the vegetable pieces at a temperature of 60 to 90°C; c) contacted the blanched vegetable pieces with a macerating enzyme activity; d......) blending the macerated vegetable pieces and obtaining a puree....
Creep in commercially pure metals
International Nuclear Information System (INIS)
Nabarro, F.R.N.
2006-01-01
The creep of commercially pure polycrystalline metals under constant stress has four stages: a virtually instantaneous extension, decelerating Andrade β creep, almost steady-state Andrade κ creep, and an acceleration towards failure. Little is known about the first stage, and the fourth stage has been extensively reviewed elsewhere. The limited experimental evidence on the physical mechanism of the second stage is reviewed and a critical discussion is given of various theories of this stage. The dependence of strain rate on stress in the third, steady-state, period seems to fall into two regimes, a power law with an exponent of about 4-5, and a rather closely exponential law. The limits of the parameters within which a simple theory of the exponential dependence can be expected to be valid are discussed, and found to be compatible with experiments. Theories of the power-law dependence are discussed, and, appear to be unconvincing. The theoretical models do not relate closely to the metallographic and other physical observations. In view of the weakness of theory, experiments which may indicate the physical processes dominant in steady-state creep are reviewed. It is usually not clear whether they pertain to the power-law or the exponential regime. While the theories all assume that most of the deformation occurs homogeneously within the grains, most experimental observations point strongly to a large deformation at or close to the grain boundaries. However, a detailed study of dislocation processes in a single grain of polycrystalline foil strained in the electron microscope shows that most of the observed strain can be accounted for by the motion of single dislocations through the subgrain structure. There is no clear reconciliation of these two sets of observations. Grain-boundary sliding cannot occur without intragranular deformation. One or other process may dominate the overall deformation; the geometrically dominant process may not be the rate
Yang, Xiang; Lu, Yang; Lee, Jongho; Chen, I.-Wei
2016-01-01
Tuning low resistance state is crucial for resistance random access memory (RRAM) that aims to achieve optimal read margin and design flexibility. By back-to-back stacking two nanometallic bipolar RRAMs with different thickness into a complementary structure, we have found that its low resistance can be reliably tuned over several orders of magnitude. Such high tunability originates from the exponential thickness dependence of the high resistance state of nanometallic RRAM, in which electron wave localization in a random network gives rise to the unique scaling behavior. The complementary nanometallic RRAM provides electroforming-free, multi-resistance-state, sub-100 ns switching capability with advantageous characteristics for memory arrays.
International Nuclear Information System (INIS)
Yang, Xiang; Lu, Yang; Lee, Jongho; Chen, I-Wei
2016-01-01
Tuning low resistance state is crucial for resistance random access memory (RRAM) that aims to achieve optimal read margin and design flexibility. By back-to-back stacking two nanometallic bipolar RRAMs with different thickness into a complementary structure, we have found that its low resistance can be reliably tuned over several orders of magnitude. Such high tunability originates from the exponential thickness dependence of the high resistance state of nanometallic RRAM, in which electron wave localization in a random network gives rise to the unique scaling behavior. The complementary nanometallic RRAM provides electroforming-free, multi-resistance-state, sub-100 ns switching capability with advantageous characteristics for memory arrays
Hidden State Conditional Random Field for Abnormal Activity Recognition in Smart Homes
Directory of Open Access Journals (Sweden)
Yu Tong
2015-03-01
Full Text Available As the number of elderly people has increased worldwide, there has been a surge of research into assistive technologies to provide them with better care by recognizing their normal and abnormal activities. However, existing abnormal activity recognition (AAR algorithms rarely consider sub-activity relations when recognizing abnormal activities. This paper presents an application of the Hidden State Conditional Random Field (HCRF method to detect and assess abnormal activities that often occur in elderly persons’ homes. Based on HCRF, this paper designs two AAR algorithms, and validates them by comparing them with a feature vector distance based algorithm in two experiments. The results demonstrate that the proposed algorithms favorably outperform the competitor, especially when abnormal activities have same sensor type and sensor number as normal activities.
Pure endmember extraction using robust kernel archetypoid analysis for hyperspectral imagery
Sun, Weiwei; Yang, Gang; Wu, Ke; Li, Weiyue; Zhang, Dianfa
2017-09-01
A robust kernel archetypoid analysis (RKADA) method is proposed to extract pure endmembers from hyperspectral imagery (HSI). The RKADA assumes that each pixel is a sparse linear mixture of all endmembers and each endmember corresponds to a real pixel in the image scene. First, it improves the re8gular archetypal analysis with a new binary sparse constraint, and the adoption of the kernel function constructs the principal convex hull in an infinite Hilbert space and enlarges the divergences between pairwise pixels. Second, the RKADA transfers the pure endmember extraction problem into an optimization problem by minimizing residual errors with the Huber loss function. The Huber loss function reduces the effects from big noises and outliers in the convergence procedure of RKADA and enhances the robustness of the optimization function. Third, the random kernel sinks for fast kernel matrix approximation and the two-stage algorithm for optimizing initial pure endmembers are utilized to improve its computational efficiency in realistic implementations of RKADA, respectively. The optimization equation of RKADA is solved by using the block coordinate descend scheme and the desired pure endmembers are finally obtained. Six state-of-the-art pure endmember extraction methods are employed to make comparisons with the RKADA on both synthetic and real Cuprite HSI datasets, including three geometrical algorithms vertex component analysis (VCA), alternative volume maximization (AVMAX) and orthogonal subspace projection (OSP), and three matrix factorization algorithms the preconditioning for successive projection algorithm (PreSPA), hierarchical clustering based on rank-two nonnegative matrix factorization (H2NMF) and self-dictionary multiple measurement vector (SDMMV). Experimental results show that the RKADA outperforms all the six methods in terms of spectral angle distance (SAD) and root-mean-square-error (RMSE). Moreover, the RKADA has short computational times in offline
On the spectral properties of random finite difference operators
International Nuclear Information System (INIS)
Kunz, H.; Souillard, B.
1980-01-01
We study a class of random finite difference operators, a typical example of which is the finite difference Schroedinger operator with a random potential which arises in solid state physics in the tight binding approximation. We obtain with probability one, in various situations, the exact location of the spectrum, and criterions for a given part in the spectrum to be pure point or purely continuous, or for the static electric conductivity to vanish. A general formalism is developped which transforms the study of these random operators into that of the asymptotics of a multiple integral constructed from a given recipe. Finally we apply our criterions and formalism to prove that, with probability one, the one-dimensional finite difference Schroedinger operator with a random potential has pure point spectrum and developps no static conductivity. (orig.)
Ground States of Random Spanning Trees on a D-Wave 2X
Hall, J. S.; Hobl, L.; Novotny, M. A.; Michielsen, Kristel
The performances of two D-Wave 2 machines (476 and 496 qubits) and of a 1097-qubit D-Wave 2X were investigated. Each chip has a Chimera interaction graph calG . Problem input consists of values for the fields hj and for the two-qubit interactions Ji , j of an Ising spin-glass problem formulated on calG . Output is returned in terms of a spin configuration {sj } , with sj = +/- 1 . We generated random spanning trees (RSTs) uniformly distributed over all spanning trees of calG . On the 476-qubit D-Wave 2, RSTs were generated on the full chip with Ji , j = - 1 and hj = 0 and solved one thousand times. The distribution of solution energies and the average magnetization of each qubit were determined. On both the 476- and 1097-qubit machines, four identical spanning trees were generated on each quadrant of the chip. The statistical independence of these regions was investigated. In another study, on the D-Wave 2X, one hundred RSTs with random Ji , j ∈ { - 1 , 1 } and hj = 0 were generated on the full chip. Each RST problem was solved one hundred times and the number of times the ground state energy was found was recorded. This procedure was repeated for square subgraphs, with dimensions ranging from 7 ×7 to 11 ×11. Supported in part by NSF Grants DGE-0947419 and DMR-1206233. D-Wave time provided by D-Wave Systems and by the USRA Quantum Artificial Intelligence Laboratory Research Opportunity.
Vacuum evaporation of pure metals
Safarian, Jafar; Engh, Thorvald Abel
2013-01-01
Theories on the evaporation of pure substances are reviewed and applied to study vacuum evaporation of pure metals. It is shown that there is good agreement between different theories for weak evaporation, whereas there are differences under intensive evaporation conditions. For weak evaporation, the evaporation coefficient in Hertz-Knudsen equation is 1.66. Vapor velocity as a function of the pressure is calculated applying several theories. If a condensing surface is less than one collision...
Distinguishing computable mixtures of quantum states
Grande, Ignacio H. López; Senno, Gabriel; de la Torre, Gonzalo; Larotonda, Miguel A.; Bendersky, Ariel; Figueira, Santiago; Acín, Antonio
2018-05-01
In this article we extend results from our previous work [Bendersky et al., Phys. Rev. Lett. 116, 230402 (2016), 10.1103/PhysRevLett.116.230402] by providing a protocol to distinguish in finite time and with arbitrarily high success probability any algorithmic mixture of pure states from the maximally mixed state. Moreover, we include an experimental realization, using a modified quantum key distribution setup, where two different random sequences of pure states are prepared; these sequences are indistinguishable according to quantum mechanics, but they become distinguishable when randomness is replaced with pseudorandomness within the experimental preparation process.
Taren, Adrienne A; Gianaros, Peter J; Greco, Carol M; Lindsay, Emily K; Fairgrieve, April; Brown, Kirk Warren; Rosen, Rhonda K; Ferris, Jennifer L; Julson, Erica; Marsland, Anna L; Creswell, J David
Mindfulness meditation training has been previously shown to enhance behavioral measures of executive control (e.g., attention, working memory, cognitive control), but the neural mechanisms underlying these improvements are largely unknown. Here, we test whether mindfulness training interventions foster executive control by strengthening functional connections between dorsolateral prefrontal cortex (dlPFC)-a hub of the executive control network-and frontoparietal regions that coordinate executive function. Thirty-five adults with elevated levels of psychological distress participated in a 3-day randomized controlled trial of intensive mindfulness meditation or relaxation training. Participants completed a resting state functional magnetic resonance imaging scan before and after the intervention. We tested whether mindfulness meditation training increased resting state functional connectivity (rsFC) between dlPFC and frontoparietal control network regions. Left dlPFC showed increased connectivity to the right inferior frontal gyrus (T = 3.74), right middle frontal gyrus (MFG) (T = 3.98), right supplementary eye field (T = 4.29), right parietal cortex (T = 4.44), and left middle temporal gyrus (T = 3.97, all p < .05) after mindfulness training relative to the relaxation control. Right dlPFC showed increased connectivity to right MFG (T = 4.97, p < .05). We report that mindfulness training increases rsFC between dlPFC and dorsal network (superior parietal lobule, supplementary eye field, MFG) and ventral network (right IFG, middle temporal/angular gyrus) regions. These findings extend previous work showing increased functional connectivity among brain regions associated with executive function during active meditation by identifying specific neural circuits in which rsFC is enhanced by a mindfulness intervention in individuals with high levels of psychological distress. Clinicaltrials.gov,NCT01628809.
Nanoscale chemical state analysis of resistance random access memory device reacting with Ti
Shima, Hisashi; Nakano, Takashi; Akinaga, Hiro
2010-05-01
The thermal stability of the resistance random access memory material in the reducing atmosphere at the elevated temperature was improved by the addition of Ti. The unipolar resistance switching before and after the postdeposition annealing (PDA) process at 400 °C was confirmed in Pt/CoO/Ti(5 nm)/Pt device, while the severe degradation of the initial resistance occurs in the Pt/CoO/Pt and Pt/CoO/Ti(50 nm)/Pt devices. By investigating the chemical bonding states of Co, O, and Ti using electron energy loss spectroscopy combined with transmission electron microscopy, it was revealed that excess Ti induces the formation of metallic Co, while the thermal stability was improved by trace Ti. Moreover, it was indicated that the filamentary conduction path can be thermally induced after PDA in the oxide layer by analyzing electrical properties of the degraded devices. The adjustment of the reducing elements is quite essential in order to participate in their profits.
Taren, Adrienne A; Gianaros, Peter J; Greco, Carol M; Lindsay, Emily K; Fairgrieve, April; Brown, Kirk Warren; Rosen, Rhonda K; Ferris, Jennifer L; Julson, Erica; Marsland, Anna L; Bursley, James K; Ramsburg, Jared; Creswell, J David
2015-12-01
Recent studies indicate that mindfulness meditation training interventions reduce stress and improve stress-related health outcomes, but the neural pathways for these effects are unknown. The present research evaluates whether mindfulness meditation training alters resting state functional connectivity (rsFC) of the amygdala, a region known to coordinate stress processing and physiological stress responses. We show in an initial discovery study that higher perceived stress over the past month is associated with greater bilateral amygdala-subgenual anterior cingulate cortex (sgACC) rsFC in a sample of community adults (n = 130). A follow-up, single-blind randomized controlled trial shows that a 3-day intensive mindfulness meditation training intervention (relative to a well-matched 3-day relaxation training intervention without a mindfulness component) reduced right amygdala-sgACC rsFC in a sample of stressed unemployed community adults (n = 35). Although stress may increase amygdala-sgACC rsFC, brief training in mindfulness meditation could reverse these effects. This work provides an initial indication that mindfulness meditation training promotes functional neuroplastic changes, suggesting an amygdala-sgACC pathway for stress reduction effects. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Wang, Xing-juan; Li, Ji; Zou, Qin-di; Jin, Ling
2009-11-01
The incidence of menopausal anxiety and depression is increasing. It can induce and aggravate a variety of somatic symptoms. Despite of the good effects of psychotropic drugs on the disease, patients' compliance is poor. Therefore, it is necessary to find a drug which is practical, effective, and easy for patients to take. To evaluate the efficacy of Wuling Capsule (WC), a Chinese herbal medicine, in treatment of female climacteric syndrome with depression and anxiety state. A total of 96 outpatients of female climacteric syndrome from Department of Gynecology of Integrated Traditional Chinese and Western Medicine, Huashan Hospital, Fudan University, Department of Gynecology of Traditional Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, and Department of Traditional Chinese Medicine, Obstetrics and Gynecology Hospital, Fudan University were included. The study was designed as a randomized, positive drug parallel controlled trial. The patients were divided into WC group (64 cases) and control group (32 cases) and were orally administered Wuling Capsule and Gengnianan Tablet, respectively. The efficacy was evaluated with Kupperman menopausal index (KMI), Self-rating Depression Scale (SDS), and Self-rating Anxiety Scale (SAS) before treatment, and after 3-week and 6-week treatment. The total response rate was 89.66% (52/58) in the WC group, which was superior to that in the control group [76.67% (23/30)]. Ridit test showed that there was a significant difference between the two groups (Pstate. Wuling Capsule is more effective to alleviate depression and anxiety as compared with Gengnianan Tablet.
Pure phase decoherence in a ring geometry
International Nuclear Information System (INIS)
Zhu, Z.; Aharony, A.; Entin-Wohlman, O.; Stamp, P. C. E.
2010-01-01
We study the dynamics of pure phase decoherence for a particle hopping around an N-site ring, coupled both to a spin bath and to an Aharonov-Bohm flux which threads the ring. Analytic results are found for the dynamics of the influence functional and of the reduced density matrix of the particle, both for initial single wave-packet states, and for states split initially into two separate wave packets moving at different velocities. We also give results for the dynamics of the current as a function of time.
Scattering equations, supergravity integrands, and pure spinors
Energy Technology Data Exchange (ETDEWEB)
Adamo, Tim; Casali, Eduardo [Department of Applied Mathematics & Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)
2015-05-25
The tree-level S-matrix of type II supergravity can be computed in scattering equation form by correlators in a worldsheet theory analogous to a chiral, infinite tension limit of the pure spinor formalism. By defining a non-minimal version of this theory, we give a prescription for computing correlators on higher genus worldsheets which manifest space-time supersymmetry. These correlators are conjectured to provide the loop integrands of supergravity scattering amplitudes, supported on the scattering equations. We give non-trivial evidence in support of this conjecture at genus one and two with four external states. Throughout, we find a close correspondence with the pure spinor formalism of superstring theory, particularly regarding regulators and zero-mode counting.
Scattering equations, supergravity integrands, and pure spinors
International Nuclear Information System (INIS)
Adamo, Tim; Casali, Eduardo
2015-01-01
The tree-level S-matrix of type II supergravity can be computed in scattering equation form by correlators in a worldsheet theory analogous to a chiral, infinite tension limit of the pure spinor formalism. By defining a non-minimal version of this theory, we give a prescription for computing correlators on higher genus worldsheets which manifest space-time supersymmetry. These correlators are conjectured to provide the loop integrands of supergravity scattering amplitudes, supported on the scattering equations. We give non-trivial evidence in support of this conjecture at genus one and two with four external states. Throughout, we find a close correspondence with the pure spinor formalism of superstring theory, particularly regarding regulators and zero-mode counting.
Harvey, Allison G; Soehner, Adriane M; Kaplan, Kate A; Hein, Kerrie; Lee, Jason; Kanady, Jennifer; Li, Descartes; Rabe-Hesketh, Sophia; Ketter, Terence A; Neylan, Thomas C; Buysse, Daniel J
2015-06-01
To determine if a treatment for interepisode bipolar disorder I patients with insomnia improves mood state, sleep, and functioning. Alongside psychiatric care, interepisode bipolar disorder I participants with insomnia were randomly allocated to a bipolar disorder-specific modification of cognitive behavior therapy for insomnia (CBTI-BP; n = 30) or psychoeducation (PE; n = 28) as a comparison condition. Outcomes were assessed at baseline, the end of 8 sessions of treatment, and 6 months later. This pilot was conducted to determine initial feasibility and generate effect size estimates. During the 6-month follow-up, the CBTI-BP group had fewer days in a bipolar episode relative to the PE group (3.3 days vs. 25.5 days). The CBTI-BP group also experienced a significantly lower hypomania/mania relapse rate (4.6% vs. 31.6%) and a marginally lower overall mood episode relapse rate (13.6% vs. 42.1%) compared with the PE group. Relative to PE, CBTI-BP reduced insomnia severity and led to higher rates of insomnia remission at posttreatment and marginally higher rates at 6 months. Both CBTI-BP and PE showed statistically significant improvement on selected sleep and functional impairment measures. The effects of treatment were well sustained through follow-up for most outcomes, although some decline on secondary sleep benefits was observed. CBTI-BP was associated with reduced risk of mood episode relapse and improved sleep and functioning on certain outcomes in bipolar disorder. Hence, sleep disturbance appears to be an important pathway contributing to bipolar disorder. The need to develop bipolar disorder-specific sleep diary scoring standards is highlighted. (c) 2015 APA, all rights reserved).
Square-lattice random Potts model: criticality and pitchfork bifurcation
International Nuclear Information System (INIS)
Costa, U.M.S.; Tsallis, C.
1983-01-01
Within a real space renormalization group framework based on self-dual clusters, the criticality of the quenched bond-mixed q-state Potts ferromagnet on square lattice is discussed. On qualitative grounds it is exhibited that the crossover from the pure fixed point to the random one occurs, while q increases, through a pitchfork bifurcation; the relationship with Harris criterion is analyzed. On quantitative grounds high precision numerical values are presented for the critical temperatures corresponding to various concentrations of the coupling constants J 1 and J 2 , and various ratios J 1 /J 2 . The pure, random and crossover critical exponents are discussed as well. (Author) [pt
Pure type systems with subtyping
Zwanenburg, J.; Girard, J.-Y.
1999-01-01
We extend the framework of Pure Type Systems with subtyping, as found in F = ¿ . This leads to a concise description of many existing systems with subtyping, and also to some new interesting systems. We develop the meta-theory for this framework, including Subject Reduction and Minimal Typing. The
Visual processing in pure alexia
DEFF Research Database (Denmark)
Starrfelt, Randi; Habekost, Thomas; Gerlach, Christian
2010-01-01
affected. His visual apprehension span was markedly reduced for letters and digits. His reduced visual processing capacity was also evident when reporting letters from words. In an object decision task with fragmented pictures, NN's performance was abnormal. Thus, even in a pure alexic patient with intact...
Pure robotic retrocaval ureter repair
Directory of Open Access Journals (Sweden)
Ashok k. Hemal
2008-12-01
Full Text Available PURPOSE: To demonstrate the feasibility of pure robotic retrocaval ureter repair. MATERIALS AND METHODS: A 33 year old female presented with right loin pain and obstruction on intravenous urography with the classical "fish-hook" appearance. She was counseled on the various methods of repair and elected to have a robot assisted repair. The following steps are performed during a pure robotic retrocaval ureter repair. The patient is placed in a modified flank position, pneumoperitoneum created and ports inserted. The colon is mobilized to expose the retroperitoneal structures: inferior vena cava, right gonadal vein, right ureter, and duodenum. The renal pelvis and ureter are mobilized and the renal pelvis transected. The ureter is transposed anterior to the inferior vena cava and a pyelopyelostomy is performed over a JJ stent. RESULTS: This patient was discharged on postoperative day 3. The catheter and drain tube were removed on day 1. Her JJ stent was removed at 6 weeks postoperatively. The postoperative intravenous urography at 3 months confirmed normal drainage of contrast medium. CONCLUSION: Pure robotic retrocaval ureter is a feasible procedure; however, there does not appear to be any great advantage over pure laparoscopy, apart from the ergonomic ease for the surgeon as well the simpler intracorporeal suturing.
Synthesis of pure Portland cement phases
DEFF Research Database (Denmark)
Wesselsky, Andreas; Jensen, Ole Mejlhede
2009-01-01
Pure phases commonly found in Portland cement clinkers are often used to test cement hydration behaviour in simplified experimental conditions. The synthesis of these phases is covered in this paper, starting with a description of phase relations and possible polymorphs of the four main phases...... in Portland cement, i.e. tricalcium silicate, dicalcium silicate, tricalcium aluminate and tetracalcium alumino ferrite. Details of the The process of solid state synthesis are is described in general including practical advice on equipment and techniques. Finally In addition, some exemplary mix compositions...
Shunting arc plasma source for pure carbon ion beam
Energy Technology Data Exchange (ETDEWEB)
Koguchi, H.; Sakakita, H.; Kiyama, S.; Shimada, T.; Sato, Y.; Hirano, Y. [Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan)
2012-02-15
A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA/mm{sup 2} at the peak of the pulse.
Shunting arc plasma source for pure carbon ion beam.
Koguchi, H; Sakakita, H; Kiyama, S; Shimada, T; Sato, Y; Hirano, Y
2012-02-01
A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA∕mm(2) at the peak of the pulse.
International Nuclear Information System (INIS)
Guatteri, Giuseppina; Tessitore, Gianmario
2008-01-01
We study the Riccati equation arising in a class of quadratic optimal control problems with infinite dimensional stochastic differential state equation and infinite horizon cost functional. We allow the coefficients, both in the state equation and in the cost, to be random.In such a context backward stochastic Riccati equations are backward stochastic differential equations in the whole positive real axis that involve quadratic non-linearities and take values in a non-Hilbertian space. We prove existence of a minimal non-negative solution and, under additional assumptions, its uniqueness. We show that such a solution allows to perform the synthesis of the optimal control and investigate its attractivity properties. Finally the case where the coefficients are stationary is addressed and an example concerning a controlled wave equation in random media is proposed
Classical randomness in quantum measurements
International Nuclear Information System (INIS)
D'Ariano, Giacomo Mauro; Presti, Paoloplacido Lo; Perinotti, Paolo
2005-01-01
Similarly to quantum states, also quantum measurements can be 'mixed', corresponding to a random choice within an ensemble of measuring apparatuses. Such mixing is equivalent to a sort of hidden variable, which produces a noise of purely classical nature. It is then natural to ask which apparatuses are indecomposable, i.e. do not correspond to any random choice of apparatuses. This problem is interesting not only for foundations, but also for applications, since most optimization strategies give optimal apparatuses that are indecomposable. Mathematically the problem is posed describing each measuring apparatus by a positive operator-valued measure (POVM), which gives the statistics of the outcomes for any input state. The POVMs form a convex set, and in this language the indecomposable apparatuses are represented by extremal points-the analogous of 'pure states' in the convex set of states. Differently from the case of states, however, indecomposable POVMs are not necessarily rank-one, e.g. von Neumann measurements. In this paper we give a complete classification of indecomposable apparatuses (for discrete spectrum), by providing different necessary and sufficient conditions for extremality of POVMs, along with a simple general algorithm for the decomposition of a POVM into extremals. As an interesting application, 'informationally complete' measurements are analysed in this respect. The convex set of POVMs is fully characterized by determining its border in terms of simple algebraic properties of the corresponding POVMs
Multimedia programming with pure data
Chung, Bryan
2013-01-01
A quick and comprehensive tutorial book for media designers to jump-start interactive multimedia production with computer graphics, digital audio, digital video, and interactivity, using the Pure Data graphical programming environment.An introductory book on multimedia programming for media artists/designers who like to work on interactivity in their projects, digital art/design students who like to learn the first multimedia programming technique, and audio-visual performers who like to customize their performance sets
Pure Science and Applied Science
Directory of Open Access Journals (Sweden)
Robert J. Aumann
2011-01-01
Full Text Available (Excerpt The name of my talk is Pure Science and Applied Science, and the idea I would like to sell to you today is that there is no such thing as “pure” or “applied” science. In other words, there is such a thing as science, but there is no difference between pure and applied science. Science is one entity and cannot be separated into different categories. In order to back that up, I would like to tell you a little story. As an undergraduate, I studied mathematics at City College in New York. At that time, what was called Pure Mathematics was in vogue, and the more prominent mathematicians were a little contemptuous of any kind of application. A very famous, prominent mathematician in the first half of the previous century by the name of G. H. Hardy, who was in a branch of mathematics called number theory, said that the only thing he regretted was that he unwittingly did some important work in mathematical genetics that eventually turned out to have some application. … Such was the atmosphere in the late ’40s of the previous century and, being a young man and impressionable, I was swept up in this atmosphere.
PSYCHE Pure Shift NMR Spectroscopy.
Foroozandeh, Mohammadali; Morris, Gareth; Nilsson, Mathias
2018-03-13
Broadband homodecoupling techniques in NMR, also known as "pure shift" methods, aim to enhance spectral resolution by suppressing the effects of homonuclear coupling interactions to turn multiplet signals into singlets. Such techniques typically work by selecting a subset of "active" nuclear spins to observe, and selectively inverting the remaining, "passive", spins to reverse the effects of coupling. Pure Shift Yielded by Chirp Excitation (PSYCHE) is one such method; it is relatively recent, but has already been successfully implemented in a range of different NMR experiments. Paradoxically, PSYCHE is one of the trickiest of pure shift NMR techniques to understand but one of the easiest to use. Here we offer some insights into theoretical and practical aspects of the method, and into the effects and importance of the experimental parameters. Some recent improvements that enhance the spectral purity of PSYCHE spectra will be presented, and some experimental frameworks including examples in 1D and 2D NMR spectroscopy, for the implementation of PSYCHE will be introduced. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
International Nuclear Information System (INIS)
Lorenzana, J.; Grynberg, M.D.; Yu, L.; Yonemitsu, K.; Bishop, A.R.
1992-11-01
The ground state energy, and static and dynamic correlation functions are investigated in the inhomogeneous Hartree-Fock (HF) plus random phase approximation (RPA) approach applied to a one-dimensional spinless fermion model showing self-trapped doping states at the mean field level. Results are compared with homogeneous HF and exact diagonalization. RPA fluctuations added to the generally inhomogeneous HF ground state allows the computation of dynamical correlation functions that compare well with exact diagonalization results. The RPA correction to the ground state energy agrees well with the exact results at strong and weak coupling limits. We also compare it with a related quasi-boson approach. The instability towards self-trapped behaviour is signaled by a RPA mode with frequency approaching zero. (author). 21 refs, 10 figs
Directory of Open Access Journals (Sweden)
Allan Libanio Pelissari
2011-09-01
Full Text Available
This study aimed to adjust volumetric models to tropical pines, in pure stand, in the municipality of Vilhena, Rondonia State. The data came from 20 felled trees of Pinus caribaea var. hondurensis and 10 Pinus tecunumanii trees with discs collected at fixed positions of 0.20 m, 0.70 m, 1.30 m and in distances of one meter along the stem, for later counting and measurement of the growth rings at ages from 4 to 12 years. Eight volumetric models were adjusted. The selection criteria used were: standard error of estimate, adjusted coefficient of determination, F test, significance of regression coefficients, mean deviation, standard deviation of the differences, sum of square of the relative residual, percentage of the residuals and graphic analysis of residuals. The models from Näslund modified and from Spurr presented, respectively, best fit to estimate the volume for Pinus caribaea var. hondurensis submitted to the first thinning and for Pinus tecunumanii, with ages between 4 and 12 years, in Vilhena, Rondonia State, Brazil.
doi: 10.4336/2011.pfb.31.67.173
Este trabalho teve como objetivo ajustar modelos volumétricos para Pinus tropicais, em povoamento homogêneo, no Município de Vilhena, RO. Para a coleta de dados, foram derrubadas 20 árvores de Pinus caribaea var. hondurensis e 10 de Pinus tecunumanii, sendo coletados discos em posições fixas de 0,20 m; 0,70 m; 1,30 m e em distâncias de um metro ao longo do fuste, para a posterior contagem e mensuração dos anéis de crescimento nas idades de 4 a 12 anos. Foram ajustados oito modelos volumétricos e o critério de seleção considerou os resultados do erro padrão da estimativa, coeficiente de determinação ajustado, teste F, significância dos coeficientes de regressão, desvio médio, desvio-padrão das diferenças, soma de quadrados do resíduo relativo, resíduo percentual
Directory of Open Access Journals (Sweden)
Andreas Steimer
Full Text Available Oscillations between high and low values of the membrane potential (UP and DOWN states respectively are an ubiquitous feature of cortical neurons during slow wave sleep and anesthesia. Nevertheless, a surprisingly small number of quantitative studies have been conducted only that deal with this phenomenon's implications for computation. Here we present a novel theory that explains on a detailed mathematical level the computational benefits of UP states. The theory is based on random sampling by means of interspike intervals (ISIs of the exponential integrate and fire (EIF model neuron, such that each spike is considered a sample, whose analog value corresponds to the spike's preceding ISI. As we show, the EIF's exponential sodium current, that kicks in when balancing a noisy membrane potential around values close to the firing threshold, leads to a particularly simple, approximative relationship between the neuron's ISI distribution and input current. Approximation quality depends on the frequency spectrum of the current and is improved upon increasing the voltage baseline towards threshold. Thus, the conceptually simpler leaky integrate and fire neuron that is missing such an additional current boost performs consistently worse than the EIF and does not improve when voltage baseline is increased. For the EIF in contrast, the presented mechanism is particularly effective in the high-conductance regime, which is a hallmark feature of UP-states. Our theoretical results are confirmed by accompanying simulations, which were conducted for input currents of varying spectral composition. Moreover, we provide analytical estimations of the range of ISI distributions the EIF neuron can sample from at a given approximation level. Such samples may be considered by any algorithmic procedure that is based on random sampling, such as Markov Chain Monte Carlo or message-passing methods. Finally, we explain how spike-based random sampling relates to existing
Steimer, Andreas; Schindler, Kaspar
2015-01-01
Oscillations between high and low values of the membrane potential (UP and DOWN states respectively) are an ubiquitous feature of cortical neurons during slow wave sleep and anesthesia. Nevertheless, a surprisingly small number of quantitative studies have been conducted only that deal with this phenomenon's implications for computation. Here we present a novel theory that explains on a detailed mathematical level the computational benefits of UP states. The theory is based on random sampling by means of interspike intervals (ISIs) of the exponential integrate and fire (EIF) model neuron, such that each spike is considered a sample, whose analog value corresponds to the spike's preceding ISI. As we show, the EIF's exponential sodium current, that kicks in when balancing a noisy membrane potential around values close to the firing threshold, leads to a particularly simple, approximative relationship between the neuron's ISI distribution and input current. Approximation quality depends on the frequency spectrum of the current and is improved upon increasing the voltage baseline towards threshold. Thus, the conceptually simpler leaky integrate and fire neuron that is missing such an additional current boost performs consistently worse than the EIF and does not improve when voltage baseline is increased. For the EIF in contrast, the presented mechanism is particularly effective in the high-conductance regime, which is a hallmark feature of UP-states. Our theoretical results are confirmed by accompanying simulations, which were conducted for input currents of varying spectral composition. Moreover, we provide analytical estimations of the range of ISI distributions the EIF neuron can sample from at a given approximation level. Such samples may be considered by any algorithmic procedure that is based on random sampling, such as Markov Chain Monte Carlo or message-passing methods. Finally, we explain how spike-based random sampling relates to existing computational
Ground-state properties of ordered, partially ordered, and random Cu-Au and Ni-Pt alloys
DEFF Research Database (Denmark)
Ruban, Andrei; Abrikosov, I. A.; Skriver, Hans Lomholt
1995-01-01
We have studied the ground-state properties of ordered, partially ordered, and random Cu-Au and Ni-Pt alloys at the stoichiometric 1/4, 1/2, and 3/4 compositions in the framework of the multisublattice single-site (SS) coherent potential approximation (CPA). Charge-transfer effects in the random ...... for the ordered alloys are in good agreement with experimental data. For all the alloys the calculated ordering energy and the equilibrium lattices parameters are found to be almost exact quadratic functions of the long-range-order parameter....... and the partially ordered alloys are included in the screened impurity model. The prefactor in the Madelung energy is determined by the requirement that the total energy obtained in direct SS CPA calculations should equal the total energy given by the Connolly-Williams expansion based on Green’s function...
International Nuclear Information System (INIS)
Maestrini, A.P.
1979-04-01
Several problems related to the application of the theory of random by means of state variables are studied. The well-known equations that define the propagation of the mean and the variance for linear and non-linear systems are first presented. The Monte Carlo method is next resorted to in order to determine the applicability of the hypothesis of a normally distributed output in case of linear systems subjected to non-Gaussian excitations. Finally, attention is focused on the properties of linear filters and modulation functions proposed to simulate seismic excitations as non stationary random processes. Acceleration spectra obtained by multiplying rms spectra by a constant factor are compared with design spectra suggested by several authors for various soil conditions. In every case, filter properties are given. (Author) [pt
Monte Carlo simulation of the three-state vector Potts model on a three-dimensional random lattice
International Nuclear Information System (INIS)
Jianbo Zhang; Heping Ying
1991-09-01
We have performed a numerical simulation of the three-state vector Potts model on a three-dimensional random lattice. The averages of energy density, magnetization, specific heat and susceptibility of the system in the N 3 (N=8,10,12) lattices were calculated. The results show that a first order nature of the Z(3) symmetry breaking transition appears, as characterized by a thermal hysterisis in the energy density as well as an abrupt drop of magnetization being sharper and discontinuous with increasing of volume in the cross-over region. The results obtained on the random lattice were consistent with those obtained on the three-dimensional cubic lattice. (author). 12 refs, 4 figs
DEFF Research Database (Denmark)
Marcussen, Lis; Aasberg-Petersen, K.; Krøll, Annette Elisabeth
2000-01-01
An adsorption isotherm equation for nonideal pure component adsorption based on vacancy solution theory and the Non-Random-Two-Liquid (NRTL) equation is found to be useful for predicting pure component adsorption equilibria at a variety of conditions. The isotherm equation is evaluated successfully...... adsorption systems, spreading pressure and isosteric heat of adsorption are also calculated....
Transfer of d-level quantum states through spin chains by random swapping
International Nuclear Information System (INIS)
Bayat, A.; Karimipour, V.
2007-01-01
We generalize an already proposed protocol for quantum state transfer to spin chains of arbitrary spin. An arbitrary unknown d-level state is transferred through a chain with rather good fidelity by the natural dynamics of the chain. We compare the performance of this protocol for various values of d. A by-product of our study is a much simpler method for picking up the state at the destination as compared with the one proposed previously. We also discuss entanglement distribution through such chains and show that the quality of entanglement transition increases with the number of levels d
Directory of Open Access Journals (Sweden)
Takeru Honda
2011-07-01
Full Text Available Information processing of the cerebellar granular layer composed of granule and Golgi cells is regarded as an important first step toward the cerebellar computation. Our previous theoretical studies have shown that granule cells can exhibit random alternation between burst and silent modes, which provides a basis of population representation of the passage-of-time (POT from the onset of external input stimuli. On the other hand, another computational study has reported that granule cells can exhibit synchronized oscillation of activity, as consistent with observed oscillation in local field potential recorded from the granular layer while animals keep still. Here we have a question of whether an identical network model can explain these distinct dynamics. In the present study, we carried out computer simulations based on a spiking network model of the granular layer varying two parameters: the strength of a current injected to granule cells and the concentration of Mg²⁺ which controls the conductance of NMDA channels assumed on the Golgi cell dendrites. The simulations showed that cells in the granular layer can switch activity states between synchronized oscillation and random burst-silent alternation depending on the two parameters. For higher Mg²⁺ concentration and a weaker injected current, granule and Golgi cells elicited spikes synchronously (synchronized oscillation state. In contrast, for lower Mg²⁺ concentration and a stronger injected current, those cells showed the random burst-silent alternation (POT-representing state. It is suggested that NMDA channels on the Golgi cell dendrites play an important role for determining how the granular layer works in response to external input.
Adame, J.; Warzel, S.
2015-11-01
In this note, we use ideas of Farhi et al. [Int. J. Quantum. Inf. 6, 503 (2008) and Quantum Inf. Comput. 11, 840 (2011)] who link a lower bound on the run time of their quantum adiabatic search algorithm to an upper bound on the energy gap above the ground-state of the generators of this algorithm. We apply these ideas to the quantum random energy model (QREM). Our main result is a simple proof of the conjectured exponential vanishing of the energy gap of the QREM.
International Nuclear Information System (INIS)
Adame, J.; Warzel, S.
2015-01-01
In this note, we use ideas of Farhi et al. [Int. J. Quantum. Inf. 6, 503 (2008) and Quantum Inf. Comput. 11, 840 (2011)] who link a lower bound on the run time of their quantum adiabatic search algorithm to an upper bound on the energy gap above the ground-state of the generators of this algorithm. We apply these ideas to the quantum random energy model (QREM). Our main result is a simple proof of the conjectured exponential vanishing of the energy gap of the QREM
Abdallah, Mohamed M.
2013-11-01
In this work, we develop joint interference-aware random beam and spectrum selection scheme that provide enhanced performance for the secondary network under the condition that the interference observed at the primary receiver is below a predetermined acceptable value. We consider a secondary link composed of a transmitter equipped with multiple antennas and a single-antenna receiver sharing the same spectrum with a set of primary links composed of a single-antenna transmitter and a single-antenna receiver. The proposed schemes jointly select a beam, among a set of power-optimized random beams, as well as the primary spectrum that maximizes the signal-to-interference-plus-noise ratio (SINR) of the secondary link while satisfying the primary interference constraint. In particular, we consider the case where the interference level is described by a q-bit description of its magnitude, whereby we propose a technique to find the optimal quantizer thresholds in a mean square error (MSE) sense. © 2013 IEEE.
Abdallah, Mohamed M.; Sayed, Mostafa M.; Alouini, Mohamed-Slim; Qaraqe, Khalid A.
2013-01-01
In this work, we develop joint interference-aware random beam and spectrum selection scheme that provide enhanced performance for the secondary network under the condition that the interference observed at the primary receiver is below a predetermined acceptable value. We consider a secondary link composed of a transmitter equipped with multiple antennas and a single-antenna receiver sharing the same spectrum with a set of primary links composed of a single-antenna transmitter and a single-antenna receiver. The proposed schemes jointly select a beam, among a set of power-optimized random beams, as well as the primary spectrum that maximizes the signal-to-interference-plus-noise ratio (SINR) of the secondary link while satisfying the primary interference constraint. In particular, we consider the case where the interference level is described by a q-bit description of its magnitude, whereby we propose a technique to find the optimal quantizer thresholds in a mean square error (MSE) sense. © 2013 IEEE.
On the equilibrium state of a small system with random matrix coupling to its environment
Lebowitz, J. L.; Pastur, L.
2015-07-01
We consider a random matrix model of interaction between a small n-level system, S, and its environment, a N-level heat reservoir, R. The interaction between S and R is modeled by a tensor product of a fixed n× n matrix and a N× N Hermitian random matrix. We show that under certain ‘macroscopicity’ conditions on R, the reduced density matrix of the system {{ρ }S}=T{{r}R}ρ S\\cup R(eq), is given by ρ S(c)˜ exp \\{-β {{H}S}\\}, where HS is the Hamiltonian of the isolated system. This holds for all strengths of the interaction and thus gives some justification for using ρ S(c) to describe some nano-systems, like biopolymers, in equilibrium with their environment (Seifert 2012 Rep. Prog. Phys. 75 126001). Our results extend those obtained previously in (Lebowitz and Pastur 2004 J. Phys. A: Math. Gen. 37 1517-34) (Lebowitz et al 2007 Contemporary Mathematics (Providence RI: American Mathematical Society) pp 199-218) for a special two-level system.
Pase, Matthew P; Scholey, Andrew B; Pipingas, Andrew; Kras, Marni; Nolidin, Karen; Gibbs, Amy; Wesnes, Keith; Stough, Con
2013-05-01
This study aimed to examine the acute and sub-chronic effects of cocoa polyphenols on cognition and mood. In a randomized, double-blind study, healthy middle-aged participants received a dark chocolate drink mix standardized to contain 500 mg, 250 mg or 0 mg of polyphenols (placebo) in a parallel-groups design. Participants consumed their assigned treatment once daily for 30 days. Cognition was measured with the Cognitive Drug Research system and self-rated mood with the Bond-Lader Visual Analogue Scale. Participants were tested at baseline, at 1, 2.5 and 4 h after a single acute dose and again after receiving 30 days of treatment. In total, 72 participants completed the trial. After 30 days, the high dose of treatment significantly increased self-rated calmness and contentedness relative to placebo. Mood was unchanged by treatment acutely while cognition was unaffected by treatment at all time points. This randomized controlled trial is perhaps the first to demonstrate the positive effects of cocoa polyphenols on mood in healthy participants. This provides a rationale for exploring whether cocoa polyphenols can ameliorate the symptoms associated with clinical anxiety or depression.
Entanglement dynamics of a pure bipartite system in dissipative environments
Energy Technology Data Exchange (ETDEWEB)
Tahira, Rabia; Ikram, Manzoor; Azim, Tasnim; Suhail Zubairy, M [Centre for Quantum Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan)
2008-10-28
We investigate the phenomenon of sudden death of entanglement in a bipartite system subjected to dissipative environments with arbitrary initial pure entangled state between two atoms. We find that in a vacuum reservoir the presence of the state where both atoms are in excited states is a necessary condition for the sudden death of entanglement. Otherwise entanglement remains for an infinite time and decays asymptotically with the decay of individual qubits. For pure 2-qubit entangled states in a thermal environment, we observe that the sudden death of entanglement always happens. The sudden death time of the entangled states is related to the temperature of the reservoir and the initial preparation of the entangled states.
Entanglement dynamics of a pure bipartite system in dissipative environments
International Nuclear Information System (INIS)
Tahira, Rabia; Ikram, Manzoor; Azim, Tasnim; Suhail Zubairy, M
2008-01-01
We investigate the phenomenon of sudden death of entanglement in a bipartite system subjected to dissipative environments with arbitrary initial pure entangled state between two atoms. We find that in a vacuum reservoir the presence of the state where both atoms are in excited states is a necessary condition for the sudden death of entanglement. Otherwise entanglement remains for an infinite time and decays asymptotically with the decay of individual qubits. For pure 2-qubit entangled states in a thermal environment, we observe that the sudden death of entanglement always happens. The sudden death time of the entangled states is related to the temperature of the reservoir and the initial preparation of the entangled states.
Entropy balance in pure interactions of open quantum systems
International Nuclear Information System (INIS)
Urigu, R.
1989-01-01
Processes are considered in which a statistical ensemble w of quantum systems is split into ensembles, or channels (w i ), conditional to the occurrence, with respective probabilities (p i w ), of associated macroscopic effects. These processes are described here by a family of operations T i : w → p i w w iT , which remarkably generalize the usual state reductions of the nondestructive measurements. In a previous work it was proved that the microscopic entropy of the given open system decreases or at most remains constant if all the T i are pure operations, i.e., they transform pure states into pure states; it is proved here that the increase in entropy of the external world, computed as S Tm (w) = - Σ i p i w lg p i w , is sufficient to compensate for such an entropy decrease whenever the T i are all pure operations of the first kind, whereas whenever some T i is pure of the second kind (or nonpure, too), the total entropy, computed as above, may decrease
Optimal purely functional priority queues
DEFF Research Database (Denmark)
Brodal, Gerth Stølting; Okasaki, Chris
1996-01-01
Brodal recently introduced the first implementation of imperative priority queues to support findMin, insert and meld in O(1) worst-case time, and deleteMin in O(log n) worst-case time. These bounds are asymptotically optimal among all comparison-based priority queues. In this paper, we adapt...... Brodal's data structure to a purely functional setting. In doing so, we both simplify the data structure and clarify its relationship to the binomial queues of Vuillemin, which support all four operations in O(log n) time. Specifically, we derive our implementation from binomial queues in three steps......: first, we reduce the running time of insert to O(1) by eliminating the possibility of cascading links; second, we reduce the running time of findMin to O(1) by adding a global root to hold the minimum element; and finally, we reduce the running time of meld to O(1) by allowing priority queues to contain...
Musical notation reading in pure alexia
DEFF Research Database (Denmark)
Starrfelt, Randi; Wong, Yetta K.
2017-01-01
Pure alexia (PA) is an acquired reading disorder following lesions to left ventral temporo-occipital cortex. Patients with PA read slowly but correctly, and show an abnormal effect of word length on RTs. However, it is unclear how pure alexia may affect musical notation reading. We report a pure...
International Nuclear Information System (INIS)
Ryan, C A; Laforest, M; Laflamme, R
2009-01-01
Being able to quantify the level of coherent control in a proposed device implementing a quantum information processor (QIP) is an important task for both comparing different devices and assessing a device's prospects with regards to achieving fault-tolerant quantum control. We implement in a liquid-state nuclear magnetic resonance QIP the randomized benchmarking protocol presented by Knill et al (2008 Phys. Rev. A 77 012307). We report an error per randomized π/2 pulse of 1.3±0.1x10 -4 with a single-qubit QIP and show an experimentally relevant error model where the randomized benchmarking gives a signature fidelity decay which is not possible to interpret as a single error per gate. We explore and experimentally investigate multi-qubit extensions of this protocol and report an average error rate for one- and two-qubit gates of 4.7±0.3x10 -3 for a three-qubit QIP. We estimate that these error rates are still not decoherence limited and thus can be improved with modifications to the control hardware and software.
Entropic Lower Bound for Distinguishability of Quantum States
Directory of Open Access Journals (Sweden)
Seungho Yang
2015-01-01
Full Text Available For a system randomly prepared in a number of quantum states, we present a lower bound for the distinguishability of the quantum states, that is, the success probability of determining the states in the form of entropy. When the states are all pure, acquiring the entropic lower bound requires only the density operator and the number of the possible states. This entropic bound shows a relation between the von Neumann entropy and the distinguishability.
Fast state estimation subject to random data loss in discrete-time nonlinear stochastic systems
Mahdi Alavi, S. M.; Saif, Mehrdad
2013-12-01
This paper focuses on the design of the standard observer in discrete-time nonlinear stochastic systems subject to random data loss. By the assumption that the system response is incrementally bounded, two sufficient conditions are subsequently derived that guarantee exponential mean-square stability and fast convergence of the estimation error for the problem at hand. An efficient algorithm is also presented to obtain the observer gain. Finally, the proposed methodology is employed for monitoring the Continuous Stirred Tank Reactor (CSTR) via a wireless communication network. The effectiveness of the designed observer is extensively assessed by using an experimental tested-bed that has been fabricated for performance evaluation of the over wireless-network estimation techniques under realistic radio channel conditions.
Option Panels in Pure-Jump Settings
DEFF Research Database (Denmark)
Andersen, Torben Gustav; Fusari, Nicola; Todorov, Viktor
We develop parametric inference procedures for large panels of noisy option data in the setting where the underlying process is of pure-jump type, i.e., evolve only through a sequence of jumps. The panel consists of options written on the underlying asset with a (different) set of strikes...... specification for the risk-neutral asset return dynamics, the option prices are nonlinear functions of a time-invariant parameter vector and a time-varying latent state vector (or factors). Furthermore, no-arbitrage restrictions impose a direct link between some of the quantities that may be identified from...... the return and option data. These include the so-called jump activity index as well as the time-varying jump intensity. We propose penalized least squares estimation in which we minimize L_2 distance between observed and model-implied options and further penalize for the deviation of model-implied quantities...
Dual Target Search is Neither Purely Simultaneous nor Purely Successive.
Cave, Kyle R; Menneer, Tamaryn; Nomani, Mohammad S; Stroud, Michael J; Donnelly, Nick
2017-08-31
Previous research shows that visual search for two different targets is less efficient than search for a single target. Stroud, Menneer, Cave and Donnelly (2012) concluded that two target colours are represented separately based on modeling the fixation patterns. Although those analyses provide evidence for two separate target representations, they do not show whether participants search simultaneously for both targets, or first search for one target and then the other. Some studies suggest that multiple target representations are simultaneously active, while others indicate that search can be voluntarily simultaneous, or switching, or a mixture of both. Stroud et al.'s participants were not explicitly instructed to use any particular strategy. These data were revisited to determine which strategy was employed. Each fixated item was categorised according to whether its colour was more similar to one target or the other. Once an item similar to one target is fixated, the next fixated item is more likely to be similar to that target than the other, showing that at a given moment during search, one target is generally favoured. However, the search for one target is not completed before search for the other begins. Instead, there are often short runs of one or two fixations to distractors similar to one target, with each run followed by a switch to the other target. Thus, the results suggest that one target is more highly weighted than the other at any given time, but not to the extent that search is purely successive.
International Nuclear Information System (INIS)
Chen, C.Y.; Harris, B.G.; Cook, P.F.
1988-01-01
Isotope partitioning studies beginning with E-[ 14 C]NAD, E-[ 14 C] malate, E-[ 14 C] NAD-Mg 2+ , and E-Mg-[ 14 C]malate suggest a steady-state random mechanism for the NAD-malic enzyme. Isotope trapping beginning with E-[ 14 C]NAD and with varying concentrations of Mg 2+ and malate in the chase solution indicates that Mg 2+ is added in rapid equilibrium and must be added prior to malate for productive ternary complex formation. Equal percentage trapping from E-[ 14 C]NAD-Mg and E-Mg-[ 14 C] malate indicates the mechanism is steady-state random with equal off-rates for NAD and malate from E-NAD-Mg-malate. The off-rates for both do not change significantly in the ternary E-Mg-malate and E-NAD-Mg complexes, nor does the off-rate change for NAD from E-NAD. No trapping of malate was obtained from E-[ 14 C] malate, suggesting that this complex is nonproductive. A quantitative analysis of the data allows an estimation of values for a number of the rate constants along the reaction pathway
Jia, Chen
2017-09-01
Here we develop an effective approach to simplify two-time-scale Markov chains with infinite state spaces by removal of states with fast leaving rates, which improves the simplification method of finite Markov chains. We introduce the concept of fast transition paths and show that the effective transitions of the reduced chain can be represented as the superposition of the direct transitions and the indirect transitions via all the fast transition paths. Furthermore, we apply our simplification approach to the standard Markov model of single-cell stochastic gene expression and provide a mathematical theory of random gene expression bursts. We give the precise mathematical conditions for the bursting kinetics of both mRNAs and proteins. It turns out that random bursts exactly correspond to the fast transition paths of the Markov model. This helps us gain a better understanding of the physics behind the bursting kinetics as an emergent behavior from the fundamental multiscale biochemical reaction kinetics of stochastic gene expression.
International Nuclear Information System (INIS)
Stell, G.
1983-01-01
Some new theoretical results on the microstructure of models of two-phase disordered media are given, as well as the new quantitative bounds on the thermal conductivity that follows for one such model (randomly centered spherical inclusions). A second set of results is then given for random flights, including random flights with hit expectancy prescribed in a unit hall around the flight origin. Finally, some interesting correspondences are demonstrated, via the Ornstein-Zernike equation, between random-flight results, liquid-state results and percolation-theory results. 27 references, 6 figures, 4 tables
Non-critical pure spinor superstrings
International Nuclear Information System (INIS)
Adam, Ido; Grassi, Pietro Antonio; Mazzucato, Luca; Oz, Yaron; Yankielowicz, Shimon
2007-01-01
We construct non-critical pure spinor superstrings in two, four and six dimensions. We find explicitly the map between the RNS variables and the pure spinor ones in the linear dilaton background. The RNS variables map onto a patch of the pure spinor space and the holomorphic top form on the pure spinor space is an essential ingredient of the mapping. A basic feature of the map is the requirement of doubling the superspace, which we analyze in detail. We study the structure of the non-critical pure spinor space, which is different from the ten-dimensional one, and its quantum anomalies. We compute the pure spinor lowest lying BRST cohomology and find an agreement with the RNS spectra. The analysis is generalized to curved backgrounds and we construct as an example the non-critical pure spinor type IIA superstring on AdS 4 with RR 4-form flux
Volume of the space of qubit-qubit channels and state transformations under random quantum channels
Lovas, Attila; Andai, Attila
2017-01-01
The simplest building blocks for quantum computations are the qubit-qubit quantum channels. In this paper, we analyze the structure of these channels via their Choi representation. The restriction of a quantum channel to the space of classical states (i.e. probability distributions) is called the underlying classical channel. The structure of quantum channels over a fixed classical channel is studied, the volume of general and unital qubit channels with respect to the Lebesgue measure is comp...
International Nuclear Information System (INIS)
Li, Y.F.; Peng, R.
2014-01-01
Most studies on multi-state series–parallel systems focus on the static type of system architecture. However, it is insufficient to model many complex industrial systems having several operation phases and each requires a subset of the subsystems combined together to perform certain tasks. To bridge this gap, this study takes into account this type of dynamic behavior in the multi-state series–parallel system and proposes an analytical approach to calculate the system availability and the operation cost. In this approach, Markov process is used to model the dynamics of system phase changing and component state changing, Markov reward model is used to calculate the operation cost associated with the dynamics, and universal generating function (UGF) is used to build system availability function from the system phase model and the component models. Based upon these models, an optimization problem is formulated to minimize the total system cost with the constraint that system availability is greater than a desired level. The genetic algorithm is then applied to solve the optimization problem. The proposed modeling and solution procedures are illustrated on a system design problem modified from a real-world maritime oil transportation system
Bringing Planctomycetes into pure culture
Directory of Open Access Journals (Sweden)
Olga Maria Lage
2012-12-01
Full Text Available Planctomycetes have been known since the description of Planctomyces bekefii by Gimesi at the beginning of the twentieth century (1924, although the first axenic cultures were only obtained in the 1970s. Since then, eleven genera with fourteen species have been validly named and five candidatus genera belonging to the anaerobic ammonium oxidation, anammox bacteria have also been discovered. However, Planctomycetes diversity is much broader than these numbers indicate, as shown by environmental molecular studies. In recent years the authors have attempted to isolate and cultivate additional strains of Planctomycetes. This paper provides a summary of the isolation work that was carried out to obtain in pure culture Planctomycetes from several environmental sources. The following strains and planctomycetes have been successfully isolated: two freshwater strains from the sediments of an aquarium, which were described as a new genus and species, Aquisphaera giovannonii; several Rhodopirellula strains from the sediments of a water treatment recycling tank of a marine fish farm; and more than 140 planctomycetes from the biofilm community of macroalgae. This collection comprises several novel taxa that are being characterized and described. Improvements in the isolation methodology were made in order to optimize and enlarge the number of Planctomycetes isolated from the macroalgae. The existence of an intimate and an important relationship between planctomycetes and macroalgae reported before by molecular studies is therefore supported by culture dependent methods.
Parasites Associated with Sachet Drinking Water (Pure Water) in ...
African Journals Online (AJOL)
popularly called “Pure Water” in Nigeria), in Awka, capital of Anambra State, southeast Nigeria was conducted. This was in order to determine the safety and suitability of such water for human consumption. Sachet water is a major source of drinking ...
Jensen, Anne M; Ramasamy, Adaikalavan; Hotek, Judith; Roel, Brian; Riffe, Drew
2012-12-01
The objective of this study was to determine whether giving a massage had an impact of the mental state of the massage therapist. The design of this study was a randomized, controlled, blinded study with two parallel groups. This study was conducted at an accredited school of therapeutic massage in Dallas, Texas. The study comprised healthy female and male final-term massage students between ages 18 and 65 years. The participants were randomized into two groups: (1) the experimental group who gave a 1-hour Swedish massage to a massage client (Massage group), or (2) the control group who sat in a room doing normal, daily activities (Control group). Both these activities were a normal part of the daily routine for these massage students. The primary outcomes were the change in the Depression Anxiety and Stress Scale (DASS) scores pre- and postparticipation. Twenty-two (22) participants were randomized in this trial. The baseline characteristics were comparable between the two groups. A statistically significant advantage for the massage group was found relative to the control group in subjective anxiety (DASS Anxiety Subscale, p=0.014). There were no significant differences between the groups with regard to total DASS score (p=0.540), subjective depressive symptoms (DASS Depression Subscale, p=0.472) and subjective stress-related symptoms (DASS Stress Subscale, p=0.919). There were no adverse events reported by any participant. This study shows that massage therapists themselves may benefit from giving a therapeutic massage by experiencing less subjective anxiety following the giving of a massage.
AgraPure Mississippi Biomass Project
Energy Technology Data Exchange (ETDEWEB)
Blackwell,D.A; Broadhead, L.W.; Harrell, W.J.
2006-03-31
The AgraPure Mississippi Biomass project was a congressionally directed project, initiated to study the utilization of Mississippi agricultural byproducts and waste products in the production of bio-energy and to determine the feasibility of commercialization of these agricultural byproducts and waste products as feedstocks in the production of energy. The final products from this project were two business plans; one for a Thermal plant, and one for a Biodiesel/Ethanol plant. Agricultural waste fired steam and electrical generating plants and biodiesel plants were deemed the best prospects for developing commercially viable industries. Additionally, oil extraction methods were studied, both traditional and two novel techniques, and incorporated into the development plans. Mississippi produced crop and animal waste biomasses were analyzed for use as raw materials for both industries. The relevant factors, availability, costs, transportation, storage, location, and energetic value criteria were considered. Since feedstock accounts for more than 70 percent of the total cost of producing biodiesel, any local advantages are considered extremely important in developing this particular industry. The same factors must be evaluated in assessing the prospects of commercial operation of a steam and electrical generation plant. Additionally, the access to the markets for electricity is more limited, regulated and tightly controlled than the liquid fuel markets. Domestically produced biofuels, both biodiesel and ethanol, are gaining more attention and popularity with the consuming public as prices rise and supplies of foreign crude become less secure. Biodiesel requires no major modifications to existing diesel engines or supply chain and offers significant environmental benefits. Currently the biodiesel industry requires Federal and State incentives to allow the industry to develop and become self-sustaining. Mississippi has available the necessary feedstocks and is
International Nuclear Information System (INIS)
Ansari, A.; Ring, P.
2006-01-01
The excitation energies and electric multipole decay rates of the lowest lying 2 + and 3 - vibrational states in Pb, Sn, and Ni nuclei are calculated following relativistic quasiparticle random-phase approximation formalism based on the relativistic Hartree-Bogoliubov mean field. Two sets of Lagrangian parameters, NL1 and NL3, are used to investigate the effect of the nuclear force. Overall there is good agreement with the available experimental data for a wide range of mass numbers considered here, and the NL3 set seems to be a better choice. However, strictly speaking, these studies point toward the need of a new set of force parameters that could produce more realistic single-particle levels, at least in vicinity of the Fermi surface, of a wide range of nuclear masses
Two qubits in pure nuclear quadrupole resonance
International Nuclear Information System (INIS)
Furman, G.B.; Goren, S.D.; Meerovich, V.M.; Sokolovsky, V.L.
2002-01-01
It is shown theoretically that by the use of two radio-frequency fields of the same resonance frequency but with the different phases and directions the degeneracy of the energy spectrum of a spin system with I=3/2 is removed. This leads to four non-degenerate spin states which can be used as a platform for quantum computing. The feasibility of quantum computing based on a pure (without DC magnetic fields) nuclear quadrupole resonance technique is investigated in detail. Various quantum logic gates can be constructed by using different excitation techniques allowing different manipulations with the spin system states. Three realizations of quantum logic gates are considered: the application of an additional magnetic field with the resonance frequency, the amplitude modulation of one of the applied RF fields by the resonance frequency field, and the level-crossing method. It is shown that the probabilities of the resonance transitions depend on the method of excitation and on the direction of the excitation field. Feasibility of quantum computing is demonstrated with the examples of constructing a controlled-NOT logic gate using the resonance excitation technique and SWAP and NOT2 logic gates using the level-crossing method. (author)
Directory of Open Access Journals (Sweden)
Paul B. Slater
2015-01-01
Full Text Available Previously, a formula, incorporating a 5F4 hypergeometric function, for the Hilbert-Schmidt-averaged determinantal moments ρPTnρk/ρk of 4×4 density-matrices (ρ and their partial transposes (|ρPT|, was applied with k=0 to the generalized two-qubit separability probability question. The formula can, furthermore, be viewed, as we note here, as an averaging over “induced measures in the space of mixed quantum states.” The associated induced-measure separability probabilities (k=1,2,… are found—via a high-precision density approximation procedure—to assume interesting, relatively simple rational values in the two-re[al]bit (α=1/2, (standard two-qubit (α=1, and two-quater[nionic]bit (α=2 cases. We deduce rather simple companion (rebit, qubit, quaterbit, … formulas that successfully reproduce the rational values assumed for general k. These formulas are observed to share certain features, possibly allowing them to be incorporated into a single master formula.
Pure Gravities via Color-Kinematics Duality for Fundamental Matter
Johansson, Henrik
2015-01-01
We give a prescription for the computation of loop-level scattering amplitudes in pure Einstein gravity, and four-dimensional pure supergravities, using the color-kinematics duality. Amplitudes are constructed using double copies of pure (super-)Yang-Mills parts and additional contributions from double copies of fundamental matter, which are treated as ghosts. The opposite-statistics states cancel the unwanted dilaton and axion in the bosonic theory, as well as the extra matter supermultiplets in supergravities. As a spinoff, we obtain a prescription for obtaining amplitudes in supergravities with arbitrary non-self-interacting matter. As a prerequisite, we extend the color-kinematics duality from the adjoint to the fundamental representation of the gauge group. We explain the numerator relations that the fundamental kinematic Lie algebra should satisfy. We give nontrivial evidence supporting our construction using explicit tree and loop amplitudes, as well as more general arguments.
Visibility in a pure model of golden spiral phyllotaxis.
Herrmann, Burghard
2018-07-01
This paper considers the geometry of plants with golden spiral phyllotaxis, i.e. growing leaf by leaf on a spiral with golden divergence angle, via the simplest mathematical model, a cylinder with regular arrangement of points on its surface. As is well-known, Fibonacci numbers appear by means of the order of parastichies. This fact is shown to be a straightforward application of logical consequences to a particular model with respect to pure visibility. This notion is very similar to that of contact parastichies. The 3-D cylindrical model of golden spiral phyllotaxis abstracts from the form of leaves and identifies them with points. Pure visibility is specified in the 2-D representation so that common sense parastichies can be scrutinized. The main Theorem states that the orders of the purely most visible parastichies are Fibonacci numbers. Copyright © 2018 Elsevier Inc. All rights reserved.
Directory of Open Access Journals (Sweden)
Ashwin Patkar
Full Text Available OBJECTIVE: To examine the efficacy of ziprasidone vs. placebo for the depressive mixed state in patients with bipolar disorder type II or major depressive disorder (MDD. METHODS: 73 patients were randomized in a double-blinded, placebo-controlled study to ziprasidone (40-160 mg/d or placebo for 6 weeks. They met DSM-IV criteria for a major depressive episode (MDE, while also meeting 2 or 3 (but not more nor less DSM-IV manic criteria. They did not meet DSM-IV criteria for a mixed or manic episode. Baseline psychotropic drugs were continued unchanged. The primary endpoint measured was Montgomery-Åsberg Depression Rating Scale (MADRS scores over time. The mean dose of ziprasidone was 129.7±45.3 mg/day and 126.1±47.1 mg/day for placebo. RESULTS: The primary outcome analysis indicated efficacy of ziprasidone versus placebo (p = 0.0038. Efficacy was more pronounced in type II bipolar disorder than in MDD (p = 0.036. Overall ziprasidone was well tolerated, without notable worsening of weight or extrapyramidal symptoms. CONCLUSIONS: There was a statistically significant benefit with ziprasidone versus placebo in this first RCT of any medication for the provisional diagnostic concept of the depressive mixed state. TRIAL REGISTRATION: Clinicaltrials.gov NCT00490542.
Nigeria Journal of Pure and Applied Physics
African Journals Online (AJOL)
Nigeria Journal of Pure and Applied Physics publishes papers of the highest quality and significance in specific areas of physics, pure and applied, as listed below. The journal content reflects core physics disciplines, but is also open to a broad range of topics whose central theme falls within the bounds of physics.
Directory of Open Access Journals (Sweden)
Nico Jenkins
2011-03-01
Full Text Available At the beginning of Martin Heidegger’s lecture “Time and Being,” presented to the University of Freiburg in 1962, he cautions against, it would seem, the requirement that philosophy make sense, or be necessarily responsible (Stambaugh, 1972. At that time Heidegger's project focused on thinking as thinking and in order to elucidate his ideas he drew comparisons between his project and two paintings by Paul Klee as well with a poem by Georg Trakl. In front of Klee's Saints from the Window and Death of Fire—though we wouldn’t absolutely understand what we were seeing—he writes, “we should want to stand…a long while.” In a similar manner, of Trakl’s poem “Septet of Death”—although it is likely we are unsure in what we hear—Heidegger states that, “we should want to hear…[it] often.” Heidegger further states that in appreciating these, “we “should abandon any claim that [they] be immediately intelligible” (1. So also we must we approach, Heidegger continues, the realm of theoretical physics, in which the difficult work of Werner Heisenberg, be listened to “without protest” and without “any claim that he be immediately understood.” These works, like his own project, merit the time they take to be originally (misunderstood.
Perspectives on the Pure-Tone Audiogram.
Musiek, Frank E; Shinn, Jennifer; Chermak, Gail D; Bamiou, Doris-Eva
The pure-tone audiogram, though fundamental to audiology, presents limitations, especially in the case of central auditory involvement. Advances in auditory neuroscience underscore the considerably larger role of the central auditory nervous system (CANS) in hearing and related disorders. Given the availability of behavioral audiological tests and electrophysiological procedures that can provide better insights as to the function of the various components of the auditory system, this perspective piece reviews the limitations of the pure-tone audiogram and notes some of the advantages of other tests and procedures used in tandem with the pure-tone threshold measurement. To review and synthesize the literature regarding the utility and limitations of the pure-tone audiogram in determining dysfunction of peripheral sensory and neural systems, as well as the CANS, and to identify other tests and procedures that can supplement pure-tone thresholds and provide enhanced diagnostic insight, especially regarding problems of the central auditory system. A systematic review and synthesis of the literature. The authors independently searched and reviewed literature (journal articles, book chapters) pertaining to the limitations of the pure-tone audiogram. The pure-tone audiogram provides information as to hearing sensitivity across a selected frequency range. Normal or near-normal pure-tone thresholds sometimes are observed despite cochlear damage. There are a surprising number of patients with acoustic neuromas who have essentially normal pure-tone thresholds. In cases of central deafness, depressed pure-tone thresholds may not accurately reflect the status of the peripheral auditory system. Listening difficulties are seen in the presence of normal pure-tone thresholds. Suprathreshold procedures and a variety of other tests can provide information regarding other and often more central functions of the auditory system. The audiogram is a primary tool for determining type
Pure spinor integration from the collating formula
International Nuclear Information System (INIS)
Grassi, P.A.; Sommovigo, L.
2011-01-01
We use the technique developed by Becchi and Imbimbo to construct a well-defined BRST-invariant path integral formulation of pure spinor amplitudes. The space of pure spinors can be viewed from the algebraic geometry point of view as a collection of open sets where the constraints can be solved and a set of free and independent variables can be defined. On the intersections of those open sets, the functional measure jumps and one has to add boundary terms to construct a well-defined path integral. The result is the definition of the pure spinor integration measure constructed in terms of differential forms on each single patch.
Conformal pure radiation with parallel rays
International Nuclear Information System (INIS)
Leistner, Thomas; Paweł Nurowski
2012-01-01
We define pure radiation metrics with parallel rays to be n-dimensional pseudo-Riemannian metrics that admit a parallel null line bundle K and whose Ricci tensor vanishes on vectors that are orthogonal to K. We give necessary conditions in terms of the Weyl, Cotton and Bach tensors for a pseudo-Riemannian metric to be conformal to a pure radiation metric with parallel rays. Then, we derive conditions in terms of the tractor calculus that are equivalent to the existence of a pure radiation metric with parallel rays in a conformal class. We also give analogous results for n-dimensional pseudo-Riemannian pp-waves. (paper)
Tensor modes in pure natural inflation
Nomura, Yasunori; Yamazaki, Masahito
2018-05-01
We study tensor modes in pure natural inflation [1], a recently-proposed inflationary model in which an axionic inflaton couples to pure Yang-Mills gauge fields. We find that the tensor-to-scalar ratio r is naturally bounded from below. This bound originates from the finiteness of the number of metastable branches of vacua in pure Yang-Mills theories. Details of the model can be probed by future cosmic microwave background experiments and improved lattice gauge theory calculations of the θ-angle dependence of the vacuum energy.
Quantum entanglement as an aspect of pure spinor geometry
International Nuclear Information System (INIS)
Kiosses, V
2014-01-01
Relying on the mathematical analogy of the pure states of a two-qubit system with four-component Dirac spinors, we provide an alternative consideration of quantum entanglement using the mathematical formulation of Cartan's pure spinors. A result of our analysis is that the Cartan equation of a two-qubit state is entanglement sensitive in the same way that the Dirac equation for fermions is mass sensitive. The Cartan equation for unentangled qubits is reduced to a pair of Cartan equations for single qubits as the Dirac equation for massless fermions separates into two Weyl equations. Finally, we establish a correspondence between the separability condition in qubit geometry and the separability condition in spinor geometry. (paper)
Pure Neutron Matter Constraints and Nuclear Symmetry Energy
International Nuclear Information System (INIS)
Fattoyev, F J; Newton, W G; Xu, Jun; Li, Bao-An
2013-01-01
In this review, we will discuss the results of our recent work [1] to study the general optimization of the pure isovector parameters of the popular relativistic mean-field (RMF) and Skyrme-Hartree-Fock (SHF) nuclear energy-density functionals (EDFs), using constraints on the pure neutron matter (PNM) equation of state (EoS) from recent ab initio calculations. By using RMF and SHF parameterizations that give equivalent predictions for ground-state properties of doubly magic nuclei and properties of symmetric nuclear matter (SNM) and PNM, we found that such optimization leads to broadly consistent symmetry energy J and its slope parameter L at saturation density within a tight range of α(J) sym , (b) the symmetry energy at supra-saturation densities, and (c) the radius of neutron stars.
Solving pure yang-mills theory in dimensions.
Leigh, Robert G; Minic, Djordje; Yelnikov, Alexandr
2006-06-09
We analytically compute the spectrum of the spin zero glueballs in the planar limit of pure Yang-Mills theory in 2 + 1 dimensions. The new ingredient is provided by our computation of a new nontrivial form of the ground state wave functional. The mass spectrum of the theory is determined by the zeroes of Bessel functions, and the agreement with large lattice data is excellent.
Pure Phase Solubility Limits: LANL
International Nuclear Information System (INIS)
C. Stockman
2001-01-01
, complex stability constants, and redox potentials for radionuclides in different oxidation states, form the underlying database to be used for those calculations. The potentially low solubilities of many radionuclides in natural waters constitute the first barrier for their migration from the repository into the environment. Evaluation of this effect requires a knowledge of the site-specific water chemistry and the expected spatial and temporal ranges of its variability. Quantitative determinations of radionuclide solubility in waters within the range of chemistry must be made. Speciation and molecular complexation must be ascertained to interpret and apply solubility results. The solubilities thus determined can be used to assess the effectiveness of solubility in limiting radionuclide migration. These solubilities can also be used to evaluate the effectiveness of other retardation processes expected to occur once dissolution of the source material and migration begin. Understanding the solubility behavior of radionuclides will assist in designing valuable sorption experiments that must be conducted below the solubility limit since only soluble species participate in surface reactions and sorption processes. The present strategy for radionuclide solubility tasks has been to provide a solubility model from bulk-experiments that attempt to bracket the estimate made for this Analysis and Modeling Report (AMR) of water conditions on site. The long-term goal must be to develop a thermodynamic database for solution speciation and solid-state determination as a prerequisite for transport calculations and interpretation of empirical solubility data. The model has to be self-consistent and tested against known solubility studies in order to predict radionuclide solubilities over the continuous distribution ranges of potential water compositions for performance assessment of the site. Solubility studies upper limits for radionuclide concentrations in natural waters. The
Pure Phase Solubility Limits: LANL
Energy Technology Data Exchange (ETDEWEB)
C. Stockman
2001-01-26
products, complex stability constants, and redox potentials for radionuclides in different oxidation states, form the underlying database to be used for those calculations. The potentially low solubilities of many radionuclides in natural waters constitute the first barrier for their migration from the repository into the environment. Evaluation of this effect requires a knowledge of the site-specific water chemistry and the expected spatial and temporal ranges of its variability. Quantitative determinations of radionuclide solubility in waters within the range of chemistry must be made. Speciation and molecular complexation must be ascertained to interpret and apply solubility results. The solubilities thus determined can be used to assess the effectiveness of solubility in limiting radionuclide migration. These solubilities can also be used to evaluate the effectiveness of other retardation processes expected to occur once dissolution of the source material and migration begin. Understanding the solubility behavior of radionuclides will assist in designing valuable sorption experiments that must be conducted below the solubility limit since only soluble species participate in surface reactions and sorption processes. The present strategy for radionuclide solubility tasks has been to provide a solubility model from bulk-experiments that attempt to bracket the estimate made for this Analysis and Modeling Report (AMR) of water conditions on site. The long-term goal must be to develop a thermodynamic database for solution speciation and solid-state determination as a prerequisite for transport calculations and interpretation of empirical solubility data. The model has to be self-consistent and tested against known solubility studies in order to predict radionuclide solubilities over the continuous distribution ranges of potential water compositions for performance assessment of the site. Solubility studies upper limits for radionuclide concentrations in natural waters. The
Lectures on the theory of pure motives
Murre, Jacob P; A, Chris
2013-01-01
The theory of motives was created by Grothendieck in the 1960s as he searched for a universal cohomology theory for algebraic varieties. The theory of pure motives is well established as far as the construction is concerned. Pure motives are expected to have a number of additional properties predicted by Grothendieck's standard conjectures, but these conjectures remain wide open. The theory for mixed motives is still incomplete. This book deals primarily with the theory of pure motives. The exposition begins with the fundamentals: Grothendieck's construction of the category of pure motives and examples. Next, the standard conjectures and the famous theorem of Jannsen on the category of the numerical motives are discussed. Following this, the important theory of finite dimensionality is covered. The concept of Chow-K�nneth decomposition is introduced, with discussion of the known results and the related conjectures, in particular the conjectures of Bloch-Beilinson type. We finish with a chapter on relative m...
Global Journal of Pure and Applied Sciences
African Journals Online (AJOL)
Global Journal of Pure and Applied Sciences is a multi-disciplinary specialist journal ... research in Biological Science, Agricultural Sciences, Chemical Sciences, ... Comparative study of the physicochemical and bacteriological qualities of ...
International Nuclear Information System (INIS)
Sharov, V.I.; Zaporozhets, S.A.; Ad''yasevich, B.P.
1996-01-01
The quantity Δσ L (n vector p vector), the difference of n vector p vector total cross sections for antiparallel and parallel longitudinal (L) spin states, has been measured for the first time in an energy region of several GeV using a free polarized neutron beam and a polarized proton target. The new data are discussed together with existing results and modern theoretical predictions. This is the first of a planned series of measurements of Δσ L,T (n vector p vector) in this new energy region. 28 refs., 3 figs
Expander graphs in pure and applied mathematics
Lubotzky, Alexander
2012-01-01
Expander graphs are highly connected sparse finite graphs. They play an important role in computer science as basic building blocks for network constructions, error correcting codes, algorithms and more. In recent years they have started to play an increasing role also in pure mathematics: number theory, group theory, geometry and more. This expository article describes their constructions and various applications in pure and applied mathematics.
Refurbishment of JMTR pure water facility
International Nuclear Information System (INIS)
Asano, Norikazu; Hanakawa, Hiroki; Kusunoki, Hidehiko; Satou, Shinichi
2012-05-01
In the refurbishment of JMTR, facilities were classified into which (1) were all updated, (2) were partly updated, and (3) were continuance used by the considerations of the maintenance history, the change parts availability and the latest technology. The JMTR pure water facility was classified into all updated facility based on the consideration. The Update construction was conducted in between FY2007 and FY2008. The refurbishment of JMTR pure water facility is summarized in this report. (author)
Theory of Random Anisotropic Magnetic Alloys
DEFF Research Database (Denmark)
Lindgård, Per-Anker
1976-01-01
A mean-field-crystal-field theory is developed for random, multicomponent, anisotropic magnetic alloys. It is specially applicable to rare-earth alloys. A discussion is given of multicritical points and phase transitions between various states characterized by order parameters with different...... spatial directions or different ordering wave vectors. Theoretical predictions based on known parameters for the phase diagrams and magnetic moments for the binary rare-earth alloys of Tb, Dy, Ho, and Er, Tb-Tm, Nd-Pr, and pure double-hcp Nd agree qualitatively with the experimental observations...... fluctuation corrections in the mean-field results is also discussed....
Hsu, Chen-Yuan; Moyle, Wendy; Cooke, Marie; Jones, Cindy
2016-12-01
There is growing interest in t'ai chi, but little research has addressed whether t'ai chi is effective in older people using wheelchairs for mobilization. The aim of this study was to compare the effects of seated t'ai chi exercise and usual standard activities on mood states and self-efficacy in older people living in a long-term care facility and using wheelchairs for mobilization. Randomized controlled trial (trial registration no. ACTRN12613000029796). One long-term-care facility in Taiwan. Sixty participants were randomly assigned by a computer-generated random sequence to a t'ai chi group (n = 30) or a usual exercise and entertainment activities group (n = 30). Seated t'ai chi exercise for 40 minutes three times a week for 26 weeks was provided. Mood states (Profile of Mood States Short Form [POMS-SF]) and self-efficacy (Self-Efficacy for Exercise [SEE]). At week 26, participants in the t'ai chi group reported significantly lower mood states on the fatigue-inertia dimension of the POMS-SF (mean score ± standard deviation, 3.56 ± 3.71) than did the control group (mean score, 7.16 ± 6.36) (F [1, 58] = 7.15; p self-efficacy for older people using wheelchairs.
Topological M Theory from Pure Spinor Formalism
Grassi, P A; Grassi, Pietro Antonio; Vanhove, Pierre
2005-01-01
We construct multiloop superparticle amplitudes in 11d using the pure spinor formalism. We explain how this construction reduces to the superparticle limit of the multiloop pure spinor superstring amplitudes prescription. We then argue that this construction points to some evidence for the existence of a topological M theory based on a relation between the ghost number of the full-fledged supersymmetric critical models and the dimension of the spacetime for topological models. In particular, we show that the extensions at higher orders of the previous results for the tree and one-loop level expansion for the superparticle in 11 dimensions is related to a topological model in 7 dimensions.
Quasinormal modes in pure de Sitter spacetimes
International Nuclear Information System (INIS)
Du Daping; Wang Bin; Su Ruheng
2004-01-01
We have studied scalar perturbations as well as fermion perturbations in pure de Sitter spacetimes. For scalar perturbations we have shown that well-defined quasinormal modes in d-dimensions can exist provided that the mass of scalar field m>(d-1/2l). The quasinormal modes of fermion perturbations in three and four dimensional cases have also been investigated. We found that different from other dimensional cases, in the three dimensional pure de Sitter spacetime there is no quasinormal mode for the s-wave. This interesting difference caused by the spacial dimensions is true for both scalar and fermion perturbations
Critical opalescence in the pure Coulomb system
Bobrov, V. B.; Trigger, S. A.
2011-04-01
Based on the dielectric formalism and quantum field theory methods, the phenomenon of critical opalescence is explained for light scattering in pure matter as a two-component electron-nuclear system with Coulomb interaction. A similar phenomenon is shown to occur in the case of neutron scattering in pure substances as well. The obtained results are valid for quantum case and arbitrary strong Coulomb interaction. Thus, the relations between structure factors derived for the electron-nuclear system are the exact result of the quantum statistical mechanics.
Comparison of hydrogen storage properties of pure Mg and milled ...
Indian Academy of Sciences (India)
Administrator
increase the hydriding and dehydriding rates, pure Mg was ground under hydrogen atmosphere (reactive .... Hydrogen storage properties of pure Mg and milled pure Mg. 833. Figure 3. ... elongated and flat shapes via collisions with the steel.
Color Spectrum Properties of Pure and Non-Pure LATEX in Discriminating Rubber Clone Series
International Nuclear Information System (INIS)
Noor Aishah Khairuzzaman; Hadzli Hashim; Nina Korlina Madzhi; Noor Ezan Abdullah; Faridatul Aima Ismail; Ahmad Faiz Sampian; Azhana Fatnin Che Will
2015-01-01
A study of color spectrum properties for pure and non-pure latex in discriminating rubber clone series has been presented in this paper. There were five types of clones from the same series being used as samples in this study named RRIM2002, RRIM2007, RRIM2008, RRIM2014, and RRIM3001. The main objective is to identify the significant color spectrum (RGB) from pure and non-pure latex that can discriminate rubber clone series. The significant information of color spectrum properties for pure and non-pure latex is determined by using spectrometer and Statistical Package for the Social Science (SPSS). Visible light spectrum (VIS) is used as a radiation light of the spectrometer to emit light to the surface of the latex sample. By using SPSS software, the further numerical analysis of color spectrum properties is being conducted. As the conclusion, blue color spectrum for non-pure is able to discriminate for all rubber clone series whereas only certain color spectrum can differentiate several clone series for pure latex. (author)
Creep mechanisms and constitutive relations in pure metals
International Nuclear Information System (INIS)
Nix, W.D.
1979-01-01
The mechanisms of creep of pure metals is briefly reviewed and divided into two parts: steady state flow mechanisms, and non-steady state flow mechanisms and constitutive relations. Creep by diffusional flow is now reasonably well understood, with theory and experiment in good agreement. The closely related phenomenon of Harper--Dorn creep can also be understood in terms of diffusion between dislocations. Power law creep involves the climb of edge disloctions controlled by lattice self diffusion. Theoretical treatments of this process invariably give a power law exponent of 3. This natural creep law is compared with the data for FCC and BCC metals. It is suggested that diffusion controlled climb is the controlling process in BCC metals at very high temperatures. Stacking fault energy effects may preclude the possibility that creep is controlled entirely by lattice self diffusion in some FCC metals. The subject of power law breakdown is presented as a natural consequence of the transition to low temperature flow phenomena. The role of core diffusion in this transition is briefly discussed. The mechanisms are presented by which pure metals creep at elevated temperatures. While most of this review deals with the mechanisms of steady state flow, some discussion is devoted to creep flow under non-steady state conditions. This topic is discussed in connection with the development of constitutive equations for describing plastic flow in metals
Regularization of the big bang singularity with random perturbations
Belbruno, Edward; Xue, BingKan
2018-03-01
We show how to regularize the big bang singularity in the presence of random perturbations modeled by Brownian motion using stochastic methods. We prove that the physical variables in a contracting universe dominated by a scalar field can be continuously and uniquely extended through the big bang as a function of time to an expanding universe only for a discrete set of values of the equation of state satisfying special co-prime number conditions. This result significantly generalizes a previous result (Xue and Belbruno 2014 Class. Quantum Grav. 31 165002) that did not model random perturbations. This result implies that the extension from a contracting to an expanding universe for the discrete set of co-prime equation of state is robust, which is a surprising result. Implications for a purely expanding universe are discussed, such as a non-smooth, randomly varying scale factor near the big bang.
Spectra of sparse random matrices
International Nuclear Information System (INIS)
Kuehn, Reimer
2008-01-01
We compute the spectral density for ensembles of sparse symmetric random matrices using replica. Our formulation of the replica-symmetric ansatz shares the symmetries of that suggested in a seminal paper by Rodgers and Bray (symmetry with respect to permutation of replica and rotation symmetry in the space of replica), but uses a different representation in terms of superpositions of Gaussians. It gives rise to a pair of integral equations which can be solved by a stochastic population-dynamics algorithm. Remarkably our representation allows us to identify pure-point contributions to the spectral density related to the existence of normalizable eigenstates. Our approach is not restricted to matrices defined on graphs with Poissonian degree distribution. Matrices defined on regular random graphs or on scale-free graphs, are easily handled. We also look at matrices with row constraints such as discrete graph Laplacians. Our approach naturally allows us to unfold the total density of states into contributions coming from vertices of different local coordinations and an example of such an unfolding is presented. Our results are well corroborated by numerical diagonalization studies of large finite random matrices
Investigations in Pure Mathematics: A Constructivist Perspective.
Hirst, Keith; Shiu, Christine
1995-01-01
Discusses an investigative, constructivist approach in the context of undergraduate mathematics, with particular reference to pure mathematics, general aims and objectives, assessment strategies, and problems of supervision that affect tutors and lecturers using this approach. Gives students' views on their experiences in this mode of working. (19…
Thermomechanical characterization of pure polycrystalline tantalum
International Nuclear Information System (INIS)
Rittel, D.; Bhattacharyya, A.; Poon, B.; Zhao, J.; Ravichandran, G.
2007-01-01
The thermomechanical behavior of pure polycrystalline tantalum has been characterized over a wide range of strain rates, using the recently developed shear compression specimen [D. Rittel, S. Lee, G. Ravichandran, Experimental Mechanics 42 (2002) 58-64]. Dynamic experiments were carried out using a split Hopkinson pressure bar, and the specimen's temperature was monitored throughout the tests using an infrared radiometer. The results of the mechanical tests confirm previous results on pure Ta. Specifically, in addition to its significant strain rate sensitivity, it was observed that pure Ta exhibits very little strain hardening at high strain rates. The measured temperature rise in the specimen's gauge was compared to theoretical predictions which assume a total conversion of the mechanical energy into heat (β = 1) [G.I. Taylor, H. Quinney, Proceedings of the Royal Society of London, vol. A, 1934, pp. 307-326], and an excellent agreement was obtained. This result confirms the previous result of Kapoor and Nemat-Nasser [R. Kapoor, S. Nemat-Nasser, Mech. Mater. 27 (1998) 1-12], while a different experimental approach was adopted here. The assumption that β = 1 is found to be justified in this specific case by the lack of dynamic strain hardening of pure Ta. However, this assumption should be limited to non-hardening materials, to reflect the fact that strain hardening implies that part of the mechanical energy is stored into the material's microstructure
Eco-Cities: Possible or Purely Utopian?
2009-12-01
00-2009 to 00-00-2009 4. TITLE AND SUBTITLE Eco-Cities: Possible or Purely Utopian? 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...2005, Disney modified their building plans for Hong Kong Disneyland by shifting the angle of the front gate by twelve degrees in order to abide by
76 FR 69284 - Pure Magnesium From China
2011-11-08
... China Determination On the basis of the record \\1\\ developed in the subject five-year review, the United... China would be likely to lead to continuation or recurrence of material injury to an industry in the...), entitled Pure Magnesium from China: Investigation No. 731-TA-696 (Third Review). Issued: November 2, 2011...
Is word recognition crowded in pure alexia?
DEFF Research Database (Denmark)
Sand, Katrine; Habekost, Thomas; Petersen, Anders
2017-01-01
Pure alexia is a selective deficit in reading, which arises following damage to the left ventral occipito-temporal cortex. Crowding, the inability to recognise objects in a clutter, has recently been hypothesised to be the underlying deficit of apperceptive visual agnosia1. Crowding normally occurs...
Perceptions of the Pure Pallet Program
National Research Council Canada - National Science Library
Dye, Michael T
2006-01-01
.... Recommendations center on educating personnel on the importance of suboptimization avoidance and making the warfighter the most important customer. This research also serves as a formal source of information from which to form conclusions and make judgments on how well Air Force personnel are implementing the pure pallet program.
Purely Magnetic Silent Universes do not Exist
Vu, K. T.; Carminati, J.
2008-09-01
We present a new Maple package called STeM (Symbolic Tetrad Manipulation). Using STeM, we outline, using a formalism which is a hybrid of the NP and Orthonormal ones, the proof of the nonexistence of purely magnetic silent universes.
Preparation of pure phenols from tars
Energy Technology Data Exchange (ETDEWEB)
Meyer, J
1929-06-18
A process is disclosed for preparing pure phenols from brown coal and shale tar, characterized in that the alkaline extract obtained from the tar is oxidized and concurrently the alkaline solution is separated from the existing impurities by heating with steam at high temperature, which finally reaches at least 150/sup 0/C.
Bayero Journal of Pure and Applied Sciences
African Journals Online (AJOL)
The Journal's scope is wide in that it reported findings in the areas of pure and ... Physics, Medical Sciences and Zoology form part of the contents of the Journal. Scientists in the academia, research institutes and industries are therefore ...
Scattering of massive open strings in pure spinor
International Nuclear Information System (INIS)
Park, I.Y.
2011-01-01
In Park (2008) , it was proposed that the D-brane geometry could be produced by open string quantum effects. In an effort to verify the proposal, we consider scattering amplitudes involving massive open superstrings. The main goal of this paper is to set the ground for two-loop 'renormalization' of an oriented open superstring on a D-brane and to strengthen our skill in the pure spinor formulation of a superstring, an effective tool for multi-loop string diagrams. We start by reviewing scattering amplitudes of massless states in the 2D component method of the NSR formulation. A few examples of massive string scattering are worked out. The NSR results are then reproduced in the pure spinor formulation. We compute the amplitudes using the unintegrated form of the massive vertex operator constructed by Berkovits and Chandia (2002) . We point out that it may be possible to discover new Riemann type identities involving Jacobi θ-functions by comparing a NSR computation and the corresponding pure spinor computation.
On the minimization of Hamiltonians over pure Gaussian states
DEFF Research Database (Denmark)
Derezinski, Jan; Napiorkowski, Marcin; Solovej, Jan Philip
2013-01-01
that this procedure eliminates from the Hamiltonian terms of degree 1 and 2 that do not preserve the particle number, and leaves only terms that can be interpreted as quasiparticles excitations. We propose to call this fact Beliaev's Theorem, since to our knowledge it was mentioned for the first time in a paper...
Coexistence of pure and mixed states in nonlinear maps
International Nuclear Information System (INIS)
Roth, Yehuda
2015-01-01
Coherence and interaction are important concepts in physics. While interaction describes a relation between individual objects such as forces acting between distinguishable particles, coherent objects exist with the sole purpose of describing a single object. For example, each component of a vector provides us with only partial information. The whole picture is revealed only when the components are coherently related to their generating vector. Another example is a singlet of two spin ½- particles. The true nature of these two coherent particles is described by a spin-less single particle. Apparently it seems that objects can be either coherent or lion-coherent but they cannot be both simultaneously. This is almost true. We show that a system can be described simultaneously as coherent and lion-coherent but an observer can distinguish only one concept at a time. (paper)
Optimum unambiguous discrimination of linearly independent pure state
DEFF Research Database (Denmark)
Pang, Shengshi; Wu, Shengjun
2009-01-01
be satisfied by the optimum solution in different situations. We also provide the detailed steps to find the optimum measurement strategy. The method and results we obtain are given a geometrical illustration with a numerical example. Furthermore, using these equations, we derive a formula which shows a clear...
International Nuclear Information System (INIS)
Tsallis, C.
1980-03-01
The 'ingredients' which control a phase transition in well defined system as well as in random ones (e.g. random magnetic systems) are listed and discussed within a somehow unifying perspective. Among these 'ingredients' we find the couplings and elements responsible for the cooperative phenomenon, the topological connectivity as well as possible topological incompatibilities, the influence of new degrees of freedom, the order parameter dimensionality, the ground state degeneracy and finally the 'quanticity' of the system. The general trends, though illustrated in magnetic systems, essentially hold for all phase transitions, and give a basis for connection of this area with Field theory, Theory of dynamical systems, etc. (Author) [pt
International Nuclear Information System (INIS)
Tsallis, C.
1981-01-01
The 'ingredients' which control a phase transition in well defined systems as well as in random ones (e.q. random magnetic systems) are listed and discussed within a somehow unifying perspective. Among these 'ingredients' the couplings and elements responsible for the cooperative phenomenon, the topological connectivity as well as possible topological incompatibilities, the influence of new degrees of freedom, the order parameter dimensionality, the ground state degeneracy and finally the 'quanticity' of the system are found. The general trends, though illustrated in magnetic systems, essentially hold for all phase transitions, and give a basis for connection of this area with Field theory, Theory of dynamical systems, etc. (Author) [pt
Chromatic polynomials of random graphs
International Nuclear Information System (INIS)
Van Bussel, Frank; Fliegner, Denny; Timme, Marc; Ehrlich, Christoph; Stolzenberg, Sebastian
2010-01-01
Chromatic polynomials and related graph invariants are central objects in both graph theory and statistical physics. Computational difficulties, however, have so far restricted studies of such polynomials to graphs that were either very small, very sparse or highly structured. Recent algorithmic advances (Timme et al 2009 New J. Phys. 11 023001) now make it possible to compute chromatic polynomials for moderately sized graphs of arbitrary structure and number of edges. Here we present chromatic polynomials of ensembles of random graphs with up to 30 vertices, over the entire range of edge density. We specifically focus on the locations of the zeros of the polynomial in the complex plane. The results indicate that the chromatic zeros of random graphs have a very consistent layout. In particular, the crossing point, the point at which the chromatic zeros with non-zero imaginary part approach the real axis, scales linearly with the average degree over most of the density range. While the scaling laws obtained are purely empirical, if they continue to hold in general there are significant implications: the crossing points of chromatic zeros in the thermodynamic limit separate systems with zero ground state entropy from systems with positive ground state entropy, the latter an exception to the third law of thermodynamics.
De La O, Ana L; Martel García, Fernando
2014-09-03
Poor governance and accountability compromise young democracies' efforts to provide public services critical for human development, including water, sanitation, health, and education. Evidence shows that accountability agencies like superior audit institutions can reduce corruption and waste in federal grant programs financing service infrastructure. However, little is know about their effect on compliance with grant reporting and resource allocation requirements, or about the causal mechanisms. This study protocol for an exploratory randomized controlled trial tests the hypothesis that federal and state audits increase compliance with a federal grant program to improve municipal service infrastructure serving marginalized households. The AUDIT study is a block randomized, controlled, three-arm parallel group exploratory trial. A convenience sample of 5 municipalities in each of 17 states in Mexico (n=85) were block randomized to be audited by federal auditors (n=17), by state auditors (n=17), and a control condition outside the annual program of audits (n=51) in a 1:1:3 ratio. Replicable and verifiable randomization was performed using publicly available lottery numbers. Audited municipalities were included in the national program of audits and received standard audits on their use of federal public service infrastructure grants. Municipalities receiving moderate levels of grant transfers were recruited, as these were outside the auditing sampling frame--and hence audit program--or had negligible probabilities of ever being audited. The primary outcome measures capture compliance with the grant program and markers for the causal mechanisms, including deterrence and information effects. Secondary outcome measure include differences in audit reports across federal and state auditors, and measures like career concerns, political promotions, and political clientelism capturing synergistic effects with municipal accountability systems. The survey firm and research
Andres Susaeta; Pankaj Lal; Janaki Alavalapati; Evan Mercer
2011-01-01
This paper contrasts alternate methodological approaches of investigating public preferences, the random parameter logit (RPL) where tastes and preferences of respondents are assumed to be heterogeneous and the conditional logit (CL) approach where tastes and preferences remain fixed for individuals. We conducted a choice experiment to assess preferences for woody...
Infrared divergence cancellation in pure Yang-Mills theory
International Nuclear Information System (INIS)
Alvarez, A.G.
1977-01-01
Virtual and real corrections to massless external lines in pure Yang-Mills theory are considered in order to look for general features of the infrared divergence cancellation. Use of the Ward identities and sums over transverse polarization states give rise to terms formally corresponding to real ghost emission, cancelling ghost loop singularities, and to a factorisation of the hard narrow single gauge boson emission. Other virtual corrections are examined in the soft region and a graph by graph cancellation is also found. An illustrative explicit calculation of scattering of a gauge particle in an external scalar potential, including hard narrow angle emission is presented. (Auth.)
Covariant map between Ramond-Neveu-Schwarz and pure spinor formalisms for the superstring
International Nuclear Information System (INIS)
Berkovits, Nathan
2014-01-01
A covariant map between the Ramond-Neveu-Schwarz (RNS) and pure spinor formalisms for the superstring is found which transforms the RNS and pure spinor BRST operators into each other. The key ingredient is a dynamical twisting of the ten spin-half RNS fermions into five spin-one and five spin-zero fermions using bosonic pure spinors that parameterize an SO(10)/U(5) coset. The map relates massless vertex operators in the two formalisms, and gives a new description of Ramond states which does not require spin fields. An argument is proposed for relating the amplitude prescriptions in the two formalisms
Pure spin current induced by adiabatic quantum pumping in zigzag-edged graphene nanoribbons
International Nuclear Information System (INIS)
Souma, Satofumi; Ogawa, Matsuto
2014-01-01
We show theoretically that pure spin current can be generated in zigzag edged graphene nanoribbons through the adiabatic pumping by edge selective pumping potentials. The origin of such pure spin current is the spin splitting of the edge localized states, which are oppositely spin polarized at opposite edges. In the proposed device, each edge of the ribbon is covered by two independent time-periodic local gate potentials with a definite phase difference, inducing the edge spin polarized current. When the pumping phase difference is opposite in sign between two edges, the total charge currents is zero and the pure edge spin current is generated
Diffusion in a pure, high-vacancy-content crystal
International Nuclear Information System (INIS)
McKee, R.A.
1981-01-01
The idea that vacancies can follow a nonrandom walk in a solid has been developed and put into a quantitative form for diffusion in a pure, high-vacancy-content crystal. Intrinsic and tracer diffusion in a metal have been analyzed, and the electrical mobility in an ionic solid has been expressed in terms of the tracer diffusion coefficient and the separate correlation factors for atoms and vacancies. The description uses classical methods of diffusion theory, and generalized results that account for nonrandom vacancy walk have been shown to reduce to those obtained by Howard and Lidiard in a system where the vacancy moves randomly as an isolated point defect. Experimental data for carbon diffusion in fcc iron have been examined to illustrate an interstitial-vacancy analogy that was used in this analysis, and the general result has been applied specifically to discuss vacancy diffusion in Fe/sub 1-x/S
Black hole attractors and pure spinors
International Nuclear Information System (INIS)
Hsu, Jonathan P.; Maloney, Alexander; Tomasiello, Alessandro
2006-01-01
We construct black hole attractor solutions for a wide class of N = 2 compactifications. The analysis is carried out in ten dimensions and makes crucial use of pure spinor techniques. This formalism can accommodate non-Kaehler manifolds as well as compactifications with flux, in addition to the usual Calabi-Yau case. At the attractor point, the charges fix the moduli according to Σf k = Im(CΦ), where Φ is a pure spinor of odd (even) chirality in IIB (A). For IIB on a Calabi-Yau, Φ = Ω and the equation reduces to the usual one. Methods in generalized complex geometry can be used to study solutions to the attractor equation
International Standardization of Pure Beta Emitters
International Nuclear Information System (INIS)
Los Arcos, Jose Maria; Rodriguez, Leonor
2006-01-01
The paper describes the traditional methods of standardization of Pure Beta Emitters, their principal characteristics, advantage and drawbacks. It does comparisons between two metrological LSC methods: Triple to double coincidence ratio (TDCR) method and the CIEMAT/NIST method and presents the result obtained with several Key Comparisons serving as practical test of both methods. Both of them represent the siferrit of methods of standardization of pure (and mixed decay) radionuclides. ESIR WG of CCRI(II) is to implement a reference exchange system for the permanent equivalence of β, α and electron capture nuclides, similar to traditional SIR gamma. ESIR project is currently testing a new XAN scintillator and operational tests of the whole system at BIPM are expected by the end of 2006 (test restricted to ESIR NMI members)
Heat engine driven by purely quantum information.
Park, Jung Jun; Kim, Kang-Hwan; Sagawa, Takahiro; Kim, Sang Wook
2013-12-06
The key question of this Letter is whether work can be extracted from a heat engine by using purely quantum mechanical information. If the answer is yes, what is its mathematical formula? First, by using a bipartite memory we show that the work extractable from a heat engine is bounded not only by the free energy change and the sum of the entropy change of an individual memory but also by the change of quantum mutual information contained inside the memory. We then find that the engine can be driven by purely quantum information, expressed as the so-called quantum discord, forming a part of the quantum mutual information. To confirm it, as a physical example we present the Szilard engine containing a diatomic molecule with a semipermeable wall.
Black Hole Attractors and Pure Spinors
International Nuclear Information System (INIS)
Hsu, Jonathan P.; Maloney, Alexander; Tomasiello, Alessandro
2006-01-01
We construct black hole attractor solutions for a wide class of N = 2 compactifications. The analysis is carried out in ten dimensions and makes crucial use of pure spinor techniques. This formalism can accommodate non-Kaehler manifolds as well as compactifications with flux, in addition to the usual Calabi-Yau case. At the attractor point, the charges fix the moduli according to Σf k = Im(CΦ), where Φ is a pure spinor of odd (even) chirality in IIB (A). For IIB on a Calabi-Yau, Φ = (Omega) and the equation reduces to the usual one. Methods in generalized complex geometry can be used to study solutions to the attractor equation
Critical opalescence in the pure Coulomb system
Energy Technology Data Exchange (ETDEWEB)
Bobrov, V.B., E-mail: vic5907@mail.r [Joint Institute for High Temperatures, Russian Academy of Sciences, Izhorskaia St., 13, Bd. 2. Moscow 125412 (Russian Federation); Trigger, S.A., E-mail: satron@mail.r [Joint Institute for High Temperatures, Russian Academy of Sciences, Izhorskaia St., 13, Bd. 2. Moscow 125412 (Russian Federation); Institut fuer Physik, Humboldt-Universitaet zu Berlin, Newtonstrasse 15, D-12489 Berlin (Germany)
2011-04-18
Highlights: The review of the critical opalescence problem is presented. Light scattering in a two-component electron-nuclear system is studied. The exact relations between the structure factors and compressibility are found. The obtained relations are valid for strong interaction for the Coulomb systems. The experimental verification of these relations is possible for various elements. - Abstract: Based on the dielectric formalism and quantum field theory methods, the phenomenon of critical opalescence is explained for light scattering in pure matter as a two-component electron-nuclear system with Coulomb interaction. A similar phenomenon is shown to occur in the case of neutron scattering in pure substances as well. The obtained results are valid for quantum case and arbitrary strong Coulomb interaction. Thus, the relations between structure factors derived for the electron-nuclear system are the exact result of the quantum statistical mechanics.
Critical opalescence in the pure Coulomb system
International Nuclear Information System (INIS)
Bobrov, V.B.; Trigger, S.A.
2011-01-01
Highlights: → The review of the critical opalescence problem is presented. → Light scattering in a two-component electron-nuclear system is studied. → The exact relations between the structure factors and compressibility are found. → The obtained relations are valid for strong interaction for the Coulomb systems. → The experimental verification of these relations is possible for various elements. - Abstract: Based on the dielectric formalism and quantum field theory methods, the phenomenon of critical opalescence is explained for light scattering in pure matter as a two-component electron-nuclear system with Coulomb interaction. A similar phenomenon is shown to occur in the case of neutron scattering in pure substances as well. The obtained results are valid for quantum case and arbitrary strong Coulomb interaction. Thus, the relations between structure factors derived for the electron-nuclear system are the exact result of the quantum statistical mechanics.
Compact objects in pure Lovelock theory
Dadhich, Naresh; Hansraj, Sudan; Chilambwe, Brian
For static fluid interiors of compact objects in pure Lovelock gravity (involving only one Nth order term in the equation), we establish similarity in solutions for the critical odd and even d = 2N + 1, 2N + 2 dimensions. It turns out that in critical odd d = 2N + 1 dimensions, there cannot exist any bound distribution with a finite radius, while in critical even d = 2N + 2 dimensions, all solutions have similar behavior. For exhibition of similarity, we would compare star solutions for N = 1, 2 in d = 4 Einstein and d = 6 in Gauss-Bonnet theory, respectively. We also obtain the pure Lovelock analogue of the Finch-Skea model.
On the Computation and Applications of Bessel Functions with Pure Imaginary Indices
Matyshev, A. A.; Fohtung, E.
2009-01-01
Bessel functions with pure imaginary index (order) play an important role in corpuscular optics where they govern the dynamics of charged particles in isotrajectory quadrupoles. Recently they were found to be of great importance in semiconductor material characterization as they are manifested in the strain state of crystalline material. A new algorithm which can be used for the computation of the normal and modifed Bessel functions with pure imaginary index is proposed. The developed algorit...
International Nuclear Information System (INIS)
Tsarev, Andrei V
2009-01-01
Pure subrings of finite rank in the Z-adic completion of the ring of integers and in its homomorphic images are considered. Certain properties of these rings are studied (existence of an identity element, decomposability into a direct sum of essentially indecomposable ideals, condition for embeddability into a csp-ring, etc.). Additive groups of these rings and conditions under which these rings are subrings of algebraic number fields are described. Bibliography: 12 titles.
Production of Purely Gravitational Dark Matter
Ema, Yohei; Nakayama, Kazunori; Tang, Yong
2018-01-01
In the purely gravitational dark matter scenario, the dark matter particle does not have any interaction except for gravitational one. We study the gravitational particle production of dark matter particle in such a minimal setup and show that correct amount of dark matter can be produced depending on the inflation model and the dark matter mass. In particular, we carefully evaluate the particle production rate from the transition epoch to the inflaton oscillation epoch in a realistic inflati...
Notes on the ambitwistor pure spinor string
Czech Academy of Sciences Publication Activity Database
Lipinski Jusinskas, Renann
2016-01-01
Roč. 2016, č. 5 (2016), s. 1-12, č. článku 116. ISSN 1029-8479 R&D Projects: GA ČR GBP201/12/G028 Institutional support: RVO:68378271 Keywords : ambitwistor string * pure spinor formalism Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 6.063, year: 2016
About the elaboration of pure uranium dicarbide
International Nuclear Information System (INIS)
Besson, J.; Blum, P.; Guinet, Ph.; Spitz, J.
1963-01-01
In order to develop methods for the elaboration of as pure as possible uranium dicarbide, the authors report the study of different elaboration processes based on the reaction between uranium and carbon, or between uranium and hydrocarbon, or between uranium oxide and carbon. They finally choose a method which comprises an arc-induced fusion of a mixture of uranium dioxide and carbon. The fusion process is described. The influence of thermal treatments is discussed as well as the graphite electrode carburization
Sasakian manifolds with purely transversal Bach tensor
Ghosh, Amalendu; Sharma, Ramesh
2017-10-01
We show that a (2n + 1)-dimensional Sasakian manifold (M, g) with a purely transversal Bach tensor has constant scalar curvature ≥2 n (2 n +1 ) , equality holding if and only if (M, g) is Einstein. For dimension 3, M is locally isometric to the unit sphere S3. For dimension 5, if in addition (M, g) is complete, then it has positive Ricci curvature and is compact with finite fundamental group π1(M).
Preparation of pure phenols from tars
Energy Technology Data Exchange (ETDEWEB)
Meyer, J
1933-02-07
A process is disclosed for the preparation of pure phenols from brown coal tar, shale tar, or primary tar, characterized in that the raw oil obtained from the tar is carefully fractionated, in a suitable way without or with a slight pressure decrease, or before the fractionation the raw oil is heated to free the prepared phenolate solution from impurities after successful oxidation by passing in steam at a temperature between 100 and 120/sup 0/C.
Preparation of pure anhydrous rare earth chlorides
International Nuclear Information System (INIS)
Bel'kova, N.L.; Slastenova, N.M.; Batyaev, I.M.; Solov'ev, M.A.
1979-01-01
A method has been suggested for obtaining extra-pure anhydrous REE chlorides by chloridizing corresponding oxalates by chlorine in a fluid bed, the chloridizing agents being diluted by an inert gas in a ratio of 2-to-1. The method is applicable to the manufacture of quality chlorides not only of light, but also of heavy REE. Neodymium chloride has an excited life of tau=30 μs, this evidencing the absence of the damping impurities
Preparation of very pure active carbon
International Nuclear Information System (INIS)
Sloot, H.A. van der; Hoede, D.; Zonderhuis, J.; Meijer, C.
1980-02-01
The preparation of very pure active carbon is described. Starting from polyvinylidene chloride active carbon is prepared by carbonization in a nitrogen atmosphere, grinding, sieving and activation of the powder fraction with CO 2 at 950 0 to approximately 50% burn-off. The concentrations of trace and major elements are reduced to the ppb and ppm level, respectively. In the present set-up 100 g of carbon grains and approximately 50 g of active carbon powder can be produced weekly
Nodule detection in digital chest radiography: Part of image background acting as pure noise
International Nuclear Information System (INIS)
Baath, M.; Haakansson, M.; Boerjesson, S.; Kheddache, S.; Grahn, A.; Bochud, F. O.; Verdun, F. R.; Maansson, L. G.
2005-01-01
There are several factors that influence the radiologist's ability to detect a specific structure/lesion in a radiograph. Three factors that are commonly known to be of major importance are the signal itself, the system noise and the projected anatomy. The aim of this study was to determine to what extent the image background acts as pure noise for the detection of subtle lung nodules in five different regions of the chest. A receiver operating characteristic (ROC) study with five observers was conducted on two different sets of images, clinical chest X-ray images and images with a similar power spectrum as the clinical images but with a random phase spectrum, resulting in an image background containing pure noise. Simulated designer nodules with a full-width-at-fifth-maximum of 10 mm but with varying contrasts were added to the images. As a measure of the part of the image background that acts as pure noise, the ratio between the contrast needed to obtain an area under the ROC curve of 0.80 in the clinical images to that in the random-phase images was used. The ratio ranged from 0.40 (in the lateral pulmonary regions) to 0.83 (in the hilar regions) indicating that there was a large difference between different regions regarding to what extent the image background acted as pure noise; and that in the hilar regions the image background almost completely acted as pure noise for the detection of 10 mm nodules. (authors)
Electron Acoustic Waves in Pure Ion Plasmas
Anderegg, F.; Driscoll, C. F.; Dubin, D. H. E.; O'Neil, T. M.
2009-11-01
Electron Acoustic Waves (EAW) are the low frequency branch of electrostatic plasma waves. These waves exist in neutralized plasmas, pure electron plasmas and in pure ion plasmasfootnotetextF. Anderegg et al., PRL 102, 095001 (2009) and PoP 16, 055705 (2009). (where the name is deceptive). Here, we observe standing mθ= 0 mz= 1 EAWs in a pure ion plasma column. At small amplitude, the EAWs have a phase velocity vph ˜1.4 v, and the frequencies are in close agreement with theory. At moderate amplitudes, waves can be excited over a broad range of frequencies, with observed phase velocities in the range of 1.4 v vph diagnostic shows that particles slower than vph oscillate in phase with the wave, while particles moving faster than vph oscillate 180^o out of phase with the wave. From a fluid perspective, this gives an unusual negative dynamical compressibility. That is, the wave pressure oscillations are 180^o out of phase from the density oscillations, almost fully canceling the electrostatic restoring force, giving the low and malleable frequency.
Weaver, Lindell K; Wilson, Steffanie H; Lindblad, Anne S; Churchill, Susan; Deru, Kayla; Price, Robert C; Williams, Chris S; Orrison, William W; Walker, James M; Meehan, Anna; Mirow, Susan
2018-01-01
In prior military randomized trials, participants with persistent symptoms after mild traumatic brain injury (TBI) reported improvement regardless of receiving hyperbaric oxygen (HBO₂) or sham intervention. This study's objectives were to identify outcomes for future efficacy trials and describe changes by intervention. This Phase II, randomized, double-blind, sham-controlled trial enrolled military personnel with mild TBI and persistent post-concussive symptoms. Participants were randomized to receive 40 HBO₂ (1.5 atmospheres absolute (ATA), ⟩99% oxygen, 60 minutes) or sham chamber sessions (1.2 ATA, room air, 60 minutes) over 12 weeks. Participants and evaluators were blinded to allocation. Outcomes assessed at baseline, 13 weeks and six months included symptoms, quality of life, neuropsychological, neurological, electroencephalography, sleep, auditory, vestibular, autonomic, visual, neuroimaging, and laboratory testing. Participants completed 12-month questionnaires. Intention-to-treat results are reported. From 9/11/2012 to 5/19/2014, 71 randomized participants received HBO₂ (n=36) or sham (n=35). At baseline, 35 participants (49%) met post-traumatic stress disorder (PTSD) criteria. By the Neurobehavioral Symptom Inventory, the HBO₂ group had improved 13-week scores (mean change -3.6 points, P=0.03) compared to sham (+3.9 points). In participants with PTSD, change with HBO₂ was more pronounced (-8.6 vs. +4.8 points with sham, P=0.02). PTSD symptoms also improved in the HBO₂ group, and more so in the subgroup with PTSD. Improvements regressed at six and 12 months. Hyperbaric oxygen improved some cognitive processing speed and sleep measures. Participants with PTSD receiving HBO₂ had improved functional balance and reduced vestibular complaints at 13 weeks. By 13 weeks, HBO₂ improved post-concussive and PTSD symptoms, cognitive processing speed, sleep quality, and balance function, most dramatically in those with PTSD. Changes did not persist
Lee, N. J.; Kang, T. S.; Hu, Q.; Lee, T. S.; Yoon, T.-S.; Lee, H. H.; Yoo, E. J.; Choi, Y. J.; Kang, C. J.
2018-06-01
Tri-state resistive switching characteristics of bilayer resistive random access memory devices based on manganese oxide (MnO)/tantalum oxide (Ta2O5) have been studied. The current–voltage (I–V) characteristics of the Ag/MnO/Ta2O5/Pt device show tri-state resistive switching (RS) behavior with a high resistance state (HRS), intermediate resistance state (IRS), and low resistance state (LRS), which are controlled by the reset process. The MnO/Ta2O5 film shows bipolar RS behavior through the formation and rupture of conducting filaments without the forming process. The device shows reproducible and stable RS both from the HRS to the LRS and from the IRS to the LRS. In order to elucidate the tri-state RS mechanism in the Ag/MnO/Ta2O5/Pt device, transmission electron microscope (TEM) images are measured in the LRS, IRS and HRS. White lines like dendrites are observed in the Ta2O5 film in both the LRS and the IRS. Poole–Frenkel conduction, space charge limited conduction, and Ohmic conduction are proposed as the dominant conduction mechanisms for the Ag/MnO/Ta2O5/Pt device based on the obtained I–V characteristics and TEM images.
Pure sources and efficient detectors for optical quantum information processing
Zielnicki, Kevin
Over the last sixty years, classical information theory has revolutionized the understanding of the nature of information, and how it can be quantified and manipulated. Quantum information processing extends these lessons to quantum systems, where the properties of intrinsic uncertainty and entanglement fundamentally defy classical explanation. This growing field has many potential applications, including computing, cryptography, communication, and metrology. As inherently mobile quantum particles, photons are likely to play an important role in any mature large-scale quantum information processing system. However, the available methods for producing and detecting complex multi-photon states place practical limits on the feasibility of sophisticated optical quantum information processing experiments. In a typical quantum information protocol, a source first produces an interesting or useful quantum state (or set of states), perhaps involving superposition or entanglement. Then, some manipulations are performed on this state, perhaps involving quantum logic gates which further manipulate or entangle the intial state. Finally, the state must be detected, obtaining some desired measurement result, e.g., for secure communication or computationally efficient factoring. The work presented here concerns the first and last stages of this process as they relate to photons: sources and detectors. Our work on sources is based on the need for optimized non-classical states of light delivered at high rates, particularly of single photons in a pure quantum state. We seek to better understand the properties of spontaneous parameteric downconversion (SPDC) sources of photon pairs, and in doing so, produce such an optimized source. We report an SPDC source which produces pure heralded single photons with little or no spectral filtering, allowing a significant rate enhancement. Our work on detectors is based on the need to reliably measure single-photon states. We have focused on
International Nuclear Information System (INIS)
Fu Chuanji; Zhu Qinsheng; Wu Shaoyi
2010-01-01
Based on algebraic dynamics and the concept of the concurrence of the entanglement, we investigate the evolutive properties of the two-qubit entanglement that formed by Heisenberg XXX models under a time-depending external held. For this system, the property of the concurrence that is only dependent on the coupling constant J and total values of the external field is proved. Furthermore, we found that the thermal concurrence of the system under a static random external field is a function of the coupling constant J, temperature T, and the magnitude of external held. (general)
DEFF Research Database (Denmark)
Li, Yan-Fu; Ding, Yi; Zio, Enrico
2014-01-01
. In this work, we extend the traditional universal generating function (UGF) approach for multi-state system (MSS) availability and reliability assessment to account for both aleatory and epistemic uncertainties. First, a theoretical extension, named hybrid UGF (HUGF), is made to introduce the use of random...... fuzzy variables (RFVs) in the approach. Second, the composition operator of HUGF is defined by considering simultaneously the probabilistic convolution and the fuzzy extension principle. Finally, an efficient algorithm is designed to extract probability boxes ($p$ -boxes) from the system HUGF, which...
Relativistic stars with purely toroidal magnetic fields
International Nuclear Information System (INIS)
Kiuchi, Kenta; Yoshida, Shijun
2008-01-01
We investigate the effects of the purely toroidal magnetic field on the equilibrium structures of the relativistic stars. The basic equations for obtaining equilibrium solutions of relativistic rotating stars containing purely toroidal magnetic fields are derived for the first time. To solve these basic equations numerically, we extend the Cook-Shapiro-Teukolsky scheme for calculating relativistic rotating stars containing no magnetic field to incorporate the effects of the purely toroidal magnetic fields. By using the numerical scheme, we then calculate a large number of the equilibrium configurations for a particular distribution of the magnetic field in order to explore the equilibrium properties. We also construct the equilibrium sequences of the constant baryon mass and/or the constant magnetic flux, which model the evolution of an isolated neutron star as it loses angular momentum via the gravitational waves. Important properties of the equilibrium configurations of the magnetized stars obtained in this study are summarized as follows: (1) For the nonrotating stars, the matter distribution of the stars is prolately distorted due to the toroidal magnetic fields. (2) For the rapidly rotating stars, the shape of the stellar surface becomes oblate because of the centrifugal force. But, the matter distribution deep inside the star is sufficiently prolate for the mean matter distribution of the star to be prolate. (3) The stronger toroidal magnetic fields lead to the mass shedding of the stars at the lower angular velocity. (4) For some equilibrium sequences of the constant baryon mass and magnetic flux, the stars can spin up as they lose angular momentum.
chemf: A purely functional chemistry toolkit.
Höck, Stefan; Riedl, Rainer
2012-12-20
Although programming in a type-safe and referentially transparent style offers several advantages over working with mutable data structures and side effects, this style of programming has not seen much use in chemistry-related software. Since functional programming languages were designed with referential transparency in mind, these languages offer a lot of support when writing immutable data structures and side-effects free code. We therefore started implementing our own toolkit based on the above programming paradigms in a modern, versatile programming language. We present our initial results with functional programming in chemistry by first describing an immutable data structure for molecular graphs together with a couple of simple algorithms to calculate basic molecular properties before writing a complete SMILES parser in accordance with the OpenSMILES specification. Along the way we show how to deal with input validation, error handling, bulk operations, and parallelization in a purely functional way. At the end we also analyze and improve our algorithms and data structures in terms of performance and compare it to existing toolkits both object-oriented and purely functional. All code was written in Scala, a modern multi-paradigm programming language with a strong support for functional programming and a highly sophisticated type system. We have successfully made the first important steps towards a purely functional chemistry toolkit. The data structures and algorithms presented in this article perform well while at the same time they can be safely used in parallelized applications, such as computer aided drug design experiments, without further adjustments. This stands in contrast to existing object-oriented toolkits where thread safety of data structures and algorithms is a deliberate design decision that can be hard to implement. Finally, the level of type-safety achieved by Scala highly increased the reliability of our code as well as the productivity of
Synthesis of highly phase pure BSCCO superconductors
Dorris, S.E.; Poeppel, R.B.; Prorok, B.C.; Lanagan, M.T.; Maroni, V.A.
1995-11-21
An article and method of manufacture (Bi, Pb)-Sr-Ca-Cu-O superconductor are disclosed. The superconductor is manufactured by preparing a first powdered mixture of bismuth oxide, lead oxide, strontium carbonate, calcium carbonate and copper oxide. A second powdered mixture is then prepared of strontium carbonate, calcium carbonate and copper oxide. The mixtures are calcined separately with the two mixtures then combined. The resulting combined mixture is then subjected to a powder in tube deformation and thermal processing to produce a substantially phase pure (Bi, Pb)-Sr-Ca-Cu-O superconductor. 5 figs.
Initial singularity and pure geometric field theories
Wanas, M. I.; Kamal, Mona M.; Dabash, Tahia F.
2018-01-01
In the present article we use a modified version of the geodesic equation, together with a modified version of the Raychaudhuri equation, to study initial singularities. These modified equations are used to account for the effect of the spin-torsion interaction on the existence of initial singularities in cosmological models. Such models are the results of solutions of the field equations of a class of field theories termed pure geometric. The geometric structure used in this study is an absolute parallelism structure satisfying the cosmological principle. It is shown that the existence of initial singularities is subject to some mathematical (geometric) conditions. The scheme suggested for this study can be easily generalized.
Purely cubic action for string field theory
Horowitz, G. T.; Lykken, J.; Rohm, R.; Strominger, A.
1986-01-01
It is shown that Witten's (1986) open-bosonic-string field-theory action and a closed-string analog can be written as a purely cubic interaction term. The conventional form of the action arises by expansion around particular solutions of the classical equations of motion. The explicit background dependence of the conventional action via the Becchi-Rouet-Stora-Tyutin operator is eliminated in the cubic formulation. A closed-form expression is found for the full nonlinear gauge-transformation law.
Radial and axial compression of pure electron
International Nuclear Information System (INIS)
Park, Y.; Soga, Y.; Mihara, Y.; Takeda, M.; Kamada, K.
2013-01-01
Experimental studies are carried out on compression of the density distribution of a pure electron plasma confined in a Malmberg-Penning Trap in Kanazawa University. More than six times increase of the on-axis density is observed under application of an external rotating electric field that couples to low-order Trivelpiece-Gould modes. Axial compression of the density distribution with the axial length of a factor of two is achieved by controlling the confining potential at both ends of the plasma. Substantial increase of the axial kinetic energy is observed during the axial compression. (author)
Pure and Public, Popular and personal
DEFF Research Database (Denmark)
Eriksson, Birgit
2013-01-01
In the article I reexamine the traditional aesthetical and political critiques of popular culture and reevaluate the social and communicative potential of bestselling cultural artifacts such as highly popular television series. First, I sketch the alleged aesthetic and social problems of popular...... and the exclusions of the public sphere. I argue that the ideals of a pure aesthetic and a public sphere neglect issues that are crucial to the type of commonality at stake in popular cultural artifacts: personal issues, social conflicts, and what is pleasurable to the senses or has to do with emotions. Third, I...
Preparation of a pure molecular quantum gas.
Herbig, Jens; Kraemer, Tobias; Mark, Michael; Weber, Tino; Chin, Cheng; Nägerl, Hanns-Christoph; Grimm, Rudolf
2003-09-12
An ultracold molecular quantum gas is created by application of a magnetic field sweep across a Feshbach resonance to a Bose-Einstein condensate of cesium atoms. The ability to separate the molecules from the atoms permits direct imaging of the pure molecular sample. Magnetic levitation enables study of the dynamics of the ensemble on extended time scales. We measured ultralow expansion energies in the range of a few nanokelvin for a sample of 3000 molecules. Our observations are consistent with the presence of a macroscopic molecular matter wave.
Heat engine driven by purely quantum information
Park, Jung Jun; Kim, Kang-Hwan; Sagawa, Takahiro; Kim, Sang Wook
2013-01-01
The key question of this paper is whether work can be extracted from a heat engine by using purely quantum mechanical information. If the answer is yes, what is its mathematical formula? First, by using a bipartite memory we show that the work extractable from a heat engine is bounded not only by the free energy change and the sum of the entropy change of an individual memory but also by the change of quantum mutual information contained inside the memory. We then find that the engine can be ...
Dynamical structure of pure Lovelock gravity
Dadhich, Naresh; Durka, Remigiusz; Merino, Nelson; Miskovic, Olivera
2016-03-01
We study the dynamical structure of pure Lovelock gravity in spacetime dimensions higher than four using the Hamiltonian formalism. The action consists of a cosmological constant and a single higher-order polynomial in the Riemann tensor. Similarly to the Einstein-Hilbert action, it possesses a unique constant curvature vacuum and charged black hole solutions. We analyze physical degrees of freedom and local symmetries in this theory. In contrast to the Einstein-Hilbert case, the number of degrees of freedom depends on the background and can vary from zero to the maximal value carried by the Lovelock theory.
On the importance of PURE - Public Understanding of Renewable Energy
Energy Technology Data Exchange (ETDEWEB)
Broman, Lars; Kandpal, Tara C.
2013-09-15
Public understanding of science (PUS) is a central concept among science communicators. Public understanding of renewable energy (PURE) is proposed as an important sub-concept of PUS. The aim of this paper is to interest and invite renewable energy scientists to join a PURE research project. Four separate important questions for a PURE research project can be identified: (A) Is PURE important? (B) Which issues of PURE are the most important ones, according to renewable energy scientists? (C) What understanding of renewable energy has the general public today, worldwide? (D) How to achieve PURE?.
Cubo, Esther; Leurgans, Sue; Goetz, Christopher G
2004-12-01
In a randomized single blind parallel study, we tested the efficacy of an auditory metronome on walking speed and freezing in Parkinson's disease (PD) patients with freezing gait impairment during their 'on' function. No pharmacological treatment is effective in managing 'on' freezing in PD. Like visual cues that can help overcome freezing, rhythmic auditory pacing may provide cues that help normalize walking pace and overcome freezing. Non-demented PD patients with freezing during their 'on' state walked under two conditions, in randomized order: unassisted walking and walking with the use of an audiocassette with a metronome recording. The walking trials were randomized and gait variables were rated from videotapes by a blinded evaluator. Outcome measures were total walking time (total trial time-total freezing time), which was considered the time over a course of specified length, freezing time, average freeze duration and number of freezes. All outcomes were averaged across trials for each person and then compared across conditions using Signed Rank tests. Twelve non-demented PD patients with a mean age of 65.8 +/- 11.2 years, and mean PD duration of 12.4 +/- 7.3 years were included. The use of the metronome slowed ambulation and increased the total walking time (P metronome recording home and used it daily for 1 week while walking, freezing remained unimproved. Though advocated in prior publications as a walking aid for PD patients, auditory metronome pacing slows walking and is not a beneficial intervention for freezing during their 'on' periods.
Tseng, Po-Hao; Hsu, Kai-Chieh; Lin, Yu-Yu; Lee, Feng-Min; Lee, Ming-Hsiu; Lung, Hsiang-Lan; Hsieh, Kuang-Yeu; Chung Wang, Keh; Lu, Chih-Yuan
2018-04-01
A high performance physically unclonable function (PUF) implemented with WO3 resistive random access memory (ReRAM) is presented in this paper. This robust ReRAM-PUF can eliminated bit flipping problem at very high temperature (up to 250 °C) due to plentiful read margin by using initial resistance state and set resistance state. It is also promised 10 years retention at the temperature range of 210 °C. These two stable resistance states enable stable operation at automotive environments from -40 to 125 °C without need of temperature compensation circuit. The high uniqueness of PUF can be achieved by implementing a proposed identification (ID)-generation method. Optimized forming condition can move 50% of the cells to low resistance state and the remaining 50% remain at initial high resistance state. The inter- and intra-PUF evaluations with unlimited separation of hamming distance (HD) are successfully demonstrated even under the corner condition. The number of reproduction was measured to exceed 107 times with 0% bit error rate (BER) at read voltage from 0.4 to 0.7 V.
High-power pure blue laser diodes
Energy Technology Data Exchange (ETDEWEB)
Ohta, M.; Ohizumi, Y.; Hoshina, Y.; Tanaka, T.; Yabuki, Y.; Goto, S.; Ikeda, M. [Development Center, Sony Shiroishi Semiconductor Inc., Miyagi (Japan); Funato, K. [Materials Laboratories, Sony Corporation, Kanagawa (Japan); Tomiya, S. [Materials Analysis Laboratory, Sony Corporation, Kanagawa (Japan)
2007-06-15
We successfully developed high-power and long-lived pure blue laser diodes (LDs) having an emission wavelength of 440-450 nm. The pure-blue LDs were grown by metalorganic chemical vapor deposition (MOCVD) on GaN substrates. The dislocation density was successfully reduced to {proportional_to}10{sup 6} cm{sup -2} by optimizing the MOCVD growth conditions and the active layer structure. The vertical layer structure was designed to have an absorption loss of 4.9 cm{sup -1} and an internal quantum efficiency of 91%. We also reduced the operating current density to 6 kA/cm{sup 2} under 750 mW continuous-wave operation at 35 C by optimizing the stripe width to 12 {mu}m and the cavity length to 2000 {mu}m. The half lifetimes in constant current mode are estimated to be longer than 10000 h. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Purely temporal figure-ground segregation.
Kandil, F I; Fahle, M
2001-05-01
Visual figure-ground segregation is achieved by exploiting differences in features such as luminance, colour, motion or presentation time between a figure and its surround. Here we determine the shortest delay times required for figure-ground segregation based on purely temporal features. Previous studies usually employed stimulus onset asynchronies between figure- and ground-containing possible artefacts based on apparent motion cues or on luminance differences. Our stimuli systematically avoid these artefacts by constantly showing 20 x 20 'colons' that flip by 90 degrees around their midpoints at constant time intervals. Colons constituting the background flip in-phase whereas those constituting the target flip with a phase delay. We tested the impact of frequency modulation and phase reduction on target detection. Younger subjects performed well above chance even at temporal delays as short as 13 ms, whilst older subjects required up to three times longer delays in some conditions. Figure-ground segregation can rely on purely temporal delays down to around 10 ms even in the absence of luminance and motion artefacts, indicating a temporal precision of cortical information processing almost an order of magnitude lower than the one required for some models of feature binding in the visual cortex [e.g. Singer, W. (1999), Curr. Opin. Neurobiol., 9, 189-194]. Hence, in our experiment, observers are unable to use temporal stimulus features with the precision required for these models.
MRI of autosomal dominant pure spastic paraplegia
International Nuclear Information System (INIS)
Krabbe, K.; Fallentin, E.; Herning, M.; Nielsen, J.E.; Fenger, K.
1997-01-01
We examined 16 patients with autosomal dominant pure spastic paraplegia (HSP) and 15 normal controls matched for age and sex using MRI of the brain and spinal cord. Images were assessed qualitatively by two independent radiologists, blinded to the clinical diagnosis. Areas of the brain and corpus callosum on one midsagittal slice and the area of the brain on one axial slice were measured and a ''corpus-callosum index'' expressing the size of the corpus callosum relative to that of the brain was calculated. Cross-sectional areas and anteroposterior and transverse diameters of the spinal cord at the levels of C 2, C 5, T 3, T 6, T 9 and T 11 were measured. No significant differences between patients and controls were found on qualitative evaluation of the images. The patients had a significantly smaller corpus callosum and ''corpus-callosum index'' than controls. This finding, not reported previously, might indicate that the disease process in pure HSP is not confined to the spinal cord. The anteroposterior diameters of the spinal cord at T 3 and T 9 were significantly smaller in patients than in controls. This might correspond to the degeneration of the pyramidal tracts and the dorsal columns described at neuropathological examination. (orig.). With 1 fig., 3 tabs
MRI of autosomal dominant pure spastic paraplegia
Energy Technology Data Exchange (ETDEWEB)
Krabbe, K.; Fallentin, E.; Herning, M. [Danish Research Center of Magnetic Resonance, Hvidovre Hospital, Kettegaard alle 30, DK-2650 Hvidovre (Denmark); Nielsen, J.E.; Fenger, K. [Institute of Medical Biochemistry and Genetics, Laboratory of Medical Genetics, Section of Neurogenetics, University of Copenhagen (Denmark)
1997-10-01
We examined 16 patients with autosomal dominant pure spastic paraplegia (HSP) and 15 normal controls matched for age and sex using MRI of the brain and spinal cord. Images were assessed qualitatively by two independent radiologists, blinded to the clinical diagnosis. Areas of the brain and corpus callosum on one midsagittal slice and the area of the brain on one axial slice were measured and a ``corpus-callosum index`` expressing the size of the corpus callosum relative to that of the brain was calculated. Cross-sectional areas and anteroposterior and transverse diameters of the spinal cord at the levels of C 2, C 5, T 3, T 6, T 9 and T 11 were measured. No significant differences between patients and controls were found on qualitative evaluation of the images. The patients had a significantly smaller corpus callosum and ``corpus-callosum index`` than controls. This finding, not reported previously, might indicate that the disease process in pure HSP is not confined to the spinal cord. The anteroposterior diameters of the spinal cord at T 3 and T 9 were significantly smaller in patients than in controls. This might correspond to the degeneration of the pyramidal tracts and the dorsal columns described at neuropathological examination. (orig.). With 1 fig., 3 tabs.
Nanoporous Au: an unsupported pure gold catalyst?
Energy Technology Data Exchange (ETDEWEB)
Wittstock, A; Neumann, B; Schaefer, A; Dumbuya, K; Kuebel, C; Biener, M; Zielasek, V; Steinrueck, H; Gottfried, M; Biener, J; Hamza, A; B?umer, M
2008-09-04
The unique properties of gold especially in low temperature CO oxidation have been ascribed to a combination of various effects. In particular, particle sizes below a few nm and specific particle-support interactions have been shown to play important roles. On the contrary, recent reports revealed that monolithic nanoporous gold (npAu) prepared by leaching a less noble metal, such as Ag, out of the corresponding alloy can also exhibit remarkably high catalytic activity for CO oxidation, even though no support is present. Therefore, it was claimed to be a pure and unsupported gold catalyst. We investigated npAu with respect to its morphology, surface composition and catalytic properties. In particular, we studied the reaction kinetics for low temperature CO oxidation in detail taking mass transport limitation due to the porous structure of the material into account. Our results reveal that Ag, even if removed almost completely from the bulk, segregates to the surface resulting in surface concentrations of up to 10 at%. Our data suggest that this Ag plays a significant role in activation of molecular oxygen. Therefore, npAu should be considered as a bimetallic catalyst rather than a pure Au catalyst.
Simonoff, Emily
2018-04-01
This issue of the Journal includes two articles summarizing the evidence from clinical trials aimed at improving symptoms of autism. French and Kennedy (Journal of Child Psychology and Psychiatry, 2018, xx, xxxx) systematically review randomized controlled trials (RCTs) aimed at an "early intervention" and focus on trials including children with or at risk of autism under age 6 years. Although no type of intervention were excluded from their review, none of the included 48 RCTs employed pharmacological modalities and the overwhelming majority tested psychological/behavioural interventions aimed at modifying aspects of observed behaviours that are abnormal in children with autism. Using the standard Cochrane tool for evaluating risk of bias, French and Kennedy conclude that many RCTs are of low quality, which throws into question the reliance that should be placed on the findings. © 2018 Association for Child and Adolescent Mental Health.
International Nuclear Information System (INIS)
Lechaftois, Francois
2016-01-01
This thesis presents three aspects centered around the QRPA (Quasiparticle Random Phase Approximation). The first consists in the use of an axial code to confront computed data with experimental results and to feed a microscopic reaction code. This step is a chance to analyse low-energy spectroscopy (few tens of MeV) of some nuclei, and more precisely (but not exclusively) the tin isotopic chain (Z=50). The second one relies on the improvement of the formalism to calculate multipolar electromagnetic transition operators, and a method to consolidate the computation of these operators, allowing to ease the programming by unifying the code for different multipolarities. Finally, in order to overcome the axial symmetry constraint, a new triaxial code has been developed. Its assets and development are presented, followed by the first batch of results. (author) [fr
Moghe, Dhanashree A.; Dey, Amrita; Johnson, Kerr; Lu, L.-P.; Friend, Richard H.; Kabra, Dinesh
2018-04-01
We report a blue-emitting random copolymer (termed modified Aryl-F8) consisting of three repeat units of polydioctylfluorene (F8), Aryl-polydioctylfluorene (Aryl-F8), and an aromatic amine comonomer unit, poly(bis-N,Ν'-(4-butylphenyl)-bis-N,N'-phenyl-1,4 phenylenediamine) chemically linked to get an improved charge carrier balance without compromising on the photoluminescence (PL) quantum yield with respect to the Aryl-F8 homo-polymer. The measured photoluminescence quantum efficiency (˜70%) of the blue-emitting polymer is comparable to or greater than the individual monomer units. The time resolved PL spectra from the modified Aryl-F8 are similar to those of Arylated-poly(9,9'-dioctylfluorene-co-bis-N,N'-(4-butylphenyl)-bis-N,N'-phenyl-1,4 phenylenediamine) (PFB) even at a time scale of 100-250 ps, indicating an ultrafast energy transfer from the (Aryl-F8 or F8):Arylated-PFB interface to Arylated-PFB, i.e., endothermic transfer of non-radiative exciplex to a radiative molecular exciton. Furthermore, the presence of non-radiative exciplex is confirmed by the photoluminescence decay profile and temperature dependent PL spectra. The luminance efficiency achieved for the modified Aryl-F8 polymer light-emitting diodes is ˜11 cd A-1 with an external quantum efficiency (EQE) of ˜4.5%, whereas it is 0.05 cd/A with an EQE of ˜0.025% for Aryl-F8. Almost two orders of higher efficiency is achieved due to the improved charge carrier balance from the random copolymer without compromising on the photoluminescence yield.
De Ruiter, Naomi M. P.; Den Hartigh, Ruud J. R.; Cox, Ralf F. A.; Van Geert, Paul L. C.; Kunnen, E. Saskia
2015-01-01
Research regarding the variability of state self-esteem (SSE) commonly focuses on the magnitude of variability. In this article we provide the first empirical test of the temporalstructure of SSE as a real-time process during parent-adolescent interactions. We adopt a qualitative phenomenological
Kim, So Hee; Kook, Jeong Ran; Kwon, Moonjung; Son, Myeong Ha; Ahn, Seung Do; Kim, Yeon Hee
2015-04-01
To investigate whether laughter therapy lowers total mood disturbance scores and improves self-esteem scores in patients with cancer. Randomized controlled trial in a radio-oncology outpatient setting. Sixty-two patients were enrolled and randomly assigned to the experimental group (n=33) or the wait list control group (n=29). Three laughter therapy sessions lasting 60 minutes each. Mood state and self-esteem. The intention-to-treat analysis revealed a significant main effect of group: Experimental group participants reported a 14.12-point reduction in total mood disturbance, while the wait list control group showed a 1.21-point reduction (p=0.001). The per-protocol analysis showed a significant main effect of group: The experimental group reported a 18.86-point decrease in total mood disturbance, while controls showed a 0.19-point reduction (plaughter therapy can improve mood state and self-esteem and can be a beneficial, noninvasive intervention for patients with cancer in clinical settings.
Corrosion behaviour of pure iron implanted with Pd ion beam
International Nuclear Information System (INIS)
Sang, J.M.; Lin, W.L.; Wu, Z.D.; Wang, H.S.
1999-01-01
The corrosion behavior of pure iron implanted with Pd ions up to doses in the range 1x10 16 -1x10 18 ions/cm 2 at an extracting voltage 45kV by using MEVVA source ion implanter has been investigated. The concentration profiles and valence states of elements at the near surface of Pd implanted iron specimens were analyzed by AES and XPS respectively. The Anodic dissolution process of Pd implanted pure iron was measured by means of potentiokinetic sweep in a 0.5 mol/1 NaAc/Hac buffer solution with pH5.0. The open circuit corrosion potential as a function of immersion time was used to evaluate the corrosion resistance of Pd implanted iron specimens. The experimental results show that Pd ion implantation decreases the critical passive current of iron and maintains a better passivity in acetate buffer solution with pH5.0. It is interesting that the active corrosion rate of Pd implanted iron is even higher than that of unimplanted one, when the oxide layer on the surface of iron has been damaged. (author)
Purely elastic scattering theories and their ultraviolet limits
International Nuclear Information System (INIS)
Klassen, T.R.; Chicago Univ., IL; Melzer, E.
1990-01-01
We use the thermodynamic Bethe ansatz to find the finite-size corrections to the ground-state energy in an arbitrary (1+1)-dimensional purely elastic scattering theory. The leading finite-size effects are characterized by tilde c=c-12d 0 , where c and d 0 are the central charge and the lowest scaling dimension, respectively, of the (possibly nonunitary) CFT describing the ultraviolet limit of the massive scattering theory. After presenting the purely elastic S-matrix theories that emerged in recent discussions of perturbed CFTs, we calculate their finite-size scaling coefficient tilde c. Our results show that the UV limits of the 'minimal' S-matrix theories are the unperturbed CFTs in question. On the other hand, the S-matrices which have been suggested to describe affine Toda field theories, differing from the minimal S-matrices by coupling-dependent factors, are seen to have free bosonic CFTs as their UV limits. We also discuss some interesting properties of tilde c. In particular, we suggest that tilde c is a measure of the number of degrees of freedom of an arbitrary two-dimensional CFT. (orig.)
Implantation driven permeation behavior of deuterium through pure tungsten
Energy Technology Data Exchange (ETDEWEB)
Nakamura, Hirofumi E-mail: nakamura@tpl.tokai.jaeri.go.jp; Hayashi, Takumi; Nishi, Masataka; Arita, Makoto; Okuno, Kenji
2001-09-01
Implantation driven permeation behavior of deuterium through pure tungsten has been investigated to estimate the amount of tritium permeation through its barrier in a thermo-nuclear fusion device. The permeation experiments were performed on pure tungsten foil of 25 {mu}m thickness under conditions of incident flux of 1.9x10{sup 18}-1.1x10{sup 19} D{sup +}/m{sup 2}s, incident ion energy of 200-2000 eV, and specimen temperature of 512-660 K. As a result of this steady-state permeation experiment, the rate-determining process of deuterium permeation was found to be controlled by diffusion at both implanted and permeated sides. On the other hand, transient permeation was strongly affected by trap effect in the specimen. Simulation analysis using TMAP code on transient permeation behavior indicates the existence of a trap site with a trap energy of nearly 1eV and with a trap density of over several ten's ppm in tungsten.
Implantation driven permeation behavior of deuterium through pure tungsten
International Nuclear Information System (INIS)
Nakamura, Hirofumi; Hayashi, Takumi; Nishi, Masataka; Arita, Makoto; Okuno, Kenji
2001-01-01
Implantation driven permeation behavior of deuterium through pure tungsten has been investigated to estimate the amount of tritium permeation through its barrier in a thermo-nuclear fusion device. The permeation experiments were performed on pure tungsten foil of 25 μm thickness under conditions of incident flux of 1.9x10 18 -1.1x10 19 D + /m 2 s, incident ion energy of 200-2000 eV, and specimen temperature of 512-660 K. As a result of this steady-state permeation experiment, the rate-determining process of deuterium permeation was found to be controlled by diffusion at both implanted and permeated sides. On the other hand, transient permeation was strongly affected by trap effect in the specimen. Simulation analysis using TMAP code on transient permeation behavior indicates the existence of a trap site with a trap energy of nearly 1eV and with a trap density of over several ten's ppm in tungsten
Economic impacts associated with pure taxable capacity changes
International Nuclear Information System (INIS)
Bjornstad, D.J.
1978-01-01
An attempt is made to broaden the purview of fiscal impact analysis to include impacts on the local private sector that may stem from local public sector changes. More specifically, attention is focused on the limiting case, in which new private sector development yields positive changes in fiscal capacity, but does not increase public service demands or interact with the local private sector. This phenomenon is termed a ''pure'' change in fiscal capacity, or, stated differently, pure tax revenue importation. Interest in this issue stems from an analysis of the local impacts of constructing and operating nuclear power stations. Nuclear power stations, like other electrical generating facilities, are characterized by large capital-labor ratios, implying that the impact of siting would be to increase local taxable capacity, via the property tax base, to a greater extent than local private sector activity, via new hirings. Moreover, a small labor force implies a modest change in the demand for local public services, and facilities of this nature by themselves demand few, if any, public services. A nuclear power station, however, may be distinguished from other electrical generating facilities through siting regulations that require locating in a low population density area, a fact which ensures the influence on the community will be substantial. The question of how and to what degree feedback effects from local public to local private sector may take place is described
Chapter 12. Pure Tap Water Hydraulic Systems and Applications
DEFF Research Database (Denmark)
Conrad, Finn; Adelstorp, Anders
1997-01-01
Presentation of developed a modern pure tap water hydraulic components (Nessie), systems and industrial applications.......Presentation of developed a modern pure tap water hydraulic components (Nessie), systems and industrial applications....
Production of tomato puree: an alternative to conservation of locally ...
African Journals Online (AJOL)
Mo
suggest a mean of conservation of the surplus of production by processing tomato into puree. The most produced local ... processing into puree on industrial scale. The main .... functions contributing to the reaction of non-enzymatic browning ...
Archives: Bayero Journal of Pure and Applied Sciences
African Journals Online (AJOL)
Items 1 - 20 of 20 ... Archives: Bayero Journal of Pure and Applied Sciences. Journal Home > Archives: Bayero Journal of Pure and Applied Sciences. Log in or Register to get access to full text downloads.
Nigeria Journal of Pure and Applied Physics: Journal Sponsorship
African Journals Online (AJOL)
Nigeria Journal of Pure and Applied Physics: Journal Sponsorship. Journal Home > About the Journal > Nigeria Journal of Pure and Applied Physics: Journal Sponsorship. Log in or Register to get access to full text downloads.
Archives: Nigeria Journal of Pure and Applied Physics
African Journals Online (AJOL)
Items 1 - 6 of 6 ... Archives: Nigeria Journal of Pure and Applied Physics. Journal Home > Archives: Nigeria Journal of Pure and Applied Physics. Log in or Register to get access to full text downloads.
Nigeria Journal of Pure and Applied Physics: About this journal
African Journals Online (AJOL)
Nigeria Journal of Pure and Applied Physics: About this journal. Journal Home > Nigeria Journal of Pure and Applied Physics: About this journal. Log in or Register to get access to full text downloads.
Nigeria Journal of Pure and Applied Physics: Site Map
African Journals Online (AJOL)
Nigeria Journal of Pure and Applied Physics: Site Map. Journal Home > About the Journal > Nigeria Journal of Pure and Applied Physics: Site Map. Log in or Register to get access to full text downloads.
International Nuclear Information System (INIS)
Ge Zhengming; Chang Chingming
2009-01-01
By applying pure error dynamics and elaborate nondiagonal Lyapunov function, the nonlinear generalized synchronization is studied in this paper. Instead of current mixed error dynamics in which master state variables and slave state variables are presented, the nonlinear generalized synchronization can be obtained by pure error dynamics without auxiliary numerical simulation. The elaborate nondiagonal Lyapunov function is applied rather than current monotonous square sum Lyapunov function deeply weakening the powerfulness of Lyapunov direct method. Both autonomous and nonautonomous double Mathieu systems are used as examples with numerical simulations.
Directory of Open Access Journals (Sweden)
Maguy Saffouh El Hajj
2017-02-01
Full Text Available Abstract Background Cigarette smoking is one of the major preventable causes of death and diseases in Qatar. The study objective was to test the effect of a structured smoking cessation program delivered by trained pharmacists on smoking cessation rates in Qatar. Methods A prospective randomized controlled trial was conducted in eight ambulatory pharmacies in Qatar. Eligible participants were smokers 18 years and older who smoked one or more cigarettes daily for 7 days, were motivated to quit, able to communicate in Arabic or English, and attend the program sessions. Intervention group participants met with the pharmacists four times at 2 to 4 week intervals. Participants in the control group received unstructured brief smoking cessation counseling. The primary study outcome was self-reported continuous abstinence at 12 months. Analysis was made utilizing data from only those who responded and also using intent-to-treat principle. A multinomial logistic regression model was fitted to assess the predictors of smoking at 12 months. Analysis was conducted using IBM-SPSS® version 23 and STATA® version 12. Results A total of 314 smokers were randomized into two groups: intervention (n = 167 and control (n = 147. Smoking cessation rates were higher in the intervention group at 12 months; however this difference was not statistically significant (23.9% vs. 16.9% p = 0.257. Similar results were observed but with smaller differences in the intent to treat analysis (12.6% vs. 9.5%, p = 0.391. Nevertheless, the daily number of cigarettes smoked for those who relapsed was significantly lower (by 4.7 and 5.6 cigarettes at 3 and 6 months respectively in the intervention group as compared to the control group (p = 0.041 and p = 0.018 respectively. At 12 months, the difference was 3.2 cigarettes in favor of the intervention group but was not statistically significant (p = 0.246. Years of smoking and daily number of
Gillani, Syed Wasif; Ansari, Irfan Altaf; Zaghloul, Hisham A; Abdul, Mohi Iqbal Mohammad; Sulaiman, Syed Azhar Syed; Baig, Mirza R
2018-01-01
The aim of this study was to explore the predictors of QOL and health state and examine the relationship with glycemic control among type 2 diabetes mellitus (T2DM) patients. A randomized cross-sectional case-control study was conducted among n = 600 T2DM patients of Malaysia. Study population was distributed into three groups as: controls: patients with HbA1c ≤ 7 (n = 199), cases arm 1: with HbA1c 7-7.9 (n = 204) and cases arm 2 (n = 197): with HbA1c ≥ 8 consecutively last 3 times. Participants with diabetes history > 10 years exhibits higher mean QOL score among all the three groups. In contrast mean health status score significantly ( p diabetes both within and intergroup assessment that participants with poor glycemic control (arm 2) had significantly higher mean QOL score with knowledge and self-care dimensions as compared to others, however mean health state scores were significantly ( p self-care activities, comorbidities, ability of positive management and BMI were significant predictors to health state for consistent glycemic control (controls) as compared to poor glycemic control (arm 2) participants. This study suggested that poor glycemic index reported low self-care behavior, increase barriers to daily living activities and poor ability to manage diabetes positively, which cause poor QOL and decrease health state.
Ollendick, Thomas H; Ost, Lars-Göran; Reuterskiöld, Lena; Costa, Natalie; Cederlund, Rio; Sirbu, Cristian; Davis, Thompson E; Jarrett, Matthew A
2009-06-01
One hundred and ninety-six youth, ages 7-16, who fulfilled Diagnostic and Statistical Manual of Mental Disorders (4th ed.) criteria for various specific phobias were randomized to a one-session exposure treatment, education support treatment, or a wait list control group. After the waiting period, the wait list participants were offered treatment and, if interested, rerandomized to 1 of the 2 active treatments. The phobias were assessed with semistructured diagnostic interviews, clinician severity ratings, and behavioral avoidance tests, whereas fears, general anxiety, depression, and behavior problems were assessed with self- and parent report measures. Assessments were completed pretreatment, posttreatment, and at 6 months following treatment. Results showed that both treatment conditions were superior to the wait list control condition and that 1-session exposure treatment was superior to education support treatment on clinician ratings of phobic severity, percentage of participants who were diagnosis free, child ratings of anxiety during the behavioral avoidance test, and treatment satisfaction as reported by the youth and their parents. There were no differences on self-report measures. Treatment effects were maintained at follow-up. Implications of these findings are discussed. Copyright 2009 APA
High temperature internal friction in pure aluminium
International Nuclear Information System (INIS)
Aboagye, J.K.; Payida, D.S.
1982-05-01
The temperature dependence of internal friction of nearly pure aluminium (99.99% aluminium) has been carefully measured as a function of annealing temperature and hence grain size. The results indicate that, provided the frequency and annealing temperature are held constant, the internal friction increases with temperature until some maximum value is attained and then begins to go down as the temperature is further increased. It is also noted that the internal friction decreases with annealing temperature and that annealing time has the same effect as annealing temperature. It is also noted that the internal friction peak is shifted towards higher temperatures as annealing temperature is increased. It is surmised that the grain size or the total grain boundary volume determines the height of the internal friction curve and that the order-disorder transitions at the grain boundaries induced by both entropy and energy gradients give rise to internal friction peaks in polycrystals. (author)
Black holes in pure Lovelock gravities
International Nuclear Information System (INIS)
Cai Ronggen; Ohta, Nobuyoshi
2006-01-01
Lovelock gravity is a fascinating extension of general relativity, whose action consists of dimensionally extended Euler densities. Compared to other higher order derivative gravity theories, Lovelock gravity is attractive since it has a lot of remarkable features such as the fact that there are no more than second order derivatives with respect to the metric in its equations of motion, and that the theory is free of ghosts. Recently, in the study of black strings and black branes in Lovelock gravity, a special class of Lovelock gravity is considered, which is named pure Lovelock gravity, where only one Euler density term exists. In this paper we study black hole solutions in the special class of Lovelock gravity and associated thermodynamic properties. Some interesting features are found, which are quite different from the corresponding ones in general relativity
Pure White Cell Aplasia and Necrotizing Myositis
Directory of Open Access Journals (Sweden)
Peter Geon Kim
2016-01-01
Full Text Available Pure white cell aplasia (PWCA is a rare hematologic disorder characterized by the absence of neutrophil lineages in the bone marrow with intact megakaryopoiesis and erythropoiesis. PWCA has been associated with autoimmune, drug-induced, and viral exposures. Here, we report a case of a 74-year-old female who presented with severe proximal weakness without pain and was found to have PWCA with nonspecific inflammatory necrotizing myositis and acute liver injury on biopsies. These findings were associated with a recent course of azithromycin and her daily use of a statin. Myositis improved on prednisone but PWCA persisted. With intravenous immunoglobulin and granulocyte-colony stimulating factor therapies, her symptoms and neutrophil counts improved and were sustained for months.
Axisymmetric Eigenmodes of Spheroidal Pure Electron Plasmas
Kawai, Yosuke; Saitoh, Haruhiko; Yoshida, Zensho; Kiwamoto, Yasuhito
2010-11-01
The axisymmetric electrostatic eigenmodes of spheroidal pure electron plasmas have been studied experimentally. It is confirmed that the observed spheroidal plasma attains a theoretically expected equilibrium density distribution, with the exception of a low-density halo distribution surrounding the plasma. When the eigenmode frequency observed for the plasma is compared with the frequency predicted by the dispersion relation derived under ideal conditions wherein the temperature is zero and the boundary is located at an infinite distance from the plasma, it is observed that the absolute value of the observed frequency is systematically higher than the theoretical prediction. Experimental examinations and numerical calculations indicate that the upward shift of the eigenmode frequency cannot be accounted for solely by the finite temperature effect, but is significantly affected by image charges induced on the conducting boundary and the resulting distortion of the density profile from the theoretical expectation.
MRI of autosomal dominant pure spastic paraplegia
DEFF Research Database (Denmark)
Krabbe, K.; Nielsen, J.E.; Fallentin, E.
1997-01-01
We examined 16 patients with autosomal dominant pure spastic paraplegia (HSP) and 15 normal controls matched for age and sex using MRI of the brain and spinal cord. Images were assessed qualitatively by two independent radiologists, blinded to the clinical diagnosis. Areas of the brain and corpus...... callosum on one midsagittal slice and the area of the brain on one axial slice were measured and a "corpus-callosum index" expressing the size of the corpus callosum relative to that of the brain was calculated. Cross-sectional areas and anteroposterior and transverse diameters of the spinal cord...... at the levels of C 2, C 5, T 3, T 6, T 9 and T 11 were measured. No significant differences between patients and controls were found on qualitative evaluation of the images. The patients had a significantly smaller corpus callosum and "corpus-callosum index" than controls. This finding, not reported previously...
Selective Laser Melting of Pure Copper
Ikeshoji, Toshi-Taka; Nakamura, Kazuya; Yonehara, Makiko; Imai, Ken; Kyogoku, Hideki
2018-03-01
Appropriate building parameters for selective laser melting of 99.9% pure copper powder were investigated at relatively high laser power of 800 W for hatch pitch in the range from 0.025 mm to 0.12 mm. The highest relative density of the built material was 99.6%, obtained at hatch pitch of 0.10 mm. Building conditions were also studied using transient heat analysis in finite element modeling of the liquidation and solidification of the powder layer. The estimated melt pool length and width were comparable to values obtained by observations using a thermoviewer. The trend for the melt pool width versus the hatch pitch agreed with experimental values.
Momentum of the Pure Radiation Field
Directory of Open Access Journals (Sweden)
Lehnert B.
2007-01-01
Full Text Available The local momentum equation of the pure radiation field is considered in terms of an earlier elaborated and revised electromagnetic theory. In this equation the contribution from the volume force is found to vanish in rectangular geometry, and to become nonzero but negligible in cylindrical geometry. Consequently the radiated momentum is due to the Poynting vector only, as in conventional electrodynamics. It results in physically relevant properties of a photon model having an angular momentum (spin. The Poynting vector concept is further compared to the quantized momentum concept for a free particle, as represented by a spatial gradient operator acting on the wave function. However, this latter otherwise successful concept leads to difficulties in the physical interpretation of known and expected photon properties such as the spin, the negligible loss of transverse momentum across a bounding surface, and the Lorentz invariance.
Development and evaluation of 'Pure Rush': An online serious game for drug education.
Stapinski, Lexine A; Reda, Bill; Newton, Nicola C; Lawler, Siobhan; Rodriguez, Daniel; Chapman, Catherine; Teesson, Maree
2018-04-01
Learning is most effective when it is active, enjoyable and incorporates feedback. Past research demonstrates that serious games are prime candidates to utilise these principles, however the potential benefits of this approach for delivering drug education are yet to be examined in Australia, a country where drug education in schools is mandatory. The serious game 'Pure Rush' was developed across three stages. First, formative consultation was conducted with 115 students (67% male, aged 15-17 years), followed by feasibility and acceptability testing of a prototype of the game (n = 25, 68% male). In the final stage, 281 students (62% female, aged 13-16 years) were randomly allocated to receive a lesson involving Pure Rush or an active control lesson. The lessons were compared in terms of learning outcomes, lesson engagement and future intentions to use illicit drugs. Students enjoyed playing Pure Rush, found the game age-appropriate and the information useful to them. Both the Pure Rush and the active control were associated with significant knowledge increase from pre to post-test. Among females, multi-level mixed-effects regression showed knowledge gain was greater in the Pure Rush condition compared to control (β = 2.36, 95% confidence interval 0.36-4.38). There was no evidence of between condition differences in lesson engagement or future intentions to use illicit drugs. Pure Rush is an innovative online drug education game that is well received by students and feasible to implement in schools. [Stapinski LA, Reda B, Newton NC, Lawler S, Rodriguez D, Chapman C, Teesson M. Development and evaluation of 'Pure Rush': An online serious game for drug education. Drug Alcohol Rev 2017]. © 2017 Australasian Professional Society on Alcohol and other Drugs.
Chambers, Jeffrey A.
1994-01-01
Finite element analysis is regularly used during the engineering cycle of mechanical systems to predict the response to static, thermal, and dynamic loads. The finite element model (FEM) used to represent the system is often correlated with physical test results to determine the validity of analytical results provided. Results from dynamic testing provide one means for performing this correlation. One of the most common methods of measuring accuracy is by classical modal testing, whereby vibratory mode shapes are compared to mode shapes provided by finite element analysis. The degree of correlation between the test and analytical mode shapes can be shown mathematically using the cross orthogonality check. A great deal of time and effort can be exhausted in generating the set of test acquired mode shapes needed for the cross orthogonality check. In most situations response data from vibration tests are digitally processed to generate the mode shapes from a combination of modal parameters, forcing functions, and recorded response data. An alternate method is proposed in which the same correlation of analytical and test acquired mode shapes can be achieved without conducting the modal survey. Instead a procedure is detailed in which a minimum of test information, specifically the acceleration response data from a random vibration test, is used to generate a set of equivalent local accelerations to be applied to the reduced analytical model at discrete points corresponding to the test measurement locations. The static solution of the analytical model then produces a set of deformations that once normalized can be used to represent the test acquired mode shapes in the cross orthogonality relation. The method proposed has been shown to provide accurate results for both a simple analytical model as well as a complex space flight structure.
Effect Of Natural Convection On Directional Solidification Of Pure Metal
Directory of Open Access Journals (Sweden)
Skrzypczak T.
2015-06-01
Full Text Available The paper is focused on the modeling of the directional solidification process of pure metal. During the process the solidification front is sharp in the shape of the surface separating liquid from solid in three dimensional space or a curve in 2D. The position and shape of the solid-liquid interface change according to time. The local velocity of the interface depends on the values of heat fluxes on the solid and liquid sides. Sharp interface solidification belongs to the phase transition problems which occur due to temperature changes, pressure, etc. Transition from one state to another is discontinuous from the mathematical point of view. Such process can be identified during water freezing, evaporation, melting and solidification of metals and alloys, etc.
Multiphase layered oxide growth on pure metals. I. General formulation
International Nuclear Information System (INIS)
Fromhold, A.T. Jr.
1982-01-01
A general formulation for the simultaneous growth of any number of layered planar oxide phases on a pure metal under diffusion-controlled conditions has been developed. Four individual situations have been developed in detail, namely, situations in which the predominant mode of ion transport is by cation interstitials, cation vacancies, anion interstitials, or anion vacancies. The generalized formulation enables the determination of quasi-steady-state growth kinetics following step function changes in the experimental conditions such as ambient oxygen pressure or temperature. Numerical evaluation of the coupled growth equations for the individual phases is required to deduce the general predictions of the theory. In the limit of two-layer growth by cation interstitial diffusion, the present formulation reproduces the earlier results of Fromhold and Sato
Vacancy-Mediated Magnetism in Pure Copper Oxide Nanoparticles
2010-01-01
Room temperature ferromagnetism (RTF) is observed in pure copper oxide (CuO) nanoparticles which were prepared by precipitation method with the post-annealing in air without any ferromagnetic dopant. X-ray photoelectron spectroscopy (XPS) result indicates that the mixture valence states of Cu1+ and Cu2+ ions exist at the surface of the particles. Vacuum annealing enhances the ferromagnetism (FM) of CuO nanoparticles, while oxygen atmosphere annealing reduces it. The origin of FM is suggested to the oxygen vacancies at the surface/or interface of the particles. Such a ferromagnet without the presence of any transition metal could be a very good option for a class of spintronics. PMID:20671775
International Nuclear Information System (INIS)
Kar, S.; Ho, Y.K.
2009-01-01
We have investigated the doubly excited 1 D e resonance states of Ps - interacting with pure Coulomb and screened Coulomb (Yukawa) potentials employing highly correlated wave functions. For pure Coulomb interaction, in the framework of stabilization method and complex coordinate rotation method we have obtained two resonances below the n = 2 threshold of the Ps atom. For screened Coulomb interaction, we employ the stabilization method to extract resonance parameters. Resonance energies and widths for the 1 D e resonance states of Ps - for different screening parameter ranging from infinity (pure Coulomb case) to a small value are also reported. (author)
Isotopically pure single crystal epitaxial diamond films and their preparation
International Nuclear Information System (INIS)
Banholzer, W.F.; Anthony, T.R.; Williams, D.M.
1992-01-01
The present invention is directed to the production of single crystal diamond consisting of isotopically pure carbon-12 or carbon-13. In the present invention, isotopically pure single crystal diamond is grown on a single crystal substrate directly from isotopically pure carbon-12 or carbon-13. One method for forming isotopically pure single crystal diamond comprises the steps of placing in a reaction chamber a single substrate heated to an elevated diamond forming temperature. Another method for forming isotopically pure single crystal diamond comprises diffusing isotopically pure carbon-12 or carbon-13 through a metallic catalyst under high pressure to a region containing a single crystal substrate to form an isotopically pure single crystal diamond layer on said single crystal substrate
Edgington, Eugene
2007-01-01
Statistical Tests That Do Not Require Random Sampling Randomization Tests Numerical Examples Randomization Tests and Nonrandom Samples The Prevalence of Nonrandom Samples in Experiments The Irrelevance of Random Samples for the Typical Experiment Generalizing from Nonrandom Samples Intelligibility Respect for the Validity of Randomization Tests Versatility Practicality Precursors of Randomization Tests Other Applications of Permutation Tests Questions and Exercises Notes References Randomized Experiments Unique Benefits of Experiments Experimentation without Mani
International Nuclear Information System (INIS)
Lee, Yoon Hee; Cho, Bum Hee; Cho, Nam Zin
2016-01-01
As a type of accident-tolerant fuel, fully ceramic microencapsulated (FCM) fuel was proposed after the Fukushima accident in Japan. The FCM fuel consists of tristructural isotropic particles randomly dispersed in a silicon carbide (SiC) matrix. For a fuel element with such high heterogeneity, we have proposed a two-temperature homogenized model using the particle transport Monte Carlo method for the heat conduction problem. This model distinguishes between fuel-kernel and SiC matrix temperatures. Moreover, the obtained temperature profiles are more realistic than those of other models. In Part I of the paper, homogenized parameters for the FCM fuel in which tristructural isotropic particles are randomly dispersed in the fine lattice stochastic structure are obtained by (1) matching steady-state analytic solutions of the model with the results of particle transport Monte Carlo method for heat conduction problems, and (2) preserving total enthalpies in fuel kernels and SiC matrix. The homogenized parameters have two desirable properties: (1) they are insensitive to boundary conditions such as coolant bulk temperatures and thickness of cladding, and (2) they are independent of operating power density. By performing the Monte Carlo calculations with the temperature-dependent thermal properties of the constituent materials of the FCM fuel, temperature-dependent homogenized parameters are obtained
Irradiation softening in pure iron single crystals
International Nuclear Information System (INIS)
Meshii, M.
1975-01-01
The characteristics of irradiation softening in Fe were studied. Results show that irradiation softening effect can be explained by the intrinsic mechanism, namely, the interaction of screw dislocations with randomly dispersed interstitials. At least some of the solid solution softening phenomena observed in alloys can be explained by the same mechanism. However, the alloying may be accompanied by an additional effect such as solute segregation to dislocations which may also strongly affect the yield stress. This effect may mask the softening effect partially or totally. Changes in the dislocation structure of deformed specimens caused by alloying, which are often reported in electron microscopic investigations, support this contention. The alloying, therefore, may not be as good as the low temperature irradiation in studying the effect of random solutes on dislocation motion and yield stress
Restoration of dimensional reduction in the random-field Ising model at five dimensions
Fytas, Nikolaos G.; Martín-Mayor, Víctor; Picco, Marco; Sourlas, Nicolas
2017-04-01
The random-field Ising model is one of the few disordered systems where the perturbative renormalization group can be carried out to all orders of perturbation theory. This analysis predicts dimensional reduction, i.e., that the critical properties of the random-field Ising model in D dimensions are identical to those of the pure Ising ferromagnet in D -2 dimensions. It is well known that dimensional reduction is not true in three dimensions, thus invalidating the perturbative renormalization group prediction. Here, we report high-precision numerical simulations of the 5D random-field Ising model at zero temperature. We illustrate universality by comparing different probability distributions for the random fields. We compute all the relevant critical exponents (including the critical slowing down exponent for the ground-state finding algorithm), as well as several other renormalization-group invariants. The estimated values of the critical exponents of the 5D random-field Ising model are statistically compatible to those of the pure 3D Ising ferromagnet. These results support the restoration of dimensional reduction at D =5 . We thus conclude that the failure of the perturbative renormalization group is a low-dimensional phenomenon. We close our contribution by comparing universal quantities for the random-field problem at dimensions 3 ≤D equality at all studied dimensions.
International Nuclear Information System (INIS)
Bhasker, H. P.; Dhar, S.; Sain, A.; Kesaria, Manoj; Shivaprasad, S. M.
2012-01-01
Transport and optical properties of random networks of c-axis oriented wedge-shaped GaN nanowalls grown spontaneously on c-plane sapphire substrates through molecular beam epitaxy are investigated. Our study suggests a one dimensional confinement of carriers at the top edges of these connected nanowalls, which results in a blue shift of the band edge luminescence, a reduction of the exciton-phonon coupling, and an enhancement of the exciton binding energy. Not only that, the yellow luminescence in these samples is found to be completely suppressed even at room temperature. All these changes are highly desirable for the enhancement of the luminescence efficiency of the material. More interestingly, the electron mobility through the network is found to be significantly higher than that is typically observed for GaN epitaxial films. This dramatic improvement is attributed to the transport of electrons through the edge states formed at the top edges of the nanowalls.
Subquantum nonlocal correlations induced by the background random field
Energy Technology Data Exchange (ETDEWEB)
Khrennikov, Andrei, E-mail: Andrei.Khrennikov@lnu.s [International Center for Mathematical Modelling in Physics and Cognitive Sciences, Linnaeus University, Vaexjoe (Sweden); Institute of Information Security, Russian State University for Humanities, Moscow (Russian Federation)
2011-10-15
We developed a purely field model of microphenomena-prequantum classical statistical field theory (PCSFT). This model not only reproduces important probabilistic predictions of quantum mechanics (QM) including correlations for entangled systems, but also gives a possibility to go beyond QM, i.e. to make predictions of phenomena that could be observed at the subquantum level. In this paper, we discuss one such prediction-the existence of nonlocal correlations between prequantum random fields corresponding to all quantum systems. (And by PCSFT, quantum systems are represented by classical Gaussian random fields and quantum observables by quadratic forms of these fields.) The source of these correlations is the common background field. Thus all prequantum random fields are 'entangled', but in the sense of classical signal theory. On the one hand, PCSFT demystifies quantum nonlocality by reducing it to nonlocal classical correlations based on the common random background. On the other hand, it demonstrates total generality of such correlations. They exist even for distinguishable quantum systems in factorizable states (by PCSFT terminology-for Gaussian random fields with covariance operators corresponding to factorizable quantum states).
Subquantum nonlocal correlations induced by the background random field
International Nuclear Information System (INIS)
Khrennikov, Andrei
2011-01-01
We developed a purely field model of microphenomena-prequantum classical statistical field theory (PCSFT). This model not only reproduces important probabilistic predictions of quantum mechanics (QM) including correlations for entangled systems, but also gives a possibility to go beyond QM, i.e. to make predictions of phenomena that could be observed at the subquantum level. In this paper, we discuss one such prediction-the existence of nonlocal correlations between prequantum random fields corresponding to all quantum systems. (And by PCSFT, quantum systems are represented by classical Gaussian random fields and quantum observables by quadratic forms of these fields.) The source of these correlations is the common background field. Thus all prequantum random fields are 'entangled', but in the sense of classical signal theory. On the one hand, PCSFT demystifies quantum nonlocality by reducing it to nonlocal classical correlations based on the common random background. On the other hand, it demonstrates total generality of such correlations. They exist even for distinguishable quantum systems in factorizable states (by PCSFT terminology-for Gaussian random fields with covariance operators corresponding to factorizable quantum states).
Pure Insulin Nanoparticle Agglomerates for Pulmonary Delivery
Bailey, Mark M.; Gorman, Eric M.; Munson, Eric J.; Berkland, Cory J.
2009-01-01
Diabetes is a set of diseases characterized by defects in insulin utilization, either through autoimmune destruction of insulin-producing cells (Type I) or insulin resistance (Type II). Treatment options can include regular injections of insulin, which can be painful and inconvenient, often leading to low patient compliance. To overcome this problem, novel formulations of insulin are being investigated, such as inhaled aerosols. Sufficient deposition of powder in the peripheral lung to maximize systemic absorption requires precise control over particle size and density, with particles between 1 and 5 μm in aerodynamic diameter being within the respirable range. Insulin nanoparticles were produced by titrating insulin dissolved at low pH up to the pI of the native protein, and were then further processed into microparticles using solvent displacement. Particle size, crystallinity, dissolution properties, structural stability, and bulk powder density were characterized. We have demonstrated that pure drug insulin microparticles can be produced from nanosuspensions with minimal processing steps without excipients, and with suitable properties for deposition in the peripheral lung. PMID:18959432
Memory for pure tone sequences without contour.
Lefebvre, Christine; Jolicœur, Pierre
2016-06-01
We presented pure tones interspersed with white noise sounds to disrupt contour perception in an acoustic short-term memory (ASTM) experiment during which we recorded the electroencephalogram. The memory set consisted of seven stimuli, 0, 1, 2, 3, or 4 of which were to-be-remembered tones. We estimated each participant׳s capacity, K, for each set size and measured the amplitude of the SAN (sustained anterior negativity, an ERP related to acoustic short-term memory). We correlated their K slopes with their SAN amplitude slopes as a function of set size, and found a significant link between performance and the SAN: a larger increase in SAN amplitude was linked with a larger number of stimuli maintained in ASTM. The SAN decreased in amplitude in the later portion of the silent retention interval, but the correlation between the SAN and capacity remained strong. These results show the SAN is not an index of contour but rather an index of the maintenance of individual objects in STM. This article is part of a Special Issue entitled SI: Auditory working memory. Copyright © 2016 Elsevier B.V. All rights reserved.
Pec power generation system using pure energy
Energy Technology Data Exchange (ETDEWEB)
Tanaka, K; Sonai, A; Kano, A [Toshiba International Fuel Cells Corp. (Japan). Cell Technology Development Dept.; Yatake, T [Toshiba International Fuel Cells Corp. (Japan). Plant Engineering Dept.
2002-07-01
A polymer electrolyte fuel cell (PEFC) power generation system using pure hydrogen was developed by Toshiba International Fuel Cells (TIFC), Japan, under the sponsorship of the World Energy Network (WE-NET) Project. The goals of the project consist of the construction of 30 kilowatt power generation plant for stationary application and target electrical efficiency of over 50 per cent. Two critical technologies were investigated for high utilization stack, as high hydrogen utilization operation represents one of the most important items for the achievement of target efficiency. The first technology examined was the humidification method from cathode side, while the second was the two-block configuration, which is arranged in series in accordance with the flow of hydrogen. Using these technologies as a basis for the work, a 5 kilowatt short stack was developed, and a steady performance was obtained under high hydrogen utilization of up to 98 per cent. It is expected that by March 2003 the design of the hydrogen fueled 30 kilowatt power generation plant will be completed and assembled. 1 ref., 1 tab., 11 figs.
Electron Acoustic Waves in Pure Ion Plasmas
Anderegg, F.; Affolter, M.; Driscoll, C. F.; O'Neil, T. M.; Valentini, F.
2012-10-01
Electron Acoustic Waves (EAWs) are the low-frequency branch of near-linear Langmuir (plasma) waves: the frequency is such that the complex dielectric function (Dr, Di) has Dr= 0; and ``flattening'' of f(v) near the wave phase velocity vph gives Di=0 and eliminates Landau damping. Here, we observe standing axisymmetric EAWs in a pure ion column.footnotetextF. Anderegg, et al., Phys. Rev. Lett. 102, 095001 (2009). At low excitation amplitudes, the EAWs have vph˜1.4 v, in close agreement with near-linear theory. At moderate excitation strengths, EAW waves are observed over a range of frequencies, with 1.3 v vphvph.footnotetextF. Valentini et al., arXiv:1206.3500v1. Large amplitude EAWs have strong phase-locked harmonic content, and experiments will be compared to same-geometry simulations, and to simulations of KEENfootnotetextB. Afeyan et al., Proc. Inertial Fusion Sci. and Applications 2003, A.N.S. Monterey (2004), p. 213. waves in HEDLP geometries.
Homogeneous purely buoyancy driven turbulent flow
Arakeri, Jaywant; Cholemari, Murali; Pawar, Shashikant
2010-11-01
An unstable density difference across a long vertical tube open at both ends leads to convection that is axially homogeneous with a linear density gradient. We report results from such tube convection experiments, with driving density caused by salt concentration difference or temperature difference. At high enough Rayleigh numbers (Ra) the convection is turbulent with zero mean flow and zero mean Reynolds shear stresses; thus turbulent production is purely by buoyancy. We observe different regimes of turbulent convection. At very high Ra the Nusselt number scales as the square root of the Rayleigh number, giving the so-called "ultimate regime" of convection predicted for Rayleigh-Benard convection in limit of infinite Ra. Turbulent convection at intermediate Ra, the Nusselt number scales as Ra^0.3. In both regimes, the flux and the Taylor scale Reynolds number are more than order of magnitude larger than those obtained in Rayleigh-Benard convection. Absence of a mean flow makes this an ideal flow to study shear free turbulence near a wall.
Radiation resisting features of pure quartz fiber
International Nuclear Information System (INIS)
Fujii, Takashi; Nagasawa, Yoshiya; Hoshi, Hiroshi; Tomon, Ryoichi; Ooki, Yoshimichi; Yahagi, Kichinosuke
1985-01-01
The control of the generation of color centers is essential for optical fibers used in radiation environment. Even pure quartz which is the best radiation resisting material is not exceptional also elucidarion of the mechanism of the generation of color center is necessary for the development of optical fiber with higher radiation resisting feature. Previously, it was assumed that color centers are distributed uniformly throughout cores. Determination of the distribution of color centers was attempted. Cores were etched with HF after γ-ray irradiation, and the changes of intensity of ESR signals of NBOHC and E'-center were determined. NBOHC were not found in circumferential part, and concentrated in the central part. In other words the tendency of distribution is diametral. Thus, the distribution of precursor is supposed to be affected by certain external cause and the generation of NBOHC was depressed in circumferential area. The distribution of E'-center of high OH sample showed similar tendency and high in the center. Where as the distribution in low OH sample was uniform. The external cause is supposed to be hydrogen derived from silicone clad and silicone buffer. Two kind of precursor is suspected for the explanation of the difference of the E'-center in high OH sample and low OH sample. (Ishimitsu, A.)
Victoria Education Dept. (Australia).
This document consists of test questions used in three state high schools teaching the new Matriculation pure mathematics course (approximately grade 12). This material was circulated to all schools teaching this course as a teacher resource. The questions are arranged in 14 papers of varying structure and length. Most questions are of the essay…
Densities of Pure Ionic Liquids and Mixtures: Modeling and Data Analysis
DEFF Research Database (Denmark)
Abildskov, Jens; O’Connell, John P.
2015-01-01
Our two-parameter corresponding states model for liquid densities and compressibilities has been extended to more pure ionic liquids and to their mixtures with one or two solvents. A total of 19 new group contributions (5 new cations and 14 new anions) have been obtained for predicting pressure...
2010-05-03
... Baldessari: Pure Beauty,'' imported from abroad for temporary exhibition within the United States, are of... Museum of Art, Los Angeles, CA, from on or about June 27 2010, until on or about September 12, 2010; at the Metropolitan Museum of Art, New York, NY, from on or about October 18, 2010, until on or about...
Directory of Open Access Journals (Sweden)
Dong-qing WEN
2017-02-01
Full Text Available Objective To compare the ear baric function between 4000m altitude chamber test with inhaling air and 6900m altitude chamber test with inhaling pure oxygen. Methods Eleven healthy male volunteers attended two tests as two groups by self-comparison. As the air group the volunteers inhaled air at 4000m, while as the pure oxygen group they inhaled pure oxygen at 6900m altitude, and the time interval between the two tests was more than two weeks. During the test, the volunteers breathed air or pure oxygen at random for 1h, and then were exposed at a speed of 20m/s to the target altitude for 5min. Hereafter they were sent back to the ground at the same speed. The changes of subjective symptoms, degree of tympanic congestion, acoustic immitance index and pure-tone auditory threshold were recorded before and after the test. The acoustic impedance index and pure-tone threshold were statistically analyzed. Results Four volunteers (4 ears in air group and 7 volunteers (7 ears in pure oxygen group reported ear pain in altitude chamber exposures, respectively. The pain-triggering altitude was higher in the pure oxygen group. Immediately after tests, there were 3 (3 ears and 5 volunteers (5 ears with Ⅲ degree congestion of the tympanic membrane in the two groups respectively. Four volunteers (6 ears developed gradually aggravated hemorrhages after altitude exposure. And the tympanic membrane congestion difference between groups was statistically significant at 3 and 24h after tests (P<0.01. The type A tympanogram appeared in 11 (15 ears and 11 (14 ears volunteers respectively immediately after tests. The increase of static compliance value was significantly greater in pure oxygen group than in air group immediately after tests (P<0.05, the decrease of middle ear pressure was more significant in pure oxygen group than in air group at 3 and 24h after tests (P<0.05. Both the two altitude exposure tests resulted in eustachian tube dysfunction. At 3 and
Characterizing commercial pureed foods: sensory, nutritional, and textural analysis.
Ettinger, Laurel; Keller, Heather H; Duizer, Lisa M
2014-01-01
Dysphagia (swallowing impairment) is a common consequence of stroke and degenerative diseases such as Parkinson's and Alzheimer's. Limited research is available on pureed foods, specifically the qualities of commercial products. Because research has linked pureed foods, specifically in-house pureed products, to malnutrition due to inferior sensory and nutritional qualities, commercial purees also need to be investigated. Proprietary research on sensory attributes of commercial foods is available; however direct comparisons of commercial pureed foods have never been reported. Descriptive sensory analysis as well as nutritional and texture analysis of commercially pureed prepared products was performed using a trained descriptive analysis panel. The pureed foods tested included four brands of carrots, of turkey, and two of bread. Each commercial puree was analyzed for fat (Soxhlet), protein (Dumas), carbohydrate (proximate analysis), fiber (total fiber), and sodium content (Quantab titrator strips). The purees were also texturally compared with a line spread test and a back extrusion test. Differences were found in the purees for sensory attributes as well as nutritional and textural properties. Findings suggest that implementation of standards is required to reduce variability between products, specifically regarding the textural components of the products. This would ensure all commercial products available in Canada meet standards established as being considered safe for swallowing.
Phase transitions in random uniaxial systems with dipolar interactions
International Nuclear Information System (INIS)
Schuster, H.G.
1977-01-01
The critical behaviour of random uniaxial ferromagnetic (ferroelectric) systems with both short range and long range dipolar interactions is investigated, using the field theoretic renormalization method of Brezin et al. for the free energy above and below transition point Tsub(c). The randomness is due to externally introduced fluctuations in the short range interactions (quenched case) or (and) magneto-elastic coupling to the lattice (annealed case). Strong deviations in the critical behaviour with respect to the pure systems are found. In the quenched case, e.g., the specific heat C and the coefficient f 2 (of M 3 in the equation of state, where M is the magnetization) change from C proportional to abs ln abs t abs abssup(1/3), f 2 proportional to abs ln abs t abs abs sup(1/3), f 2 proportional to abs ln abs t abs abs -1 in the pure system to C = A+- + C+-exp[-4√ 3 106 abs ln abs t abs abs], f 2 proportional to abs ln abs t abs abs sup(-1/2) (where t = (T-Tsub(c)) / Tsub(c) is the reduced temperature and A+-, C+- are constants) in the random situation. (orig.) [de
Peccei-Quinn symmetric pure gravity mediation
Energy Technology Data Exchange (ETDEWEB)
Evans, Jason L.; Olive, Keith A. [University of Minnesota, William I. Fine Theoretical Physics Institute, School of Physics and Astronomy, Minneapolis, MN (United States); Ibe, Masahiro [University of Tokyo, ICRR, Kashiwa (Japan); University of Tokyo, Kavli IPMU (WPI), TODIAS, Kashiwa (Japan); Yanagida, Tsutomu T. [University of Tokyo, Kavli IPMU (WPI), TODIAS, Kashiwa (Japan)
2014-07-15
Successful models of pure gravity mediation (PGM) with radiative electroweak symmetry breaking can be expressed with as few as two free parameters, which can be taken as the gravitinomass and tan β. These models easily support a 125-126 GeV Higgs mass at the expense of a scalar spectrum in the multi-TeV range and a much lighter wino as the lightest supersymmetric particle. In these models, it is also quite generic that the Higgs mixing mass parameter, μ, which is determined by the minimization of the Higgs potential is also in the multi-TeV range. For μ > 0, the thermal relic density of winos is too small to account for the darkmatter. The same is true for μ < 0 unless the gravitinomass is of order 500 TeV. Here, we consider the origin of a multi-TeV μ parameter arising from the breakdown of a Peccei-Quinn (PQ) symmetry. A coupling of the PQ-symmetry breaking field, P, to the MSSM Higgs doublets, naturally leads to a value of μ ∝ left angle P right angle {sup 2}/M{sub P} ∝ O(100) TeV and of the order that is required in PGM models. In this case, axions make up the dark matter or some fraction of the dark matter with the remainder made up from thermal or non-thermal winos. We also provide solutions to the problem of isocurvature fluctuations with axion dark matter in this context. (orig.)
Pure analgesics in a rheumatological outpatient clinic
Directory of Open Access Journals (Sweden)
M.A. Cimmino
2011-09-01
Full Text Available Objective: Pure analgesics are only rarely used by Italian clinicians and this holds true also for rheumatologists. This work is concerned with an evaluation of the use of analgesics in a rheumatological outpatient clinic during the period 1989-1999. Methods: The records of 1705 patients consecutively seen at the clinic were downloaded on a specifically built website. Results: 4469 visits were considered. In 260 of them (5.8%, analgesics were prescribed to 234 (13.7% patients. The number of patients with a prescription of analgesics steadily increased during the years 1989-1999. The diagnoses in patients assuming analgesics were: osteoarthritis (47.1%, inflammatory arthritis (24.2%, soft tissue rheumatisms (13.7%, nonspecific arthralgia/myalgia (7.5%, and connective tissue diseases (2.6%. Peripheral analgesics were used in 188 (82.5% patients and central analgesics were used in the remaining 40 patients (17.5%. Analgesic drugs were used mainly in degenerative joint conditions. The indications for analgesics in the 55 patients with inflammatory arthrits were: (a partial or total remission of arthritis; for this reason non-steroidal anti-inflammatory drugs were no longer required in 18 patients; (b to increase the analgesic effect of NSAIDs in 23 patients; (c contraindications to NSAIDs in 14 patients (renal failure in 2 patients, gastritis in 10, allergy and bleeding in the remaining two. Conclusions: About 14% of our outpatients were treated with analgesics with an increasing trend in the examined period. The main indications for analgesics are degenerative conditions but they can be used also in selected patients with arthritis.
Kesler, Shelli R; Rao, Arvind; Blayney, Douglas W; Oakley-Girvan, Ingrid A; Karuturi, Meghan; Palesh, Oxana
2017-01-01
We aimed to determine if resting state functional magnetic resonance imaging (fMRI) acquired at pre-treatment baseline could accurately predict breast cancer-related cognitive impairment at long-term follow-up. We evaluated 31 patients with breast cancer (age 34-65) prior to any treatment, post-chemotherapy and 1 year later. Cognitive testing scores were normalized based on data obtained from 43 healthy female controls and then used to categorize patients as impaired or not based on longitudinal changes. We measured clustering coefficient, a measure of local connectivity, by applying graph theory to baseline resting state fMRI and entered these metrics along with relevant patient-related and medical variables into random forest classification. Incidence of cognitive impairment at 1 year follow-up was 55% and was predicted by classification algorithms with up to 100% accuracy ( p breast cancer. This information could inform treatment decision making by identifying patients at highest risk for long-term cognitive impairment.
Thermophysical properties of solid and liquid pure and alloyed Pu: A review
Energy Technology Data Exchange (ETDEWEB)
Boivineau, M., E-mail: michel.boivineau@cea.f [CEA, Centre de Valduc, Departement de Recherches sur les Materiaux Nucleaires, F-21120 Is-sur-Tille (France)
2009-08-01
The thermophysical properties of both solid and liquid pure and alloyed plutonium have been investigated up to 4000 K by use of a resistive pulse heating technique, the so-called isobaric expansion experiment (IEX). Electrical resistivity, specific volume (density), latent heats of transformations, heat of fusion have been measured and extended in the whole liquid region. Additional static measurements have been also performed in order to determine the heat transport properties such as heat capacity, thermal diffusivity and thermal conductivity of plutonium alloys. After a first part devoted to additional results on pure Pu under rapid heating, this paper mostly deals with studies on different delta-stabilized Pu alloys in the high temperature range, particularly in the liquid state which is the principal originality of this work. In addition to the thermophysical data mentioned above, an attention is also paid onto sound velocity measurements on these alloys in the solid and liquid states. Hence, an anomalous behavior such as elastic softening is confirmed in the delta phase as already reported previously. Moreover, sound velocity and equation of state parameters (adiabatic and thermal bulk moduli, Grueneisen parameter, and specific heats ratio) have been investigated on liquid alloyed Pu. Such results confirm previous works on liquid pure Pu by presenting an atypical dual behavior of sound velocity, and are discussed in terms of delocalization process of the 5f electrons of both liquid pure and alloyed Pu.
Directory of Open Access Journals (Sweden)
Raghavendra Mohan Rao
2017-01-01
Full Text Available Aims: The aim of this study is to compare the effects of yoga program with supportive therapy counseling on mood states, treatment-related symptoms, toxicity, and quality of life in Stage II and III breast cancer patients on conventional treatment. Methods: Ninety-eight Stage II and III breast cancer patients underwent surgery followed by adjuvant radiotherapy (RT or chemotherapy (CT or both at a cancer center were randomly assigned to receive yoga (n = 45 and supportive therapy counseling (n = 53 over a 24-week period. Intervention consisted of 60-min yoga sessions, daily while the control group was imparted supportive therapy during their hospital visits. Assessments included state-trait anxiety inventory, Beck's depression inventory, symptom checklist, common toxicity criteria, and functional living index-cancer. Assessments were done at baseline, after surgery, before, during, and after RT and six cycles of CT. Results: Both groups had similar baseline scores. There were 29 dropouts 12 (yoga and 17 (controls following surgery. Sixty-nine participants contributed data to the current analysis (33 in yoga, and 36 in controls. An ANCOVA, adjusting for baseline differences, showed a significant decrease for the yoga intervention as compared to the control group during RT ( first result and CT (second result, in (i anxiety state by 4.72 and 7.7 points, (ii depression by 5.74 and 7.25 points, (iii treatment-related symptoms by 2.34 and 2.97 points, (iv severity of symptoms by 6.43 and 8.83 points, (v distress by 7.19 and 13.11 points, and (vi and improved overall quality of life by 23.9 and 31.2 points as compared to controls. Toxicity was significantly less in the yoga group (P = 0.01 during CT. Conclusion: The results suggest a possible use for yoga as a psychotherapeutic intervention in breast cancer patients undergoing conventional treatment.
Some aspects of anelastic and microplastic creep of pure Al and two Al-alloys
International Nuclear Information System (INIS)
Sgobba, S.; Kuenzi, H.U.; Ilschner, B.
1993-01-01
Anelastic creep of pure Al, commercial Al-Cu and a binary Al-Cu alloy has been measured at room temperature by means of a high resolution laser interferometer. The irreversible component of the deformation was also quantified from measurements of the anelastic creep recovery. The dependence of the deformation-time curves on thermal treatment and cold work is analyzed. The mechanisms responsible for the room temperature anelastic creep are discussed. Materials loaded below their elastic limit can present either a pure anelastic behavior (commercial Al-Cu) or additional viscoelastic creep (pure Al, high purity Al-Cu). For commercial Al-Cu, the presence of an irreversible deformation appears to be mainly related to the state of the surface. A viscoelastic after effect has been measured for this alloy after a Cu-electroplating treatment. As a typical result for room temperature creep, the irreversible deformation depends logarithmically on load time. (orig.)
Some aspects of anelastic and microplastic creep of pure Al and two Al-alloys
Energy Technology Data Exchange (ETDEWEB)
Sgobba, S. (Lab. de Metallurgie Mecanique, Dept. des Materiaux, Ecole Polytechnique Federale de Lausanne (Switzerland)); Kuenzi, H.U. (Lab. de Metallurgie Mecanique, Dept. des Materiaux, Ecole Polytechnique Federale de Lausanne (Switzerland)); Ilschner, B. (Lab. de Metallurgie Mecanique, Dept. des Materiaux, Ecole Polytechnique Federale de Lausanne (Switzerland))
1993-11-01
Anelastic creep of pure Al, commercial Al-Cu and a binary Al-Cu alloy has been measured at room temperature by means of a high resolution laser interferometer. The irreversible component of the deformation was also quantified from measurements of the anelastic creep recovery. The dependence of the deformation-time curves on thermal treatment and cold work is analyzed. The mechanisms responsible for the room temperature anelastic creep are discussed. Materials loaded below their elastic limit can present either a pure anelastic behavior (commercial Al-Cu) or additional viscoelastic creep (pure Al, high purity Al-Cu). For commercial Al-Cu, the presence of an irreversible deformation appears to be mainly related to the state of the surface. A viscoelastic after effect has been measured for this alloy after a Cu-electroplating treatment. As a typical result for room temperature creep, the irreversible deformation depends logarithmically on load time. (orig.).
ActionScript Developer's Guide to PureMVC
Hall, Cliff
2011-01-01
Gain hands-on experience with PureMVC, the popular open source framework for developing maintainable applications with a Model-View-Controller architecture. In this concise guide, PureMVC creator Cliff Hall teaches the fundamentals of PureMVC development by walking you through the construction of a complete non-trivial Adobe AIR application. Through clear explanations and numerous ActionScript code examples, you'll learn best practices for using the framework's classes in your day-to-day work. Discover how PureMVC enables you to focus on the purpose and scope of your application, while the f
Pure transvaginal excision of mesh erosion involving the bladder.
Firoozi, Farzeen; Goldman, Howard B
2013-06-01
We present a pure transvaginal approach to the removal of eroded mesh involving the bladder secondary to placement of transvaginal mesh for management of pelvic organ prolapse (POP) using a mesh kit. Although technically challenging, we demonstrate the feasibility of a purely transvaginal approach, avoiding a potentially more morbid transabdominal approach. The video presents the surgical technique of pure transvaginal excision of mesh erosion involving the bladder after mesh placement using a prolapse kit was performed. This video shows that purely transvaginal removal of mesh erosion involving the bladder can be done safely and is feasible.
Directory of Open Access Journals (Sweden)
Christina M. Karns
2017-12-01
Full Text Available Gratitude is an emotion and a trait linked to well-being and better health, and welcoming benefits to oneself is instrumentally valuable. However, theoretical and empirical work highlights that gratitude is more fully understood as an intrinsically valuable moral emotion. To understand the role of neural reward systems in the association between gratitude and altruistic motivations we tested two hypotheses: First, whether self-reported propensity toward gratitude relates to fMRI-derived indicators of “pure altruism,” operationalized as the neural valuation of passive, private transfers to a charity versus to oneself. In young adult female participants, self-reported gratitude and altruism were associated with “neural pure altruism” in ventromedial prefrontal cortex (VMPFC and nucleus accumbens. Second, whether neural pure altruism can be increased through practicing gratitude. In a double-blind study, we randomly assigned participants to either a gratitude-journal or active-neutral control journal group for 3 weeks. Relative to pre-test levels, gratitude journaling increased the neural pure altruism response in the VMPFC. We posit that as a context-dependent value-sensitive cortical region, the VMPFC supports change with gratitude practice, a change that is larger for benefits to others versus oneself.
Karns, Christina M; Moore, William E; Mayr, Ulrich
2017-01-01
Gratitude is an emotion and a trait linked to well-being and better health, and welcoming benefits to oneself is instrumentally valuable. However, theoretical and empirical work highlights that gratitude is more fully understood as an intrinsically valuable moral emotion. To understand the role of neural reward systems in the association between gratitude and altruistic motivations we tested two hypotheses: First, whether self-reported propensity toward gratitude relates to fMRI-derived indicators of "pure altruism," operationalized as the neural valuation of passive, private transfers to a charity versus to oneself. In young adult female participants, self-reported gratitude and altruism were associated with "neural pure altruism" in ventromedial prefrontal cortex (VMPFC) and nucleus accumbens. Second, whether neural pure altruism can be increased through practicing gratitude. In a double-blind study, we randomly assigned participants to either a gratitude-journal or active-neutral control journal group for 3 weeks. Relative to pre-test levels, gratitude journaling increased the neural pure altruism response in the VMPFC. We posit that as a context-dependent value-sensitive cortical region, the VMPFC supports change with gratitude practice, a change that is larger for benefits to others versus oneself.
El Hajj, Maguy Saffouh; Kheir, Nadir; Al Mulla, Ahmad Mohd; Al-Badriyeh, Daoud; Al Kaddour, Ahmad; Mahfoud, Ziyad R; Salehi, Mohammad; Fanous, Nadia
2015-02-26
It had been reported that up to 37% of the adult male population smokes cigarettes in Qatar. The Global Youth Tobacco Survey also stated that 13.4% of male school students aged 13 to 15 years in Qatar smoke cigarettes. Smoking cessation is key to reducing smoking-related diseases and deaths. Healthcare providers are in an ideal position to encourage smoking cessation. Pharmacists are the most accessible healthcare providers and are uniquely situated to initiate behavior change among patients. Many studies have shown that pharmacists can be successful in helping patients quit smoking. Studies demonstrating the effectiveness of pharmacist-delivered smoking cessation programs are lacking in Qatar. This proposal aims to test the effect of a structured smoking cessation program delivered by trained ambulatory pharmacists in Qatar. A prospective, randomized, controlled trial is conducted at eight ambulatory pharmacies in Qatar. Participants are randomly assigned to receive an at least four-session face-to-face structured patient-specific smoking cessation program conducted by the pharmacist or 5 to 10 min of unstructured brief smoking cessation advice (emulating current practice) given by the pharmacist. Both groups are offered nicotine replacement therapy if feasible. The primary outcome of smoking cessation will be confirmed by an exhaled carbon monoxide test at 12 months. Secondary outcomes constitute quality-of-life adjustment as well as cost analysis of program resources consumed, including per case and patient outcome. If proven to be effective, this smoking cessation program will be considered as a model that Qatar and the region can apply to decrease the smoking burden. Clinical Trials NCT02123329 .
Zhao, Ling; Liu, Jixin; Zhang, Fuwen; Dong, Xilin; Peng, Yulin; Qin, Wei; Wu, Fumei; Li, Ying; Yuan, Kai; von Deneen, Karen M.; Gong, Qiyong; Tang, Zili; Liang, Fanrong
2014-01-01
Background Acupuncture has been commonly used for preventing migraine attacks and relieving pain during a migraine, although there is limited knowledge on the physiological mechanism behind this method. The objectives of this study were to compare the differences in brain activities evoked by active acupoints and inactive acupoints and to investigate the possible correlation between clinical variables and brain responses. Methods and Results A randomized controlled trial and resting-state functional magnetic resonance imaging (fMRI) were conducted. A total of eighty migraineurs without aura were enrolled to receive either active acupoint acupuncture or inactive acupoint acupuncture treatment for 8 weeks, and twenty patients in each group were randomly selected for the fMRI scan at the end of baseline and at the end of treatment. The neuroimaging data indicated that long-term active acupoint therapy elicited a more extensive and remarkable cerebral response compared with acupuncture at inactive acupoints. Most of the regions were involved in the pain matrix, lateral pain system, medial pain system, default mode network, and cognitive components of pain processing. Correlation analysis showed that the decrease in the visual analogue scale (VAS) was significantly related to the increased average Regional homogeneity (ReHo) values in the anterior cingulate cortex in the two groups. Moreover, the decrease in the VAS was associated with increased average ReHo values in the insula which could be detected in the active acupoint group. Conclusions Long-term active acupoint therapy and inactive acupoint therapy have different brain activities. We postulate that acupuncture at the active acupoint might have the potential effect of regulating some disease-affected key regions and the pain circuitry for migraine, and promote establishing psychophysical pain homeostasis. Trial Registration Chinese Clinical Trial Registry ChiCTR-TRC-13003635 PMID:24915066
Evolution of a Fluctuating Population in a Randomly Switching Environment.
Wienand, Karl; Frey, Erwin; Mobilia, Mauro
2017-10-13
Environment plays a fundamental role in the competition for resources, and hence in the evolution of populations. Here, we study a well-mixed, finite population consisting of two strains competing for the limited resources provided by an environment that randomly switches between states of abundance and scarcity. Assuming that one strain grows slightly faster than the other, we consider two scenarios-one of pure resource competition, and one in which one strain provides a public good-and investigate how environmental randomness (external noise) coupled to demographic (internal) noise determines the population's fixation properties and size distribution. By analytical means and simulations, we show that these coupled sources of noise can significantly enhance the fixation probability of the slower-growing species. We also show that the population size distribution can be unimodal, bimodal, or multimodal and undergoes noise-induced transitions between these regimes when the rate of switching matches the population's growth rate.
García González, J; Ventura Miranda, M I; Requena Mullor, M; Parron Carreño, T; Alarcón Rodriguez, R
2018-04-01
Many researchers have pointed out the strong relationship between maternal psychological well-being and fetal welfare during pregnancy. The impact of music interventions during pregnancy should be examined in depth, as they could have an impact on stress reduction, not only during pregnancy but also during the course of delivery, and furthermore induce fetal awareness. This study aimed to investigate the effect of music on maternal anxiety, before and after a non-stress test (NST), and the effect of music on the birthing process. The four hundred and nine pregnant women coming for routine prenatal care were randomized in the third trimester to receive either music (n = 204) or no music (n = 205) stimulation during an NST. The primary outcome was considered as the maternal state anxiety score before and after the NST, and the secondary outcome was the birthing process. Before their NST, full-term pregnant women who had received music intervention were found to have a similar state-trait anxiety score to those from the control group, with 38.10 ± 8.8 and 38.08 ± 8.2, respectively (p = .97). After the NST, the mean state-trait anxiety score of each group was recorded, with results of 30.58 ± 13.2 for those with music intervention, and 43.11 ± 15.0 for those without music intervention (p < .001). In the control group, the NST was followed by a statistically significant increase in the state-trait anxiety score (38.08 ± 8.2 versus 43.11 ± 15.0, p < .001). However, listening to music during the NST resulted in a statistically significant decrease in the state-trait anxiety score of the study group (38.10 ± 8.8 versus 30.58 ± 13.2, OR = 0.87, p < .001). Furthermore, the first stage of labor was shorter in women who received music stimulation (OR = 0.92, p < .004). They also presented a more natural delivery beginning (spontaneous) and less medication (stimulated and induced) than those who were
Optical characterization of pure vegetable oils and their biodiesels using Raman spectroscopy
Firdous, S.; Anwar, S.; Waheed, A.; Maraj, M.
2016-04-01
Great concern regarding energy resources and environmental polution has increased interest in the study of alternative sources of energy. Biodiesels as an alternative fuel provide a suitable diesel oil substitute for internal combustion engines. The Raman spectra of pure biodiesels of soybean oil, olive oil, coconut oil, animal fats, and petroleum diesel are optically characterized for quality and biofuel as an alternative fuel. The most significant spectral differences are observed in the frequency range around 1457 cm-1 for pure petroleum diesel, 1427 for fats biodiesel, 1670 cm-1 for pure soybean oil, 1461 cm-1 for soybean oil based biodiesel, 1670 cm-1 for pure olive oil, 1666 cm-1 for olive oil based biodiesel, 1461 cm-1 for pure coconut oil, and 1460 cm-1 for coconut oil based biodiesel, which is used for the analysis of the phase composition of oils. A diode pump solid-state laser with a 532 nm wavelength is used as an illuminating light. It is demonstrated that the peak positions and relative intensities of the vibrations of the oils can be used to identify the biodiesel quality for being used as biofuel.
Optical characterization of pure vegetable oils and their biodiesels using Raman spectroscopy
International Nuclear Information System (INIS)
Firdous, S; Anwar, S; Waheed, A; Maraj, M
2016-01-01
Great concern regarding energy resources and environmental polution has increased interest in the study of alternative sources of energy. Biodiesels as an alternative fuel provide a suitable diesel oil substitute for internal combustion engines. The Raman spectra of pure biodiesels of soybean oil, olive oil, coconut oil, animal fats, and petroleum diesel are optically characterized for quality and biofuel as an alternative fuel. The most significant spectral differences are observed in the frequency range around 1457 cm −1 for pure petroleum diesel, 1427 for fats biodiesel, 1670 cm −1 for pure soybean oil, 1461 cm −1 for soybean oil based biodiesel, 1670 cm −1 for pure olive oil, 1666 cm −1 for olive oil based biodiesel, 1461 cm −1 for pure coconut oil, and 1460 cm −1 for coconut oil based biodiesel, which is used for the analysis of the phase composition of oils. A diode pump solid-state laser with a 532 nm wavelength is used as an illuminating light. It is demonstrated that the peak positions and relative intensities of the vibrations of the oils can be used to identify the biodiesel quality for being used as biofuel. (paper)
OUT-OF-BODY EXPERIENCE, PURE BEING AND METAPHYSICS
Directory of Open Access Journals (Sweden)
I. V. Karivets
2016-12-01
Full Text Available Purpose. The author will show that metaphysical concepts and the concepts of empirical sciences derive from experience. The only difference is that metaphysical concepts derive from unusual experience, i.e. out-of-body experience, while empirical sciences – from usual one. The example set metaphysical concept of pure being. Methodology. In order to obtain this goal the author uses two methods. The first one is comparative method. With the help of this method the stories of men who experienced clinical death and returned to life are compared with the famous philosophers’ metaphysical statements (Plato, Descartes, and Bonaventura. The second one is transpersonal method. It helps to study the peculiarities of the extraordinary experience in the state of clinical death or mystical ecstasy. Such experience lies in experience of transcendence, pure being as light, ultimate awareness of truth, which are identical to the metaphysical statements of philosophers and mystics. These ultimate experiences belong to different people, who lived and grown in different cultures, but nevertheless metaphysical statements of philosophers or mystics and statements of the ordinary people who experienced clinical death are the same. Therefore we can say that out-of-body experience is transpersonal. Originality. Metaphysics is neither speculative nor withdrawn from experience of a human being sphere. It arises from out-of-body experience while empirical sciences – from usual experience. Therefore, metaphysical concepts, in particular, pure being, are empirical, because they are based also on (extraordinary experience. In general, metaphysics becomes possible on the basis of out-of-body experience. Conclusions. In this article the author argues that the concepts of metaphysics are not a priori because they originate from out-of-body experience that is from the experience of the distinction between body and soul or body and mind. As a result of such experience
International Nuclear Information System (INIS)
Riu, Kap Jong; Yea, Yong Taeg; Park, Sang Hee
1991-01-01
A natural convection adjacent to an isothermal vertical ice cylinder is studied experimentally in cold pure water. The experiments are carried out as changing the temperature of the ambient water and then the flow and heat transfer characteristics is visualized and observed. It is shown that flow patterns are steady state upflow, unsteady state flow, steady state dual flow, and steady state downflow. There is also obtained a heat transfer coefficient and mean Nusselt number at various ambient temperature. These results are in good agreement with the theoretical ones. (Author)
The Design of Cluster Randomized Trials with Random Cross-Classifications
Moerbeek, Mirjam; Safarkhani, Maryam
2018-01-01
Data from cluster randomized trials do not always have a pure hierarchical structure. For instance, students are nested within schools that may be crossed by neighborhoods, and soldiers are nested within army units that may be crossed by mental health-care professionals. It is important that the random cross-classification is taken into account…
International Nuclear Information System (INIS)
Cao Zhi-Shen; Pan Jian; Chen Zhuo; Zhan Peng; Min Nai-Ben; Wang Zhen-Lin
2011-01-01
We experimentally and numerically investigate the optical properties of metamaterial arrays composed of double partially-overlapped metallic nanotriangles fabricated by an angle-resolved nanosphere lithography. We demonstrate that each double-triangle can be viewed as an artificial magnetic element analogous to the conventional metal split-ring-resonator. It is shown that under normal-incidence conditions, individual double-triangle can exhibit a strong local magnetic resonance, but the collective response of the metamaterial arrays is purely electric because magnetic resonances of the two double-triangles in a unit cell having opposite openings are out of phase. For oblique incidences the metamaterial arrays are shown to support a pure magnetic response at the same frequency band. Therefore, switchable electric and magnetic resonances are achieved in double-triangle arrays. Moreover, both the electric and magnetic resonances are shown to allow for a tunability over a large spectral range down to near-infrared. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
Hacke, Werner; Lyden, Patrick; Emberson, Jonathan; Baigent, Colin; Blackwell, Lisa; Albers, Gregory; Bluhmki, Erich; Brott, Thomas; Cohen, Geoffrey; Davis, Stephen M; Donnan, Geoffrey A; Grotta, James C; Howard, George; Kaste, Markku; Koga, Masatoshi; von Kummer, Rüdiger; Lansberg, Maarten G; Lindley, Richard I; Olivot, Jean-Marc; Parsons, Mark; Sandercock, Peter Ag; Toni, Danilo; Toyoda, Kazunori; Wahlgren, Nils; Wardlaw, Joanna M; Whiteley, William N; Del Zoppo, Gregory; Lees, Kennedy R
2018-02-01
Background The recommended maximum age and time window for intravenous alteplase treatment of acute ischemic stroke differs between the Europe Union and United States. Aims We compared the effects of alteplase in cohorts defined by the current Europe Union or United States marketing approval labels, and by hypothetical revisions of the labels that would remove the Europe Union upper age limit or extend the United States treatment time window to 4.5 h. Methods We assessed outcomes in an individual-patient-data meta-analysis of eight randomized trials of intravenous alteplase (0.9 mg/kg) versus control for acute ischemic stroke. Outcomes included: excellent outcome (modified Rankin score 0-1) at 3-6 months, the distribution of modified Rankin score, symptomatic intracerebral hemorrhage, and 90-day mortality. Results Alteplase increased the odds of modified Rankin score 0-1 among 2449/6136 (40%) patients who met the current European Union label and 3491 (57%) patients who met the age-revised label (odds ratio 1.42, 95% CI 1.21-1.68 and 1.43, 1.23-1.65, respectively), but not in those outside the age-revised label (1.06, 0.90-1.26). By 90 days, there was no increased mortality in the current and age-revised cohorts (hazard ratios 0.98, 95% CI 0.76-1.25 and 1.01, 0.86-1.19, respectively) but mortality remained higher outside the age-revised label (1.19, 0.99-1.42). Similarly, alteplase increased the odds of modified Rankin score 0-1 among 1174/6136 (19%) patients who met the current US approval and 3326 (54%) who met a 4.5-h revised approval (odds ratio 1.55, 1.19-2.01 and 1.37, 1.17-1.59, respectively), but not for those outside the 4.5-h revised approval (1.14, 0.97-1.34). By 90 days, no increased mortality remained for the current and 4.5-h revised label cohorts (hazard ratios 0.99, 0.77-1.26 and 1.02, 0.87-1.20, respectively) but mortality remained higher outside the 4.5-h revised approval (1.17, 0.98-1.41). Conclusions An age-revised European Union label or 4
Bi-orderings on pure braided Thompson's groups
Burillo, Jose; Gonzalez-Meneses, Juan
2006-01-01
In this paper it is proved that the pure braided Thompson’s group BF admits a bi-order, analog to the bi-order of the pure braid groups. Ministerio de Educación y Ciencia Fondo Europeo de Desarrollo Regional
AdS pure spinor superstring in constant backgrounds
International Nuclear Information System (INIS)
Chandia, Osvaldo; Bevilaqua, L. Ibiapina; Vallilo, Brenno Carlini
2014-01-01
In this paper we study the pure spinor formulation of the superstring in AdS_5×S"5 around point particle solutions of the classical equations of motion. As a particular example we quantize the pure spinor string in the BMN background
Pure soliton solutions of some nonlinear partial differential equations
International Nuclear Information System (INIS)
Fuchssteiner, B.
1977-01-01
A general approach is given to obtain the system of ordinary differential equations which determines the pure soliton solutions for the class of generalized Korteweg-de Vries equations. This approach also leads to a system of ordinary differential equations for the pure soliton solutions of the sine-Gordon equation. (orig.) [de
Graph Theory to Pure Mathematics: Some Illustrative Examples
Indian Academy of Sciences (India)
Graph Theory to Pure Mathematics: Some. Illustrative Examples v Yegnanarayanan is a. Professor of Mathematics at MNM Jain Engineering. College, Chennai. His research interests include graph theory and its applications to both pure maths and theoretical computer science. Keywords. Graph theory, matching theory,.
AdS pure spinor superstring in constant backgrounds
Energy Technology Data Exchange (ETDEWEB)
Chandia, Osvaldo [Departamento de Ciencias, Facultad de Artes Liberales, Universidad Adolfo Ibáñez,Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez,Diagonal Las Torres 2640, Peñalolén, Santiago (Chile); Bevilaqua, L. Ibiapina [Escola de Ciências e Tecnologia, Universidade Federal do Rio Grande do Norte,Caixa Postal 1524, 59072-970, Natal, RN (Brazil); Vallilo, Brenno Carlini [Facultad de Ciencias Exactas, Departamento de Ciencias Físicas, Universidad Andres Bello,Republica 220, Santiago (Chile)
2014-06-05
In this paper we study the pure spinor formulation of the superstring in AdS{sub 5}×S{sup 5} around point particle solutions of the classical equations of motion. As a particular example we quantize the pure spinor string in the BMN background.
Nigeria Journal of Pure and Applied Physics: Editorial Policies
African Journals Online (AJOL)
Focus and Scope. Nigeria Journal of Pure and Applied Physics publishes papers of the highest quality and significance in specific areas of physics, pure and applied, as listed below. The journal content reflects core physics disciplines, but is also open to a broad range of topics whose central theme falls within the bounds ...
Stretched Exponential relaxation in pure Se glass
Dash, S.; Ravindren, S.; Boolchand, P.
A universal feature of glasses is the stretched exponential relaxation, f (t) = exp[ - t / τ ] β . The model of diffusion of excitations to randomly distributed traps in a glass by Phillips1 yields the stretched exponent β = d[d +2] where d, the effective dimensionality. We have measured the enthalpy of relaxation ΔHnr (tw) at Tg of Se glass in modulated DSC experiments as glasses age at 300K and find β = 0.43(2) for tw in the 0
Directory of Open Access Journals (Sweden)
Dorothea Kesztyüs
Full Text Available To evaluate the cost-effectiveness of the state-wide implementation of the health promotion program "Join the Healthy Boat" in primary schools in Germany.Cluster-randomized intervention trial with wait-list control group. Anthropometric data of 1733 participating children (7.1 ± 0.6 years were taken by trained staff before and after a one year intervention period in the academic year 2010/11. Parents provided information about the health status, and the health behaviour of their children and themselves, parental anthropometrics, and socio-economic background variables. Incidence of abdominal obesity, defined as waist-to-height ratio (WHtR ≥ 0.5, was determined. Generalized linear models were applied to account for the clustering of data within schools, and to adjust for baseline-values. Losses to follow-up and missing data were analysed. From a societal perspective, the overall costs, costs per pupil, and incremental cost-effectiveness ratio (ICER to identify the costs per case of averted abdominal obesity were calculated.The final regression model for the incidence of abdominal obesity shows lower odds for the intervention group after an adjustment for grade, gender, baseline WHtR, and breakfast habits (odds ratio = 0.48, 95% CI [0.25; 0.94]. The intervention costs per child/year were €25.04. The costs per incidental case of averted abdominal obesity varied between €1515 and €1993, depending on the different dimensions of the target group.This study demonstrates the positive effects of state-wide, school-based health promotion on incidental abdominal obesity, at affordable costs and with proven cost-effectiveness. These results should support allocative decisions of policymakers. An early start to the prevention of abdominal obesity is of particular importance because of its close relationship to non-communicable diseases.German Clinical Trials Register (DRKS, Freiburg University, Germany, DRKS-ID: DRKS00000494.
Hilário, M.; Hollander, den W.Th.F.; Sidoravicius, V.; Soares dos Santos, R.; Teixeira, A.
2014-01-01
In this paper we study a random walk in a one-dimensional dynamic random environment consisting of a collection of independent particles performing simple symmetric random walks in a Poisson equilibrium with density ¿¿(0,8). At each step the random walk performs a nearest-neighbour jump, moving to
Xiong, Yu; Zhao, Zheng; Zhao, Wei Jun; Ma, Hui Li; Peng, Qian; He, Zi Kai; Zhang, Xue Peng; Chen, Yun Cong; He, Xue Wen; Lam, Jacky; Tang, Ben Zhong
2018-05-08
Pure organic materials with ultralong room temperature phosphorescence (RTP) are attractive alternatives to inorganic phosphors. However, without heavy atoms and carbonyl or heteroatomic groups, they generally show inefficient intersystem crossing (ISC) due to the weak spin-orbit coupling (SOC). Many efforts have been made to enhance SOC but examples in realizing both efficient and ultralong RTP have been limited. Here we present a novel design principle based on the realization of small energy gap between the lowest singlet and triplet states (ΔEST) and pure ππ* configuration of the lowest triplet state (T1) via structural isomerism to obtain efficient and ultralong RTP materials. The meta-isomer of carbazole-substituted methyl benzoate exhibits an ultralong lifetime of 795.0 ms with a quantum yield of 2.1%, whose performance is among the best RTP materials reported so far. Study on the structure-property relationship demonstrates that the varied steric and conjugation effects imposed by ester substituent at different positions are responsible for the small ΔEST and pure ππ* configuration of T1. This rational design will open a new avenue for exploring novel pure organic RTP materials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yelland, LN; Gajewski, BJ; Colombo, J; Gibson, RA; Makrides, M; Carlson, SE
2016-01-01
SUMMARY The DHA to Optimize Mother Infant Outcome (DOMInO) and Kansas DHA Outcomes Study (KUDOS) were randomized controlled trials that supplemented mothers with 800 and 600 mg DHA/day, respectively, or a placebo during pregnancy. DOMInO was conducted in Australia and KUDOS in the United States. Both trials found an unanticipated and statistically significant reduction in early preterm birth (ePTB; i.e., birth before 34 weeks gestation). However, in each trial, the number of ePTBs were small. We used a novel Bayesian approach and an arbitrary sample of 120,000 pregnancies to estimate statistically derived low, moderate or high risk for ePTB, and to test for differences between the DHA and placebo groups. In both trials, the model predicted DHA would significantly reduce the expected proportion of deliveries in the high risk group under the trial conditions of the parent studies. From these proportions we estimated the number of ePTB that could be prevented. PMID:27637340
Boulton, Craig; Meiser, Karin; David, Olivier J; Schmouder, Robert
2012-12-01
Fingolimod, a first-in-class oral sphingosine 1-phosphate receptor (S1PR) modulator, is approved in many countries for relapsing-remitting multiple sclerosis, at a once-daily 0.5-mg dose. A reduction in peripheral lymphocyte count is an expected consequence of the fingolimod mechanism of S1PR modulation. The authors investigated if this pharmacodynamic effect impacts humoral and cellular immunogenicity. In this double-blind, parallel-group, 4-week study, 72 healthy volunteers were randomized to steady state, fingolimod 0.5 mg, 1.25 mg, or to placebo. The authors compared T-cell dependent and independent responses to the neoantigens, keyhole limpet hemocyanin (KLH), and pneumococcal polysaccharides vaccine (PPV-23), respectively, and additionally recall antigen response (tetanus toxoid [TT]) and delayed-type hypersensitivity (DTH) to KLH, TT, and Candida albicans. Fingolimod caused mild to moderate decreases in anti-KLH and anti-PPV-23 IgG and IgM levels versus placebo. Responder rates were identical between placebo and 0.5-mg groups for anti-KLH IgG (both > 90%) and comparable for anti-PPV-23 IgG (55% and 41%, respectively). Fingolimod did not affect anti-TT immunogenicity, and DTH response did not differ between placebo and fingolimod 0.5-mg groups. Expectedly, lymphocyte count reduced substantially in the fingolimod groups versus placebo but reversed by study end. Fingolimod was well tolerated, and the observed safety profile was consistent with previous reports.
Assad, M; Lemieux, N; Rivard, C H; Yahia, L H
1999-01-01
The genotoxicity level of nickel-titanium (NiTi) was compared to that of its pure constituents, pure nickel (Ni) and pure titanium (Ti) powders, and also to 316L stainless steel (316L SS) as clinical reference material. In order to do so, a dynamic in vitro semiphysiological extraction was performed with all metals using agitation and ISO requirements. Peripheral blood lymphocytes were then cultured in the presence of all material extracts, and their comparative genotoxicity levels were assessed using electron microscopy-in situ end-labeling (EM-ISEL) coupled to immunogold staining. Cellular chromatin exposition to pure Ni and 316L SS demonstrated a significantly stronger gold binding than exposition to NiTi, pure Ti, or the untreated control. In parallel, graphite furnace atomic absorption spectrophotometry (AAS) was also performed on all extraction media. The release of Ni atoms took the following decreasing distribution for the different resulting semiphysiological solutions: pure Ni, 316L SS, NiTi, Ti, and controls. Ti elements were detected after elution of pure titanium only. Both pure titanium and nickel-titanium specimens obtained a relative in vitro biocompatibility. Therefore, this quantitative in vitro study provides optimistic results for the eventual use of nickel-titanium alloys as surgical implant materials.
Pure apraxia of speech due to infarct in premotor cortex.
Patira, Riddhi; Ciniglia, Lauren; Calvert, Timothy; Altschuler, Eric L
Apraxia of speech (AOS) is now recognized as an articulation disorder distinct from dysarthria and aphasia. Various lesions have been associated with AOS in studies that are limited in precise localization due to variability in size and type of pathology. We present a case of pure AOS in setting of an acute stroke to localize more precisely than ever before the brain area responsible for AOS, dorsal premotor cortex (dPMC). The dPMC is in unique position to plan and coordinate speech production by virtue of its connection with nearby motor cortex harboring corticobulbar tract, supplementary motor area, inferior frontal operculum, and temporo-parietal area via the dorsal stream of dual-stream model of speech processing. The role of dPMC is further supported as part of dorsal stream in the dual-stream model of speech processing as well as controller in the hierarchical state feedback control model. Copyright © 2017 Polish Neurological Society. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
Stokes-Einstein relation for pure simple fluids
Cappelezzo, M.; Capellari, C. A.; Pezzin, S. H.; Coelho, L. A. F.
2007-06-01
The authors employed the equilibrium molecular dynamics technique to calculate the self-diffusion coefficient and the shear viscosity for simple fluids that obey the Lennard-Jones 6-12 potential in order to investigate the validity of the Stokes-Einstein (SE) relation for pure simple fluids. They performed calculations in a broad range of density and temperature in order to test the SE relation. The main goal of this work is to exactly calculate the constant, here denominated by α, present in the SE relation. Also, a modified SE relation where a fluid density is raised to a power in the usual expression is compared to the classical expression. According to the authors' simulations slip boundary conditions (α=4) can be satisfied in some state points. An intermediate value of α =5 was found in some regions of the phase diagram confirming the mode coupling theory. In addition depending on the phase diagram point and the definition of hydrodynamics radius, stick boundary condition (α=6) can be reproduced. The authors investigated the role of the hydrodynamic radius in the SE relation using three different definitions. The authors also present calculations for α in a hard-sphere system showing that the slip boundary conditions hold at very high density. They discuss possible explanations for their results and the role of the hydrodynamic radius for different definitions in the SE relation.
A new mathematical modeling for pure parsimony haplotyping problem.
Feizabadi, R; Bagherian, M; Vaziri, H R; Salahi, M
2016-11-01
Pure parsimony haplotyping (PPH) problem is important in bioinformatics because rational haplotyping inference plays important roles in analysis of genetic data, mapping complex genetic diseases such as Alzheimer's disease, heart disorders and etc. Haplotypes and genotypes are m-length sequences. Although several integer programing models have already been presented for PPH problem, its NP-hardness characteristic resulted in ineffectiveness of those models facing the real instances especially instances with many heterozygous sites. In this paper, we assign a corresponding number to each haplotype and genotype and based on those numbers, we set a mixed integer programing model. Using numbers, instead of sequences, would lead to less complexity of the new model in comparison with previous models in a way that there are neither constraints nor variables corresponding to heterozygous nucleotide sites in it. Experimental results approve the efficiency of the new model in producing better solution in comparison to two state-of-the art haplotyping approaches. Copyright © 2016 Elsevier Inc. All rights reserved.
Molar exergy and flow exergy of pure chemical fuels
International Nuclear Information System (INIS)
Zanchini, Enzo; Terlizzese, Tiziano
2009-01-01
Expressions of the molar exergy and of the molar flow exergy of a pure chemical fuel are deduced rigorously from the basic principles of thermodynamics. It is shown that molar exergy and molar flow exergy coincide when the temperature T and the pressure p of the fuel are equal to the temperature T B and the pressure p B of the environment; a general relation between exergy and flow exergy is proved as a consequence. The deduction of the expression of the molar exergy of a chemical fuel for non-standard values of T B and p B is clarified. For hydrogen, carbon dioxide and several hydrocarbons, tables are reported to allow a simple calculation of the molar exergy of the fuel for any value of the temperature T B and the relative humidity φ B of the environment, in the range 268.15 K ≤ T B ≤ 313.15 K and 0.1 ≤ φ B ≤ 1, with reference to the standard atmospheric pressure. Additional tables are provided to evaluate the difference between the exergy or the flow exergy of the fuel in its given initial state and the exergy at T = T B and p = p B . In these tables, it is assumed that fuel and environment have the same temperature and that the fuel pressure varies in the range 1.01325 bar ≤ p ≤ 200 bar; the fuel may be gas or liquid.
Pure JavaScript Storyline Layout Algorithm
Energy Technology Data Exchange (ETDEWEB)
2017-10-02
This is a JavaScript library for a storyline layout algorithm. Storylines are adept at communicating complex change by encoding time on the x-axis and using the proximity of lines in the y direction to represent interaction between entities. The library in this disclosure takes as input a list of objects containing an id, time, and state. The output is a data structure that can be used to conveniently render a storyline visualization. Most importantly, the library computes the y-coordinate of the entities over time that decreases layout artifacts including crossings, wiggles, and whitespace. This is accomplished through multi-objective, multi-stage optimization problem, where the output of one stage produces input and constraints for the next stage.
Cohomology in the Pure Spinor Formalism for the Superstring
International Nuclear Information System (INIS)
Berkovits, Nathan
2000-01-01
A manifestly super-Poincare covariant formalism for the superstring has recently been constructed using a pure spinor variable. Unlike the covariant Green-Schwarz formalism, this new formalism is easily quantized with a BRST operator and tree-level scattering amplitudes have been evaluated in a manifestly covariant manner. In this paper, the cohomology of the BRST operator in the pure spinor formalism is shown to give the usual light-cone Green-Schwarz spectrum. Although the BRST operator does not directly involve the Virasoro constraint, this constraint emerges after expressing the pure spinor variable in terms of SO(8) variables. (author)
Corrosion of pure OFHC-copper in simulated repository conditions
International Nuclear Information System (INIS)
Aaltonen, P.
1990-04-01
The research program 'Corrosion of pure OFHC-copper in simulated repository conditions' was planned to provide an experimental evaluation with respect to the theoretical calculations and forecasts made for the corrosion behaviour of pure copper in bentonite groundwater environments at temperatures between 20-80 deg C. The aim of this study in the first place is to evaluate the effects of groundwater composition, bentonite and temperature on the equilibrium and possible corrosion reactions between pure copper and the simulated repository environment. The progress report includes the results obtained after 36 months exposure time
DEVELOPMENT OF VEGETABLE PUREES AND DRINKS BY LACTIC ACID FERMENTATION
Directory of Open Access Journals (Sweden)
At. Kraevska
2014-03-01
Full Text Available The object of this work was to investigate the possibility for development of vegetable purees and drinks by lactic acid fermentation. It was found that by the direct lactic acid fermentation of Lb.plantarum strain 226/1 the vitamin composition of vegetable purees is preserved and the biological value is increased. Drinks, prepared from fermented vegetable purees were remarkable with the pleasant lactic acid taste, the sucrose-acid composition was stable and balanced and they can be used both in the rational and in the dietary nutrition.
International Nuclear Information System (INIS)
Tahir-Kheli, R.A.
1975-01-01
A few simple problems relating to random magnetic systems are presented. Translational symmetry, only on the macroscopic scale, is assumed for these systems. A random set of parameters, on the microscopic scale, for the various regions of these systems is also assumed. A probability distribution for randomness is obeyed. Knowledge of the form of these probability distributions, is assumed in all cases [pt
Pure gauge configurations and solutions to fermionic superstring field theory equations of motion
International Nuclear Information System (INIS)
Aref'eva, I Ya; Gorbachev, R V; Medvedev, P B
2009-01-01
Recent results on solutions to the equation of motion of the cubic fermionic string field theory and an equivalence of nonpolynomial and cubic string field theory are discussed. To have the possibility of dealing with both GSO(+) and GSO(-) sectors in the uniform way, a matrix formulation for the NS fermionic SFT is used. In constructions of analytical solutions to open-string field theories truncated pure gauge configurations parametrized by wedge states play an essential role. The matrix form of this parametrization for NS fermionic SFT is presented. Using the cubic open superstring field theory as an example we demonstrate explicitly that for the large parameter of the perturbation expansion these truncated pure gauge configurations give divergent contributions to the equations of motion on the subspace of the wedge states. The perturbation expansion is corrected by adding extra terms that are just those necessary for the equation of motion contracted with the solution itself to be satisfied.
Nieman, David C; Goodman, Courtney L; Capps, Christopher R; Shue, Zack L; Arnot, Robert
2018-01-01
This study measured the influence of 2-weeks ingestion of high chlorogenic acid (CQA) coffee on postexercise inflammation and oxidative stress, with secondary outcomes including performance and mood state. Cyclists (N = 15) were randomized to CQA coffee or placebo (300 ml/day) for 2 weeks, participated in a 50-km cycling time trial, and then crossed over to the opposite condition with a 2-week washout period. Blood samples were collected pre- and postsupplementation, and immediately postexercise. CQA coffee was prepared using the Turkish method with 30 g lightly roasted, highly ground Hambela coffee beans in 300 ml boiling water, and provided 1,066 mg CQA and 474 mg caffeine versus 187 mg CQA and 33 mg caffeine for placebo. Plasma caffeine was higher with CQA coffee versus placebo after 2-weeks (3.3-fold) and postexercise (21.0-fold) (interaction effect, p coffee versus placebo (p = .01). No differences between CQA coffee and placebo were found for postexercise increases in plasma IL-6 (p = .74) and hydroxyoctadecadienoic acids (9 + 13 HODEs) (p = .99). Total mood disturbance (TMD) scores were lower with CQA coffee versus placebo (p = .04). 50-km cycling time performance and power did not differ between trials, with heart rate and ventilation higher with CQA coffee, especially after 30 min. In summary, despite more favorable TMD scores with CQA coffee, these data do not support the chronic use of coffee highly concentrated with chlorogenic acids and caffeine in mitigating postexercise inflammation or oxidative stress or improving 50-km cycling performance.
Risk-Sensitive Control of Pure Jump Process on Countable Space with Near Monotone Cost
International Nuclear Information System (INIS)
Suresh Kumar, K.; Pal, Chandan
2013-01-01
In this article, we study risk-sensitive control problem with controlled continuous time pure jump process on a countable space as state dynamics. We prove multiplicative dynamic programming principle, elliptic and parabolic Harnack’s inequalities. Using the multiplicative dynamic programing principle and the Harnack’s inequalities, we prove the existence and a characterization of optimal risk-sensitive control under the near monotone condition
Ultrafine-Grained Pure Ti Processed by New SPD Scheme Combining Drawing with Shear
Raab, A. G.; Bobruk, E. V.; Raab, G. I.
2018-05-01
The paper displays the results of the studies and analysis of a promising severe plastic deformation scheme that implements the conditions of a non-monotonous impact during shear drawing of long-length bulk metal materials. The paper describes the efficiency of the proposed severe plastic deformation technique to form a gradient ultrafine-grained state in rod-shaped billets on the example of commercially pure Ti and its further development for future industrial applications.
Computer Solution to the Game of Pure Strategy
Directory of Open Access Journals (Sweden)
Laurent Bartholdi
2012-11-01
Full Text Available We numerically solve the classical "Game of Pure Strategy" using linear programming. We notice an intricate even-odd behaviour in the results of our computations that seems to encourage odd or maximal bids.
Bayero Journal of Pure and Applied Sciences: Submissions
African Journals Online (AJOL)
Bayero Journal of Pure and Applied Sciences (BAJOPAS) is an international journal that publishes original research and critical reviews in broad areas of ... Technology, Mathematical Sciences, Microbiology, Physics and Medical Sciences.
Directory of Open Access Journals (Sweden)
Wang Chu
2015-01-01
Full Text Available Formability of pure molybdenum in thermal forming process has been greatly improved, but it is still hard to avoid the generation of rupture and other quality defects. In this paper, a ductile fracture criterion of pure molybdenum sheet in thermal forming was established by considering the plastic deformation capacity of material and stress states, which can be used to describe fracture behaviour and critical rupture prediction of pure molybdenum sheet during hot forming process. Based on the isothermal uniaxial tensile tests which performed at 993 to 1143 K with strain rate range from 0.0005 to 0.2 s−1, the material parameters are calculated by the combination method of experiment with FEsimulation. Based on the observation, new fracture criteria can be expressed as a function of Zener-Hollomon parameter. The critical fracture value that calculated by Oyane-Sato criterion increases with increasing temperature and decreasing strain rate. The ductile fracture criterion with Zener-Hollomon parameter of pure molybdenum in thermal forming is proposed.
Social phobia, panic disorder and suicidality in subjects with pure and depressive mania.
Dilsaver, Steven C; Chen, Yuan-Who
2003-11-01
The objective of this study is to ascertain the rates of social phobia, panic disorder and suicidality in the midst of the manic state among subjects with pure and depressive mania. Subjects received evaluations entailing the use of serial standard clinical interviews, the Schedule for Affective Disorders and Schizophrenia (SADS) and a structured interview to determine whether they met the criteria for intra-episode social phobia (IESP) and panic disorder (IEPD). The diagnoses of major depressive disorder and mania were rendered using the Research Diagnostic Criteria. The diagnoses of IESP and IEPD were rendered using DSM-III-R criteria. Categorization as being suicidal was based on the SADS suicide subscale score. Twenty-five (56.8%) subjects had pure and 19 (43.2%) subjects had depressive mania. None of the subjects with pure and 13 (68.4%) with depressive mania had IESP (Pdepressive mania had IEPD (Pdepressive were suicidal. Twelve of 13 (92.3%) subjects with depressive mania met the criteria for IESP and IEPD concurrently (Pdepressive but not pure mania exhibited high rates of both IESP and IEPD. Concurrence of the disorders is the rule. The findings suggest that databases disclosing a relationship between panic disorder and suicidality merit, where possible, reanalysis directed at controlling for the effect of social phobia.
Randomized random walk on a random walk
International Nuclear Information System (INIS)
Lee, P.A.
1983-06-01
This paper discusses generalizations of the model introduced by Kehr and Kunter of the random walk of a particle on a one-dimensional chain which in turn has been constructed by a random walk procedure. The superimposed random walk is randomised in time according to the occurrences of a stochastic point process. The probability of finding the particle in a particular position at a certain instant is obtained explicitly in the transform domain. It is found that the asymptotic behaviour for large time of the mean-square displacement of the particle depends critically on the assumed structure of the basic random walk, giving a diffusion-like term for an asymmetric walk or a square root law if the walk is symmetric. Many results are obtained in closed form for the Poisson process case, and these agree with those given previously by Kehr and Kunter. (author)
The b ghost of the pure spinor formalism is nilpotent
Energy Technology Data Exchange (ETDEWEB)
Chandia, Osvaldo, E-mail: osvaldo.chandia@uai.c [Departamento de Ciencias, Facultad de Artes Liberales and Facultad de Ingenieria y Ciencias, Universidad Adolfo Ibanez, Santiago (Chile)
2011-01-10
The ghost for world-sheet reparametrization invariance is not a fundamental field in the pure spinor formalism. It is written as a combination of pure spinor variables which have conformal dimension two and such that it commutes with the BRST operator to give the world-sheet stress tensor. We show that the ghost variable defined in this way is nilpotent since the OPE of b with itself does not have singularities.
Type I supergravity effective action from pure spinor formalism
International Nuclear Information System (INIS)
Alencar, Geova
2009-01-01
Using the pure spinor formalism, we compute the tree-level correlation functions for three strings, one closed and two open, in N = 1 D = 10 superspace. Expanding the superfields in components, the respective terms of the effective action for the type I supergravity are obtained. All terms found agree with the effective action known in the literature. This result gives one more consistency test for the pure spinor formalism.
Testing effects in mixed- versus pure-list designs.
Rowland, Christopher A; Littrell-Baez, Megan K; Sensenig, Amanda E; DeLosh, Edward L
2014-08-01
In the present study, we investigated the role of list composition in the testing effect. Across three experiments, participants learned items through study and initial testing or study and restudy. List composition was manipulated, such that tested and restudied items appeared either intermixed in the same lists (mixed lists) or in separate lists (pure lists). In Experiment 1, half of the participants received mixed lists and half received pure lists. In Experiment 2, all participants were given both mixed and pure lists. Experiment 3 followed Erlebacher's (Psychological Bulletin, 84, 212-219, 1977) method, such that mixed lists, pure tested lists, and pure restudied lists were given to independent groups. Across all three experiments, the final recall results revealed significant testing effects for both mixed and pure lists, with no reliable difference in the magnitude of the testing advantage across list designs. This finding suggests that the testing effect is not subject to a key boundary condition-list design-that impacts other memory phenomena, including the generation effect.
Critical Behaviour of Pure and Site-Random Two Dimensional Antiferromagnets
DEFF Research Database (Denmark)
Birgenau, R. J.; Als-Nielsen, Jens Aage; Shirane, G.
1977-01-01
Quasielastic neutron scattering studies of the static critical behavior in the two-dimensional antiferromagnets K2NiF4, K2MnF4, and Rb2Mn0.5Ni0.5F4 are reported. For T......Quasielastic neutron scattering studies of the static critical behavior in the two-dimensional antiferromagnets K2NiF4, K2MnF4, and Rb2Mn0.5Ni0.5F4 are reported. For T...
Criticality and entanglement in random quantum systems
International Nuclear Information System (INIS)
Refael, G; Moore, J E
2009-01-01
We review studies of entanglement entropy in systems with quenched randomness, concentrating on universal behavior at strongly random quantum critical points. The disorder-averaged entanglement entropy provides insight into the quantum criticality of these systems and an understanding of their relationship to non-random ('pure') quantum criticality. The entanglement near many such critical points in one dimension shows a logarithmic divergence in subsystem size, similar to that in the pure case but with a different universal coefficient. Such universal coefficients are examples of universal critical amplitudes in a random system. Possible measurements are reviewed along with the one-particle entanglement scaling at certain Anderson localization transitions. We also comment briefly on higher dimensions and challenges for the future.
Preserving Ultra-Pure Uranium-233
International Nuclear Information System (INIS)
Krichinsky, Alan M.; Goldberg, Steven A.; Hutcheon, Ian D.
2011-01-01
FY 2012, $1,375K in FY 2013, and $1,030K in FY 2014. These costs correlate with the activities mentioned in the three previous paragraphs. This report outlines a recent effort to assess the annual consumption of 233 U in the United States, the gap between current supplies and future needs, and the initial planning for a program to rescue the purest of 233 U materials from destruction by down-blending so they may be preserved for use as a crucial reference for safeguarding nuclear material.
DEFF Research Database (Denmark)
Bell, Ian H.; Wronski, Jorrit; Quoilin, Sylvain
2014-01-01
property correlations described here have been implemented into CoolProp, an open-source thermophysical property library. This library is written in C++, with wrappers available for the majority of programming languages and platforms of technical interest. As of publication, 110 pure and pseudo-pure fluids...... are included in the library, as well as properties of 40 incompressible fluids and humid air. The source code for the CoolProp library is included as an electronic annex....
A comparative trial of psychotherapy and pharmacotherapy for "pure" dysthymic patients.
Markowitz, John C; Kocsis, James H; Bleiberg, Kathryn L; Christos, Paul J; Sacks, Michael
2005-12-01
Psychotherapy of "pure" dysthymic disorder remains understudied. This article reports outcomes of an acute randomized trial of 94 subjects treated for 16 weeks with either interpersonal psychotherapy (IPT), brief supportive psychotherapy (BSP), sertraline, or sertraline plus IPT. Recruited by clinical referral and advertising, subjects met DSM-IV criteria for early onset dysthymic disorder, with no episode of major depression in the prior six months. They were randomly assigned to one of four 16-week treatments, with options for crossover or continuation treatment. Results were analyzed from the intention-to-treat sample by ANCOVA, controlling for baseline depressive severity. Subjects improved in all conditions over time, with the cells including sertraline pharmacotherapy showing superiority over psychotherapy alone for response and remission. Response rates were 58% for sertraline alone, 57% for combined treatment, 35% for IPT, and 31% for BSP. The study was underpowered and may have employed too "active" a control condition. Follow-up data were unobtainable. In this acute trial for "pure" dysthymic disorder, sertraline with or without IPT showed advantages relative to IPT and BSP. Methodological difficulties may have limited differential outcome findings. This study bolsters a small but growing literature on the treatment of dysthymic disorder, suggesting that pharmacotherapy may acutely benefit patients more than psychotherapy.